Nutritional modulation of immune function in broilers.
Kidd, M T
2004-04-01
Collaborative research efforts across disciplines typically result in more insight toward the hypothesis being tested due to the omnibus nature of the projects. For example, nutritional experiments evaluating a nutrient response will benefit greatly by incorporating biochemical, physiological, and immunological endpoints for measurement. Clearly, commercial poultry producers do not have the luxury of focusing on specific disciplines when field problems occur. Hence, in practice interplay exists among nutrition, genetics, management, and diseases. Dietary composition impacts immune function of the chicken. As research in the area of nutritional immunology has increased, it is becoming apparent that nutrient needs for immunity do not coincide with those for growth or skeletal tissue accretion. This review is not a comprehensive assessment of nutrient needs for immunity in the chicken. Rather, this review is concerned with nutritional modulation of immunity in broilers that offers insight for nutritionists and researchers to implement nutritional regimens to reduce the severity of disease and to test or validate nutritional regimens that heighten immunity. Nutritional modulation of the hen diet and in ovo nutrient modulation to improve chick immunity and disease resistance are discussed.
CADDIS Volume 2. Sources, Stressors and Responses: Nutrients
Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Simple Conceptual Diagram
Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Detailed Conceptual Diagram (N)
Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Detailed Conceptual Diagram (P)
Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module enumerates the benefits to be derived from cropping at a waste application site and criteria to be used in selecting a crop for use in a particular situation. Following basic discussions of the requirements of various crops for water, soil-plant-air moisture potentials, crop water tolerance, nutrient removals by various crops, and…
A hydroponic design for microgravity and gravity installations
NASA Technical Reports Server (NTRS)
Fielder, Judith; Leggett, Nickolaus
1990-01-01
A hydroponic system is presented that is designed for use in microgravity or gravity experiments. The system uses a sponge-like growing medium installed in tubular modules. The modules contain the plant roots and manage the flow of the nutrient solution. The physical design and materials considerations are discussed, as are modifications of the basic design for use in microgravity or gravity experiments. The major external environmental requirements are also presented.
Bowles, Timothy M; Jackson, Louise E; Cavagnaro, Timothy R
2018-01-01
Climate change will alter both the amount and pattern of precipitation and soil water availability, which will directly affect plant growth and nutrient acquisition, and potentially, ecosystem functions like nutrient cycling and losses as well. Given their role in facilitating plant nutrient acquisition and water stress resistance, arbuscular mycorrhizal (AM) fungi may modulate the effects of changing water availability on plants and ecosystem functions. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant mycorrhiza-defective tomato genotype rmc were grown in microcosms in a glasshouse experiment manipulating both the pattern and amount of water supply in unsterilized field soil. Following 4 weeks of differing water regimes, we tested how AM fungi affected plant productivity and nutrient acquisition, short-term interception of a 15NH4+ pulse, and inorganic nitrogen (N) leaching from microcosms. AM fungi enhanced plant nutrient acquisition with both lower and more variable water availability, for instance increasing plant P uptake more with a pulsed water supply compared to a regular supply and increasing shoot N concentration more when lower water amounts were applied. Although uptake of the short-term 15NH4+ pulse was higher in rmc plants, possibly due to higher N demand, AM fungi subtly modulated NO3- leaching, decreasing losses by 54% at low and high water levels in the regular water regime, with small absolute amounts of NO3- leached (<1 kg N/ha). Since this study shows that AM fungi will likely be an important moderator of plant and ecosystem responses to adverse effects of more variable precipitation, management strategies that bolster AM fungal communities may in turn create systems that are more resilient to these changes. © 2017 John Wiley & Sons Ltd.
Developing an Environmental Decision Support System for Stream Management: the STREAMES Experience
NASA Astrophysics Data System (ADS)
Riera, J.; Argerich, A.; Comas, J.; Llorens, E.; Martí, E.; Godé, L.; Pargament, D.; Puig, M.; Sabater, F.
2005-05-01
Transferring research knowledge to stream managers is crucial for scientifically sound management. Environmental decision support systems are advocated as an effective means to accomplish this. STREAMES (STream REAach Management: an Expert System) is a decision tree based EDSS prototype developed within the context of an European project as a tool to assist water managers in the diagnosis of problems, detection of causes, and selection of management strategies for coping with stream degradation issues related mostly to excess nutrient availability. STREAMES was developed by a team of scientists, water managers, and experts in knowledge engineering. Although the tool focuses on management at the stream reach scale, it also incorporates a mass-balance catchment nutrient emission model and a simple GIS module. We will briefly present the prototype and share our experience in its development. Emphasis will be placed on the process of knowledge acquisition, the design process, the pitfalls and benefits of the communication between scientists and managers, and the potential for future development of STREAMES, particularly in the context of the EU Water Framework Directive.
NASA Astrophysics Data System (ADS)
Belfiore, Laurence A.; Volpato, Fabio Z.; Paulino, Alexandre T.; Belfiore, Carol J.
2011-12-01
The primary objective of this investigation is to establish guidelines for generating significant mammalian cell density in suspension bioreactors when stress-sensitive kinetics enhance the rate of nutrient consumption. Ultra-low-frequency dynamic modulations of the impeller (i.e., 35104 Hz) introduce time-dependent oscillatory shear into this transient analysis of cell proliferation under semi-continuous creeping flow conditions. Greater nutrient consumption is predicted when the amplitude
Modulation of Gut Microbiota in the Management of Metabolic Disorders: The Prospects and Challenges
Erejuwa, Omotayo O.; Sulaiman, Siti A.; Ab Wahab, Mohd S.
2014-01-01
The gut microbiota plays a number of important roles including digestion, metabolism, extraction of nutrients, synthesis of vitamins, prevention against pathogen colonization, and modulation of the immune system. Alterations or changes in composition and biodiversity of the gut microbiota have been associated with many gastrointestinal tract (GIT) disorders such as inflammatory bowel disease and colon cancer. Recent evidence suggests that altered composition and diversity of gut microbiota may play a role in the increased prevalence of metabolic diseases. This review article has two main objectives. First, it underscores approaches (such as probiotics, prebiotics, antimicrobial agents, bariatric surgery, and weight loss strategies) and their prospects in modulating the gut microbiota in the management of metabolic diseases. Second, it highlights some of the current challenges and discusses areas of future research as it relates to the gut microbiota and metabolic diseases. The prospect of modulating the gut microbiota seems promising. However, considering that research investigating the role of gut microbiota in metabolic diseases is still in its infancy, more rigorous and well-designed in vitro, animal and clinical studies are needed. PMID:24608927
Koerkle, E.H.; Fishel, D.K.; Brown, M.J.; Kostelnik, K.M.
1996-01-01
Water quality in the headwaters of the Little Conestoga Creek, Lancaster County, Pa., was investigated from April 1986 through September 1989 to determine possible effects of agricultural nutrient management on water quality. Nutrient management, an agricultural Best-Management Practice, was promoted in the 5.8-square-mile watershed by the U.S. Department of Agriculture Rural Clean Water Program. Nonpoint-source- agricultural contamination was evident in surface water and ground water in the watershed; the greatest contamination was in areas underlain by carbonate rock and with intensive row-crop and animal production. Initial implementation of nutrient management covered about 30 percent of applicable land and was concentrated in the Nutrient-Management Subbasin. By 1989, nutrient management covered about 45 percent of the entire Small Watershed, about 85 percent of the Nutrient- Management Subbasin, and less than 10 percent of the Nonnutrient-Management Subbasin. The number of farms implementing nutrient management increased from 14 in 1986 to 25 by 1989. Nutrient applications to cropland in the Nutrient- Management Subbasin decreased by an average of 35 percent after implementation. Comparison of base- flow surface-water quality from before and after implementation suggests that nutrient management was effective in slowing or reversing increases in concentrations of dissolved nitrate plus nitrite in the Nutrient-Management Subbasin. Although not statistically significant, the Mann-Whitney step-trend coefficient for the Nutrient-Management Subbasin was 0.8 milligram per liter, whereas trend coefficients for the Nonnutrient-Management Subbasin and the Small Watershed were 0.4 and 1.4 milligrams per liter, respectively, for the period of study. Analysis of covariance comparison of concurrent concentrations from the two sub- basins showed a significant decrease in concen- trations from the Nutrient-Management Subbasin compared to the Nonnutrient-Management Subbasin. The small, positive effect of nutrient management on base-flow water quality should be interpreted with caution. Lack of statistical significance for most tests, short-term variation in climate and agricultural activities, unknown ground-water flow rates, and insufficient agricultural-activity data for farms outside of the Nutrient-Management Subbasin were potential problems. A regression model relating nutrient applications to concen- trations of dissolved nitrate plus nitrite showed no significant explanatory relation.
Research to Inform Nutrient Thresholds and Prioritization of ...
The information in this presentation focuses on SSWR's 4.02 project, which will advance the science needed to inform decisions to prioritize watersheds and nutrient sources for nutrient management and define appropriate nutrient levels for the nation’s waters, two important elements of EPA’s framework for managing nutrient pollution. The information in this presentation focuses on SSWR's 4.02 project, which will advance the science needed to inform decisions to prioritize watersheds and nutrient sources for nutrient management and define appropriate nutrient levels for the nation’s waters, two important elements of EPA’s framework for managing nutrient pollution.
Developing a web-based forecasting tool for nutrient management
USDA-ARS?s Scientific Manuscript database
Modern nutrient management planning tools provide strategic guidance that, in the best cases, educates farmers and others involved in nutrient management to make prudent management decisions. The strategic guidance provided by nutrient management plans does not provide the day-to-day support require...
Cell Size and Growth Rate Are Modulated by TORC2-Dependent Signals.
Lucena, Rafael; Alcaide-Gavilán, Maria; Schubert, Katherine; He, Maybo; Domnauer, Matthew G; Marquer, Catherine; Klose, Christian; Surma, Michal A; Kellogg, Douglas R
2018-01-22
The size of all cells, from bacteria to vertebrates, is proportional to the growth rate set by nutrient availability, but the underlying mechanisms are unknown. Here, we show that nutrients modulate cell size and growth rate via the TORC2 signaling network in budding yeast. An important function of the TORC2 network is to modulate synthesis of ceramide lipids, which play roles in signaling. TORC2-dependent control of ceramide signaling strongly influences both cell size and growth rate. Thus, cells that cannot make ceramides fail to modulate their growth rate or size in response to changes in nutrients. PP2A associated with the Rts1 regulatory subunit (PP2A Rts1 ) is embedded in a feedback loop that controls TORC2 signaling and helps set the level of TORC2 signaling to match nutrient availability. Together, the data suggest a model in which growth rate and cell size are mechanistically linked by ceramide-dependent signals arising from the TORC2 network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Balancing macronutrient stoichiometry to alleviate eutrophication.
Stutter, M I; Graeber, D; Evans, C D; Wade, A J; Withers, P J A
2018-09-01
Reactive nitrogen (N) and phosphorus (P) inputs to surface waters modify aquatic environments, affect public health and recreation. Source controls dominate eutrophication management, whilst biological regulation of nutrients is largely neglected, although aquatic microbial organisms have huge potential to process nutrients. The stoichiometric ratio of organic carbon (OC) to N to P atoms should modulate heterotrophic pathways of aquatic nutrient processing, as high OC availability favours aquatic microbial processing. Heterotrophic microbial processing removes N by denitrification and captures N and P as organically-complexed, less eutrophying forms. With a global data synthesis, we show that the atomic ratios of bioavailable dissolved OC to either N or P in rivers with urban and agricultural land use are often distant from a "microbial optimum". This OC-deficiency relative to high availabilities of N and P likely overwhelms within-river heterotrophic processing. We propose that the capability of streams and rivers to retain N and P may be improved by active stoichiometric rebalancing. Although autotrophic OC production contributes to heterotrophic rates substantial control on nutrient processing from allochthonous OC is documented for N and an emerging field for P. Hence, rebalancing should be done by reconnecting appropriate OC sources such as wetlands and riparian forests that have become disconnected from rivers concurrent with agriculture and urbanisation. However, key knowledge gaps require research prior to the safe implementation of this approach in management: (i) to evaluate system responses to catchment inputs of dissolved OC forms and amounts relative to internal production of autotrophic dissolved OC and aquatic and terrestrial particulate OC and (ii) evaluate risk factors in anoxia-mediated P desorption with elevated OC scenarios. Still, we find stoichiometric rebalancing through reconnecting landscape beneficial OC sources has considerable potential for river management to alleviate eutrophication, improve water quality and aquatic ecosystem health, if augmenting nutrient source control. Copyright © 2018 Elsevier B.V. All rights reserved.
The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast
2017-01-01
The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. PMID:28939614
Role of soil microbial processes in integrated pest management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, A.J.
1987-01-01
Soil microorganisms play a significant role in the carbon, nitrogen, phosphorus, and sulfur cycles in nature and are critical to the functioning of ecosystems. Microorganisms affect plant growth directly by regulating the availability of plant nutrients in soil, or indirectly by affecting the population dynamics of plant pathogens in soil. Any adverse effect on soil microorganisms or on the microbial processes will affect the soil fertility, availability of plant nutrients and the overall biogeochemical cycling of elements in nature. Soil microorganisms are responsible for the degradation and detoxification of pesticides; they control many insect pests, nematodes, and other plant pathogenicmore » microorganisms by parasitism, competition, production of antibiotics and other toxic substances. Also, they regulate the availability of major and minor nutrients as well as essential elements. The long-term effects of continuous and, in some instances, excessive application of pesticides on soil fertility is not fully understood. Although much information is available on the integrated pest management (IPM) system, we have very little understanding of the extent of soil microbial processes which modulate the overall effectiveness of various strategies employed in IPM. The purpose of this paper is to review briefly the key microbial processes and their relationship to the IPM system.« less
Nutrients: Learner's Guide for a Critical Path in Water Quality Monitoring.
ERIC Educational Resources Information Center
Glazer, Richard B.; And Others
This learner's guide on nutrients is derived from a water monitoring curriculum developed at Ulster County Community College. There are 30 modules in this guide; each introduced with a statement of purpose and then broken down into an objective, learning conditions, and performance level. The modules cover: (1) safety; (2) chemical compounds; (3)…
Artiles, Karen; Anastasia, Stephanie; McCusker, Derek; Kellogg, Douglas R.
2009-01-01
The key molecular event that marks entry into the cell cycle is transcription of G1 cyclins, which bind and activate cyclin-dependent kinases. In yeast cells, initiation of G1 cyclin transcription is linked to achievement of a critical cell size, which contributes to cell-size homeostasis. The critical cell size is modulated by nutrients, such that cells growing in poor nutrients are smaller than cells growing in rich nutrients. Nutrient modulation of cell size does not work through known critical regulators of G1 cyclin transcription and is therefore thought to work through a distinct pathway. Here, we report that Rts1, a highly conserved regulatory subunit of protein phosphatase 2A (PP2A), is required for normal control of G1 cyclin transcription. Loss of Rts1 caused delayed initiation of bud growth and delayed and reduced accumulation of G1 cyclins. Expression of the G1 cyclin CLN2 from an inducible promoter rescued the delayed bud growth in rts1Δ cells, indicating that Rts1 acts at the level of transcription. Moreover, loss of Rts1 caused altered regulation of Swi6, a key component of the SBF transcription factor that controls G1 cyclin transcription. Epistasis analysis revealed that Rts1 does not work solely through several known critical upstream regulators of G1 cyclin transcription. Cells lacking Rts1 failed to undergo nutrient modulation of cell size. Together, these observations demonstrate that Rts1 is a key player in pathways that link nutrient availability, cell size, and G1 cyclin transcription. Since Rts1 is highly conserved, it may function in similar pathways in vertebrates. PMID:19911052
Nutritional management of osteoarthritis.
Richardson, D C; Schoenherr, W D; Zicker, S C
1997-07-01
Nutrition can influence developmental orthopedic diseases and the inflammatory process of arthritis. Developmental skeletal disease is a group of skeletal abnormalities that primarily affect fast-growing, large-breed dogs. Nutrient excesses (calcium and energy) and rapid growth (overfeeding and excess energy) are known risk factors. Inflammation can be directly or indirectly affected by nutritional influences. A direct effect can be achieved by modulating the immune response and inflammatory process with fatty acids. Weight control can indirectly influence the degenerative joint disease process by reducing the stresses on the joint.
The Biotrophic Development of Ustilago maydis Studied by RNA-Seq Analysis[OPEN
Lanver, Daniel; Müller, André N.; Happel, Petra; Franitza, Marek; Reissmann, Stefanie; Altmüller, Janine
2018-01-01
The maize smut fungus Ustilago maydis is a model organism for elucidating host colonization strategies of biotrophic fungi. Here, we performed an in depth transcriptional profiling of the entire plant-associated development of U. maydis wild-type strains. In our analysis, we focused on fungal metabolism, nutritional strategies, secreted effectors, and regulatory networks. Secreted proteins were enriched in three distinct expression modules corresponding to stages on the plant surface, establishment of biotrophy, and induction of tumors. These modules are likely the key determinants for U. maydis virulence. With respect to nutrient utilization, we observed that expression of several nutrient transporters was tied to these virulence modules rather than being controlled by nutrient availability. We show that oligopeptide transporters likely involved in nitrogen assimilation are important virulence factors. By measuring the intramodular connectivity of transcription factors, we identified the potential drivers for the virulence modules. While known components of the b-mating type cascade emerged as inducers for the plant surface and biotrophy module, we identified a set of yet uncharacterized transcription factors as likely responsible for expression of the tumor module. We demonstrate a crucial role for leaf tumor formation and effector gene expression for one of these transcription factors. PMID:29371439
Chan, Lingtak-Neander
2013-07-01
Drug-nutrient interactions are defined as physical, chemical, physiologic, or pathophysiologic relationships between a drug and a nutrient. The causes of most clinically significant drug-nutrient interactions are usually multifactorial. Failure to identify and properly manage drug-nutrient interactions can lead to very serious consequences and have a negative impact on patient outcomes. Nevertheless, with thorough review and assessment of the patient's history and treatment regimens and a carefully executed management strategy, adverse events associated with drug-nutrient interactions can be prevented. Based on the physiologic sequence of events after a drug or a nutrient has entered the body and the mechanism of interactions, drug-nutrient interactions can be categorized into 4 main types. Each type of interaction can be managed using similar strategies. The existing data that guide the clinical management of most drug-nutrient interactions are mostly anecdotal experience, uncontrolled observations, and opinions, whereas the science in understanding the mechanism of drug-nutrient interactions remains limited. The challenge for researchers and clinicians is to increase both basic and higher level clinical research in this field to bridge the gap between the science and practice. The research should aim to establish a better understanding of the function, regulation, and substrate specificity of the nutrient-related enzymes and transport proteins present in the gastrointestinal tract, as well as assess how the incidence and management of drug-nutrient interactions can be affected by sex, ethnicity, environmental factors, and genetic polymorphisms. This knowledge can help us develop a true personalized medicine approach in the prevention and management of drug-nutrient interactions.
The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast.
Leitao, Ricardo M; Kellogg, Douglas R
2017-11-06
The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. © 2017 Leitao and Kellogg.
A recycling index for food and health security: urban Taipei.
Huang, Susana Tzy-Ying
2010-01-01
The modern food system has evolved into one with highly inefficient activities, producing waste at each step of the food pathway from growing to consumption and disposal. The present challenge is to improve recyclability in the food system as a fundamental need for food and health security. This paper develops a methodological approach for a Food Recycling Index (FRI) as a tool to assess recyclability in the food system, to identify opportunities to reduce waste production and environmental contamination, and to provide a self-assessment tool for participants in the food system. The urban Taipei framework was used to evaluate resource and nutrient flow within the food consumption and waste management processes of the food system. A stepwise approach for a FRI is described: (1) identification of the major inputs and outputs in the food chain; (2) classification of inputs and outputs into modules (energy, water, nutrients, and contaminants); (3) assignment of semi-quantitative scores for each module and food system process using a matrix; (4) assessment for recycling status and recyclability potential; (5) conversion of scores into sub-indices; (6) derivation of an aggregate FRI. A FRI of 1.24 was obtained on the basis of data for kitchen waste management in Taipei, a score which encompasses absolute and relative values for a comprehensive interpretation. It is apparent that a FRI could evolve into a broader ecosystem concept with health relevance. Community end-users and policy planners can adopt this approach to improve food and health security.
Nutrient sensing modulates malaria parasite virulence.
Mancio-Silva, Liliana; Slavic, Ksenija; Grilo Ruivo, Margarida T; Grosso, Ana Rita; Modrzynska, Katarzyna K; Vera, Iset Medina; Sales-Dias, Joana; Gomes, Ana Rita; MacPherson, Cameron Ross; Crozet, Pierre; Adamo, Mattia; Baena-Gonzalez, Elena; Tewari, Rita; Llinás, Manuel; Billker, Oliver; Mota, Maria M
2017-07-13
The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host, primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signalling networks that enable cells to sense and adapt to varying environmental conditions. Canonical nutrient-sensing pathways are presumed to be absent from the causative agent of malaria, Plasmodium, thus raising the question of whether these parasites can sense and cope with fluctuations in host nutrient levels. Here we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through rearrangement of their transcriptome accompanied by substantial adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology with SNF1/AMPKα, and yeast complementation studies suggest that it is part of a functionally conserved cellular energy-sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical for modulating parasite replication and virulence.
[Inventory of regional surface nutrient balance and policy recommendations in China].
Chen, Min-Peng; Chen, Ji-Ning
2007-06-01
By applying OECD surface soil nitrogen balance methodology, the framework, methodology and database for nutrient balance budget in China are established to evaluate the impact of nutrient balance on agricultural production and water environment. Results show that nitrogen and phosphorus surplus in China are 640 x 10(4) t and 98 x 10(4) t respectively, and nitrogen and phosphorus surplus intensity in China are 16.56 kg/hm2 and 2.53 kg/hm2 respectively. Because of striking spatial difference of nutrient balance across the country, China is seeing a dual-challenge of nutrient surplus management as well as nutrient deficit management. Chemical fertilizer and livestock manure are best targets to perform nutrient surplus management due to their marked contributions to nutrient input. However, it is not cost-effective to implement a uniform management for all regions since nutrient input structures of them vary considerably.
Langland, Michael J.; Fishel, David K.
1995-01-01
The U.S. Geological Survey, in cooperation with the Susquehanna River Basin Commission and the Pennsylvania Department of Environmental Resources, conducted a study as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program to determine the effects of nutrient management of surface-water quality by reducing animal units in a 0.43-square-mile agricultural watershed in York County. The study was conducted primarily from October 1985 through September 1990 prior to and during the implementation of nutrient-management practices designed to reduce nutrient and sediment discharges. Intermittent sampling continued until August 1991. The Bald Eagle Creek Basin is underlain by schist and quartzite. About 87 percent of the watershed is cropland and pasture. Nearly 33 percent of the cropland was planted in corn prior to nutrient management, whereas 22 percent of the cropland was planted in corn during the nutrient-management phase. The animal population was reduced by 49 percent during nutrient management. Average annual applications of nitrogen and phosphorus from manure to cropland were reduced by 3,940 pounds (39 percent) and 910 pounds (46 percent), respectively, during nutrient management. A total of 94,560 pounds of nitrogen (538 pounds per acre) and 26,400 pounds of phosphorus (150 pounds per acre) were applied to the cropland as commercial fertilizer and manure during the 5-year study. Core samples from the top 4 feet of soil were collected prior to and during nutrient management and analyzed from concentrations of nitrogen and phosphorus. The average amount of nitrate nitrogen in the soil ranged from 36 to 135 pounds per acre, and soluble phosphorus ranged from 0.39 to 2.5 pounds per acre, prior to nutrient management. During nutrient management, nitrate nitrogen in the soil ranged from 21 to 291 pounds per acre and soluble phosphorus ranged from 0.73 to 1.7 pounds per acre. Precipitation was about 18 percent below normal and streamflow was about 35 percent below normal prior to nutrient management, whereas precipitation was 4 percent above normal and streamflow was 3 percent below normal during the first 2 years of nutrient management. Eighty-four percent of the 20.44 inches of streamflow was base flow prior to nutrient management and 54 percent of the 31.14 inches of streamflow was base flow during the first 2 years of the nutrient-management phase. About 31 percent of the measured precipitation during the first 4 years of the study was discharged as surface water; the remaining 69 percent was removed as evapotranspiration or remained in ground-water storage. Median concentrations of total nitrogen and dissolved nitrate plus nitrite in base flow increased from 4.9 and 4.1 milligrams per liter as nitrogen, respectively, prior to nutrient management to 5.8 and 5.0 milligrams per liter, respectively, during nutrient management. Median concentrations of ammonia nitrogen and organic nitrogen did not change significantly in base flow. Median concentrations of total and dissolved phosphorus in base flow did not change significantly and were 0.05 and 0.03 milligrams per liter as phosphorus, respectively, prior to the management phase, and 0.05 and 0.04 milligrams per liter, respectively, during the management phase. Concentrations and loads of dissolved nitrite plus nitrate in base flow increased following wet periods after crops were harvested and manure was applied. During the growing season, concentrations and loads decreased as nutrient utilization and evapotranspiration by corn increased. About 4,550 pounds of suspended sediment 5,300 pounds of nitrogen, and 70.4 pounds of phosphorous discharged in base flow in the 2 years prior to nutrient management. During the first 2 years of nutrient management about 2,860 pounds of suspended sediment, 5,700 pounds of nitrogen, and 46.6 pounds of phosphorus discharged in base flow. Prior to nutrient management, about 260,000 pounds of suspende
Research to Inform Nutrient Thresholds and Prioritization of Watersheds for Nutrient Management
The information in this presentation focuses on SSWR's 4.02 project, which will advance the science needed to inform decisions to prioritize watersheds and nutrient sources for nutrient management and define appropriate nutrient levels for the nation’s waters, two importan...
Management practices affect soil nutrients and bacterial populations in backgrounding beef feedlot
USDA-ARS?s Scientific Manuscript database
Contaminants associated with manure in animal production sites are of significant concern. Unless properly managed, high soil nutrient concentrations in feedlots can deteriorate soil and water quality. This three year study tested a nutrient management strategy with three sequentially imposed manage...
USDA-ARS?s Scientific Manuscript database
Volatile fatty acids (VFA), especially butyrate, participate in metabolism both as nutrients and as regulators of histone deacetylation. The major biochemical change that occurs in cells treated with butyrate is the global hyperacetylation of histones. One paradigmatic example of the nutrient-epige...
Malnutrition: Modulator of Immune Responses in Tuberculosis
Chandrasekaran, Padmapriyadarsini; Saravanan, Natarajan; Bethunaickan, Ramalingam; Tripathy, Srikanth
2017-01-01
Nutrition plays a major role in the management of both acute and chronic diseases, in terms of body’s response to the pathogenic organism. An array of nutrients like macro- and micro-nutrients, vitamins, etc., are associated with boosting the host’s immune responses against intracellular pathogens including mycobacterium tuberculosis (M.tb). These nutrients have an immunomodulatory effects in controlling the infection and inflammation process and nutritional deficiency of any form, i.e., malnutrition may lead to nutritionally acquired immunodeficiency syndrome, which greatly increases an individual’s susceptibility to progression of infection to disease. This narrative review looks at the various mechanisms by which nutrition or its deficiency leads to impaired cell mediated and humoral immune responses, which in turn affects the ability of an individual to fight M.tb infection or disease. There is very little evidence in the literature that any specific food on its own or a specific quantity can alter the course of TB disease or be effective in the treatment of malnutrition. Further clinical trials or studies will be needed to recommend and to better understand the link between malnutrition, tuberculosis, and impaired immunity. PMID:29093710
Nutrient Management Certification for Delaware: Developing a Water Quality Curriculum
ERIC Educational Resources Information Center
Hansen, David J.; Binford, Gregory D.
2004-01-01
Water quality is a critical environmental, social, and political issue in Delaware. In the late 1990s, a series of events related to water quality issues led to the passage of a state nutrient management law. This new law required nutrient management planning and established a state certification program for nutrient users in the agricultural and…
NASA Astrophysics Data System (ADS)
Drohan, Patrick; Buda, Anthony; Kleinman, Peter; Miller, Douglas; Lin, Henry; Beegle, Douglas; Knight, Paul
2017-04-01
USA and state nutrient management planning offers strategic guidance that strives to educate farmers and those involved in nutrient management to make wise management decisions. A goal of such programs is to manage hotspots of water quality degradation that threaten human and ecosystem health, water and food security. The guidance provided by nutrient management plans does not provide the day-to-day support necessary to make operational decisions, particularly when and where to apply nutrients over the short term. These short-term decisions on when and where to apply nutrients often make the difference between whether the nutrients impact water quality or are efficiently utilized by crops. Infiltrating rainfall events occurring shortly after broadcast nutrient applications are beneficial, given they will wash soluble nutrients into the soil where they are used by crops. Rainfall events that generate runoff shortly after nutrients are broadcast may wash off applied nutrients, and produce substantial nutrient losses from that site. We are developing a model and data based support tool for nutrient management, the Fertilizer Forecaster, which identifies the relative probability of runoff or infiltrating events in Pennsylvania (PA) landscapes in order to improve water quality. This tool will support field specific decisions by farmers and land managers on when and where to apply fertilizers and manures over 24, 48 and 72 hour periods. Our objectives are to: (1) monitor agricultural hillslopes in watersheds representing four of the five Physiographic Provinces of the Chesapeake Bay basin; (2) validate a high resolution mapping model that identifies soils prone to runoff; (3) develop an empirically based approach to relate state-of-the-art weather forecast variables to site-specific rainfall infiltration or runoff occurrence; (4) test the empirical forecasting model against alternative approaches to forecasting runoff occurrence; and (5) recruit farmers from the four watersheds to use web-based forecast maps in daily manure and fertilizer application decisions. Data from on-farm trials is being used to assess farmer fertilizer, manure, and tillage management decisions before and after use of the Fertilizer Forecaster. This data will help us understand not only the effectiveness of the tool, but also characteristics of farmers with the greatest potential to benefit from such a tool. Feedback from on-farm trials will be used to refine a final tool for field deployment. We hope that the Fertilizer Forecaster will serve as the basis for state (USA-PA), regional (Chesapeake Bay), and national changes in nutrient management planning. This Fertilizer Forecaster is an innovative management practice that is designed to enhance the services of aquatic ecosystems by improving water quality and enhance the services of terrestrial ecosystems by increasing the efficiency of nutrient use by targeted crops.
Controlled ecological life support systems: Development of a plant growth module
NASA Technical Reports Server (NTRS)
Averner, Mel M.; Macelroy, Robert D.; Smernoff, David T.
1987-01-01
An effort was made to begin defining the scientific and technical requirements for the design and construction of a ground-based plant growth facility. In particular, science design criteria for the Plant Growth Module (PGM) of the Controlled Ecological Life Support System (CELSS) were determined in the following areas: (1) irradiation parameters and associated equipment affecting plant growth; (2) air flow; (3) planting, culture, and harvest techniques; (4) carbon dioxide; (5) temperature and relative humidity; (6) oxygen; (7) construction materials and access; (8) volatile compounds; (9) bacteria, sterilization, and filtration; (10) nutrient application systems; (11) nutrient monitoring; and (12) nutrient pH and conductivity.
Site-specific nutrient management systems
USDA-ARS?s Scientific Manuscript database
Site-specific nutrient management systems were created to manage for spatial and temporal variability in biophysical factors that determine the availability and demand of crop nutrients. These systems differ among geographical regions in the information utilized and way they operate to accomplish th...
Nutrient sensing modulates malaria parasite virulence
Mancio-Silva, Liliana; Slavic, Ksenija; Grilo Ruivo, Margarida T.; Grosso, Ana Rita; Modrzynska, Katarzyna K.; Vera, Iset Medina; Sales-Dias, Joana; Gomes, Ana Rita; MacPherson, Cameron Ross; Crozet, Pierre; Adamo, Mattia; Baena-Gonzalez, Elena; Tewari, Rita; Llinás, Manuel; Billker, Oliver; Mota, Maria M.
2017-01-01
The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host(s), primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signaling networks that confer to cells the ability to sense and adapt to varying environmental conditions1,2. Canonical nutrient-sensing pathways are presumably absent in the causing agent of malaria Plasmodium3–5, thus raising the question of whether these parasites possess the capacity to sense and cope with host nutrient fluctuations. Here, we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through a rearrangement of their transcriptome accompanied by a significant adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology to SNF1/AMPKα and yeast complementation studies suggest functional conservation of an ancient cellular energy sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical to modulate parasite replication and virulence. PMID:28678779
7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 3 2014-01-01 2014-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer must..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop...
7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer must..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop...
7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 3 2012-01-01 2012-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer must..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop...
7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer must..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop...
Horio, Nao; Jyotaki, Masafumi; Yoshida, Ryusuke; Sanematsu, Keisuke; Shigemura, Noriatsu; Ninomiya, Yuzo
2010-01-01
The ability to perceive sweet compounds is important for animals to detect an external carbohydrate source of calories and has a critical role in the nutritional status of animals. In mice, a subset of sweet-sensitive taste cells possesses leptin receptors. Increase of plasma leptin with increasing internal energy storage in the adipose tissue suppresses sweet taste responses via this receptor. The data from recent studies indicate that leptin may also act as a modulator of sweet taste sensation in humans with a diurnal variation in sweet sensitivity. The plasma leptin level and sweet taste sensitivity are proposed to link with post-ingestive plasma glucose level. This leptin modulation of sweet taste sensitivity may influence an individual's preference, ingestive behavior, and absorption of nutrients, thereby playing important roles in regulation of energy homeostasis.
Monitoring and control technologies for bioregenerative life support systems/CELSS
NASA Technical Reports Server (NTRS)
Knott, William M.; Sager, John C.
1991-01-01
The development of a controlled Ecological Life Support System (CELSS) will require NASA to develop innovative monitoring and control technologies to operate the different components of the system. Primary effort over the past three to four years has been directed toward the development of technologies to operate a biomass production module. Computer hardware and software required to operate, collect, and summarize environmental data for a large plant growth chamber facility were developed and refined. Sensors and controls required to collect information on such physical parameters as relative humidity, temperature, irradiance, pressure, and gases in the atmosphere; and PH, dissolved oxygen, fluid flow rates, and electrical conductivity in the nutrient solutions are being developed and tested. Technologies required to produce high artificial irradiance for plant growth and those required to collect and transport natural light into a plant growth chamber are also being evaluated. Significant effort was directed towards the development and testing of a membrane nutrient delivery system required to manipulate, seed, and harvest crops, and to determine plant health prior to stress impacting plant productivity are also being researched. Tissue culture technologies are being developed for use in management and propagation of crop plants. Though previous efforts have focussed on development of technologies required to operate a biomass production module for a CELSS, current efforts are expanding to include technologies required to operate modules such as food preparation, biomass processing, and resource (waste) recovery which are integral parts of the CELSS.
Internal states drive nutrient homeostasis by modulating exploration-exploitation trade-off
Corrales-Carvajal, Verónica María; Faisal, Aldo A; Ribeiro, Carlos
2016-01-01
Internal states can profoundly alter the behavior of animals. A quantitative understanding of the behavioral changes upon metabolic challenges is key to a mechanistic dissection of how animals maintain nutritional homeostasis. We used an automated video tracking setup to characterize how amino acid and reproductive states interact to shape exploitation and exploration decisions taken by adult Drosophila melanogaster. We find that these two states have specific effects on the decisions to stop at and leave proteinaceous food patches. Furthermore, the internal nutrient state defines the exploration-exploitation trade-off: nutrient-deprived flies focus on specific patches while satiated flies explore more globally. Finally, we show that olfaction mediates the efficient recognition of yeast as an appropriate protein source in mated females and that octopamine is specifically required to mediate homeostatic postmating responses without affecting internal nutrient sensing. Internal states therefore modulate specific aspects of exploitation and exploration to change nutrient selection. DOI: http://dx.doi.org/10.7554/eLife.19920.001 PMID:27770569
NASA Astrophysics Data System (ADS)
Lin, T. S.; Gahlot, S.; Shu, S.; Jain, A. K.; Kheshgi, H. S.
2017-12-01
Continued growth in population is projected to drive increased future demand for rice and the methane emissions associated with its production. However, observational studies of methane emissions from rice have reported seemingly conflicting results and do not all support this projection. In this study we couple an ecophysiological process-based rice paddy module and a methane emission module with a land surface model, Integrated Science Assessment Model (ISAM), to study the impacts of various environmental factors and agricultural management practices on rice production and methane emissions from rice fields. This coupled modeling framework accounts for dynamic rice growth processes with adaptation of photosynthesis, rice-specific phenology, biomass accumulation, leaf area development and structures responses to water, temperature, light and nutrient stresses. The coupled model is calibrated and validated with observations from various rice cultivation fields. We find that the differing results of observational studies can be caused by the interactions of environmental factors, including climate, atmospheric CO2 concentration, and N deposition, and agricultural management practices, such as irrigation and N fertilizer applications, with rice production at spatial and temporal scales.
Decadal water quality variations at three typical basins of Mekong, Murray and Yukon
NASA Astrophysics Data System (ADS)
Khan, Afed U.; Jiang, Jiping; Wang, Peng
2018-02-01
Decadal distribution of water quality parameters is essential for surface water management. Decadal distribution analysis was conducted to assess decadal variations in water quality parameters at three typical watersheds of Murray, Mekong and Yukon. Right distribution shifts were observed for phosphorous and nitrogen parameters at the Mekong watershed monitoring sites while left shifts were noted at the Murray and Yukon monitoring sites. Nutrients pollution increases with time at the Mekong watershed while decreases at the Murray and Yukon watershed monitoring stations. The results implied that watershed located in densely populated developing area has higher risk of water quality deterioration in comparison to thinly populated developed area. The present study suggests best management practices at watershed scale to modulate water pollution.
Bovine somatotropin and lactation: from basic science to commercial application.
Bauman, D E
1999-10-01
Bovine somatotropin (bST) results in increased milk yield and an unprecedented improvement in efficiency. Beginning in the 1930s to present day, investigations have examined animal-related factors such as nutrition, bioenergetics, metabolism, health and well being and consumer-related factors such as milk quality, manufacturing characteristics, and product safety. Overall, bST is a homeorhetic control involved in orchestrating many physiological processes. Direct effects involve adaptations in many tissues and the metabolism of all nutrient classes--carbohydrates, lipids, protein, and minerals. Mechanisms include alterations in key enzymes, intracellular signal transduction systems, and tissue response to homeostatic signals. Indirect effects involve the mammary gland and are thought to be mediated by the insulin-like growth factor (IGF) system. Specific changes include increased cellular rates of milk synthesis and enhanced maintenance of secretory cells. Indirect effects are modulated by environment and management factors, especially nutritional status. This modulation is a central component in allowing ST to play a key role in regulating nutrient utilization across a range of physiological situations. U.S. commercial use began in 1994, and adoption has been extensive. From a consumer perspective, bST was unique, and special interest groups loudly predicted dire consequences. However, introduction of bST had no impact on milk consumption, and milk labeled as recombinant bST-free occupies a minor niche market. From a producer perspective, commercial use verified scientific studies and enhanced net farm income. Overall, ST is a key homeorhetic control regulating nutrient partitioning, and the ST/IGF system plays a key role in animal performance and well being across a range of physiological situations.
NPK macronutrients and microRNA homeostasis.
Kulcheski, Franceli R; Côrrea, Régis; Gomes, Igor A; de Lima, Júlio C; Margis, Rogerio
2015-01-01
Macronutrients are essential elements for plant growth and development. In natural, non-cultivated systems, the availability of macronutrients is not a limiting factor of growth, due to fast recycling mechanisms. However, their availability might be an issue in modern agricultural practices, since soil has been frequently over exploited. From a crop management perspective, the nitrogen (N), phosphorus (P), and potassium (K) are three important limiting factors and therefore frequently added as fertilizers. NPK are among the nutrients that have been reported to alter post-embryonic root developmental processes and consequently, impairs crop yield. To cope with nutrients scarcity, plants have evolved several mechanisms involved in metabolic, physiological, and developmental adaptations. In this scenario, microRNAs (miRNAs) have emerged as additional key regulators of nutrients uptake and assimilation. Some studies have demonstrated the intrinsic relation between miRNAs and their targets, and how they can modulate plants to deal with the NPK availability. In this review, we focus on miRNAs and their regulation of targets involved in NPK metabolism. In general, NPK starvation is related with miRNAs that are involved in root-architectural changes and uptake activity modulation. We further show that several miRNAs were discovered to be involved in plant-microbe symbiosis during N and P uptake, and in this way we present a global view of some studies that were conducted in the last years. The integration of current knowledge about miRNA-NPK signaling may help future studies to focus in good candidates genes for the development of important tools for plant nutritional breeding.
NASA Astrophysics Data System (ADS)
Tank, J. L.; Hanrahan, B.; Christopher, S. F.; Mahl, U. H.; Royer, T. V.
2017-12-01
The Midwestern US has undergone extensive land use change as forest, wetlands, and prairies have been converted to agroecosystems. Today, excess fertilizer nutrients from farm fields enter agricultural streams, which degrades both local and downstream water quality. We are quantifying the nutrient reduction benefits of two conservation practices implemented at the catchment scale. In partnership with The Nature Conservancy, in a small Indiana catchment, we have quantified how 600m of floodplain restoration (i.e., a two-stage ditch) increased nitrate-N removal via denitrification and reduced sediment export, but impacts on stream nutrient concentrations were negligible due to very high catchment loading relative to the short implementation reach. Requests from state and federal partners led to development and parameterization of a new two-stage ditch module in the SWAT model to determine the potential catchment-scale benefits when implementation lengths were extended. More recently, in partnership with state SWCD managers, we have added a landscape practice to quantify how winter cover crops reduce nutrient loss from fields, sampling year-round nutrient fluxes from multiple subsurface tile drains and longitudinally along the stream channel. Nitrate-N and dissolved P fluxes were significantly lower in tiles draining fields with cover crops compared to those without. At the urging of farmers and federal NRCS partners, we also linked tile drain nutrient reductions to changes in soil chemistry. Both soil nitrate-N and dissolved P were lower in cover cropped fields, and we found significant correlations between soil and tile drain nutrients, which may encourage future adoption of the conservation practice as soil health benefits appeal to farmers. As biogeochemists, this research has provided valuable insights on how floodplains and land cover change can alter patterns of catchment-scale nutrient export. The translation of successful soil and water quality outcomes through this significant regional demonstration project make it a potentially powerful agent of change for advancing conservation success.
Dairy production systems in the United States: Nutrient budgets and environmental impacts
USDA-ARS?s Scientific Manuscript database
Across the diversity of US dairy production systems, nutrient management priorities range widely, from feeding regimes to manure handling, storage and application to crop systems. To assess nutrient management and environmental impacts of dairy production systems in the US, we evaluated nutrient bud...
Automated lettuce nutrient solution management using an array of ion-selective electrodes
USDA-ARS?s Scientific Manuscript database
Automated sensing and control of macronutrients in hydroponic solutions would allow more efficient management of nutrients for crop growth in closed systems. This paper describes the development and evaluation of a computer-controlled nutrient management system with an array of ion-selective electro...
Plant Growth Module (PGM) conceptual design
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Rasmussen, Daryl
1987-01-01
The Plant Growth Module for the Controlled Ecological Life Support System (CELSS), designed to answer basic science questions related to growing plants in closed systems, is described functionally with artist's conception drawings. Subsystems are also described, including enclosure and access; data acquisition and control; gas monitor and control; heating, ventilation, and air conditioning; air delivery; nutrient monitor and control; microbial monitoring and control; plant support and nutrient delivery; illumination; and internal operations. The hardware development plan is outlined.
Nutritional modulation of resistance to infectious diseases.
Klasing, K C
1998-08-01
Dietary characteristics can modulate a bird's susceptibility to infectious challenges and subtle influences due to the level of nutrients or the types of ingredients may at times be of critical importance. This review considers seven mechanisms for nutritional modulation of resistance to infectious disease in poultry. 1) Nutrition may impact the development of the immune system, both in ovo and in the first weeks posthatch. Micronutrient deficiencies that affect developmental events, such as the seeding of lymphoid organs and clonal expansion of lymphocyte clones, can negatively impact the immune system later in life. 2) A substrate role of nutrients is necessary for the immune response so that responding cells can divide and synthesize effector molecules. The quantitative need for nutrients for supporting a normal immune system, as well as the proliferation of leukocytes and the production of antibodies during an infectious challenge, is very small relative to uses for growth or egg production. It is likely that the systemic acute phase response that accompanies most infectious challenges is a more significant consumer of nutrients than the immune system itself. 3) The low concentration of some nutrients (e.g., iron) in body fluids makes them the limiting substrates for the proliferation of invading pathogens and the supply of these nutrients is further limited during the immune response. 4) Some nutrients (e.g., fatty acids and vitamins A, D, and E) have direct regulatory actions on leukocytes by binding to intracellular receptors or by modifying the release of second messengers. 5) The diet may also have indirect regulatory effects that are mediated by the classical endocrine system. 6) Physical and chemical aspects of the diet can modify the populations of microorganisms in the gastrointestinal tract, the capacity of pathogens to attach to enterocytes, and the integrity of the intestinal epithelium.
Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.
Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J
2016-06-01
Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
O'Boyle, Shane; Wilkes, Robert; McDermott, Georgina; Ní Longphuirt, Sorcha; Murray, Clare
2015-03-01
A multivariate statistical approach was used to investigate the response of phytoplankton in Irish estuaries and nearshore coastal waters to nutrient enrichment and to examine the factors which modulate this response. The analysis suggests that while many estuaries are nutrient-enriched, relatively few display phytoplankton-related symptoms of eutrophication as the response to nutrients is primarily affected by insufficient retention time, in some by inadequate light availability, and only rarely by both factors acting together. Nearshore coastal waters are nitrogen (N) and silica (Si) limited in summer, but in some nearshore waters along the south coast, where N is elevated, phosphorus (P) is potentially limiting. The reduction in P loadings to estuarine waters is likely to lead to an improvement in the eutrophication status of these mainly P-limited waters. The disproportionate reduction in loadings of P compared to N (52% versus 24%, since the early 1990s), and the potential weakening of the estuarine N filter, as eutrophication symptoms lessen, may result in the downstream movement of nitrogen to N-limited coastal waters. These findings support the view that an integrated dual-nutrient reduction strategy is required to address eutrophication along the freshwater-marine continuum. The outcome of the analysis is a conceptual model which is of direct value and use to water managers in determining the relative susceptibility of these waters to nutrient enrichment. This understanding can in turn be used to develop informed programmes of measures which are targeted and ultimately cost effective.
Including spatial data in nutrient balance modelling on dairy farms
NASA Astrophysics Data System (ADS)
van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke
2017-04-01
The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies at Dutch dairy farms. We selected two dairy farms located on cover sands in the Netherlands. One farm was located on relatively homogeneous soil type, and one on many different soil types within the sandy soils. A full year of data of N and P inputs and outputs on farm and field level were provided by the farmers, including field level yields, yield composition, manure composition, degree of grazing and degree of mowing. Soil heterogeneity was defined as the number of soil units within the farm corrected for surface area, and quantified from the Dutch 1:50.000 soil map. N and P balances at farm and field level were determined, as well as differences in nutrient use efficiency, leaching, and N emission. We will present the effect of the spatial scale on nutrient balance analysis and discuss to which degree any differences are caused by within-farm land management and soil variation. This study highlights to which extent within-farm land management and soil variation should be taken into account when modelling nutrient flows and nutrient use efficiencies at farm level, to contribute to field-based decision making for improved land management.
Forest management and nutrient cycling in eastern hardwoods
James H. Patric; David W. Smith
1975-01-01
The literature was reviewed for reports on nutrient cycling in the eastern deciduous forest, particularly with respect to nitrogen, and for effects of forest management on the nutrient cycle. Although most such research has dealt with conifers, a considerable body of literature relates to hardwoods. Usually, only those references that dealt quantitatively with nutrient...
Joseph M. Secoges; Wallace M. Aust; John R. Seiler; C. Andrew Dolloff; William A. Lakel
2013-01-01
Forestry best management practices (BMP) recommendations for streamside management zones (SMZs) are based on limited data regarding SMZ width, partial harvests, and nutrient movements after forest fertilization. Agricultural fertilization is commonly linked to increased stream nutrients. However, less is known about effectiveness of SMZ options for controlling nutrient...
USDA-ARS?s Scientific Manuscript database
Nutrient management is a priority of U.S. dairy farms, although specific concerns vary across regions and management systems. To elucidate challenges and opportunities to improving nutrient use efficiencies, the USDA’s Dairy Agroecosystems Working Group investigated 10 case studies of confinement (i...
Epigenetic mechanisms of nutrient-induced modulation of gene expression and cellular functions
USDA-ARS?s Scientific Manuscript database
Utilizing next-generation sequencing technology in combination with chromatin immunoprecipitation (ChIP) technology, our study provides systematic and novel insights into the relationships between nutrition and epigenetics. One paradigmatic example of nutrient-epigenetic-phenotype relationship is th...
Oral manifestations of inflammatory bowel disease.
Mortada, I; Leone, A; Gerges Geagea, A; Mortada, R; Matar, C; Rizzo, M; Hajj Hussein, I; Massaad-Massade, L; Jurjus, A
2017-01-01
Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis, have important extraintestinal manifestations, notably in the oral cavity. These oral manifestations can constitute important clinical clues in the diagnosis and management of IBD, and include changes at the immune and bacterial levels. Aphthous ulcers, pyostomatitis vegetans, cobblestoning and gingivitis are important oral findings frequently observed in IBD patients. Their presentations vary considerably and might be well diagnosed and distinguished from other oral lesions. Infections, drug side effects, deficiencies in some nutrients and many other diseases involved with oral manifestations should also be taken into account. This article discusses the most recent findings on the oral manifestations of IBD with a focus on bacterial modulations and immune changes. It also includes an overview on options for management of the oral lesions of IBD.
Paerl, Hans
2008-01-01
Nutrient and hydrologic conditions strongly influence harmful planktonic and benthic cyanobacterial bloom (CHAB) dynamics in aquatic ecosystems ranging from streams and lakes to coastal ecosystems. Urbanization, agricultural and industrial development have led to increased nitrogen (N) and phosphorus (P) discharge, which affect CHAB potentials of receiving waters. The amounts, proportions and chemical composition of N and P sources can influence the composition, magnitude and duration of blooms. This, in turn, has ramifications for food web dynamics (toxic or inedible CHABs), nutrient and oxygen cycling and nutrient budgets. Some CHABs are capable of N2 fixation, a process that can influence N availability and budgets. Certain invasive N2 fixing taxa (e.g., Cylindrospermopsis, Lyngbya) also effectively compete for fixed N during spring, N-enriched runoff periods, while they use N2 fixation to supplant their N needs during N-deplete summer months. Control of these taxa is strongly dependent on P supply. However, additional factors, such as molar N:P supply ratios, organic matter availability, light attenuation, freshwater discharge, flushing rates (residence time) and water column stability play interactive roles in determining CHAB composition (i.e. N2 fixing vs. non-N2 fixing taxa) and biomass. Bloom potentials of nutrient-impacted waters are sensitive to water residence (or flushing) time, temperatures (preference for > 15 degrees C), vertical mixing and turbidity. These physical forcing features can control absolute growth rates of bloom taxa. Human activities may affect "bottom up" physical-chemical modulators either directly, by controlling hydrologic, nutrient, sediment and toxic discharges, or indirectly, by influencing climate. Control and management of cyanobacterial and other phytoplankton blooms invariably includes nutrient input constraints, most often focused on N and/or P. While single nutrient input constraints may be effective in some water bodies, dual N and P input reductions are usually required for effective long-term control and management of blooms. In some systems where hydrologic manipulations (i.e., plentiful water supplies) are possible, reducing the water residence time by flushing and artificial mixing (along with nutrient input constraints) can be effective alternatives. Blooms that are not readily consumed and transferred up the food web will form a relatively large proportion of sedimented organic matter. This, in turn, will exacerbate sediment oxygen demand, and enhance the potential for oxygen depletion and release of nutrients back to the water column. This scenario is particularly problematic in long-residence time (i.e., months) systems, where blooms may exert a strong positive feedback on future events. Implications of these scenarios and the confounding issues of climatic (hydrologic) variability, including droughts, tropical storms, hurricanes and floods, will be discussed in the context of developing effective CHAB control strategies along the freshwater-marine continuum.
USDA-ARS?s Scientific Manuscript database
Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...
Nutrient Management in Recirculating Hydroponic Culture
NASA Technical Reports Server (NTRS)
Bugbee, Bruce
2004-01-01
There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.
Douglas N. Kastendick; Eric K. Zenner; Brian J. Palik; Randall K. Kolka; Charles R. Blinn
2012-01-01
Riparian management zones (RMZs) protect streams from excess nutrients, yet few studies have looked at soil nutrients in forested RMZs or the impacts of partial harvesting on nutrient availability. We investigated the impacts of upland clearcutting in conjunction with uncut and partially harvested RMZs (40% basal area reduction) on soil nutrients in forests in...
A global database of nitrogen and phosphorus excretion rates of aquatic animals
Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Met...
ERIC Educational Resources Information Center
Farouque, Md. Golam; Takeya, Hiroyuki
2007-01-01
This study aimed to determine farmers' perception of integrated soil fertility and nutrient management for sustainable crop production. Integrated soil fertility (ISF) and nutrient management (NM) is an advanced approach to maintain soil fertility and to enhance crop productivity. A total number of 120 farmers from eight villages in four districts…
Pellerin, Brian; Stauffer, Beth A; Young, Dwane A; Sullivan, Daniel J.; Bricker, Suzanne B.; Walbridge, Mark R; Clyde, Gerard A; Shaw, Denice M
2016-01-01
Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well-known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as an example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real-time nutrient data. The concurrent emergence of new tools to integrate, manage and share large data sets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous nutrient monitoring to rapidly move forward. We highlight several near-term opportunities for Federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large-scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation’s water resources.
Shen, Jianbo; Li, Chunjian; Mi, Guohua; Li, Long; Yuan, Lixing; Jiang, Rongfeng; Zhang, Fusuo
2013-03-01
Root and rhizosphere research has been conducted for many decades, but the underlying strategy of root/rhizosphere processes and management in intensive cropping systems remain largely to be determined. Improved grain production to meet the food demand of an increasing population has been highly dependent on chemical fertilizer input based on the traditionally assumed notion of 'high input, high output', which results in overuse of fertilizers but ignores the biological potential of roots or rhizosphere for efficient mobilization and acquisition of soil nutrients. Root exploration in soil nutrient resources and root-induced rhizosphere processes plays an important role in controlling nutrient transformation, efficient nutrient acquisition and use, and thus crop productivity. The efficiency of root/rhizosphere in terms of improved nutrient mobilization, acquisition, and use can be fully exploited by: (1) manipulating root growth (i.e. root development and size, root system architecture, and distribution); (2) regulating rhizosphere processes (i.e. rhizosphere acidification, organic anion and acid phosphatase exudation, localized application of nutrients, rhizosphere interactions, and use of efficient crop genotypes); and (3) optimizing root zone management to synchronize root growth and soil nutrient supply with demand of nutrients in cropping systems. Experiments have shown that root/rhizosphere management is an effective approach to increase both nutrient use efficiency and crop productivity for sustainable crop production. The objectives of this paper are to summarize the principles of root/rhizosphere management and provide an overview of some successful case studies on how to exploit the biological potential of root system and rhizosphere processes to improve crop productivity and nutrient use efficiency.
A global database of nitrogen and phosphorus excretion rates of aquatic animals
USDA-ARS?s Scientific Manuscript database
Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Eco...
Maximizing the accuracy of field-derived numeric nutrient criteria in water quality regulations.
McLaughlin, Douglas B
2014-01-01
High levels of the nutrients nitrogen and phosphorus can cause unhealthy biological or ecological conditions in surface waters and prevent the attainment of their designated uses. Regulatory agencies are developing numeric criteria for these nutrients in an effort to ensure that the surface waters in their jurisdictions remain healthy and productive, and that water quality standards are met. These criteria are often derived using field measurements that relate nutrient concentrations and other water quality conditions to expected biological responses such as undesirable growth or changes in aquatic plant and animal communities. Ideally, these numeric criteria can be used to accurately "diagnose" ecosystem health and guide management decisions. However, the degree to which numeric nutrient criteria are useful for decision making depends on how accurately they reflect the status or risk of nutrient-related biological impairments. Numeric criteria that have little predictive value are not likely to be useful for managing nutrient concerns. This paper presents information on the role of numeric nutrient criteria as biological health indicators, and the potential benefits of sufficiently accurate criteria for nutrient management. In addition, it describes approaches being proposed or adopted in states such as Florida and Maine to improve the accuracy of numeric criteria and criteria-based decisions. This includes a preference for developing site-specific criteria in cases where sufficient data are available, and the use of nutrient concentration and biological response criteria together in a framework to support designated use attainment decisions. Together with systematic planning during criteria development, the accuracy of field-derived numeric nutrient criteria can be assessed and maximized as a part of an overall effort to manage nutrient water quality concerns. © 2013 SETAC.
