USDA-ARS?s Scientific Manuscript database
Iron deficiency is the most widespread nutritional problem, affecting as many as half of the world’s population. Only a small fraction (2-15%) of iron from plant sources is typically bioavailable, that is, available for absorption and nutritionally useful for humans. This study evaluated iron conc...
USDA-ARS?s Scientific Manuscript database
Objectives of the study were to determine effects of Fe source on plant growth, plant nutrition, substrate chemistry and runoff chemistry. Iron source (FS) treatments consisted of Fe-aminopolycarboxylic acid (APCA) complexones iron ethylenediaminetetraacetic acid (FeEDTA), iron [S, S']-ethylenediam...
Iron Homeostasis and Nutritional Iron Deficiency123
Theil, Elizabeth C.
2011-01-01
Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins encoded in iron responsive element (IRE)-mRNA. The noncoding IRE-mRNA structures bind protein repressors, IRP1 or 2, during iron deficiency. Integration of the IRE-RNA in translation regulators (near the cap) or turnover elements (after the coding region) increases iron uptake (DMT1/TRF1) or decreases iron storage/efflux (FTN/FPN) when IRP binds. An antioxidant response element in FTN DNA binds Bach1, a heme-sensitive transcription factor that coordinates expression among antioxidant response proteins like FTN, thioredoxin reductase, and quinone reductase. FTN, an antioxidant because Fe2+ and O2 (reactive oxygen species generators) are consumed to make iron mineral, is also a nutritional iron concentrate that is an efficiently absorbed, nonheme source of iron from whole legumes. FTN protein cages contain thousands of mineralized iron atoms and enter cells by receptor-mediated endocytosis, an absorption mechanism distinct from transport of nonheme iron salts (ferrous sulfate), iron chelators (ferric-EDTA), or heme. Recognition of 2 nutritional nonheme iron sources, small and large (FTN), will aid the solution of iron deficiency, a major public health problem, and the development of new policies on iron nutrition. PMID:21346101
Strategies of Vibrio parahaemolyticus to acquire nutritional iron during host colonization
León-Sicairos, Nidia; Angulo-Zamudio, Uriel A.; de la Garza, Mireya; Velázquez-Román, Jorge; Flores-Villaseñor, Héctor M.; Canizalez-Román, Adrian
2015-01-01
Iron is an essential element for the growth and development of virtually all living organisms. As iron acquisition is critical for the pathogenesis, a host defense strategy during infection is to sequester iron to restrict the growth of invading pathogens. To counteract this strategy, bacteria such as Vibrio parahaemolyticus have adapted to such an environment by developing mechanisms to obtain iron from human hosts. This review focuses on the multiple strategies employed by V. parahaemolyticus to obtain nutritional iron from host sources. In these strategies are included the use of siderophores and xenosiderophores, proteases and iron-protein receptor. The host sources used by V. parahaemolyticus are the iron-containing proteins transferrin, hemoglobin, and hemin. The implications of iron acquisition systems in the virulence of V. parahaemolyticus are also discussed. PMID:26217331
Creed-Kanashiro, Hilary M; Bartolini, Rosario M; Fukumoto, Mary N; Uribe, Tula G; Robert, Rebecca C; Bentley, Margaret E
2003-11-01
Formative research was conducted with 26 women and 16 adolescent girls to develop an education intervention through community kitchens (CK) in Lima, to increase their dietary iron intake and improve their iron status. A combination of qualitative research methods was used to explore perceptions about foods, nutrition, health, anemia and body image. The women recognized that there was a close association among eating well, "alimentarse bien", their health and prevention and treatment of anemia. They perceived that the nutritive value of a meal is determined primarily by its content of "nutritious" foods and by its being "balanced". Using this information the conceptual model of the education intervention was developed. The vulnerability of women to anemia was presented with the relationship between anemia and diet as the central focus. Feasible ways of achieving a nutritious diet were introduced to the community kitchens through promoting local heme iron sources and the consumption of beans with a vitamin C source. Animal source foods were amongst those considered to be nutritious and were "best buys" for iron content. CK searched for ways of assuring accessibility to these foods. The use of animal source foods in the community kitchen menus increased during the intervention.
Can an increase in leaf iron reductase activity enhance seed iron accumulation in soybean?
USDA-ARS?s Scientific Manuscript database
Iron is an important micronutrient for human nutrition, with plant foods providing a significant amount of dietary iron in certain population groups, and in some cases, providing the sole source of dietary iron. Because iron deficiency is unfortunately common in many human populations, we have been...
Iron fortification of infant formulas. American Academy of Pediatrics. Committee on Nutrition.
1999-07-01
Despite the American Academy of Pediatrics' (AAP) strong endorsement for breastfeeding, most infants in the United States are fed some infant formula by the time they are 2 months old. The AAP Committee on Nutrition has strongly advocated iron fortification of infant formulas since 1969 as a way of reducing the prevalence of iron-deficiency anemia and its attendant sequelae during the first year.1 The 1976 statement titled "Iron Supplementation for Infants" delineated the rationale for iron supplementation, proposed daily dosages of iron, and summarized potential sources of iron in the infant diet.2 In 1989, the AAP Committee on Nutrition published a statement that addressed the issue of iron-fortified infant formulas3 and concluded that there was no convincing contraindication to iron-supplemented formulas and that continued use of "low-iron" formulas posed an unacceptable risk for iron deficiency during infancy. The current statement represents a scientific update and synthesis of the 1976 and 1989 statements with recommendations about the use of iron-fortified and low-iron formulas in term infants.
Naghii, Mohammad Reza; Mofid, Mahmood
2007-01-01
Iron deficiency, anemia, is the most prevalent nutritional problem in the world today. The objective of this study was to consider the effectiveness of consumption of iron fortified ready-to-eat cereal and pumpkin seed kernels as two sources of dietary iron on status of iron nutrition and response of hematological characteristics of women at reproductive ages. Eight healthy female, single or non pregnant subjects, aged 20-37 y consumed 30 g of iron fortified ready-to-eat cereal (providing 7.1 mg iron/day) plus 30 g of pumpkin seed kernels (providing 4.0 mg iron/day) for four weeks. Blood samples collected on the day 20 of menstrual cycles before and after consumption and indices of iron status such as reticulocyte count, hemoglobin (Hb), hematocrit (Ht), serum ferritin, iron, total iron-binding capacity (TIBC), transferrin and transferrin saturation percent were determined. Better response for iron status was observed after consumption period. The statistical analysis showed a significant difference between the pre and post consumption phase for higher serum iron (60 +/- 22 vs. 85 +/- 23 ug/dl), higher transferrin saturation percent (16.8 +/- 8.0 vs. 25.6 +/- 9.0%), and lower TIBC (367 +/- 31 vs. 339 +/- 31 ug/dl). All individuals had higher serum iron after consumption. A significant positive correlation (r=0.981, p=0.000) between the differences in serum iron levels and differences in transferrin saturation percentages and a significant negative correlation (r=-0.916, p<0.001) between the differences in serum iron levels and differences in TIBC was found, as well. Fortified foods contribute to maintaining optimal nutritional status and minimizing the likelihood of iron insufficiencies and use of fortified ready-to-eat cereals is a common strategy. The results showed that adding another food source of iron such as pumpkin seed kernels improves the iron status. Additional and longer studies using these two food products are recommended to further determine the effect of iron fortification on iron nutrition and status among the target population, and mainly in young children, adolescents, women of reproductive ages and pregnant women.
Iron, ferritin, and nutrition.
Theil, Elizabeth C
2004-01-01
Ferritin, a major form of endogenous iron in food legumes such as soybeans, is a novel and natural alternative for iron supplementation strategies where effectiveness is limited by acceptability, cost, or undesirable side effects. A member of the nonheme iron group of dietary iron sources, ferritin is a complex with Fe3+ iron in a mineral (thousands of iron atoms inside a protein cage) protected from complexation. Ferritin illustrates the wide range of chemical and biological properties among nonheme iron sources. The wide range of nonheme iron receptors matched to the structure of the iron complexes that occurs in microorganisms may, by analogy, exist in humans. An understanding of the chemistry and biology of each type of dietary iron source (ferritin, heme, Fe2+ ion, etc.), and of the interactions dependent on food sources, genes, and gender, is required to design diets that will eradicate global iron deficiency in the twenty-first century.
Iron sources effects on growth, physiological parameters and nutrition of cacao
USDA-ARS?s Scientific Manuscript database
Productivity and sustainability of cacao (Theobroma cacao L.) in tropical soils are affected by deficiency of micronutrients. Iron deficiency is one of the main yield limiting constraints, especially in highly weathered, coarse textured and leached soils. To correct iron deficiency, different form...
USDA-ARS?s Scientific Manuscript database
We are interested in the improvement of iron nutritional status of humans living in developing world countries where iron deficiency anemia is quite severe. We also wish to promote the use of plant-based food sources to improve human iron status, and thus are focusing on staple food crops like comm...
USDA-ARS?s Scientific Manuscript database
Aminopolycarboxylic acid (APCA) complexones, commonly referred to as ligands or chelating agents, like ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) are commonly used in soluble fertilizers to supply copper (Cu), iron (Fe), manganese (Mn), and/or zinc (Zn) to p...
[Assessment of nutritional education and iron supplement impact on prevention of pregnancy anemia].
Parra, Beatriz Elena; Manjarrés, Luz Mariela; Gómez, Alba Lucía; Alzate, Dora María; Jaramillo, María Clemencia
2005-06-01
Iron and folic acid deficiencies are the major causes of health problems among pregnant women and children, with a significant negative impact on economic and social development. From April 2002 to April 2003 at the Gilberto Mejía Mejía Hospital (Rionegro, Antioquia), the prenatal program was assessed for its impact on a cohort of pregnant women concerning knowledge of the following nutritional parameters: iron and folic acid functions, their source foods and bioavailability, supplement intake and tolerance, and globular indexes. A sample of 42 pregnant women was subjected to a nutritional education program along with the administration of a supplement consisting of 60 mg elemental iron, 400 microg folic acid, and 70 mg vitamin C. This formulation was prepared specifically for the study by Laboratorio Profesional Farmacéutico, LAPROFF. The effect of the educational program was measured by knowledge changes about how patient behaviours affect nutrient bioavailability via source foods intake, as well as recognition of the tolerance limits of supplements and potential effect of non-adherance. The physiological status of each patient was measured by three hematologic variables--hemoglobin, hematocrit, and ferritin. A positive understanding of how to improve nutritional practices was observed. With the supplements, 94.4% of women did not show anaemia at the end of pregnancy. These results agree with those in other, similar populations and indicate that implementation of prenatal control programs by educational and supplement administration is worthwhile.
Increasing CO2 threatens human nutrition
USDA-ARS?s Scientific Manuscript database
Dietary deficiencies of zinc and iron are a major global public health problem. An estimated two billion people suffer these deficiencies causing a loss of 63 million life years annually. Most of these people depend upon grains and legumes as their primary dietary source of zinc and iron. This manu...
Heilbronner, Simon; Brozyna, Jeremy R.; Heinrichs, David E.; Skaar, Eric P.; Peschel, Andreas; Foster, Timothy J.
2016-01-01
Staphylococcus lugdunensis is a coagulase negative bacterial pathogen that is particularly associated with severe cases of infectious endocarditis. Unique amongst the coagulase-negative staphylococci, S. lugdunensis harbors an iron regulated surface determinant locus (isd). This locus facilitates the acquisition of heme as a source of nutrient iron during infection and allows iron limitation caused by “nutritional immunity” to be overcome. The isd locus is duplicated in S. lugdunensis HKU09-01 and we show here that the duplication is intrinsically unstable and undergoes accordion-like amplification and segregation leading to extensive isd copy number variation. Amplification of the locus increased the level of expression of Isd proteins and improved binding of hemoglobin to the cell surface of S. lugdunensis. Furthermore, Isd overexpression provided an advantage when strains were competing for a limited amount of hemoglobin as the sole source of iron. Gene duplications and amplifications (GDA) are events of fundamental importance for bacterial evolution and are frequently associated with antibiotic resistance in many species. As such, GDAs are regarded as evolutionary adaptions to novel selective pressures in hostile environments pointing towards a special importance of isd for S. lugdunensis. For the first time we show an example of a GDA that involves a virulence factor of a Gram-positive pathogen and link the GDA directly to a competitive advantage when the bacteria were struggling with selective pressures mimicking “nutritional immunity”. PMID:27575058
Heilbronner, Simon; Monk, Ian R; Brozyna, Jeremy R; Heinrichs, David E; Skaar, Eric P; Peschel, Andreas; Foster, Timothy J
2016-08-01
Staphylococcus lugdunensis is a coagulase negative bacterial pathogen that is particularly associated with severe cases of infectious endocarditis. Unique amongst the coagulase-negative staphylococci, S. lugdunensis harbors an iron regulated surface determinant locus (isd). This locus facilitates the acquisition of heme as a source of nutrient iron during infection and allows iron limitation caused by "nutritional immunity" to be overcome. The isd locus is duplicated in S. lugdunensis HKU09-01 and we show here that the duplication is intrinsically unstable and undergoes accordion-like amplification and segregation leading to extensive isd copy number variation. Amplification of the locus increased the level of expression of Isd proteins and improved binding of hemoglobin to the cell surface of S. lugdunensis. Furthermore, Isd overexpression provided an advantage when strains were competing for a limited amount of hemoglobin as the sole source of iron. Gene duplications and amplifications (GDA) are events of fundamental importance for bacterial evolution and are frequently associated with antibiotic resistance in many species. As such, GDAs are regarded as evolutionary adaptions to novel selective pressures in hostile environments pointing towards a special importance of isd for S. lugdunensis. For the first time we show an example of a GDA that involves a virulence factor of a Gram-positive pathogen and link the GDA directly to a competitive advantage when the bacteria were struggling with selective pressures mimicking "nutritional immunity".
Position paper on vegetarian diets from the working group of the Italian Society of Human Nutrition.
Agnoli, C; Baroni, L; Bertini, I; Ciappellano, S; Fabbri, A; Papa, M; Pellegrini, N; Sbarbati, R; Scarino, M L; Siani, V; Sieri, S
2017-12-01
Interest in vegetarian diets is growing in Italy and elsewhere, as government agencies and health/nutrition organizations are emphasizing that regular consumption of plant foods may provide health benefits and help prevent certain diseases. We conducted a Pubmed search, up to September, 2015, for studies on key nutrients (proteins, vitamin B12, iron, zinc, calcium, vitamin D, and n-3 fatty acids) in vegetarian diets. From 295 eligible publications the following emerged: Vegetarians should be encouraged to supplement their diets with a reliable source of vitamin B12 (vitamin-fortified foods or supplements). Since the plant protein digestibility is lower than that of animal proteins it may be appropriate for vegetarians to consume more proteins than recommended for the general population. Vegetarians should also be encouraged to habitually consume good sources of calcium, iron and zinc - particularly vegetables that are low in oxalate and phytate (e.g. Brassicaceae), nuts and seeds, and calcium-rich mineral water. Calcium, iron, and zinc bioavailability can be improved by soaking, germination, and sour-dough leavening that lower the phytate content of pulses and cereals. Vegetarians can ensure good n-3 fatty acid status by habitually consuming good sources of a-linolenic acid (walnuts, flaxseeds, chia seeds, and their oils) and limiting linoleic acid intake (corn and sunflower oils). Well-planned vegetarian diets that include a wide variety of plant foods, and a reliable source of vitamin B12, provide adequate nutrient intake. Government agencies and health/nutrition organizations should provide more educational resources to help Italians consume nutritionally adequate vegetarian diets. Copyright © 2017. Published by Elsevier B.V.
Merrill, Rebecca D.; Shamim, Abu Ahmed; Ali, Hasmot; Schulze, Kerry; Rashid, Mahbubur; Christian, Parul; West, Jr., Keith P.
2009-01-01
Iron is ubiquitous in natural water sources used around the world for drinking and cooking. The health impact of chronic exposure to iron through water, which in groundwater sources can reach well above the World Health Organization's defined aesthetic limit of 0.3 mg/L, is not currently understood. To quantify the impact of consumption of iron in groundwater on nutritional status, it is important to accurately assess naturally-occurring exposure levels among populations. In this study, the validity of iron quantification in water was evaluated using two portable instruments: the HACH DR/890 portable colorimeter (colorimeter) and HACH Iron test-kit, Model IR-18B (test-kit), by comparing field-based iron estimates for 25 tubewells located in northwestern Bangladesh with gold standard atomic absorption spectrophotometry analysis. Results of the study suggest that the HACH test-kit delivers more accurate point-of-use results across a wide range of iron concentrations under challenging field conditions. PMID:19507757
Merrill, Rebecca D; Shamim, Abu Ahmed; Labrique, Alain B; Ali, Hasmot; Schulze, Kerry; Rashid, Mahbubur; Christian, Parul; West, Keith P
2009-06-01
Iron is ubiquitous in natural water sources used around the world for drinking and cooking. The health impact of chronic exposure to iron through water, which in groundwater sources can reach well above the World Health Organization's defined aesthetic limit of 0.3 mg/L, is not currently understood. To quantify the impact of consumption of iron in groundwater on nutritional status, it is important to accurately assess naturally-occurring exposure levels among populations. In this study, the validity of iron quantification in water was evaluated using two portable instruments: the HACH DR/890 portable colorimeter (colorimeter) and HACH Iron test-kit, Model IR-18B (test-kit), by comparing field-based iron estimates for 25 tubewells located in northwestern Bangladesh with gold standard atomic absorption spectrophotometry analysis. Results of the study suggest that the HACH test-kit delivers more accurate point-of-use results across a wide range of iron concentrations under challenging field conditions.
Effectiveness of nutrition education, iron supplementation or both on iron status in children.
Kapur, D; Sharma, S; Agarwal, K N
2003-12-01
A community-based, randomized trial was designed to compare the effect of nutrition education and/or iron supplementation (weekly) on iron status of children in an urban slum in Delhi. Four hundred and fifty one children, 9-36 months of age and their caretakers (mothers), assigned to one of the following groups were included in the cohort. Group 1, nutrition education. Group 2, supplementation (with 20 mg elemental iron). Group 3, nutrition education with supplementation (with 20 mg elemental iron) and Group 4, control given placebo. The intervention program was of four months duration, with a treatment phase of 8 wk followed by 8 wk of no treatment. Post intervention, at 8 wk and at 16 wk, the hemoglobin change in the nutrition education, supplementation, nutrition education with supplementation and control groups was 2.9, 1.9, 3.8 and -5.9%, respectively and 2.1, -1.9, 0 and -9.3%, respectively (as compared to initial values). There was no significant effect of any of the intervention at 8 weeks. At 16 wk, there was significant positive effect of nutrition education group (p less than 0.05). The percent change in serum ferritin value at 16 wk in the nutrition education, supplementation, nutrition education with supplementation and control groups was 5.7, -2.3, -3.4 and -40%, respectively. Serum ferritin values were significantly higher for the nutrition education group (p < 0.001) as compared to the control. At 16 wk, the nutrition education group mothers showed significantly higher nutrition knowledge and the dietary iron intake of children was significantly higher than their control group counterparts (p < 0.0001). The study suggests that nutrition education did have a positive effect on the iron status possibly by improving the dietary iron intake.
Kulikova, Natalia A; Polyakov, Alexander Yu; Lebedev, Vasily A; Abroskin, Dmitry P; Volkov, Dmitry S; Pankratov, Denis A; Klein, Olga I; Senik, Svetlana V; Sorkina, Tatiana A; Garshev, Alexey V; Veligzhanin, Alexey A; Garcia Mina, Jose M; Perminova, Irina V
2017-12-27
Availability of Fe in soil to plants is closely related to the presence of humic substances (HS). Still, the systematic data on applicability of iron-based nanomaterials stabilized with HS as a source for plant nutrition are missing. The goal of our study was to establish a connection between properties of iron-based materials stabilized by HS and their bioavailability to plants. We have prepared two samples of leonardite HS-stabilized iron-based materials with substantially different properties using the reported protocols and studied their physical chemical state in relation to iron uptake and other biological effects. We used Mössbauer spectroscopy, XRD, SAXS, and TEM to conclude on iron speciation, size, and crystallinity. One material (Fe-HA) consisted of polynuclear iron(III) (hydr)oxide complexes, so-called ferric polymers, distributed in HS matrix. These complexes are composed of predominantly amorphous small-size components (<5 nm) with inclusions of larger crystalline particles (the mean size of (11 ± 4) nm). The other material was composed of well-crystalline feroxyhyte (δ'-FeOOH) NPs with mean transverse sizes of (35 ± 20) nm stabilized by small amounts of HS. Bioavailability studies were conducted on wheat plants under conditions of iron deficiency. The uptake studies have shown that small and amorphous ferric polymers were readily translocated into the leaves on the level of Fe-EDTA, whereas relatively large and crystalline feroxyhyte NPs were mostly sorbed on the roots. The obtained data are consistent with the size exclusion limits of cell wall pores (5-20 nm). Both samples demonstrated distinct beneficial effects with respect to photosynthetic activity and lipid biosynthesis. The obtained results might be of use for production of iron-based nanomaterials stabilized by HS with the tailored iron availability to plants. They can be applied as the only source for iron nutrition as well as in combination with the other elements, for example, for industrial production of "nanofortified" macrofertilizers (NPK).
Nutritional supplement use among fitness club participants in Tehran, Iran.
Saeedi, Pouya; Mohd Nasir, Mohd Taib; Hazizi, Abu Saad; Vafa, Mohammad Reza; Rahimi Foroushani, Abbas
2013-01-01
The aim of this study was to assess nutritional supplement use among fitness club participants in Tehran, Iran. A cross sectional study was conducted in 24 fitness clubs throughout the city of Tehran, Iran. A total of 1625 fitness club participants were recruited to participate in this study. They were asked to complete a self-administered pre-tested questionnaire. Descriptive statistics and chi-square test were performed to determine the characteristics of participants, reasons for supplement use, sources of information and also the influential advisors regarding nutritional supplement use. A high prevalence rate of nutritional supplement use (66.7%) was reported. Overall, multivitamin-mineral (43.8%) and iron tablets (30.5%) were the common nutritional supplements used and only a small number of participants used illegal substances (0.5%). Younger participants were more likely to use ergogenic aids, whereas, older participants were more likely to use vitamin D. Males were more likely than females to use creatine and amino acids, whereas, iron tablets and mint water were more common among females. Also, males were more likely to use nutritional supplements for increasing energy, whereas, females were more likely to use nutritional supplements for nutritional deficiencies. In conclusion, a high prevalence rate of nutritional supplement use was seen among participants. Copyright © 2012 Elsevier Ltd. All rights reserved.
The nutritional status of iron, folate, and vitamin B-12 of Buddhist vegetarians.
