NASA Astrophysics Data System (ADS)
Renny; Supriyanto
2018-04-01
Nutrition is the chemical compounds that needed by the organism for the growth process. In plants, nutrients are organic or inorganic compounds that are absorbed from the roots of the soil. It consist of macro and micro nutrient. Macro nutrients are nutrition that needed by plants in large quantities, such as, nitrogen, calcium, pottacium, magnesium, and sulfur. The total soil nutrient is the difference between the input nutrient and the output nutrients. Input nutrients are nutrient that derived from the decomposition of organic substances. Meanwhile, the output nutrient consists of the nutrients that absorbed by plant roots (uptake), the evaporated nutrients (volatilized) and leached nutrients. The nutrient transport can be done through diffusion process. The diffusion process is essential in removing the nutrient from one place to the root surface. It will cause the rate of absorption of nutrient by the roots will be greater. Nutrient concept in paddy filed can be represented into a mathematical modelling, by making compartment models. The rate of concentration change in the compartment model forms a system of homogeneous linear differential equations. In this research, we will use Laplaces transformation to solve the compartment model and determined the dynamics of macro nutrition due to diffusion process.
CADDIS Volume 2. Sources, Stressors and Responses: Nutrients
Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Simple Conceptual Diagram
Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.
Variation in wood nutrients along a tropical soil fertility gradient.
Heineman, Katherine D; Turner, Benjamin L; Dalling, James W
2016-07-01
Wood contains the majority of the nutrients in tropical trees, yet controls over wood nutrient concentrations and their function are poorly understood. We measured wood nutrient concentrations in 106 tree species in 10 forest plots spanning a regional fertility gradient in Panama. For a subset of species, we quantified foliar nutrients and wood density to test whether wood nutrients scale with foliar nutrients at the species level, or wood nutrient storage increases with wood density as predicted by the wood economics spectrum. Wood nutrient concentrations varied enormously among species from fourfold in nitrogen (N) to > 30-fold in calcium (Ca), potassium (K), magnesium (Mg) and phosphorus (P). Community-weighted mean wood nutrient concentrations correlated positively with soil Ca, K, Mg and P concentrations. Wood nutrients scaled positively with leaf nutrients, supporting the hypothesis that nutrient allocation is conserved across plant organs. Wood P was most sensitive to variation in soil nutrient availability, and significant radial declines in wood P indicated that tropical trees retranslocate P as sapwood transitions to heartwood. Wood P decreased with increasing wood density, suggesting that low wood P and dense wood are traits associated with tree species persistence on low fertility soils. Substantial variation among species and communities in wood nutrient concentrations suggests that allocation of nutrients to wood, especially P, influences species distributions and nutrient dynamics in tropical forests. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Raynaud, Xavier; Jaillard, Benoît; Leadley, Paul W
2008-01-01
Plants modify nutrient availability by releasing chemicals in the rhizosphere. This change in availability induced by roots (bioavailability) is known to improve nutrient uptake by individual plants releasing such compounds. Can this bioavailability alter plant competition for nutrients and under what conditions? To address these questions, we have developed a model of nutrient competition between plant species based on mechanistic descriptions of nutrient diffusion, plant exudation, and plant uptake. The model was parameterized using data of the effects of root citrate exudation on phosphorus availability. We performed a sensitivity analysis for key parameters to test the generality of these effects. Our simulations suggest the following. (1) Nutrient uptake depends on the number of roots when nutrients and exudates diffuse little, because individual roots are nearly independent in terms of nutrient supply. In this case, bioavailability profits only species with exudates. (2) Competition for nutrients depends on the spatial arrangement of roots when nutrients diffuse little but exudates diffuse widely. (3) Competition for nutrients depends on the nutrient uptake capacity of roots when nutrients and exudates diffuse widely. In this case, bioavailability profits all species. Mechanisms controlling competition for bioavailable nutrients appear to be diverse and strongly depend on soil, nutrient, and plant properties.
CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Detailed Conceptual Diagram (N)
Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Detailed Conceptual Diagram (P)
Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.
A novel approach to selecting and weighting nutrients for nutrient profiling of foods and diets.
Arsenault, Joanne E; Fulgoni, Victor L; Hersey, James C; Muth, Mary K
2012-12-01
Nutrient profiling of foods is the science of ranking or classifying foods based on their nutrient composition. Most profiling systems use similar weighting factors across nutrients due to lack of scientific evidence to assign levels of importance to nutrients. Our aim was to use a statistical approach to determine the nutrients that best explain variation in Healthy Eating Index (HEI) scores and to obtain β-coefficients for the nutrients for use as weighting factors for a nutrient-profiling algorithm. We used a cross-sectional analysis of nutrient intakes and HEI scores. Our subjects included 16,587 individuals from the National Health and Nutrition Examination Survey 2005-2008 who were 2 years of age or older and not pregnant. Our main outcome measure was variation (R(2)) in HEI scores. Linear regression analyses were conducted with HEI scores as the dependent variable and all possible combinations of 16 nutrients of interest as independent variables, with covariates age, sex, and ethnicity. The analyses identified the best 1-nutrient variable model (with the highest R(2)), the best 2-nutrient variable model, and up to the best 16-nutrient variable model. The model with 8 nutrients explained 65% of the variance in HEI scores, similar to the models with 9 to 16 nutrients, but substantially higher than previous algorithms reported in the literature. The model contained five nutrients with positive β-coefficients (ie, protein, fiber, calcium, unsaturated fat, and vitamin C) and three nutrients with negative coefficients (ie, saturated fat, sodium, and added sugar). β-coefficients from the model were used as weighting factors to create an algorithm that generated a weighted nutrient density score representing the overall nutritional quality of a food. The weighted nutrient density score can be easily calculated and is useful for describing the overall nutrient quality of both foods and diets. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Research to Inform Nutrient Thresholds and Prioritization of ...
The information in this presentation focuses on SSWR's 4.02 project, which will advance the science needed to inform decisions to prioritize watersheds and nutrient sources for nutrient management and define appropriate nutrient levels for the nation’s waters, two important elements of EPA’s framework for managing nutrient pollution. The information in this presentation focuses on SSWR's 4.02 project, which will advance the science needed to inform decisions to prioritize watersheds and nutrient sources for nutrient management and define appropriate nutrient levels for the nation’s waters, two important elements of EPA’s framework for managing nutrient pollution.
Brauer, Verena S; Stomp, Maayke; Huisman, Jef
2012-06-01
Resource competition theory predicts that the outcome of competition for two nutrients depends on the ratio at which these nutrients are supplied. Yet there is considerable debate whether nutrient ratios or absolute nutrient loads determine the species composition of phytoplankton and plant communities. Here we extend the classical resource competition model for two nutrients by including light as additional resource. Our results suggest the nutrient-load hypothesis, which predicts that nutrient ratios determine the species composition in oligotrophic environments, whereas nutrient loads are decisive in eutrophic environments. The underlying mechanism is that nutrient enrichment shifts the species interactions from competition for nutrients to competition for light, which favors the dominance of superior light competitors overshadowing all other species. Intermediate nutrient loads can generate high biodiversity through a fine-grained patchwork of two-species and three-species coexistence equilibria. Depending on the species traits, however, competition for nutrients and light may also produce multiple alternative stable states, suppressing the predictability of the species composition. The nutrient-load hypothesis offers a solution for several discrepancies between classical resource competition theory and field observations, explains why eutrophication often leads to diversity loss, and provides a simple conceptual framework for patterns of biodiversity and community structure observed in nature.
K. L. Tully; Tana Wood; A. M. Schwantes; D. Lawrence
2013-01-01
The removal of nutrients from senescing tissues, nutrient resorption, is a key strategy for conserving nutrients in plants. However, our understanding of what drives patterns of nutrient resorption in tropical trees is limited. We examined the effects of nutrient sources (stand-level and tree-level soil fertility) and sinks (reproductive effort) on nitrogen (N) and...
Murphy, Shannon M.; Wimp, Gina M.; Lewis, Danny
2012-01-01
Anthropogenic nutrient inputs into native ecosystems cause fluctuations in resources that normally limit plant growth, which has important consequences for associated food webs. Such inputs from agricultural and urban habitats into nearby natural systems are increasing globally and can be highly variable, spanning the range from sporadic to continuous. Despite the global increase in anthropogenically-derived nutrient inputs into native ecosystems, the consequences of variation in subsidy duration on native plants and their associated food webs are poorly known. Specifically, while some studies have examined the effects of nutrient subsidies on native ecosystems for a single year (a nutrient pulse), repeated introductions of nutrients across multiple years (a nutrient press) better reflect the persistent nature of anthropogenic nutrient enrichment. We therefore contrasted the effects of a one-year nutrient pulse with a four-year nutrient press on arthropod consumers in two salt marshes. Salt marshes represent an ideal system to address the differential impacts of nutrient pulses and presses on ecosystem and community dynamics because human development and other anthropogenic activities lead to recurrent introductions of nutrients into these natural systems. We found that plant biomass and %N as well as arthropod density fell after the nutrient pulse ended but remained elevated throughout the nutrient press. Notably, higher trophic levels responded more strongly than lower trophic levels to fertilization, and the predator/prey ratio increased each year of the nutrient press, demonstrating that food web responses to anthropogenic nutrient enrichment can take years to fully manifest themselves. Vegetation at the two marshes also exhibited an apparent tradeoff between increasing %N and biomass in response to fertilization. Our research emphasizes the need for long-term, spatially diverse studies of nutrient enrichment in order to understand how variation in the duration of anthropogenic nutrient subsidies affects native ecosystems. PMID:22952814
A comparison of nutrient density scores for 100% fruit juices.
Rampersaud, G C
2007-05-01
The 2005 Dietary Guidelines for Americans recommend that consumers choose a variety of nutrient-dense foods. Nutrient density is usually defined as the quantity of nutrients per calorie. Food and nutrition professionals should be aware of the concept of nutrient density, how it might be quantified, and its potential application in food labeling and dietary guidance. This article presents the concept of a nutrient density score and compares nutrient density scores for various 100% fruit juices. One hundred percent fruit juices are popular beverages in the United States, and although they can provide concentrated sources of a variety of nutrients, they can differ considerably in their nutrient profiles. Six methodologies were used to quantify nutrient density and 7 100% fruit juices were included in the analysis: apple, grape, pink grapefruit, white grapefruit, orange, pineapple, and prune. Food composition data were obtained from the USDA National Nutrient Database for Standard Reference, Release 18. Application of the methods resulted in nutrient density scores with a range of values and magnitudes. The relative scores indicated that citrus juices, particularly pink grapefruit and orange juice, were more nutrient dense compared to the other nonfortified 100% juices included in the analysis. Although the methods differed, the relative ranking of the juices based on nutrient density score was similar for each method. Issues to be addressed regarding the development and application of a nutrient density score include those related to food fortification, nutrient bioavailability, and consumer education and behavior.
Nutrient limitation in tropical savannas across multiple scales and mechanisms.
Pellegrini, Adam F A
2016-02-01
Nutrients have been hypothesized to influence the distribution of the savanna biome through two possible mechanisms. Low nutrient availability may restrict growth rates of trees, thereby allowing for intermittent fires to maintain low tree cover; alternatively, nutrient deficiency may even place an absolute constraint on the ability of forests to form, independent of fire. However, we have little understanding of the scales at which nutrient limitation operates, what nutrients are limiting, and the mechanisms that influence how nutrient limitation regulates savanna-forest transitions. Here, I review literature, synthesize existing data, and present a simple calculation of nutrient demand to evaluate how nutrient limitation may regulate the distribution of the savanna biome. The literature primarily supports the hypothesis that nutrients may interact dynamically with fire to restrict the transition of savanna into forest. A compilation of indirect metrics of nutrient limitation suggest that nitrogen and phosphorus are both in short supply and may limit plants. Nutrient demand calculations provided a number of insights. First, trees required high rates of nitrogen and phosphorus supply relative to empirically determined inputs. Second, nutrient demand increased as landscapes approached the transition point between savanna and forest. Third, the potential for fire-driven nutrient losses remained high throughout transitions, which may exaggerate limitation and could be a key feedback stabilizing the savanna biome. Fourth, nutrient limitation varied between functional groups, with fast-growing forest species having substantially greater nutrient demand and a higher susceptibility to fire-driven nutrient losses. Finally, African savanna trees required substantially larger amounts of nutrients supplied at greater rates, although this varied across plant functional groups. In summary, the ability of nutrients to control transitions emerges at individual and landscape scales, and is regulated through different mechanisms based on spatial (differences in underlying geology), temporal (stage in biome transition) and biological (species traits and community composition) variability.
Reef, Ruth; Feller, Ilka C; Lovelock, Catherine E
2010-09-01
Mangrove forests dominate the world's tropical and subtropical coastlines. Similar to other plant communities, nutrient availability is one of the major factors influencing mangrove forest structure and productivity. Many mangrove soils have extremely low nutrient availability, although nutrient availability can vary greatly among and within mangrove forests. Nutrient-conserving processes in mangroves are well developed and include evergreeness, resorption of nutrients prior to leaf fall, the immobilization of nutrients in leaf litter during decomposition, high root/shoot ratios and the repeated use of old root channels. Both nitrogen-use efficiency and nutrient resorption efficiencies in mangroves are amongst the highest recorded for angiosperms. A complex range of interacting abiotic and biotic factors controls the availability of nutrients to mangrove trees, and mangroves are characteristically plastic in their ability to opportunistically utilize nutrients when these become available. Nitrogen and phosphorus have been implicated as the nutrients most likely to limit growth in mangroves. Ammonium is the primary form of nitrogen in mangrove soils, in part as a result of anoxic soil conditions, and tree growth is supported mainly by ammonium uptake. Nutrient enrichment is a major threat to marine ecosystems. Although mangroves have been proposed to protect the marine environment from land-derived nutrient pollution, nutrient enrichment can have negative consequences for mangrove forests and their capacity for retention of nutrients may be limited.
Bowsher, Alan W.; Ali, Rifhat; Harding, Scott A.; Tsai, Chung-Jui; Donovan, Lisa A.
2016-01-01
Plant roots exude numerous metabolites into the soil that influence nutrient availability. Although root exudate composition is hypothesized to be under selection in low fertility soils, few studies have tested this hypothesis in a phylogenetic framework. In this study, we examined root exudates of three pairs of Helianthus species chosen as phylogenetically-independent contrasts with respect to native soil nutrient availability. Under controlled environmental conditions, seedlings were grown to the three-leaf-pair stage, then transferred to either high or low nutrient treatments. After five days of nutrient treatments, we used gas chromatography-mass spectrometry for analysis of root exudates, and detected 37 metabolites across species. When compared in the high nutrient treatment, species native to low nutrient soils exhibited overall higher exudation than their sister species native to high nutrient soils in all three species pairs, providing support for repeated evolutionary shifts in response to native soil fertility. Species native to low nutrient soils and those native to high nutrient soils responded similarly to low nutrient treatments with increased exudation of organic acids (fumaric, citric, malic acids) and glucose, potentially as a mechanism to enhance nutrition acquisition. However, species native to low nutrient soils also responded to low nutrient treatments with a larger decrease in exudation of amino acids than species native to high nutrient soils in all three species pairs. This indicates that species native to low nutrient soils have evolved a unique sensitivity to changes in nutrient availability for some, but not all, root exudates. Overall, these repeated evolutionary divergences between species native to low nutrient soils and those native to high nutrient soils provide evidence for the adaptive value of root exudation, and its plasticity, in contrasting soil environments. PMID:26824236
Bowsher, Alan W; Ali, Rifhat; Harding, Scott A; Tsai, Chung-Jui; Donovan, Lisa A
2016-01-01
Plant roots exude numerous metabolites into the soil that influence nutrient availability. Although root exudate composition is hypothesized to be under selection in low fertility soils, few studies have tested this hypothesis in a phylogenetic framework. In this study, we examined root exudates of three pairs of Helianthus species chosen as phylogenetically-independent contrasts with respect to native soil nutrient availability. Under controlled environmental conditions, seedlings were grown to the three-leaf-pair stage, then transferred to either high or low nutrient treatments. After five days of nutrient treatments, we used gas chromatography-mass spectrometry for analysis of root exudates, and detected 37 metabolites across species. When compared in the high nutrient treatment, species native to low nutrient soils exhibited overall higher exudation than their sister species native to high nutrient soils in all three species pairs, providing support for repeated evolutionary shifts in response to native soil fertility. Species native to low nutrient soils and those native to high nutrient soils responded similarly to low nutrient treatments with increased exudation of organic acids (fumaric, citric, malic acids) and glucose, potentially as a mechanism to enhance nutrition acquisition. However, species native to low nutrient soils also responded to low nutrient treatments with a larger decrease in exudation of amino acids than species native to high nutrient soils in all three species pairs. This indicates that species native to low nutrient soils have evolved a unique sensitivity to changes in nutrient availability for some, but not all, root exudates. Overall, these repeated evolutionary divergences between species native to low nutrient soils and those native to high nutrient soils provide evidence for the adaptive value of root exudation, and its plasticity, in contrasting soil environments.
Nutrient cycle benchmarks for earth system land model
NASA Astrophysics Data System (ADS)
Zhu, Q.; Riley, W. J.; Tang, J.; Zhao, L.
2017-12-01
Projecting future biosphere-climate feedbacks using Earth system models (ESMs) relies heavily on robust modeling of land surface carbon dynamics. More importantly, soil nutrient (particularly, nitrogen (N) and phosphorus (P)) dynamics strongly modulate carbon dynamics, such as plant sequestration of atmospheric CO2. Prevailing ESM land models all consider nitrogen as a potentially limiting nutrient, and several consider phosphorus. However, including nutrient cycle processes in ESM land models potentially introduces large uncertainties that could be identified and addressed by improved observational constraints. We describe the development of two nutrient cycle benchmarks for ESM land models: (1) nutrient partitioning between plants and soil microbes inferred from 15N and 33P tracers studies and (2) nutrient limitation effects on carbon cycle informed by long-term fertilization experiments. We used these benchmarks to evaluate critical hypotheses regarding nutrient cycling and their representation in ESMs. We found that a mechanistic representation of plant-microbe nutrient competition based on relevant functional traits best reproduced observed plant-microbe nutrient partitioning. We also found that for multiple-nutrient models (i.e., N and P), application of Liebig's law of the minimum is often inaccurate. Rather, the Multiple Nutrient Limitation (MNL) concept better reproduces observed carbon-nutrient interactions.
Nutrient load summaries for major lakes and estuaries of the Eastern United States, 2002
Moorman, Michelle C.; Hoos, Anne B.; Bricker, Suzanne B.; Moore, Richard B.; García, Ana María; Ator, Scott W.
2014-01-01
Nutrient enrichment of lakes and estuaries across the Nation is widespread. Nutrient enrichment can stimulate excessive plant and algal growth and cause a number of undesirable effects that impair aquatic life and recreational activities and can also result in economic effects. Understanding the amount of nutrients entering lakes and estuaries, the physical characteristics affecting the nutrient processing within these receiving waterbodies, and the natural and manmade sources of nutrients is fundamental to the development of effective nutrient reduction strategies. To improve this understanding, sources and stream transport of nutrients to 255 major lakes and 64 estuaries in the Eastern United States were estimated using Spatially Referenced Regression on Watershed attributes (SPARROW) nutrient models.
Rubber Trees Demonstrate a Clear Retranslocation Under Seasonal Drought and Cold Stresses
Li, Yuwu; Lan, Guoyu; Xia, Yujie
2016-01-01
Having been introduced to the northern edge of Asian tropics, the rubber tree (Hevea brasiliensis) has become deciduous in this climate with seasonal drought and cold stresses. To determine its internal nutrient strategy during leaf senescence and deciduous periods, we investigated mature leaf and senescent leaf nutrients, water-soluble soil nutrients and characteristics of soil microbiota in nine different ages of monoculture rubber plantations. Rubber trees demonstrate complicated retranslocation of N, P, and K during foliar turnover. Approximately 50.26% of leaf nutrients and 21.47% of soil nutrients were redistributed to the rubber tree body during the leaf senescence and withering stages. However, no significant changes in the structure- or function-related properties of soil microbes were detected. These nutrient retranslocation strategy may be important stress responses. In the nutrient retranslocation process, soil plays a dual role as nutrient supplier and nutrient “bank.” Soil received the nutrients from abscised leaves, and also supplied nutrients to trees in the non-growth stage. Nutrient absorption and accumulation began before the leaves started to wither and fall. PMID:28066467
Diffusion Performance of Fertilizer Nutrient through Polymer Latex Film.
An, Di; Yang, Ling; Liu, Boyang; Wang, Ting-Jie; Kan, Chengyou
2017-12-20
Matching the nutrient release rate of coated fertilizer with the nutrient uptake rate of the crop is the best way to increase the utilization efficiency of nutrients and reduce environmental pollution from the fertilizer. The diffusion property and mechanism of nutrients through the film are the theoretical basis for the product pattern design of coated fertilizers. For the coated fertilizer with a single-component nutrient, an extended solution-diffusion model was used to describe the difference of nutrient release rate, and the release rate is proportional to the permeation coefficient and the solubility of the nutrient. For the double- and triple-component fertilizer of N-K, N-P, and N-P-K, because of the interaction among nutrient molecules and ions, the release rates of different nutrients were significantly affected by the components in the composite fertilizer. Coating the single-component fertilizer (i.e., nitrogen fertilizer, phosphate fertilizer, and potash fertilizer) first and subsequently bulk blending is expected to be a promising way to adjust flexibly the nutrient release rate to meet the nutrient uptake rate of the crop.
Ichimura, Koichiro; Kinose, Shota; Kawasaki, Yuto; Okamura, Taro; Kato, Kota; Sakai, Tatsuo
2017-10-01
Anatomic characterization of the humeral nutrient artery varies among the several textbooks on human anatomy. To clarify the anatomic characteristics of the humeral nutrient artery, we reexamined its origin and course by cadaveric dissection. In typical cases, one prominent nutrient foramen was situated on the anteromedial surface of the humeral shaft, and the nutrient canal distally penetrated the cortical bone layer. The humeral nutrient artery originated from the brachial artery below the level of the nutrient foramen as a short ascending branch. On reaching near the nutrient foramen, the humeral nutrient artery formed a hairpin loop on the periosteum to enter into the nutrient foramen. In some cases, an accessory nutrient foramen was also found near the groove for the radial nerve on the posterior surface of the humerus. This accessory nutrient foramen received an accessory humeral nutrient artery that originated from the radial collateral artery. The present findings corresponded well with the descriptions in the anatomy textbooks published in English-speaking countries. However, textbooks published in German-speaking countries describe only one type of humeral nutrient artery, the branch of the profunda brachii artery. Terminologia Anatomica, the international standard in human anatomic terminology, most likely adopted the description in the German anatomy textbooks, and thus, it is necessary to correct the position of the humeral nutrient artery in the hierarchy of Terminologia Anatomica for accurate morphological description. Clin. Anat. 30:978-987, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Nutrient acquisition strategies of mammalian cells.
Palm, Wilhelm; Thompson, Craig B
2017-06-07
Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.
P. J Mulholland; J. L. Tanks; J. R. Webster; W. B. Bowden; W. K Dodds; S. V. Gregory; N. B Grimm; J. L. Meriam; J. L. Meyer; B. J. Peterson; H. M. Valett; W. M. Wollheim
2002-01-01
Nutrient uptake length is an important parnmeter tor quantifying nutrient cycling in streams. Although nutrient tracer additions are the preierred method for measuring uptake length under ambient nutrient concentrations, short-term nutrient addition experiments have more irequently been used to estimate uptake length in streams. Theoretical analysis of the relationship...
Narr, Charlotte F; Frost, Paul C
2015-12-01
While parasites are increasingly recognized as important components of ecosystems, we currently know little about how they alter ecosystem nutrient availability via host-mediated nutrient cycling. We examined whether infection alters the flow of nutrients through hosts and whether such effects depend upon host diet quality. To do so, we compared the mass specific nutrient (i.e., nitrogen and phosphorus) release rates, ingestion rates, and elemental composition of uninfected Daphnia to those infected with a bacterial parasite, P. ramosa. N and P release rates were increased by infection when Daphnia were fed P-poor diets, but we found no effect of infection on the nutrient release of individuals fed P-rich diets. Calculations based on the first law of thermodynamics indicated that infection should increase the nutrient release rates of Daphnia by decreasing nutrient accumulation rates in host tissues. Although we found reduced nutrient accumulation rates in infected Daphnia fed all diets, this reduction did not increase the nutrient release rates of Daphnia fed the P-rich diet because infected Daphnia fed this diet ingested nutrients more slowly than uninfected hosts. Our results thus indicate that parasites can significantly alter the nutrient use of animal consumers, which could affect the availability of nutrients in heavily parasitized environments.
A new insight into root responses to external cues: Paradigm shift in nutrient sensing
Bhardwaj, Deepak; Medici, Anna; Gojon, Alain; Lacombe, Benoît; Tuteja, Narendra
2015-01-01
Higher plants are sessile and their growth relies on nutrients present in the soil. The acquisition of nutrients is challenging for plants. Phosphate and nitrate sensing and signaling cascades play significant role during adverse conditions of nutrient unavailability. Therefore, it is important to dissect the mechanism by which plant roots acquire nutrients from the soil. Root system architecture (RSA) exhibits extensive developmental flexibility and changes during nutrient stress conditions. Growth of root system in response to external concentration of nutrients is a joint operation of sensor or receptor proteins along with several other cytoplasmic accessory proteins. After nutrient sensing, sensor proteins start the cellular relay involving transcription factors, kinases, ubiquitin ligases and miRNA. The complexity of nutrient sensing is still nebulous and many new players need to be better studied. This review presents a survey of recent paradigm shift in the advancements in nutrient sensing in relation to plant roots. PMID:26146897
Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments
Wang, Jianjun; Pan, Feiyan; Soininen, Janne; Heino, Jani; Shen, Ji
2016-01-01
Climate effects and human impacts, that is, nutrient enrichment, simultaneously drive spatial biodiversity patterns. However, there is little consensus about their independent effects on biodiversity. Here we manipulate nutrient enrichment in aquatic microcosms in subtropical and subarctic regions (China and Norway, respectively) to show clear segregation of bacterial species along temperature gradients, and decreasing alpha and gamma diversity toward higher nutrients. The temperature dependence of species richness is greatest at extreme nutrient levels, whereas the nutrient dependence of species richness is strongest at intermediate temperatures. For species turnover rates, temperature effects are strongest at intermediate and two extreme ends of nutrient gradients in subtropical and subarctic regions, respectively. Species turnover rates caused by nutrients do not increase toward higher temperatures. These findings illustrate direct effects of temperature and nutrients on biodiversity, and indirect effects via primary productivity, thus providing insights into how nutrient enrichment could alter biodiversity under future climate scenarios. PMID:28000677
Wang, Jianjun; Pan, Feiyan; Soininen, Janne; Heino, Jani; Shen, Ji
2016-12-21
Climate effects and human impacts, that is, nutrient enrichment, simultaneously drive spatial biodiversity patterns. However, there is little consensus about their independent effects on biodiversity. Here we manipulate nutrient enrichment in aquatic microcosms in subtropical and subarctic regions (China and Norway, respectively) to show clear segregation of bacterial species along temperature gradients, and decreasing alpha and gamma diversity toward higher nutrients. The temperature dependence of species richness is greatest at extreme nutrient levels, whereas the nutrient dependence of species richness is strongest at intermediate temperatures. For species turnover rates, temperature effects are strongest at intermediate and two extreme ends of nutrient gradients in subtropical and subarctic regions, respectively. Species turnover rates caused by nutrients do not increase toward higher temperatures. These findings illustrate direct effects of temperature and nutrients on biodiversity, and indirect effects via primary productivity, thus providing insights into how nutrient enrichment could alter biodiversity under future climate scenarios.
Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments
NASA Astrophysics Data System (ADS)
Wang, Jianjun; Pan, Feiyan; Soininen, Janne; Heino, Jani; Shen, Ji
2016-12-01
Climate effects and human impacts, that is, nutrient enrichment, simultaneously drive spatial biodiversity patterns. However, there is little consensus about their independent effects on biodiversity. Here we manipulate nutrient enrichment in aquatic microcosms in subtropical and subarctic regions (China and Norway, respectively) to show clear segregation of bacterial species along temperature gradients, and decreasing alpha and gamma diversity toward higher nutrients. The temperature dependence of species richness is greatest at extreme nutrient levels, whereas the nutrient dependence of species richness is strongest at intermediate temperatures. For species turnover rates, temperature effects are strongest at intermediate and two extreme ends of nutrient gradients in subtropical and subarctic regions, respectively. Species turnover rates caused by nutrients do not increase toward higher temperatures. These findings illustrate direct effects of temperature and nutrients on biodiversity, and indirect effects via primary productivity, thus providing insights into how nutrient enrichment could alter biodiversity under future climate scenarios.
Siletz River nutrients: Effects of biosolids application
Stream water nutrients were measured in the Siletz River, Oregon, with the goal of comparing dissolved nutrient concentrations, primarily the nitrogenous nutrients nitrate and ammonium, with previously collected data for the Yaquina and Alsea Rivers for the nutrient criteria prog...
Laurence Lin; J.R. Webster
2012-01-01
The constant nutrient addition technique has been used extensively to measure nutrient uptake in streams. However, this technique is impractical for large streams, and the pulse nutrient addition (PNA) has been suggested as an alternative. We developed a computer model to simulate Monod kinetics nutrient uptake in large rivers and used this model to evaluate the...
Velthuis, Mandy; van Deelen, Emma; van Donk, Ellen; Zhang, Peiyu; Bakker, Elisabeth S
2017-01-01
Human activity is currently changing our environment rapidly, with predicted temperature increases of 1-5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus). In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition consistently leads to decreased carbon:nutrient ratios, elevated temperature does not change submerged aquatic plant carbon:nutrient stoichiometry in a consistent manner. This effect is rather dependent on nutrient availability and may be species-specific. As changes in the carbon:nutrient stoichiometry of submerged aquatic plants can impact the transfer of energy to higher trophic levels, these results suggest that eutrophication may enhance plant consumption and decomposition, which could in turn have consequences for carbon sequestration.
González, Angélica L; Fariña, José Miguel; Pinto, Raquel; Pérez, Cecilia; Weathers, Kathleen C; Armesto, Juan J; Marquet, Pablo A
2011-11-01
Carbon, nitrogen, and phosphorus (C, N, P) stoichiometry influences the growth of plants and nutrient cycling within ecosystems. Indeed, elemental ratios are used as an index for functional differences between plants and their responses to natural or anthropogenic variations in nutrient supply. We investigated the variation in growth and elemental content of the rootless terrestrial bromeliad Tillandsia landbeckii, which obtains its moisture, and likely its nutrients, from coastal fogs in the Atacama Desert. We assessed (1) how fog nutrient supply influences plant growth and stoichiometry and (2) the response of plant growth and stoichiometry to variations in nutrient supply by using reciprocal transplants. We hypothesized that T. landbeckii should exhibit physiological and biochemical plastic responses commensurate with nutrient supply from atmospheric deposition. In the case of the Atacama Desert, nutrient supply from fog is variable over space and time, which suggests a relatively high variation in the growth and elemental content of atmospheric bromeliads. We found that the nutrient content of T. landbeckii showed high spatio-temporal variability, driven partially by fog nutrient deposition but also by plant growth rates. Reciprocal transplant experiments showed that transplanted individuals converged to similar nutrient content, growth rates, and leaf production of resident plants at each site, reflecting local nutrient availability. Although plant nutrient content did not exactly match the relative supply of N and P, our results suggest that atmospheric nutrient supply is a dominant driver of plant growth and stoichiometry. In fact, our results indicate that N uptake by T. landbeckii plants depends more on N supplied by fog, whereas P uptake is mainly regulated by within-plant nutrient demand for growth. Overall, these findings indicate that variation in fog nutrient supply exerts a strong control over growth and nutrient dynamics of atmospheric plants, which are ubiquitous across fog-dominated ecosystems.
Plasticity of the Arabidopsis Root System under Nutrient Deficiencies1[C][W][OPEN
Gruber, Benjamin D.; Giehl, Ricardo F.H.; Friedel, Swetlana; von Wirén, Nicolaus
2013-01-01
Plant roots show a particularly high variation in their morphological response to different nutrient deficiencies. Although such changes often determine the nutrient efficiency or stress tolerance of plants, it is surprising that a comprehensive and comparative analysis of root morphological responses to different nutrient deficiencies has not yet been conducted. Since one reason for this is an inherent difficulty in obtaining nutrient-deficient conditions in agar culture, we first identified conditions appropriate for producing nutrient-deficient plants on agar plates. Based on a careful selection of agar specifically for each nutrient being considered, we grew Arabidopsis (Arabidopsis thaliana) plants at four levels of deficiency for 12 nutrients and quantified seven root traits. In combination with measurements of biomass and elemental concentrations, we observed that the nutritional status and type of nutrient determined the extent and type of changes in root system architecture (RSA). The independent regulation of individual root traits further pointed to a differential sensitivity of root tissues to nutrient limitations. To capture the variation in RSA under different nutrient supplies, we used principal component analysis and developed a root plasticity chart representing the overall modulations in RSA under a given treatment. This systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program. PMID:23852440
Harmonization of nutrient intake values.
King, Janet C; Garza, Cutberto
2007-03-01
The conceptual framework for the various NIVs is depicted in figure 1 along with the methodological approaches and applications. The NIVs consist of two values derived from a statistical evaluation of data on nutrient requirements, the average nutrient requirement (ANR), or nutrient toxicities, the upper nutrient level (UNL). The individual nutrient levelx (INLx) is derived from the distribution of average nutrient requirements. The percentile chosen is often 98%, which is equivalent to 2 SD above the mean requirement. Concepts underlying the NIVs include criteria for establishing a nutrient requirement, e.g., ferritin stores, nitrogen balance, or serum vitamin C. Once the requirement for the absorbed nutrient is determined, it may be necessary to adjust the value for food sources, i.e., bioavailability, or host factors, such as the effect of infection on nutrient utilization. Other concepts that committees may want to consider when establishing NIVs include the effects of genetic variation on nutrient requirements and the role of the nutrient in preventing long-term disease. Two fundamental uses of NIVs are for assessing the adequacy of nutrient intakes and for planning diets for individuals and populations. Establishing the NIV using the statistical framework proposed in this report improves the efficacy of the values for identifying risks of nutrient deficiency or excess among individuals and populations. NIVs also are applied to a number of aspects of food and nutrition policy. Some examples include regulatory issues and trade, labeling, planning programs for alleviating public health nutrition problems, food fortification, and dietary guidance.
Hess, Julie; Rao, Goutham; Slavin, Joanne
2017-01-01
Background: Although Americans receive almost a quarter of their daily energy from snacks, snacking remains a poorly defined and understood eating occasion. However, there is little dietary guidance about choosing snacks. Families, clinicians, and researchers need a comprehensive approach to assessing their nutritional value. Objective: To quantify and compare the nutrient density of commonly consumed snacks by their overall nutrient profiles using the Nutrient-Rich Foods (NRF) Index 10.3. Methods: NRF Index scores were calculated for the top 3 selling products (based on 2014 market research data) in different snack categories. These NRF scores were averaged to provide an overall nutrient-density score for each category. Results: Based on NRF scores, yogurt (55.3), milk (52.5), and fruit (30.1) emerged as the most nutrient-dense snacks. Ice cream (-4.4), pies and cakes (-11.1), and carbonated soft drinks (-17.2) emerged as the most nutrient-poor snacks. Conclusions: The NRF Index is a useful tool for assessing the overall nutritional value of snacks based on nutrients to limit and nutrients to encourage.
Kong, Xiangshi; Jia, Yanyan; Song, Fuqiang; Tian, Kai; Lin, Hong; Bei, Zhanlin; Jia, Xiuqin; Yao, Bei; Guo, Peng; Tian, Xingjun
2018-02-01
Arbuscular mycorrhizal fungi (AMF) play an important role in litter decomposition. This study investigated how soil nutrient level affected the process. Results showed that AMF colonization had no significant effect on litter decomposition under normal soil nutrient conditions. However, litter decomposition was accelerated significantly under lower nutrient conditions. Soil microbial biomass in decomposition system was significantly increased. Especially, in moderate lower nutrient treatment (condition of half-normal soil nutrient), litters exhibited the highest decomposition rate, AMF hypha revealed the greatest density, and enzymes (especially nitrate reductase) showed the highest activities as well. Meanwhile, the immobilization of nitrogen (N) in the decomposing litter remarkably decreased. Our results suggested that the roles AMF played in ecosystem were largely affected by soil nutrient levels. At normal soil nutrient level, AMF exhibited limited effects in promoting decomposition. When soil nutrient level decreased, the promoting effect of AMF on litter decomposition began to appear, especially on N mobilization. However, under extremely low nutrient conditions, AMF showed less influence on decomposition and may even compete with decomposer microorganisms for nutrients.
NASA Astrophysics Data System (ADS)
van Beek, Christy; van Duivenbooden, Niek; Noij, Gert-Jan
2014-05-01
The threat of declining soil fertility levels is well known. Yet, and despite numerous efforts, we seem incapable of changing the current situation of sink areas in developed countries and depletion areas in developing countries. With negative consequences (i.e. loss in productive capacity and loss in environmental quality) in both areas. Moreover, due to globalization and urbanization nutrient flows become increasingly disconnected. Soil nutrient depletion cannot simply be compensated for with mineral fertilisers, for the following reasons: • mineral fertilisers are often not affordable for smallholders and fertiliser subsidy systems are not always successful • mineral fertilisers do not contain organic matter and therefore do not halt the degradation of the soil • mineral fertilisers work best in combination with organic sources of nutrients (compost, farm yard manure, etc.) • To halt soil degradation an integrated approach is needed, including reducing losses of nutrients and organic matter from soils at risk. Presently, more actors are getting involved in reallocation of nutrients, especially in the energy and waste sector. Time has come for a new approach to bring together demands and supplies for nutrients. We therefore present the Fertile Grounds Initiative: a broker for nutrient supply and demand in the region. The Fertile Grounds Initiative is based on the findings that: • Organic ánd mineral nutrients are required for increased and sustainable production; • Nutrients have a value and should be treated as such; • Due to globalization and urbanization nutrient flows are ever more polarized between depletion and concentration areas; • The demand for energy poses new threats and opportunities for nutrient management. In the Fertile Grounds Initiative nutrient suppliers from the energy sector, waste management, fertilizer companies, etc. and demands for nutrients from farmers are brought together in a dynamic platform. This platform acts as a nutrient bank and integrates different sources of nutrients into high quality crop nutrition products. A capacity building programme ensures proper application of the nutrients and optimal use of on-farm nutrients. To further shape our ideas of the Fertile Grounds Initiative you are cordially invited to become involved.
An integrated decision support system for wastewater nutrient recovery and recycling to agriculture
NASA Astrophysics Data System (ADS)
Roy, E. D.; Bomeisl, L.; Cornbrooks, P.; Mo, W.
2017-12-01
Nutrient recovery and recycling has become a key research topic within the wastewater engineering and nutrient management communities. Several technologies now exist that can effectively capture nutrients from wastewater, and innovation in this area continues to be an important research pursuit. However, practical nutrient recycling solutions require more than capable nutrient capture technologies. We also need to understand the role that wastewater nutrient recovery and recycling can play within broader nutrient management schemes at the landscape level, including important interactions at the nexus of food, energy, and water. We are developing an integrated decision support system that combines wastewater treatment data, agricultural data, spatial nutrient balance modeling, life cycle assessment, stakeholder knowledge, and multi-criteria decision making. Our goals are to: (1) help guide design decisions related to the implementation of sustainable nutrient recovery technology, (2) support innovations in watershed nutrient management that operate at the interface of the built environment and agriculture, and (3) aid efforts to protect aquatic ecosystems while supporting human welfare in a circular nutrient economy. These goals will be realized partly through the assessment of plausible alternative scenarios for the future. In this presentation, we will describe the tool and focus on nutrient balance results for the New England region. These results illustrate that both centralized and decentralized wastewater nutrient recovery schemes have potential to transform nutrient flows in many New England watersheds, diverting wastewater N and P away from aquatic ecosystems and toward local or regional agricultural soils where they can offset a substantial percentage of imported fertilizer. We will also highlight feasibility criteria and next steps to integrate stakeholder knowledge, economics, and life cycle assessment into the tool.
Uncovering the Nutritional Landscape of Food
Kim, Seunghyeon; Sung, Jaeyun; Foo, Mathias; Jin, Yong-Su; Kim, Pan-Jun
2015-01-01
Recent progresses in data-driven analysis methods, including network-based approaches, are revolutionizing many classical disciplines. These techniques can also be applied to food and nutrition, which must be studied to design healthy diets. Using nutritional information from over 1,000 raw foods, we systematically evaluated the nutrient composition of each food in regards to satisfying daily nutritional requirements. The nutrient balance of a food was quantified and termed nutritional fitness; this measure was based on the food’s frequency of occurrence in nutritionally adequate food combinations. Nutritional fitness offers a way to prioritize recommendable foods within a global network of foods, in which foods are connected based on the similarities of their nutrient compositions. We identified a number of key nutrients, such as choline and α-linolenic acid, whose levels in foods can critically affect the nutritional fitness of the foods. Analogously, pairs of nutrients can have the same effect. In fact, two nutrients can synergistically affect the nutritional fitness, although the individual nutrients alone may not have an impact. This result, involving the tendency among nutrients to exhibit correlations in their abundances across foods, implies a hidden layer of complexity when exploring for foods whose balance of nutrients within pairs holistically helps meet nutritional requirements. Interestingly, foods with high nutritional fitness successfully maintain this nutrient balance. This effect expands our scope to a diverse repertoire of nutrient-nutrient correlations, which are integrated under a common network framework that yields unexpected yet coherent associations between nutrients. Our nutrient-profiling approach combined with a network-based analysis provides a more unbiased, global view of the relationships between foods and nutrients, and can be extended towards nutritional policies, food marketing, and personalized nutrition. PMID:25768022
Nutrient Management in Recirculating Hydroponic Culture
NASA Technical Reports Server (NTRS)
Bugbee, Bruce
2004-01-01
There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.
Research to Inform Nutrient Thresholds and Prioritization of Watersheds for Nutrient Management
The information in this presentation focuses on SSWR's 4.02 project, which will advance the science needed to inform decisions to prioritize watersheds and nutrient sources for nutrient management and define appropriate nutrient levels for the nation’s waters, two importan...
Plant response to nutrient availability across variable bedrock geologies
Castle, S.C.; Neff, J.C.
2009-01-01
We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.
Plant–herbivore–decomposer stoichiometric mismatches and nutrient cycling in ecosystems
Cherif, Mehdi; Loreau, Michel
2013-01-01
Plant stoichiometry is thought to have a major influence on how herbivores affect nutrient availability in ecosystems. Most conceptual models predict that plants with high nutrient contents increase nutrient excretion by herbivores, in turn raising nutrient availability. To test this hypothesis, we built a stoichiometrically explicit model that includes a simple but thorough description of the processes of herbivory and decomposition. Our results challenge traditional views of herbivore impacts on nutrient availability in many ways. They show that the relationship between plant nutrient content and the impact of herbivores predicted by conceptual models holds only at high plant nutrient contents. At low plant nutrient contents, the impact of herbivores is mediated by the mineralization/immobilization of nutrients by decomposers and by the type of resource limiting the growth of decomposers. Both parameters are functions of the mismatch between plant and decomposer stoichiometries. Our work provides new predictions about the impacts of herbivores on ecosystem fertility that depend on critical interactions between plant, herbivore and decomposer stoichiometries in ecosystems. PMID:23303537
van der Wulp, Simon A; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J
2016-09-30
The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377m(3)s(-1) entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174tons and 14 to 60tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Surface-water nutrient conditions and sources in the United States Pacific Northwest
Wise, D.R.; Johnson, H.M.
2011-01-01
The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface-water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency's recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to environmental managers in future water-quality planning efforts.
Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae
Conrad, Michaela; Schothorst, Joep; Kankipati, Harish Nag; Van Zeebroeck, Griet; Rubio-Texeira, Marta; Thevelein, Johan M
2014-01-01
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth. PMID:24483210
NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress.
Nath, Manoj; Tuteja, Narendra
2016-05-01
Sessile nature of higher plants consequently makes it highly adaptable for nutrient absorption and acquisition from soil. Plants require 17 essential elements for their growth and development which include 14 minerals (macronutrients: N, P, K, Mg, Ca, S; micronutrients: Cl, Fe, B, Mn, Zn, Cu, Ni, Mo) and 3 non-mineral (C, H, O) elements. The roots of higher plants must acquire these macronutrients and micronutrients from rhizosphere and further allocate to other plant parts for completing their life cycle. Plants evolved an intricate series of signaling and sensing cascades to maintain nutrient homeostasis and to cope with nutrient stress/availability. The specific receptors for nutrients in root, root system architecture, and internal signaling pathways help to develop plasticity in response to the nutrient starvation. Nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) are essential for various metabolic processes, and their deficiency negatively effects the plant growth and yield. Genes coding for transporters and receptors for nutrients as well as some small non-coding RNAs have been implicated in nutrient uptake and signaling. This review summarizes the N, P, K, and S uptake, sensing and signaling events in nutrient stress condition especially in model plant Arabidopsis thaliana and involvement of microRNAs in nutrient deficiency. This article also provides a framework of uptake, sensing, signaling and to highlight the microRNA as an emerging major players in nutrient stress condition. Nutrient-plant-miRNA cross talk may help plant to cope up nutrient stress, and understanding their precise mechanism(s) will be necessary to develop high yielding smart crop with low nutrient input.
The stoichiometry of nutrient release by terrestrial herbivores and its ecosystem consequences
NASA Astrophysics Data System (ADS)
Sitters, Judith; Bakker, Elisabeth S.; Veldhuis, Michiel P.; Veen, G. F.; Olde Venterink, Harry; Vanni, Michael J.
2017-04-01
It is widely recognized that the release of nutrients by herbivores via their waste products strongly impacts nutrient availability for autotrophs. The ratios of nitrogen (N) and phosphorus (P) recycled through herbivore release (i.e., waste N:P) are mainly determined by the stoichiometric composition of the herbivore’s food (food N:P) and its body nutrient content (body N:P). Waste N:P can in turn impact autotroph nutrient limitation and productivity. Herbivore-driven nutrient recycling based on stoichiometric principles is dominated by theoretical and experimental research in freshwater systems, in particular interactions between algae and invertebrate herbivores. In terrestrial ecosystems, the impact of herbivores on nutrient cycling and availability is often limited to studying carbon (C ):N and C:P ratios, while the role of terrestrial herbivores in mediating N:P ratios is also likely to influence herbivore-driven nutrient recycling. In this review, we use rules and predictions on the stoichiometry of nutrient release originating from algal-based aquatic systems to identify the factors that determine the stoichiometry of nutrient release by herbivores. We then explore how these rules can be used to understand the stoichiometry of nutrient release by terrestrial herbivores, ranging from invertebrates to mammals, and its impact on plant nutrient limitation and productivity. Future studies should focus on measuring both N and P when investigating herbivore-driven nutrient recycling in terrestrial ecosystems, while also taking the form of waste product (urine or feces) and other pathways by which herbivores change nutrients into account, to be able to quantify the impact of waste stoichiometry on plant communities.
Houser, J.N.; Richardson, W.B.
2010-01-01
Existing research on nutrients (nitrogen and phosphorus) in the Upper Mississippi River (UMR) can be organized into the following categories: (1) Long-term changes in nutrient concentrations and export, and their causes; (2) Nutrient cycling within the river; (3) Spatial and temporal patterns of river nutrient concentrations; (4) Effects of elevated nutrient concentrations on the river; and (5) Actions to reduce river nutrient concentrations and flux. Nutrient concentration and flux in the Mississippi River have increased substantially over the last century because of changes in land use, climate, hydrology, and river management and engineering. As in other large floodplain rivers, rates of processes that cycle nitrogen and phosphorus in the UMR exhibit pronounced spatial and temporal heterogeneity because of the complex morphology of the river. This spatial variability in nutrient processing creates clear spatial patterns in nutrient concentrations. For example, nitrate concentrations generally are much lower in off-channel areas than in the main channel. The specifics of in-river nutrient cycling and the effects of high rates of nutrient input on UMR have been less studied than the factors affecting nutrient input to the river and transport to the Gulf of Mexico, and important questions concerning nutrient cycling in the UMR remain. Eutrophication and resulting changes in river productivity have only recently been investigated the UMR. These recent studies indicate that the high nutrient concentrations in the river may affect community composition of aquatic vegetation (e. g., the abundance of filamentous algae and duckweeds), dissolved oxygen concentrations in off-channel areas, and the abundance of cyanobacteria. Actions to reduce nutrient input to the river include changes in land-use practices, wetland restoration, and hydrological modifications to the river. Evidence suggests that most of the above methods can contribute to reducing nutrient concentration in, and transport by, the UMR, but the impacts of mitigation efforts will likely be only slowly realized. ?? USGS, US Government 2010.
Nutrients are a leading cause of impairments in the United States, and as a result tools are needed to identify drivers of nutrients and response variables (such as chlorophyll a), nutrient sources, and identify causes of exceedances of water quality thresholds. This presentatio...
Drug-nutrient interactions: a review.
Maka, D A; Murphy, L K
2000-11-01
Concurrent administration of medications and nutrients can lead to interactions that change the absorption or metabolism of the medication or nutrient. Some of these interactions have little or no impact on the patient while others may be fatal. The objective of this article is to review the mechanisms of various drug-nutrient interactions. Topics to be discussed include specific populations at risk of interactions, nutrients that have a positive and negative effect on drug absorption, nutrients that result in alterations of drug metabolism, and a variety of pharmacologic interactions of medications with nutrients. It is vital that healthcare providers are familiar with drug-nutrient interactions and continue to educate themselves and their patients to optimize the effectiveness and minimize the toxicities of medications.
[Inventory of regional surface nutrient balance and policy recommendations in China].
Chen, Min-Peng; Chen, Ji-Ning
2007-06-01
By applying OECD surface soil nitrogen balance methodology, the framework, methodology and database for nutrient balance budget in China are established to evaluate the impact of nutrient balance on agricultural production and water environment. Results show that nitrogen and phosphorus surplus in China are 640 x 10(4) t and 98 x 10(4) t respectively, and nitrogen and phosphorus surplus intensity in China are 16.56 kg/hm2 and 2.53 kg/hm2 respectively. Because of striking spatial difference of nutrient balance across the country, China is seeing a dual-challenge of nutrient surplus management as well as nutrient deficit management. Chemical fertilizer and livestock manure are best targets to perform nutrient surplus management due to their marked contributions to nutrient input. However, it is not cost-effective to implement a uniform management for all regions since nutrient input structures of them vary considerably.
Phosphorus, zinc, and boron influence yield components in Earliglow strawberry
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, G.M.; Pritts, M.P.
1993-01-01
The main effects and interactions of soil-applied P, B, and Zn on yield and its components were examined in the field at two pH levels with Earliglow' strawberries (Fragaria ananassa Duch.). Applied nutrients had significant effects on several yield components, but responses depended on the levels of other nutrients or the soil pH. At a soil pH of 5.5, yield responded linearly to B and quadratically to P. At pH 6.5, P interacted with B and Zn. Fruit count per inflorescence was the yield component most strongly associated with yield, followed by individual fruit weight. However, these two yield componentsmore » responded differently to soil-applied nutrients. Foliar nutrient levels generally did not increase with the amount of applied nutrient, but often an applied nutrient had a strong effect on the level of another nutrient. Leaf nutrient levels were often correlated with fruit levels, but foliar and fruit levels at harvest were not related to reproductive performance. The study identifies some of the problems inherent in using foliar nutrient levels to predict a yield response and demonstrates how plant responses to single nutrients depend on soil chemistry and the presence of other nutrients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootton, J.T.; Pfister, C.A.; Paine, R.T.
We experimentally manipulated nutrient input to a rocky intertidal community, using nutrient-diffusing flowerpots, to determine (i) whether nutrients limited intertidal productivity, (ii) how a large-scale oceanographic disturbance (an El Nino event) affected patterns of nutrient limitation, (iii) the relative impacts of molluscan grazers and nutrient limitation, and (iv) if responses to experimental nutrient addition among trophic levels were more consistent with prey-dependent or ratio-dependent food chain models. Nutrients measurably increased the abundance of micrograzers (amphipods and chironomid larvae), but not algal biomass, during the summer of an El Nino years and during the autumn of an El Nino year. Addingmore » nutrients did not affect food chain stability as assessed by temporal variation in algal biomass and micrograzer abundance. Large molluscan grazers caused large reductions in micrograzers and smaller reductions in algae, indicating consistent consumer effects. The results demonstrate that in this intertidal community, nutrient limitation can occur under conditions of nutrient stress, that top-down grazing effects are typically stronger than bottom-up nutrient effects, and that prey-dependent models are more appropriate than ratio-dependent models. 40 refs., 1 fig., 1 tab.« less
Du, Xinzhong; Li, Xuyong; Hao, Shaonan; Wang, Huiliang; Shen, Xiao
2014-01-01
Nutrient discharge during storm events is a critical pathway for nutrient export in semi-arid catchments. We investigated nutrient dynamics during three summer storms characterized by different rainfall magnitude in 2012 in a semi-arid catchment of northern China. The results showed that, in response to storm events, nutrient dynamics displayed big variation in temporal trends of nutrient concentration and in nutrient concentration-flow discharge relationships. Nutrient concentrations had broader fluctuations during an extreme storm than during lesser storms, whereas the concentration ranges of the a moderate storm were no broader than those of a smaller one. The different concentration fluctuations were caused by storm magnitude and intensity coupled with the antecedent rainfall amount and cumulative nutrients. Correlation coefficients between nutrient concentrations and flow discharge varied from positive to negative for the three different events. There were no consistent hysteresis effects for the three different events, and no hysteresis effects were observed for any of the variables during the moderate storm (E2). Our findings provide useful information for better understanding nutrient loss mechanisms during storm events in semi-arid areas of a monsoon climate region.
A smart market for nutrient credit trading to incentivize wetland construction
NASA Astrophysics Data System (ADS)
Raffensperger, John F.; Prabodanie, R. A. Ranga; Kostel, Jill A.
2017-03-01
Nutrient trading and constructed wetlands are widely discussed solutions to reduce nutrient pollution. Nutrient markets usually include agricultural nonpoint sources and municipal and industrial point sources, but these markets rarely include investors who construct wetlands to sell nutrient reduction credits. We propose a new market design for trading nutrient credits, with both point source and non-point source traders, explicitly incorporating the option of landowners to build nutrient removal wetlands. The proposed trading program is designed as a smart market with centralized clearing, done with an optimization. The market design addresses the varying impacts of runoff over space and time, and the lumpiness of wetland investments. We simulated the market for the Big Bureau Creek watershed in north-central Illinois. We found that the proposed smart market would incentivize wetland construction by assuring reasonable payments for the ecosystem services provided. The proposed market mechanism selects wetland locations strategically taking into account both the cost and nutrient removal efficiencies. The centralized market produces locational prices that would incentivize farmers to reduce nutrients, which is voluntary. As we illustrate, wetland builders' participation in nutrient trading would enable the point sources and environmental organizations to buy low cost nutrient credits.
Colony patterning and collective hyphal growth of filamentous fungi
NASA Astrophysics Data System (ADS)
Matsuura, Shu
2002-11-01
Colony morphology of wild and mutant strains of Aspergillus nidulans at various nutrient and agar levels was investigated. Two types of colony patterning were found for these strains. One type produced uniform colonies at all nutrient and agar levels tested, and the other exhibited morphological change into disordered ramified colonies at low nutrient levels. Both types showed highly condensed compact colonies at high nutrient levels on low agar media that was highly diffusive. Disordered colonies were found to develop with low hyphal extension rates at low nutrient levels. To understand basic pattern selection rules, a colony model with three parameters, i.e., the initial nutrient level and the step length of nutrient random walk as the external parameters, and the frequency of nutrient uptake as an internal parameter, was constructed. At low nutrient levels, with decreasing nutrient uptake frequency under diffusive conditions, the model colony exhibited onsets of disordered ramification. Further, in the growth process of A. nidulans, reduction of hyphal extension rate due to a population effect of hyphae was found when hyphae form three-dimensional dense colonies, as compared to the case in which hyphal growth was restricted into two-dimensional space. A hyphal population effect was introduced in the colony model. Thickening of colony periphery due to the population effect became distinctive as the nutrient diffusion effect was raised at high nutrient levels with low hyphal growth rate. It was considered that colony patterning and onset of disorder were strongly governed by the combination of nutrient diffusion and hyphal growth rate.
Chan, Lingtak-Neander
2013-07-01
Drug-nutrient interactions are defined as physical, chemical, physiologic, or pathophysiologic relationships between a drug and a nutrient. The causes of most clinically significant drug-nutrient interactions are usually multifactorial. Failure to identify and properly manage drug-nutrient interactions can lead to very serious consequences and have a negative impact on patient outcomes. Nevertheless, with thorough review and assessment of the patient's history and treatment regimens and a carefully executed management strategy, adverse events associated with drug-nutrient interactions can be prevented. Based on the physiologic sequence of events after a drug or a nutrient has entered the body and the mechanism of interactions, drug-nutrient interactions can be categorized into 4 main types. Each type of interaction can be managed using similar strategies. The existing data that guide the clinical management of most drug-nutrient interactions are mostly anecdotal experience, uncontrolled observations, and opinions, whereas the science in understanding the mechanism of drug-nutrient interactions remains limited. The challenge for researchers and clinicians is to increase both basic and higher level clinical research in this field to bridge the gap between the science and practice. The research should aim to establish a better understanding of the function, regulation, and substrate specificity of the nutrient-related enzymes and transport proteins present in the gastrointestinal tract, as well as assess how the incidence and management of drug-nutrient interactions can be affected by sex, ethnicity, environmental factors, and genetic polymorphisms. This knowledge can help us develop a true personalized medicine approach in the prevention and management of drug-nutrient interactions.
Independent Colimitation for Carbon Dioxide and Inorganic Phosphorus
Spijkerman, Elly; de Castro, Francisco; Gaedke, Ursula
2011-01-01
Simultaneous limitation of plant growth by two or more nutrients is increasingly acknowledged as a common phenomenon in nature, but its cellular mechanisms are far from understood. We investigated the uptake kinetics of CO2 and phosphorus of the algae Chlamydomonas acidophila in response to growth at limiting conditions of CO2 and phosphorus. In addition, we fitted the data to four different Monod-type models: one assuming Liebigs Law of the minimum, one assuming that the affinity for the uptake of one nutrient is not influenced by the supply of the other (independent colimitation) and two where the uptake affinity for one nutrient depends on the supply of the other (dependent colimitation). In addition we asked whether the physiological response under colimitation differs from that under single nutrient limitation. We found no negative correlation between the affinities for uptake of the two nutrients, thereby rejecting a dependent colimitation. Kinetic data were supported by a better model fit assuming independent uptake of colimiting nutrients than when assuming Liebigs Law of the minimum or a dependent colimitation. Results show that cell nutrient homeostasis regulated nutrient acquisition which resulted in a trade-off in the maximum uptake rates of CO2 and phosphorus, possibly driven by space limitation on the cell membrane for porters for the different nutrients. Hence, the response to colimitation deviated from that to a single nutrient limitation. In conclusion, responses to single nutrient limitation cannot be extrapolated to situations where multiple nutrients are limiting, which calls for colimitation experiments and models to properly predict growth responses to a changing natural environment. These deviations from single nutrient limitation response under colimiting conditions and independent colimitation may also hold for other nutrients in algae and in higher plants. PMID:22145031
NASA Astrophysics Data System (ADS)
Destouni, G.
2017-12-01
Measures for mitigating nutrient loads to aquatic ecosystems should have observable effects, e.g, in the Baltic region after joint first periods of nutrient management actions under the Baltic Sea Action Plan (BASP; since 2007) and the EU Water Framework Directive (WFD; since 2009). Looking for such observable effects, all openly available water and nutrient monitoring data since 2003 are compiled and analyzed for Sweden as a case study. Results show that hydro-climatically driven water discharge dominates the determination of waterborne loads of both phosphorus and nitrogen. Furthermore, the nutrient loads and water discharge are all similarly well correlated with the ecosystem status classification of Swedish water bodies according to the WFD. Nutrient concentrations, which are hydro-climatically correlated and should thus reflect human effects better than loads, have changed only slightly over the study period (2003-2013) and even increased in moderate-to-bad status waters, where the WFD and BSAP jointly target nutrient decreases. These results indicate insufficient distinction and mitigation of human-driven nutrient components by the internationally harmonized applications of both the WFD and the BSAP. Aiming for better general identification of such components, nutrient data for the large transboundary catchments of the Baltic Sea and the Sava River are compared. The comparison shows cross-regional consistency in nutrient relationships to driving hydro-climatic conditions (water discharge) for nutrient loads, and socio-economic conditions (population density and farmland share) for nutrient concentrations. A data-driven screening methodology is further developed for estimating nutrient input and retention-delivery in catchments. Its first application to nested Sava River catchments identifies characteristic regional values of nutrient input per area and relative delivery, and hotspots of much larger inputs, related to urban high-population areas.
Nutrient fluxes at the landscape level and the R* rule
Ju, Shu; DeAngelis, Donald L.
2010-01-01
Nutrient cycling in terrestrial ecosystems involves not only the vertical recycling of nutrients at specific locations in space, but also biologically driven horizontal fluxes between different areas of the landscape. This latter process can result in net accumulation of nutrients in some places and net losses in others. We examined the effects of such nutrient-concentrating fluxes on the R* rule, which predicts that the species that can survive in steady state at the lowest level of limiting resource, R*, can exclude all competing species. To study the R* rule in this context, we used a literature model of plant growth and nutrient cycling in which both nutrients and light may limit growth, with plants allocating carbon and nutrients between foliage and roots according to different strategies. We incorporated the assumption that biological processes may concentrate nutrients in some parts of the landscape. We assumed further that these processes draw nutrients from outside the zone of local recycling at a rate proportional to the local biomass density. Analysis showed that at sites where there is a sufficient biomass-dependent accumulation of nutrients, the plant species with the highest biomass production rates (roughly corresponding to the best competitors) do not reduce locally available nutrients to a minimum concentration level (that is, minimum R*), as expected from the R* rule, but instead maximize local nutrient concentration. These new results require broadening of our understanding of the relationships between nutrients and vegetation competition on the landscape level. The R* rule is replaced by a more complex criterion that varies across a landscape and reduces to the R* rule only under certain limiting conditions.
Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.; Fraver, Shawn
2014-01-01
Contemporary forest harvesting practices, specifically harvesting woody biomass as a source of bioenergy feedstock, may remove more woody debris from a site than conventional harvesting. Woody debris, particularly smaller diameter woody debris, plays a key role in maintaining ecosystem nutrient stores following disturbance. Understanding nutrient concentrations within woody debris is necessary for assessing the long-term nutrient balance consequences of altered woody debris retention, particularly in forests slated for use as bioenergy feedstocks. Nutrient concentrations in downed woody debris of various sizes, decay classes, and species were characterized within one such forest type, Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Nutrient concentrations differed significantly between size and decay classes and generally increased as decay progressed. Fine woody debris (≤ 7.5 cm diameter) had higher nutrient concentrations than coarse woody debris (> 7.5 cm diameter) for all nutrients examined except Na and Mn, and nutrient concentrations varied among species. Concentrations of N, Mn, Al, Fe, and Zn in coarse woody debris increased between one and three orders of magnitude, while K decreased by an order of magnitude with progressing decay. The variations in nutrient concentrations observed here underscore the complexity of woody debris nutrient stores in forested ecosystems and suggest that retaining fine woody debris at harvest may provide a potentially important source of nutrients following intensive removals of bioenergy feedstocks.
NASA Astrophysics Data System (ADS)
Carey, Richard O.; Migliaccio, Kati W.
2009-08-01
Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.
Wildfire Effects on In-stream Nutrient Processing and Hydrologic Transport
NASA Astrophysics Data System (ADS)
Rhea, A.; Covino, T. P.; Rhoades, C.; Fegel, T.
2017-12-01
In many forests throughout the Western U.S., drought, climate change, and growing fuel loads are contributing to increased fire frequency and severity. Wildfires can influence watershed nutrient retention as they fundamentally alter the biological composition and physical structure in upland landscapes, riparian corridors, and stream channels. While numerous studies have documented substantial short-term increases in stream nutrient concentrations and export (particularly reactive nitrogen, N) following forest fires, the long-term implications for watershed nutrient cycling remain unclear. For example, recent work indicates that nitrate concentrations and export can remain elevated for a decade or more following wildfire, yet the controls on these processes are unknown. In this research, we use empirical observations from nutrient tracer injections, nutrient diffusing substrates, and continuous water quality monitoring to isolate biological and physical controls on nutrient export across a burn-severity gradient. Tracer results demonstrate substantial stream-groundwater exchange, but little biological nutrient uptake in burned streams. This in part explains patterns of elevated nutrient export. Paired nutrient diffusing substrate experiments allow us to further investigate shifts in N, phosphorus, and carbon limitation that may suppress post-fire stream nutrient uptake. By isolating the mechanisms that reduce the capacity of fire-affected streams to retain and transform nutrient inputs, we can better predict dynamics in post-fire water quality and help prioritize upland and riparian restoration.