Sosa-Castillo, Elizabeth; Rodríguez-Cruz, Maricela; Moltó-Puigmartí, Carolina
2017-08-01
Human milk covers the infant's nutrient requirements during the first 6 months of life. The composition of human milk progressively changes during lactation and it is influenced by maternal nutritional factors. Nowadays, it is well known that nutrients have the ability to interact with genes and modulate molecular mechanisms impacting physiological functions. This has led to a growing interest among researchers in exploring nutrition at a molecular level and to the development of two fields of study: nutrigenomics, which evaluates the influence of nutrients on gene expression, and nutrigenetics, which evaluates the heterogeneous individual response to nutrients due to genetic variation. Fatty acids are one of the nutrients most studied in relation to lactation given their biologically important roles during early postnatal life. Fatty acids modulate transcription factors involved in the regulation of lipid metabolism, which in turn causes a variation in the proportion of lipids in milk. This review focuses on understanding, on the one hand, the gene transcription mechanisms activated by maternal dietary fatty acids and, on the other hand, the interaction between dietary fatty acids and genetic variation in genes involved in lipid metabolism. Both of these mechanisms affect the fatty acid composition of human milk.
Holly, M A; Kleinman, P J; Bryant, R B; Bjorneberg, D L; Rotz, C A; Baker, J M; Boggess, M V; Brauer, D K; Chintala, R; Feyereisen, G W; Gamble, J D; Leytem, A B; Reed, K F; Vadas, P A; Waldrip, H M
2018-04-25
Nutrient management on US dairy farms must balance an array of priorities, some of which conflict. To illustrate nutrient management challenges and opportunities across the US dairy industry, the USDA Agricultural Research Service Dairy Agroecosystems Working Group (DAWG) modeled 8 confinement and 2 grazing operations in the 7 largest US dairy-producing states using the Integrated Farm System Model (IFSM). Opportunities existed across all of the dairies studied to increase on-farm feed production and lower purchased feed bills, most notably on large dairies (>1,000 cows) with the highest herd densities. Purchased feed accounted for 18 to 44% of large dairies' total operating costs compared with 7 to 14% on small dairies (<300 milk cows) due to lower stocking rates. For dairies with larger land bases, in addition to a reduction in environmental impact, financial incentives exist to promote prudent nutrient management practices by substituting manure nutrients or legume nutrients for purchased fertilizers. Environmental priorities varied regionally and were principally tied to facility management for dry-lot dairies of the semi-arid western United States (ammonia-N emissions), to manure handling and application for humid midwestern and eastern US dairies (nitrate-N leaching and P runoff), and pasture management for dairies with significant grazing components (nitrous oxide emissions). Many of the nutrient management challenges identified by DAWG are beyond slight modifications in management and require coordinated solutions to ensure an environmentally and economically sustainable US dairy industry. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
NASA Astrophysics Data System (ADS)
Xue, X. H.; Chang, S.; Yuan, L. Y.
2017-08-01
Riverbanks are important boundaries for the nutrient cycling between lands and freshwaters. This research aimed to explore effects of different land management methods on the soil nutrient concentration and distribution at riverbanks. Soils from the reed-covered riverbanks of middle Yangtze River were studied, including the soils respectively undergoing systematic agriculture (gathering young tender shoots, reaping reed straws, and burning residual straws), fires and no disturbances. Results showed that the agricultural activities sharply decreased the contents of soil organic matter (SOM), N, P and K in subsurface soils but less decreased the surface SOM, N and K contents, whereas phosphorus were evidently decreased at both surface and subsurface layers. In contrast, the single application of fires caused a marked increase of SOM, N, P and K contents in both surface and subsurface soils but had little impacts on soil nutrient distributions. Soils under all the three conditions showed a relative increase of soil nutrients at riverbank foot. This comparative study indicated that the different or even contrary effects of riverbank management practices on soil nutrient statuses should be carefully taken into account when assessing the ecological effects of management practices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... responses and tolerances; (iii) Nutrient management, including plant nutrient uptake efficiency; (iv) Pest and disease management, including resistance to pests and diseases resulting in reduced application management strategies; and (v) Enhanced phytonutrient content. (2) Efforts to identify and address threats...
Dissecting nutrient-related co-expression networks in phosphate starved poplars.
Kavka, Mareike; Polle, Andrea
2017-01-01
Phosphorus (P) is an essential plant nutrient, but its availability is often limited in soil. Here, we studied changes in the transcriptome and in nutrient element concentrations in leaves and roots of poplars (Populus × canescens) in response to P deficiency. P starvation resulted in decreased concentrations of S and major cations (K, Mg, Ca), in increased concentrations of N, Zn and Al, while C, Fe and Mn were only little affected. In roots and leaves >4,000 and >9,000 genes were differently expressed upon P starvation. These genes clustered in eleven co-expression modules of which seven were correlated with distinct elements in the plant tissues. One module (4.7% of all differentially expressed genes) was strongly correlated with changes in the P concentration in the plant. In this module the GO term "response to P starvation" was enriched with phosphoenolpyruvate carboxylase kinases, phosphatases and pyrophosphatases as well as regulatory domains such as SPX, but no phosphate transporters. The P-related module was also enriched in genes of the functional category "galactolipid synthesis". Galactolipids substitute phospholipids in membranes under P limitation. Two modules, one correlated with C and N and the other with biomass, S and Mg, were connected with the P-related module by co-expression. In these modules GO terms indicating "DNA modification" and "cell division" as well as "defense" and "RNA modification" and "signaling" were enriched; they contained phosphate transporters. Bark storage proteins were among the most strongly upregulated genes in the growth-related module suggesting that N, which could not be used for growth, accumulated in typical storage compounds. In conclusion, weighted gene coexpression network analysis revealed a hierarchical structure of gene clusters, which separated phosphate starvation responses correlated with P tissue concentrations from other gene modules, which most likely represented transcriptional adjustments related to down-stream nutritional changes and stress.
USDA-ARS?s Scientific Manuscript database
Research on epigenetics and nutrigenetics, the genome-nutrient interface is in its infancy with respect to livestock species. Ruminant species have evolved to metabolize short-chain fatty acids (VFA) to fulfill up to 70% of their energy requirements. Our studies revealed that VFA, especially butyr...
USDA-ARS?s Scientific Manuscript database
The networks that govern carbon metabolism and control intracellular carbon partitioning in photosynthetic cells are poorly understood. Target of rapamycin (TOR) kinase is a conserved growth regulator that integrates nutrient signals and modulates cell growth in eukaryotes, though the TOR signaling ...
Sparks, Steven M; Spearing, Paul K; Diaz, Caroline J; Cowan, David J; Jayawickreme, Channa; Chen, Grace; Rimele, Thomas J; Generaux, Claudia; Harston, Lindsey T; Roller, Shane G
2017-10-15
Modulation of gastrointestinal nutrient sensing pathways provides a promising a new approach for the treatment of metabolic diseases including diabetes and obesity. The calcium-sensing receptor has been identified as a key receptor involved in mineral and amino acid nutrient sensing and thus is an attractive target for modulation in the intestine. Herein we describe the optimization of gastrointestinally restricted calcium-sensing receptor agonists starting from a 3-aminopyrrolidine-containing template leading to the identification of GI-restricted agonist 19 (GSK3004774). Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Understanding the nature and extent of soils prone to nutrient losses in runoff is central to the success of nutrient management in agricultural watersheds. Drawing upon case studies from USDA-ARS’s Mahantango Creek Experimental Watershed in east-central Pennsylvania, this presentation will discuss ...
Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk
2014-01-01
Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling. PMID:24699676
Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk
2014-01-01
Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.
An integrated decision support system for wastewater nutrient recovery and recycling to agriculture
NASA Astrophysics Data System (ADS)
Roy, E. D.; Bomeisl, L.; Cornbrooks, P.; Mo, W.
2017-12-01
Nutrient recovery and recycling has become a key research topic within the wastewater engineering and nutrient management communities. Several technologies now exist that can effectively capture nutrients from wastewater, and innovation in this area continues to be an important research pursuit. However, practical nutrient recycling solutions require more than capable nutrient capture technologies. We also need to understand the role that wastewater nutrient recovery and recycling can play within broader nutrient management schemes at the landscape level, including important interactions at the nexus of food, energy, and water. We are developing an integrated decision support system that combines wastewater treatment data, agricultural data, spatial nutrient balance modeling, life cycle assessment, stakeholder knowledge, and multi-criteria decision making. Our goals are to: (1) help guide design decisions related to the implementation of sustainable nutrient recovery technology, (2) support innovations in watershed nutrient management that operate at the interface of the built environment and agriculture, and (3) aid efforts to protect aquatic ecosystems while supporting human welfare in a circular nutrient economy. These goals will be realized partly through the assessment of plausible alternative scenarios for the future. In this presentation, we will describe the tool and focus on nutrient balance results for the New England region. These results illustrate that both centralized and decentralized wastewater nutrient recovery schemes have potential to transform nutrient flows in many New England watersheds, diverting wastewater N and P away from aquatic ecosystems and toward local or regional agricultural soils where they can offset a substantial percentage of imported fertilizer. We will also highlight feasibility criteria and next steps to integrate stakeholder knowledge, economics, and life cycle assessment into the tool.
Effects of nutrient management on nitrate levels in ground water near Ephrata Pennsylvania
Hall, David W.
1992-01-01
Effects of the implementation of nutrient management practices on ground-water quality were studied at a 55-acre farm in Lancaster County, Pennsylvania, from 1985-90. After nutrient management practices were implemented at the site in October 1986, statistically significant decreases (Wilcoxon Mann-Whitney test) in median nitrate concentrations in ground-water samples occurred at four of the five wells monitored. The largest decreases in nitrate concentration occurred in samples collected at the wells that had the largest nitrate concentrations prior to nutrient management. The decreases in median nitrate concentrations in ground-water samples ranged from 8 to 32 percent of the median concentrations prior to nutrient management and corresponded to nitrogen application decreases of 39 to 67 percent in contributing areas that were defined upgradient of these wells. Changes in nitrogen applications to the contributing areas of five water wells were correlated (Spearman rank-sum test) with nitrate concentrations of the well water. Changes in ground-water nitrate concentrations lagged behind the changes in applied-nitrogen fertilizers (primarily manure) by approximately 4 to 19 months.
At this meeting, grantees from Centers for Water Research on National Priorities Related to a Systems View of Nutrient Management and Sustainable Chesapeake: A Community-Based Approach to Stormwater Management Using Green Infrastructure
USDA-ARS?s Scientific Manuscript database
Nutrient management refers to the addition and management of synthetic or organic fertilizers to soils primarily for purposes of increasing the supply of nutrients and efficiency of crop nutrient uptake in order to improve yields while minimizing environmental impact. Nitrogen (N) is generally the m...
Nutrient Cycling in Managed and Unmanaged Oak Woodland-Grass Ecosystems
Randy Dahlgren; Michael J. Singer
1991-01-01
The influence of oak trees and grazing on nutrient cycling in oak woodland-grass ecosystems was examined at the Sierra Foothill Range Field Station in the northern-Sierra Nevada foothills of California. Nutrient concentrations in ecosystem waterflows (precipitation, canopy throughfall, and soil solutions) were monitored in a non-managed natural area and in an adjacent...
Hodges, Romilly E; Minich, Deanna M
2015-01-01
Research into human biotransformation and elimination systems continues to evolve. Various clinical and in vivo studies have been undertaken to evaluate the effects of foods and food-derived components on the activity of detoxification pathways, including phase I cytochrome P450 enzymes, phase II conjugation enzymes, Nrf2 signaling, and metallothionein. This review summarizes the research in this area to date, highlighting the potential for foods and nutrients to support and/or modulate detoxification functions. Clinical applications to alter detoxification pathway activity and improve patient outcomes are considered, drawing on the growing understanding of the relationship between detoxification functions and different disease states, genetic polymorphisms, and drug-nutrient interactions. Some caution is recommended, however, due to the limitations of current research as well as indications that many nutrients exert biphasic, dose-dependent effects and that genetic polymorphisms may alter outcomes. A whole-foods approach may, therefore, be prudent.
Hodges, Romilly E.; Minich, Deanna M.
2015-01-01
Research into human biotransformation and elimination systems continues to evolve. Various clinical and in vivo studies have been undertaken to evaluate the effects of foods and food-derived components on the activity of detoxification pathways, including phase I cytochrome P450 enzymes, phase II conjugation enzymes, Nrf2 signaling, and metallothionein. This review summarizes the research in this area to date, highlighting the potential for foods and nutrients to support and/or modulate detoxification functions. Clinical applications to alter detoxification pathway activity and improve patient outcomes are considered, drawing on the growing understanding of the relationship between detoxification functions and different disease states, genetic polymorphisms, and drug-nutrient interactions. Some caution is recommended, however, due to the limitations of current research as well as indications that many nutrients exert biphasic, dose-dependent effects and that genetic polymorphisms may alter outcomes. A whole-foods approach may, therefore, be prudent. PMID:26167297
The emerging role of mTORC1 signaling in placental nutrient-sensing.
Jansson, T; Aye, I L M H; Goberdhan, D C I
2012-11-01
Nutrient-sensing signaling pathways regulate cell metabolism and growth in response to altered nutrient levels and growth factor signaling. Because trophoblast cell metabolism and associated signaling influence fetal nutrient availability, trophoblast nutrient sensors may have a unique role in regulating fetal growth. We review data in support of a role for mammalian target of rapamycin complex 1 (mTORC1) in placental nutrient-sensing. Placental insulin/IGF-I signaling and fetal levels of oxygen, glucose and amino acids (AAs) are altered in pregnancy complications such as intrauterine growth restriction, and all these factors are well-established upstream regulators of mTORC1. Furthermore, mTORC1 is a positive regulator of placental AA transporters, suggesting that trophoblast mTORC1 modulates AA transfer across the placenta. In addition, placental mTORC1 signaling is also known to be modulated in pregnancy complications associated with altered fetal growth and in animal models in which maternal nutrient availability has been altered experimentally. Recently, significant progress has been made in identifying the molecular mechanisms by which mTORC1 senses AAs, a process requiring shuttling of mTOR to late endosomal and lysosomal compartments (LELs). We recently identified members of the proton-assisted amino acid transporter (PAT/SLC36) family as critical components of the AA-sensing system or 'nutrisome' that regulates mTORC1 on LEL membranes, placing AA transporters and their subcellular regulation both upstream and downstream of mTORC1-driven processes. We propose a model in which placental mTORC1 signaling constitutes a critical link between maternal nutrient availability and fetal growth, thereby influencing the long-term health of the fetus. Copyright © 2012 Elsevier Ltd. All rights reserved.
Skibinski, David O. F.
2018-01-01
Nutrient acquisition is a critical determinant for the competitive advantage for auto- and osmohetero- trophs alike. Nutrient limited growth is commonly described on a whole cell basis through reference to a maximum growth rate (Gmax) and a half-saturation constant (KG). This empirical application of a Michaelis-Menten like description ignores the multiple underlying feedbacks between physiology contributing to growth, cell size, elemental stoichiometry and cell motion. Here we explore these relationships with reference to the kinetics of the nutrient transporter protein, the transporter rate density at the cell surface (TRD; potential transport rate per unit plasma-membrane area), and diffusion gradients. While the half saturation value for the limiting nutrient increases rapidly with cell size, significant mitigation is afforded by cell motion (swimming or sedimentation), and by decreasing the cellular carbon density. There is thus potential for high vacuolation and high sedimentation rates in diatoms to significantly decrease KG and increase species competitive advantage. Our results also suggest that Gmax for larger non-diatom protists may be constrained by rates of nutrient transport. For a given carbon density, cell size and TRD, the value of Gmax/KG remains constant. This implies that species or strains with a lower Gmax might coincidentally have a competitive advantage under nutrient limited conditions as they also express lower values of KG. The ability of cells to modulate the TRD according to their nutritional status, and hence change the instantaneous maximum transport rate, has a very marked effect upon transport and growth kinetics. Analyses and dynamic models that do not consider such modulation will inevitably fail to properly reflect competitive advantage in nutrient acquisition. This has important implications for the accurate representation and predictive capabilities of model applications, in particular in a changing environment. PMID:29702650
Short-term forecasting tools for agricultural nutrient management
USDA-ARS?s Scientific Manuscript database
The advent of real time/short term farm management tools is motivated by the need to protect water quality above and beyond the general guidance offered by existing nutrient management plans. Advances in high performance computing and hydrologic/climate modeling have enabled rapid dissemination of ...
Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis.
Chen, Aiqun; Gu, Mian; Wang, Shuangshuang; Chen, Jiadong; Xu, Guohua
2018-02-01
Many terrestrial plants can form root symbiosis with beneficial microorganisms for enhancing uptake of mineral nutrients or increasing fitness to adverse environmental challenges. Arbuscular mycorrhizal (AM) symbiosis that is formed by AM fungi and the roots of vascular flowering plants is the most widespread mutualistic associations in nature. As a typical endosymbiosis, AM interactions involves the differentiation of both symbionts to create novel symbiotic interfaces within the root cells, and requires a continuous nutrient exchange between the two partners. AM plants have two pathways for nutrient uptake, either direct uptake via the root hairs and root epidermis at the plant-soil interface, or indirectly through the AM fungal hyphae at the plant-fungus interface. Over the last few years, great progress has been made in deciphering the mechanisms underlying the AM-mediated modulation of nutrient uptake processes, and an increasing number of plant and fungal genes responsible for transporting nutrients from the soil or across the intraradical symbiotic interfaces have been identified and functionally characterized. Here, we summarize the recent advances in the nitrogen uptake, assimilation and translocation in the AM symbiosis, and also explore the current understanding of how the N status and interplay with C and P in modulating the development of AM associations. Copyright © 2017. Published by Elsevier Ltd.
Human CLEC16A regulates autophagy through modulating mTOR activity.
Tam, Rachel Chun Yee; Li, Michelle Wing Man; Gao, Yan Pan; Pang, Yuen Ting; Yan, Sheng; Ge, Wei; Lau, Chak Sing; Chan, Vera Sau Fong
2017-03-15
CLEC16A is genetically linked with multiple autoimmune disorders but its functional relevance in autoimmunity remains obscure. Recent evidence has signposted the emerging role of autophagy in autoimmune disease development. Here, by ectopic expression and siRNA silencing, we show that CLEC16A has an inhibitory role in starvation-induced autophagy in human cells. Combining quantitative proteomics and immunoblotting analyses, we found that CLEC16A likely regulates autophagy by activating mTOR pathway. Overexpression of CLEC16A was found to sensitize cells towards the availability of nutrients, resulting in a heightened mTOR activity, which in turn diminished LC3 autophagic activity following nutrient deprivation. CLEC16A deficiency, on the other hand, delayed mTOR activity in response to nutrient sensing, thereby resulted in an augmented autophagic response. CLEC16A was found residing in cytosolic vesicles and the Golgi, and nutrient removal promoted a stronger clustering within the Golgi, where it was possibly in a vantage position to activate mTOR upon nutrient replenishment. These findings suggest that Golgi-associated CLEC16A negatively regulates autophagy via modulation of mTOR activity, and may provide support for a functional link between CLEC16A and autoimmunity. Copyright © 2017 Elsevier Inc. All rights reserved.
Nutrient cycle benchmarks for earth system land model
NASA Astrophysics Data System (ADS)
Zhu, Q.; Riley, W. J.; Tang, J.; Zhao, L.
2017-12-01
Projecting future biosphere-climate feedbacks using Earth system models (ESMs) relies heavily on robust modeling of land surface carbon dynamics. More importantly, soil nutrient (particularly, nitrogen (N) and phosphorus (P)) dynamics strongly modulate carbon dynamics, such as plant sequestration of atmospheric CO2. Prevailing ESM land models all consider nitrogen as a potentially limiting nutrient, and several consider phosphorus. However, including nutrient cycle processes in ESM land models potentially introduces large uncertainties that could be identified and addressed by improved observational constraints. We describe the development of two nutrient cycle benchmarks for ESM land models: (1) nutrient partitioning between plants and soil microbes inferred from 15N and 33P tracers studies and (2) nutrient limitation effects on carbon cycle informed by long-term fertilization experiments. We used these benchmarks to evaluate critical hypotheses regarding nutrient cycling and their representation in ESMs. We found that a mechanistic representation of plant-microbe nutrient competition based on relevant functional traits best reproduced observed plant-microbe nutrient partitioning. We also found that for multiple-nutrient models (i.e., N and P), application of Liebig's law of the minimum is often inaccurate. Rather, the Multiple Nutrient Limitation (MNL) concept better reproduces observed carbon-nutrient interactions.
NASA Astrophysics Data System (ADS)
Oviatt, Candace; Smith, Leslie; Krumholz, Jason; Coupland, Catherine; Stoffel, Heather; Keller, Aimee; McManus, M. Conor; Reed, Laura
2017-12-01
Except for the Providence River and side embayments like Greenwich Bay, Narragansett Bay can no longer be considered eutrophic. In summer 2012 managed nitrogen treatment in Narragansett Bay achieved a goal of reducing effluent dissolved inorganic nitrogen inputs by over 50%. Narragansett Bay represents a small northeast US estuary that had been heavily loaded with sewage effluent nutrients since the late 1800s. The input reduction was reflected in standing stock nutrients resulting in a statistically significant 60% reduction in concentration. In the Providence River estuary, total nitrogen decreased from 100 μm to about 40 μm, for example. We tested four environmental changes that might be associated with the nitrogen reduction. System apparent production was significantly decreased by 31% and 45% in the upper and mid Bay. Nutrient reductions resulted in statistically improved water clarity in the mid and upper Bay and in a 34% reduction in summer hypoxia. Nitrogen reduction also reduced the winter spring diatom bloom; winter chlorophyll levels after nutrient reduction have been significantly lower than before the reduction. The impact on the Bay will continue to evolve over the next few years and be a natural experiment for other temperate estuaries that will be experiencing nitrogen reduction. To provide perspective we review factors effecting hypoxia in other estuaries with managed nutrient reduction and conclude that, as in Narragansett Bay, physical factors can be as important as nutrients. On a positive note managed nutrient reduction has mitigated further deterioration in most estuaries.
Ma, C; Tsai, H; Su, W; Sun, L; Shih, Y; Wang, J
2018-05-31
Perioperative enteral nutrition (EN) enriched with immune-modulating substrates is preferable for patients undergoing major abdominal cancer surgery. In this study, perioperative EN enriched with immune-modulating nutrients such as arginine, glutamine, and omega-3 fatty acids was evaluated for its anti-inflammatory efficacy in patients with gastric adenocarcinoma or gastrointestinal stromal tumor (GIST) receiving curative surgery. This prospective, randomized, double-blind study recruited 34 patients with gastric adenocarcinoma or gastric GIST undergoing elective curative surgery. These patients were randomly assigned to the study group, receiving immune-modulating nutrient-enriched EN, or the control group, receiving standard EN from 3 days before surgery (preoperative day 3) to up to postoperative day 14 or discharge. Laboratory and inflammatory parameters were assessed on preoperative day 3 and postoperative day 14 or at discharge. Adverse events (AEs) and clinical outcomes were documented daily and compared between groups. No significant differences were observed between the two groups in selected laboratory and inflammatory parameters, or in their net change, before and after treatment. AEs and clinical outcomes, including infectious complications, overall complications, time to first bowel action, and length of hospital stay after surgery, were comparable between treatment groups (all P > 0.05). Immune-modulating nutrient-enriched EN had no prominent immunomodulation effect compared with that of standard EN.
Pamela Edwards; Karl W.J. Williard
2010-01-01
Quantifying the effects of forestry best management practices (BMPs) on sediment and nutrient loads is a critical need. Through an exhaustive literature search, three paired forested watershed studies in the eastern United States were found that permitted the calculation of BMP efficiencies--the percent reduction in sediment or nutrients achieved by BMPs. For sediment...
Paerl, Hans W; Hall, Nathan S; Calandrino, Elizabeth S
2011-04-15
Harmful (toxic, food web altering, hypoxia generating) cyanobacterial algal blooms (CyanoHABs) are proliferating world-wide due to anthropogenic nutrient enrichment, and they represent a serious threat to the use and sustainability of our freshwater resources. Traditionally, phosphorus (P) input reductions have been prescribed to control CyanoHABs, because P limitation is widespread and some CyanoHABs can fix atmospheric nitrogen (N(2)) to satisfy their nitrogen (N) requirements. However, eutrophying systems are increasingly plagued with non N(2) fixing CyanoHABs that are N and P co-limited or even N limited. In many of these systems N loads are increasing faster than P loads. Therefore N and P input constraints are likely needed for long-term CyanoHAB control in such systems. Climatic changes, specifically warming, increased vertical stratification, salinization, and intensification of storms and droughts play additional, interactive roles in modulating CyanoHAB frequency, intensity, geographic distribution and duration. In addition to having to consider reductions in N and P inputs, water quality managers are in dire need of effective tools to break the synergy between nutrient loading and hydrologic regimes made more favorable for CyanoHABs by climate change. The more promising of these tools make affected waters less hospitable for CyanoHABs by 1) altering the hydrology to enhance vertical mixing and/or flushing and 2) decreasing nutrient fluxes from organic rich sediments by physically removing the sediments or capping sediments with clay. Effective future CyanoHAB management approaches must incorporate both N and P loading dynamics within the context of altered thermal and hydrologic regimes associated with climate change. Copyright © 2011 Elsevier B.V. All rights reserved.
Regulation and functional diversification of root hairs.
Cui, Songkui; Suzaki, Takuya; Tominaga-Wada, Rumi; Yoshida, Satoko
2017-10-13
Root hairs result from the polar outgrowth of root epidermis cells in vascular plants. Root hair development processes are regulated by intrinsic genetic programs, which are flexibly modulated by environmental conditions, such as nutrient availability. Basic programs for root hair development were present in early land plants. Subsequently, some plants developed the ability to utilize root hairs for specific functions, in particular, for interactions with other organisms, such as legume-rhizobia and host plants-parasites interactions. In this review, we summarize the molecular regulation of root hair development and the modulation of root hairs under limited nutrient supply and during interactions with other organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Iseyemi, Oluwayinka O; Farris, Jerry L; Moore, Matthew T; Choi, Seo-Eun
2016-06-01
Drainage systems are integral parts of agricultural landscapes and have the ability to intercept nutrient loading from runoff to surface water. This study investigated nutrient removal efficiency within replicated experimental agricultural drainage ditches during a simulated summer runoff event. Study objectives were to examine the influence of routine mowing of vegetated ditches on nutrient mitigation and to assess spatial transformation of nutrients along ditch length. Both mowed and unmowed ditch treatments decreased NO3 (-)-N by 79 % and 94 % and PO4 (3-) by 95 % and 98 %, respectively, with no significant difference in reduction capacities between the two treatments. This suggests occasional ditch mowing as a management practice would not undermine nutrient mitigation capacity of vegetated drainage ditches.
Subsurface application enhances benefits of manure redistribution
USDA-ARS?s Scientific Manuscript database
Sustainable nutrient management requires redistribution of livestock manure from nutrient-excess areas to nutrient-deficit areas. Field experiments were conducted to assess agronomic (i.e., corn yield) and environmental (i.e., ammonia volatilization and surface nutrient losses) effects of different ...
Hall, D.W.; Lietman, P.L.; Koerkle, E.J.
1997-01-01
The U.S. Geological Survey and the Pennsylvania Department of Environmental Protection conducted a study from 1984 to 1990 to determine theeffects of the implementation and practice of nutrient management [an agricultural best-management practice (BMP)] on the quality of surface runoff and ground water at a 55-acre crop and livestock farm in carbonate terrain nearEphrata, Pa. Implementation of nutrient management at Field-Site 2 resulted in application decreases of 33 percent for nitrogen and 29 percent for phosphorus. There wereno significant changes in nitrogen or phosphorusloads for a given amount of runoff from the pre-BMP to the post-BMP periods. However, less than 2 percent of the applied nutrients weredischarged with runoff throughout the study period.After the implementation of nutrient management, statistically significant decreases in concentrations of nitrate in ground-water samples occurred at threeof the four wells monitored throughout the pre- and post-BMP periods. The largest decreases in nitrate concentrations occurred at wells where samples hadthe largest nitrate concentrations prior to nutrient management. Changes in nitrogen applications to the contributing areas of five wells were correlated with nitrate concentrations of the well water. The correlations between the timing and amount of applied nitrogen and changes in ground-water quality met the four conditions that are characteristic of a cause-effect relation: an association, consistency, responsiveness, and a mechanism. Changes in ground-water nitrate concentrations lagged behind changes in loading of nitrogen fertilizers (primarily manure) by approximately 4 to 19 months.
The islet beta-cell: fuel responsive and vulnerable.
Nolan, Christopher J; Prentki, Marc
2008-10-01
The pancreatic beta-cell senses blood nutrient levels and is modulated by neurohormonal signals so that it secretes insulin according to the need of the organism. Nutrient sensing involves marked metabolic activation, resulting in the production of coupling signals that promote insulin biosynthesis and secretion. The beta-cell's high capacity for nutrient sensing, however, necessitates reduced protection to nutrient toxicity. This potentially explains why in susceptible individuals, chronic fuel surfeit results in beta-cell failure and type 2 diabetes. Here we discuss recent insights into first, the biochemical basis of beta-cell signaling in response to glucose, amino acids and fatty acids, and second, beta-cell nutrient detoxification. We emphasize the emerging role of glycerolipid/fatty acid cycling in these processes.
Wan, Yongshan; Wan, Lei; Li, Yuncong; Doering, Peter
2017-05-15
Understanding anthropogenic and hydro-climatic influences on nutrient concentrations and export from highly managed catchments often necessitates trend detection using long-term monitoring data. This study analyzed the temporal trend (1979-2014) of total nitrogen (TN) and total phosphorus (TP) concentrations and export from four adjacent coastal basins in south Florida where land and water resources are highly managed through an intricate canal network. The method of integrated seasonal-trend decomposition using LOESS (LOcally weighted regrESSion) was employed for trend detection. The results indicated that long-term trends in TN and TP concentrations (increasing/decreasing) varied with basins and nutrient species, reflecting the influence of basin specific land and water management practices. These long-term trends were intervened by short-term highs driven by high rainfall and discharges and lows associated with regional droughts. Seasonal variations in TP were more apparent than for TN. Nutrient export exhibited a chemostatic behavior for TN from all the basins, largely due to the biogenic nature of organic N associated with the ubiquity of organic materials in the managed canal network. Varying degrees of chemodynamic export was present for TP, reflecting complex biogeochemical responses to the legacy of long-term fertilization, low soil P holding capacity, and intensive stormwater management. The anthropogenic and hydro-climatic influences on nutrient concentration and export behavior had great implications in nutrient loading abatement strategies for aquatic ecosystem restoration of the downstream receiving waterbody. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Wolfenden, Benjamin J.; Wassens, Skye M.; Jenkins, Kim M.; Baldwin, Darren S.; Kobayashi, Tsuyoshi; Maguire, James
2018-03-01
For many floodplain rivers, reinstating wetland connectivity is necessary for ecosystems to recover from decades of regulation. Environmental return flows (the managed delivery of wetland water to an adjacent river) can be used strategically to facilitate natural ecosystem connectivity, enabling the transfer of nutrients, energy, and biota from wetland habitats to the river. Using an informal adaptive management framework, we delivered return flows from a forested wetland complex into a large lowland river in south-eastern Australia. We hypothesized that return flows would (a) increase river nutrient concentrations; (b) reduce wetland nutrient concentrations; (c) increase rates of ecosystem metabolism through the addition of potentially limiting nutrients, causing related increases in the concentration of water column chlorophyll-a; and (d) increase the density and species richness of microinvertebrates in riverine benthic habitats. Our monitoring results demonstrated a small increase in the concentrations of several key nutrients but no evidence for significant ecological responses was found. Although return flows can be delivered from forested floodplain areas without risking hypoxic blackwater events, returning nutrient and carbon-rich water to increase riverine productivity is limited by the achievable scale of return flows. Nevertheless, using return flows to flush carbon from floodplains may be a useful management tool to reduce carbon loads, preparing floodplains for subsequent releases (e.g., mitigating the risk of hypoxic blackwater events). In this example, adaptive management benefited from a semi-formal collaboration between science and management that allowed for prompt decision-making.
[Interactions of food and drug metabolism].
Delzenne, N M; Verbeeck, R K
2001-01-01
The nutritional state, and/or the ingestion of specific nutrients, is/are able to modify drug disposition, by interfering with drug absorption, distribution, storage, and metabolism. Recent data report that nutrients interfere with drug metabolism either by modifying key enzymes of phase I (cytochromeP450 dependent mixed function oxidase) and II (glucuronosyl, sulfonyl- ... transferases), or by modulating coenzymes availability (NADPH, UDPglucuronic acid...). Food components involved in drug metabolism modifications are either macro-nutrients (carbohydrates, lipids, proteins, ethanol), micronutriments (vitamins, minerals), or phytochemicals. Drug-nutrients interactions may be beneficials, and thus could constitute, i.e. a way to improve drug therapeutic index, or generate adverse effects.
A Systems-Based Approach To Integrated Nutrient Management in Narragansett Bay and Its Watershed.
EPA’s Office of Research and Development is embarking on a project to develop and demonstrate a systems-based management approach that will achieve more integrated and effective management of nutrients in southern New England. The geographic focus of this multi-year research proj...
A Systems-Based Approach to Integrated Nutrient Management in Narragansett Bay and its Watershed
EPA’s Office of Research and Development is embarking on a project to develop and demonstrate a systems-based management approach that will achieve more integrated and effective management of nutrients in southern New England. The geographic focus of this multi-year research proj...
Nutrient management planners feedback on New York and Pennsylvania phosphorus indices
USDA-ARS?s Scientific Manuscript database
State Phosphorus Indices (PIs) are being evaluated across the US due to variability in P management recommendations and questions about the lack of water quality improvement in some watersheds. Nutrient management planners in New York (NY) and Pennsylvania (PA) were surveyed via two separate but rel...
Expansion of the MANAGE database with forest and drainage studies
USDA-ARS?s Scientific Manuscript database
The “Measured Annual Nutrient loads from AGricultural Environments” (MANAGE) database was published in 2006 to expand an early 1980’s compilation of nutrient export (load) data from agricultural land uses at the field or farm spatial scale. Then in 2008, MANAGE was updated with 15 additional studie...
Variation in nutrients formulated and nutrients supplied on 5 California dairies.
Rossow, H A; Aly, S S
2013-01-01
Computer models used in ration formulation assume that nutrients supplied by a ration formulation are the same as the nutrients presented in front of the cow in the final ration. Deviations in nutrients due to feed management effects such as dry matter changes (i.e., rain), loading, mixing, and delivery errors are assumed to not affect delivery of nutrients to the cow and her resulting milk production. To estimate how feed management affects nutrients supplied to the cow and milk production, and determine if nutrients can serve as indexes of feed management practices, weekly total mixed ration samples were collected and analyzed for 4 pens (close-up cows, fresh cows, high-milk-producing, and low-milk-producing cows, if available) for 7 to 12 wk on 5 commercial California dairies. Differences among nutrient analyses from these samples and nutrients from the formulated rations were analyzed by PROC MIXED of SAS (SAS Institute Inc., Cary, NC). Milk fat and milk protein percentages did not vary as much [coefficient of variation (CV) = 18 to 33%] as milk yield (kg; CV = 16 to 47 %) across all dairies and pens. Variability in nutrients delivered were highest for macronutrient fat (CV = 22%), lignin (CV = 15%), and ash (CV = 11%) percentages and micronutrients Fe (mg/kg; CV = 48%), Na (%; CV = 42%), and Zn (mg/kg; CV = 38%) for the milking pens across all dairies. Partitioning of the variability in random effects of nutrients delivered and intraclass correlation coefficients showed that variability in lignin percentage of TMR had the highest correlation with variability in milk yield and milk fat percentage, followed by fat and crude protein percentages. But, variability in ash, fat, and lignin percentages of total mixed ration had the highest correlation with variability in milk protein percentage. Therefore, lignin, fat, and ash may be the best indices of feed management to include effects of variability in nutrients on variability in milk yield, milk fat, and milk protein percentages in ration formulation models. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Robertson, Dale M.; Schwarz, Gregory E.; Saad, David A.; Alexander, Richard B.
2009-01-01
Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient-reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight-digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from watersheds in the Central Mississippi, Ohio, and Lower Mississippi River basins. With 90% confidence, only a few watersheds can be reliably placed into the highest 150 category; however, many more watersheds can be removed from consideration as not belonging to the highest 150 category. Results from this ranking procedure provide robust information on watershed nutrient yields that can benefit management efforts to reduce nutrient loadings to downstream coastal waters, such as the Gulf of Mexico, or to local receiving streams and reservoirs.
Hector G. Adegbidi; Nicholas B. Comerford; Hua Li; Eric J. Jokela; Nairam F. Barros
2002-01-01
Nutrient management represents a central component of intensive silvicultural systems that are designed to increase forest productivity in southern pine stands. Forest soils throughout the South are generally infertile, and fertilizers may be applied one or more times over the course of a rotation. Diagnostic techniques, such as foliar analysis and soil testing are...
Drug-nutrient interaction in clinical nutrition.
Chan, Lingtak-Neander
2002-05-01
Drug-nutrient interactions have been recognized for decades. It is known that improper management of some of these interactions may lead to therapeutic failure or cause serious adverse effects to the patients. While most of the known drug-nutrient interactions involve changes in oral bioavailabilities and absorption of the offending compounds, recent investigations suggest that different mechanisms also exist. A mechanism-derived classification system for drug-nutrient interactions has only recently been developed. This system should facilitate the future research and development of practice guidelines in the identification and management of important interactions.
Advances in the understanding of nutrient dynamics and management in UK agriculture.
Dungait, Jennifer A J; Cardenas, Laura M; Blackwell, Martin S A; Wu, Lianhai; Withers, Paul J A; Chadwick, David R; Bol, Roland; Murray, Philip J; Macdonald, Andrew J; Whitmore, Andrew P; Goulding, Keith W T
2012-09-15
Current research on macronutrient cycling in UK agricultural systems aims to optimise soil and nutrient management for improved agricultural production and minimise effects on the environment and provision of ecosystem services. Nutrient use inefficiencies can cause environmental pollution through the release of greenhouse gases into the atmosphere and of soluble and particulate forms of N, P and carbon (C) in leachate and run-off into watercourses. Improving nutrient use efficiencies in agriculture calls for the development of sustainable nutrient management strategies: more efficient use of mineral fertilisers, increased recovery and recycling of waste nutrients, and, better exploitation of the substantial inorganic and organic reserves of nutrients in the soil. Long-term field experimentation in the UK has provided key knowledge of the main nutrient transformations in agricultural soils. Emerging analytical technologies, especially stable isotope labelling, that better characterise macronutrient forms and bioavailability and improve the quantification of the complex relationships between the macronutrients in soils at the molecular scale, are augmenting this knowledge by revealing the underlying processes. The challenge for the future is to determine the relationships between the dynamics of N, P and C across scales, which will require both new modelling approaches and integrated approaches to macronutrient cycling. Copyright © 2012 Elsevier B.V. All rights reserved.
Effect of soil in nutrient cycle assessment at dairy farms
NASA Astrophysics Data System (ADS)
van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne
2016-04-01
Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.
Nutrient leaching from container-grown ornamental tree production
USDA-ARS?s Scientific Manuscript database
Economically producing marketable container-grown ornamental shade trees with minimum amounts of nutrient leachate requires better management of nutrient applications during a growing season. Fertilizer practices with 16 treatments were used to test the nutrient leachate for growing Acer rubrum ‘Red...
1996-01-01
Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.
NASA Technical Reports Server (NTRS)
1996-01-01
Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.
NASA Astrophysics Data System (ADS)
Piscopo, A. N.; Detenbeck, N. E.
2017-12-01
Managers of urban watersheds with excessive nutrient loads are more frequently turning to green infrastructure (GI) to manage their water quality impairments. The effectiveness of GI is dependent on a number of factors, including (1) the type and placement of GI within the watershed, (2) the specific nutrients to be treated, and (3) the uncertainty in future climates. Although many studies have investigated the effectiveness of individual GI units for different types of nutrients, relatively few have considered the effectiveness of GI on a watershed scale, the scale most relevant to management plans. At the watershed scale, endless combinations of GI type and location are possible, each with different effectiveness in reducing nutrient loads, minimizing costs, and maximizing co-benefits such as reducing runoff. To efficiently generate management plan options that balance the tradeoffs between these objectives, we simulate candidate options using EPA's Stormwater Management Model for multiple future climates and determine the Pareto optimal set of solution options using a multi-objective evolutionary algorithm. Our approach is demonstrated for an urban watershed in Rockville, Maryland.
Jennifer Knoepp; Wayne Swank; Bruce L. Haines
2014-01-01
Soil nutrient availability often limits forest productivity and soils have considerable variation in their ability to supply nutrients. Most southern Appalachian forests are minimally managed with no fertilizer inputs or routine thinning regime. Nutrient availability is regulated by atmospheric inputs and the internal cycling of nutrients through such processes as...
Robert B. Harrison; Douglas A. Maguire; Deborah Page-Dumroese
2011-01-01
Maintaining adequate nutrient supply to maintain or enhance tree vigor and forest growth requires conservation of topsoil and soil organic matter. Sometimes nutrient amendments are also required to supplement inherent nutrient-pool limitations or replenish nutrients removed in harvested material. The goal is to maintain the productive potential of the soil and, when...
Hypothalamic and dietary control of temperature-mediated longevity
Tabarean, Iustin; Morrison, Brad; Marcondes, Maria Cecilia; Bartfai, Tamas; Conti, Bruno
2009-01-01
Temperature is an important modulator of longevity and aging in both poikilotherms and homeotherm animals. In homeotherms, temperature homeostasis is regulated primarily in the preoptic area (POA) of the hypothalamus. This region receives and integrates peripheral, central and environmental signals and maintains a nearly constant core body temperature (Tcore) by regulating the autonomic and hormonal control of heat production and heat dissipation. Temperature sensitive neurons found in the POA are considered key elements of the neuronal circuitry modulating these effects. Nutrient homeostasis is also a hypothalamically regulated modulator of aging as well as one of the signals that can influence Tcore in homeotherms. Investigating the mechanisms of the regulation of nutrient and temperature homeostasis in the hypothalamus is important to understand how these two elements of energy homeostasis influence longevity and aging as well as how aging can affect hypothalamic homeostatic mechanisms. PMID:19631766
Hypothalamic and dietary control of temperature-mediated longevity.
Tabarean, Iustin; Morrison, Brad; Marcondes, Maria Cecilia; Bartfai, Tamas; Conti, Bruno
2010-01-01
Temperature is an important modulator of longevity and aging in both poikilotherms and homeotherm animals. In homeotherms, temperature homeostasis is regulated primarily in the preoptic area (POA) of the hypothalamus. This region receives and integrates peripheral, central and environmental signals and maintains a nearly constant core body temperature (T(core)) by regulating the autonomic and hormonal control of heat production and heat dissipation. Temperature sensitive neurons found in the POA are considered key elements of the neuronal circuitry modulating these effects. Nutrient homeostasis is also a hypothalamically regulated modulator of aging as well as one of the signals that can influence T(core) in homeotherms. Investigating the mechanisms of the regulation of nutrient and temperature homeostasis in the hypothalamus is important to understanding how these two elements of energy homeostasis influence longevity and aging as well as how aging can affect hypothalamic homeostatic mechanisms. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Erik Schilling; Daniel McLaughlin; Matt Cohen; Larry Korhnak; Paul Decker; Camille Flinders
2016-01-01
Nutrient pollution can be a leading cause of impairment to some U.S. waters. As a result, state and federal agencies are actively engaged in designing management programs and numeric nutrient criteria (NNC) to address nutrient impairments. Following implementation of the Clean Water Act, Florida, like other timber producing states, developed, tested and implemented...
Connecting the Dots: Responses of Coastal Ecosystems to Changing Nutrient Concentrations
2011-01-01
Empirical relationships between phytoplankton biomass and nutrient concentrations established across a wide range of different ecosystems constitute fundamental quantitative tools for predicting effects of nutrient management plans. Nutrient management plans based on such relationships, mostly established over trends of increasing rather than decreasing nutrient concentrations, assume full reversibility of coastal eutrophication. Monitoring data from 28 ecosystems located in four well-studied regions were analyzed to study the generality of chlorophyll a versus nutrient relationships and their applicability for ecosystem management. We demonstrate significant differences across regions as well as between specific coastal ecosystems within regions in the response of chlorophyll a to changing nitrogen concentrations. We also show that the chlorophyll a versus nitrogen relationships over time constitute convoluted trajectories rather than simple unique relationships. The ratio of chlorophyll a to total nitrogen almost doubled over the last 30–40 years across all regions. The uniformity of these trends, or shifting baselines, suggest they may result from large-scale changes, possibly associated with global climate change and increasing human stress on coastal ecosystems. Ecosystem management must, therefore, develop adaptation strategies to face shifting baselines and maintain ecosystem services at a sustainable level rather than striving to restore an ecosystem state of the past. PMID:21958109
USDA-ARS?s Scientific Manuscript database
Dietary intake modulates disease risk, but little is known as to how components within food mixtures affect pathophysiology. Here, a low-calorie, high-fiber, fruit-based nutrient-dense bar of defined composition (e.g., vitamins/minerals, fruit polyphenolics, B-glucan, docosahexaenoic acid (DHA)) app...
Rocha Junior, Paulo Roberto da; Andrade, Felipe Vaz; Mendonça, Eduardo de Sá; Donagemma, Guilherme Kangussú; Fernandes, Raphael Bragança Alves; Bhattharai, Rabin; Kalita, Prasanta Kumar
2017-04-01
The objective of this study was to evaluate sediment, water and nutrient losses from different pasture managements in the Atlantic Rainforest biome. A field study was carried out in Alegre Espiríto Santo, Brazil, on a Xanthic Ferralsol cultivated with braquiaria (Brachiaria brizantha). The six pasture managements studied were: control (CON), chisel (CHI), fertilizer (FER), burned (BUR), plowing and harrowing (PH), and integrated crop-livestock (iCL). Runoff and sediment samples were collected and analyzed for calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P) and organic carbon contents. Soil physical attributes and above and below biomass were also evaluated. The results indicated that higher water loss was observed for iCL (129.90mm) and CON (123.25mm) managements, and the sediment losses were higher for CON (10.24tha -1 ) and BUR (5.20tha -1 ) managements when compared to the other managements. Majority of the nutrients losses occurred in dissolved fraction (99% of Ca, 99% of Mg, 96% of K, and 65% of P), whereas a significant fraction of organic carbon (80%) loss occurred in a particulate form. Except for P, other nutrients (Ca, Mg and K) and organic carbon losses were higher in coarse sediment compared to fine sediment. The greater losses of sediment, organic carbon, and nutrients were observed for CON followed by BUR management (p<0.05). Our findings indicated that the traditional pasture management adopted in the Atlantic Rainforest needs to be rethought and burned management should be avoided. Based on the water, soil, and nutrient losses from various practices, to reduce pasture degradation, farmers should adopt edaphic practices by applying lime and fertilize to improve pasture growth and soil cover, and reducing soil erosion in the hilly Brazilian Atlantic Rainforest biome. Copyright © 2016. Published by Elsevier B.V.
Zhang, Qian; Ball, William P.; Moyer, Douglas
2016-01-01
The export of nitrogen (N), phosphorus (P), and suspended sediment (SS) is a long-standing management concern for the Chesapeake Bay watershed, USA. Here we present a comprehensive evaluation of nutrient and sediment loads over the last three decades at multiple locations in the Susquehanna River basin (SRB), Chesapeake's largest tributary watershed. Sediment and nutrient riverine loadings, including both dissolved and particulate fractions, have generally declined at all sites upstream of Conowingo Dam (non-tidal SRB outlet). Period-of-record declines in riverine yield are generally smaller than those in source input, suggesting the possibility of legacy contributions. Consistent with other watershed studies, these results reinforce the importance of considering lag time between the implementation of management actions and achievement of river quality improvement. Whereas flow-normalized loadings for particulate species have increased recently below Conowingo Reservoir, those for upstream sites have declined, thus substantiating conclusions from prior studies about decreased reservoir trapping efficiency. In regard to streamflow effects, statistically significant log-linear relationships between annual streamflow and annual constituent load suggest the dominance of hydrological control on the inter-annual variability of constituent export. Concentration-discharge relationships revealed general chemostasis and mobilization effects for dissolved and particulate species, respectively, both suggesting transport-limitation conditions. In addition to affecting annual export rates, streamflow has also modulated the relative importance of dissolved and particulate fractions, as reflected by its negative correlations with dissolved P/total P, dissolved N/total N, particulate P/SS, and total N/total P ratios. For land-use effects, period-of-record median annual yields of N, P, and SS all correlate positively with the area fraction of non-forested land but negatively with that of forested land under all hydrological conditions. Overall, this work has informed understanding with respect to four major factors affecting constituent export (i.e., source input, reservoir modulation, streamflow, and land use) and demonstrated the value of long-term river monitoring.
[Defining of wheat growth management zones based on remote sensing and geostatistics].
Huang, Yan; Zhu, Yan; Ma, Meng-Li; Wang, Hang; Cao, Wei-Xing; Tian, Yong-Chao
2011-02-01
Taking the winter wheat planting areas in Rugao City and Haian County of Jiangsu Province as test objects, the clustering defining of wheat growth management zones was made, based on the spatial variability analysis and principal component extraction of the normalized difference vegetation index (NDVI) data calculated from the HJ-1A/B CCD images (30 m resolution) at different growth stages of winter wheat, and of the soil nutrient indices (total nitrogen, organic matter, available phosphorus, and available potassium). The results showed that the integration of the NDVI at heading stage with above-mentioned soil nutrient indices produced the best results of wheat growth management zone defining, with the variation coefficients of NDVI and soil nutrient indices in each defined zone ranged in 4.5% -6.1% and 3.3% -87.9%, respectively. However, the variation coefficients were much larger when the wheat growth management zones were defined individually by NDVI or by soil nutrient indices, suggesting that the newly developed defining method could reduce the variability within the defined management zones and improve the crop management precision, and thereby, contribute to the winter wheat growth management and process simulation at regional scale.
Relating management practices and nutrient export in agricultural watersheds of the United States
Sprague, Lori A.; Gronberg, Jo Ann M.
2012-01-01
Relations between riverine export (load) of total nitrogen (N) and total phosphorus (P) from 133 large agricultural watersheds in the United States and factors affecting nutrient transport were evaluated using empirical regression models. After controlling for anthropogenic inputs and other landscape factors affecting nutrient transport-such as runoff, precipitation, slope, number of reservoirs, irrigated area, and area with subsurface tile drains-the relations between export and the area in the Conservation Reserve Program (CRP) (N) and conservation tillage (P) were positive. Additional interaction terms indicated that the relations between export and the area in conservation tillage (N) and the CRP (P) progressed from being clearly positive when soil erodibility was low or moderate, to being close to zero when soil erodibility was higher, to possibly being slightly negative only at the 90th to 95th percentile of soil erodibility values. Possible explanations for the increase in nutrient export with increased area in management practices include greater transport of soluble nutrients from areas in conservation tillage; lagged response of stream quality to implementation of management practices because of nitrogen transport in groundwater, time for vegetative cover to mature, and/or prior accumulation of P in soils; or limitations in the management practice and stream monitoring data sets. If lags are occurring, current nutrient export from agricultural watersheds may still be reflecting the influence of agricultural land-use practices that were in place before the implementation of these management practices.
Diagnosis of nutrient imbalances with vector analysis in agroforestry systems.
Isaac, Marney E; Kimaro, Anthony A
2011-01-01
Agricultural intensification has had unintended environmental consequences, including increased nutrient leaching and surface runoff and other agrarian-derived pollutants. Improved diagnosis of on-farm nutrient dynamics will have the advantage of increasing yields and will diminish financial and environmental costs. To achieve this, a management support system that allows for site-specific rapid evaluation of nutrient production imbalances and subsequent management prescriptions is needed for agroecological design. Vector diagnosis, a bivariate model to depict changes in yield and nutritional response simultaneously in a single graph, facilitates identification of nutritional status such as growth dilution, deficiency, sufficiency, luxury uptake, and toxicity. Quantitative data from cocoa agroforestry systems and pigeonpea intercropping trials in Ghana and Tanzania, respectively, were re-evaluated with vector analysis. Relative to monoculture, biomass increase in cocoa ( L.) under shade (35-80%) was accompanied by a 17 to 25% decline in P concentration, the most limiting nutrient on this site. Similarly, increasing biomass with declining P concentrations was noted for pigeonpea [ (L). Millsp.] in response to soil moisture availability under intercropping. Although vector analysis depicted nutrient responses, the current vector model does not consider non-nutrient resource effects on growth, such as ameliorated light and soil moisture, which were particularly active in these systems. We revisit and develop vector analysis into a framework for diagnosing nutrient and non-nutrient interactions in agroforestry systems. Such a diagnostic technique advances management decision-making by increasing nutrient precision and reducing environmental issues associated with agrarian-derived soil contamination. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Nutrient attenuation in rivers and streams, Puget Sound Basin, Washington
Sheibley, Rich W.; Konrad, Christopher P.; Black, Robert W.
2015-01-01
From a management perspective, preservation and improvement of instream nutrient attenuation should focus on increasing the travel time through a reach and contact time of water sediment (reactive) surfaces and lowering nutrient concentrations (and loads) to avoid saturation of instream attenuation and increase attenuation efficiency. These goals can be reached by maintaining and restoring channel-flood plain connectivity, maintaining and restoring healthy riparian zones along streams, managing point and nonpoint nutrient loads to streams and rivers, and restoring channel features that promote attenuation such as the addition of woody debris and maintaining pool-riffle morphologies. Many of these management approaches are already being undertaken during projects aimed to restore quality salmon habitat. Therefore, there is a dual benefit to these projects that also may lead to enhanced potential for nitrogen and phosphorus attenuation.
Joseph M. Secoges; W. Michael Aust; John R. Seiler
2013-01-01
Many State best management practice programs recommend streamside management zone (SMZ) widths based on limited or inadequate data with regard to nutrient fluxes from silvicultural activities. Diammonium phosphate and urea were applied to subwatersheds of 2- to 3-year-old loblolly pines (Pinus taeda) upslope from 12 SMZ study areas in Buckingham...
Whole Farm Nutrient Management: Capstone Course on Environmental Management of Dairy Farms
ERIC Educational Resources Information Center
Albrecht, Gregory L.; Ketterings, Quirine M.; Czymmek, Karl J.; van Amburgh, Michael E.; Fox, Danny G.
2006-01-01
Whole Farm Nutrient Management is an upper-level, undergraduate course offered through the Department of Animal Science (AS) and Department of Crop and Soil Sciences (CSS) at Cornell University. The course (AS/CSS 412) is designed for students interested in agricultural careers and aims to help them develop a working knowledge of agricultural…
USDA-ARS?s Scientific Manuscript database
Cox (2010) reported that under business as usual, the environmental impacts of nutrient losses from agriculture will not be resolved and that precision conservation and precision regulation are two mechanisms to reduce the environmental impacts of nutrient losses. This is in agreement with the rece...
Management strategy 3: fixed rate fertilizer applications
USDA-ARS?s Scientific Manuscript database
Previous chapters outlined management strategies for pond fertilization that take into account specific individual pond nutrient needs. Those methods would most likely be more ecologically efficient than a pre-determined fixed-rate nutrient addition strategy. However, the vast majority of available ...
Nutrient depletion from rhizosphere solution by maize grown in soil with long-term compost amendment
USDA-ARS?s Scientific Manuscript database
Improved understanding of rhizosphere chemistry will enhance our ability to model nutrient dynamics and on a broader scale, to develop effective management strategies for applied plant nutrients. With a controlled-climate study, we evaluated in situ changes in macro-nutrient concentrations in the rh...
USDA-ARS?s Scientific Manuscript database
Nutrient application and its uptake by crops are essential to increasing agricultural production, which is essential to feed a growing world population. Efficiency in management of nutrients could be increased with conservation practices that reduce nutrient losses to the environment and promote con...
Neuronal Control of Metabolism through Nutrient-Dependent Modulation of Tracheal Branching
Linneweber, Gerit A.; Jacobson, Jake; Busch, Karl Emanuel; Hudry, Bruno; Christov, Christo P.; Dormann, Dirk; Yuan, Michaela; Otani, Tomoki; Knust, Elisabeth; de Bono, Mario; Miguel-Aliaga, Irene
2014-01-01
Summary During adaptive angiogenesis, a key process in the etiology and treatment of cancer and obesity, the vasculature changes to meet the metabolic needs of its target tissues. Although the cues governing vascular remodeling are not fully understood, target-derived signals are generally believed to underlie this process. Here, we identify an alternative mechanism by characterizing the previously unrecognized nutrient-dependent plasticity of the Drosophila tracheal system: a network of oxygen-delivering tubules developmentally akin to mammalian blood vessels. We find that this plasticity, particularly prominent in the intestine, drives—rather than responds to—metabolic change. Mechanistically, it is regulated by distinct populations of nutrient- and oxygen-responsive neurons that, through delivery of both local and systemic insulin- and VIP-like neuropeptides, sculpt the growth of specific tracheal subsets. Thus, we describe a novel mechanism by which nutritional cues modulate neuronal activity to give rise to organ-specific, long-lasting changes in vascular architecture. PMID:24439370
NASA Astrophysics Data System (ADS)
Spak, S.; Ward, A. S.; Li, Y.; Dalrymple, K. E.