Lee, Yujin; Krawinkel, Michael
2011-01-01
Nutritional status of iron, folate, and vitamin B-12 in vegetarians were assessed and compared with those of non- vegetarians in Korea. The vegetarian subjects were 54 Buddhist nuns who ate no animal source food except for dairy products. The non-vegetarians were divided into two groups: 31 Catholic nuns and 31 female college students. Three-day dietary records were completed, and the blood samples were collected for analyzing a complete blood count, and serum levels of ferritin, folate, and vitamin B-12. There was no difference in hemoglobin among the diet groups. The serum ferritin and hematocrit levels of vegetarians did not differ from that of non- vegetarian students with a high intake of animal source food but low intake of vitamin C, and the levels were lower than that of non-vegetarian Catholic nuns with a modest consumption of animal source food and a high intake of vitamin C. The serum vitamin B-12 levels of all subjects except one vegetarian and the serum folate levels of all subjects except one non-vegetarian student fell within a normal range. In vegetarians, there was a positive correlation between the vitamin C intake and serum ferritin levels as well as between the laver intake and serum vitamin B-12 levels. In order to achieve an optimal iron status, both an adequate amount of iron intake and its bioavailability should be considered. Sufficient intake of vegetables and fruits was reflected in adequate serum folate status. Korean laver can be a good source of vitamin B-12 for vegetarians.
The effect of nutrition knowledge and dietary iron intake on iron status in young women.
Leonard, Alecia J; Chalmers, Kerry A; Collins, Clare E; Patterson, Amanda J
2014-10-01
Previous research on the relationships between general nutrition knowledge and dietary intake, and dietary iron intake and iron status has produced inconsistent results. Currently, no study has focused on knowledge of dietary iron and its effect on dietary iron intake. This study aimed to determine whether nutrition knowledge of iron is related to dietary iron intake in young women, and subsequently whether greater knowledge and intake translates into better iron status. A cross-sectional assessment of nutrition knowledge of iron, dietary iron intake and iron status was conducted in women aged 18-35 years living in Newcastle, NSW, Australia. Iron status was assessed by serum ferritin, haemoglobin, soluble transferrin receptor and alpha-1-glycoprotein. One hundred and seven women (27.8 ± 4.7 years) completed the nutrition knowledge questionnaire and FFQ. Of these, 74 (70%) also had biomarkers of iron status measured. Mean iron intake was 11.2 ± 3.8 mg/day. There was no association between nutrition knowledge score and whether the women met the RDI for iron (F (1, 102) = .40, P = .53). A positive correlation was shown between nutrition knowledge score and iron intake (mg/day) (r = 0.25, P = .01). Serum ferritin was positively associated with the frequency of flesh food intake (r = .27 P = .02). Vegetarians (including partial vegetarians) had significantly lower serum ferritin levels than non-vegetarians (F (1, 71) = 7.44, P = .01). Significant positive correlations found between higher flesh food intake and biomarkers of iron status suggest that educating non-vegetarians about the benefits of increased flesh food consumption and vegetarians about dietary iron enhancers and inhibitors may have potential for addressing the high rates of iron deficiency among young women. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Consumption of lean meat is a valuable addition to a healthy diet because it provides complete protein and is a rich source of vitamin B12, iron, and zinc. The objective of this study was to examine the nutritional contribution of total beef and lean beef (LB) to the American diet using the USDA def...
Dietary iron intake and iron status of German female vegans: results of the German vegan study.
Waldmann, Annika; Koschizke, Jochen W; Leitzmann, Claus; Hahn, Andreas
2004-01-01
As shown in previous studies vegetarians and especially vegans are at risk for iron deficiency. Our study evaluated the iron status of German female vegans. In this cross-sectional study, the dietary intakes of 75 vegan women were assessed by two 9-day food frequency questionnaires. The iron status was analyzed on the basis of blood parameters. Mean daily iron intake was higher than recommended by the German Nutrition Society. Still 42% of the female vegans < 50 years (young women, YW) had a daily iron intake of < 18 mg/day, which is the recommended allowance by the US Food and Nutrition Board. The main dietary sources of iron were vegetables, fruits, cereals and cereal products. Median serum ferritin concentrations were 14 ng/ml for YW and 28 ng/ml for women > or = 50 years (old women, OW). In all, 40% (tri-index model (TIM) 20%) of the YW and 12% (TIM 12%) of the OW were considered iron-deficient based on either serum ferritin levels of < 12 ng/ml or a TIM. Only 3 women had blood parameters which are defined as iron deficiency anemia. Correlations between serum ferritin levels and dietary factors were not found. Although the mean iron intake was above the recommended level, 40% (TIM 20%) of the YW were considered iron-deficient. It is suggested that especially YM on a vegan diet should have their iron status monitored and should consider taking iron supplements in case of a marginal status. Copyright 2004 S. Karger AG, Basel
Staphylococcus lugdunensis IsdG Liberates Iron from Host Heme▿
Haley, Kathryn P.; Janson, Eric M.; Heilbronner, Simon; Foster, Timothy J.; Skaar, Eric P.
2011-01-01
Staphylococcus lugdunensis is often found as part of the normal flora of human skin but has the potential to cause serious infections even in healthy individuals. It remains unclear what factors enable S. lugdunensis to transition from a skin commensal to an invasive pathogen. Analysis of the complete genome reveals a putative iron-regulated surface determinant (Isd) system encoded within S. lugdunensis. In other bacteria, the Isd system permits the utilization of host heme as a source of nutrient iron to facilitate bacterial growth during infection. In this study, we establish that S. lugdunensis expresses an iron-regulated IsdG-family heme oxygenase that binds and degrades heme. Heme degradation by IsdG results in the release of free iron and the production of the chromophore staphylobilin. IsdG-mediated heme catabolism enables the use of heme as a sole source of iron, establishing IsdG as a pathophysiologically relevant heme oxygenase in S. lugdunensis. Together these findings offer insight into how S. lugdunensis fulfills its nutritional requirements while invading host tissues and establish the S. lugdunensis Isd system as being involved in heme-iron utilization. PMID:21764939
Transdermal Delivery of Iron Using Soluble Microneedles: Dermal Kinetics and Safety.
Modepalli, Naresh; Shivakumar, H Nanjappa; McCrudden, Maeliosa T C; Donnelly, Ryan F; Banga, Ajay; Murthy, S Narasimha
2016-03-01
Currently, the iron compounds are administered via oral and parenteral routes in patients of all ages, to treat iron deficiency. Despite continued efforts to supplement iron via these conventional routes, iron deficiency still remains the most prevalent nutritional disorder all over the world. Transdermal replenishment of iron is a novel, potential approach of iron replenishment. Ferric pyrophosphate (FPP) was found to be a suitable source of iron for transdermal replenishment. The safety of FPP was assessed in this project by challenging the dermal fibroblast cells with high concentration of FPP. The cell viability assay and reactive oxygen species assay were performed. The soluble microneedle array was developed, incorporated with FPP and the kinetics of free iron in the skin; extracellular fluid following dermal administration of microneedle array was investigated in hairless rats. From the cell based assays, FPP was selected as one of the potential iron sources for transdermal delivery. The microneedles were found to dissolve in the skin fluid within 3 hours of administration. The FPP concentration in the dermal extracellular fluid declined after complete dissolution of the microneedle array. Overall, the studies demonstrated the safety of FPP for dermal delivery and the feasibility of soluble microneedle approach for transdermal iron replenishment therapy. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Elevated and variable groundwater iron in rural northwestern Bangladesh.
Merrill, Rebecca D; Labrique, Alain B; Shamim, Abu Ahmed; Schulze, Kerry; Christian, Parul; Merrill, Robert K; West, Keith P
2010-12-01
Over the past 30 years, tubewells have become a ubiquitous source of potable groundwater in South Asia. Considered safer than surface water, groundwater naturally contains minerals that may impact human health; however, few data exist on tubewell water mineral content or its association with human nutritional or health conditions. We surveyed iron concentration in tubewell water across a 435 km2, contiguous, rural area in northwestern Bangladesh to map and quantify levels of iron in drinking water. One tubewell was randomly sampled from each of 948 adjacent grid cells 675 m2 in size. Water sampling was standardized and iron concentration measured using a field-based colorimetric kit. The median (interquartile range) concentration of iron in tubewell water was 7.6 (1.6, 17.6) mg l(-1). There was high geographic variation (range of 0-46.5 mg l(-1)), and iron in only 3% of surveyed tubewells fell below the WHO aesthetic cut-off of 0.3 mg l(-1) suggesting elevated levels of iron throughout the area. Villagers accurately perceived groundwater iron concentration, based on a 4-point ('none', 'a little', 'medium', 'a lot') scale (p<0.001). Water source iron content can be readily quantified in population settings offering the potential to evaluate the health relevance of groundwater iron exposure in rural communities.
Castro-Guerrero, Norma A; Isidra-Arellano, Mariel C; Mendoza-Cozatl, David G; Valdés-López, Oswaldo
2016-01-01
Common bean (Phaseolus vulgaris) was domesticated ∼8000 years ago in the Americas and today is a staple food worldwide. Besides caloric intake, common bean is also an important source of protein and micronutrients and it is widely appreciated in developing countries for their affordability (compared to animal protein) and its long storage life. As a legume, common bean also has the economic and environmental benefit of associating with nitrogen-fixing bacteria, thus reducing the use of synthetic fertilizers, which is key for sustainable agriculture. Despite significant advances in the plant nutrition field, the mechanisms underlying the adaptation of common bean to low nutrient input remains largely unknown. The recent release of the common bean genome offers, for the first time, the possibility of applying techniques and approaches that have been exclusive to model plants to study the adaptive responses of common bean to challenging environments. In this review, we discuss the hallmarks of common bean domestication and subsequent distribution around the globe. We also discuss recent advances in phosphate, iron, and zinc homeostasis, as these nutrients often limit plant growth, development, and yield. In addition, iron and zinc are major targets of crop biofortification to improve human nutrition. Developing common bean varieties able to thrive under nutrient limiting conditions will have a major impact on human nutrition, particularly in countries where dry beans are the main source of carbohydrates, protein and minerals.
Alaofé, Halimatou; Zee, John; Dossa, Romain; O'Brien, Huguette Turgeon
2009-01-01
A 26-week nutrition intervention, including 4 weeks of nutrition education, combined with an increase in the content and bioavailability of dietary iron for 22 weeks was carried out in 34 intervention and 34 control adolescent girls suffering from mild iron deficiency anemia (IDA). In post-intervention, hemoglobin and serum ferritin were significantly higher in the intervention group, whereas the incidence of IDA was significantly lower in the intervention group compared to the control group. Nutrition knowledge scores were significantly higher in intervention girls compared to control girls. Dietary changes to improve available dietary iron can reduce iron deficiency anemia.
Kyriacou, Katharine; Parkington, John E; Marais, Adrian D; Braun, David R
2014-12-01
In this paper, we assess the nutritional value of some marine and terrestrial food resources available to Middle Stone Age hunter-gatherers in the Western Cape of South Africa with respect to an important macronutrient (protein) and an essential micronutrient (iron) and introduce a framework for assessing the relative utility of marine and terrestrial resources. Whilst the ability to extract nutrients from the environment has always been a lynchpin in archaeologists' reconstructions of human evolution, a recent paradigm shift has recognized the role of marine resources in encephalization. Nutritional research indicates that marine ecosystems are the best source for long chain polyunsaturated fatty acids essential for proper brain development, and excavations at securely dated archaeological sites in South Africa provide firm evidence for the exploitation of marine resources by Middle Stone Age hunter-gatherers from at least Marine Isotope Stage 5 (130 ka), and possibly even earlier. Because marine molluscs are abundant, predictably located and easily harvested, they would have been readily available to all members of the community, in contrast to terrestrial resources. The improving archaeological record gives important clues to resource choice, but many more nutritional observations are needed to determine the extent to which marine resources could have met the nutrient requirements of prehistoric people. Our observations indicate that marine and terrestrial fauna are both excellent sources of protein, and that marine molluscs have higher iron concentrations than we expected for invertebrate fauna. We calculate the number of individual food items from a selection of marine and terrestrial species needed to provide the protein and iron requirements of a hypothetical group of hunter-gatherers, identify contrasts in peoples' requirements for and access to nutrients and resources, and discuss the implications for prehistoric subsistence strategies and human evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gahagan, Sheila; Yu, Sunkyung; Kaciroti, Niko; Castillo, Marcela; Lozoff, Betsy
2009-01-01
Iron deficiency remains the most common nutritional deficiency worldwide and supplementation is recommended during periods of high risk, including infancy. However, questions have been raised about possible adverse effects of iron on growth in iron-sufficient (IS) infants and the advisability of across-the-board iron supplementation. This study examined whether short- or long-term growth was impaired in IS infants who received iron supplementation. From a longitudinal study of healthy, breast-fed, low- to middle-income Chilean infants randomly assigned to iron supplementation or usual nutrition at 6 or 12 mo, we retrospectively identified infants meeting criteria for iron sufficiency at the time of random assignment (n = 273). Using multilevel analysis, ponderal and linear growth were modeled before, during, and after iron supplementation up to 10 y in 3 comparisons: 1) iron supplementation compared with usual nutrition from 6 to 12 mo; 2) iron supplementation compared with usual nutrition from 12 to 18 mo; and 3) 15 mg/d of iron as drops compared with iron-fortified formula (12 mg/L). Growth trajectories did not differ during or after supplementation indicating no adverse effect of iron in any comparison. These results suggest that, at least in some environments, iron does not impair growth in IS infants. PMID:19776186
USDA-ARS?s Scientific Manuscript database
Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the...
Bacillus anthracis Overcomes an Amino Acid Auxotrophy by Cleaving Host Serum Proteins
Terwilliger, Austen; Swick, Michelle C.; Pflughoeft, Kathryn J.; Pomerantsev, Andrei; Lyons, C. Rick; Koehler, Theresa M.
2015-01-01
ABSTRACT Bacteria sustain an infection by acquiring nutrients from the host to support replication. The host sequesters these nutrients as a growth-restricting strategy, a concept termed “nutritional immunity.” Historically, the study of nutritional immunity has centered on iron uptake because many bacteria target hemoglobin, an abundant circulating protein, as an iron source. Left unresolved are the mechanisms that bacteria use to attain other nutrients from host sources, including amino acids. We employed a novel medium designed to mimic the chemical composition of human serum, and we show here that Bacillus anthracis, the causative agent of anthrax disease, proteolyzes human hemoglobin to liberate essential amino acids which enhance its growth. This property can be traced to the actions of InhA1, a secreted metalloprotease, and extends to at least three other serum proteins, including serum albumin. The results suggest that we must also consider proteolysis of key host proteins to be a way for bacterial pathogens to attain essential nutrients, and we provide an experimental framework to determine the host and bacterial factors involved in this process. IMPORTANCE The mechanisms by which bacterial pathogens acquire nutrients during infection are poorly understood. Here we used a novel defined medium that approximates the chemical composition of human blood serum, blood serum mimic (BSM), to better model the nutritional environment that pathogens encounter during bacteremia. Removing essential amino acids from BSM revealed that two of the most abundant proteins in blood—hemoglobin and serum albumin—can satiate the amino acid requirement for Bacillus anthracis, the causative agent of anthrax. We further demonstrate that hemoglobin is proteolyzed by the secreted protease InhA1. These studies highlight that common blood proteins can be a nutrient source for bacteria. They also challenge the historical view that hemoglobin is solely an iron source for bacterial pathogens. PMID:25962917
Iron Nutrition, Immunity and Infection,
1980-10-28
AO-AO91 476 ARMY MEDICAL RESEARCH INST OF INFECTIOUS DISEASES FR--ETC F/6 6/5 IRON NUTRITION , IMMUN ITY AND I NFECTION(U) OC T AO0 R BEISEL...CATALOG NUMBER * j177 __ _____ ____ 4. TITLE (and Subtitle) S. TYPE OF REPORT A PERIOD COVERED 6(: Iron Nutrition , Immiunity and Infection 9... Nutrition , Immunity and Infection By William R. Beisel, M.D., F.A.C.P. Deputy for Science US Army Medical Research Institute of Infectious Diseases
McClung, James P; Murray-Kolb, Laura E
2013-01-01
Iron is a nutritionally essential trace element that functions through incorporation into proteins and enzymes, many of which contribute to physical and neuropsychological performance. Poor iron status, including iron deficiency (ID; diminished iron stores) and iron deficiency anemia (IDA; poor iron stores and diminished hemoglobin), affects billions of people worldwide. This review focuses on physical and neuropsychological outcomes associated with ID and IDA in premenopausal women, as the prevalence of ID and IDA is often greater in premenopausal women than other population demographics. Recent studies addressing the physiological effects of poor iron status on physical performance, including work productivity, voluntary activity, and athletic performance, are addressed. Similarly, the effects of iron status on neurological performance, including cognition, affect, and behavior, are summarized. Nutritional countermeasures for the prevention of poor iron status and the restoration of decrements in performance outcomes are described.
Hall, Andrew G; Ngu, Tu; Nga, Hoang T; Quyen, Phi N; Hong Anh, Pham T; King, Janet C
2017-06-01
Background: Few studies have examined the impact of local animal-source foods (ASFs) on the nutritional status of reproductive-age women in developing countries. Objective: We hypothesized that a midmorning snack of local ASF for 6 mo would reduce dietary micronutrient deficiencies [usual intake less than the estimated average requirement (EAR)] and improve blood biomarkers of iron, zinc, and vitamins A and B-12 status among nonpregnant, reproductive-age women in rural Vietnam. Methods: One hundred seventeen women, 18-30 y old, were randomly assigned to receive either an ASF (mean: 144 kcal, 8.9 mg Fe, 2.7 mg Zn, 1050 μg retinoic acid equivalent vitamin A, and 5.5 μg vitamin B-12) or a control snack (mean: 150 kcal, 2.0 mg Fe, 0.9 mg Zn, 0 μg retinoic acid equivalent vitamin A, and 0 μg vitamin B-12) 5 d/wk for 6 mo. Usual nutrient intakes were estimated by repeated 24-h dietary recalls. Blood samples were collected at baseline and 3 and 6 mo. Because of the relation between nutritional status and inflammation, serum C-reactive protein, α-1-acid-glycoprotein, and urinary tract infections (UTIs) were also monitored. Results: Eighty-nine women (47 in the ASF group and 42 controls) completed the study. In the ASF group, intakes of iron and vitamins A and B-12 below the EAR were eliminated, and the prevalence of a low zinc intake was reduced to 9.6% compared with 64.7% in controls ( P < 0.001). At 6 mo, a modest increase ( P < 0.05) in hemoglobin and iron status occurred in the ASF group compared with the control group, but plasma zinc, retinol, and serum vitamin B-12 concentrations did not differ. UTI relative risk was 3.9 ( P < 0.05) among women assigned to the ASF group who had a low whole-body iron status at baseline. Conclusions: Adding a small amount of locally produced ASF to the diets of reproductive-age Vietnamese women improved micronutrient intakes and iron status. However, the increased UTI incidence in women in the ASF group with initially lower iron stores warrants further investigation. © 2017 American Society for Nutrition.
Vegetarian diets : nutritional considerations for athletes.
Venderley, Angela M; Campbell, Wayne W
2006-01-01
The quality of vegetarian diets to meet nutritional needs and support peak performance among athletes continues to be questioned. Appropriately planned vegetarian diets can provide sufficient energy and an appropriate range of carbohydrate, fat and protein intakes to support performance and health. The acceptable macronutrient distribution ranges for carbohydrate, fat and protein of 45-65%, 20-35% and 10-35%, respectively, are appropriate for vegetarian and non-vegetarian athletes alike, especially those who perform endurance events. Vegetarian athletes can meet their protein needs from predominantly or exclusively plant-based sources when a variety of these foods are consumed daily and energy intake is adequate. Muscle creatine stores are lower in vegetarians than non-vegetarians. Creatine supplementation provides ergogenic responses in both vegetarian and non-vegetarian athletes, with limited data supporting greater ergogenic effects on lean body mass accretion and work performance for vegetarians. The potential adverse effect of a vegetarian diet on iron status is based on the bioavailability of iron from plant foods rather than the amount of total iron present in the diet. Vegetarian and non-vegetarian athletes alike must consume sufficient iron to prevent deficiency, which will adversely affect performance. Other nutrients of concern for vegetarian athletes include zinc, vitamin B12 (cyanocobalamin), vitamin D (cholecalciferol) and calcium. The main sources of these nutrients are animal products; however, they can be found in many food sources suitable for vegetarians, including fortified soy milk and whole grain cereals. Vegetarians have higher antioxidant status for vitamin C (ascorbic acid), vitamin E (tocopherol), and beta-carotene than omnivores, which might help reduce exercise-induced oxidative stress. Research is needed comparing antioxidant defences in vegetarian and non-vegetarian athletes.
Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans
Caza, Mélissa; Kronstad, James W.
2013-01-01
Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900
Kabir, Yearul; Shahjalal, Hussain Mohammad; Saleh, Farzana; Obaid, Wahida
2010-08-01
To examine dietary pattern and nutritional status of adolescent college girls of Dhaka, Bangladesh with a particular focus on the prevalence of anaemia and appropriate knowledge about it among them. A cross sectional study was conducted. Sixty-five adolescent girls aged 15-19 years were selected randomly from Home Economics college of Dhaka. A 7-day food frequency questionnaire was used to investigate the dietary pattern. Nutrient intake of the participants was assessed by 24h recall method. Habitual dietary pattern indicated poor consumption of milk, liver and leafy vegetables. Food intake data revealed a deficit of 473 kcal/day in energy. Mean intake of carbohydrate and fat were lower than RDA; while protein, iron, vitamin A and vitamin C intakes were much higher. Anthropometric data indicated that 63% of the girls were stunted (height-for-age < 95% of NCHS reference values) and 45% were underweight (weight-for-age < 75% of NCHS reference values). The prevalence of anaemia (Hb < 12 g/dl) among the participants was 23%. About 17% had low serum iron (< 40 microg/dl), 23% showed evidence of iron-deficient erythropoiesis (Transferrin Saturation < 15%) and only 8% had vitamin C deficiency (< 0.29 mg/dl). About 65% of the participants had correct knowledge about the causes of anaemia; while 72.3% and 80% respectively, knew about the prevention and treatment of anaemia. Surprisingly, 73.8% of the participants were not aware about the sources of iron-rich foods. Results indicate an overall poor nutritional status of the urban adolescent college girls in Bangladesh and need for appropriate nutrition interventions to overcome the problem.
[Biomarkers of Metabolism and Iron Nutrition].
Sermini, Carmen Gloria; Acevedo, María José; Arredondo, Miguel
2017-01-01
Iron deficiency anemia is the most common nutritional deficiency worldwide, and the most susceptible groups are infants, preschoolers, women of childbearing age, and pregnant women. It is therefore essential to understand the mechanisms of regulation of iron uptake, transport, and absorption at the cellular level, particularly in enterocytes, and to identify blood biomarkers that allow the evaluation of iron status. This review describes how iron absorption is regulated by intestinal epithelial cells, the main proteins involved (iron transporters, oxidoreductases, storage proteins), and the main blood biomarkers of iron metabolism.