Surface-Water Nutrient Conditions and Sources in the United States Pacific Northwest1
Wise, Daniel R; Johnson, Henry M
2011-01-01
Abstract The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface-water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency's recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to environmental managers in future water-quality planning efforts. PMID:22457584
Microbial enzyme activity, nutrient uptake and nutrient limitation in forested streams
Brian H. Hill; Frank H. McCormick; Bret C. Harvey; Sherri L. Johnson; Melvin L. Warren; Colleen M. Elonen
2010-01-01
The flow of organic matter and nutrients from catchments into the streams draining them and the biogeochemical transformations of organic matter and nutrients along flow paths are fundamental processes instreams (Hynes,1975; Fisher, Sponseller & Heffernan, 2004). Microbial biofilms are often the primary interface for organic matter and nutrient uptake and...
Nutrient resorption and patterns of litter production and decomposition in a Neotropical savanna.
A.R. Kozovits; M.M.C. Bustamante; C.R. Garofalo; S. Bucci; A.C. Franco; G. Goldstein; F. Meinzer
2007-01-01
1. Deposition of nutrients owing to anthropogenic activities has the potential to change nutrient availability in nutrient-limited ecosystems with consequences for plant and ecosystem processes. 2. Species-specific and ecosystem responses to the addition of nutrients were studied in a field experiment conducted in a Savanna (Cerrado sensu stricto)...
Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem
Jonathan P. Benstead; Amy D. Rosemond; Wyatt F. Cross; J. Bruce Wallace; Susan L. Eggert; Keller Suberkropp; Vladislav Gulis; Jennifer L. Greenwood; Cynthia J. Tant
2009-01-01
Responses of detrital pathways to nutrients may differ fundamentally from pathways involving living plants: basal carbon resources can potentially decrease rather than increase with nutrient enrichment. Despite the potential for nutrients to accelerate heterotrophic processes and fluxes of detritus, few studies have examined detritus-nutrient dynamics at whole-...
Nutrition Economics: How to Eat Better for Less.
Drewnowski, Adam
2015-01-01
Food prices and diet costs contribute to socioeconomic disparities in diet quality and health. Lower-cost diets provide ample calories but lack essential nutrients. Nutrition economics can remedy health disparities by helping to identify food patterns that are nutrient-rich, affordable, and appealing. First, nutrient profiling models--such as the Nutrient Rich Food (NRF) family of indices--are able to separate foods that are energy-dense from those that are nutrient-rich. Whereas energy-dense foods contain more calories than nutrients, nutrient-rich foods contain more nutrients than calories. Second, new value metrics have identified affordable healthy foods, based on nutrients per unit cost. Third, these methods have now been applied to the analyses of individual foods and beverages, meals, menus, and the total diet. The Healthy Eating Index (HEI), based on compliance with dietary guidelines, was the principal measure of total diet quality. Although healthier diets did generally cost more, some population subgroups managed to obtain nutrient-dense diets at a lower cost. Being able to create affordable, healthy food patterns on limited budgets is an example of nutrition resilience.
Aeolian dust nutrient contributions increase with substrate age in semi-arid ecosystems
NASA Astrophysics Data System (ADS)
Coble, A. A.; Hart, S. C.; Ketterer, M. E.; Newman, G. S.
2013-12-01
Rock-derived nutrients supplied by mineral weathering become depleted over time, and without an additional nutrient source the ecosystem may eventually regress or reach a terminal steady state. Previous studies have demonstrated that aeolian dust act as parent materials of soils and important nutrients to plants in arid regions, but the relative importance of these exogenous nutrients to the function of dry ecosystems during soil development is uncertain. Here, using strontium isotopes as a tracer and a well-constrained, three million year old substrate age gradient, we show that aeolian-derived nutrients become increasingly important to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of soil development in a semi-arid climate. Furthermore, the depth of nutrient uptake increased on older substrates, suggesting that trees in arid regions acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results contribute to the unification of biogeochemical theory by demonstrating the similarity in roles of atmospheric nutrient inputs during ecosystem development across contrasting climates.
Improving crop nutrient efficiency through root architecture modifications.
Li, Xinxin; Zeng, Rensen; Liao, Hong
2016-03-01
Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition. © 2015 Institute of Botany, Chinese Academy of Sciences.
Estimation of particulate nutrient load using turbidity meter.
Yamamoto, K; Suetsugi, T
2006-01-01
The "Nutrient Load Hysteresis Coefficient" was proposed to evaluate the hysteresis of the nutrient loads to flow rate quantitatively. This could classify the runoff patterns of nutrient load into 15 patterns. Linear relationships between the turbidity and the concentrations of particulate nutrients were observed. It was clarified that the linearity was caused by the influence of the particle size on turbidity output and accumulation of nutrients on smaller particles (diameter < 23 microm). The L-Q-Turb method, which is a new method for the estimation of runoff loads of nutrients using a regression curve between the turbidity and the concentrations of particulate nutrients, was developed. This method could raise the precision of the estimation of nutrient loads even if they had strong hysteresis to flow rate. For example, as for the runoff load of total phosphorus load on flood events in a total of eight cases, the averaged error of estimation of total phosphorus load by the L-Q-Turb method was 11%, whereas the averaged estimation error by the regression curve between flow rate and nutrient load was 28%.
The elemental stoichiometry (C, Si, N, P) of the Hebrides Shelf and its role in carbon export
NASA Astrophysics Data System (ADS)
Painter, Stuart C.; Hartman, Susan E.; Kivimäe, Caroline; Salt, Lesley A.; Clargo, Nicola M.; Daniels, Chris J.; Bozec, Yann; Daniels, Lucie; Allen, Stephanie; Hemsley, Victoria S.; Moschonas, Grigorios; Davidson, Keith
2017-12-01
A detailed analysis of the internal stoichiometry of a temperate latitude shelf sea system is presented which reveals strong vertical and horizontal gradients in dissolved nutrient and particulate concentrations and in the elemental stoichiometry of those pools. Such gradients have implications for carbon and nutrient export from coastal waters to the open ocean. The mixed layer inorganic nutrient stoichiometry shifted from balanced N:P in winter, to elevated N:P in spring and to depleted N:P in summer, relative to the Redfield ratio. This pattern suggests increased likelihood of P limitation of fast growing phytoplankton species in spring and of N limitation of slower growing species in summer. However, as only silicate concentrations were below potentially limiting concentrations during summer and autumn the stoichiometric shifts in inorganic nutrient N:P are considered due to phytoplankton nutrient preference patterns rather than nutrient exhaustion. Elevated particulate stoichiometries corroborate non-Redfield optima underlying organic matter synthesis and nutrient uptake. Seasonal variation in the stoichiometry of the inorganic and organic nutrient pools has the potential to influence the efficiency of nutrient export. In summer, when organic nutrient concentrations were at their highest and inorganic nutrient concentrations were at their lowest, the organic nutrient pool was comparatively C poor whilst the inorganic nutrient pool was comparatively C rich. The cross-shelf export of these pools at this time would be associated with different efficiencies regardless of the total magnitude of exchange. In autumn the elemental stoichiometries increased with depth in all pools revealing widespread carbon enrichment of shelf bottom waters with P more intensely recycled than N, N more intensely recycled than C, and Si weakly remineralized relative to C. Offshelf carbon fluxes were most efficient via the inorganic nutrient pool, intermediate for the organic nutrient pool and least efficient for the particulate pool. N loss from the shelf however was most efficient via the dissolved organic nutrient pool. Mass balance calculations suggest that 28% of PO43-, 34% of NO3- and 73% of Si drawdown from the mixed layer fails to reappear in the benthic water column thereby indicating the proportion of the nutrient pools that must be resupplied from the ocean each year to maintain shelf wide productivity. Loss to the neighbouring ocean, the sediments, transference to the dissolved organic nutrient pool and higher trophic levels are considered the most likely fate for these missing nutrients.
Xie, Ming; Shon, Ho Kyong; Gray, Stephen R; Elimelech, Menachem
2016-02-01
Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sherrod, S.K.; Belnap, J.; Miller, M.E.
2002-01-01
Four methods for measuring quantities of 12 plant-available nutrients were compared using three sandy soils in a series of three experiments. Three of the methods use different ion-exchange resin forms—bags, capsules, and membranes—and the fourth was conventional chemical extraction. The first experiment compared nutrient extraction data from a medium of sand saturated with a nutrient solution. The second and third experiments used Nakai and Sheppard series soils from Canyonlands National Park, which are relatively high in soil carbonates. The second experiment compared nutrient extraction data provided by the four methods from soils equilibrated at two temperatures, “warm” and “cold.” The third experiment extracted nutrients from the same soils in a field equilibration. Our results show that the four extraction techniques are not comparable. This conclusion is due to differences among the methods in the net quantities of nutrients extracted from equivalent soil volumes, in the proportional representation of nutrients within similar soils and treatments, in the measurement of nutrients that were added in known quantities, and even in the order of nutrients ranked by net abundance. We attribute the disparities in nutrient measurement among the different resin forms to interacting effects of the inherent differences in resin exchange capacity, differences among nutrients in their resin affinities, and possibly the relatively short equilibration time for laboratory trials. One constraint for measuring carbonate-related nutrients in high-carbonate soils is the conventional ammonium acetate extraction method, which we suspect of dissolving fine CaCO3 particles that are more abundant in Nakai series soils, resulting in erroneously high Ca2+ estimates. For study of plant-available nutrients, it is important to identify the nutrients of foremost interest and understand differences in their resin sorption dynamics to determine the most appropriate extraction method.
Shirima, Deo D; Totland, Ørjan; Moe, Stein R
2016-11-01
The relative importance of resource heterogeneity and quantity on plant diversity is an ongoing debate among ecologists, but we have limited knowledge on relationships between tree diversity and heterogeneity in soil nutrient availability in tropical forests. We expected tree species richness to be: (1) positively related to vertical soil nutrient heterogeneity; (2) negatively related to mean soil nutrient availability; and (3) more influenced by nutrient availability in the upper than lower soil horizons. Using a data set from 60, 20 × 40-m plots in a moist forest, and 126 plots in miombo woodlands in Tanzania, we regressed tree species richness against vertical soil nutrient heterogeneity, both depth-specific (0-15, 15-30, and 30-60 cm) and mean soil nutrient availability, and soil physical properties, with elevation and measures of anthropogenic disturbance as co-variables. Overall, vertical soil nutrient heterogeneity was the best predictor of tree species richness in miombo but, contrary to our prediction, the relationships between tree species richness and soil nutrient heterogeneity were negative. In the moist forest, mean soil nutrient availability explained considerable variations in tree species richness, and in line with our expectations, these relationships were mainly negative. Soil nutrient availability in the top soil layer explained more of the variation in tree species richness than that in the middle and lower layers in both vegetation types. Our study shows that vertical soil nutrient heterogeneity and mean availability can influence tree species richness at different magnitudes in intensively utilized tropical vegetation types.
Significant drug-nutrient interactions.
Kirk, J K
1995-04-01
Many nutrients substantially interfere with pharmacotherapeutic goals. The presence of certain nutrients in the gastrointestinal tract affects the bioavailability and disposition of many oral medications. Drug-nutrient interactions can also have positive effects that result in increased drug absorption or reduced gastrointestinal irritation. Knowing the significant drug-nutrient interactions can help the clinician identify the nutrients to avoid with certain medications, as well as the therapeutic agents that should be administered with food. This information can be used to educate patients and optimize pharmacotherapy.
Blumberg, Jeffrey B; Frei, Balz B; Fulgoni, Victor L; Weaver, Connie M; Zeisel, Steven H
2017-08-09
Although >50% of U.S. adults use dietary supplements, little information is available on the impact of supplement use frequency on nutrient intakes and deficiencies. Based on nationally representative data in 10,698 adults from the National Health and Nutrition Examination Surveys (NHANES) 2009 to 2012, assessments were made of intakes from food alone versus food plus multi-vitamin/multi-mineral supplements (MVMS) of 17 nutrients with an Estimated Average Requirement (EAR) and a Tolerable Upper Intake Level (UL), and of the status of five nutrients with recognized biomarkers of deficiency. Compared to food alone, MVMS use at any frequency was associated with a lower prevalence of inadequacy ( p < 0.01) for 15/17 nutrients examined and an increased prevalence of intakes >UL for 7 nutrients, but the latter was ≤4% for any nutrient. Except for calcium, magnesium, and vitamin D, most frequent MVMS use (≥21 days/30 days) virtually eliminated inadequacies of the nutrients examined, and was associated with significantly lower odds ratios of deficiency for the examined nutrient biomarkers except for iron. In conclusion, among U.S. adults, MVMS use is associated with decreased micronutrient inadequacies, intakes slightly exceeding the UL for a few nutrients, and a lower risk of nutrient deficiencies.
Global-scale patterns of nutrient density and partitioning in forests in relation to climate.
Zhang, Kerong; Song, Conghe; Zhang, Yulong; Dang, Haishan; Cheng, Xiaoli; Zhang, Quanfa
2018-01-01
Knowledge of nutrient storage and partitioning in forests is imperative for ecosystem models and ecological theory. Whether the nutrients (N, P, K, Ca, and Mg) stored in forest biomass and their partitioning patterns vary systematically across climatic gradients remains unknown. Here, we explored the global-scale patterns of nutrient density and partitioning using a newly compiled dataset including 372 forest stands. We found that temperature and precipitation were key factors driving the nutrients stored in living biomass of forests at global scale. The N, K, and Mg stored in living biomass tended to be greater in increasingly warm climates. The mean biomass N density was 577.0, 530.4, 513.2, and 336.7 kg/ha for tropical, subtropical, temperate, and boreal forests, respectively. Around 76% of the variation in biomass N density could be accounted by the empirical model combining biomass density, phylogeny (i.e., angiosperm, gymnosperm), and the interaction of mean annual temperature and precipitation. Climate, stand age, and biomass density significantly affected nutrients partitioning at forest community level. The fractional distribution of nutrients to roots decreased significantly with temperature, suggesting that forests in cold climates allocate greater nutrients to roots. Gymnosperm forests tended to allocate more nutrients to leaves as compared with angiosperm forests, whereas the angiosperm forests distributed more nutrients in stems. The nutrient-based Root:Shoot ratios (R:S), averaged 0.30 for R:S N , 0.36 for R:S P , 0.32 for R:S K , 0.27 for R:S Ca , and 0.35 for R:S Mg , respectively. The scaling exponents of the relationships describing root nutrients as a function of shoot nutrients were more than 1.0, suggesting that as nutrient allocated to shoot increases, nutrient allocated to roots increases faster than linearly with nutrient in shoot. Soil type significantly affected the total N, P, K, Ca, and Mg stored in living biomass of forests, and the Acrisols group displayed the lowest P, K, Ca, and Mg. © 2017 John Wiley & Sons Ltd.
Frey, Jeffrey W.; Bell, Amanda H.; Hambrook Berkman, Julie A.; Lorenz, David L.
2011-01-01
The algal, invertebrate, and fish taxa and community attributes that best reflect the effects of nutrients along a gradient of low to high nutrient concentrations in wadeable, primarily midwestern streams were determined as part of the U.S. Geological Suvey's National Water-Quality Assessment (NAWQA) Program. Nutrient data collected from 64 sampling sites that reflected reference, agricultural, and urban influences between 1993 and 2006 were used to represent the nutrient gradient within Nutrient Ecoregion VI (Cornbelt and Northern Great Plains), VII (Mostly Glaciated Dairy Region), and VIII (Nutrient Poor Largely Glaciated Upper Midwest and Northeast). Nutrient Ecoregions VII and VIII comprise the Glacial North diatom ecoregion (GNE) and Nutrient Ecoregion VI represents the Central and Western Plains diatom ecoregion (CWPE). The diatom-ecoregion groupings were used chiefly for data analysis. The total nitrogen (TN) and total phosphorus (TP) data from 64 sites, where at least 6 nutrient samples were collected within a year at each site, were used to classify the sites into low-, medium-, and high-nutrient categories based upon the 10th and 75th percentiles of for sites within each Nutrient Ecoregion. In general, TN and TP concentrations were 3-5 times greater in Nutrient Ecoregion VI than in Nutrient Ecoregions VII and VIII. A subgroup of 54 of these 64 sites had algal-, invertebrate-, and fish-community data that were collected within the same year as the nutrients; these sites were used to assess the effects of nutrients on the biological communities. Multidimensional scaling was used to determine whether the entire region could be assessed together or whether there were regional differences between the algal, invertebrate, and fish communities. The biological communities were significantly different between the northern sites, primarily in the GNE and the southern sites, primarily in the CWPE. In the higher nutrient concentration gradient in the streams of the CWPE, algae exhibited greater differences than invertebrates and fish between all of the nutrient categories for both TN and TP; however, in the lower nutrient gradient in the streams of the GNE, invertebrates exhibited greater differences between the nutrient categories. Certain species of algae, invertebrates, and fish were more prevalent in low- and high-nutrient categories within each of the diatom ecoregions. Breakpoint analysis was used to identify the concentration at which the relations between the response variable (biological attribute) and the stressor variable (TN and TP) change. There were significant breakpoints for nutrients (TN and TP) and multiple attributes for algae, invertebrates, and fish communities within the CWPE and GNE diatom ecoregions. In general, more significant breakpoints, with lower concentrations, were found in the GNE than the more nutrient-rich CWPE. The breakpoints from all biological communities were generally about 3-5 times higher in the south (CWPE) than the north (GNE). In the north, breakpoints with similar lower concentrations were found for TN from all biological communities (around 0.60 milligram per liter) and for TP (between 0.02 and 0.03 milligram per liter) for the algae and invertebrate communities. The findings from our study suggest that the range in breakpoints for TN and TP from the GNE can be used as oligotrophic and eutrophic boundaries derived from biological response based on this ecoregion having (1) a gradient with sufficiently low to high nutrient concentrations, (2) distinctive differences in the biological communities in the low- to high-nutrient streams, (3) similarity of breakpoints within algal, invertebrate, and fish communities, (4) significant attributes with either direct relations to nutrients or traditional changes in community structure (that is, decreases in sensitive species or increases in tolerant species), and (5) similar breakpoints in other studies in this and other regions. In nutrie
Nutrient enrichment of phosphorus and nitrogen is the second most cited cause for impairment of streams and rivers in the U.S. There is a need to develop stream nutrient criteria to control nutrient loadings. Since biotic metrics can assess the overall impact of nutrient enrichm...
Jennifer Knoepp; Wayne Swank; Bruce L. Haines
2014-01-01
Soil nutrient availability often limits forest productivity and soils have considerable variation in their ability to supply nutrients. Most southern Appalachian forests are minimally managed with no fertilizer inputs or routine thinning regime. Nutrient availability is regulated by atmospheric inputs and the internal cycling of nutrients through such processes as...
Parasites and Their Impact on Ecosystem Nutrient Cycling.
Vannatta, J Trevor; Minchella, Dennis J
2018-06-01
Consumer species alter nutrient cycling through nutrient transformation, transfer, and bioturbation. Parasites have rarely been considered in this framework despite their ability to indirectly alter the cycling of nutrients via their hosts. A simple mathematical framework can be used to assess the relative importance of parasite-derived nutrients in an ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.
Robert B. Harrison; Douglas A. Maguire; Deborah Page-Dumroese
2011-01-01
Maintaining adequate nutrient supply to maintain or enhance tree vigor and forest growth requires conservation of topsoil and soil organic matter. Sometimes nutrient amendments are also required to supplement inherent nutrient-pool limitations or replenish nutrients removed in harvested material. The goal is to maintain the productive potential of the soil and, when...
The Nutrient Pool of Five Important Bottomland Hardwood Soils
John K. Francis
1988-01-01
Heretofore, with the exception of N, the concentration of total nutrients and the amount of variation in nutrient concentrations among and within soil series and depths within the rooting zone of forested alluvial soils of the South was unknown. Information about total nutrient concentrations is important in studying the danger of nutrient depletion posed by total tree...
High nutrient availability reduces the diversity and stability of the equine caecal microbiota
Hansen, Naja C. K.; Avershina, Ekaterina; Mydland, Liv T.; Næsset, Jon A.; Austbø, Dag; Moen, Birgitte; Måge, Ingrid; Rudi, Knut
2015-01-01
Background It is well known that nutrient availability can alter the gut microbiota composition, while the effect on diversity and temporal stability remains largely unknown. Methods Here we address the equine caecal microbiota temporal stability, diversity, and functionality in response to diets with different levels of nutrient availability. Hay (low and slower nutrient availability) versus a mixture of hay and whole oats (high and more rapid nutrient availability) were used as experimental diets. Results We found major effects on the microbiota despite that the caecal pH was far from sub-clinical acidosis. We found that the low nutrient availability diet was associated with a higher level of both diversity and temporal stability of the caecal microbiota than the high nutrient availability diet. These observations concur with general ecological theories, suggesting a stabilising effect of biological diversity and that high nutrient availability has a destabilising effect through reduced diversity. Conclusion Nutrient availability does not only change the composition but also the ecology of the caecal microbiota. PMID:26246403
NASA Astrophysics Data System (ADS)
Sun, Dongya; Gao, Yifan; Hou, Dianxun; Zuo, Kuichang; Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Ren, Zhiyong Jason; Huang, Xia
2018-04-01
Recovery of nutrient resources from the wastewater is now an inevitable strategy to maintain the supply of both nutrient and water for our huge population. While the intensive energy consumption in conventional nutrient recovery technologies still remained as the bottleneck towards the sustainable nutrient recycle. This study proposed an enlarged microbial nutrient recovery cell (EMNRC) which was powered by the energy contained in wastewater and achieved multi-cycle nutrient recovery incorporated with in situ wastewater treatment. With the optimal recovery solution of 3 g/L NaCl and the optimal volume ratio of wastewater to recovery solution of 10:1, >89% of phosphorus and >62% of ammonium nitrogen were recovered into struvite. An extremely low water input ratio of <1% was required to obtain the recovered fertilizer and the purified water. It was proved the EMNRC system was a promising technology which could utilize the chemical energy contained in wastewater itself and energy-neutrally recover nutrient during the continuous wastewater purification process.
Koerkle, E.H.; Fishel, D.K.; Brown, M.J.; Kostelnik, K.M.
1996-01-01
Water quality in the headwaters of the Little Conestoga Creek, Lancaster County, Pa., was investigated from April 1986 through September 1989 to determine possible effects of agricultural nutrient management on water quality. Nutrient management, an agricultural Best-Management Practice, was promoted in the 5.8-square-mile watershed by the U.S. Department of Agriculture Rural Clean Water Program. Nonpoint-source- agricultural contamination was evident in surface water and ground water in the watershed; the greatest contamination was in areas underlain by carbonate rock and with intensive row-crop and animal production. Initial implementation of nutrient management covered about 30 percent of applicable land and was concentrated in the Nutrient-Management Subbasin. By 1989, nutrient management covered about 45 percent of the entire Small Watershed, about 85 percent of the Nutrient- Management Subbasin, and less than 10 percent of the Nonnutrient-Management Subbasin. The number of farms implementing nutrient management increased from 14 in 1986 to 25 by 1989. Nutrient applications to cropland in the Nutrient- Management Subbasin decreased by an average of 35 percent after implementation. Comparison of base- flow surface-water quality from before and after implementation suggests that nutrient management was effective in slowing or reversing increases in concentrations of dissolved nitrate plus nitrite in the Nutrient-Management Subbasin. Although not statistically significant, the Mann-Whitney step-trend coefficient for the Nutrient-Management Subbasin was 0.8 milligram per liter, whereas trend coefficients for the Nonnutrient-Management Subbasin and the Small Watershed were 0.4 and 1.4 milligrams per liter, respectively, for the period of study. Analysis of covariance comparison of concurrent concentrations from the two sub- basins showed a significant decrease in concen- trations from the Nutrient-Management Subbasin compared to the Nonnutrient-Management Subbasin. The small, positive effect of nutrient management on base-flow water quality should be interpreted with caution. Lack of statistical significance for most tests, short-term variation in climate and agricultural activities, unknown ground-water flow rates, and insufficient agricultural-activity data for farms outside of the Nutrient-Management Subbasin were potential problems. A regression model relating nutrient applications to concen- trations of dissolved nitrate plus nitrite showed no significant explanatory relation.
The role of arbuscular mycorrhizas in reducing soil nutrient loss.
Cavagnaro, Timothy R; Bender, S Franz; Asghari, Hamid R; Heijden, Marcel G A van der
2015-05-01
Substantial amounts of nutrients are lost from soils via leaching and as gaseous emissions. These losses can be environmentally damaging and expensive in terms of lost agricultural production. Plants have evolved many traits to optimize nutrient acquisition, including the formation of arbuscular mycorrhizas (AM), associations of plant roots with fungi that acquire soil nutrients. There is emerging evidence that AM have the ability to reduce nutrient loss from soils by enlarging the nutrient interception zone and preventing nutrient loss after rain-induced leaching events. Until recently, this important ecosystem service of AM had been largely overlooked. Here we review the role of AM in reducing nutrient loss and conclude that this role cannot be ignored if we are to increase global food production in an environmentally sustainable manner. Copyright © 2015 Elsevier Ltd. All rights reserved.
Smith, Aaron Douglas; Lockman, Nur Ain; Holtzapple, Mark T
2011-06-01
Nutrients are essential for microbial growth and metabolism in mixed-culture acid fermentations. Understanding the influence of nutrient feeding strategies on fermentation performance is necessary for optimization. For a four-bottle fermentation train, five nutrient contacting patterns (single-point nutrient addition to fermentors F1, F2, F3, and F4 and multi-point parallel addition) were investigated. Compared to the traditional nutrient contacting method (all nutrients fed to F1), the near-optimal feeding strategies improved exit yield, culture yield, process yield, exit acetate-equivalent yield, conversion, and total acid productivity by approximately 31%, 39%, 46%, 31%, 100%, and 19%, respectively. There was no statistical improvement in total acid concentration. The traditional nutrient feeding strategy had the highest selectivity and acetate-equivalent selectivity. Total acid productivity depends on carbon-nitrogen ratio.
Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.
Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao
2016-02-01
Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices.
Brightbill, Robin A.; Koerkle, Edward H.
2003-01-01
The Clean Water Action Plan of 1998 provides a blueprint for federal agencies to work with states, tribes, and other stakeholders to protect and restore the Nation's water resources. The plan includes an initiative that addresses the nutrient-enrichment problem of lakes and streams across the United States. The U.S. Environmental Protection Agency (USEPA) is working to set nutrient criteria by nationwide nutrient ecoregions that are an aggregation of the Omernik level III ecoregions. Because low levels of nutrients are necessary for healthy streams and elevated concentrations can cause algal blooms that deplete available oxygen and kill off aquatic organisms, criteria levels are to be set, in part, using the relation between chlorophyll a and concentrations of total nitrogen and total phosphorus.Data from Pennsylvania and West Virginia, collected between 1990 and 1998, were analyzed for relations between chlorophyll a, nutrients, and other explanatory variables. Both phytoplankton and periphyton chlorophyll a concentrations from lakes and streams were analyzed separately within each of the USEPA nutrient ecoregions located within the boundaries of the two states. These four nutrient ecoregions are VII (Mostly Glaciated Dairy), VIII (Nutrient Poor, Largely Glaciated Upper Midwest and Northeast), IX (Southeastern Temperate Forested Plains and Hills), and XI (Central and Eastern Forested Uplands).Phytoplankton chlorophyll a concentrations in lakes were related to total nitrogen, total phosphorus, Secchi depth, concentration of dissolved oxygen, pH, water temperature, and specific conductivity. In nutrient ecoregion VII, nutrients were not significant predictors of chlorophyll a concentrations. Total nitrogen, Secchi depth, and pH were significantly related to phytoplankton chlorophyll a concentrations in nutrient ecoregion IX. Lake periphyton chlorophyll a concentrations from nutrient ecoregion XI were related to total phosphorus rather than total nitrogen, Secchi depth, and pH. In all cases, Secchi depth was inversely related to the chlorophyll a concentrations in a lake. Nutrient ecoregion VIII had too few samples for any type of analysis.Streams within the different nutrient ecoregions had many variables that were significantly related to periphyton chlorophyll a concentrations. These variables consisted of total nitrogen, total phosphorus, drainage area, percent forest cover, several macroinvertebrate indices, pH, basin slope, total residue, total suspended solids, and water temperature. Nutrients were not significantly related to periphyton chlorophyll a in streams within nutrient ecoregions VII or IX but were in nutrient ecoregion XI. Drainage area, percent forest cover, and several invertebrate indices were significant variables in nutrient ecoregion VII. Percent forest cover and several invertebrate indices had a negative relation with chlorophyll a concentrations in these streams. Percent forest cover and basin slope had a negative effect on periphyton in nutrient ecoregion IX streams. Light availability was more critical to periphyton growth in streams than nutrients.Ecoregion XI had enough samples to do seasonal analyses. Summer-season periphyton chlorophyll a concentrations in nutrient ecoregion XI streams were positively related to total phosphorus and drainage area but negatively related to percent forest cover. Summer-season phytoplankton in streams was related to different variables within the same nutrient ecoregion. Both total nitrogen and total phosphorus were positively related with chlorophyll a concentrations as well as basin slope, total residue, and total suspended solids but negatively related to pH. The winter stream phytoplankton chlorophyll a concentrations were related to water temperature only.
The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli.
Côté, Jean-Philippe; French, Shawn; Gehrke, Sebastian S; MacNair, Craig R; Mangat, Chand S; Bharat, Amrita; Brown, Eric D
2016-11-22
Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo To better understand the genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82 nutrient stress genes with the entire E. coli gene deletion collection (Keio) to create 315,400 double deletion mutants. An analysis of the growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interactions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were between nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient synthesis and to further characterize genes of unknown function in E. coli Moreover, understanding of bacterial growth under nutrient stress could aid in the development of novel antibiotic discovery platforms. With the rise of antibiotic drug resistance, there is an urgent need for new antibacterial drugs. Here, we studied a group of genes that are essential for the growth of Escherichia coli under nutrient limitation, culture conditions that arguably better represent nutrient availability during an infection than rich microbiological media. Indeed, many such nutrient stress genes are essential for infection in a variety of pathogens. Thus, the respective proteins represent a pool of potential new targets for antibacterial drugs that have been largely unexplored. We have created all possible double deletion mutants through a genetic cross of nutrient stress genes and the E. coli deletion collection. An analysis of the growth of the resulting clones on rich media revealed a robust, dense, and complex network for nutrient acquisition and biosynthesis. Importantly, our data reveal new genetic connections to guide innovative approaches for the development of new antibacterial compounds targeting bacteria under nutrient stress. Copyright © 2016 Côté et al.
Trovato, A; Nuhlicek, D N; Midtling, J E
1991-11-01
Drug-nutrient interactions are a commonly overlooked aspect of the prescribing practices of physicians. As more pharmaceutical agents become available, attention should be focused on interactions of drugs with foods and nutrients. Although drug-nutrient interactions are not as common as drug-drug interactions, they can have an impact on therapeutic outcome. Drugs can affect nutritional status by altering nutrient absorption, metabolism, utilization or excretion. Food, beverages and mineral or vitamin supplements can affect the absorption and effectiveness of drugs. Knowledge of drug-nutrient interactions can help reduce the incidence of these effects. Physicians should question patients about their dietary habits so that patients can be informed about possible interactions between a prescribed drug and foods and nutrients.
21 CFR 101.54 - Nutrient content claims for “good source,” “high,” “more,” and “high potency.”
Code of Federal Regulations, 2011 CFR
2011-04-01
... antioxidant activity; that is, when there exists scientific evidence that, following absorption from the... of the nutrients with recognized antioxidant activity. The list of nutrients shall appear in letters... the term “antioxidant.” A nutrient content claim that characterizes the level of antioxidant nutrients...
21 CFR 101.54 - Nutrient content claims for “good source,” “high,” “more,” and “high potency.”
Code of Federal Regulations, 2010 CFR
2010-04-01
... antioxidant activity; that is, when there exists scientific evidence that, following absorption from the... of the nutrients with recognized antioxidant activity. The list of nutrients shall appear in letters... the term “antioxidant.” A nutrient content claim that characterizes the level of antioxidant nutrients...
USDA-ARS?s Scientific Manuscript database
Cox (2010) reported that under business as usual, the environmental impacts of nutrient losses from agriculture will not be resolved and that precision conservation and precision regulation are two mechanisms to reduce the environmental impacts of nutrient losses. This is in agreement with the rece...
Food Is More Than Just Something To Eat.
ERIC Educational Resources Information Center
Grocery Manufacturers of America, Inc., Washington, DC.
This booklet lists the major nutrients, discusses the role each plays in the body, and lists some of the foods that each nutrient can be found in. An explanation of the relationship between nutrients and energy, how the body gets the nutrients it needs from the diet, and the nutrients needed from before birth until the later years is included. A…
International Internship Report for Asher Williams
NASA Technical Reports Server (NTRS)
Williams, Asher
2015-01-01
For the 2015 NASA I (sup 2) Internship Program, I was selected to work in Dr. John Hogan's laboratory on a Human Nutrient Production in Space (Bio-Nutrients) Project involving Research & Development in advanced microbial strategies for the production of nutrients within crewed spacecraft and habitats. Long-term space missions encounter the hurdle of substantial degradation of certain nutrients in food and supplements with time, potentially resulting in nutrient deficiency and serious health problems. The goal of the Bio-Nutrients Project is to enable rapid, safe, and reliable in situ production of needed nutrients using minimal mass, power, and volume. A platform technology is being developed to employ hydratable single-use packets that contain an edible growth medium and a food microbe engineered to produce target human nutrients. In particular, we examined the production of the carotenoids lutein and zeaxanthin in a spore-forming strain of the yeast Saccharomyces cerevisiae. Carotenoids are important antioxidants required for ocular health, a problematic area for some astronauts on long-duration ISS missions...To meet the first-year milestones for the Bio-Nutrients project, my specific task was to design and run preliminary tests on a disposable bioreactor for in situ production of human nutrients in space.
Microbial nutrient niches in the gut
Pereira, Fátima C.
2017-01-01
Summary The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche‐driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co‐existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed‐substrate utilization are common strategies for survival in the face of ever‐present nutrient fluctuations. PMID:28035742
Darmon, Nicole; Vieux, Florent; Maillot, Matthieu; Volatier, Jean-Luc; Martin, Ambroise
2009-04-01
The nutrient profile concept implies that it is possible to discriminate between foods according to their contribution to a healthy diet on the basis of their nutrient contents only. The objective was to test the compatibility between nutrient profiling and nutrient-based recommendations by using diet modeling with linear programming. Food consumption data from the French "Individuelle et Nationale sur les Consommations Alimentaires" dietary survey and its associated food-composition database were used as input data. Each food was allocated to 1 of 4 classes, according to the SAIN,LIM system -- a nutrient profiling system based on 2 independent scores, including a total of 8 basic plus 4 optional nutrients. The possibility to model diets fulfilling a set of 40 nutrient recommendations (healthy models) was tested by using foods from a given nutrient profile class only or from a combination of classes. The possibility to fulfill a set of nutrient constraints in contradiction with the recommendations (unhealthy models) was also tested. For each model, the feasible energy range was assessed by minimizing and maximizing total energy content. With foods from the most favorable nutrient profile class, healthy diets could be modeled, but it was impossible to design unhealthy diets within a realistic range of energy intake with these foods. With foods from the least favorable class, unhealthy, but not healthy, diets could be designed. Both healthy and unhealthy diets could be designed with foods from intermediate classes. On the basis of a few key nutrients, it is possible to predict the ability of a given food to facilitate -- or to impair -- the fulfillment of a large number of nutrient recommendations.
Epstein, Leonard H; Finkelstein, Eric A; Katz, David L; Jankowiak, Noelle; Pudlewski, Corrin; Paluch, Rocco A
2016-08-01
The goal of the present study was to apply experimental economic methods in an online supermarket to examine the effects of nutrient profiling, and differential pricing based on the nutrient profile, on the overall diet quality, energy and macronutrients of the foods purchased, and diet cost. Participants were provided nutrient profiling scores or price adjustments based on nutrient profile scores while completing a hypothetical grocery shopping task. Prices of foods in the top 20 % of nutrient profiling scores were reduced (subsidized) by 25 % while those in the bottom 20 % of scores were increased (taxed) by 25 %. We evaluated the independent and interactive effects of nutrient profiling or price adjustments on overall diet quality of foods purchased as assessed by the NuVal® score, energy and macronutrients purchased and diet cost in a 2×2 factorial design. A large (>10 000 food items) online experimental supermarket in the USA. Seven hundred and eighty-one women. Providing nutrient profiling scores improved overall diet quality of foods purchased. Price changes were associated with an increase in protein purchased, an increase in energy cost, and reduced carbohydrate and protein costs. Price changes and nutrient profiling combined were associated with no unique benefits beyond price changes or nutrient profiling alone. Providing nutrient profile score increased overall NuVal® score without a reduction in energy purchased. Combining nutrient profiling and price changes did not show an overall benefit to diet quality and may be less useful than nutrient profiling alone to consumers who want to increase overall diet quality of foods purchased.
NASA Astrophysics Data System (ADS)
Wang, Lizhu; Robertson, Dale M.; Garrison, Paul J.
2007-02-01
We sampled 240 wadeable streams across Wisconsin for different forms of phosphorus and nitrogen, and assemblages of macroinvertebrates and fish to (1) examine how macroinvertebrate and fish measures correlated with the nutrients; (2) quantify relationships between key biological measures and nutrient forms to identify potential threshold levels of nutrients to support nutrient criteria development; and (3) evaluate the importance of nutrients in influencing biological assemblages relative to other physicochemical factors at different spatial scales. Twenty-three of the 35 fish and 18 of the 26 macroinvertebrate measures significantly correlated ( P < 0.05) with at least one nutrient measure. Percentages of carnivorous, intolerant, and omnivorous fishes, index of biotic integrity, and salmonid abundance were fish measures correlated with the most nutrient measures and had the highest correlation coefficients. Percentages of Ephemeroptera-Plecoptera-Trichoptera individuals and taxa, Hilsenhoff biotic index, and mean tolerance value were macroinvertebrate measures that most strongly correlated with the most nutrient measures. Selected biological measures showed clear trends toward degradation as concentrations of phosphorus and nitrogen increased, and some measures showed clear thresholds where biological measures changed drastically with small changes in nutrient concentrations. Our selected environmental factors explained 54% of the variation in the fish assemblages. Of this explained variance, 46% was attributed to catchment and instream habitat, 15% to nutrients, 3% to other water quality measures, and 36% to the interactions among all the environmental variables. Selected environmental factors explained 53% of the variation in macroinvertebrate assemblages. Of this explained variance, 42% was attributed to catchment and instream habitat, 22% to nutrients, 5% to other water quality measures, and 32% to the interactions among all the environmental variables.
Nutrient discharge from China’s aquaculture industry and associated environmental impacts
NASA Astrophysics Data System (ADS)
Zhang, Ying; Bleeker, Albert; Liu, Junguo
2015-04-01
China’s aquaculture industry accounts for the largest share of the world’s fishery production, and provides a principal source of protein for the nation’s booming population. However, the environmental effects of the nutrient loadings produced by this industry have not been systematically studied or reviewed. Few quantitative estimates exist for nutrient discharge from aquaculture and the resultant nutrient enrichment in waters and sediments. In this paper, we evaluate nutrient discharge from aquacultural systems into aquatic ecosystems and the resulting nutrient enrichment of water and sediments, based on data from 330 cases in 51 peer-reviewed publications. Nitrogen use efficiency ranged from 11.7% to 27.7%, whereas phosphorus use efficiency ranged from 8.7% to 21.2%. In 2010, aquacultural nutrient discharges into Chinese aquatic ecosystems included 1044 Gg total nitrogen (184 Gg N from mariculture; 860 Gg N freshwater culture) and 173 Gg total phosphorus (22 Gg P from mariculture; 151 Gg P from freshwater culture). Water bodies and sediments showed high levels of nutrient enrichment, especially in closed pond systems. However, this does not mean that open aquacultural systems have smaller nutrient losses. Improvement of feed efficiency in cage systems and retention of nutrients in closed systems will therefore be necessary. Strategies to increase nutrient recycling, such as integrated multi-trophic aquaculture, and social measures, such as subsidies, should be increased in the future. We recommend the recycling of nutrients in water and sediments by hybrid agricultural-aquacultural systems and the adoption of nutrient use efficiency as an indicator at farm or regional level for the sustainable development of aquaculture; such indicators; together with water quality indicators, can be used to guide evaluations of technological, policy, and economic approaches to improve the sustainability of Chinese aquaculture.
Wang, L.; Robertson, Dale M.; Garrison, P.J.
2007-01-01
We sampled 240 wadeable streams across Wisconsin for different forms of phosphorus and nitrogen, and assemblages of macroinvertebrates and fish to (1) examine how macroinvertebrate and fish measures correlated with the nutrients; (2) quantify relationships between key biological measures and nutrient forms to identify potential threshold levels of nutrients to support nutrient criteria development; and (3) evaluate the importance of nutrients in influencing biological assemblages relative to other physicochemical factors at different spatial scales. Twenty-three of the 35 fish and 18 of the 26 macroinvertebrate measures significantly correlated (P < 0.05) with at least one nutrient measure. Percentages of carnivorous, intolerant, and omnivorous fishes, index of biotic integrity, and salmonid abundance were fish measures correlated with the most nutrient measures and had the highest correlation coefficients. Percentages of Ephemeroptera-Plecoptera-Trichoptera individuals and taxa, Hilsenhoff biotic index, and mean tolerance value were macroinvertebrate measures that most strongly correlated with the most nutrient measures. Selected biological measures showed clear trends toward degradation as concentrations of phosphorus and nitrogen increased, and some measures showed clear thresholds where biological measures changed drastically with small changes in nutrient concentrations. Our selected environmental factors explained 54% of the variation in the fish assemblages. Of this explained variance, 46% was attributed to catchment and instream habitat, 15% to nutrients, 3% to other water quality measures, and 36% to the interactions among all the environmental variables. Selected environmental factors explained 53% of the variation in macroinvertebrate assemblages. Of this explained variance, 42% was attributed to catchment and instream habitat, 22% to nutrients, 5% to other water quality measures, and 32% to the interactions among all the environmental variables. ?? 2006 Springer Science+Business Media, Inc.
Allgeier, Jacob E; Layman, Craig A; Mumby, Peter J; Rosemond, Amy D
2014-08-01
Corals thrive in low nutrient environments and the conservation of these globally imperiled ecosystems is largely dependent on mitigating the effects of anthropogenic nutrient enrichment. However, to better understand the implications of anthropogenic nutrients requires a heightened understanding of baseline nutrient dynamics within these ecosystems. Here, we provide a novel perspective on coral reef nutrient dynamics by examining the role of fish communities in the supply and storage of nitrogen (N) and phosphorus (P). We quantified fish-mediated nutrient storage and supply for 144 species and modeled these data onto 172 fish communities (71 729 individual fish), in four types of coral reefs, as well as seagrass and mangrove ecosystems, throughout the Northern Antilles. Fish communities supplied and stored large quantities of nutrients, with rates varying among ecosystem types. The size structure and diversity of the fish communities best predicted N and P supply and storage and N : P supply, suggesting that alterations to fish communities (e.g., overfishing) will have important implications for nutrient dynamics in these systems. The stoichiometric ratio (N : P) for storage in fish mass (~8 : 1) and supply (~20 : 1) was notably consistent across the four coral reef types (but not seagrass or mangrove ecosystems). Published nutrient enrichment studies on corals show that deviations from this N : P supply ratio may be associated with poor coral fitness, providing qualitative support for the hypothesis that corals and their symbionts may be adapted to specific ratios of nutrient supply. Consumer nutrient stoichiometry provides a baseline from which to better understand nutrient dynamics in coral reef and other coastal ecosystems, information that is greatly needed if we are to implement more effective measures to ensure the future health of the world's oceans. © 2014 John Wiley & Sons Ltd.
Successional dynamics drive tropical forest nutrient limitation
NASA Astrophysics Data System (ADS)
Chou, C.; Hedin, L. O. O.
2017-12-01
It is increasingly recognized that nutrients such as N and P may significantly constrain the land carbon sink. However, we currently lack a complete understanding of these nutrient cycles in forest ecosystems and how to incorporate them into Earth System Models. We have developed a framework of dynamic forest nutrient limitation, focusing on the role of secondary forest succession and canopy gap disturbances as bottlenecks of high plant nutrient demand and limitation. We used succession biomass data to parameterize a simple ecosystem model and examined the dynamics of nutrient limitation throughout tropical secondary forest succession. Due to the patterns of biomass recovery in secondary tropical forests, we found high nutrient demand from rapid biomass accumulation in the earliest years of succession. Depending on previous land use scenarios, soil nutrient availability may also be low in this time period. Coupled together, this is evidence that there may be high biomass nutrient limitation early in succession, which is partially met by abundant symbiotic nitrogen fixation from certain tree species. We predict a switch from nitrogen limitation in early succession to one of three conditions: (i) phosphorus only, (ii) phosphorus plus nitrogen, or (iii) phosphorus, nitrogen, plus light co-limitation. We will discuss the mechanisms that govern the exact trajectory of limitation as forests build biomass. In addition, we used our model to explore scenarios of tropical secondary forest impermanence and the impacts of these dynamics on ecosystem nutrient limitation. We found that secondary forest impermanence exacerbates nutrient limitation and the need for nitrogen fixation early in succession. Together, these results indicate that biomass recovery dynamics early in succession as well as their connection to nutrient demand and limitation are fundamental for understanding and modeling nutrient limitation of the tropical forest carbon sink.
The Nutrient Balance Concept: A New Quality Metric for Composite Meals and Diets
Fern, Edward B; Watzke, Heribert; Barclay, Denis V.; Roulin, Anne; Drewnowski, Adam
2015-01-01
Background Combinations of foods that provide suitable levels of nutrients and energy are required for optimum health. Currently, however, it is difficult to define numerically what are ‘suitable levels’. Objective To develop new metrics based on energy considerations—the Nutrient Balance Concept (NBC)—for assessing overall nutrition quality when combining foods and meals. Method The NBC was developed using the USDA Food Composition Database (Release 27) and illustrated with their MyPlate 7-day sample menus for a 2000 calorie food pattern. The NBC concept is centered on three specific metrics for a given food, meal or diet—a Qualifying Index (QI), a Disqualifying Index (DI) and a Nutrient Balance (NB). The QI and DI were determined, respectively, from the content of 27 essential nutrients and 6 nutrients associated with negative health outcomes. The third metric, the Nutrient Balance (NB), was derived from the Qualifying Index (QI) and provided key information on the relative content of qualifying nutrients in the food. Because the Qualifying and Disqualifying Indices (QI and DI) were standardized to energy content, both become constants for a given food/meal/diet and a particular consumer age group, making it possible to develop algorithms for predicting nutrition quality when combining different foods. Results Combining different foods into composite meals and daily diets led to improved nutrition quality as seen by QI values closer to unity (indicating nutrient density was better equilibrated with energy density), DI values below 1.0 (denoting an acceptable level of consumption of disqualifying nutrients) and increased NB values (signifying complementarity of foods and better provision of qualifying nutrients). Conclusion The Nutrient Balance Concept (NBC) represents a new approach to nutrient profiling and the first step in the progression from the nutrient evaluation of individual foods to that of multiple foods in the context of meals and total diets. PMID:26176770
Pilati, Alberto; Vanni, Michael J; González, María J; Gaulke, Alicia K
2009-06-01
Agricultural activities increase exports of nutrients and sediments to lakes, with multiple potential impacts on recipient ecosystems. Nutrient inputs enhance phytoplankton and upper trophic levels, and sediment inputs can shade phytoplankton, interfere with feeding of consumers, and degrade benthic habitats. Allochthonous sediments are also a potential food source for detritivores, as is sedimenting autochthonous phytodetritus, the production of which is stimulated by nutrient inputs. We examined effects of allochthonous nutrient and sediment subsidies on fish and plankton, with special emphasis on gizzard shad (Dorosoma cepedianum). This widespread and abundant omnivorous fish has many impacts on reservoir ecosystems, including negative effects on water quality via nutrient cycling and on fisheries via competition with sportfish. Gizzard shad are most abundant in agriculturally impacted, eutrophic systems; thus, agricultural subsidies may affect reservoir food webs directly and by enhancing gizzard shad biomass. We simulated agricultural subsidies of nutrients and sediment detritus by manipulating dissolved nutrients and allochthonous detritus in a 2 x 2 factorial design in experimental ponds. Addition of nutrients alone increased primary production and biomass of zooplanktivorous fish (bluegill and young-of-year gizzard shad). Addition of allochthonous sediments alone increased algal sedimentation and decreased seston and sediment C:P ratios. Ponds receiving both nutrients and sediments showed highest levels of phytoplankton and total phosphorus. Adult and juvenile gizzard shad biomass was enhanced equally by nutrient or sediment addition, probably because this apparently P-limited detritivore ingested similar amounts of P in all subsidy treatments. Nutrient excretion rates of gizzard shad were higher in ponds with nutrient additions, where sediments were composed mainly of phytodetritus. Therefore, gizzard shad can magnify the direct effects of nutrient subsidies on phytoplankton production, and these multiple effects must be considered in strategies to manage eutrophication and fisheries in warmwater reservoir lakes where gizzard shad can dominate fish biomass.
Moskal, Aurelie; Pisa, Pedro T; Ferrari, Pietro; Byrnes, Graham; Freisling, Heinz; Boutron-Ruault, Marie-Christine; Cadeau, Claire; Nailler, Laura; Wendt, Andrea; Kühn, Tilman; Boeing, Heiner; Buijsse, Brian; Tjønneland, Anne; Halkjær, Jytte; Dahm, Christina C; Chiuve, Stephanie E; Quirós, Jose R; Buckland, Genevieve; Molina-Montes, Esther; Amiano, Pilar; Huerta Castaño, José M; Gurrea, Aurelio Barricarte; Khaw, Kay-Tee; Lentjes, Marleen A; Key, Timothy J; Romaguera, Dora; Vergnaud, Anne-Claire; Trichopoulou, Antonia; Bamia, Christina; Orfanos, Philippos; Palli, Domenico; Pala, Valeria; Tumino, Rosario; Sacerdote, Carlotta; de Magistris, Maria Santucci; Bueno-de-Mesquita, H Bas; Ocké, Marga C; Beulens, Joline W J; Ericson, Ulrika; Drake, Isabel; Nilsson, Lena M; Winkvist, Anna; Weiderpass, Elisabete; Hjartåker, Anette; Riboli, Elio; Slimani, Nadia
2014-01-01
Compared to food patterns, nutrient patterns have been rarely used particularly at international level. We studied, in the context of a multi-center study with heterogeneous data, the methodological challenges regarding pattern analyses. We identified nutrient patterns from food frequency questionnaires (FFQ) in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study and used 24-hour dietary recall (24-HDR) data to validate and describe the nutrient patterns and their related food sources. Associations between lifestyle factors and the nutrient patterns were also examined. Principal component analysis (PCA) was applied on 23 nutrients derived from country-specific FFQ combining data from all EPIC centers (N = 477,312). Harmonized 24-HDRs available for a representative sample of the EPIC populations (N = 34,436) provided accurate mean group estimates of nutrients and foods by quintiles of pattern scores, presented graphically. An overall PCA combining all data captured a good proportion of the variance explained in each EPIC center. Four nutrient patterns were identified explaining 67% of the total variance: Principle component (PC) 1 was characterized by a high contribution of nutrients from plant food sources and a low contribution of nutrients from animal food sources; PC2 by a high contribution of micro-nutrients and proteins; PC3 was characterized by polyunsaturated fatty acids and vitamin D; PC4 was characterized by calcium, proteins, riboflavin, and phosphorus. The nutrients with high loadings on a particular pattern as derived from country-specific FFQ also showed high deviations in their mean EPIC intakes by quintiles of pattern scores when estimated from 24-HDR. Center and energy intake explained most of the variability in pattern scores. The use of 24-HDR enabled internal validation and facilitated the interpretation of the nutrient patterns derived from FFQs in term of food sources. These outcomes open research opportunities and perspectives of using nutrient patterns in future studies particularly at international level.
Grob, Carolina; Jardillier, Ludwig; Hartmann, Manuela; Ostrowski, Martin; Zubkov, Mikhail V; Scanlan, David J
2015-04-01
To assess the role of open-ocean ecosystems in global CO2 fixation, we investigated how picophytoplankton, which dominate primary production, responded to episodic increases in nutrient availability. Previous experiments have shown nitrogen alone, or in combination with phosphorus or iron, to be the proximate limiting nutrient(s) for total phytoplankton grown over several days. Much less is known about how nutrient upshift affects picophytoplankton CO2 fixation over the duration of the light period. To address this issue, we performed a series of small volume (8-60 ml) - short term (10-11 h) nutrient addition experiments in different regions of the Atlantic Ocean using NH4 Cl, FeCl3 , K medium, dust and nutrient-rich water from 300 m depth. We found no significant nutrient stimulation of group-specific CO2 fixation rates of two taxonomically and size-distinct groups of plastidic protists. The above was true regardless of the region sampled or nutrient added, suggesting that this is a generic phenomenon. Our findings show that at least in the short term (i.e. daylight period), nutrient availability does not limit CO2 fixation by the smallest plastidic protists, while their taxonomic composition does not determine their response to nutrient addition. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Plants adapted to nutrient limitation allocate less biomass into stems in an arid-hot grassland.
Yan, Bangguo; Ji, Zhonghua; Fan, Bo; Wang, Xuemei; He, Guangxiong; Shi, Liangtao; Liu, Gangcai
2016-09-01
Biomass allocation can exert a great influence on plant resource acquisition and nutrient use. However, the role of biomass allocation strategies in shaping plant community composition under nutrient limitations remains poorly addressed. We hypothesized that species-specific allocation strategies can affect plant adaptation to nutrient limitations, resulting in species turnover and changes in community-level biomass allocations across nutrient gradients. In this study, we measured species abundance and the concentrations of nitrogen and phosphorus in leaves and soil nutrients in an arid-hot grassland. We quantified species-specific allocation parameters for stems vs leaves based on allometric scaling relationships. Species-specific stem vs leaf allocation parameters were weighted with species abundances to calculate the community-weighted means driven by species turnover. We found that the community-weighted means of biomass allocation parameters were significantly related to the soil nutrient gradient as well as to leaf stoichiometry, indicating that species-specific allocation strategies can affect plant adaptation to nutrient limitations in the studied grassland. Species that allocate less to stems than leaves tend to dominate nutrient-limited environments. The results support the hypothesis that species-specific allocations affect plant adaptation to nutrient limitations. The allocation trade-off between stems and leaves has the potential to greatly affect plant distribution across nutrient gradients. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Forehead, Hugh I; Kendrick, Gary A; Thompson, Peter A
2012-04-01
The interactions between physical disturbances and biogeochemical cycling are fundamental to ecology. The benthic microbial community controls the major pathway of nutrient recycling in most shallow-water ecosystems. This community is strongly influenced by physical forcing and nutrient inputs. Our study tests the hypotheses that benthic microbial communities respond to shelter and enrichment with (1) increased biomass, (2) change in community composition and (3) increased uptake of inorganic nutrients from the water column. Replicate in situ plots were sheltered from physical disturbance and enriched with inorganic nutrients or left without additional nutrients. At t(0) and after 10 days, sediment-water fluxes of nutrients, O(2) and N(2) , were measured, the community was characterized with biomarkers. Autochthonous benthic microalgal (BMA) biomass increased 30% with shelter and a natural fivefold increase in nutrient concentration; biomass did not increase with greater enrichment. Diatoms remained the dominant taxon of BMA, suggesting that the sediments were not N or Si limited. Bacteria and other heterotrophic organisms increased with enrichment and shelter. Daily exchanges of inorganic nutrients between sediments and the water column did not change in response to shelter or nutrient enrichment. In these sediments, physical disturbance, perhaps in conjunction with nutrient enrichment, was the primary determinant of microbial biomass. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Monitoring TASCC Injections Using A Field-Ready Wet Chemistry Nutrient Autoanalyzer
NASA Astrophysics Data System (ADS)
Snyder, L. E.; Herstand, M. R.; Bowden, W. B.
2011-12-01
Quantification of nutrient cycling and transport (spiraling) in stream systems is a fundamental component of stream ecology. Additions of isotopic tracer and bulk inorganic nutrient to streams have been frequently used to evaluate nutrient transfer between ecosystem compartments and nutrient uptake estimation, respectively. The Tracer Addition for Spiraling Curve Characterization (TASCC) methodology of Covino et al. (2010) instantaneously and simultaneously adds conservative and biologically active tracers to a stream system to quantify nutrient uptake metrics. In this method, comparing the ratio of mass of nutrient and conservative solute recovered in each sample throughout a breakthrough curve to that of the injectate, a distribution of spiraling metrics is calculated across a range of nutrient concentrations. This distribution across concentrations allows for both a robust estimation of ambient spiraling parameters by regression techniques, and comparison with uptake kinetic models. We tested a unique sampling strategy for TASCC injections in which samples were taken manually throughout the nutrient breakthrough curves while, simultaneously, continuously monitoring with a field-ready wet chemistry autoanalyzer. The autoanalyzer was programmed to measure concentrations of nitrate, phosphate and ammonium at the rate of one measurement per second throughout each experiment. Utilization of an autoanalyzer in the field during the experiment results in the return of several thousand additional nutrient data points when compared with manual sampling. This technique, then, allows for a deeper understanding and more statistically robust estimation of stream nutrient spiraling parameters.
NASA Astrophysics Data System (ADS)
Liew, Oi Wah; Boey, William S. L.; Asundi, Anand K.; Chen, Jun-Wei; He, Duo-Min
1999-05-01
In this paper, fiber optic spectrophotometry (FOSpectr) was adapted to provide early detection of plant nutrient deficiency by measuring leaf spectral reflectance variation resulting from nutrient stress. Leaf reflectance data were obtained form a local vegetable crop, Brassica chinensis var parachinensis (Bailey), grown in nitrate-nitrogen (N)- and calcium (Ca)- deficient hydroponics nutrient solution. FOSpectr analysis showed significant differences in leaf reflectance within the first four days after subjecting plants to nutrient-deficient media. Recovery of the nutrient-stressed plants could also be detected after transferring them back to complete nutrient solution. In contrast to FOSpectr, plant response to nitrogen and calcium deficiency in terms of reduced growth and tissue elemental levels was slower and less pronounced. Thus, this study demonstrated the feasibility of using FOSpectr methodology as a non-destructive alternative to augment current methods of plant nutrient analysis.
NASA Astrophysics Data System (ADS)
Bullard, J. E.; Anderson, N. J.; McGowan, S.; Prater, C.; Watts, M.; Whitford, E.
2017-12-01
Terrestrially-derived nutrients can strongly affect production in aquatic environments. However, while some research has focused on nutrient delivery via hydrological inputs, the effects of atmospheric dry deposition are comparatively understudied. This paper examines the influence of aeolian-derived elements on water chemistry and microbial nutrient-limitation in oligotrophic lakes in West Greenland. Estimates of seasonal dust deposition and elemental leaching rates are combined with lake nutrient concentration measurements to establish the role of glacio-fluvial dust deposition in shaping nutrient stoichiometry of downwind lakes. The bioavailability of dust-associated elements is also explored using enzyme assays designed to indicate nutrient-limitation in microbial communities sampled across a dust deposition gradient. Together, these analyses demonstrate the importance of atmospheric dust inputs on hydrologically-isolated lakes found in arid high-latitude environments and demonstrate the need to better understand the role of aeolian deposition in cross-system nutrient transport.
Including spatial data in nutrient balance modelling on dairy farms
NASA Astrophysics Data System (ADS)
van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke
2017-04-01
The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies at Dutch dairy farms. We selected two dairy farms located on cover sands in the Netherlands. One farm was located on relatively homogeneous soil type, and one on many different soil types within the sandy soils. A full year of data of N and P inputs and outputs on farm and field level were provided by the farmers, including field level yields, yield composition, manure composition, degree of grazing and degree of mowing. Soil heterogeneity was defined as the number of soil units within the farm corrected for surface area, and quantified from the Dutch 1:50.000 soil map. N and P balances at farm and field level were determined, as well as differences in nutrient use efficiency, leaching, and N emission. We will present the effect of the spatial scale on nutrient balance analysis and discuss to which degree any differences are caused by within-farm land management and soil variation. This study highlights to which extent within-farm land management and soil variation should be taken into account when modelling nutrient flows and nutrient use efficiencies at farm level, to contribute to field-based decision making for improved land management.
NASA Astrophysics Data System (ADS)
Yin, Kedong; Liu, Hao; Harrison, Paul J.
2017-05-01
We hypothesize that phytoplankton have the sequential nutrient uptake strategy to maintain nutrient stoichiometry and high primary productivity in the water column. According to this hypothesis, phytoplankton take up the most limiting nutrient first until depletion, continue to draw down non-limiting nutrients and then take up the most limiting nutrient rapidly when it is available. These processes would result in the variation of ambient nutrient ratios in the water column around the Redfield ratio. We used high-resolution continuous vertical profiles of nutrients, nutrient ratios and on-board ship incubation experiments to test this hypothesis in the Strait of Georgia. At the surface in summer, ambient NO3- was depleted with excess PO43- and SiO4- remaining, and as a result, both N : P and N : Si ratios were low. The two ratios increased to about 10 : 1 and 0. 45 : 1, respectively, at 20 m. Time series of vertical profiles showed that the leftover PO43- continued to be removed, resulting in additional phosphorus storage by phytoplankton. The N : P ratios at the nutricline in vertical profiles responded differently to mixing events. Field incubation of seawater samples also demonstrated the sequential uptake of NO3- (the most limiting nutrient) and then PO43- and SiO4- (the non-limiting nutrients). This sequential uptake strategy allows phytoplankton to acquire additional cellular phosphorus and silicon when they are available and wait for nitrogen to become available through frequent mixing of NO3- (or pulsed regenerated NH4). Thus, phytoplankton are able to maintain high productivity and balance nutrient stoichiometry by taking advantage of vigorous mixing regimes with the capacity of the stoichiometric plasticity. To our knowledge, this is the first study to show the in situ dynamics of continuous vertical profiles of N : P and N : Si ratios, which can provide insight into the in situ dynamics of nutrient stoichiometry in the water column and the inference of the transient status of phytoplankton nutrient stoichiometry in the coastal ocean.
NASA Astrophysics Data System (ADS)
Williams, Mark R.; Livingston, Stanley J.; Penn, Chad J.; Smith, Douglas R.; King, Kevin W.; Huang, Chi-hua
2018-04-01
Understanding the processes controlling nutrient delivery in headwater agricultural watersheds is essential for predicting and mitigating eutrophication and harmful algal blooms in receiving surface waters. The objective of this study was to elucidate nutrient transport pathways and examine key components driving nutrient delivery processes during storm events in four nested agricultural watersheds (298-19,341 ha) in the western Lake Erie basin with poorly drained soils and an extensive artificial drainage network typical of the Midwestern U.S. Concentration-discharge hysteresis patterns of nitrate-nitrogen (NO3-N), dissolved reactive phosphorus (DRP), and particulate phosphorus (PP) occurring during 47 storm events over a 6 year period (2004-2009) were evaluated. An assessment of the factors producing nutrient hysteresis was completed following a factor analysis on a suite of measured environmental variables representing the fluvial and wider watershed conditions prior to, and during the monitored storm events. Results showed the artificial drainage network (i.e., surface tile inlets and subsurface tile drains) in these watersheds was the primary flow pathway for nutrient delivery to streams, but nutrient behavior and export during storm events was regulated by the flow paths to and the intensity of the drainage network, the availability of nutrients, and the relative contributions of upland and in-stream nutrient sources. Potential sources and flow pathways for transport varied among NO3-N, PP, and DRP with results underscoring the challenge of mitigating nutrient loss in these watersheds. Conservation practices addressing both nutrient management and hydrologic connectivity will likely be required to decrease nutrient loss in artificially drained landscapes.
Sacks, G; Rayner, M; Stockley, L; Scarborough, P; Snowdon, W; Swinburn, B
2011-03-01
A number of different nutrient-profiling models have been proposed and several applications of nutrient profiling have been identified. This paper outlines the potential role of nutrient-profiling applications in the prevention of diet-related chronic disease (DRCD), and considers the feasibility of a core nutrient-profiling system, which could be modified for purpose, to underpin the multiple potential applications in a particular country. The 'Four 'P's of Marketing' (Product, Promotion, Place and Price) are used as a framework for identifying and for classifying potential applications of nutrient profiling. A logic pathway is then presented that can be used to gauge the potential impact of nutrient-profiling interventions on changes in behaviour, changes in diet and, ultimately, changes in DRCD outcomes. The feasibility of a core nutrient-profiling system is assessed by examining the implications of different model design decisions and their suitability to different purposes. There is substantial scope to use nutrient profiling as part of the policies for the prevention of DRCD. A core nutrient-profiling system underpinning the various applications is likely to reduce discrepancies and minimise the confusion for regulators, manufacturers and consumers. It seems feasible that common elements, such as a standard scoring method, a core set of nutrients and food components, and defined food categories, could be incorporated as part of a core system, with additional application-specific criteria applying. However, in developing and in implementing such a system, several country-specific contextual and technical factors would need to be balanced.