2016-12-01
Nitrogen fertilization is central to contemporary row crop production in the U.S., but resultant nitrate transport leads to eutrophication, hypoxia, and algal blooms throughout the Mississippi River Basin and in coastal waters of the Gulf of Mexico. Effective basin-scale nutrient management requires a comprehensive understanding of the dynamics of nitrate transport in this large river catchment and the roles of individual management practices, that must then be operationalized to optimize management for both local geophysical and agricultural conditions and in response to decadal and inter-annual variations in local and regional climate. Here, we apply ensemble simulations with Agro-IBIS and THMB using spatially and temporally specific land cover, soil, agricultural, topographic, and climate data to simulate the individual and combined effects of land management and climate on historical (1948-2007) nitrate concentrations and transport in the Mississippi River Basin. We further identify sensitivities of in-stream nitrate dynamics to local and regional applications of Best Management Practices. The ensemble resolves the effects of techniques recommended in the Iowa Nutrient Reduction Strategy, including crop rotations, fertilizer management, tillage and residue management, and cover crops. Analysis of the nitrate transport response surfaces identifies non-linear effects of combined nutrient management tactics, and quantifies the stationarity of the relative and absolute influences of land management and climate during the 60-year study period.
Lager, Susanne; Ramirez, Vanessa I; Acosta, Ometeotl; Meireles, Christiane; Miller, Evelyn; Gaccioli, Francesca; Rosario, Fredrick J; Gelfond, Jonathan A L; Hakala, Kevin; Weintraub, Susan T; Krummel, Debra A; Powell, Theresa L
2017-12-01
Maternal obesity in pregnancy has profound impacts on maternal metabolism and promotes placental nutrient transport, which may contribute to fetal overgrowth in these pregnancies. The fatty acid docosahexaenoic acid (DHA) has bioactive properties that may improve outcomes in obese pregnant women by modulating placental function. To determine the effects of DHA supplementation in obese pregnant women on maternal metabolism and placental function. Pregnant women were supplemented with DHA or placebo. Maternal fasting blood was collected at 26 and 36 weeks' gestation, and placentas were collected at term. Academic health care institution. Thirty-eight pregnant women with pregravid body mass index ≥30 kg/m2. DHA (800 mg, algal oil) or placebo (corn/soy oil) daily from 26 weeks to term. DHA content of maternal erythrocyte and placental membranes, maternal fasting blood glucose, cytokines, metabolic hormones, and circulating lipids were determined. Insulin, mTOR, and inflammatory signaling were assessed in placental homogenates, and nutrient transport capacity was determined in isolated syncytiotrophoblast plasma membranes. DHA supplementation increased erythrocyte (P < 0.0001) and placental membrane DHA levels (P < 0.0001) but did not influence maternal inflammatory status, insulin sensitivity, or lipids. DHA supplementation decreased placental inflammation, amino acid transporter expression, and activity (P < 0.01) and increased placental protein expression of fatty acid transporting protein 4 (P < 0.05). Maternal DHA supplementation in pregnancy decreases placental inflammation and differentially modulates placental nutrient transport capacity and may mitigate adverse effects of maternal obesity on placental function. Copyright © 2017 Endocrine Society
Patra, Amlan Kumar; Amasheh, Salah; Aschenbach, Jörg Rudolf
2018-06-11
The use of antibiotics in diets has been restricted in several countries as a precautionary measure to avoid development of antibiotic resistance among pathogenic microorganisms. This regulation promoted the exploration of natural plant bioactive compounds (PBCs) as feed additives to improve productivity, welfare and health of livestock and poultry. Along with several beneficial attributes of PBCs, including antimicrobial, antioxidant and various pharmacological effects, they also improve barrier function and nutrient transport in the gastrointestinal (GI) tract. This comprehensive review discusses the effects of different PBCs on the integrity, nutrient transport and permeability of GI epithelia and their mechanism of actions. Dietary PBCs influence the maintenance and enhancement of GI integrity via a number of mechanisms including altered signaling pathways and expression of several tight junction proteins (claudins, occludin, and zonula occludens proteins), altered expression of various cytokines, chemokines, complement components and their transcription factors, goblet cell abundance and mucin gene expression, and the modulation of the cellular immune system. They also affect nutrient transporter gene expression and active absorption of nutrients, minerals and ammonia. One intriguing perspective is to select an effective dose at which a specific PBC could improve GI barrier function and nutrient absorption. The effective doses and clear-cut molecular mechanisms for PBCs are yet to be elucidated to understand discrepant observations among different studies and to improve the targeted biotechnological and pharmaceutical uses of PBCs in farm animals. The latter will also enable a more successful use of such PBCs in humans.
Daigger, Glen T
2009-08-01
Population growth and improving standards of living, coupled with dramatically increased urbanization, are placing increased pressures on available water resources, necessitating new approaches to urban water management. The tradition linear "take, make, waste" approach to managing water increasingly is proving to be unsustainable, as it is leading to water stress (insufficient water supplies), unsustainable resource (energy and chemicals) consumption, the dispersion of nutrients into the aquatic environment (especially phosphorus), and financially unstable utilities. Different approaches are needed to achieve economic, environmental, and social sustainability. Fortunately, a toolkit consisting of stormwater management/rainwater harvesting, water conservation, water reclamation and reuse, energy management, nutrient recovery, and source separation is available to allow more closed-loop urban water and resource management systems to be developed and implemented. Water conservation and water reclamation and reuse (multiple uses) are becoming commonplace in numerous water-short locations. Decentralization, enabled by new, high-performance treatment technologies and distributed stormwater management/rainwater harvesting, is furthering this transition. Likewise, traditional approaches to residuals management are evolving, as higher levels of energy recovery are desired, and nutrient recovery and reuse is to be enhanced. A variety of factors affect selection of the optimum approach for a particular urban area, including local hydrology, available water supplies, water demands, local energy and nutrient-management situations, existing infrastructure, and utility governance structure. A proper approach to economic analysis is critical to determine the most sustainable solutions. Stove piping (i.e., separate management of drinking, storm, and waste water) within the urban water and resource management profession must be eliminated. Adoption of these new approaches to urban water and resource management can lead to more sustainable solutions, defined as financially stable, using locally sustainable water supplies, energy-neutral, providing responsible nutrient management, and with access to clean water and appropriate sanitation for all.
Role of Shellfish Aquaculture in the Reduction of Eutrophication in an Urban Estuary
Land-based management has reduced nutrient discharges; however, many coastal waterbodies remain impaired. Oyster “bioextraction” of nutrients and how oyster aquaculture might complement existing management measures in urban estuaries was examined in Long Island Sound, Connecticut...
Proposed Modification to Sebade Farms Nutrient Management Plan
Sebade Farms is a concentrated animal feeding operation (CAFO) located on the Winnebago Reservation in Nebraska that confines a total of 6,500 head of cattle. The terms of the Nutrient Management Plan (NMP) are incorporated by reference into the facility’s
Starting in 2013, EPA conducted reviews of Concentrated Animal Feeding Operations (CAFOs) permits and nutrient management plans (NMPs) in six of the Bay jurisdictions (Delaware, Maryland, New York, Pennsylvania, Virginia and West Virginia).
Utilization and environmental management of residues from intensive animal production
USDA-ARS?s Scientific Manuscript database
Animal manures are traditional sources of nutrients in agriculture. Under proper management, manures provide nutrients to soil, reducing or eliminating the use of commercial fertilizers, as well as organic carbon that improves soil physical properties and soil health. However, excessive application ...
Wang, Neng Wei; Ge, Xiu Li; Li, Sheng Dong
2017-03-18
Conservation tillage and the weed diversity are two hot issues in the modern ecological agriculture. Although it is known that the diversity of weed would increase slightly in the farmland under conservation tillage, the interaction effects between the tillage and the nutrient management on the weed community are not clear. In this study, one wheat-maize rotation field located in Ji'nan, Shandong Province, was selected as the studying site. Different tillage methods (no-tillage, deep subsoiling, rotary tillage, deep tillage) and different nutrient managements (farmers routine, 480 kg N hm -2 per year; high production and efficiency, 360 kg N hm -2 per year; optimal management, 300 kg N hm -2 per year) were carried out for 3 years. The characteristics of the spring weed communities under different managements were investigated and compared. The results showed that there were 15 species in the spring weed communities in the test filed and Digitaria sanguinalis and Echinochloa crusgalli were the dominant species. The plots under no-tillage or deep subsoiling had higher weed densities compared with those under the deep tillage or rotary tillage. In terms of the effect of tillage on the weed community diversity, both species richness index and species evenness index were lowest but the community dominance index was highest in the plots under deep tillage. In terms of the effect of the nutrient management, with the increase of fertilizer application, both species richness and evenness index increased under the different tillage methods. The community dominance increased with the increasing fertilizer application under deep tillage or rotary tillage and vice versa under no-tillage, deep subsoiling. In terms of weed biomass, the plots under no-tillage or deep subsoiling had significantly higher weed biomass than those under the other two tillage methods. The plots under routine nutrient management had higher weed biomass than those under the other two nutrient managements. Among all these treatments, the plots under the combination treatment of no-tillage and routine nutrient management had the highest weed biomass. According to these results, it was implied that no-tillage and fertilization would improve species richness index, species evenness index, and the productivity of spring weed community in the wheat-maize farmland.
Subsurface application enhances benefits of manure redistribution
USDA-ARS?s Scientific Manuscript database
Sustainable nutrient management requires redistribution of livestock manure from nutrient-excess areas to nutrient-deficit areas. Field experiments were conducted to assess agronomic and environmental effects of different poultry litter application methods (surface vs. subsurface) and timings (fall ...
Whole Farm Nutrient Balance Calculator for New York Dairy Farms
ERIC Educational Resources Information Center
Soberon, Melanie A.; Ketterings, Quirine M.; Rasmussen, Caroline N.; Czymmek, Karl J.
2013-01-01
Nutrient loss and accumulation as well as associated environmental degradation have been a concern for animal agriculture for many decades. Federal and New York (NY) regulations apply to Concentrated Animal Feeding Operations and a comprehensive nutrient management plan (CNMP) is required for regulated farms. The whole farm nutrient mass balance…
Water, weed, and nutrient management practices in organic blackberries
USDA-ARS?s Scientific Manuscript database
The purpose of our study is to investigate the effects of organic management on plant and soil water and nutrient relations, plant growth, yield, and fruit quality in an organic trailing blackberry production system. Treatments include: cultivar ('Marion' and 'Black Diamond'); irrigation (post-harve...
This project will demonstrate transferable modeling techniques and monitoring approaches to enable water resource professionals to make comparisons among nutrient reduction management scenarios across urban and agricultural areas. It will produce the applied science to allow bett...
Manure nutrient management effects in the Leon River Watershed
USDA-ARS?s Scientific Manuscript database
The Leon River Watershed (LRW) in central Texas is a Benchmark and Special Emphasis watershed within the Conservation Effects Assessment Project (CEAP) located in central Texas. Model simulations from 1977 through 2006 were used to evaluate six manure nutrient management scenarios that reflect reali...
Attributes of Successful Actions to Restore Lakes and ...
As more success is achieved in restoring lakes and estuaries from the impacts of nutrient pollution, there is increased opportunity to evaluate the scientific, social, and policy factors associated with achieving restoration goals. We examined case studies where deliberate actions to reduce nutrient pollution and restore ecosystems resulted in ecological recovery. Prospective cases were identified from scientific literature and technical documents for lakes and estuaries with: (1) scientific evidence of nutrient pollution; (2) restoration actions taken to mitigate nutrient pollution; and (3) documented ecologicalimprovement. Using these criteria, we identified 9 estuaries and 7 lakes spanning countries, climatic regions, physical types, depths, and watershed areas. Among 16 case studies ultimately included, 8 achieved improvements short of stated restoration goals. Five more were successful initially, but condition subsequently declined. Three of the case studies achieved their goals fully and are currently managing to maintain the restored condition. We examined each case to identify both common attributesof nutrient management, grouped into ‘themes’, and variations on those attributes, which were coded into categorical variables based on thorough review of documents associated with each case. The themes and variables were organized into a broad conceptual model illustrating how they relate to each other and to nutrient management outcomes. We then explored
Shalowitz, M U; Eng, J S; McKinney, C O; Krohn, J; Lapin, B; Wang, C-H; Nodine, E
2017-05-15
Successful Type 2 diabetes management requires adopting a high nutrient-density diet made up of food items that both meet dietary needs and preferences and can be feasibly obtained on a regular basis. However, access to affordable, nutrient-dense foods often is lacking in poorer neighbourhoods. Therefore, low food security should directly impair glucose control, even when patients have full access to and utilize comprehensive medical management. The present study sought to determine whether food security is related longitudinally to glucose control, over-and-above ongoing medication management, among Type 2 diabetes patients receiving comprehensive care at a Midwestern multi-site federally qualified health centre (FQHC). In this longitudinal observational study, we completed a baseline assessment of patients' food security (using the US Household Food Security Module), demographics (via Census items), and diabetes history/management (using a structured clinical encounter form) when patients began receiving diabetes care at the health centre. We then recorded those patients' A1C levels several times during a 24-month follow-up period. Three hundred and ninety-nine patients (56% with low food security) had a baseline A1c measurement; a subsample of 336 (median age=52 years; 56% female; 60% Hispanic, 27% African American, and 9% White) also had at least one follow-up A1c measurement. Patients with lower (vs higher) food security were more likely to be on insulin and have higher A1c levels at baseline. Moreover, the disparity in glucose control by food security status persisted throughout the next 2 years. Although results were based on one multi-site FQHC, potentially limiting their generalizability, they seem to suggest that among Type 2 diabetes patients, low food security directly impairs glucose control-even when patients receive full access to comprehensive medical management-thereby increasing their long-term risks of high morbidity, early mortality, and high health-care utilization and cost.
Development of methods for establishing nutrient criteria in lakes and reservoirs: A review.
Huo, Shouliang; Ma, Chunzi; Xi, Beidou; Zhang, Yali; Wu, Fengchang; Liu, Hongliang
2018-05-01
Nutrient criteria provide a scientific foundation for the comprehensive evaluation, prevention, control and management of water eutrophication. In this review, the literature was examined to systematically evaluate the benefits, drawbacks, and applications of statistical analysis, paleolimnological reconstruction, stressor-response model, and model inference approaches for nutrient criteria determination. The developments and challenges in the determination of nutrient criteria in lakes and reservoirs are presented. Reference lakes can reflect the original states of lakes, but reference sites are often unavailable. Using the paleolimnological reconstruction method, it is often difficult to reconstruct the historical nutrient conditions of shallow lakes in which the sediments are easily disturbed. The model inference approach requires sufficient data to identify the appropriate equations and characterize a waterbody or group of waterbodies, thereby increasing the difficulty of establishing nutrient criteria. The stressor-response model is a potential development direction for nutrient criteria determination, and the mechanisms of stressor-response models should be studied further. Based on studies of the relationships among water ecological criteria, eutrophication, nutrient criteria and plankton, methods for determining nutrient criteria should be closely integrated with water management requirements. Copyright © 2017. Published by Elsevier B.V.
Water Quality Protection from Nutrient Pollution: Case ...
Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.
Ecosystem responses to long-term nutrient management in an urban estuary: Tampa Bay, Florida, USA
NASA Astrophysics Data System (ADS)
Greening, H.; Janicki, A.; Sherwood, E. T.; Pribble, R.; Johansson, J. O. R.
2014-12-01
In subtropical Tampa Bay, Florida, USA, we evaluated restoration trajectories before and after nutrient management strategies were implemented using long-term trends in nutrient loading, water quality, primary production, and seagrass extent. Following citizen demands for action, reduction in wastewater nutrient loading of approximately 90% in the late 1970s lowered external total nitrogen (TN) loading by more than 50% within three years. Continuing nutrient management actions from public and private sectors were associated with a steadily declining TN load rate and with concomitant reduction in chlorophyll-a concentrations and ambient nutrient concentrations since the mid-1980s, despite an increase of more than 1 M people living within the Tampa Bay metropolitan area. Water quality (chlorophyll-a concentration, water clarity as indicated by Secchi disk depth, total nitrogen concentration and dissolved oxygen) and seagrass coverage are approaching conditions observed in the 1950s, before the large increases in human population in the watershed. Following recovery from an extreme weather event in 1997-1998, water clarity increased significantly and seagrass is expanding at a rate significantly different than before the event, suggesting a feedback mechanism as observed in other systems. Key elements supporting the nutrient management strategy and concomitant ecosystem recovery in Tampa Bay include: 1) active community involvement, including agreement about quantifiable restoration goals; 2) regulatory and voluntary reduction in nutrient loadings from point, atmospheric, and nonpoint sources; 3) long-term water quality and seagrass extent monitoring; and 4) a commitment from public and private sectors to work together to attain restoration goals. A shift from a turbid, phytoplankton-based system to a clear water, seagrass-based system that began in the 1980s following comprehensive nutrient loading reductions has resulted in a present-day Tampa Bay which looks and functions much like it did in the relatively pre-disturbance 1950s period.
Lepori, Fabio; Roberts, James J.
2017-01-01
We used monitoring data from Lake Lugano (Switzerland and Italy) to assess key ecosystem responses to three decades of nutrient management (1983–2014). We investigated whether reductions in external phosphorus loadings (Lext) caused declines in lake phosphorus concentrations (P) and phytoplankton biomass (Chl a), as assumed by the predictive models that underpinned the management plan. Additionally, we examined the hypothesis that deep lakes respond quickly to Lext reductions. During the study period, nutrient management reduced Lext by approximately a half. However, the effects of such reduction on P and Chl a were complex. Far from the scenarios predicted by classic nutrient-management approaches, the responses of P and Chl a did not only reflect changes in Lext, but also variation in internal P loadings (Lint) and food-web structure. In turn, Lint varied depending on basin morphometry and climatic effects, whereas food-web structure varied due to apparently stochastic events of colonization and near-extinction of key species. Our results highlight the complexity of the trajectory of deep-lake ecosystems undergoing nutrient management. From an applied standpoint, they also suggest that [i] the recovery of warm monomictic lakes may be slower than expected due to the development of Lint, and that [ii] classic P and Chl a models based on Lext may be useful in nutrient management programs only if their predictions are used as starting points within adaptive frameworks.
Integrated watershed management for saturation excess generated runoff, erosion and nutrient control
USDA-ARS?s Scientific Manuscript database
Understanding the basic hydrology and erosion is vital for effective management and utilization of water resources and soil conservation planning. An important question for judging effectiveness of soil and water conservation practices is whether runoff erosion and nutrient loss is affected by infil...
On Farmers’ Ground: Wisconsin Dairy Farm Nutrient Management Survey Questionnaire
USDA-ARS?s Scientific Manuscript database
This questionnaire was used during quarterly, face-to-face interviews with the fifty-four Wisconsin dairy farmers who participated in the ‘On Farmers’ Ground’ nutrient management research project. It was designed to systematically and consistently compile information on herd size and composition, l...
BEST MANAGEMENT PRACTICES FOR THE CONTROL OF NUTRIENTS FROM URBAN NONPOINT SOURCES
While the costs and benefits associated with the point source control of nutrients are relatively well defined, considerable uncertainties remain in the efficiency and long-term costs associated with the best management practices (BMPs) used to redcuce loads from nonpoint and dif...
Hydrology and Water Quality from Managed Turf
USDA-ARS?s Scientific Manuscript database
Quantification of nutrient and pesticide losses from managed turf systems (golf courses) is scant. A study was initiated at Northland Country Club in Duluth, MN, in 2003 to quantify nutrient and pesticide losses in surface and subsurface discharge waters. Based on the four years of data collected at...
USDA-ARS?s Scientific Manuscript database
Intensive beef backgrounding often accumulate manure born soil nutrients, microbes, and pharmaceuticals at different site locations. Unless properly managed, such waste materials can pollute surrounding soil and water sources. Soil sampling from these sites helps determining waste material levels bu...
Schilling, K.E.; Jacobson, P.
2008-01-01
It has been recognized that subsurface lithology plays an important role in controlling nutrient cycling and transport in riparian zones. In Iowa and adjacent states, the majority of alluvium preserved in small and moderate sized valleys consists of Holocene-age organic-rich, and fine-grained loam. In this paper, we describe and evaluate spatial and temporal patterns of lithology and groundwater nutrient concentrations at a riparian well transect across Walnut Creek at the Neal Smith National Wildlife Refuge in Jasper County, Iowa. Land treatment on one side of the stream reduced the grass cover to bare ground and allowed assessment of the effects of land management on nutrient concentrations. Results indicated that groundwater in Holocene alluvium is very nutrient rich with background concentrations of nitrogen, phosphorus and dissolved organic carbon that exceed many environmentally sensitive criteria. Average concentrations of ammonium exceeded 1 mg/l in several wells under grass cover whereas nitrate concentrations exceeded 20 mg/l in wells under bare ground. Phosphate concentrations ranged from 0.1 to 1.3 mg/l and DOC concentrations exceeded 5 mg/l in many wells. Denitrification, channel incision, land management and geologic age of alluvium were found to contribute to variable nutrient loading patterns at the site. Study results indicated that riparian zones of incised streams downcutting through nutrient-rich Holocene alluvium can potentially be a significant source of nutrient loadings to streams. ?? 2008 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Finlay, J. C.
2015-12-01
Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.
Nutrient management effects on sweetpotato genotypes under controlled environment
NASA Technical Reports Server (NTRS)
David, P. P.; Bonsi, C. K.; Trotman, A. A.; Douglas, D. Z.
1996-01-01
Sweetpotato is one of several crops recommended by National Aeronautics and Space Administration (NASA) for bioregenerative life support studies. One of the objectives of the Tuskegee University NASA Center is to optimize growth conditions for adaptability of sweetpotatoes for closed bioregenerative systems. The role of nutrient solution management as it impacts yield has been one of the major thrusts in these studies. Nutrient solution management protocol currently used consists of a modified half Hoagland solution that is changed at 14-day intervals. Reservoirs are refilled with deionized water if the volume of the nutrient solution was reduced to 8 liters or less before the time of solution change. There is the need to recycle and replenish nutrient solution during crop growth, rather than discard at 14 day intervals as previously done, in order to reduce waste. Experiments were conducted in an environmental growth room to examine the effects of container size on the growth of several sweetpotato genotypes grown under a nutrient replenishment protocol. Plants were grown from vine cuttings of 15cm length and were planted in 0.15 x 0.15 x 1.2m growth channels using a closed nutrient film technique system. Nutrient was supplied in a modified half strength Hoagland's solution with a 1:2.4 N:K ratio. Nutrient replenishment protocol consisted of daily water replenishment to a constant volume of 30.4 liters in the small containers and 273.6 liters in the large container. Nutrients were replenished as needed when the EC of the nutrient solution fell below 1200 mhos/cm. The experimental design used was a split-plot with the main plot being container size and genotypes as the subplot. Nine sweetpotato genotypes were evaluated. Results showed no effect of nutrient solution container size on storage root yield, foliage fresh and dry mass, leaf area or vine length. However, plants grown using the large nutrient solution container accumulated more storage root dry mass than those with the small containers. Although plants grown with the smaller containers showed greater water uptake, plant nutrient uptake was lower than with the larger container. All genotypes evaluated showed variation in their responses to all parameters measured.
Eco-Inquiry: A Guide to Ecological Learning Experiences for the Upper Elementary/Middle Grades.
ERIC Educational Resources Information Center
Hogan, Kathleen
Eco-Inquiry may be defined as a "whole science" curriculum that embeds hands-on science within thematic multi-dimensional learning experiences. Three modules for the upper elementary and middle grades focus on food webs, decomposition, and nutrient cycling. Each module lasts 4-7 weeks and may be used alone or in sequence. Student…
NutrimiRAging: Micromanaging Nutrient Sensing Pathways through Nutrition to Promote Healthy Aging.
Micó, Víctor; Berninches, Laura; Tapia, Javier; Daimiel, Lidia
2017-04-26
Current sociodemographic predictions point to a demographic shift in developed and developing countries that will result in an unprecedented increase of the elderly population. This will be accompanied by an increase in age-related conditions that will strongly impair human health and quality of life. For this reason, aging is a major concern worldwide. Healthy aging depends on a combination of individual genetic factors and external environmental factors. Diet has been proved to be a powerful tool to modulate aging and caloric restriction has emerged as a valuable intervention in this regard. However, many questions about how a controlled caloric restriction intervention affects aging-related processes are still unanswered. Nutrient sensing pathways become deregulated with age and lose effectiveness with age. These pathways are a link between diet and aging. Thus, fully understanding this link is a mandatory step before bringing caloric restriction into practice. MicroRNAs have emerged as important regulators of cellular functions and can be modified by diet. Some microRNAs target genes encoding proteins and enzymes belonging to the nutrient sensing pathways and, therefore, may play key roles in the modulation of the aging process. In this review, we aimed to show the relationship between diet, nutrient sensing pathways and microRNAs in the context of aging.
Pheromonal regulation of starvation resistance in honey bee workers ( Apis mellifera)
NASA Astrophysics Data System (ADS)
Fischer, Patrick; Grozinger, Christina M.
2008-08-01
Most animals can modulate nutrient storage pathways according to changing environmental conditions, but in honey bees nutrient storage is also modulated according to changing behavioral tasks within a colony. Specifically, bees involved in brood care (nurses) have higher lipid stores in their abdominal fat bodies than forager bees. Pheromone communication plays an important role in regulating honey bee behavior and physiology. In particular, queen mandibular pheromone (QMP) slows the transition from nursing to foraging. We tested the effects of QMP exposure on starvation resistance, lipid storage, and gene expression in the fat bodies of worker bees. We found that indeed QMP-treated bees survived much longer compared to control bees when starved and also had higher lipid levels. Expression of vitellogenin RNA, which encodes a yolk protein that is found at higher levels in nurses than foragers, was also higher in the fat bodies of QMP-treated bees. No differences were observed in expression of genes involved in insulin signaling pathways, which are associated with nutrient storage and metabolism in a variety of species; thus, other mechanisms may be involved in increasing the lipid stores. These studies demonstrate that pheromone exposure can modify nutrient storage pathways and fat body gene expression in honey bees and suggest that chemical communication and social interactions play an important role in altering metabolic pathways.
Hiriart-Baer, Véronique P; Arciszewski, Tim J; Malkin, Sairah Y; Guildford, Stephanie J; Hecky, Robert E
2008-12-01
This study investigated the application of pulse-amplitude-modulated (PAM) fluorometry as a rapid assessment of benthic macroalgal physiological status. Maximum quantum efficiency (Fv /Fm ), dark-light induction curves, and rapid fluorescence light-response curves (RLC) were measured on the filamentous macroalgal Cladophora sp. from Lake Ontario on 5 d at 16 sites spanning a gradient of light and nutrient supply. For Cladophora sp. growing in situ, light limitation was assessed by comparing average daily irradiance with the light utilization efficiency parameter (α) derived from RLCs. In this study, there was a nonlinear relationship between Fv /Fm and the degree of P limitation in macroalgae. However, only light-saturated Cladophora sp. showed a significant positive linear relationship between Fv /Fm and P nutrient status. The absence of this relationship among light-limited algae indicates that their photosynthetic rate would be stimulated by increased water clarity, and not by increased P supply. PAM fluorescence measures were successfully able to identify light-saturated macroalgae and, among these, assess the degree to which they were nutrient limited. These results enable us to test hypotheses arising from numeric models predicting the impact of changes in light penetration and nutrient supply on benthic primary production. © 2008 Phycological Society of America.
Cousins, Elsa A; Murren, Courtney J
2017-12-01
Studies on phenotypic plasticity and plasticity of integration have uncovered functionally linked modules of aboveground traits and seedlings of Arabidopsis thaliana , but we lack details about belowground variation in adult plants. Functional modules can be comprised of additional suites of traits that respond to environmental variation. We assessed whether shoot and root responses to nutrient environments in adult A. thaliana were predictable from seedling traits or population-specific geologic soil characteristics at the site of origin. We compared 17 natural accessions from across the native range of A. thaliana using 14-day-old seedlings grown on agar or sand and plants grown to maturity across nutrient treatments in sand. We measured aboveground size, reproduction, timing traits, root length, and root diameter. Edaphic characteristics were obtained from a global-scale dataset and related to field data. We detected significant among-population variation in root traits of seedlings and adults and in plasticity in aboveground and belowground traits of adult plants. Phenotypic integration of roots and shoots varied by population and environment. Relative integration was greater in roots than in shoots, and integration was predicted by edaphic soil history, particularly organic carbon content, whereas seedling traits did not predict later ontogenetic stages. Soil environment of origin has significant effects on phenotypic plasticity in response to nutrients, and on phenotypic integration of root modules and shoot modules. Root traits varied among populations in reproductively mature individuals, indicating potential for adaptive and integrated functional responses of root systems in annuals. © 2017 Botanical Society of America.
USDA-ARS?s Scientific Manuscript database
Agricultural nutrient management is an issue due to nitrogen (NH4) and phosphorus (P) losses from fields and water quality degradation. Better information is needed on the risk of nutrient loss in runoff from dairy manure applied in winter. We investigated the effect of temperature on nutrient relea...
A Loblolly Pine Management Guide: Foresters' Primer in Nutrient Cycling
Jacques R. Jorgensen; Carol G. Wells
1986-01-01
The nutrient cycle, which includes the input of nutrients to the site, their losses, and their movement from one soil or vegetation component to another, can be modified by site preparation, rotation length, harvest system, fertilization, and fire, and by using soil-improving plants. Included is a report on how alternative procedures affect site nutrients, and provides...
Management Practices Used in Agricultural Drainage Ditches to Reduce Gulf of Mexico Hypoxia.
Faust, Derek R; Kröger, Robert; Moore, Matthew T; Rush, Scott A
2018-01-01
Agricultural non-point sources of nutrients and sediments have caused eutrophication and other water quality issues in aquatic and marine ecosystems, such as the annual occurrence of hypoxia in the Gulf of Mexico. Management practices have been implemented adjacent to and in agricultural drainage ditches to promote their wetland characteristics and functions, including reduction of nitrogen, phosphorus, and sediment losses downstream. This review: (1) summarized studies examining changes in nutrient and total suspended solid concentrations and loads associated with management practices in drainage ditches (i.e., riser and slotted pipes, two-stage ditches, vegetated ditches, low-grade weirs, and organic carbon amendments) with emphasis on the Lower Mississippi Alluvial Valley, (2) quantified management system effects on nutrient and total suspended solid concentrations and loads and, (3) identified information gaps regarding water quality associated with these management practices and research needs in this area. In general, management practices used in drainage ditches at times reduced losses of total suspended solids, N, and P. However, management practices were often ineffective during storm events that were uncommon and intense in duration and volume, although these types of events could increase in frequency and intensity with climate change. Studies on combined effects of management practices on drainage ditch water quality, along with research towards improved nutrient and sediment reduction efficiency during intense storm events are urgently needed.
Plasticity of the Arabidopsis Root System under Nutrient Deficiencies1[C][W][OPEN
Gruber, Benjamin D.; Giehl, Ricardo F.H.; Friedel, Swetlana; von Wirén, Nicolaus
2013-01-01
Plant roots show a particularly high variation in their morphological response to different nutrient deficiencies. Although such changes often determine the nutrient efficiency or stress tolerance of plants, it is surprising that a comprehensive and comparative analysis of root morphological responses to different nutrient deficiencies has not yet been conducted. Since one reason for this is an inherent difficulty in obtaining nutrient-deficient conditions in agar culture, we first identified conditions appropriate for producing nutrient-deficient plants on agar plates. Based on a careful selection of agar specifically for each nutrient being considered, we grew Arabidopsis (Arabidopsis thaliana) plants at four levels of deficiency for 12 nutrients and quantified seven root traits. In combination with measurements of biomass and elemental concentrations, we observed that the nutritional status and type of nutrient determined the extent and type of changes in root system architecture (RSA). The independent regulation of individual root traits further pointed to a differential sensitivity of root tissues to nutrient limitations. To capture the variation in RSA under different nutrient supplies, we used principal component analysis and developed a root plasticity chart representing the overall modulations in RSA under a given treatment. This systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program. PMID:23852440
We compared stream channel structure (width, depth, substrate composition) and riparian canopy with transient storage and nutrient uptake in 32 streams draining old-growth and managed watersheds in the Appalachian Mountains (North Carolina), Ouachita Mountains (Arkansas), Cascade...
A Nested Nearshore Nutrient Model (N&Sup3;M) for Nearshore Condition Assessment and Management
Nearshore conditions drive phenomena like harmful algal blooms (HABs), and the nearshore and coastal margin are the parts of the Great Lakes most used by humans. To assess conditions, optimize monitoring, and evaluate management options, a model of nearshore nutrient transport an...
Attributes of Successful Nutrient Management? - Implications for Recovery of Indian River Lagoon
This presentation was an invited keynote address, which was based on a published paper: Gross, C. and J. D. Hagy, 3rd (2017). "Attributes of successful actions to restore lakes and estuaries degraded by nutrient pollution." J Environ Manage 187: 122-136. As more succes...
Brakebill, John W.; Preston, Stephen D.
2004-01-01
Chesapeake Bay restoration efforts are focused on improving water quality, living resources, and ecological habitats by 2010. One aspect of the water-quality restoration is the refinement of strategies designed to implement nutrient-reduction practices within the Bay watershed. These strategies are being refined and implemented by resource managers of the Chesapeake Bay Program (CBP), a partnership comprised of various Federal, State, and local agencies that includes jurisdictions within Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia, and the District of Columbia. The U.S. Geological Survey (USGS), an active member of the CBP, provides necessary water-quality information for these Chesapeake Bay nutrient-reduction strategy revisions and evaluations. The formulation and revision of effective nutrient-reduction strategies requires detailed scientific information and an analytical understanding of the sources, transport, and delivery of nutrients to the Chesapeake Bay. The USGS is supporting these strategies by providing scientific information to resource managers that can help them evaluate and understand these processes. One statistical model available to resource managers is a collection of SPAtially Referenced Regressions On Watershed (SPARROW) attributes, which uses a nonlinear regression approach to spatially relate nutrient sources and watershed characteristics to nutrient loads of streams throughout the Chesapeake Bay watershed. Developed by the USGS, information generated by SPARROW can help resource managers determine the geographical distribution and relative contribution of nutrient sources and the factors that affect their transport to the Bay. Nutrient source information representing the late 1990s time period was obtained from several agencies and used to create and compile digital spatial datasets of total nitrogen and total phosphorus contributions that served as input sources to the SPARROW models. These data represent atmospheric deposition, point-source locations, land-use, land-cover, and agricultural sources such as commercial fertilizer and manure applications. Watershed-characteristics datasets representing factors that affect the transport of nutrients also were compiled from previous applications of the SPARROW models in the Chesapeake Bay watershed. Datasets include average-annual precipitation and temperature, slope, soil permeability, and hydrogeomorphic regions. Nutrient-input and watershed-characteristics datasets representing conditions during the late 1990s were merged with a connected network of stream reaches and watersheds to provide the spatial detail required by SPARROW. Stream-nutrient load estimates for 125 sampling sites (87 for total nitrogen and 103 for total phosphorus) served as the dependent variables for the regressions, and were used to calibrate models of total nitrogen and total phosphorus depicting late 1990s conditions in the Chesapeake Bay watershed. Spatial data generated for the models can be used to identify the location of nutrient sources, while the models' nutrient estimates can be used to evaluate stream-nutrient load contributed locally by each source evaluated, the amount of local load generated that is transported to the Bay, and the factors that affect the nutrient transport. Applying the SPARROW methodology to late 1990s information completes three time periods (late 1980s, early 1990s, and late 1990s) of viable data that resource managers can use to evaluate the water-quality conditions within the Bay watershed in order to refine restoration goals and nutrient-reduction strategies.
Sun, Xiaoping; Wheeler, Charles T.; Yolitz, Jason; Laslo, Mara; Alberico, Thomas; Sun, Yaning; Song, Qisheng; Zou, Sige
2014-01-01
SUMMARY Diet composition is a critical determinant of lifespan and nutrient imbalance is detrimental health. However, how nutrients interact with genetic factors to modulate lifespan remains elusive. We investigated how diet composition influences mitochondrial ATP synthase subunit d (ATPsyn-d) in modulating lifespan in Drosophila. ATPsyn-d knockdown extended lifespan in females fed low carbohydrate-to-protein (C:P) diets, but not the high C:P ratio diet. This extension was associated with increased resistance to oxidative stress, transcriptional changes in metabolism, proteostasis and immune genes, reduced protein damage and aggregation, and reduced phosphorylation of S6K and ERK in TOR and MAPK signaling, respectively. ATPsyn-d knockdown did not extend lifespan in females with reduced TOR signaling induced genetically by Tsc2 overexpression or pharmacologically by rapamycin. Our data reveal a link among diet, mitochondria, MAPK and TOR signaling in aging and stresses the importance of considering genetic background and diet composition in implementing interventions for promoting healthy aging. PMID:25220459
Nutrient Sensing Systems in Fish: Impact on Food Intake Regulation and Energy Homeostasis
Conde-Sieira, Marta; Soengas, José L.
2017-01-01
Evidence obtained in recent years in a few species, especially rainbow trout, supports the presence in fish of nutrient sensing mechanisms. Glucosensing capacity is present in central (hypothalamus and hindbrain) and peripheral [liver, Brockmann bodies (BB, main accumulation of pancreatic endocrine cells in several fish species), and intestine] locations whereas fatty acid sensors seem to be present in hypothalamus, liver and BB. Glucose and fatty acid sensing capacities relate to food intake regulation and metabolism in fish. Hypothalamus is as a signaling integratory center in a way that detection of increased levels of nutrients result in food intake inhibition through changes in the expression of anorexigenic and orexigenic neuropeptides. Moreover, central nutrient sensing modulates functions in the periphery since they elicit changes in hepatic metabolism as well as in hormone secretion to counter-regulate changes in nutrient levels detected in the CNS. At peripheral level, the direct nutrient detection in liver has a crucial role in homeostatic control of glucose and fatty acid whereas in BB and intestine nutrient sensing is probably involved in regulation of hormone secretion from endocrine cells. PMID:28111540
Nutritional management of preterm infants postdischarge
USDA-ARS?s Scientific Manuscript database
The usual recommendation for feeding prematurely born infants is to provide sufficient nutrients to support rates of growth and nutrient accretion equal to intrauterine rates. The protein and energy intakes required to achieve this goal, provided the intakes of all other necessary nutrients are adeq...
Landscape influence on soil carbon and nutrient levels
USDA-ARS?s Scientific Manuscript database
Past runoff, erosion, and management practices influence nutrient levels on the landscape. These starting levels affect future nutrient transport due to runoff, erosion, and leaching events. The purpose of this study was to examine closed-depression landscape effects on surface soil organic matter, ...
Uematsu, Yuta; Ushimaru, Atushi
2013-09-01
Examining the causes of interspecific differences in susceptibility to bidirectional land-use changes (land abandonment and use-intensification) is important for understanding the mechanisms of global biodiversity loss in agricultural landscapes. We tested the hypothesis that rare (endangered) plant species prefer wet and oligotrophic areas within topography- and management-mediated resource (soil water content, nutrient, and aboveground biomass) gradients, making them more susceptible to both abandonment and use-intensification of agricultural lands. We demonstrated that topography and management practices generated resource gradients in seminatural grasslands around traditional paddy terraces. Terraced topography and management practices produced a soil moisture gradient within levees and a nutrient gradient within paddy terraces. Both total and rare species diversity increased with soil water content. Total species diversity increased in more eutrophied areas with low aboveground biomass, whereas rare species diversity was high under oligotrophic conditions. Rare and common species were differentially distributed along the human-induced nutrient gradient, with rare species preferring wet, nutrient-poor environments in the agricultural landscapes studied. We suggest that conservation efforts should concentrate on wet, nutrient-poor areas within such landscapes, which can be located easily using land-use and topography maps. This strategy would reduce the costs of finding and conserving rare grassland species in a given agricultural landscape.
Free fatty acid receptors: emerging targets for treatment of diabetes and its complications
Vangaveti, Venkat; Shashidhar, Venkatesh; Jarrod, Ghassan; Baune, Bernhard T.; Kennedy, R. Lee
2010-01-01
Fatty acids (FAs) are important as metabolic substrates and as structural components of biological membranes. However, they also function as signalling molecules. Recently, a series of G protein-coupled receptors (GPRs) for FAs has been described and characterized. These receptors have differing specificities for FAs of differing chain length and degree of saturation, for FA derivatives such as oleoylethanolamide, and for oxidized FAs. They are a critical component of the body's nutrient sensing apparatus, and small molecule agonists and antagonists of these receptors show considerable promise in the management of diabetes and its complications. Agonists of the long-chain free fatty acid receptors FFAR1 and GPR119 act as insulin secretagogues, both directly and by increasing incretins. Although, drugs acting at short-chain FFA receptors (FFAR2 and FFAR3) have not yet been developed, they are attractive targets as they regulate nutrient balance through effects in the intestine and adipose tissue. These include regulation of the secretion of cholecystokinin, peptide YY and leptin. Finally, GPR132 is a receptor for oxidized FAs, which may be a sensor of lipid overload and oxidative stress, and which is involved in atherosclerosis. Regulation of its signalling pathways with drugs may decrease the macrovascular risk experienced by diabetic patients. In summary, FA receptors are emerging drug targets that are involved in the regulation of nutrient status and carbohydrate tolerance, and modulators of these receptors may well figure prominently in the next generation of antidiabetic drugs. PMID:23148161
Gonçalves, Alexandre; Goufo, Piebiep; Barros, Ana; Domínguez-Perles, Raúl; Trindade, Henrique; Rosa, Eduardo A S; Ferreira, Luis; Rodrigues, Miguel
2016-07-01
The growing awareness of the relevance of food composition for human health has increased the interest of the inclusion of high proportions of fruits and vegetables in diets. To reach the objective of more balanced diets, an increased consumption of legumes, which constitutes a sustainable source of essential nutrients, particularly low-cost protein, is of special relevance. However, the consumption of legumes also entails some constraints that need to be addressed to avoid a deleterious impact on consumers' wellbeing and health. The value of legumes as a source of nutrients depends on a plethora of factors, including genetic characteristics, agro-climatic conditions, and postharvest management that modulate the dietary effect of edible seeds and vegetative material. Thus, more comprehensive information regarding composition, especially their nutritional and anti-nutritional compounds, digestibility, and alternative processing procedures is essential. These were the challenges to write this review, which focusses on the nutritional and anti-nutritional composition of Vigna unguiculata L. Walp, an emerging crop all over the world intended to provide a rational support for the development of valuable foods and feeds of increased commercial value. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Dong, Feifei; Liu, Yong; Wu, Zhen; Chen, Yihui; Guo, Huaicheng
2018-07-01
Targeting nonpoint source (NPS) pollution hot spots is of vital importance for placement of best management practices (BMPs). Although physically-based watershed models have been widely used to estimate nutrient emissions, connections between nutrient abatement and compliance of water quality standards have been rarely considered in NPS hotspot ranking, which may lead to ineffective decision-making. It's critical to develop a strategy to identify priority management areas (PMAs) based on water quality response to nutrient load mitigation. A water quality constrained PMA identification framework was thereby proposed in this study, based on the simulation-optimization approach with ideal load reduction (ILR-SO). It integrates the physically-based Soil and Water Assessment Tool (SWAT) model and an optimization model under constraints of site-specific water quality standards. To our knowledge, it was the first effort to identify PMAs with simulation-based optimization. The SWAT model was established to simulate temporal and spatial nutrient loading and evaluate effectiveness of pollution mitigation. A metamodel was trained to establish a quantitative relationship between sources and water quality. Ranking of priority areas is based on required nutrient load reduction in each sub-watershed targeting to satisfy water quality standards in waterbodies, which was calculated with genetic algorithm (GA). The proposed approach was used for identification of PMAs on the basis of diffuse total phosphorus (TP) in Lake Dianchi Watershed, one of the three most eutrophic large lakes in China. The modeling results demonstrated that 85% of diffuse TP came from 30% of the watershed area. Compared with the two conventional targeting strategies based on overland nutrient loss and instream nutrient loading, the ILR-SO model identified distinct PMAs and narrowed down the coverage of management areas. This study addressed the urgent need to incorporate water quality response into PMA identification and showed that the ILR-SO approach is effective to guide watershed management for aquatic ecosystem restoration.
Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease.
Pistollato, Francesca; Sumalla Cano, Sandra; Elio, Iñaki; Masias Vergara, Manuel; Giampieri, Francesca; Battino, Maurizio
2016-10-01
It has been hypothesized that alterations in the composition of the gut microbiota might be associated with the onset of certain human pathologies, such as Alzheimer disease, a neurodegenerative syndrome associated with cerebral accumulation of amyloid-β fibrils. It has been shown that bacteria populating the gut microbiota can release significant amounts of amyloids and lipopolysaccharides, which might play a role in the modulation of signaling pathways and the production of proinflammatory cytokines related to the pathogenesis of Alzheimer disease. Additionally, nutrients have been shown to affect the composition of the gut microbiota as well as the formation and aggregation of cerebral amyloid-β. This suggests that modulating the gut microbiome and amyloidogenesis through specific nutritional interventions might prove to be an effective strategy to prevent or reduce the risk of Alzheimer disease. This review examines the possible role of the gut in the dissemination of amyloids, the role of the gut microbiota in the regulation of the gut-brain axis, the potential amyloidogenic properties of gut bacteria, and the possible impact of nutrients on modulation of microbiota composition and amyloid formation in relation to the pathogenesis of Alzheimer disease. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
An update on diet and nutritional factors in systemic lupus erythematosus management.
Aparicio-Soto, Marina; Sánchez-Hidalgo, Marina; Alarcón-de-la-Lastra, Catalina
2017-06-01
Systemic lupus erythematosus (SLE) is a chronic inflammatory and autoimmune disease characterised by multiple organ involvement and a large number of complications. SLE management remains complicated owing to the biological heterogeneity between patients and the lack of safe and specific targeted therapies. There is evidence that dietary factors can contribute to the geoepidemiology of autoimmune diseases such as SLE. Thus, diet therapy could be a promising approach in SLE owing to both its potential prophylactic effects, without the side effects of classical pharmacology, and its contribution to reducing co-morbidities and improving quality of life in patients with SLE. However, the question arises as to whether nutrients could ameliorate or exacerbate SLE and how they could modulate inflammation and immune function at a molecular level. The present review summarises preclinical and clinical experiences to provide the reader with an update of the positive and negative aspects of macro- and micronutrients and other nutritional factors, including dietary phenols, on SLE, focusing on the mechanisms of action involved.
Optimizing simulated fertilizer additions using a genetic algorithm with a nutrient uptake model
Wendell P. Cropper; N.B. Comerford
2005-01-01
Intensive management of pine plantations in the southeastern coastal plain typically involves weed and pest control, and the addition of fertilizer to meet the high nutrient demand of rapidly growing pines. In this study we coupled a mechanistic nutrient uptake model (SSAND, soil supply and nutrient demand) with a genetic algorithm (GA) in order to estimate the minimum...
Zhu, Qing; Riley, William J; Tang, Jinyun
2017-04-01
Terrestrial plants assimilate anthropogenic CO 2 through photosynthesis and synthesizing new tissues. However, sustaining these processes requires plants to compete with microbes for soil nutrients, which therefore calls for an appropriate understanding and modeling of nutrient competition mechanisms in Earth System Models (ESMs). Here, we survey existing plant-microbe competition theories and their implementations in ESMs. We found no consensus regarding the representation of nutrient competition and that observational and theoretical support for current implementations are weak. To reconcile this situation, we applied the Equilibrium Chemistry Approximation (ECA) theory to plant-microbe nitrogen competition in a detailed grassland 15 N tracer study and found that competition theories in current ESMs fail to capture observed patterns and the ECA prediction simplifies the complex nature of nutrient competition and quantitatively matches the 15 N observations. Since plant carbon dynamics are strongly modulated by soil nutrient acquisition, we conclude that (1) predicted nutrient limitation effects on terrestrial carbon accumulation by existing ESMs may be biased and (2) our ECA-based approach may improve predictions by mechanistically representing plant-microbe nutrient competition. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Paerl, H. W.; Peierls, B. L.; Hall, N. S.; Rossignol, K. L.; Wetz, M. S.
2008-12-01
Since the mid-1990's, US Coastal regions have experienced a sudden rise in hurricane and tropical storm landfalls; this elevated frequency is expected to continue for the next several decades. The North Carolina coast has been impacted by at least eight hurricanes and six tropical storms during this time. Each of these storms exhibited unique hydrologic and nutrient loading scenarios. This variability represents a formidable challenge to management of eutrophication and fisheries habitats of the Pamlico Sound system, the US's largest lagoonal ecosystem and a key fisheries resource. Different rainfall amounts among hurricanes led to variable freshwater and nutrient discharge and hence variable nutrient, organic matter, and sediment enrichment. These enrichments differentially affected physical-chemical properties (salinity, water residence time, transparency, stratification, dissolved oxygen), phytoplankton community production and composition. The contrasting effects were accompanied by biogeochemical perturbations (hypoxia, enhanced nutrient cycling), habitat alterations, and food web disturbances. Floodwaters from the two largest hurricanes, Fran (1996) and Floyd (1999), exerted multi-month to multi-annual hydrologic and biogeochemical effects. In contrast, relatively low rainfall coastal hurricanes like Isabel (2003) and Ophelia (2005) caused strong vertical mixing and storm surges, but relatively minor hydrologic, nutrient, and biotic impacts. Both hydrologic and wind forcing are important drivers and must be integrated with nutrient loading in assessing short- and long- term ecological impacts of these storms. These climatic forcings cannot be managed but must be considered when developing water quality and habitat management strategies for these and other large estuarine ecosystems faced with increasing frequencies and intensities of hurricanes.
A Catchment Systems Engineering (CSE) approach to managing intensively farmed land
NASA Astrophysics Data System (ADS)
Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark; ODonnell, Greg
2014-05-01
Rural land management practices can have a significant impact on the hydrological and nutrient dynamics within a catchment which can dramatically alter the way it processes water, exacerbating nutrient losses from the system. A collaborative and holistic approach for managing potential conflicts between land management activity for food production alongside the aspiration to achieve good water quality and the need to make space for water can ensure the long-term sustainability of our agricultural catchments. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source many runoff attenuation features or measures can be co-located to achieve benefits for water quality. Examples of community-led mitigation measures using the CSE approach will be presented from two catchments in Northumberland, Northern England, that demonstrate the generic framework for identification of multipurpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-field sediment filters and sediment traps which demonstrate how sediment can be trapped locally (including silt and clay fractions) and be recovered for use back on the land. Deliverables from this CSE approach includes the reduction of downstream flood risk and capturing of sediment and associated nutrients. The CSE approach allows for a more natural flood and nutrient management approach which helps to restore vital catchment functions to re-establish a healthy catchment system.
NASA Astrophysics Data System (ADS)
Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Roush, J. A.; Hannah, B. A.; Hyndman, D. W.
2017-12-01
Excessive loading of nitrogen and phosphorous to the landscape has caused biologically and economically damaging eutrophication and harmful algal blooms in the Great Lakes Basin (GLB) and across the world. We mapped source-specific loads of nitrogen and phosphorous to the landscape using broadly available data across the GLB. SENSMap (Spatially Explicit Nutrient Source Map) is a 30m resolution snapshot of nutrient loads ca. 2010. We use these maps to study variable nutrient loading and provide this information to watershed managers through NOAA's GLB Tipping Points Planner. SENSMap individually maps nutrient point sources and six non-point sources: 1) atmospheric deposition, 2) septic tanks, 3) non-agricultural chemical fertilizer, 4) agricultural chemical fertilizer, 5) manure, and 6) nitrogen fixation from legumes. To model source-specific loads at high resolution, SENSMap synthesizes a wide range of remotely sensed, surveyed, and tabular data. Using these spatially explicit nutrient loading maps, we can better calibrate local land use-based water quality models and provide insight to watershed managers on how to focus nutrient reduction strategies. Here we examine differences in dominant nutrient sources across the GLB, and how those sources vary by land use. SENSMap's high resolution, source-specific approach offers a different lens to understand nutrient loading than traditional semi-distributed or land use based models.
A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.
Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook
2016-08-01
We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands.
Delevaux, Jade M S; Whittier, Robert; Stamoulis, Kostantinos A; Bremer, Leah L; Jupiter, Stacy; Friedlander, Alan M; Poti, Matthew; Guannel, Greg; Kurashima, Natalie; Winter, Kawika B; Toonen, Robert; Conklin, Eric; Wiggins, Chad; Knudby, Anders; Goodell, Whitney; Burnett, Kimberly; Yee, Susan; Htun, Hla; Oleson, Kirsten L L; Wiegner, Tracy; Ticktin, Tamara
2018-01-01
Declining natural resources have led to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and restore abundant coral reef fisheries. Effective ridge-to-reef management requires improved understanding of land-sea linkages and decision-support tools to simultaneously evaluate the effects of terrestrial and marine drivers on coral reefs, mediated by anthropogenic activities. Although a few applications have linked the effects of land cover to coral reefs, these are too coarse in resolution to inform watershed-scale management for Pacific Islands. To address this gap, we developed a novel linked land-sea modeling framework based on local data, which coupled groundwater and coral reef models at fine spatial resolution, to determine the effects of terrestrial drivers (groundwater and nutrients), mediated by human activities (land cover/use), and marine drivers (waves, geography, and habitat) on coral reefs. We applied this framework in two 'ridge-to-reef' systems (Hā'ena and Ka'ūpūlehu) subject to different natural disturbance regimes, located in the Hawaiian Archipelago. Our results indicated that coral reefs in Ka'ūpūlehu are coral-dominated with many grazers and scrapers due to low rainfall and wave power. While coral reefs in Hā'ena are dominated by crustose coralline algae with many grazers and less scrapers due to high rainfall and wave power. In general, Ka'ūpūlehu is more vulnerable to land-based nutrients and coral bleaching than Hā'ena due to high coral cover and limited dilution and mixing from low rainfall and wave power. However, the shallow and wave sheltered back-reef areas of Hā'ena, which support high coral cover and act as nursery habitat for fishes, are also vulnerable to land-based nutrients and coral bleaching. Anthropogenic sources of nutrients located upstream from these vulnerable areas are relevant locations for nutrient mitigation, such as cesspool upgrades. In this study, we located coral reefs vulnerable to land-based nutrients and linked them to priority areas to manage sources of human-derived nutrients, thereby demonstrating how this framework can inform place-based ridge-to-reef management.
This newly initiated research will provide environmental managers with an empirical method to develop regional nutrient input limits for East Coast estuaries/coastal water bodies. The goal will be to reduce the current uncertainty associated with nutrient load-response relationsh...
Water quality and ecosystem management: Data-driven reality check of effects in streams and lakes
NASA Astrophysics Data System (ADS)
Destouni, Georgia; Fischer, Ida; Prieto, Carmen
2017-08-01
This study investigates nutrient-related water quality conditions and change trends in the first management periods of the EU Water Framework Directive (WFD; since 2009) and Baltic Sea Action Plan (BASP; since 2007). With mitigation of nutrients in inland waters and their discharges to the Baltic Sea being a common WFD and BSAP target, we use Sweden as a case study of observable effects, by compiling and analyzing all openly available water and nutrient monitoring data across Sweden since 2003. The data compilation reveals that nutrient monitoring covers only around 1% (down to 0.2% for nutrient loads) of the total number of WFD-classified stream and lake water bodies in Sweden. The data analysis further shows that the hydro-climatically driven water discharge dominates the determination of waterborne loads of both total phosphorus and total nitrogen across Sweden. Both water discharge and the related nutrient loads are in turn well correlated with the ecosystem status classification of Swedish water bodies. Nutrient concentrations do not exhibit such correlation and their changes over the study period are on average small, but concentration increases are found for moderate-to-bad status waters, for which both the WFD and the BSAP have instead targeted concentration decreases. In general, these results indicate insufficient distinction and mitigation of human-driven nutrient components in inland waters and their discharges to the sea by the internationally harmonized applications of the WFD and the BSAP. The results call for further comparative investigations of observable large-scale effects of such regulatory/management frameworks in different parts of the world.
USDA-ARS?s Scientific Manuscript database
The recovery of nutrients from wastes for re-use as concentrated plant fertilizers is a new paradigm in agricultural and municipal waste management. Nutrient pollution has diverse and far-reaching effects on the economy, impacting many sectors that depend on clean water. Treatment technologies have ...
Revision of the 590 nutrient management standard: SERA-17 recommendations
USDA-ARS?s Scientific Manuscript database
In late 2009, NRCS requested a Working Group within SERA-17 be established to review and revise the 590 Nutrient Management Conservation Standard. This was in response to growing concern in certain areas of the U.S., that current risk assessment tools were not bringing about as great a change in pho...
USDA-ARS?s Scientific Manuscript database
Organic production of blackberries is increasing, but there is relatively little known about how production practices affect plant and soil nutrient status. The impact of cultivar (‘Black Diamond’ and ‘Marion’), weed management (weed mat, hand weeding, and no weeding), primocane training time (Augus...
This study compares alternative dairy manure management systems operated under full scale commercial conditions. The study investigates weight of manure handled per cow per year, labor and energy requirements, effect on the environment, nutrient conservation, corn silage producti...