Fiedler, John L
2014-12-01
Systematic collection of national agricultural data has been neglected in many low- and middle-income countries for the past 20 years. Commonly conducted nationally representative household surveys collect substantial quantities of highly underutilized food crop production data. To demonstrate the potential usefulness of commonly available household survey databases for analyzing the agriculture-nutrition nexus. Using household data from the 2010 Bangladesh Household Income and Expenditure Survey, the role and significance of crop selection, area planted, yield, nutrient production, and the disposition of 34 food crops in affecting the adequacy of farming households' nutrient availability and nutrient intake status are explored. The adequacy of each farming household's available energy, vitamin A, calcium, iron, and zinc and households' apparent intakes and intake adequacies are estimated. Each household's total apparent nutrient intake adequacies are estimated, taking into account the amount of each crop that households consume from their own production, together with food purchased or obtained from other sources. Even though rice contains relatively small amounts of micronutrients, has relatively low nutrient density, and is a relatively poor source of nutrients compared with what other crops can produce on a given tract of land, because so much rice is produced in Bangladesh, it is the source of 90% of the total available energy, 85% of the zinc, 67% of the calcium, and 55% of the iron produced by the agricultural sector. The domination of agriculture and diet by rice is a major constraint to improving nutrition in Bangladesh. Simple examples of how minor changes in the five most common cropping patterns could improve farming households' nutritional status are provided. Household surveys' agricultural modules can provide a useful tool for better understanding national nutrient production realities and possibilities.
USDA-ARS?s Scientific Manuscript database
Enhancing the nutritional quality of crops is of international importance, and multiple methods have been utilized to increase the nutrient content of legume seeds. Because nutrients mobilized from source leaves to growing reproductive sink tissues greatly contribute to the final composition of the ...
Cockell, Kevin A
2007-01-01
Iron deficiency and iron deficiency anemia continue to be significant public health problems worldwide. While supplementation and fortification have been viable means to improve iron nutriture of the population in developed countries, they may be less successful in developing regions for a number of reasons, including complexities in distribution and consumer compliance. Biofortification of staple crops, through conventional plant breeding strategies or modern methods of biotechnology, provides an alternative approach that may be more sustainable once initial investments have been made. Three types of biofortification strategies are being essayed, singly or in combination: increasing the total iron content of edible portions of the plant, decreasing the levels of inhibitors of iron absorption, and increasing the levels of factors that enhance iron absorption. Bioavailability is a key concept in iron nutrition, particularly for nonheme iron such as is found in these biofortified foods. An overview is presented of methods for evaluation of iron bioavailability from foods nutritionally enhanced through biotechnology.
Zhou, Wenjie; Ma, Rui; Sharma, Manoj; Zhao, Yong
This article aimed at understanding nutritional knowledge, attitudes, and behaviors of homosexual persons living with HIV/AIDS in Chongqing, China. A cross sectional design using a valid and reliable survey was used. The survey was completed in Chongqing, Southwest China (n = 172). Knowledge of nutrition was deficient regarding sources of nutrients such as calcium and iron, relationships between diet/nutrients and disease, and only 36.1% of participants knew about the Balanced Diet Pagoda for Chinese. Eating habits did not meet the nutritional requirements, and a majority (59.3%) did not eat breakfast every day. The average score on the knowledge quiz was 51.8%. This study showed that homosexual persons with HIV/AIDS in China longed for nutrition knowledge, and this was supported by objective data. Efforts and targeted education programs aiming to improve their nutrition knowledge, attitudes, and behaviors need to be emphasized.
[Menstrual blood loss and iron nutritional status in female undergraduate students].
Li, Jing; Gao, Qiang; Tian, Su; Chen, Yuexiao; Ma, Yuxia; Huang, Zhenwu
2011-03-01
To study menstrual blood loss and iron nutritional status in female undergraduate students. Thirty female undergraduate students were selected by simple random sampling method, the general information were investigated by questionnaire. The menstrual blood was collected by weighing every pad before and after use, and the blood not collected in pads was estimated. Hemoglobin, serum free protoporphyrin and serum ferritin were measured by regular method. The relationship between menstrual blood loss and iron nutritional status was analyzed by bivariate correlation statistics. The average menstrual period was (4.5 +/- 1.4) days. The average menstrual blood loss was (59.3 +/- 25.1) g, in a range of 24 g to 110 g. The average content of serum ferritin, free protoporphyrin and hemoglobin was (25.13 +/- 14.33) ng/ml, (0.06 +/- 0.01) microg/ml and (131.61 +/- 9.76) g/L respectively. There were 22.58% of subjects in iron reduction period (serum ferritin < 12 ng/ml). The menstrual blood loss was negatively correlated with serum ferritin. The amount of menstrual blood loss among individual students was significantly different. No clinical anemia does not mean in a good iron nutritional status. Serum ferritin is a sensitive indicator for iron nutritional status.
The nutritional status of children of displaced families in Beirut.
Shaar, K H; Shaar, M A
1993-04-01
The nutritional status of children of displaced families in Greater Beirut was investigated in 1986 (a sample of 146 households) and in 1991 (137 households). Data on demographic variables, nutrient intake (calories, protein, and iron), and anthropometric measurements were collected. Iron intake was only 50-57% of the RDA for the 1-3 age group, and 35.6% and 32.0% of all children consumed < 60% of the RDA for iron in 1986 and 1991, respectively. Main sources of protein were dairy products, milk and eggs. The lower nutrient intake in 1991 compared to 1986 was negatively related to social class. Anthropometric measurements showed an increased past and recent undernutrition of the children in 1991 as compared to both the 1986 child sample and the NCHS standard child population. Severe inflation and marked increase in food prices were reflected in dietary intake and growth of the children. Food aid programmes, government subsidy of bread, and partial wage correction were possible stabilizing factors for the most destitute groups but not for the total population of displaced children.
Ghosh-Jerath, Suparna; Singh, Archna; Kamboj, Preeti; Goldberg, Gail; Magsumbol, Melina S.
2015-01-01
Traditional knowledge and nutritional value of indigenous foods of the Oraon tribal community in Jharkhand, India was explored. Focus group discussions were conducted with adult members to identify commonly consumed indigenous foods. Taxonomic classification and quantitative estimation of nutritive value were conducted in laboratories or utilized data from Indian food composition database. More than 130 varieties of indigenous foods were identified, many of which were rich sources of micronutrients like calcium, iron, vitamin A, and folic acid. Some were reported having medicinal properties. Utilization and ease of assimilation of indigenous foods into routine diets can be leveraged to address malnutrition in tribal communities. PMID:25902000
Campos, Viviani Jaques; Morais, Tania Beninga
2015-08-01
A homemade chicken liver baby food (CLBF) that meets infants' nutritional requirements was developed and its acceptance by children and their mothers determined. CLBF's nutritional content was determined by chemical analyses. A blind sensory test (ST) by 50 infants 7-12 months old and their mothers of CLBF and ground beef baby food (GBBF) was applied. Mothers' preferences for liver and beef, answers of an hedonic scale and infants' acceptance were investigated. CLBF met the nutritional requirements for infants. There were no significant differences in the ST between the CLBF and GBBF, either for infants or for their mothers. There was no correlation between mothers' like or dislike of liver and the ST scores. Infants tried and liked the CLBF that match dietary recommendations and could help prevent iron deficiency. Mothers, on the other hand, demonstrated an 'I don't like it; I never tried it' attitude. © The Author [2015]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
21 CFR 172.350 - Fumaric acid and salts of fumaric acid.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Fumaric acid and salts of fumaric acid. 172.350 Section 172.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... as a source of iron in foods for special dietary use, when the use is consistent with good nutrition...
21 CFR 172.350 - Fumaric acid and salts of fumaric acid.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Fumaric acid and salts of fumaric acid. 172.350 Section 172.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... as a source of iron in foods for special dietary use, when the use is consistent with good nutrition...
Nutritional and Micronutrient Status of Female Workers in a Garment Factory in Cambodia.
Makurat, Jan; Friedrich, Hanna; Kuong, Khov; Wieringa, Frank T; Chamnan, Chhoun; Krawinkel, Michael B
2016-11-02
Concerns about the nutritional status of Cambodian garment workers were raised years ago but data are still scarce. The objectives of this study are to examine the nutritional, hemoglobin and micronutrient status of female workers in a garment factory in Phnom Penh, Cambodia, and to assess if body mass index is associated with hemoglobin and/or micronutrient status. A cross-sectional survey was conducted among 223 female workers (nulliparous, non-pregnant) at a garment factory in Phnom Penh. Anthropometric measurements were performed and blood samples were taken to obtain results on hemoglobin, iron, vitamin A, vitamin B12 and inflammation status (hemoglobinopathies not determined). Bivariate correlations were used to assess associations. Overall, 31.4% of workers were underweight, 26.9% showed anemia, 22.1% showed iron deficiency, while 46.5% had marginal iron stores. No evidence of vitamin A or vitamin B12 deficiency was found. Body mass index was associated with serum ferritin (negative) and serum retinol-binding protein (positive) concentrations, but not strongly. A comparison between underweight and not underweight workers resulted in distinctions for iron deficiency and iron deficiency anemia, with a higher prevalence among not underweight. The prevalence of underweight, anemia and poor iron status was high. Young and nulliparous female garment workers in Cambodia might constitute a group with elevated risk for nutritional deficiencies. Strategies need to be developed for improving their nutritional, micronutrient and health status. The poor iron status seems to contribute to the overall prevalence of anemia. Low hemoglobin and iron deficiency affected both underweight and those not underweight. Despite the fact that body mass index was negatively associated with iron stores, true differences in iron status between underweight and not underweight participants cannot be confirmed.
Nutritional and Micronutrient Status of Female Workers in a Garment Factory in Cambodia
Makurat, Jan; Friedrich, Hanna; Kuong, Khov; Wieringa, Frank T.; Chamnan, Chhoun; Krawinkel, Michael B.
2016-01-01
Background: Concerns about the nutritional status of Cambodian garment workers were raised years ago but data are still scarce. The objectives of this study are to examine the nutritional, hemoglobin and micronutrient status of female workers in a garment factory in Phnom Penh, Cambodia, and to assess if body mass index is associated with hemoglobin and/or micronutrient status. Methods: A cross-sectional survey was conducted among 223 female workers (nulliparous, non-pregnant) at a garment factory in Phnom Penh. Anthropometric measurements were performed and blood samples were taken to obtain results on hemoglobin, iron, vitamin A, vitamin B12 and inflammation status (hemoglobinopathies not determined). Bivariate correlations were used to assess associations. Results: Overall, 31.4% of workers were underweight, 26.9% showed anemia, 22.1% showed iron deficiency, while 46.5% had marginal iron stores. No evidence of vitamin A or vitamin B12 deficiency was found. Body mass index was associated with serum ferritin (negative) and serum retinol-binding protein (positive) concentrations, but not strongly. A comparison between underweight and not underweight workers resulted in distinctions for iron deficiency and iron deficiency anemia, with a higher prevalence among not underweight. Conclusions: The prevalence of underweight, anemia and poor iron status was high. Young and nulliparous female garment workers in Cambodia might constitute a group with elevated risk for nutritional deficiencies. Strategies need to be developed for improving their nutritional, micronutrient and health status. The poor iron status seems to contribute to the overall prevalence of anemia. Low hemoglobin and iron deficiency affected both underweight and those not underweight. Despite the fact that body mass index was negatively associated with iron stores, true differences in iron status between underweight and not underweight participants cannot be confirmed. PMID:27827854
NASA Astrophysics Data System (ADS)
Yudhistira, B.; Affandi, D. R.; Nusantari, P. N.
2018-01-01
Iron deficiency anemia is the most common nutritional disorder in the world. Consuming vegetable which contain iron, including spinach, is an alternative to fulfill iron requirement. Fe will be more easily absorbed in the presence of vitamin C. Tomato is one of vitamin C source that can be used. Spinach can be applied into confectionary products in the form of marshmallow. This research aimed to find out the physical, chemical and sensory properties of green spinach Marshmallow in addition of Tomato, the best formula, and define the category of nutrition contents based on Acuan Label Gizi (ALG). This study used a completely randomized design (CRD) with one factor that was different proportion of spinach:tomato (75%: 25%; 50%: 50%; 25%: 75%). The data were analyzed using One Way Anova with 5% significance level. The result of this study showed that the difference of spinach and tomato proportion affect tensile strength, moisture, ash content, Fe content, crude fiber, vitamin C, color and marshmallow’s flavor. Best marshmallow formulation of 25% spinach in addition of 75% tomato had Fe content of 1.159 mg/100g and vitamin C of 44 mg/100g.
D'Evoli, L; Salvatore, P; Lucarini, M; Nicoli, S; Aguzzi, A; Gabrielli, P; Lombardi-Boccia, G
2009-01-01
The present study provides a picture of the compositional figure and nutritive value of meat-based dishes typical of Italian culinary tradition. Recipes specific for a bovine meat cut (top-side) were selected among the most widespread ones in Italy: in pan, pizzaiola, cutlet, meat ball, and escalope. The total fat and cholesterol content varied depending on the ingredients utilized (extra-virgin olive oil, parmesan, egg). Meat-based dishes that utilized extra-virgin olive oil showed a significant reduction in palmitic and stearic acids and a parallel increase in oleic acid compared with raw meat; furthermore, the ratio among saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids shifted in favour of monounsaturated fatty acids. B vitamins were affected at different extent by heating; by contrast, vitamin E content increased because of the new sources of this vitamin, which masked losses due to heating. Ingredients (parmesan, discretionary salt) induced significant increases in the calcium and sodium concentrations compared with raw meat. The total iron content did not show marked differences in most of the meat-based dishes compared with raw meat; by contrast, losses in the heme-iron concentration were detected depending on the severity of heating treatments. Our findings suggest that heme iron, because of its important health aspects, might be a useful index of the nutritional quality of cooked meats.
Diet, nutritional knowledge and health status of urban middle-aged Malaysian women.
Pon, L W; Noor-Aini, M Y; Ong, F B; Adeeb, N; Seri, S S; Shamsuddin, K; Mohamed, A L; Hapizah, N; Mokhtar, A; Wan, H Wh
2006-01-01
The objective of the study was to assess nutritional and health status as well as nutritional knowledge in urban middle-aged Malaysian women. The impact of menopause on diet and health indices was also studied. The study included 360 disease free women, non users of HRT,aged > or =45 years with an intact uterus recruited from November 1999 to October 2001. Personal characteristics, anthropometric measurements and blood sample were acquired followed by clinical examination. Nutrient intake and nutritional knowledge was determined by a quantitative FFQ and KAP. The findings showed that urban middle-aged women, aged 51.65+/-5.40 years had energy intakes (EI) 11% below RDA, consisting of 53% carbohydrates, 15% protein and a 32% fat which declined with age. The sample which comprised of 42.5% postmenopausal women had a satisfactory diet and healthy lifestyle practices. Premenopausal women consumed more dietary fat (6%) with other aspects of diet comparable to the postmenopausal women. Iron intake was deficient in premenopausal women, amounting to 56% RDA contributing to a 26% prevalence of anaemia. Overall, calcium intake reached 440 mg daily but dairy products were not the main source. The postmenopaused had a more artherogenic lipid profile with significantly higher total cholesterol (TC) and LDL-C, but more premenopausal women were overweight/obese (49% versus 35%). EI was the strongest predictor for BMI and waist circumference (WC), with WC itself an independent predictor of fasting blood sugar and TC with BMI strongly affecting glucose tolerance. High nutritional knowledge was seen in 39% whereas 20% had poor knowledge. Newspapers and magazines, followed by the subject's social circle, were the main sources of nutritional information. Nutritional knowledge was positively associated with education, household income, vitamin/ mineral supplementation and regular physical activity but inversely related to TC. In conclusion, middle-aged urban women had an adequate diet with low iron and calcium intakes. Nutritional knowledge was positively associated to healthier lifestyle practices and lower TC. A comparable nutrient intake and lifestyle between pre and postmenopausal women suggested that health changes associated with menopause was largely independent of diet.
Nutritional Status, Dietary Intake, and Relevant Knowledge of Adolescent Girls in Rural Bangladesh
Roy, Swapan Kumar; Ahmed, Tahmeed; Ahmed, A.M. Shamsir
2010-01-01
This study estimated the levels and differentials in nutritional status and dietary intake and relevant knowledge of adolescent girls in rural Bangladesh using data from the Baseline Survey 2004 of the National Nutrition Programme. A stratified two-stage random cluster-sampling was used for selecting 4,993 unmarried adolescent girls aged 13–18 years in 708 rural clusters. Female interviewers visited girls at home to record their education, occupation, dietary knowledge, seven-day food-frequency, intake of iron and folic acid, morbidity, weight, and height. They inquired mothers about age of their daughters and possessions of durable assets to divide households into asset quintiles. Results revealed that 26% of the girls were thin, with body mass index (BMI)-for-age <15th percentile), 0.3% obese (BMI-for-age >95th percentile), and 32% stunted (height-for-age ≤2SD). Risks of being thin and stunted were higher if girls had general morbidity in the last fortnight and foul-smelling vaginal discharge than their peers. Consumptions of non-staple good-quality food items in the last week were less frequent and correlated well positively with the household asset quintile. Girls of the highest asset quintile ate fish/meat 2.1 (55%) days more and egg/milk two (91%) days more than the girls in the lowest asset quintile. The overall dietary knowledge was low. More than half could not name the main food sources of energy and protein, and 36% were not aware of the importance of taking extra nutrients during adolescence for growth spurt. The use of iron supplement was 21% in nutrition-intervention areas compared to 8% in non-intervention areas. Factors associated with the increased use of iron supplements were related to awareness of the girls about extra nutrients and their access to mass media and education. Community-based adolescent-friendly health and nutrition education and services and economic development may improve the overall health and nutritional knowledge and status of adolescents. PMID:20214090
Nutritional status, dietary intake, and relevant knowledge of adolescent girls in rural Bangladesh.
Alam, Nurul; Roy, Swapan Kumar; Ahmed, Tahmeed; Ahmed, A M Shamsir
2010-02-01
This study estimated the levels and differentials in nutritional status and dietary intake and relevant knowledge of adolescent girls in rural Bangladesh using data from the Baseline Survey 2004 of the National Nutrition Programme. A stratified two-stage random cluster-sampling was used for selecting 4,993 unmarried adolescent girls aged 13-18 years in 708 rural clusters. Female interviewers visited girls at home to record their education, occupation, dietary knowledge, seven-day food-frequency, intake of iron and folic acid, morbidity, weight, and height. They inquired mothers about age of their daughters and possessions of durable assets to divide households into asset quintiles. Results revealed that 26% of the girls were thin, with body mass index (BMI)-for-age <15th percentile), 0.3% obese (BMI-for-age >95th percentile), and 32% stunted (height-for-age < or = 2SD). Risks of being thin and stunted were higher if girls had general morbidity in the last fortnight and foul-smelling vaginal discharge than their peers. Consumptions of non-staple good-quality food items in the last week were less frequent and correlated well positively with the household asset quintile. Girls of the highest asset quintile ate fish/meat 2.1 (55%) days more and egg/milk two (91%) days more than the girls in the lowest asset quintile. The overall dietary knowledge was low. More than half could not name the main food sources of energy and protein, and 36% were not aware of the importance of taking extra nutrients during adolescence for growth spurt. The use of iron supplement was 21% in nutrition-intervention areas compared to 8% in non-intervention areas. Factors associated with the increased use of iron supplements were related to awareness of the girls about extra nutrients and their access to mass media and education. Community-based adolescent-friendly health and nutrition education and services and economic development may improve the overall health and nutritional knowledge and status of adolescents.
A Program of Nutritional Education in Schools Reduced the Prevalence of Iron Deficiency in Students
García-Casal, María Nieves; Landaeta-Jiménez, Maritza; Puche, Rafael; Leets, Irene; Carvajal, Zoila; Patiño, Elijú; Ibarra, Carlos
2011-01-01
The objective was to determine the prevalence of iron, folates and retinol deficiencies in school children and to evaluate the changes after an intervention of nutritional education. The project was developed in 17 schools. The sample included 1,301 children (678 males and 623 females). A subsample of 480 individuals, was randomly selected for drawing blood for biochemical determinations before and after the intervention of nutritional education, which included in each school: written pre and post-intervention tests, 6 workshops, 2 participative talks, 5 game activities, 1 cooking course and 1 recipe contest. Anthropometrical and biochemical determinations included weight, height, body-mass index, nutritional status, hematocrit, serum ferritin, retinol and folate concentrations. There was high prevalence of iron (25%), folates (75%) and vitamin A (43%) deficiencies in school children, with a low consumption of fruit and vegetables, high consumption of soft drinks and snacks and almost no physical activity. The nutritional education intervention produced a significant reduction in iron deficiency prevalence (25 to 14%), and showed no effect on vitamin A and folates deficiencies. There was a slight improvement in nutritional status. This study shows, through biochemical determinations, that nutritional education initiatives and programs have an impact improving nutritional health in school children. PMID:21547083
USDA-ARS?s Scientific Manuscript database
Canadian grown Lentil is a rich source of micronutrients. It has high levels of selenium (Se), iron (Fe), zinc (Zn), folic acid and carotenes (Thavarajah, et al., 2007; 2008, 2009, Wilmot et al., 2009). In addition, our latest finding shows that Canadian lentil has naturally low levels of antinutri...
Fomon, S J; Nelson, S E; Ziegler, E E
2000-01-01
Throughout the world, the most common nutritional deficiency disorder of infants is iron deficiency. Developing effective strategies for preventing iron deficiency requires detailed knowledge of iron retention under ordinary living conditions. For the adult population, such knowledge is at an advanced stage, but relatively little is known about infants. Many reports of iron retention by infants have been based on the assumption that, as in normal and iron-deficient adults, 80%-100% of newly absorbed iron is promptly incorporated into circulating erythrocytes, but this assumption is not supported by available data. This communication presents a review of iron retention by term and preterm infants, as determined by metabolic balance studies or (59)Fe whole-body counting studies, and it explores the relationship between iron retention and postnatal age, iron nutritional status, iron intake (or dose), and type of feeding.
Yusoff, Hafzan; Wan Daud, Wan Nudri; Ahmad, Zulkifli
2013-01-01
This study was carried out to compare the effect between nutrition education intervention and non-nutrition education intervention on awareness regarding iron deficiency among schooling adolescents in Tanah Merah, one of rural district in Kelantan, Malaysia. This study which was started in year 2010 involved 280 respondents (223 girls, 57 boys, age: 16 yr) from schools in Tanah Merah. The selection criteria were based on hemoglobin level (Hb = 7 - 11.9 g/dL for girls; Hb = 7 - 12.9 g/dL for boys). They were divided into 2 groups. The first group received nutrition education package (Nutrition education, NE), whereas another group was entitled to receive non-nutrition education intervention (Non-Nutrition Education, NNE) (supplement only). Both interventions were implemented for 3 months. The changes in awareness among respondents of both groups were evaluated using multi-choices questionnaire. Nutrition education receiver group (NE) demonstrated improvement in awareness at post-intervention. No substantial improvement was demonstrated by the counterpart group (NNE). Multimedia nutrition education program conducted at school setting was in fact practical and effective in improving awareness on iron deficiency among anemic adolescents.