Rodrigues, Vanessa Mello; Rayner, Mike; Fernandes, Ana Carolina; de Oliveira, Renata Carvalho; Proença, Rossana Pacheco da Costa; Fiates, Giovanna Medeiros Rataichesck
2016-06-01
Many children's food products highlight positive attributes on their front-of-package labels in the form of nutrient claims. This cross-sectional study investigated all retailed packaged foods (n 5620) in a major Brazilian supermarket, in order to identify the availability of products targeted at children, and to compare the nutritional content of products with and without nutrient claims on labels. Data on energy, carbohydrate, protein, fibre, Na and total and SFA content, along with the presence and type of nutrient claims, were obtained in-store from labels of all products. Products targeted at children were identified, divided into eight food groups and compared for their nutritional content per 100 g/ml and the presence of nutrient claims using the Mann-Whitney U test (P<0·05). Of the 535 food products targeted at children (9·5 % of all products), 270 (50·5 %) displayed nutrient claims on their labels. Children's products with nutrient claims had either a similar or worse nutritional content than their counterparts without nutrient claims. The major differences among groups were found in Group 8 (e.g. sauces and ready meals), in which children's products bearing nutrient claims had higher energy, carbohydrate, Na and total and SFA content per 100 g/ml than products without nutrient claims (P<0·05). This suggests that, to prevent misleading parents who are seeking healthier products for their children, the regulation on the use of nutrient claims should be revised, so that only products with appropriate nutrient profiles are allowed to display them.
Subsurface application enhances benefits of manure redistribution
USDA-ARS?s Scientific Manuscript database
Sustainable nutrient management requires redistribution of livestock manure from nutrient-excess areas to nutrient-deficit areas. Field experiments were conducted to assess agronomic (i.e., corn yield) and environmental (i.e., ammonia volatilization and surface nutrient losses) effects of different ...
Sediment type and benthic fauna control the nutrient release in a coastal bay
NASA Astrophysics Data System (ADS)
Voss, Maren; Thoms, Franziska; Dippner, Joachim; Bartl, Ines; Janas, Urzula; Hellemann, Dana; Hietanen, Susanna; Kendzierska, Halina
2017-04-01
Eutrophication of coastal seas is still a major problem that may even increase in the near future according to recent model studies. The catchment of the Baltic Sea with nine highly industrialized riparian countries is intensively used and only few major rivers are responsible for more than half of the riverine nutrient input to the coastal zones. It is hypothesized that these nutrient are the main drivers for large anoxic bottom waters in the central Baltic Sea and an increasing hypoxia problem in coastal waters. The sequestration of nutrients was therefore intensively studied in the Baltic Sea, however either in the water column or in the sediments. The role of the benthic pelagic coupling for the nutrient turnover was much less investigated especially due to technical challenges. We therefore used a lander system to quantify the nutrient release from sediments in a river impacted coastal Bay of Gdansk in the framework of the BONUS-COCOA project. Lander deployments and sediment coring were done simultaneously to measure nutrient fluxes over time and to characterize grain size, permeability, organic matter content, and benthic fauna. The benthic communities were analyzed to identify potential linkages between nutrient release and the species composition. Our study revealed close linkages between types/grain-size of sediment and the nutrient release. The activity of the animals in the sediment seems responsible for significant release of nutrients which is more pronounced than the diffusive nutrient release back to the water column. Rates from nineteen stations were used to draw a conclusive picture of the overall nutrient release from sediments and were set into a framework of a nutrient budget for the Bay of Gdansk considering the role of fauna. Moreover, we are able to identify a depth of roughly 50m as a border that separates the dominance of benthic recycling from deeper stations where mainly deposition or organic material takes place. Changes in properties of sediments are discernible from 50 m downwards to deeper waters. A storm encountered during one cruise was used to evaluate effects of strong wave action on the release and leaching of nutrient from sediments. Overall, the importance of oxygenated coastal waters to allow benthic life is therefore crucial for nutrient turnover and nutrient removal in coastal zones.
Diagnosing oceanic nutrient deficiency
2016-01-01
The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical–chemical–biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035255
Grassland productivity limited by multiple nutrients.
Fay, Philip A; Prober, Suzanne M; Harpole, W Stanley; Knops, Johannes M H; Bakker, Jonathan D; Borer, Elizabeth T; Lind, Eric M; MacDougall, Andrew S; Seabloom, Eric W; Wragg, Peter D; Adler, Peter B; Blumenthal, Dana M; Buckley, Yvonne M; Chu, Chengjin; Cleland, Elsa E; Collins, Scott L; Davies, Kendi F; Du, Guozhen; Feng, Xiaohui; Firn, Jennifer; Gruner, Daniel S; Hagenah, Nicole; Hautier, Yann; Heckman, Robert W; Jin, Virginia L; Kirkman, Kevin P; Klein, Julia; Ladwig, Laura M; Li, Qi; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Morgan, John W; Risch, Anita C; Schütz, Martin; Stevens, Carly J; Wedin, David A; Yang, Louie H
2015-07-06
Terrestrial ecosystem productivity is widely accepted to be nutrient limited(1). Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)(2,3), the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized(4-8). However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment.
Diagnosing oceanic nutrient deficiency
NASA Astrophysics Data System (ADS)
Moore, C. Mark
2016-11-01
The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical-chemical-biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.
The Nutrient Density of Snacks
Hess, Julie; Rao, Goutham; Slavin, Joanne
2017-01-01
Background: Although Americans receive almost a quarter of their daily energy from snacks, snacking remains a poorly defined and understood eating occasion. However, there is little dietary guidance about choosing snacks. Families, clinicians, and researchers need a comprehensive approach to assessing their nutritional value. Objective: To quantify and compare the nutrient density of commonly consumed snacks by their overall nutrient profiles using the Nutrient-Rich Foods (NRF) Index 10.3. Methods: NRF Index scores were calculated for the top 3 selling products (based on 2014 market research data) in different snack categories. These NRF scores were averaged to provide an overall nutrient-density score for each category. Results: Based on NRF scores, yogurt (55.3), milk (52.5), and fruit (30.1) emerged as the most nutrient-dense snacks. Ice cream (−4.4), pies and cakes (−11.1), and carbonated soft drinks (−17.2) emerged as the most nutrient-poor snacks. Conclusions: The NRF Index is a useful tool for assessing the overall nutritional value of snacks based on nutrients to limit and nutrients to encourage. PMID:28491924
Alquezar, Ralph; Glendenning, Lionel; Costanzo, Simon
2013-12-15
Nutrient bioindicators are increasingly being recognised as a diagnostic tool for nutrient enrichment of estuarine and marine ecosystems. Few studies, however, have focused on field translocation of bioindicator organisms to detect nutrient discharge from industrial waste. The brown macroalgae, Sargassum flavicans, was investigated as a potential bioindicator of nutrient-enriched industrial effluent originating from a nickel refinery in tropical north-eastern Australia. S. flavicans was translocated to a number of nutrient enriched creek and oceanic sites over two seasons and assessed for changes in stable isotope ratios of (15)N and (13)C within the plant tissue in comparison to reference sites. Nutrient uptake in macroalgae, translocated to the nutrient enriched sites adjacent to the refinery, increased 3-4-fold in δ(15)N, compared to reference sites. Using δ(15)N of translocated S. flavicans proved to be a successful method for monitoring time-integrated uptake of nitrogen, given the current lack of passive sampler technology for nutrient monitoring. Copyright © 2013 Elsevier Ltd. All rights reserved.
Land Cover - Nutrient Export Relationships in Space and Time
The relationship between watershed land-cover composition and nutrient export has been well established through several meta-analyses. The meta-analyses reveal that nutrient loads from watersheds dominated by natural vegetation tend to be lower than nutrient loads from watershed...
SUBMERGED MACROPHYTE EFFECTS ON NUTRIENT EXCHANGES IN RIVERINE SEDIMENTS
Submersed macrophytes are important in nutrient cycling in marine and lacustrine systems, although their role in nutrient exchange in tidally-influenced riverine systems is not well studied. In the laboratory, plants significantly lowered porewater nutrient pools of riverine sedi...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., if two groups (product A and a non-nutrient control) are tested at each of three points in time (day... groups: Group 1: Non-nutrient Control Group 2: Nutrient Control Group 3: Test Product 4.7.4.2The raw data... different from those of both the nutrient control (group 2) and the non-nutrient control (group 1) for those...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., if two groups (product A and a non-nutrient control) are tested at each of three points in time (day... groups: Group 1: Non-nutrient Control Group 2: Nutrient Control Group 3: Test Product 4.7.4.2The raw data... different from those of both the nutrient control (group 2) and the non-nutrient control (group 1) for those...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., if two groups (product A and a non-nutrient control) are tested at each of three points in time (day... groups: Group 1: Non-nutrient Control Group 2: Nutrient Control Group 3: Test Product 4.7.4.2The raw data... different from those of both the nutrient control (group 2) and the non-nutrient control (group 1) for those...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., if two groups (product A and a non-nutrient control) are tested at each of three points in time (day... groups: Group 1: Non-nutrient Control Group 2: Nutrient Control Group 3: Test Product 4.7.4.2The raw data... different from those of both the nutrient control (group 2) and the non-nutrient control (group 1) for those...
ERIC Educational Resources Information Center
Department of Agriculture, Washington, DC.
This report presents 3-day nutrient intake data for about 36,100 individuals in 48 states. Data are provided in 157 tables, and results are summarized in the text. The contribution of 14 food groups to intakes of food energy and 14 nutrients are presented. Also included are the average intakes of food energy and nutrients, the nutrient densities…
Gerber, Stefan; Brookshire, E N Jack
2014-03-01
Nutrient limitation in terrestrial ecosystems is often accompanied with maintaining a nearly closed vegetation-soil nutrient cycle. The ability to retain nutrients in an ecosystem requires the capacity of the plant-soil system to draw down nutrient levels in soils effectually such that export concentrations in soil solutions remain low. Here we address the physical constraints of plant nutrient uptake that may be limited by the diffusive movement of nutrients in soils, by the uptake at the root/mycorrhizal surface, and from interactions with soil water flow. We derive an analytical framework of soil nutrient transport and uptake and predict levels of plant available nutrient concentration and residence time. Our results, which we evaluate for nitrogen, show that the physical environment permits plants to lower soil solute concentration substantially. Our analysis confirms that plant uptake capacities in soils are considerable, such that water movement in soils is generally too small to significantly erode dissolved plant-available nitrogen. Inorganic nitrogen concentrations in headwater streams are congruent with the prediction of our theoretical framework. Our framework offers a physical-based parameterization of nutrient uptake in ecosystem models and has the potential to serve as an important tool toward scaling biogeochemical cycles from individual roots to landscapes.
Salmon-mediated nutrient flux in selected streams of the Columbia River basin, USA
Kohler, Andre E.; Kusnierz, Paul C.; Copeland, Timothy; Venditti, David A.; Denny, Lytle; Gable, Josh; Lewis, Bert; Kinzer, Ryan; Barnett, Bruce; Wipfli, Mark S.
2013-01-01
Salmon provide an important resource subsidy and linkage between marine and land-based ecosystems. This flow of energy and nutrients is not uni-directional (i.e., upstream only); in addition to passive nutrient export via stream flow, juvenile emigrants actively export nutrients from freshwater environments. In some cases, nutrient export can exceed import. We evaluated nutrient fluxes in streams across central Idaho, USA using Chinook salmon (Oncorhynchus tshawytscha) adult escapement and juvenile production data from 1998 to 2008. We found in the majority of stream-years evaluated, adults imported more nutrients than progeny exported; however, in 3% of the years, juveniles exported more nutrients than their parents imported. On average, juvenile emigrants exported 22 ± 3% of the nitrogen and 30 ± 4% of the phosphorus their parents imported. This relationship was density dependent and nonlinear; during periods of low adult abundance juveniles were larger and exported up to 194% and 268% of parental nitrogen and phosphorus inputs, respectively. We highlight minimum escapement thresholds that appear to 1) maintain consistently positive net nutrient flux and 2) reduce the average proportional rate of export across study streams. Our results suggest a state-shift occurs when adult spawner abundance falls below a threshold to a point where the probability of juvenile nutrient exports exceeding adult imports becomes increasingly likely.
Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli--Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabinowitz, Joshua D; Wingreen, Ned s; Rabitz, Herschel A
2012-10-22
A key challenge for living systems is balancing utilization of multiple elemental nutrients, such as carbon, nitrogen, and oxygen, whose availability is subject to environmental fluctuations. As growth can be limited by the scarcity of any one nutrient, the rate at which each nutrient is assimilated must be sensitive not only to its own availability, but also to that of other nutrients. Remarkably, across diverse nutrient conditions, E. coli grows nearly optimally, balancing effectively the conversion of carbon into energy versus biomass. To investigate the link between the metabolism of different nutrients, we quantified metabolic responses to nutrient perturbations usingmore » LC-MS based metabolomics and built differential equation models that bridge multiple nutrient systems. We discovered that the carbonaceous substrate of nitrogen assimilation, -ketoglutarate, directly inhibits glucose uptake and that the upstream glycolytic metabolite, fructose-1,6-bisphosphate, ultrasensitively regulates anaplerosis to allow rapid adaptation to changing carbon availability. We also showed that NADH controls the metabolic response to changing oxygen levels. Our findings support a general mechanism for nutrient integration: limitation for a nutrient other than carbon leads to build-up of the most closely related product of carbon metabolism, which in turn feedback inhibits further carbon uptake.« less
Nutrient Intake of Dengue Hemorrhagic Fever Patients in Semarang City
NASA Astrophysics Data System (ADS)
Ratri Maharani, Agustina; Restuti, Christina Tri; Sari, Erna; Endah Wahyuningsih, Nur; Murwani, Retno; Hapsari, MMDEAH
2018-05-01
Dengue Hemorrhagic Fever (DHF) is an acute infectious disease caused by dengue virus and transmission of the virus is mediated by mosquitoes bites [1]. Host immunity against dengue infection is affected by nutrient adequacy which is depending on nutrient intake [2]. The aim of this study was to determine nutrient intake of DHF patients in Semarang city. The DHF sample cases were obtained from three hospitals in Semarang city (n=48), from the period of March to May 2016 and the control groups were obtained from healthy respondents with matched age, sex, and district location (n=48). Nutrient intake were obtained by food recall and calculated using Nutrisurvey Indonesia. Afterwards, the result of the nutrisurvey will be compared to Indonesian daily value according to Permenkes no. 75 about daily value based on age and gender. The results showed that both in cases and control groups the macro-(energy, carbohydrate, protein, fat) and micro-nutrient (vitamins A., C, B1, B2, B6, calcium, magnesium, phosphorus, zinc, and Iron) intake were below 80% of nutrient adequacy. No correlation was found between nutrient adequacy and DHF cases. We find that macro and micronutrient intake in DHF case and control groups are the same and below 80% of nutrient adequacy. The nutrient intake was not related to DHF cases.
Vascular plant abundance and diversity in an alpine heath under observed and simulated global change
Alatalo, Juha M.; Little, Chelsea J.; Jägerbrand, Annika K.; Molau, Ulf
2015-01-01
Global change is predicted to cause shifts in species distributions and biodiversity in arctic tundra. We applied factorial warming and nutrient manipulation to a nutrient and species poor alpine/arctic heath community for seven years. Vascular plant abundance in control plots increased by 31%. There were also notable changes in cover in the nutrient and combined nutrient and warming treatments, with deciduous and evergreen shrubs declining, grasses overgrowing these plots. Sedge abundance initially increased significantly with nutrient amendment and then declined, going below initial values in the combined nutrient and warming treatment. Nutrient addition resulted in a change in dominance hierarchy from deciduous shrubs to grasses. We found significant declines in vascular plant diversity and evenness in the warming treatment and a decline in diversity in the combined warming and nutrient addition treatment, while nutrient addition caused a decline in species richness. The results give some experimental support that species poor plant communities with low diversity may be more vulnerable to loss of species diversity than communities with higher initial diversity. The projected increase in nutrient deposition and warming may therefore have negative impacts on ecosystem processes, functioning and services due to loss of species diversity in an already impoverished environment. PMID:25950370
Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim
2015-01-01
High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.
Cai, Xianlei; Yao, Ling; Gao, Guang; Xie, Yinfeng; Zhang, Yingying; Tang, Xiangming
2016-06-01
To investigate the effects of water column nutrient loading on epiphytic bacteria, we determined the abundance and community composition of epiphytic bacteria on the submerged macrophyte Vallisneria natans (Lour.) Hara during the growth season (June-October) under four different nutrient concentrations (nitrogen (N)-phosphorus (P) in mg L(-1) : 0.5-0.05, 1.0-0.1, 5.0-0.5, 10.0-1.0; hereafter NP-1, NP-2, NP-3, NP-4, respectively), using epifluorescence microscopy method and terminal restriction fragment length polymorphism (T-RFLP) analysis, respectively. Relative to low nutrient conditions (NP-1), there was no significant effect on the epiphytic bacterial community, and even a decrease in the number of epiphytic bacteria, which linked to the well growth status of host macrophytes at moderate nutrient conditions (NP-2). However, further nutrient enrichment induced significant increase in the abundance of epiphytic bacteria, and marked changes in the community structures of epiphytic bacteria. Furthermore, at high nutrient conditions, epiphytic bacterial communities varied widely temporally, and were not stable compared with those at the lower nutrient conditions. These results indicated that the effects of nutrient enrichment on epiphytic bacteria were nonlinear and dependent on the nutrient concentrations in the water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhenqing; Balogh-Brunstad, Zsuzsanna; Grant, Michael R.
Background and Aims Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient limitation on cation uptake in an experimental plant-mineral system. Methods Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to nine months under a range of Ca- and K-limited conditions. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations. Results Cation nutrient stress had little impact on carbon allocation after nine months ofmore » plant growth and K was the limiting nutrient for biomass production. The Ca/Sr and K/Rb ratio results allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment. Conclusions Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.« less
Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim
2015-01-01
High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938
Microbial nutrient niches in the gut.
Pereira, Fátima C; Berry, David
2017-04-01
The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche-driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co-existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed-substrate utilization are common strategies for survival in the face of ever-present nutrient fluctuations. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kruger, Kevin C.
Nutrient management methods are needed to provide sustainable operation to livestock production that balance the costs of operation and maintenance. Cultivating duckweed on dairy wastes is considered an effective way of nutrient uptake and cycling. Duckweed cultivation has been implemented on nutrient management systems, such as constructed wetlands and waste stabilization ponds that use both domestic and swine wastewater. The objectives of this study were to (1) identify a nutrient concentration and duckweed strain that rapidly produces biomass, (2) removes nutrient content from anaerobically digested dairy manure, and (3) produces starch from nutrient starvation. To complete these objectives, this study targeted estimating growth and nutrient rate constants as well as starch yield of duckweed under different cultivation conditions. The strains of duckweed, Landoltia punctata 0128, Lemna gibba 7589, and Lemna minuta 9517 were identified as the promising candidates for their high levels of nutrient uptake, starch accumulation, and biomass production. The growth rate of the duckweed strain was assessed based on the effects of temperature, pH, dissolved oxygen, light intensity, nutrient concentration, and biomass accumulation. The nutrient uptake through duckweed cultivation on the anaerobically digested (AD) dairy manure, characterized by the changes of total nitrogen (TN), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and ortho-phosphate-phosphorus (o-PO 4-P), was assessed in four nutrient dilution ratios 1:5, 1:13, 1:18, and 1:27 v/v at two light intensities of 10,000 and 3,000 lux to model seasonal variation. The duckweed strain that exhibited the best biomass production, nutrient removal and starch accumulation was Landoltia punctata 0128 at a dilution ratio of 1:27 at a light intensity of 10,000 lux. The growth rate constant established from zero order kinetics for Landoltia punctata 0128 was 13.3 gm-2d-1. The rate constants for nutrient recovery were 0.122 d-1 of TN, 0.136 d -1 of TKN, 0.145 d-1 of TP, and 0.173d-1 of o-PO4-P. The batch efficiency of cultivation for Landoltia punctata 0128 on dilution ratio 1:27, in terms of nutrient uptake was 38% m/m in relation to the total nitrogen removed. The starch yield was measured at 30% w/w for Landoltia punctata 0128 after the nutrient starvation process. Due to its ability to reduce nutrients from AD dairy manure, accumulate biomass at a rapid growth rate, and accumulate a high yield of starch, Landoltia punctata 0128 has great potential to become a preferred choice for nutrient recovery and biomass and bioethanol production.
Context-dependent effects of nutrient loading on the coral-algal mutualism.
Shantz, Andrew A; Burkepile, Deron E
2014-07-01
Human-mediated increases in nutrient availability alter patterns of primary production, impact species diversity, and threaten ecosystem function. Nutrients can also alter community structure by disrupting the relationships between nutrient-sharing mutualists that form the foundation of communities. Given their oligotrophic nature and the dependence of reef-building corals on symbiotic relationships, coral reefs may be particularly vulnerable to excess nutrients. However, individual studies suggest complex, even contradictory, relationships among nutrient availability, coral physiology, and coral growth. Here, we used meta-analysis to establish general patterns of the impact of nitrogen (N) and phosphorus (P) on coral growth and photobiology. Overall, we found that over a wide range of concentrations, N reduced coral calcification 11%, on average, but enhanced metrics of coral photobiology, such as photosynthetic rate. In contrast, P enrichment increased average calcification rates by 9%, likely through direct impacts on the calcification process, but minimally impacted coral photobiology. There were few synergistic impacts of combined N and P on corals, as the nutrients impact corals via different pathways. Additionally, the response of corals to increasing nutrient availability was context dependent, varying with coral taxa and morphology, enrichment source, and nutrient identity. For example, naturally occurring enrichment from fish excretion increased coral growth, while human-mediated enrichment tended to decrease coral growth. Understanding the nuances of the relationship between nutrients and corals may allow for more targeted remediation strategies and suggest how other global change drivers such as overfishing and climate change will shape how nutrient availability impacts corals.
Marcarelli, Amy M.; Baxter, Colden V.; Wipfli, Mark S.
2014-01-01
Mitigation activities designed to supplement nutrient and organic matter inputs to streams experiencing decline or loss of Pacific salmon typically presuppose that an important pathway by which salmon nutrients are moved to fish (anadromous and/or resident) is via nutrient incorporation by biofilms and subsequent bottom-up stimulation of biofilm production, which is nutrient-limited in many ecosystems where salmon returns have declined. Our objective was to quantify the magnitude of nutrient incorporation and biofilm dynamics that underpin this indirect pathway in response to experimental additions of salmon carcasses and pelletized fish meal (a.k.a., salmon carcass analogs) to 500-m reaches of central Idaho streams over three years. Biofilm standing crops increased 2–8-fold and incorporated marine-derived nutrients (measured using 15N and 13C) in the month following treatment, but these responses did not persist year-to-year. Biofilms were nitrogen (N) limited before treatments, and remained N limited in analog, but not carcass-treated reaches. Despite these biofilm responses, in the month following treatment total N load was equal to 33–47% of the N added to the treated reaches, and N spiraling measurements suggested that as much as 20%, but more likely 2–3% of added N was taken up by microbes. Design of biologically and cost-effective strategies for nutrient addition will require understanding the rates at which stream microbes take up nutrients and the downstream distance traveled by exported nutrients.
Adachi, Kyoichi; Furuta, Kenji; Aimi, Masahito; Fukazawa, Kousuke; Shimura, Shino; Ohara, Shunji; Nakata, Shuji; Inoue, Yukiko; Ryuko, Kanji; Ishine, Junichi; Katoh, Kyoko; Hirata, Toshiaki; Ohhata, Shuzo; Katoh, Setsushi; Moriyama, Mika; Sumikawa, Masuko; Sanpei, Mari; Kinoshita, Yoshikazu
2012-05-01
The aim of this study was to determine the efficacy of pectin solution, which increases the viscosity of liquid nutrient, for prevention of gastro-esophageal reflux in comparison with half-solid nutrient. The subjects were 10 elderly patients undergoing percutaneous endoscopic gastrostomy feeding. Twenty-four-hour esophageal multichannel intraluminal impedance and pH testing was performed during intake of half-solid nutrient and a combination of pectin solution and liquid nutrient. During 4 h after delivery, there was no significant difference in the total number of gastro-esophageal reflux events between the feeding of the half-solid nutrient and the combination of pectin solution and liquid nutrient (5.7 ± 1.2 vs 5.3 ± 1.0/4 h). Acidic reflux after delivery of the half-solid nutrient was significantly more frequent than that after delivery of the combination of pectin solution and liquid nutrient (80.7% vs 60.4%, p = 0.018). The incidence of gastro-esophageal reflux reaching the upper portion of the esophagus tended to be higher during delivery of the half-solid nutrient than during delivery of the combination of pectin solution and liquid nutrient (47.4% vs 34.0%, p = 0.153). In conclusion, the usage of pectin solution combined with liquid nutrient is effective for preventing acidic gastro-esophageal reflux and gastro-esophageal reflux reaching the upper portion of the esophagus.
Chen, Weile; Koide, Roger T.; Adams, Thomas S.; DeForest, Jared L.; Cheng, Lei; Eissenstat, David M.
2016-01-01
Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich “hotspots” can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together. PMID:27432986
Chen, Weile; Koide, Roger T; Adams, Thomas S; DeForest, Jared L; Cheng, Lei; Eissenstat, David M
2016-08-02
Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich "hotspots" can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together.
Nan, Hongwei; Liang, Jin; Cheng, Xinying; Zhao, ChunZhang; Yin, HuaJun; Yin, ChunYing; Liu, Qing
2017-01-01
Investigating the responses of trees to the heterogeneous distribution of nutrients in soil and simultaneous presence of neighboring roots could strengthen the understanding of an influential mechanism on tree growth and provide a scientific basis for forest management. Here, we conducted two split-pot experiments to investigate the effects of nutrient heterogeneity and intraspecific competition on the fine root morphology and nutrient capture of Picea asperata. The results showed that P. asperata efficiently captured nutrients by increasing the specific root length (SRL) and specific root area (SRA) of first-and second-order roots and decreasing the tissue density of first-order roots to avoid competition for resources and space with neighboring roots. The nutrient heterogeneity and addition of fertilization did not affect the fine root morphology, but enhanced the P and K concentrations in the fine roots in the absence of a competitor. On the interaction between nutrient heterogeneity and competition, competition decreased the SRL and SRA but enhanced the capture of K under heterogeneous soil compared with under homogeneous soil. Additionally, the P concentration, but not the K concentration, was linearly correlated to root morphology in heterogeneous soil, even when competition was present. The results suggested that root morphological features were only stimulated when the soil nutrients were insufficient for plant growth and the nutrients accumulations by root were mainly affected by the soil nutrients more than the root morphology. PMID:29095947
Schwartz, Nicolas L; Patel, Biren A; Garland, Theodore; Horner, Angela M
2018-05-31
Bone modeling and remodeling are aerobic processes that entail relatively high oxygen demands. Long bones receive oxygenated blood from nutrient arteries, epiphyseal-metaphyseal arteries, and periosteal arteries, with the nutrient artery supplying the bulk of total blood volume in mammals (~ 50-70%). Estimates of blood flow into these bones can be made from the dimensions of the nutrient canal, through which nutrient arteries pass. Unfortunately, measuring these canal dimensions non-invasively (i.e. without physical sectioning) is difficult, and thus researchers have relied on more readily visible skeletal proxies. Specifically, the size of the nutrient artery has been estimated from dimensions (e.g. minimum diameters) of the periosteal (external) opening of the nutrient canal. This approach has also been utilized by some comparative morphologists and paleontologists, as the opening of a nutrient canal is present long after the vascular soft tissue has degenerated. The literature on nutrient arteries and canals is sparse, with most studies consisting of anatomical descriptions from surgical proceedings, and only a few investigating the links between nutrient canal morphology and physiology or behavior. The primary objective of this study was to evaluate femur nutrient canal morphology in mice with known physiological and behavioral differences; specifically, mice from an artificial selection experiment for high voluntary wheel-running behavior. Mice from four replicate high runner (HR) lines are known to differ from four non-selected control (C) lines in both locomotor and metabolic activity, with HR mice having increased voluntary wheel-running behavior and maximal aerobic capacity (VO 2 max) during forced treadmill exercise. Femora from adult mice (average age 7.5 months) of the 11th generation of this selection experiment were μCT-scanned and three-dimensional virtual reconstructions of nutrient canals were measured for minimum cross-sectional area as a skeletal proxy of blood flow. Gross observations revealed that nutrient canals varied far more in number and shape than prior descriptions would indicate, regardless of sex or genetic background (i.e. HR vs. C lines). Canals adopted non-linear shapes and paths as they traversed from the periosteal to endosteal borders through the cortex, occasionally even branching within the cortical bone. Additionally, mice from both HR and C lines averaged more than four nutrient canals per femur, in contrast to the one to two nutrient canals described for femora from rats, pigs, and humans in prior literature. Mice from HR lines had significantly larger total nutrient canal area than C lines, which was the result not of an increase in the number of nutrient canals, but rather an increase in their average cross-section size. This study demonstrates that mice with an evolutionary history of increased locomotor activity and maximal aerobic metabolic rate have a concomitant increase in the size of their femoral nutrient canals. Although the primary determinant of nutrient canal size is currently not well understood, the present results bolster use of nutrient canal size as a skeletal indicator of aerobically supported levels of physical activity in comparative studies. © 2018 Anatomical Society.
Nutrient leaching from container-grown ornamental tree production
USDA-ARS?s Scientific Manuscript database
Economically producing marketable container-grown ornamental shade trees with minimum amounts of nutrient leachate requires better management of nutrient applications during a growing season. Fertilizer practices with 16 treatments were used to test the nutrient leachate for growing Acer rubrum ‘Red...
Coping with uncertainty: Nutrient deficiencies motivate insect migration at a cost to immunity
USDA-ARS?s Scientific Manuscript database
Migration is often associated with movement away from areas with depleted nutrients or other resources, and yet migration itself is energetically demanding. Migrating Mormon crickets Anabrus simplex (Orthoptera: Tettigoniidae) lack nutrients, and supplementation of deficient nutrients slows migrator...
SUSPENDED AND BENTHIC SEDIMENT RELATIONSHIPS IN THE YAQUINA ESTUARY, OREGON: NUTRIENT PROCESSING
Measurements of nutrient loading and subsequent nutrient processing are fundamental for determining biogeochemical processes in rivers and estuaries. In Oregon coastal watersheds, nutrient transport is strongly seasonal with up to 94% of the riverine dissolved nitrate and silic...
The competitive advantage of a dual-transporter system.
Levy, Sagi; Kafri, Moshe; Carmi, Miri; Barkai, Naama
2011-12-09
Cells use transporters of different affinities to regulate nutrient influx. When nutrients are depleted, low-affinity transporters are replaced by high-affinity ones. High-affinity transporters are helpful when concentrations of nutrients are low, but the advantage of reducing their abundance when nutrients are abundant is less clear. When we eliminated such reduced production of the Saccharomyces cerevisiae high-affinity transporters for phosphate and zinc, the elapsed time from the initiation of the starvation program until the lack of nutrients limited growth was shortened, and recovery from starvation was delayed. The latter phenotype was rescued by constitutive activation of the starvation program. Dual-transporter systems appear to prolong preparation for starvation and to facilitate subsequent recovery, which may optimize sensing of nutrient depletion by integrating internal and external information about nutrient availability.
Maximizing the accuracy of field-derived numeric nutrient criteria in water quality regulations.
McLaughlin, Douglas B
2014-01-01
High levels of the nutrients nitrogen and phosphorus can cause unhealthy biological or ecological conditions in surface waters and prevent the attainment of their designated uses. Regulatory agencies are developing numeric criteria for these nutrients in an effort to ensure that the surface waters in their jurisdictions remain healthy and productive, and that water quality standards are met. These criteria are often derived using field measurements that relate nutrient concentrations and other water quality conditions to expected biological responses such as undesirable growth or changes in aquatic plant and animal communities. Ideally, these numeric criteria can be used to accurately "diagnose" ecosystem health and guide management decisions. However, the degree to which numeric nutrient criteria are useful for decision making depends on how accurately they reflect the status or risk of nutrient-related biological impairments. Numeric criteria that have little predictive value are not likely to be useful for managing nutrient concerns. This paper presents information on the role of numeric nutrient criteria as biological health indicators, and the potential benefits of sufficiently accurate criteria for nutrient management. In addition, it describes approaches being proposed or adopted in states such as Florida and Maine to improve the accuracy of numeric criteria and criteria-based decisions. This includes a preference for developing site-specific criteria in cases where sufficient data are available, and the use of nutrient concentration and biological response criteria together in a framework to support designated use attainment decisions. Together with systematic planning during criteria development, the accuracy of field-derived numeric nutrient criteria can be assessed and maximized as a part of an overall effort to manage nutrient water quality concerns. © 2013 SETAC.
Vossenaar, M; Jaramillo, P M; Soto-Méndez, M-J; Panday, B; Hamelinck, V; Bermúdez, O I; Doak, C M; Mathias, P; Solomons, N W
2012-12-01
Adequate nutrition is critical to child development and institutions such as day-care centers could potentially complement children's diets to achieve optimal daily intakes. The aim of the study was to describe the full-day diet of children, examining and contrasting the relative contribution of home-derived versus institutional energy and nutrient sources. The present comparison should be considered in the domain of a case-study format. The diets of 33, 3-6 y old children attending low-income day-care centers serving either 3 or a single meal were examined. The home-diet was assessed by means of 3 non-consecutive 24-hr recalls. Estimated energy and nutrient intakes at the centers and at home were assessed and related to Recommended Nutrient Intakes (RNI). Nutrient densities, critical densities and main sources of nutrients were computed. We observed that in children attending the day-care center serving three meals, home-foods contributed less than half the daily energy (47.7%) and between 29.9% and 53.5% of daily nutrients. In children receiving only lunch outside the home, energy contribution from the home was 83.9% and 304 kcal lower than for children receiving 3 meals. Furthermore, between 59.0% and 94.8% of daily nutrients were provided at home. Daily energy, nutrient intakes and nutrient densities were well above the nutrient requirements for this age group, and particularly high for vitamin A. The overall dietary variety was superior in the situation of greater contribution of home fare, but overall the nutrient density and adequacy of the aggregate intakes did not differ in any important manner.
Rai, Deshanie; Bird, Julia K; McBurney, Michael I; Chapman-Novakofski, Karen M
2015-06-01
Understanding nutrient intakes among women of childbearing age within the USA is important given the accumulating evidence that maternal body weight gain and nutrient intakes prior to pregnancy may influence the health and well-being of the offspring. The objective of the present study was to evaluate nutritional status in women of childbearing age and to ascertain the influence of ethnicity and income on nutrient intakes. Nutritional status was assessed using data on nutrient intakes through foods and supplements from the National Health and Nutrition Examination Survey. Biomarker data from the Centers for Disease Control and Prevention were used to assess nutritional status for selected nutrients. Poverty-income ratio was used to assess family income. White (n 1560), African-American (n 889) and Mexican-American (n 761) women aged 19-30 and 31-50 years were included. A nationally representative sample of non-pregnant women of childbearing age resident in the USA. African-American women had the lowest intakes of fibre, folate, riboflavin, P, K, Ca and Mg. Women (31-50 years) with a poverty-income ratio of ≤ 1.85 had significantly lower intakes of almost all nutrients analysed. Irrespective of ethnicity and income, a significant percentage of women were not consuming the estimated recommended amounts (Estimated Average Requirement) of several key nutrients: vitamin A (~80%), vitamin D (~78%) and fibre (~92%). Nutrient biomarker data were generally reflective of nutrient intake patterns among the different ethnic groups. Women of childbearing age in the USA are not meeting nutrient intake guidelines, with differences between ethnic groups and socio-economic strata. These factors should be considered when establishing nutrition science advocacy and policy.
Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes
Chen, Weile; Koide, Roger T.; Eissenstat, David M.
2018-01-09
1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less
NASA Astrophysics Data System (ADS)
Wang, Kui; Chen, Jianfang; Ni, Xiaobo; Zeng, Dingyong; Li, Dewang; Jin, Haiyan; Glibert, Patricia M.; Qiu, Wenxian; Huang, Daji
2017-07-01
The Changjiang Estuary is a large-river estuary ecosystem in the East China Sea, and its plume, the Changjiang Diluted Water (CDW), transports a large mass of nutrients (NO3- + NO2-, PO43-, SiO32-) to the shelf sea, leading to substantial eutrophication; the CDW also supports high primary production. However, relationships between nutrient delivery and phytoplankton responses have been difficult to establish, as many nutrient delivery events and algal blooms are episodic, and the CDW may expand or become detached with changing winds. To study the relationship between nutrient delivery events, algal blooms and estuarine metabolism dynamics, a buoy system was deployed in the CDW from 9 September to 10 October 2013, with measurements of chlorophyll a and dissolved nutrients. Day-to-day nutrient increases covaried with salinity decreases, regulated by both the spring-neap tidal cycle and wind events. Several specific nutrient injection periods were detected, each followed by nutrient drawdown and chlorophyll a accumulation (algal blooms). Each algal bloom had its own unique pattern of nutrient uptake based on change in nutrient ratios (ΔN:ΔP; ΔN:ΔSi) and appeared to be dominated by different algal groups. These events occurred under weak wind and stable hydrodynamic conditions. Ecosystem metabolism based on net community production (NCP) showed that the upper estuarine ecosystem was autotrophic when chlorophyll a accumulated, but heterotrophic when wind-induced mixing strengthened, and upwelling brought organic-rich water to the near surface. In spite of several short-lived algal blooms, the average NCPdaily was negative during the observation period, indicating a net source of CO2 to the atmosphere.
Limitations to CO2-induced growth enhancement in pot studies.
McConnaughay, K D M; Berntson, G M; Bazzaz, F A
1993-07-01
Recently, it has been suggested that small pots may reduce or eliminate plant responses to enriched CO 2 atmospheres due to root restriction. While smaller pot volumes provide less physical space available for root growth, they also provide less nutrients. Reduced nutrient availability alone may reduce growth enhancement under elevated CO 2 . To investigate the relative importance of limited physical rooting space separate from and in conjunction with soil nutrients, we grew plants at ambient and double-ambient CO 2 levels in growth containers of varied volume, shape, nutrient concentration, and total nutrient content. Two species (Abutilon theophrasti, a C 3 dicot with a deep tap root andSetaria faberii, a C 4 monocot with a shallow diffuse root system) were selected for their contrasting physiology and root architecture. Shoot demography was determined weekly and biomass was determined after eight and ten weeks of growth. Increasing total nutrients, either by increasing nutrient concentration or by increasing pot size, increased plant growth. Further, increasing pot size while maintaining equal total nutrients per pot resulted in increased total biomass for both species. CO 2 -induced growth and reproductive yield enhancements were greatest in pots with high nutrient concentrations, regardless of total nutrient content or pot size, and were also mediated by the shape of the pot. CO 2 -induced growth and reproductive yield enhancements were unaffected by pot size (growth) or were greater in small pots (reproductive yield), regardless of total nutrient content, contrary to predictions based on earlier studies. These results suggest that several aspects of growth conditions within pots may influence the CO 2 responses of plants; pot size, pot shape, the concentration and total amount of nutrient additions to pots may lead to over-or underestimates of the CO 2 responses of real-world plants.
NASA Astrophysics Data System (ADS)
Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Krause, Stefan
2017-04-01
At the river catchment scale, storm events can drive highly variable behaviour in nutrient and water fluxes, yet short-term dynamics are frequently missed by low resolution sampling regimes. In addition, nutrient source contributions can vary significantly within and between storm events. Our inability to identify and characterise time dynamic source zone contributions severely hampers the adequate design of land use management practices in order to control nutrient exports from agricultural landscapes. Here, we utilise an 8-month high-frequency (hourly) time series of streamflow, nitrate concentration (NO3) and fluorescent dissolved organic matter concentration (FDOM) derived from optical in-situ sensors located in a headwater agricultural catchment. We characterised variability in flow and nutrient dynamics across 29 storm events. Storm events represented 31% of the time series and contributed disproportionately to nutrient loads (43% of NO3 and 36% of CDOM) relative to their duration. Principal components analysis of potential hydroclimatological controls on nutrient fluxes demonstrated that a small number of components, representing >90% of variance in the dataset, were highly significant model predictors of inter-event variability in catchment nutrient export. Hysteresis analysis of nutrient concentration-discharge relationships suggested spatially discrete source zones existed for NO3 and FDOM, and that activation of these zones varied on an event-specific basis. Our results highlight the benefits of high-frequency in-situ monitoring for characterising complex short-term nutrient dynamics and unravelling connections between hydroclimatological variability and river nutrient export and source zone activation under extreme flow conditions. These new process-based insights are fundamental to underpinning the development of targeted management measures to reduce nutrient loading of surface waters.
Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Weile; Koide, Roger T.; Eissenstat, David M.
1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less
Jiang, Yueyang; Rastetter, Edward B; Shaver, Gaius R; Rocha, Adrian V; Zhuang, Qianlai; Kwiatkowski, Bonnie L
2017-01-01
To investigate the underlying mechanisms that control long-term recovery of tundra carbon (C) and nutrients after fire, we employed the Multiple Element Limitation (MEL) model to simulate 200-yr post-fire changes in the biogeochemistry of three sites along a burn severity gradient in response to increases in air temperature, CO 2 concentration, nitrogen (N) deposition, and phosphorus (P) weathering rates. The simulations were conducted for severely burned, moderately burned, and unburned arctic tundra. Our simulations indicated that recovery of C balance after fire was mainly determined by the internal redistribution of nutrients among ecosystem components (controlled by air temperature), rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Increases in air temperature and atmospheric CO 2 concentration resulted in (1) a net transfer of nutrient from soil organic matter to vegetation and (2) higher C : nutrient ratios in vegetation and soil organic matter. These changes led to gains in vegetation biomass C but net losses in soil organic C stocks. Under a warming climate, nutrients lost in wildfire were difficult to recover because the warming-induced acceleration in nutrient cycles caused further net nutrient loss from the system through leaching. In both burned and unburned tundra, the warming-caused acceleration in nutrient cycles and increases in ecosystem C stocks were eventually constrained by increases in soil C : nutrient ratios, which increased microbial retention of plant-available nutrients in the soil. Accelerated nutrient turnover, loss of C, and increasing soil temperatures will likely result in vegetation changes, which further regulate the long-term biogeochemical succession. Our analysis should help in the assessment of tundra C budgets and of the recovery of biogeochemical function following fire, which is in turn necessary for the maintenance of wildlife habitat and tundra vegetation. © 2016 by the Ecological Society of America.
Burson, Amanda; Stomp, Maayke; Greenwell, Emma; Grosse, Julia; Huisman, Jef
2018-05-01
A key challenge in ecology is to understand how nutrients and light affect the biodiversity and community structure of phytoplankton and plant communities. According to resource competition models, ratios of limiting nutrients are major determinants of species composition. At high nutrient levels, however, species interactions may shift to competition for light, which might make nutrient ratios less relevant. The "nutrient-load hypothesis" merges these two perspectives, by extending the classic model of competition for two nutrients to include competition for light. Here, we test five key predictions of the nutrient-load hypothesis using multispecies competition experiments. A marine phytoplankton community sampled from the North Sea was inoculated in laboratory chemostats provided with different nitrogen (N) and phosphorus (P) loads to induce either single resource limitation or co-limitation of N, P, and light. Four of the five predictions were validated by the experiments. In particular, different resource limitations favored the dominance of different species. Increasing nutrient loads caused changes in phytoplankton species composition, even if the N:P ratio of the nutrient loads remained constant, by shifting the species interactions from competition for nutrients to competition for light. In all treatments, small species became dominant whereas larger species were competitively excluded, supporting the common view that small cell size provides a competitive advantage under resource-limited conditions. Contrary to expectation, all treatments led to coexistence of diatoms, cyanobacteria and green algae, resulting in a higher diversity of species than predicted by theory. Because the coexisting species comprised three phyla with different photosynthetic pigments, we speculate that niche differentiation in the light spectrum might play a role. Our results show that mechanistic resource competition models that integrate nutrient-based and light-based approaches provide an important step forward to understand and predict how changing nutrient loads affect community composition. © 2018 The Authors Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
Barbosa, Eduardo R M; Tomlinson, Kyle W; Carvalheiro, Luísa G; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H T; van Langevelde, Frank
2014-01-01
Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled short-term experiment in a semi-arid savanna to test how water supply (even water supply vs. natural rainfall) and nutrient availability (no fertilisation vs. fertilisation) affects seedlings' above-ground biomass production and leaf-nutrient concentrations (N, P and K) of broad-leafed and fine-leafed tree species. Contrary to expectations, neither changes in water supply nor changes in soil nutrient level affected biomass production of the studied species. By contrast, leaf-nutrient concentration did change significantly. Under regular water supply, soil nutrient addition increased the leaf phosphorus concentration of both fine-leafed and broad-leafed species. However, under uneven water supply, leaf nitrogen and phosphorus concentration declined with soil nutrient supply, this effect being more accentuated in broad-leafed species. Leaf potassium concentration of broad-leafed species was lower when growing under constant water supply, especially when no NPK fertilizer was applied. We found that changes in environmental factors can affect leaf quality, indicating a potential interactive effect between land-use changes and environmental changes on savanna vegetation: under more uneven rainfall patterns within the growing season, leaf quality of tree seedlings for a number of species can change as a response to changes in nutrient levels, even if overall plant biomass does not change. Such changes might affect herbivore pressure on trees and thus savanna plant community dynamics. Although longer term experiments would be essential to test such potential effects of eutrophication via changes in leaf nutrient concentration, our findings provide important insights that can help guide management plans that aim to preserve savanna biodiversity.
NASA Astrophysics Data System (ADS)
Tang, Yingying; Harpenslager, Sarah F.; van Kempen, Monique M. L.; Verbaarschot, Evi J. H.; Loeffen, Laury M. J. M.; Roelofs, Jan G. M.; Smolders, Alfons J. P.; Lamers, Leon P. M.
2017-02-01
The sequestration of nutrients from surface waters by aquatic macrophytes and sediments provides an important service to both natural and constructed wetlands. While emergent species take up nutrients from the sediment, submerged and floating macrophytes filter nutrients directly from the surface water, which may be more efficient in constructed wetlands. It remains unclear, however, whether their efficiency is sufficient for wastewater purification and how plant species and nutrient loading affects nutrient distribution over plants, water and sediment. We therefore determined nutrient removal efficiencies of different vegetation (Azolla filiculoides, Ceratophyllum demersum and Myriophyllum spicatum) and sediment types (clay, peaty clay and peat) at three nutrient input rates, in a full factorial, outdoor mesocosm experiment. At low loading (0.43 mg P m-2 d-1), plant uptake was the main pathway (100 %) for phosphorus (P) removal, while sediments showed a net P release. A. filiculoides and M. spicatum showed the highest biomass production and could be harvested regularly for nutrient recycling, whereas C. demersum was outcompeted by spontaneously developing macrophytes and algae. Higher nutrient loading only stimulated A. filiculoides growth. At higher rates ( ≥ 21.4 mg P m-2 d-1), 50-90 % of added P ended up in sediments, with peat sediments becoming more easily saturated. For nitrogen (N), 45-90 % was either taken up by the sediment or lost to the atmosphere at loadings ≥ 62 mg N m-2 d-1. This shows that aquatic macrophytes can indeed function as an efficient nutrient filter but only for low loading rates (polishing) and not for high rates (purification). The outcome of this controlled study not only contributes to our understanding of nutrient dynamics in constructed wetlands but also shows the differential effects of wetland sediment types and plant species. Furthermore, the acquired knowledge may benefit the application of macrophyte harvesting to remove and recycle nutrients from both constructed wetlands and nutrient-loaded natural wetlands.
Gautam, Mukesh Kumar; Lee, Kwang-Sik; Song, Byeong-Yeol; Lee, Dongho; Bong, Yeon-Sik
2016-05-01
Decomposition, nutrient, and isotopic (δ(13)C and δ(15)N) dynamics during 1 year were studied for leaf and twig litters of Pinus densiflora, Castanea crenata, Erigeron annuus, and Miscanthus sinensis growing on a highly weathered soil with constrained nutrient supply using litterbags in a cool temperate region of South Korea. Decay constant (k/year) ranged from 0.58 to 1.29/year, and mass loss ranged from 22.36 to 58.43 % among litter types. The results demonstrate that mass loss and nutrient dynamics of decomposing litter were influenced by the seasonality of mineralization and immobilization processes. In general, most nutrients exhibited alternate phases of rapid mineralization followed by gradual immobilization, except K, which was released throughout the field incubation. At the end of study, among all the nutrients only N and P showed net immobilization. Mobility of different nutrients from decomposing litter as the percentage of initial litter nutrient concentration was in the order of K > Mg > Ca > N ≈ P. The δ(13)C (0.32-6.70 ‰) and δ(15)N (0.74-3.90 ‰) values of residual litters showed nonlinear increase and decrease, respectively compared to initial isotopic values during decomposition. Litter of different functional types and chemical quality converged toward a conservative nutrient use strategy through mechanisms of slow decomposition and slow nutrient mobilization. Our results indicate that litter quality and season, are the most important regulators of litter decomposition in these forests. The results revealed significant relationships between litter decomposition rates and N, C:N ratio and P, and seasonality (temperature). These results and the convergence of different litters towards conservative nutrient use in these nutrient constrained ecosystems imply optimization of litter management because litter removal can have cascading effects on litter decomposition and nutrient availability in these systems.
Developing a web-based forecasting tool for nutrient management
USDA-ARS?s Scientific Manuscript database
Modern nutrient management planning tools provide strategic guidance that, in the best cases, educates farmers and others involved in nutrient management to make prudent management decisions. The strategic guidance provided by nutrient management plans does not provide the day-to-day support require...
A Universal Nutrient Application Strategy For The Bioremediation Of Oil-Polluted Beaches
Biostimulation by nutrient application is a viable technology for restoring oil-contaminated beaches. Maximizing the nutrient residence time is key for achieving a rapid cost-effective cleanup. We considered the nutrient injection strategy through a perforated pipe at the high ti...
Dewey, Kathryn G
2013-12-01
Breast-fed infants and young children need complementary foods with a very high nutrient density (particularly for iron and zinc), especially at ages 6-12 mo. However, in low-income countries, their diet is usually dominated by cereal-based porridges with low nutrient density and poor mineral bioavailability. Complementary feeding diets typically fall short in iron and zinc and sometimes in other nutrients. These gaps in nutritional adequacy of infant diets have likely been a characteristic of human diets since the agricultural revolution ~10,000 y ago. Estimates of nutrient intakes before then, based on hypothetical diets of preagricultural humans, suggest that infants had much higher intakes of key nutrients than is true today and would have been able to meet their nutrient needs from the combination of breast milk and premasticated foods provided by their mothers. Strategies for achieving adequate nutrition for infants and young children in modern times must address the challenge of meeting nutrient needs from largely cereal-based diets.
Zhang, Jingping; Huang, Xiaoping; Jiang, Zhijian
2014-06-30
To select appropriate bioindicators for the evaluation of the influence of nutrients from human activities in a Thalassia hemprichii meadow, environmental variables and plant performance parameters were measured in Xincun Bay, Hainan Island, South China. Nutrient concentrations in the bay decreased along a gradient from west to southeast. Moreover, the nutrients decreased with an increase in the distance from the shore on the southern side of the bay. Among the candidate indicators, the P content of the tissues closely mirrored the two nutrient loading gradients. The epiphytic algae biomass and the N content in the tissues mirrored one of the two nutrient loading trends. The leaf length, however, exhibited a significant negative correlation with the nutrient gradients. We propose that changes in the P content of T. hemprichii, followed by epiphytic algae biomass and N content of the tissues, may be the useful indicators of nutrient loading to coastal ecosystems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress.
Jayakumar, Siddharth; Hasan, Gaiti
2018-01-01
All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appropriate nutrient uptake and metabolic homeostasis. Nutrient sensing mechanisms at the cellular level require pathways such as insulin and target of rapamycin (TOR) signaling that integrates information from different organ systems like the fat body and the gut. Such integration is essential for coordinating growth with development. Here we review the role of a newly identified set of integrative interneurons and the role of intracellular calcium signaling within these neurons, in regulating nutrient sensing under conditions of nutrient stress. A comparison of the identified Drosophila circuit and cellular mechanisms employed in this circuit, with vertebrate systems, suggests that the identified cell signaling mechanisms may be conserved for neural circuit function related to nutrient sensing by central neurons. The ideas proposed are potentially relevant for understanding the molecular basis of metabolic disorders, because these are frequently linked to nutritional stress.
Nutrient budgets in the subtropical ocean gyres dominated by lateral transport
NASA Astrophysics Data System (ADS)
Letscher, Robert T.; Primeau, François; Moore, J. Keith
2016-11-01
Ocean circulation replenishes surface nutrients depleted by biological production and export. Vertical processes are thought to dominate, but estimated vertical nutrient fluxes are insufficient to explain observed net productivity in the subtropical ocean gyres. Lateral inputs help balance the North Atlantic nutrient budget, but their importance for other gyres has not been demonstrated. Here we use an ocean model that couples circulation and ecosystem dynamics to show that lateral transport and biological uptake of inorganic and organic forms of nitrogen and phosphorus from the gyre margins exceeds the vertical delivery of nutrients, supplying 24-36% of the nitrogen and 44-67% of the phosphorus required to close gyre nutrient budgets. At the Bermuda and Hawaii time-series sites, nearly half of the annual lateral supply by lateral transport occurs during the summer-to-fall stratified period, helping explain seasonal patterns of inorganic carbon drawdown and nitrogen fixation. Our study confirms the importance of upper-ocean lateral nutrient transport for understanding the biological cycles of carbon and nutrients in the ocean's largest biome.
Generalized Nutrient Taxes Can Increase Consumer Welfare.
Bishai, David
2015-11-01
Certain nutrients can stimulate appetite making them fattening in a way that is not fully conveyed by the calorie content on the label. For rational eaters, this information gap could be corrected by more labeling. As an alternative, this paper proposes a set of positive and negative taxes on the fattening and slimming nutrients in food rather than on the food itself. There are conditions under which this tax plus subsidy system could increase welfare by stopping unwanted weight gain while leaving the final retail price of food unchanged. A nutrient tax system could improve welfare if fattening nutrients, net of their effect on weight, are inferior goods and the fiscal cost of administering the tax is sufficiently low. More data on the price elasticity of demand for nutrients as well as data on how specific nutrients affect satiety and how total calorie intake would be necessary before one could be sure a nutrient tax would work in practice. Copyright © 2014 John Wiley & Sons, Ltd.
Parasite infection alters nitrogen cycling at the ecosystem scale.
Mischler, John; Johnson, Pieter T J; McKenzie, Valerie J; Townsend, Alan R
2016-05-01
Despite growing evidence that parasites often alter nutrient flows through their hosts and can comprise a substantial amount of biomass in many systems, whether endemic parasites influence ecosystem nutrient cycling, and which nutrient pathways may be important, remains conjectural. A framework to evaluate how endemic parasites alter nutrient cycling across varied ecosystems requires an understanding of the following: (i) parasite effects on host nutrient excretion; (ii) ecosystem nutrient limitation; (iii) effects of parasite abundance, host density, host functional role and host excretion rate on nutrient flows; and (iv) how this infection-induced nutrient flux compares to other pools and fluxes. Pathogens that significantly increase the availability of a limiting nutrient within an ecosystem should produce a measurable ecosystem-scale response. Here, we combined field-derived estimates of trematode parasite infections in aquatic snails with measurements of snail excretion and tissue stoichiometry to show that parasites are capable of altering nutrient excretion in their intermediate host snails (dominant grazers). We integrated laboratory measurements of host nitrogen excretion with field-based estimates of infection in an ecosystem model and compared these fluxes to other pools and fluxes of nitrogen as measured in the field. Eighteen nitrogen-limited ponds were examined to determine whether infection had a measurable effect on ecosystem-scale nitrogen cycling. Because of their low nitrogen content and high demand for host carbon, parasites accelerated the rate at which infected hosts excreted nitrogen to the water column in a dose-response manner, thereby shifting nutrient stoichiometry and availability at the ecosystem scale. Infection-enhanced fluxes of dissolved inorganic nitrogen were similar to other commonly important environmental sources of bioavailable nitrogen to the system. Additional field measurements within nitrogen-limited ponds indicated that nitrogen flux rates from the periphyton to the water column in high-snail density/high-infection ponds were up to 50% higher than low-infection ponds. By altering host nutrient assimilation/excretion flexibility, parasites could play a widespread, but currently unrecognized, role in ecosystem nutrient cycling, especially when parasite and host abundances are high and hosts play a central role in ecosystem nutrient cycling. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Nutrient management effects on sweetpotato genotypes under controlled environment
NASA Technical Reports Server (NTRS)
David, P. P.; Bonsi, C. K.; Trotman, A. A.; Douglas, D. Z.
1996-01-01
Sweetpotato is one of several crops recommended by National Aeronautics and Space Administration (NASA) for bioregenerative life support studies. One of the objectives of the Tuskegee University NASA Center is to optimize growth conditions for adaptability of sweetpotatoes for closed bioregenerative systems. The role of nutrient solution management as it impacts yield has been one of the major thrusts in these studies. Nutrient solution management protocol currently used consists of a modified half Hoagland solution that is changed at 14-day intervals. Reservoirs are refilled with deionized water if the volume of the nutrient solution was reduced to 8 liters or less before the time of solution change. There is the need to recycle and replenish nutrient solution during crop growth, rather than discard at 14 day intervals as previously done, in order to reduce waste. Experiments were conducted in an environmental growth room to examine the effects of container size on the growth of several sweetpotato genotypes grown under a nutrient replenishment protocol. Plants were grown from vine cuttings of 15cm length and were planted in 0.15 x 0.15 x 1.2m growth channels using a closed nutrient film technique system. Nutrient was supplied in a modified half strength Hoagland's solution with a 1:2.4 N:K ratio. Nutrient replenishment protocol consisted of daily water replenishment to a constant volume of 30.4 liters in the small containers and 273.6 liters in the large container. Nutrients were replenished as needed when the EC of the nutrient solution fell below 1200 mhos/cm. The experimental design used was a split-plot with the main plot being container size and genotypes as the subplot. Nine sweetpotato genotypes were evaluated. Results showed no effect of nutrient solution container size on storage root yield, foliage fresh and dry mass, leaf area or vine length. However, plants grown using the large nutrient solution container accumulated more storage root dry mass than those with the small containers. Although plants grown with the smaller containers showed greater water uptake, plant nutrient uptake was lower than with the larger container. All genotypes evaluated showed variation in their responses to all parameters measured.
Interannual variability in dissolved inorganic nutrients in northern San Francisco Bay estuary
Peterson, D.H.; Smith, R.E.; Hager, S.W.; Harmon, D.D.; Herndon, R.E.; Schemel, L.E.
1985-01-01
Nearly two decades of seasonal dissolved inorganic nutrient-salinity distributions in northern San Francisco Bay estuary (1960-1980) illustrate interannual variations in effects of river flow (a nutrient source) and phytoplankton productivity (a nutrient sink). During winter, nutrient sources dominate the nutrient-salinity distribution patterns (nutrients are at or exceed conservative mixing concentrations). During summer, however, the sources and sinks are in close competition. In summers of wet years, the effects of increased river flow often dominate the nutrient distributions (nutrients are at or less than conservative mixing concentrations), whereas in summers of dry years, phytoplankton productivity dominates (the very dry years 1976-1977 were an exception for reasons not yet clearly known). Such source/sink effects also vary with chemical species. During summer the control of phytoplankton on nutrient distributions is apparently strongest for ammonium, less so for nitrate and silica, and is the least for phosphate. Furthermore, the strength of the silica sink (diatom productivity) is at a maximum at intermediate river flows. This relation, which is in agreement with other studies based on phytoplankton abundance and enumeration, is significant to the extent that diatoms are an important food source for herbivores. The balance or lack of balance between nutrient sources and sinks varies from one estuary to another just as it can from one year to another within the same estuary. At one extreme, in some estuaries river flow dominates the estuarine dissolved inorganic nutrient distributions throughout most of the year. At the other extreme, phytoplankton productivity dominates. In northern San Francisco Bay, for example, the phytoplankton nutrient sink is not as strong as in less turbid estuaries. In this estuary, however, river effects, which produce or are associated with near-conservative nutrient distributions, are strong even at flows less than mean-annual flow. Thus, northern San Francisco Bay appears to be an estuary in between the two extremes and is shifted closer to one extreme or the other depending on interannual variations in river flow. ?? 1985 Dr W. Junk Publishers.
Drug-nutrient interactions in transplant recipients.
Chan, L N
2001-01-01
Drug-nutrient interaction refers to an alteration of kinetics or dynamics of a drug or a nutritional element, or a compromise in nutritional status as a result of the addition of a drug. The potentials for drug-nutrient interaction increase with the number of drugs taken by the patient. Organ transplant recipients are therefore at high risk for drug-nutrient interactions because multiple medications are used to manage graft rejection, opportunistic infections, and other associated complications. Unrecognized or unmanaged drug-nutrient interactions in this patient population can have an adverse impact on their outcomes. This paper reviews the importance of recognizing drug-nutrient interaction when using cyclosporine-based regimens.
Cao, Yune; Gao, Yanming; Qi, Yanbin; Li, Jianshe
2018-03-01
Excessive fertilization is a common agricultural practice that has largely reduced soil nutrient retention capacity and led to nutrient leaching in China. To reduce nutrient leaching, in this study, we evaluated the application of biochar, compost, and biochar-compost on soil properties, leaching water quality, and cucumber plant growth in soils with different nutrient levels. In general, the concentrations of nutrients and heavy metals in leaching water were higher under high-nutrient conditions than under low-nutrient conditions. Both biochar and compost efficiently enhanced soil cation exchange capacity (CEC), water holding capacity (WHC), and microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP), reduced the potential leaching of nutrients and heavy metals, and improved plant growth. The efficiency of biochar and compost in soil CEC, WHC, MBC, MBN, and MBP and plant growth was enhanced when applied jointly. In addition, biochar and biochar-enhanced compost efficiently suppressed plant-parasitic nematode infestation in a soil with high levels of both N and P. Our results suggest that biochar-enhanced compost can reduce the potential environmental risks in excessively fertilized vegetable soils.
Péter, Szabolcs; Saris, Wim H. M.; Mathers, John C.; Feskens, Edith; Schols, Annemie; Navis, Gerjan; Kuipers, Folkert; Weber, Peter; Eggersdorfer, Manfred
2015-01-01
A workshop organized by the University Medical Center Groningen addressed various current issues regarding nutrient status of individuals and populations, tools and strategies for its assessment, and opportunities to intervene. The importance of nutrient deficiencies and information on nutrient status for health has been illustrated, in particular for elderly and specific patient groups. The nutrient profile of individuals can be connected to phenotypes, like hypertension or obesity, as well as to socio-economic data. This approach provides information on the relationship between nutrition (nutrient intake and status) and health outcomes and, for instance, allows us to use the findings to communicate and advocate a healthy lifestyle. Nutrition is complex: a broader profile of nutrients should be considered rather than focusing solely on a single nutrient. Evaluating food patterns instead of intake of individual nutrients provides better insight into relationships between nutrition and health and disease. This approach would allow us to provide feedback to individuals about their status and ways to improve their nutritional habits. In addition, it would provide tools for scientists and health authorities to update and develop public health recommendations. PMID:26694458
Development of methods for establishing nutrient criteria in lakes and reservoirs: A review.
Huo, Shouliang; Ma, Chunzi; Xi, Beidou; Zhang, Yali; Wu, Fengchang; Liu, Hongliang
2018-05-01
Nutrient criteria provide a scientific foundation for the comprehensive evaluation, prevention, control and management of water eutrophication. In this review, the literature was examined to systematically evaluate the benefits, drawbacks, and applications of statistical analysis, paleolimnological reconstruction, stressor-response model, and model inference approaches for nutrient criteria determination. The developments and challenges in the determination of nutrient criteria in lakes and reservoirs are presented. Reference lakes can reflect the original states of lakes, but reference sites are often unavailable. Using the paleolimnological reconstruction method, it is often difficult to reconstruct the historical nutrient conditions of shallow lakes in which the sediments are easily disturbed. The model inference approach requires sufficient data to identify the appropriate equations and characterize a waterbody or group of waterbodies, thereby increasing the difficulty of establishing nutrient criteria. The stressor-response model is a potential development direction for nutrient criteria determination, and the mechanisms of stressor-response models should be studied further. Based on studies of the relationships among water ecological criteria, eutrophication, nutrient criteria and plankton, methods for determining nutrient criteria should be closely integrated with water management requirements. Copyright © 2017. Published by Elsevier B.V.
Water Quality Protection from Nutrient Pollution: Case ...
Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.
A mathematical function for the description of nutrient-response curve
Ahmadi, Hamed
2017-01-01
Several mathematical equations have been proposed to modeling nutrient-response curve for animal and human justified on the goodness of fit and/or on the biological mechanism. In this paper, a functional form of a generalized quantitative model based on Rayleigh distribution principle for description of nutrient-response phenomena is derived. The three parameters governing the curve a) has biological interpretation, b) may be used to calculate reliable estimates of nutrient response relationships, and c) provide the basis for deriving relationships between nutrient and physiological responses. The new function was successfully applied to fit the nutritional data obtained from 6 experiments including a wide range of nutrients and responses. An evaluation and comparison were also done based simulated data sets to check the suitability of new model and four-parameter logistic model for describing nutrient responses. This study indicates the usefulness and wide applicability of the new introduced, simple and flexible model when applied as a quantitative approach to characterizing nutrient-response curve. This new mathematical way to describe nutritional-response data, with some useful biological interpretations, has potential to be used as an alternative approach in modeling nutritional responses curve to estimate nutrient efficiency and requirements. PMID:29161271
Oxygen and diverse nutrients influence the water kefir fermentation process.