USDA-ARS?s Scientific Manuscript database
Five research teams received funding through the North American 4R Research Fund to conduct meta-analyses of the air and water quality impacts of on-farm 4R nutrient management practices. In compiling or expanding databases for these analyses on environmental and crop production effects, researchers...
Central nervous system regulation of intestinal lipid and lipoprotein metabolism.
Farr, Sarah; Taher, Jennifer; Adeli, Khosrow
2016-02-01
In response to nutrient availability, the small intestine and brain closely communicate to modulate energy homeostasis and metabolism. The gut-brain axis involves complex nutrient sensing mechanisms and an integration of neuronal and hormonal signaling. This review summarizes recent evidence implicating the gut-brain axis in regulating lipoprotein metabolism, with potential implications for the dyslipidemia of insulin resistant states. The intestine and brain possess distinct mechanisms for sensing lipid availability, which triggers subsequent regulation of feeding, glucose homeostasis, and adipose tissue metabolism. More recently, central receptors, neuropeptides, and gut hormones that communicate with the brain have been shown to modulate hepatic and intestinal lipoprotein metabolism via parasympathetic and sympathetic signaling. Gut-derived glucagon-like peptides appear to be particularly important in modulating the intestinal secretion of chylomicron particles via a novel brain-gut axis. Dysregulation of these pathways may contribute to postprandial diabetic dyslipidemia. Emerging evidence implicates the central and enteric nervous systems in controlling many aspects of lipid and lipoprotein metabolism. Bidirectional communication between the gut and brain involving neuronal pathways and gut peptides is critical for regulating feeding and metabolism, and forms a neuroendocrine circuit to modulate dietary fat absorption and intestinal production of atherogenic chylomicron particles.
Stakeholder co-development of farm level nutrient management software
NASA Astrophysics Data System (ADS)
Buckley, Cathal; Mechan, Sarah; Macken-Walsh, Aine; Heanue, Kevin
2013-04-01
Over the last number of decades intensification in the use nitrogen (N) and phosphorus (P) in agricultural production has lead to excessive accumulations of these nutrients in soils, groundwaters and surface water bodies (Sutton et al., 2011). According to the European Environment Agency (2012) despite some progress diffuse pollution from agriculture is still significant in more than 40% of Europe's water bodies in rivers and coastal waters, and in one third of the water bodies in lakes and transitional waters. Recently it was estimated that approximately 29% of monitored river channel length is polluted to some degree across the Republic of Ireland. Agricultural sources were suspected in 47 per cent of cases (EPA, 2012). Farm level management practices to reduce nutrient transfers from agricultural land to watercourses can be divided into source reduction and source interception approaches (Ribaudo et al., 2001). Source interception approaches involve capturing nutrients post mobilisation through policy instruments such as riparian buffer zones or wetlands. Conversely, the source reduction approach is preventative in nature and promotes strict management of nutrient at farm and field level to reduce risk of mobilisation in the first instance. This has the potential to deliver a double dividend of reduced nutrient loss to the wider ecosystem while maximising economic return to agricultural production at the field and farm levels. Adoption and use of nutrient management plans among farmers is far from the norm. This research engages key farmer and extension stakeholders to explore how current nutrient management planning software and outputs should be developed to make it more user friendly and usable in a practical way. An open innovation technology co-development approach was adopted to investigate what is demanded by the end users - farm advisors and farmers. Open innovation is a knowledge management strategy that uses the input of stakeholders to improve internal innovation processes. Open innovation incorporates processes such as 'user-led' (farmer and advisor) innovation and the 'co-development' (by technologists and users) of a technology. This strategy is increasingly used by a variety of organisations across sectors to try to ensure that the use of their outputs (products/services/technologies) is optimised by their target customers/clients, by incorporating user insights into the development of outputs. This research use the open innovation co-development framework through farmer and farm advisor focus group sessions to inform the development of a desirable software package for nutrient management planners (farm advisors) and desirable output formats for the end user (farmers). References Sutton, M., Oenema, O., Erisman, J. W., Leip, A., Grinsven, H. & Winiwarter, W. 2011. Too much of a good thing. Nature, 472, 159.161. European Environment Agency, 2012. European waters — assessment of status and pressures. Environmental Protection Agency, 2012. Ireland's Environment: An assessment 2012. Ribaudo, M.O., Heimlich, R., Claassen, R., Peters, M., 2001. Least-cost management of nonpoint source pollution: source reduction versus interception strategies for controlling nitrogen loss in the Mississippi Basin. Ecological Economics, 37, 183-197.
Chatterjee, Sourov; Santra, Priyabrata; Majumdar, Kaushik; Ghosh, Debjani; Das, Indranil; Sanyal, S K
2015-04-01
A large part of precision agriculture research in the developing countries is devoted towards precision nutrient management aspects. This has led to better economics and efficiency of nutrient use with off-farm advantages of environmental security. The keystone of precision nutrient management is analysis and interpretation of spatial variability of soils by establishing management zones. In this study, spatial variability of major soil nutrient contents was evaluated in the Ghoragacha village of North 24 Parganas district of West Bengal, India. Surface soil samples from 100 locations, covering different cropping systems of the village, was collected from 0 to 15 cm depth using 100×100 m grid system and analyzed in the laboratory to determine organic carbon (OC), available nitrogen (N), phosphorus (P), and potassium (K) contents of the soil as well as its water-soluble K (KWS), exchangeable K (KEX), and non-exchangeable forms of K (KNEX). Geostatistical analyses were performed to determine the spatial variation structure of each nutrient content within the village, followed by the generation of surface maps through kriging. Four commonly used semivariogram models, i.e., spherical, exponential, Gaussian, and linear models were fitted to each soil property, and the best one was used to prepare surface maps through krigging. Spherical model was found the best for available N and P contents, while linear and exponential model was the best for OC and available K, and for KWS and KNEK, Gausian model was the best. Surface maps of nutrient contents showed that N content (129-195 kg ha(-1)) was the most limiting factor throughout the village, while P status was generally very high ( 10-678 kg ha(-1)) in the soils of the present village. Among the different soil K fractions, KWS registered the maximum variability (CV 75%), while the remaining soil K fractions showed moderate to high variation. Interestingly, KNEX content also showed high variability, which essentially indicates reserve native K exploitation under intensive cultivation. These maps highlight the necessity of estimating the other soil K fractions as well for better understanding of soil K supplying capacity and K fertilization strategy rather than the current recommendations, based on the plant-available K alone. In conclusion, the present study revealed that the variability of nutrient distribution was a consequence of complex interactions between the cropping system, nutrient application rates, and the native soil characteristics, and such interactions could be utilized to develop the nutrient management strategies for intensive small-holder system.
Zhou, Pei; Huang, Jinliang; Hong, Huasheng
2018-01-01
Integrated watershed management requires an analytical model capable of revealing the full range of impacts that would be caused by the uses and developments in the watershed. The SPAtially Referenced Regressions On Watershed Attributes (SPARROW) model was developed in this study to provide empirical estimates of the sources, transport of total nitrogen (TN) and total phosphorus (TP) and to develop nutrient management strategies in the Jiulong River Watershed, southeast China that has enormous influence on the region's ecological safety. We calibrated the model using data related to daily streamflow, monthly TN and TP concentrations in 2014 at 30 locations. The model produced R 2 values for TN with 0.95 and TP with 0.94. It was found that for the entire watershed, TN came from fertilizer application (43%), livestock breeding (39%) and sewage discharge (18%), while TP came from livestock breeding (46%), fertilizer application (46%), and industrial discharge (8%). Fifty-eight percent of the TN and 80% of the TP in upstream reaches are delivered to the outlets of North and West rivers. A scenario analysis with SPARROW was coupled to develop suitable management strategies. Results revealed that controlling nutrient sources was effective in improving water quality. Normally sharp reduction in nutrient sources is not operational feasible. Hence, it is recommended that preventing nutrient on land from entering into the river as a suitable strategy in watershed management. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Destouni, G.
2017-12-01
Measures for mitigating nutrient loads to aquatic ecosystems should have observable effects, e.g, in the Baltic region after joint first periods of nutrient management actions under the Baltic Sea Action Plan (BASP; since 2007) and the EU Water Framework Directive (WFD; since 2009). Looking for such observable effects, all openly available water and nutrient monitoring data since 2003 are compiled and analyzed for Sweden as a case study. Results show that hydro-climatically driven water discharge dominates the determination of waterborne loads of both phosphorus and nitrogen. Furthermore, the nutrient loads and water discharge are all similarly well correlated with the ecosystem status classification of Swedish water bodies according to the WFD. Nutrient concentrations, which are hydro-climatically correlated and should thus reflect human effects better than loads, have changed only slightly over the study period (2003-2013) and even increased in moderate-to-bad status waters, where the WFD and BSAP jointly target nutrient decreases. These results indicate insufficient distinction and mitigation of human-driven nutrient components by the internationally harmonized applications of both the WFD and the BSAP. Aiming for better general identification of such components, nutrient data for the large transboundary catchments of the Baltic Sea and the Sava River are compared. The comparison shows cross-regional consistency in nutrient relationships to driving hydro-climatic conditions (water discharge) for nutrient loads, and socio-economic conditions (population density and farmland share) for nutrient concentrations. A data-driven screening methodology is further developed for estimating nutrient input and retention-delivery in catchments. Its first application to nested Sava River catchments identifies characteristic regional values of nutrient input per area and relative delivery, and hotspots of much larger inputs, related to urban high-population areas.
USDA-ARS?s Scientific Manuscript database
Declining nutrient use efficiency in crop production has been a global priority to preserve high agricultural productivity with finite non-renewable nutrient resources, in particular phosphorus (P). Rapid spectroscopic methods increase measurement density of soil nutrients, and the availability of ...
DietPal: A Web-Based Dietary Menu-Generating and Management System
Abdullah, Siti Norulhuda; Shahar, Suzana; Abdul-Hamid, Helmi; Khairudin, Nurkahirizan; Yusoff, Mohamed; Ghazali, Rafidah; Mohd-Yusoff, Nooraini; Shafii, Nik Shanita; Abdul-Manaf, Zaharah
2004-01-01
Background Attempts in current health care practice to make health care more accessible, effective, and efficient through the use of information technology could include implementation of computer-based dietary menu generation. While several of such systems already exist, their focus is mainly to assist healthy individuals calculate their calorie intake and to help monitor the selection of menus based upon a prespecified calorie value. Although these prove to be helpful in some ways, they are not suitable for monitoring, planning, and managing patients' dietary needs and requirements. This paper presents a Web-based application that simulates the process of menu suggestions according to a standard practice employed by dietitians. Objective To model the workflow of dietitians and to develop, based on this workflow, a Web-based system for dietary menu generation and management. The system is aimed to be used by dietitians or by medical professionals of health centers in rural areas where there are no designated qualified dietitians. Methods First, a user-needs study was conducted among dietitians in Malaysia. The first survey of 93 dietitians (with 52 responding) was an assessment of information needed for dietary management and evaluation of compliance towards a dietary regime. The second study consisted of ethnographic observation and semi-structured interviews with 14 dietitians in order to identify the workflow of a menu-suggestion process. We subsequently designed and developed a Web-based dietary menu generation and management system called DietPal. DietPal has the capability of automatically calculating the nutrient and calorie intake of each patient based on the dietary recall as well as generating suitable diet and menu plans according to the calorie and nutrient requirement of the patient, calculated from anthropometric measurements. The system also allows reusing stored or predefined menus for other patients with similar health and nutrient requirements. Results We modeled the workflow of menu-suggestion activity currently adhered to by dietitians in Malaysia. Based on this workflow, a Web-based system was developed. Initial post evaluation among 10 dietitians indicates that they are comfortable with the organization of the modules and information. Conclusions The system has the potential of enhancing the quality of services with the provision of standard and healthy menu plans and at the same time increasing outreach, particularly to rural areas. With its potential capability of optimizing the time spent by dietitians to plan suitable menus, more quality time could be spent delivering nutrition education to the patients. PMID:15111270
DietPal: a Web-based dietary menu-generating and management system.
Noah, Shahrul A; Abdullah, Siti Norulhuda; Shahar, Suzana; Abdul-Hamid, Helmi; Khairudin, Nurkahirizan; Yusoff, Mohamed; Ghazali, Rafidah; Mohd-Yusoff, Nooraini; Shafii, Nik Shanita; Abdul-Manaf, Zaharah
2004-01-30
Attempts in current health care practice to make health care more accessible, effective, and efficient through the use of information technology could include implementation of computer-based dietary menu generation. While several of such systems already exist, their focus is mainly to assist healthy individuals calculate their calorie intake and to help monitor the selection of menus based upon a prespecified calorie value. Although these prove to be helpful in some ways, they are not suitable for monitoring, planning, and managing patients' dietary needs and requirements. This paper presents a Web-based application that simulates the process of menu suggestions according to a standard practice employed by dietitians. To model the workflow of dietitians and to develop, based on this workflow, a Web-based system for dietary menu generation and management. The system is aimed to be used by dietitians or by medical professionals of health centers in rural areas where there are no designated qualified dietitians. First, a user-needs study was conducted among dietitians in Malaysia. The first survey of 93 dietitians (with 52 responding) was an assessment of information needed for dietary management and evaluation of compliance towards a dietary regime. The second study consisted of ethnographic observation and semi-structured interviews with 14 dietitians in order to identify the workflow of a menu-suggestion process. We subsequently designed and developed a Web-based dietary menu generation and management system called DietPal. DietPal has the capability of automatically calculating the nutrient and calorie intake of each patient based on the dietary recall as well as generating suitable diet and menu plans according to the calorie and nutrient requirement of the patient, calculated from anthropometric measurements. The system also allows reusing stored or predefined menus for other patients with similar health and nutrient requirements. We modeled the workflow of menu-suggestion activity currently adhered to by dietitians in Malaysia. Based on this workflow, a Web-based system was developed. Initial post evaluation among 10 dietitians indicates that they are comfortable with the organization of the modules and information. The system has the potential of enhancing the quality of services with the provision of standard and healthy menu plans and at the same time increasing outreach, particularly to rural areas. With its potential capability of optimizing the time spent by dietitians to plan suitable menus, more quality time could be spent delivering nutrition education to the patients.
Jiao, Xiaoqiang; Lyu, Yang; Wu, Xiaobin; Li, Haigang; Cheng, Lingyun; Zhang, Chaochun; Yuan, Lixing; Jiang, Rongfeng; Jiang, Baiwen; Rengel, Zed; Zhang, Fusuo; Davies, William J; Shen, Jianbo
2016-09-01
Over the past five decades, Chinese grain production has increased 4-fold, from 110 Mt in 1961 to 557 Mt in 2014, with less than 9% of the world's arable land feeding 22% of the world's population, indicating a substantial contribution to global food security. However, compared with developed economies, such as the USA and the European Union, more than half of the increased crop production in China can be attributed to a rapid increase in the consumption of chemicals, particularly fertilizers. Excessive fertilization has caused low nutrient use efficiency and high environmental costs in grain production. We analysed the key requirements underpinning increased sustainability of crop production in China, as follows: (i) enhance nutrient use efficiency and reduce nutrient losses by fertilizing roots not soil to maximize root/rhizosphere efficiency with innovative root zone nutrient management; (ii) improve crop productivity and resource use efficiency by matching the best agronomic management practices with crop improvement; and (iii) promote technology transfer of the root zone nutrient management to achieve the target of high yields and high efficiency with low environmental risks on a broad scale. Coordinating grain production and environmental protection by increasing the sustainability of nutrient use will be a key step in achieving sustainable crop production in Chinese agriculture. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Kwan, Sze Ting Cecilia; King, Julia H; Yan, Jian; Wang, Zhen; Jiang, Xinyin; Hutzler, Jason S; Klein, Hallie R; Brenna, J Thomas; Roberson, Mark S; Caudill, Marie A
2017-11-01
Background: Fetal growth is dependent on placental nutrient supply, which is influenced by placental perfusion and transporter abundance. Previous research indicates that adequate choline nutrition during pregnancy improves placental vascular development, supporting the hypothesis that choline may affect placental nutrient transport. Objective: The present study sought to determine the impact of maternal choline supplementation (MCS) on placental nutrient transporter abundance and nutrient metabolism during late gestation. Methods: Female non-Swiss albino mice were randomly assigned to the 1×, 2×, or 4× choline diet (1.4, 2.8, and 5.6 g choline chloride/kg diet, respectively) 5 d before mating ( n = 16 dams/group). The placentas and fetuses were harvested on gestational day (E) 15.5 and E18.5. The placental abundance of macronutrient, choline, and acetylcholine transporters and glycogen metabolic enzymes, and the placental concentration of glycogen were quantified. Choline metabolites and docosahexaenoic acid (DHA) concentrations were measured in the placentas and/or fetal brains. Data were stratified by gestational day and fetal sex and were analyzed by using mixed linear models. Results: At E15.5, MCS downregulated the placental transcript and protein abundance of glucose transporter 1 (GLUT1) (-40% to -73%, P < 0.05) and the placental transcript abundance of glycogen-synthesizing enzymes (-24% to -50%, P ≤ 0.05). At E18.5, MCS upregulated GLUT3 protein abundance (+55%, P = 0.016) and the transcript abundance of glycogen-synthesizing enzymes only in the female placentas (+36% to +60%, P < 0.05), resulting in a doubling ( P = 0.01) of the glycogen concentration. A higher placental transcript abundance of the transporters for DHA, choline, and acetylcholine was also detected in response to MCS, consequently altering their concentrations in the placentas or fetal brains ( P ≤ 0.05). Conclusions: These data suggest that MCS modulates placental nutrient transporter abundance and nutrient metabolism in late gestation of mouse pregnancy, with subsequent effects on nutrient supply for the developing fetus. © 2017 American Society for Nutrition.
INTERREGIONAL COMPARISON OF NUTRIENT UPTAKE RATES IN MANAGED AND OLD-GROWTH WATERSHEDS
We compared nutrient uptake rates to examine the effect of timber harvest on streams. From 1999-2002, nutrient additions were conducted in 50 stream reaches in 4 ecoregions (southern Blue Ridge, NC, Ouachita Mountains, AR, Cascade Mountains, OR, and the redwood forests of the Co...
The urbanization of the modern community creates large population centers that generate concentrated wastewater. A large expenditure on wastewater treatment has to be invested to make a modern city function without human and environmental health problems. Society relies on syste...
Topographic controls on soil nutrient variations in a Silvopasture system
USDA-ARS?s Scientific Manuscript database
Topography plays a crucial role in the spatial distribution of nutrients in soils because of its influence on the flow and (re)distribution of water and energy in a landscape. Information on the spatial pattern of soil nutrient distribution would benefit management decisions to maximize crop yield a...
Presentation for the American Water Works Association Water Sustainability Conference. The presentation highlights latest results from water quality trading research conducted by ORD using the East Fork Watershed in Southwestern Ohio as a case study. The watershed has a nutrient ...
Predicting Nitrogen in Streams : A Comparison of Two Estimates of Fertilizer Application
Decision makers frequently rely on water and air quality models to develop nutrient management strategies. Obviously, the results of these models (e.g., SWAT, SPARROW, CMAQ) are only as good as the nutrient source input data and recently the Nutrient Innovations Task Group has ca...
Landscape-scale geographic variations in microbial indices and labile phosphorus in Hapludults
USDA-ARS?s Scientific Manuscript database
Long-term soil and nutrient management practices can have lasting effects on the geographic distribution of soil microorganisms, function, and non-mobile nutrients such as phosphorus (P). The non-random redistribution can influence nutrient turnover rate and use efficiency of crops, in comparison to...
Improving fruit quality and phytochemical content through better nutrient management practices
USDA-ARS?s Scientific Manuscript database
Consumer preference quality traits (e.g. taste, texture) of muskmelons (Cucumis melo L.) and many other fruits are strongly influenced by cultivar as well as soil properties, such as soil type and nutrient supply capacity. Among nutrients, potassium (K) has the strongest influence on quality parame...
USDA-ARS?s Scientific Manuscript database
Excess nutrients from numerous sources (e.g., agricultural and urban runoff, treatment plant discharge, streambank erosion) continue to adversely impact water resources in spite of improved treatment technologies and management practices. In fact, determination of cause(s) of accelerated nutrient e...
Nutrient pollution is a leading cause of water quality impairments and degraded aquatic ecosystem condition. Reliable and reproducible indicators of ecosystem condition are needed to help manage nutrient pollution. The diatom component of periphyton has been used as a water qua...
USDA-ARS?s Scientific Manuscript database
A study was conducted to assess the impact of cultivar and weed management on accumulation and loss of plant biomass and nutrients during the first 3 years of establishment when using organic fertilizer in trailing blackberry. Treatments included two cultivars, Marion and Black Diamond, each with ei...
Virginia R. Tolbert; Carl C. Trettin; Dale W. Johnson; John W. Parsons; Allan E. Houston; David A. Mays
2001-01-01
Ensuring sustainability of intensively managed woody crops requires determining soil and water quality effects using a combination of field data and modeling projections. Plot- and catchrnent-scale research, models, and meta-analyses are addressing nutrient availability, site quality, and measures to increase short-rotation woody crop (SRWC) productivity and site...
USDA-ARS?s Scientific Manuscript database
Enrichment of surface waters with excess nutrients is associated with increased algal blooms, euthrophication and hypoxic zones, as reported in the northern Gulf of Mexico. A source of nutrients to surface waters results from fertilizer runoff. Management strategies used to maintain turf on golf cou...
Best management practices for reducing nutrient loads in a sub-watershed of Chesapeake Bay
USDA-ARS?s Scientific Manuscript database
Water quality improvement in the Chesapeake Bay is a grave concern. An initiative to reduce the nutrient loads to stream has been undertaken to attain a target total maximum daily load (TMDL) at Chesapeake Bay. A general guideline with a set of best management practices (BMPs) has been in place for ...
Best management practices for reducing nutrient loads in a sub-watershed of Chesapeake Bay area
USDA-ARS?s Scientific Manuscript database
Water quality improvement in the Chesapeake Bay is a grave concern. An initiative to reduce the nutrient loads to stream has been undertaken to attain a target total maximum daily load (TMDL) at Chesapeake Bay. A general guideline with a set of best management practices (BMPs) has been in place for ...
Chapter 14. Nutritive principles in restoration and management
Bruce L. Welch
2004-01-01
Most range management or revegetation programs are aimed at providing forage to support the needs of range animals. Among these needs are supplying the nutrients required to drive the physiological processes of the animal body. One major principle in this report is that there is no "perfect forage species" that will supply all the nutrients needed by any...
ERIC Educational Resources Information Center
Tao, Haiying; Morris, Thomas F.; Bravo-Ureta, Boris; Meinert, Richard
2016-01-01
We conducted case studies on four Connecticut dairy farms to evaluate how well farmers implemented their nutrient management plans (NMPs). Our findings can help Extension educators develop programs to improve NMPs and NMP adoption by farmers. We identified three educational topic areas that would likely increase NMP understanding and acceptance:…
Reality check of socio-hydrological interactions in water quality and ecosystem management
NASA Astrophysics Data System (ADS)
Destouni, Georgia; Fischer, Ida; Prieto, Carmen
2017-04-01
Socio-hydrological interactions in water management for improving water quality and ecosystem status include as key components both (i) the societal measures taken for mitigation and control, and (ii) the societal characterization and monitoring efforts made for choosing management targets and checking the effects of measures taken to reach the targets. This study investigates such monitoring, characterization and management efforts and effects over the first six-year management cycle of the EU Water Framework Directive (WFD). The investigation uses Sweden and the WFD-regulated management of its stream and lake waters as a concrete quantification example, with focus on the nutrient and eutrophication conditions that determine the most prominent water quality and ecosystem problems in need of mitigation in the Swedish waters. The case results show a relatively small available monitoring base for determination of these nutrient and eutrophication conditions, even though they constitute key parts in the overall WFD-based approach to classification and management of ecosystem status. Specifically, actual nutrient monitoring exists in only around 1% (down to 0.2% for nutrient loads) of the Swedish stream and lake water bodies; modeling is used to fill the gaps for the remaining unmonitored fraction of classified and managed waters. The available data show that the hydro-climatically driven stream water discharge is a primary explanatory variable for the resulting societal classification of ecosystem status in Swedish waters; this may be due to the discharge magnitude being dominant in determining nutrient loading to these waters. At any rate, with such a hydro-climatically related, rather than human-pressure related, determinant of the societal ecosystem-status classification, the main human-driven causes and effects of eutrophication may not be appropriately identified, and the measures taken for mitigating these may not be well chosen. The available monitoring data from Swedish waters support this hypothesis, by showing that the first WFD management cycle 2009-2015 has led to only slight changes in measured nutrient concentrations, with moderate-to-bad status waters mostly undergoing concentration increases. These management results are in direct contrast to the WFD management goals that ecosystem status in all member-state waters must be improved to at least good level, and in any case not be allowed to further deteriorate. In general, the present results show that societal approaches to ecosystem status classification, monitoring and improvement may need a focus shift for improved identification and quantification of the human-driven components of nutrient inputs, concentrations and loads in water environments. Dominant hydro-climatic change drivers and effects must of course also be understood and accounted for. However, adaptation to hydro-climatic changes should be additional to and aligned with, rather than instead of, necessary mitigation of human-driven eutrophication. The present case results call for further science-based testing and evidence of societal water quality and ecosystem management actually targeting and following up the potential achievement of such mitigation.
NASA Astrophysics Data System (ADS)
Domagalski, J. L.; Schlegel, B.; Hutchins, J.
2014-12-01
Long-term data sets on stream-water quality and discharge can be used to assess whether best management practices (BMPs) are restoring beneficial uses of impaired water as required under the Clean Water Act. In this study, we evaluated a greater than 20-year record of water quality from selected streams in the Central Valley (CV) of California and Lake Tahoe (California and Nevada, USA). The CV contains a mix of agricultural and urbanized land, while the Lake Tahoe area is mostly forested, with seasonal residents and tourism. Because nutrients and fine sediments cause a reduction in water clarity that impair Lake Tahoe, BMPs were implemented in the early 1990's, to reduce nitrogen and phosphorus loads. The CV does not have a current nutrient management plan, but numerous BMPs exist to reduce pesticide loads, and it was hypothesized that these programs could also reduce nutrient levels. In the CV and Lake Tahoe areas, nutrient concentrations, loads, and trends were estimated by using the recently developed Weighted Regressions on Time, Discharge, and Season (WRTDS) model. Sufficient data were available to compare trends during a voluntary and enforcement period for seven CV sites within the lower Sacramento and San Joaquin Basins. For six of the seven sites, flow-normalized mean annual concentrations of total phosphorus and nitrate decreased at a faster rate during the enforcement period than during the earlier voluntary period. Concentration changes during similar years and ranges of flow conditions suggest that BMPs designed for pesticides also reduced nutrient loads in the CV. A trend analysis using WRTDS was completed for six streams that enter Lake Tahoe during the late 1980's through 2008. The results of the model confirm that nutrient loading is influenced strongly by season, such as by spring runoff from snowmelt. The highest nutrient concentrations in the late 1980's and early 1990's correlate with high flows, followed by statistically significant decreases in loading from most streams under different flow conditions. The results of the WRTDS model indicate a clear reduction in nutrient loading of nitrogen and phosphorus in all six streams. However, some streams show an increase in nutrient concentrations after 2000, suggesting the possible need for changes to the nutrient reduction management practices.
Yang, Haixia; Xiao, Lei; Wang, Nanping
2017-04-01
Peroxisome proliferator-activated receptor α (PPARα) plays a key role in lipid metabolism and glucose homeostasis and a crucial role in the prevention and treatment of metabolic diseases. Natural dietary compounds, including nutrients and phytochemicals, are PPARα ligands or modulators. High-throughput screening assays have been developed to screen for PPARα ligands and modulators in our diet. In the present review, we discuss recent advances in our knowledge of PPARα, including its structure, function, and ligand and modulator screening assays, and summarize the different types of dietary PPARα ligands and modulators. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution.
Janke, Benjamin D; Finlay, Jacques C; Hobbie, Sarah E
2017-09-05
Expansion of tree cover is a major management goal in cities because of the substantial benefits provided to people, and potentially to water quality through reduction of stormwater volume by interception. However, few studies have addressed the full range of potential impacts of trees on urban runoff, which includes deposition of nutrient-rich leaf litter onto streets connected to storm drains. We analyzed the influence of trees on stormwater nitrogen and phosphorus export across 19 urban watersheds in Minneapolis-St. Paul, MN, U.S.A., and at the scale of individual streets within one residential watershed. Stormwater nutrient concentrations were highly variable across watersheds and strongly related to tree canopy over streets, especially for phosphorus. Stormwater nutrient loads were primarily related to road density, the dominant control over runoff volume. Street canopy exerted opposing effects on loading, where elevated nutrient concentrations from trees near roads outweighed the weak influence of trees on runoff reduction. These results demonstrate that vegetation near streets contributes substantially to stormwater nutrient pollution, and therefore to eutrophication of urban surface waters. Urban landscape design and management that account for trees as nutrient pollution sources could improve water quality outcomes, while allowing cities to enjoy the myriad benefits of urban forests.
Lee, Kayla B; Wang, Jue; Palme, Julius; Escalante-Chong, Renan; Hua, Bo; Springer, Michael
2017-05-01
In nature, microbes often need to "decide" which of several available nutrients to utilize, a choice that depends on a cell's inherent preference and external nutrient levels. While natural environments can have mixtures of different nutrients, phenotypic variation in microbes' decisions of which nutrient to utilize is poorly studied. Here, we quantified differences in the concentration of glucose and galactose required to induce galactose-responsive (GAL) genes across 36 wild S. cerevisiae strains. Using bulk segregant analysis, we found that a locus containing the galactose sensor GAL3 was associated with differences in GAL signaling in eight different crosses. Using allele replacements, we confirmed that GAL3 is the major driver of GAL induction variation, and that GAL3 allelic variation alone can explain as much as 90% of the variation in GAL induction in a cross. The GAL3 variants we found modulate the diauxic lag, a selectable trait. These results suggest that ecological constraints on the galactose pathway may have led to variation in a single protein, allowing cells to quantitatively tune their response to nutrient changes in the environment.
Beyond the edge: Linking agricultural landscapes, stream networks, and best management practices
Kreiling, Rebecca M.; Thoms, Martin C.; Richardson, William B.
2018-01-01
Despite much research and investment into understanding and managing nutrients across agricultural landscapes, nutrient runoff to freshwater ecosystems is still a major concern. We argue there is currently a disconnect between the management of watershed surfaces (agricultural landscape) and river networks (riverine landscape). These landscapes are commonly managed separately, but there is limited cohesiveness between agricultural landscape-focused research and river science, despite similar end goals. Interdisciplinary research into stream networks that drain agricultural landscapes is expanding but is fraught with problems. Conceptual frameworks are useful tools to order phenomena, reveal patterns and processes, and in interdisciplinary river science, enable the joining of multiple areas of understanding into a single conceptual–empirical structure. We present a framework for the interdisciplinary study and management of agricultural and riverine landscapes. The framework includes components of an ecosystems approach to the study of catchment–stream networks, resilience thinking, and strategic adaptive management. Application of the framework is illustrated through a study of the Fox Basin in Wisconsin, USA. To fully realize the goal of nutrient reduction in the basin, we suggest that greater emphasis is needed on where best management practices (BMPs) are used within the spatial context of the combined watershed–stream network system, including BMPs within the river channel. Targeted placement of BMPs throughout the riverine landscape would increase the overall buffering capacity of the system to nutrient runoff and thus its resilience to current and future disturbances.
Factors affecting nutrient trends in major rivers of the Chesapeake Bay Watershed
Sprague, Lori A.; Langland, M.J.; Yochum, S.E.; Edwards, R.E.; Blomquist, J.D.; Phillips, S.W.; Shenk, G.W.; Preston, S.D.
2000-01-01
Trends in nutrient loads and flow-adjusted concentrations in the major rivers entering Chesapeake Bay were computed on the basis of water-quality data collected between 1985 and 1998 at 29 monitoring stations in the Susquehanna, Potomac, James, Rappahannock, York, Patuxent, and Choptank River Basins. Two computer models?the Chesapeake Bay Watershed Model (WSM) and the U.S. Geological Survey?s 'Spatially Referenced Regressions on Watershed attributes' (SPARROW) Model?were used to help explain the major factors affecting the trends. Results from WSM simulations provided information on temporal changes in contributions from major nutrient sources, and results from SPARROW model simulations provided spatial detail on the distribution of nutrient yields in these basins. Additional data on nutrient sources, basin characteristics, implementation of management practices, and ground-water inputs to surface water were analyzed to help explain the trends. The major factors affecting the trends were changes in nutrient sources and natural variations in streamflow. The dominant source of nitrogen and phosphorus from 1985 to 1998 in six of the seven tributary basins to Chesapeake Bay was determined to be agriculture. Because of the predominance of agricultural inputs, changes in agricultural nutrient sources such as manure and fertilizer, combined with decreases in agricultural acreage and implementation of best management practices (BMPs), had the greatest impact on the trends in flow-adjusted nutrient concentrations. Urban acreage and population, however, were noted to be increasing throughout the Chesapeake Bay Watershed, and as a result, delivered loads of nutrients from urban areas increased during the study period. Overall, agricultural nutrient management, in combination with load decreases from point sources due to facility upgrades and the phosphate detergent ban, led to downward trends in flow-adjusted nutrient concentrations atmany of the monitoring stations in the watershed. The loads of nutrients, however, were not reduced significantly at most of the monitoring stations. This is due primarily to higher streamflow in the latter years of the monitoring period, which led to higher loading in those years.Results of this study indicate a need for more detailed information on BMP effectiveness under a full range of hydrologic conditions and in different areas of the watershed; an internally consistent fertilizer data set; greater consideration of the effects of watershed processes on nutrient transport; a refinement of current modeling efforts; and an expansion of the non-tidal monitoring network in the Chesapeake Bay Watershed.
Vonnahme, K A; Hess, B W; Nijland, M J; Nathanielsz, P W; Ford, S P
2006-12-01
Maternal nutrient restriction from early to midgestation can lead to fetal growth retardation, with long-term impacts on offspring growth, physiology, and metabolism. We hypothesized that ewes from flocks managed under markedly different environmental conditions and levels of nutrition might differ in their ability to protect their own fetus from a bout of maternal nutrient restriction. We utilized multiparous ewes of similar breeding, age, and parity from 2 flocks managed as 1) ewes adapted to a nomadic existence and year-long, limited nutrition near Baggs, WY (Baggs ewes), and 2) University of Wyoming ewes with a sedentary lifestyle and continuous provision of more than adequate nutrition (UW ewes). Groups of Baggs ewes and UW ewes were fed 50 (nutrient restricted) or 100% (control fed) of National Research Council recommendations from d 28 to 78 of gestation, then necropsied, and fetal and placental data were obtained. Although there was a marked decrease (P < 0.05) in fetal weight and blood glucose concentrations in nutrient-restricted vs. control fed UW ewes, there was no difference in these fetal measurements between nutrient-restricted and control-fed Baggs ewes. Nutrient-restricted and control-fed UW ewes exhibited predominantly type A placentomes on d 78, but there were fewer (P c0.05) type A and greater (P < 0.05) numbers of type B, C, and D placentomes in nutrient-restricted than control-fed Baggs ewes. Placental efficiency (fetal weight/placentomal weight) was reduced (P = 0.04) in d 78 nutrient-restricted UW ewes when compared with control-fed UW ewes. In contrast, nutrient-restricted and control-fed Baggs ewes exhibited similar placental efficiencies on d 78. This is the first report of different placental responses to a nutritional challenge during pregnancy when ewes were selected under different management systems. These data are consistent with the concept that Baggs ewes or their conceptuses, which were adapted to both harsh environments and limited nutrition, initiated conversion of type A placentomes to other placentomal types when subjected to an early to mid-gestational nutrient restriction, whereas this conversion failed to occur in UW ewes. This early placentomal conversion in the Baggs ewes may function to maintain normal nutrient delivery to their developing fetuses during maternal nutrient restriction.
NASA Astrophysics Data System (ADS)
Shepherd, D.; Burgess, D.; Jickells, T.; Andrews, J.; Cave, R.; Turner, R. K.; Aldridge, J.; Parker, E. R.; Young, E.
2007-07-01
A hydrodynamic model is developed for the Blackwater estuary (UK) and used to estimate nitrate removal by denitrification. Using the model, sediment analysis and estimates of sedimentation rates, we estimate changes in estuarine denitrification and intertidal carbon and nutrient storage and associated value of habitat created under a scenario of extensive managed realignment. We then use this information, together with engineering and land costs, to conduct a cost benefit analysis of the managed realignment. This demonstrates that over a 50-100 year timescale the value of the habitat created and carbon buried is sufficient to make the large scale managed realignment cost effective. The analysis reveals that carbon and nutrient storage plus habitat creation represent major and quantifiable benefits of realignment. The methodology described here can be readily transferred to other coastal systems.
Campbell, Sharon G.
2001-01-01
Implementing management strategies for reservoir operations to improve water quality and reduce nutrient concentration or loading in the Klamath River study area to benefit anadromous fisheries may be difficult and expensive. However, improving the thermal regime in spring to benefit YOY salmonids may be possible as is short-term relief in late summer for oversummering species. Decreases in nutrient concentration or loading accomplished through best management practices in the water shed may allow general protection of water resources in the Klamath Basin for future needs.
The Role of Placental Nutrient Sensing in Maternal-Fetal Resource Allocation1
Díaz, Paula; Powell, Theresa L.; Jansson, Thomas
2014-01-01
ABSTRACT The placenta mediates maternal-fetal exchange and has historically been regarded as a passive conduit for nutrients. However, emerging evidence suggests that the placenta actively responds to nutritional and metabolic signals from the mother and the fetus. We propose that the placenta integrates a multitude of maternal and fetal nutritional cues with information from intrinsic nutrient-sensing signaling pathways to match fetal demand with maternal supply by regulating maternal physiology, placental growth, and nutrient transport. This process, which we have called placental nutrient sensing, ensures optimal allocation of resources between the mother and the fetus to maximize the chances for propagation of parental genes without jeopardizing maternal health. We suggest that these mechanisms have evolved because of the evolutionary pressures of maternal undernutrition, which result in decreased placental growth and down-regulation of nutrient transporters, thereby limiting fetal growth to ensure maternal survival. These regulatory loops may also function in response to maternal overnutrition, leading to increased placental growth and nutrient transport in cases of maternal obesity or gestational diabetes. Thus, placental nutrient sensing modulates maternal-fetal resource allocation to increase the likelihood of reproductive success. This model implies that the placenta plays a critical role in mediating fetal programming and determining lifelong health. PMID:25122064
Coupling of soil respiration and nutrient mineralization: What is the role of land use?
NASA Astrophysics Data System (ADS)
Gan, Huei Ying; Schoening, Ingo; Schrumpf, Marion
2017-04-01
Microbial decomposition of soil organic matter (SOM) is coupling carbon (C) and nutrient mineralization. In order to meet their stoichiometric requirements for growth, it can be assumed that microbes have to mineralize (or remove) relative more organic carbon (OC) to acquire limiting nutrients at sites with large carbon-to-nutrient (C:N, C:P, C:S) ratios of SOM. Land use and management intensities are important controls for belowground C and nutrient availabilities, but their effect on the combined carbon and nutrient mineralization and carbon use efficiency (CUE) have rarely been addressed. The main objective of this study was to test the effect of land use (forest versus grassland), forest management (unmanaged beech forest and age-class managed coniferous and deciduous forests) and grassland management (fertilized and unfertilized meadow, mown pasture and pasture) on the stoichiometry of mineralized C, N, P and S. We incubated a total of 120 topsoil samples (0-10 cm) from three German study regions with different soil types for two weeks in microlysimeters and measured CO2 evolution and leachable organic carbon (DOC) and nutrients (NH4+, NO3-, SO42- and PO43-). The relationships between metabolic quotient (microbial respiration per unit microbial biomass; qCO2) and soil nutrient concentrations were compared between different land use and management. Preliminary results showed that qCO2 was significantly higher (p<0.001) in forests than grasslands. This supports our hypothesis that under higher nutrient limitations in forest, more energy may be allocated for maintenance than growth. In forest, qCO2 was strongly correlated to C:N ratio (r =0.84, p<0.001), while C:N was less strongly correlated with qCO2 in the grasslands (r =0.35, p>0.05). As C:N ratio was significantly higher (p<0.05) in forests (14.9±0.3) than grasslands (10.0±0.3), this finding agreed with previous studies that more C per unit microbial C is respired under lower N availability. Similary in forests, qCO2 was found to be strongly correlated to inorganic P (Olsen) content (r =0.82, p<0.001), whereas weaker correlation was observed in the grasslands (r =0.47, p>0.05). The stronger correlation in forests might indicate higher P limitation as compared to grasslands. Soil pH showed strong negative effect on qCO2 in the forests (r =-0.68, p<0.005) while positively correlated to qCO2 in the grasslands (r =0.42, p<0.05). This indicates that lower soil pH in forests results in higher qCO2 and lower CUE, but higher soil pH in the grasslands could also constrain microbial activities and result in lower CUE. Our first results suggest that qCO2 is affected by land use, and that this effect could be due to differences in nutrient availability. More analysis will follow to elucidate the interactions between qCO2 and other nutrients, and how is this affected by forest and grassland management.
Zhang, Qian; Ball, William P; Moyer, Douglas L
2016-09-01
The export of nitrogen (N), phosphorus (P), and suspended sediment (SS) is a long-standing management concern for the Chesapeake Bay watershed, USA. Here we present a comprehensive evaluation of nutrient and sediment loads over the last three decades at multiple locations in the Susquehanna River basin (SRB), Chesapeake's largest tributary watershed. Sediment and nutrient riverine loadings, including both dissolved and particulate fractions, have generally declined at all sites upstream of Conowingo Dam (non-tidal SRB outlet). Period-of-record declines in riverine yield are generally smaller than those in source input, suggesting the possibility of legacy contributions. Consistent with other watershed studies, these results reinforce the importance of considering lag time between the implementation of management actions and achievement of river quality improvement. Whereas flow-normalized loadings for particulate species have increased recently below Conowingo Reservoir, those for upstream sites have declined, thus substantiating conclusions from prior studies about decreased reservoir trapping efficiency. In regard to streamflow effects, statistically significant log-linear relationships between annual streamflow and annual constituent load suggest the dominance of hydrological control on the inter-annual variability of constituent export. Concentration-discharge relationships revealed general chemostasis and mobilization effects for dissolved and particulate species, respectively, both suggesting transport-limitation conditions. In addition to affecting annual export rates, streamflow has also modulated the relative importance of dissolved and particulate fractions, as reflected by its negative correlations with dissolved P/total P, dissolved N/total N, particulate P/SS, and total N/total P ratios. For land-use effects, period-of-record median annual yields of N, P, and SS all correlate positively with the area fraction of non-forested land but negatively with that of forested land under all hydrological conditions. Overall, this work has informed understanding with respect to four major factors affecting constituent export (i.e., source input, reservoir modulation, streamflow, and land use) and demonstrated the value of long-term river monitoring. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Circadian clock: linking epigenetics to aging
Orozco-Solis, Ricardo; Sassone-Corsi, Paolo
2015-01-01
Circadian rhythms are generated by an intrinsic cellular mechanism that controls a large array of physiological and metabolic processes. There is erosion in the robustness of circadian rhythms during aging, and disruption of the clock by genetic ablation of specific genes is associated with aging-related features. Importantly, environmental conditions are thought to modulate the aging process. For example, caloric restriction is a very strong environmental effector capable of delaying aging. Intracellular pathways implicating nutrient sensors, such as SIRTs and mTOR complexes, impinge on cellular and epigenetic mechanisms that control the aging process. Strikingly, accumulating evidences indicate that these pathways are involved in both the modulation of the aging process and the control of the clock. Hence, innovative therapeutic strategies focused at controlling the circadian clock and the nutrient sensing pathways might beneficially influence the negative effects of aging. PMID:25033025
Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions☆
Mailloux, Ryan J.; Jin, Xiaolei; Willmore, William G.
2013-01-01
Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling. PMID:24455476
Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions.
Mailloux, Ryan J; Jin, Xiaolei; Willmore, William G
2014-01-01
Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling.
Rice, Pamela J; Horgan, Brian P
2013-07-01
Enrichment of surface waters with excess nutrients is associated with increased algal blooms, euthrophication and hypoxic zones, as reported in the northern Gulf of Mexico. A source of nutrients to surface waters results from fertilizer runoff. Management strategies used to maintain turf on golf courses and recreational fields often include aerification and application of fertilizer. Although research exists on benefits of core cultivation and verticutting (VC) to reduce thatch and the transport of applied chemicals with runoff, there are no studies reporting the effect of coupling these management practices with the goal of further reduction of off-site transport of fertilizer with runoff. We hypothesized that the addition of VC to hollow tine core cultivation (HTCC) would enhance infiltration of precipitation, reduce runoff and nutrient transport with runoff and therefore influence concentrations of nutrients in surface waters receiving runoff from turf managed as a golf course fairway. Greater runoff and mass of soluble phosphorus and ammonium nitrogen transported with runoff were measured from plots managed with HTCC+VC than HTCC; however, the reverse was noted for nitrate nitrogen. Only a portion of the observed trends proved to be statistically significant. Our research showed no reduction or enhancement of risk associated with surface water concentrations of phosphorus or nitrogen, resulting from runoff from creeping bentgrass turf that was managed with HTCC+VC compared to HTCC. Data obtained in this research will be useful to grounds superintendents when selecting best management practices and to scientists seeking data relating runoff to land management for watershed-scale modeling. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
Agriculture is one of the most important sources of nutrient contamination, mainly inorganic nitrogen (N) fertilization of intensive crops, such as corn (Zea mays L). Proper irrigation and nutrient management can reduce nutrient leaching while maintaining crop yield, which is critical in enhancing t...
USDA-ARS?s Scientific Manuscript database
With the national and global environmental challenges that we have related to nutrient management, there is a need to use large quantities of information to solve the complex agricultural challenges humanity faces. USDA-ARS is developing a national network called the Nutrient Uptake and Outcome netw...
Nutrient pollution remains one of the most prevalent causes of water quality impairment in the United States. The U.S. Environmental Protection Agency’s (EPA) approach to addressing the challenge of managing nutrient pollution has included supporting development of numeric nutri...
USDA-ARS?s Scientific Manuscript database
Accurate estimates of annual nutrient loads are required to evaluate trends in water quality following changes in land use or management and to calibrate and validate water quality models. While much emphasis has been placed on understanding the uncertainty of watershed-scale nutrient load estimates...
Paerl, Hans W; Gardner, Wayne S; Havens, Karl E; Joyner, Alan R; McCarthy, Mark J; Newell, Silvia E; Qin, Boqiang; Scott, J Thad
2016-04-01
Mitigating the global expansion of cyanobacterial harmful blooms (CyanoHABs) is a major challenge facing researchers and resource managers. A variety of traditional (e.g., nutrient load reduction) and experimental (e.g., artificial mixing and flushing, omnivorous fish removal) approaches have been used to reduce bloom occurrences. Managers now face the additional effects of climate change on watershed hydrologic and nutrient loading dynamics, lake and estuary temperature, mixing regime, internal nutrient dynamics, and other factors. Those changes favor CyanoHABs over other phytoplankton and could influence the efficacy of control measures. Virtually all mitigation strategies are influenced by climate changes, which may require setting new nutrient input reduction targets and establishing nutrient-bloom thresholds for impacted waters. Physical-forcing mitigation techniques, such as flushing and artificial mixing, will need adjustments to deal with the ramifications of climate change. Here, we examine the suite of current mitigation strategies and the potential options for adapting and optimizing them in a world facing increasing human population pressure and climate change. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Foster, E.; Fogle, E. J.; Cotrufo, M. F.
2017-12-01
Enzymes catalyze biogeochemical reactions in soils and play a key role in nutrient cycling in agricultural systems. Often, to increase soil nutrients, agricultural managers add organic amendments and have recently experimented with charcoal-like biocarbon products. These amendments can enhance soil water and nutrient holding capacity through increasing porosity. However, the large surface area of the biocarbon has the potential to sorb nutrients and other organic molecules. Does the biocarbon decrease nutrient cycling through sorption of enzymes? In a laboratory setting, we compared the interaction of two purified enzymes β-glucosidase and acid phosphatase with a sandy clay loam and two biocarbons. We quantified the sorbed enzymes at three different pHs using a Bradford protein assay and then measured the activity of the sorbed enzyme via high-throughput fluorometric analysis. Both sorption and activity depended upon the solid phase, pH, and specific enzyme. Overall the high surface area biocarbon impacted the catalytic capacity of the enzymes more than the loam soil, which may have implications for soil nutrient management with these organic amendments.
NASA Astrophysics Data System (ADS)
Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Krause, Stefan
2017-04-01
At the river catchment scale, storm events can drive highly variable behaviour in nutrient and water fluxes, yet short-term dynamics are frequently missed by low resolution sampling regimes. In addition, nutrient source contributions can vary significantly within and between storm events. Our inability to identify and characterise time dynamic source zone contributions severely hampers the adequate design of land use management practices in order to control nutrient exports from agricultural landscapes. Here, we utilise an 8-month high-frequency (hourly) time series of streamflow, nitrate concentration (NO3) and fluorescent dissolved organic matter concentration (FDOM) derived from optical in-situ sensors located in a headwater agricultural catchment. We characterised variability in flow and nutrient dynamics across 29 storm events. Storm events represented 31% of the time series and contributed disproportionately to nutrient loads (43% of NO3 and 36% of CDOM) relative to their duration. Principal components analysis of potential hydroclimatological controls on nutrient fluxes demonstrated that a small number of components, representing >90% of variance in the dataset, were highly significant model predictors of inter-event variability in catchment nutrient export. Hysteresis analysis of nutrient concentration-discharge relationships suggested spatially discrete source zones existed for NO3 and FDOM, and that activation of these zones varied on an event-specific basis. Our results highlight the benefits of high-frequency in-situ monitoring for characterising complex short-term nutrient dynamics and unravelling connections between hydroclimatological variability and river nutrient export and source zone activation under extreme flow conditions. These new process-based insights are fundamental to underpinning the development of targeted management measures to reduce nutrient loading of surface waters.
USDA-ARS?s Scientific Manuscript database
The impact of a confinement dairy operation (> 2,000 head) using best management practices for land application of animal wastes, on estrogenic activity (E-Screen), estrogens, and nutrients of associated surface waters and tile drain runoff were evaluated. Farm tile drain and creek samples were col...
Hashemi, Fatemeh; Olesen, Jørgen E; Dalgaard, Tommy; Børgesen, Christen D
2016-12-15
Nutrient loadings of nitrogen (N) and phosphorus (P) to aquatic environments are of increasing concern globally for managing ecosystems, drinking water supply and food production. There are often multiple sources of these nutrients in the landscape, and the different hydrological flow patterns within stream or river catchments have considerable influence on nutrient transport, transformation and retention processes that all eventually affect loadings to vulnerable aquatic environments. Therefore, in order to address options to reduce nutrient loadings, quantitative assessment of their effects in real catchments need to be undertaken. This involves setting up scenarios of the possible nutrient load reduction measures and quantifying their impacts via modelling. Over the recent two decades there has been a great increase in the use of scenario-based analyses of strategies to combat excessive nutrient loadings. Here we review 130 published papers extracted from Web of Science for 1995 to 2014 that have applied models to analyse scenarios of agricultural impacts on nutrients loadings at catchment scale. The review shows that scenario studies have been performed over a broad range of climatic conditions, with a large focus on measures targeting land cover/use and land management for reducing the source load of N and P in the landscape. Some of the studies considered how to manage the flows of nutrients, or how changes in the landscape may be used to influence both flows and transformation processes. Few studies have considered spatially targeting measures in the landscape, and such studies are more recent. Spatially differentiated options include land cover/use modification and application of different land management options based on catchments characteristics, cropping conditions and climatic conditions. Most of the studies used existing catchment models such as SWAT and INCA, and the choice of the models may also have influenced the setup of the scenarios. The use of stakeholders for designing scenarios and for communication of results does not seem to be a widespread practice, and it would be recommendable for future scenario studies to have a more in-depth involvement of stakeholders for the elaboration and interpretation of scenarios, in particular to enhance their relevance for farm and catchment management and to foster better policies and incentives. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
van Beek, Christy; van Duivenbooden, Niek; Noij, Gert-Jan
2014-05-01
The threat of declining soil fertility levels is well known. Yet, and despite numerous efforts, we seem incapable of changing the current situation of sink areas in developed countries and depletion areas in developing countries. With negative consequences (i.e. loss in productive capacity and loss in environmental quality) in both areas. Moreover, due to globalization and urbanization nutrient flows become increasingly disconnected. Soil nutrient depletion cannot simply be compensated for with mineral fertilisers, for the following reasons: • mineral fertilisers are often not affordable for smallholders and fertiliser subsidy systems are not always successful • mineral fertilisers do not contain organic matter and therefore do not halt the degradation of the soil • mineral fertilisers work best in combination with organic sources of nutrients (compost, farm yard manure, etc.) • To halt soil degradation an integrated approach is needed, including reducing losses of nutrients and organic matter from soils at risk. Presently, more actors are getting involved in reallocation of nutrients, especially in the energy and waste sector. Time has come for a new approach to bring together demands and supplies for nutrients. We therefore present the Fertile Grounds Initiative: a broker for nutrient supply and demand in the region. The Fertile Grounds Initiative is based on the findings that: • Organic ánd mineral nutrients are required for increased and sustainable production; • Nutrients have a value and should be treated as such; • Due to globalization and urbanization nutrient flows are ever more polarized between depletion and concentration areas; • The demand for energy poses new threats and opportunities for nutrient management. In the Fertile Grounds Initiative nutrient suppliers from the energy sector, waste management, fertilizer companies, etc. and demands for nutrients from farmers are brought together in a dynamic platform. This platform acts as a nutrient bank and integrates different sources of nutrients into high quality crop nutrition products. A capacity building programme ensures proper application of the nutrients and optimal use of on-farm nutrients. To further shape our ideas of the Fertile Grounds Initiative you are cordially invited to become involved.
Bonzanni, Nicola; Zhang, Nianshu; Oliver, Stephen G.; Fisher, Jasmin
2011-01-01
Motivation: The appropriate modulation of the stress response to variable environmental conditions is necessary to maintain sustained viability in Saccharomyces cerevisiae. Particularly, controlling the abundance of proteins that may have detrimental effects on cell growth is crucial for rapid recovery from stress-induced quiescence. Results: Prompted by qualitative modeling of the nutrient starvation response in yeast, we investigated in vivo the effect of proteolysis after nutrient starvation showing that, for the Gis1 transcription factor at least, proteasome-mediated control is crucial for a rapid return to growth. Additional bioinformatics analyses show that potentially toxic transcriptional regulators have a significantly lower protein half-life, a higher fraction of unstructured regions and more potential PEST motifs than the non-detrimental ones. Furthermore, inhibiting proteasome activity tends to increase the expression of genes induced during the Environmental Stress Response more than those in the rest of the genome. Our combined results suggest that proteasome-mediated proteolysis of potentially toxic transcription factors tightly modulates the stress response in yeast. Contact: jasmin.fisher@microsoft.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21685082
Sun, Xiaoping; Wheeler, Charles T; Yolitz, Jason; Laslo, Mara; Alberico, Thomas; Sun, Yaning; Song, Qisheng; Zou, Sige
2014-09-25
Diet composition is a critical determinant of lifespan, and nutrient imbalance is detrimental to health. However, how nutrients interact with genetic factors to modulate lifespan remains elusive. We investigated how diet composition influences mitochondrial ATP synthase subunit d (ATPsyn-d) in modulating lifespan in Drosophila. ATPsyn-d knockdown extended lifespan in females fed low carbohydrate-to-protein (C:P) diets but not the high C:P ratio diet. This extension was associated with increased resistance to oxidative stress; transcriptional changes in metabolism, proteostasis, and immune genes; reduced protein damage and aggregation, and reduced phosphorylation of S6K and ERK in TOR and mitogen-activated protein kinase (MAPK) signaling, respectively. ATPsyn-d knockdown did not extend lifespan in females with reduced TOR signaling induced genetically by Tsc2 overexpression or pharmacologically by rapamycin. Our data reveal a link among diet, mitochondria, and MAPK and TOR signaling in aging and stresses the importance of considering genetic background and diet composition in implementing interventions for promoting healthy aging. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands
Whittier, Robert; Stamoulis, Kostantinos A.; Bremer, Leah L.; Jupiter, Stacy; Friedlander, Alan M.; Poti, Matthew; Guannel, Greg; Kurashima, Natalie; Winter, Kawika B.; Toonen, Robert; Conklin, Eric; Wiggins, Chad; Knudby, Anders; Goodell, Whitney; Burnett, Kimberly; Yee, Susan; Htun, Hla; Oleson, Kirsten L. L.; Wiegner, Tracy; Ticktin, Tamara
2018-01-01
Declining natural resources have led to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and restore abundant coral reef fisheries. Effective ridge-to-reef management requires improved understanding of land-sea linkages and decision-support tools to simultaneously evaluate the effects of terrestrial and marine drivers on coral reefs, mediated by anthropogenic activities. Although a few applications have linked the effects of land cover to coral reefs, these are too coarse in resolution to inform watershed-scale management for Pacific Islands. To address this gap, we developed a novel linked land-sea modeling framework based on local data, which coupled groundwater and coral reef models at fine spatial resolution, to determine the effects of terrestrial drivers (groundwater and nutrients), mediated by human activities (land cover/use), and marine drivers (waves, geography, and habitat) on coral reefs. We applied this framework in two ‘ridge-to-reef’ systems (Hā‘ena and Ka‘ūpūlehu) subject to different natural disturbance regimes, located in the Hawaiian Archipelago. Our results indicated that coral reefs in Ka‘ūpūlehu are coral-dominated with many grazers and scrapers due to low rainfall and wave power. While coral reefs in Hā‘ena are dominated by crustose coralline algae with many grazers and less scrapers due to high rainfall and wave power. In general, Ka‘ūpūlehu is more vulnerable to land-based nutrients and coral bleaching than Hā‘ena due to high coral cover and limited dilution and mixing from low rainfall and wave power. However, the shallow and wave sheltered back-reef areas of Hā‘ena, which support high coral cover and act as nursery habitat for fishes, are also vulnerable to land-based nutrients and coral bleaching. Anthropogenic sources of nutrients located upstream from these vulnerable areas are relevant locations for nutrient mitigation, such as cesspool upgrades. In this study, we located coral reefs vulnerable to land-based nutrients and linked them to priority areas to manage sources of human-derived nutrients, thereby demonstrating how this framework can inform place-based ridge-to-reef management. PMID:29538392
An evaluation of the sustainability of onsite wastewater treatment systems for nutrient management.