Potrykus, Joanna; Stead, David; MacCallum, Donna M.; Urgast, Dagmar S.; Raab, Andrea; van Rooijen, Nico; Feldmann, Jörg; Brown, Alistair J. P.
2013-01-01
Nutritional immunity – the withholding of nutrients by the host – has long been recognised as an important factor that shapes bacterial-host interactions. However, the dynamics of nutrient availability within local host niches during fungal infection are poorly defined. We have combined laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS), MALDI imaging and immunohistochemistry with microtranscriptomics to examine iron homeostasis in the host and pathogen in the murine model of systemic candidiasis. Dramatic changes in the renal iron landscape occur during disease progression. The infection perturbs global iron homeostasis in the host leading to iron accumulation in the renal medulla. Paradoxically, this is accompanied by nutritional immunity in the renal cortex as iron exclusion zones emerge locally around fungal lesions. These exclusion zones correlate with immune infiltrates and haem oxygenase 1-expressing host cells. This local nutritional immunity decreases iron availability, leading to a switch in iron acquisition mechanisms within mature fungal lesions, as revealed by laser capture microdissection and qRT-PCR analyses. Therefore, a complex interplay of systemic and local events influences iron homeostasis and pathogen-host dynamics during disease progression. PMID:24146619
Szelestey, Blake R.; Heimlich, Derek R.; Raffel, Forrest K.; Justice, Sheryl S.; Mason, Kevin M.
2013-01-01
In an effort to suppress microbial outgrowth, the host sequesters essential nutrients in a process termed nutritional immunity. However, inflammatory responses to bacterial insult can restore nutritional resources. Given that nutrient availability modulates virulence factor production and biofilm formation by other bacterial species, we hypothesized that fluctuations in heme-iron availability, particularly at privileged sites, would similarly influence Haemophilus biofilm formation and pathogenesis. Thus, we cultured Haemophilus through sequential heme-iron deplete and heme-iron replete media to determine the effect of transient depletion of internal stores of heme-iron on multiple pathogenic phenotypes. We observed that prior heme-iron restriction potentiates biofilm changes for at least 72 hours that include increased peak height and architectural complexity as compared to biofilms initiated from heme-iron replete bacteria, suggesting a mechanism for epigenetic responses that participate in the changes observed. Additionally, in a co-infection model for human otitis media, heme-iron restricted Haemophilus, although accounting for only 10% of the inoculum (90% heme-iron replete), represented up to 99% of the organisms recovered at 4 days. These data indicate that fluctuations in heme-iron availability promote a survival advantage during disease. Filamentation mediated by a SulA-related ortholog was required for optimal biofilm peak height and persistence during experimental otitis media. Moreover, severity of disease in response to heme-iron restricted Haemophilus was reduced as evidenced by lack of mucosal destruction, decreased erythema, hemorrhagic foci and vasodilatation. Transient restriction of heme-iron also promoted productive invasion events leading to the development of intracellular bacterial communities. Taken together, these data suggest that nutritional immunity, may, in fact, foster long-term phenotypic changes that better equip bacteria for survival at infectious sites. PMID:24130500
Geissler, Catherine; Singh, Mamta
2011-01-01
This article is a summary of the publication “Iron and Health” by the Scientific Advisory Committee on Nutrition (SACN) to the U.K. Government (2010), which reviews the dietary intake of iron and the impact of different dietary patterns on the nutritional and health status of the U.K. population. It concludes that several uncertainties make it difficult to determine dose-response relationships or to confidently characterize the risks associated with iron deficiency or excess. The publication makes several recommendations concerning iron intakes from food, including meat, and from supplements, as well as recommendations for further research. PMID:22254098
Khoshnevisan, Farnaz; Kimiagar, Masood; Kalantaree, Nasser; Valaee, Nasser; Shaheedee, Nooshin
2004-07-01
In view of the high prevalence of iron deficiency in preschool children and its consequences, this study was carried out to examine the effect of nutrition education and dietary modification on 438 two- to six-year-old nursery school children in Tehran in 1999. Sixty-two children who were judged anemic, iron-depleted, or having low iron stores were randomly allocated to "control," "dietary modification" (consuming one additional citrus fruit after lunch), and "nutrition education" (teaching the mothers proper eating patterns based on the food pyramid) groups. Food habits were surveyed, including 24-hour dietary recall and food frequency, as well as timing of consumption of special items; this survey was carried out for each child before and after intervention. After three months, blood samples were taken from the subjects. The prevalence of anemia, iron depletion, and low iron stores was 11.4, 62.8, and 15.1% respectively, with no significant differences observed in hemoglobin and percent transferrin saturation (%TS) between the groups. Mean+/-SD serum ferritin concentrations in "control," "diet modification," and "nutrition education" groups were 8.9+/-3.1, 9.5+/-3.7, and 6.9+/-2.3 microg/dL. The same figures at the end of intervention were 6.9+/-3.5, 11.2+/-5, and 10.7+/-5.9 microg/dL, respectively. Analysis of variance showed ferritin concentrations to be significantly different, in that there was a reduction in the control and elevation in the nutrition education groups. There was no significant difference in %TS before and after the intervention. During three months of intervention, changes in frequency of fruit and fruit juice intake after the meals in nutrition education and diet modification groups were significantly correlated to serum ferritin alteration. Frequency of fruit juice intake (rich in vitamin C) after meals (at least five times a week) can significantly increase serum ferritin within three months. Therefore, educating mothers of iron-deficient children while increasing the iron stores in children can prevent the recurrence of iron deficiency and result in general child well-being.
Mridha, Malay K; Matias, Susana L; Arnold, Charles D; Dewey, Kathryn G
2018-02-18
Bangladesh has a high prevalence of adolescent pregnancy, but little is known about the nutritional status and dietary practices of Bangladeshi adolescents in early pregnancy or associated factors. We used the baseline data of 1552 pregnant adolescents from a longitudinal, cluster-randomized effectiveness trial conducted in northwest Bangladesh. Forty-four percent of the adolescents were short for their age, 36% had low body mass index, 28% were anemic, 10% had iron deficiency, and 32% had vitamin A deficiency. The mean consumption of animal-source foods was 10.3 times/week. In multivariate analysis, socioeconomic status, education, and food security were generally positively associated with anthropometric indicators and dietary practices but not with iron or vitamin A status. Our findings confirm that there is a high burden of undernutrition among these Bangladeshi adolescents in early pregnancy. Understanding factors related to undernutrition can help to identify adolescent pregnant women at higher risk and provide appropriate counseling and care. © 2018 New York Academy of Sciences.
Iron Deficiency in Long-Term Parenteral Nutrition Therapy.
Hwa, Yi L; Rashtak, Shahrooz; Kelly, Darlene G; Murray, Joseph A
2016-08-01
Iron is not routinely added to parenteral nutrition (PN) formulations in the United States because of the risk of anaphylaxis and concerns about incompatibilities. Studies have shown that iron dextran in non-lipid-containing PN solutions is safe. Data are limited on iron status, prevalence of iron deficiency anemia (IDA), and efficacy of intravenous iron infusion in long-term home PN (HPN). We aimed to determine the incidence of IDA and to examine the effectiveness of parenteral iron replacement in patients receiving HPN. Medical records of patients receiving HPN at the Mayo Clinic from 1977 to 2010 were reviewed. Diagnoses, time to IDA development, and hemoglobin, ferritin, and mean corpuscular volume (MCV) values were extracted. Response of iron indices to intravenous iron replacement was investigated. Of 185 patients (122 women), 60 (32.4%) were iron deficient. Five patients were iron deficient, and 18 had unknown iron status before HPN. Of 93 patients who had sufficient iron storage, 37 had IDA development after a mean of 27.2 months (range, 2-149 months) of therapy. Iron was replaced by adding maintenance iron dextran to PN or by therapeutic iron infusion. Patients with both replacement methods had significant improvement in iron status. With intravenous iron replacement, mean ferritin increased from 10.9 to 107.6 mcg/L (P < .0001); mean hemoglobin increased from 11.0 to 12.5 g/dL (P = .0001); and mean MCV increased from 84.5 to 89.0 fL (P = .007). Patients receiving HPN are susceptible to IDA. Iron supplementation should be addressed for patients who rely on PN. © 2015 American Society for Parenteral and Enteral Nutrition.
2011-01-01
Breastfeeding is the best source of nutrition for every infant, and exclusive breastfeeding for 6 months is usually optimal in the common clinical situation. However, inappropriate complementary feeding could lead to a nutrient-deficient status, such as iron deficiency anemia, vitamin D deficiency, and growth faltering. The recent epidemic outbreak of obesity in Korean children emphasizes the need for us to control children's daily sedentary life style and their intakes of high caloric foods in order to prevent obesity. Recent assessment of breastfeeding in Korea has shown that the rate is between 63% and 89%; thus, up-to-dated evidence-based nutritional management of breastfeeding infants to prevent common nutrient deficiencies or excesses should be taught to all clinicians and health care providers. PMID:22025920
[Iron and invasive fungal infection].
Álvarez, Florencio; Fernández-Ruiz, Mario; Aguado, José María
2013-01-01
Iron is an essential factor for both the growth and virulence of most of microorganisms. As a part of the innate (or nutritional) immune system, mammals have developed different mechanisms to store and transport this element in order to limit free iron bioavailability. To survive in this hostile environment, pathogenic fungi have specific uptake systems for host iron sources, one of the most important of which is based on the synthesis of siderophores-soluble, low-molecular-mass, high-affinity iron chelators. The increase in free iron that results from iron-overload conditions is a well-established risk factor for invasive fungal infection (IFI) such as mucormycosis or aspergillosis. Therefore, iron chelation may be an appealing therapeutic option for these infections. Nevertheless, deferoxamine -the first approved iron chelator- paradoxically increases the incidence of IFI, as it serves as a xeno-siderophore to Mucorales. On the contrary, the new oral iron chelators (deferiprone and deferasirox) have shown to exert a deleterious effect on fungal growth both in vitro and in animal models. The present review focuses on the role of iron metabolism in the pathogenesis of IFI and summarises the preclinical data, as well as the limited clinical experience so far, in the use of new iron chelators as treatment for mucormycosis and invasive aspergillosis. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
The hmuQ and hmuD Genes from Bradyrhizobium japonicum Encode Heme-Degrading Enzymes
Puri, Sumant; O'Brian, Mark R.
2006-01-01
Utilization of heme by bacteria as a nutritional iron source involves the transport of exogenous heme, followed by cleavage of the heme macrocycle to release iron. Bradyrhizobium japonicum can use heme as an iron source, but no heme-degrading oxygenase has been described. Here, bioinformatics analyses of the B. japonicum genome identified two paralogous genes renamed hmuQ (bll7075) and hmuD (bll7423) that encode proteins with weak similarity to the heme-degrading monooxygenase IsdG from Staphylococcus aureus. The hmuQ gene is clustered with known heme transport genes in the genome. Recombinant HmuQ bound heme with a Kd value of 0.8 μM and showed spectral properties consistent with a heme oxygenase. In the presence of a reductant, HmuQ catalyzed the degradation of heme and the formation of biliverdin. The hmuQ and hmuD genes complemented a Corynebacterium ulcerans heme oxygenase mutant in trans for utilization of heme as the sole iron source for growth. Furthermore, homologs of hmuQ and hmuD were identified in many bacterial genera, and the recombinant homolog from Brucella melitensis bound heme and catalyzed its degradation. The findings show that hmuQ and hmuD encode heme oxygenases and indicate that the IsdG family of heme-degrading monooxygenases is not restricted to gram-positive pathogenic bacteria. PMID:16952937
Park, Clara Y; Eicher-Miller, Heather A
2014-12-01
Food-insecure pregnant females may be at greater risk of iron deficiency (ID) because nutrition needs increase and more resources are needed to secure food during pregnancy. This may result in a higher risk of infant low birth weight and possibly cognitive impairment in the neonate. The relationships of food insecurity and poverty income ratio (PIR) with iron intake and ID among pregnant females in the United States were investigated using National Health and Nutrition Examination Survey 1999-2010 data (n=1,045). Food security status was classified using the US Food Security Survey Module. One 24-hour dietary recall and a 30-day supplement recall were used to assess iron intake. Ferritin, soluble transferrin receptor, or total body iron classified ID. Difference of supplement intake prevalence, difference in mean iron intake, and association of ID and food security status or PIR were assessed using χ(2) analysis, Student t test, and logistic regression analysis (adjusted for age, race, survey year, PIR/food security status, education, parity, trimester, smoking, C-reactive protein level, and health insurance coverage), respectively. Mean dietary iron intake was similar among groups. Mean supplemental and total iron intake were lower, whereas odds of ID, classified by ferritin status, were 2.90 times higher for food-insecure pregnant females compared with food-secure pregnant females. Other indicators of ID were not associated with food security status. PIR was not associated with iron intake or ID. Food insecurity status may be a better indicator compared with income status to identify populations at whom to direct interventions aimed at improving access and education regarding iron-rich foods and supplements. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Wojtaś, Malwina; Kołłajtis-Dołowy, Anna
2012-01-01
Common nutritional faults affect health of many Poles. Health state of Poles is worse than most of Europeans and is not improving. Nutritional behaviors of young people are caused by limited nutritional knowledge learned during consecutive stages of school education. Nutritional education is considered less important, theoretical knowledge and practice is not correlated and teacher's knowledge is limited. The aim of this study was to study different school programs and to assess the level of nutritional knowledge among selected pupils of last classes of secondary school in Warsaw. The study was conducted in November 2008 on 210 students with the specific author's questionnaire. There is wide nutritional educational program in schools starting from kindergarten through schools of different levels. The nutritional education program is not consistent likely due to dispersion of material among different subjects. In nutritional knowledge tests none of the pupil reached 75% of maximum points and half of them did not reach 50%. Pupils did not know what is their energetic requirement (answers differ from 100 kcal/day to 10000 kcal/day). They were unable to determine the caloric of oil (only 1/3 knows that it is the most caloric product). More than half of pupils answered that sugar is the most caloric product. The knowledge of vitamin and minerals content is completely not known to pupils. Most of pupils were unable to correctly indicate two products which are the sources of vitamin C (approximately 60%), vitamin A (almost 75%) and iron (over 60%). Pupils have more information on protein sources. Surprisingly it was easier for them to indicate products which are not a good source of valuable proteins than the good source of proteins. Pupils did not know what is recommended frequency of milk, fish, vegetables and plant oil consumption. Results indicate that the core curriculum of education is proper but students had little knowledge of nutrition. The majority of respondents (95%) did not received half of the available points, and nobody scored very good result. It has been found that there is insufficient knowledge of products energy values and energy daily requirements for teenagers, sources of nutrients, as well as basic nutritional guidelines.
Huntley, N F; Naumann, H D; Kenny, A L; Kerley, M S
2017-10-01
The domestic horse is used as a nutritional model for rhinoceros maintained under human care. The validity of this model for browsing rhinoceros has been questioned due to high prevalence of iron overload disorder (IOD) in captive black rhinoceros (Diceros bicornis), which is associated with high morbidity and mortality. Iron chelators, such as tannins, are under investigation as dietary supplements to ameliorate or prevent IOD in prone species. Polyphenolic compounds variably affect microbial fermentation, so the first objective of this experiment was to evaluate the effects of grape seed extract (GSE; a concentrated source of condensed tannins; CT) on black rhinoceros hindgut fermentation. Equine nutrition knowledge is used to assess supplements for rhinoceros; therefore, the second objective was to evaluate the domestic horse model for black rhinoceros fermentation and compare fermentation responses to GSE using a continuous single-flow in vitro culture system. Two replicated continuous culture experiments were conducted using horse and black rhinoceros faeces as inoculum sources comparing four diets with increasing GSE inclusion (0.0%, 1.3%, 2.7% and 4.0% of diet dry matter). Diet and GSE polyphenolic compositions were determined, and sodium sulphite effect on neutral detergent fibre extraction of CT-containing forages was tested. Increasing GSE inclusion stimulated microbial growth and fermentation, and proportionally increased diet CT concentration and iron-binding capacity. Horse and black rhinoceros hindgut microflora nutrient digestibility and fermentation responses to GSE did not differ, and results supported equine fermentation as an adequate model for microbial fermentation in the black rhinoceros. Interpretation of these results is limited to hindgut fermentation and further research is needed to compare foregut digestibility and nutrient absorption between these two species. Supplementation of GSE in black rhinoceros diets up to 4% is unlikely to adversely affect hindgut nutrient digestibility or microbial viability and fermentation. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Bhavya, S N; Prakash, J
2012-12-01
The study aimed to analyse the nutritional quality, antioxidant components and activity of three varieties of corn based ready-to- eat (RTE) breakfast cereals (BFC) enriched with strawberry, banana and mango. Fruit-enriched corn based breakfast cereals manufactured in India were purchased and ground to obtain homogeneous samples for analysis. The contents of moisture, protein, total fat, dietary fibre, iron, phosphorous, calcium, vitamin C, total carotene, thiamine, riboflavin, in vitro digestible protein, bioaccessible calcium and iron, and digestible starch fractions were determined. The antioxidant components namely, polyphenols, flavonoids and antioxidant activity in different extracts were also determined using total antioxidant, free radical scavenging (2,2-diphenyl-1-picrylhydrazyl) and reducing power assays. The protein and dietary fibre contents in all samples ranged between 4.0-4.6 and 6.4-7.6 g/ 100g respectively. Total iron and vitamin C ranged between 10.7-13.3 mg and 33.2-43.6 mg/100g respectively. Cereals with mango had high total carotene in comparison with other samples. In vitro digestible protein of the processed cereals was low, while bioaccessible calcium (50.2-59.5%) and iron (8.5-15.1%) levels were high due to low oxalates and phytic acid contents. The starch profiles of the breakfast cereals showed high rapidly available glucose and starch digestibility index. Fruit-enriched breakfast cereals showed high polyphenol content in methanol extract (48.6-71.3 mg/100g) and high total antioxidant activity in aqueous extracts. Free radical scavenging and reducing power assay showed high activity in 80% methanol extract. Fruit-enriched breakfast cereals have the potential to be a good source of iron, dietary fibre, vitamin C and total carotene. The fruit-enriched cereals also had high bioaccessible iron and antioxidant activity.
Reguła, Julita; Krejpcio, Zbigniew; Staniek, Halina
2016-06-02
Oyster mushroom Pleurotus ostreatus is good source of iron. However, there is a limited data concerning bioavailability of iron from oyster mushroom and also cereal products containing this mushroom. The aim of this study was to assess bioavailability of iron from products with an addition of Pleurotus ostreatus in male rats with anaemia. Investigations were conducted in two stages. In the first stage iron deficiency was developed in rats. For this purpose 6 weeks old 36 male Wistar rats were fed a AIN-93M diet deficient in iron and 6 males received a standard AIN-93M diet. In the second stage of the study the assessment of Fe bioavailability from cereal products enriched with dried Pleurotus ostreatus. After experiment the animals were killed and blood and heart, liver, spleen and kidneys were collected for biochemical tests. Feeding male Wistar rats supplemented with dried Pleurotus ostreatus mushrooms diets resulted in the restitution of the systemic Fe level, as manifested by an increase of the level comparable to the control group for: iron transferrin saturation rate, haemoglobin and mean corpuscular volume. Values of hematocrit, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration in animals fed products supplemented with Pleurotus ostreatus were significantly higher compared to animals fed products with no Fe added. The highest MCV value was recorded when 20% of dried oyster mushrooms were added. Iron levels in the blood serum, the liver and kidneys in animals fed cereal products considerably exceeded values recorded at the beginning of the experiment and were similar to the control values. Product may be a valuable source of iron in the nutrition of individuals with a deficiency of this element, first of all patients with absorption and metabolism disorders, but also may add variety to the traditional daily diet.
Nutritional value of milk and meat products derived from cloning.
Tomé, Daniel; Dubarry, Michel; Fromentin, Gilles
2004-01-01
The development and use of milk and meat products derived from cloning depends on their safety and on the nutritional advantages they can confer to the products as perceived by consumers. The development of such products thus implies (i) to demonstrate their safety and security, (ii) to show that their nutritional value is equivalent to the traditional products, and (iii) to identify the conditions under which cloning could allow additional nutritional and health benefit in comparison to traditional products for the consumers. Both milk and meat products are a source of high quality protein as determined from their protein content and essential amino acid profile. Milk is a source of calcium, phosphorus, zinc, magnesium and vitamin B2 and B12. Meat is a source of iron, zinc and vitamin B12. An important issue regarding the nutritional quality of meat and milk is the level and quality of fat which usually present a high content in saturated fat and some modification of the fat fraction could improve the nutritional quality of the products. The role of the dietary proteins as potential allergens has to be taken into account and an important aspect regarding this question is to evaluate whether the cloning does not produce the appearance of novel allergenic structures. The presence of bio-activities associated to specific components of milk (lactoferrin, immunoglobulins, growth factors, anti-microbial components) also represents a promising development. Preliminary results obtained in rats fed cow's milk or meat-based diets prepared from control animals or from animals derived from cloning did not show any difference between control and cloning-derived products.
Raiten, Daniel J; Neufeld, Lynnette M; De-Regil, Luz-Maria; Pasricha, Sant-Rayn; Darnton-Hill, Ian; Hurrell, Richard; Murray-Kolb, Laura E; Nair, K Madhavan; Wefwafwa, Terry; Kupka, Roland; Phall, Modou Cheyassin; Sakr Ashour, Fayrouz A
2016-01-01
Paramount among the challenges to our ability to address the role of food and nutrition in health promotion and disease prevention is how to design and implement context-specific interventions and guidance. The Integration to Effective Implementation (I-to-I) concept is intended to address the complexities of the global health context through engagement of the continuum of stakeholders involved in the food and nutrition enterprise. The 2014 Micronutrient Forum (MNF) Global Conference held in Addis Ababa, Ethiopia, in June 2014 offered the opportunity to apply the I-to-I approach with the use of current concerns about the safety and effectiveness of interventions to prevent and treat iron deficiency (ID) as a case study. ID is associated with a range of adverse outcomes, especially in pregnant and nonpregnant women, infants, and primary school-age children. Strategies to combat ID include iron supplementation, multiple micronutrient powders, and food-based interventions to enhance dietary iron intake. Recent reports indicate potential increased adverse risks when iron is provided in areas with high infection burdens (e.g., malaria). This paradox has weakened iron intervention programs. Furthermore, the selection and interpretation of available biomarkers for assessing iron nutrition have been found to be compromised by the inflammatory process. These issues highlight the need for a comprehensive approach that considers basic biology, assessment, interventions, and how these can be translated into appropriate programs and policies. The application of the I-to-I with the use of the MNF offered an opportunity to explore how that might be achieved. © 2016 American Society for Nutrition.