Laureys, David; Aerts, Maarten; Vandamme, Peter; De Vuyst, Luc
2018-08-01
Eight water kefir fermentation series differing in the presence of oxygen, the nutrient concentration, and the nutrient source were studied during eight consecutive backslopping steps. The presence of oxygen allowed the proliferation of acetic acid bacteria, resulting in high concentrations of acetic acid, and decreased the relative abundance of Bifidobacterium aquikefiri. Low nutrient concentrations resulted in slow water kefir fermentation and high pH values, which allowed the growth of Comamonas testosteroni/thiooxydans. Further, low nutrient concentrations favored the growth of Lactobacillus hilgardii and Dekkera bruxellensis, whereas high nutrient concentrations favored the growth of Lactobacillus nagelii and Saccharomyces cerevisiae. Dried figs, dried apricots, and raisins resulted in stable water kefir fermentation. Water kefir fermentation with dried apricots resulted in the highest pH and water kefir grain growth, whereas that with raisins resulted in the lowest pH and water kefir grain growth. Further, water kefir fermentation with raisins resembled fermentations with low nutrient concentrations, that with dried apricots resembled fermentations with normal nutrient concentrations, and that with fresh figs or a mixture of yeast extract and peptone resembled fermentations with high nutrient concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hauser, E.; Billings, S. A.
2017-12-01
Depletion of geogenic nutrients during soil weathering can prompt vegetation to rely on other sources, such as organic matter (OM) decay, to meet growth requirements. Weathered soils also tend to permit deep rooting, a phenomenon sometimes attributed to vegetation foraging for geogenic nutrients. This study examines the extent to which OM recycling provides nutrients to vegetation growing in soils with diverse weathering states. We thus address the fundamental problem of how forest vegetation obtains sufficient nutrition to support productivity despite wide variation in soils' nutrient contents. We hypothesized that vegetation growing on highly weathered soils relies on nutrients released from OM decay to a greater extent than vegetation growing on less weathered, more nutrient-rich substrates. For four mineralogically diverse Critical Zone Observatories (CZO) and Critical Zone Exploratory Network sites, we calculated weathering indices and approximated vegetation nutrient demand and nutrient release from OM decay. We also measured nutrient release rates from OM decay at each site. We then assessed the relationship between degree of soil weathering and the estimated fraction of nutrient demand satisfied by OM derived nutrients. Results are consistent with our hypothesis. The chemical index of alteration (CIA), a weathering index that increases in value with mineral depletion, varies predictably from 90 at the highly weathered Calhoun CZO to 60 at the Catalina CZO, where soils are more recently developed. Estimates of rates of K release from OM decay increase with CIA values. The highest release rate is 2.4 gK m-2 y-1 at Calhoun, accounting for 30% of annual vegetation K uptake; at Catalina, less than 0.5 gm-2 y-1 K is released, meeting 14% of vegetation demand. CIA also co-varies with rooting depth across sites: the deepest roots at the Calhoun sites are growing in soils with the highest CIA values, while the deepest roots at Catalina sites are growing in soils with much lower CIA values. Thus, provision of plant-available nutrients from OM decay appears greater at more weathered sites, and dominant nutrient sources accessed by deep roots (OM- vs. rock-derived) may vary predictably with soil weathering stage. On-going incubations will permit us to assess these relationships for multiple geogenic nutrients.
Phytoplankton nutrient limitation was studied in a sub-estuary of lower Pensacola Bay using several techniques. Results for <5 um and . 5 um phytoplankton were similar. Nutrient-addition bioassays indicated year-round nutrient limitation, in contrast to seasonal patterns often ...
Monitoring water quality in Northwest Atlantic coastal waters using dinoflagellate cysts
Nutrient pollution is a major environmental problem in many coastal waters around the US. Determining the total input of nutrients to estuaries is a challenge. One method to evaluate nutrient input is through nutrient loading models. Another method relies upon using indicators as...
Soil-Plant Nutrient Interactions on Manure-Enriched Calcareous Soils
USDA-ARS?s Scientific Manuscript database
Nutrient accumulations on heavily manured soils can trigger soil and plant nutrient interactions. The goal of the study was to determine the current impact of dairy manure applications on nutrient concentrations in soil and tissue for irrigated corn silage crops grown in Southern Idaho. At harvest,...
A Comparison of the Role of Episode Nutrient Supply on Pathways of Carbon in Upwelling Regimes
NASA Technical Reports Server (NTRS)
Carr, M. E.
1997-01-01
Nutrient supply is episode in the ocean even in regions of fairly high and continuous nutrient supply, such as coastal upwelling regimes. The structure of the ecosystem depends on nutrient availability and the different requirements of phytoplankton cells.
Dairy production systems in the United States: Nutrient budgets and environmental impacts
USDA-ARS?s Scientific Manuscript database
Across the diversity of US dairy production systems, nutrient management priorities range widely, from feeding regimes to manure handling, storage and application to crop systems. To assess nutrient management and environmental impacts of dairy production systems in the US, we evaluated nutrient bud...
21 CFR 106.25 - In-process control.
Code of Federal Regulations, 2014 CFR
2014-04-01
... analyzed as specified in § 106.30(b)(1), the manufacturer shall analyze each in-process batch for: (1) Solids; (2) Protein, fat, and carbohydrates (carbohydrates either by analysis or by mathematical difference); (3) The indicator nutrient(s) in each nutrient premix; (4) Each nutrient added independently of...
Murata, Yasuhiko; Hashimoto, Takuma; Urushihara, Yusuke; Shiga, Soichiro; Takeda, Kazuya; Jingu, Keiichi; Hosoi, Yoshio
2018-01-22
Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines. LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival. Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217 cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217 cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217 cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM expression but did not affect radiosensitivity in LM217. Under hypoxia and nutrient starvation, HIF-1α expression was suppressed and glycogen storage was reduced. Our data suggest that AMPK regulates ATM expression and partially regulates radiosensitivity under hypoxia and nutrient starvation. The molecular mechanism underlying the induction of ATM expression by AMPK remains to be elucidated. Copyright © 2017. Published by Elsevier Inc.
Joseph, Stephen; Kammann, Claudia I; Shepherd, Jessica G; Conte, Pellegrino; Schmidt, Hans-Peter; Hagemann, Nikolas; Rich, Anne M; Marjo, Christopher E; Allen, Jessica; Munroe, Paul; Mitchell, David R G; Donne, Scott; Spokas, Kurt; Graber, Ellen R
2018-03-15
Recent studies have demonstrated the importance of the nutrient status of biochar and soils prior to its inclusion in particular agricultural systems. Pre-treatment of nutrient-reactive biochar, where nutrients are loaded into pores and onto surfaces, gives improved yield outcomes compared to untreated biochar. In this study we have used a wide selection of spectroscopic and microscopic techniques to investigate the mechanisms of nutrient retention in a high temperature wood biochar, which had negative effects on Chenopodium quinoa above ground biomass yield when applied to the system without prior nutrient loading, but positive effects when applied after composting. We have compared non-composted biochar (BC) with composted biochar (BCC) to elucidate the differences which may have led to these results. The results of our investigation provide evidence for a complex series of reactions during composting, where dissolved nutrients are first taken up into biochar pores along a concentration gradient and through capillary action, followed by surface sorption and retention processes which block biochar pores and result in deposition of a nutrient-rich organomineral (plaque) layer. The lack of such pretreatment in the BC samples would render it reactive towards nutrients in a soil-fertilizer system, making it a competitor for, rather than provider of, nutrients for plant growth. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hale, Rebecca L.; Grimm, Nancy B.; Vörösmarty, Charles J.; Fekete, Balazs
2015-03-01
An ongoing challenge for society is to harness the benefits of nutrients, nitrogen (N) and phosphorus (P), while minimizing their negative effects on ecosystems. While there is a good understanding of the mechanisms of nutrient delivery at small scales, it is unknown how nutrient transport and processing scale up to larger watersheds and whole regions over long time periods. We used a model that incorporates nutrient inputs to watersheds, hydrology, and infrastructure (sewers, wastewater treatment plants, and reservoirs) to reconstruct historic nutrient yields for the northeastern U.S. from 1930 to 2002. Over the study period, yields of nutrients increased significantly from some watersheds and decreased in others. As a result, at the regional scale, the total yield of N and P from the region did not change significantly. Temporal variation in regional N and P yields was correlated with runoff coefficient, but not with nutrient inputs. Spatial patterns of N and P yields were best predicted by nutrient inputs, but the correlation between inputs and yields across watersheds decreased over the study period. The effect of infrastructure on yields was minimal relative to the importance of soils and rivers. However, infrastructure appeared to alter the relationships between inputs and yields. The role of infrastructure changed over time and was important in creating spatial and temporal heterogeneity in nutrient input-yield relationships.
Nutrient enrichment and fish nutrient tolerance: Assessing biologically relevant nutrient criteria
Meador, Michael R.
2013-01-01
Relationships between nutrient concentrations and fish nutrient tolerance were assessed relative to established nutrient criteria. Fish community, nitrate plus nitrite (nitrate), and total phosphorus (TP) data were collected during summer low-flow periods in 2003 and 2004 at stream sites along a nutrient-enrichment gradient in an agricultural basin in Indiana and Ohio and an urban basin in the Atlanta, Georgia, area. Tolerance indicator values for nitrate and TP were assigned for each species and averaged separately for fish communities at each site (TIVo). Models were used to predict fish species expected to occur at a site under minimally disturbed conditions and average tolerance indicator values were determined for nitrate and TP separately for expected communities (TIVe). In both areas, tolerance scores (TIVo/TIVe) for nitrate increased significantly with increased nitrate concentrations whereas no significant relationships were detected between TP tolerance scores and TP concentrations. A 0% increase in the tolerance score (TIVo/TIVe = 1) for nitrate corresponded to a nitrate concentration of 0.19 mg/l (compared with a USEPA summer nitrate criterion of 0.17 mg/l) in the urban area and 0.31 mg/l (compared with a USEPA summer nitrate criterion of 0.86 mg/l) in the agricultural area. Fish nutrient tolerance values offer the ability to evaluate nutrient enrichment based on a quantitative approach that can provide insights into biologically relevant nutrient criteria.
Comerford, Kevin B.
2015-01-01
In addition to fresh foods, many canned foods also provide nutrient-dense dietary options, often at a lower price, with longer storage potential. The aim of this study was to compare nutrient-dense food group intake and nutrient intake between different levels of canned food consumption in the US. Consumption data were collected for this cross-sectional study from 9761 American canned food consumers (aged two years and older) from The NPD Group’s National Eating Trends® (NET®) database during 2011–2013; and the data were assessed using The NPD Group’s Nutrient Intake Database. Canned food consumers were placed into three groups: Frequent Can Users (≥6 canned items/week); n = 2584, Average Can Users (3–5 canned items/week); n = 4445, and Infrequent Can Users (≤2 canned items/week); n = 2732. The results provide evidence that Frequent Can Users consume more nutrient-dense food groups such as fruits, vegetables, dairy products, and protein-rich foods, and also have higher intakes of 17 essential nutrients including the shortfall nutrients—potassium, calcium and fiber—when compared to Infrequent Can Users. Therefore, in addition to fresh foods, diets higher in nutrient-dense canned food consumption can also offer dietary options which improve nutrient intakes and the overall diet quality of Americans. PMID:26184294
Interactive effects of nutrient additions and predation on infaunal communities
Posey, M.H.; Alphin, T.D.; Cahoon, L.; Lindquist, D.; Becker, M.E.
1999-01-01
Nutrient additions represent an important anthropogenic stress on coastal ecosystems. At moderate levels, increased nutrients may lead to increased primary production and, possibly, to increased biomass of consumers although complex trophic interactions may modify or mask these effects. We examined the influence of nutrient additions and interactive effects of trophic interactions (predation) on benthic infaunal composition and abundances through small-scale field experiments in 2 estuaries that differed in ambient nutrient conditions. A blocked experimental design was used that allowed an assessment of direct nutrient effects in the presence and absence of predation by epibenthic predators as well as an assessment of the independent effects of predation. Benthic microalgal production increased with experimental nutrient additions and was greater when infaunal abundances were lower, but there were no significant interactions between these factors. Increased abundances of one infaunal taxa, Laeonereis culveri, as well as the grazer feeding guild were observed with nutrient additions and a number of taxa exhibited higher abundances with predator exclusion. In contrast to results from freshwater systems there were no significant interactive effects between nutrient additions and predator exclusion as was predicted. The infaunal responses observed here emphasize the importance of both bottom-up (nutrient addition and primary producer driven) and top-down (predation) controls in structuring benthic communities. These processes may work at different spatial and temporal scales, and affect different taxa, making observation of potential interactive effects difficult.
Clonal foraging in perennial wheatgrasses: A strategy for exploiting patchy soil nutrients
Humphrey, L. David; Pyke, David A.
1997-01-01
1. Foraging by means of plasticity in placement of tillers in response to low- and high-nutrient patches was examined in the rhizomatous wheatgrass Elymus lanceolatus ssp. lanceolatus. Its ability to exploit soil nutrient patches was compared to that of the closely related but caespitose E. lanceolatus ssp. wawawaiensis.2. Clones of 14 genets of each taxon were planted in boxes consisting of two 30 × 30 cm cells: the `origin cell' where clones were planted, and the adjacent `destination cell', with each cell containing soil with either low or high levels of nutrients.3. The rhizomatous taxon, which can produce intravaginal, short-rhizome and long-rhizome tillers, preferentially produced short-rhizome and intravaginal tillers in high-nutrient destination cells. Effects of nutrient status of the origin cell as well as of the destination cell on total tiller numbers indicated clonal integration, yet tiller placement responded to local conditions.4. Roots of both taxa accessed nutrients in destination cells (the caespitose subspecies by root growth only), and above-ground biomass of both taxa increased to a similar extent with high-nutrient destination cells. With the patch sizes used in this experiment, root growth was as important as ramet placement in exploiting nutrients in destination cells. 5 There was no relationship between degree of plasticity in ramet placement and biomass of the clone when high-nutrient destination cells were present.
Yang, Ting; Wang, Quanjiu; Wu, Laosheng; Zhao, Guangxu; Liu, Yanli; Zhang, Pengyu
2016-07-01
Nutrients transport is a main source of water pollution. Several models describing transport of soil nutrients such as potassium, phosphate and nitrate in runoff water have been developed. The objectives of this research were to describe the nutrients transport processes by considering the effect of rainfall detachment, and to evaluate the factors that have greatest influence on nutrients transport into runoff. In this study, an existing mass-conservation equation and rainfall detachment process were combined and augmented to predict runoff of nutrients in surface water in a Loess Plateau soil in Northwestern Yangling, China. The mixing depth is a function of time as a result of rainfall impact, not a constant as described in previous models. The new model was tested using two different sub-models of complete-mixing and incomplete-mixing. The complete-mixing model is more popular to use for its simplicity. It captured the runoff trends of those high adsorption nutrients, and of nutrients transport along steep slopes. While the incomplete-mixing model predicted well for the highest observed concentrations of the test nutrients. Parameters inversely estimated by the models were applied to simulate nutrients transport, results suggested that both models can be adopted to describe nutrients transport in runoff under the impact of rainfall. Copyright © 2016 Elsevier B.V. All rights reserved.
Strontium source and depth of uptake shifts with substrate age in semiarid ecosystems
NASA Astrophysics Data System (ADS)
Coble, Ashley A.; Hart, Stephen C.; Ketterer, Michael E.; Newman, Gregory S.; Kowler, Andrew L.
2015-06-01
Without exogenous rock-derived nutrient sources, terrestrial ecosystems may eventually regress or reach a terminal steady state, but the degree to which exogenous nutrient sources buffer or slow to a theoretical terminal steady state remains unclear. We used strontium isotope ratios (87Sr/86Sr) as a tracer and measured 87Sr/86Sr values in aeolian dust, soils, and vegetation across a well-constrained 3 Myr semiarid substrate age gradient to determine (1) whether the contribution of atmospheric sources of rock-derived nutrients to soil and vegetation pools varied with substrate age and (2) to determine if the depth of uptake varied with substrate age. We found that aeolian-derived nutrients became increasingly important, contributing as much as 71% to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of ecosystem development in a semiarid climate. The depth of nutrient uptake increased on older substrates, demonstrating that trees in arid regions can acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results demonstrate that global and regional aeolian transport of nutrients to local ecosystems is a vital process for ecosystem development in arid regions. Furthermore, these aeolian nutrient inputs contribute to deep soil nutrient pools, which become increasingly important for maintaining plant productivity over long time scales.
Tsikritzi, Roussa; Moynihan, Paula J; Gosney, Margot A; Allen, Victoria J; Methven, Lisa
2014-08-01
Under-nutrition in older adults is widespread. Oral nutritional supplement beverages (ONS) are prescribed, yet consumption by older people is often insufficient. A variety of supplement formats may improve nutrient intake. This study developed protein and micro-nutrient fortified biscuits and evaluated their sensory attributes and liking by older people. Two micro-nutrient strategies were taken, to match typical ONS and to customise to the needs of older people. Oat biscuits and gluten-free biscuits developed contained over 12% protein and over 460 kcal 100 g(-1). Two small (40 g) biscuits developed to match ONS provided approximately 40% of an ONS portion of micro-nutrients and 60% of macro-nutrients; however, the portion size was considered realistic whereas the average ONS portion (200 mL) is excessive. Biscuits developed to the needs of older adults provided, on average, 18% of the reference nutrient intake of targeted micro-nutrients. Sensory characteristics were similar between biscuits with and without micro-nutrient fortification, leading to no differences in liking. Fortified oat biscuits were less liked than commercial oat biscuits, partly attributed to flavour imparted by whey protein fortification. Macro- and micro-nutrient fortification of biscuits could provide an alternative fortified snack to help alleviate malnutrition in older adults. © 2013 Society of Chemical Industry.
Family medicine residents' knowledge and attitudes about drug-nutrient interactions.
Lasswell, A B; DeForge, B R; Sobal, J; Muncie, H L; Michocki, R
1995-04-01
The Joint Commission on Accreditation of Healthcare Organizations (JCAHO) requires that health professionals recognize the importance of drug-nutrient interactions and educate patients to prevent adverse effects. Drug-nutrient interactions are an important issue in medical practice, but it is not clear how or if physicians are trained in this issue. This investigation was a needs assessment that examined attitudes and knowledge about drug-nutrient interactions that was examined in a national sample of 834 family medicine residents in 56 residency programs. Most reported they had little or no formal training in drug-nutrient interactions in medical school (83%) or residency (80%). However, 79% believed it was the physician's responsibility to inform patients about drug-nutrient interactions, although many thought pharmacists (75%) and dietitians (66%) share this responsibility. Overall, residents correctly answered 61% +/- 19 of fourteen drug-nutrient interaction knowledge items. There was a slight increase in drug-nutrient knowledge as year of residency increased. Physicians' knowledge of drug-nutrient interactions may be improved by including nutrition education in the topics taught by physicians, nutritionists, and pharmacists using several educational strategies. Nutrition educators in particular can play a role in curriculum development about drug-nutrient interactions by developing, refining, and evaluating materials and educational tools. Nutrition educators need to provide this information in academic settings for the training of all health professionals as well as in patient education settings such as hospitals and public health clinics.
Tsikritzi, Roussa; Moynihan, Paula J; Gosney, Margot A; Allen, Victoria J; Methven, Lisa
2014-01-01
BACKGROUND Under-nutrition in older adults is widespread. Oral nutritional supplement beverages (ONS) are prescribed, yet consumption by older people is often insufficient. A variety of supplement formats may improve nutrient intake. This study developed protein and micro-nutrient fortified biscuits and evaluated their sensory attributes and liking by older people. Two micro-nutrient strategies were taken, to match typical ONS and to customise to the needs of older people. RESULTS Oat biscuits and gluten-free biscuits developed contained over 12% protein and over 460 kcal 100 g−1. Two small (40 g) biscuits developed to match ONS provided approximately 40% of an ONS portion of micro-nutrients and 60% of macro-nutrients; however, the portion size was considered realistic whereas the average ONS portion (200 mL) is excessive. Biscuits developed to the needs of older adults provided, on average, 18% of the reference nutrient intake of targeted micro-nutrients. Sensory characteristics were similar between biscuits with and without micro-nutrient fortification, leading to no differences in liking. Fortified oat biscuits were less liked than commercial oat biscuits, partly attributed to flavour imparted by whey protein fortification. CONCLUSION Macro- and micro-nutrient fortification of biscuits could provide an alternative fortified snack to help alleviate malnutrition in older adults. © 2013 Society of Chemical Industry PMID:24318046
Proposal for a method to estimate nutrient shock effects in bacteria
2012-01-01
Background Plating methods are still the golden standard in microbiology; however, some studies have shown that these techniques can underestimate the microbial concentrations and diversity. A nutrient shock is one of the mechanisms proposed to explain this phenomenon. In this study, a tentative method to assess nutrient shock effects was tested. Findings To estimate the extent of nutrient shock effects, two strains isolated from tap water (Sphingomonas capsulata and Methylobacterium sp.) and two culture collection strains (E. coli CECT 434 and Pseudomonas fluorescens ATCC 13525) were exposed both to low and high nutrient conditions for different times and then placed in low nutrient medium (R2A) and rich nutrient medium (TSA). The average improvement (A.I.) of recovery between R2A and TSA for the different times was calculated to more simply assess the difference obtained in culturability between each medium. As expected, A.I. was higher when cells were plated after the exposition to water than when they were recovered from high-nutrient medium showing the existence of a nutrient shock for the diverse bacteria used. S. capsulata was the species most affected by this phenomenon. Conclusions This work provides a method to consistently determine the extent of nutrient shock effects on different microorganisms and hence quantify the ability of each species to deal with sudden increases in substrate concentration. PMID:22873690
Tian, Wang; Zhang, Huayong; Zhao, Lei; Zhang, Feifan; Huang, Hai
2017-01-20
The relationship between biodiversity and ecosystem functioning is a central issue in ecology, but how this relationship is affected by nutrient stress is still unknown. In this study, we analyzed the phytoplankton diversity effects on community biomass and stability along nutrient gradients in an artificial eutrophic lake. Four nutrient gradients, varying from slightly eutrophic to highly eutrophic states, were designed by adjusting the amount of polluted water that flowed into the lake. Mean phytoplankton biomass, species richness, and Shannon diversity index all showed significant differences among the four nutrient gradients. Phytoplankton community biomass was correlated with diversity (both species richness and Shannon diversity index), varying from positive to negative along the nutrient gradients. The influence of phytoplankton species richness on resource use efficiency (RUE) also changed from positive to negative along the nutrient gradients. However, the influence of phytoplankton Shannon diversity on RUE was not significant. Both phytoplankton species richness and Shannon diversity had a negative influence on community turnover (measured as community dissimilarity), i.e., a positive diversity-stability relationship. Furthermore, phytoplankton spatial stability decreased along the nutrient gradients in the lake. With increasing nutrient concentrations, the variability (standard deviation) of phytoplankton community biomass increased more rapidly than the average total biomass. Results in this study will be helpful in understanding the phytoplankton diversity effects on ecosystem functioning and how these effects are influenced by nutrient conditions in aquatic ecosystems.
Uses of nutrient profiling to address public health needs: from regulation to reformulation.
Drewnowski, Adam
2017-08-01
Nutrient profiling (NP) models rate the nutritional quality of individual foods, based on their nutrient composition. Their goal is to identify nutrient-rich foods, generally defined as those that contain more nutrients than calories and are low in fat, sugar and salt. NP models have provided the scientific basis for evaluating nutrition and health claims and regulating marketing and advertising to children. The food industry has used NP methods to reformulate product portfolios. To help define what we mean by healthy foods, NP models need to be based on published nutrition standards, mandated serving sizes and open-source nutrient composition databases. Specifically, the development and testing of NP models for public health should follow the seven decision steps outlined by the European Food Safety Authority. Consistent with this scheme, the nutrient-rich food (NRF) family of indices was based on a variable number of qualifying nutrients (from six to fifteen) and on three disqualifying nutrients (saturated fat, added sugar, sodium). The selection of nutrients and daily reference amounts followed nutrient standards for the USA. The base of calculation was 418·4 kJ (100 kcal), in preference to 100 g, or serving sizes. The NRF algorithms, based on unweighted sums of percent daily values, subtracted negative (LIM) from positive (NRn) subscores (NRn - LIM). NRF model performance was tested with respect to energy density and independent measures of a healthy diet. Whereas past uses of NP modelling have been regulatory or educational, voluntary product reformulation by the food industry may have most impact on public health.
Effect of soil in nutrient cycle assessment at dairy farms
NASA Astrophysics Data System (ADS)
van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne
2016-04-01
Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.
La Pierre, Kimberly J; Smith, Melinda D
2016-02-01
Resource availability may influence invertebrate communities, with important consequences for ecosystem function, such as biomass production. We assessed: (1) the effects of experimental soil nutrient additions on invertebrate abundances and feeding rates and (2) the resultant changes in the effects of invertebrates on aboveground plant biomass at three grassland sites spanning the North American Central Plains, across which plant tissue chemistry and biomass vary. Invertebrate communities and rates of herbivory were sampled within a long-term nutrient-addition experiment established at each site along the broad Central Plains precipitation gradient. Additionally, the effects of invertebrates on aboveground plant biomass were determined under ambient and elevated nutrient conditions. At the more mesic sites, invertebrate herbivore abundances increased and their per capita rate of herbivory decreased with nutrient additions. In contrast, at the semi-arid site where plant biomass is low and plant nutrient concentrations are high, invertebrate herbivore abundances did not vary and per capita rates of herbivory increased with nutrient additions. No change in the effect of invertebrate herbivores on aboveground plant biomass was observed at any of the sites. In sum, nutrient additions induced shifts in both plant biomass and leaf nutrient content, which altered invertebrate abundances and feeding rate. However, due to the inverse relationship between changes in herbivore abundance and per capita rates of herbivory, nutrient additions did not alter the effect of invertebrates on aboveground biomass. Overall, we suggest that this inverse response of herbivore abundance and per capita feeding rate may buffer ecosystems against changes in invertebrate damage in response to fluctuations in nutrient levels.
The nutrient density approach to healthy eating: challenges and opportunities.
Nicklas, Theresa A; Drewnowski, Adam; O'Neil, Carol E
2014-12-01
The term 'nutrient density' for foods/beverages has been used loosely to promote the Dietary Guidelines for Americans. The 2010 Dietary Guidelines for Americans defined 'all vegetables, fruits, whole grains, fat-free or low-fat milk and milk products, seafood, lean meats and poultry, eggs, beans and peas (legumes), and nuts and seeds that are prepared without added solid fats, added sugars, and sodium' as nutrient dense. The 2010 Dietary Guidelines for Americans further states that nutrient-dense foods and beverages provide vitamins, minerals and other substances that may have positive health effects with relatively few (kilo)calories or kilojoules. Finally, the definition states nutrients and other beneficial substances have not been 'diluted' by the addition of energy from added solid fats, added sugars or by the solid fats naturally present in the food. However, the Dietary Guidelines Advisory Committee and other scientists have failed to clearly define 'nutrient density' or to provide criteria or indices that specify cut-offs for foods that are nutrient dense. Today, 'nutrient density' is a ubiquitous term used in the scientific literature, policy documents, marketing strategies and consumer messaging. However, the term remains ambiguous without a definitive or universal definition. Classifying or ranking foods according to their nutritional content is known as nutrient profiling. The goal of the present commentary is to address the research gaps that still exist before there can be a consensus on how best to define nutrient density, highlight the situation in the USA and relate this to wider, international efforts in nutrient profiling.
Shen, Jianbo; Li, Chunjian; Mi, Guohua; Li, Long; Yuan, Lixing; Jiang, Rongfeng; Zhang, Fusuo
2013-03-01
Root and rhizosphere research has been conducted for many decades, but the underlying strategy of root/rhizosphere processes and management in intensive cropping systems remain largely to be determined. Improved grain production to meet the food demand of an increasing population has been highly dependent on chemical fertilizer input based on the traditionally assumed notion of 'high input, high output', which results in overuse of fertilizers but ignores the biological potential of roots or rhizosphere for efficient mobilization and acquisition of soil nutrients. Root exploration in soil nutrient resources and root-induced rhizosphere processes plays an important role in controlling nutrient transformation, efficient nutrient acquisition and use, and thus crop productivity. The efficiency of root/rhizosphere in terms of improved nutrient mobilization, acquisition, and use can be fully exploited by: (1) manipulating root growth (i.e. root development and size, root system architecture, and distribution); (2) regulating rhizosphere processes (i.e. rhizosphere acidification, organic anion and acid phosphatase exudation, localized application of nutrients, rhizosphere interactions, and use of efficient crop genotypes); and (3) optimizing root zone management to synchronize root growth and soil nutrient supply with demand of nutrients in cropping systems. Experiments have shown that root/rhizosphere management is an effective approach to increase both nutrient use efficiency and crop productivity for sustainable crop production. The objectives of this paper are to summarize the principles of root/rhizosphere management and provide an overview of some successful case studies on how to exploit the biological potential of root system and rhizosphere processes to improve crop productivity and nutrient use efficiency.
Nutrient depletion from rhizosphere solution by maize grown in soil with long-term compost amendment
USDA-ARS?s Scientific Manuscript database
Improved understanding of rhizosphere chemistry will enhance our ability to model nutrient dynamics and on a broader scale, to develop effective management strategies for applied plant nutrients. With a controlled-climate study, we evaluated in situ changes in macro-nutrient concentrations in the rh...
Composting and gypsum amendment of broiler litter to reduce nutrient leaching loss
USDA-ARS?s Scientific Manuscript database
Relative to fresh broiler litter, little is known about the dynamics of composted litter derived-nutrient in the ecosystem. In this study, the potential leaching losses of nutrients from compost relative to fresh broiler litter along with flue gas desulfurization (FGD gypsum), as a nutrient immobil...
USDA-ARS?s Scientific Manuscript database
Nutrient use overlap among sympatric Streptomyces populations is correlated with pathogen inhibitory capacity, yet there is little information on either the factors that influence nutrient use overlap among coexisting populations or the diversity of nutrient use among soil Streptomyces. We examined ...
Habitat-specific nutrient removal and release in Oregon salt marshes
Wetlands can be sources, sinks and transformers of nutrients, although it is their role in nutrient removal that is valued as a water purification ecosystem service. In order to quantify that service for any wetland, it is important to understand the drivers of nutrient removal w...
Foliar nutrient analysis of sugar maple decline: retrospective vector diagnosis
Victor R. Timmer; Yuanxin Teng
1999-01-01
Accuracy of traditional foiiar analysis of nutrient disorders in sugar maple (Acer saccharum Marsh) is limited by lack of validation and confounding by nutrient interactions. Vector nutrient diagnosis is relatively free of these problems. The technique is demonstrated retrospectively on four case studies. Diagnostic interpretations consistently...
The presentation presents an introduction to the Yaquina Bay Nutrient Case Study which provides approaches for development of estuarine nutrient criteria in the Pacific Northwest. As part of this effort, a database of historic and recent data has been assembled consisting of phy...
Nutrient quality of fast food kids meals
USDA-ARS?s Scientific Manuscript database
Exposure of children to kids’ meals at fast food restaurants is high; however, the nutrient quality of such meals has not been systematically assessed. We assessed the nutrient quality of fast food meals marketed to young children, i.e., "kids meals". The nutrient quality of kids’ meals was assessed...
Mesocosm experiments have been used to evaluate the impacts of nutrient loading on estuarine plant communities in order to develop nutrient response relationships. Mesocosm eutrophication studies tend to focus on long residence time systems. In the Pacific Northwest, many estuari...
The presentation provides an introduction to the Yaquina Estuary Nutrient Case Study which includes considerations for development of estuarine nutrient criteria in the Pacific Northwest. As part of this effort, a database of historic and recent data has been assembled consistin...
Soluble organic nutrient fluxes
Robert G. Qualls; Bruce L. Haines; Wayne Swank
2014-01-01
Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...
USDA-ARS?s Scientific Manuscript database
Nutrient application and its uptake by crops are essential to increasing agricultural production, which is essential to feed a growing world population. Efficiency in management of nutrients could be increased with conservation practices that reduce nutrient losses to the environment and promote con...
USDA-ARS?s Scientific Manuscript database
Our objective is to discuss the implications internationally of the increased focus on nutrigenomics as the underlying basis for individualized health promotion and chronic disease prevention and the challenges presented to existing nutrient database and nutrient analysis systems by these trends. De...
Sources and loads of nutrients in the South Platte River, Colorado and Nebraska, 1994-95
Litke, D.W.
1996-01-01
The South Platte River Basin was one of 20 river basins selected in 1991 for investigation as part of the U.S. Geological Survey's National Water- Quality Assessment (NAWQA) Program. Nationwide, nutrients have been identified as one of the primary nationwide water-quality concerns and are of particular interest in the South Platte River Basin where nutrient concentrations are large compared to concentrations in other NAWQA river basins. This report presents estimates of the magnitude of nutrient-source inputs to the South Platte River Basin, describes nutrient concen- trations and loads in the South Platte River during different seasons, and presents comparisons of nutrient inputs to instream nutrient loads. Annual nutrient inputs to the basin were estimated to be 306,000 tons of nitrogen and 41,000 tons of phosphorus. The principal nutrient sources were wastewater-treatment plants, fertilizer and manure applications, and atmospheric deposition. To characterize nutrient concentrations and loads in the South Platte River during different seasons, five nutrient synoptic samplings were conducted during 1994 and 1995. Upstream from Denver, Colorado, during April 1994 and January 1995, total nitrogen concentrations were less than 2 milligrams per liter (mg/L), and total phosphorus concentrations were less than 0.2 mg/L. The water in the river at this point was derived mostly from forested land in the mountains west of Denver. Total nutrient concentrations increased through the Denver metropolitan area, and concentration peaks occurred just downstream from each of Denver's largest wastewater-treatment plants with maximum concentrations of 13.6 mg/L total nitrogen and 2.4 mg/L total phosphorus. Nutrient concen- concentrations generally decreased downstream from Denver. Upstream from Denver during April 1994 and January 1995, total nitrogen loads were less than 1,000 pounds per day (lb/d), and total phosphorus loads were less than 125 lb/d. Total nutrient loads increased through the Denver metropolitan area, and load peaks occurred just downstream from each of Denver's largest wastewater-treatment plants, with a maximum load of 14,000 lb/d total nitrogen and 2,300 lb/d total phosphorus. In April 1994, nutrient loads generally decreased from Henderson, Colorado, to North Platte, Nebraska. In January 1995, however, nutrient loads increased from Henderson to Kersey, Colorado (maximum loads of 31,000 lb/d total nitrogen and 3,000 lb/d total phosphorus), and then decreased from Kersey to North Platte. Seasonal nutrient loads primarily were dependent on streamflow. Total nitrogen loads were largest in June 1994 and January 1995 when streamflows also were largest. During June, streamflow was large, but nitrogen concentrations were small, which indicated that snowmelt runoff diluted the available supply of nitrogen. Total phosphorus loads were largest in June, when streamflow and phosphorus concentrations were large, which indicated an additional source of phosphorus during snowmelt runoff. Streamflow along the South Platte River was smallest in April and August 1994, and nutrient loads also were smallest during these months. The downstream pattern for nutrient loads did not vary much by season. Loads were large at Henderson, decreased between Henderson and Kersey, and usually were largest at Kersey. The magnitude of the decrease in loads between Henderson and Kersey varied between synoptics and was dependent on the amount of water removed by irrigation ditches. Nutrient loads leaving the basin were very small compared to the estimated total nutrient inputs to the basin. Streamflow balances indicated that the South Platte River is a gaining river throughout much of its length; streamflow-balance residuals were as large as 15 cubic feet per second per mile. Nutrient-load balances indicated that increases in river nitrate loads were, in some places, due to nitrification and, elsewhere, were due to the influx of nitrate-enriched ground water to
Satti, L; Abbasi, S; Faiz, U
2012-07-01
We evaluated nutrient agar using the microcolony detection method for the recovery of Mycobacterium tuberculosis on 37 acid-fast bacilli (AFB) positive sputum specimens, and compared it with conventional Löwenstein-Jensen (LJ) medium. Nutrient agar detected 35 isolates compared to 34 on LJ medium. The mean time to detection of mycobacteria on nutrient agar and LJ medium was respectively 9.6 and 21.4 days. The contamination rate on nutrient agar and LJ medium was respectively 5.4% and 2.7%. Nutrient agar detects M. tuberculosis more rapidly than LJ medium, and could be an economical, rapid culture method in resource-poor settings, provided our findings are confirmed by further studies.
Drug-nutrient interactions: a case and clinical guide.
Plotnikoff, Gregory A
2011-10-01
Advances in pharmacokinetics and pharmacodynamics require new competencies related to pharmaceutical prescribing. First, both physicians and pharmacists need to recognize the potential negative impact of nutrients and dietary supplements on the absorption, metabolism, and utilization of prescription drugs. Second, physicians, even more than pharmacists, need to recognize the potential negative effects of pharmaceuticals on the absorption, metabolism, and utilization of nutrients. This article discusses common drug-nutrient interactions and presents a case that illustrates how unrecognized nutrient disruption may negatively affect a patient's health and potentially result in unnecessary prescribing of medications. In presenting the case, we also provide a conceptual framework for assessing and treating this patient and a summary of current knowledge regarding drug-nutrient interactions.
Plant Nutrition 2: Macronutrients (N, P, K, S, Mg, and Ca)
2014-01-01
Summary In the second of three lessons spanning the topic of Plant Nutrition, we examine how macronutrients affect plant growth. Specifically, we look at (1) the availability of nutrients in the soil along with the effects of soil microbes and physical properties on their availability; (2) nutrient uptake from the external environment, across plasma membranes and into plant cells; (3) in some cases, the assimilation of the nutrient into organic molecules; (4) the distribution and redistribution of nutrients throughout the plant; and (5) regulation of these processes. In parallel, we examine the genetic basis of a plant's nutrient use efficiency (NUE) and evaluate strategies by which to replenish nutrients that growing plants extract from soil.
Nutrient fluxes across sediment-water interface in Bohai Bay Coastal Zone, China.
Mu, Di; Yuan, Dekui; Feng, Huan; Xing, Fangwei; Teo, Fang Yenn; Li, Shuangzhao
2017-01-30
Sediment cores and overlying water samples were collected at four sites in Tianjin Coastal Zone, Bohai Bay, to investigate nutrient (N, P and Si) exchanges across the sediment-water interface. The exchange fluxes of each nutrient species were estimated based on the porewater profiles and laboratory incubation experiments. The results showed significant differences between the two methods, which implied that molecular diffusion alone was not the dominant process controlling nutrient exchanges at these sites. The impacts of redox conditions and bioturbation on the nutrient fluxes were confirmed by the laboratory incubation experiments. The results from this study showed that the nutrient fluxes measured directly from the incubation experiment were more reliable than that predicted from the porewater profiles. The possible impacts causing variations in the nutrient fluxes include sewage discharge and land reclamation. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bieroza, Magdalena
2017-04-01
High-frequency nutrient (phosphorus and nitrogen) monitoring using wet-chemistry analysers and optical sensors has revolutionised the collection of biogeochemical data from streams, rivers and lakes. Matching the nutrient measurement time with timescales of hydrological responses has revealed biogeochemical patterns and nutrient hydrological responses not observed previously. Capturing a wider range of nutrient concentrations compared to traditional coarse resolution sampling enables more accurate estimation of mean concentrations and loads and thus improved water body classification. However, to date the scientific insights from the high-frequency nutrient monitoring studies have not been translated into policy and operational responses. The pertinent question is where and how often to measure nutrients to satisfy statutory monitoring requirements for the Water Framework Directive and the Nitrates Directive. Therefore this paper discusses how the reduced data uncertainty and improved process understanding obtained with the high-frequency measurements can improve statutory nutrient monitoring, using case studies from England and Sweden.
Enteral feeding: drug/nutrient interaction.
Lourenço, R
2001-04-01
Enteral nutrition support via a feeding tube is the first choice for artificial nutrition. Most patients also require simultaneous drug therapy, with the potential risk for drug-nutrient interactions which may become relevant in clinical practice. During enteral nutrition, drug-nutrient interactions are more likely to occur than in patients fed orally. However, there is a lack of awareness about its clinical significance, which should be recognised and prevented in order to optimise nutritional and pharmacological therapeutic goals of safety and efficacy. To raise the awareness of potential drug-nutrient interactions and influence on clinical outcomes. To identify factors that can promote drug-nutrient interactions and contribute to nutrition and/or therapeutic failure. To be aware of different types of drug-nutrient interactions. To understand complex underlying mechanisms responsible for drug-nutrient interactions. To learn basic rules for the administration of medications during tube-feeding. Copyright 2001 Harcourt Publishers Ltd.
Periphytic biofilms: A promising nutrient utilization regulator in wetlands.
Wu, Yonghong; Liu, Junzhuo; Rene, Eldon R
2018-01-01
Low nutrient utilization efficiency in agricultural ecosystems is the main cause of nonpoint source (NPS) pollution. Therefore, novel approaches should be explored to improve nutrient utilization in these ecosystems. Periphytic biofilms composed of microalgae, bacteria and other microbial organisms are ubiquitous and form a 'third phase' in artificial wetlands such as paddy fields. Periphytic biofilms play critical roles in nutrient transformation between the overlying water and soil/sediment, however, their contributions to nutrient utilization improvement and NPS pollution control have been largely underestimated. This mini review summarizes the contributions of periphytic biofilms to nutrient transformation processes, including assimilating and storing bioavailable nitrogen and phosphorus, fixing nitrogen, and activating occluded phosphorus. Future research should focus on augmenting the nitrogen fixing, phosphate solubilizing and phosphatase producing microorganisms in periphytic biofilms to improve nutrient utilization and thereby reduce NPS pollution production in artificial and natural wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Barbera, Elena; Sforza, Eleonora; Kumar, Sandeep; Morosinotto, Tomas; Bertucco, Alberto
2016-01-01
The production of biofuels from microalgae is associated with high demands of nutrients (nitrogen and phosphorus) required for growth. Recycling nutrients from the residual biomass is essential to obtain a sustainable production. In this work, the aqueous phase obtained from flash hydrolysis of Scenedesmus sp. was used as cultivation medium for a microalga of the same genus, to assess the feasibility of this technique for nutrient recycling purposes. Batch and continuous cultivations were carried out, to determine growth performances in this substrate compared to standard media, and verify if a stable biomass production could be obtained. In continuous experiments, the effect of hydrolysate inlet concentration and of residence time were assessed to optimize nutrient supply in relation to productivity. Results obtained show that nutrient recycling is feasible by treating biomass with flash hydrolysis, and Scenedesmus is capable of recycling large amounts of recovered nutrients. PMID:26868157
Managing urban nutrient biogeochemistry for sustainable urbanization.
Lin, Tao; Gibson, Valerie; Cui, Shenghui; Yu, Chang-Ping; Chen, Shaohua; Ye, Zhilong; Zhu, Yong-Guan
2014-09-01
Urban ecosystems are unique in the sense that human activities are the major drivers of biogeochemical processes. Along with the demographic movement into cities, nutrients flow towards the urban zone (nutrient urbanization), causing the degradation of environmental quality and ecosystem health. In this paper, we summarize the characteristics of nutrient cycling within the urban ecosystem compared to natural ecosystems. The dynamic process of nutrient urbanization is then explored taking Xiamen city, China, as an example to examine the influence of rapid urbanization on food sourced nitrogen and phosphorus metabolism. Subsequently, the concept of a nutrient footprint and calculation method is introduced from a lifecycle perspective. Finally, we propose three system approaches to mend the broken biogeochemical cycling. Our study will contribute to a holistic solution which achieves synergies between environmental quality and food security, by integrating technologies for nutrient recovery and waste reduction. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nutrient-induced intestinal adaption and its effect in obesity.
Dailey, Megan J
2014-09-01
Obese and lean individuals respond differently to nutrients with changes in digestion, absorption and hormone release. This may be a result of differences in intestinal epithelial morphology and function driven by the hyperphagia or the type of diet associated with obesity. It is well known that the maintenance and growth of the intestine is driven by the amount of luminal nutrients, with high nutrient content resulting in increases in cell number, villi length and crypt depth. In addition, the type of nutrient appears to contribute to alterations in the morphology and function of the epithelial cells. This intestinal adaptation may be what is driving the differences in nutrient processing in lean versus obese individuals. This review describes how nutrients may be able to induce changes in intestinal epithelial cell proliferation, differentiation and function and the link between intestinal adaptation and obesity. Copyright © 2014 Elsevier Inc. All rights reserved.
Research Paper. Nutrient uptake and mineralization during leaf decay in streams-a model simulation.
J.R. Webster; J.D. Newbold; S.A. Thomas; H.M. Valett; P.J. Mulholland
2009-01-01
We developed a stoichiometrically explicit computer model to examine how heterotrophic uptake of nutrients and microbial mineralization occurring during the decay of leaves in streams may be important in modifying nutrient concentrations. The simulations showed that microbial uptake can substantially decrease stream nutrient concentrations during the initial phases of...
A water quality model, LM3 Eutro, will be used to estimate the response of nutrient concentrations and primary productivity in Lake Michigan to nutrient loading scenarios. This work is part of a larger effort, the Future Midwestern landscapes study, that will estimate the produc...
Wetlands can be sources, sinks and transformers of nutrients, although it is their role in nutrient removal that is valued as a water purification ecosystem service. In order to quantify that service for any wetland, it is important to understand the drivers of nutrient removal w...
Whole Farm Nutrient Balance Calculator for New York Dairy Farms
ERIC Educational Resources Information Center
Soberon, Melanie A.; Ketterings, Quirine M.; Rasmussen, Caroline N.; Czymmek, Karl J.
2013-01-01
Nutrient loss and accumulation as well as associated environmental degradation have been a concern for animal agriculture for many decades. Federal and New York (NY) regulations apply to Concentrated Animal Feeding Operations and a comprehensive nutrient management plan (CNMP) is required for regulated farms. The whole farm nutrient mass balance…
Nutrients in the Great Lakes. Teacher's Guide and Student Workbook.
ERIC Educational Resources Information Center
Brothers, Chris; And Others
This teacher guide and student workbook set presents two learning activities, designed for fifth through ninth grade students, that concentrate on nutrients in the Great Lakes. In activity A, students simulate aquatic habitats using lake water and goldfish in glass jars and observe the effects of nutrient loading and nutrient limitation on aquatic…
Nutrient Drain Associated with Hardwood Plantation Culture
James B. Baker
1978-01-01
Past research and a tentative evaluation indicate that nutrient drain and possible site degradation could occur in southern hardwood plantations. The extent of nutrient drain on a given site would depend on the species, length of the rotation, and harvesting system used. The evaluation for cottonwood plantations in Mississippi indicates that nutrient drain is most...
Forest management and nutrient cycling in eastern hardwoods
James H. Patric; David W. Smith
1975-01-01
The literature was reviewed for reports on nutrient cycling in the eastern deciduous forest, particularly with respect to nitrogen, and for effects of forest management on the nutrient cycle. Although most such research has dealt with conifers, a considerable body of literature relates to hardwoods. Usually, only those references that dealt quantitatively with nutrient...
The objective of this poster is by comparing nutrient and DOM concentrations in small and large streams, we hope to better understand: (1) watershed controls on stream nutrient and DOM concentrations; and (2) the variability of nutrient and DOM concentrations within a river netwo...
Soil and Nutrient Loss Following Site Preparation Burning
J.P. Field; E.A. Carter
2000-01-01
Sediment loss and nutrient cpncentrations in runoff were evaluated to determine the effects of site preparation burning on a recently harvested loblolly pine (Pinus taeda L.) site in east Texas. Sediment and nutrient losses prior to treatment were approximately the same from control plots and pretreatment burn plots. Nutrient analysis of runoff...
Soil and nutrient loss following site preparation burning
J.P. Field; K.W. Farrish; E.A. Carter
2000-01-01
Sediment loss and nutrient cpncentrations in runoff were evaluated to determine the effects of site preparation burning on a recently harvested loblolly pine (Pinur taeda L.) site in east Texas. Sediment and nutrient losses prior to treatment were approximately the same from control plots and pretreatment burn plots. Nutrient analysis of runoff...
Global nutrient cycles have been altered by use of fossil fuels and fertilizers resulting in increases in nutrient loads to aquatic systems. In the United States, excess nutrients have been repeatedly reported as the primary cause of lake water quality impairments. Setting nutr...
Xiao-Tao, Lü; Reed, Sasha C.; Yu, Qiang; Han, Xing-Guo
2016-01-01
Taken together, the results suggest plants in this ecosystem are much more responsive to changing N cycles than P cycles and emphasize the significance of nutrient resorption as an important plant control over the stoichiometric coupling of N and P under nutrient enriched conditions.
Abstract and oral presentation for the Estuarine Research Federation Conference.
Estuarine retention of watershed nutrient loads, system-wide nutrient biogeochemical fluxes, and net ecosystem metabolism (NEM) were determined in three estuaries exhibiting differing magnitud...
USDA-ARS?s Scientific Manuscript database
This study was designed to provide updated information on the separable components, cooking yields, and nutrient values of retail cuts from the beef chuck. Ultimately, these data will be used in the United States Department of Agriculture (USDA) Nutrient Data Laboratory’s (NDL) National Nutrient Da...
NASA Astrophysics Data System (ADS)
Chung, N.; Suberkopp, K.
2005-05-01
The effect of shredder feeding on aquatic hyphomycete communities associated with submerged leaves was studied in two southern Appalachian headwater streams in North Carolina. Coarse and fine mesh litter bags containing red maple (Acer rubrum) leaves were placed in the nutrient-enriched stream and in the reference stream and were retrieved monthly. Both shredder feeding and nutrient enrichment enhanced breakdown rates. The breakdown rates of leaves in coarse mesh bags in the reference stream (k = 0.0275) and fine mesh bags in the nutrient enriched stream (k = 0.0272) were not significantly different, suggesting that the shredding effect on litter breakdown was offset by higher fungal activity as a result of nutrient enrichment. Fungal sporulation rates and biomass (based on ergosterol concentrations) were higher in the nutrient enriched than in the reference stream, but neither fungal biomass nor sporulation rate was affected by shredder feeding. Species richness was higher in the nutrient-enriched than in the reference stream. The enrichment with nutrients altered fungal community composition more than shredder feeding.
ACANTHAMOEBA SP.S-11 PHAGOCYTOTIC ACTIVITY ON MYCOBACTERIUM LEPRAE IN DIFFERENT NUTRIENT CONDITIONS.
Paling, Sepling; Wahyuni, Ratna; Ni'matuzahroh; Winarni, Dwi; Iswahyudi; Astari, Linda; Adriaty, Dinar; Agusni, Indropo; Izumi, Shinzo
2018-01-01
Mycobacterium leprae ( M. leprae ) is a pathogenic bacterium that causes leprosy. The presence of M. leprae in the environment is supported by microorganisms that act as the new host for M. leprae . Acanthamoeba 's potential to be a host of M. leprae in the environment. Acanthamoeba sp. is Free Living Amoeba (FLA) that classified as holozoic, saprophytic, and saprozoic. The existence of nutrients in the environment influence Acanthamoeba ability to phagocytosis or pinocytosis. This study is aimed to determine Acanthamoeba sp.S-11 phagocytic activity to Mycobacterium leprae ( M. leprae ) which cultured in non-nutrient media and riched-nutrient media. This research conducted by culturing Acanthamoeba sp.S-11 and M. leprae on different nutrient media conditions. M. leprae intracellular DNA were isolated and amplified by M. leprae specific primers through Real Time PCR (Q-PCR). The results showed that Acanthamoeba co-cultured on non-nutrient media were more active to phagocyte M. leprae than on rich-nutrient media. The use of non-nutrient media is recommended to optimize Acanthamoeba sp. phagocytic activity to M. leprae .
Mwaura, Jelvas; Umezawa, Yu; Nakamura, Takashi; Kamau, Joseph
2017-06-30
The source of anthropogenic nutrient and its spatial extent in three fringing reefs with differing human population gradients in Kenya were investigated using stable isotope approaches. Nutrient concentrations and nitrate-δ 15 N in seepage water indicated that population density and tourism contributed greatly to the extent of nutrient loading to adjacent reefs. Although water-column nutrient analyses did not show any significant difference among the reefs, higher δ 15 N and N contents in macrophytes showed terrestrial nutrients affected primary producers in onshore areas in Nyali and Bamburi reefs, but were mitigated by offshore water intrusion especially at Nyali. On the offshore reef flat, where the same species of macroalgae were not available, complementary use of δ 15 N in sedimentary organic matter suggested inputs of nutrients originated from the urban city of Mombasa. If population increases in the future, nutrient conditions in the shallower reef, Vipingo, may be dramatically degraded due to lower water exchange ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.
When microbes and consumers determine the limiting nutrient of autotrophs: a theoretical analysis
Cherif, Mehdi; Loreau, Michel
2008-01-01
Ecological stoichiometry postulates that differential nutrient recycling of elements such as nitrogen and phosphorus by consumers can shift the element that limits plant growth. However, this hypothesis has so far considered the effect of consumers, mostly herbivores, out of their food-web context. Microbial decomposers are important components of food webs, and might prove as important as consumers in changing the availability of elements for plants. In this theoretical study, we investigate how decomposers determine the nutrient that limits plants, both by feeding on nutrients and organic carbon released by plants and consumers, and by being fed upon by omnivorous consumers. We show that decomposers can greatly alter the relative availability of nutrients for plants. The type of limiting nutrient promoted by decomposers depends on their own elemental composition and, when applicable, on their ingestion by consumers. Our results highlight the limitations of previous stoichiometric theories of plant nutrient limitation control, which often ignored trophic levels other than plants and herbivores. They also suggest that detrital chains play an important role in determining plant nutrient limitation in many ecosystems. PMID:18854301
NASA Astrophysics Data System (ADS)
Scott, T.; Doyle, R.
2005-05-01
Longitudinal gradients of nutrient availability often occur along the flow path of water in freshwater wetlands. Differential removal efficiencies of water column nitrogen (N) and phosphorus (P) may increase the severity of nutrient deficiency and possibly change the nutrient that limits primary production. A previous study demonstrated that periphyton in the Lake Waco Wetlands (LWW), near Waco, Texas, USA, are generally more P limited near the inflow and become increasingly N limited as distance from the inflow increases. Therefore, spatial heterogeneity in nutrient availability likely influences both the structure and function of periphyton assemblages within this system. In this ongoing study, we are evaluating the relationships between metaphyton primary production, nitrogenase activity, alkaline phosphatase activity, and CNP stoichiometry in areas of differing nutrient limitation within the LWW. As expected, primary production is generally greatest in areas where nitrogenase and alkaline phosphatase activities are minimal. However, expected increases in C:N ratios in areas of greatest nutrient deficiency have not been frequently observed. Decreased primary production and increased enzyme mediated nutrient uptake appear to balance metaphyton nutrient content in these areas.
High nutrient-use efficiency during early seedling growth in diverse Grevillea species (Proteaceae)
He, Tianhua; Fowler, William M.; Causley, Casey L.
2015-01-01
Several hypotheses have been proposed to explain the rich floristic diversity in regions characterised by nutrient-impoverished soils; however, none of these hypotheses have been able to explain the rapid diversification over a relatively short evolutionary time period of Grevillea, an Australian plant genus with 452 recognised species/subspecies and only 11 million years of evolutionary history. Here, we hypothesise that the apparent evolutionary success of Grevillea might have been triggered by the highly efficient use of key nutrients. The nutrient content in the seeds and nutrient-use efficiency during early seedling growth of 12 species of Grevillea were compared with those of 24 species of Hakea, a closely related genus. Compared with Hakea, the Grevillea species achieved similar growth rates (root and shoot length) during the early stages of seedling growth but contained only approximately half of the seed nutrient content. We conclude that the high nutrient-use efficiency observed in Grevillea might have provided a selective advantage in nutrient-poor ecosystems during evolution and that this property likely contributed to the evolutionary success in Grevillea. PMID:26607493
Mykrä, Heikki; Sarremejane, Romain; Laamanen, Tiina; Karjalainen, Satu Maaria; Markkola, Annamari; Lehtinen, Sirkku; Lehosmaa, Kaisa; Muotka, Timo
2018-04-16
We examined how short-term (19 days) nutrient enrichment influences stream fungal and diatom communities, and rates of leaf decomposition and algal biomass accrual. We conducted a field experiment using slow-releasing nutrient pellets to increase nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations in a riffle section of six naturally acidic (naturally low pH due to catchment geology) and six circumneutral streams. Nutrient enrichment increased microbial decomposition rate on average by 14%, but the effect was significant only in naturally acidic streams. Nutrient enrichment also decreased richness and increased compositional variability of fungal communities in naturally acidic streams. Algal biomass increased in both stream types, but algal growth was overall very low. Diatom richness increased in response to nutrient addition by, but only in circumneutral streams. Our results suggest that primary producers and decomposers are differentially affected by nutrient enrichment and that their responses to excess nutrients are context dependent, with a potentially stronger response of detrital processes and fungal communities in naturally acidic streams than in less selective environments.
Chen, Xinsheng; Liao, Yulin; Xie, Yonghong; Wu, Chao; Li, Feng; Deng, Zhengmiao; Li, Xu
2017-01-01
Sediment accretion (burial) and nutrient enrichment occur concurrently in lacustrine wetlands, but the role of these two aspects of sedimentation on macrophyte performance has rarely been examined. Here, we investigated the concurrent effects of sediment accretion and nutrient enrichment on the growth and propagation of Phalaris arundinacea L. using a factorial sediment burial by nutrient addition experimental design. Regardless of burial depth, nutrient addition increased biomass accumulation, shoot mass ratio, the number of rhizomes, and the length of ramets and rhizomes. While burial had little effect on plant growth and propagation, it had an interactive effect with nutrient addition on belowground growth and ramet production. These results indicate that P. arundinacea is tolerant to burial, which allows it to grow in habitats with high sedimentation rates. However, the enhanced growth and propagation of P. arundinacea following sedimentation were primarily related to nutrient enrichment. This suggests that nutrient enrichment of sediments, which occurs in many lacustrine wetlands, increases the risk of invasion by P. arundinacea. PMID:28054590
The placenta. Not just a conduit for maternal fuels.
Hay, W W
1991-12-01
The placenta is a specialized organ of exchange that provides nutrients to and excretes waste products from the fetus. The exchange of nutrients between placenta and fetus involves three major mechanisms: 1) direct transfer of nutrients from the maternal to the fetal plasma, 2) placental consumption of nutrients, and 3) placental conversion of nutrients to alternate substrate forms. Although direct transfer has been considered the primary means by which placental-fetal exchange controls the supply of nutrients to the fetus and thereby fetal metabolism and growth, the considerable metabolic activity of the placenta provides a large and fundamentally important contribution to both the quality and quantity of nutrient substrates supplied to the fetus; e.g., placental O2 and glucose consumption rates approach or even exceed those of brain and tumor tissue. Other placental metabolic activities include glycolysis, gluconeogenesis, glycogenesis, oxidation, protein synthesis, amino acid interconversion, triglyceride synthesis, and chain lengthening or shortening of individual fatty acids. Thus, consideration of the metabolism of the placenta is essential for a more complete understanding of how the placenta regulates nutrient transfer to the fetus, fetal energy balance, and fetal growth.
Drainage and fertilization effects on nutrient availability in an ombrotrophic peatland.
Wang, Meng; Talbot, Julie; Moore, Tim R
2018-04-15
Nutrient availability is an important control on the vegetation distribution, productivity and functioning of peatland ecosystems and we examined spatial and temporal patterns of nutrient availability through ion exchange at Mer Bleue bog, southeast Ontario, Canada. We installed ion exchange probes at 5-15cm for 4weeks and determined nutrient sorption at undisturbed sites as well as those affected by nitrogen (N), phosphorus (P), potassium (K) fertilization and drainage. Under undisturbed conditions, the bog had very small amount of available nutrients, especially N (ammonium>nitrate) and P, and exhibited small variations in nutrient availability during the growing season (May to October). The increase in NPK availability upon fertilization was short-lived over the season and the stoichiometry of available NPK captured by the probes was mismatched with the vegetation. The increase in nutrient availability with drainage was confounded by substantial changes in vegetation. We compare these results with data from other Canadian bogs and fens to provide baseline data on nutrient availability in peatlands. Copyright © 2017 Elsevier B.V. All rights reserved.
Heaney, Robert P
2007-01-01
Much evidence indicates that both calcium and vitamin D are efficacious in protecting the skeleton, particularly when these 2 nutrients are used in combination. Each nutrient is necessary for the full expression of the effect of the other, and where their actions are independent, their effects on skeletal health are complementary. Nutrient status for both tends to be deficient in the adult population of the industrialized nations. Hence, supplementation or food fortification with both nutrients is appropriate and, given contemporary diets and sun exposure, probably necessary. Various meta-analyses, systematic evidence reviews, and controlled trials evaluating these 2 nutrients will be defective if they fail 1) to take into consideration the nearly universal need to augment the status of both nutrients in the populations studied rather than just one or the other, 2) to consider the threshold characteristics of both nutrients, and 3) to use the achieved serum 25-hydroxyvitamin D concentration as the independent variable for vitamin D effects (instead of oral vitamin D intake). Problems with adherence to a regimen of taking supplements daily make an appropriate fortification strategy the preferred option for improving the status of both nutrients.
Wehi, Priscilla M.; Raubenheimer, David; Morgan-Richards, Mary
2013-01-01
Organisms that regulate nutrient intake have an advantage over those that do not, given that the nutrient composition of any one resource rarely matches optimal nutrient requirements. We used nutritional geometry to model protein and carbohydrate intake and identify an intake target for a sexually dimorphic species, the Wellington tree weta (Hemideina crassidens). Despite pronounced sexual dimorphism in this large generalist herbivorous insect, intake targets did not differ by sex. In a series of laboratory experiments, we then investigated whether tree weta demonstrate compensatory responses for enforced periods of imbalanced nutrient intake. Weta pre-fed high or low carbohydrate: protein diets showed large variation in compensatory nutrient intake over short (<48 h) time periods when provided with a choice. Individuals did not strongly defend nutrient targets, although there was some evidence for weak regulation. Many weta tended to select high and low protein foods in a ratio similar to their previously identified nutrient optimum. These results suggest that weta have a wide tolerance to nutritional imbalance, and that the time scale of weta nutrient balancing could lie outside of the short time span tested here. A wide tolerance to imbalance is consistent with the intermittent feeding displayed in the wild by weta and may be important in understanding weta foraging patterns in New Zealand forests. PMID:24358369
NASA Astrophysics Data System (ADS)
Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.
2016-04-01
Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra.
Achieving global perfect homeostasis through transporter regulation
Springer, Michael
2017-01-01
Nutrient homeostasis—the maintenance of relatively constant internal nutrient concentrations in fluctuating external environments—is essential to the survival of most organisms. Transcriptional regulation of plasma membrane transporters by internal nutrient concentrations is typically assumed to be the main mechanism by which homeostasis is achieved. While this mechanism is homeostatic we show that it does not achieve global perfect homeostasis—a condition where internal nutrient concentrations are completely independent of external nutrient concentrations for all external nutrient concentrations. We show that the criterion for global perfect homeostasis is that transporter levels must be inversely proportional to net nutrient flux into the cell and that downregulation of active transporters (activity-dependent regulation) is a simple and biologically plausible mechanism that meets this criterion. Activity-dependent transporter regulation creates a trade-off between robustness and efficiency, i.e., the system's ability to withstand perturbation in external nutrients and the transporter production rate needed to maintain homeostasis. Additionally, we show that a system that utilizes both activity-dependent transporter downregulation and regulation of transporter synthesis by internal nutrient levels can create a system that mitigates the shortcomings of each of the individual mechanisms. This analysis highlights the utility of activity-dependent regulation in achieving homeostasis and calls for a re-examination of the mechanisms of regulation of other homeostatic systems. PMID:28414718
What's Upstream? GIS's critical role in developing nutrient ...
Eutrophication due to excess levels of nitrogen and phosphorus can seriously impair ecological function in estuaries. Protective criteria for nutrients are difficult to establish because the source can vary spatially and seasonally, originate either from the watershed or the ocean, and be natural or anthropogenic. GIS tools and processes can help in developing nutrient criteria by establishing reference conditions representative of natural background nutrient levels. Along the Oregon Coast in the Pacific Northwest, the primary source of nutrients in the wet season (November-April) is generally riverine. We delineated and extracted explicit spatial data from watersheds upstream of riverine water quality monitoring stations for parametric comparison to recorded nutrient levels. The SPARROW model (Wise and Johnson, 2011) was used to estimate relative contributions of nutrient sources at each station. Both raster and vector spatial data were used and include land use / land cover, demography, geology, terrain, precipitation and forest type. The relationships of nutrients to spatial data were then explored as an approach to establishing the reference expectation. The abstract introduces Geographic Information Systems (GIS) tools and processes employed for research conducted under the Safe and Sustainable Water Resources (SSWR) Task 2.3A, entitled “Nutrient Management for Sustainability of Aquatic Ecosystems.” One of the goals of the EPA Office of Water is to
Nutrient pollution disrupts key ecosystem functions on coral reefs.