Diaz-Elsayed, Nancy; Xu, Xiaofan; Balaguer-Barbosa, Maraida; Zhang, Qiong
2017-09-15
The impairment of water bodies from nutrient pollution is a challenging environmental problem that could lead to high eutrophic conditions, fish kills, and human illness, while negatively impacting industries that rely on thriving water bodies. Onsite wastewater treatment systems (OWTSs) are a major source of nutrients, however no prior studies have conducted a holistic sustainability assessment of OWTSs that considers their ability to manage nutrients at the household-level in the United States. The aim of this study is therefore to evaluate the environmental and economic impacts of conventional and advanced OWTSs with respect to their ability to remove total nitrogen (TN). Septic tank and drainfield materials were varied for conventional systems, and the advanced systems evaluated consisted of aerobic treatment units (ATUs) and passive nitrogen reduction systems (PNRSs) with nitrification and denitrification stages. Life cycle assessment and life cycle cost analysis were performed to evaluate OWTSs operating in different soil and temperature conditions. Nutrient management of the advanced OWTSs outperformed the conventional systems (96.7-100% vs. 61-65% TN removal), and resulted in less than 40% of the freshwater (0.06-0.14 vs. 0.37-0.40 kg P-eq/kg TN) and marine eutrophication (0.04-0.06 vs. 0.54-0.65 kg N-eq/kg TN). However, the tradeoff for nutrient management was higher life cycle costs ($101-$121 vs. $45-$58 USD 2015/kg TN) and environmental impacts for the remaining impact categories. Lastly, when the TN removed by the drainfield was <20%, the advanced system had lower impacts than conventional OWTSs across all impact categories except ecotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Drug-nutrient interactions in transplant recipients.
Chan, L N
2001-01-01
Drug-nutrient interaction refers to an alteration of kinetics or dynamics of a drug or a nutritional element, or a compromise in nutritional status as a result of the addition of a drug. The potentials for drug-nutrient interaction increase with the number of drugs taken by the patient. Organ transplant recipients are therefore at high risk for drug-nutrient interactions because multiple medications are used to manage graft rejection, opportunistic infections, and other associated complications. Unrecognized or unmanaged drug-nutrient interactions in this patient population can have an adverse impact on their outcomes. This paper reviews the importance of recognizing drug-nutrient interaction when using cyclosporine-based regimens.
Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota
Arnal, Marie-Edith
2016-01-01
The epidemic of metabolic diseases has raised questions about the interplay between the human diet and the gut and its microbiota. The gut has two vital roles: nutrient absorption and intestinal barrier function. Gut barrier defects are involved in many diseases. Excess energy intake disturbs the gut microbiota and favors body entry of microbial compounds that stimulate chronic metabolic inflammation. In this context, the natural defense mechanisms of gut epithelial cells and the potential to boost them nutritionally warrant further study. One such important defense system is the activation of inducible heat-shock proteins (iHSPs) which protect the gut epithelium against oxidative stress and inflammation. Importantly, various microbial components can induce the expression of iHSPs. This review examines gut epithelial iHSPs as the main targets of microbial signals and nutrients and presents data on diseases involving disturbances of gut epithelial iHSPs. In addition, a broad literature analysis of dietary modulation of gut epithelial iHSPs is provided. Future research aims should include the identification of gut microbes that can optimize gut-protective iHSPs and the evaluation of iHSP-mediated health benefits of nutrients and food components. PMID:26883882
Intake of antioxidant nutrients and coefficients of variation in pregnant women with preeclampsia.
Menezes de Oliveira, Alane Cabral; Albuquerque Santos, Arianne; Rodrigues Bezerra, Alexandra; Machado Tavares, Myrian Cicyanne; Rocha de Barros, Amanda Maria; Costa Ferreira, Raphaela
2016-09-01
Oxidative stress appears to play a critical role in the pathogenesis of preeclampsia. Evidence suggests that adequate intake of antioxidants can modulate this condition. The objective of this study was to assess the intake of antioxidant nutrients and coefficients of variation in pregnant women with preeclampsia. In a cross-sectional study in the public health network of the city of Maceió, Brazil, a dietary survey was performed consisting of 24-hour food recalls, with subsequent adjustment of nutrients using the estimated average requirement as the cutoff point, and a questionnaire on frequency of consumption of antioxidants. We studied 90 pregnant women with preeclampsia (PWP) and 90 pregnant women without preeclampsia (PWoP) with mean ages of 25.8±6.7 years and 24.1±6.2 years (p=0.519), respectively. A low mean intake of antioxidants (vitamin A, selenium, zinc and copper) was observed in both PWP and PWoP, although intakes of vitamin A (p=0.045) and selenium (p=0.008) were higher in PWoP. In addition, we observed high coefficients of variation in nutrient intakes in both groups, which were higher for vitamin C (p<0.001), vitamin A (p=0.006) and copper (p=0.005) in PWP. Consumption of antioxidant nutrients by pregnant women with preeclampsia is inadequate, with considerable daily variations in intake, which points to a need for nutrition education strategies aimed at improving intakes, because diet is without doubt a key factor in the modulation of oxidative stress caused by preeclampsia. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.
Nutritional Modulation of Age-Related Macular Degeneration
Weikel, Karen A; Taylor, Allen
2012-01-01
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly worldwide. It affects 30–50 million individuals and clinical hallmarks of AMD are observed in at least one third of persons over the age of 75 in industrialized countries (Gehrs et al., 2006). Costs associated with AMD are in excess of $340 billion US (American-Health-Assistance-Foundation, 2012). The majority of AMD patients in the United States are not eligible for clinical treatments (Biarnes et al., 2011; Klein et al., 2011). Preventive interventions through dietary modulation are attractive strategies because many studies suggest a benefit of micro and macronutrients with respect to AMD, as well as other age-related debilities, and with few, if any, adverse effects (Chiu, 2011). Preservation of vision would enhance quality of life for millions of elderly people, and alleviate the personal and public health financial burden of AMD (Frick et al., 2007; Wood et al., 2011). Observational studies indicate that maintaining adequate levels of omega-3 fatty acids (i.e. with 2 servings/wk of fish) or a low glycemic index diet may be particularly beneficial for early AMD and that higher levels of carotenoids may be protective, most probably, against neovascular AMD. Intervention trials are needed to better understand the full effect of these nutrients and/or combinations of nutrients on retinal health. Analyses that describe effects of a nutrient on onset and/or progress of AMD are valuable because they indicate the value of a nutrient to arrest AMD at the early stages. This comprehensive summary provides essential information about the value of nutrients with regard to diminishing risk for onset or progress of AMD and can serve as a guide until data from ongoing intervention trials are available. PMID:22503690
Xie, Ming; Shon, Ho Kyong; Gray, Stephen R; Elimelech, Menachem
2016-02-01
Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bring, Arvid; Rogberg, Peter; Destouni, Georgia
2015-06-01
Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countries with more limited commitments. In the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.
Bring, Arvid; Rogberg, Peter; Destouni, Georgia
2015-05-28
Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countriesmore » with more limited commitments. Finally, in the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bring, Arvid; Rogberg, Peter; Destouni, Georgia
Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countriesmore » with more limited commitments. Finally, in the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.« less
Life cycle assessment of manure management and nutrient recycling from a Chinese pig farm.
Luo, Yiming; Stichnothe, Heinz; Schuchardt, Frank; Li, Guoxue; Huaitalla, Roxana Mendoza; Xu, Wen
2014-01-01
Driven by the growing numbers of intensified pig farms around cities in China, there are problems of nutrient surplus and shortage of arable land for utilising the manure. Hence, sustainable livestock systems with effective manure management are needed. The objective of this study is to compare the existing manure treatment of a typical pig farm in Beijing area (separate collection of faeces; 'Gan qing fen' system) with an alternative system and to identify the nutrients flow of the whole farm in order to quantify environmental burdens and to estimate the arable land required for sustainable nutrients recycling. Life cycle assessment is used for this purpose. Acidification potential (AP), eutrophication potential (EP) and global warming potential (GWP) are analysed in detail; the functional unit is the annual production of the pig farm. The results show that the cropland area demand for sustainable land application of the effluent can be reduced from 238 to 139 ha with the alternative system. It is possible to transfer 29% of total nitrogen, 87% of phosphorus, 34% of potassium and 75% of magnesium to the compost, and to reduce the total AP, EP and GWP of manure management on the farm by 64.1%, 96.7% and 22%, respectively, compared with the current system. Besides an effective manure management system, a full inventory of the regional nutrients flow is needed for sustainable development of livestock systems around big cities in China.
Legacy Phosphorus Effect and Need to Re-calibrate Soil Test P Methods for Organic Crop Production.
NASA Astrophysics Data System (ADS)
Dao, Thanh H.; Schomberg, Harry H.; Cavigelli, Michel A.
2015-04-01
Phosphorus (P) is a required nutrient for the normal development and growth of plants and supplemental P is needed in most cultivated soils. Large inputs of cover crop residues and nutrient-rich animal manure are added to supply needed nutrients to promote the optimal production of organic grain crops and forages. The effects of crop rotations and tillage management of the near-surface zone on labile phosphorus (P) forms were studied in soil under conventional and organic crop management systems in the mid-Atlantic region of the U.S. after 18 years due to the increased interest in these alternative systems. Soil nutrient surpluses likely caused by low grain yields resulted in large pools of exchangeable phosphate-P and equally large pools of enzyme-labile organic P (Po) in soils under organic management. In addition, the difference in the P loading rates between the conventional and organic treatments as guided by routine soil test recommendations suggested that overestimating plant P requirements contributed to soil P surpluses because routine soil testing procedures did not account for the presence and size of the soil enzyme-labile Po pool. The effect of large P additions is long-lasting as they continued to contribute to elevated soil total bioactive P concentrations 12 or more years later. Consequently, accurate estimates of crop P requirements, P turnover in soil, and real-time plant and soil sensing systems are critical considerations to optimally manage manure-derived nutrients in organic crop production.
Future nutrient load scenarios for the Baltic Sea due to climate and lifestyle changes.
Hägg, Hanna Eriksson; Lyon, Steve W; Wällstedt, Teresia; Mörth, Carl-Magnus; Claremar, Björn; Humborg, Christoph
2014-04-01
Dynamic model simulations of the future climate and projections of future lifestyles within the Baltic Sea Drainage Basin (BSDB) were considered in this study to estimate potential trends in future nutrient loads to the Baltic Sea. Total nitrogen and total phosphorus loads were estimated using a simple proxy based only on human population (to account for nutrient sources) and stream discharges (to account for nutrient transport). This population-discharge proxy provided a good estimate for nutrient loads across the seven sub-basins of the BSDB considered. All climate scenarios considered here produced increased nutrient loads to the Baltic Sea over the next 100 years. There was variation between the climate scenarios such that sub-basin and regional differences were seen in future nutrient runoff depending on the climate model and scenario considered. Regardless, the results of this study indicate that changes in lifestyle brought about through shifts in consumption and population potentially overshadow the climate effects on future nutrient runoff for the entire BSDB. Regionally, however, lifestyle changes appear relatively more important in the southern regions of the BSDB while climatic changes appear more important in the northern regions with regards to future increases in nutrient loads. From a whole-ecosystem management perspective of the BSDB, this implies that implementation of improved and targeted management practices can still bring about improved conditions in the Baltic Sea in the face of a warmer and wetter future climate.
USDA-ARS?s Scientific Manuscript database
Long-term crop-livestock integration enables constant and high nutrient cycling because animal, pasture and crop residues release nutrients at different rates. Therefore, appropriate management of these systems is needed to maximize the benefits of nutrient cycling. The objective of this study was t...
Nutrient Management Approaches and Tools for Dairy farms in Australia and the USA.
USDA-ARS?s Scientific Manuscript database
In Australia and the USA, nutrient imports and accumulation on dairy farms can be a problem and may pose a threat to the greater environment. While the major nutrient imports onto dairy farms (i.e. fertilizer and feed) and exports (i.e. milk and animals) are generally the same for confinement-based ...
Hydrology and water quality of forested lands in eastern North Carolina
G.M. Chescheir; M.E. Lebo; D.M. Amatya; J. Hughes; J.W. Gilliam; R.W. Skaggs; R.B. Herrmann
2003-01-01
Nonpoint sources of nutrients (NPS) are a widespread source of surface water pollution throu&out the United States. Characterizing the sources of this NPS nutrient loading is challenging due to variation in land management practices, physioyaphic setting, site conditions such as soil type, and climatic variation. For nutrients, there is the added challenge of...
Johnny L. Boggs; T.D. Tsegaye; Tamula L. Coleman; K.C. Reddy; Ahmed Fahsi
2003-01-01
Modern agriculture uses large amounts of organic and inorganic nutrients to optimize productivity. Excessive nutrient applications sometime lead to adverse effects on the environment and human health. Precision agriculture is evolving with the abjectives of minimizing these adverse effects by enabling farmers to manage nutrient applications more efficiently while...
Mathers, Nicole J; Nash, David M; Gangaiya, Philomena
2007-01-01
Cropping is one of the many industries contributing to the excessive loading of nitrogen (N) and phosphorus (P) to rivers and lakes in Australia. Nitrogen and P exports from cropping systems have not been systematically investigated to the same extent as those from other agricultural sectors, such as dairy pastures. Therefore, this review relies heavily on information derived from agronomy and other fundamental studies on soil-nutrient interactions to determine the potential for nutrient export from high rainfall zone (HRZ) cropping. There is a great deal of variation in environmental and management strategies across cropping in the HRZ, which suggests that nutrient exports could occur under a range of scenarios. The potential for exports is therefore discussed within a conceptual framework of nutrient sources, mechanisms for mobilization, and transport pathways in HRZ cropping. Transport refers to nutrient movement by flowing water after it has been mobilized, and export refers to the transfer of nutrients from one landscape compartment (e.g., a soil) to another (e.g., a stream or lake). The transport of nutrients from HRZ cropping can occur through surface and/or subsurface pathways depending on factors such as landform and infiltration and nutrient sorption characteristics of the soil profile. Surface pathways are likely to be more significant for phosphorus. For N, subsurface movement is likely to be as significant as surface movement because nitrates are generally not bound by most soils. Information about mechanisms of nutrient mobilization is essential for developing management strategies to control nutrient exports from HRZ cropping.
Nutrient production from dairy cattle manure and loading on arable land.
Won, Seunggun; Shim, Soo-Min; You, Byung-Gu; Choi, Yoon-Seok; Ra, Changsix
2017-01-01
Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (ΔP = 0). The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management.
NASA Astrophysics Data System (ADS)
Fennel, K.; Laurent, A.
2016-02-01
A large hypoxic area (15,000 km2 on average) forms every summer over the Texas-Louisiana shelf in the northern Gulf of Mexico due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through nutrient management in the watershed; for example, an interagency Hypoxia Task Force is developing Action Plans with input from various stakeholders that set out targets for hypoxia reduction. An open question is by how much nutrient loads would have to be decreased in order to produce the desired reductions in hypoxia and when these would be measurable over natural variability. We have performed a large number of multi-year nutrient load reduction scenarios with a regional biogeochemical model for the region. The model is based on the Regional Ocean Modeling System (ROMS), explicitly includes nitrogen (N) and phosphorus (P) species as inorganic nutrients, and has been shown to realistically reproduce the key processes responsible for hypoxia generation. We have quantified the effects of differential reductions in river N and P loads on hypoxic extent. An assessment of the effects of N versus P reductions is important because, thus far, nutrient management efforts have focused on N, yet P is known to limit primary production in spring and early summer. A debate is ongoing as to whether targets for P reductions should be set and whether nutrient reduction efforts should focus solely on P, which results primarily from urban and industrial point sources and is uncoupled from agricultural fertilizer application. Our results strongly indicate that N is the `ultimate' limiting nutrient to primary production determining the areal extent and duration of hypoxic conditions in a cumulative sense, while P is temporarily limiting in spring. Although reductions in river P load would decrease hypoxic extent in early summer, they would have a much smaller effect than N reductions on the cumulative extent and duration of hypoxic conditions. Combined reductions of N and P have the greatest effect.
NASA Astrophysics Data System (ADS)
Fennel, Katja; Laurent, Arnaud
2016-04-01
A large hypoxic area (15,000 km2 on average) forms every summer over the Texas-Louisiana shelf in the northern Gulf of Mexico due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through nutrient management in the watershed; for example, an interagency Hypoxia Task Force is developing Action Plans with input from various stakeholders that set out targets for hypoxia reduction. An open question is how far nutrient loads would have to be decreased in order to produce the desired reductions in hypoxia and when these would be measurable given significant natural variability. We have simulated a large number of multi-year nutrient load reduction scenarios with a regional biogeochemical model for the region. The model is based on the Regional Ocean Modeling System (ROMS), explicitly includes nitrogen (N) and phosphorus (P) species as inorganic nutrients, and has been shown to realistically reproduce the key processes responsible for hypoxia generation. We have quantified the effects of differential reductions in river N and P loads on hypoxic extent. An assessment of the effects of N versus P reductions is important because, thus far, nutrient management efforts have focused on N, yet P is known to limit primary production in spring and early summer. A debate is ongoing as to whether targets for P reductions should be set and whether nutrient reduction efforts should focus solely on P, which results primarily from urban and industrial point sources and is uncoupled from agricultural fertilizer application. Our results strongly indicate that N is the 'ultimate' limiting nutrient to primary production determining the areal extent and duration of hypoxic conditions in a cumulative sense, while P is temporarily limiting in spring. Although reductions in river P load would decrease hypoxic extent in early summer, they would have a much smaller effect than N reductions on the cumulative extent and duration of hypoxic conditions. Combined reductions of N and P have the greatest effect.
NASA Astrophysics Data System (ADS)
Motew, M.; Booth, E.; Carpenter, S. R.; Kucharik, C. J.
2014-12-01
Surface water quality is a major concern in the Yahara watershed (YW) of southern Wisconsin, home to a thriving dairy industry, the city of Madison, and five highly valued lakes that are eutrophic. Despite management interventions to mitigate runoff, there has been no significant trend in P loading to the lakes since 1975. Increases in manure production and heavy rainfall events over this time period may have offset any effects of management. We developed a comprehensive, integrated modeling framework that can simulate the effects of multiple drivers on ecosystem services, including surface water quality. The framework includes process-based representation of terrestrial ecosystems (Agro-IBIS) and groundwater flow (MODFLOW), hydrologic routing of water and nutrients across the landscape (THMB), and assessment of lake water quality (YWQM). Biogeochemical cycling and hydrologic transport of P have been added to the framework to enable detailed simulation of P dynamics within the watershed, including interactions with climate and management. The P module features in-soil cycling of organic, inorganic, and labile forms of P; manure application, decomposition, and subsequent loss of dissolved P in runoff; loss of particulate-bound P with erosion; and transport of dissolved and particulate P within waterways. Model results will compare the effects of increased heavy rainfall events, increased manure production, and implementation of best management practices on P loads to the Yahara lakes.
Kheravii, Sarbast K; Swick, Robert A; Choct, Mingan; Wu, Shu-Biao
2018-03-20
Measures to improve bird performance have been sought due to the imminent phase out of in-feed antibiotics in poultry and continued demand for higher poultry feeding efficiency. Increasing grain particle size and dietary fibre may improve gizzard function, digestive efficiency and nutrient absorption. This study was conducted to evaluate the effect increased particle size of corn and inclusion of sugarcane bagasse (SB) on mRNA expression of genes encoding digestive enzymes and nutrient transporters in broilers. A total of 336 day-old Ross 308 males were assigned in a 2 × 2 factorial arrangement of treatments with corn particle size - coarse 3576 μm or fine 1113 μm geometric mean diameter, and SB - 0 or 2% inclusion. Feed conversion ratio (FCR), weight gain and feed intake were measured from d 0-10 and d 10-24. The relative gizzard weight and mRNA expression of genes encoding digestive enzymes and intestinal nutrient transporters were measured on d 24. During d 10-24, a particle size × SB interaction was observed for FCR (P < 0.01), where birds fed coarsely ground corn (CC) with 2% SB had lower FCR than those fed CC without SB. A particle size × SB interaction was observed for both expression of pepsinogen A and C (P < 0.01) which were negatively correlated with FCR on d 24. Addition of 2% SB upregulated pepsinogen A and C only in CC fed birds. Further, 2% SB also upregulated pancreatic amylase (AMY2A) and intestinal cationic amino acid transporter-1 (CAT1). Inclusion of dietary CC upregulated duodenal amino peptidase N (APN), jejunal alanine, serine, cysteine and threonine transporter-1 (ASCT1), and ileal peptide transporter-2 (PepT2). These results suggest that both SB and coarse particle size modulate expression of genes encoding important digestive enzymes and nutrient transporters and thus are directly related to bird performance. These findings provide insights into the combination effects of dietary fiber and particle size in the future management of broiler feeding.
Vitamin K and its analogs: Potential avenues for prostate cancer management.
Dasari, Subramanyam; Ali, Syed M; Zheng, Guoxing; Chen, Aoshuang; Dontaraju, Venkata Satish; Bosland, Maarten C; Kajdacsy-Balla, Andre; Munirathinam, Gnanasekar
2017-08-22
Epidemiological studies have demonstrated a relationship between cancer incidence and dietary habits. Especially intake of certain essential nutrients like vitamins has been shown to be beneficial in experimental studies and some clinical trials. Vitamin K (VK) is an essential nutrient involved in the blood clotting cascade, and there are considerable experimental data demonstrating its potential anticancer activity in several cancer types including prostate cancer. Previous in vitro and in vivo studies have focused mainly on anti-oxidative effects as the underlying anticancer mechanism of VK. However, recent studies reveal that VK inhibits the growth of cancer cells through other mechanisms, including apoptosis, cell cycle arrest, autophagy, and modulation of various transcription factors such as Myc and Fos. In the present review, we focus on the anticancer effect of dietary VK and its analogs on prostate cancer, with an emphasis on the signaling pathways that are activated following exposure to these compounds. This review also highlights the potential of VK and its derivatives as an adjuvant treatment in combination with other vitamins or with chemotherapeutic drugs. Based on our recent results and a review of the existing literature, we present evidence that VK and its derivatives can potentially be explored as cancer therapy, especially for prostate cancer.
Vitamin K and its analogs: Potential avenues for prostate cancer management
Dasari, Subramanyam; Ali, Syed M.; Zheng, Guoxing; Chen, Aoshuang; Dontaraju, Venkata Satish; Bosland, Maarten C.; Kajdacsy-Balla, Andre; Munirathinam, Gnanasekar
2017-01-01
Epidemiological studies have demonstrated a relationship between cancer incidence and dietary habits. Especially intake of certain essential nutrients like vitamins has been shown to be beneficial in experimental studies and some clinical trials. Vitamin K (VK) is an essential nutrient involved in the blood clotting cascade, and there are considerable experimental data demonstrating its potential anticancer activity in several cancer types including prostate cancer. Previous in vitro and in vivo studies have focused mainly on anti-oxidative effects as the underlying anticancer mechanism of VK. However, recent studies reveal that VK inhibits the growth of cancer cells through other mechanisms, including apoptosis, cell cycle arrest, autophagy, and modulation of various transcription factors such as Myc and Fos. In the present review, we focus on the anticancer effect of dietary VK and its analogs on prostate cancer, with an emphasis on the signaling pathways that are activated following exposure to these compounds. This review also highlights the potential of VK and its derivatives as an adjuvant treatment in combination with other vitamins or with chemotherapeutic drugs. Based on our recent results and a review of the existing literature, we present evidence that VK and its derivatives can potentially be explored as cancer therapy, especially for prostate cancer. PMID:28915711
Soil carbon fractions under maize-wheat system: effect of tillage and nutrient management.
Sandeep, S; Manjaiah, K M; Pal, Sharmistha; Singh, A K
2016-01-01
Soil organic carbon plays a major role in sustaining agroecosystems and maintaining environmental quality as it acts as a major source and sink of atmospheric carbon. The present study aims to assess the impact of agricultural management practices on soil organic carbon pools in a maize-wheat cropping system of Indo-Gangetic Plains, India. Soil samples from a split plot design with two tillage systems (bed planting and conventional tillage) and six nutrient treatments (T1 = control, T2 = 120 kg urea-N ha(-1), T3 = T2 (25 % N substituted by FYM), T4 = T2 (25 % N substituted by sewage sludge), T5 = T2 + crop residue, T6 = 100 % organic source (50 % FYM + 25 % biofertilizer + 25 % crop residue) were used for determining the organic carbon pools. Results show that there was a significant improvement in Walkley and Black carbon in soil under integrated and organic nutrient management treatments. KMnO4-oxidizable carbon content of soil varied from 0.63 to 1.50 g kg(-1) in soils and was found to be a better indicator for monitoring the impact of agricultural management practices on quality of soil organic carbon than microbial biomass carbon. Tillage and its interaction were found to significantly influence only those soil organic carbon fractions closely associated with aggregate stability viz, labile polysaccharides and glomalin. The highest amount of C4-derived carbon was found to be in plots receiving recommended doses of N as urea (29 %) followed by control plots (25 %). The carbon management index ranged between 82 to 195 and was better in integrated nutrient sources than ones receiving recommended doses of nutrients through mineral fertilizers alone.
Chauhan, Reshu; Awasthi, Surabhi; Tripathi, Preeti; Mishra, Seema; Dwivedi, Sanjay; Niranjan, Abhishek; Mallick, Shekhar; Tripathi, Pratibha; Pande, Veena; Tripathi, Rudra Deo
2017-04-01
Arsenic (As) contamination of paddy rice is a serious threat all over the world particularly in South East Asia. Selenium (Se) plays important role in protection of plants against various abiotic stresses including heavy metals. Moreover, arsenite (AsIII) and selenite (SeIV) can be biologically antagonistic due to similar electronic configuration and sharing the common transporter for their uptake in plant. In the present study, the response of oxidative stress, phenolic compounds and nutrient elements was analyzed to investigate Se mediated As tolerance in rice seedlings during AsIII and SeIV exposure in hydroponics. Selenite (25µM) significantly decreased As accumulation in plant than As (25µM) alone treated plants. Level of oxidative stress related parameters viz., reactive oxygen species (ROS), lipid peroxidation, electrical conductivity, nitric oxide and pro-oxidant enzyme (NADPH oxidase), were in the order of As>As+Se>control>Se. Selenium ameliorated As phytotoxicity by increased level of phenolic compounds particularly gallic acid, protocatechuic acid, ferulic acid and rutin and thiol metabolism related enzymes viz., serine acetyl transferase (SAT) and cysteine synthase (CS). Selenium supplementation enhanced the uptake of nutrient elements viz., Fe, Mn, Co, Cu, Zn, Mo, and improved plant growth. The results concluded that Se addition in As contaminated environment might be an important strategy to reduce As uptake and associated phytotoxicity in rice plant by modulation of phenolic compounds and increased uptake of nutrient elements. Copyright © 2016 Elsevier Inc. All rights reserved.
Biology of eating behavior in obesity.
Schwartz, Gary J
2004-11-01
Understanding normal and dysfunctional energy regulation and body weight regulation requires neural evaluation of the signals involved in the control of food intake within a meal, as well as signals related to the availability of stored fuels. Work from our laboratory has focused on peripheral and central nervous system studies of behavior and physiology designed to improve our understanding of the role of gut-brain communication in the control of food intake and energy homeostasis. Gastrointestinal administration of nutrients reduces subsequent meal size, suggesting a potent role for peripheral nutrient sensing in the negative feedback control of ingestion. Vagal afferent nerves supply gastrointestinal sites stimulated during food intake, and these nerves are responsive to mechanical and nutrient chemical properties of ingested food. In addition, the presence of nutrients in these gastrointestinal sites stimulates the release of peptides that affect energy intake. These gut peptides also modulate the activity of peripheral gastrointestinal sensory nerves in ways that may contribute to their effects on food intake. In the central nervous system, adiposity hormones and their downstream mediators have been shown to work at both hindbrain and forebrain sites to affect food intake and metabolism. Importantly, recent data has shown that adiposity hormones acting in the brain increase the behavioral and neural potency of feeding inhibitory gastrointestinal stimuli. These data support the suggestion that insensitivity to adiposity hormones in obesity may be characterized by alterations in their ability to modulate the neural processing of food signals important in determining how much food is consumed during a meal.
Gallardo, Pedro; Olivares, Alberto; Martínez-Yáñez, Rosario; Caamal-Monsreal, Claudia; Domingues, Pedro M.; Mascaró, Maite; Sánchez, Ariadna; Pascual, Cristina; Rosas, Carlos
2017-01-01
Digestive physiology is one of the bottlenecks of octopus aquaculture. Although, there are successful experimentally formulated feeds, knowledge of the digestive physiology of cephalopods is fragmented, and focused mainly on Octopus vulgaris. Considering that the digestive physiology could vary in tropical and sub-tropical species through temperature modulations of the digestive dynamics and nutritional requirements of different organisms, the present review was focused on the digestive physiology timing of Octopus maya and Octopus mimus, two promising aquaculture species living in tropical (22–30°C) and sub-tropical (15–24°C) ecosystems, respectively. We provide a detailed description of how soluble and complex nutrients are digested, absorbed, and assimilated in these species, describing the digestive process and providing insight into how the environment can modulate the digestion and final use of nutrients for these and presumably other octopus species. To date, research on these octopus species has demonstrated that soluble protein and other nutrients flow through the digestive tract to the digestive gland in a similar manner in both species. However, differences in the use of nutrients were noted: in O. mimus, lipids were mobilized faster than protein, while in O. maya, the inverse process was observed, suggesting that lipid mobilization in species that live in relatively colder environments occurs differently to those in tropical ecosystems. Those differences are related to the particular adaptations of animals to their habitat, and indicate that this knowledge is important when formulating feed for octopus species. PMID:28620313
Taste perception, associated hormonal modulation, and nutrient intake
Loper, Hillary B.; La Sala, Michael; Dotson, Cedrick
2015-01-01
It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as “flavor.” It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension. PMID:26024495
Nutrimiromics: Role of microRNAs and Nutrition in Modulating Inflammation and Chronic Diseases
Quintanilha, Bruna J.; Duarte, Graziela B. Silva; Cozzolino, Silvia M. F.
2017-01-01
Nutrimiromics studies the influence of the diet on the modification of gene expression due to epigenetic processes related to microRNAs (miRNAs), which may affect the risk for the development of chronic diseases. miRNAs are a class of non-coding endogenous RNA molecules that are usually involved in post-transcriptional gene silencing by inducing mRNA degradation or translational repression by binding to a target messenger RNA. They can be controlled by environmental and dietary factors, particularly by isolated nutrients or bioactive compounds, indicating that diet manipulation may hold promise as a therapeutic approach in modulating the risk of chronic diseases. This review summarizes the evidence regarding the influence of nutrients and bioactive compounds on the expression of miRNAs related to inflammation and chronic disease in several models (cell culture, animal models, and human trials). PMID:29077020
AFO Manure Management - Virginia: Nutrient Management Inspector Qualifications
Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.
Resource Legacies of Organic and Conventional Management Differentiate Soil Microbial Carbon Use
Arcand, Melissa M.; Levy-Booth, David J.; Helgason, Bobbi L.
2017-01-01
Long-term contrasts in agricultural management can shift soil resource availability with potential consequences to microbial carbon (C) use efficiency (CUE) and the fate of C in soils. Isothermal calorimetry was combined with 13C-labeled glucose stable isotope probing (SIP) of 16S rRNA genes to test the hypothesis that organically managed soils would support microbial communities with greater thermodynamic efficiency compared to conventional soils due to a legacy of lower resource availability and a resultant shift toward communities supportive of more oligotrophic taxa. Resource availability was greater in conventionally managed soils, with 3.5 times higher available phosphorus, 5% more nitrate, and 36% more dissolved organic C. The two management systems harbored distinct glucose-utilizing populations of Proteobacteria and Actinobacteria, with a higher Proteobacteria:Actinobacteria ratio (2.4 vs. 0.7) in conventional soils. Organically managed soils also harbored notable activity of Firmicutes. Thermodynamic efficiency indices were similar between soils, indicating that glucose was metabolized at similar energetic cost. However, differentially abundant glucose utilizers in organically managed soils were positively correlated with soil organic matter (SOM) priming and negatively correlated to soil nutrient and carbon availability, respiration, and heat production. These correlation patterns were strongly reversed in the conventionally managed soils indicating clear differentiation of microbial functioning related to soil resource availability. Fresh C addition caused proportionally more priming of SOM decomposition (57 vs. 51%) in organically managed soils likely due to mineralization of organic nutrients to satisfy microbial demands during glucose utilization in these more resource deprived soils. The additional heat released from SOM oxidation may explain the similar community level thermodynamic efficiencies between management systems. Restoring fertility to soils with a legacy of nutrient limitation requires a balanced supply of both nutrients and energy to protect stable SOM from microbial degradation. These results highlight the need to consider managing C for the energy it provides to ıcritical biological processes that underpin soil health. PMID:29230199
NASA Astrophysics Data System (ADS)
Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.
2014-12-01
In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.
Possible nutrient limiting factor in long term operation of closed aquatic ecosystem
NASA Astrophysics Data System (ADS)
Hao, Zongjie; Li, Yanhui; Cai, Wenkai; Wu, Peipei; Liu, Yongding; Wang, Gaohong
2012-03-01
To investigate nutrient limitation effect on the community metabolism of closed aquatic ecosystem and possible nutrient limiting factors in the experimental food chains, depletion of inorganic chemicals including carbon, nitrogen and phosphorous was tested. A closed aquatic ecosystem lab module consisting of Chlorella pyrenoidosa and Chlamydomonas reinhardtii, Daphnia magna and associated unidentified microbes was established. Closed ecological systems receive no carbon dioxide; therefore, we presumed carbon as a first limiting factor. The results showed that the algae population in the nutrient saturated group was statistically higher than that in the nutrient limited groups, and that the chlorophyll a content of algae in the phosphorus limited group was the highest among the limited groups. However, the nitrogen limited group supported the most Daphnia, followed by the carbon limited group, the nutrient saturated group and the phosphorus limited group. Redundancy analysis showed that the total phosphorus contents were correlated significantly with the population of algae, and that the amount of soluble carbohydrate as feedback of nutrient depletion was correlated with the number of Daphnia. Thus, these findings suggest that phosphorus is the limiting factor in the operation of closed aquatic ecosystem. The results presented herein have important indications for the future construction of long term closed ecological system.
Wall-associated kinase-like polypeptide mediates nutritional status perception and response
Yang, Zhenbiao; Karr, Stephen
2014-02-11
The disclosure relates to methods for modulating plant growth and organogenesis using dominant-negative receptor-like kinases. The disclosure further provides a method for increasing plant yield relative to corresponding wild type plants comprising modulating the expression in a plant of a nucleic acid encoding a Wall-Associated Kinase-like 14 polypeptide or a homolog thereof, and selecting for plants having increased yield or growth on a nutrient deficient substrate.
NRMRL'S NUTRIENT-RELATED RISK MANAGEMENT RESEARCH
Anthropogenic loadings of nutrients into our Nation's atmosphere, aquatic, and terrestrial ecosystems have increased dramatically within the past few decades. Environmental impairments associated with this over fertilization include aquatic habitat loss due to low dissolved oxyge...
Aleksandrova, Krasimira; Romero-Mosquera, Beatriz; Hernandez, Vicent
2017-08-30
Inflammatory bowel diseases (IBD) represent a growing public health concern due to increasing incidence worldwide. The current notion on the pathogenesis of IBD is that genetically susceptible individuals develop intolerance to dysregulated gut microflora (dysbiosis) and chronic inflammation develops as a result of environmental triggers. Among the environmental factors associated with IBD, diet plays an important role in modulating the gut microbiome, influencing epigenetic changes, and, therefore, could be applied as a therapeutic tool to improve the disease course. Nevertheless, the current dietary recommendations for disease prevention and management are scarce and have weak evidence. This review summarises the current knowledge on the complex interactions between diet, microbiome and epigenetics in IBD. Whereas an overabundance of calories and some macronutrients increase gut inflammation, several micronutrients have the potential to modulate it. Immunonutrition has emerged as a new concept putting forward the importance of vitamins such as vitamins A, C, E, and D, folic acid, beta carotene and trace elements such as zinc, selenium, manganese and iron. However, when assessed in clinical trials, specific micronutrients exerted a limited benefit. Beyond nutrients, an anti-inflammatory dietary pattern as a complex intervention approach has become popular in recent years. Hence, exclusive enteral nutrition in paediatric Crohn's disease is the only nutritional intervention currently recommended as a first-line therapy. Other nutritional interventions or specific diets including the Specific Carbohydrate Diet (SCD), the low fermentable oligosaccharides, disaccharides, monosaccharides, and polyol (FODMAP) diet and, most recently, the Mediterranean diet have shown strong anti-inflammatory properties and show promise for improving disease symptoms. More work is required to evaluate the role of individual food compounds and complex nutritional interventions with the potential to decrease inflammation as a means of prevention and management of IBD.
Nutrients: a major consideration in intensive forest management
James W. Hornbeck
1977-01-01
Estimates of nutrient losses are compared for stem-only harvest versus a whole-tree harvest of a clearcut northern hardwood stand. Combined nutrient losses due to increased leaching and removal of vegetation after stem-only harvesting are estimated to be 334 kg/ha for calcium and 265 kg/ha for nitrogen. For a whole-tree harvest, combined losses are estimated at 537 kg/...
NutrientNet: An Internet-Based Approach to Teaching Market-Based Policy for Environmental Management
ERIC Educational Resources Information Center
Nguyen, To N.; Woodward, Richard T.
2009-01-01
NutrientNet is an Internet-based environment in which a class can simulate a market-based approach for improving water quality. In NutrientNet, each student receives a role as either a point source or a nonpoint source polluter, and then the participants are allowed to trade water quality credits to cost-effectively reduce pollution in a…
USDA-ARS?s Scientific Manuscript database
Under an integrated crop-livestock production system, plant and animal residues become an important nutrient stock. Grazing management could affect both plant and animal residue amount and quality, thereby influencing nutrient dynamics through modifications in nutrient release rates. The objective o...
J.W. Hornbeck; S.W. Bailey; D.C. Buso; J.B. Shanley
1997-01-01
Chemistry of precipitation and streamwater and resulting input-output budgets for nutrient ions were determined concurrently for three years on three upland, forested watersheds located within an 80 km radius in central New England. Chemistry of precipitation and inputs of nutrients via wet deposition were similar among the three watersheds and were generally typical...
Della Pepa, Giuseppe; Vetrani, Claudia; Lombardi, Gianluca; Bozzetto, Lutgarda; Annuzzi, Giovanni; Rivellese, Angela Albarosa
2017-09-26
Non-alcoholic fatty liver disease (NAFLD) incorporates an extensive spectrum of histologic liver abnormalities, varying from simple triglyceride accumulation in hepatocytes non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), and it is the most frequent chronic liver disease in the industrialized world. Beyond liver related complications such as cirrhosis and hepatocellular carcinoma, NAFLD is also an emerging risk factor for type 2 diabetes and cardiovascular disease. Currently, lifestyle intervention including strategies to reduce body weight and to increase regular physical activity represents the mainstay of NAFLD management. Total caloric intake plays a very important role in both the development and the treatment of NAFLD; however, apart from the caloric restriction alone, modifying the quality of the diet and modulating either the macro- or micronutrient composition can also markedly affect the clinical evolution of NAFLD, offering a more realistic and feasible treatment alternative. The aim of the present review is to summarize currently available evidence from randomized controlled trials on the effects of different nutrients including carbohydrates, lipids, protein and other dietary components, in isocaloric conditions, on NAFLD in people at high cardiometabolic risk. We also describe the plausible mechanisms by which different dietary components could modulate liver fat content.
Mitochondrial Dysfunction in Cancer
Boland, Michelle L.; Chourasia, Aparajita H.; Macleod, Kay F.
2013-01-01
A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability, and other established aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the significance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis, and spatial dynamics of mitochondria and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knock on effects for cell proliferation and growth. We define major forms of mitochondrial dysfunction and address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment. PMID:24350057
Nutrigenomics and Beef Quality: A Review about Lipogenesis.
Ladeira, Marcio M; Schoonmaker, Jon P; Gionbelli, Mateus P; Dias, Júlio C O; Gionbelli, Tathyane R S; Carvalho, José Rodolfo R; Teixeira, Priscilla D
2016-06-10
The objective of the present review is to discuss the results of published studies that show how nutrition affects the expression of genes involved in lipid metabolism and how diet manipulation might change marbling and composition of fat in beef. Several key points in the synthesis of fat in cattle take place at the molecular level, and the association of nutritional factors with the modulation of this metabolism is one of the recent targets of nutrigenomic research. Within this context, special attention has been paid to the study of nuclear receptors associated with fatty acid metabolism. Among the transcription factors involved in lipid metabolism, the peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element-binding proteins (SREBPs) stand out. The mRNA synthesis of these transcription factors is regulated by nutrients, and their metabolic action might be potentiated by diet components and change lipogenesis in muscle. Among the options for dietary manipulation with the objective to modulate lipogenesis, the use of different sources of polyunsaturated fatty acids, starch concentrations, forage ratios and vitamins stand out. Therefore, special care must be exercised in feedlot feed management, mainly when the goal is to produce high marbling beef.
Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney Disease
Fernandez-Prado, Raul; Esteras, Raquel; Perez-Gomez, Maria Vanessa; Gracia-Iguacel, Carolina; Gonzalez-Parra, Emilio; Sanz, Ana B.; Ortiz, Alberto; Sanchez-Niño, Maria Dolores
2017-01-01
In chronic kidney disease (CKD), accumulation of uremic toxins is associated with an increased risk of death. Some uremic toxins are ingested with the diet, such as phosphate and star fruit-derived caramboxin. Others result from nutrient processing by gut microbiota, yielding precursors of uremic toxins or uremic toxins themselves. These nutrients include l-carnitine, choline/phosphatidylcholine, tryptophan and tyrosine, which are also sold over-the-counter as nutritional supplements. Physicians and patients alike should be aware that, in CKD patients, the use of these supplements may lead to potentially toxic effects. Unfortunately, most patients with CKD are not aware of their condition. Some of the dietary components may modify the gut microbiota, increasing the number of bacteria that process them to yield uremic toxins, such as trimethylamine N-Oxide (TMAO), p-cresyl sulfate, indoxyl sulfate and indole-3 acetic acid. Circulating levels of nutrient-derived uremic toxins are associated to increased risk of death and cardiovascular disease and there is evidence that this association may be causal. Future developments may include maneuvers to modify gut processing or absorption of these nutrients or derivatives to improve CKD patient outcomes. PMID:28498348
Fernandez-Prado, Raul; Esteras, Raquel; Perez-Gomez, Maria Vanessa; Gracia-Iguacel, Carolina; Gonzalez-Parra, Emilio; Sanz, Ana B; Ortiz, Alberto; Sanchez-Niño, Maria Dolores
2017-05-12
In chronic kidney disease (CKD), accumulation of uremic toxins is associated with an increased risk of death. Some uremic toxins are ingested with the diet, such as phosphate and star fruit-derived caramboxin. Others result from nutrient processing by gut microbiota, yielding precursors of uremic toxins or uremic toxins themselves. These nutrients include l-carnitine, choline/phosphatidylcholine, tryptophan and tyrosine, which are also sold over-the-counter as nutritional supplements. Physicians and patients alike should be aware that, in CKD patients, the use of these supplements may lead to potentially toxic effects. Unfortunately, most patients with CKD are not aware of their condition. Some of the dietary components may modify the gut microbiota, increasing the number of bacteria that process them to yield uremic toxins, such as trimethylamine N-Oxide (TMAO), p-cresyl sulfate, indoxyl sulfate and indole-3 acetic acid. Circulating levels of nutrient-derived uremic toxins are associated to increased risk of death and cardiovascular disease and there is evidence that this association may be causal. Future developments may include maneuvers to modify gut processing or absorption of these nutrients or derivatives to improve CKD patient outcomes.
T.C. McDonnell; T.J. Sullivan; B.J. Cosby; W.A. Jackson; K.J. Elliott
2013-01-01
Forest soils having low exchangeable calcium (Ca) and other nutrient base cation (BC) reserves may induce nutrient deficiencies in acid-sensitive plants and impact commercially important tree species. Past and future depletion of soil BC in response to acidic sulfur (S) deposition, forest management, and climate change alter the health and productivity of forest trees...
Kroon, Frederieke J; Schaffelke, Britta; Bartley, Rebecca
2014-08-15
The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
7 CFR 1466.23 - Payment rates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... conservation practice cost-effectiveness, implementation efficiency, and innovation, (2) The degree and...) Residue management; (B) Nutrient management; (C) Air quality management; (D) Invasive species management; (E) Pollinator habitat development or improvement; (F) Animal carcass management technology; or (G...
7 CFR 1466.23 - Payment rates.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Residue management; (B) Nutrient management; (C) Air quality management; (D) Invasive species management; (E) Pollinator habitat development or improvement; (F) Animal carcass management technology; or (G... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS ENVIRONMENTAL QUALITY INCENTIVES PROGRAM Contracts and...
Nutrition and exercise in the management of liver cirrhosis
Toshikuni, Nobuyuki; Arisawa, Tomiyasu; Tsutsumi, Mikihiro
2014-01-01
Liver cirrhosis (LC) patients often have protein-energy malnutrition (PEM) and decreased physical activity. These conditions often lead to sarcopenia, which is the loss of skeletal muscle volume and increased muscle weakness. Recent studies have demonstrated that PEM and sarcopenia are predictors for poor survival in LC patients. Nutrition and exercise management can improve PEM and sarcopenia in those patients. Nutrition management includes sufficient dietary intake and improved nutrient metabolism. With the current high prevalence of obesity, the number of obese LC patients has increased, and restriction of excessive caloric intake without the exacerbation of impaired nutrient metabolism is required for such patients. Branched chain amino acids are good candidates for supplemental nutrients for both obese and non-obese LC patients. Exercise management can increase skeletal muscle volume and strength and improve insulin resistance; however, nutritional status and LC complications should be assessed before an exercise management regimen is implemented in LC patients. The establishment of optimal exercise regimens for LC patients is currently required. In this review, we describe nutritional status and its clinical impact on the outcomes of LC patients and discuss general nutrition and exercise management in LC patients. PMID:24966599
Impact of climate change on crop nutrient and water use efficiencies.
Brouder, Sylvie M; Volenec, Jeffrey J
2008-08-01
Implicit in discussions of plant nutrition and climate change is the assumption that we know what to do relative to nutrient management here and now but that these strategies might not apply in a changed climate. We review existing knowledge on interactive influences of atmospheric carbon dioxide concentration, temperature and soil moisture on plant growth, development and yield as well as on plant water use efficiency (WUE) and physiological and uptake efficiencies of soil-immobile nutrients. Elevated atmospheric CO(2) will increase leaf and canopy photosynthesis, especially in C3 plants, with minor changes in dark respiration. Additional CO(2) will increase biomass without marked alteration in dry matter partitioning, reduce transpiration of most plants and improve WUE. However, spatiotemporal variation in these attributes will impact agronomic performance and crop water use in a site-specific manner. Nutrient acquisition is closely associated with overall biomass and strongly influenced by root surface area. When climate change alters soil factors to restrict root growth, nutrient stress will occur. Plant size may also change but nutrient concentration will remain relatively unchanged; therefore, nutrient removal will scale with growth. Changes in regional nutrient requirements will be most remarkable where we alter cropping systems to accommodate shifts in ecozones or alter farming systems to capture new uses from existing systems. For regions and systems where we currently do an adequate job managing nutrients, we stand a good chance of continued optimization under a changed climate. If we can and should do better, climate change will not help us.
Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China.
Xu, Xinpeng; Liu, Xiaoyan; He, Ping; Johnston, Adrian M; Zhao, Shicheng; Qiu, Shaojun; Zhou, Wei
2015-01-01
Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers' practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies.
Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China
Xu, Xinpeng; Liu, Xiaoyan; He, Ping; Johnston, Adrian M.; Zhao, Shicheng; Qiu, Shaojun; Zhou, Wei
2015-01-01
Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers’ practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies. PMID:26484543
Langland, M.J.; Fishel, D.K.
1996-01-01
The U.S. Geological Survey, in cooperation with the Susquehanna River Basin Commission and the Pennsylvania Department of Environmental Resources, investigated the effects of agricultural best-management practices on surface-water quality as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program. This report characterizes a 0.63-square- mile agricultural watershed underlain by shale, mudstone, and red arkosic sandstone in the Lower Susquehanna River Basin. The water quality of the Brush Run Creek site was studied from October 1985 through September 1991, prior to and during the implementation of nutrient management designed to reduce sediment and nutrient discharges into Conewago Creek, a tributary to the Chesapeake Bay. The original study area was 0.38 square mile and included an area immediately upstream from a manure lagoon. The study area was increased to 0.63 square mile in the fall of 1987 after an extensive tile-drain network was discovered upstream and downstream from the established streamflow gage, and the farm owner made plans to spray irrigate manure to the downstream fields. Land use for about 64 percent of the 0.63 square mile watershed is cropland, 14 percent is pasture, 7 percent is forest, and the remaining 15 percent is yards, buildings, water, or gardens. About 73 percent of the cropland was used to produce corn during the study. The average annual animal population consisted of 57,000 chickens, 1,530 hogs, and 15 sheep during the study. About 59,340 pounds of nitrogen and 13,710 pounds of phosphorus were applied as manure and commercial fertilizer to fields within the subbasin during the 3-year period prior to implementation of nutrient management. During nutrient management, about 14 percent less nitrogen and 57 percent less phosphorus were applied as commercial and manure fertilizer. Precipitation totaled 209 inches, or 13 percent less than the long-term normal, during the 6-year study. Concentrations of total ammonia in precipitation were as high as 2.7 mg/L (milligrams per liter); in dry deposition the concentrations were as high as 5.4 mg/L, probably because of the ammonia that had volatilized from the manure-storage lagoon. Nitrate nitrogen in the upper 4 feet of the soil ranged from 17 to 452 pounds per acre and soluble phosphorus content ranged from 0.29 to 65 pounds per acre. The maximum concentration of total nitrogen was 2,400 mg/L on September 10, 1986, in discharge from the tile drain near the streamflow gage. Median concentrations of total nitrogen and dissolved nitrite plus nitrate in base flow at the water-quality gage were 14 mg/L and 4.4 mg/L, respectively; prior to nutrient management and during nutrient management, median concentrations were 14 mg/L and 6.2 mg/L, respectively. Significant reductions in total phosphorus and suspended-sediment concentrations occurred at the water-quality gage. The maximum concentrations of total phosphorus (160 mg/L) and suspended sediment (3,530 mg/L) were measured at a tile line above the water-quality gage. Concentrations of total nitrogen, dissolved ammonia, and total phosphorus in base flow increased during dry periods when discharges from the tile drain were not diluted. During nutrient management, only base-flow loads of suspended sediment increased. Total streamflow was about 121.8 inches. About 81 percent was storm runoff. Loads of total nitrogen, total phosphorus in stormflow, and suspended sediment increased 14, 44, and 41 percent during nutrient management, respectively. A load of about 787,780 pounds of sediment, 22,418 pounds of nitrogen, and 5,479 pounds of phosphorus was measured during 214 sampled stormflow days that represented 84 percent of the stormflow. About 812,924 pounds of sediment, 38,421 pounds of nitrogen, and 6,377 pounds of phosphorus were discharged during the 6-year study.
Thresholds and Targeting Actions Research
The project will implement novel field and laboratory-based studies, state-of-the-art modeling, and other research syntheses toward these goals and toward decreasing scientific uncertainty related to nutrient management. The key research areas involve improved nutrient indicator ...
McCormick, Paul V.; Campbell, Sharon G.
2007-01-01
A literature review of best management practices to reduce nutrient loading was performed to provide information for resource managers in the Klamath Basin, Oregon. Although BMPs have already been implemented in the watershed, some sense of their effectiveness in reducing phosphorus loading and their cost for installation and maintenance is still lacking. This report discusses both causes of nutrient loading and a wide-variety of BMPs used to treat or reduce causal factors. We specifically focused on cattle grazing as the principal land-use and causal factor for nutrient loading in the Klamath Basin above Upper Klamath Lake, Oregon. Several BMP types, including stream corridor fencing, riparian buffer strips and constructed wetlands, seem to have potential for reducing phosphorus loading that may result from cattle grazing. However, no single BMP is likely to be the most effective in all locations or situations.
Measuring variability in trophic status in the Lake Waco/Bosque River Watershed
Rodriguez, Angela D; Matlock, Marty D
2008-01-01
Background Nutrient management in rivers and streams is difficult due to the spatial and temporal variability of algal growth responses. The objectives of this project were to determine the spatial and seasonal in situ variability of trophic status in the Lake Waco/Bosque River watershed, determine the variability in the lotic ecosystem trophic status index (LETSI) at each site as indicators of the system's nutrient sensitivity, and determine if passive diffusion periphytometers could provide threshold algal responses to nutrient enrichment. Methods We used the passive diffusion periphytometer to measure in-situ nutrient limitation and trophic status at eight sites in five streams in the Lake Waco/Bosque River Watershed in north-central Texas from July 1997 through October 1998. The chlorophyll a production in the periphytometers was used as an indicator of baseline chlorophyll a productivity and of maximum primary productivity (MPP) in response to nutrient enrichment (nitrogen and phosphorus). We evaluated the lotic ecosystem trophic status index (LETSI) using the ratio of baseline primary productivity to MPP, and evaluated the trophic class of each site. Results The rivers and streams in the Lake Waco/Bosque River Watershed exhibited varying degrees of nutrient enrichment over the 18-month sampling period. The North Bosque River at the headwaters (NB-02) located below the Stephenville, Texas wastewater treatment outfall consistently exhibited the highest degree of water quality impact due to nutrient enrichment. Sites at the outlet of the watershed (NB-04 and NB-05) were the next most enriched sites. Trophic class varied for enriched sites over seasons. Conclusion Seasonality played a significant role in the trophic class and sensitivity of each site to nutrients. Managing rivers and streams for nutrients will require methods for measuring in situ responses and sensitivities to nutrient enrichment. Nutrient enrichment periphytometers show significant potential for use in nutrient gradient studies. PMID:18271947
Measuring variability in trophic status in the Lake Waco/Bosque River Watershed.
Rodriguez, Angela D; Matlock, Marty D
2008-01-11
Nutrient management in rivers and streams is difficult due to the spatial and temporal variability of algal growth responses. The objectives of this project were to determine the spatial and seasonal in situ variability of trophic status in the Lake Waco/Bosque River watershed, determine the variability in the lotic ecosystem trophic status index (LETSI) at each site as indicators of the system's nutrient sensitivity, and determine if passive diffusion periphytometers could provide threshold algal responses to nutrient enrichment. We used the passive diffusion periphytometer to measure in-situ nutrient limitation and trophic status at eight sites in five streams in the Lake Waco/Bosque River Watershed in north-central Texas from July 1997 through October 1998. The chlorophyll a production in the periphytometers was used as an indicator of baseline chlorophyll a productivity and of maximum primary productivity (MPP) in response to nutrient enrichment (nitrogen and phosphorus). We evaluated the lotic ecosystem trophic status index (LETSI) using the ratio of baseline primary productivity to MPP, and evaluated the trophic class of each site. The rivers and streams in the Lake Waco/Bosque River Watershed exhibited varying degrees of nutrient enrichment over the 18-month sampling period. The North Bosque River at the headwaters (NB-02) located below the Stephenville, Texas wastewater treatment outfall consistently exhibited the highest degree of water quality impact due to nutrient enrichment. Sites at the outlet of the watershed (NB-04 and NB-05) were the next most enriched sites. Trophic class varied for enriched sites over seasons. Seasonality played a significant role in the trophic class and sensitivity of each site to nutrients. Managing rivers and streams for nutrients will require methods for measuring in situ responses and sensitivities to nutrient enrichment. Nutrient enrichment periphytometers show significant potential for use in nutrient gradient studies.