Behboudi-Gandevani, Samira; Safary, Kolsum; Moghaddam-Banaem, Lida; Lamyian, Minoor; Goshtasebi, Azita; Goshtasbi, Azita; Alian-Moghaddam, Narges
2013-07-01
The aim of this study was to investigate the association between maternal iron/zinc serum levels and their nutritional intake in early pregnancy with gestational diabetes. The maternal serum zinc/iron levels were measured in 1,033 healthy singleton pregnant women aged 20-35 between 14 and 20 weeks of gestation, within two groups: namely, normal and gestational diabetes, and participants were followed up to 24-28 weeks of gestation. Food frequency questionnaire was used to assess nutritional intakes of iron/zinc. The main outcome was gestational diabetes screened with the 50-g glucose challenge test and diagnosed with oral glucose tolerance test at 24-28 weeks of gestation. Gestational diabetes occurred in 72 (6.96 %) of 1,033 women in study. There was a statistical relationship between early pregnancy maternal serum iron and gestational diabetes, mean (SD), 143.8 (48.7) vs. 112.5 (83.5) μg/dl, P value of <0.0001. There was no statistical significant difference in zinc levels and iron/zinc nutritional intake between groups. The results remained unchanged after using regression model for adjustment of potential risk factors with an adjusted OR of 1.006 (95 % CI 1.002 to 1.009; P = 0.001) for early pregnancy maternal serum iron to cause gestational diabetes. The receiver-operator characteristic curve identified that a maternal serum iron above 100 μg/dl in early pregnancy is the optimum cutoff value for predicting gestational diabetes, which showed a sensitivity and specificity of 80.6 and 50.7 %, respectively. In conclusion, high maternal serum iron in early pregnancy could increase the risk of gestational diabetes. Also, it could be used as a sensitive and specific predictor for gestational diabetes.
Iron-Deficiency Anemia (For Parents)
... Videos for Educators Search English Español Iron-Deficiency Anemia KidsHealth / For Parents / Iron-Deficiency Anemia What's in ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...
Iron and Folate-Deficiency Anaemias.
ERIC Educational Resources Information Center
Hercberg, Serge
1990-01-01
Nutritional anemia is believed to be the most widespread nutritional disorder in the world. While it generally affects developing countries, developed countries are also affected to an extent sufficient to justify the implementation of preventive measures at a national level. This report focuses on iron and folate deficiencies, which are by far…
Yapi, Houphouët Félix; Ahiboh, Hugues; Yayo, Eric; Edjeme, Angele; Attoungbre-Hauhouot, Marie Laure; Allico, Joseph Djaman; Monnet, Dagui
2009-01-01
Throughout the world and particularly in sub-Saharan Africa, deficiencies in trace elements constitute a real public health problem because of the insufficient nutritional quality of food. These trace elements are necessary for many of the body's biochemical reactions. The role of microelements such as vitamin A and zinc has been established in the functioning of the immune system and secretion of inflammatory reaction proteins, but the role of iron in these functions remains to be elucidated. The sample consists of 186 children (3/4) 80 with an iron deficiency and 106 with normal iron status. They range in age from 5 to 15 years and all attend school in the department of Adzope. The study excluded all children with parasites that might affect blood iron, protein and other hematological indicators, in particular, Plasmodium falciparum, Giardia intestinalis, Trichomonas intestinalis, Ascaris lumbricoides, and Ancylostoma. Inflammatory, immune and nutritional proteins were measured by radial immunodiffusion (Mancini's method). Ferritin was measured by a specific immunoenzymatic assay. Hematological indicators were tested by an automatic blood cell counter. Nutritional status was estimated by the weight/height ratio (W/H). This analysis showed that iron deficiency was associated with reduced IgG levels (p < 0.05), although immunoglobulins A and M remained stable (p > 0.05. Iron deficiency was also associated with reduced levels of thyroxine-binding prealbumin (TBPA) and albumin (p < 0.05). Inflammatory proteins did not differ significantly between the two groups (p > 0.05). Furthermore, the prognostic inflammatory and nutritional index (PINI) did not show any inflammatory, vital or nutritional risk, because it was lower than or equal to 2. Finally, malnutrition was not observed in the iron-deficient children: the difference in the weight/height ratio (W/H = 96.58 +/- 2.4%) between the children with iron deficiency and those with normal iron status (98.7 +/- 4.3%) did not differ significantly. The reduced IgG associated with iron deficiency may be attributed to the role that iron plays in the proliferation and maturation of lymphocytes. Reduced iron levels would thus lead to slowing down the hematopoietic mechanism, resulting in a decrease in B lymphocyte production and thus inevitably a reduction in IgG synthesis. The reduction in albumin and TBPA associated with the iron deficiency but in the absence of any sign of malnutrition (W/H > 96%) or inflammatory risk (PINI < 2) in either study group shows that iron may play a dominant role during protein synthesis. Iron deficiency might limit the energy of cellular tissues, leading to a reduction in RNA activity (transcription and translation), which would in turn decrease ribosome activity in tissues and thus reduce amino acid synthesis in cells, resulting in the reduction observed in protein synthesis. The lack of difference between the study groups in inflammatory proteins, notably CRP and alpha1-GPA, indicates that iron deficiency does not appear to be related to an inflammatory process. This study of children without any apparent clinical signs of iron deficiency shows that such a deficiency may be associated with a disruption in protein production. The proteins concerned include IgG, TBPA and albumin. The public authorities should pay particular attention to improving children's diets, especially their micronutrient levels, including for iron, vitamin A and zinc.
Nutritional Biochemistry of Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2000-01-01
Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng space flight. This is critical due to the red blood cell changes which occur, and the increase in iron storage that has been observed after space flight. The Iron Absorption and Metabolism experiment is currently planned for long-term flights on the International Space Station.
Reddy, Manju B; Armah, Seth M
2018-06-20
Iron deficiency is a leading global nutritional problem. Ferrous sulfate (FeSO 4 ) is the most common iron source used for supplementation. Because of many side effects associated with its consumption, it is important to identify new forms of iron. The objectives of this study were to assess the bioavailability of iron-enriched Aspergillus oryzae, Aspiron (ASP), evaluate the toxicity of high-dose iron supplementation with ASP, and determine the ASP impact on gut microbiota in rats. In this study, we investigated iron bioavailability using the hemoglobin repletion test. Aspartate aminotransferase, alanine aminotransferase, and blood urea nitrogen levels were determined to evaluate the effect on liver and kidney functions. Protein carbonyls were measured to assess oxidative damage to proteins. Fecal samples at the end of the 14 day repletion period were used for 16S rRNA sequencing for gut microbiota analysis. The slope ratio method using a common intercept linear regression model was used to compare the bioavailability of ASP to FeSO 4 . Iron repletion increased hemoglobin concentrations with both ASP and FeSO 4 treatments compared to the control group, except in the lowest ASP group. The slope ratio indicated that relative iron bioavailability of ASP was 60% of that of FeSO 4 when hemoglobin change was compared to iron in the diet. Similar results were obtained when absolute iron intake was compared on the basis of food consumption. In comparison to the control, protein carbonyl concentrations were significantly ( p < 0.05) higher in the FeSO 4 group but not with the ASP group. Supplementation with both sources of iron reduced the Enterobacteriaceae population in the gut microbiota of the rats. A higher relative abundance of bacteria from the phylum Verrucomicrobia was also observed with the highest dose of ASP. Iron-enriched A. oryzae with 60% relative bioavailability of FeSO 4 did not show any signs of adverse effects after 14 days of iron supplementation. Future human studies are needed to understand the ASP detailed effect on gut microbiota.
Prevention of Iron-Deficiency Anemia in Infants and Children of Preschool Age.
ERIC Educational Resources Information Center
Fomon, Samuel J.
Iron-deficiency anemia is almost certainly the most prevalent nutritional disorder among infants and young children in the United States. Anemia is frequently seen among children of low socioeconomic status but is probably also the most frequent nutritional deficiency disease seen among children cared for by private doctors. Possible reasons for…
André, Hercilio Paulino; Sperandio, Naiara; Siqueira, Renata Lopes de; Franceschini, Sylvia do Carmo Castro; Priore, Silvia Eloiza
2018-04-01
This study aimed to review food and nutrition insecurity indicators associated with iron deficiency anemia in Brazilian children below 5 years. We searched in electronic databases (SciELO, Lilacs, and Medline) and selected studies by titles, abstracts and full-text reading. Of the 1,023 studies analyzed, 11 fit the inclusion criteria. The results of the studies evidenced that iron deficiency anemia in Brazilian children was associated with sociodemographic and health indicators (male, age below 24 months, children of adolescent mothers, respiratory infections, diarrhea, low maternal schooling, parents' working conditions, nursery time, lack of basic sanitation, maternal anemia, lack of ferrous sulfate use by the mother and/or child and late onset of prenatal care), nutritional indicators (low birth weight, diet characteristics, such as the habit of milk consumption close to meals, low exclusive and full breastfeeding time) and economic indicators (low per capita income). The food and nutrition insecurity analyzed in this study from the perspective of different indicators is associated with iron deficiency anemia in children under 5 years in Brazil.
Food consumption and nutritional adequacy in Brazilian children: a systematic review
de Carvalho, Carolina Abreu; Fonsêca, Poliana Cristina de Almeida; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro; de Novaes, Juliana Farias
2015-01-01
OBJECTIVE: To perform a review of studies of food consumption and nutritional adaptation in Brazilian infants pointing the main findings and limitations of these studies. DATA SOURCE: The articles were selected from Literatura Latino-Americana e do Caribe em Ciências da Saúde (Lilacs) (Latin-American and Caribbean Literature in Health Sciences), Scientific Electronic Library Online (SciELO) and Science Direct in Portuguese and in English. The descriptors were: ''food consumption'', ''nutritional requirements'', ''infant nutrition'' and ''child''. The articles selected were read by two evaluators that decided upon their inclusion. The following were excluded: studies about children with pathologies; studies that approached only food practices or those adaptation of the food groups or the food offert; and studies that did not utilize the Dietary Reference Intakes (DRI). DATA SYNTHESIS: Were selected 16 studies published between 2003 and 2013. In the evaluation of the energy consumption, four studies presented energetic consumption above the individual necessities. The prevalence of micronutrients inadequacy ranged from 0.4% to 65% for iron, from 20% to 59.5% for vitamin A, from 20% to 99.4% for zinc, from 12.6% to 48.9% for calcium and from 9.6% 96.6% for vitamin C. CONCLUSIONS: The food consumption of Brazilian infants is characterized by high frequencies of inadequacy of micronutrients consumption, mainly iron, vitamin A and zinc. These inadequacies do not exist only as deficiencies, but also as excesses, as noted for energetic consumption. PMID:25935607
Morales, J; Vargas, F; Cassís, L; Sánchez, E; Villalpando, S
2008-01-01
As part of the efforts to reduce iron deficiency anemia (IDA), the Mexican Federal program PROGRESA distributes complementary foods to toddlers and pregnant women living in extreme poverty. Complementary foods were originally fortified with hydrogen-reduced iron, which proved a limited efficacy. The supplement was reformulated to provide higher iron bioavailability. This investigation aims to assess the sensory changes and the acceptance of new versions of the complementary foods fortified with either reduced iron, ferrous fumarate, or ferrous sulfate, stored at room temperature for 2, 4, and 6 mo. Complementary foods were presented without flavor (plain) or flavored with either chocolate or vanilla. The complementary foods were evaluated in toddlers and their mothers using a hedonic scale. The percentage of overall acceptance for the baby foods was higher in toddlers (80% to 88%) than in their mothers (63% to 68%). The complementary foods with a better acceptance were those fortified with reduced iron (63% to 68%) and ferrous fumarate (61% to 80%) independently of the flavoring added. The acceptance of the beverage intended for women was better for those fortified with reduced iron (52% to 63%) or ferrous fumarate (44% to 63%) in their vanilla-flavored version. For women, the most accepted sources of iron were reduced iron (50% to 60%) and ferrous fumarate (50% to 58%).
Briat, Jean-François; Rouached, Hatem; Tissot, Nicolas; Gaymard, Frédéric; Dubos, Christian
2015-01-01
Phosphate and sulfate are essential macro-elements for plant growth and development, and deficiencies in these mineral elements alter many metabolic functions. Nutritional constraints are not restricted to macro-elements. Essential metals such as zinc and iron have their homeostasis strictly genetically controlled, and deficiency or excess of these micro-elements can generate major physiological disorders, also impacting plant growth and development. Phosphate and sulfate on one hand, and zinc and iron on the other hand, are known to interact. These interactions have been partly described at the molecular and physiological levels, and are reviewed here. Furthermore the two macro-elements phosphate and sulfate not only interact between themselves but also influence zinc and iron nutrition. These intricated nutritional cross-talks are presented. The responses of plants to phosphorus, sulfur, zinc, or iron deficiencies have been widely studied considering each element separately, and some molecular actors of these regulations have been characterized in detail. Although some scarce reports have started to examine the interaction of these mineral elements two by two, a more complex analysis of the interactions and cross-talks between the signaling pathways integrating the homeostasis of these various elements is still lacking. However, a MYB-like transcription factor, PHOSPHATE STARVATION RESPONSE 1, emerges as a common regulator of phosphate, sulfate, zinc, and iron homeostasis, and its role as a potential general integrator for the control of mineral nutrition is discussed. PMID:25972885
Advantages and disadvantages of the animal models v. in vitro studies in iron metabolism: a review.
García, Y; Díaz-Castro, J
2013-10-01
Iron deficiency is the most common nutritional deficiency in the world. Special molecules have evolved for iron acquisition, transport and storage in soluble, nontoxic forms. Studies about the effects of iron on health are focused on iron metabolism or nutrition to prevent or treat iron deficiency and anemia. These studies are focused in two main aspects: (1) basic studies to elucidate iron metabolism and (2) nutritional studies to evaluate the efficacy of iron supplementation to prevent or treat iron deficiency and anemia. This paper reviews the advantages and disadvantages of the experimental models commonly used as well as the methods that are more used in studies related to iron. In vitro studies have used different parts of the gut. In vivo studies are done in humans and animals such as mice, rats, pigs and monkeys. Iron metabolism is a complex process that includes interactions at the systemic level. In vitro studies, despite physiological differences to humans, are useful to increase knowledge related to this essential micronutrient. Isotopic techniques are the most recommended in studies related to iron, but their high cost and required logistic, making them difficult to use. The depletion-repletion of hemoglobin is a method commonly used in animal studies. Three depletion-repletion techniques are mostly used: hemoglobin regeneration efficiency, relative biological values (RBV) and metabolic balance, which are official methods of the association of official analytical chemists. These techniques are well-validated to be used as studies related to iron and their results can be extrapolated to humans. Knowledge about the main advantages and disadvantages of the in vitro and animal models, and methods used in these studies, could increase confidence of researchers in the experimental results with less costs.
USDA-ARS?s Scientific Manuscript database
In the U.S., approximately 3% of young children develop iron deficiency anemia (IDA), with Hispanic/Latino children disproportionately affected. IDA is associated with inferior neurodevelopmental outcomes. Treatment with oral iron mitigates its consequences yet non-adherence often results in treatme...
Raiten, Daniel J; Neufeld, Lynnette M; De-Regil, Luz-Maria; Pasricha, Sant-Rayn; Darnton-Hill, Ian; Hurrell, Richard; Murray-Kolb, Laura E; Nair, K Madhavan; Wefwafwa, Terry; Kupka, Roland; Phall, Modou Cheyassin; Sakr Ashour, Fayrouz A
2016-01-01
Paramount among the challenges to our ability to address the role of food and nutrition in health promotion and disease prevention is how to design and implement context-specific interventions and guidance. The Integration to Effective Implementation (I-to-I) concept is intended to address the complexities of the global health context through engagement of the continuum of stakeholders involved in the food and nutrition enterprise. The 2014 Micronutrient Forum (MNF) Global Conference held in Addis Ababa, Ethiopia, in June 2014 offered the opportunity to apply the I-to-I approach with the use of current concerns about the safety and effectiveness of interventions to prevent and treat iron deficiency (ID) as a case study. ID is associated with a range of adverse outcomes, especially in pregnant and nonpregnant women, infants, and primary school-age children. Strategies to combat ID include iron supplementation, multiple micronutrient powders, and food-based interventions to enhance dietary iron intake. Recent reports indicate potential increased adverse risks when iron is provided in areas with high infection burdens (e.g., malaria). This paradox has weakened iron intervention programs. Furthermore, the selection and interpretation of available biomarkers for assessing iron nutrition have been found to be compromised by the inflammatory process. These issues highlight the need for a comprehensive approach that considers basic biology, assessment, interventions, and how these can be translated into appropriate programs and policies. The application of the I-to-I with the use of the MNF offered an opportunity to explore how that might be achieved. PMID:26773021
21 CFR 172.370 - Iron-choline citrate complex.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline...
21 CFR 172.370 - Iron-choline citrate complex.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting...
21 CFR 172.370 - Iron-choline citrate complex.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline...
Horton, D Kevin; Adetona, Olorunfemi; Aguilar-Villalobos, Manuel; Cassidy, Brandon E; Pfeiffer, Christine M; Schleicher, Rosemary L; Caldwell, Kathleen L; Needham, Larry L; Rathbun, Stephen L; Vena, John E; Naeher, Luke P
2013-06-11
In developing countries, deficiencies in essential micronutrients are common, particularly in pregnant women. Although, biochemical indicators of diet and nutrition are useful to assess nutritional status, few studies have examined such indicators throughout pregnancy in women in developing countries. The primary objective of this study was to assess the nutritional status of 78 Peruvian women throughout pregnancy for 16 different nutritional indicators including fat-soluble vitamins and carotenoids, iron-status indicators, and selenium. Venous blood samples from which serum was prepared were collected during trimesters one (n = 78), two (n = 65), three (n = 62), and at term via the umbilical cord (n = 52). Questionnaires were completed to determine the demographic characteristics of subjects. Linear mixed effects models were used to study the associations between each maternal indicator and the demographic characteristics. None of the women were vitamin A and E deficient at any stage of pregnancy and only 1/62 women (1.6%) was selenium deficient during the third trimester. However, 6.4%, 44% and 64% of women had ferritin levels indicative of iron deficiency during the first, second and third trimester, respectively. Statistically significant changes (p ≤ 0.05) throughout pregnancy were noted for 15/16 nutritional indicators for this Peruvian cohort, with little-to-no association with demographic characteristics. Three carotenoids (beta-carotene, beta-cryptoxanthin and trans-lycopene) were significantly associated with education status, while trans-lycopene was associated with age and beta-cryptoxanthin with SES (p < 0.05). Concentrations of retinol, tocopherol, beta-cryptoxanthin, lutein + zeaxanthin and selenium were lower in cord serum compared with maternal serum (p < 0.05). Conversely, levels of iron status indicators (ferritin, transferrin saturation and iron) were higher in cord serum (p < 0.05). The increasing prevalence of iron deficiency throughout pregnancy in these Peruvian women was expected. It was surprising though not to find deficiencies in other nutrients. The results highlight the importance of continual monitoring of women throughout pregnancy for iron deficiency which could be caused by increasing fetal needs and/or inadequate iron intake as pregnancy progresses.
[Iron nutritional status in pregnant adolescents at the beginning of gestation].
Hertrampf, E; Olivares, M; Letelier, A; Castillo, C
1994-12-01
The frequency of anemia and iron nutrition deficiency was assessed in 342 low socioeconomic level pregnant teenagers at entry to prenatal care in 5 outpatient clinics from a South Orient area of Santiago Chile. According to the Center for Disease Control Criteria, 1.2% of women had iron deficiency anemia. Iron stores were insufficient (defined as a serum ferritin lower than 20 g/L) in 55% for women and depleted (serum ferritin lower than 10 g/L) in 21%. Women with more than 14 weeks of gestation had lower packed red cell volumes, hemoglobin, mean corpuscular volumes and ferritin levels than women with less than 14 of gestation. It is concluded that the prevalence of iron deficiency anemia is lower than that predicted for a highly vulnerable group but the high frequency of low iron stores should encourage the use of iron supplementation in these teenagers.
Dongre, Amol R; Deshmukh, Pradeep R; Garg, Bishan S
2011-12-01
Studies in India have reported a high prevalence of nutritional anemia among children and adolescent girls. Nutritional anemia is associated with impaired mental, physical, and cognitive performance in children and is a significant risk factor for maternal mortality. To evaluate the effect of a community-led initiative for control of nutritional anemia among children 6 to 35 months of age and unmarried rural adolescent girls 12 to 19 years of age. This Participatory Action Research was done in 23 villages of the Primary Health Centre, Anji, in Wardha District of Maharashtra. In February and March 2008, needs assessment was undertaken by interviewing the mothers of 261 children and 260 adolescent girls. Hemoglobin levels of adolescent girls and children were measured with the use of the hemoglobin color scale. The girls were given weekly iron-folic acid tablets, and the children were given daily liquid iron prophylaxis for 100 days in a year through community participation. The adolescent girls and the mothers of the children and adolescent girls were also given nutritional education on the benefits and side effects of iron supplementation. In June and July 2008, follow-up assessment was performed by survey and force field analysis. There was a significant reduction in the prevalence of nutritional anemia from 73.8% to 54.6% among the adolescent girls and from 78.2% to 64.2% among the children. There was improvement in awareness of iron-rich food items among the adolescent girls and the mothers of the children. The benefits to girls, such as increase in appetite and reduction in scanty menses, tiredness, and weakness, acted as positive factors leading to better compliance with weekly iron supplementation. The benefits to children perceived by the mothers, such as increase in appetite, weight gain, reduction in irritability, and reduction in mud-eating behavior, acted as a dominant positive force and generated demand for iron syrup. The community-led initiative for once-weekly iron supplementation for adolescent girls and iron prophylaxis for children, in addition to nutritional education, improved the hemoglobin status of children 6 to 35 months of age and unmarried rural adolescent girls 12 to 19 years of age.
Global malnutrition overlaps with pollinator-dependent micronutrient production
Chaplin-Kramer, Rebecca; Dombeck, Emily; Gerber, James; Knuth, Katherine A.; Mueller, Nathaniel D.; Mueller, Megan; Ziv, Guy; Klein, Alexandra-Maria
2014-01-01
Pollinators contribute around 10% of the economic value of crop production globally, but the contribution of these pollinators to human nutrition is potentially much higher. Crops vary in the degree to which they benefit from pollinators, and many of the most pollinator-dependent crops are also among the richest in micronutrients essential to human health. This study examines regional differences in the pollinator dependence of crop micronutrient content and reveals overlaps between this dependency and the severity of micronutrient deficiency in people around the world. As much as 50% of the production of plant-derived sources of vitamin A requires pollination throughout much of Southeast Asia, whereas other essential micronutrients such as iron and folate have lower dependencies, scattered throughout Africa, Asia and Central America. Micronutrient deficiencies are three times as likely to occur in areas of highest pollination dependence for vitamin A and iron, suggesting that disruptions in pollination could have serious implications for the accessibility of micronutrients for public health. These regions of high nutritional vulnerability are understudied in the pollination literature, and should be priority areas for research related to ecosystem services and human well-being. PMID:25232140
Nutritional status and reproductive health of Orang Asli women in two villages in Kuantan, Pahang.