Silbiger, Nyssa J; Nelson, Craig E; Remple, Kristina; Sevilla, Jessica K; Quinlan, Zachary A; Putnam, Hollie M; Fox, Michael D; Donahue, Megan J
2018-06-13
There is a long history of examining the impacts of nutrient pollution and pH on coral reefs. However, little is known about how these two stressors interact and influence coral reef ecosystem functioning. Using a six-week nutrient addition experiment, we measured the impact of elevated nitrate (NO - 3 ) and phosphate (PO 3- 4 ) on net community calcification (NCC) and net community production (NCP) rates of individual taxa and combined reef communities. Our study had four major outcomes: (i) NCC rates declined in response to nutrient addition in all substrate types, (ii) the mixed community switched from net calcification to net dissolution under medium and high nutrient conditions, (iii) nutrients augmented pH variability through modified photosynthesis and respiration rates, and (iv) nutrients disrupted the relationship between NCC and aragonite saturation state documented in ambient conditions. These results indicate that the negative effect of NO - 3 and PO 3- 4 addition on reef calcification is likely both a direct physiological response to nutrients and also an indirect response to a shifting pH environment from altered NCP rates. Here, we show that nutrient pollution could make reefs more vulnerable to global changes associated with ocean acidification and accelerate the predicted shift from net accretion to net erosion. © 2018 The Author(s).
Maternal–Fetal Nutrient Transport in Pregnancy Pathologies: The Role of the Placenta
Brett, Kendra Elizabeth; Ferraro, Zachary Michael; Yockell-Lelievre, Julien; Gruslin, Andrée; Adamo, Kristi Bree
2014-01-01
Appropriate in utero growth is essential for offspring development and is a critical contributor to long-term health. Fetal growth is largely dictated by the availability of nutrients in maternal circulation and the ability of these nutrients to be transported into fetal circulation via the placenta. Substrate flux across placental gradients is dependent on the accessibility and activity of nutrient-specific transporters. Changes in the expression and activity of these transporters is implicated in cases of restricted and excessive fetal growth, and may represent a control mechanism by which fetal growth rate attempts to match availability of nutrients in maternal circulation. This review provides an overview of placenta nutrient transport with an emphasis on macro-nutrient transporters. It highlights the changes in expression and activity of these transporters associated with common pregnancy pathologies, including intrauterine growth restriction, macrosomia, diabetes and obesity, as well as the potential impact of maternal diet. Molecular signaling pathways linking maternal nutrient availability and placenta nutrient transport are discussed. How sexual dimorphism affects fetal growth strategies and the placenta’s response to an altered intrauterine environment is considered. Further knowledge in this area may be the first step in the development of targeted interventions to help optimize fetal growth. PMID:25222554
Tall, Susanna; Meyling, Nicolai V
2018-03-28
Cultivation of crops requires nutrient supplements which are costly and impact the environment. Furthermore, global demands for increased crop production call for sustainable solutions to increase yield and utilize resources such as nutrients more effectively. Some entomopathogenic fungi are able to promote plant growth, but studies over such effects have been conducted under optimal conditions where nutrients are abundantly available. We studied the effects of Beauveria bassiana (strain GHA) seed treatment on the growth of maize (Zea mays) at high and low nutrient conditions during 6 weeks in greenhouse. As expected, B. bassiana seed treatment increased plant growth, but only at high nutrient conditions. In contrast, the seed treatment did not benefit plant growth at low nutrient conditions where the fungus potentially constituted a sink and tended to reduce plant growth. The occurrence of endophytic B. bassiana in experimental plant tissues was evaluated by PCR after 6 weeks, but B. bassiana was not documented in any of the above-ground plant tissues indicating that the fungus-plant interaction was independent of endophytic establishment. Our results suggest that B. bassiana seed treatment could be used as a growth promoter of maize when nutrients are abundantly available, while the fungus does not provide any growth benefits when nutrients are scarce.
PCB Food Web Dynamics Quantify Nutrient and Energy Flow in Aquatic Ecosystems.
McLeod, Anne M; Paterson, Gordon; Drouillard, Ken G; Haffner, G Douglas
2015-11-03
Measuring in situ nutrient and energy flows in spatially and temporally complex aquatic ecosystems represents a major ecological challenge. Food web structure, energy and nutrient budgets are difficult to measure, and it is becoming more important to quantify both energy and nutrient flow to determine how food web processes and structure are being modified by multiple stressors. We propose that polychlorinated biphenyl (PCB) congeners represent an ideal tracer to quantify in situ energy and nutrient flow between trophic levels. Here, we demonstrate how an understanding of PCB congener bioaccumulation dynamics provides multiple direct measurements of energy and nutrient flow in aquatic food webs. To demonstrate this novel approach, we quantified nitrogen (N), phosphorus (P) and caloric turnover rates for Lake Huron lake trout, and reveal how these processes are regulated by both growth rate and fish life history. Although minimal nutrient recycling was observed in young growing fish, slow growing, older lake trout (>5 yr) recycled an average of 482 Tonnes·yr(-1) of N, 45 Tonnes·yr(-1) of P and assimilated 22 TJ yr(-1) of energy. Compared to total P loading rates of 590 Tonnes·yr(-1), the recycling of primarily bioavailable nutrients by fish plays an important role regulating the nutrient states of oligotrophic lakes.
Feist, Timothy J; Pauer, James J; Melendez, Wilson; Lehrter, John C; DePetro, Phillip A; Rygwelski, Kenneth R; Ko, Dong S; Kreis, Russell G
2016-08-16
The Louisiana continental shelf in the northern Gulf of Mexico experiences bottom water hypoxia in the summer. In this study, we applied a biogeochemical model that simulates dissolved oxygen concentrations on the shelf in response to varying riverine nutrient and organic carbon loads, boundary fluxes, and sediment fluxes. Five-year model simulations demonstrated that midsummer hypoxic areas were most sensitive to riverine nutrient loads and sediment oxygen demand from settled organic carbon. Hypoxic area predictions were also sensitive to nutrient and organic carbon fluxes from lateral boundaries. The predicted hypoxic area decreased with decreases in nutrient loads, but the extent of change was influenced by the method used to estimate model boundary concentrations. We demonstrated that modeling efforts to predict changes in hypoxic area on the continental shelf in relationship to changes in nutrients should include representative boundary nutrient and organic carbon concentrations and functions for estimating sediment oxygen demand that are linked to settled organic carbon derived from water-column primary production. On the basis of our model analyses using the most representative boundary concentrations, nutrient loads would need to be reduced by 69% to achieve the Gulf of Mexico Nutrient Task Force Action Plan target hypoxic area of 5000 km(2).
Gharajehdaghipour, Tazarve; Roth, James D; Fafard, Paul M; Markham, John H
2016-04-05
Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ(15)N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra.
Ruiz, J; Arbib, Z; Alvarez-Díaz, P D; Garrido-Pérez, C; Barragán, J; Perales, J A
2014-05-20
This work was aimed at studying the effect of light-darkness and high-low biomass concentrations in the feasibility of removing nitrogen and phosphorus from urban treated wastewater by the microalga Scenedesmus obliquus. Laboratory experiments were conducted in batch, where microalgae were cultured under different initial biomass concentrations (150 and 1500mgSSl(-1)) and light conditions (dark or illuminated). Nutrient uptake was more dependent on internal nutrient content of the biomass than on light presence or biomass concentration. When a maximum nitrogen or phosphorus content in the biomass was reached (around 8% and 2%, respectively), the removal of that nutrient was almost stopped. Biomass concentration affected more than light presence on the nutrient removal rate, increasing significantly with its increase. Light was only required to remove nutrients when the maximum nutrient storage capacity of the cells was reached and further growth was therefore needed. Residence times to maintain a stable biomass concentration, avoiding the washout of the reactor, were much higher than those needed to remove the nutrients from the wastewater. This ability to remove nutrients in the absence of light could lead to new configurations of reactors aimed to wastewater treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of an epiphyte indicator of nutrient enrichment. A ...
An extensive review of the literature on epiphytes on submerged aquatic vegetation (SAV), primarily seagrasses but including some brackish and freshwater rooted macrophytes, was conducted in order to evaluate the evidence for response of epiphyte metrics to increased nutrients. Evidence from field observational studies together with laboratory and field mesocosm experiments was assembled from the literature and evaluated for evidence of a hypothesized positive response to nutrient addition. There was general consistency in the results to confirm that elevated nutrients tended to increase the load of epiphytes on the surface of SAV, in the absence of other limiting factors. In spite of multiple sources of uncontrolled variation, positive relationships of epiphyte load to nutrient concentration or load (either N or P) were often observed along strong anthropogenic or natural nutrient gradients in coastal regions, although response patterns may only be evident for parts of the year. Mesocosm nutrient studies tended to be more common for temperate regions and field addition studies more common for tropical and subtropical regions. Addition of nutrients via the water column tended to elicit stronger epiphyte responses than sediment additions, and may be a factor in the lack of epiphyte response reported in some studies. Mesograzer activity is a critical covariate for epiphyte response under experimental nutrient elevation, but the epiphyte response is highly de
NASA Astrophysics Data System (ADS)
Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Roush, J. A.; Hannah, B. A.; Hyndman, D. W.
2017-12-01
Excessive loading of nitrogen and phosphorous to the landscape has caused biologically and economically damaging eutrophication and harmful algal blooms in the Great Lakes Basin (GLB) and across the world. We mapped source-specific loads of nitrogen and phosphorous to the landscape using broadly available data across the GLB. SENSMap (Spatially Explicit Nutrient Source Map) is a 30m resolution snapshot of nutrient loads ca. 2010. We use these maps to study variable nutrient loading and provide this information to watershed managers through NOAA's GLB Tipping Points Planner. SENSMap individually maps nutrient point sources and six non-point sources: 1) atmospheric deposition, 2) septic tanks, 3) non-agricultural chemical fertilizer, 4) agricultural chemical fertilizer, 5) manure, and 6) nitrogen fixation from legumes. To model source-specific loads at high resolution, SENSMap synthesizes a wide range of remotely sensed, surveyed, and tabular data. Using these spatially explicit nutrient loading maps, we can better calibrate local land use-based water quality models and provide insight to watershed managers on how to focus nutrient reduction strategies. Here we examine differences in dominant nutrient sources across the GLB, and how those sources vary by land use. SENSMap's high resolution, source-specific approach offers a different lens to understand nutrient loading than traditional semi-distributed or land use based models.
Both riverine detritus and dissolved nutrients drive lagoon fisheries
NASA Astrophysics Data System (ADS)
Bonthu, Subbareddy; Ganguly, Dipnarayan; Ramachandran, Purvaja; Ramachandran, Ramesh; Pattnaik, Ajit K.; Wolanski, Eric
2016-12-01
The net ecosystem metabolism in lagoons has often been estimated from the net budget of dissolved nutrients. Such is the case of the LOICZ estuarine biogeochemistry nutrient budget model that considers riverine dissolved nutrients, but not riverine detritus. However the neglect of detritus can lead to inconsistencies; for instance, it results in an estimate of 5-10 times more seaward export of nutrients than there is import from rivers in Chilika Lagoon, India. To resolve that discrepancy the UNESCO estuarine ecohydrology model, that considers both dissolved nutrients and detritus, was used and, for Chilika Lagoon, it reproduced successfully the spatial distribution of salinity, dissolved nutrients, phytoplankton and zooplankton as well as the fish yield data. Thus the model suggests that the riverine input of both detritus and dissolved nutrients supports the pelagic food web. The model also reproduces well the observation of decreased fish yield when the mouth of the lagoon was choked in the 1990s, demonstrating the importance of the physics that determine the flushing rate of waterborne matter. Thus, both farming in the watershed by driving the nutrient and detritus inputs to the lagoon, and dredging and engineering management of the mouth by controlling the flushing rate of the lagoon, have a major influence on fish stocks in the lagoon.
Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.
2016-01-01
Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra. PMID:27045973
Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies?
Teste, François P; Veneklaas, Erik J; Dixon, Kingsley W; Lambers, Hans
2015-01-01
Nitrogen (N) transfer among plants has been found where at least one plant can fix N2 . In nutrient-poor soils, where plants with contrasting nutrient-acquisition strategies (without N2 fixation) co-occur, it is unclear if N transfer exists and what promotes it. A novel multi-species microcosm pot experiment was conducted to quantify N transfer between arbuscular mycorrhizal (AM), ectomycorrhizal (EM), dual AM/EM, and non-mycorrhizal cluster-rooted plants in nutrient-poor soils with mycorrhizal mesh barriers. We foliar-fed plants with a K(15) NO3 solution to quantify one-way N transfer from 'donor' to 'receiver' plants. We also quantified mycorrhizal colonization and root intermingling. Transfer of N between plants with contrasting nutrient-acquisition strategies occurred at both low and high soil nutrient levels with or without root intermingling. The magnitude of N transfer was relatively high (representing 4% of donor plant N) given the lack of N2 fixation. Receiver plants forming ectomycorrhizas or cluster roots were more enriched compared with AM-only plants. We demonstrate N transfer between plants of contrasting nutrient-acquisition strategies, and a preferential enrichment of cluster-rooted and EM plants compared with AM plants. Nutrient exchanges among plants are potentially important in promoting plant coexistence in nutrient-poor soils. © 2014 John Wiley & Sons Ltd.
Mo, Qifeng; Zou, Bi; Li, Yingwen; Chen, Yao; Zhang, Weixin; Mao, Rong; Ding, Yongzhen; Wang, Jun; Lu, Xiankai; Li, Xiaobo; Tang, Jianwu; Li, Zhian; Wang, Faming
2015-01-01
Plant N:P ratios are widely used as indices of nutrient limitation in terrestrial ecosystems, but the response of these metrics in different plant tissues to altered N and P availability and their interactions remains largely unclear. We evaluated changes in N and P concentrations, N:P ratios of new leaves (<1 yr), older leaves (>1 yr), stems and mixed fine roots of seven species after 3-years of an N and P addition experiment in a tropical forest. Nitrogen addition only increased fine root N concentrations. P addition increased P concentrations among all tissues. The N × P interaction reduced leaf and stem P concentrations, suggesting a negative effect of N addition on P concentrations under P addition. The reliability of using nutrient ratios as indices of soil nutrient availability varied with tissues: the stoichiometric metrics of stems and older leaves were more responsive indicators of changed soil nutrient availability than those of new leaves and fine roots. However, leaf N:P ratios can be a useful indicator of inter-specific variation in plant response to nutrients availability. This study suggests that older leaf is a better choice than other tissues in the assessment of soil nutrient status and predicting plant response to altered nutrients using nutrients ratios. PMID:26416169
Parasite and nutrient enrichment effects on Daphnia interspecific competition.
Decaestecker, Ellen; Verreydt, Dino; De Meester, Luc; Declerck, Steven A J
2015-05-01
Increased productivity due to nutrient enrichment is hypothesized to affect density-dependent processes, such as transmission success of horizontally transmitting parasites. Changes in nutrient availability can also modify the stoichiometry and condition of individual hosts, which may affect their susceptibility for parasites as well as the growth conditions for parasites within the host. Consequently, if not balanced by increased host immuno-competence or life history responses, changes in the magnitude of parasite effects with increasing nutrient availability are expected. If these parasite effects are host-species specific, this may lead to shifts in the host community structure. We here used the Daphnia- parasite model system to study the effect of nutrient enrichment on parasite-mediated competition in experimental mesocosms. In the absence of parasites, D. magna was competitively dominant to D. pulex at both low and high nutrient levels. Introduction of parasites resulted in infections of D. magna, but not of D. pulex and, as such, reversed the competitive hierarchy between these two species. Nutrient addition resulted in an increased prevalence and infection intensity of some of the parasites on D. magna. However, there was no evidence that high nutrient levels enhanced negative effects of parasites on the hosts. Costs associated with parasite infections may have been compensated by better growth conditions for D. magna in the presence of high nutrient levels.
Rainfall-induced nutrient losses from manure-fertilized farmland in an alluvial plain.
Wang, Yiyao; Li, Huaizheng; Xu, Zuxin
2016-01-01
Nutrient transport and loss in farmlands are affected by factors such as land cover, fertilization, soil type, rainfall, and management practices. We investigated the temporal and spatial changes in macronutrient transport and loss after fertilization and precipitation in manure-fertilized eggplant farmland in an alluvial plain. Upon adding topical fertilizer, concentrations of most nutrients in runoff and groundwater increased, and nitrogen runoff increased from 22.11 to 35.81 kg/ha, although eggplant yield did not increase correspondingly. Incorporation of fertilizer by plowing reduced nutrient losses (nitrogen runoff/fertilizer decreased from 18.40 to 12.29 %). Measurements taken along the nutrient transport route (runoff, drainage ditch, groundwater, river water, and finally rainfall) revealed that concentrations of most nutrients declined at each stage. Nutrient characteristics varied by transport, and the forms of nitrogen and phosphorus differed greatly between runoff and groundwater (nitrate/nitrogen in runoff was ~43.49 %, while in groundwater ~5.41 %). Most nutrient concentrations in runoff decreased greatly during the planting season (total nitrogen decreased from 62.25 to 4.17 mg/L), correlated positively with temperature and stage of plant growth, but little temporal change was observed in groundwater. This field investigation during one planting season exemplifies the basic principles of nutrient loss and transport from manure-fertilized farmland in an alluvial plain.
Tian, Wang; Zhang, Huayong; Zhao, Lei; Zhang, Feifan; Huang, Hai
2017-01-01
The relationship between biodiversity and ecosystem functioning is a central issue in ecology, but how this relationship is affected by nutrient stress is still unknown. In this study, we analyzed the phytoplankton diversity effects on community biomass and stability along nutrient gradients in an artificial eutrophic lake. Four nutrient gradients, varying from slightly eutrophic to highly eutrophic states, were designed by adjusting the amount of polluted water that flowed into the lake. Mean phytoplankton biomass, species richness, and Shannon diversity index all showed significant differences among the four nutrient gradients. Phytoplankton community biomass was correlated with diversity (both species richness and Shannon diversity index), varying from positive to negative along the nutrient gradients. The influence of phytoplankton species richness on resource use efficiency (RUE) also changed from positive to negative along the nutrient gradients. However, the influence of phytoplankton Shannon diversity on RUE was not significant. Both phytoplankton species richness and Shannon diversity had a negative influence on community turnover (measured as community dissimilarity), i.e., a positive diversity–stability relationship. Furthermore, phytoplankton spatial stability decreased along the nutrient gradients in the lake. With increasing nutrient concentrations, the variability (standard deviation) of phytoplankton community biomass increased more rapidly than the average total biomass. Results in this study will be helpful in understanding the phytoplankton diversity effects on ecosystem functioning and how these effects are influenced by nutrient conditions in aquatic ecosystems. PMID:28117684
The Plant Ionome Revisited by the Nutrient Balance Concept
Parent, Serge-Étienne; Parent, Léon Etienne; Egozcue, Juan José; Rozane, Danilo-Eduardo; Hernandes, Amanda; Lapointe, Line; Hébert-Gentile, Valérie; Naess, Kristine; Marchand, Sébastien; Lafond, Jean; Mattos, Dirceu; Barlow, Philip; Natale, William
2013-01-01
Tissue analysis is commonly used in ecology and agronomy to portray plant nutrient signatures. Nutrient concentration data, or ionomes, belong to the compositional data class, i.e., multivariate data that are proportions of some whole, hence carrying important numerical properties. Statistics computed across raw or ordinary log-transformed nutrient data are intrinsically biased, hence possibly leading to wrong inferences. Our objective was to present a sound and robust approach based on a novel nutrient balance concept to classify plant ionomes. We analyzed leaf N, P, K, Ca, and Mg of two wild and six domesticated fruit species from Canada, Brazil, and New Zealand sampled during reproductive stages. Nutrient concentrations were (1) analyzed without transformation, (2) ordinary log-transformed as commonly but incorrectly applied in practice, (3) additive log-ratio (alr) transformed as surrogate to stoichiometric rules, and (4) converted to isometric log-ratios (ilr) arranged as sound nutrient balance variables. Raw concentration and ordinary log transformation both led to biased multivariate analysis due to redundancy between interacting nutrients. The alr- and ilr-transformed data provided unbiased discriminant analyses of plant ionomes, where wild and domesticated species formed distinct groups and the ionomes of species and cultivars were differentiated without numerical bias. The ilr nutrient balance concept is preferable to alr, because the ilr technique projects the most important interactions between nutrients into a convenient Euclidean space. This novel numerical approach allows rectifying historical biases and supervising phenotypic plasticity in plant nutrition studies. PMID:23526060
Pisa, Pedro T.; Pedro, Titilola M.; Kahn, Kathleen; Tollman, Stephen M.; Pettifor, John M.; Norris, Shane A.
2015-01-01
The aim of this study was to identify and describe the diversity of nutrient patterns and how they associate with socio-demographic and lifestyle factors including body mass index in rural black South African adolescents. Nutrient patterns were identified from quantified food frequency questionnaires (QFFQ) in 388 rural South African adolescents between the ages of 11–15 years from the Agincourt Health and Socio-demographic Surveillance System (AHDSS). Principle Component Analysis (PCA) was applied to 25 nutrients derived from QFFQs. Multiple linear regression and partial R2 models were fitted and computed respectively for each of the retained principal component (PC) scores on socio-demographic and lifestyle characteristics including body mass index (BMI) for age Z scores. Four nutrient patterns explaining 79% of the total variance were identified: PCI (26%) was characterized by animal derived nutrients; PC2 (21%) by vitamins, fibre and vegetable oil nutrients; PC3 (19%) by both animal and plant derived nutrients (mixed diet driven nutrients); and PC4 (13%) by starch and folate. A positive and significant association was observed with BMI for age Z scores per 1 standard deviation (SD) increase in PC1 (0.13 (0.02; 0.24); p = 0.02) and PC4 (0.10 (−0.01; 0.21); p = 0.05) scores only. We confirmed variability in nutrient patterns that were significantly associated with various lifestyle factors including obesity. PMID:25984738
Natural selection for costly nutrient recycling in simulated microbial metacommunities.
Boyle, Richard A; Williams, Hywel T P; Lenton, Timothy M
2012-11-07
Recycling of essential nutrients occurs at scales from microbial communities to global biogeochemical cycles, often in association with ecological interactions in which two or more species utilise each others' metabolic by-products. However, recycling loops may be unstable; sequences of reactions leading to net recycling may be parasitised by side-reactions causing nutrient loss, while some reactions in any closed recycling loop are likely to be costly to participants. Here we examine the stability of nutrient recycling loops in an individual-based ecosystem model based on microbial functional types that differ in their metabolism. A supplied nutrient is utilised by a "source" functional type, generating a secondary nutrient that is subsequently used by two other types-a "mutualist" that regenerates the initial nutrient at a growth rate cost, and a "parasite" that produces a refractory waste product but does not incur any additional cost. The three functional types are distributed across a metacommunity in which separate patches are linked by a stochastic diffusive migration process. Regions of high mutualist abundance feature high levels of nutrient recycling and increased local population density leading to greater export of individuals, allowing the source-mutualist recycling loop to spread across the system. Individual-level selection favouring parasites is balanced by patch-level selection for high productivity, indirectly favouring mutualists due to the synergistic productivity benefits of the recycling loop they support. This suggests that multi-level selection may promote nutrient cycling and thereby help to explain the apparent ubiquity and stability of nutrient recycling in nature.
Maillot, Matthieu; Ferguson, Elaine L; Drewnowski, Adam; Darmon, Nicole
2008-06-01
Nutrient profiling ranks foods based on their nutrient content. They may help identify foods with a good nutritional quality for their price. This hypothesis was tested using diet modeling with linear programming. Analyses were undertaken using food intake data from the nationally representative French INCA (enquête Individuelle et Nationale sur les Consommations Alimentaires) survey and its associated food composition and price database. For each food, a nutrient profile score was defined as the ratio between the previously published nutrient density score (NDS) and the limited nutrient score (LIM); a nutritional quality for price indicator was developed and calculated from the relationship between its NDS:LIM and energy cost (in euro/100 kcal). We developed linear programming models to design diets that fulfilled increasing levels of nutritional constraints at a minimal cost. The median NDS:LIM values of foods selected in modeled diets increased as the levels of nutritional constraints increased (P = 0.005). In addition, the proportion of foods with a good nutritional quality for price indicator was higher (P < 0.0001) among foods selected (81%) than among foods not selected (39%) in modeled diets. This agreement between the linear programming and the nutrient profiling approaches indicates that nutrient profiling can help identify foods of good nutritional quality for their price. Linear programming is a useful tool for testing nutrient profiling systems and validating the concept of nutrient profiling.
Global nutrient transport in a world of giants
Doughty, Christopher E.; Roman, Joe; Faurby, Søren; Wolf, Adam; Haque, Alifa; Bakker, Elisabeth S.; Malhi, Yadvinder; Dunning, John B.; Svenning, Jens-Christian
2016-01-01
The past was a world of giants, with abundant whales in the sea and large animals roaming the land. However, that world came to an end following massive late-Quaternary megafauna extinctions on land and widespread population reductions in great whale populations over the past few centuries. These losses are likely to have had important consequences for broad-scale nutrient cycling, because recent literature suggests that large animals disproportionately drive nutrient movement. We estimate that the capacity of animals to move nutrients away from concentration patches has decreased to about 8% of the preextinction value on land and about 5% of historic values in oceans. For phosphorus (P), a key nutrient, upward movement in the ocean by marine mammals is about 23% of its former capacity (previously about 340 million kg of P per year). Movements by seabirds and anadromous fish provide important transfer of nutrients from the sea to land, totalling ∼150 million kg of P per year globally in the past, a transfer that has declined to less than 4% of this value as a result of the decimation of seabird colonies and anadromous fish populations. We propose that in the past, marine mammals, seabirds, anadromous fish, and terrestrial animals likely formed an interlinked system recycling nutrients from the ocean depths to the continental interiors, with marine mammals moving nutrients from the deep sea to surface waters, seabirds and anadromous fish moving nutrients from the ocean to land, and large animals moving nutrients away from hotspots into the continental interior. PMID:26504209
Global nutrient transport in a world of giants.
Doughty, Christopher E; Roman, Joe; Faurby, Søren; Wolf, Adam; Haque, Alifa; Bakker, Elisabeth S; Malhi, Yadvinder; Dunning, John B; Svenning, Jens-Christian
2016-01-26
The past was a world of giants, with abundant whales in the sea and large animals roaming the land. However, that world came to an end following massive late-Quaternary megafauna extinctions on land and widespread population reductions in great whale populations over the past few centuries. These losses are likely to have had important consequences for broad-scale nutrient cycling, because recent literature suggests that large animals disproportionately drive nutrient movement. We estimate that the capacity of animals to move nutrients away from concentration patches has decreased to about 8% of the preextinction value on land and about 5% of historic values in oceans. For phosphorus (P), a key nutrient, upward movement in the ocean by marine mammals is about 23% of its former capacity (previously about 340 million kg of P per year). Movements by seabirds and anadromous fish provide important transfer of nutrients from the sea to land, totalling ∼150 million kg of P per year globally in the past, a transfer that has declined to less than 4% of this value as a result of the decimation of seabird colonies and anadromous fish populations. We propose that in the past, marine mammals, seabirds, anadromous fish, and terrestrial animals likely formed an interlinked system recycling nutrients from the ocean depths to the continental interiors, with marine mammals moving nutrients from the deep sea to surface waters, seabirds and anadromous fish moving nutrients from the ocean to land, and large animals moving nutrients away from hotspots into the continental interior.
Emergence of nutrient limitation in tropical dry forests: hypotheses from simulation models
NASA Astrophysics Data System (ADS)
Medvigy, D.; Waring, B. G.; Xu, X.; Trierweiler, A.; Werden, L. K.; Wang, G.; Zhu, Q.; Powers, J. S.
2017-12-01
It is unclear to what extent tropical dry forest productivity may be limited by nutrients. Direct assessment of nutrient limitation through fertilization experiments has been rare, and paradigms pertaining to other ecosystems may not extend to tropical dry forests. For example, because dry tropical forests have a lower water supply than moist tropical forests, dry forests can have lower decomposition rates, higher soil carbon and nitrogen concentrations, and a more open nitrogen cycle than moist forests. We used a mechanistic, numerical model to generate hypotheses about nutrient limitation in tropical dry forests. The model dynamically couples ED2 (vegetation dynamics), MEND (biogeochemistry), and N-COM (plant-microbe competition for nutrients). Here, the MEND-component of the model has been extended to include nitrogen (N) and phosphorus (P) cycles. We focus on simulation of sixteen 25m x 25m plots in Costa Rica where a fertilization experiment has been underway since 2015. Baseline simulations are characterized by both nitrogen and phosphorus limitation of vegetation. Fertilization with N and P increased vegetation biomass, with N fertilization having a somewhat stronger effect. Nutrient limitation was also sensitive to climate and was more pronounced during drought periods. Overflow respiration was identified as a key process that mitigated nutrient limitation. These results suggest that, despite often having richer soils than tropical moist forests, tropical dry forests can also become nutrient-limited. If the climate becomes drier in the next century, as is expected for Central America, drier soils may decrease microbial activity and exacerbate nutrient limitation. The importance of overflow respiration underscores the need for appropriate treatment of microbial dynamics in ecosystem models. Ongoing and new nutrient fertilization experiments will present opportunities for testing whether, and how, nutrient limitation may indeed be emerging in tropical dry forests.
Nutrient sequestration in Aquitaine lakes (SW France) limits nutrient flux to the coastal zone
NASA Astrophysics Data System (ADS)
Buquet, Damien; Anschutz, Pierre; Charbonnier, Céline; Rapin, Anne; Sinays, Rémy; Canredon, Axel; Bujan, Stéphane; Poirier, Dominique
2017-12-01
Oligotrophic coastal zones are disappearing from increased nutrient loading. The quantity of nutrients reaching the coast is determined not only by their original source (e.g. fertilizers used in agriculture, waste water discharges) and the land use, but also by the pathways through which nutrients are cycled from the source to the river mouth. In particular, lakes sequester nutrients and, hence, reduce downstream transfer of nutrients to coastal environments. Here, we quantify the impact of Aquitaine great lakes on the fluxes of dissolved macro-nutrients (N, P, Si) to the Bay of Biscay. For that, we have measured nutrient concentrations and fluxes in 2014 upstream and downstream lakes of Lacanau and Carcans-Hourtin, which belongs to the catchment of the Arcachon Bay, which is the largest coastal lagoon of the Bay of Biscay French coast. Data were compared to values obtained from the Leyre river, the main freshwater and nutrient source for the lagoon. Results show that processes in lakes greatly limit nutrient flux to the lagoon compared to fluxes from Leyre river, although the watershed is similar in terms of land cover. In lakes, phosphorus and silicon are trapped for long term in the sediment, silicon as amorphous biogenic silica and phosphorus as organic P and P associated with Fe-oxides. Nitrogen that enters lakes mostly as nitrate is used for primary production. N is mineralized in the sediment; a fraction diffuses as ammonium. N2 production through benthic denitrification extracts only 10% of dissolved inorganic nitrogen from the aquatic system. The main part is sequestered in organic-rich sediment that accumulates below 5 m depth in both lakes.
Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi
2016-04-15
Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ayub, R.; Obenour, D. R.; Keyworth, A. J.; Genereux, D. P.; Mahinthakumar, K.
2016-12-01
Groundwater contamination by nutrients (nitrogen and phosphorus) is a major concern in water table aquifers that underlie agricultural areas in the mid-Atlantic Coastal Plain of the United States. High nutrient concentrations leaching into shallow groundwater can lead to human health problems and eutrophication of receiving surface waters. Liquid manure from concentrated animal feeding operations (CAFOs) stored in open-air lagoons and applied to spray fields can be a significant source of nutrients to groundwater, along with septic waste. In this study, we developed a model-based methodology for source apportionment and vulnerability assessment using sparse groundwater quality sampling measurements for Duplin County, North Carolina (NC), obtained by the NC Department of Environmental Quality (NC DEQ). This model provides information relevant to management by estimating the nutrient transport through the aquifer from different sources and addressing the uncertainty of nutrient contaminant propagation. First, the zones of influence (dependent on nutrient pathways) for individual groundwater monitoring wells were identified using a two-dimensional vertically averaged groundwater flow and transport model incorporating geologic uncertainty for the surficial aquifer system. A multiple linear regression approach is then applied to estimate the contribution weights for different nutrient source types using the nutrient measurements from monitoring wells and the potential sources within each zone of influence. Using the source contribution weights and their uncertainty, a probabilistic vulnerability assessment of the study area due to nutrient contamination is performed. Knowledge of the contribution of different nutrient sources to contamination at receptor locations (e.g., private wells, municipal wells, stream beds etc.) will be helpful in planning and implementation of appropriate mitigation measures.
Imaging Nutrient Distribution in the Rhizosphere Using FTIR Imaging
Victor, Tiffany; Delpratt, Natalie; Cseke, Sarah Beth; ...
2017-03-06
Symbiotic associations in the rhizosphere between plants and microorganisms lead to efficient changes in the distribution of nutrients that promote growth and development for each organism involved. Understanding these nutrient fluxes provides insight into the molecular dynamics involved in nutrient transport from one organism to the other. Here, to study such a nutrient flow, a new application of Fourier transform infrared imaging (FTIRI) was developed that entailed growing Populus tremulodes seedlings on a thin, nutrient-enriched Phytagel matrix that allows pixel to pixel measurement of the distribution of nutrients, in particular, nitrate, in the rhizosphere. The FTIR spectra collected from ammoniummore » nitrate in the matrix indicated the greatest changes in the spectra at 1340 cm -1 due to the asymmetric stretching vibrations of nitrate. For quantification of the nitrate concentration in the rhizosphere of experimental plants, a calibration curve was generated that gave the nitrate concentration at each pixel in the chemical image. These images of the poplar rhizosphere showed evidence for symbiotic sharing of nutrients between the plant and the fungi, Laccaria bicolor, where the nitrate concentration was five times higher near mycorrhizal roots than further out into the rhizosphere. This suggested that nitrates are acquired and transported from the media toward the plant root by the fungi. Similarly, the sucrose used in the growth media as a carbon source was depleted around the fungi, suggesting its uptake and consumption by the system. In conclusion, this study is the first of its kind to visualize and quantify the nutrient availability associated with mycorrhizal interactions, indicating that FTIRI has the ability to monitor nutrient changes with other microorganisms in the rhizosphere as a key step for understanding nutrient flow processes in more diverse biological systems.« less
NASA Astrophysics Data System (ADS)
Zhao, Yongcun; Xu, Xianghua; Darilek, Jeremy Landon; Huang, Biao; Sun, Weixia; Shi, Xuezheng
2009-05-01
Topsoil samples (0-20 cm) ( n = 237) were collected from Rugao County, China. Geostatistical variogram analysis, sequential Gaussian simulation (SGS), and principal component (PC) analysis were applied to assess spatial variability of soil nutrients, identify the possible areas of nutrient deficiency, and explore spatial scale of variability of soil nutrients in the county. High variability of soil nutrient such as soil organic matter (SOM), total nitrogen (TN), available P, K, Fe, Mn, Cu, Zn, and B concentrations were observed. Soil nutrient properties displayed significant differences in their spatial structures, with available Cu having strong spatial dependence, SOM and available P having weak spatial dependence, and other nutrient properties having moderate spatial dependence. The soil nutrient deficiency, defined here as measured nutrient concentrations which do not meet the advisory threshold values specific to the county for dominant crops, namely rice, wheat, and rape seeds, was observed in available K and Zn, and the deficient areas covered 38 and 11%, respectively. The first three PCs of the nine soil nutrient properties explained 62.40% of the total variance. TN and SOM with higher loadings on PC1 are closely related to soil texture derived from different parent materials. The PC2 combined intermediate response variables such as available Zn and P that are likely to be controlled by land use and soil pH. Available B has the highest loading on PC3 and its variability of concentrations may be primarily ascribed to localized anthropogenic influence. The amelioration of soil physical properties (i.e. soil texture) and soil pH may improve the availability of soil nutrients and the sustainability of the agricultural system of Rugao County.
Talsma, Elise F; Borgonjen-van den Berg, Karin J; Melse-Boonstra, Alida; Mayer, Eva V; Verhoef, Hans; Demir, Ayşe Y; Ferguson, Elaine L; Kok, Frans J; Brouwer, Inge D
2018-02-01
Introduction of biofortified cassava as school lunch can increase vitamin A intake, but may increase risk of other deficiencies due to poor nutrient profile of cassava. We assessed the potential effect of introducing a yellow cassava-based school lunch combined with additional food-based recommendations (FBR) on vitamin A and overall nutrient adequacy using Optifood (linear programming tool). Cross-sectional study to assess dietary intakes (24 h recall) and derive model parameters (list of foods consumed, median serving sizes, food and food (sub)group frequency distributions, food cost). Three scenarios were modelled, namely daily diet including: (i) no school lunch; (ii) standard 5d school lunch with maize/beans; and (iii) 5d school lunch with yellow cassava. Each scenario and scenario 3 with additional FBR were assessed on overall nutrient adequacy using recommended nutrient intakes (RNI). Eastern Kenya. Primary-school children (n 150) aged 7-9 years. Best food pattern of yellow cassava-based lunch scenario achieved 100 % RNI for six nutrients compared with no lunch (three nutrients) or standard lunch (five nutrients) scenario. FBR with yellow cassava and including small dried fish improved nutrient adequacy, but could not ensure adequate intake of fat (52 % of average requirement), riboflavin (50 % RNI), folate (59 % RNI) and vitamin A (49 % RNI). Introduction of yellow cassava-based school lunch complemented with FBR potentially improved vitamin A adequacy, but alternative interventions are needed to ensure dietary adequacy. Optifood is useful to assess potential contribution of a biofortified crop to nutrient adequacy and to develop additional FBR to address remaining nutrient gaps.
Lv, Hexin; Cui, Xianggan; Wahid, Fazli; Xia, Feng; Zhong, Cheng; Jia, Shiru
2016-01-01
The halotolerant chlorophyte Dunaliella salina can accumulate up to 10% of its dry weight as β-carotene in chloroplasts when subjected to adverse conditions, including nutrient deprivation. However, the mechanisms of carotenoid biosynthesis are poorly understood. Here, the physiological and molecular responses to the deprivation of nitrogen (-N), sulfur (-S), phosphorus (-P) and different combinations of those nutrients (-N-P, -N-S, -P-S and -N-P-S) were compared to gain insights into the underlying regulatory mechanisms of carotenoid biosynthesis. The results showed that both the growth and photosynthetic rates of cells were decreased during nutrient deprivation, accompanied by lipid globule accumulation and reduced chlorophyll levels. The SOD and CAT activities of the cells were altered during nutrient deprivation, but their responses were different. The total carotenoid contents of cells subjected to multiple nutrient deprivation were higher than those of cells subjected to single nutrient deprivation and non-stressed cells. The β-carotene contents of cells subjected to -N-P, -N-S and -N-P-S were higher than those of cells subjected to single nutrient deprivation. Cells subjected to sulfur deprivation accumulated more lutein than cells subjected to nitrogen and phosphorous deprivation. In contrast, no cumulative effects of nutrient deprivation on the transcription of genes in the carotenogenic pathway were observed because MEP and carotenogenic pathway genes were up-regulated during single nutrient deprivation but were downregulated during multiple nutrient deprivation. Therefore, we proposed that the carotenoid biosynthesis pathway of D. salina is regulated at both the transcriptional and posttranscriptional levels and that a complex crosstalk occurs at the physiological and molecular levels in response to the deprivation of different nutrients. PMID:27023397
Organic Biochar Based Fertilization
NASA Astrophysics Data System (ADS)
Schmidt, Hans-Peter; Pandit, Bishnu Hari; Cornelissen, Gerard; Kammann, Claudia
2017-04-01
Biochar produced in cost-efficient flame curtain kilns (Kon-Tiki) was nutrient enriched either with cow urine or with dissolved mineral (NPK) fertilizer to produce biochar-based fertilizers containing between 60-100 kg N, 5-60 kg P2O5 and 60-100 kg K2O, respectively, per ton of biochar. In 21 field trials nutrient-enriched biochars were applied at rates of 0.5 to 2 t ha-1 into the root zone of 13 different annual and perennial crops. Treatments combining biochar, compost and organic or chemical fertilizer were evaluated; control treatments contained the same amounts of nutrients but without biochar. All nutrient-enriched biochar substrates improved yields compared to their respective no-biochar controls. Biochar enriched with dissolved NPK produced on average 20% ± 5.1% (N=4) higher yields than standard NPK fertilization without biochar. Cow urine-enriched biochar blended with compost resulted on average in 123% ± 76.7% (N=13) higher yields compared to the organic farmer practice with cow urine-blended compost and outcompeted NPK-enriched biochar (same nutrient dose) by 103% ± 12.4% (N=4) on average. 21 field trials robustly revealed that low-dosage root zone application of organic biochar-based fertilizers caused substantial yield increases in rather fertile silt loam soils compared to traditional organic fertilization and to mineral NPK- or NPK-biochar fertilization. This can likely be explained by the nutrient carrier effect of biochar causing a slow nutrient release behavior, more balanced nutrient fluxes and reduced nutrient losses especially when liquid organic nutrients are used for the biochar enrichment. The results promise new pathways for optimizing organic farming and improving on-farm nutrient cycling.
Nutrient production from dairy cattle manure and loading on arable land.
Won, Seunggun; Shim, Soo-Min; You, Byung-Gu; Choi, Yoon-Seok; Ra, Changsix
2017-01-01
Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (ΔP = 0). The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management.
NASA Astrophysics Data System (ADS)
Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Bradley, Chris
2016-04-01
Excessive nutrient concentrations in river waters threaten aquatic ecosystem functioning and can pose substantial risks to human health. Robust monitoring strategies are therefore required to generate reliable estimates of river nutrient loads and to improve understanding of the catchment processes that drive spatiotemporal patterns in nutrient fluxes. Furthermore, these data are vital for prediction of future trends under changing environmental conditions and thus the development of appropriate mitigation measures. In recent years, technological developments have led to an increase in the use of continuous in-situ nutrient analysers, which enable measurements at far higher temporal resolutions than can be achieved with discrete sampling and subsequent laboratory analysis. However, such instruments can be costly to run and difficult to maintain (e.g. due to high power consumption and memory requirements), leading to trade-offs between temporal and spatial monitoring resolutions. Here, we highlight how adaptive monitoring strategies, comprising a mixture of temporal sample frequencies controlled by one or more 'trigger variables' (e.g. river stage, turbidity, or nutrient concentration), can advance our understanding of catchment nutrient dynamics while simultaneously overcoming many of the practical and economic challenges encountered in typical in-situ river nutrient monitoring applications. We present examples of short-term variability in river nutrient dynamics, driven by complex catchment behaviour, which support our case for the development of monitoring systems that can adapt in real-time to rapid environmental changes. In addition, we discuss the advantages and disadvantages of current nutrient monitoring techniques, and suggest new research directions based on emerging technologies and highlight how these might improve: 1) monitoring strategies, and 2) understanding of linkages between catchment processes and river nutrient fluxes.
Biogeochemical Hotspots: Role of Small Wetlands in Nutrient Processing at the Watershed Scale
NASA Astrophysics Data System (ADS)
Cheng, F. Y.; Basu, N. B.
2016-12-01
Increased loading of nutrients (nitrogen N and phosphorus P) from agricultural and urban intensification in the Anthropocene has led to severe degradation of inland and coastal waters. Amongst aquatic ecosystems, wetlands receive and retain significant quantities of nutrients and thus are important regulators of nutrient transport in watersheds. While the factors controlling N and P retention in wetlands is relatively well known, there is a lack of quantitative understanding on the relative contributions of the different factors on nutrient retention. There is also a deficiency in knowledge of how these processes behave across system size and type. In our study, we synthesized nutrient retention data from wetlands, lakes, and reservoirs to gain insight on the relationship between hydrologic and biogeochemical controls on nutrient retention. Our results indicated that the first-order reaction rate constant, k [T-1], is inversely proportional to the hydraulic residence time, τ, across six orders of magnitude in residence time for total nitrogen, total phosphorus, nitrate and phosphate. We hypothesized that the consistency of the relationship across constituent and system types points to the strong hydrologic control on biogeochemical processing. The hypothesis was tested using a two-compartment mechanistic model that links the nutrient removal processes (denitrification for N and sedimentation for P) with the system size. Finally, the k-τ relationships were upscaled with a regional size-frequency distribution to demonstrate the disproportionately large role of small wetlands in watershed-scale nutrient processing. Our results highlight the importance of hydrological controls as the dominant modifiers of nutrient removal mechanisms and the need for a stronger focus on small lentic ecosystems like wetlands as major nutrient sinks in the landscape.
Imaging Nutrient Distribution in the Rhizosphere Using FTIR Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victor, Tiffany; Delpratt, Natalie; Cseke, Sarah Beth
Symbiotic associations in the rhizosphere between plants and microorganisms lead to efficient changes in the distribution of nutrients that promote growth and development for each organism involved. Understanding these nutrient fluxes provides insight into the molecular dynamics involved in nutrient transport from one organism to the other. Here, to study such a nutrient flow, a new application of Fourier transform infrared imaging (FTIRI) was developed that entailed growing Populus tremulodes seedlings on a thin, nutrient-enriched Phytagel matrix that allows pixel to pixel measurement of the distribution of nutrients, in particular, nitrate, in the rhizosphere. The FTIR spectra collected from ammoniummore » nitrate in the matrix indicated the greatest changes in the spectra at 1340 cm -1 due to the asymmetric stretching vibrations of nitrate. For quantification of the nitrate concentration in the rhizosphere of experimental plants, a calibration curve was generated that gave the nitrate concentration at each pixel in the chemical image. These images of the poplar rhizosphere showed evidence for symbiotic sharing of nutrients between the plant and the fungi, Laccaria bicolor, where the nitrate concentration was five times higher near mycorrhizal roots than further out into the rhizosphere. This suggested that nitrates are acquired and transported from the media toward the plant root by the fungi. Similarly, the sucrose used in the growth media as a carbon source was depleted around the fungi, suggesting its uptake and consumption by the system. In conclusion, this study is the first of its kind to visualize and quantify the nutrient availability associated with mycorrhizal interactions, indicating that FTIRI has the ability to monitor nutrient changes with other microorganisms in the rhizosphere as a key step for understanding nutrient flow processes in more diverse biological systems.« less
Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients
NASA Astrophysics Data System (ADS)
Kanakidou, Maria; Myriokefalitakis, Stelios; Tsigaridis, Kostas
2018-06-01
Atmospheric aerosols have complex and variable compositions and properties. While scientific interest is centered on the health and climatic effects of atmospheric aerosols, insufficient attention is given to their involvement in multiphase chemistry that alters their contribution as carriers of nutrients in ecosystems. However, there is experimental proof that the nutrient equilibria of both land and marine ecosystems have been disturbed during the Anthropocene period. This review study first summarizes our current understanding of aerosol chemical processing in the atmosphere as relevant to biogeochemical cycles. Then it binds together results of recent modeling studies based on laboratory and field experiments, focusing on the organic and dust components of aerosols that account for multiphase chemistry, aerosol ageing in the atmosphere, nutrient (N, P, Fe) emissions, atmospheric transport, transformation and deposition. The human-driven contribution to atmospheric deposition of these nutrients, derived by global simulations using past and future anthropogenic emissions of pollutants, is put into perspective with regard to potential changes in nutrient limitations and biodiversity. Atmospheric deposition of nutrients has been suggested to result in human-induced ecosystem limitations with regard to specific nutrients. Such modifications favor the development of certain species against others and affect the overall functioning of ecosystems. Organic forms of nutrients are found to contribute to the atmospheric deposition of the nutrients N, P and Fe by 20%–40%, 35%–45% and 7%–18%, respectively. These have the potential to be key components of the biogeochemical cycles since there is initial proof of their bioavailability to ecosystems. Bioaerosols have been found to make a significant contribution to atmospheric sources of N and P, indicating potentially significant interactions between terrestrial and marine ecosystems. These results deserve further experimental and modeling studies to reduce uncertainties and understand the feedbacks induced by atmospheric deposition of nutrients to ecosystems.
Nutrient intake values (NIVs): a recommended terminology and framework for the derivation of values.
King, Janet C; Vorster, Hester H; Tome, Daniel G
2007-03-01
Although most countries and regions around the world set recommended nutrient intake values for their populations, there is no standardized terminology or framework for establishing these standards. Different terms used for various components of a set of dietary standards are described in this paper and a common set of terminology is proposed. The recommended terminology suggests that the set of values be called nutrient intake values (NIVs) and that the set be composed of three different values. The average nutrient requirement (ANR) reflects the median requirement for a nutrient in a specific population. The individual nutrient level (INLx) is the recommended level of nutrient intake for all healthy people in the population, which is set at a certain level x above the mean requirement. For example, a value set at 2 standard deviations above the mean requirement would cover the needs of 98% of the population and would be INL98. The third component of the NIVs is an upper nutrient level (UNL), which is the highest level of daily nutrient intake that is likely to pose no risk of adverse health effects for almost all individuals in a specified life-stage group. The proposed framework for deriving a set of NIVs is based on a statistical approach for determining the midpoint of a distribution of requirements for a set of nutrients in a population (the ANR), the standard deviation of the requirements, and an individual nutrient level that assures health at some point above the mean, e.g., 2 standard deviations. Ideally, a second set of distributions of risk of excessive intakes is used as the basis for a UNL.
NASA Astrophysics Data System (ADS)
Yan, J.; Ghezzehei, T. A.
2017-12-01
The rhizosphere is the region of soil that surrounds by individual plant roots. While its small volume and narrow region compared to bulk soil, the rhizosphere regulates numerous processes that determine physical structure, nutrient distribution, and biodiversity of soils. One of the most important and distinct functions of the rhizosphere is the capacity of roots to bridge and redistribute soil water from wet soil layers to drier layers. This process was identified and defined as hydraulic lift or hydraulic redistribution, a passive process driven by gradients in water potentials and it has attracted much research attention due to its important role in global water circulation and agriculture security. However, while previous studies mostly focused on the hydrological or physiological impacts of hydraulic redistribution, limited research has been conducted to elucidate its role in nutrient cycling and uptake. In this study, we aim to test the possibility of utilizing hydraulic redistribution to facilitate the nutrient movement and uptake from resource segregated zone. Our overarching hypothesis is that plants can extract nutrients from the drier but nutrient-rich regions by supplying sufficient amounts of water from the wet but nutrient-deficient regions. To test our hypothesis, we designed split-root systems of tomatoes with unequal supply of water and nutrients in different root compartments. More specifically, we transplanted tomato seedlings into sand or soil mediums, and grew them under conditions with alternate 12-h lightness and darkness. We continuously monitored the temperature, water and nutrient content of soils in these separated compartments. The above and below ground biomass were also quantified to evaluate the impacts on the plant growth. The results were compared to a control with evenly supply of water and nutrients to assess the plant growth, nutrient leaching and uptake without hydraulic redistribution.
Lentjes, M A H; Mulligan, A A; Welch, A A; Bhaniani, A; Luben, R N; Khaw, K–T
2015-01-01
Background Total nutrient intake (TNI) is intake from food and supplements. This provides an assessment of nutrient adequacy and the prevalence of excessive intake, as well as the response with respect to biomarkers. Cod liver oil (CLO) is the most frequently consumed supplement in the UK, containing nutrients that might have varying influences on health. We calculated TNI for vitamins A, D and E, as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and assessed associations with the respective blood concentrations. Methods Seven-day diet diaries and blood samples were taken from two subsets of the European Prospective Investigation into Cancer (EPIC-Norfolk) cohort (age range 39–79 years; n = 1400 for vitamin D; n = 6656 for remaining nutrients). TNI was calculated for the subgroups: nonsupplement users, those consuming the nutrient in supplement form and those consuming a supplement without this nutrient. Results CLO-related nutrients were supplemented by 15%–33%, which approximately doubled median intakes. Almost everyone in the supplement + vitamin A group reached the estimated average requirement; however, guideline levels were likely to be exceeded. Partial correlations between intake of vitamins A and D and biomarkers were low and modestly strengthened by the inclusion of supplement sources (correlation = 0.01–0.13). Correlations between biomarker and TNI of vitamin E and EPA+DHA were in the range 0.40–0.46; however, vitamin E exceeding food intake resulted in attenuated coefficients. Linear associations between food or TNI EPA+DHA and plasma were weak but consistent across subgroups. Conclusions CLO-related nutrients contribute substantially to nutrient intake, with a risk of over-consumption. Apart from EPA+DHA, biomarker data suggest that CLO-related nutrients in supplements are not linearly associated with vitamin status. PMID:25228113
Aristi, I; Casellas, M; Elosegi, A; Insa, S; Petrovic, M; Sabater, S; Acuña, V
2016-05-01
Freshwater ecosystems are threatened by multiple anthropogenic stressors, which might be differentiated into two types: those that reduce biological activity at all concentrations (toxic contaminants), and those that subsidize biological activity at low concentrations and reduce it at high concentrations (assimilable contaminants). When occurring in mixtures, these contaminants can have either antagonistic, neutral or synergistic effects; but little is known on their joint effects. We assessed the interaction effects of a mixture of assimilable and toxic contaminants on stream biofilms in a manipulative experiment using artificial streams, and following a factorial design with three nutrient levels (low, medium or high) and either presence or absence of a mixture of emerging contaminants (ciprofloxacin, erythromycin, diclofenac, methylparaben, and sulfamethoxazole). We measured biofilm biomass, basal fluorescence, gross primary production and community respiration. Our initial hypotheses were that biofilm biomass and activity would: increase with medium nutrient concentrations (subsidy effect), but decrease with high nutrient concentrations (stress effect) (i); decrease with emerging contaminants, with the minimum decrease at medium nutrient concentrations (antagonistic interaction between nutrients subsidy and stress by emerging contaminants) and the maximum decrease at high nutrient concentrations (synergistic interaction between nutrients and emerging contaminants stress) (ii). All the measured variables responded linearly to the available nutrients, with no toxic effect at high nutrient concentrations. Emerging contaminants only caused weak toxic effects in some of the measured variables, and only after 3-4 weeks of exposure. Therefore, only antagonistic interactions were observed between nutrients and emerging contaminants, as medium and high nutrient concentrations partly compensated the harmful effects of emerging contaminants during the first weeks of the experiment. Our results show that contaminants with a subsidy effect can alleviate the effects of toxic contaminants, and that long-term experiments are required to detect stress effects of emerging contaminants at environmentally relevant concentrations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Seedling growth responses to soil resources in the understory of a wet tropical forest.
Holste, Ellen K; Kobe, Richard K; Vriesendorp, Corine F
2011-09-01
Plant growth responses to resources may be an important mechanism that influences species' distributions, coexistence, and community structure. Irradiance is considered the most important resource for seedling growth in the understory of wet tropical forests, but multiple soil nutrients and species have yet to be examined simultaneously with irradiance under field conditions. To identify potentially limiting resources, we modeled tree seedling growth as a function of irradiance and soil nutrients across five sites, spanning a soil fertility gradient in old-growth, wet tropical forests at La Selva Biological Station, Costa Rica. We measured an array of soil nutrients including total nitrogen (total N), inorganic N (nitrate [NO3-] and ammonium [NH4+]), phosphate (PO4-), and sum of base cations (SBC; potassium, magnesium, and calcium). Shade in the forest understory did not preclude seedling growth correlations with soil nutrients. Irradiance was a significant predictor of growth in 52% of the species, inorganic N in 54% (NO3- in 32%; NH4+ in 34%), total N in 47%, SBC in 39%, and PO4- in 29%. Overall, growth was correlated with both irradiance and soil nutrients in 45% of species and with soil nutrients only in an additional 48%; rarely was irradiance alone correlated with growth. Contrary to expectations, the magnitudes of growth effects, assessed as the maximum growth response to significant resources for each species, were similar for irradiance and most soil nutrients. Among species whose growth correlated with soil nutrients, the rank importance of nutrient effects was SBC, followed by N (total N, NO3-, and/or NH4+) and PO4-. Species' growth responsiveness (i.e., magnitudes of effect) to irradiance and soil nutrients was negatively correlated with species' shade tolerance (survival under 1% full sun). In this broad survey of species and resources, the nearly ubiquitous effects of soil nutrients on seedling growth challenge the idea that soil nutrients are less important than irradiance in the light-limited understory of wet tropical forests.
NASA Astrophysics Data System (ADS)
Yorks, T. E.; Leopold, D. J.; Raynal, D. J.; Murdoch, P. S.; Burns, D. A.
2003-12-01
We quantified the response of vegetation and nutrient uptake in a northern hardwood forest in southeastern New York for three to four years after three intensities of harvesting: clearcutting, heavy timber stand improvement (TSI), light TSI (97, 29, and 10% basal area reductions, respectively). We also quantified effects of white-tailed deer (Odocoileus virginianus) herbivory on nutrient retention by vegetation. Total biomass and nutrient accumulation in vegetation was higher after TSI than clearcutting in the first two years but was highest in the fenced clearcut in subsequent years, indicating that TSI or partial harvesting is a viable management tool for harvesting timber while consistently maintaining high rates of nutrient retention. After clearcutting, biomass and nutrient retention were initially dominated by woody stems <1.4 m tall and herbaceous vegetation, but saplings 0.1-5.0 cm DBH became the most important contributors to biomass and nutrient accumulation within four years. However, after both intensities of TSI, trees >5.0 cm DBH continued to account for most biomass and nutrient accumulation whereas understory vegetation accumulated little biomass or nutrients. Heavy TSI resulted in increased regeneration of only two tree species (Acer pensylvanicum, Fagus grandifolia), but clearcutting allowed these two species, mature forest species (A. saccharum, Betula alleghaniensis), and the early successional Prunus pensylvanica to regenerate. Several early successional shrub and herbaceous species were also important to nutrient retention after clearcutting, including Polygonum cilinode, Rubus spp., and Sambucus racemosa. Herbivory by white-tailed deer dramatically reduced biomass and nutrient accumulation by woody stems <5 cm DBH after clearcutting (5.5 vs. 0.7 Mg biomass/ha and 30.4 vs. 6.3 kg N/ha on fenced and unfenced clearcut sites, respectively, after four years), indicating the important influence this herbivore can have on nutrient retention in recently disturbed forests.
Measuring variability in trophic status in the Lake Waco/Bosque River Watershed
Rodriguez, Angela D; Matlock, Marty D
2008-01-01
Background Nutrient management in rivers and streams is difficult due to the spatial and temporal variability of algal growth responses. The objectives of this project were to determine the spatial and seasonal in situ variability of trophic status in the Lake Waco/Bosque River watershed, determine the variability in the lotic ecosystem trophic status index (LETSI) at each site as indicators of the system's nutrient sensitivity, and determine if passive diffusion periphytometers could provide threshold algal responses to nutrient enrichment. Methods We used the passive diffusion periphytometer to measure in-situ nutrient limitation and trophic status at eight sites in five streams in the Lake Waco/Bosque River Watershed in north-central Texas from July 1997 through October 1998. The chlorophyll a production in the periphytometers was used as an indicator of baseline chlorophyll a productivity and of maximum primary productivity (MPP) in response to nutrient enrichment (nitrogen and phosphorus). We evaluated the lotic ecosystem trophic status index (LETSI) using the ratio of baseline primary productivity to MPP, and evaluated the trophic class of each site. Results The rivers and streams in the Lake Waco/Bosque River Watershed exhibited varying degrees of nutrient enrichment over the 18-month sampling period. The North Bosque River at the headwaters (NB-02) located below the Stephenville, Texas wastewater treatment outfall consistently exhibited the highest degree of water quality impact due to nutrient enrichment. Sites at the outlet of the watershed (NB-04 and NB-05) were the next most enriched sites. Trophic class varied for enriched sites over seasons. Conclusion Seasonality played a significant role in the trophic class and sensitivity of each site to nutrients. Managing rivers and streams for nutrients will require methods for measuring in situ responses and sensitivities to nutrient enrichment. Nutrient enrichment periphytometers show significant potential for use in nutrient gradient studies. PMID:18271947
Measuring variability in trophic status in the Lake Waco/Bosque River Watershed.
Rodriguez, Angela D; Matlock, Marty D
2008-01-11
Nutrient management in rivers and streams is difficult due to the spatial and temporal variability of algal growth responses. The objectives of this project were to determine the spatial and seasonal in situ variability of trophic status in the Lake Waco/Bosque River watershed, determine the variability in the lotic ecosystem trophic status index (LETSI) at each site as indicators of the system's nutrient sensitivity, and determine if passive diffusion periphytometers could provide threshold algal responses to nutrient enrichment. We used the passive diffusion periphytometer to measure in-situ nutrient limitation and trophic status at eight sites in five streams in the Lake Waco/Bosque River Watershed in north-central Texas from July 1997 through October 1998. The chlorophyll a production in the periphytometers was used as an indicator of baseline chlorophyll a productivity and of maximum primary productivity (MPP) in response to nutrient enrichment (nitrogen and phosphorus). We evaluated the lotic ecosystem trophic status index (LETSI) using the ratio of baseline primary productivity to MPP, and evaluated the trophic class of each site. The rivers and streams in the Lake Waco/Bosque River Watershed exhibited varying degrees of nutrient enrichment over the 18-month sampling period. The North Bosque River at the headwaters (NB-02) located below the Stephenville, Texas wastewater treatment outfall consistently exhibited the highest degree of water quality impact due to nutrient enrichment. Sites at the outlet of the watershed (NB-04 and NB-05) were the next most enriched sites. Trophic class varied for enriched sites over seasons. Seasonality played a significant role in the trophic class and sensitivity of each site to nutrients. Managing rivers and streams for nutrients will require methods for measuring in situ responses and sensitivities to nutrient enrichment. Nutrient enrichment periphytometers show significant potential for use in nutrient gradient studies.
Nutrient variations from swine manure to agricultural land
You, Byung-Gu; Shim, Soomin; Choi, Yoon-Seok
2018-01-01
Objective Swine manure in Korea is separated into solid and liquid phases which are composted separately and then applied on land. The nutrient accumulation in soil has been a big issue in Korea but the basic investigation about nutrient input on arable land has not been achieved in detail. Within the nutrient production from livestock at the national level, most values are calculated by multiplication of the number of animals with the excreta unit per animal. However, the actual amount of nutrients from swine manure may be totally different with the nutrients applied to soil since livestock breeding systems are not the same with each country. Methods This study investigated 15 farms producing solid compost and 14 farms producing liquid compost. Composting for solid phase used the Turning+Aeration (TA) or Turning (T) only methods, while liquid phase aeration composting was achieved by continuous (CA), intermittent (IA), or no aeration (NA). Three scenarios were constructed for investigating solid compost: i) farm investigation, ii) reference study, and iii) theoretical P changes (ΔP = 0), whereas an experiment for water evaporation was conducted for analyzing liquid compost. Results In farm investigation, weight loss rates of 62% and 63% were obtained for TA and T, respectively, while evaporation rates for liquid compost were 8.75, 7.27, and 5.14 L/m2·d for CA, IA, and NA, respectively. Farm investigation provided with the combined nutrient load (solid+liquid) of VS, N, and P of 117.6, 7.2, and 2.7 kg/head·yr. Nutrient load calculated from farm investigation is about two times higher than the calculated with reference documents. Conclusion The nutrient loading coefficients from one swine (solid+liquid) were (volatile solids, 0.79; nitrogen, 0.53; phosphorus, 0.71) with nutrient loss of 21%, 47%, and 29%, respectively. The nutrient count from livestock manure using the excretion unit has probably been overestimated without consideration of the nutrient loss. PMID:29268574
Energy and nutrient density of foods in relation to their carbon footprint.
Drewnowski, Adam; Rehm, Colin D; Martin, Agnes; Verger, Eric O; Voinnesson, Marc; Imbert, Philippe
2015-01-01
A carbon footprint is the sum of greenhouse gas emissions (GHGEs) associated with food production, processing, transporting, and retailing. We examined the relation between the energy and nutrient content of foods and associated GHGEs as expressed as g CO2 equivalents. GHGE values, which were calculated and provided by a French supermarket chain, were merged with the Composition Nutritionnelle des Aliments (French food-composition table) nutrient-composition data for 483 foods and beverages from the French Agency for Food, Environmental and Occupational Health and Safety. Foods were aggregated into 34 food categories and 5 major food groups as follows: meat and meat products, milk and dairy products, frozen and processed fruit and vegetables, grains, and sweets. Energy density was expressed as kcal/100 g. Nutrient density was determined by using 2 alternative nutrient-density scores, each based on the sum of the percentage of daily values for 6 or 15 nutrients, respectively. The energy and nutrient densities of foods were linked to log-transformed GHGE values expressed per 100 g or 100 kcal. Grains and sweets had lowest GHGEs (per 100 g and 100 kcal) but had high energy density and a low nutrient content. The more-nutrient-dense animal products, including meat and dairy, had higher GHGE values per 100 g but much lower values per 100 kcal. In general, a higher nutrient density of foods was associated with higher GHGEs per 100 kcal, although the slopes of fitted lines varied for meat and dairy compared with fats and sweets. Considerations of the environmental impact of foods need to be linked to concerns about nutrient density and health. The point at which the higher carbon footprint of some nutrient-dense foods is offset by their higher nutritional value is a priority area for additional research. © 2015 American Society for Nutrition.