Carbon footprint of urban source separation for nutrient recovery.
Kjerstadius, H; Bernstad Saraiva, A; Spångberg, J; Davidsson, Å
2017-07-15
Source separation systems for the management of domestic wastewater and food waste has been suggested as more sustainable sanitation systems for urban areas. The present study used an attributional life cycle assessment to investigate the carbon footprint and potential for nutrient recovery of two sanitation systems for a hypothetical urban area in Southern Sweden. The systems represented a typical Swedish conventional system and a possible source separation system with increased nutrient recovery. The assessment included the management chain from household collection, transport, treatment and final return of nutrients to agriculture or disposal of the residuals. The results for carbon footprint and nutrient recovery (phosphorus and nitrogen) concluded that the source separation system could increase nutrient recovery (0.30-0.38 kg P capita -1 year -1 and 3.10-3.28 kg N capita -1 year -1 ), while decreasing the carbon footprint (-24 to -58 kg CO 2 -eq. capita -1 year -1 ), compared to the conventional system. The nutrient recovery was increased by the use of struvite precipitation and ammonium stripping at the wastewater treatment plant. The carbon footprint decreased, mainly due to the increased biogas production, increased replacement of mineral fertilizer in agriculture and less emissions of nitrous oxide from wastewater treatment. In conclusion, the study showed that source separation systems could potentially be used to increase nutrient recovery from urban areas, while decreasing the climate impact. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali
2013-11-01
Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.
Watershed modeling and monitoring for assessing nutrient ...
Presentation for the American Water Works Association Water Sustainability Conference. The presentation highlights latest results from water quality trading research conducted by ORD using the East Fork Watershed in Southwestern Ohio as a case study. The watershed has a nutrient enrichment problem that is creating harmful algal blooms in a reservoir used for drinking water and recreation. Innovative modeling and monitoring is combined to understand how to best manage this water quality problem and costs associated with this endeavor. The presentation will provide an overview of the water quality trading feasibility research. The research includes the development and evaluation of innovative modeling and monitoring approaches to manage watersheds for nutrient pollution using a whole systems approach.
NASA Astrophysics Data System (ADS)
Savidge, Rodney
Wild type (Col 0) Arabidopsis thaliana were grown in a growth chamber within the single mid-deck sized Advanced Biological Research System (ABRS) spaceflight hardware developed by NASA Kennedy Space Center. Before beginning this experiment, the plants, each rooted in individual transferable tubes containing nutrients, were cultivated hydroponically on halfstrength Hoagland's solution beneath either LED lighting similar to that provided by the ABRS growth chamber or white fluorescent lighting. The leaves of the basal whorl of plants pre-grown in ABRS lighting were small and purplish at the start of the experiment, whereas those under fluorescent lighting were larger and green. The plants were transferred to the ABRS soon after their inflorescence axes had started to elongate, and thereafter they were maintained under preset conditions (22 o C, approximately 1500 ppm CO2 , predominantly 125 µmol m-2 s-1 PAR) with pulses of water provided at 1-3 d intervals (as needed) to the module into which the root tubes were inserted. That module was pre-treated with half-strength Hoagland's nutrient solution on day 0, but no additional nutrients were provided the plants thereafter. Strong primary growth of all inflorescence stems occurred soon after initiating the ABRS experiment, and the plants began forming an overarching canopy of flowering stems beneath the LED lighting module within two weeks. After 38 days the root module was littered with seeds, siliques and abscised leaves, but all plants remained alive. Plants pre-grown in ABRS lighting were more advanced toward senescence, and leaves and stems of plants pre-grown in fluorescent lighting although greener were also acquiring a purplish hue. Microscopy revealed that the flowering stems achieved no secondary growth; however, progressive inward conversion of pith parenchyma into sclerenchyma cells did occur resulting in the inflorescence stems becoming abnormally woody.
Huixia Yang; Silong Wang; Jianwei Zhang; Bing Fan; Weidong Zhang
2011-01-01
We measured the dynamics of both biomass and nutrient pools on 7-, 17-, 31- and 51-year-old Pinus massoniana plantations in southern China. Using a chronosequence approach, we found that biomass of each component increased with aging while its proportion decreased except stem-wood. Nutrient pools varied with biomass pools except for foliage. For all harvest intensities...
Assessing and managing drug-nutrient interactions.
Anderson, Karl E; Greenblatt, David J
2002-01-01
Drug-nutrient interactions can occur through many mechanisms. The amount of protein in the diet and the presence of micronutrients, such as polycyclic aromatic hydrocarbons and indoles, can affect drug metabolism. Although furanocoumarins in grapefruit juice can interact with certain oral medications, noninteracting medications generally can be substituted. Pharmacists need to provide patients with accurate information about drug-nutrient interactions and help to clarify common misconceptions about these effects.
Impact of selection on maize root traits and rhizosphere interactions
NASA Astrophysics Data System (ADS)
Schmidt, J. E.; Gaudin, A. C. M.
2017-12-01
Effects of domestication and breeding on maize have been well-characterized aboveground, but impacts on root traits and rhizosphere processes remain unclear. Breeding in high-inorganic-input environments may have negatively affected the ability of modern maize to acquire nutrients through foraging and microbial interactions in marginal and/or organically managed soils. Twelve maize genotypes representing a selection gradient (teosintes, landraces, open-pollinated parents of modern elite germplasm, and modern hybrids released 1934-2015) were grown in three soils varying in intensity of long-term management (unfertilized, organic, conventional) in the greenhouse. Recruitment of rhizosphere microbial communities, nutrient acquisition, and plant productivity were affected by genotype-by-soil interactions. Maize genotypes exhibit significant variation in their ability to obtain nutrients from soils of different management history, indicating the potential for re-integration of beneficial root and rhizosphere traits to increase adaptation to low-input agroecosystems.
Liang, X Q; Chen, Y X; Nie, Z Y; Ye, Y S; Liu, J; Tian, G M; Wang, G H; Tuong, T P
2013-10-01
Resource-conserving irrigation and fertilizer management practices have been developed for rice systems which may help address water quality concerns by reducing N and P losses via surface runoff. Field experiments under three treatments, i.e., farmers' conventional practice (FCP), alternate wetting and drying (AWD), and AWD integrated with site-specific nutrient management (AWD + SSNM) were carried out during two rice seasons at two sites in the southwest Yangtze River delta region. Across site years, results indicated that under AWD irrigation (i.e., AWD and AWD + SSNM), water inputs were reduced by 13.4~27.5 % and surface runoff was reduced by 30.2~36.7 % compared to FCP. When AWD was implemented alone, total N and P loss masses via surface runoff were reduced by 23.3~30.4 % and 26.9~31.7 %, respectively, compared to FCP. However, nutrient concentrations of surface runoff did not decrease under AWD alone. Under AWD + SSNM, total N and P loss masses via surface runoff were reduced to a greater extent than AWD alone (39.4~47.6 % and 46.1~48.3 % compared to FCP, respectively), while fertilizer inputs and N surpluses significantly decreased and rice grain yields increased relative to FCP. Therefore, by more closely matching nutrient supply with crop demand and reducing both surface runoff and nutrient concentrations of surface runoff, our results demonstrate that integration of AWD and SSNM practices can mitigate N and P losses via surface runoff from rice fields while maintaining high yields.
NASA Astrophysics Data System (ADS)
Saleh, A.; Niraula, R.; Gallego, O.; Osei, E.; Kannan, N.
2017-12-01
The Nutrient Tracking Tool (NTT) is a user-friendly web-based computer program that estimate nutrient (nitrogen and phosphorus) and sediment losses from fields managed under a variety of cropping patterns and management practices. The NTT includes a user-friendly web-based interface and is linked to the Agricultural Policy Environmental eXtender (APEX) model. It also accesses USDA-NRCS's Web Soil Survey to obtain field, weather, and soil information. NTT provides producers, government officials, and other users with a fast and efficient method of estimating the nutrient, sediment, and atmosphoric gases (N2o, Co2, and NH4) losses, and crop production under different conservation practices regims at the farm-level. The information obtained from NTT can help producers to determine the most cost-effective conservation practice(s) to reduce the nutrient and sediment losses while optimizing the crop production. Also, the recent version of NTT (NTTg3) has been developed for those coutries without access to national databasis, such as soils and wether. The NTTg3 also has been designed as easy to use APEX interface. NTT is currently being evaluated for trading and other programs at Cheaseapea Bay regions and numerous states in US. During this presentation the new capabilities of NTTg3 will be described and demonstrated.
Nutritional strategies to modulate the adaptive response to endurance training.
Hawley, John A
2013-01-01
In recent years, advances in molecular biology have allowed scientists to elucidate how endurance exercise training stimulates skeletal muscle remodeling (i.e. promotes mitochondrial biogenesis). A growing field of interest directly arising from our understanding of the molecular bases of training adaptation is how nutrient availability can alter the regulation of many contraction-induced events in muscle in response to endurance exercise. Acutely manipulating substrate availability can exert profound effects on muscle energy stores and patterns of fuel metabolism during exercise, as well as many processes activating gene expression and cell signaling. Accordingly, such interventions when repeated over weeks and months have the potential to modulate numerous adaptive processes in skeletal muscle that ultimately drive the phenotype-specific characteristics observed in highly trained athletes. In this review, the molecular and cellular events that occur in skeletal muscle during and after endurance exercise are discussed and evidence provided to demonstrate that nutrient availability plays an important role in modulating many of the adaptive responses to training. Emphasis is on human studies that have determined the regulatory role of muscle glycogen availability on cell metabolism, endurance training capacity and performance. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.
Per, Tasir S; Khan, Nafees A; Reddy, Palakolanu Sudhakar; Masood, Asim; Hasanuzzaman, Mirza; Khan, M Iqbal R; Anjum, Naser A
2017-06-01
Major abiotic stress factors such as salt and drought adversely affect important physiological processes and biochemical mechanisms and cause severe loss in crop productivity worldwide. Plants develop various strategies to stand healthy against these stress factors. The accumulation of proline (Pro) is one of the striking metabolic responses of plants to salt and drought stress. Pro biosynthesis and signalling contribute to the redox balance of cell under normal and stressful conditions. However, literature is meager on the sustainable strategies potentially fit for modulating Pro biosynthesis and production in stressed plants. Considering the recent literature, this paper in its first part overviews Pro biosynthesis and transport in plants and also briefly highlights the significance of Pro in plant responses to salt and drought stress. Secondly, this paper discusses mechanisms underlying the regulation of Pro metabolism in salt and drought-exposed plant via phytohormones, mineral nutrients and transgenic approaches. The outcome of the studies may give new opportunities in modulating Pro metabolism for improving plant tolerance to salt and drought stress and benefit sustainable agriculture. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Hingle, Melanie D; Kandiah, Jayanthi; Maggi, Annette
2016-09-01
The 2015 Dietary Guidelines for Americans encourage selection of nutrient-dense foods for health promotion and disease prevention and management. The purpose of this Academy of Nutrition and Dietetics practice paper is to provide an update regarding the science and practice of nutrient-dense food identification and selection. Characterization of tools used to identify nutrient density of foods is provided and recommendations for how registered dietitian nutritionists and nutrition and dietetics technicians, registered, might use available profiling tools to help consumers select nutrient-dense foods is discussed. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Garn, Herbert S.
2002-01-01
Transport of nutrients (primarily forms of nitrogen and phosphorus) to lakes and resulting accelerated eutrophication are serious concerns for planners and managers of lakes in urban and developing suburban areas of the country. Runoff from urban land surfaces such as streets, lawns, and rooftops has been noted to contain high concentrations of nutrients; lawns and streets were the largest sources of phosphorus in residential areas (Waschbusch, Selbig and Bannerman, 1999). The cumulative contribution from many lawns to the amount of nutrients in lakes is not well understood and potentially could be a large part of the total nutrient contribution.
Aquatic Nutrient Simulation Modules (NSMs) Developed for Hydrologic and Hydraulic Models
2016-02-01
effect of temperature on algal growth unitless FOxpi oxygen attenuation for algal respiration unitless FOxb oxygen attenuation for benthic algal... effect of temperature below T0p on benthic algal growth 0C-2 ktb2 effect of temperature above T0p on benthic algal growth 0C-2 ka(T) oxygen ...Si Silica SOD Sediment Oxygen Demand SO4 TEMP Sulfate Water Temperature Simulation Module TN Total Nitrogen TP Total Phosphorous TIC Total
Nutrient Estimation Using Subsurface Sensing Methods
USDA-ARS?s Scientific Manuscript database
This report investigates the use of precision management techniques for measuring soil conductivity on feedlot surfaces to estimate nutrient value for crop production. An electromagnetic induction soil conductivity meter was used to collect apparent soil electrical conductivity (ECa) from feedlot p...
Pascacio-Villafán, Carlos; Williams, Trevor; Birke, Andrea; Aluja, Martín
2016-07-12
Our understanding of how food modulates animal phenotypes and mediate trade-offs between life-history traits has benefited greatly from the study of combinations of nutritional and non-nutritional food components, such as plant secondary metabolites. We used a fruit fly pest, Anastrepha ludens, to examine phenotypic variation across larval, pupal and adult stages as a function of larval food with varying nutrient balance and content of chlorogenic acid, a secondary metabolite. Larval insects that fed on carbohydrate-biased diets relative to protein exhibited longer larval and pupal developmental periods, were often heavier as pupae and resisted desiccation and starvation for longer periods in the adult stage than insects fed on highly protein-biased diets. Except for a potential conflict between pupal development time and adult desiccation and starvation resistance, we did not detect physiological trade-offs mediated by the nutritional balance in larval food. Chlorogenic acid affected A. ludens development in a concentration and nutrient-dependent manner. Nutrients and host plant secondary metabolites in the larval diet induced changes in A. ludens phenotype and could influence fruit fly ecological interactions. We provide a unique experimental and modelling approach useful in generating predictive models of life history traits in a variety of organisms.
Pascacio-Villafán, Carlos; Williams, Trevor; Birke, Andrea; Aluja, Martín
2016-01-01
Our understanding of how food modulates animal phenotypes and mediate trade-offs between life-history traits has benefited greatly from the study of combinations of nutritional and non-nutritional food components, such as plant secondary metabolites. We used a fruit fly pest, Anastrepha ludens, to examine phenotypic variation across larval, pupal and adult stages as a function of larval food with varying nutrient balance and content of chlorogenic acid, a secondary metabolite. Larval insects that fed on carbohydrate-biased diets relative to protein exhibited longer larval and pupal developmental periods, were often heavier as pupae and resisted desiccation and starvation for longer periods in the adult stage than insects fed on highly protein-biased diets. Except for a potential conflict between pupal development time and adult desiccation and starvation resistance, we did not detect physiological trade-offs mediated by the nutritional balance in larval food. Chlorogenic acid affected A. ludens development in a concentration and nutrient-dependent manner. Nutrients and host plant secondary metabolites in the larval diet induced changes in A. ludens phenotype and could influence fruit fly ecological interactions. We provide a unique experimental and modelling approach useful in generating predictive models of life history traits in a variety of organisms. PMID:27406923
NASA Astrophysics Data System (ADS)
Davidson, Eric; Nifong, Rachel
2017-04-01
While deforestation has declined since its peak, land-use change continues to modify Amazonian landscapes. The responses and feedbacks of biogeochemical cycles to these changes play an important role in determining possible future trajectories of ecosystem function and for land stewardship through effects on rates of secondary forest regrowth, soil emissions of greenhouse gases, inputs of nutrients to groundwater and streamwater, and nutrient management in agroecosystems. Here we present a new synthetic analyses of data from the NASA-supported LBA-ECO project and others datasets on nutrient cycling in cattle pastures, secondary forests, and mature forests at Paragominas, Pará, Brazil. We have developed a stoichiometric model relating C-N-P interactions during original forest clearing, extensive and intensive pasture management, and secondary forest regrowth, constrained by multiple observations of ecosystem stocks and fluxes in each land use. While P is conservatively cycled in all land uses, we demonstrate that pyrolyzation of N during pasture formation and during additional burns for pasture management depletes available-N pools, consistent with observations of lower rates of N leaching and trace gas emission and consistent with secondary forest growth responses to experimental N amendments. The soils store large stocks of N and P, and our parameterization of available forms of these nutrients for steady-state dynamics in the mature forest yield reasonable estimates of net N and P mineralization available for grasses and secondary forest species at rates consistent with observed biomass accumulation and productivity in these modified ecosystems. Because grasses and forests have much different demands for N relative to P, the land use has important biogeochemical impacts. The model demonstrates the need for periodic P inputs for sustainable pasture management and for a period of significant biological N fixation for early-to-mid-successional secondary forest regrowth. The model framework illustrates the relative magnitudes of changing stocks and flows of nutrients and attendant ecosystem functions through the phases of land use change experienced in eastern Amazonia.
Use of Principal Components Analysis to Explain Controls on Nutrient Fluxes to the Chesapeake Bay
NASA Astrophysics Data System (ADS)
Rice, K. C.; Mills, A. L.
2017-12-01
The Chesapeake Bay watershed, on the east coast of the United States, encompasses about 166,000-square kilometers (km2) of diverse land use, which includes a mixture of forested, agricultural, and developed land. The watershed is now managed under a Total Daily Maximum Load (TMDL), which requires implementation of management actions by 2025 that are sufficient to reduce nitrogen, phosphorus, and suspended-sediment fluxes to the Chesapeake Bay and restore the bay's water quality. We analyzed nutrient and sediment data along with land-use and climatic variables in nine sub watersheds to better understand the drivers of flux within the watershed and to provide relevant management implications. The nine sub watersheds range in area from 300 to 30,000 km2, and the analysis period was 1985-2014. The 31 variables specific to each sub watershed were highly statistically significantly correlated, so Principal Components Analysis was used to reduce the dimensionality of the dataset. The analysis revealed that about 80% of the variability in the whole dataset can be explained by discharge, flux, and concentration of nutrients and sediment. The first two principal components (PCs) explained about 68% of the total variance. PC1 loaded strongly on discharge and flux, and PC2 loaded on concentration. The PC scores of both PC1 and PC2 varied by season. Subsequent analysis of PC1 scores versus PC2 scores, broken out by sub watershed, revealed management implications. Some of the largest sub watersheds are largely driven by discharge, and consequently large fluxes. In contrast, some of the smaller sub watersheds are more variable in nutrient concentrations than discharge and flux. Our results suggest that, given no change in discharge, a reduction in nutrient flux to the streams in the smaller watersheds could result in a proportionately larger decrease in fluxes of nutrients down the river to the bay, than in the larger watersheds.
Histone deacetylase-mediated regulation of endolysosomal pH.
Prasad, Hari; Rao, Rajini
2018-05-04
The pH of the endolysosomal system is tightly regulated by a balance of proton pump and leak mechanisms that are critical for storage, recycling, turnover, and signaling functions in the cell. Dysregulation of endolysosomal pH has been linked to aging, amyloidogenesis, synaptic dysfunction, and various neurodegenerative disorders, including Alzheimer's disease. Therefore, understanding the mechanisms that regulate luminal pH may be key to identifying new targets for managing these disorders. Meta-analysis of yeast microarray databases revealed that nutrient-limiting conditions inhibited the histone deacetylase (HDAC) Rpd3 and thereby up-regulated transcription of the endosomal Na + /H + exchanger Nhx1, resulting in vacuolar alkalinization. Consistent with these findings, Rpd3 inhibition by the HDAC inhibitor and antifungal drug trichostatin A induced Nhx1 expression and vacuolar alkalinization. Bioinformatics analysis of Drosophila and mouse databases revealed that caloric control of the Nhx1 orthologs DmNHE3 and NHE6, respectively, is also mediated by HDACs. We show that NHE6 is a target of the transcription factor cAMP-response element-binding protein (CREB), a known regulator of cellular responses to low-nutrient conditions, providing a molecular mechanism for nutrient- and HDAC-dependent regulation of endosomal pH. Of note, pharmacological targeting of the CREB pathway to increase NHE6 expression helped regulate endosomal pH and correct defective clearance of amyloid Aβ in an apoE4 astrocyte model of Alzheimer's disease. These observations from yeast, fly, mouse, and cell culture models point to an evolutionarily conserved mechanism for HDAC-mediated regulation of endosomal NHE expression. Our insights offer new therapeutic strategies for modulation of endolysosomal pH in fungal infection and human disease. © 2018 Prasad and Rao.
Effects of pasture renovation on hydrology, nutrient runoff, and forage yield.
de Koff, J P; Moore, P A; Formica, J; Van Eps, M; DeLaune, P B
2011-01-01
Proper pasture management is important in promoting optimal forage growth and reducing runoff and nutrient loss. Pasture renovation is a management tool that improves aeration by mechanically creating holes or pockets within the soil. Pasture renovation was performed before manure application (poultry litter or swine slurry) on different pasture soils and rainfall simulations were conducted to identify the effects of pasture renovation on nutrient runoff and forage growth. Renovation of small plots resulted in significant and beneficial hydrological changes. During the first rainfall simulation, runoff volumes were 45 to 74% lower for seven out of eight renovated treatments, and infiltration rates increased by 3 to 87% for all renovated treatments as compared with nonrenovated treatments. Renovation of pasture soils fertilized with poultry litter led to significant reductions in dissolved reactive P (DRP) (74-87%), total P (TP) (76-85%), and total nitrogen (TN) (72-80%) loads in two of the three soils studied during the first rainfall simulation. Renovation did not result in any significant differences in forage yields. Overall, beneficial impacts of renovation lasted up to 3 mo, the most critical period for nutrient runoff following manure application. Therefore, renovation could be an important best management practice in these areas.
Tain, You-Lin; Lee, Wei-Chia; Wu, Kay L H; Leu, Steve; Chan, Julie Y H
2018-04-30
High-fructose (HF) intake, oxidative stress, nutrient-sensing signals, and gut microbiota dysbiosis are closely related to the development of hypertension. We investigated whether resveratrol can prevent hypertension induced by maternal plus post-weaning HF diets in adult offspring via the above-mentioned mechanisms. Female Sprague-Dawley rats received either a normal (ND) or 60% high-fructose (HF) diet during gestation and lactation. Male offspring were assigned to five groups (maternal diet/post-weaning diet; n = 8/group): ND/ND, ND/HF, HF/ND, HF/HF, and HF/HF+ Resveratrol. Resveratrol (50 mg/L) was administered in drinking water from weaning to three months of age. We found that HF/HF induced hypertension in adult offspring. Maternal HF diet altered gut microbiota composition in adult offspring, including decreasing the abundance of genera Bacteroides, Dysgonomonas, and Turicibacter, while increasing phylum Verrucomicrobia and Akkermansia muciniphila. Additionally, HF/HF diets increased oxidative stress and decreased renal mRNA expression of Prkaa2, Prkag2, Ppara, Pparb, Ppargc1a, and Sirt4. Resveratrol reduced renal oxidative stress, activated nutrient-sensing signals, modulated gut microbiota, and prevented associated HF/HF-induced programmed hypertension. Targeting oxidative stress, nutrient-sensing signals, and gut microbiota by resveratrol might be a useful therapeutic strategy for treatment of hypertension induced by excessive consumption of fructose in the adult rat offspring. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Modeling Anterior Development in Mice: Diet as Modulator of Risk for Neural Tube Defects
Kappen, Claudia
2014-01-01
Head morphogenesis is a complex process that is controlled by multiple signaling centers. The most common defects of cranial development are craniofacial defects, such as cleft lip and cleft palate, and neural tube defects, such as anencephaly and encephalocoele in humans. More than 400 genes that contribute to proper neural tube closure have been identified in experimental animals, but only very few causative gene mutations have been identified in humans, supporting the notion that environmental influences are critical. The intrauterine environment is influenced by maternal nutrition, and hence, maternal diet can modulate the risk for cranial and neural tube defects. This article reviews recent progress toward a better understanding of nutrients during pregnancy, with particular focus on mouse models for defective neural tube closure. At least four major patterns of nutrient responses are apparent, suggesting that multiple pathways are involved in the response, and likely in the underlying pathogenesis of the defects. Folic acid has been the most widely studied nutrient, and the diverse responses of the mouse models to folic acid supplementation indicate that folic acid is not universally beneficial, but that the effect is dependent on genetic configuration. If this is the case for other nutrients as well, efforts to prevent neural tube defects with nutritional supplementation may need to become more specifically targeted than previously appreciated. Mouse models are indispensable for a better understanding of nutrient–gene interactions in normal pregnancies, as well as in those affected by metabolic diseases, such as diabetes and obesity. PMID:24124024
Peiris, Hassendrini N; Ponnampalam, Anna P; Osepchook, Claire C; Mitchell, Murray D; Green, Mark P
2010-04-01
Maternal undernutrition during gestation is known to be detrimental to fetal development, leading to a propensity for metabolic disorders later in the adult lives of the offspring. Identifying possible mediators and physiological processes involved in modulating nutrient transport within the placenta is essential to prevent and/or develop treatments for the effects of aberrant nutrition, nutrient transfer, and detrimental changes to fetal development. A potential role for myostatin as a mediator of nutrient uptake and transport from the mother to the fetus was shown through the recent finding that myostatin acts within the human placenta to modulate glucose uptake and therefore homeostasis. The mRNA and protein expression of myostatin and its inhibitor, follistatin-like-3 (FSTL3), was studied in the placenta and skeletal muscle of a transgenerational Wistar rat model of gestational maternal undernutrition in which the F2 offspring postweaning consumed a high-fat (HF) diet. Alterations in placental characteristics and offspring phenotype, specifically glucose homeostasis, were evident in the transgenerationally undernourished (UNAD) group. Myostatin and FSTL3 protein expression were also higher (P < 0.05) in the placentae of the UNAD compared with the control group. At maturity, UNAD HF-fed animals had higher (P < 0.05) skeletal muscle expression of FSTL3 than control animals. In summary, maternal undernutrition during gestation results in the aberrant regulation of myostatin and FSTL3 in the placenta and skeletal muscle of subsequent generations. Myostatin, through the disruption of maternal nutrient supply to the fetus, may thus be a potential mediator of offspring phenotype.
Bocheva, Georgeta; Boyadjieva, Nadka
2011-12-01
Osteoporosis is a common age-related disorder and causes acute and long-term disability and economic cost. Many factors influence the accumulation of bone minerals, including heredity, diet, physical activity, gender, endocrine functions, and risk factors such as alcohol, drug abuse, some pharmacological drugs or cigarette smoking. The pathology of bone development during intrauterine life is a factor for osteoporosis. Moreover, the placental transfer of nutrients plays an important role in the building of bones of fetuses. The importance of maternal calcium intake and vitamin D status are highlighted in this review. Various environmental factors including nutrition state or maternal stress may affect the epigenetic state of a number of genes during fetal development of bones. Histone modifications as histone hypomethylation, histone hypermethylation, hypoacetylation, etc. are involved in chromatin remodeling, known to contribute to the epigenetic landscape of chromosomes, and play roles in both fetal bone development and osteoporosis. This review will give an overview of epigenetic modulation of bone development and placental transfer of nutrients. In addition, the data from animal and human studies support the role of epigenetic modulation of calcium and vitamin D in the pathogenesis of osteoporosis. We review the evidence suggesting that various genes are involved in regulation of osteoclast formation and differentiation by osteoblasts and stem cells. Epigenetic changes in growth factors as well as cytokines play a rol in fetal bone development. On balance, the data suggest that there is a link between epigenetic changes in placental transfer of nutrients, including calcium and vitamin D, abnormal intrauterine bone development and pathogenesis of osteoporosis.
Nutrient production from dairy cattle manure and loading on arable land
You, Byung-Gu; Choi, Yoon-Seok; Ra, Changsix
2017-01-01
Objective Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Methods Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (ΔP = 0). Results The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. Conclusion As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management. PMID:27492346
Legacy nutrient dynamics and patterns of catchment response under changing land use and management
NASA Astrophysics Data System (ADS)
Attinger, S.; Van, M. K.; Basu, N. B.
2017-12-01
Watersheds are complex heterogeneous systems that store, transform, and release water and nutrients under a broad distribution of both natural and anthropogenic controls. Many current watershed models, from complex numerical models to simpler reservoir-type models, are considered to be well-developed in their ability to predict fluxes of water and nutrients to streams and groundwater. They are generally less adept, however, at capturing watershed storage dynamics. In other words, many current models are run with an assumption of steady-state dynamics, and focus on nutrient flows rather than changes in nutrient stocks within watersheds. Although these commonly used modeling approaches may be able to adequately capture short-term watershed dynamics, they are unable to represent the clear nonlinearities or hysteresis responses observed in watersheds experiencing significant changes in nutrient inputs. To address such a lack, we have, in the present work, developed a parsimonious modeling approach designed to capture long-term catchment responses to spatial and temporal changes in nutrient inputs. In this approach, we conceptualize the catchment as a biogeochemical reactor that is driven by nutrient inputs, characterized internally by both biogeochemical degradation and residence or travel time distributions, resulting in a specific nutrient output. For the model simulations, we define a range of different scenarios to represent real-world changes in land use and management implemented to improve water quality. We then introduce the concept of state-space trajectories to describe system responses to these potential changes in anthropogenic forcings. We also increase model complexity, in a stepwise fashion, by dividing the catchment into multiple biogeochemical reactors, coupled in series or in parallel. Using this approach, we attempt to answer the following questions: (1) What level of model complexity is needed to capture observed system responses? (2) How can we explain different patterns of nonlinearity in watershed nutrient dynamics? And finally, how does the accumulation of nutrient legacies within watersheds impact current and future water quality?
Stream Restoration to Manage Nutrients in Degraded Watersheds
Historic land-use change can reduce water quality by impairing the ability of stream ecosystems to efficiently process nutrients such as nitrogen. Study results of two streams (Minebank Run and Big Spring Run) affected by urbanization, quarrying, agriculture, and impoundments in...
Metabolic regulation of cellular plasticity in the pancreas.
Ninov, Nikolay; Hesselson, Daniel; Gut, Philipp; Zhou, Amy; Fidelin, Kevin; Stainier, Didier Y R
2013-07-08
Obese individuals exhibit an increase in pancreatic β cell mass; conversely, scarce nutrition during pregnancy has been linked to β cell insufficiency in the offspring [reviewed in 1, 2]. These phenomena are thought to be mediated mainly through effects on β cell proliferation, given that a nutrient-sensitive β cell progenitor population in the pancreas has not been identified. Here, we employed the fluorescent ubiquitination-based cell-cycle indicator system to investigate β cell replication in real time and found that high nutrient concentrations induce rapid β cell proliferation. Importantly, we found that high nutrient concentrations also stimulate β cell differentiation from progenitors in the intrapancreatic duct (IPD). Furthermore, using a new zebrafish line where β cells are constitutively ablated, we show that β cell loss and high nutrient intake synergistically activate these progenitors. At the cellular level, this activation process causes ductal cell reorganization as it stimulates their proliferation and differentiation. Notably, we link the nutrient-dependent activation of these progenitors to a downregulation of Notch signaling specifically within the IPD. Furthermore, we show that the nutrient sensor mechanistic target of rapamycin (mTOR) is required for endocrine differentiation from the IPD under physiological conditions as well as in the diabetic state. Thus, this study reveals critical insights into how cells modulate their plasticity in response to metabolic cues and identifies nutrient-sensitive progenitors in the mature pancreas. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabaleta, Imanol, E-mail: imanol.zabaleta@eawag.ch; Rodic, Ljiljana, E-mail: ljiljana.rodic@gmail.com
Every year 120–140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system,more » both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively.« less
Zabaleta, Imanol; Rodic, Ljiljana
2015-10-01
Every year 120-140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system, both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Involvement of Small RNAs in Phosphorus and Sulfur Sensing, Signaling and Stress: Current Update
Kumar, Smita; Verma, Saurabh; Trivedi, Prabodh K.
2017-01-01
Plants require several essential mineral nutrients for their growth and development. These nutrients are required to maintain physiological processes and structural integrity in plants. The root architecture has evolved to absorb nutrients from soil and transport them to other parts of the plant. Nutrient deficiency affects several physiological and biological processes in plants and leads to reduction in crop productivity and yield. To compensate this adversity, plants have developed adaptive mechanisms to enhance the acquisition, conservation, and mobilization of these nutrients under deficient or adverse conditions. In addition, plants have evolved an intricate nexus of complex signaling cascades, which help in nutrient sensing and uptake as well as to maintain nutrient homeostasis. In recent years, small non-coding RNAs such as micro RNAs (miRNAs) and endogenous small interfering RNAs have emerged as important component in regulating plant stress responses. A set of these small RNAs (sRNAs) have been implicated in regulating various processes involved in nutrient uptake, assimilation, and deficiency. In response to phosphorus (P) and sulphur (S) deficiencies, role of sRNAs, miR395 and miR399, have been identified to be instrumental; however, many more miRNAs might be involved in regulating the plant response to these nutrient stresses. These sRNAs modulate expression of target genes in response to P and S deficiencies and regulate their uptake and utilization for proper growth and development of the plant. This review summarizes the current understanding of uptake, sensing, and signaling of P and S and highlights the regulatory role of sRNAs in adaptive responses to these nutrient stresses in plants. PMID:28344582
Van der Heyden, Sara; Croubels, Siska; Gadeyne, Caroline; Ducatelle, Richard; Daminet, Sylvie; Murua Escobar, Hugo; Sterenczak, Katharina; Polis, Ingeborgh; Schauvliege, Stijn; Hesta, Myriam; Chiers, Koen
2012-06-01
To evaluate the impact of modulation of the membrane-bound efflux pump P-glycoprotein (P-gp) on plasma concentrations of orally administered prednisolone in dogs. 7 healthy adult Beagles. Each dog received 3 treatments (control [no treatment], rifampicin [100 mg/d, PO, for 21 days, as an inducer of P-gp], and ketoconazole [100 mg/d, PO, for 21 days, as an inhibitor of P-gp]). A single dose of prednisolone (1 mg/kg, PO) was administered on day 8 of each treatment period. There was a 7-day washout period between subsequent treatments. Plasma concentrations of prednisolone were determined by use of a validated liquid chromatography-tandem mass spectrometry method. Duodenum and colon biopsy specimens were obtained endoscopically from anesthetized dogs and assessed for P-gp protein labeling via immunohistochemical analysis and mRNA quantification via real-time PCR assay. Total fecal collection was performed for evaluation of effects of P-gp modulation on digestion of nutrients. Rifampicin treatment upregulated duodenal P-gp in dogs and significantly reduced the area under the plasma concentration-time curve of prednisolone. Ketoconazole typically downregulated expression of duodenal P-gp, with a subsequent increase in the area under the plasma concentration-time curve of prednisolone. There was a noticeable interindividual difference in response. Digestion of nutrients was not affected. Modulation of P-gp expression influenced plasma concentrations of prednisolone after oral administration in dogs. Thus, treatment response to prednisolone may be influenced by coadministration of P-gp-modulating medications or feed ingredients.
Plankton responses to ocean acidification: The role of nutrient limitation
NASA Astrophysics Data System (ADS)
Alvarez-Fernandez, S.; Bach, L. T.; Taucher, J.; Riebesell, U.; Sommer, U.; Aberle, N.; Brussaard, C. P. D.; Boersma, M.
2018-07-01
In situ mesocosm experiments on the effect of ocean acidification (OA) are an important tool for investigating potential OA-induced changes in natural plankton communities. In this study we combined results from various in-situ mesocosm studies in two different ocean regions (Arctic and temperate waters) to reveal general patterns of plankton community shifts in response to OA and how these changes are modulated by inorganic nutrient availability. Overall, simulated OA caused an increase in phytoplankton standing stock, which was more pronounced in smaller-sized taxa. This effect on primary producers was channelled differently into heterotroph primary consumers depending on the inorganic nutrient availability. Under limiting conditions, bacteria and micro-heterotrophs benefited with inconsistent responses of larger heterotrophs. During nutrient replete periods, heterotrophs were in general negatively affected, although there was an increase of some mesozooplankton developmental stages (i.e. copepodites). We hypothesize that changes in phytoplankton size distribution and community composition could be responsible for these food web responses.
Automated hydroponics nutrition plants systems using arduino uno microcontroller based on android
NASA Astrophysics Data System (ADS)
Sihombing, P.; Karina, N. A.; Tarigan, J. T.; Syarif, M. I.
2018-03-01
Technological developments today make the combination of science is very common, including in Computer Science and Agriculture to make both of science need each other. This paper aims to develop a control tool for the flow of nutrients of hydroponic plants automatically using Arduino microcontroller and controlled by smartphone. We use an Arduino Uno microcontroller to automatically control the flow of nutrient solution with logic if else. The microcontroller can also send data of fluid level (solution) and temperature around the plant to smartphone android of the owner of the hydroponics plant. The height of the nutrient solution (water) is detected by the Ultrasonic sensor HC-SR04 and the temperature is detected by the temperature sensor LM35. Data from the sensor will forward into Arduino Uno and displayed in liquid crystal display (LCD) then via wireless fidelity (WIFI) ESP8266 module will transmit the height of the nutrient solution and the temperature around of the plants to Android smartphone.
Plant nutrition: root transporters on the move.
Zelazny, Enric; Vert, Grégory
2014-10-01
Nutrient and water uptake from the soil is essential for plant growth and development. In the root, absorption and radial transport of nutrients and water toward the vascular tissues is achieved by a battery of specialized transporters and channels. Modulating the amount and the localization of these membrane transport proteins appears as a way to drive their activity and is essential to maintain nutrient homeostasis in plants. This control first involves the delivery of newly synthesized proteins to the plasma membrane by establishing check points along the secretory pathway, especially during the export from the endoplasmic reticulum. Plasma membrane-localized transport proteins are internalized through endocytosis followed by recycling to the cell surface or targeting to the vacuole for degradation, hence constituting another layer of control. These intricate mechanisms are often regulated by nutrient availability, stresses, and endogenous cues, allowing plants to rapidly adjust to their environment and adapt their development. © 2014 American Society of Plant Biologists. All Rights Reserved.
Liver metabolomics analysis associated with feed efficiency on steers
USDA-ARS?s Scientific Manuscript database
The liver represents a metabolic crossroad regulating and modulating nutrients available from digestive tract absorption to the peripheral tissues. To identify potential differences in liver function that lead to differences in feed efficiency, liver metabolomic analysis was conducted using ultra-pe...
NASA Astrophysics Data System (ADS)
Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus
2010-05-01
Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased potentially toxic, blue-green algae blooms. The presentation will summarize recent results (Behrendt et al. 2009, Schernewski et al. 2009, Schernewski et al. in press, Schernewski et al. submitted) and give an overview how Climate Change and socio-economic transformation processes in the river basin will effect coastal water quality during the next decades. The opportunities and threats of a changing lagoon ecosystem for tourism and fisheries, the major economic activities, will be shown.
NASA Astrophysics Data System (ADS)
Khazaei, B.; Bravo, H.; Bootsma, H.
2017-12-01
There is clear evidence that excessive nutrient, in particular phosphorus (P), loading into Lake Michigan has produced significant problems, such as algal blooms, hypoxia, and reduced water quality. Addressing those problems requires understanding the transport and fate of P in the lake. The dominance of mixing and dispersion processes on the P transport has been demonstrated, yet recent research has shown the remarkable influence of dreissenid mussels and Cladophora on water clarity and the P budget. Since mussels and Cladophora tend to concentrate near the coastlines, nearshore-offshore P exchange is of a big importance. In this research, a computer model was developed to simulate the P cycle by incorporating the biogeochemical processes relevant to the transport of P into a 3D high-resolution hydrodynamic model. The near-bottom biogeochemical model consists of three linked modules: Cladophora, mussel, and sediment storage modules. The model was applied to the Milwaukee Metropolitan Sewerage District South Shore Wastewater Treatment Plant, between June and October of 2013 and 2015, as a case study. The plant outfall introduces a point source of P into the study domain—the nearshore zone of Lake Michigan adjacent to Milwaukee County. The model was validated against field observations of water temperature, dissolved phosphorus (DP), particulate phosphorus (PP), Cladophora biomass, and P content. The model simulations showed reasonably good agreement with field measurements. Model results showed a) different temporal patterns in 2013 and 2015, b) a larger range of fluctuations in DP than that in PP, and c) that the effects of mussels and Cladophora could explain the differences in patterns and ranges. PP concentrations showed more frequent spikes of concentration in 2013 due to resuspension events during that year because of stronger winds. The model is being applied as a management tool to test scenarios of nutrient loading to determine effluent P limits for the treatment plant. The alongshore lengths of the surface layer-footprints of total phosphorus (TP) that exceeded the target concentration of 7 μg L-1 during 25% of the summer season were approximately 30 and 24 Km in 2013 and 2015, respectively. That result indicates that the footprint was reduced by the application of a more efficient loading scenario in 2015.
Searching for a life history approach to salmon escapement management
Knudsen, E.E.; Symmes, E.W.; Margraf, F.J.
2003-01-01
A number of Pacific salmon populations have already been lost and many others throughout the range are in various states of decline. Recent research has documented that Pacific salmon carcasses serve as a key delivery vector of marine-derived nutrients into the freshwater portions of their ecosystems. This nutrient supply plays a critical biological feedback role in salmon sustainability by supporting juvenile salmon production. We first demonstrate how nutrient feedback potential to juvenile production may be unaccounted for in spawner-recruit models of populations under long-term exploitation. We then present a heuristic, life history-based, spreadsheet survival model that incorporates salmon carcass-driven nutrient feedback to the freshwater components of the salmon ecosystem. The productivity of a hypothetical coho salmon population was simulated using rates from the literature for survival from spawner to egg, egg to fry, fry to smolt, and smolt to adult. The effects of climate variation and nutrient feedback on survival were incorporated, as were density-dependent effects of the numbers of spawners and fry on freshwater survival of eggs and juveniles. The unexploited equilibrium population was subjected to 100 years of 20, 40, 60, and 80% harvest. Each harvest scenario greater than 20% brought the population to a reduced steady state, regardless of generous compensatory survival at low population sizes. Increasing harvest reduced the positive effects of nutrient contributions to population growth. Salmon researchers should further explore this modeling approach for establishing escapement goals. Given the importance of nutrient feedback, managers should strive for generous escapements that support nutrient rebuilding, as well as egg deposition, to ensure strong future salmon production.
NASA Astrophysics Data System (ADS)
Kupkanchanakul, Wallapa; Kwonpongsagoon, Suphaphat; Bader, Hans-Peter; Scheidegger, Ruth
2015-05-01
Rivers in developing and emerging countries often lack good water quality. Tools to assess the water quality in rivers, including identification of possible sources of pollution, are therefore of increasing importance. The aim of this study is to apply mathematical material flow and spatial land use analyses to identify and geographically locate the main nitrogen and phosphorus sources and processes in Bang Pakong Basin (BPB). Potential measures to mitigate the nitrogen and phosphorus loads to the water system can then be efficiently evaluated. The combination of these two methods reveals the overall nutrient load as well as local "hot spots." This allows possible mitigation measures to be discussed with regard to their spatial location. This approach goes beyond previous work in which mathematical material flow analysis was shown to be a useful tool to investigate sources of nutrients regardless of their location. The results show that the main sources contributing nutrients to waterways are aquaculture, such as shrimp, tilapia, catfish, and sea bass farming, as well as rice paddies along the main river. Additional sources contributing nutrients to this basin are field crops, livestock, aquaculture, households, and industry. High levels of nutrient inflows come from feeds and fertilizers through aquaculture and rice cultivation. The excess nutrients run into the waterways by direct discharge from aquaculture and runoff processes from rice paddies. Scenario analysis shows that management practices for aquaculture, rice, pig, and poultry farming are key drivers for reducing nutrients in the BPB.
Kupkanchanakul, Wallapa; Kwonpongsagoon, Suphaphat; Bader, Hans-Peter; Scheidegger, Ruth
2015-05-01
Rivers in developing and emerging countries often lack good water quality. Tools to assess the water quality in rivers, including identification of possible sources of pollution, are therefore of increasing importance. The aim of this study is to apply mathematical material flow and spatial land use analyses to identify and geographically locate the main nitrogen and phosphorus sources and processes in Bang Pakong Basin (BPB). Potential measures to mitigate the nitrogen and phosphorus loads to the water system can then be efficiently evaluated. The combination of these two methods reveals the overall nutrient load as well as local "hot spots." This allows possible mitigation measures to be discussed with regard to their spatial location. This approach goes beyond previous work in which mathematical material flow analysis was shown to be a useful tool to investigate sources of nutrients regardless of their location. The results show that the main sources contributing nutrients to waterways are aquaculture, such as shrimp, tilapia, catfish, and sea bass farming, as well as rice paddies along the main river. Additional sources contributing nutrients to this basin are field crops, livestock, aquaculture, households, and industry. High levels of nutrient inflows come from feeds and fertilizers through aquaculture and rice cultivation. The excess nutrients run into the waterways by direct discharge from aquaculture and runoff processes from rice paddies. Scenario analysis shows that management practices for aquaculture, rice, pig, and poultry farming are key drivers for reducing nutrients in the BPB.
Mitigating agrichemicals from an artificial runoff event using a managed riverine wetland.
Lizotte, Richard E; Shields, F Douglas; Murdock, Justin N; Kröger, Robert; Knight, Scott S
2012-06-15
We examined the mitigation efficiency of a managed riverine wetland amended with a mixture of suspended sediment, two nutrients (nitrogen and phosphorus), and three pesticides (atrazine, metolachlor, and permethrin) during a simulated agricultural runoff event. Hydrologic management of the 500 m-long, 25 m-wide riverine wetland was done by adding weirs at both ends. The agrichemical mixture was amended to the wetland at the upstream weir simulating a four-hour, ~1cm rainfall event from a 16ha agricultural field. Water samples (1L) were collected every 30 min within the first 4h, then every 4h until 48 h, and again on days 5, 7, 14, 21, and 28 post-amendment at distances of 0m, 10 m, 40 m, 300 m and 500 m from the amendment point within the wetland for suspended solids, nutrient, and pesticide analyses. Peak sediment, nutrient, and pesticide concentrations occurred within 3 h of amendment at 0m, 10 m, 40 m, and 300 m downstream and showed rapid attenuation of agrichemicals from the water column with 79-98%, 42-98%, and 63-98% decrease in concentrations of sediments, nutrients, and pesticides, respectively, within 48 h. By day 28, all amendments were near or below pre-amendment concentrations. Water samples at 500 m showed no changes in sediment or nutrient concentrations; pesticide concentrations peaked within 48 h but at ≤11% of upstream peak concentrations and had dissipated by day 28. Managed riverine wetlands≥1 ha and with hydraulic residence times of days to weeks can efficiently trap agricultural runoff during moderate (1cm) late-spring and early-summer rainfall events, mitigating impacts to receiving rivers. Published by Elsevier B.V.
Kim, Sang Eun; Park, Hye-Jin; Jeong, Hye Kyoung; Kim, Mi-Jung; Kim, Minyeong; Bae, Ok-Nam; Baek, Seung-Hoon
2015-07-31
Pancreatic ductal adenocarcinomas are an extremely aggressive and devastating type of cancer with high mortality. Given the dense stroma and poor vascularization, accessibility to nutrients is limited in the tumor microenvironment. Here, we aimed to elucidate the role of autophagy in promoting the survival of human pancreatic cancer PANC-1 cells exposed to nutrient-deprived media (NDM) lacking glucose, amino acids, and serum. NDM inhibited Akt activity and phosphorylation of p70 S6K, and induced AMPK activation and mitochondrial depolarization. NDM also time-dependently increased LC3-II accumulation, number of GFP-LC3 puncta, and colocalization between GFP-LC3 and lysosomes. These results suggested that autophagy was progressively activated through Akt- and AMPK-mTOR pathway in nutrient-deficient PANC-1 cells. Autophagy inhibitors (chloroquine and wortmannin) or silencing of Atg5 augmented PANC-1 cell death in NDM. In cells exposed to NDM, chloroquine and wortmannin induced apoptosis and Z-VAD-fmk inhibited cytotoxicity of these inhibitors. These data demonstrate that autophagy is anti-apoptotic and sustains the survival of PANC-1 cells following extreme nutrient deprivation. Autophagy modulation may be a viable therapeutic option for cancer cells located in the core of solid tumors with a nutrient-deficient microenvironment. Copyright © 2015 Elsevier Inc. All rights reserved.
Nitrogen addition increases fecundity in the desert shrub Sarcobatus vermiculatus.
Drenovsky, R E; Richards, J H
2005-04-01
Nutrients, in addition to water, limit desert primary productivity, but nutrient limitations to fecundity and seed quality in desert ecosystems have received little attention. Reduced seed production and quality may affect recruitment, population, and community processes. At the Mono Basin, CA, USA where the alkaline, sandy soil has very low availability of N, P, and most other nutrients, seed production, recruitment, and dominance of the desert shrub Sarcobatus vermiculatus decrease over a dune successional sequence. Concurrently, Sarcobatus leaf N, P, and Ca/Mg ratio decline from early to later successional dunes. At two later successional dune sites, we fertilized adult Sarcobatus shrubs for 2 years and determined which nutrient(s) limited growth, seed production, and seed quality. We also tested whether nutrient addition at these older sites made these fitness-related variables equivalent to a younger, high-fecundity site. Nitrogen addition, alone, increased Sarcobatus leaf N, growth, and seed production per shoot module. Any treatment including P, Ca, Mg, or micronutrients but not N had an insignificant effect on growth and fecundity. Nitrogen addition also increased filled seed weight, a predictor of potential seedling survival, at one of the sites. Nitrogen-limited seed production and seed mass may reduce Sarcobatus fitness and contribute to the observed successional changes in plant community composition in this alkaline desert ecosystem.
Nutrition Economics: How to Eat Better for Less.
Drewnowski, Adam
2015-01-01
Food prices and diet costs contribute to socioeconomic disparities in diet quality and health. Lower-cost diets provide ample calories but lack essential nutrients. Nutrition economics can remedy health disparities by helping to identify food patterns that are nutrient-rich, affordable, and appealing. First, nutrient profiling models--such as the Nutrient Rich Food (NRF) family of indices--are able to separate foods that are energy-dense from those that are nutrient-rich. Whereas energy-dense foods contain more calories than nutrients, nutrient-rich foods contain more nutrients than calories. Second, new value metrics have identified affordable healthy foods, based on nutrients per unit cost. Third, these methods have now been applied to the analyses of individual foods and beverages, meals, menus, and the total diet. The Healthy Eating Index (HEI), based on compliance with dietary guidelines, was the principal measure of total diet quality. Although healthier diets did generally cost more, some population subgroups managed to obtain nutrient-dense diets at a lower cost. Being able to create affordable, healthy food patterns on limited budgets is an example of nutrition resilience.
Soil as a record of the past: Mass migration as the result of soil exhausting
NASA Astrophysics Data System (ADS)
van Mourik, Jan; Kluiving, Sjoerd
2014-05-01
An extensive area in Northwest Europe is covered by chemical poor Late Glacial aeolian sands. Till the Bronze Age the soils evolution in the coversand landscapes correlated with the geomorphological structure, Umbric Podzols on coversand ridges, Gleyic Podzols on coversand planes and Umbric or Histic Arenosols in brook valleys. Essential was the storage of nutrients in the biomass of the forest system. The nutrient cycle has been for long time a stabilizing factor in the forest ecosystems, repressing further soil acidification. Human occupation resulted in transformation of natural to cultural soilscapes. Agricultural management introduced lateral transport of nutrients from the soil system to the market and interrupted the natural vertical cycling. The results were soil exhaustion and acceleration of soil acidification. 1. In the early Bronze Age, shifting cultivation was applied to create small lots of arable land. Burning of forest means acceleration of the release of organic stored nutrients, available for crop production. However, the moderate rain climate of Northwest Europe caused leaching of released nutrients that were not quickly recycled. Nutrient losses stimulated the soil acidification and in very dry seasons even small scale sand drifting could occur. Without any nutrient addition (fertilization), shifting cultivation is not a form of sustainable land use and led to land degradation. 2. In the early Iron Age, the system Celtic field came in use. Systematic transport of nutrients from green strips to production lots and harvesting caused gradual nutrient losses of the soilscape and accelerated the soil acidification; Umbric Podzols degraded to Carbic Podzols. Celtic Field land management was also not a sustainable form of land use and led to land degradation. 3. Later in time, the lateral transport of nutrients increased during application of plaggic agriculture. Soil acidification continued on heath lands, the production area of organic manure. During the period with plaggic agriculture, the soils on arable fields development from Umbric Podzols to Plaggic podzols and Plaggic Anthrosols. Agriculture on such field became sustainable under conditions of a low productivity. In several archaeological studies there is evidence that the human impact on soils caused significant nutrient losses, soil degradation and diminishing crop production. People had to migrate to another area which a higher soil fertility to guarantee food production. Patterns of migration to fertile areas (if available) have been studied by archaeologists. Lack of space urged people to invent management techniques and equipment to increase crop production inside the occupied area.
Mass migration as the result of soil exhausting
NASA Astrophysics Data System (ADS)
van Mourik, Jan; Kluiving, Sjoerd
2014-05-01
An extensive area in Northwest Europe is covered by chemical poor Late Glacial aeolian sands. Till the Bronze Age the soils evolution in the coversand landscapes correlated with the geomorphological structure, Umbric Podzols on coversand ridges, Gleyic Podzols on coversand planes and Umbric or Histic Arenosols in brook valleys. Essential was the storage of nutrients in the biomass of the forest system. The nutrient cycle has been for long time a stabilizing factor in the forest ecosystems, repressing further soil acidification. Human occupation resulted in transformation of natural to cultural soilscapes. Agricultural management introduced lateral transport of nutrients from the soil system to the market and interrupted the natural vertical cycling. The results were soil exhaustion and acceleration of soil acidification. 1. In the early Bronze Age, shifting cultivation was applied to create small lots of arable land. Burning of forest means acceleration of the release of organic stored nutrients, available for crop production. However, the moderate rain climate of Northwest Europe caused leaching of released nutrients that were not quickly recycled. Nutrient losses stimulated the soil acidification and in very dry seasons even small scale sand drifting could occur. Without any nutrient addition (fertilization), shifting cultivation is not a form of sustainable land use and led to land degradation. 2. In the early Iron Age, the system Celtic field came in use. Systematic transport of nutrients from green strips to production lots and harvesting caused gradual nutrient losses of the soilscape and accelerated the soil acidification; Umbric Podzols degraded to Carbic Podzols. Celtic Field land management was also not a sustainable form of land use and led to land degradation. 3. Later in time, the lateral transport of nutrients increased during application of plaggic agriculture. Soil acidification continued on heath lands, the production area of organic manure. During the period with plaggic agriculture, the soils on arable fields development from Umbric Podzols to Plaggic podzols and Plaggic Anthrosols. Agriculture on such field became sustainable under conditions of a low productivity. In several archaeological studies there is evidence that the human impact on soils caused significant nutrient losses, soil degradation and diminishing crop production. People had to migrate to another area which a higher soil fertility to guarantee food production. Patterns of migration to fertile areas (if available) have been studied by archaeologists. Lack of space urged people to invent management techniques and equipment to increase crop production inside the occupied area.
Bayesian Modeling of the Assimilative Capacity Component of Stream Nutrient Export
Implementing stream restoration techniques and best management practices to reduce nonpoint source nutrients implies enhancement of the assimilative capacity for the stream system. In this paper, a Bayesian method for evaluating this component of a TMDL load capacity is developed...
NONPOINT SOURCES AND WATER QUALITY TRADING
Management of nonpoint sources (NPS) of nutrients may reduce discharge levels more cost effectively than can additional controls on point sources (PS); water quality trading (WQT), where a PS buys nutrient or sediment reductions from an NPS, may be an alternative means for the PS...
Fungicide and Nutrient Transport with Runoff from Creeping Bentgrass Turf
USDA-ARS?s Scientific Manuscript database
The detection of pesticides and excess nutrients in surface waters of urban watersheds has lead to increased environmental concern and suspect of contaminant contributions from residential, urban, and recreational sources. Highly managed biotic systems such as golf courses and commercial landscapes ...
IMPROVED SCIENCE AND DECISION SUPPORT FOR MANAGING WATERSHED NUTRIENT LOADS
The proposed research addresses two critical gaps in the TMDL process: (1) the inadequacy of presently existing receiving water models to accurately simulate nutrient-sediment-water interactions and fixed plants; and (2) the lack of decision-oriented optimization f...
Comparison of Two Spectrophotometric Techniques for Nutrients Analyses in Water Samples
NASA Astrophysics Data System (ADS)
Bartošová, Alica; Michalíková, Anna; Sirotiak, Maroš; Soldán, Maroš
2013-01-01
The aim of this contribution is to compare two common techniques for determining the concentrations of nitrate, nitrite, ammonium and phosphates in surface water and groundwater. Excess of these nutrients in water can directly affect human health (e.g. methemoglobinaemia) or indirectly through the products of secondary pollution - eutrophication (e.g. cyanotoxins, emanation of hydrogen sulphide, mercaptanes, methane...). Negative impact of nutrients excess in surface water often causes the destruction of water ecosystems, and therefore, common substances of these elements must be monitored and managed. For these experiments two spectrophotometric techniques - ultraviolet spectrophotometry and nutrient photometry were used. These techniques are commonly used for quick and simple analyses of nutrients in waste water. There are calibration curves for each nutrient and for determination of their concentration.