Lim, H; Chee, H
1998-12-01
The study was conducted to determine the nutritional status and reproductive health of 34 Orang Asli women, aged 16-45 years, from two Orang Asli villages in Kuantan, Pahang Darul Makmur.The results of the study indicate that on the whole, the women's nutritional status is generally not satisfactory.Their mean iron intakes for example, are very low, about one-quarter to one-third of the required level.All their other mean nutrient intake levels are below the required level. Only their mean intake of vitamin C exceeds the required level due to their frequent intake of raw vegetables. Their main source of carbohydrate is rice, while their main source of protein is fish, and their main source of minerals and vitamins are Chinese mustard and cabbage.From BMI measurements, it is found that less than half of the women (42.9%) have normal weight, 35.7% suffer from chronic energy deficiency (CED), 7.1% (one) are overweight, and 14.3% (two) are obese.The accessibility and availability of food are a problem for the women, limiting their choice of varieties of food sources.For their reproductive health needs, the pregnant women rely on the government hospital and clinics for their antenatal check-ups and birth deliveries.Of all the women, nine suffer from menstrual pain and five from vaginal discharge.Food taboos and cultural practices are practised by the pregnant women during their confinement.It is concluded that the nutritional status of the women needs to be improved since most of them have insufficient nutrient intake.
Esen, Merve; Ozturk Urek, Raziye
2015-01-01
The effect of various concentrations of ammonium nitrate (5-60 mM), an economical nitrogen source, on the growth, nitrate-ammonium uptake rates, production of some pigments and metabolites, and some nitrogen assimilation enzymes such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in Spirulina platensis (Gamont) Geitler was investigated. Ten millimolars of ammonium nitrate stimulated the growth, production of pigments and the other metabolites, and enzyme activities, whereas 30 and 60 mM ammonium nitrate caused inhibition. In the presence of 10 mM ammonium nitrate, different concentrations of iron were tried in the growth media of S. platensis. After achieving the best growth, levels of metabolite and pigment production, and enzyme activities in the presence of 10 mM ammonium nitrate as a nitrogen source, different iron concentrations (10-100 µM) were tried in the growth medium of S. platensis. The highest growth, pigment and metabolite levels, and enzyme activities were determined in the medium containing 50 µM iron and 10 mM ammonium nitrate. In this optimum condition, the highest dry biomass level, chlorophyll a, and pyruvate contents were obtained as 55.42 ± 3.8 mg mL(-1) , 93.114 ± 7.9 µg g(-1) , and 212.5 ± 18.7 µg g(-1) , respectively. The highest NR, NiR, GS, and GOGAT activities were 67.16 ± 5.1, 777.92 ± 52, 0.141 ± 0.01, and 44.45 ± 3.6, respectively. Additionally, 10 mM ammonium nitrate is an economical and efficient nitrogen source for nitrogen assimilation of S. platensis, and 50 µM iron is optimum for the growth of S. platensis. © 2014 International Union of Biochemistry and Molecular Biology, Inc.
Powers, Jacquelyn M; Buchanan, George R; Adix, Leah; Zhang, Song; Gao, Ang; McCavit, Timothy L
2017-06-13
Iron-deficiency anemia (IDA) affects millions of persons worldwide, and is associated with impaired neurodevelopment in infants and children. Ferrous sulfate is the most commonly prescribed oral iron despite iron polysaccharide complex possibly being better tolerated. To compare the effect of ferrous sulfate with iron polysaccharide complex on hemoglobin concentration in infants and children with nutritional IDA. Double-blind, superiority randomized clinical trial of infants and children aged 9 to 48 months with nutritional IDA (assessed by history and laboratory criteria) that was conducted in an outpatient hematology clinic at a US tertiary care hospital from September 2013 through November 2015; 12-week follow-up ended in January 2016. Three mg/kg of elemental iron once daily as either ferrous sulfate drops or iron polysaccharide complex drops for 12 weeks. Primary outcome was change in hemoglobin over 12 weeks. Secondary outcomes included complete resolution of IDA (defined as hemoglobin concentration >11 g/dL, mean corpuscular volume >70 fL, reticulocyte hemoglobin equivalent >25 pg, serum ferritin level >15 ng/mL, and total iron-binding capacity <425 μg/dL at the 12-week visit), changes in serum ferritin level and total iron-binding capacity, adverse effects. Of 80 randomized infants and children (median age, 22 months; 55% male; 61% Hispanic white; 40 per group), 59 completed the trial (28 [70%] in ferrous sulfate group; 31 [78%] in iron polysaccharide complex group). From baseline to 12 weeks, mean hemoglobin increased from 7.9 to 11.9 g/dL (ferrous sulfate group) vs 7.7 to 11.1 g/dL (iron complex group), a greater difference of 1.0 g/dL (95% CI, 0.4 to 1.6 g/dL; P < .001) with ferrous sulfate (based on a linear mixed model). Proportion with a complete resolution of IDA was higher in the ferrous sulfate group (29% vs 6%; P = .04). Median serum ferritin level increased from 3.0 to 15.6 ng/mL (ferrous sulfate) vs 2.0 to 7.5 ng/mL (iron complex) over 12 weeks, a greater difference of 10.2 ng/mL (95% CI, 6.2 to 14.1 ng/mL; P < .001) with ferrous sulfate. Mean total iron-binding capacity decreased from 501 to 389 μg/dL (ferrous sulfate) vs 506 to 417 μg/dL (iron complex) (a greater difference of -50 μg/dL [95% CI, -86 to -14 μg/dL] with ferrous sulfate; P < .001). There were more reports of diarrhea in the iron complex group than in the ferrous sulfate group (58% vs 35%, respectively; P = .04). Among infants and children aged 9 to 48 months with nutritional iron-deficiency anemia, ferrous sulfate compared with iron polysaccharide complex resulted in a greater increase in hemoglobin concentration at 12 weeks. Once daily, low-dose ferrous sulfate should be considered for children with nutritional iron-deficiency anemia. clinicaltrials.gov Identifier: NCT01904864.
Netzel, Michael E.; Tinggi, Ujang
2018-01-01
Terminalia ferdinandiana (Kakadu plum) is a native Australian fruit. Industrial processing of T. ferdinandiana fruits into puree generates seeds as a by-product, which are generally discarded. The aim of our present study was to process the seed to separate the kernel and determine its nutritional composition. The proximate, mineral and fatty acid compositions were analysed in this study. Kernels are composed of 35% fat, while proteins account for 32% dry weight (DW). The energy content and fiber were 2065 kJ/100 g and 21.2% DW, respectively. Furthermore, the study showed that kernels were a very rich source of minerals and trace elements, such as potassium (6693 mg/kg), calcium (5385 mg/kg), iron (61 mg/kg) and zinc (60 mg/kg) DW, and had low levels of heavy metals. The fatty acid composition of the kernels consisted of omega-6 fatty acid, linoleic acid (50.2%), monounsaturated oleic acid (29.3%) and two saturated fatty acids namely palmitic acid (12.0%) and stearic acid (7.2%). The results indicate that T. ferdinandiana kernels have the potential to be utilized as a novel protein source for dietary purposes and non-conventional supply of linoleic, palmitic and oleic acids. PMID:29649154
Toxicity of chelated iron (Fe-DTPA) in American cranberry
USDA-ARS?s Scientific Manuscript database
American cranberry (Vaccinium macrocarpon) is naturally adapted to environments with high concentrations of soluble iron. Yet, there is a need to further explore iron nutrition in cranberry given concerns of toxicity problems from irrigation with iron-rich water. This study investigated the threat o...
Amani, Reza; Soflaei, Maryam
2006-09-01
Iron-deficiency anemia is the most prevalent nutritional deficiency worldwide. Iron-deficiency anemia has particular negative consequences on women in their childbearing years, and its prevention is a high priority in most health systems. This interventional study assessed the effect of nutrition education on hematologic indices, iron status, nutritional knowledge, and nutritional practices of high-school girls in Iran. Sixty healthy 16- to 18-year-old girls were randomly selected from two high schools in the city of Ahvaz and divided into two equally matched groups, one that received nutrition education, and one that did not. The education group received instruction in face-to-face sessions, group discussions, and pamphlets for 2 months. The control group did not receive any information during the study. Hematologic tests, corpuscular indices, and serum ferritin levels were measured at baseline and after 2 months. Food-frequency questionnaires were administered and histories taken, clinical signs of nutritional deficiencies observed, anthropometric measurements taken, nutritional knowledge tested, practices determined, and lifestyle questionnaires administered to all subjects. There were no statistically significant differences in any baseline characteristics between the two groups. Scores for nutritional knowledge and practices of the education group were significantly higher after two months compared with the baseline (31.4 +/- 6 vs. 24.3 +/- 5.9 points, p < .001, and 31.2 +/- 5 vs. 28.4 +/- 5.7 points, p < .05, respectively). The scores in the control group showed no significant changes from baseline to 2 months. Mean corpuscular volume values were elevated in the education group (p < .001) but not in the control group. However, in the control group, serum ferritin concentrations showed about a 17% drop at the end of the study (p < .004). There were no changes in other hematologic, lifestyle, clinical, or anthropometric data compared with baseline after completion of the study in both groups. These findings indicate that nutritional education can improve knowledge of healthy nutrition and lifestyle choices. Focused nutritional education using available resources and correcting current dietary habits in a vulnerable group of young women may result in dietary changes that can ultimately improve iron intake.
Kostić, Aleksandar Ž; Kaluđerović, Lazar M; Dojčinović, Biljana P; Barać, Miroljub B; Babić, Vojka B; Mačukanović-Jocić, Marina P
2017-07-01
Bee pollen has already proved to be a good supplement rich in iron and zinc. Studies on the application of flower pollen in the food industry and medicine have begun. Bearing in mind the prevalence of maize as a crop culture, its pollen will be easily available. The mineral composition of pollen of seven Serbian maize hybrids was analyzed in order to establish its nutritional value and the benefits of its implementation in the human diet using the inductively coupled plasma method. The presence of twenty four different macro- (nine) and micronutrients (fifteen) was detected. The most common minerals were phosphorus and potassium, while arsenic, cobalt, lead, nickel and molybdenum were found in some samples. Comparing the results obtained with recommended or tolerable dietary intake references for adults, it was found that maize pollen can be used as a very good source of zinc, iron, chromium and manganese for humans. With regard to selenium content, pollen samples proved to be moderately good source of this important micronutrient. Contents of some elements (Fe, Zn, Mn, Cr, Se, Al and V) showed significant differences depending on hybrid type. In some samples increased concentrations of aluminum and vanadium were recorded, which may pose a potential problem due to their toxicity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Leite, Fernanda Maria de B; Ferreira, Haroldo da Silva; Bezerra, Myrtis Katille de A; Assunção, Monica Lopes de; Horta, Bernardo Lessa
2013-12-01
To assess the dietary intake and the nutritional status of children from Alagoas maroon communities. Cross-sectional study involving 724 children (12-60 months) from 39 Alagoas maroon communities. The nutritional status was investigated by anthropometric, biochemical (hemoglobin) and food consumption indicators. The prevalence of anemia, stunting and obesity were, respectively, 48.0, 9.7 and 6.0%. The children had a monotonous eating pattern and a considerable prevalence of inadequate intake of zinc (17.0%), folate (18.1%), iron (20.2%) and vitamins A (29.7%) and C (34.3%). Compared to the other socioeconomic classes, the E class children had lower average consumption (p<0.05) for energy, carbohydrate, vitamins A and C, folate, iron, zinc and phosphorus. Anemia is a serious Public Health problem. The prevalence of chronic malnutrition and obesity were similar to those observed for the children in the State as a whole, where a nutritional transition process is occuring. There was a high prevalence of inadequate food intake risk for zinc, folate, iron and vitamins A and C, suggesting the need for nutritional education actions.
Agrawal, Sonal; Berggren, Kiersten L.; Marks, Eileen; Fox, Jonathan H.
2017-01-01
Abstract Context Accumulation of brain iron is linked to aging and protein-misfolding neurodegenerative diseases. High iron intake may influence important brain health outcomes in later life. Objective The aim of this systematic review was to examine evidence from animal and human studies of the effects of high iron intake or peripheral iron status on adult cognition, brain aging, and neurodegeneration. Data Sources MEDLINE, Scopus, CAB Abstracts, the Cochrane Central Register of Clinical Trials, and OpenGrey databases were searched. Study Selection Studies investigating the effect of elevated iron intake at all postnatal life stages in mammalian models and humans on measures of adult brain health were included. Data Extraction Data were extracted and evaluated by two authors independently, with discrepancies resolved by discussion. Neurodegenerative disease diagnosis and/or behavioral/cognitive, biochemical, and brain morphologic findings were used to study the effects of iron intake or peripheral iron status on brain health. Risk of bias was assessed for animal and human studies. PRISMA guidelines for reporting systematic reviews were followed. Results Thirty-four preclinical and 14 clinical studies were identified from database searches. Thirty-three preclinical studies provided evidence supporting an adverse effect of nutritionally relevant high iron intake in neonates on brain-health-related outcomes in adults. Human studies varied considerably in design, quality, and findings; none investigated the effects of high iron intake in neonates/infants. Conclusions Human studies are needed to verify whether dietary iron intake levels used in neonates/infants to prevent iron deficiency have effects on brain aging and neurodegenerative disease outcomes. PMID:28505363
[Nutrition-related problems in pet birds].
Schoemaker, N J; Lumeij, J T; Dorrestein, G M; Beynen, A C
1999-01-15
The detection and correction of dietary errors plays an important role in avian medicine. Examples of diseases caused in part by a deficiency or abundance of a nutrient include hypovitaminosis A in birds of the parrot (Psittacidae) family, hypocalcemia in the African grey parrot, goitre in budgerigars, and iron storage diseases in the minah and toucan. Hypovitaminosis A can lead to metaplasia of mucous membranes, which in turn can lead to chronic rhinitis and respiratory fungal infections. Vitamin A deficiency is caused by feeding a seed based diet. Seed mixtures are often deficient in calcium, and nutritional secondary hyperparathyroidism can develop if an additional source of calcium, in the form of ground shells, is not provided. Tetanic symptoms as a result of hypocalcemia are only seen in the African grey parrot and the timneh parrot. Over supplementation of vitamin D gives rise to poisoning with polyuria and polydipsia as common initial symptoms. The exact cause of iron storage diseases in toucans and minahs is not known. A diet low in iron and vitamin C is advised as therapy. Goitre can develop in budgerigars as a result of iodine-deficient drinking water and provision of a seed mixture based on millet. An unbalanced or multideficient diet can give rise to reproductive disorders, abnormal feathers, or infections as a result of diminished resistance. It is usually not possible to relate the cause of these diseases in a simple way to the composition of the diet. Obesity, which occurs in the galah, Amazon parrot, and budgerigars, can lead to fatty liver and lipoma. A gradual reduction in weight, by means of calorie restriction, is recommended. Commercially available nutritionally balanced bird food is often effective.
Yang, Ching-Hong; Crowley, David E.
2000-01-01
Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status. PMID:10618246
Veena, Sargoor R; Gale, Catharine R; Krishnaveni, Ghattu V; Kehoe, Sarah H; Srinivasan, Krishnamachari; Fall, Caroline Hd
2016-08-12
The mother is the only source of nutrition for fetal growth including brain development. Maternal nutritional status (anthropometry, macro- and micro-nutrients) before and/or during pregnancy is therefore a potential predictor of offspring cognitive function. The relationship of maternal nutrition to offspring cognitive function is unclear. This review aims to assess existing evidence linking maternal nutritional status with offspring cognitive function. Exposures considered were maternal BMI, height and weight, micronutrient status (vitamins D, B12, folate and iron) and macronutrient intakes (carbohydrate, protein and fat). The outcome was any measure of cognitive function in children aged <18 years. We considered observational studies and trials with allocation groups that differed by single nutrients. We searched Medline/PubMed and the Cochrane Library databases and reference lists of retrieved literature. Two reviewers independently extracted data from relevant articles. We used methods recommended by the Centre for Reviews and Dissemination, University of York and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Of 16,143 articles identified, 38 met inclusion criteria. Most studies were observational, and from high-income settings. There were few randomized controlled trials. There was consistent evidence linking maternal obesity with lower cognitive function in children; low maternal BMI has been inadequately studied. Among three studies of maternal vitamin D status, two showed lower cognitive function in children of deficient mothers. One trial of folic acid supplementation showed no effects on the children's cognitive function and evidence from 13 observational studies was mixed. Among seven studies of maternal vitamin B12 status, most showed no association, though two studies in highly deficient populations suggested a possible effect. Four out of six observational studies and two trials (including one in an Iron deficient population) found no association of maternal iron status with offspring cognitive function. One trial of maternal carbohydrate/protein supplementation showed no effects on offspring cognitive function. Current evidence that maternal nutritional status during pregnancy as defined by BMI, single micronutrient studies, or macronutrient intakes influences offspring cognitive function is inconclusive. There is a need for more trials especially in populations with high rates of maternal undernutrition. Registered in PROSPERO CRD42013005702 .
Papanikolaou, Yanni; Fulgoni, Victor L
2017-02-20
Grain foods may play an important role in delivering nutrients to the diet of children and adolescents. The present study determined grain food sources of energy/nutrients in U.S. children and adolescents using data from the National Health and Nutrition Examination Survey, 2009-2012. Analyses of grain food sources were conducted using a 24-h recall in participants 2-18 years old ( N = 6109). Sources of nutrients contained in grain foods were determined using U.S. Department of Agriculture nutrient composition databases and excluded mixed dishes. Mean energy and nutrient intakes from the total diet and from various grain foods were adjusted for the sample design using appropriate weights. All grains provided 14% ± 0.2% kcal/day (263 ± 5 kcal/day), 22.5% ± 0.3% (3 ± 0.1 g/day) dietary fiber, 39.3% ± 0.5% (238 ± 7 dietary folate equivalents (DFE)/day) folate and 34.9% ± 0.5% (5.6 ± 0.1 mg/day) iron in the total diet in children and adolescents. The current analyses showed that certain grain foods, in particular breads, rolls and tortillas, ready-to-eat cereals and quick breads and bread products, are meaningful contributors of folate, iron, thiamin, niacin and dietary fiber, a nutrient of public health concern as outlined by the 2015-2020 Dietary Guidelines for Americans. Thus, specific grain foods contribute to nutrient density and have the potential to increase the consumption of several under-consumed nutrients in children and adolescents.
21 CFR 172.370 - Iron-choline citrate complex.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Iron-choline citrate complex. 172.370 Section 172... CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting approximately equimolecular quantities of ferric hydroxide, choline, and...
Tian, Tian; Blanco, Elena; Smoukov, Stoyan K; Velev, Orlin D; Velikov, Krassimir P
2016-10-01
Ferric pyrophosphate (FePP) is a widely used iron source in food fortification and in nutritional supplements, due to its white colour, that is very uncommon for insoluble Fe salts. Although its dissolution is an important determinant of Fe adsorption in human body, the solubility characteristics of FePP are complex and not well understood. This report is a study on the solubility of FePP as a function of pH and excess of pyrophosphate ions. FePP powder is sparingly soluble in the pH range of 3-6 but slightly soluble at pH<2 and pH>8. In the presence of pyrophosphate ions the solubility of FePP strongly increases at pH 5-8.5 due to formation a soluble complex between Fe(III) and pyrophosphate ions, which leads to an 8-10-fold increase in the total ionic iron concentration. This finding is beneficial for enhancing iron bioavailability, which important for the design of fortified food, beverages, and nutraceutical products. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Mgaza, Olyvia
This monograph discusses policies designed to deal with food and nutrition problems in Tanzania. Available information on food supplies and nutritional conditions in Tanzania clearly shows that the country faces nutritional problems; protein energy malnutrition is the most serious and requires priority action. Iron deficiency anemia, goiter, and…
Plant phenolics and their potential role in mitigating iron overload disorder in wild animals.
Lavin, Shana R
2012-09-01
Phenolic compounds are bioactive chemicals found in all vascular plants but are difficult to characterize and quantify, and comparative analyses on these compounds are challenging due to chemical structure complexity and inconsistent laboratory methodologies employed historically. These chemicals can elicit beneficial or toxic effects in consumers, depending on the compound, dose and the species of the consumer. In particular, plant phenolic compounds such as tannins can reduce the utilization of iron in mammalian and avian consumers. Multiple zoo-managed wild animal species are sensitive to iron overload, and these species tend to be offered diets higher in iron than most of the plant browse consumed by these animals in the wild and in captivity. Furthermore, these animals likely consume diets higher in polyphenols in the wild as compared with in managed settings. Thus, in addition to reducing dietary iron concentrations in captivity, supplementing diets with phenolic compounds capable of safely chelating iron in the intestinal lumen may reduce the incidence of iron overload in these animal species. It is recommended to investigate various sources and types of phenolic compounds for use in diets intended for iron-sensitive species. Candidate compounds should be screened both in vitro and in vivo using model species to reduce the risk of toxicity in target species. In particular, it would be important to assess potential compounds in terms of 1) biological activity including iron-binding capacity, 2) accessibility, 3) palatability, and 4) physiological effects on the consumer, including changes in nutritional and antioxidant statuses.
USDA-ARS?s Scientific Manuscript database
The Thriposha program is a community-level nutrition intervention in Sri Lanka that provides a combination of energy, protein, and micronutrients as a 'ready-to-eat' cereal-based food. We measured the bioavailability of Fe and Zn from Thriposha formula at two different molar ratios of Zn: Fe in orde...
Suchdev, Parminder S; Namaste, Sorrel ML; Aaron, Grant J; Raiten, Daniel J; Brown, Kenneth H; Flores-Ayala, Rafael
2016-01-01
Anemia remains a widespread public health problem. Although iron deficiency is considered the leading cause of anemia globally, the cause of anemia varies considerably by country. To achieve global targets to reduce anemia, reliable estimates of the contribution of nutritional and non-nutritional causes of anemia are needed to guide interventions. Inflammation is known to affect many biomarkers used to assess micronutrient status and can thus lead to incorrect diagnosis of individuals and to overestimation or underestimation of the prevalence of deficiency in a population. Reliable assessment of iron status is particularly needed in settings with high infectious disease burden, given the call to screen for iron deficiency to mitigate potential adverse effects of iron supplementation. To address these information gaps, in 2012 the CDC, National Institute for Child Health and Human Development, and Global Alliance for Improved Nutrition formed a collaborative research group called Biomarkers Reflecting Inflammation and Nutrition Determinants of Anemia (BRINDA). Data from nationally and regionally representative nutrition surveys conducted in the past 10 y that included preschool children and/or women of childbearing age were pooled. Of 25 data sets considered for inclusion, 17 were included, representing ∼30,000 preschool children, 26,000 women of reproductive age, and 21,000 school-aged children from all 6 WHO geographic regions. This article provides an overview of the BRINDA project and describes key research questions and programmatic and research implications. Findings from this project will inform global guidelines on the assessment of anemia and micronutrient status and will guide the development of a research agenda for future longitudinal studies. PMID:26980818
Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.)