Lentjes, M A H; Mulligan, A A; Welch, A A; Bhaniani, A; Luben, R N; Khaw, K-T
2015-12-01
Total nutrient intake (TNI) is intake from food and supplements. This provides an assessment of nutrient adequacy and the prevalence of excessive intake, as well as the response with respect to biomarkers. Cod liver oil (CLO) is the most frequently consumed supplement in the UK, containing nutrients that might have varying influences on health. We calculated TNI for vitamins A, D and E, as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and assessed associations with the respective blood concentrations. Seven-day diet diaries and blood samples were taken from two subsets of the European Prospective Investigation into Cancer (EPIC-Norfolk) cohort (age range 39-79 years; n = 1400 for vitamin D; n = 6656 for remaining nutrients). TNI was calculated for the subgroups: nonsupplement users, those consuming the nutrient in supplement form and those consuming a supplement without this nutrient. CLO-related nutrients were supplemented by 15%-33%, which approximately doubled median intakes. Almost everyone in the supplement + vitamin A group reached the estimated average requirement; however, guideline levels were likely to be exceeded. Partial correlations between intake of vitamins A and D and biomarkers were low and modestly strengthened by the inclusion of supplement sources (correlation = 0.01-0.13). Correlations between biomarker and TNI of vitamin E and EPA+DHA were in the range 0.40-0.46; however, vitamin E exceeding food intake resulted in attenuated coefficients. Linear associations between food or TNI EPA+DHA and plasma were weak but consistent across subgroups. CLO-related nutrients contribute substantially to nutrient intake, with a risk of over-consumption. Apart from EPA+DHA, biomarker data suggest that CLO-related nutrients in supplements are not linearly associated with vitamin status. © 2014 Authors. Journal of Human Nutrition and Dietetics published by John Wiley & Sons Ltd on behalf of British Dietetic Association.
Quantifying the Urban and Rural Nutrient Fluxes to Lake Erie Using a Paired Watershed Approach
NASA Astrophysics Data System (ADS)
Hopkins, M.; Beck, M.; Rossi, E.; Luh, N.; Allen-King, R. M.; Lowry, C.
2016-12-01
Excess nutrients have a detrimental impact on the water quality of Lake Erie, specifically nitrate and phosphate, which can lead to toxic algae blooms. Algae blooms have negatively impacted Lake Erie, which is the main source of drinking water for many coastal Great Lake communities. In 2014 the city of Toledo, Ohio was forced to shut down its water treatment plant due to these toxic algae blooms. The objective of this research is to quantify surface water nutrient fluxes to the eastern basin of Lake Erie using a paired watershed approach. Three different western New York watersheds that feed Lake Erie were chosen based on land use and areal extent: one small urban, one small rural, and one large rural. These paired watersheds were chosen to represent a range of sources of potential nutrient loading to the lake. Biweekly water samples were taken from the streams during the 2015-2016 winter to summer seasonal transition to quantify springtime snow melt effects on nutrient fluxes. These results were compared to the previous year samples, collected over the summer of 2015, which represented wetter conditions. Phosphorous levels were assessed using the ascorbic acid colorimetric assay, while nitrate was analyzed by anion-exchange chromatography. Stream gaging was used to obtain flow measurements and establish a rating curve, which was incorporated to quantify seasonal nutrient fluxes entering the lake. Patterns in the nutrient levels show higher level of nutrients in the rural watersheds with a decrease in concentration over the winter to spring transition. However, nutrient patterns in the urban stream show relatively constant patters of nutrient flux, which is independent of seasonal transition or stream discharge. A comparison of wet and dry seasons shows higher nutrient concentrations during summers with greater rainfall. By identifying the largest contributors of each nutrient, we can better allocate limited attenuation resources.
NASA Astrophysics Data System (ADS)
Li, J.; Okin, G.; Hartman, L.; Epstein, H.
2005-12-01
Wind is a key abiotic factor that determines the spatial distribution of soil nutrients in arid grasslands with large unvegetated gaps, such as those found in the southwestern US. On the landscape scale, basic relationships such as wind erosion rate vs. vegetative cover, and soil nutrient removal rate vs. vegetative cover have not yet been extensively studied. In a series of experiments conducted in the Jornada Experimental Range near Las Cruces, New Mexico, we have examined these relationships to determine the impact of wind erosion and dust emission on pools of soil nutrients. In the experiments, varying levels of cover were achieved by vegetation removal on 25 m x 50 m plots. Intense surface soil sampling was conducted to monitor spatial distribution of soil nutrients. Large numbers of aeolian sediment samplers were installed to obtain estimates of vertical and horizontal dust flux. Available data from one wind erosion season show that: 1) total organic C (TOC) and total N (TN) content in the windblown sediment collected at the height of 1 m were 2.2 to 7.2 times larger than those of nutrients in the surface soil (enrichment ratio); 2) enrichment ratio generally increases with the increase of vegetative cover, indicating biotic processes continually add nutrients to surface soil in high-cover treatments, while nutrients are depleted in low-cover treatments; 3) average horizontal mass flux is 12 times larger in the bare plot than in the control plot, indicating the extreme importance of vegetative cover in protecting soil nutrient loss caused by wind erosion; 4) detectable soil nutrient depletion happened within one windy season in plots with vegetation removal, especially for TOC and TN, reflecting the importance of biotic processes in maintaining nutrient pools in the surface soil; and, 5) after only a single windy season, wind erosion can significantly alter the spatial pattern of soil nutrients.
Lacroix, Christelle; Seabloom, Eric W.; Borer, Elizabeth T.
2017-01-01
Ecological stoichiometry and resource competition theory both predict that nutrient rates and ratios can alter infectious disease dynamics. Pathogens such as viruses hijack nutrient rich host metabolites to complete multiple steps of their epidemiological cycle. As the synthesis of these molecules requires nitrogen (N) and phosphorus (P), environmental supply rates, and ratios of N and P to hosts can directly limit disease dynamics. Environmental nutrient supplies also may alter virus epidemiology indirectly by changing host phenotype or the dynamics of coinfecting pathogens. We tested whether host nutrient supplies and coinfection control pathogen growth within hosts and transmission to new hosts, either directly or through modifications of plant tissue chemistry (i.e., content and stoichiometric ratios of nutrients), host phenotypic traits, or among-pathogen interactions. We examined two widespread plant viruses (BYDV-PAV and CYDV-RPV) in cultivated oats (Avena sativa) grown along a range of N and of P supply rates. N and P supply rates altered plant tissue chemistry and phenotypic traits; however, environmental nutrient supplies and plant tissue content and ratios of nutrients did not directly alter virus titer. Infection with CYDV-RPV altered plant traits and resulted in thicker plant leaves (i.e., higher leaf mass per area) and there was a positive correlation between CYDV-RPV titer and leaf mass per area. CYDV-RPV titer was reduced by the presence of a competitor, BYDV-PAV, and higher CYDV-RPV titer led to more severe chlorotic symptoms. In our experimental conditions, virus transmission was unaffected by nutrient supply rates, co-infection, plant stoichiometry, or plant traits, although nutrient supply rates have been shown to increase infection and coinfection rates. This work provides a robust test of the role of plant nutrient content and ratios in the dynamics of globally important pathogens and reveals a more complex relationship between within-host virus growth and alterations of plant traits. A deeper understanding of the differential effects of environmental nutrient supplies on virus epidemiology and ecology is particularly relevant given the rapid increase of nutrients flowing into Earth's ecosystems as a result of human activities. PMID:29163408
NASA Astrophysics Data System (ADS)
Valiela, Ivan; Costa, Joseph E.
1988-07-01
Nutrient concentrations in Buttermilk Bay, a coastal embayment on the northern end of Buzzards Bay, MA, are higher in the nearshore where salinities are lower. This pattern suggests that freshwater sources may contribute significantly to nutrient inputs into Buttermilk Bay. To evaluate the relative importance of the various sources we estimated inputs of nutrients by each major source into the watershed and into the bay itself. Septic systems contributed about 40% of the nitrogen and phosphorus entering the watershed, with precipitation and fertilizer use adding the remainder. Groundwater transported over 85% of the nitrogen and 75% of the phosphorus entering the bay. Most nutrients entering the watershed failed to reach the bay; uptake by forests, soils, denitrification, and adsorption intercepted two-thirds of the nitrogen and nine-tenths of the phosphorus that entered the watershed. The nutrients that did reach the bay most likely originated from subsoil injections into groundwater by septic tanks, plus some leaching of fertilizers. Buttermilk Bay water has relatively low nutrient concentrations, probably because of uptake of nutrients by macrophytes and because of relatively rapid tidal flushing. Annual budgets of nutrients entering the watershed showed a low nitrogen-to-phosphorus ratio of 6, but passage of nutrients through the watershed raised N/P to 23, probably because of adsorption of PO4 during transit. The N/P ratio of water that leaves the watershed and presumably enters the bay is probably high enough to maintain active growth of nitrogenlimited coastal producers. There is a seasonal shift in N/P in the water column of Buttermilk Bay. N/P exceeded the 16∶1 Redfield ratio during midwinter; the remainder of the year N/P fell below 16∶1. This suggests that annual budgets do not provide sufficiently detailed data with which to interpret nutrient-limitation of producers. Further, some idea of water turnover is also needed to evaluate impact of loading rates. Urbanization of watersheds seems to increase loadings to nearshore environments, and to shift the nutrient loadings delivered to coastal waters to relatively high N-to-P ratios, potentially stimulating growth of nitrogen-limited primary producers.
Variation in nutrients formulated and nutrients supplied on 5 California dairies.
Rossow, H A; Aly, S S
2013-01-01
Computer models used in ration formulation assume that nutrients supplied by a ration formulation are the same as the nutrients presented in front of the cow in the final ration. Deviations in nutrients due to feed management effects such as dry matter changes (i.e., rain), loading, mixing, and delivery errors are assumed to not affect delivery of nutrients to the cow and her resulting milk production. To estimate how feed management affects nutrients supplied to the cow and milk production, and determine if nutrients can serve as indexes of feed management practices, weekly total mixed ration samples were collected and analyzed for 4 pens (close-up cows, fresh cows, high-milk-producing, and low-milk-producing cows, if available) for 7 to 12 wk on 5 commercial California dairies. Differences among nutrient analyses from these samples and nutrients from the formulated rations were analyzed by PROC MIXED of SAS (SAS Institute Inc., Cary, NC). Milk fat and milk protein percentages did not vary as much [coefficient of variation (CV) = 18 to 33%] as milk yield (kg; CV = 16 to 47 %) across all dairies and pens. Variability in nutrients delivered were highest for macronutrient fat (CV = 22%), lignin (CV = 15%), and ash (CV = 11%) percentages and micronutrients Fe (mg/kg; CV = 48%), Na (%; CV = 42%), and Zn (mg/kg; CV = 38%) for the milking pens across all dairies. Partitioning of the variability in random effects of nutrients delivered and intraclass correlation coefficients showed that variability in lignin percentage of TMR had the highest correlation with variability in milk yield and milk fat percentage, followed by fat and crude protein percentages. But, variability in ash, fat, and lignin percentages of total mixed ration had the highest correlation with variability in milk protein percentage. Therefore, lignin, fat, and ash may be the best indices of feed management to include effects of variability in nutrients on variability in milk yield, milk fat, and milk protein percentages in ration formulation models. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sherrod, S.K.; Belnap, Jayne; Miller, M.E.
2003-01-01
For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (pa??0.05) as a function of soilcounterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, and the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological uptake mechanisms of plants or functional groups of interest. The effects of different extraction techniques on nutrient measures should be understood before selecting an extraction method. For example, in the calcareous soils used for this experiment, nutrient extraction methods that alter soil carbonates through dissolution or precipitation could compromise the accurate measurement of plant-available nutrients. The implications of this study emphasize the universal importance of understanding the differential effects of alternate methods on soil chemistry.
Climate and soil-age constraints on nutrient uplift and retention by plants.
Porder, Stephen; Chadwick, Oliver A
2009-03-01
Plants and soils represent coevolving components of ecosystems, and while the effects of soils (e.g., nutrient availability) on plants have been extensively documented, the effect of plants on soils has received less attention. Furthermore there has been no systematic investigation of how plant effects vary across important ecological gradients in climate or soil age, which leaves a substantial gap in our understanding of how plant-soil systems develop. In this context, we analyzed changes in nutrient availability and elemental losses from the entire weathering zone at 35 sites arrayed across climatic and soil-age gradients on the island of Hawai'i. The sites are located on three basaltic lava flows (ages 10, 170, and 350 kyr) each of which crosses a precipitation gradient from approximately 500 to 2500 mm/yr. By comparing the loss of nutrient (potassium, phosphorus) and non-nutrient (e.g., sodium) rock-derived elements, we identify a climatic zone at intermediate rainfall where the retention of plant nutrients in the upper soil is most pronounced. We further show that there are several abiotic constraints on plant-driven retention of nutrients. At the dry sites (< or = 750 mm/yr on all three flows), plants slow the loss of nutrients, but the effect (as measured by the difference between K and Na losses) is small, perhaps because of low plant cover and productivity. At intermediate rainfall (750-1400 mm/yr) but negative water balance, plants substantially enrich both nutrient cations and P relative to Na in the surface horizons, an effect that remains strong even after 350 kyr of soil development. In contrast, at high rainfall (> or = 1500 mm/yr) and positive water balance, the effect of plants on nutrient distributions diminishes with soil age as leaching losses overwhelm the uplift and retention of nutrients by plants after 350 kyr of soil development. The effect of plants on soil nutrient distributions can also be mediated by the movement of iron (Fe), and substantial Fe losses at high rainfall on the older flows are highly correlated with P losses. Thus redox-driven redistribution of Fe may place a further abiotic constraint on nutrient retention by plants. In combination, these data indicate that the effects of soil aging on plant uplift and retention of nutrients differ markedly with precipitation, and we view this as a potentially fruitful area for future research.
Sherrod, S.K.; Belnap, J.; Miller, M.E.
2003-01-01
For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (p ??? 0.05) as a function of soil x counterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, NH4+, and HPO42-, the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological uptake mechanisms of plants or functional groups of interest. The effects of different extraction techniques on nutrient measures should be understood before selecting an extraction method. For example, in the calcareous soils used for this experiment, nutrient extraction methods that alter soil carbonates through dissolution or precipitation could compromise the accurate measurement of plant-available nutrients. The implications of this study emphasize the universal importance of understanding the differential effects of alternate methods on soil chemistry.
NASA Astrophysics Data System (ADS)
Drohan, Patrick; Buda, Anthony; Kleinman, Peter; Miller, Douglas; Lin, Henry; Beegle, Douglas; Knight, Paul
2017-04-01
USA and state nutrient management planning offers strategic guidance that strives to educate farmers and those involved in nutrient management to make wise management decisions. A goal of such programs is to manage hotspots of water quality degradation that threaten human and ecosystem health, water and food security. The guidance provided by nutrient management plans does not provide the day-to-day support necessary to make operational decisions, particularly when and where to apply nutrients over the short term. These short-term decisions on when and where to apply nutrients often make the difference between whether the nutrients impact water quality or are efficiently utilized by crops. Infiltrating rainfall events occurring shortly after broadcast nutrient applications are beneficial, given they will wash soluble nutrients into the soil where they are used by crops. Rainfall events that generate runoff shortly after nutrients are broadcast may wash off applied nutrients, and produce substantial nutrient losses from that site. We are developing a model and data based support tool for nutrient management, the Fertilizer Forecaster, which identifies the relative probability of runoff or infiltrating events in Pennsylvania (PA) landscapes in order to improve water quality. This tool will support field specific decisions by farmers and land managers on when and where to apply fertilizers and manures over 24, 48 and 72 hour periods. Our objectives are to: (1) monitor agricultural hillslopes in watersheds representing four of the five Physiographic Provinces of the Chesapeake Bay basin; (2) validate a high resolution mapping model that identifies soils prone to runoff; (3) develop an empirically based approach to relate state-of-the-art weather forecast variables to site-specific rainfall infiltration or runoff occurrence; (4) test the empirical forecasting model against alternative approaches to forecasting runoff occurrence; and (5) recruit farmers from the four watersheds to use web-based forecast maps in daily manure and fertilizer application decisions. Data from on-farm trials is being used to assess farmer fertilizer, manure, and tillage management decisions before and after use of the Fertilizer Forecaster. This data will help us understand not only the effectiveness of the tool, but also characteristics of farmers with the greatest potential to benefit from such a tool. Feedback from on-farm trials will be used to refine a final tool for field deployment. We hope that the Fertilizer Forecaster will serve as the basis for state (USA-PA), regional (Chesapeake Bay), and national changes in nutrient management planning. This Fertilizer Forecaster is an innovative management practice that is designed to enhance the services of aquatic ecosystems by improving water quality and enhance the services of terrestrial ecosystems by increasing the efficiency of nutrient use by targeted crops.
Estimation of Shallow Groundwater Discharge and Nutrient Load into a River
Ying Ouyang
2012-01-01
Pollution of rivers with excess nutrients due to groundwater discharge, storm water runoff, surface loading,and atmospheric deposition is an increasing environmental concern worldwide. While the storm water runoff and surface loading of nutrients into many rivers have been explored in great detailed, the groundwater discharge of nutrients into the rivers has not yet...
Timber-harvest clearcutting and nutrients in the Northeastern United States
K. G. Reinhart
1973-01-01
The effect of ecosystem disturbance on nutrients in the system has been receiving widespread attention. An appraisal of research results in the Northeast indicates that timber-harvest clearcutting has not increased nutrient levels sufficiently to reduce water quality below drinking water standards. Losses of nutrients from clearcuttings in New Hampshire over a 2-year...
Nutrient Management Certification for Delaware: Developing a Water Quality Curriculum
ERIC Educational Resources Information Center
Hansen, David J.; Binford, Gregory D.
2004-01-01
Water quality is a critical environmental, social, and political issue in Delaware. In the late 1990s, a series of events related to water quality issues led to the passage of a state nutrient management law. This new law required nutrient management planning and established a state certification program for nutrient users in the agricultural and…
Joseph R. Milanovich; John C. Maerz; Amy D. Rosemond
2015-01-01
1.Because of their longevity and skeletal phosphorus demand, vertebrates can have distinct influences on the uptake, storage and recycling of nutrients in ecosystems. Quantification of body stoichiometry, combined with estimates of abundance or biomass, can provide insights into the effect of vertebrates on nutrient cycling. 2.We measured the nutrient content and...
Wetlands can be sources, sinks and transformers of nutrients, although it is their role in nutrient removal that is valued as a water purification ecosystem service. In order to quantify that service for any wetland, it is important to understand the drivers of nutrient removal w...
USDA-ARS?s Scientific Manuscript database
Agricultural nutrient management is an issue due to nitrogen (NH4) and phosphorus (P) losses from fields and water quality degradation. Better information is needed on the risk of nutrient loss in runoff from dairy manure applied in winter. We investigated the effect of temperature on nutrient relea...
Soluble organic and inorganic nutrient fluxes in clearcut and mature deciduous forests
R.G. Qualls; B.L. Haines; W.T. Swank; S.W. Tyler
2000-01-01
The mechanisms by which forest ecosystems retain or lose soluble inorganic nutrients after disturbance are well known, but substantial amounts of soluble organic nutrients may also be released from cut vegetation. Our objective was to compare the leaching of dissolved organic and inorganic nutrients in cut and mature forest stands and to develop hypotheses about...
A Loblolly Pine Management Guide: Foresters' Primer in Nutrient Cycling
Jacques R. Jorgensen; Carol G. Wells
1986-01-01
The nutrient cycle, which includes the input of nutrients to the site, their losses, and their movement from one soil or vegetation component to another, can be modified by site preparation, rotation length, harvest system, fertilization, and fire, and by using soil-improving plants. Included is a report on how alternative procedures affect site nutrients, and provides...
Long term growth responses of loblolly pine to optimal nutrient and water resource availability
Timothy J. Albaugh; H. Lee Allen; Phillip M. Dougherty; Kurt H. Johnsen
2004-01-01
A factorial combination of four treatments (control (CW), optimal growing season water availability (IW), optimum nutrient availability (FW), and combined optimum water and nutrient availability (FIW)) in four replications were initiated in an 8-year- old Pinus taeda stand growing on a droughty, nutrient-poor, sandy site in Scotland County, NC and...
James D. Wickham; Kurt H. Riitters; Timothy G. Wade; K. Bruce Jones
2005-01-01
The continuing degradation of United States surface waters by excessive nutrient loads has motivated the establishment of nutrient criteria for streams, lakes, and estuaries as a means to protect aquatic resources. Nutrient criteria have been established based on ecoregional differences, recognizing that geographic variation in climate, topography, geology, and land...
USDA-ARS?s Scientific Manuscript database
Recent studies have demonstrated the importance of the nutrient status of biochar and soils prior to its inclusion in particular agricultural systems. Pre-treatment of nutrient-reactive biochar, where nutrients are loaded into pores and onto surfaces, gives improved yield outcomes compared to untrea...
Waterborne nutrient flow through an upland-peatland watershed in Minnesota
Elon S. Verry; D.R. Timmons
1982-01-01
Water and nutrient flow were measured on a complex upland-peatland watershed in north central Minnesota. Annual water budgets for upland and peatland components and for the total watershed were developed. Nutrient input and output budgets were developed for each component on a seasonal basis, using net precipitation inputs, and an annual nutrient budget was developed...
Accumulation and Distribution of Dry Matter and Nutrients in Aigeiros Poplar Plantations
G. L. Switzer; L. E. Nelson; James B. Baker
1976-01-01
Patterns of accumulation of dry matter and nutrients through 20 years in Aigeiros poplar plantations are strongly influenced by mode of plantation culture. Accumulation of both dry matter and nutrients in closely spaced thinned plantations is linear through age 12 to 14, after which accumulation declines and then stabilizes. In contrast, dry matter and nutrient...
Christian P. Giardina; Michael G. Ryan; Dan Binkley; Dan Binkley; James H. Fownes
2003-01-01
Nutrient supply commonly limits aboveground plant productivity in forests, but the effects of an altered nutrient supply on gross primary production (GPP) and patterns of carbon (C) allocation remain poorly characterized. Increased nutrient supply may lead to a higher aboveground net primary production (ANPP), but a lower total belowground carbon allocation (TBCA),...
USDA-ARS?s Scientific Manuscript database
The International Lipid-Based Nutrient Supplements (iLiNS) Project began in 2009 with the goal of contributing to the evidence base regarding the potential of lipid-based nutrient supplements (LNS) to prevent undernutrition in vulnerable populations. The first project objective was the development o...
USDA-ARS?s Scientific Manuscript database
The International Lipid-Based Nutrient Supplements (iLiNS) Project began in 2009 with the goal of contributing to the evidence base regarding the potential of lipid-based nutrient supplements (LNS) to prevent undernutrition in vulnerable populations. The first project objective was the development o...
Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition
Beth Cheever; Erika Kratzer; Jackson Webster
2012-01-01
According to theory, the rate and stoichiometry of microbial mineralization depend, in part, on nutrient availability. For microbes associated with leaves in streams, nutrients are available from both the water column and the leaf. Therefore, microbial nutrient cycling may change with nutrient availability and during leaf decomposition. We explored spatial and temporal...
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Board on Agricultural and Renewable Resources.
This report deals with the nutrient requirements of seven species of animals used extensively for biomedical research in the United States. Following an introductory chapter of general information on nutrition, chapters are presented on the nutrient requirements of the laboratory rat, mouse, gerbil, guinea pig, hamster, vole, and fishes. Each…
Artificial Soil With Build-In Plant Nutrients
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Allen, Earl; Henninger, Donald; Golden, D. C.
1995-01-01
Nutrients contained in sandlike material. Artificial soil provides nutrients to plants during several growing seasons without need to add fertilizer or nutrient solution. When watered, artificial soil slowly releases all materials a plant needs to grow. Developed as medium for growing crops in space. Also used to grow plants on Earth under controlled conditions or even to augment natural soil.
Soil an-d nutrient loss following site preparation burning
E.A. Carter; J.P. Field; K.W. Farrish
2000-01-01
Sediment loss and nutrient cpncentrations in runoff were evaluated to determine the effects of site preparation burning on a recently harvested loblolly pine (Pinur taeda L.) site in east Texas. Sediment and nutrient losses prior to treatment were approximately the same from control plots and pretreatment burn plots. Nutrient analysis of runoff samples indicated that...
21 CFR 104.20 - Statement of purpose.
Code of Federal Regulations, 2014 CFR
2014-04-01
... handling procedures cannot prevent the loss of such nutrient(s), (3) All nutrients, including protein... standard: Nutrient Unit of measurement DRV or RDI 1 Amount per 100 calories Protein grams (g) 50 2.5 Vitamin A International Unit (IU) 5,000 250 Vitamin C milligrams (mg) 60 3 Calcium g 1 0.05 Iron mg 18 0.9...
21 CFR 104.20 - Statement of purpose.
Code of Federal Regulations, 2011 CFR
2011-04-01
... handling procedures cannot prevent the loss of such nutrient(s), (3) All nutrients, including protein... standard: Nutrient Unit of measurement DRV or RDI 1 Amount per 100 calories Protein grams (g) 50 2.5 Vitamin A International Unit (IU) 5,000 250 Vitamin C milligrams (mg) 60 3 Calcium g 1 0.05 Iron mg 18 0.9...
21 CFR 104.20 - Statement of purpose.
Code of Federal Regulations, 2010 CFR
2010-04-01
... handling procedures cannot prevent the loss of such nutrient(s), (3) All nutrients, including protein... standard: Nutrient Unit of measurement DRV or RDI 1 Amount per 100 calories Protein grams (g) 50 2.5 Vitamin A International Unit (IU) 5,000 250 Vitamin C milligrams (mg) 60 3 Calcium g 1 0.05 Iron mg 18 0.9...
21 CFR 104.20 - Statement of purpose.
Code of Federal Regulations, 2013 CFR
2013-04-01
... handling procedures cannot prevent the loss of such nutrient(s), (3) All nutrients, including protein... standard: Nutrient Unit of measurement DRV or RDI 1 Amount per 100 calories Protein grams (g) 50 2.5 Vitamin A International Unit (IU) 5,000 250 Vitamin C milligrams (mg) 60 3 Calcium g 1 0.05 Iron mg 18 0.9...
21 CFR 104.20 - Statement of purpose.
Code of Federal Regulations, 2012 CFR
2012-04-01
... handling procedures cannot prevent the loss of such nutrient(s), (3) All nutrients, including protein... standard: Nutrient Unit of measurement DRV or RDI 1 Amount per 100 calories Protein grams (g) 50 2.5 Vitamin A International Unit (IU) 5,000 250 Vitamin C milligrams (mg) 60 3 Calcium g 1 0.05 Iron mg 18 0.9...
USDA-ARS?s Scientific Manuscript database
Beef nutrition research has become increasingly important domestically and internationally for the beef industry and its consumers. The objective of this study was to analyze the nutrient composition of ten beef loin and round cuts to update the nutrient data in the USDA National Nutrient Database f...
An alternative regionalization scheme for defining nutrient criteria for rivers and streams
Robertson, Dale M.; Saad, David A.; Wieben, Ann M.
2001-01-01
The environmental nutrient zone approach can be applied to specific states or nutrient ecoregions and used to develop criteria as a function of stream type. This approach can also be applied on the basis of environmental characteristics of the watershed alone rather than the general environmental characteristics from the region in which the site is located. The environmental nutrient zone approach will enable states to refine the basic nutrient criteria established by the USEPA by developing attainable criteria given the environmental characteristics where the streams are located.
Iseyemi, Oluwayinka O; Farris, Jerry L; Moore, Matthew T; Choi, Seo-Eun
2016-06-01
Drainage systems are integral parts of agricultural landscapes and have the ability to intercept nutrient loading from runoff to surface water. This study investigated nutrient removal efficiency within replicated experimental agricultural drainage ditches during a simulated summer runoff event. Study objectives were to examine the influence of routine mowing of vegetated ditches on nutrient mitigation and to assess spatial transformation of nutrients along ditch length. Both mowed and unmowed ditch treatments decreased NO3 (-)-N by 79 % and 94 % and PO4 (3-) by 95 % and 98 %, respectively, with no significant difference in reduction capacities between the two treatments. This suggests occasional ditch mowing as a management practice would not undermine nutrient mitigation capacity of vegetated drainage ditches.
Lucht, Sarah A.; Mercer, Kristin; Bernau, Vivian; Case, Kyle A.; Le, Nina C.; Frederiksen, Matthew K.; DeKeyser, Haley C.; Wong, Zen-Zi; Hastings, Jennifer C.
2016-01-01
Chile peppers, native to the Americas, have spread around the world and have been integrated into the diets of many cultures. Much like their heat content, nutritional content can vary dramatically between different pepper types. In this study, a diverse set of chile pepper types were examined for nutrient content. Some pepper types were found to have high levels of vitamin A, vitamin C, or folate. Correlations between nutrient content, species, cultivation status, or geographic region were limited. Varietal selection or plant breeding offer tools to augment nutrient content in peppers. Integration of nutrient rich pepper types into diets that already include peppers could help combat nutrient deficiencies by providing a significant portion of recommended daily nutrients. PMID:27532495
Mathers, Nicole J; Nash, David M; Gangaiya, Philomena
2007-01-01
Cropping is one of the many industries contributing to the excessive loading of nitrogen (N) and phosphorus (P) to rivers and lakes in Australia. Nitrogen and P exports from cropping systems have not been systematically investigated to the same extent as those from other agricultural sectors, such as dairy pastures. Therefore, this review relies heavily on information derived from agronomy and other fundamental studies on soil-nutrient interactions to determine the potential for nutrient export from high rainfall zone (HRZ) cropping. There is a great deal of variation in environmental and management strategies across cropping in the HRZ, which suggests that nutrient exports could occur under a range of scenarios. The potential for exports is therefore discussed within a conceptual framework of nutrient sources, mechanisms for mobilization, and transport pathways in HRZ cropping. Transport refers to nutrient movement by flowing water after it has been mobilized, and export refers to the transfer of nutrients from one landscape compartment (e.g., a soil) to another (e.g., a stream or lake). The transport of nutrients from HRZ cropping can occur through surface and/or subsurface pathways depending on factors such as landform and infiltration and nutrient sorption characteristics of the soil profile. Surface pathways are likely to be more significant for phosphorus. For N, subsurface movement is likely to be as significant as surface movement because nitrates are generally not bound by most soils. Information about mechanisms of nutrient mobilization is essential for developing management strategies to control nutrient exports from HRZ cropping.
NASA Astrophysics Data System (ADS)
Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.
2015-12-01
Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.
Peng, Jiao-Ting; Zhu, Xiao-Dong; Sun, Xiang; Song, Xiao-Wei
2018-04-01
Reducing external nutrient loads is the first step for controlling eutrophication. Here, we identified external nutrient reduction requirements and potential of strategies for achieving reductions to remediate a eutrophic water body, Lake Taihu, China. A mass balance approach based on the entire lake was used to identify nutrient reduction requirements; an empirical export coefficient approach was introduced to estimate the nutrient reduction potential of the overall program on integrated regulation of Taihu Lake Basin (hereafter referred to as the "Guideline"). Reduction requirements included external total nitrogen (TN) and total phosphorus (TP) loads, which should be reduced by 41-55 and 25-50%, respectively, to prevent nutrient accumulation in Lake Taihu and to meet the planned water quality targets. In 2010, which is the most seriously polluted calendar year during the 2008-2014 period, the nutrient reduction requirements were estimated to be 36,819 tons of N and 2442 tons of P, and the potential nutrient reduction strategies would reduce approximately 25,821 tons of N and 3024 tons of P. Since there is a net N remaining in the reduction requirements, it should be the focus and deserves more attention in identifying external nutrient reduction strategies. Moreover, abatement measures outlined in the Guideline with high P reduction potential required large monetary investments. Achieving TP reduction requirement using the cost-effective strategy costs about 80.24 million USD. The design of nutrient reduction strategies should be enacted according to regional and sectoral differences and the cost-effectiveness of abatement measures.
Surendran, U; Rama Subramoniam, S; Raja, P; Kumar, V; Murugappan, V
2016-04-01
Mining of nutrients from soil is a major problem in developing countries causing soil degradation and threaten long-term food production. The present study attempts to apply NUTrient MONitoring (NUTMON) model for carrying out nutrient budgeting to assess the stocks and flows of nitrogen (N), phosphorus (P), and potassium (K) in defined geographical unit based on the inputs, viz., mineral fertilizers, manures, atmospheric deposition, and sedimentation, and outputs, viz., harvested crop produces, residues, leaching, denitrification, and erosion losses. The study area covers Coimbatore and Erode Districts, which are potential agricultural areas in western agro-ecological zone of Tamil Nadu, India. The calculated nutrient balances for both the districts at district scale, using NUTMON methodology, were negative for nitrogen (N -3.3 and -10.1 kg ha(-1)) and potassium (K -58.6 and -9.8 kg ha(-1)) and positive for phosphorus (P +14.5 and 20.5 kg ha(-1)). Soil nutrient pool has to adjust the negative balance of N and K; there will be an expected mining of nutrient from the soil reserve. A strategy was attempted for deriving the fertilizer recommendation using Decision Support System for Integrated Fertilizer Recommendation (DSSIFER) to offset the mining in selected farms. The results showed that when DSSIFER recommended fertilizers are applied to crops, the nutrient balance was positive. NUTMON-Toolbox with DSSIFER would serve the purpose on enhancing soil fertility, productivity, and sustainability. The management options to mitigate nutrient mining with an integrated system approach are also discussed.
NASA Astrophysics Data System (ADS)
Sunaryani, A.; Harsono, E.; Rustini, H. A.; Nomosatryo, S.
2018-02-01
Lake Toba is the largest lake in Indonesia utilized as a source of life-support for drinking and clean water, energy sources, aquaculture and tourism. Nowadays the water quality in Lake Toba has decreased due to the presence of excessive nutrient (nitrogen: N and phosphorus: P). This study aims to describe the spatial distribution of nutrient pollution and to develop a decision support tool for the identification and evaluation of nutrient pollution control in Lake Toba. Spatial distribution method was conducted by 2D-multi layers hydrodynamic model, while DPSIR Framework is used as a tool for the assessment. The results showed that the concentration of nutrient was low and tended to increase along the water depth, but nutrient concentration in aquaculture zones was very high and the trophic state index has reached eutrophic state. The principal anthropogenic driving forces were population growth and the development of aquaculture, livestock, agriculture, and tourism. The main environmental pressures showed that aquaculture and livestock waste are the most important nutrient sources (93% of N and 87% of P loads). State analysis showed that high nutrient concentration and increased algal growth lead to oxygen depletion. The impacts of these conditions were massive fish kills, loss of amenities and tourism value, also decreased usability of clean water supply. This study can be a useful information for decision-makers to evaluate nutrient pollution control. Nutrient pollution issue in Lake Toba requires the attention of local government and public society to maintain its sustainability.
Nutrient and algal responses to winterkilled fish-derived nutrient subsidies in eutrophic lakes
Schoenebeck, Casey W.; Brown, Michael L.; Chipps, Steven R.; German, David R.
2012-01-01
Fishes inhabiting shallow, glacial lakes of the Prairie Pothole Region in the United States and Canada periodically experience hypoxia in severe winters that can lead to extensive fish mortality resulting in high biomasses of dead fish. However, the role of carcass-derived nutrient subsidies in shallow, eutrophic lakes translocated to pelagic primary producers is not well documented. This study quantified the influence of winterkill events on nutrient contributions from decaying fish carcasses of common carp (Cyprinus carpio) and the phytoplankton response among pre- and postwinterkill years and compared seasonal patterns of nutrient limitation and phytoplankton community composition between winterkill and nonwinterkill lakes. We found that fish carcasses contributed an estimated 2.5–4.3 kg/ha of total (Kjeldahl) nitrogen (N) and 0.3–0.5 kg/ha of total phosphorus (P) to lakes that experienced winterkill conditions. Nutrient bioassays showed that winterkill lakes were primarily N limited, congruent with the low N:P ratios produced by fish carcasses corrected for the disproportionate release of N and P (8.6). Nutrient subsidies translocated from decomposed fish to pelagic primary producers seemed to have little immediate influence on the seasonal phytoplankton community composition, but total N and subsequent chlorophyll-a increased the year following the winterkill event. Cyanobacteria density varied seasonally but was higher in winterkill lakes, presumably due to the integration of nutrients released from fish decomposition. This study provides evidence that large inputs of autochthonous fish-derived nutrients contribute to nutrient availability within winterkilled systems and increase the maximum attainable biomass of the phytoplankton community.
Tromboni, F; Dodds, W K
2017-07-01
Nutrient enrichment in streams due to land use is increasing globally, reducing water quality and causing eutrophication of downstream fresh and coastal waters. In temperate developed countries, the intensive use of fertilizers in agriculture is a main driver of increasing nutrient concentrations, but high levels and fast rates of urbanization can be a predominant issue in some areas of the developing world. We investigated land use in the highly urbanized tropical State of Rio de Janeiro, Brazil. We collected total nitrogen, total phosphorus, and inorganic nutrient data from 35 independent watersheds distributed across the State and characterized land use at a riparian and entire watershed scales upstream from each sample station, using ArcGIS. We used regression models to explain land use influences on nutrient concentrations and to assess riparian protection relationships to water quality. We found that urban land use was the primary driver of nutrient concentration increases, independent of the scale of analyses and that urban land use was more concentrated in the riparian buffer of streams than in the entire watersheds. We also found significant thresholds that indicated strong increases in nutrient concentrations with modest increases in urbanization reaching maximum nutrient concentrations between 10 and 46% urban cover. These thresholds influenced calculation of reference nutrient concentrations, and ignoring them led to higher estimates of these concentrations. Lack of sewage treatment in concert with urban development in riparian zones apparently leads to the observation that modest increases in urban land use can cause large increases in nutrient concentrations.
Dos Santos, Quenia; Sichieri, Rosely; Darmon, Nicole; Maillot, Matthieu; Verly-Junior, Eliseu
2018-06-01
To identify optimal food choices that meet nutritional recommendations to reduce prevalence of inadequate nutrient intakes. Linear programming was used to obtain an optimized diet with sixty-eight foods with the least difference from the observed population mean dietary intake while meeting a set of nutritional goals that included reduction in the prevalence of inadequate nutrient intakes to ≤20 %. Brazil. Participants (men and women, n 25 324) aged 20 years or more from the first National Dietary Survey (NDS) 2008-2009. Feasible solution to the model was not found when all constraints were imposed; infeasible nutrients were Ca, vitamins D and E, Mg, Zn, fibre, linolenic acid, monounsaturated fat and Na. Feasible solution was obtained after relaxing the nutritional constraints for these limiting nutrients by including a deviation variable in the model. Estimated prevalence of nutrient inadequacy was reduced by 60-70 % for most nutrients, and mean saturated and trans-fat decreased in the optimized diet meeting the model constraints. Optimized diet was characterized by increases especially in fruits (+92 g), beans (+64 g), vegetables (+43 g), milk (+12 g), fish and seafood (+15 g) and whole cereals (+14 g), and reductions of sugar-sweetened beverages (-90 g), rice (-63 g), snacks (-14 g), red meat (-13 g) and processed meat (-9·7 g). Linear programming is a unique tool to identify which changes in the current diet can increase nutrient intake and place the population at lower risk of nutrient inadequacy. Reaching nutritional adequacy for all nutrients would require major dietary changes in the Brazilian diet.
Diagnosis of nutrient imbalances with vector analysis in agroforestry systems.
Isaac, Marney E; Kimaro, Anthony A
2011-01-01
Agricultural intensification has had unintended environmental consequences, including increased nutrient leaching and surface runoff and other agrarian-derived pollutants. Improved diagnosis of on-farm nutrient dynamics will have the advantage of increasing yields and will diminish financial and environmental costs. To achieve this, a management support system that allows for site-specific rapid evaluation of nutrient production imbalances and subsequent management prescriptions is needed for agroecological design. Vector diagnosis, a bivariate model to depict changes in yield and nutritional response simultaneously in a single graph, facilitates identification of nutritional status such as growth dilution, deficiency, sufficiency, luxury uptake, and toxicity. Quantitative data from cocoa agroforestry systems and pigeonpea intercropping trials in Ghana and Tanzania, respectively, were re-evaluated with vector analysis. Relative to monoculture, biomass increase in cocoa ( L.) under shade (35-80%) was accompanied by a 17 to 25% decline in P concentration, the most limiting nutrient on this site. Similarly, increasing biomass with declining P concentrations was noted for pigeonpea [ (L). Millsp.] in response to soil moisture availability under intercropping. Although vector analysis depicted nutrient responses, the current vector model does not consider non-nutrient resource effects on growth, such as ameliorated light and soil moisture, which were particularly active in these systems. We revisit and develop vector analysis into a framework for diagnosing nutrient and non-nutrient interactions in agroforestry systems. Such a diagnostic technique advances management decision-making by increasing nutrient precision and reducing environmental issues associated with agrarian-derived soil contamination. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Hoover, D.J.; MacKenzie, F.T.
2009-01-01
Baseflow and storm runoff fluxes of water, suspended particulate matter (SPM), and nutrients (N and P) were assessed in conservation, urban, and agricultural streams discharging to coastal waters around the tropical island of Oahu, Hawai'i. Despite unusually low storm frequency and intensity during the study, storms accounted for 8-77% (median 30%) of discharge, 57-99% (median 93%) of SPM fluxes, 11-79% (median 36%) of dissolved nutrient fluxes and 52-99% (median 85%) of particulate nutrient fluxes to coastal waters. Fluvial nutrient concentrations varied with hydrologic conditions and land use; land use also affected water and particulate fluxes at some sites. Reactive dissolved N:P ratios typically were ???16 (the 'Redfield ratio' for marine phytoplankton), indicating that inputs could support new production by coastal phytoplankton, but uptake of dissolved nutrients is probably inefficient due to rapid dilution and export of fluvial dissolved inputs. Particulate N and P fluxes were similar to or larger than dissolved fluxes at all sites (median 49% of total nitrogen, range 22-82%; median 69% of total phosphorus, range 49-93%). Impacts of particulate nutrients on coastal ecosystems will depend on how efficiently SPM is retained in nearshore areas, and on the timing and degree of transformation to reactive dissolved forms. Nevertheless, the magnitude of particulate nutrient fluxes suggests that they represent a significant nutrient source for many coastal ecosystems over relatively long time scales (weeks-years), and that reductions in particulate nutrient loading actually may have negative impacts on some coastal ecosystems.
Yano, Masahiko; Ikeda, Masanori; Abe, Ken-ichi; Dansako, Hiromichi; Ohkoshi, Shogo; Aoyagi, Yutaka; Kato, Nobuyuki
2007-01-01
To date, only a limited number of studies have reported finding an influence of ordinary nutrients on hepatitis C virus (HCV) RNA replication. However, the effects of other nutrients on HCV RNA replication remain largely unknown. We recently developed a reporter assay system for genome-length HCV RNA replication in hepatoma-derived HuH-7 cells (OR6). Here, using this OR6 assay system, we comprehensively examined 46 nutrients from four nutrient groups: vitamins, amino acids, fatty acids, and salts. We found that three nutrients—β-carotene, vitamin D2, and linoleic acid—inhibited HCV RNA replication and that their combination caused additive and/or synergistic effects on HCV RNA replication. In addition, combined treatment with each of the three nutrients and interferon alpha or beta or fluvastatin inhibited HCV RNA replication in an additive manner, while combined treatment with cyclosporine synergistically inhibited HCV RNA replication. In contrast, we found that vitamin E enhanced HCV RNA replication and negated the effects of the three anti-HCV nutrients and cyclosporine but not those of interferon or fluvastatin. These results will provide useful information for the treatment of chronic hepatitis C patients who also take anti-HCV nutrients as an adjunctive therapy in combination with interferon. In conclusion, among the ordinary nutrients tested, β-carotene, vitamin D2, and linoleic acid possessed anti-HCV activity in a cell culture system, and these nutrients are therefore considered to be potential candidates for enhancing the effects of interferon therapy. PMID:17420205
Vegetation composition, nutrient, and sediment dynamics along a floodplain landscape
Rybicki, Nancy B.; Noe, Gregory; Hupp, Cliff R.; Robinson, Myles
2015-01-01
Forested floodplains are important landscape features for retaining river nutrients and sediment loads but there is uncertainty in how vegetation influences nutrient and sediment retention. In order to understand the role of vegetation in nutrient and sediment trapping, we quantified species composition and the uptake of nutrients in plant material relative to landscape position and ecosystem attributes in an urban, Piedmont watershed in Virginia, USA. We investigated in situ interactions among vegetative composition, abundance, carbon (C), nitrogen (N) and phosphorus (P) fluxes and ecosystem attributes such as water level, shading, soil nutrient mineralization, and sediment deposition. This study revealed strong associations between vegetation and nutrient and sediment cycling processes at the plot scale and in the longitudinal dimension, but there were few strong patterns between these aspects at the scale of geomorphic features (levee, backswamp, and toe-slope). Patterns reflected the nature of the valley setting rather than a simple downstream continuum. Plant nutrient uptake and sediment trapping were greatest at downstream sites with the widest floodplain and lowest gradient where the hydrologic connection between the floodplain and stream is greater. Sediment trapping increased in association with higher herbaceous plant coverage and lower tree canopy density that, in turn, was associated with a more water tolerant tree community found in the lower watershed but not at the most downstream site in the watershed. Despite urbanization effects on the hydrology, this floodplain functioned as an efficient nutrient trap. N and P flux rates of herbaceous biomass and total litterfall more than accounted for the N and P mineralization flux rate, indicating that vegetation incorporated nearly all mineralized nutrients into biomass.
Seasonal variation in nutrient retention during inundation of a short-hydroperiod floodplain
Noe, G.B.; Hupp, C.R.
2007-01-01
Floodplains are generally considered to be important locations for nutrient retention or inorganic-to-organic nutrient conversions in riverine ecosystems. However, little is known about nutrient processing in short-hydroperiod floodplains or seasonal variation in floodplain nutrient retention. Therefore, we quantified the net uptake, release or transformation of nitrogen (N), phosphorus (P) and suspended sediment species during brief periods (1-2 days) of overbank flooding through a 250-m floodplain flowpath on the fourth-order Mattawoman Creek, Maryland U.S.A. Sampling occurred during a winter, two spring and a summer flood in this largely forested watershed with low nutrient and sediment loading. Concentrations of NO3- increased significantly in surface water flowing over the floodplain in three of the four floods, suggesting the floodplain was a source of NO3-. The upper portion of the floodplain flowpath consistently exported NH4+, most likely due to the hyporheic: flushing of floodplain soil NH4+, which was then likely nitrified to NO3- in floodwaters. The floodplain was a sink for particulate organic P (POP) during two floods and particulate organic N and inorganic suspended sediment (ISS) during one flood. Large releases of all dissolved inorganic N and P species occurred following a snowmelt and subsequent cold winter flood. Although there was little consistency in most patterns of nutrient processing among the different floods, this floodplain, characterized by brief inundation, low residence time and low nutrient loading, behaved oppositely from the conceptual model for most floodplains in that it generally exported inorganic nutrients and imported organic nutrients.
New metrics of affordable nutrition: which vegetables provide most nutrients for least cost?
Drewnowski, Adam
2013-09-01
Measuring food prices per gram, rather than per calorie, is one way to make healthful vegetables appear less expensive. However, a better measure of affordability would take the nutrient content of vegetables into account. This study, based on analyses of US Department of Agriculture datasets, aimed to identify which vegetables, including juices and soups, provided the most nutrients per unit cost. Nutrient density was measured using the Nutrient Rich Foods (NRF) index, based on nine nutrients to encourage: protein; fiber; vitamins A, C, and E; calcium; iron; magnesium; and potassium; and on three nutrients to limit: saturated fat, added sugar, and sodium. Food cost in dollars was calculated per 100 g, per 100 kcal, per serving, and per nutrient content. One-way analyses of variance with post hoc tests were used to determine statistical significance. Results showed that tomato juices and tomato soups, dark green leafy and nonleafy vegetables, and deep yellow vegetables, including sweet potatoes, had the highest NRF scores overall. Highest NRF scores per dollar were obtained for sweet potatoes, white potatoes, tomato juices and tomato soups, carrots, and broccoli. Tomato sauces, raw tomatoes, and potato chips were eaten more frequently than were many other vegetables that were both more affordable and more nutrient-rich. These new measures of affordable nutrition can help foodservice and health professionals identify those vegetables that provide the highest nutrient density per unit cost. Processed vegetables, including soups and juices, can contribute to the quality and the affordability of the diet. Copyright © 2013 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Association of arsenic with nutrient elements in rice plants.
Duan, Guilan; Liu, Wenju; Chen, Xueping; Hu, Ying; Zhu, Yongguan
2013-06-01
Rice is the main cereal crop that feeds half of the world's population, and two thirds of the Chinese population. Arsenic (As) contamination in paddy soil and irrigation water elevates As concentration in rice grains, thus rice consumption is an important As intake route for populations in south and south-east Asia, where rice is the staple food. In addition to direct toxicity of As to human, As may limit the accumulation of micro-nutrients in rice grains, such as selenium (Se) and zinc (Zn). These micro-nutrients are essential for humans, while mineral deficiencies, especially iron (Fe) and Zn, are prevalent in China. Therefore, it is important to understand the interactions between As and micro-nutrients in rice plants, which is the principal source of these nutrients for people on rice diets. In addition, during the processes of As uptake, translocation and transformation, the status of macro-nutrients (e.g. silicon (Si), phosphors (P), sulfur (S)) are important factors affecting As dynamics in soil-plant systems and As accumulation in rice grains. Recently, synchrotron-based spectroscopic techniques have been applied to map the distribution of As and nutrient elements in rice plants, which will aid to understand how As are accumulated, complexed and transported within plants. This paper reviews the interactions between As and macro-nutrients, as well as micro-nutrients in rice plants.
NASA Astrophysics Data System (ADS)
Catalano, G.; Povero, P.; Fabiano, M.; Benedetti, F.; Goffart, A.
1997-01-01
The relationships among vertical stability, estimated nutrient utilisation and particulate organic matter in the Ross Sea are analysed from data collected during two cruises in the summers of 1987-1988 and 1989-1990. In the upper mixed layer (UML), identified through the vertical stability E( Z(UML)), nutrient consumption is calculated as the difference between the "diluted" nutrient value and the mean calculated from the integrated value in the UML. The nutrient utilisation ratio and E( Z(UML)) are linearly related for E( Z(UML))≤25, whereas for values > 25, the distribution pattern is more scattered and independent of E( Z(UML)). For E( Z(UML))≥25, utilisation values were ≥4, 0.4 and 10 mmol m -3 for nitrate, phosphate and silicate, respectively. Significant relationships between nutrient depletion and both particulate organic carbon (POC) and particulate protein/particulate carbohydrate ratios (PPRT/PCHO) are found. The analysis of particulate matter distribution vs nutrient utilisation shows that the stations could be divided into two groups having different characteristics. The first group includes coastal stations, where high nutrient utilisation, POC and PPRT/PCHO are typical of areas with high production. In the second group (pelagic stations), nutrient utilisation, POC and PPRT/PCHO are lower. The vertical stability can be used to discriminate among the factors that influence primary production.
Nutrient availability at Mer Bleue bog measured by PRSTM probes
NASA Astrophysics Data System (ADS)
Wang, M.; Moore, T. R.; Talbot, J.
2015-12-01
Bogs, covering ~0.7 million km2 in Canada, store a large amount of C and N. As nutrient deficient ecosystems, it's critical to examine the nutrient availabilities and seasonal dynamics. We used Plant Root Simulators (PRSTM) at Mer Bleue bog to provide some baseline data on nutrient availability and its variability. In particular, we focused on ammonium, nitrate, phosphate, calcium, magnesium and potassium, iron, sulphate and aluminum. We placed PRS probes at a depth of 5 - 15 cm in pristine plots and plots with long term N, P and K fertilization for 4 weeks and determined the availability of these nutrients, from spring through to fall. Probes were also placed beneath the water table in hummock and hollow microtopography and along a transect including part of the bog which had been drained through the creation of a ditch 80 years ago. The result showed that there was limited available ammonium, nitrate and phosphate in the bog, the seasonal variation of nutrient availabilities probably due to mineralization, an increase in the availability of some nutrients between different water table depths or as a result of drainage, and the relative availability of nutrients compared to the input from fertilization. We suggest that PRS probes could be a useful tool to examine nutrient availability and dynamics in wetlands, with careful consideration of installing condition, for example, proper exposure period, depth relative to water table etc.
Marshall, Stephen
2006-08-01
Traditionally, nutrients such as glucose and amino acids have been viewed as substrates for the generation of high-energy molecules and as precursors for the biosynthesis of macromolecules. However, it is now apparent that nutrients also function as signaling molecules in functionally diverse signal transduction pathways. Glucose and amino acids trigger signaling cascades that regulate various aspects of fuel and energy metabolism and control the growth, proliferation, and survival of cells. Here, we provide a functional and regulatory overview of three well-established nutrient signaling pathways-the hexosamine signaling pathway, the mTOR (mammalian target of rapamycin) signaling pathway, and the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Nutrient signaling pathways are interconnected, coupled to insulin signaling, and linked to the release of metabolic hormones from adipose tissue. Thus, nutrient signaling pathways do not function in isolation. Rather, they appear to serve as components of a larger "metabolic regulatory network" that controls fuel and energy metabolism (at the cell, tissue, and whole-body levels) and links nutrient availability with cell growth and proliferation. Understanding the diverse roles of nutrients and delineating nutrient signaling pathways should facilitate drug discovery research and the search for novel therapeutic compounds to prevent and treat various human diseases such as diabetes, obesity, and cancer.
Rapkin, James; Archer, C. Ruth; Grant, Charles E.; Jensen, Kim; House, Clarissa M.; Wilson, Alastair J.; Hunt, John
2017-01-01
Abstract There is often large divergence in the effects of key nutrients on life span (LS) and reproduction in the sexes, yet nutrient intake is regulated in the same way in males and females given dietary choice. This suggests that the sexes are constrained from feeding to their sex‐specific nutritional optima for these traits. Here, we examine the potential for intralocus sexual conflict (IASC) over optimal protein and carbohydrate intake for LS and reproduction to constrain the evolution of sex‐specific nutrient regulation in the field cricket, Teleogryllus commodus. We show clear sex differences in the effects of protein and carbohydrate intake on LS and reproduction and strong positive genetic correlations between the sexes for the regulated intake of these nutrients. However, the between‐sex additive genetic covariance matrix had very little effect on the predicted evolutionary response of nutrient regulation in the sexes. Thus, IASC appears unlikely to act as an evolutionary constraint on sex‐specific nutrient regulation in T. commodus. This finding is supported by clear sexual dimorphism in the regulated intake of these nutrients under dietary choice. However, nutrient regulation did not coincide with the nutritional optima for LS or reproduction in either sex, suggesting that IASC is not completely resolved in T. commodus. PMID:28640400
Palter, Jaime; Coto, Sandra León; Ballestero, Daniel
2007-06-01
In the Gulf of Nicoya on the Pacific Coast of Costa Rica, nutrient rich equatorial subsurface water (ESW) is upwelled in much of the lower gulf. These offshore waters are often regarded as the major source of nutrients to the gulf. However, for most of the year, the ESW has little influence on the nutrient content of the upper gulf, which has a distinct character from the lower gulf. The upper gulf, extending 40 km north of the restriction between Puntarenas Peninsula and San Lucas Island, is bordered primarily by mangrove swamps, is less than 20 m deep, and is less saline than the lower gulf. We surveyed the upper gulf for dissolved inorganic nitrogen, phosphate, silicate, dissolved oxygen, and chlorophyll in November 2000, January and July 2001. All nutrients are more concentrated in the upper gulf during the rainy and transitional seasons than the dry season, significantly so for phosphate and silicate. Throughout the year, nutrients tend to be much more concentrated in the less saline water of the upper gulf. This trend indicates that discharge from the Tempisque River predominantly controls spatial and temporal nutrient variability in the upper gulf. However, nutrient rich ESW, upwelled offshore and mixed to form a mid-temperature intermediate water, may enter the inner gulf to provide an important secondary source of nutrients during the dry season.
Nutrient Density and the Cost of Vegetables from Elementary School Lunches.
Ishdorj, Ariun; Capps, Oral; Murano, Peter S
2016-01-01
Vegetables are the major source of the dietary fiber, magnesium, potassium, and vitamins A and C that are crucial in the diets of children. This study assessed the nutrient content of vegetables offered through the National School Lunch Program and examined the relation between the overall nutrient density of vegetable subgroups and the costs of nutrients offered and wasted before and after the changes in school meal standards. Using data collected from 3 elementary schools before and after the changes in school meal standards, we found that vegetable plate waste increased from 52% to 58%. Plate waste for starchy vegetables, exclusive of potatoes, was relatively high compared with other subgroups; however, plate waste for white potatoes was the lowest among any type of vegetable. Energy density; cost per 100 g, per serving, and per 100 kcal; and percentage daily value were calculated and used to estimate nutrient density value and nutrient density per dollar. Cost per 100 kcal was highest for red/orange vegetables followed by dark green vegetables; however, nutrient density for red/orange vegetables was the highest in the group and provided the most nutrients per dollar compared with other subgroups. Given that many vegetables are less energy dense, measuring vegetable costs per 100 g and per serving by accounting for nutrient density perhaps is a better way of calculating the cost of vegetables in school meals. © 2016 American Society for Nutrition.
Nutrient Density and the Cost of Vegetables from Elementary School Lunches123
Ishdorj, Ariun; Capps, Oral; Murano, Peter S
2016-01-01
Vegetables are the major source of the dietary fiber, magnesium, potassium, and vitamins A and C that are crucial in the diets of children. This study assessed the nutrient content of vegetables offered through the National School Lunch Program and examined the relation between the overall nutrient density of vegetable subgroups and the costs of nutrients offered and wasted before and after the changes in school meal standards. Using data collected from 3 elementary schools before and after the changes in school meal standards, we found that vegetable plate waste increased from 52% to 58%. Plate waste for starchy vegetables, exclusive of potatoes, was relatively high compared with other subgroups; however, plate waste for white potatoes was the lowest among any type of vegetable. Energy density; cost per 100 g, per serving, and per 100 kcal; and percentage daily value were calculated and used to estimate nutrient density value and nutrient density per dollar. Cost per 100 kcal was highest for red/orange vegetables followed by dark green vegetables; however, nutrient density for red/orange vegetables was the highest in the group and provided the most nutrients per dollar compared with other subgroups. Given that many vegetables are less energy dense, measuring vegetable costs per 100 g and per serving by accounting for nutrient density perhaps is a better way of calculating the cost of vegetables in school meals. PMID:26773034
Cloern, J.E.
1999-01-01
Anthropogenic nutrient enrichment of the coastal zone is now a well-established fact. However, there is still uncertainty about the mechanisms through which nutrient enrichment can disrupt biological communities and ecosystem processes in the coastal zone. For example, while some estuaries exhibit classic symptoms of acute eutrophication, including enhanced production of algal biomass, other nutrient-rich estuaries maintain low algal biomass and primary production. This implies that large differences exist among coastal ecosystems in the rates and patterns of nutrient assimilation and cycling. Part of this variability comes from differences among ecosystems in the other resource that can limit algal growth and production - the light energy required for photosynthesis. Complete understanding of the eutrophication process requires consideration of the interacting effects of light and nutrients, including the role of light availability as a regulator of the expression of eutrophication. A simple index of the relative strength of light and nutrient limitation of algal growth can be derived from models that describe growth rate as a function of these resources. This index can then be used as one diagnostic to classify the sensitivity of coastal ecosystems to the harmful effects of eutrophication. Here I illustrate the application of this diagnostic with light and nutrient measurements made in three California estuaries and two Dutch estuaries.
Gnagnarella, Patrizia; Maisonneuve, Patrick; Bellomi, Massimo; Rampinelli, Cristiano; Bertolotti, Raffaella; Spaggiari, Lorenzo; Palli, Domenico; Veronesi, Giulia
2013-06-01
The role of nutrients in lung cancer aetiology remains controversial and has never been evaluated in the context of screening. Our aim was to investigate the role of single nutrients and nutrient patterns in the aetiology of lung cancer in heavy smokers. Asymptomatic heavy smokers (≥20 pack-years) were invited to undergo annual low-dose computed tomography. We assessed diet using a self-administered food frequency questionnaire and collected information on multivitamin supplement use. We performed principal component analysis identifying four nutrient patterns and used Cox proportional Hazards regression to assess the association between nutrients and nutrients patterns and lung cancer risk. During a mean follow-up of 5.7 years, 178 of 4,336 participants were diagnosed with lung cancer by screening. We found a significant risk reduction of lung cancer with increasing vegetable fat consumption (HR for highest vs. lowest quartile = 0.50, 95% CI = 0.31-0.80; P-trend = 0.02). Participants classified in the high "vitamins and fiber" pattern score had a significant risk reduction of lung cancer (HR = 0.57; 95% CI = 0.36-0.90, P-trend = 0.01). Among heavy smokers enrolled in a screening trial, high vegetable fat intake and adherence to the "vitamin and fiber" nutrient pattern were associated with reduced lung cancer incidence.
NASA Technical Reports Server (NTRS)
1998-01-01
Under an SBIR (Small Business Innovative Research), ZeoponiX, Inc., introduced ZeoPro. This product is used as a fertilizer/soil amendment for golf courses, ball fields, greenhouse and horticultural uses. A combination of superior growth medium and soil conditioner allow for nutrient supplementation and high efficiency delivery of nutrients throughout the plant. ZeoPro provides a balanced nutrient system for major, minor, and trace nutrients.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to assess the impact of breakfast skipping and type of breakfast consumed on energy/nutrient intake, nutrient adequacy, and diet quality using a cross-sectional design. The setting was The National Health and Nutrition Examination Survey (NHANES), 1999-2002. The sub...
Douglas N. Kastendick; Eric K. Zenner; Brian J. Palik; Randall K. Kolka; Charles R. Blinn
2012-01-01
Riparian management zones (RMZs) protect streams from excess nutrients, yet few studies have looked at soil nutrients in forested RMZs or the impacts of partial harvesting on nutrient availability. We investigated the impacts of upland clearcutting in conjunction with uncut and partially harvested RMZs (40% basal area reduction) on soil nutrients in forests in...
USDA-ARS?s Scientific Manuscript database
Micro-nutrients deficiency in soil result in crop yield loss and poor seed quality. Correcting this deficiency is normally conducted by foliar or soil application. The objective of this research was to determine the effects of soil applications of five micro-nutrients (Mn, Cu, Zn, Mo, and B) with a ...
Specific gravity of coarse woody debris for some central Appalachian hardwood forest species
M.B. Adams; D.R. Owens
2001-01-01
Although coarse woody debris (CWD) may play an important role in nutrient cycling in eastern hardwood forests, it rarely is included in nutrient budgets for most ecosystems. Meaningful nutrient budgets require reliable estimates of biomass and nutrient concentrations. The CWD of 21 tree species was sampled in a central Appalachian forest within the Fernow Experimental...
Optimizing simulated fertilizer additions using a genetic algorithm with a nutrient uptake model
Wendell P. Cropper; N.B. Comerford
2005-01-01
Intensive management of pine plantations in the southeastern coastal plain typically involves weed and pest control, and the addition of fertilizer to meet the high nutrient demand of rapidly growing pines. In this study we coupled a mechanistic nutrient uptake model (SSAND, soil supply and nutrient demand) with a genetic algorithm (GA) in order to estimate the minimum...
Loblolly pine growth and soil nutrient stocks eight years after forest slash incorporation
Felipe G. Sanchez; Emily A. Carter; Zakiya H. Leggett
2009-01-01
Incorporation of forest slash during stand establishment is proposed as a means of increasing soil carbon and nutrient stocks. If effective, the increased soil carbon and nutrient status may result in increased aboveground tree growth. Eight years after study installation, the impact of forest slash incorporation into the soil on soil carbon and nutrient stocks, foliar...
Growth of precommercially thinned loblolly pine 4 years following application of poultry litter
Scott D. Roberts; Alex L. Friend; Stephen H. Schoenholtz
2006-01-01
Application of poultry litter to southern pine stands represents a potentially attractive litter disposal option. Many pine stands are nutrient-limited and might respond positively to the added nutrients. However, the ability of pine stands to respond to nutrients contained in the litter, as well as contain the nutrients on site, has not been thoroughly investigated....
21 CFR 101.67 - Use of nutrient content claims for butter.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Use of nutrient content claims for butter. 101.67....67 Use of nutrient content claims for butter. (a) Claims may be made to characterize the level of nutrients, including fat, in butter if: (1) The claim complies with the requirements of § 101.13 and with...