Camargo, Iván Darío; Nattero, Julieta; Careaga, Sonia A; Núñez-Farfán, Juan
2017-10-17
Studies of phenotypic plasticity in plants have mainly focused on (1) the effect of environmental variation on whole-plant traits related to the number of modules rather than on (2) the phenotypic consequences of environmental variation in traits of individual modules. Since environmental and developmental factors can produce changes in traits related to the mating system, this study used the second approach to investigate whether within-individual variation in herkogamy-related traits is affected by the environment during plant development in two populations of Datura stramonium , an annual herb with a hypothesized persistent mixed mating system, and to determine which morphological traits may promote self-fertilization. Full-sib families of two Mexican populations of D. stramonium , with contrasting ecological histories, were grown under low, mid and high nutrient availability to investigate the effects of genetic, environmental and within-plant flower position on flower size, corolla, stamen and pistil lengths, and herkogamy. Populations showed differences in familial variation, plasticity and familial differences in plasticity in most floral traits analysed. In one population (Ticumán), the effect of flower position on trait variation varied among families, whereas in the other (Pedregal) the effect of flower position interacted with the nutrient environment. Flower size varied with the position of flowers, but in the opposite direction between populations in low nutrients; a systematic within-plant trend of reduction in flower size, pistil length and herkogamy with flower position increased the probability of self-fertilization in the Pedregal population. Besides genetic variation in floral traits between and within populations, environmental variation affects phenotypic floral trait values at the whole-plant level, as well as among flower positions. The interaction between flower position and nutrient environment can affect the plant's mating system, and this differs between populations. Thus, reductions in herkogamy with flower positions may be expected in environments with either low pollinator abundance or low nutrients. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Adding Remote Sensing Data Products to the Nutrient Management Decision Support Toolbox
NASA Technical Reports Server (NTRS)
Lehrter, John; Schaeffer, Blake; Hagy, Jim; Spiering, Bruce; Blonski, Slawek; Underwood, Lauren; Ellis, Chris
2011-01-01
Some of the primary issues that manifest from nutrient enrichment and eutrophication (Figure 1) may be observed from satellites. For example, remotely sensed estimates of chlorophyll a (chla), total suspended solids (TSS), and light attenuation (Kd) or water clarity, which are often associated with elevated nutrient inputs, are data products collected daily and globally for coastal systems from satellites such as NASA s MODIS (Figure 2). The objective of this project is to inform water quality decision making activities using remotely sensed water quality data. In particular, we seek to inform the development of numeric nutrient criteria. In this poster we demonstrate an approach for developing nutrient criteria based on remotely sensed chla.
Hall, D.W.; Risser, D.W.
1993-01-01
Nitrogen inputs to, and outputs from, a 55-acre site in Lancaster County, Pennsylvania, were estimated to determine the pathways and relative magnitude of loads of nitrogen entering and leaving the site, and to compare the loads of nitrogen before and after the implementation of nutrient management. Inputs of nitrogen to the site were manure fertilizer, commercial fertilizer, nitrogen in precipitation, and nitrogen in ground-water inflow; and these sources averaged 93, 4, 2, and 1 percent of average annual nitrogen additions, respectively. Outputs of nitrogen from the site were nitrogen in harvested crops, loads of nitrogen in surface runoff, volatilization of nitrogen, and loads of nitrogen in ground-water discharge, which averaged 37, less than 1,25, and 38 percent of average annual nitrogen removals from the site, respectively. Virtually all of the nitrogen leaving the site that was not removed in harvested crops or by volatilization was discharged in the ground water. Applications of manure and fertilizer nitrogen to 47.5 acres of cropped fields decreased about 33 percent, from an average of 22,700 pounds per year (480 pounds per acre per year) before nutrient management to 15,175 pounds of nitrogen per year (320 pounds per acre per year) after the implementation of nutrient management practices. Nitrogen loads in ground-water discharged from the site decreased about 30 percent, from an average of 292 pounds of nitrogen per million gallons of ground water before nutrient management to an average of 203 pounds of nitrogen per million gallons as a result of the decreased manure and commercial fertilizer applications. Reductions in manure and commercial fertilizer applications caused a reduction of approximately 11,000 pounds (3,760 pounds per year, 70 pounds per acre per year) in the load of nitrogen discharged in ground water from the 55-acre site during the three-year period 1987-1990.
[Preoperative fluid management contributes to the prevention of intraoperative hypothermia].
Yatabe, Tomoaki; Yokoyama, Masataka
2011-07-01
Intraoperative hypothermia causes several unfavorable events such as surgical site infection and cardiovascular events. Therefore, during anesthesia, temperature is routinely regulated, mainly by using external heating devices. Recently, oral amino acid intake and intravenous amino acid or fructose infusion have been reported to prevent intraoperative hypothermia during general and regional anesthesia. Diet (nutrient)-induced thermogenesis is considered to help prevent intraoperative hypothermia. Since the Enhanced Recovery After Surgery (ERAS) protocol has been introduced, it has been used in perioperative management in many hospitals. Prevention of intraoperative hypothermia is included in this protocol. According to the protocol, anesthesiologists play an important role in both intraoperative and perioperative management. Management of optimal body temperature by preoperative fluid management alone may be difficult. To this end, preoperative fluid management and nutrient management strategies such as preoperative oral fluid intake and carbohydrate loading have the potential to contribute to the prevention of intraoperative hypothermia.
Álvarez-Romero, Jorge G; Wilkinson, Scott N; Pressey, Robert L; Ban, Natalie C; Kool, Johnathan; Brodie, Jon
2014-12-15
Human-induced changes in flows of water, nutrients, and sediments have impacts on marine ecosystems. Quantifying these changes to systematically allocate management actions is a priority for many areas worldwide. Modeling nutrient and sediment loads and contributions from subcatchments can inform prioritization of management interventions to mitigate the impacts of land-based pollution on marine ecosystems. Among the catchment models appropriate for large-scale applications, N-SPECT and SedNet have been used to prioritize areas for management of water quality in coastal-marine ecosystems. However, an assessment of their relative performance, parameterization, and utility for regional-scale planning is needed. We examined how these considerations can influence the choice between the two models and the areas identified as priorities for management actions. We assessed their application in selected catchments of the Gulf of California, where managing land-based threats to marine ecosystems is a priority. We found important differences in performance between models. SedNet consistently estimated spatial variations in runoff with higher accuracy than N-SPECT and modeled suspended sediment (TSS) loads mostly within the range of variation in observed loads. N-SPECT overestimated TSS loads by orders of magnitude when using the spatially-distributed sediment delivery ratio (SDR), but outperformed SedNet when using a calibrated SDR. Differences in subcatchments' contribution to pollutant loads were principally due to explicit representation of sediment sinks and particulate nutrients by SedNet. Improving the floodplain extent model, and constraining erosion estimates by local data including gully erosion in SedNet, would improve results of this model and help identify effective management responses. Differences between models in the patterns of modeled pollutant supply were modest, but significantly influenced the prioritization of subcatchments for management. Copyright © 2014 Elsevier Ltd. All rights reserved.
Russell, J R; Bisinger, J J
2015-06-01
Beyond grazing, managed grasslands provide ecological services that may offer economic incentives for multifunctional use. Increasing biodiversity of plant communities may maximize net primary production by optimizing utilization of available light, water, and nutrient resources; enhance production stability in response to climatic stress; reduce invasion of exotic species; increase soil OM; reduce nutrient leaching or loading in surface runoff; and provide wildlife habitat. Strategically managed grazing may increase biodiversity of cool-season pastures by creating disturbance in plant communities through herbivory, treading, nutrient cycling, and plant seed dispersal. Soil OM will increase carbon and nutrient sequestration and water-holding capacity of soils and is greater in grazed pastures than nongrazed grasslands or land used for row crop or hay production. However, results of studies evaluating the effects of different grazing management systems on soil OM are limited and inconsistent. Although roots and organic residues of pasture forages create soil macropores that reduce soil compaction, grazing has increased soil bulk density or penetration resistance regardless of stocking rates or systems. But the effects of the duration of grazing and rest periods on soil compaction need further evaluation. Because vegetative cover dissipates the energy of falling raindrops and plant stems and tillers reduce the rate of surface water flow, managing grazing to maintain adequate vegetative cover will minimize the effects of treading on water infiltration in both upland and riparian locations. Through increased diversity of the plant community with alterations of habitat structure, grazing systems can be developed that enhance habitat for wildlife and insect pollinators. Although grazing management may enhance the ecological services provided by grasslands, environmental responses are controlled by variations in climate, soil, landscape position, and plant community resulting in considerable spatial and temporal variation in the responses. Furthermore, a single grazing management system may not maximize livestock productivity and each of the potential ecological services provided by grasslands. Therefore, production and ecological goals must be integrated to identify the optimal grazing management system.
Bergamaschi, Brian A.; Downing, Bryan D.; Kraus, Tamara E.C.; Pellerin, Brian A.
2017-07-11
Executive SummaryThis report is the third in a series of three reports that provide information about how high-frequency (HF) nutrient monitoring may be used to assess nutrient inputs and dynamics in the Sacramento–San Joaquin Delta, California (Delta). The purpose of this report is to provide the background, principles, and considerations for designing an HF nutrient-monitoring network for the Delta to address high-priority, nutrient-management questions. The report starts with discussion of the high-priority management questions to be addressed, continues through discussion of the questions and considerations that place demands and constraints on network design, discusses the principles applicable to network design, and concludes with the presentation of three example nutrient-monitoring network designs for the Delta. For three example network designs, we assess how they would address high-priority questions that have been identified by the Delta Regional Monitoring Program (Delta Regional Monitoring Program Technical Advisory Committee, 2015).This report, along with the other two reports of this series (Kraus and others, 2017; Downing and others, 2017), was drafted in cooperation with the Delta Regional Monitoring Program to help scientists, managers, and planners understand how HF data improve our understanding of nutrient sources and sinks, drivers, and effects in the Delta. The first report in the series (Kraus and others, 2017) provides an introduction to the reasons for and fundamental concepts behind using HF monitoring measurements, including a brief summary of nutrient status and trends in the Delta and an extensive literature review showing how and where other research and monitoring programs have used HF monitoring to improve our understanding of nutrient cycling. The report covers the various technologies available for HF nutrient monitoring and presents the different ways HF monitoring instrumentation may be used for both fixed station and spatial assessments. Finally, it presents numerous examples of how HF measurements are currently (2017) being used in the Delta to examine how nutrients and nutrient cycling are related to aquatic habitat conditions.The second report in the series (Downing and others, 2017) summarizes information about HF nutrient and associated biogeochemical monitoring in the north Delta. The report synthesizes data available from the nutrient and water quality monitoring network currently (2017) operated by the U.S. Geological Survey in this ecologically important region of the Delta. In the report, we present and discuss the available data at various timescales—first at the monthly, seasonal, and inter-annual timescales; and, second, for comparison, at the tidal and event timescales. As expected, we determined that there is substantial variability in nitrate concentrations at short timescales, such as within a few hours, but also significant variability at longer timescales such as months or years. This high variability affects calculation of fluxes and loads, indicating that HF monitoring is necessary for understanding and assessing flux-based processes and outcomes in Delta tidal environments.
Nutrient and phytoplankton analysis of a Mediterranean coastal area.
Sebastiá, M T; Rodilla, M
2013-01-01
Identifying and quantifying the key anthropogenic nutrient input sources are essential to adopting management measures that can target input for maximum effect in controlling the phytoplankton biomass. In this study, three systems characterized by distinctive main nutrient sources were sampled along a Mediterranean coast transect. These sources were groundwater discharge in the Ahuir area, the Serpis river discharge in the Venecia area, and a submarine wastewater outfall 1,900 m from the coast. The study area includes factors considered important in determining a coastal area as a sensitive area: it has significant nutrient sources, tourism is a major source of income in the region, and it includes an area of high water residence time (Venecia area) which is affected by the harbor facilities and by wastewater discharges. We found that in the Ahuir and the submarine wastewater outfall areas, the effects of freshwater inputs were reduced because of a greater water exchange with the oligotrophic Mediterranean waters. On the other hand, in the Venecia area, the highest levels of nutrient concentration and phytoplankton biomass were attributed to the greatest water residence time. In this enclosed area, harmful dinoflagellates were detected (Alexandrium sp. and Dinophysis caudata). If the planned enlargement of the Gandia Harbor proceeds, it may increase the vulnerability of this system and provide the proper conditions of confinement for the dinoflagellate blooms' development. Management measures should first target phosphorus inputs as this is the most potential-limiting nutrient in the Venecia area and comes from a point source that is easier to control. Finally, we recommend that harbor environmental management plans include regular monitoring of water quality in adjacent waters to identify adverse phytoplankton community changes.
NASA Astrophysics Data System (ADS)
Bieroza, Magdalena
2017-04-01
High-frequency nutrient (phosphorus and nitrogen) monitoring using wet-chemistry analysers and optical sensors has revolutionised the collection of biogeochemical data from streams, rivers and lakes. Matching the nutrient measurement time with timescales of hydrological responses has revealed biogeochemical patterns and nutrient hydrological responses not observed previously. Capturing a wider range of nutrient concentrations compared to traditional coarse resolution sampling enables more accurate estimation of mean concentrations and loads and thus improved water body classification. However, to date the scientific insights from the high-frequency nutrient monitoring studies have not been translated into policy and operational responses. The pertinent question is where and how often to measure nutrients to satisfy statutory monitoring requirements for the Water Framework Directive and the Nitrates Directive. Therefore this paper discusses how the reduced data uncertainty and improved process understanding obtained with the high-frequency measurements can improve statutory nutrient monitoring, using case studies from England and Sweden.
Managing urban nutrient biogeochemistry for sustainable urbanization.
Lin, Tao; Gibson, Valerie; Cui, Shenghui; Yu, Chang-Ping; Chen, Shaohua; Ye, Zhilong; Zhu, Yong-Guan
2014-09-01
Urban ecosystems are unique in the sense that human activities are the major drivers of biogeochemical processes. Along with the demographic movement into cities, nutrients flow towards the urban zone (nutrient urbanization), causing the degradation of environmental quality and ecosystem health. In this paper, we summarize the characteristics of nutrient cycling within the urban ecosystem compared to natural ecosystems. The dynamic process of nutrient urbanization is then explored taking Xiamen city, China, as an example to examine the influence of rapid urbanization on food sourced nitrogen and phosphorus metabolism. Subsequently, the concept of a nutrient footprint and calculation method is introduced from a lifecycle perspective. Finally, we propose three system approaches to mend the broken biogeochemical cycling. Our study will contribute to a holistic solution which achieves synergies between environmental quality and food security, by integrating technologies for nutrient recovery and waste reduction. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sun, Xiaoxiao; Liang, Xinqiang; Zhang, Feng; Fu, Chaodong
2016-11-01
Nutrient runoff losses from cropping fields can lead to nonpoint source pollution; however, the level of nutrient export is difficult to evaluate, particularly at the regional scale. This study aimed to establish a novel yet simple approach for estimating total nitrogen (TN) and total phosphorus (TP) runoff losses from regional paddy fields. In this approach, temporal changes of nutrient concentrations in floodwater were coupled with runoff-processing functions in rice ( L.) fields to calculate nutrient runoff losses for three site-specific field experiments. Validation experiments verified the accuracy of this method. The geographic information system technique was used to upscale and visualize the TN and TP runoff losses from field to regional scales. The results indicated that nutrient runoff losses had significant spatio-temporal variation characteristics during rice seasons, which were positively related to fertilizer rate and precipitation. The average runoff losses over five study seasons were 20.21 kg N ha for TN and 0.76 kg P ha for TP. Scenario analysis showed that TN and TP losses dropped by 7.64 and 3.0%, respectively, for each 10% reduction of fertilizer input. For alternate wetting and drying water management, the corresponding reduction ratio was 24.7 and 14.0% respectively. Our results suggest that, although both water and fertilizer management can mitigate nutrient runoff losses, the former is significantly more effective. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Yasuda, Shigetaka; Sato, Takeo; Maekawa, Shugo; Aoyama, Shoki; Fukao, Yoichiro; Yamaguchi, Junji
2014-05-30
Ubiquitin ligase plays a fundamental role in regulating multiple cellular events in eukaryotes by fine-tuning the stability and activity of specific target proteins. We have previously shown that ubiquitin ligase ATL31 regulates plant growth in response to nutrient balance between carbon and nitrogen (C/N) in Arabidopsis. Subsequent study demonstrated that ATL31 targets 14-3-3 proteins for ubiquitination and modulates the protein abundance in response to C/N-nutrient status. However, the underlying mechanism for the targeting of ATL31 to 14-3-3 proteins remains unclear. Here, we show that ATL31 interacts with 14-3-3 proteins in a phosphorylation-dependent manner. We identified Thr(209), Ser(247), Ser(270), and Ser(303) as putative 14-3-3 binding sites on ATL31 by motif analysis. Mutation of these Ser/Thr residues to Ala in ATL31 inhibited the interaction with 14-3-3 proteins, as demonstrated by yeast two-hybrid and co-immunoprecipitation analyses. Additionally, we identified in vivo phosphorylation of Thr(209) and Ser(247) on ATL31 by MS analysis. A peptide competition assay showed that the application of synthetic phospho-Thr(209) peptide, but not the corresponding unphosphorylated peptide, suppresses the interaction between ATL31 and 14-3-3 proteins. Moreover, Arabidopsis plants overexpressing mutated ATL31, which could not bind to 14-3-3 proteins, showed accumulation of 14-3-3 proteins and growth arrest in disrupted C/N-nutrient conditions similar to wild-type plants, although overexpression of intact ATL31 resulted in repression of 14-3-3 accumulation and tolerance to the conditions. Together, these results demonstrate that the physiological role of phosphorylation at 14-3-3 binding sites on ATL31 is to modulate the binding ability and stability of 14-3-3 proteins to control plant C/N-nutrient response. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Changes in atmospheric CO2 - Influence of the marine biota at high latitude
NASA Technical Reports Server (NTRS)
Knox, F.; Mcelroy, M. B.
1984-01-01
Approximately half of the nitrogen and phosphorus entering deep waters of the contemporary ocean are transported from the surface in inorganic form as preformed nutrients. A simple model for ocean chemistry is presented and shown to account for the present level of atmospheric CO2. Fluctuations in preformed nutrients, modulated by changes in insolation and circulation at high latitudes, can result in significant variations in CO2. It is suggested that these changes may account for the apparent control on climate exercised by secular variations in the orbital parameters of the earth.
Structure and function of the healthy pre-adolescent pediatric gut microbiome
USDA-ARS?s Scientific Manuscript database
The gut microbiome influences myriad host functions, including nutrient acquisition, immune modulation, brain development, and behavior. Although human gut microbiota are recognized to change as we age, information regarding the structure and function of the gut microbiome during childhood is limite...
Applications of agent-based modeling to nutrient movement Lake Michigan
As part of an ongoing project aiming to provide useful information for nearshore management (harmful algal blooms, nutrient loading), we explore the value of agent-based models in Lake Michigan. Agent-based models follow many individual “agents” moving through a simul...
Opening the black box: evaluation of nutrient nonpoint source management for estuarine watersheds
Over the last 40 years, there have been significant improvements in water quality and ecosystem condition in estuaries stressed by nutrient enrichment. However, documented improvements have been largely attributed to reductions in point sources. In contrast, improvement of coasta...
Reconciling opposing soil processes in row-crop agroecosystems via soil functional zone management
USDA-ARS?s Scientific Manuscript database
Sustaining soil productivity in agroecosystems presents a fundamental ecological challenge: nutrient provisioning depends upon aggregate turnover and microbial decomposition of organic matter (SOM); yet to prevent soil depletion these processes must be balanced by those that restore nutrients and SO...
Taste perception, associated hormonal modulation, and nutrient intake.
Loper, Hillary B; La Sala, Michael; Dotson, Cedrick; Steinle, Nanette
2015-02-01
It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as "flavor." It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Dufois, François; Hardman-Mountford, Nick J; Greenwood, Jim; Richardson, Anthony J; Feng, Ming; Matear, Richard J
2016-05-01
Mesoscale eddies are ubiquitous features of ocean circulation that modulate the supply of nutrients to the upper sunlit ocean, influencing the rates of carbon fixation and export. The popular eddy-pumping paradigm implies that nutrient fluxes are enhanced in cyclonic eddies because of upwelling inside the eddy, leading to higher phytoplankton production. We show that this view does not hold for a substantial portion of eddies within oceanic subtropical gyres, the largest ecosystems in the ocean. Using space-based measurements and a global biogeochemical model, we demonstrate that during winter when subtropical eddies are most productive, there is increased chlorophyll in anticyclones compared with cyclones in all subtropical gyres (by 3.6 to 16.7% for the five basins). The model suggests that this is a consequence of the modulation of winter mixing by eddies. These results establish a new paradigm for anticyclonic eddies in subtropical gyres and could have important implications for the biological carbon pump and the global carbon cycle.
Shipley, Rebecca J; Waters, Sarah L
2012-12-01
A model for fluid and mass transport in a single module of a tissue engineering hollow fibre bioreactor (HFB) is developed. Cells are seeded in alginate throughout the extra-capillary space (ECS), and fluid is pumped through a central lumen to feed the cells and remove waste products. Fluid transport is described using Navier-Stokes or Darcy equations as appropriate; this is overlaid with models of mass transport in the form of advection-diffusion-reaction equations that describe the distribution and uptake/production of nutrients/waste products. The small aspect ratio of a module is exploited and the option of opening an ECS port is explored. By proceeding analytically, operating equations are determined that enable a tissue engineer to prescribe the geometry and operation of the HFB by ensuring the nutrient and waste product concentrations are consistent with a functional cell population. Finally, results for chondrocyte and cardiomyocyte cell populations are presented, typifying two extremes of oxygen uptake rates.
González, Beatriz; Vázquez, Jennifer; Morcillo-Parra, M Ángeles; Mas, Albert; Torija, María Jesús; Beltran, Gemma
2018-09-01
Aromatic alcohols (tryptophol, phenylethanol, tyrosol) positively contribute to organoleptic characteristics of wines, and are also described as bioactive compounds and quorum sensing molecules. These alcohols are produced by yeast during alcoholic fermentation via the Erhlich pathway, although in non-Saccharomyces this production has been poorly studied. We studied how different wine yeast species modulate the synthesis patterns of aromatic alcohol production depending on glucose, nitrogen and aromatic amino acid availability. Nitrogen limitation strongly promoted the production of aromatic alcohols in all strains, whereas low glucose generally inhibited it. Increased aromatic amino acid concentrations stimulated the production of aromatic alcohols in all of the strains and conditions tested. Thus, there was a clear association between the nutrient conditions and production of aromatic alcohols in most of the wine yeast species analysed. Additionally, the synthesis pattern of these alcohols has been evaluated for the first time in Torulaspora delbrueckii, Metschnikowia pulcherrima and Starmellera bacillaris. Copyright © 2018 Elsevier Ltd. All rights reserved.
Phytoplankton Productivity numerical model: calibration via laboratory cultures
NASA Astrophysics Data System (ADS)
Zavatarelli, Marco; fiori, Emanuela; Carolina, Amadio
2017-04-01
The primary production module of the "Biogeochemical Flux Model" (BFM) has been used to replicate results from laboratory phytoplankton cultures of diatoms, dinoflagellates and picophytoplankton. The model explicitly solve for the phytoplankton, chlorophyll, carbon, phosphorus, nitrogen and (diatoms only) silicon content. Simulations of the temporal evolution of the cultured phytoplankton biomass, have been carried out in order to provide a correct parameterization of the temperature role in modulating the growth dynamics, and to gain insight in the process of chlorophyll turnover, with particular reference to the phytoplankton biomass decay in condition of nutrient stress. Results highligthed some limitation of the Q10 approach in defining the temperature constraints on the primary production (particularly at relatively high temperature) This required a modification of such approach. Moreover, the decay of the chlorophyll concentration under nutrient stress, appeared (as expected) significantly decoupled from the evolution of the carbon content. The implementation of a specific procedure (based on the laboratory culture results) adressing such decoupling, allowed for the achievement of better agreement between model and observations.
Roe, D A
1985-01-01
Drug-nutrient interactions and their adverse outcomes have previously been identified by observation, investigation, and literature reports. Knowing the attributes of the drugs, availability of knowledge base management systems for microcomputer use can facilitate prediction of the mechanism and the effects of drug-nutrient interactions. Examples used to illustrate this approach are prediction of lactose intolerance in drug-induced malabsorption, and prediction of the mechanism responsible for drug-induced flush reactions. In the future we see that there may be many opportunities to use this system further in the investigation of complex drug-nutrient interactions.
Abbott, Benjamin W; Moatar, Florentina; Gauthier, Olivier; Fovet, Ophélie; Antoine, Virginie; Ragueneau, Olivier
2018-05-15
Agriculture and urbanization have disturbed three-quarters of global ice-free land surface, delivering huge amounts of nitrogen and phosphorus to freshwater ecosystems. These excess nutrients degrade habitat and threaten human food and water security at a global scale. Because most catchments are either currently subjected to, or recovering from anthropogenic nutrient loading, understanding the short- and long-term responses of river nutrients to changes in land use is essential for effective management. We analyzed a never-published, 18-year time series of anthropogenic (NO 3 - and PO 4 3- ) and naturally derived (dissolved silica) riverine nutrients in 13 catchments recovering from agricultural pollution in western France. In a citizen science initiative, high-school students sampled catchments weekly, which ranged from 26 to 1489km 2 . Nutrient concentrations decreased substantially over the period of record (19 to 50% for NO 3 - and 14 to 80% for PO 4 3- ), attributable to regional, national, and international investment and regulation, which started immediately prior to monitoring. For the majority of catchments, water quality during the summer low-flow period improved faster than during winter high-flow conditions, and annual minimum concentrations improved relatively faster than annual maximum concentrations. These patterns suggest that water-quality improvements were primarily due to elimination of discrete nutrient sources with seasonally-constant discharge (e.g. human and livestock wastewater), agreeing with available land-use and municipal records. Surprisingly, long-term nutrient decreases were not accompanied by changes in nutrient seasonality in most catchments, attributable to persistent, diffuse nutrient stocks. Despite decreases, nutrient concentrations in almost all catchments remained well above eutrophication thresholds, and because additional improvements will depend on decreasing diffuse nutrient sources, future gains may be much slower than initial rate of recovery. These findings demonstrate the value of citizen science initiatives in quantifying long-term and seasonal consequences of changes in land management, which are necessary to identify sustainable limits and predict recovery timeframes. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterization and Placement of Wetlands for Integrated ...
Constructed wetlands have been recognized as an efficient and cost-effective conservation practice to protect water quality through reducing the transport of sediments and nutrients from upstream croplands to downstream water bodies. The challenge resides in targeting the strategic location of wetlands within agricultural watersheds to maximize the reduction in nutrient loads while minimizing their impact on crop production. Furthermore, agricultural watersheds involve complex interrelated processes requiring a systems approach to evaluate the inherent relationships between wetlands and multiple sediment/nutrient sources (sheet, rill, ephemeral gully, channels) and other conservation practices (filter strips). This study describes new capabilities of the USDA’s Annualized Agricultural Non-Point Source pollutant loading model, AnnAGNPS. A developed AnnAGNPS GIS-based wetland component, AgWet, is introduced to identify potential sites and characterize individual artificial or natural wetlands at a watershed scale. AgWet provides a simplified, semi-automated, and spatially distributed approach to quantitatively evaluate wetlands as potential conservation management alternatives. AgWet is integrated with other AnnAGNPS components providing seamless capabilities of estimating the potential sediment/nutrient reduction of individual wetlands. This technology provides conservationists the capability for improved management of watershed systems and support for nutrient
Chemical restrictions of roots in Ultisol subsoils lessened by long-term management
NASA Technical Reports Server (NTRS)
Hardy, D. H.; Raper, C. D. Jr; Miner, G. S.; Raper CD, J. r. (Principal Investigator)
1990-01-01
Exchangeable Al in subsoils of Ultisols in the southeastern USA can restrict rooting depth. Downward movement of basic cations (Ca, Mg, and K), applied as lime and fertilizer, may diminish that restriction over time. Materials from the argillic horizon were collected from three paired sites, having managed (long-term cropping) and nonmanaged topsoils (Typic Paleudults and Hapludults). One managed site was cropped continuously for 15 yr while the others were cultivated for more than 30 yr. Concentrations of extractable cations and other nutrients from the paired sites were compared to determine the magnitude of change due to management. The ability of the subsoils to support plant growth was evaluated in a missing-nutrient greenhouse experiment with sorghum [Sorghum bicolor (L.) Moench]. Subsoils of managed sites had greater effective cation-exchange capacity (CEC) and base saturation than those of non-managed sites. While availabilities of Ca, Mg, and K in subsoils of nonmanaged sites were inadequate to support maximal plant growth, they were adequate in subsoils of managed sites. Compared with nonmanaged sites, KCl-exchangeable Al in subsoils of managed sites was 23% lower at the 15-yr location and 65 and 100% lower at the two other locations. In the absence of lime, sorghum growth was almost totally inhibited on nonmanaged subsoils amended with optimum nutrients. On the managed subsoils, where 100, 65, and 23% of the nonmanaged exchangeable Al had been neutralized by topsoil fertilization and liming, growth reductions under the same conditions were 0, 50, and 100%, respectively. Thus, relatively long-term management had improved these Ultisol subsoils for root growth and development.
ERIC Educational Resources Information Center
Movey, Jan
This competency-based preservice home economics teacher education module on environmental issues and the consumer is the third in a set of seven modules on consumer education related to management. (This set is part of a larger series of sixty-seven modules on the Management Approach to Teaching Consumer and Homemaking Education [MATCHE]--see CE…
Siegenthaler, Andy; Buttler, Alexandre; Grosvernier, Philippe; Gobat, Jean-Michel; Nilsson, Mats B; Mitchell, Edward A D
2013-02-01
Eriophorum vaginatum is a characteristic species of northern peatlands and a keystone plant for cutover bog restoration. Understanding the factors affecting E. vaginatum seedling establishment (i.e. growth dynamics and allocation) under global change has practical implications for the management of abandoned mined bogs and restoration of their C-sequestration function. We studied the responses of leaf dynamics, above- and belowground biomass production of establishing seedlings to elevated CO(2) and N. We hypothesised that nutrient factors such as limitation shifts or dilutions would modulate growth stimulation. Elevated CO(2) did not affect biomass, but increased the number of young leaves in spring (+400 %), and the plant vitality (i.e. number of green leaves/total number of leaves) (+3 %), both of which were negatively correlated to [K(+)] in surface porewater, suggesting a K-limited production of young leaves. Nutrient ratios in green leaves indicated either N and K co-limitation or K limitation. N addition enhanced the number of tillers (+38 %), green leaves (+18 %), aboveground and belowground biomass (+99, +61 %), leaf mass-to-length ratio (+28 %), and reduced the leaf turnover (-32 %). N addition enhanced N availability and decreased [K(+)] in spring surface porewater. Increased tiller and leaf production in July were associated with a doubling in [K(+)] in surface porewater suggesting that under enhanced N production is K driven. Both experiments illustrate the importance of tradeoffs in E. vaginatum growth between: (1) producing tillers and generating new leaves, (2) maintaining adult leaves and initiating new ones, and (3) investing in basal parts (corms) for storage or in root growth for greater K uptake. The K concentration in surface porewater is thus the single most important factor controlling the growth of E. vaginatum seedlings in the regeneration of selected cutover bogs.
NASA Astrophysics Data System (ADS)
Bastola, S.; Dialynas, Y. G.; Bras, R. L.; Arnone, E.; Noto, L. V.
2015-12-01
The dynamics of carbon and nitrogen cycles, increasingly influenced by human activities, are the key to the functioning of ecosystems. These cycles are influenced by the composition of the substrate, availability of nitrogen, the population of microorganisms, and by environmental factors. Therefore, land management and use, climate change, and nitrogen deposition patterns influence the dynamics of these macronutrients at the landscape scale. In this work a physically based distributed hydrological model, the tRIBS model, is coupled with a process-based multi-compartment model of the biogeochemical cycle to simulate the dynamics of carbon and nitrogen (CN) in the Mameyes River basin, Puerto Rico. The model includes a wide range of processes that influence the movement, production, alteration of nutrients in the landscape and factors that affect the CN cycling. The tRIBS integrates geomorphological and climatic factors that influence the cycling of CN in soil. Implementing the decomposition module into tRIBS makes the model a powerful complement to a biogeochemical observation system and a forecast tool able to analyze the influences of future changes on ecosystem services. The soil hydrologic parameters of the model were obtained using ranges of published parameters and observed streamflow data at the outlet. The parameters of the decomposition module are based on previously published data from studies conducted in the Luquillio CZO (budgets of soil organic matter and CN ratio for each of the dominant vegetation types across the landscape). Hydrological fluxes, wet depositon of nitrogen, litter fall and its corresponding CN ratio drive the decomposition model. The simulation results demonstrate a strong influence of soil moisture dynamics on the spatiotemporal distribution of nutrients at the landscape level. The carbon in the litter pool and the nitrate and ammonia pool respond quickly to soil moisture content. Moreover, the CN ratios of the plant litter have significant influence in the dynamics of CN cycling.
Dinesh, R; Srinivasan, V; Hamza, S; Manjusha, A
2010-06-01
The study was conducted to determine whether short-term incorporation of organic manures and biofertilizers influence biochemical and microbial variables reflecting soil quality. For the study, soils were collected from a field experiment conducted on turmeric (Curcuma longa L.) involving organic nutrient management (ONM), chemical nutrient management (CNM) and integrated nutrient management (INM). The findings revealed that application of organic manures and biofertilizers (ONM and INM) positively influenced microbial biomass C, N mineralization, soil respiration and enzymes activities. Contrarily, greater metabolic quotient levels in CNM indicated a stressed soil microbial community. Principal component analysis indicated the strong relationship between microbial activity and the availability of labile and easily mineralizable organic matter. The findings imply that even short-term incorporation of organic manures and biofertilizers promoted soil microbial and enzyme activities and these parameters are sensitive enough to detect changes in soil quality due to short-term incorporation of biological fertilizers. (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kondratjevs, K.; Zabasta, A.; Selmanovs-Pless, V.
2016-02-01
In recent years, there has been significant research focus that revolves around harvesting and minimising energy consumption by wireless sensor network nodes. When a sensor node is depleted of energy, it becomes unresponsive and disconnected from the network that can significantly influence the performance of the whole network. The purpose of the present research is to create a power supply management module in order to provide stable operating voltage for autonomous operations of radio signal repeaters, sensors or gateways of WSN. The developed management module is composed of a solar panel, lithium battery and power supply management module. The novelty of the research is the management module, which ensures stable and uninterrupted operations of electronic equipment in various power supply modes in different situations, simultaneously ensuring energy protection and sustainability of the module components. The management module is able to provide power supply of 5 V for electronics scheme independently, without power interruption switching between power sources and power flows in different directions.
Fiedler, John L
2014-12-01
Systematic collection of national agricultural data has been neglected in many low- and middle-income countries for the past 20 years. Commonly conducted nationally representative household surveys collect substantial quantities of highly underutilized food crop production data. To demonstrate the potential usefulness of commonly available household survey databases for analyzing the agriculture-nutrition nexus. Using household data from the 2010 Bangladesh Household Income and Expenditure Survey, the role and significance of crop selection, area planted, yield, nutrient production, and the disposition of 34 food crops in affecting the adequacy of farming households' nutrient availability and nutrient intake status are explored. The adequacy of each farming household's available energy, vitamin A, calcium, iron, and zinc and households' apparent intakes and intake adequacies are estimated. Each household's total apparent nutrient intake adequacies are estimated, taking into account the amount of each crop that households consume from their own production, together with food purchased or obtained from other sources. Even though rice contains relatively small amounts of micronutrients, has relatively low nutrient density, and is a relatively poor source of nutrients compared with what other crops can produce on a given tract of land, because so much rice is produced in Bangladesh, it is the source of 90% of the total available energy, 85% of the zinc, 67% of the calcium, and 55% of the iron produced by the agricultural sector. The domination of agriculture and diet by rice is a major constraint to improving nutrition in Bangladesh. Simple examples of how minor changes in the five most common cropping patterns could improve farming households' nutritional status are provided. Household surveys' agricultural modules can provide a useful tool for better understanding national nutrient production realities and possibilities.
Wetland Management Reduces Sediment and Nutrient Loading to the Upper Mississippi River
Restored riparian wetlands in the Upper Mississippi River basin have the potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh...
Fisheries exploitation and increased nutrient loadings affect fish and shellfish abudance and production in estuaries. These stressors do not act independently; instead they jointly influence food webs, and each affects the sensitivity of species and ecosystems to the other. Nu...
Livestock waste may cause air quality degradation from ammonia and methane emissions, soil quality detriment from the in-excess nutrients and acidification, and water pollution issues from nutrient and pathogens runoff to the water bodies, leading to eutrophication, algal blooms,...
Irrigation potential of suspended solids and nutrients from tailwater recovery systems
USDA-ARS?s Scientific Manuscript database
Within the Lower Mississippi Alluvial Valley (Mississippi Delta), best management practices (BMP) are being utilized to mitigate nutrient loading from agricultural landscapes to downstream waters. This study was conducted to determine the potential to use solids, P and N captured by tailwater recove...
Reduction of suspended solid and nutrient loss from agricultural lands by tailwater recovery systems
USDA-ARS?s Scientific Manuscript database
Best management practices are being implemented throughout the Lower Mississippi River Alluvial Valley with the aim of alleviating pressures placed on downstream aquatic systems by sediment and nutrient losses from agricultural land; however, research evaluating the performance of one practice, tail...
Uneven nutrient load and potential offsite loss
USDA-ARS?s Scientific Manuscript database
Landscape and management often results in uneven nutrient loads within a field. The hypotheses of this study are that: 1) phosphorus accumulates at low areas in the landscape adjacent to waterways; and 2) nitrate at lower landscape positions will be decreased in the subsoil due to denitrification an...
Corn response and soil nutrient concentration from subsurface application of poultry litter
USDA-ARS?s Scientific Manuscript database
Nitrogen fertilizer management is vital to corn (Zea mays L.) production from financial and environmental perspectives. Poultry litter as a nutrient source in this cropping system is generally surface broadcast, potentially causing volatilization of NH3. Recently a new application method was devel...
Identifying Riparian Buffer Effects on Stream 1 Nitrogen in Southeastern Coastal Plain Watersheds
Riparian areas have long demonstrated their ability to attenuate nutrients and sediments from agricultural runoff at the field scale; however, to inform effective nutrient management choices, the impact of riparian buffers on water quality services must be assessed at watershed s...
Multiple drivers, including nutrient loading and climate change, affect the Narragansett Bay ecosystem. Managers are interested in understanding the timing and magnitude of these effects, as well as ecosystem responses to restoration actions, such as the capacity and potential fo...
Drug-nutrient interactions: a broad view with implications for practice.
Boullata, Joseph I; Hudson, Lauren M
2012-04-01
The relevance of drug?nutrient interactions in daily practice continues to grow with the widespread use of medication. Interactions can involve a single nutrient, multiple nutrients, food in general, or nutrition status. Mechanistically, drug?nutrient interactions occur because of altered intestinal transport and metabolism, or systemic distribution, metabolism and excretion, as well as additive or antagonistic effects. Optimal patient care includes identifying, evaluating, and managing these interactions. This task can be supported by a systematic approach for categorizing interactions and rating their clinical significance. This review provides such a broad framework using recent examples, as well as some classic drug?nutrient interactions. Pertinent definitions are presented, as is a suggested approach for clinicians. This important and expanding subject will benefit tremendously from further clinician involvement. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Surface-water nutrient conditions and sources in the United States Pacific Northwest
Wise, D.R.; Johnson, H.M.
2011-01-01
The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface-water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency's recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to environmental managers in future water-quality planning efforts.
2011-01-01
Breastfeeding is the best source of nutrition for every infant, and exclusive breastfeeding for 6 months is usually optimal in the common clinical situation. However, inappropriate complementary feeding could lead to a nutrient-deficient status, such as iron deficiency anemia, vitamin D deficiency, and growth faltering. The recent epidemic outbreak of obesity in Korean children emphasizes the need for us to control children's daily sedentary life style and their intakes of high caloric foods in order to prevent obesity. Recent assessment of breastfeeding in Korea has shown that the rate is between 63% and 89%; thus, up-to-dated evidence-based nutritional management of breastfeeding infants to prevent common nutrient deficiencies or excesses should be taught to all clinicians and health care providers. PMID:22025920
Giang, P H; Harada, H; Fujii, S; Lien, N P H; Hai, H T; Anh, P N; Tanaka, S
2015-01-01
Rapid socio-economic development in suburban areas of developing countries has induced changes in agricultural waste and nutrient management, resulting in water pollution. The study aimed at estimating agricultural nutrient cycles and their contribution to the water environment. A material flow model of nitrogen (N) and phosphorus (P) was developed focusing on agricultural activities from 1980 to 2010 in Trai hamlet, an agricultural watershed in Nhue-Day River basin, Vietnam. The model focused on the change in household management of human excreta and livestock excreta, and chemical fertilizer consumption. The results showed that the proportion of nutrients from compost/manure applied to paddy fields decreased from 85 to 41% for both N and P between 1980 and 2010. The nutrient inputs derived from chemical fertilizer decreased 6% between 1980 and 2000 for both N and P. Then, these nutrients increased 1.4 times for N and 1.2 times for P from 2000 to 2010. As of 2010, the total inputs to paddy fields have amounted to 435 kg-N/ha/year and 90 kg-P/ha/year. Of these nutrient inputs, 40% of N and 65% of P were derived from chemical fertilizer. Thirty per cent (30%) of total N input was discharged to the water bodies through agricultural runoff and 47% of total P input accumulated in soil.
NASA Astrophysics Data System (ADS)
van Geer, Frans C.; Kronvang, Brian; Broers, Hans Peter
2016-09-01
Four sessions on "Monitoring Strategies: temporal trends in groundwater and surface water quality and quantity" at the EGU conferences in 2012, 2013, 2014, and 2015 and a special issue of HESS form the background for this overview of the current state of high-resolution monitoring of nutrients. The overview includes a summary of technologies applied in high-frequency monitoring of nutrients in the special issue. Moreover, we present a new assessment of the objectives behind high-frequency monitoring as classified into three main groups: (i) improved understanding of the underlying hydrological, chemical, and biological processes (PU); (ii) quantification of true nutrient concentrations and loads (Q); and (iii) operational management, including evaluation of the effects of mitigation measures (M). The contributions in the special issue focus on the implementation of high-frequency monitoring within the broader context of policy making and management of water in Europe for support of EU directives such as the Water Framework Directive, the Groundwater Directive, and the Nitrates Directive. The overview presented enabled us to highlight the typical objectives encountered in the application of high-frequency monitoring and to reflect on future developments and research needs in this growing field of expertise.
Anaerobes, aerobes and phototrophs. A winning team for wastewater management.
Gijzen, H J
2001-01-01
Current mainstream technologies for wastewater treatment, such as activated sludge and tertiary nutrient removal, are too costly to provide a satisfactory solution for the increasing wastewater problems in developing regions. Besides, these technologies do not allow for re-use of valuable energy and nutrients contained in the wastewater. In light of these limitations, it is important to reconsider the technology and strategic approaches in wastewater management. This paper introduces the "Cleaner Production" concept to sewage management, which combines two approaches: pollution prevention and re-use. Pollution prevention includes a shift towards low water use sanitation technology. The more concentrated wastewater, becomes more attractive for re-use oriented treatment schemes. A combination of anaerobic pre-treatment followed by macrophyte-covered stabilisation ponds is proposed for the effective recovery of energy and nutrients from sewage. By selecting optimal applications of the plant biomass and pond effluent, nutrients will end up as fish and crop protein. This contrasts favourably to tertiary nitrogen removal in activated sludge systems, which recycles ammonia through molecular nitrogen at the expense of energy and high costs. Macrophyte ponds are proposed as a key step in waste recycling, because these form the central unit of a recycling engine, driven by photosynthesis. The process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions.
Agricultural utilization of biosolids: A review on potential effects on soil and plant grown.
Sharma, Bhavisha; Sarkar, Abhijit; Singh, Pooja; Singh, Rajeev Pratap
2017-06-01
Environmental and economic implications linked with the proper ecofriendly disposal of modern day wastes, has made it essential to come up with alternative waste management practices that reduce the environmental pressures resulting from unwise disposal of such wastes. Urban wastes like biosolids are loaded with essential plant nutrients. In this view, agricultural use of biosolids would enable recycling of these nutrients and could be a sustainable approach towards management of this hugely generated waste. Therefore biosolids i.e. sewage sludge can serve as an important resource for agricultural utilization. Biosolids are characterized by the occurrence of beneficial plant nutrients (essential elements and micro and macronutrients) which can make help them to work as an effective soil amendment, thereby minimizing the reliance on chemical fertilizers. However, biosolids might contain toxic heavy metals that may limit its usage in the cropland. Heavy metals at higher concentration than the permissible limits may lead to food chain contamination and have fatal consequences. Biosolids amendment in soil can improve physical and nutrient property of soil depending on the quantity and portion of the mixture. Hence, biosolids can be a promising soil ameliorating supplement to increase plant productivity, reduce bioavailability of heavy metals and also lead to effective waste management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Yuping; Zhang, Yanmin; Li, Fangfang; Tan, Liju; Wang, Jiangtao
2017-01-01
Nutrients variations caused by anthropogenic activities alter phytoplankton community interactions, especially competition and succession between two algal species. East China Sea experiences annual successions of Skeletonema costatum and Prorocentrum donghaiense and large-scale blooms of P. donghaiense. In this study, the growth and competition responses of S. costatum and P. donghaiense to different inorganic nutrients structure were evaluated through field and indoors experiments to further understand the nutrients mechanism of these events. Results showed that low Si/N ratio (Si/N<1) and high N/P (>50) possibly accelerated P. donghaiense outbreak and decreased Si/N caused by low Si concentration could speed up S. costatum decay. Excessive DIN also accelerated blooms dominated by P. donghaiense (D t up to -3) when S. costatum perished. Increased DIN loads from anthropogenic activities were possibly responsible for the changes in phytoplankton communities and dinoflagellate outbreak when Si concentration decreased as a result of governmental control efforts. With effective management practices for Si and P reductions worldwide, managers should be aware of the negative implications of unsuccessful management of system N loading because N may significantly alter the composition and ecosystem of phytoplankton communities. Copyright © 2016 Elsevier B.V. All rights reserved.
Management of Local Stressors Can Improve the Resilience of Marine Canopy Algae to Global Stressors
Strain, Elisabeth M. A.; van Belzen, Jim; van Dalen, Jeroen; Bouma, Tjeerd J.; Airoldi, Laura
2015-01-01
Coastal systems are increasingly threatened by multiple local anthropogenic and global climatic stressors. With the difficulties in remediating global stressors, management requires alternative approaches that focus on local scales. We used manipulative experiments to test whether reducing local stressors (sediment load and nutrient concentrations) can improve the resilience of foundation species (canopy algae along temperate rocky coastlines) to future projected global climate stressors (high wave exposure, increasing sea surface temperature), which are less amenable to management actions. We focused on Fucoids (Cystoseira barbata) along the north-western Adriatic coast in the Mediterranean Sea because of their ecological relevance, sensitivity to a variety of human impacts, and declared conservation priority. At current levels of sediment and nutrients, C. barbata showed negative responses to the simulated future scenarios of high wave exposure and increased sea surface temperature. However, reducing the sediment load increased the survival of C. barbata recruits by 90.24% at high wave exposure while reducing nutrient concentrations resulted in a 20.14% increase in the survival and enhanced the growth of recruited juveniles at high temperature. We conclude that improving water quality by reducing nutrient concentrations, and particularly the sediment load, would significantly increase the resilience of C. barbata populations to projected increases in climate stressors. Developing and applying appropriate targets for specific local anthropogenic stressors could be an effective management action to halt the severe and ongoing loss of key marine habitats. PMID:25807516
USDA-ARS?s Scientific Manuscript database
The intestine must perform the critical role of nutrient acquisition whilst preventing the passage of undesirable microbes or microbial products from the external environment to sterile body compartments. Various components contribute to antimicrobial defenses in the intestine. The mucus layer(s),...
Tully, Katherine L; Lawrence, Deborah
2012-06-01
In a coffee agroforest, the crop is cultivated under the shade of fruit-bearing and nitrogen (N)-fixing trees. These trees are periodically pruned to promote flowering and fruiting as well as to make nutrients stored in tree biomass available to plants. We investigated the effect of canopy composition and substrate quality on decomposition rates and patterns of nutrient release from pruning residues in a coffee agroforest located in Costa Rica's Central Valley. Initial phosphorus (P) release was enhanced under a canopy composed solely of N-fixing, Erythrina poeppigiana compared to a mixed canopy of Erythrina and Musa acuminata (banana). Both initial and final N release were similar under the two canopy types. However, after five months of decomposition, a higher proportion of initial N had been released under the single canopy. Although patterns of decomposition and nutrient release were not predicted by initial substrate quality, mass loss in leaf mixtures rates were well predicted by mean mass loss of their component species. This study identifies specific pruning regimes that may regulate N and P release during crucial growth periods, and it suggests that strategic pruning can enhance nutrient availability. For example, during the onset of rapid fruit growth, a two-species mixture may release more P than a three-species mixture. However, by the time of the harvest, the two- and three-species mixtures have released roughly the same amount of N and P. These nutrients do not always follow the same pattern, as N release can be maximized in single-species substrates, while P release is often facilitated in species mixtures. Our study indicates the importance of management practices in mediating patterns of nutrient release. Future research should investigate how canopy composition and farm management can also mediate on-farm nutrient losses.
Cao, Xinyi; Zhao, Dayong; Xu, Huimin; Huang, Rui; Zeng, Jin; Yu, Zhongbo
2018-06-11
To investigate the differences in the interactions of microbial communities in two regions in Taihu Lake with different nutrient loadings [Meiliang Bay (MLB) and Xukou Bay (XKB)], water samples were collected and both intra- and inter-kingdom microbial community interactions were examined with network analysis. It is demonstrated that all of the bacterioplankton, microeukaryotes and inter-kingdom communities networks in Taihu Lake were non-random. For the networks of bacterioplankton and inter-kingdom community in XKB, higher clustering coefficient and average degree but lower average path length indexes were observed, indicating the nodes in XKB were more clustered and closely connected with plenty edges than those of MLB. The bacterioplankton and inter-kingdom networks were considerably larger and more complex with more module hubs and connectors in XKB compared with those of MLB, whereas the microeukaryotes networks were comparable and had no module hubs or connectors in the two lake zones. The phyla of Acidobacteria, Cyanobacteria and Planctomycetes maintained greater cooperation with other phyla in XKB, rather than competition. The relationships between microbial communities and environmental factors in MLB were weaker. Compared with the microbial community networks of XKB, less modules in networks of MLB were significantly correlated with total phosphorous and total nitrogen.
ERIC Educational Resources Information Center
California State Univ., Fresno. Dept. of Home Economics.
This competency-based preservice home economics teacher education module on marketing practices in relation to low income clientele is the third in a set of three modules on management in economically depressed areas (EDAs). (This set is part of a larger set of sixty-seven modules on the Management Approach to Teaching Consumer and Homemaking…
Brook, Matthew S; Wilkinson, Daniel J; Atherton, Philip J
2017-11-01
In addition to being essential for movement, skeletal muscles act as both a store and source of key macronutrients. As such, muscle is an important tissue for whole body homeostasis, undergoing muscle wasting in times of starvation, disease, and stress, for example, to provide energy substrates for other tissues. Yet, muscle wasting is also associated with disability, comorbidities, and mortality. As nutrition is so crucial to maintaining muscle homeostasis 'in health', it has been postulated that muscle wasting in cachexia syndromes may be alleviated by nutritional interventions. This review will highlight recent work in this area in relation to muscle kinetics, the acute metabolic (e.g. dietary protein), and longer-term effects of dietary interventions. Whole body and skeletal muscle protein synthesis invariably exhibit deranged kinetics (favouring catabolism) in wasting states; further, many of these conditions harbour blunted anabolic responses to protein nutrition compared with healthy controls. These derangements underlie muscle wasting. Recent trials of essential amino acid and protein-based nutrition have shown some potential for therapeutic benefit. Nutritional modulation, particularly of dietary amino acids, may have benefits to prevent or attenuate disease-induced muscle wasting. Nonetheless, there remains a lack of recent studies exploring these key concepts to make conclusive recommendations.
Della Pepa, Giuseppe; Vetrani, Claudia; Lombardi, Gianluca; Bozzetto, Lutgarda; Annuzzi, Giovanni; Rivellese, Angela Albarosa
2017-01-01
Non-alcoholic fatty liver disease (NAFLD) incorporates an extensive spectrum of histologic liver abnormalities, varying from simple triglyceride accumulation in hepatocytes non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), and it is the most frequent chronic liver disease in the industrialized world. Beyond liver related complications such as cirrhosis and hepatocellular carcinoma, NAFLD is also an emerging risk factor for type 2 diabetes and cardiovascular disease. Currently, lifestyle intervention including strategies to reduce body weight and to increase regular physical activity represents the mainstay of NAFLD management. Total caloric intake plays a very important role in both the development and the treatment of NAFLD; however, apart from the caloric restriction alone, modifying the quality of the diet and modulating either the macro- or micronutrient composition can also markedly affect the clinical evolution of NAFLD, offering a more realistic and feasible treatment alternative. The aim of the present review is to summarize currently available evidence from randomized controlled trials on the effects of different nutrients including carbohydrates, lipids, protein and other dietary components, in isocaloric conditions, on NAFLD in people at high cardiometabolic risk. We also describe the plausible mechanisms by which different dietary components could modulate liver fat content. PMID:28954437
Havik, Gilles; Catenazzi, Alessandro; Holmgren, Milena
2014-01-01
Marine-derived nutrients can increase primary productivity and change species composition of terrestrial plant communities in coastal and riverine ecosystems. We hypothesized that sea nutrient subsidies have a positive effect on nitrogen assimilation and seedling survival of non-nitrogen fixing species, increasing the relative abundance of non-nitrogen fixing species close to seashore. Moreover, we proposed that herbivores can alter the effects of nutrient supplementation by preferentially feeding on high nutrient plants. We studied the effects of nutrient fertilization by seabird guano on tree recruitment and how these effects can be modulated by herbivorous lizards in the coastal dry forests of northwestern Peru. We combined field studies, experiments and stable isotope analysis to study the response of the two most common tree species in these forests, the nitrogen-fixing Prosopis pallida and the non-nitrogen-fixing Capparis scabrida. We did not find differences in herbivore pressure along the sea-inland gradient. We found that the non-nitrogen fixing C. scabrida assimilates marine-derived nitrogen and is more abundant than P. pallida closer to guano-rich soil. We conclude that the input of marine-derived nitrogen through guano deposited by seabirds feeding in the Pacific Ocean affects the two dominant tree species of the coastal dry forests of northern Peru in contrasting ways. The non-nitrogen fixing species, C. scabrida may benefit from sea nutrient subsidies by incorporating guano-derived nitrogen into its foliar tissues, whereas P. pallida, capable of atmospheric fixation, does not.
Havik, Gilles; Catenazzi, Alessandro; Holmgren, Milena
2014-01-01
Marine-derived nutrients can increase primary productivity and change species composition of terrestrial plant communities in coastal and riverine ecosystems. We hypothesized that sea nutrient subsidies have a positive effect on nitrogen assimilation and seedling survival of non-nitrogen fixing species, increasing the relative abundance of non-nitrogen fixing species close to seashore. Moreover, we proposed that herbivores can alter the effects of nutrient supplementation by preferentially feeding on high nutrient plants. We studied the effects of nutrient fertilization by seabird guano on tree recruitment and how these effects can be modulated by herbivorous lizards in the coastal dry forests of northwestern Peru. We combined field studies, experiments and stable isotope analysis to study the response of the two most common tree species in these forests, the nitrogen-fixing Prosopis pallida and the non-nitrogen-fixing Capparis scabrida. We did not find differences in herbivore pressure along the sea-inland gradient. We found that the non-nitrogen fixing C. scabrida assimilates marine-derived nitrogen and is more abundant than P. pallida closer to guano-rich soil. We conclude that the input of marine-derived nitrogen through guano deposited by seabirds feeding in the Pacific Ocean affects the two dominant tree species of the coastal dry forests of northern Peru in contrasting ways. The non-nitrogen fixing species, C. scabrida may benefit from sea nutrient subsidies by incorporating guano-derived nitrogen into its foliar tissues, whereas P. pallida, capable of atmospheric fixation, does not. PMID:24466065
NASA Astrophysics Data System (ADS)
Kruger, Kevin C.