USDA-ARS?s Scientific Manuscript database
Micronutrients are essential elements needed in small amounts for adequate human nutrition and include the elements iron and zinc. Both of these minerals are essential to human well-being, and an adequate supply of iron and zinc helps to prevent iron deficiency anemia and zinc deficiency, two preva...
Overview of the nutritional status of selected micronutrients in Mexican children in 2006.
Shamah-Levy, Teresa; Villalpando, Salvador; Jáuregui, Alejandra; Rivera, Juan A
2012-01-01
To present an overview of micronutrient status of Mexican children in 2006. Data on iron, zinc, folate and vitamin B12 deficiencies and low serum copper and magnesium were gathered and critically analyzed from the 2006 National Health and Nutrition Survey. Iron deficiency is still the main nutritional deficiency in children (13%-26%). Zinc deficiency was high in all age groups (≈25%) but reduced 5.6 PP in children <5 y from 1999 to 2006. Folate deficiency was 3.2% and vitamin B12 deficiency 7.7% in children. Low serum magnesium and copper were high (22.6% and 30.6%, respectively). The prevalence of iron deficiency seems to be lowering, and zinc deficiency has reduced in Mexican children. A high prevalence of copper and magnesium deficiencies warrants further research on their public health implications.
Anemia and iron deficiency before and after bariatric surgery.
Salgado, Wilson; Modotti, Caue; Nonino, Carla Barbosa; Ceneviva, Reginaldo
2014-01-01
Iron deficiency and anemia are changes often associated with obesity. Bariatric surgery is responsible for increasing the iron loss and reducing its absorption. The objective of this study was to evaluate anemia and iron deficiency before and after bariatric surgery and to relate them to possible predisposing factors. A retrospective study was conducted on obese patients submitted to open Roux-en-Y gastric bypass, in which clinical and laboratory data were obtained up to 48 months postoperatively. Patients were divided into groups according to the presence or absence of anemia and to the presence or absence of iron deficiency (even without anemia), and all data were compared between these groups. Preoperatively, 21.5% of patients had anemia and 20% had iron deficiency. The number of patients with anemia did not vary through the 4 years of the study, but ferritin levels significantly decreased with time (P<.01). Younger patients and patients with greater weight loss had a higher incidence of anemia. Female gender was a variable associated with a greater incidence of iron deficiency. Anemia and iron deficiency are frequent in obese patients and must be treated before surgery. Medical and nutritional surveillance is important in the postoperative period of bariatric surgery. Management of each condition must be directed at correcting the 2 major sources of iron deficiency and anemia: food intolerance (mostly meat intolerance) and losses (frequently due to menstruation). These are the factors more related to iron deficient anemia. Copyright © 2014 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
Phuke, Rahul M.; Anuradha, Kotla; Radhika, Kommineni; Jabeen, Farzana; Anuradha, Ghanta; Ramesh, Thatikunta; Hariprasanna, K.; Mehtre, Shivaji P.; Deshpande, Santosh P.; Anil, Gaddameedi; Das, Roma R.; Rathore, Abhishek; Hash, Tom; Reddy, Belum V. S.; Kumar, Are Ashok
2017-01-01
The low grain iron and zinc densities are well documented problems in food crops, affecting crop nutritional quality especially in cereals. Sorghum is a major source of energy and micronutrients for majority of population in Africa and central India. Understanding genetic variation, genotype × environment interaction and association between these traits is critical for development of improved cultivars with high iron and zinc. A total of 336 sorghum RILs (Recombinant Inbred Lines) were evaluated for grain iron and zinc concentration along with other agronomic traits for 2 years at three locations. The results showed that large variability exists in RIL population for both micronutrients (Iron = 10.8 to 76.4 mg kg−1 and Zinc = 10.2 to 58.7 mg kg−1, across environments) and agronomic traits. Genotype × environment interaction for both micronutrients (iron and zinc) was highly significant. GGE biplots comparison for grain iron and zinc showed greater variation across environments. The results also showed that G × E was substantial for grain iron and zinc, hence wider testing needed for taking care of G × E interaction to breed micronutrient rich sorghum lines. Iron and zinc concentration showed high significant positive correlation (across environment = 0.79; p < 0.01) indicating possibility of simultaneous effective selection for both the traits. The RIL population showed good variability and high heritabilities (>0.60, in individual environments) for Fe and Zn and other traits studied indicating its suitability to map QTL for iron and zinc. PMID:28529518
Iron Intake and Dietary Sources in the Spanish Population: Findings from the ANIBES Study
Samaniego-Vaesken, Mᵃ de Lourdes; Partearroyo, Teresa; Olza, Josune; Aranceta-Bartrina, Javier; Gil, Ángel; González-Gross, Marcela; Ortega, Rosa M.; Serra-Majem, Lluis; Varela-Moreiras, Gregorio
2017-01-01
Background: Iron deficiency is one of the most common nutritional problems in the world. It is frequent in both developed and developing countries and mainly affects women of childbearing age and children. Methods: Results were derived from the ANIBES cross-sectional study using a nationally-representative sample of the Spanish population (9–75 years, n = 2009). A three-day dietary record, collected by means of a tablet device, was used to obtain information about food and beverage consumption and leftovers. Results: Total median dietary iron intake was 9.8 mg/day for women and 11.3 mg/day for men. Highest intakes were observed among plausible adolescent reporters (13.3 mg/day), followed by adults (13.0 mg/day), elderly (12.7 mg/day), and children (12.2 mg/day). Prevalence of adequacy for iron intakes as assessed by EFSA criteria was higher than for the Spanish Recommended Iron Intake values in all age groups. Females had lower adequacy than males for both criteria, 27.3% and 17.0% vs. 77.2% and 57.0% respectively. Cereals or grains (26.7%–27.4%), meats and derivatives (19.8%–22.7%), and vegetables (10.3%–12.4%) were the major iron contributors. Conclusion: Higher iron intakes were observed in adolescents and were highest for non-heme iron. The prevalence of adequate iron intake according to EFSA criteria was higher than compared to national recommendations, and women had the lowest intakes. Therefore, there is a need to define standard dietary reference intake to determine inadequate iron intakes in the Spanish population. PMID:28264431
Iron Intake and Dietary Sources in the Spanish Population: Findings from the ANIBES Study.
Samaniego-Vaesken, Mᵃ de Lourdes; Partearroyo, Teresa; Olza, Josune; Aranceta-Bartrina, Javier; Gil, Ángel; González-Gross, Marcela; Ortega, Rosa M; Serra-Majem, Lluis; Varela-Moreiras, Gregorio
2017-02-27
Iron deficiency is one of the most common nutritional problems in the world. It is frequent in both developed and developing countries and mainly affects women of childbearing age and children. Results were derived from the ANIBES cross-sectional study using a nationally-representative sample of the Spanish population (9-75 years, n = 2009). A three-day dietary record, collected by means of a tablet device, was used to obtain information about food and beverage consumption and leftovers. Total median dietary iron intake was 9.8 mg/day for women and 11.3 mg/day for men. Highest intakes were observed among plausible adolescent reporters (13.3 mg/day), followed by adults (13.0 mg/day), elderly (12.7 mg/day), and children (12.2 mg/day). Prevalence of adequacy for iron intakes as assessed by EFSA criteria was higher than for the Spanish Recommended Iron Intake values in all age groups. Females had lower adequacy than males for both criteria, 27.3% and 17.0% vs. 77.2% and 57.0% respectively. Cereals or grains (26.7%-27.4%), meats and derivatives (19.8%-22.7%), and vegetables (10.3%-12.4%) were the major iron contributors. Higher iron intakes were observed in adolescents and were highest for non-heme iron. The prevalence of adequate iron intake according to EFSA criteria was higher than compared to national recommendations, and women had the lowest intakes. Therefore, there is a need to define standard dietary reference intake to determine inadequate iron intakes in the Spanish population.
Food intake and nutritional status of preschool from maroon communities of the state Alagoas, Brazil
Leite, Fernanda Maria de B.; Ferreira, Haroldo da Silva; Bezerra, Myrtis Katille de A.; de Assunção, Monica Lopes; Horta, Bernardo Lessa
2013-01-01
OBJECTIVE: To assess the dietary intake and the nutritional status of children from Alagoas maroon communities. METHODS: Cross-sectional study involving 724 children (12-60 months) from 39 Alagoas maroon communities. The nutritional status was investigated by anthropometric, biochemical (hemoglobin) and food consumption indicators. RESULTS: The prevalence of anemia, stunting and obesity were, respectively, 48.0, 9.7 and 6.0%. The children had a monotonous eating pattern and a considerable prevalence of inadequate intake of zinc (17.0%), folate (18.1%), iron (20.2%) and vitamins A (29.7%) and C (34.3%). Compared to the other socioeconomic classes, the E class children had lower average consumption (p<0.05) for energy, carbohydrate, vitamins A and C, folate, iron, zinc and phosphorus. CONCLUSIONS: Anemia is a serious Public Health problem. The prevalence of chronic malnutrition and obesity were similar to those observed for the children in the State as a whole, where a nutritional transition process is occuring. There was a high prevalence of inadequate food intake risk for zinc, folate, iron and vitamins A and C, suggesting the need for nutritional education actions. PMID:24473948
Yin, Shi-an; Zhao, Xian-feng; Zhao, Li-yun; Fu, Ping; Zhang, Jian; Ma, Guan-sheng
2010-08-01
To evaluate the effects of Wenchuan Earthquake on the nutritional status and the prevalence of nutritional anemia, vitamin A deficiency (VAD) and vitamin D deficiency among reproductive women (15 - 44 years old) in the disaster areas one year after the Earthquake. A nutritional survey was conducted in 3 counties in April 2009, one year after the Earthquake. Two towns from each county were selected as study sites, and this survey recruited 58 pregnant, 66 lactating and 242 non-pregnant-non-lactating women. A comparison was made to the results of 2002 Chinese Nutrition and Health Survey. The cereals and roots intakes of the pregnant, lactating and non-pregnant-non-lactating women living in the disaster area were (426.8 ± 271.8), (568.0 ± 306.1), and (483.0 ± 277.7) g/d respectively, which were almost the same results (486.8, 509.3 and 495.1 g/d, respectively) from 2002 National Nutrition and Health Survey. The fat and oil intakes were (41.9 ± 51.6), (55.5 ± 69.2), and (66.9 ± 125.7) g/d, respectively, which were also the same ad the results (45.2, 43.9 and 41.4 g/d, respectively) from 2002 National Nutrition and Health Survey. The intakes of meats and poultries were only (58.1 ± 67.7), (76.3 ± 218.7), and (23.9 ± 29.6) g/d respectively, which were much lower than the recommended food intakes from the Branch of Maternal and Child Nutrition of Chinese Nutrition Society. The vitamin A deficiency and marginal deficiency prevalence were 6.9% (24/347) and 18.2% (63/347), respectively. The deficiency and insufficiency of vitamin D was sum to 93.9% (323/344). The prevalence of anemia was 32.6% (112/344). 51.0% (171/335) reproductive women were iron deficient, and 61.6% (210/347) women were suffering zinc deficiency. The study findings indicated that the dietary structure was seriously effected by the Earthquake. The sources from animal and legume products were relatively low. The micronutrients nutritional status was poor. The vitamin A, vitamin D, and iron, zinc deficiencies were highly prevalent in the disaster area.
Sureira, Thaiz Mattos; Amancio, Olga Silverio; Pellegrini Braga, Josefina Aparecida
2012-08-01
This study evaluates the relationship between body iron losses and gains in artistic gymnastics female athletes. It shows that despite the low iron intake and exercise-induced hemolysis, iron deficiency or iron-deficiency anemia does not occur, but partial changes in the hematological profile do. The hypothesis that gymnasts' nutritional behavior contributes to anemia, which may be aggravated by exercise-induced hemolysis, led to this cross-sectional study, conducted with 43 female artistic gymnasts 6-16 yr old. The control group was formed by 40 nontraining girls, paired by age. Hemogram, serum iron, ferritin, soluble transferrin receptor, haptoglobin, total and fractional bilirubin, Type I urine, and parasitologic and occult fecal blood tests were evaluated. The athletes presented mean hematimetric and serum iron values (p = .020) higher than those of the control group. The bilirubin result discarded any hemolytic alteration in both groups. The haptoglobin results were lower in the athlete group (p = .002), confirming the incidence of exercise-induced hemolysis. Both groups presented low iron intake. The results suggest that artistic gymnastics practice leads to exercise-induced hemolysis and partially changes the hematological profile, although not causing iron deficiency or iron-deficiency anemia, even in the presence of low iron intake.
Pehrsson, P R; Moser-Veillon, P B; Sims, L S; Suitor, C W; Russek-Cohen, E
2001-01-01
Iron deficiency, a pervasive problem among low-income women of childbearing age, threatens maternal health and pregnancy outcomes. The Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) was designed to alleviate health problems and provides supplemental nutritious foods, nutrition education, and health care referrals. The aim of this study was to examine the benefits associated with participation in WIC in terms of biochemical tests of postpartum iron status in nonlactating women. WIC participants (n = 57) and eligible nonparticipants (n = 53), matched by race and age, were followed bimonthly over 6 mo postpartum. Finger stick blood samples (500 microL) were collected for measurement of plasma ferritin, transferrin receptor (TfR), and hemoglobin (Hb). The mean (+/-SE) Hb concentration of participants exceeded that of nonparticipants from months 2 through 6. At 6 mo, the mean Hb concentration of participants was significantly higher than that of nonparticipants (8.01+/-0.12 and 7.63+/-0.12 mmol/L, respectively; P< 0.05) and the prevalence of anemia was significantly lower (17% and 51%, respectively; P<0.05). TfR and ferritin concentrations (consistently within the reference ranges) and dietary iron intakes did not differ significantly between participants and nonparticipants and were not correlated with Hb concentrations. Our results suggest that WIC participants were significantly less likely to become anemic if uninterrupted postpartum participation lasted for 6 mo. The lack of correlation among iron status indicators suggests that the lower mean Hb concentration in nonparticipants at 6 mo may not have been related to improved iron status in participants but to other nutrient deficiencies or differences in access to health care and health and nutrition education.
APICAL LOCATION OF FERROPORTIN 1 IN AIRWAY EPITHELIA AND ITS ROLE IN IRON DETOXIFICATION IN THE LUNG
Ferroportin 1 (FPN1; aka MTP1, IREG1, and SLC40A1), which was originally identified as a basolateral iron transporter crucial for nutritional iron absorption in the intestine, is expressed in airway epithelia and upregulated when these cells are exposed to iron. Using immunofluor...
21 CFR 172.370 - Iron-choline citrate complex.
Code of Federal Regulations, 2010 CFR
2010-04-01
....370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline...
Motor development in 9-month-old infants in relation to cultural differences and iron status.
Angulo-Barroso, Rosa M; Schapiro, Lauren; Liang, Weilang; Rodrigues, Onike; Shafir, Tal; Kaciroti, Niko; Jacobson, Sandra W; Lozoff, Betsy
2011-03-01
Motor development, which allows infants to explore their environment, promoting cognitive, social, and perceptual development, can be influenced by cultural practices and nutritional factors, such as iron deficiency. This study compared fine and gross motor development in 209 9-month-old infants from urban areas of China, Ghana, and USA (African-Americans) and considered effects of iron status. Iron deficiency anemia was most common in the Ghana sample (55%) followed by USA and China samples. Controlling for iron status, Ghanaian infants displayed precocity in gross motor development and most fine-motor reach-and-grasp tasks. US African-Americans performed the poorest in all tasks except bimanual coordination and the large ball. Controlling for cultural site, iron status showed linear trends for gross motor milestones and fine motor skills with small objects. Our findings add to the sparse literature on infant fine motor development across cultures. The results also indicate the need to consider nutritional factors when examining cultural differences in infant development. Copyright © 2010 Wiley Periodicals, Inc.
Motor Development in 9-Month-Old Infants in Relation to Cultural Differences and Iron Status
Schapiro, Lauren; Liang, Weilang; Rodrigues, Onike; Shafir, Tal; Kaciroti, Niko; Jacobson, Sandra W.; Lozoff, Betsy
2011-01-01
Motor development, which allows infants to explore their environment, promoting cognitive, social, and perceptual development, can be influenced by cultural practices and nutritional factors, such as iron deficiency. This study compared fine and gross motor development in 209 9-month-old infants from urban areas of China, Ghana, and USA (African-Americans) and considered effects of iron status. Iron deficiency anemia was most common in the Ghana sample (55%) followed by USA and China samples. Controlling for iron status, Ghanaian infants displayed precocity in gross motor development and most fine-motor reach-and-grasp tasks. US African-Americans performed the poorest in all tasks except bimanual coordination and the large ball. Controlling for cultural site, iron status showed linear trends for gross motor milestones and fine motor skills with small objects. Our findings add to the sparse literature on infant fine motor development across cultures. The results also indicate the need to consider nutritional factors when examining cultural differences in infant development. PMID:21298634
Martínez, Danixa; Oyarzún, Ricardo; Pontigo, Juan Pablo; Romero, Alex; Yáñez, Alejandro J.; Vargas-Chacoff, Luis
2017-01-01
Iron deprivation is a nutritional immunity mechanism through which fish can limit the amount of iron available to invading bacteria. The aim of this study was to evaluate the modulation of iron metabolism genes in the liver and brain of sub-Antarctic notothenioid Eleginops maclovinus challenged with Piscirickettsia salmonis. The specimens were inoculated with two P. salmonis strains: LF-89 (ATCC® VR-1361™) and Austral-005 (antibiotic resistant). Hepatic and brain samples were collected at intervals over a period of 35 days. Gene expression (by RT-qPCR) of proteins involved in iron storage, transport, and binding were statistically modulated in infected fish when compared with control counterparts. Specifically, the expression profiles of the transferrin and hemopexin genes in the liver, as well as the expression profiles of ferritin-M, ferritin-L, and transferrin in the brain, were similar for both experimental groups. Nevertheless, the remaining genes such as ferritin-H, ceruloplasmin, hepcidin, and haptoglobin presented tissue-specific expression profiles that varied in relation to the injected bacterial strain and sampling time-point. These results suggest that nutritional immunity could be an important immune defense mechanism for E. maclovinus against P. salmonis injection. This study provides relevant information for understanding iron metabolism of a sub-Antarctic notothenioid fish. PMID:28974951
Bogard, Jessica R; Farook, Sami; Marks, Geoffrey C; Waid, Jillian; Belton, Ben; Ali, Masum; Toufique, Kazi; Mamun, Abdulla; Thilsted, Shakuntala H
2017-01-01
Malnutrition is one of the biggest challenges of the 21st century, with one in three people in the world malnourished, combined with poor diets being the leading cause of the global burden of disease. Fish is an under-recognised and undervalued source of micronutrients, which could play a more significant role in addressing this global challenge. With rising pressures on capture fisheries, demand is increasingly being met from aquaculture. However, aquaculture systems are designed to maximise productivity, with little consideration for nutritional quality of fish produced. A global shift away from diverse capture species towards consumption of few farmed species, has implications for diet quality that are yet to be fully explored. Bangladesh provides a useful case study of this transition, as fish is the most important animal-source food in diets, and is increasingly supplied from aquaculture. We conducted a temporal analysis of fish consumption and nutrient intakes from fish in Bangladesh, using nationally representative household expenditure surveys from 1991, 2000 and 2010 (n = 25,425 households), combined with detailed species-level nutrient composition data. Fish consumption increased by 30% from 1991-2010. Consumption of non-farmed species declined by 33% over this period, compensated (in terms of quantity) by large increases in consumption of farmed species. Despite increased total fish consumption, there were significant decreases in iron and calcium intakes from fish (P<0.01); and no significant change in intakes of zinc, vitamin A and vitamin B12 from fish, reflecting lower overall nutritional quality of fish available for consumption over time. Our results challenge the conventional narrative that increases in food supply lead to improvements in diet and nutrition. As aquaculture becomes an increasingly important food source, it must embrace a nutrition-sensitive approach, moving beyond maximising productivity to also consider nutritional quality. Doing so will optimise the complementary role that aquaculture and capture fisheries play in improving nutrition and health.
Role of Coordination and Chelation in Utilization of Nutritionally Essential Trace Elements.
BIOCHEMISTRY, *TRANSITION METALS), (*CHELATE COMPOUNDS, BIOCHEMISTRY), (*DIALYSIS, CHEMICAL ANALYSIS), NUTRITION , IRON, CHROMIUM, PHOSPHATES, AMINO ACIDS, HYDROXIDES, ALCOHOLS, PEPTIDES, MEMBRANES, LIQUID FILTERS
He, Wanling; Shohag, M J I; Wei, Yanyan; Feng, Ying; Yang, Xiaoe
2013-12-15
The present study compared the effects of four different forms of foliar iron (Fe) fertilizers on Fe concentration, bioavailability and nutritional quality of polished rice. The results showed that foliar fertilisation at the anthesis stage was an effective way to promote Fe concentration and bioavailability of polished rice, especially in case of DTPA-Fe. Compared to the control, foliar application of DTPA-Fe increased sulphur concentration and the nutrition promoter cysteine content, whereas decreased phosphorus concentration and the antinutrient phytic acid content of polished rice, as a result increased 67.2% ferrtin formation in Caco-2 cell. Moreover, foliar DTPA-Fe application could maintain amylase, protein and minerals quality of polished rice. According to the current study, DTPA-Fe is recommended as an excellent foliar Fe form for Fe biofortification program. Copyright © 2013 Elsevier Ltd. All rights reserved.
Papanikolaou, Yanni; Fulgoni, Victor L.
2017-01-01
Grain foods may play an important role in delivering nutrients to the diet of children and adolescents. The present study determined grain food sources of energy/nutrients in U.S. children and adolescents using data from the National Health and Nutrition Examination Survey, 2009–2012. Analyses of grain food sources were conducted using a 24-h recall in participants 2–18 years old (N = 6109). Sources of nutrients contained in grain foods were determined using U.S. Department of Agriculture nutrient composition databases and excluded mixed dishes. Mean energy and nutrient intakes from the total diet and from various grain foods were adjusted for the sample design using appropriate weights. All grains provided 14% ± 0.2% kcal/day (263 ± 5 kcal/day), 22.5% ± 0.3% (3 ± 0.1 g/day) dietary fiber, 39.3% ± 0.5% (238 ± 7 dietary folate equivalents (DFE)/day) folate and 34.9% ± 0.5% (5.6 ± 0.1 mg/day) iron in the total diet in children and adolescents. The current analyses showed that certain grain foods, in particular breads, rolls and tortillas, ready-to-eat cereals and quick breads and bread products, are meaningful contributors of folate, iron, thiamin, niacin and dietary fiber, a nutrient of public health concern as outlined by the 2015–2020 Dietary Guidelines for Americans. Thus, specific grain foods contribute to nutrient density and have the potential to increase the consumption of several under-consumed nutrients in children and adolescents. PMID:28230731
Nutritional support in patients with systemic sclerosis.