ERIC Educational Resources Information Center
Li, Kin-Kit; Concepcion, Rebecca Y.; Lee, Hyo; Cardinal, Bradley J.; Ebbeck, Vicki; Woekel, Erica; Readdy, R. Tucker
2012-01-01
Objectives: To examine sex differences in eating habits and nutrient intakes and explore whether eating habits mediate the effects of sex on nutrient intakes and whether sex moderates the effects of eating habits on nutrient intakes. Methods: Cross-sectional survey of eating habits and food-intake frequency in a convenience sample of college…
USDA-ARS?s Scientific Manuscript database
Beef nutrition is very important to the worldwide beef industry and its consumers. The objective of this study was to analyze nutrient composition of eight beef rib and plate cuts to update the nutrient data in the USDA National Nutrient Database for Standard Reference (SR). Seventy-two carcasses ...
Yan, Zhengbing; Li, Peng; Chen, Yahan; Han, Wenxuan; Fang, Jingyun
2016-02-05
Allocation of limited nutrients, such as nitrogen (N) and phosphorus (P), among plant organs reflects the influences of evolutionary and ecological processes on functional traits of plants, and thus is related to functional groups and environmental conditions. In this study, we tested this hypothesis by exploring the stoichiometric scaling of N and P concentrations between twig stems and leaves of 335 woody species from 12 forest sites across eastern China. Scaling exponents of twig stem N (or P) to leaf N (or P) varied among functional groups. With increasing latitude, these scaling exponents significantly decreased from >1 at low latitude to <1 at high latitude across the study area. These results suggested that, as plant nutrient concentration increased, plants at low latitudes showed a faster increase in twig stem nutrient concentration, whereas plants at high latitudes presented a faster increase in leaf nutrient concentration. Such shifts in nutrient allocation strategy from low to high latitudes may be controlled by temperature. Overall, our findings provide a new approach to explore plant nutrient allocation strategies by analysing the stoichiometric scaling of nutrients among organs, which could broaden our understanding of the interactions between plants and their environments.
NASA Astrophysics Data System (ADS)
Chen, J.
2017-12-01
Rapid urbanization has occurred in the Pearl River Delta since 1980s, resulting in tremendous accumulation of population and material in an area of around 1.1x104 km2. Massive nutrients were released to the coastal zone either via the Pearl River or the aquifer, and effects of these nutrients on ecosystem and drinking water supply are a big public concern. Field campaigns to collect groundwater samples were implemented in rainy (April- September) and dry seasons (October - March) during the period of 2005-2016, and samples were analyzed for major ions, nutrients, multiple isotopes, N2O and microbiological DNA. Seasonal and spatial pattern of nutrients from the recharge to the discharge zone in two case study areas were identified and compared regarding relevant N transformation processes. Main sources of nutrients in groundwater and major mechanisms, e.g. denitrification, nitrification and etc., involved in these processes were raised by integrating microbiological, isotopic and geochemical evidences. Driven forces of the change in nutrients in the past 10 years were investigated based on statistical data, and total nutrient load in groundwater in the delta was estimated.
Discretionary fortification--a public health perspective.
Valerie, Tarasuk
2014-10-17
'Discretionary fortification' refers to the addition of vitamins and minerals to foods at the discretion of manufacturers for marketing purposes, but not as part of a planned public health intervention. While the nutrients added may correspond to needs in the population, an examination of novel beverages sold in Toronto supermarkets revealed added nutrients for which there is little or no evidence of inadequacy in the population. This is consistent with the variable effects of manufacturer-driven fortification on nutrient adequacy observed in the US. Nutrient intakes in excess of Tolerable Upper Intake Levels are now observed in the context of supplement use and high levels of consumption of fortified foods. Expanding discretionary fortification can only increase nutrient exposures, but any health risks associated with chronically high nutrient loads from fortification and supplementation remain to be discovered. Regulatory bodies are focused on the establishment of safe levels of nutrient addition, but their estimation procedures are fraught with untested assumptions and data limitations. The task of determining the benefits of discretionary fortification is being left to consumers, but the nutrition information available to them is insufficient to allow for differentiation of potentially beneficial fortification from gratuitous nutrient additions.
Importance of Nutrients and Nutrient Metabolism on Human Health
Chen, Yiheng; Michalak, Marek; Agellon, Luis B.
2018-01-01
Nutrition transition, which includes a change from consumption of traditional to modern diets that feature high-energy density and low nutrient diversity, is associated with acquired metabolic syndromes. The human diet is comprised of diverse components which include both nutrients, supplying the raw materials that drive multiple metabolic processes in every cell of the body, and non-nutrients. These components and their metabolites can also regulate gene expression and cellular function via a variety of mechanisms. Some of these components are beneficial while others have toxic effects. Studies have found that persistent disturbance of nutrient metabolism and/or energy homeostasis, caused by either nutrient deficiency or excess, induces cellular stress leading to metabolic dysregulation and tissue damage, and eventually to development of acquired metabolic syndromes. It is now evident that metabolism is influenced by extrinsic factors (e.g., food, xenobiotics, environment), intrinsic factors (e.g., sex, age, gene variations) as well as host/microbiota interaction, that together modify the risk for developing various acquired metabolic diseases. It is also becoming apparent that intake of diets with low-energy density but high in nutrient diversity may be the key to promoting and maintaining optimal health.
Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis.
Liang, Bowen; Li, Cuiying; Ma, Changqing; Wei, Zhiwei; Wang, Qian; Huang, Dong; Chen, Qi; Li, Chao; Ma, Fengwang
2017-10-01
Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, root system architecture, nutrient uptake, and responses to nutrient deficiencies in Malus hupehensis Rehd. Under a nutrient deficiency, plants showed significant reductions in growth, chlorophyll concentrations, and net photosynthesis, along with disruptions in nutrient uptake, transport, and distribution. However, pretreatment with 100 μM dopamine markedly alleviated such inhibitions. Supplementation with that compound enabled plants to maintain their photosynthetic capacity and development of the root system while promoting the uptake of N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B, altering the way in which those nutrients were partitioned throughout the plant. The addition of dopamine up-regulated genes for antioxidant enzymes involved in the ascorbate-glutathione cycle (MdcAPX, MdcGR, MdMDHAR, MdDHAR-1, and MdDHAR-2) but down-regulated genes for senescence (SAG12, PAO, and MdHXK). These results indicate that exogenous dopamine has an important antioxidant and anti-senescence effect that might be helpful for improving nutrient uptake. Our findings demonstrate that dopamine offers new opportunities for its use in agriculture, especially when addressing the problem of nutrient deficiencies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Eicher-Miller, Heather A; Fulgoni, Victor L; Keast, Debra R
2012-11-01
Processed foods are an integral part of American diets, but a comparison of the nutrient contribution of foods by level of processing with the recommendations of the Dietary Guidelines for Americans regarding nutrients to encourage or to reduce has not been documented. The mean reported daily dietary intakes of these nutrients and other components were examined among 25,351 participants ≥2 y of age in the 2003-2008 NHANES to determine the contribution of processed food to total intakes. Also examined was the percent contribution of each nutrient to the total reported daily nutrient intake for each of the 5 categories of food that were defined by the level of processing. All processing levels contributed to nutrient intakes, and none of the levels contributed solely to nutrients to be encouraged or solely to food components to be reduced. The processing level was a minor determinant of individual foods' nutrient contribution to the diet and, therefore, should not be a primary factor when selecting a balanced diet.
Zhu, Qing; Riley, William J; Tang, Jinyun
2017-04-01
Terrestrial plants assimilate anthropogenic CO 2 through photosynthesis and synthesizing new tissues. However, sustaining these processes requires plants to compete with microbes for soil nutrients, which therefore calls for an appropriate understanding and modeling of nutrient competition mechanisms in Earth System Models (ESMs). Here, we survey existing plant-microbe competition theories and their implementations in ESMs. We found no consensus regarding the representation of nutrient competition and that observational and theoretical support for current implementations are weak. To reconcile this situation, we applied the Equilibrium Chemistry Approximation (ECA) theory to plant-microbe nitrogen competition in a detailed grassland 15 N tracer study and found that competition theories in current ESMs fail to capture observed patterns and the ECA prediction simplifies the complex nature of nutrient competition and quantitatively matches the 15 N observations. Since plant carbon dynamics are strongly modulated by soil nutrient acquisition, we conclude that (1) predicted nutrient limitation effects on terrestrial carbon accumulation by existing ESMs may be biased and (2) our ECA-based approach may improve predictions by mechanistically representing plant-microbe nutrient competition. © 2016 by the Ecological Society of America.
Improvement of aquaponic performance through micro- and macro-nutrient addition.
Ru, Dongyun; Liu, Jikai; Hu, Zhen; Zou, Yina; Jiang, Liping; Cheng, Xiaodian; Lv, Zhenting
2017-07-01
Aquaponics is one of the "zero waste" industry in the twenty-first century, and is considered to be one of the major trends for the future development of agriculture. However, the low nitrogen utilization efficiency (NUE) restricted its widely application. To date, many attempts have been conducted to improve its NUE. In the present study, effect of micro- and macro-nutrient addition on performance of tilapia-pak choi aquaponics was investigated. Results showed that the addition of micro- and macro-nutrients improved the growth of plant directly and facilitated fish physiology indirectly, which subsequently increased NUE of aquaponics from 40.42 to 50.64%. In addition, remarkable lower total phosphorus concentration was obtained in aquaponics with micro- and macro-nutrient addition, which was attributed to the formation of struvite. Most of the added micro-nutrients were enriched in plant root, while macro-nutrients mainly existed in water. Moreover, no enrichment of micro- and macro-nutrients in aquaponic products (i.e., fish and plant leaves) was observed, indicating that it had no influence on food safety. The findings here reported manifest that appropriate addition of micro- and macro-nutrients to aquaponics is necessary, and would improve its economic feasibility.
Houser, Jeff N.; Giblin, Shawn M.; James, William F.; Langrehr, H.A.; Rogala, James T.; Sullivan, John F.; Gray, Brian R.
2013-01-01
River eutrophication may cause the formation of dense surface mats of free floating plants (FFP; e.g., duckweeds and filamentous algae) which may adversely affect the ecosystem. We investigated associations among hydraulic connectivity to the channel, nutrient cycling, FFP, submersed aquatic vegetation (SAV), and dissolved oxygen concentration (DO) in ten backwater lakes of the Upper Mississippi River (UMR) that varied in connectivity to the channel. Greater connectivity was associated with higher water column nitrate (NO3-N) concentration, higher rates of sediment phosphorus (P) release, and higher rates of NO3-N flux to the sediments. Rates of sediment P and N (as NH4-N) release were similar to those of eutrophic lakes. Water column nutrient concentrations were high, and FFP tissue was nutrient rich suggesting that the eutrophic condition of the UMR often facilitated abundant FFP. However, tissue nutrient concentrations, and the associations between FFP biomass and water column nutrient concentrations, suggested that nutrients constrained FFP abundance at some sites. FFP abundance was positively associated with SAV abundance and negatively associated with dissolved oxygen concentration. These results illustrate important connections among hydraulic connectivity, nutrient cycling, FFP, SAV, and DO in the backwaters of a large, floodplain river.
Uyà, Marc; Maggi, Elena; Mori, Giovanna; Nuccio, Caterina; Gribben, Paul E; Bulleri, Fabio
2017-05-01
Nutrient enrichment of coastal waters can enhance the invasibility and regrowth of non-native species. The invasive alga Caulerpa cylindracea has two distinct phases: a well-studied fast-growing summer phase, and a winter latent phase. To investigate the effects of nutrient enrichment on the regrowth of the seaweed after the winter resting-phase, a manipulative experiment was carried out in intertidal rockpools in the North-western Mediterranean. Nutrients were supplied under different temporal regimes: press (constant release from January to May), winter pulse (January to March) and spring pulse (March to May). Independently from the temporal characteristics of their addition, nutrients accelerated the re-growth of C. cylindracea after the winter die-back, resulting in increased percentage covers at the peak of the growing season. Nutrient addition did not influence the number and length of fronds and the biomass. Native components of the algal community did not respond to nutrient additions. Our results show that nutrient supply can favour the spread of C. cylindracea even when occurring at a time of the year at which the seaweed is not actively growing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Songlin; Jiang, Zhijian; Wu, Yunchao; Zhang, Jingping; Arbi, Iman; Ye, Feng; Huang, Xiaoping; Macreadie, Peter Ian
2017-04-15
Nutrient loading is a leading cause of global seagrass decline, triggering shifts from seagrass- to macroalgal-dominance. Within seagrass meadows of Xincun Bay (South China Sea), we found that nutrient loading (due to fish farming) increased sediment microbial biomass and extracellular enzyme activity associated with carbon cycling (polyphenol oxidase, invertase and cellulase), with a corresponding decrease in percent sediment organic carbon (SOC), suggesting that nutrients primed microorganism and stimulated SOC remineralization. Surpisingly, however, the relative contribution of seagrass-derived carbon to bacteria (δ 13 C bacteria ) increased with nutrient loading, despite popular theory being that microbes switch to consuming macroalgae which are assumed to provide a more labile carbon source. Organic carbon sources of fungi were unaffected by nutrient loading. Overall, this study suggests that nutrient loading changes the relative contribution of seagrass and algal sources to SOC pools, boosting sediment microbial biomass and extracellular enzyme activity, thereby possibly changing seagrass blue carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.
Watanabe, Masami; Ohta, Yuko; Licang, Sun; Motoyama, Naoki; Kikuchi, Jun
2015-02-15
In this study, the contents of water-soluble metabolites and mineral nutrients were measured in tomatoes cultured using organic and chemical fertilizers, with or without pesticides. Mineral nutrients and water-soluble metabolites were determined by inductively coupled plasma-atomic emission spectrometry and (1)H nuclear magnetic resonance spectrometry, respectively, and results were analysed by principal components analysis (PCA). The mineral nutrient and water-soluble metabolite profiles differed between organic and chemical fertilizer applications, which accounted for 88.0% and 55.4%, respectively, of the variation. (1)H-(13)C-hetero-nuclear single quantum coherence experiments identified aliphatic protons that contributed to the discrimination of PCA. Pesticide application had little effect on mineral nutrient content (except Fe and P), but affected the correlation between mineral nutrients and metabolites. Differences in the content of mineral nutrients and water-soluble metabolites resulting from different fertilizer and pesticide applications probably affect tomato quality. Copyright © 2014 Elsevier Ltd. All rights reserved.
Macro-grazer herbivory regulates seagrass response to pulse and press nutrient loading.
Ravaglioli, Chiara; Capocchi, Antonella; Fontanini, Debora; Mori, Giovanna; Nuccio, Caterina; Bulleri, Fabio
2018-05-01
Coastal ecosystems are exposed to multiple stressors. Predicting their outcomes is complicated by variations in their temporal regimes. Here, by means of a 16-month experiment, we investigated tolerance and resistance traits of Posidonia oceanica to herbivore damage under different regimes of nutrient loading. Chronic and pulse nutrient supply were combined with simulated fish herbivory, treated as a pulse stressor. At ambient nutrient levels, P. oceanica could cope with severe herbivory, likely through an increase in photosynthetic activity. Elevated nutrient levels, regardless of the temporal regime, negatively affected plant growth and increased leaf nutritional quality. This ultimately resulted in a reduction of plant biomass that was particularly severe under chronic fertilization. Our results suggest that both chronic and pulse nutrient loadings increase plant palatability to macro-grazers. Strategies for seagrass management should not be exclusively applied in areas exposed to chronic fertilization since even short-term nutrient pulses could alter seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.
Amin, Md Nurul; Kroeze, Carolien; Strokal, Maryna
2017-05-15
Many people practice open defecation in south Asia. As a result, lot of human waste containing nutrients such as nitrogen (N) and phosphorus (P) enter rivers. Rivers transport these nutrients to coastal waters, resulting in marine pollution. This source of nutrient pollution is, however, ignored in many nutrient models. We quantify nutrient export by large rivers to coastal seas of Bangladesh, India and Pakistan, and the associated eutrophication potential in 2000 and 2050. Our new estimates for N and P inputs from human waste are one to two orders of magnitude higher than earlier model calculations. This leads to higher river export of nutrients to coastal seas, increasing the risk of coastal eutrophication potential (ICEP). The newly calculated future ICEP, for instance, Godavori river is 3 times higher than according to earlier studies. Our modeling approach is simple and transparent and can easily be applied to other data-poor basins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Organic coating on biochar explains its nutrient retention and stimulation of soil fertility.
Hagemann, Nikolas; Joseph, Stephen; Schmidt, Hans-Peter; Kammann, Claudia I; Harter, Johannes; Borch, Thomas; Young, Robert B; Varga, Krisztina; Taherymoosavi, Sarasadat; Elliott, K Wade; McKenna, Amy; Albu, Mihaela; Mayrhofer, Claudia; Obst, Martin; Conte, Pellegrino; Dieguez-Alonso, Alba; Orsetti, Silvia; Subdiaga, Edisson; Behrens, Sebastian; Kappler, Andreas
2017-10-20
Amending soil with biochar (pyrolized biomass) is suggested as a globally applicable approach to address climate change and soil degradation by carbon sequestration, reducing soil-borne greenhouse-gas emissions and increasing soil nutrient retention. Biochar was shown to promote plant growth, especially when combined with nutrient-rich organic matter, e.g., co-composted biochar. Plant growth promotion was explained by slow release of nutrients, although a mechanistic understanding of nutrient storage in biochar is missing. Here we identify a complex, nutrient-rich organic coating on co-composted biochar that covers the outer and inner (pore) surfaces of biochar particles using high-resolution spectro(micro)scopy and mass spectrometry. Fast field cycling nuclear magnetic resonance, electrochemical analysis and gas adsorption demonstrated that this coating adds hydrophilicity, redox-active moieties, and additional mesoporosity, which strengthens biochar-water interactions and thus enhances nutrient retention. This implies that the functioning of biochar in soil is determined by the formation of an organic coating, rather than biochar surface oxidation, as previously suggested.
Houshmandfar, Alireza; Fitzgerald, Glenn J; O'Leary, Garry; Tausz-Posch, Sabine; Fletcher, Andrew; Tausz, Michael
2017-12-04
The impact of elevated [CO 2 ] (e[CO 2 ]) on crops often includes a decrease in their nutrient concentrations where reduced transpiration-driven mass flow of nutrients has been suggested to play a role. We used two independent approaches, a free-air CO 2 enrichment (FACE) experiment in the South Eastern wheat belt of Australia and a simulation study employing the agricultural production systems simulator (APSIM), to show that transpiration (mm) and nutrient uptake (g m -2 ) of nitrogen (N), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg) and manganese (Mn) in wheat are correlated under e[CO 2 ], but that nutrient uptake per unit water transpired is higher under e[CO 2 ] than under ambient [CO 2 ] (a[CO 2 ]). This result suggests that transpiration-driven mass flow of nutrients contributes to decreases in nutrient concentrations under e[CO 2 ], but cannot solely explain the overall decline. © 2017 Scandinavian Plant Physiology Society.
Konrad, Christopher P.
2014-01-01
Marine bivalves such as clams, mussels, and oysters are an important component of the food web, which influence nutrient dynamics and water quality in many estuaries. The role of bivalves in nutrient dynamics and, particularly, the contribution of commercial shellfish activities, are not well understood in Puget Sound, Washington. Numerous approaches have been used in other estuaries to quantify the effects of bivalves on nutrient dynamics, ranging from simple nutrient budgeting to sophisticated numerical models that account for tidal circulation, bioenergetic fluxes through food webs, and biochemical transformations in the water column and sediment. For nutrient management in Puget Sound, it might be possible to integrate basic biophysical indicators (residence time, phytoplankton growth rates, and clearance rates of filter feeders) as a screening tool to identify places where nutrient dynamics and water quality are likely to be sensitive to shellfish density and, then, apply more sophisticated methods involving in-situ measurements and simulation models to quantify those dynamics.
Urua, Ikootobong Sunday; Uyoh, Edak Aniedi; Ntui, Valentine Otang; Okpako, Elza Cletus
2013-02-01
Proximate composition, amino acid levels and anti-nutrient factors (polyphenols, phytic acid and oxalate) in the seeds of Parkia biglobosa were determined at three stages: raw, boiled and fermented. The highest anti-nutrient factor present in the raw state was oxalate, while phytic acid was the least. The amino acid of the raw seeds matched favourably to the World Health Organization reference standard. After processing, boiling increased fat, crude fibre and protein, while it reduced moisture, ash and the anti-nutrient content in 64% of the cases examined. Fermentation reduced ash, crude fibre and carbohydrate in all the accessions. It increased the moisture, fat and protein, while reducing the anti-nutrient factors in 78% of the cases. The high levels of protein, fat and amino acids coupled with the low levels of the anti-nutrients in the boiled and fermented seeds make Parkia a good source of nutrients for humans and livestock.
Autophagy: not good OR bad, but good AND bad.
Altman, Brian J; Rathmell, Jeffrey C
2009-05-01
Autophagy is a well-established mechanism to degrade intracellular components and provide a nutrient source to promote survival of cells in metabolic distress. Such stress can be caused by a lack of available nutrients or by insufficient rates of nutrient uptake. Indeed, growth factor deprivation leads to internalization and degradation of nutrient transporters, leaving cells with limited means to access extracellular nutrients even when plentiful.This loss of growth factor signaling and extracellular nutrients ultimately leads to apoptosis, but also activates autophagy, which may degrade intracellular components and provide fuel for mitochondrial bioenergetics. The precise metabolic role of autophagy and how it intersects with the apoptotic pathways in growth factor withdrawal, however, has been uncertain. Our recent findings ingrowth factor-deprived hematopoietic cells show that autophagy can simultaneously contribute to cell metabolism and initiate a pathway to sensitize cells to apoptotic death. This pathway may promote tissue homeostasis by ensuring that only cells with high resistance to apoptosis may utilize autophagy as a survival mechanism when growth factors are limiting and nutrient uptake decreases.
Fourqurean, James W; Muth, Meredith F; Boyer, Joseph N
2010-07-01
Despite marked gradients in nutrient availability that control the abundance and species composition of seagrasses in south Florida, and the importance of nutrient availability in controlling abundance and composition of epiphytes on seagrasses in other locations, we did not find that epiphyte load on the dominant seagrass, Thalassia testudinum, or that the relative contribution of algal epiphytes to the epiphyte community, was positively correlated with nutrient availability in the water column or the sediment in oligotrophic seagrass beds. Further, the abundance of microphytobenthos, as indicated by Chlorophyll-a concentration in the sediments, was not directly correlated with concentrations of nutrients in the sediments. Our results suggest that epiphyte and microphytobenthos abundance are not unambiguous indicators of nutrient availability in relatively pristine seagrass environments, and therefore would make poor candidates for indicators of the status and trends of seagrass ecosystems in relatively low-nutrient environments like the Florida Keys. Copyright 2010 Elsevier Ltd. All rights reserved.
Apparatus and method for phosphate-accelerated bioremediation
Looney, Brian B.; Pfiffner, Susan M.; Phelps, Tommy J.; Lombard, Kenneth H.; Hazen, Terry C.; Borthen, James W.
1998-01-01
An apparatus and method for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion thereof evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site and provides for the use of a passive delivery system. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate.
Apparatus and method for phosphate-accelerated bioremediation
Looney, B.B.; Phelps, T.J.; Hazen, T.C.; Pfiffner, S.M.; Lombard, K.H.; Borthen, J.W.
1994-01-01
An apparatus and method for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in fluid communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion thereof evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate.
Method for phosphate-accelerated bioremediation
Looney, Brian B.; Lombard, Kenneth H.; Hazen, Terry C.; Pfiffner, Susan M.; Phelps, Tommy J.; Borthen, James W.
1996-01-01
An apparatus and method for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in fluid communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion thereof evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate.
Improving fermented quality of cider vinegar via rational nutrient feeding strategy.
Qi, Zhengliang; Dong, Die; Yang, Hailin; Xia, Xiaole
2017-06-01
This work aimed to find a rational nutrient feeding strategy for cider vinegar fermentation based on adequate information on the nutritional requirement of acetic acid bacteria. Through single nutrient lack experiment assay, necessary nutrient recipe for Acetobacter pasteurianus CICIM B7003 in acetous fermentation was confirmed. Compounds from the essential nutrient recipe were tested further to find out the key substrates significantly influencing cider vinegar fermentation. The findings showed that aspartate, glutamate, proline and tryptophan should be considered in detail for optimizing nutritional composition of cider. Finally, a nutrient feeding strategy that simultaneously adds proline, glutamate, aspartate and tryptophan to form final concentrations of 0.02g/L, 0.03g/L, 0.01g/L and 0.005g/L in cider was achieved by orthogonal experiment design. Comparing to the original fermentation, the yield of acetic acid from alcohol reached 93.3% and the concentration of most volatile flavor compounds increased with the rational nutrient feeding strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Junzhuo; Wu, Yonghong; Wu, Chenxi; Muylaert, Koenraad; Vyverman, Wim; Yu, Han-Qing; Muñoz, Raúl; Rittmann, Bruce
2017-10-01
Innovative and cost-effective technologies for advanced nutrient removal from surface water are urgently needed for improving water quality. Conventional biotechnologies, such as ecological floating beds, or constructed wetlands, are not effective in removing nutrients present at low-concentration. However, microalgae-bacteria consortium is promising for advanced nutrient removal from wastewater. Suspended algal-bacterial systems can easily wash out unless the hydraulic retention time is long, attached microalgae-bacteria consortium is more realistic. This critical review summarizes the fundamentals and status of attached microalgae-bacteria consortium for advanced nutrient removal from surface water. Key advantages are the various nutrient removal pathways, reduction of nutrients to very low concentration, and diversified photobioreactor configurations. Challenges include poor identification of functional species, poor control of the community composition, and long start-up times. Future research should focus on the selection and engineering of robust microbial species, mathematical modelling of the composition and functionality of the consortium, and novel photobioreactor configurations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lowe, B. Scott; Leer, Donald R.; Frey, Jeffrey W.; Caskey, Brian J.
2008-01-01
The seasonal values for nutrients (nitrate, TKN, TN, and TP) and algal biomass (periphyton CHLa, AFDM, seston CHLa, and POC) were compared to published U. S. Environmental Protection Agency (USEPA) values for their respective ecoregions. Algal biomass values either were greater than the 25th percentile published USEPA values or extended the range of data in Aggregate Nutrient Ecoregions VI, VII, IX and USEPA Level III Ecoregions 54, 55, 56, 71, and 72. If the values for the 25th percentile proposed by the USEPA were adopted as nutrient water-quality criteria, then about 71 percent of the nutrient samples and 57 percent of the CHLa samples within the eight study basins would be considered nutrient enriched.
Nutrient balance affects foraging behaviour of a trap-building predator
Mayntz, David; Toft, Søren; Vollrath, Fritz
2009-01-01
Predator foraging may be affected by previous prey capture, but it is unknown how nutrient balance affects foraging behaviour. Here, we use a trap-building predator to test whether nutrients from previous prey captures affect foraging behaviour. We fed orb-weaving spiders (Zygiella x-notata) prey flies of different nutrient composition and in different amounts during their first instar and measured the subsequent frequency of web building and aspects of web architecture. We found that both the likelihood of web building and the number of radii in the web were affected by prey nutrient composition while prey availability affected capture area and mesh height. Our results show that both the balance of nutrients in captured prey and the previous capture rate may affect future foraging behaviour of predators. PMID:19640870
Comparison of Two Spectrophotometric Techniques for Nutrients Analyses in Water Samples
NASA Astrophysics Data System (ADS)
Bartošová, Alica; Michalíková, Anna; Sirotiak, Maroš; Soldán, Maroš
2013-01-01
The aim of this contribution is to compare two common techniques for determining the concentrations of nitrate, nitrite, ammonium and phosphates in surface water and groundwater. Excess of these nutrients in water can directly affect human health (e.g. methemoglobinaemia) or indirectly through the products of secondary pollution - eutrophication (e.g. cyanotoxins, emanation of hydrogen sulphide, mercaptanes, methane...). Negative impact of nutrients excess in surface water often causes the destruction of water ecosystems, and therefore, common substances of these elements must be monitored and managed. For these experiments two spectrophotometric techniques - ultraviolet spectrophotometry and nutrient photometry were used. These techniques are commonly used for quick and simple analyses of nutrients in waste water. There are calibration curves for each nutrient and for determination of their concentration.
Nutrient-Specific Foraging in Invertebrate Predators
NASA Astrophysics Data System (ADS)
Mayntz, David; Raubenheimer, David; Salomon, Mor; Toft, Søren; Simpson, Stephen J.
2005-01-01
Many herbivores and omnivores adjust their food selection behavior to regulate the intake of multiple nutrients. Carnivores, however, are generally assumed to optimize the rate of prey capture rather than select prey according to nutrient composition. We showed experimentally that invertebrate predators can forage selectively for protein and lipids to redress specific nutritional imbalances. This selection can take place at different stages of prey handling: The predator may select among foods of different nutritional composition, eat more of a prey if it is rich in nutrients that the predator is deficient in, or extract specific nutrients from a single prey item.
Nutrients in waters on the inner shelf between Cape Charles and Cape Hatteras
NASA Technical Reports Server (NTRS)
Wong, G. T. F.; Todd, J. F.
1981-01-01
The distribution of nutrients in the shelf waters of the southern tip of the Middle Atlantic Bight was investigated. It is concluded that the outflow of freshwater from the Chesapeake Bay is a potential source of nutrients to the adjacent shelf waters. However, a quantitative estimation of its importance cannot yet be made because (1) there are other sources of nutrients to the study area and these sources cannot yet be quantified and (2) the concentrations of nutrients in the outflow from Chesapeake Bay exhibit significant short-term and long-term temporal variabilities.
Bark analysis as a guide to cassava nutrition in Sierra Leone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godfrey-Sam-Aggrey, W.; Garber, M.J.
1979-01-01
Cassava main stem barks from two experiments in which similar fertilizers were applied directly in a 2/sup 5/ confounded factorial design were analyzed and the bark nutrients used as a guide to cassava nutrition. The application of multiple regression analysis to the respective root yields and bark nutrient concentrations enable nutrient levels and optimum adjusted root yields to be derived. Differences in bark nutrient concentrations reflected soil fertility levels. Bark analysis and the application of multiple regression analysis to root yields and bark nutrients appear to be useful tools for predicting fertilizer recommendations for cassava production.
Marine microorganisms and global nutrient cycles
NASA Astrophysics Data System (ADS)
Arrigo, Kevin R.
2005-09-01
The way that nutrients cycle through atmospheric, terrestrial, oceanic and associated biotic reservoirs can constrain rates of biological production and help structure ecosystems on land and in the sea. On a global scale, cycling of nutrients also affects the concentration of atmospheric carbon dioxide. Because of their capacity for rapid growth, marine microorganisms are a major component of global nutrient cycles. Understanding what controls their distributions and their diverse suite of nutrient transformations is a major challenge facing contemporary biological oceanographers. What is emerging is an appreciation of the previously unknown degree of complexity within the marine microbial community.
Bortleson, Gilbert C.; Fretwell, Marvin O.
1993-01-01
Ten possible causes for this excessive enrichment in nutrients are described. Three of these hypotheses are suggested for immediate testing because of large-scale changes in nutrient loading that may have occurred as a result of man’s activities. These three hypotheses relate nutrient enrichment to (1) conversion of marshland to agricultural land, (2) agricultural drainage from the basin, and (3) reservoir regulation. Eleven possible hypothetical causes for the decline in sucker populations also are described. The decline in sucker population may be related to excessive nutrient enrichment (eutrophication) of the lake.
Long Term Large Scale river nutrient changes across the UK
NASA Astrophysics Data System (ADS)
Bell, Victoria; Naden, Pam; Tipping, Ed; Davies, Helen; Davies, Jessica; Dragosits, Ulli; Muhammed, Shibu; Quinton, John; Stuart, Marianne; Whitmore, Andy; Wu, Lianhai
2017-04-01
During recent decades and centuries, pools and fluxes of Carbon, Nitrogen and Phosphorus (C, N and P) in UK rivers and ecosystems have been transformed by the spread and fertiliser-based intensification of agriculture (necessary to sustain human populations), by atmospheric pollution, by human waste (rising in line with population growth), and now by climate change. The principal objective of the UK's NERC-funded Macronutrients LTLS research project has been to account for observable terrestrial and aquatic pools, concentrations and fluxes of C, N and P on the basis of past inputs, biotic and abiotic interactions, and transport processes. More specifically, over the last 200 years, what have been the temporal responses of plant and soil nutrient pools in different UK catchments to nutrient enrichment, and what have been the consequent effects on nutrient transfers from land to the atmosphere, freshwaters and estuaries? The work described here addresses the second question by providing an integrated quantitative description of the interlinked land and water pools and annual fluxes of C, N and P for UK catchments over time. A national-scale modelling environment has been developed, combining simple physically-based gridded models that can be parameterised using recent observations before application to long timescales. The LTLS Integrated Model (LTLS-IM) uses readily-available driving data (climate, land-use, nutrient inputs, topography), and model estimates of both terrestrial and freshwater nutrient loads have been compared with measurements from sites across the UK. Here, the focus is on the freshwater nutrient component of the LTLS-IM, but the terrestrial nutrient inputs required for this are provided by models of nutrient processes in semi-natural and agricultural systems, and from simple models of nutrients arising from human waste. In the freshwater model, lateral routing of dissolved and particulate nutrients and within-river processing such as denitrification, decomposition and chlorophyll growth are undertaken, and the effects of groundwater storage and processes in lakes connected to the river network can be included. Following assessment against observations of terrestrial and nutrient fluxes in rivers across the UK, the LTLS-IM has been run nationally for 200 years (1800 to 2010), and the work presented here provides, for the first time, national, regional or catchment estimates of the origins and trends in riverine nutrients in the period following the industrial revolution. Ongoing work is now exploring the effects of future climate, waste water treatment and land-management scenarios on water quality, and the effects of nutrient enrichment on the development of eutrophication in rivers.
NASA Astrophysics Data System (ADS)
Wei, Qin-Sheng; Yu, Zhi-Gang; Wang, Bao-Dong; Fu, Ming-Zhu; Xia, Chang-Shui; Liu, Lu; Ge, Ren-Feng; Wang, Hui-Wu; Zhan, Run
2016-04-01
This study investigated the coupling of the spatial-temporal variations in nutrient distributions and physical conditions in the southern Yellow Sea (SYS) using data compiled from annual-cycle surveys conducted in 2006-2007 as well as satellite-derived sea-surface temperature (SST) images. The influence of physical dynamics on the distribution and transport of nutrients varied spatially and seasonally in the SYS. The Changjiang Diluted Water (CDW) plume (in summertime), the Subei Coastal Water (SCW) (year-round), and the Lubei Coastal Current (LCC) (in wintertime) served as important sources of nutrients in the inshore area in a dynamic environment. The saline Taiwan Warm Current (TWC) might transport nutrients to the northeast region of the Changjiang Estuary in the summer, and this nutrient source began to increase from spring to summer and decrease when autumn arrived. Three types of nutrient fronts, i.e., estuarine, offshore, and coastal, were identified. A circular nutrient front caused by cross-shelf transport of SCW in the southeast shelf bank area in the winter and spring was observed. The southeastward flow of western coastal cold water in the SYS might be an important conduit for cross-shelf nutrient exchange between the SYS and the East China Sea (ECS). The tongue-shaped low-nutrient region in the western study area in the wintertime was driven by the interaction of the southward Yellow Sea Western Coastal Current (YSWCC) and the biological activity. The vertically variable SCM (subsurface Chl-a maximum) in the central SYS was controlled by coupled physical-chemical processes that involved stratification and associated nutricline. The average nutrient fluxes into the euphotic zone due to upwelling near the frontal zone of the Yellow Sea Cold Water Mass (YSCWM) in the summer are estimated here for the first time: 1.4 ± 0.9 × 103 μmol/m2/d, 0.1 ± 0.1 × 103 μmol/m2/d, and 2.0 ± 1.3 × 103 μmol/m2/d for DIN, PO4-P, and SiO3-Si, respectively. The depletion of nutrients in the central SYS and the upwelled transport in the boundary of the YSCWM resulted in a spatial transfer of the high Chl-a zone, varying generally from the central SYS to the boundary of the YSCWM from spring to summer, and the nutrient flux associated with this upwelling could contribute significantly to local primary production. This study deepens our understanding of the mechanisms influencing the distribution and transport of nutrients in the SYS.
Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M
2017-01-01
Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems.
Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; de Visser, Pieter H. B.; Marcelis, Leo F. M.
2017-01-01
Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15–17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems. PMID:28443129
Factors affecting nutrient trends in major rivers of the Chesapeake Bay Watershed
Sprague, Lori A.; Langland, M.J.; Yochum, S.E.; Edwards, R.E.; Blomquist, J.D.; Phillips, S.W.; Shenk, G.W.; Preston, S.D.
2000-01-01
Trends in nutrient loads and flow-adjusted concentrations in the major rivers entering Chesapeake Bay were computed on the basis of water-quality data collected between 1985 and 1998 at 29 monitoring stations in the Susquehanna, Potomac, James, Rappahannock, York, Patuxent, and Choptank River Basins. Two computer models?the Chesapeake Bay Watershed Model (WSM) and the U.S. Geological Survey?s 'Spatially Referenced Regressions on Watershed attributes' (SPARROW) Model?were used to help explain the major factors affecting the trends. Results from WSM simulations provided information on temporal changes in contributions from major nutrient sources, and results from SPARROW model simulations provided spatial detail on the distribution of nutrient yields in these basins. Additional data on nutrient sources, basin characteristics, implementation of management practices, and ground-water inputs to surface water were analyzed to help explain the trends. The major factors affecting the trends were changes in nutrient sources and natural variations in streamflow. The dominant source of nitrogen and phosphorus from 1985 to 1998 in six of the seven tributary basins to Chesapeake Bay was determined to be agriculture. Because of the predominance of agricultural inputs, changes in agricultural nutrient sources such as manure and fertilizer, combined with decreases in agricultural acreage and implementation of best management practices (BMPs), had the greatest impact on the trends in flow-adjusted nutrient concentrations. Urban acreage and population, however, were noted to be increasing throughout the Chesapeake Bay Watershed, and as a result, delivered loads of nutrients from urban areas increased during the study period. Overall, agricultural nutrient management, in combination with load decreases from point sources due to facility upgrades and the phosphate detergent ban, led to downward trends in flow-adjusted nutrient concentrations atmany of the monitoring stations in the watershed. The loads of nutrients, however, were not reduced significantly at most of the monitoring stations. This is due primarily to higher streamflow in the latter years of the monitoring period, which led to higher loading in those years.Results of this study indicate a need for more detailed information on BMP effectiveness under a full range of hydrologic conditions and in different areas of the watershed; an internally consistent fertilizer data set; greater consideration of the effects of watershed processes on nutrient transport; a refinement of current modeling efforts; and an expansion of the non-tidal monitoring network in the Chesapeake Bay Watershed.
Vonnahme, K A; Hess, B W; Nijland, M J; Nathanielsz, P W; Ford, S P
2006-12-01
Maternal nutrient restriction from early to midgestation can lead to fetal growth retardation, with long-term impacts on offspring growth, physiology, and metabolism. We hypothesized that ewes from flocks managed under markedly different environmental conditions and levels of nutrition might differ in their ability to protect their own fetus from a bout of maternal nutrient restriction. We utilized multiparous ewes of similar breeding, age, and parity from 2 flocks managed as 1) ewes adapted to a nomadic existence and year-long, limited nutrition near Baggs, WY (Baggs ewes), and 2) University of Wyoming ewes with a sedentary lifestyle and continuous provision of more than adequate nutrition (UW ewes). Groups of Baggs ewes and UW ewes were fed 50 (nutrient restricted) or 100% (control fed) of National Research Council recommendations from d 28 to 78 of gestation, then necropsied, and fetal and placental data were obtained. Although there was a marked decrease (P < 0.05) in fetal weight and blood glucose concentrations in nutrient-restricted vs. control fed UW ewes, there was no difference in these fetal measurements between nutrient-restricted and control-fed Baggs ewes. Nutrient-restricted and control-fed UW ewes exhibited predominantly type A placentomes on d 78, but there were fewer (P c0.05) type A and greater (P < 0.05) numbers of type B, C, and D placentomes in nutrient-restricted than control-fed Baggs ewes. Placental efficiency (fetal weight/placentomal weight) was reduced (P = 0.04) in d 78 nutrient-restricted UW ewes when compared with control-fed UW ewes. In contrast, nutrient-restricted and control-fed Baggs ewes exhibited similar placental efficiencies on d 78. This is the first report of different placental responses to a nutritional challenge during pregnancy when ewes were selected under different management systems. These data are consistent with the concept that Baggs ewes or their conceptuses, which were adapted to both harsh environments and limited nutrition, initiated conversion of type A placentomes to other placentomal types when subjected to an early to mid-gestational nutrient restriction, whereas this conversion failed to occur in UW ewes. This early placentomal conversion in the Baggs ewes may function to maintain normal nutrient delivery to their developing fetuses during maternal nutrient restriction.
A survey of the reformulation of Australian child-oriented food products.
Savio, Stephanie; Mehta, Kaye; Udell, Tuesday; Coveney, John
2013-09-11
Childhood obesity is one of the most pressing public health challenges of the 21st century. Reformulating commonly eaten food products is a key emerging strategy to improve the food supply and help address rising rates of obesity and chronic disease. This study aimed to monitor reformulation of Australian child-oriented food products (products marketed specifically to children) from 2009-2011. In 2009, all child-oriented food products in a large supermarket in metropolitan Adelaide were identified. These baseline products were followed up in 2011 to identify products still available for sale. Nutrient content data were collected from Nutrient Information Panels in 2009 and 2011. Absolute and percentage change in nutrient content were calculated for energy, total fat, saturated fat, sugars, sodium and fibre. Data were descriptively analysed to examine reformulation in individual products, in key nutrients, within product categories and across all products. Two methods were used to assess the extent of reformulation; the first involved assessing percentage change in single nutrients over time, while the second involved a set of nutrient criteria to assess changes in overall healthiness of products over time. Of 120 products, 40 remained unchanged in nutrient composition from 2009-2011 and 80 underwent change. The proportions of positively and negatively reformulated products were similar for most nutrients surveyed, with the exception of sodium. Eighteen products (15%) were simultaneously positively and negatively reformulated for different nutrients. Using percentage change in nutrient content to assess extent of reformulation, nearly half (n = 53) of all products were at least moderately reformulated and just over one third (n = 42) were substantially reformulated. The nutrient criteria method revealed 5 products (6%) that were positively reformulated and none that had undergone negative reformulation. Positive and negative reformulation was observed to a similar extent within the sample indicating little overall improvement in healthiness of the child-oriented food supply from 2009-2011. In the absence of agreed reformulation standards, the extent of reformulation was assessed against criteria developed specifically for this project. While arbitrary in nature, these criteria were based on reasonable assessment of the meaningfulness of reformulation and change in nutrient composition. As well as highlighting nutrient composition changes in a number of food products directed to children, this study emphasises the need to develop comprehensive, targeted and standardised reformulation benchmarks to assess the extent of reformulation occurring in the food supply.
USDA-ARS?s Scientific Manuscript database
To our knowledge, few studies have described the usual nutrient intakes of U.S. children aged <2 y or assessed the nutrient adequacy of their diets relative to the recommended Dietary Reference Intakes (DRIs). We estimated the usual nutrient intake of U.S. children aged 6-23 months examined in NHAN...
Exponential Nutrient Loading as a Means to Optimize Bareroot Nursery Fertility of Oak Species
Zonda K. D. Birge; Douglass F. Jacobs; Francis K. Salifu
2006-01-01
Conventional fertilization in nursery culture of hardwoods may involve supply of equal fertilizer doses at regularly spaced intervals during the growing season, which may create a surplus of available nutrients in the beginning and a deficiency in nutrient availability by the end of the growing season. A method of fertilization termed âexponential nutrient loadingâ has...
John K. Francis
1986-01-01
Intensive harvest of southern hardwoods can yield biomass in a greatly varied mix. This causes variation in the withdrawal rates of nutrients. A need exists for a computer program to perform biomass and nutrient content calculations on diverse stands. such a program BANR (Biomass And Nutrient Removal) - is described in this paper. It was written for the Hewlett-Packard...
USDA-ARS?s Scientific Manuscript database
The purpose of this study was to examine the association between almond consumption, the most widely consumed tree nut in the US, and nutrient intake, nutrient adequacy, diet quality, and weight/adiposity in adults. Data from adults (N=24,808), 19+ years, participating in the NHANES 2001-2010 were u...
George M. Chescheir; François Birgand; Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya
2010-01-01
Nutrient loading in drainage outflow is estimated from measured flows and nutrient concentrations in the drainage water. The loading function is ideally continuous, representing the product of continuously measured outflows and nutrient concentrations in drainage water. However, loading is often estimated as the product of continuously measured outflow and nutrient...
2000-11-13
Collection and Nutrient Analyses Ashumet Pond water column profiles and samples were taken by the School for Marine Science and Technology (SMAST) at the...Collection & Analysis ........................................ .......... 77 4.3.1 SMAST Water Sampling Plan/Collection and Nutrient Analyses...suited as an indicator of phosphate limitation in natural waters . In this study alkaline phosphatase is used to understand the nutrient limitation
Leaf life span and the mobility of "non-mobile" mineral nutrients - the case of boron in conifers
Pedro J. Aphalo; Anna W. Schoettle; Tarja Lehto
2002-01-01
Nutrient conservation is considered important for the adaptation of plants to infertile environments. The importance of leaf life spans in controlling mean residence time of nutrients in plants has usually been analyzed in relation to nutrients that can be retranslocated within the plant. Longer leaf life spans increase the mean residence time of all mineral...
ERIC Educational Resources Information Center
Johnson, Cara M.; Bednar, Carolyn; Kwon, Junehee; Gustof, Alissa
2009-01-01
Purpose: The purpose of this study was to compare nutrient content and cost of home-packed lunches to nutrient standards and prices for reimbursable school lunches. Methods: Researchers observed food and beverage contents of 333 home packed lunches at four north Texas elementary schools. Nutritionist Pro was used to analyze lunches for calories,…
Zhu, Q.; Riley, W. J.; Tang, J.; ...
2016-01-18
Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH 4 +, NO 3 − and PO x; representing the sum of PO 4 3−, HPOmore » 4 2− and H 2PO 4 −) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N 2O emissions, free phosphorus, sorbed phosphorus and NH 4 + pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer–substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.« less
Collins, Sarah M; Oliver, Samantha K; Lapierre, Jean-Francois; Stanley, Emily H; Jones, John R; Wagner, Tyler; Soranno, Patricia A
2017-07-01
Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry. Our results suggest ecological context mediates controls on lake nutrients and stoichiometry. Predicting stoichiometry was generally more difficult than predicting nutrient concentrations, but human activity may decouple N and P, leading to better prediction of N:P stoichiometry in regions with high anthropogenic activity. © 2017 by the Ecological Society of America.
Collins, Sarah M.; Oliver, Samantha K.; Lapierre, Jean-Francois; Stanley, Emily H.; Jones, John R.; Wagner, Tyler; Soranno, Patricia A.
2017-01-01
Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry. Our results suggest ecological context mediates controls on lake nutrients and stoichiometry. Predicting stoichiometry was generally more difficult than predicting nutrient concentrations, but human activity may decouple N and P, leading to better prediction of N:P stoichiometry in regions with high anthropogenic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Q.; Riley, W. J.; Tang, J.
Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH 4 +, NO 3 − and PO x; representing the sum of PO 4 3−, HPOmore » 4 2− and H 2PO 4 −) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N 2O emissions, free phosphorus, sorbed phosphorus and NH 4 + pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer–substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.« less
NASA Astrophysics Data System (ADS)
Mendoza, W. G.; Corredor, J. E.; Ko, D.; Zika, R. G.; Mooers, C. N.
2008-05-01
The increasing effort to develop the coastal ocean observing system (COOS) in various institutions has gained momentum due to its high value to climate, environmental, economic, and health issues. The stress contributed by nutrients to the coral reef ecosystem is among many problems that are targeted to be resolved using this system. Traditional nutrient sampling has been inadequate to resolve issues on episodic nutrient fluxes in reef regions due to temporal and spatial variability. This paper illustrates sampling strategy using the COOS information to identify areas that need critical investigation. The area investigated is within the Puerto Rico subdomain (60-70oW, 15-20oN), and Caribbean Time Series (CaTS), World Ocean Circulation Experiment (WOCE), Intra-America Sea (IAS) ocean nowcast/forecast system (IASNFS), and other COOS-related online datasets are utilized. Nutrient profile results indicate nitrate is undetectable in the upper 50 m apparently due to high biological consumption. Nutrients are delivered in Puerto Rico particularly in the CaTS station either via a meridional jet formed from opposing cyclonic and anticyclonic eddies or wind-driven upwelling. The strong vertical fluctuation in the upper 50 m demonstrates a high anomaly in temperature and salinity and a strong cross correlation signal. High chlorophyll a concentration corresponding to seasonal high nutrient influx coincides with higher precipitation accumulation rates and apparent riverine input from the Amazon and Orinoco Rivers during summer (August) than during winter (February) seasons. Non-detectability of nutrients in the upper 50 m is a reflection of poor sampling frequency or the absence of a highly sensitive nutrient analysis method to capture episodic events. Thus, this paper was able to determine the range of depths and concentrations that need to be critically investigated to determine nutrient fluxes, nutrient sources, and climatological factors that can affect nutrient delivery. It also provides some insight into needed sampling rates and temporal and spatial domain choices. Finally, it demonstrates a scientific reconnaissance for a field study that is now possible with online in-situ and remote sensing observations and numerical simulations, as a consequence of IOOS in general and COOS in particular.
NASA Astrophysics Data System (ADS)
Belfiore, Laurence A.; Volpato, Fabio Z.; Paulino, Alexandre T.; Belfiore, Carol J.
2011-12-01
The primary objective of this investigation is to establish guidelines for generating significant mammalian cell density in suspension bioreactors when stress-sensitive kinetics enhance the rate of nutrient consumption. Ultra-low-frequency dynamic modulations of the impeller (i.e., 35104 Hz) introduce time-dependent oscillatory shear into this transient analysis of cell proliferation under semi-continuous creeping flow conditions. Greater nutrient consumption is predicted when the amplitude
Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012
Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.
2014-01-01
Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent of the orthophosphate budget. We identified several data gaps and areas for future research, which include the need for better understanding nutrient inputs to the lake from sediment resuspension and better quantification of indirect nutrient inputs to the lake from Salmon Creek.
Vascular risk reduction during anterior surgical approach sacroiliac joint plating.
Alla, Sreenivasa R; Roberts, Craig S; Ojike, Nwakile I
2013-02-01
Open reduction and internal fixation of sacroiliac (SI) joint is often performed through an anterior approach. However, there were no studies to our knowledge which described the "at risk area" for injury to the nutrient artery as it relates to open reduction and internal fixation of the SI joint. The purpose of this study was to determine the "at risk area" for the nutrient artery during anterior surgical approaches to the SI joint and to define the safe location of the plate for SI joint fixation. Six right and five left hemipelvises (three male and three female cadavers) were dissected with a mean age of 72 years (range, 51-90 years). Three bony landmarks including the pelvic brim, anterior SI joint line, and the anterior superior iliac spine (ASIS) were identified to quantify the measurements. Three different measurements were taken: from the nutrient foramen to the anterior SI joint line; from the nutrient foramen to the nearest point on the pelvic brim; from the nutrient foramen to ASIS using a flexible ruler with a 1mm base. The nutrient artery courses across the SI joint to enter into the nutrient foramen. Whilst exposing the internal surface of the SI joint, the nutrient foramen was identified at a mean distance of 88.1mm medial to ASIS, 20.1mm above the pelvic brim, and 20.1mm lateral to SI joint. The variability of the location of the nutrient foramen was identified and was located from 80mm to 95mm medial to the ASIS, 12mm to 25mm lateral to the SI joint, and 16mm to 30mm above the pelvic brim. Familiarity of the vasculature of the internal pelvis is of utmost importance for the surgeon when considering operative fixation of the anterior SI joint. We were able to identify the relation of the nutrient artery to the anatomic landmarks of the internal pelvis and to define the "at risk area" for the nutrient artery. We believe increased understanding of the anatomy of the nutrient artery will aid in the avoidance of vascular complications during internal fixation of the anterior SI joint. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.
2016-01-01
Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3- and POx; representing the sum of PO43-, HPO42- and H2PO4-) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus and NH4+ pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.
Abbott, Benjamin W; Moatar, Florentina; Gauthier, Olivier; Fovet, Ophélie; Antoine, Virginie; Ragueneau, Olivier
2018-05-15
Agriculture and urbanization have disturbed three-quarters of global ice-free land surface, delivering huge amounts of nitrogen and phosphorus to freshwater ecosystems. These excess nutrients degrade habitat and threaten human food and water security at a global scale. Because most catchments are either currently subjected to, or recovering from anthropogenic nutrient loading, understanding the short- and long-term responses of river nutrients to changes in land use is essential for effective management. We analyzed a never-published, 18-year time series of anthropogenic (NO 3 - and PO 4 3- ) and naturally derived (dissolved silica) riverine nutrients in 13 catchments recovering from agricultural pollution in western France. In a citizen science initiative, high-school students sampled catchments weekly, which ranged from 26 to 1489km 2 . Nutrient concentrations decreased substantially over the period of record (19 to 50% for NO 3 - and 14 to 80% for PO 4 3- ), attributable to regional, national, and international investment and regulation, which started immediately prior to monitoring. For the majority of catchments, water quality during the summer low-flow period improved faster than during winter high-flow conditions, and annual minimum concentrations improved relatively faster than annual maximum concentrations. These patterns suggest that water-quality improvements were primarily due to elimination of discrete nutrient sources with seasonally-constant discharge (e.g. human and livestock wastewater), agreeing with available land-use and municipal records. Surprisingly, long-term nutrient decreases were not accompanied by changes in nutrient seasonality in most catchments, attributable to persistent, diffuse nutrient stocks. Despite decreases, nutrient concentrations in almost all catchments remained well above eutrophication thresholds, and because additional improvements will depend on decreasing diffuse nutrient sources, future gains may be much slower than initial rate of recovery. These findings demonstrate the value of citizen science initiatives in quantifying long-term and seasonal consequences of changes in land management, which are necessary to identify sustainable limits and predict recovery timeframes. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Qingxue; Jia, Zhiqing; Zhu, Yajuan; Wang, Yongsheng; Li, Hong; Yang, Defu; Zhao, Xuebin
2015-01-01
The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1) Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2) Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3) Soil “fertile islands” were formed, and the “fertile islands” were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E) for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous shrub. PMID:25946170
Stevenson, Pablo R; Guzmán-Caro, Diana C
2010-11-01
The contribution of vertebrate animals to nutrient cycling has proven to be important in various ecosystems. However, the role of large bodied primates in nutrient transport in neotropical forests is not well documented. Here, we assess the role of a population of woolly monkeys (Lagothrix lagothricha lugens) as vectors of nutrient movement through seed dispersal. We estimated total seed biomass transported by the population within and between two habitats (terra firme and flooded forests) at Tinigua Park, Colombia, and quantified potassium (K), phosphorus (P) and nitrogen (N) content in seeds of 20 plant species from both forests. Overall, the population transported an estimated minimum of 11.5 (±1.2 SD) g of potassium, 13.2 (±0.7) g of phosphorus and 34.3 (±0.1) g nitrogen, within 22.4 (±2.0) kg of seeds ha(-1) y(-1). Approximately 84% of all nutrients were deposited in the terra firme forest mostly through recycling processes, and also through translocation from the flooded forest. This type of translocation represents an important and high-quality route of transport since abiotic mechanisms do not usually move nutrients upwards, and since chemical tests show that seeds from flooded forests have comparatively higher nutrient contents. The overall contribution to nutrient movement by the population of woolly monkeys is significant because of the large amount of biomass transported, and the high phosphorus content of seeds. As a result, the phosphorus input generated by these monkeys is of the same order of magnitude as other abiotic mechanisms of nutrient transport such as atmospheric deposition and some weathering processes. Our results suggest that via seed dispersal processes, woolly monkey populations can contribute to nutrient movement in tropical forests, and may act as important nutrient input vectors in terra firme forests. © 2010 Wiley-Liss, Inc.
Nutrient Recovery of Plant Leachates Under Thermal, Biological, and Photocatalytic Pretreatments
NASA Technical Reports Server (NTRS)
Wong, Les
2015-01-01
Nutrient recovery has always been a problem for long distance and long-term space missions. To allow humans to man these missions, a steady source of oxygen, water, and food are necessary for survival beyond Earth's atmosphere. Plants are currently an area of interest since they are capable of providing all three resources for life sustainability. We are currently interested in nutrient recovery for future plant growth and simple aqueous leachate extractions can recover some of the nutrients. However, leaching plants also removes water-soluble organic plant wastes, which inhibits plant growth if not separated properly. To combat the issues with waste and maximize nutrient recovery, we are attempting to pre-treat the plant matter using biological, thermal, and photocatalytic methods before subjecting the solution with variable-strength acid digestion. For the biological method, the inoculums: mixed heterotrophic/nitrifying bioreactor effluent and Trichoderma vessei are used in an attempt to liberate more nutrients from the plant matter. For the thermal method, plants are subjected to varying temperatures at different retention times to determine nutrient recovery. Lastly, the photocatalytic method utilizes TiO (sub 2)'s oxidizing abilities under specific pHs and retention times to reduce organic wastes and improve nutrient gains. A final acid digestion serves to liberate nutrients even further in order to maximize recovery. So far, we have tested ideal acid digestion variables for practicality and performance in our experiments. We found that a low retention time of 10 minutes and a high acid concentration of 0.1 and 1 mole HCl were the most effective at nutrient recovery. For space travel purposes, 0.1 mole currently looks like a viable acid digestion to use since it is relatively effective and sustainable from a mass and energy balance if acid recovery can be performed on waste brines. Biological pretreatments do not look to be too effective and the thermal and photocatalytic methods may be preferred since they show a potential to recover more than 70 percent of the nutrients.
Nutrient production from dairy cattle manure and loading on arable land
You, Byung-Gu; Choi, Yoon-Seok; Ra, Changsix
2017-01-01
Objective Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Methods Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (ΔP = 0). Results The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. Conclusion As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management. PMID:27492346
NASA Astrophysics Data System (ADS)
Wang, Xuejing; Li, Hailong; Zheng, Chunmiao; Yang, Jinzhong; Zhang, Yan; Zhang, Meng; Qi, Zhanhui; Xiao, Kai; Zhang, Xiaolang
2018-03-01
As an important nutrient source for coastal waters, submarine groundwater discharge (SGD) has long been largely ignored in Daya Bay, China. In this study, we estimate the fluxes of SGD and associated nutrients into this region using a 224Ra mass balance model and assess the contribution/importance of nutrients by SGD, benthic sediments, local rivers, and atmospheric deposition. The results of 224Ra mass balance show that the estimated SGD ranges from (2.76 ± 1.43) × 106 m3/d to (1.03 ± 0.53) × 107 m3/d with an average of (6.32 ± 2.42) × 106 m3/d, about 16 times the total discharge rate of local rivers. The nutrient loading from SGD is estimated to be (1.05-1.99) × 105 mol/d for NO3-N, (4.04-12.16) × 103 mol/d for DIP, and (3.54-11.35) × 105 mol/d for Si. Among these considered nutrient sources, we find that SGD is the primary source for Si and NO3-N, contributing 68% and 42% of all considered sources, respectively. The atmospheric NO3-N flux is comparable to that from SGD. The local rivers are the most important source for DIP, contributing 75% of all considered sources. SGD with high N:P ratio (NO3-N/DIP) of 37.0 delivers not only a large quantity of nutrients, but also changes nutrient structure in coastal water. Based on a DIP budget, primary productivity is evaluated to be 54-73 mg C/m2 d, in which SGD accounts for approximately 30% of total production. This study indicates that SGD is a key source of nutrients to coastal waters and may cause an obvious change of primary production and nutrient structure in Daya Bay.
Reed, S.C.; Vitousek, P.M.; Cleveland, C.C.
2011-01-01
Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in 'young' sites to phosphorus (P) limitation in 'old' sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status. ?? 2010 US Government.
NASA Astrophysics Data System (ADS)
La Valle, F. F.; Thomas, F. I. M.
2016-02-01
As populations grow and development efforts continue in coastal regions throughout the world, eutrophication is one of the leading issues surrounding coastal ecosystems. Currently, studies on subterranean groundwater discharge (SGD) are confirming that SGD can contain substantial nutrient concentrations due to agricultural activities, urbanization, leaky septic and sewer systems, and use of fertilizers. Thus, it is important for SGD with high nutrient concentrations to be monitored for its impact on coastal dynamics. Coral reef systems are especially sensitive to changes in nutrient concentrations which can change community composition by creating advantageous biochemical environments for specific algal species. Excess nutrients along with decreased herbivory have been attributed to phase shifts from coral dominated to algal dominated reefs. In this study we mapped algal cover and nutrient load with respect to the groundwater in two fringing reefs (Black Point and Wailupe) in Maunalua Bay, Oahu, Hawaíi. We established relationships between salinity and nutrient concentrations for the two sites by sampling synoptically on an onshore to offshore transect from the SGD seeps (n = 48 Black Point, n = 40 Wailupe, R2 > 0.965). The groundwater end members at the two sites have different nutrient signatures: concentrations at Black Point averaged 167.3 uM N+N (NO3- + NO2-) and 3.57 uM PO43-, while at Wailupe nutrient concentrations averaged 68.7 uM N+N and 1.96 uM PO43-. We used these relationships to calculate nutrient time series after deploying 23 autonomous salinity sensors for one month across the benthos at each site respectively. Benthic surveys taken over 2 seasons indicate that the algal composition and distribution relative to the groundwater sources differ at the two sites. Growth rates of some major macroalgal species also differ with distance from SGD source. Further studies on the biological effects of high SGD-associated nutrients on coastal systems are warranted.
NASA Astrophysics Data System (ADS)
Trierweiler, A.; Powers, J. S.; Xu, X.; Gei, M. G.; Medvigy, D.
2017-12-01
As one of the most threatened tropical biomes, Seasonal Dry Tropical Forests (TDF) have undergone extensive land-use change. However, some areas are undergoing recovery into secondary forests. Despite their broad distribution (42% of tropical forests), they are under-studied compared to wet tropical forests and our understanding of their biogeochemical cycling and belowground processes are limited. Here, we use models along with field measurements to improve our understanding of nutrient cycling and limitation in secondary TDFs. We ask (1) Is there modeling evidence that tropical dry forests can become nutrient limited? (2) What are the most important mechanisms employed to avoid nutrient limitation? (3) How might climate change alter biogeochemical cycling and nutrient limitation in recovering TDF? We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs and incorporates a range of plant functional groups (including deciduousness and N2-fixation) and multiple resource constraints (carbon, nitrogen, phosphorus, and water). In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies using N2-fixing bacteria and mycorrhizal fungi according to the nutrient limitation status. We ran the model for a nutrient gradient of field sites in Costa Rica and explored the sensitivity of nutrient limitation to key mechanisms including litter respiration, N resorption, N2-fixation, and overflow respiration. Future runs will evaluate how CO2 and climate change affect recovering TDFs. We found increasing nutrient limitation across the nutrient gradient of sites. Nitrogen limitation dominated the nutrient limitation signal. In the model, forest litter accumulation was negatively correlated with site fertility in Costa Rican forests. Our sensitivity analyses indicate that N2-fixer abundance, decomposition rates, and adding more explicit microbial dynamics are key factors in overcoming this limitation. These insights improve our understanding of how TDFs function and are especially relevant to the management of recovering secondary TDFs by highlighting potential bottlenecks in the recovery process.
Legacy nutrient dynamics and patterns of catchment response under changing land use and management
NASA Astrophysics Data System (ADS)
Attinger, S.; Van, M. K.; Basu, N. B.
2017-12-01
Watersheds are complex heterogeneous systems that store, transform, and release water and nutrients under a broad distribution of both natural and anthropogenic controls. Many current watershed models, from complex numerical models to simpler reservoir-type models, are considered to be well-developed in their ability to predict fluxes of water and nutrients to streams and groundwater. They are generally less adept, however, at capturing watershed storage dynamics. In other words, many current models are run with an assumption of steady-state dynamics, and focus on nutrient flows rather than changes in nutrient stocks within watersheds. Although these commonly used modeling approaches may be able to adequately capture short-term watershed dynamics, they are unable to represent the clear nonlinearities or hysteresis responses observed in watersheds experiencing significant changes in nutrient inputs. To address such a lack, we have, in the present work, developed a parsimonious modeling approach designed to capture long-term catchment responses to spatial and temporal changes in nutrient inputs. In this approach, we conceptualize the catchment as a biogeochemical reactor that is driven by nutrient inputs, characterized internally by both biogeochemical degradation and residence or travel time distributions, resulting in a specific nutrient output. For the model simulations, we define a range of different scenarios to represent real-world changes in land use and management implemented to improve water quality. We then introduce the concept of state-space trajectories to describe system responses to these potential changes in anthropogenic forcings. We also increase model complexity, in a stepwise fashion, by dividing the catchment into multiple biogeochemical reactors, coupled in series or in parallel. Using this approach, we attempt to answer the following questions: (1) What level of model complexity is needed to capture observed system responses? (2) How can we explain different patterns of nonlinearity in watershed nutrient dynamics? And finally, how does the accumulation of nutrient legacies within watersheds impact current and future water quality?
NASA Astrophysics Data System (ADS)
Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.