Nutrient management methods are needed to provide sustainable operation to livestock production that balance the costs of operation and maintenance. Cultivating duckweed on dairy wastes is considered an effective way of nutrient uptake and cycling. Duckweed cultivation has been implemented on nutrient management systems, such as constructed wetlands and waste stabilization ponds that use both domestic and swine wastewater. The objectives of this study were to (1) identify a nutrient concentration and duckweed strain that rapidly produces biomass, (2) removes nutrient content from anaerobically digested dairy manure, and (3) produces starch from nutrient starvation. To complete these objectives, this study targeted estimating growth and nutrient rate constants as well as starch yield of duckweed under different cultivation conditions. The strains of duckweed, Landoltia punctata 0128, Lemna gibba 7589, and Lemna minuta 9517 were identified as the promising candidates for their high levels of nutrient uptake, starch accumulation, and biomass production. The growth rate of the duckweed strain was assessed based on the effects of temperature, pH, dissolved oxygen, light intensity, nutrient concentration, and biomass accumulation. The nutrient uptake through duckweed cultivation on the anaerobically digested (AD) dairy manure, characterized by the changes of total nitrogen (TN), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and ortho-phosphate-phosphorus (o-PO 4-P), was assessed in four nutrient dilution ratios 1:5, 1:13, 1:18, and 1:27 v/v at two light intensities of 10,000 and 3,000 lux to model seasonal variation. The duckweed strain that exhibited the best biomass production, nutrient removal and starch accumulation was Landoltia punctata 0128 at a dilution ratio of 1:27 at a light intensity of 10,000 lux. The growth rate constant established from zero order kinetics for Landoltia punctata 0128 was 13.3 gm-2d-1. The rate constants for nutrient recovery were 0.122 d-1 of TN, 0.136 d -1 of TKN, 0.145 d-1 of TP, and 0.173d-1 of o-PO4-P. The batch efficiency of cultivation for Landoltia punctata 0128 on dilution ratio 1:27, in terms of nutrient uptake was 38% m/m in relation to the total nitrogen removed. The starch yield was measured at 30% w/w for Landoltia punctata 0128 after the nutrient starvation process. Due to its ability to reduce nutrients from AD dairy manure, accumulate biomass at a rapid growth rate, and accumulate a high yield of starch, Landoltia punctata 0128 has great potential to become a preferred choice for nutrient recovery and biomass and bioethanol production.
Sankaranarayanan, Subramanian; Samuel, Marcus A
2015-01-01
Plants respond to limited soil nutrient availability by inducing more lateral roots (LR) to increase the root surface area. At the cellular level, nutrient starvation triggers the process of autophagy through which bulk degradation of cellular materials is achieved to facilitate nutrient mobilization. Whether there is any link between the cellular autophagy and induction of LR had remained unknown. We recently showed that the S-Domain receptor Kinase (ARK2) and U Box/Armadillo Repeat-Containing E3 ligase (PUB9) module is required for lateral root formation under phosphate starvation in Arabidopsis thaliana.(1) We also showed that PUB9 localized to autophagic bodies following either activation by ARK2 or under phosphate starvation and ark2-1/pub9-1 plants displayed lateral root defects with inability to accumulate auxin in the root tips under phosphate starvation.(1) Supplementing exogenous auxin was sufficient to rescue the LR defects in ark2-1/pub9-1 mutant. Blocking of autophagic responses in wild-type Arabidopsis also resulted in inhibition of both lateral roots and auxin accumulation in the root tips indicating the importance of autophagy in mediating auxin accumulation under phosphate starved conditions.(1) Here, we propose a model for ARK2/AtPUB9 module in regulation of lateral root development via selective autophagy.
NASA Astrophysics Data System (ADS)
Némery, J.; Alvarado, R.; Gratiot, N.; Duvert, C.; Mahé, F.; Duwig, C.; Bonnet, M.; Prat, C.; Esteves, M.
2009-12-01
The Cointzio reservoir (capacity 70 Mm3) is an essential component of the drinking water supply (20 %) of Morelia city (1 M inhabitants, Michoacán, Mexico). The watershed is 627 km2 and mainly forested (45 %) and cultivated (43 %) with recent increase of avocados plantations. The mean population density is 65 inh./km2 and there are no waste water treatment plants in the villages leading locally to high levels of organic and nutritive pollution. Soils are mostly volcanic and recent deforestations have led to important processes of erosion especially during the wet season (from June to October). As a result the reservoir presents a high turbidity level (Secchi < 20 cm) and has lost 20 % of its storage capacity through siltation since its building in 1940. The high turbidity renders the water potabilization processes difficult. Moreover, eutrophication and development of undesirable algae such as Cyanobacteria may even increase the water treatment cost. A weekly composite sampling was realized in 2009 at the reservoir entry and exit in order to determine nutrients mass balance. At the reservoir entrance, discharges were measured continuously. At the exit, discharges were obtained from the Comición Nacional Del Agua (CNA). The water residence time in the reservoir is lower than one year. Nutrients fluxes entering and exiting the reservoir were calculated as the product of water discharges and weekly concentrations of nutrients. Within the reservoir, the vertical distributions of temperature, oxygen, turbidity, pH (with a Hydrolab probe), nutrients (PO43-, NH4+, NO3-), Dissolved Organic Carbon, chlorophyll a (laboratory analysis with a Hach Lange spectrophotometer), phytoplankton and zooplankton (variety and abundance) were measured every month to determine its seasonal dynamics. Samples of deposited sediments were also taken to assess phosphorus (P) stock. Nutrient inputs revealed to be strongly conditioned by the watershed hydrology. During low flow period (November to May), the baseflow is much more concentrated in dissolved nutrients. On the contrary, the high flows (June to October) bring a high amount of suspended sediments (up to 50g/L) that transport nutrients such as particulate P. Despite the high turbidity level of the reservoir, chlorophyll a concentrations appear important (70 µg/L during the dry season) especially in the first five meters of the water column. The phytoplankton community is dominated by Euglenophyta and Cyanobacteria groups typical of eutrophic waters. This study is the first complete biogeochemical survey of the Cointzio watershed. Results acquired will be used in a 3D biogeochemical model ELMO (Bonnet and Wessen, 2001) with the objective of providing a quantitative and update analysis of the water quality. The model already reproduced thermal stratification but furthers runs are needed to calibrate the biogeochemical modules and provide an efficient tool to reservoir’s managers.
Larsen, Tove A
2015-12-15
CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Incorporation of animal manures into soils is a key nutrient management strategy for sustainable agricultural systems by supplying plant nutrients and maintaining soil quality. Dissolved organic matter (DOM) released from manures affects many soil chemical processes due to its reactivity with soil ...
Upstream-to-downstream changes in nutrient export risk
James D. Wickham; Timothy G. Wade; Kurt H. Riitters; R.V. O’Neill; Jonathan H. Smith; Elizabeth R. Smith; K.B. Jones; A.C. Neale
2003-01-01
Abstract: Nutrient export coefficients are estimates of the mass of nitrogen (N) or phosphorus (P) normalized by area and time (e.g., kg/ha/yr). They have been estimated most often for watersheds ranging in size from 102 to 104 hect-ares, and have been recommended as measurements to inform management...
An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P)...
US EPA is working with state and local partners in Florida to develop numeric water quality criteria to protect estuaries from nutrient pollution. Similar to other nutrient management programs in Florida, EPA is considering status of seagrass habitats as an indicator of biologic...
Effects of fire on chaparral soils in Arizona and California and postfire management implications
Leonard F. DeBano
1989-01-01
Wildfires and prescribed burns are common throughout Arizona and California chaparral. Predicting fire effects requires understanding fire behavior, estimating soil heating, and predicting changes in soil properties. Substantial quantities of some nutrients, particularly nitrogen and phosphorus, are lost directly during combustion. Highly available nutrients released...
Soil nutrient variability and groundwater nitrate-N in agricultural fields
USDA-ARS?s Scientific Manuscript database
Landscape and management often result in uneven nutrient loads within a field. The hypotheses of this study are that 1) phosphorus accumulates at low areas in the landscape adjacent to waterways, and 2) nitrate at lower landscape positions will be decreased in the subsoil due to denitrification and ...
Transport and fate of sediments and nutrients within watersheds have important implications for water quality and water resources. Water quality issues often arise because sediments serve as carriers for various pollutants such as nutrients, pathogens, and toxic substances. The C...
USDA-ARS?s Scientific Manuscript database
The presence of excess nutrients in surfaces waters can result in undesirable environmental and economic consequences including nuisance algal blooms and eutrophication. Fertilizer use in highly managed turf systems such as golf courses and commercial and residential landscapes has raised questions ...
USDA-ARS?s Scientific Manuscript database
The timing of manure application to agricultural soils remains a contentious area of nutrient management, particularly with regard to the impact of timing on nutrient loss in runoff and downstream water quality. We examined the effect of seasonal manure application timing and manure storage capacity...
Corn grain and nutrient uptake response to different swine manure application methods
USDA-ARS?s Scientific Manuscript database
Farmers are looking for better management practices to enhance production and reduce negative environmental impact from nitrogen (N) fertilizer application since N is one of the most important and costly nutrient inputs for crop production. In this field experiment pre-plant swine effluent applicati...
No-till corn response and soil nutrient concentrations from subsurface banding of poultry litter
USDA-ARS?s Scientific Manuscript database
Nitrogen fertilizer management is vital to no-till corn (Zea mays) production from financial and environmental perspectives. Poultry litter as a nutrient source in this cropping system is generally land applied by surface broadcast, potentially causing volatilization of ammonia (NH3)-N. Recently a...
Nitrogen source and application method impact on corn yield and nutrient uptake
USDA-ARS?s Scientific Manuscript database
Farmers are looking for better management practices to enhance production and reduce negative environmental impact from nitrogen (N) fertilizer application since N is one of the most important and costly nutrient inputs for crop production. In this field experiment pre-plant swine effluent applicati...
Multiple drivers, including nutrient loading and climate change, affect the Narragansett Bay ecosystem in Rhode Island/Massachusetts, USA. Managers are interested in understanding the timing and magnitude of these effects, and ecosystem responses to restoration actions. To provid...
Switchgrass harvest time management can impact biomass yield and nutrient content
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a dedicated energy crop native to much of North America. While high-biomass yield is of significant importance for the development of switchgrass as a bioenergy crop, nutrient content in the biomass as it relates to biofuel conversion efficiency is also critical...
Ecological Impacts of Revegetation and Management Practices of Ski Slopes in Northern Finland
NASA Astrophysics Data System (ADS)
Kangas, Katja; Tolvanen, Anne; Kälkäjä, Tarja; Siikamäki, Pirkko
2009-09-01
Outdoor recreation and nature-based tourism represent an increasingly intensive form of land use that has considerable impacts on native ecosystems. The aim of this paper is to investigate how revegetation and management of ski runs influence soil nutrients, vegetation characteristics, and the possible invasion of nonnative plant species used in revegetation into native ecosystems. A soil and vegetation survey at ski runs and nearby forests, and a factorial experiment simulating ski run construction and management (factors: soil removal, fertilization, and seed sowing) were conducted at Ruka ski resort, in northern Finland, during 2003-2008. According to the survey, management practices had caused considerable changes in the vegetation structure and increased soil nutrient concentrations, pH, and conductivity on the ski runs relative to nearby forests. Seed mixture species sown during the revegetation of ski runs had not spread to adjacent forests. The experimental study showed that the germination of seed mixture species was favored by treatments simulating the management of ski runs, but none of them could eventually establish in the study forest. As nutrient leaching causes both environmental deterioration and changes in vegetation structure, it may eventually pose a greater environmental risk than the spread of seed mixture species alone. Machine grading and fertilization, which have the most drastic effects on soils and vegetation, should, therefore, be minimized when constructing and managing ski runs.
Ecological impacts of revegetation and management practices of ski slopes in northern Finland.
Kangas, Katja; Tolvanen, Anne; Kälkäjä, Tarja; Siikamäki, Pirkko
2009-09-01
Outdoor recreation and nature-based tourism represent an increasingly intensive form of land use that has considerable impacts on native ecosystems. The aim of this paper is to investigate how revegetation and management of ski runs influence soil nutrients, vegetation characteristics, and the possible invasion of nonnative plant species used in revegetation into native ecosystems. A soil and vegetation survey at ski runs and nearby forests, and a factorial experiment simulating ski run construction and management (factors: soil removal, fertilization, and seed sowing) were conducted at Ruka ski resort, in northern Finland, during 2003-2008. According to the survey, management practices had caused considerable changes in the vegetation structure and increased soil nutrient concentrations, pH, and conductivity on the ski runs relative to nearby forests. Seed mixture species sown during the revegetation of ski runs had not spread to adjacent forests. The experimental study showed that the germination of seed mixture species was favored by treatments simulating the management of ski runs, but none of them could eventually establish in the study forest. As nutrient leaching causes both environmental deterioration and changes in vegetation structure, it may eventually pose a greater environmental risk than the spread of seed mixture species alone. Machine grading and fertilization, which have the most drastic effects on soils and vegetation, should, therefore, be minimized when constructing and managing ski runs.
A study of biohazard protection for farming modules of lunar base CELSS.
Fujii, T; Midorikawa, Y; Shiba, M; Terai, M; Omasa, K; Nitta, K
1992-01-01
For the Closed Ecological Life Support System (CELSS) of a manned lunar base which is planned to be built on the moon early in the 21st century, several proposed programs exist to grow vegetables inside a farming module. At the 40th IAF (Malaga, 1989) the author et al presented a proposal for supplying food and nutrients to a crew of eight members, a basic concept which is based on growing four kinds of vegetables. This paper describes measures for biohazard protection in farming modules. In this study, biohazard protection means prevention of the dispersion of plant diseases to other plant species or other portions of farming beds.
EPA is working to develop methods and guidance to manage and clean up contaminated land, groundwater and nutrient pollution as well as develop innovative approaches to managing materials and waste including energy recovery.
Design of a Data Distribution Core Model for Seafloor Observatories in East China Sea
NASA Astrophysics Data System (ADS)
Chen, H.; Qin, R.; Xu, H.
2017-12-01
High loadings of nutrients and pollutants from agriculture, industries and city waste waters are carried by Changjiang (Yangtze) River and transformed into the foodweb in the river freshwater plume. Understanding these transport and transformation processes is essential for the ecosystem protection, fisheries resources management, seafood safety and human health. As Xiaoqushan Seafloor Observatory and Zhujiajian Seafloor Observatory built in East China Sea, it is an opportunity and a new way for the research of Changjiang River plume. Data collected by seafloor observatory should be accessed conveniently by end users in real time or near real time, which can make it play a better role. Therefore, data distribution is one of major issues for seafloor observatory characterized by long term, real time, high resolution and continuous observation. This study describes a Data Distribution core Model for Seafloor Observatories in East China Sea (ESDDM) containing Data Acquisition Module (DAM), Data Interpretation Module (DIM), Data Transmission Module (DTM) and Data Storage Module (DTM), which enables acquiring, interpreting, transmitting and storing various types of data in real time. A Data Distribution Model Makeup Language (DDML) based on XML is designed to enhance the expansibility and flexibility of the system implemented by ESDDM. Network sniffer is used to acquire data by IP address and port number in DAM promising to release the operating pressure of junction boxes. Data interface, core data processing plugins and common libraries consist of DIM helping it interpret data in a hot swapping way. DTM is an external module in ESDDM transmitting designated raw data packets to Secondary Receiver Terminal. The technology of database connection pool used in DSM facilitates the efficiency of large volumes of continuous data storage. Given a successful scenario in Zhujiajian Seafloor Observatory, the protosystem based on ESDDM running up to 1500h provides a reference for other seafloor observatories in data distribution service.
NASA Astrophysics Data System (ADS)
Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun
2013-03-01
Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a-1 and 5254.4 tons P a-1, and annual area-specific nutrient loads were 1.94 tons N km-2 and 0.31 tons P km-2. Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.
Environmental labelling in The Netherlands: a framework for integrated farming.
Manhoudt, A G E; van de Ven, G W J; Udo de Haes, H A; de Snoo, G R
2002-07-01
This article compares four Dutch environmental certification schemes for agricultural food crops, analysing their methodology and the completeness of their criteria on five aspects: pesticide use, nutrient use, water management, energy and materials consumption, and habitat management. The least stringent of the labels, the MBT ('Environmentally Aware Cultivation') certificate, serves mainly to increase farmers' awareness of nutrient and pesticide use. With regard to both administrative obligations and actual management practices, the MBT label largely mirrors the terms of standing Dutch legislation. The CC ('Controlled Cultivation') and AMK ('Agro-Environmental') labels comprise more and more stringent criteria. With their restrictions on nutrient and pesticide use, these two labels serve as the two principal labels in the field of integrated agriculture. There is little difference between the two and it is recommended that they be merged, on the basis of a standardised definition of integrated agriculture. The EKO ('Organic Agriculture') label proceeds from different principles, but as a minimum should also comply with Dutch legislation without exception. For both integrated and organic agriculture, in addition to criteria on pesticide and nutrient use, criteria should also be developed for water management, energy and materials use and habitat management. The relationship between the criteria and their respective thresholds and Dutch legislation is also addressed. Existing criteria are frequently specified in such a way that the environmental benefits cannot be ascertained. This is a serious drawback for the parties further down the chain: auctioneers, retailers and consumers. It is recommended to develop qualitative guidelines for an Agricultural Stewardship Council at international level, like the Forest Stewardship Council, and a separate label for integrated agriculture per country comprising quantitative criteria for all relevant aspects of farming operations.
Integrated climate-chemical indicators of diffuse pollution from land to water.
Mellander, Per-Erik; Jordan, Phil; Bechmann, Marianne; Fovet, Ophélie; Shore, Mairead M; McDonald, Noeleen T; Gascuel-Odoux, Chantal
2018-01-17
Management of agricultural diffuse pollution to water remains a challenge and is influenced by the complex interactions of rainfall-runoff pathways, soil and nutrient management, agricultural landscape heterogeneity and biogeochemical cycling in receiving water bodies. Amplified cycles of weather can also influence nutrient loss to water although they are less considered in policy reviews. Here, we present the development of climate-chemical indicators of diffuse pollution in highly monitored catchments in Western Europe. Specifically, we investigated the influences and relationships between weather processes amplified by the North Atlantic Oscillation during a sharp upward trend (2010-2016) and the patterns of diffuse nitrate and phosphorus pollution in rivers. On an annual scale, we found correlations between local catchment-scale nutrient concentrations in rivers and the influence of larger, oceanic-scale climate patterns defined by the intensity of the North Atlantic Oscillation. These influences were catchment-specific showing positive, negative or no correlation according to a typology. Upward trends in these decadal oscillations may override positive benefits of local management in some years or indicate greater benefits in other years. Developing integrated climate-chemical indicators into catchment monitoring indicators will provide a new and important contribution to water quality management objectives.
Taing, Meng-Wong; Tan, Eunice Tze Xin; Williams, Gail M; Clavarino, Alexandra M; McGuire, Treasure M
2016-05-01
To investigate pharmacists' herbal/nutrient weight loss complementary medicine (WLCM) practices in the context of other pharmacist weight management support practices (provision of lifestyle advice, orlistat and meal replacement treatments); and gain insight into their attitudes, recommendations, information and education needs. Pharmacists from a randomly selected sample of 214 community pharmacies from different socioeconomic areas in the Greater Brisbane region, Australia, were invited to complete a survey to explore their weight management practices, with a specific focus on herbal/nutrient WLCM practices. Data collected from the sample group represented pharmacist practices within the metropolitan Greater Brisbane region. This survey achieved a 51% response rate. During weight management consultations, a high proportion of customers (37%) sought advice from community pharmacists relating to WLCMs relative to other weight management practices; however, only a small proportion (10%) of pharmacists recommended them. Most were also found to be using resources that may not be evidence-based or do not provide sufficient WLCMs' information. Study results highlight the need for pharmacy professional bodies to develop evidence-based continuing education programmes to assist consumers with popular and widely available WLCMs products. © 2015 Royal Pharmaceutical Society.
Short-term Forecasting Tools for Agricultural Nutrient Management.
Easton, Zachary M; Kleinman, Peter J A; Buda, Anthony R; Goering, Dustin; Emberston, Nichole; Reed, Seann; Drohan, Patrick J; Walter, M Todd; Guinan, Pat; Lory, John A; Sommerlot, Andrew R; Sharpley, Andrew
2017-11-01
The advent of real-time, short-term farm management tools is motivated by the need to protect water quality above and beyond the general guidance offered by existing nutrient management plans. Advances in high-performance computing and hydrologic or climate modeling have enabled rapid dissemination of real-time information that can assist landowners and conservation personnel with short-term management planning. This paper reviews short-term decision support tools for agriculture that are under various stages of development and implementation in the United States: (i) Wisconsin's Runoff Risk Advisory Forecast (RRAF) System, (ii) New York's Hydrologically Sensitive Area Prediction Tool, (iii) Virginia's Saturated Area Forecast Model, (iv) Pennsylvania's Fertilizer Forecaster, (v) Washington's Application Risk Management (ARM) System, and (vi) Missouri's Design Storm Notification System. Although these decision support tools differ in their underlying model structure, the resolution at which they are applied, and the hydroclimates to which they are relevant, all provide forecasts (range 24-120 h) of runoff risk or soil moisture saturation derived from National Weather Service Forecast models. Although this review highlights the need for further development of robust and well-supported short-term nutrient management tools, their potential for adoption and ultimate utility requires an understanding of the appropriate context of application, the strategic and operational needs of managers, access to weather forecasts, scales of application (e.g., regional vs. field level), data requirements, and outreach communication structure. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Janke, Benjamin D.; Nidzgorski, Daniel A.; Millet, Dylan B.; Baker, Lawrence A.
2017-01-01
Managing excess nutrients remains a major obstacle to improving ecosystem service benefits of urban waters. To inform more ecologically based landscape nutrient management, we compared watershed inputs, outputs, and retention for nitrogen (N) and phosphorus (P) in seven subwatersheds of the Mississippi River in St. Paul, Minnesota. Lawn fertilizer and pet waste dominated N and P inputs, respectively, underscoring the importance of household actions in influencing urban watershed nutrient budgets. Watersheds retained only 22% of net P inputs versus 80% of net N inputs (watershed area-weighted averages, where net inputs equal inputs minus biomass removal) despite relatively low P inputs. In contrast to many nonurban watersheds that exhibit high P retention, these urban watersheds have high street density that enhanced transport of P-rich materials from landscapes to stormwater. High P exports in storm drainage networks and yard waste resulted in net P losses in some watersheds. Comparisons of the N/P stoichiometry of net inputs versus storm drain exports implicated denitrification or leaching to groundwater as a likely fate for retained N. Thus, these urban watersheds exported high quantities of N and P, but via contrasting pathways: P was exported primarily via stormwater runoff, contributing to surface water degradation, whereas N losses additionally contribute to groundwater pollution. Consequently, N management and P management require different strategies, with N management focusing on reducing watershed inputs and P management also focusing on reducing P movement from vegetated landscapes to streets and storm drains. PMID:28373560
USDA-ARS?s Scientific Manuscript database
Semiochemicals released by plant-microbe associations are used by herbivorous insects to access and evaluate food resources and oviposition sites. Adult insects may utilize microbial-derived nutrients to prolong their lifespan, promote egg development and offer a high nutritional substrate to their ...
USDA-ARS?s Scientific Manuscript database
Pseudomonas syringae (P.s.) infects diverse plant species and several P.s. pathovars have been used in the study of molecular events that occur during plant-microbe interactions. Although the relationship between bacterial metabolism, nutrient acquisition and virulence has attracted increasing atten...
Enhanced Podcasts for Teaching Biochemistry to Veterinary Students
ERIC Educational Resources Information Center
Gough, Kevin C.
2011-01-01
The teaching of biochemistry within medical disciplines presents certain challenges; firstly to relay a large body of complex facts and abstract concepts, and secondly to motivate students that this relatively difficult topic is worth their time to study. Here, nutrient biochemistry was taught within a multidisciplinary module as part of an…
Simopoulos, Artemis P
2010-01-01
All diseases have a genetic predisposition. Genome-wide association studies (GWASs) by large international consortia are discovering genetic variants that contribute to complex diseases. However, nutrient information is missing, which is essential for the development of dietary advice for prevention and management of disease. Nutrigenetics/nutrigenomics studies provide data on mechanisms of nutrient and gene interactions in health and disease needed for personalized nutrition. A process will be needed to define when gene-nutrient-disease associations are ready to be evaluated as potential tools to improve public health.
Hong, Soon-Myung; Cho, Jee-Ye; Lee, Jin-Hee; Kim, Gon; Kim, Min-Chan
2008-01-01
This study was conducted to develop the NutriSonic Web Expert System for Meal Management and Nutrition Counseling with Analysis of User's Nutritive Changes of selected days and food exchange information with easy data transition. This program manipulates a food, menu and meal and search database that has been developed. Also, the system provides a function to check the user's nutritive change of selected days. Users can select a recommended general and therapeutic menu using this system. NutriSonic can analyze nutrients and e-food exchange ("e" means the food exchange data base calculated by a computer program) in menus and meals. The expert can insert and store a meal database and generate the synthetic information of age, sex and therapeutic purpose of disease. With investigation and analysis of the user's needs, the meal planning program on the internet has been continuously developed. Users are able to follow up their nutritive changes with nutrient information and ratio of 3 major energy nutrients. Also, users can download another data format like Excel files (.xls) for analysis and verify their nutrient time-series analysis. The results of analysis are presented quickly and accurately. Therefore it can be used by not only usual people, but also by dietitians and nutritionists who take charge of making a menu and experts in the field of food and nutrition. It is expected that the NutriSonic Web Expert System can be useful for nutrition education, nutrition counseling and expert meal management.
NASA Astrophysics Data System (ADS)
Adams, R.; Quinn, P. F.; Bowes, M. J.
2014-09-01
A model for simulating runoff pathways and water quality fluxes has been developed using the Minimum Information (MIR) approach. The model, the Catchment Runoff Attenuation Tool (CRAFT) is applicable to meso-scale catchments which focusses primarily on hydrological pathways that mobilise nutrients. Hence CRAFT can be used investigate the impact of management intervention strategies designed to reduce the loads of nutrients into receiving watercourses. The model can help policy makers, for example in Europe, meet water quality targets and consider methods to obtain "good" ecological status. A case study of the 414 km2 Frome catchment, Dorset UK, has been described here as an application of the CRAFT model. The model was primarily calibrated on ten years of weekly data to reproduce the observed flows and nutrient (nitrate nitrogen - N - and phosphorus - P) concentrations. Also data from two years of sub-daily high resolution monitoring at the same site were also analysed. These data highlighted some additional signals in the nutrient flux, particularly of soluble reactive phosphorus, which were not observable in the weekly data. This analysis has prompted the choice of using a daily timestep for this meso-scale modelling study as the minimum information requirement. A management intervention scenario was also run to show how the model can support catchment managers to investigate how reducing the concentrations of N and P in the various flow pathways. This scale appropriate modelling tool can help policy makers consider a range of strategies to to meet the European Union (EU) water quality targets for this type of catchment.
Testing for thresholds of ecosystem collapse in seagrass meadows.
Connell, Sean D; Fernandes, Milena; Burnell, Owen W; Doubleday, Zoë A; Griffin, Kingsley J; Irving, Andrew D; Leung, Jonathan Y S; Owen, Samuel; Russell, Bayden D; Falkenberg, Laura J
2017-10-01
Although the public desire for healthy environments is clear-cut, the science and management of ecosystem health has not been as simple. Ecological systems can be dynamic and can shift abruptly from one ecosystem state to another. Such unpredictable shifts result when ecological thresholds are crossed; that is, small cumulative increases in an environmental stressor drive a much greater change than could be predicted from linear effects, suggesting an unforeseen tipping point is crossed. In coastal waters, broad-scale seagrass loss often occurs as a sudden event associated with human-driven nutrient enrichment (eutrophication). We tested whether the response of seagrass ecosystems to coastal nutrient enrichment is subject to a threshold effect. We exposed seagrass plots to different levels of nutrient enrichment (dissolved inorganic nitrogen) for 10 months and measured net production. Seagrass response exhibited a threshold pattern when nutrient enrichment exceeded moderate levels: there was an abrupt and large shift from positive to negative net leaf production (from approximately 0.04 leaf production to 0.02 leaf loss per day). Epiphyte load also increased as nutrient enrichment increased, which may have driven the shift in leaf production. Inadvertently crossing such thresholds, as can occur through ineffective management of land-derived inputs such as wastewater and stormwater runoff along urbanized coasts, may account for the widely observed sudden loss of seagrass meadows. Identification of tipping points may improve not only adaptive-management monitoring that seeks to avoid threshold effects, but also restoration approaches in systems that have crossed them. © 2017 Society for Conservation Biology.
The metabolic response to stress: a case of complex nutrition support management.
Cartwright, Martina M
2004-12-01
The ICU patient with burns, neurotrauma, sepsis, or major surgery typifies the classic hypermetabolic patient. These patients have increased energy and nutrient needs as a result of their injuries and require early nutrition support. Although these patients are likely to benefit from nutritional intervention, the complexity of the stress response to injury and subsequent changes in nutrient metabolism make the design and implementation of nutrition care challenging. This article reviews the pathophysiology of common hypermetabolic conditions and provides strategies to manage the complications associated with nutrition support.
Macro-grazer herbivory regulates seagrass response to pulse and press nutrient loading.
Ravaglioli, Chiara; Capocchi, Antonella; Fontanini, Debora; Mori, Giovanna; Nuccio, Caterina; Bulleri, Fabio
2018-05-01
Coastal ecosystems are exposed to multiple stressors. Predicting their outcomes is complicated by variations in their temporal regimes. Here, by means of a 16-month experiment, we investigated tolerance and resistance traits of Posidonia oceanica to herbivore damage under different regimes of nutrient loading. Chronic and pulse nutrient supply were combined with simulated fish herbivory, treated as a pulse stressor. At ambient nutrient levels, P. oceanica could cope with severe herbivory, likely through an increase in photosynthetic activity. Elevated nutrient levels, regardless of the temporal regime, negatively affected plant growth and increased leaf nutritional quality. This ultimately resulted in a reduction of plant biomass that was particularly severe under chronic fertilization. Our results suggest that both chronic and pulse nutrient loadings increase plant palatability to macro-grazers. Strategies for seagrass management should not be exclusively applied in areas exposed to chronic fertilization since even short-term nutrient pulses could alter seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.
Konrad, Christopher P.
2014-01-01
Marine bivalves such as clams, mussels, and oysters are an important component of the food web, which influence nutrient dynamics and water quality in many estuaries. The role of bivalves in nutrient dynamics and, particularly, the contribution of commercial shellfish activities, are not well understood in Puget Sound, Washington. Numerous approaches have been used in other estuaries to quantify the effects of bivalves on nutrient dynamics, ranging from simple nutrient budgeting to sophisticated numerical models that account for tidal circulation, bioenergetic fluxes through food webs, and biochemical transformations in the water column and sediment. For nutrient management in Puget Sound, it might be possible to integrate basic biophysical indicators (residence time, phytoplankton growth rates, and clearance rates of filter feeders) as a screening tool to identify places where nutrient dynamics and water quality are likely to be sensitive to shellfish density and, then, apply more sophisticated methods involving in-situ measurements and simulation models to quantify those dynamics.
Naver: a PC-cluster-based VR system
NASA Astrophysics Data System (ADS)
Park, ChangHoon; Ko, HeeDong; Kim, TaiYun
2003-04-01
In this paper, we present a new framework NAVER for virtual reality application. The NAVER is based on a cluster of low-cost personal computers. The goal of NAVER is to provide flexible, extensible, scalable and re-configurable framework for the virtual environments defined as the integration of 3D virtual space and external modules. External modules are various input or output devices and applications on the remote hosts. From the view of system, personal computers are divided into three servers according to its specific functions: Render Server, Device Server and Control Server. While Device Server contains external modules requiring event-based communication for the integration, Control Server contains external modules requiring synchronous communication every frame. And, the Render Server consists of 5 managers: Scenario Manager, Event Manager, Command Manager, Interaction Manager and Sync Manager. These managers support the declaration and operation of virtual environment and the integration with external modules on remote servers.
The essence of yeast quiescence.
De Virgilio, Claudio
2012-03-01
Like all microorganisms, yeast cells spend most of their natural lifetime in a reversible, quiescent state that is primarily induced by limitation for essential nutrients. Substantial progress has been made in defining the features of quiescent cells and the nutrient-signaling pathways that shape these features. A view that emerges from the wealth of new data is that yeast cells dynamically configure the quiescent state in response to nutritional challenges by using a set of key nutrient-signaling pathways, which (1) regulate pathway-specific effectors, (2) converge on a few regulatory nodes that bundle multiple inputs to communicate unified, graded responses, and (3) mutually modulate their competences to transmit signals. Here, I present an overview of our current understanding of the architecture of these pathways, focusing on how the corresponding core signaling protein kinases (i.e. PKA, TORC1, Snf1, and Pho85) are wired to ensure an adequate response to nutrient starvation, which enables cells to tide over decades, if not centuries, of famine. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Feed-Back Moisture Sensor Control for the Delivery of Water to Plants Cultivated in Space
NASA Technical Reports Server (NTRS)
Levine, Howard G.; Prenger, Jessica J.; Rouzan, Donna T.; Spinale, April C.; Murdoch, Trevor; Burtness, Kevin A.
2005-01-01
The development of a spaceflight-rated Porous Tube Insert Module (PTIM) nutrient delivery tray has facilitated a series of studies evaluating various aspects of water and nutrient delivery to plants as they would be cultivated in space. We report here on our first experiment using the PTIM with a software-driven feedback moisture sensor control strategy for maintaining root zone wetness level set-points. One-day-old wheat seedlings (Tritium aestivum cv Apogee; N=15) were inserted into each of three Substrate Compartments (SCs) pre-packed with 0.25-1 . mm Profile(TradeMark) substrate and maintained at root zone relative water content levels of 70, 80 and 90%. The SCs contained a bottom-situated porous tube around which a capillary mat was wrapped. Three Porous Tubes. were planted using similar protocols (but without the substrate) and also maintained at these three moisture level set-points. Half-strength modified Hoagland's nutrient solution was used to supply water and nutrients. Results on hardware performance, water usage rates and wheat developmental differences between the different experimental treatments are presented.
Biogeochemical processes on tree islands in the greater everglades: Initiating a new paradigm
Wetzel, P.R.; Sklar, Fred H.; Coronado, C.A.; Troxler, T.G.; Krupa, S.L.; Sullivan, P.L.; Ewe, S.; Price, R.M.; Newman, S.; Orem, W.H.
2011-01-01
Scientists' understanding of the role of tree islands in the Everglades has evolved from a plant community of minor biogeochemical importance to a plant community recognized as the driving force for localized phosphorus accumulation within the landscape. Results from this review suggest that tree transpiration, nutrient infiltration from the soil surface, and groundwater flow create a soil zone of confluence where nutrients and salts accumulate under the head of a tree island during dry periods. Results also suggest accumulated salts and nutrients are flushed downstream by regional water flows during wet periods. That trees modulate their environment to create biogeochemical hot spots and strong nutrient gradients is a significant ecological paradigm shift in the understanding of the biogeochemical processes in the Everglades. In terms of island sustainability, this new paradigm suggests the need for distinct dry-wet cycles as well as a hydrologic regime that supports tree survival. Restoration of historic tree islands needs further investigation but the creation of functional tree islands is promising. Copyright ?? 2011 Taylor & Francis Group, LLC.
A global database of nitrogen and phosphorus excretion rates of aquatic animals
Vanni, Michael J.; McIntyre, Peter B.; Allen, Dennis; ...
2017-03-06
Though their importance varies greatly among species and ecosystems, animals can be important in modulating ecosystem-level nutrient cycling. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater andmore » marine animals of N and/or P excretion rates. Furthermore, these observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. We used this data set to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582).« less
Baldwin, Carol M; Bootzin, Richard R; Schwenke, Dawn C; Quan, Stuart F
2005-12-01
Cognitive deficits and cardiovascular disease (CVD) are comorbid conditions frequently associated with obstructive sleep apnea (OSA). Oxygen free radical release and its differential regulation of cytokine synthesis and immune modulation resulting from OSA-related hypoxic events have been hypothesized as the underlying mechanism(s) for the cognitive deficits and CVD in OSA. A number of studies have suggested that increased levels of oxidative stress and/or antioxidant deficiencies may also be risk factors in cognitive decline and CVD. The influence of antioxidant nutrients and supplements, such as Vitamins B6, B12, C, E, folic acid, alpha-lipoic acid and Coenzyme Q(10) on cognitive decline and CVD have been investigated. The influence of antioxidant nutrients or supplements on OSA remains to be investigated. Even if dietary or supplemental antioxidants do not prove to be effective therapies for OSA, dietary assessment and prescription to increase dietary intake of neuro- and cardio-protective nutrients may make it possible to reduce some of the cognitive and cardiovascular sequelae associated with OSA.
A global database of nitrogen and phosphorus excretion rates of aquatic animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanni, Michael J.; McIntyre, Peter B.; Allen, Dennis
Though their importance varies greatly among species and ecosystems, animals can be important in modulating ecosystem-level nutrient cycling. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater andmore » marine animals of N and/or P excretion rates. Furthermore, these observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. We used this data set to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582).« less
Spider web and silk performance landscapes across nutrient space
Blamires, Sean J.; Tseng, Yi-Hsuan; Wu, Chung-Lin; Toft, Søren; Raubenheimer, David; Tso, I.-Min
2016-01-01
Predators have been shown to alter their foraging as a regulatory response to recent feeding history, but it remains unknown whether trap building predators modulate their traps similarly as a regulatory strategy. Here we fed the orb web spider Nephila pilipes either live crickets, dead crickets with webs stimulated by flies, or dead crickets without web stimulation, over 21 days to enforce spiders to differentially extract nutrients from a single prey source. In addition to the nutrients extracted we measured web architectures, silk tensile properties, silk amino acid compositions, and web tension after each feeding round. We then plotted web and silk “performance landscapes” across nutrient space. The landscapes had multiple peaks and troughs for each web and silk performance parameter. The findings suggest that N. pilipes plastically adjusts the chemical and physical properties of their web and silk in accordance with its nutritional history. Our study expands the application of the geometric framework foraging model to include a type of predatory trap. Whether it can be applied to other predatory traps requires further testing. PMID:27216252
Managing carbon sequestration and storage in northern hardwood forests
Eunice A. Padley; Deahn M. Donner; Karin S. Fassnacht; Ronald S. Zalesny; Bruce Birr; Karl J. Martin
2011-01-01
Carbon has an important role in sustainable forest management, contributing to functions that maintain site productivity, nutrient cycling, and soil physical properties. Forest management practices can alter ecosystem carbon allocation as well as the amount of total site carbon.
Systemic Nutrient and Stress Signaling via Myokines and Myometabolites.
Rai, Mamta; Demontis, Fabio
2016-01-01
Homeostatic systems mount adaptive responses to meet the energy demands of the cell and to compensate for dysfunction in cellular compartments. Such surveillance systems are also active at the organismal level: Nutrient and stress sensing in one tissue can lead to changes in other tissues. Here, we review the emerging understanding of the role of skeletal muscle in regulating physiological homeostasis and disease progression in other tissues. Muscle-specific genetic interventions can induce systemic effects indirectly, via changes in the mass and metabolic demand of muscle, and directly, via the release of muscle-derived cytokines (myokines) and metabolites (myometabolites) in response to nutrients and stress. In turn, myokines and myometabolites signal to various target tissues in an autocrine, paracrine, and endocrine manner, thereby determining organismal resilience to aging, disease, and environmental challenges. We propose that tailoring muscle systemic signaling by modulating myokine and myometabolite levels may combat many degenerative diseases and delay aging.
Amare, Bemnet; Moges, Beyene; Mulu, Andargachew; Yifru, Sisay; Kassu, Afework
2015-01-01
Human immunodeficiency virus (HIV), tuberculosis (TB), and helminthic infections are among the commonest public health problems in the sub-Saharan African countries like Ethiopia. Multiple micronutrient deficiencies also known as the “hidden hunger” are common in people living in these countries either playing a role in their pathogenesis or as consequences. This results in a vicious cycle of multiple micronutrient deficiencies and infection/disease progression. As infection is profoundly associated with nutritional status resulting from decreased nutrient intake, decreased nutrient absorption, and nutrient losses, micronutrient deficiencies affect immune system and impact infection and diseases progression. As a result, micronutrients, immunity, and infection are interrelated. The goal of this review is therefore to provide a summary of available findings regarding the “quadruple burden trouble” of HIV, TB, intestinal parasitic infections, and multiple micronutrient deficiencies to describe immune-modulating effects related to disorders. PMID:25767808
A brain-liver circuit regulates glucose homeostasis.
Pocai, Alessandro; Obici, Silvana; Schwartz, Gary J; Rossetti, Luciano
2005-01-01
Increased glucose production (GP) is the major determinant of fasting hyperglycemia in diabetes mellitus. Previous studies suggested that lipid metabolism within specific hypothalamic nuclei is a biochemical sensor for nutrient availability that exerts negative feedback on GP. Here we show that central inhibition of fat oxidation leads to selective activation of brainstem neurons within the nucleus of the solitary tract and the dorsal motor nucleus of the vagus and markedly decreases liver gluconeogenesis, expression of gluconeogenic enzymes, and GP. These effects require central activation of ATP-dependent potassium channels (K(ATP)) and descending fibers within the hepatic branch of the vagus nerve. Thus, hypothalamic lipid sensing potently modulates glucose metabolism via neural circuitry that requires the activation of K(ATP) and selective brainstem neurons and intact vagal input to the liver. This crosstalk between brain and liver couples central nutrient sensing to peripheral nutrient production and its disruption may lead to hyperglycemia.
Amare, Bemnet; Moges, Beyene; Mulu, Andargachew; Yifru, Sisay; Kassu, Afework
2015-01-01
Human immunodeficiency virus (HIV), tuberculosis (TB), and helminthic infections are among the commonest public health problems in the sub-Saharan African countries like Ethiopia. Multiple micronutrient deficiencies also known as the "hidden hunger" are common in people living in these countries either playing a role in their pathogenesis or as consequences. This results in a vicious cycle of multiple micronutrient deficiencies and infection/disease progression. As infection is profoundly associated with nutritional status resulting from decreased nutrient intake, decreased nutrient absorption, and nutrient losses, micronutrient deficiencies affect immune system and impact infection and diseases progression. As a result, micronutrients, immunity, and infection are interrelated. The goal of this review is therefore to provide a summary of available findings regarding the "quadruple burden trouble" of HIV, TB, intestinal parasitic infections, and multiple micronutrient deficiencies to describe immune-modulating effects related to disorders.
Physcomitrella patens: a model for tip cell growth and differentiation.
Vidali, Luis; Bezanilla, Magdalena
2012-12-01
The moss Physcomitrella patens has emerged as an excellent model system owing to its amenability to reverse genetics. The moss gametophyte has three filamentous tissues that grow by tip growth: chloronemata, caulonemata, and rhizoids. Because establishment of the moss plant relies on this form of growth, it is particularly suited for dissecting the molecular basis of tip growth. Recent studies demonstrate that a core set of actin cytoskeletal proteins is essential for tip growth. Additional actin cytoskeletal components are required for modulating growth to produce caulonemata and rhizoids. Differentiation into these cell types has previously been linked to auxin, light and nutrients. Recent studies have identified that core auxin signaling components as well as transcription factors that respond to auxin or nutrient levels are required for tip-growing cell differentiation. Future studies may establish a connection between the actin cytoskeleton and auxin or nutrient-induced cell differentiation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Maqbool, Tahir; Khan, Sher Jamal; Lee, Chung-Hak
2014-11-01
Relaxation or backwashing is obligatory for effective operation of membrane module and intermittent aeration is helpful for nutrients removal. This study was performed to investigate effects of different filtration modes on membrane fouling behavior and treatment in membrane bioreactor (MBR) operated at three modes i.e., 12, 10 and 8min filtration and 3, 2, and 2min relaxation corresponding to 6, 5 and 4cycles/hour, respectively. Various parameters including trans-membrane pressure, specific cake resistance, specific oxygen uptake rate, nutrients removal and sludge dewaterability were examined to optimize the filtration mode. TMP profiles showed that MBR(8+2) with 8min filtration and 2min relaxation reduced the fouling rate and depicted long filtration time in MBR treating synthetic wastewater. MBR(12+3) was more efficient in organic and nutrients removal while denitrification rate was high in MBR(8+2). Copyright © 2014 Elsevier Ltd. All rights reserved.
Understanding the influence of nutrients on stream ecosystems in agricultural landscapes
Munn, Mark D.; Frey, Jeffrey W.; Tesoriero, Anthony J.; Black, Robert W.; Duff, John H.; Lee, Kathy E.; Maret, Terry R.; Mebane, Christopher A.; Waite, Ian R.; Zelt, Ronald B.
2018-06-06
Sustaining the quality of the Nation’s water resources and the health of our diverse ecosystems depends on the availability of sound water-resources data and information to develop effective, science-based policies. Effective management of water resources also brings more certainty and efficiency to important economic sectors. Taken together, these actions lead to immediate and long-term economic, social, and environmental benefits that make a difference to the lives of the almost 400 million people projected to live in the United States by 2050.In 1991, Congress established the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) to address where, when, why, and how the Nation’s water quality has changed, or is likely to change in the future, in response to human activities and natural factors. Since then, NAWQA has been a leading source of scientific data and knowledge used by national, regional, State, and local agencies to develop science-based policies and management strategies to improve and protect water resources used for drinking water, recreation, irrigation, energy development, and ecosystem needs (https://water.usgs.gov/nawqa/applications/). Plans for the third decade of NAWQA (2013–23) address priority water-quality issues and science needs identified by NAWQA stakeholders, such as the Advisory Committee on Water Information and the National Research Council, and are designed to meet increasing challenges related to population growth, increasing needs for clean water, and changing land-use and weather patterns.Excess nutrients are a pervasive problem of streams, lakes, and coastal waters. The current report, “The Quality of Our Nation’s Waters—Understanding the Effects of Nutrients on Stream Ecosystems in Agricultural Landscapes,” presents a summary of results from USGS investigations conducted from 2003 to 2011 on processes that influence nutrients and how nutrient enrichment can alter biological components of agricultural streams. This study included collecting data from 232 sites distributed among eight study areas. This report summarizes findings on processes that influence nutrients and how nutrient enrichment can alter biological communities in agricultural streams. These findings are relevant to local, State, regional, and national decision-makers involved in efforts to (1) better understand the influence of nutrients on agricultural streams, (2) develop nutrient criteria for streams and rivers, (3) reduce nutrients to streams and downstream receiving waters, and (4) develop tools for tracking nutrient and biological conditions following nutrient reduction strategies. All NAWQA reports are available online at https://water.usgs.gov/nawqa/bib/.We hope this publication will provide you with insights and information to meet your water-resource needs and will foster increased citizen awareness and involvement in the protection and restoration of our Nation’s waters. The information in this report is intended primarily for those interested or involved in resource management and protection, conservation, regulation, and policymaking at the regional and national levels.
NASA Astrophysics Data System (ADS)
Liu, Yuling; Wang, Xiaoping; Zhu, Yuhui; Fei, Lanlan
2017-08-01
This paper introduces a Comprehensively Functional Integrated Management Information System designed for the Optical Engineering Major by the College of Optical Science and Engineering, Zhejiang University, which combines the functions of teaching, students learning, educational assessment and management. The system consists of 5 modules, major overview, online curriculum, experiment teaching management, graduation project management and teaching quality feedback. The major overview module introduces the development history, training program, curriculums and experiment syllabus and teaching achievements of optical engineering major in Zhejiang University. The Management Information System is convenient for students to learn in a mobile and personalized way. The online curriculum module makes it very easy for teachers to setup a website for new curriculums. On the website, teachers can help students on their problems about the curriculums in time and collect their homework online. The experiment teaching management module and the graduation project management module enables the students to fulfill their experiment process and graduation thesis under the help of their supervisors. Before students take an experiment in the lab, they must pass the pre-experiment quiz on the corresponding module. After the experiment, students need to submit the experiment report to the web server. Moreover, the module contains experiment process video recordings, which are very helpful to improve the effect of the experiment education. The management of the entire process of a student's graduation program, including the project selection, mid-term inspection, progress report of every two weeks, final thesis, et al, is completed by the graduation project management module. The teaching quality feedback module is not only helpful for teachers to know whether the education effect of curriculum is good or not, but also helpful for the administrators of the college to know whether the design of syllabus is reasonable or not. The Management Information System changes the management object from the education results to the entire education processes. And it improves the efficiency of the management. It provides an effective method to promote curriculum construction management by supervision and evaluation, which improves students' learning outcomes and the quality of curriculums. As a result, it promotes the quality system of education obviously.
Ardente, A J; Wells, R S; Smith, C R; Walsh, M T; Jensen, E D; Schmitt, T L; Colee, J; Vagt, B J; Hill, R C
2017-03-01
Ammonium urate nephrolithiasis frequently develops in common bottlenose dolphins () managed under human care but is rare in free-ranging common bottlenose dolphins. In other species, the dietary cation-anion difference (DCAD) can affect ammonium urate urolith formation by increasing proton excretion as ammonium ions. Therefore, differences in diet between the 2 dolphin populations could affect urolith formation, but the DCAD of most species consumed by free-ranging and managed dolphins is unknown. To compare the nutrient composition of diets consumed by free-ranging and managed bottlenose dolphins, samples ( = 5) of the 8 species of fish commonly consumed by free-ranging bottlenose dolphins in Sarasota Bay, FL, and the 7 species of fish and squid commonly fed to managed bottlenose dolphins were analyzed for nutrient content. Metabolizable energy was calculated using Atwater factors; the DCAD was calculated using 4 equations commonly used in people and animals that use different absorption coefficients. The nutrient composition of individual species was used to predict the DCAD of 2 model diets typically fed to managed common bottlenose dolphins and a model diet typically consumed by common bottlenose dolphins in Sarasota Bay. To mimic differences in postmortem handling of fish for the 2 populations of bottlenose dolphins, "free-ranging" samples were immediately frozen at -80°C and minimally thawed before analysis, whereas "managed" samples were frozen for 6 to 9 mo at -18°C and completely thawed. "Free-ranging" species contained more Ca and P and less Na and Cl than "managed" fish and squid species. As a consequence, the DCAD of both model managed dolphin diets obtained using 3 of the 4 equations was much more negative than the DCAD of the model free-ranging bottlenose dolphin diet ( < 0.05). The results imply that managed bottlenose dolphins must excrete more protons in urine than free-ranging bottlenose dolphins, which will promote nephrolith formation. The nutrient composition of the free-ranging bottlenose dolphin diet, determined for the first time here, can be used as a guide for feeding managed bottlenose dolphins, but research in vivo is warranted to determine whether adding more cations to the diet will prevent urolith formation in managed dolphins.
NASA Astrophysics Data System (ADS)
Carey, Richard O.; Migliaccio, Kati W.
2009-08-01
Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.
Surface-Water Nutrient Conditions and Sources in the United States Pacific Northwest1
Wise, Daniel R; Johnson, Henry M
2011-01-01
Abstract The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface-water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency's recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to environmental managers in future water-quality planning efforts. PMID:22457584
NASA Technical Reports Server (NTRS)
George, Jude (Inventor); Schlecht, Leslie (Inventor); McCabe, James D. (Inventor); LeKashman, John Jr. (Inventor)
1998-01-01
A network management system has SNMP agents distributed at one or more sites, an input output module at each site, and a server module located at a selected site for communicating with input output modules, each of which is configured for both SNMP and HNMP communications. The server module is configured exclusively for HNMP communications, and it communicates with each input output module according to the HNMP. Non-iconified, informationally complete views are provided of network elements to aid in network management.
NASA Astrophysics Data System (ADS)
Huang, Hong-bin; Liu, Wei-ping; Chen, Shun-er; Zheng, Liming
2005-02-01
A new type of CATV network management system developed by universal MCU, which supports SNMP, is proposed in this paper. From the point of view in both hardware and software, the function and method of every modules inside the system, which include communications in the physical layer, protocol process, data process, and etc, are analyzed. In our design, the management system takes IP MAN as data transmission channel and every controlled object in the management structure has a SNMP agent. In the SNMP agent developed, there are four function modules, including physical layer communication module, protocol process module, internal data process module and MIB management module. In the paper, the structure and function of every module are designed and demonstrated while the related hardware circuit, software flow as well as the experimental results are tested. Furthermore, by introducing RTOS into the software programming, the universal MCU procedure can conducts such multi-thread management as fast Ethernet controller driving, TCP/IP process, serial port signal monitoring and so on, which greatly improves efficiency of CPU.
McLellan, Eileen; Schilling, Keith; Robertson, Dale M.
2015-01-01
We present conceptual and quantitative models that predict changes in fertilizer-derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer-derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi-Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.
Challenges with effective nutrient supplementation for amphibians: A review of cricket studies.
Livingston, Shannon; Lavin, Shana R; Sullivan, Kathleen; Attard, Lydia; Valdes, Eduardo V
2014-01-01
Over the last 25 years, numerous studies have investigated the impact of insect supplementation on insect nutrient content. In light of recent nutrition related challenges with regards to zoo amphibians fed an insect based diet, this review attempts to comprehensively compile both anecdotal and published data in the context of practical application on this topic. Insects, primarily crickets, used for amphibian diets historically demonstrate low concentrations of key nutrients including calcium and vitamin A. Commonly used practices for supplementation involving powder dusting or gut loading have been shown to improve delivery of calcium and vitamin A, though often not reaching desired nutrient concentrations. The large variety of factors influencing insect nutrient content are difficult to control, making study design, and results often inconsistent. Formulation and availability of more effective gut loading diets, combined with a standardized protocol for insect husbandry and dietary management may be the most effective way to supplement insects for use in amphibian feeding programs. Ideally, the nutritional improvement of feeder insects would begin at the breeder level; however, until this becomes a viable choice, we confirm that supplementation of crickets through both gut-loading and dusting appear necessary to support the nutritional health of amphibians and other insectivores in managed collections. © 2014 Wiley Periodicals, Inc.
Collaborative Catchment-Scale Water Quality Management using Integrated Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Zia, Huma; Harris, Nick; Merrett, Geoff
2013-04-01
Electronics and Computer Science, University of Southampton, United Kingdom Summary The challenge of improving water quality (WQ) is a growing global concern [1]. Poor WQ is mainly attributed to poor water management and outdated agricultural activities. We propose that collaborative sensor networks spread across an entire catchment can allow cooperation among individual activities for integrated WQ monitoring and management. We show that sharing information on critical parameters among networks of water bodies and farms can enable identification and quantification of the contaminant sources, enabling better decision making for agricultural practices and thereby reducing contaminants fluxes. Motivation and results Nutrient losses from land to water have accelerated due to agricultural and urban pursuits [2]. In many cases, the application of fertiliser can be reduced by 30-50% without any loss of yield [3]. Thus information about nutrient levels and trends around the farm can improve agricultural practices and thereby reduce water contamination. The use of sensor networks for monitoring WQ in a catchment is in its infancy, but more applications are being tested [4]. However, these are focussed on local requirements and are mostly limited to water bodies. They have yet to explore the use of this technology for catchment-scale monitoring and management decisions, in an autonomous and dynamic manner. For effective and integrated WQ management, we propose a system that utilises local monitoring networks across a catchment, with provision for collaborative information sharing. This system of networks shares information about critical events, such as rain or flooding. Higher-level applications make use of this information to inform decisions about nutrient management, improving the quality of monitoring through the provision of richer datasets of catchment information to local networks. In the full paper, we present example scenarios and analyse how the benefits of collaborative information sharing can have a direct influence on agricultural practice. We apply a nutrient management scheme to a model of an example catchment with several individual networks. The networks are able to correlate catchment events to events within their zone of influence, allowing them to adapt their monitoring and control strategy in light of wider changes across the catchment. Results indicate that this can lead to significant reductions in nutrient losses (up to 50%) and better reutilization of nutrients amongst farms, having a positive impact on catchment scale water quality and fertilizer costs. 1. EC, E.C., Directive 2000/60/EC establishing a framework for Community action in the field of water policy, 2000. 2. Rivers, M., K. Smettem, and P. Davies. Estimating future scenarios for farm-watershed nutrient fluxes using dynamic simulation modelling-Can on-farm BMPs really do the job at the watershed scale? in Proc.29th Int.Conf System Dynamics Society, 2011. 2010. Washington 3. Liu, C., et al., On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China Plain. Agronomy Journal, 2008. 100(6): p. 1527-1534. 4. Kotamäki, N., et al., Wireless in-situ sensor network for agriculture and water monitoring on a river basin scale in Southern Finland: Evaluation from a data user's perspective. Sensors, 2009. 9(4): p. 2862-2883.
Paritosh, Kunwar; Kushwaha, Sandeep K.; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash
2017-01-01
Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches. PMID:28293629
Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand
2017-01-01
Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.
USDA-ARS?s Scientific Manuscript database
Soil salinity and sodicity can not only directly restrain crop growth by osmotic and specific ion stresses, it also may reduce grain yield indirectly by impacting plant absorption of essential nutrients. Ensuring adequate nitrogen is an important management aspect of rice production in saline-sodic ...
Nutrient Management in Pine Forests
Allan E. Tiarks
1999-01-01
Coastal plain soils are naturally low in fertility and many pine stands will give an economic response to fertilization, especially phosphorus. Maintaining the nutrients that are on the site by limiting displacement of logging slash during and after the harvest can be important in maintaining the productivity of the site and reducing the amount of fertilizer required...