2013-06-01
Nutrient dynamics were studied along the eastern Hainan Island based on field observations during 2006-2009, to understand nutrient biogeochemical processes and to have an overview of human perturbations on coastal ecosystems in this tropical region. The concentrations of nutrients in the rivers had seasonal variations enriched with dissolved inorganic nitrogen (DIN). High riverine concentrations of nitrate were mainly originated from agricultural fertilizer input. The ratios of DIN : PO43- ranged from 37 to 1063, suggesting preferential PO43- relative to nitrogen in the rivers. The areal yields of dissolved silicate (DSi) varied from 76 to 448 × 103 mol km-2 yr-1 due to erosion over the drainage area, inducing high levels of DSi among worldwide tropical systems. Aquaculture ponds contained high concentrations of NH4+ (up to 157 μM) and DON (up to 130 μM). Particulate phosphorus concentrations (0.5 ∼1.4 μM) were in lower level comparied with estuaries around the world. Particulate silicate levels in rivers and lagoons were lower than global average level. Nutrient biogeochemistry in coastal areas were affected by human activities (e.g. aquaculture, agriculture), as well as natural events such as typhoon. Nutrient concentrations were low because open sea water dispersed land-derived nutrients. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes would be magnified by estuarine processes (e.g. regeneration, desorption) in the Wenchanghe/Wenjiaohe Estuary, Wanquan River estuary, and the Laoyehai Lagoon except in the Xiaohai Lagoon. Riverine and groundwater input were the major sources of nutrients to the Xiaohai Lagoon and the Laiyehai Lagoon, respectively. Riverine input and aquaculture effluent were the major sources of nutrients to the eastern coastal of Hainan Island. Nutrient inputs to the coastal ecosystem can be increased by typhoon-induced runoff of rainwater, and phytoplankton bloom in the sea would be caused.
Guava Waste to Sustain Guava (Psidium guajava) Agroecosystem: Nutrient "Balance" Concepts.
Souza, Henrique A; Parent, Serge-Étienne; Rozane, Danilo E; Amorim, Daniel A; Modesto, Viviane C; Natale, William; Parent, Leon E
2016-01-01
The Brazilian guava processing industry generates 5.5 M Mg guava waste year(-1) that could be recycled sustainably in guava agro-ecosystems as slow-release fertilizer. Our objectives were to elaborate nutrient budgets and to diagnose soil, foliar, and fruit nutrient balances in guava orchards fertilized with guava waste. We hypothesized that (1) guava waste are balanced fertilizer sources that can sustain crop yield and soil nutrient stocks, and (2) guava agroecosystems remain productive within narrow ranges of nutrient balances. A 6-year experiment was conducted in 8-year old guava orchard applying 0-9-18-27-36 Mg ha(-1) guava waste (dry mass basis) and the locally recommended mineral fertilization. Nutrient budgets were compiled as balance sheets. Foliar and fruit nutrient balances were computed as isometric log ratios to avoid data redundancy or resonance due to nutrient interactions and the closure to measurement unit. The N, P, and several other nutrients were applied in excess of crop removal while K was in deficit whatever the guava waste treatment. The foliar diagnostic accuracy reached 93% using isometric log ratios and knn classification, generating reliable foliar nutrient and concentration ranges at high yield level. The plant mined the soil K reserves without any significant effect on fruit yield and foliar nutrient balances involving K. High guava productivity can be reached at lower soil test K and P values than thought before. Parsimonious dosage of fresh guava waste should be supplemented with mineral K fertilizers to recycle guava waste sustainably in guava agroecosystems. Brazilian growers can benefit from this research by lowering soil test P and K threshold values to avoid over-fertilization and using fresh guava waste supplemented with mineral fertilizers, especially K. Because yield was negatively correlated with fruit acidity and Brix index, balanced plant nutrition and fertilization diagnosis will have to consider not only fruit yield targets but also fruit quality to meet requirements for guava processing.
Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model
Chen, Celia Y.; Hammerschmidt, Chad R.; Mason, Robert P.; Gilmour, Cynthia C.; Sunderland, Elsie M.; Greenfield, Ben K.; Buckman, Kate L.; Lamborg, Carl H.
2013-01-01
There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. PMID:22749872
Guava Waste to Sustain Guava (Psidium guajava) Agroecosystem: Nutrient “Balance” Concepts
Souza, Henrique A.; Parent, Serge-Étienne; Rozane, Danilo E.; Amorim, Daniel A.; Modesto, Viviane C.; Natale, William; Parent, Leon E.
2016-01-01
The Brazilian guava processing industry generates 5.5 M Mg guava waste year−1 that could be recycled sustainably in guava agro-ecosystems as slow-release fertilizer. Our objectives were to elaborate nutrient budgets and to diagnose soil, foliar, and fruit nutrient balances in guava orchards fertilized with guava waste. We hypothesized that (1) guava waste are balanced fertilizer sources that can sustain crop yield and soil nutrient stocks, and (2) guava agroecosystems remain productive within narrow ranges of nutrient balances. A 6-year experiment was conducted in 8-year old guava orchard applying 0–9–18–27–36 Mg ha−1 guava waste (dry mass basis) and the locally recommended mineral fertilization. Nutrient budgets were compiled as balance sheets. Foliar and fruit nutrient balances were computed as isometric log ratios to avoid data redundancy or resonance due to nutrient interactions and the closure to measurement unit. The N, P, and several other nutrients were applied in excess of crop removal while K was in deficit whatever the guava waste treatment. The foliar diagnostic accuracy reached 93% using isometric log ratios and knn classification, generating reliable foliar nutrient and concentration ranges at high yield level. The plant mined the soil K reserves without any significant effect on fruit yield and foliar nutrient balances involving K. High guava productivity can be reached at lower soil test K and P values than thought before. Parsimonious dosage of fresh guava waste should be supplemented with mineral K fertilizers to recycle guava waste sustainably in guava agroecosystems. Brazilian growers can benefit from this research by lowering soil test P and K threshold values to avoid over-fertilization and using fresh guava waste supplemented with mineral fertilizers, especially K. Because yield was negatively correlated with fruit acidity and Brix index, balanced plant nutrition and fertilization diagnosis will have to consider not only fruit yield targets but also fruit quality to meet requirements for guava processing. PMID:27621735
Li, Qingxue; Jia, Zhiqing; Zhu, Yajuan; Wang, Yongsheng; Li, Hong; Yang, Defu; Zhao, Xuebin
2015-01-01
The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1) Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2) Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3) Soil "fertile islands" were formed, and the "fertile islands" were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E) for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous shrub.
Atkinson, Carla L; Vaughn, Caryn C; Forshay, Kenneth J; Cooper, Joshua T
2013-06-01
Nutrient cycling is a key process linking organisms in ecosystems. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of different elements are interdependent because the organisms that drive these cycles require fixed ratios of nutrients. There is growing recognition that animals play an important role in biogeochemical cycling across ecosystems. In particular, dense aggregations of consumers can create biogeochemical hotspots in aquatic ecosystems via nutrient translocation. We predicted that filter-feeding freshwater mussels, which occur as speciose, high-biomass aggregates, would create biogeochemical hotspots in streams by altering nutrient limitation and algal dynamics. In a field study, we manipulated nitrogen and phosphorus using nutrient-diffusing substrates in areas with high and low mussel abundance, recorded algal growth and community composition, and determined in situ mussel excretion stoichiometry at 18 sites in three rivers (Kiamichi, Little, and Mountain Fork Rivers, south-central United States). Our results indicate that mussels greatly influence ecosystem processes by modifying the nutrients that limit primary productivity. Sites without mussels were N-limited with -26% higher relative abundances of N-fixing blue-green algae, while sites with high mussel densities were co-limited (N and P) and dominated by diatoms. These results corroborated the results of our excretion experiments; our path analysis indicated that mussel excretion has a strong influence on stream water column N:P. Due to the high N:P of mussel excretion, strict N-limitation was alleviated, and the system switched to being co-limited by both N and P. This shows that translocation of nutrients by mussel aggregations is important to nutrient dynamics and algal species composition in these rivers. Our study highlights the importance of consumers and this imperiled faunal group on nutrient cycling and community dynamics in aquatic ecosystems.
NASA Astrophysics Data System (ADS)
Moore, R. B.; Robinson, K. W.; Simcox, A. C.; Johnston, C. M.
2002-05-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEWIPCC), is currently preparing a water-quality model, called SPARROW, to assist in the regional total maximum daily load (TMDL) studies in New England. A model is required to provide estimates of nutrient loads and confidence intervals at unmonitored stream reaches. SPARROW (Spatially Referenced Regressions on Watershed Attributes) is a spatially detailed, statistical model that uses regression equations to relate total phosphorus and nitrogen (nutrient) stream loads to pollution sources and watershed characteristics. These statistical relations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW model is based on a hydrologic network of 42,000 stream reaches and associated watersheds. Point source data are derived from USEPA's Permit Compliance System (PCS). Information about nonpoint sources is derived from data such as fertilizer use, livestock wastes, and atmospheric deposition. Watershed characteristics include land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. Preliminary SPARROW results are expected in Spring 2002. The New England SPARROW model is proposed for use in the TMDL determination for nutrients in the Connecticut River Basin, upstream of Connecticut. The model will be used to estimate nitrogen loads from each of the upstream states to Long Island Sound. It will provide estimates and confidence intervals of phosphorus and nitrogen loads, area-weighted yields of nutrients by watershed, sources of nutrients, and the downstream movement of nutrients. This information will be used to (1) understand ranges in nutrient levels in surface waters, (2) identify the environmental factors that affect nutrient levels in streams, (3) evaluate monitoring efforts for better determination of nutrient loads, and (4) evaluate management options for reducing nutrient loads to achieve water-quality goals.
Subterranean Groundwater Nutrient Input to Coastal Oceans and Coral Reef Sustainability
NASA Astrophysics Data System (ADS)
Paytan, A.; Street, J. H.
2003-12-01
Coral reefs are often referred to as the tropical rain forests of the oceans because of their high productivity and biodiversity. Recent observations in coral reefs worldwide have shown clear degradation in water quality and coral reef health and diversity. The implications of this are severe, including tremendous economic losses mostly though fishing and tourism. Nutrient loading has been implicated as one possible cause for the ecosystem decline. A previously unappreciated potential source of nutrient loading is submarine ground water discharge (SGW). Ground water in many cases has high nutrient content from sewage pollution and fertilizer application for agriculture and landscaping. To better understand the effect of this potential source of nutrient input and degrading water quality, we are exploring the contribution of SGW to the nutrient levels in coral reefs. A key to this approach is determining the amount and source of SGW that flows into the coast as well as its nutrient concentrations. The SGW flux and associated input of chemical dissolved load (nutrient, DOC, trace elements and other contaminants) is quantified using naturally occurring Ra isotopes. Radium isotopes have been shown to be excellent tracers for SGW inputs into estuaries and coastal areas (Moore, 1996; Hussain et al., 1999; Kerst et al., 2000). Measurements of Ra activity within the coral reef, the lagoons and the open waters adjacent to the reef provide valuable information regarding the input of Ra as well as nutrients and possibly pollutant from groundwater discharge. Through this analysis the effect of SGD on the delicate carbon and nutrient balance of the fragile coral reef ecosystem could be evaluated. In addition to quantifying the contribution of freshwater to the nutrient mass balance in the reef, information regarding the length of time a water parcel has remained in the near-shore region over the reef can be estimated using the Ra isotope quartet.
Interactions between temperature and nutrients across levels of ecological organization.
Cross, Wyatt F; Hood, James M; Benstead, Jonathan P; Huryn, Alexander D; Nelson, Daniel
2015-03-01
Temperature and nutrient availability play key roles in controlling the pathways and rates at which energy and materials move through ecosystems. These factors have also changed dramatically on Earth over the past century as human activities have intensified. Although significant effort has been devoted to understanding the role of temperature and nutrients in isolation, less is known about how these two factors interact to influence ecological processes. Recent advances in ecological stoichiometry and metabolic ecology provide a useful framework for making progress in this area, but conceptual synthesis and review are needed to help catalyze additional research. Here, we examine known and potential interactions between temperature and nutrients from a variety of physiological, community, and ecosystem perspectives. We first review patterns at the level of the individual, focusing on four traits--growth, respiration, body size, and elemental content--that should theoretically govern how temperature and nutrients interact to influence higher levels of biological organization. We next explore the interactive effects of temperature and nutrients on populations, communities, and food webs by synthesizing information related to community size spectra, biomass distributions, and elemental composition. We use metabolic theory to make predictions about how population-level secondary production should respond to interactions between temperature and resource supply, setting up qualitative predictions about the flows of energy and materials through metazoan food webs. Last, we examine how temperature-nutrient interactions influence processes at the whole-ecosystem level, focusing on apparent vs. intrinsic activation energies of ecosystem processes, how to represent temperature-nutrient interactions in ecosystem models, and patterns with respect to nutrient uptake and organic matter decomposition. We conclude that a better understanding of interactions between temperature and nutrients will be critical for developing realistic predictions about ecological responses to multiple, simultaneous drivers of global change, including climate warming and elevated nutrient supply. © 2014 John Wiley & Sons Ltd.
Watershed-Scale Cover Crops Reduce Nutrient Export From Agricultural Landscapes.
NASA Astrophysics Data System (ADS)
Tank, J. L.; Hanrahan, B.; Christopher, S. F.; Trentman, M. T.; Royer, T. V.; Prior, K.
2016-12-01
The Midwestern US has undergone extensive land use change as forest, wetlands, and prairies have been converted to agroecosystems. Today, excess fertilizer nutrients from farm fields enter Midwestern agricultural streams, which degrades both local and downstream water quality, resulting in algal blooms and subsequent hypoxic "dead zones" far from the nutrient source. We are quantifying the benefits of watershed-scale conservation practices that may reduce nutrient runoff from adjacent farm fields. Specifically, research is lacking on whether the planting of winter cover crops in watersheds currently dominated by row-crop agriculture can significantly reduce nutrient inputs to adjacent streams. Since 2013, farmers have planted cover crops on 70% of croppable acres in the Shatto Ditch Watershed (IN), and "saturation level" implementation of this conservation practice has been sustained for 3 years. Every 14 days, we have quantified nutrient loss from fields by sampling nutrient fluxes from multiple subsurface tile drains and longitudinally along the stream channel throughout the watershed. Cover crops improved stream water quality by reducing dissolved inorganic nutrients exported downstream; nitrate-N and DRP concentrations and fluxes were significantly lower in tiles draining fields with cover crops compared to those without. Annual watershed nutrient export also decreased, and reductions in N and P loss ( 30-40%) exceeded what we expected based on only a 6-10% reduction in runoff due to increased watershed water holding capacity. We are also exploring the processes responsible for increased nutrient retention, where they are occurring (terrestrial vs. aquatic) and when (baseflow vs. storms). For example, whole-stream metabolism also responded to cover crop planting, showing reduced variation in primary production and respiration in years after watershed-scale planting of cover crops. In summary, widespread land cover change, through cover crop planting, can significantly reduce annual watershed-scale nutrient export. Moreover, successful outcomes highlighted through demonstration projects may facilitate widespread adoption, making them powerful agents of change for advancing conservation success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valiela, I.; Foreman, K.; LaMontagne, M.
1992-12-01
Human activities on coastal watersheds provide the major sources of nutrients entering shallow coastal ecosystems. Nutrient loadings from watersheds alter structure and function of receiving aquatic ecosystems. To investigate this coupling of land to marine systems, a series of subwatersheds of Waquoit Bay differing in degree of urbanization and with widely different nutrient loading rates was studied. The subwatersheds differ in septic tanks numbers and forest acreage. Ground water is the major mechanism that transports nutrients to coastal waters. Some attenuation of nutrient concentrations within the aquifer or at the sediment-water interface, but significant increases in the nutrient content ofmore » groundwater arriving at the shore's edge are in urbanized areas. The groundwater flows through the sediment-water boundary, and sufficient groundwater-borne nutrients (nitrogen in particular) traverse the sediment-water boundary to cause significant changes in the aquatic ecosystem. These loading-dependent alterations include increased nutrients in water, greater primary production by phytoplankton, and increased macroalgal biomass and growth. The increased macroalgal biomass dominates the bay ecosystem through second- or third-order effects such as alterations of nutrient status of water columns and increasing frequency of anoxic events. The increases in seaweeds have decreased the areas covered by eelgrass habitats. The change in habitat type, plus the increased frequency of anoxic events, change the composition of the benthic fauna. The importance of bottom-up control in shallow coastal food webs is evident. The coupling of land to sea by groundwater-borne nutrient transport is mediated by a complex series of steps, making it unlikely to find a one-to-one relation between land use and conditions in the aquatic ecosystem. Appropriate models may provide a way to deal with the complexities of the coupling. 22 refs., 14 figs., 5 tabs.« less
Nutrient supply and mercury dynamics in marine ecosystems: a conceptual model.
Driscoll, Charles T; Chen, Celia Y; Hammerschmidt, Chad R; Mason, Robert P; Gilmour, Cynthia C; Sunderland, Elsie M; Greenfield, Ben K; Buckman, Kate L; Lamborg, Carl H
2012-11-01
There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. Copyright © 2012 Elsevier Inc. All rights reserved.
Involvement of Small RNAs in Phosphorus and Sulfur Sensing, Signaling and Stress: Current Update
Kumar, Smita; Verma, Saurabh; Trivedi, Prabodh K.
2017-01-01
Plants require several essential mineral nutrients for their growth and development. These nutrients are required to maintain physiological processes and structural integrity in plants. The root architecture has evolved to absorb nutrients from soil and transport them to other parts of the plant. Nutrient deficiency affects several physiological and biological processes in plants and leads to reduction in crop productivity and yield. To compensate this adversity, plants have developed adaptive mechanisms to enhance the acquisition, conservation, and mobilization of these nutrients under deficient or adverse conditions. In addition, plants have evolved an intricate nexus of complex signaling cascades, which help in nutrient sensing and uptake as well as to maintain nutrient homeostasis. In recent years, small non-coding RNAs such as micro RNAs (miRNAs) and endogenous small interfering RNAs have emerged as important component in regulating plant stress responses. A set of these small RNAs (sRNAs) have been implicated in regulating various processes involved in nutrient uptake, assimilation, and deficiency. In response to phosphorus (P) and sulphur (S) deficiencies, role of sRNAs, miR395 and miR399, have been identified to be instrumental; however, many more miRNAs might be involved in regulating the plant response to these nutrient stresses. These sRNAs modulate expression of target genes in response to P and S deficiencies and regulate their uptake and utilization for proper growth and development of the plant. This review summarizes the current understanding of uptake, sensing, and signaling of P and S and highlights the regulatory role of sRNAs in adaptive responses to these nutrient stresses in plants. PMID:28344582
NASA Astrophysics Data System (ADS)
Connell, E. L.; Walker, D. I.
2001-09-01
Halophila ovalis occupies about 20% (461 ha) of the Swan-Canning Estuary. To assess the role of this plant in the biogeochemical cycling of the estuary, its biomass, nutrient dynamics and oxygen release from its roots to the sediment were investigated. This paper describes a conceptual model developed to extrapolate these findings to the whole estuary.The model follows changes in H. ovalis meadows in the Swan-Canning Estuary on a seasonal basis over an annual cycle. Total maximum seagrass biomass was estimated as 346 t dry weight (DW) in summer, declining in winter. In spring, although H. ovalis biomass did not increase, tissue nutrient concentrations were higher when external nutrient concentrations were high. From spring to summer, when external nutrient concentrations in the water column were severely depleted, shoot to root-rhizome biomass ratios changed from 1 : 1 in winter to 1 : 1·5 in summer. Plant tissue nutrients also decreased in root-rhizomes and increased in shoots, indicating an allocation of internal nutrient resources to the shoots for growth. Despite depletion of nitrogen in the water column, ammonium was still available in the sediment. Ammonium concentrations in the sediment porewater decreased in summer, suggesting H. ovalis meadows were a sink for ammonium. With an increase in biomass in summer, including the density of roots, oxygen release from H. ovalis roots subsequently increased. H. ovalis meadows act as a substantial sink for nutrients in the Swan-Canning Estuary in spring and summer. In winter, when there are large losses of plant biomass, H. ovalis meadows become a source of nutrients to the estuary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Brian J; Mulholland, Patrick J
2007-01-01
A growing body of evidence demonstrates the importance of in-stream processing in regulating nutrient export, yet the influence of temporal variability in stream metabolism on net nutrient uptake has not been explicitly addressed. Streamwater DIN and SRP concentrations in Walker Branch, a first-order deciduous forest stream in eastern Tennessee, show a repeated pattern of annual maxima in summer and biannual minima in spring and autumn. Temporal variations in catchment hydrologic flowpaths result in lower winter and higher summer nutrient concentrations, but do not explain the spring and autumn nutrient minima. Ambient nutrient uptake rates were measured 2-3 times per weekmore » over an 18-mo period and compared to daily rates of gross primary production (GPP) and ecosystem respiration (ER) to examine the influence of in-stream biotic activity on nutrient export. GPP and ER rates explained 85% of the variation in net DIN retention with high net NO3- uptake (and lower net NH4+ release) rates occurring during spring and autumn and net DIN release in summer. Diel nutrient concentration patterns were examined several times throughout the year to determine the relative importance of autotrophic and heterotrophic activity on net nutrient uptake. High spring GPP corresponded to daily decreases in NO3- over the illuminated hours resulting in high diel NO3- amplitude which dampened as the canopy closed. GPP explained 91% of the variance in diel NO3- amplitude. In contrast, the autumn nutrient minima was largely explained by heterotrophic respiration since GPP remained low and little diel NO3- variation was observed during the autumn.« less
O'Neil, Carol E; Nicklas, Theresa A; Keast, Debra R; Fulgoni, Victor L
2014-01-01
Identification of current food sources of energy and nutrients among US non-Hispanic whites (NHW), non-Hispanic blacks (NHB), and Mexican American (MA) adults is needed to help with public health efforts in implementing culturally sensitive and feasible dietary recommendations. The objective of this study was to determine the food sources of energy and nutrients to limit [saturated fatty acids (SFA), added sugars, and sodium] and nutrients of public health concern (dietary fiber, vitamin D, calcium, and potassium) by NHW, NHB, and MA adults. This was a cross-sectional analysis of a nationally representative sample of NWH (n=4,811), NHB (2,062), and MA (n=1,950) adults 19+ years. The 2003-2006 NHANES 24-h recall (Day 1) dietary intake data were analyzed. An updated USDA Dietary Source Nutrient Database was developed using current food composition databases. Food grouping included ingredients from disaggregated mixtures. Mean energy and nutrient intakes from food sources were sample-weighted. Percentages of total dietary intake contributed from food sources were ranked. Multiple differences in intake among ethnic groups were seen for energy and all nutrients examined. For example, energy intake was higher in MA as compared to NHB; SFA, added sugars, and sodium intakes were higher in NHW than NHB; dietary fiber was highest in MA and lowest in NHB; vitamin D was highest in NHW; calcium was lowest in NHB; and potassium was higher in NHW as compared to NHB. Food sources of these nutrients also varied. Identification of intake of nutrients to limit and of public health concern can help health professionals implement appropriate dietary recommendations and plan interventions that are ethnically appropriate.
Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching.
Vega Thurber, Rebecca L; Burkepile, Deron E; Fuchs, Corinne; Shantz, Andrew A; McMinds, Ryan; Zaneveld, Jesse R
2014-02-01
Nutrient loading is one of the strongest drivers of marine habitat degradation. Yet, the link between nutrients and disease epizootics in marine organisms is often tenuous and supported only by correlative data. Here, we present experimental evidence that chronic nutrient exposure leads to increases in both disease prevalence and severity and coral bleaching in scleractinian corals, the major habitat-forming organisms in tropical reefs. Over 3 years, from June 2009 to June 2012, we continuously exposed areas of a coral reef to elevated levels of nitrogen and phosphorus. At the termination of the enrichment, we surveyed over 1200 scleractinian corals for signs of disease or bleaching. Siderastrea siderea corals within enrichment plots had a twofold increase in both the prevalence and severity of disease compared with corals in unenriched control plots. In addition, elevated nutrient loading increased coral bleaching; Agaricia spp. of corals exposed to nutrients suffered a 3.5-fold increase in bleaching frequency relative to control corals, providing empirical support for a hypothesized link between nutrient loading and bleaching-induced coral declines. However, 1 year later, after nutrient enrichment had been terminated for 10 months, there were no differences in coral disease or coral bleaching prevalence between the previously enriched and control treatments. Given that our experimental enrichments were well within the ranges of ambient nutrient concentrations found on many degraded reefs worldwide, these data provide strong empirical support to the idea that coastal nutrient loading is one of the major factors contributing to the increasing levels of both coral disease and coral bleaching. Yet, these data also suggest that simple improvements to water quality may be an effective way to mitigate some coral disease epizootics and the corresponding loss of coral cover in the future. © 2013 John Wiley & Sons Ltd.
Scaling Dissolved Nutrient Removal in River Networks: A Comparative Modeling Investigation
NASA Astrophysics Data System (ADS)
Ye, Sheng; Reisinger, Alexander J.; Tank, Jennifer L.; Baker, Michelle A.; Hall, Robert O.; Rosi, Emma J.; Sivapalan, Murugesu
2017-11-01
Along the river network, water, sediment, and nutrients are transported, cycled, and altered by coupled hydrological and biogeochemical processes. Our current understanding of the rates and processes controlling the cycling and removal of dissolved inorganic nutrients in river networks is limited due to a lack of empirical measurements in large, (nonwadeable), rivers. The goal of this paper was to develop a coupled hydrological and biogeochemical process model to simulate nutrient uptake at the network scale during summer base flow conditions. The model was parameterized with literature values from headwater streams, and empirical measurements made in 15 rivers with varying hydrological, biological, and topographic characteristics, to simulate nutrient uptake at the network scale. We applied the coupled model to 15 catchments describing patterns in uptake for three different solutes to determine the role of rivers in network-scale nutrient cycling. Model simulation results, constrained by empirical data, suggested that rivers contributed proportionally more to nutrient removal than headwater streams given the fraction of their length represented in a network. In addition, variability of nutrient removal patterns among catchments was varied among solutes, and as expected, was influenced by nutrient concentration and discharge. Net ammonium uptake was not significantly correlated with any environmental descriptor. In contrast, net daily nitrate removal was linked to suspended chlorophyll a (an indicator of primary producers) and land use characteristics. Finally, suspended sediment characteristics and agricultural land use were correlated with net daily removal of soluble reactive phosphorus, likely reflecting abiotic sorption dynamics. Rivers are understudied relative to streams, and our model suggests that rivers can contribute more to network-scale nutrient removal than would be expected based upon their representative fraction of network channel length.
Du, Yang T; Piscitelli, Diana; Ahmad, Saima; Trahair, Laurence G; Greenfield, Jerry R; Samocha-Bonet, Dorit; Rayner, Christopher K; Horowitz, Michael; Jones, Karen L
2018-06-07
Glutamine is a potent stimulus for the release of glucagon-like peptide-1, which increases postprandial insulin and slows gastric emptying (GE). We determined the effects of glutamine on GE of, and glycaemic responses to, low- and high-nutrient drinks in eight healthy males (mean age 21.6 ± 0.7 years and BMI 22.9 ± 0.7 kg/m²). Participants were studied on four occasions on which they consumed either a low-nutrient (beef soup; 18 kcal) or high-nutrient (75 g dextrose; 255 kcal) drink, each with or without 30 g of glutamine (120 kcal), in a randomised, crossover design. GE (2D ultrasound), blood glucose and plasma insulin concentrations were measured concurrently. Glutamine slowed GE (half emptying time (T50)) of both low- (45 ± 3 min vs. 26 ± 2 min, p < 0.001), and high-nutrient, (100 ± 5 min vs. 77 ± 5 min, p = 0.03) drinks, however, there was no effect on GE of the high nutrient drinks when expressed as kcal/min (3.39 ± 0.21 kcal/min vs. 3.81 ± 0.20 kcal/min, p = 0.25). There was no change in blood glucose after the low-nutrient drinks with or without glutamine, despite a slight increase in plasma insulin with glutamine ( p = 0.007). The rise in blood glucose following the high-nutrient drink ( p = 0.0001) was attenuated during the first 60 min by glutamine ( p = 0.007). We conclude that in healthy subjects, glutamine slows GE of both low- and high-nutrient drinks comparably and attenuates the rise in blood glucose after the high-nutrient glucose drink.
NASA Astrophysics Data System (ADS)
Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.
2014-01-01
Nutrient dynamics based on field observations made along the eastern Hainan Island during the period 2006-2009 were investigated to understand nutrient biogeochemical processes, and to provide an overview of human perturbations of coastal ecosystems in this tropical region. The rivers showed seasonal variations in nutrient concentrations, with enrichment of dissolved inorganic nitrogen and dissolved silicate, and depletion of PO43-. High riverine concentrations of nitrate mainly originated from agricultural fertilizer inputs. The DIN : PO43- ratios ranged from 37 to 1063, suggesting preferential depletion of PO43- relative to nitrogen in rivers. Chemical weathering in the drainage area might explain the high levels of dissolved silicate. Aquaculture ponds contained high concentrations of NH4+ and dissolved organic nitrogen. The particulate phosphorus concentrations in the study area were lower than those reported for estuaries worldwide. The particulate silicate levels in rivers and lagoons were lower than the global average level. Nutrient biogeochemistry in coastal areas was affected by human activities (e.g., aquaculture, agriculture), and by natural phenomena including typhoons. The nutrient concentrations in coastal waters were low because of dispersion of land-derived nutrients in the sea. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes are magnified by estuarine processes (e.g., regeneration, desorption) in estuaries and Laoyehai Lagoon, but not in Xiaohai Lagoon. Riverine and groundwater inputs were the major sources of nutrients to Xiaohai and Laoyehai lagoons, respectively, and riverine inputs and aquaculture effluents were the major sources for the eastern coast of Hainan Island. Nutrient inputs to the coastal ecosystem increased with typhoon-induced runoff of rainwater, elucidating the important influence of typhoons on small tropical rivers.
Food prices and poverty negatively affect micronutrient intakes in Guatemala.
Iannotti, Lora L; Robles, Miguel; Pachón, Helena; Chiarella, Cristina
2012-08-01
Limited empirical evidence exists for how economic conditions affect micronutrient nutrition. We hypothesized that increasing poverty and rising food prices would reduce consumption of high-quality "luxury" foods, leading to an increased probability of inadequacy for several nutrients. The 2006 Guatemala National Living Conditions Survey was analyzed. First, energy and nutrient intakes and adequacy levels were calculated. Second, the income-nutrient relationships were investigated by assessing disparities in intakes, determining income-nutrient elasticities, and modeling nutrient intakes by reductions in income. Third, the food price-nutrient relationships were explored through determination of price-nutrient elasticities and modeling 2 price scenarios: an increase in food prices similar in magnitude to the food price crisis of 2007-2008 and a standardized 10% increase across all food groups. Disparities in nutrient intakes were greatest for vitamin B-12 (0.38 concentration index) and vitamin A (0.30 concentration index); these nutrients were highly and positively correlated with income (r = 0.22-0.54; P < 0.05). Although the baseline probability of inadequacy was highest for vitamin B-12 (83%), zinc showed the greatest increase in probability of inadequacy as income was reduced, followed by folate and vitamin A. With rising food prices, zinc intake was most acutely affected under both scenarios (P < 0.05) and folate intake in the poorest quintile (+7 percentage points) under the 10% scenario. Price-nutrient elasticities were highest for vitamin B-12 and the meat, poultry, and fish group (-0.503) and for folate and the legumes group (-0.343). The economic factors of food prices and income differentially influenced micronutrient intakes in Guatemala, notably zinc and folate intakes.
Carbon and nutrients recycling when leaves falling off: mycorrhizal association matters
NASA Astrophysics Data System (ADS)
Zhang, H., II; Lü, X. T.; Hartmann, H.; Han, X.; Trumbore, S.
2016-12-01
Root-associated mycorrhizal fungi is being increasingly recognized for their roles in influencing soil carbon (C) storage, plant growth and nutrient cycling, whereas mycorrhizae-mediated C dynamics and nutrient acquisition strategy strongly different. Because of a reinforcing feedback from belowground, how different mycorrhizal plants differ in aboveground nutrient status and recycle from senesced to green leaves remains unknown. Based on a global database of C and nutrients concentrations in plant green and senesced leaves, we further identified plant mycorrhizal types (here focus on arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) plants) for woody species and tested whether mycorrhizal types showing consistent effects in plant nutrient status and recycle. Generally, nutrient resorptions from senesced to green leaves for ECM plants are more conservative, balanced and sensitive to climate compare to AM plants. Specifically, we first found lower nutrients concentrations in green and senesced leaves whereas greater nutrient resorption efficiency (NuR) for ECM vs. AM plants. However, C concentration in green and senesced leaves were significant greater while NuR was lower for ECM plants. Second, compare to that for AM plants, we found a general balanced N:P resorption ratio ( 1) for ECM plants, indicating ECM plants had greater ability to balance their N and P resorption simultaneously. Third, we found NuR in N, P and K (potassium) for ECM plants were sensitive to the variation of MAT and MAP while these for AM plants showed no clear trend. Our results suggested that accounting for the influence of mycorrhizae on C and nutrient dynamics in vegetation models will be critical for predicting ecosystem responses and feedbacks to climate change.
German, Alexander J; Holden, Shelley L; Serisier, Samuel; Queau, Yann; Biourge, Vincent
2015-10-07
Canine obesity is usually treated with dietary energy restriction, but data are limited regarding nutritional adequacy. The aim of the current study was to compare intake of essential nutrients with National Research Council recommendations in obese dogs during weight management with a purpose-formulated diet. Twenty-seven dogs were included in this non-randomised retrospective observational cohort study. All were determined to be systemically well, and without significant abnormalities based upon physical examination and clinicopathological assessments. The dogs underwent a controlled weight loss protocol of at least 182 days' duration using a high protein high fibre weight loss diet. Median, maximum, and minimum daily intakes of all essential nutrients were compared against NRC 2006 recommended allowances (RA) for adult dogs. Median weight loss was 28 % (16-40 %), mean daily energy intake was 61 kcal/kg(0.75) (44-74 kcal/kg(0.75)), and no clinical signs of nutrient deficiency were observed in any dog. Based upon the average nutrient content of the diet, daily intake of the majority of essential nutrients was greater than their NRC 2006 recommended allowance (RA per kg body weight(0.75)), except for selenium, choline, methionine/cysteine, tryptophan, magnesium, and potassium. However, apart from choline (2/27 dogs) and methionine/cysteine (2/27 dogs), all essential nutrients remained above NRC minimum requirements (MR) throughout the trial. When fed the diet used in the current study, daily intakes of most essential nutrients meet both their NRC 2006 RA and MR in obese dogs during weight loss. In light of absence of clinical signs of nutrient deficiency, it is unclear what significance intakes less that NRC cut-offs for some nutrients have (especially selenium and choline), and further studies are recommended.
Greenwood, J.L.; Rosemond, A.D.; Wallace, J.B.; Cross, W.F.; Weyers, H.S.
2007-01-01
Most nutrient enrichment studies in aquatic systems have focused on autotrophic food webs in systems where primary producers dominate the resource base. We tested the heterotrophic response to long-term nutrient enrichment in a forested, headwater stream. Our study design consisted of 2 years of pretreatment data in a reference and treatment stream and 2 years of continuous nitrogen (N) + phosphorus addition to the treatment stream. Studies were conducted with two leaf species that differed in initial C:N, Rhododendron maximum (rhododendron) and Acer rubrum (red maple). We determined the effects of nutrient addition on detrital resources (leaf breakdown rates, litter C:N and microbial activity) and tested whether nutrient enrichment affected macroinvertebrate consumers via increased biomass. Leaf breakdown rates were ca. 1.5 and 3?? faster during the first and second years of enrichment, respectively, in the treatment stream for both leaf types. Microbial respiration rates of both leaf types were 3?? higher with enrichment, and macroinvertebrate biomass associated with leaves increased ca. 2-3?? with enrichment. The mass of N in macroinvertebrate biomass relative to leaves tended to increase with enrichment up to 6?? for red maple and up to 44?? for rhododendron leaves. Lower quality (higher C:N) rhododendron leaves exhibited greater changes in leaf nutrient content and macroinvertebrate response to nutrient enrichment than red maple leaves, suggesting a unique response by different leaf species to nutrient enrichment. Nutrient concentrations used in this study were moderate and equivalent to those in streams draining watersheds with altered land use. Thus, our results suggest that similarly moderate levels of enrichment may affect detrital resource quality and subsequently lead to altered energy and nutrient flow in detrital food webs. ?? 2006 Springer-Verlag.
McKee, K.L.
2001-01-01
1. In oligotrophic habitats, proliferation of roots in nutrient-rich microsites may contribute to overall nutrient conservation by plants. Peat-based soils on mangrove islands in Belize are characterized by the presence of decaying roots and numerous old root channels (0.1-3.5 cm diameter) that become filled with living and highly branched roots of Rhizophora mangle and Avicennia germinans. The objectives of this study were to quantify the proliferation of roots in these microsites and to determine what causes this response. 2. Channels formed by the refractory remains of mangrove roots accounted for only 1-2% of total soil volume, but the proportion of roots found within channels varied from 9 to 24% of total live mass. Successive generations of roots growing inside increasingly smaller root channels were also found. 3. When artificial channels constructed of PVC pipe were buried in the peat for 2 years, those filled with nutrient-rich organic matter had six times more roots than empty or sand-filled channels, indicating a response to greater nutrient availability rather than to greater space or less impedance to root growth. 4. Root proliferation inside decaying roots may improve recovery of nutrients released from decomposing tissues before they can be leached or immobilized in this intertidal environment. Greatest root proliferation in channels occurred in interior forest zones characterized by greater soil waterlogging, which suggests that this may be a strategy for nutrient capture that minimizes oxygen losses from the whole root system. 5. Improved efficiency of nutrient acquisition at the individual plant level has implications for nutrient economy at the ecosystem level and may explain, in part, how mangroves persist and grow in nutrient-poor environments.
Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan
2016-10-01
The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal. Copyright © 2016. Published by Elsevier B.V.
Warrick, J.A.; Washburn, L.; Brzezinski, Mark A.; Siegel, D.A.
2005-01-01
The Santa Clara River delivers nutrient rich runoff to the eastern Santa Barbara Channel during brief (???1-3 day) episodic events. Using both river and oceanographic measurements, we evaluate river loading and dispersal of dissolved macronutrients (silicate, inorganic N and P) and comment on the biological implications of these nutrient contributions. Both river and ocean observations suggest that river nutrient concentrations are inversely related to river flow rates. Land use is suggested to influence these concentrations, since runoff from a subwatershed with substantial agriculture and urban areas had much higher nitrate than runoff from a wooded subwatershed. During runoff events, river nutrients were observed to conservatively mix into the buoyant, surface plume immediately seaward of the Santa Clara River mouth. Dispersal of these river nutrients extended 10s of km into the channel. Growth of phytoplankton and nutrient uptake was low during our observations (1-3 days following runoff), presumably due to the very low light levels resulting from high turbidity. However, nutrient quality of runoff (Si:N:P = 16:5:1) was found to be significantly different than upwelling inputs (13:10:1), which may influence different algal responses once sediments settle. Evaluation of total river nitrate loads suggests that most of the annual river nutrient fluxes to the ocean occur during the brief winter flooding events. Wet winters (such as El Nin??o) contribute nutrients at rates approximately an order-of-magnitude greater than "average" winters. Although total river nitrate delivery is considerably less than that supplied by upwelling, the timing and location of these types of events are very different, with river discharge (upwelling) occurring predominantly in the winter (summer) and in the eastern (western) channel. ?? 2004 Elsevier Ltd. All rights reserved.
Modeling brine and nutrient dynamics in Antarctic sea ice: the case of dissolved silica
NASA Astrophysics Data System (ADS)
Vancoppenolle, M.; Goosse, H.; de Montety, A.; Fichefet, T.; Tremblay, B.; Tison, J.
2009-12-01
Sea ice ecosystems are characterized by micro-algae living in brine inclusions. The growth rate of ice algae depends on light and nutrient supply. Here, the interactions between nutrients and brine dynamics under the influence of algae are investigated using a one-dimensional model. The model includes snow and ice thermodynamics with brine physics and an idealized sea ice biological component, characterized by one nutrient, namely dissolved silica (DSi). In the model, DSi follows brine motion and is consumed by ice algae. Depending on physical ice characteristics, the brine flow is either advective, diffusive or turbulent. The vertical profiles of ice salinity and DSi concentration are solutions of advection-diffusion equations. The model is configured to simulate the typical thermodynamic regimes of first-year Antarctic pack ice. The simulated vertical profiles of salinity and DSi qualitatively reproduce observations. Analysis of results highlights the role of convection in the lowermost 5-10 cm of ice. Convection mixes saline, nutrient-poor brine with comparatively fresh, nutrient-rich seawater. This implies a rejection of salt to the ocean and a flux of DSi to the ice. In presence of growing algae, the simulated ocean-to-ice DSi flux increases by 0-115% compared to an abiotic situation. In turn, primary production and brine convection act in synergy to form a nutrient pump. The other important processes are the flooding of the surface by seawater and the percolation of meltwater. The former refills nutrients near the ice surface in spring. The latter, if present, tends to expell nutrients from the ice in summer. Sketch of salt (left) and nutrient (right) exchanges at the ice-ocean interface proposed in this paper.
Jayme-Torres, Gonzalo; Hansen, Anne M
2017-10-04
Since nutrients are emitted and mobilized in river basins, causing eutrophication of water bodies, it is important to reduce such emissions and subsequent nutrient loads. Due to processes of attenuation, nutrient loads are reduced during their mobilization in river basins. At the mouth of the Río Verde basin in western Mexico, the El Purgatorio dam is being constructed to supply water to the metropolitan area of the second most populated city in the country, Guadalajara. To analyze situations that allow protecting this future dam from eutrophication, nutrient loads in the mouth of the river basin were determined and their reduction scenarios evaluated by using the NEWS2 (Nutrient Export from Watersheds) model. For this, a nutrient emissions inventory was established and used to model nutrient loads, and modeling results were compared to an analysis of water quality data from two different monitoring sites located on the river. The results suggest that 96% of nitrogen and 99% of phosphorus emissions are attenuated in the watershed. Nutrient loads reaching the mouth of the river basin come mainly from wastewater discharges, followed by livestock activities and different land uses, and loads are higher as emissions are located closer to the mouth of the river basin. To achieve and maintain mesotrophic state of water in the future dam, different nutrient emission reduction scenarios were evaluated. According to these results, the reduction of 90% of the phosphorus loads in wastewater emissions or 75% of the phosphorus loads in wastewater emissions and at least 50% in emissions from livestock activities in the river basin are required.
High Nutrient Load Increases Biostabilization of Sediment by Biofilms
NASA Astrophysics Data System (ADS)
Valentine, K.; Mariotti, G.
2016-12-01
Benthic biofilms, matrixes of microbial cells and their secretions, have been shown to stabilize sediment in coastal environments. While there have been numerous studies on the effects of nutrients on the ability of vascular plants to stabilize sediment, few studies have investigated how nutrients affect biofilm growth and their ability to stabilize sediment. Diatom-based biofilms were grown in laboratory experiments on a settled bed of bentonite clay, under a saline water column with varying amounts of nutrients. Erodibility at different stages of biofilm growth was measured using a Gust Erosion Microcosm System, which applied shear stresses from 0.05 to 0.6 Pa. Biofilms more than one week old decreased the erodibility of the sediments in all nutrient treatments compared to abiotic experiments. With high nutrients, the biofilm grew the fastest; the erodibility decreased within two weeks of biofilm growth and remained low for all applied shear stresses. After four weeks of biofilm growth, no erosion of sediment occurred even at the highest applied shear stress (0.6 Pa). With low nutrients the erodibility decreased within three weeks. With no nutrients the biofilms grew similarly to those with low nutrients; the erodibility decreased within three weeks under shear stresses 0.05-0.45 Pa, but the sediments were eroded under high shear stresses. Under low to moderate shear stresses (0.05-0.45 Pa), the total mass eroded by all experiments with biofilms was similar, suggesting that any amount of biofilm decreases erodibility at low shear stresses. In summary, high nutrients allow for faster biostabilization and for resistance to extreme shear stresses. These results suggest that eutrophication would not decrease the biofilm ability to stabilize muddy sediments in coastal environment.
NASA Astrophysics Data System (ADS)
Pullanagari, R. R.; Kereszturi, Gábor; Yule, I. J.
2016-07-01
On-farm assessment of mixed pasture nutrient concentrations is important for animal production and pasture management. Hyperspectral imaging is recognized as a potential tool to quantify the nutrient content of vegetation. However, it is a great challenge to estimate macro and micro nutrients in heterogeneous mixed pastures. In this study, canopy reflectance data was measured by using a high resolution airborne visible-to-shortwave infrared (Vis-SWIR) imaging spectrometer measuring in the wavelength region 380-2500 nm to predict nutrient concentrations, nitrogen (N) phosphorus (P), potassium (K), sulfur (S), zinc (Zn), sodium (Na), manganese (Mn) copper (Cu) and magnesium (Mg) in heterogeneous mixed pastures across a sheep and beef farm in hill country, within New Zealand. Prediction models were developed using four different methods which are included partial least squares regression (PLSR), kernel PLSR, support vector regression (SVR), random forest regression (RFR) algorithms and their performance compared using the test data. The results from the study revealed that RFR produced highest accuracy (0.55 ⩽ R2CV ⩽ 0.78; 6.68% ⩽ nRMSECV ⩽ 26.47%) compared to all other algorithms for the majority of nutrients (N, P, K, Zn, Na, Cu and Mg) described, and the remaining nutrients (S and Mn) were predicted with high accuracy (0.68 ⩽ R2CV ⩽ 0.86; 13.00% ⩽ nRMSECV ⩽ 14.64%) using SVR. The best training models were used to extrapolate over the whole farm with the purpose of predicting those pasture nutrients and expressed through pixel based spatial maps. These spatially registered nutrient maps demonstrate the range and geographical location of often large differences in pasture nutrient values which are normally not measured and therefore not included in decision making when considering more effective ways to utilized pasture.
The rising disparity in the price of healthful foods: 2004–2008
Monsivais, Pablo; McLain, Julia; Drewnowski, Adam
2014-01-01
Nutrient dense foods that are associated with better health outcomes tend to cost more per kilocalorie (kcal) than do refined grains, sweets and fats. The price disparity between healthful and less healthful foods appears to be growing. This study demonstrates a new method for linking longitudinal retail price data with objective, nutrient-based ratings of the nutritional quality of foods and beverages. Retail prices for 378 foods and beverages were obtained from major supermarket chains in the Seattle, WA for 2004-8. Nutritional quality was based on energy density (kcal/g) and two measures of nutrient density, calculated using the Naturally Nutrient Rich (NNR) score and the Nutrient Rich Foods index (NRF9.3). Food prices were expressed as $/100g edible portion and as $/1,000 kcal. Foods were stratified by quintiles of energy and nutrient density for analyses. Both measures of nutrient density were negatively associated with energy density and positively associated with cost per 1,000 kcal. The mean cost of foods in the top quintile of nutrient density was $27.20/1,000 kcal and the 4 y price increase was 29.2%. Foods in the bottom quintile cost a mean of $3.32/1000 kcal and the 4 y price increase was 16.1%. There is a growing price disparity between nutrient-dense foods and less nutritious options. Cost may pose a barrier to the adoption of healthier diets and so limit the impact of dietary guidance. Nutrient profiling methods provide objective criteria for tracking retail prices of foods in relation to their nutritional quality and for guiding food and nutrition policy. PMID:25411518
Nutrient accumulation in planted red and jack pine.
David H. Alban
1988-01-01
Compares nutrient accumulation in adjacent plantations of red and jack pine in the upper Great Lakes. Describes equations developed to predict biomass and nutrient accumulation based on stand basal area and height.
ERIC Educational Resources Information Center
Dickinson, Annette; Thompson, William T.
1979-01-01
Announces a nutrient density food scoring system called the Index of Nutritional Quality (INQ). It expresses the ratio between the percent RDA of a nutrient and the percent daily allowance of calories in a food. (Author/SA)
Leer, Donald R.; Caskey, Brian J.; Frey, Jeffrey W.; Lowe, B. Scott
2007-01-01
The values for nutrients (nitrate, total Kjeldahl nitrogen, total nitrogen, and total phosphorus) and chlorophyll a (periphyton and seston) were compared to published U.S. Environmental Protection Agency (USEPA) values for Aggregate Nutrient Ecoregions VI and VII and USEPA Level III Ecoregions 55 and 56. Several nutrient values were greater than the 25th percentile of the published USEPA values. Chlorophyll a (periphyton and seston) values either were greater than the 25th percentile of published USEPA values or extended data ranges in the Aggregate Nutrient and Level III Ecoregions. If the proposed values for the 25th percentile were adopted as nutrient water-quality criteria, many samples in the Upper Wabash River Basin would have exceeded the criteria.
Drug-nutrient interactions: a broad view with implications for practice.
Boullata, Joseph I; Hudson, Lauren M
2012-04-01
The relevance of drug?nutrient interactions in daily practice continues to grow with the widespread use of medication. Interactions can involve a single nutrient, multiple nutrients, food in general, or nutrition status. Mechanistically, drug?nutrient interactions occur because of altered intestinal transport and metabolism, or systemic distribution, metabolism and excretion, as well as additive or antagonistic effects. Optimal patient care includes identifying, evaluating, and managing these interactions. This task can be supported by a systematic approach for categorizing interactions and rating their clinical significance. This review provides such a broad framework using recent examples, as well as some classic drug?nutrient interactions. Pertinent definitions are presented, as is a suggested approach for clinicians. This important and expanding subject will benefit tremendously from further clinician involvement. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lavery, Paul S.; McComb, A. J.
1991-03-01
The potential for algal banks to influence water quality and sediment nutrient flux was examined through laboratory experiments and in situ monitoring of algal banks. Loose macroalgal banks displayed seasonal changes in tissue nutrient concentrations suggesting a strong dependence on water column nutrients. These banks fail to generate conditions suitable to sediment nutrient release. Dense banks generated low oxygen conditions in the inter-algal water (0-1 mg l -1), corresponding to zones of high, and relatively stable, phosphate and ammonium concentrations (up to 96 μg l -1 PO 4P and 166 μg l -1 NH 4N). Laboratory experiments confirmed that macroalgal banks can generate reducing conditions at the sediment surface, regardless of the aeration regime, through the decomposition of macroalgal tissue. Platinum electrode potentials as low as -200 mV were recorded in the inter-algal water. In such banks, redox-dependent sediment nutrient release and anaerobic accumulation of nitrogen accounted for inter-algal nutrient concentrations of over 60 μg l -1 phosphate and 800 μg l -1 ammonium. The generation of reducing conditions in inter-algal water required 7 days of still conditions and so this mechanism of nutrient generation is unlikely to be important in winter, when strong winds frequently shift the algal banks. It is suggested that in summer this mechanism may provide a source of nutrients to dense algal banks, supplementing reserves stored in winter.
Nutrient loading and consumers: Agents of change in open-coast macrophyte assemblages
Nielsen, Karina J.
2003-01-01
Human activities are significantly altering nutrient regimes and the abundance of consumers in coastal ecosystems. A field experiment in an open-coast, upwelling ecosystem showed that small increases in nutrients increased the biomass and evenness of tide pool macrophytes where consumer abundance and nutrient loading rates were low. Consumers, when abundant, had negative effects on the diversity and biomass of macrophytes. Nutrient loading increases and consumers are less abundant and efficient as wave exposure increases along open coastlines. Experimentally reversing the natural state of nutrient supply and consumer pressure at a wave-protected site to match wave-exposed sites caused the structure of the macrophyte assemblage to converge on that found naturally in wave-exposed pools. The increases in evenness and abundance were driven by increases in structurally complex functional groups. In contrast, increased nutrient loading in semienclosed marine or estuarine ecosystems is typically associated with declines in macrophyte diversity because of increases in structurally simple and opportunistic functional groups. If nutrient concentration of upwelled waters changes with climatic warming or increasing frequency of El Niños, as predicted by some climate models, these results suggest that macrophyte abundance and evenness along wave-swept open-coasts will also change. Macrophytes represent a significant fraction of continental shelf production and provide important habitat for many marine species. The combined effects of shifting nutrient regimes and overexploitation of consumers may have unexpected consequences for the structure and functioning of open-coast communities. PMID:12796509
Nutrient loading and consumers: agents of change in open-coast macrophyte assemblages.
Nielsen, Karina J
2003-06-24
Human activities are significantly altering nutrient regimes and the abundance of consumers in coastal ecosystems. A field experiment in an open-coast, upwelling ecosystem showed that small increases in nutrients increased the biomass and evenness of tide pool macrophytes where consumer abundance and nutrient loading rates were low. Consumers, when abundant, had negative effects on the diversity and biomass of macrophytes. Nutrient loading increases and consumers are less abundant and efficient as wave exposure increases along open coastlines. Experimentally reversing the natural state of nutrient supply and consumer pressure at a wave-protected site to match wave-exposed sites caused the structure of the macrophyte assemblage to converge on that found naturally in wave-exposed pools. The increases in evenness and abundance were driven by increases in structurally complex functional groups. In contrast, increased nutrient loading in semienclosed marine or estuarine ecosystems is typically associated with declines in macrophyte diversity because of increases in structurally simple and opportunistic functional groups. If nutrient concentration of upwelled waters changes with climatic warming or increasing frequency of El Niños, as predicted by some climate models, these results suggest that macrophyte abundance and evenness along wave-swept open-coasts will also change. Macrophytes represent a significant fraction of continental shelf production and provide important habitat for many marine species. The combined effects of shifting nutrient regimes and overexploitation of consumers may have unexpected consequences for the structure and functioning of open-coast communities.
Nitrogen and phosphorus resorption in a neotropical rain forest of a nutrient-rich soil.
Martínez-Sánchez, José Luis
2005-01-01
In tropical forests with nutrient-rich soil tree's nutrient resorption from senesced leaves has not always been observed to be low. Perhaps this lack of consistence is partly owing to the nutrient resorption methods used. The aim of the study was to analyse N and P resorption proficiency from tropical rain forest trees in a nutrient-rich soil. It was hypothesised that trees would exhibit low nutrient resorption in a nutrient-rich soil. The soil concentrations of total N and extractable P, among other physical and chemical characteristics, were analysed in 30 samples in the soil surface (10 cm) of three undisturbed forest plots at 'Estaci6n de Biologia Los Tuxtlas' on the east coast of Mexico (18 degrees 34' - 18 degrees 36' N, 95 degrees 04' - 95 degrees 09' W). N and P resorption proficiency were determined from senescing leaves in 11 dominant tree species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid. Soil was rich in total N (0.50%, n = 30) and extractable P (4.11 microg g(-1) n = 30). As expected, trees showed incomplete N (1.13%, n = 11) and P (0.11%, n = 1) resorption. With a more accurate method of nutrient resorption assessment, it is possible to prove that a forest community with a nutrient-rich soil can have low levels of N and P resorption.
Broadbent, Arthur A D; Stevens, Carly J; Ostle, Nicholas J; Orwin, Kate H
2018-03-01
Multiple plant species invasions and increases in nutrient availability are pervasive drivers of global environmental change that often co-occur. Many plant invasion studies, however, focus on single-species or single-mechanism invasions, risking an oversimplification of a multifaceted process. Here, we test how biogeographic differences in soil biota, such as belowground enemy release, interact with increases in nutrient availability to influence invasive plant growth. We conducted a greenhouse experiment using three co-occurring invasive grasses and one native grass. We grew species in live and sterilized soil from the invader's native (United Kingdom) and introduced (New Zealand) ranges with a nutrient addition treatment. We found no evidence for belowground enemy release. However, species' responses to nutrients varied, and this depended on soil origin and sterilization. In live soil from the introduced range, the invasive species Lolium perenne L. responded more positively to nutrient addition than co-occurring invasive and native species. In contrast, in live soil from the native range and in sterilized soils, there were no differences in species' responses to nutrients. This suggests that the presence of soil biota from the introduced range allowed L. perenne to capture additional nutrients better than co-occurring species. Considering the globally widespread nature of anthropogenic nutrient additions to ecosystems, this effect could be contributing to a global homogenization of flora and the associated losses in native species diversity.
Calculating the refractive index for pediatric parenteral nutrient solutions.
Nelson, Scott; Barrows, Jason; Haftmann, Richard; Helm, Michael; MacKay, Mark
2013-02-15
The utility of refractometric analysis for calculating the refractive index (RI) of compounded parenteral nutrient solutions for pediatric patients was examined. An equation for calculating the RI of parenteral nutrient solutions was developed by chemical and linear regression analysis of 154 pediatric parenteral nutrient solutions. This equation was then validated by analyzing 1057 pediatric parenteral nutrition samples. The RI for the parenteral nutrient solutions could be calculated by summing the RI contribution for each ingredient and then adding the RI of water. The RI contribution for each ingredient was determined by multiplying the RI of the manufacturer's concentrate by the volume of the manufacturer's concentrate mixed into the parenteral nutrient solution divided by the total volume of the parenteral nutrient solution. The calculated RI was highly correlated with the measured RI (R(2) = 0.94, p < 0.0001). Using a range of two standard deviations (±0.0045), 99.8% of the samples fell into the comparative range. RIs of electrolytes, vitamins, and trace elements in the concentrations used did not affect the RI, similar to the findings of other studies. There was no statistical difference between the calculated RI and the measured RI in the final product of a pediatric parenteral nutrient solution. This method of quality control can be used by personnel compounding parenteral nutrient solutions to confirm the compounding accuracy of dextrose and amino acid concentrations in the final product, and a sample can be sent to the hospital laboratory for electrolyte verification.
Rapkin, James; Archer, C Ruth; Grant, Charles E; Jensen, Kim; House, Clarissa M; Wilson, Alastair J; Hunt, John
2017-09-01
There is often large divergence in the effects of key nutrients on life span (LS) and reproduction in the sexes, yet nutrient intake is regulated in the same way in males and females given dietary choice. This suggests that the sexes are constrained from feeding to their sex-specific nutritional optima for these traits. Here, we examine the potential for intralocus sexual conflict (IASC) over optimal protein and carbohydrate intake for LS and reproduction to constrain the evolution of sex-specific nutrient regulation in the field cricket, Teleogryllus commodus. We show clear sex differences in the effects of protein and carbohydrate intake on LS and reproduction and strong positive genetic correlations between the sexes for the regulated intake of these nutrients. However, the between-sex additive genetic covariance matrix had very little effect on the predicted evolutionary response of nutrient regulation in the sexes. Thus, IASC appears unlikely to act as an evolutionary constraint on sex-specific nutrient regulation in T. commodus. This finding is supported by clear sexual dimorphism in the regulated intake of these nutrients under dietary choice. However, nutrient regulation did not coincide with the nutritional optima for LS or reproduction in either sex, suggesting that IASC is not completely resolved in T. commodus. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Future nutrient load scenarios for the Baltic Sea due to climate and lifestyle changes.
Hägg, Hanna Eriksson; Lyon, Steve W; Wällstedt, Teresia; Mörth, Carl-Magnus; Claremar, Björn; Humborg, Christoph
2014-04-01
Dynamic model simulations of the future climate and projections of future lifestyles within the Baltic Sea Drainage Basin (BSDB) were considered in this study to estimate potential trends in future nutrient loads to the Baltic Sea. Total nitrogen and total phosphorus loads were estimated using a simple proxy based only on human population (to account for nutrient sources) and stream discharges (to account for nutrient transport). This population-discharge proxy provided a good estimate for nutrient loads across the seven sub-basins of the BSDB considered. All climate scenarios considered here produced increased nutrient loads to the Baltic Sea over the next 100 years. There was variation between the climate scenarios such that sub-basin and regional differences were seen in future nutrient runoff depending on the climate model and scenario considered. Regardless, the results of this study indicate that changes in lifestyle brought about through shifts in consumption and population potentially overshadow the climate effects on future nutrient runoff for the entire BSDB. Regionally, however, lifestyle changes appear relatively more important in the southern regions of the BSDB while climatic changes appear more important in the northern regions with regards to future increases in nutrient loads. From a whole-ecosystem management perspective of the BSDB, this implies that implementation of improved and targeted management practices can still bring about improved conditions in the Baltic Sea in the face of a warmer and wetter future climate.
Estimation of postfire nutrient loss in the Florida everglades.
Qian, Y; Miao, S L; Gu, B; Li, Y C
2009-01-01
Postfire nutrient release into ecosystem via plant ash is critical to the understanding of fire impacts on the environment. Factors determining a postfire nutrient budget are prefire nutrient content in the combustible biomass, burn temperature, and the amount of combustible biomass. Our objective was to quantitatively describe the relationships between nutrient losses (or concentrations in ash) and burning temperature in laboratory controlled combustion and to further predict nutrient losses in field fire by applying predictive models established based on laboratory data. The percentage losses of total nitrogen (TN), total carbon (TC), and material mass showed a significant linear correlation with a slope close to 1, indicating that TN or TC loss occurred predominantly through volatilization during combustion. Data obtained in laboratory experiments suggest that the losses of TN, TC, as well as the ratio of ash total phosphorus (TP) concentration to leaf TP concentration have strong relationships with burning temperature and these relationships can be quantitatively described by nonlinear equations. The potential use of these nonlinear models relating nutrient loss (or concentration) to temperature in predicting nutrient concentrations in field ash appear to be promising. During a prescribed fire in the northern Everglades, 73.1% of TP was estimated to be retained in ash while 26.9% was lost to the atmosphere, agreeing well with the distribution of TP during previously reported wild fires. The use of predictive models would greatly reduce the cost associated with measuring field ash nutrient concentrations.
Langland, Michael J.; Fishel, David K.
1995-01-01
The U.S. Geological Survey, in cooperation with the Susquehanna River Basin Commission and the Pennsylvania Department of Environmental Resources, conducted a study as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program to determine the effects of nutrient management of surface-water quality by reducing animal units in a 0.43-square-mile agricultural watershed in York County. The study was conducted primarily from October 1985 through September 1990 prior to and during the implementation of nutrient-management practices designed to reduce nutrient and sediment discharges. Intermittent sampling continued until August 1991. The Bald Eagle Creek Basin is underlain by schist and quartzite. About 87 percent of the watershed is cropland and pasture. Nearly 33 percent of the cropland was planted in corn prior to nutrient management, whereas 22 percent of the cropland was planted in corn during the nutrient-management phase. The animal population was reduced by 49 percent during nutrient management. Average annual applications of nitrogen and phosphorus from manure to cropland were reduced by 3,940 pounds (39 percent) and 910 pounds (46 percent), respectively, during nutrient management. A total of 94,560 pounds of nitrogen (538 pounds per acre) and 26,400 pounds of phosphorus (150 pounds per acre) were applied to the cropland as commercial fertilizer and manure during the 5-year study. Core samples from the top 4 feet of soil were collected prior to and during nutrient management and analyzed from concentrations of nitrogen and phosphorus. The average amount of nitrate nitrogen in the soil ranged from 36 to 135 pounds per acre, and soluble phosphorus ranged from 0.39 to 2.5 pounds per acre, prior to nutrient management. During nutrient management, nitrate nitrogen in the soil ranged from 21 to 291 pounds per acre and soluble phosphorus ranged from 0.73 to 1.7 pounds per acre. Precipitation was about 18 percent below normal and streamflow was about 35 percent below normal prior to nutrient management, whereas precipitation was 4 percent above normal and streamflow was 3 percent below normal during the first 2 years of nutrient management. Eighty-four percent of the 20.44 inches of streamflow was base flow prior to nutrient management and 54 percent of the 31.14 inches of streamflow was base flow during the first 2 years of the nutrient-management phase. About 31 percent of the measured precipitation during the first 4 years of the study was discharged as surface water; the remaining 69 percent was removed as evapotranspiration or remained in ground-water storage. Median concentrations of total nitrogen and dissolved nitrate plus nitrite in base flow increased from 4.9 and 4.1 milligrams per liter as nitrogen, respectively, prior to nutrient management to 5.8 and 5.0 milligrams per liter, respectively, during nutrient management. Median concentrations of ammonia nitrogen and organic nitrogen did not change significantly in base flow. Median concentrations of total and dissolved phosphorus in base flow did not change significantly and were 0.05 and 0.03 milligrams per liter as phosphorus, respectively, prior to the management phase, and 0.05 and 0.04 milligrams per liter, respectively, during the management phase. Concentrations and loads of dissolved nitrite plus nitrate in base flow increased following wet periods after crops were harvested and manure was applied. During the growing season, concentrations and loads decreased as nutrient utilization and evapotranspiration by corn increased. About 4,550 pounds of suspended sediment 5,300 pounds of nitrogen, and 70.4 pounds of phosphorous discharged in base flow in the 2 years prior to nutrient management. During the first 2 years of nutrient management about 2,860 pounds of suspended sediment, 5,700 pounds of nitrogen, and 46.6 pounds of phosphorus discharged in base flow. Prior to nutrient management, about 260,000 pounds of suspende
Tim Wood; F. H. Bormann
1976-01-01
Acidified precipitation may affect the productivity of forests by altering the availability of plant nutrients of by affecting the ability of trees to absorb and assimilate those nutrients. In this study, the short-term effects of simulated acid rain (pH range 5.6 - 2.3) upon the growth and nutrient relations of Eastern White Pine seedlings (Pinus strobus...