Ortiz-Santamaria, Vera; Puig, Celia; Soldevillla, Cristina; Barata, Anna; Cuquet, Jordi; Recasens, Asunción
2014-01-01
Systemic sclerosis (SSc) is a chronic multisystem autoimmune disease which involves the gastrointestinal tract in about 90% of cases. It may contribute to nutritional deterioration. To assess whether the application of a nutritional support protocol to these patients could improve their nutritional status and quality of life. Single center prospective study, performed on an outpatient basis, in a county hospital. The Malnutrition Universal Screening Tool (MUST) was used to screen risk for malnutrition. Health questionnaire SF-36 and the Hospital Anxiety and Depression Scale were used to assess quality of life and psychopathology respectively. Weight, height, energy and protein requirements, macronutrient intake and nutritional biochemical parameters were evaluated. Nutritional intervention was performed in patients at risk for malnutrition. Of the 72 patients, 12.5% were at risk for malnutrition. Iron deficiency anemia (18.35%) and vitamin D deficiency (54%) were the most frequently observed nutritional deficits. The questionnaires on psychopathology and quality of life showed a high prevalence of anxiety and depression, and lower level poor quality of life in the physical and mental component. No significant improvements were observed in the weight, food intake, nutritional biochemical parameters, psychopathology and quality of life follow-up. Dietary intervention was able to maintain body weight and food intake. Iron deficiency anemia and vitamin D deficiency improved with iron and vitamine D supplements. No deterioration was observed in psychological assessment or quality of life. Studies with larger numbers of patients are needed to assess the efficacy of this intervention. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
De la Cruz-Góngora, Vanessa; Villalpando, Salvador; Shamah-Levy, Teresa
2018-01-01
To describe the prevalence of anemia and con-sumption of iron rich groups among Mexican children and adolescents who participated in the Halfway National Health and Nutrition Survey, 2016. Our study sample included children and adolescents who provided full capillary hemoglobin data. Anemia was defined accord-ing to WHO criteria. Logistic regression models were used to explore the association among consumption of iron-rich food groups, sociodemographic characteristics and anemia. In 2016, the prevalence of anemia was 26.9% in children aged 1 to 4 years old, 12.5% in those aged 5 to 11, and 9.6% in adolescents aged 12 to 19 years. Rates were the highest among females who lived in the southern and central parts of Mexico, belonged to an indigenous ethnic group and fell within the first tercile of the Household Wealth Index. Consumption of beef by preschoolers and viscera by ado-lescents was associated with lower risk for anemia; higher risk was associated with consumption of Liconsa milk and non-heme iron by preschoolers. Anemia is highly prevalent in Mexican children and adolescents, affect-ing mainly the poorest and youngest populations. Sources of heme iron are the principal dietary factor associated with low risk for anemia.
Roberts, Joseph L; Stein, Aryeh D
2017-03-01
A large body of evidence suggests that the first 1000 d from conception is a critical window in which interventions to address malnutrition will be most effective, but little is known about the impact on linear growth of nutritional interventions in children ≥2 y of age. The aim of this analysis was to evaluate the effectiveness of several nutrition-based interventions, specifically iron, zinc, calcium, iodine, vitamin A, multiple (≥2) micronutrients, protein, and food, at improving growth in children ≥2 y of age. A systematic search of MEDLINE and EMBASE retrieved 7794 articles. A total of 69 studies met prespecified inclusion criteria. Baseline height-for-age z score, age, nutrient dose, and study duration were examined as potential sources of heterogeneity. Zinc (mean effect size: 0.15; 95% CI: 0.06, 0.24), vitamin A (0.05; 95% CI: 0.01, 0.09), multiple micronutrients (0.26; 95% CI: 0.13, 0.39), and protein (0.68; 95% CI: 0.30, 1.05) had significant positive effects on linear growth, with baseline height-for-age z score as a significant inverse predictor of the effect size. Iron, calcium, iodine, and food-based interventions had no significant effect on growth. Age at baseline, study duration, and dose were not related to effect size for any nutrient examined. These findings suggest that zinc, vitamin A, multiple micronutrients, and protein interventions delivered after 24 mo of age can have a positive effect on linear growth, especially in populations that have experienced growth failure. © 2017 American Society for Nutrition.
Identification of candidate genes underlying an iron efficiency QTL in soybean
USDA-ARS?s Scientific Manuscript database
Prevalent on calcareous soils in the United States and abroad, iron deficiency is among the most common and severe nutritional stresses in plants. In soybean commercial plantings, identification and use of iron efficient genotypes has proven to be the best form of managing this soil-related plant st...
... intestinal wall and suck blood, which results in iron deficiency anemia and protein loss. Adult worms and larvae ... problems that may result from hookworm infection include: Iron deficiency anemia , caused by loss of blood Nutritional deficiencies ...
Perignon, Marlene; Fiorentino, Marion; Kuong, Khov; Burja, Kurt; Parker, Megan; Sisokhom, Sek; Chamnan, Chhoun; Berger, Jacques; Wieringa, Frank T
2014-01-01
Nutrition is one of many factors affecting the cognitive development of children. In Cambodia, 55% of children <5 y were anemic and 40% stunted in 2010. Currently, no data exists on the nutritional status of Cambodian school-aged children, or on how malnutrition potentially affects their cognitive development. To assess the anthropometric and micronutrient status (iron, vitamin A, zinc, iodine) of Cambodian schoolchildren and their associations with cognitive performance. School children aged 6-16 y (n = 2443) from 20 primary schools in Cambodia were recruited. Anthropometry, hemoglobin, serum ferritin, transferrin receptors, retinol-binding protein and zinc concentrations, inflammation status, urinary iodine concentration and parasite infection were measured. Socio-economic data were collected in a sub-group of children (n = 616). Cognitive performance was assessed using Raven's Colored Progressive Matrices (RCPM) and block design and picture completion, two standardized tests from the Wechsler Intelligence Scale for Children (WISC-III). The prevalence of anemia, iron, zinc, iodine and vitamin A deficiency were 15.7%; 51.2%, 92.8%, 17.3% and 0.7% respectively. The prevalence of stunting was 40.0%, including 10.9% of severe stunting. Stunted children scored significantly lower than non-stunted children on all tests. In RCPM test, boys with iron-deficiency anemia had lower scores than boys with normal iron status (-1.46, p<0.05). In picture completion test, children with normal iron status tended to score higher than iron-deficient children with anemia (-0.81; p = 0.067) or without anemia (-0.49; p = 0.064). Parasite infection was associated with an increase in risk of scoring below the median value in block design test (OR = 1.62; p<0.05), and with lower scores in other tests, for girls only (both p<0.05). Poor cognitive performance of Cambodian school-children was multifactorial and significantly associated with long-term (stunting) and current nutritional status indicators (iron status), as well as parasite infection. A life-cycle approach with programs to improve nutrition in early life and at school-age could contribute to optimal cognitive performance.
Scott, Samuel P; De Souza, Mary Jane; Koehler, Karsten; Murray-Kolb, Laura E
2017-01-01
Academic success is a key determinant of future prospects for students. Cognitive functioning has been related to nutritional and physical factors. Here, we focus on iron status and aerobic fitness in young-adult female students given the high rate of iron deficiency and declines in fitness reported in this population. We sought to explore the combined effects of iron status and fitness on academic success and to determine whether these associations are mediated by cognitive performance. Women (n = 105) aged 18-35 y were recruited for this cross-sectional study. Data were obtained for iron biomarkers, peak oxygen uptake (VO 2peak ), grade point average (GPA), performance on computerized attention and memory tasks, and motivation and parental occupation. We compared the GPA of groups 1) with low compared with normal iron status, 2) among different fitness levels, and 3) by using a combined iron status and fitness designation. Mediation analysis was applied to determine whether iron status and VO 2peak influence GPA through attentional and mnemonic function. After controlling for age, parental occupation, and motivation, GPA was higher in women with normal compared with low ferritin (3.66 ± 0.06 compared with 3.39 ± 0.06; P = 0.01). In analyses of combined effects of iron status and fitness, GPA was higher in women with normal ferritin and higher fitness (3.70 ± 0.08) than in those with 1) low ferritin and lower fitness (3.36 ± 0.08; P = 0.02) and 2) low ferritin and higher fitness (3.44 ± 0.09; P = 0.04). Path analysis revealed that working memory mediated the association between VO 2peak and GPA. Low iron stores and low aerobic fitness may prevent female college students from achieving their full academic potential. Investigators should explore whether integrated lifestyle interventions targeting nutritional status and fitness can benefit cognitive function, academic success, and postgraduate prospects. © 2017 American Society for Nutrition.
Mineral Properties and Dietary Value of Raw and Processed Stinging Nettle (Urtica dioica L.).
Rutto, Laban K; Xu, Yixiang; Ramirez, Elizabeth; Brandt, Michael
2013-01-01
Stinging nettle (Urtica dioica L.) has a long history of usage and is currently receiving attention as a source of fiber and alternative medicine. In many cultures, nettle is also eaten as a leafy vegetable. In this study, we focused on nettle yield (edible portion) and processing effects on nutritive and dietary properties. Actively growing shoots were harvested from field plots and leaves separated from stems. Leaf portions (200 g) were washed and processed by blanching (1 min at 96-98°C) or cooking (7 min at 98-99°C) with or without salt (5 g·L(-1)). Samples were cooled immediately after cooking and kept in frozen storage before analysis. Proximate composition, mineral, amino acid, and vitamin contents were determined, and nutritive value was estimated based on 100 g serving portions in a 2000 calorie diet. Results show that processed nettle can supply 90%-100% of vitamin A (including vitamin A as β-carotene) and is a good source of dietary calcium, iron, and protein. We recommend fresh or processed nettle as a high-protein, low-calorie source of essential nutrients, minerals, and vitamins particularly in vegetarian, diabetic, or other specialized diets.
Serrano Reina, José Antonio; Nestares Pleguezuelo, Teresa; Muñoz Alférez, Ma José; Díaz Castro, Javier; López Aliaga, Ma Inmaculada
2015-10-01
in spite of the high incidence/prevalence of iron deficiency anemia (IDA) and the beneficial effects derived from the consumption of goat milk, scarce is known about the recovery of the anemia following a balanced diet accompanied by the intake of goat milk of goat. The aim of the current study is to assess, in rats with experimentally induced nutritional iron deficiency anemia, the effects of goat or cow milk-based diets, supplied during 30 days, on the recovery of the anemia and the efficiency of regeneration of the hemoglobin. 40 male Wistar albino rats newly weaned were divided at random in two experimental groups and they were fed ad libitum for 40 days with AIN-93G diet, either with normal iron content (control group, 45 mg/kg diet), or low iron content (anaemic group, 5 mg/kg diet). Samples of blood form the caudal vein were collected for the hematologic control of the anemia. Later, both experimental groups (control and iron deficient) were fed for 30 days with goat or cow milk- based diets. After finishing the experimental period and previous anesthesia the animals were withdrawn by canulation of the abdominal aorta, and the obtained blood was gathered in tubes with EDTA as anticoagulant for the later determination of hematologic parameters and the efficiency of regeneration of the hemoglobin. after the consumption of a diet with low iron content during 40 days, the rats were anaemic, with a concentration of hemoglobin, hematocrit, serum iron, mean corpuscular volume (MCV), serum ferritin and low transferrin (p < 0.001), whereas the levels of platelets and the total iron binding capacity (TIBC) were raised (p < 0.001), findings consistent with the anemia induced experimentally in the animals. The efficiency of regeneration of the hemoglobin was higher in control and anaemic rats fed goat milk-based diet in comparison with those fed cow milk-based diet (p < 0.001) due to, partly, to the major levels of serum iron and hemoglobin, and to the best nutritive utilization of iron in the animals that consumed the goat milk-based diet thanks to the excellent nutritional characteristics of this type of milk. the consumption during 30 days of goat or cow milk-based diets favors the recovery of the iron deficiency anemia, especially with the goat milk, due to the major efficiency of regeneration of the hemoglobin, index that shows the quantity of iron of the diet used for the synthesis of hemoglobin. Therefore, it would be recommendable the consumption of goat milk in the context of a balanced diet in healthy populations and, especially in those at risk of suffering iron deficiency. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes.
Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela
2017-01-01
Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti- Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa . Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu , primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.
Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes
Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela
2017-01-01
Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration. PMID:28184354
Valenzuela-Muñoz, V; Boltaña, S; Gallardo-Escárate, C
2017-09-01
Salmon species cultured in Chile evidence different levels of susceptibility to the sea louse Caligus rogercresseyi. These differences have mainly been associated with specific immune responses. Moreover, iron regulation seems to be an important mechanism to confer immunity during the host infestation. This response called nutritional immunity has been described in bacterial infections, despite that no comprehensive studies involving in marine ectoparasites infestation have been reported. With this aim, we analysed the transcriptome profiles of Atlantic and coho salmon infected with C. rogercresseyi to evidence modulation of the iron metabolism as a proxy of nutritional immune responses. Whole transcriptome sequencing was performed in samples of skin and head kidney from Atlantic and coho salmon infected with sea lice. RNA-seq analyses revealed significant upregulation of transcripts in both salmon species at 7 and 14 dpi in skin and head kidney, respectively. However, iron regulation transcripts were differentially modulated, evidencing species-specific expression profiles. Genes related to heme degradation and iron transport such as hepcidin, transferrin and haptoglobin were primary upregulated in Atlantic salmon; meanwhile, in coho salmon, genes associated with heme biosynthesis were strongly transcribed. In summary, Atlantic salmon, which are more susceptible to infestation, presented molecular mechanisms to deplete cellular iron availability, suggesting putative mechanisms of nutritional immunity. In contrast, resistant coho salmon were less affected by sea lice, mainly activating pro-inflammatory mechanisms to cope with infestation. © 2017 John Wiley & Sons Ltd.
Anemia, Iron Deficiency and Iodine Deficiency among Nepalese School Children.
Khatiwada, Saroj; Lamsal, Madhab; Gelal, Basanta; Gautam, Sharad; Nepal, Ashwini Kumar; Brodie, David; Baral, Nirmal
2016-07-01
To assess iodine and iron nutritional status among Nepalese school children. A cross-sectional, community based study was conducted in the two districts, Ilam (hilly region) and Udayapur (plain region) of eastern Nepal. A total of 759 school children aged 6-13 y from different schools within the study areas were randomly enrolled. A total of 759 urine samples and 316 blood samples were collected. Blood hemoglobin level, serum iron, total iron binding capacity and urinary iodine concentration was measured. Percentage of transferrin saturation was calculated using serum iron and total iron binding capacity values. The mean level of hemoglobin, serum iron, total iron binding capacity, transferrin saturation and median urinary iodine excretion were 12.29 ± 1.85 g/dl, 70.45 ± 34.46 μg/dl, 386.48 ± 62.48 μg/dl, 19.94 ± 12.07 % and 274.67 μg/L respectively. Anemia, iron deficiency and iodine deficiency (urinary iodine excretion <100 μg/L) were present in 34.5 %, 43.4 % and 12.6 % children respectively. Insufficient urinary iodine excretion (urinary iodine excretion <100 μg/L) was common in anemic and iron deficient children. Iron deficiency and anemia are common in Nepalese children, whereas, iodine nutrition is more than adequate. Low urinary iodine excretion was common in iron deficiency and anemia.
A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat.
Uauy, Cristobal; Distelfeld, Assaf; Fahima, Tzion; Blechl, Ann; Dubcovsky, Jorge
2006-11-24
Enhancing the nutritional value of food crops is a means of improving human nutrition and health. We report here the positional cloning of Gpc-B1, a wheat quantitative trait locus associated with increased grain protein, zinc, and iron content. The ancestral wild wheat allele encodes a NAC transcription factor (NAM-B1) that accelerates senescence and increases nutrient remobilization from leaves to developing grains, whereas modern wheat varieties carry a nonfunctional NAM-B1 allele. Reduction in RNA levels of the multiple NAM homologs by RNA interference delayed senescence by more than 3 weeks and reduced wheat grain protein, zinc, and iron content by more than 30%.
[Nutritional characterization of produced fish for human consumption in Bucaramanga, Colombia].
Perea, Aide; Gómez, Elieth; Mayorga, Yamile; Triana, Cora Yohanna
2008-03-01
This research involves the nutritional characterization of the most commonly cultivated fish in the region. The species under study were: Rainbow trout (Salmo gairdnerii), tilapia roja (Oreocliromis sp), cachama blanca (Piaractus brachypomus), bocachico (Prochilodus reticulatus magdalenae) and catfish (Pseudoplatystoma faciatum). A sea fish, coho Salmon (Oncorhynchus kisutch), was used as reference because it is the imported species most used in the region, and it also contains n-3 fatty acids. For each fish sample moisture, ash, protein content, total fat, minerals (iron, calcium and phosphorous) and a fatty acid profile were determined. Results show a total protein content in between 16.4 and 22.6 g/100 g fillet for fresh water fish. Total fat amounts for trout are the highest (8.1 g/100 g fillet), while catfish has the lowest fat content (0.4 g/100 g fillet). Trout was found to be the most important source of n-3 fatty acids (EPA+DHA) and phosphorous, with values ranging from 0.25% to 0.52%, and 250 to 346 mg/100 g fillet, respectively. Catfish and trout exhibited the highest iron content, with values ranging from 3 to 6mg/100 g fillet. Salmon, on the other hand, showed a high n-3 fatty acid content of 1.16% to 2.25%, when compared to fresh water fish. Calcium content is low in all species under scrutiny. Fresh water fish, other than trout, show no significant amount of n-3 fatty acids. However, all of them are a good source of protein. The obtained results allowed to determine the profile of oily acids of produced fish for human consumption in the region, demonstrating that the trout is the species with major quantity of oily acids n-3 specially DHA and of the minerals the phosphorus. Other species (kinds) catfish, bocachico, tilapia and cachama, are not a source of oily acids n-3, but they are an important source of protein.
Functional Significance of Iron Deficiency. Annual Nutrition Workshop Series, Volume III.
ERIC Educational Resources Information Center
Enwonwu, Cyril O., Ed.
Iron deficiency anemia impairs cognitive performance, physical capacity, and thermoregulation. Recent evidence suggests that these functional impairments are also evident in subclinical nonanemic iron deficiency. Very little is known about the relevance of the latter to the health of blacks, who have been shown to have the highest prevalence of…
NASA Astrophysics Data System (ADS)
Sedwick, P. N.; Bernhardt, P. W.; Mulholland, M. R.; Najjar, R. G.; Blumen, L. M.; Sohst, B. M.; Sookhdeo, C.; Widner, B.
2018-04-01
To assess phytoplankton nutritional status in seasonally oligotrophic waters of the southern Mid-Atlantic Bight, and the potential for rain to stimulate primary production in this region during summer, shipboard bioassay experiments were performed using natural seawater and phytoplankton collected north and south of the Gulf Stream. Bioassay treatments comprised iron, nitrate, iron + nitrate, iron + nitrate + phosphate, and rainwater. Phytoplankton growth was inferred from changes in chlorophyll a, inorganic nitrogen, and carbon-13 uptake, relative to unamended control treatments. Results indicated the greatest growth stimulation by iron + nitrate + phosphate, intermediate growth stimulation by rainwater, modest growth stimulation by nitrate and iron + nitrate, and no growth stimulation by iron. Based on these data and analysis of seawater and atmospheric samples, nitrogen was the proximate limiting nutrient, with a secondary limitation imposed by phosphorus. Our results imply that summer rain events increase new production in these waters by contributing nitrogen and phosphorus, with the availability of the latter setting the upper limit on rain-stimulated new production.
[Iron nutrition in Mapuche infants fed with human milk (2d phase)].
Franco, E; Hertrampf, E; Rodríguez, E; Illanes, J C; Palacios, L; Llaguno, S; Lettelier, A
1990-01-01
Blood hemoglobin, serum iron, total iron binding capacity (TIBC) and serum ferritin were measured in 140 healthy rural mapuche (southern Chile's indigenous ethnic group) infants aged 8 to 15 months: 90 had been exclusively breast fed for the first 5 or 6 months of life, then solid foods were introduced but cow's milk was never given to them. The remaining 50, which were all weaned at nearly 4 months of age and then given cow's milk and solid foods at the corresponding age, were designated as controls. Anemia was detected in 4.5% of breast fed infants and in 38% of controls. Evidence of iron deficient erythropoiesis was found in 5% and 81% of cases and controls, respectively. Human milk apparently protects this ethnic group from iron deficiency anemia and this protection seems to be better in mapuche infants than in other groups of chilean infants, because these late have shown 30% incidence of anemia around the first year of life in other studies. More studies on differences in iron nutritional state among mapuche and non mapuche are needed and are under way.
Abid, Nabeela; Khatoon, Asia; Maqbool, Asma; Irfan, Muhammad; Bashir, Aftab; Asif, Irsa; Shahid, Muhammad; Saeed, Asma; Brinch-Pedersen, Henrik; Malik, Kauser A
2017-02-01
Phytate is a major constituent of wheat seeds and chelates metal ions, thus reducing their bioavailability and so the nutritional value of grains. Transgenic plants expressing heterologous phytase are expected to enhance degradation of phytic acid stored in seeds and are proposed to increase the in vitro bioavailability of mineral nutrients. Wheat transgenic plants expressing Aspergillus japonicus phytase gene (phyA) in wheat endosperm were developed till T 3 generation. The transgenic lines exhibited 18-99 % increase in phytase activity and 12-76 % reduction of phytic acid content in seeds. The minimum phytic acid content was observed in chapatti (Asian bread) as compared to flour and dough. The transcript profiling of phyA mRNA indicated twofold to ninefold higher expression as compared to non transgenic controls. There was no significant difference in grain nutrient composition of transgenic and non-transgenic seeds. In vitro bioavailability assay for iron and zinc in dough and chapatti of transgenic lines revealed a significant increase in iron and zinc contents. The development of nutritionally enhanced cereals is a step forward to combat nutrition deficiency for iron and zinc in malnourished human population, especially women and children.
Inflammatory Bowel Disease and Nutrition
... iron is better if is it taken with vitamin C, so have your child take the iron with some orange juice or other beverage fortified with Vitamin C. Your child’s doctor may also recommend additional folate. ...
Calcium, Vitamin D, Iron, and Folate Messages in Three Canadian Magazines.
Cooper, Marcia; Zalot, Lindsay; Wadsworth, Laurie A
2014-12-01
Data from the Canadian Community Health Survey showed that calcium, vitamin D, iron, and folate are nutrients of concern for females 19-50 years of age. The study objectives were to assess the quantity, format, and accuracy of messages related to these nutrients in selected Canadian magazines and to examine their congruency with Canadian nutrition policies. Using content analysis methodology, messages were coded using a stratified sample of a constructed year for Canadian Living, Chatelaine, and Homemakers magazines (n = 33) from 2003-2008. Pilot research was conducted to assess inter-coder agreement and to develop the study coding sheet and codebook. The messages identified (n = 595) averaged 18 messages per magazine issue. The most messages were found for calcium, followed by folate, iron, and vitamin D, and the messages were found primarily in articles (46%) and advertisements (37%). Overall, most messages were coded as accurate (82%) and congruent with Canadian nutrition policies (90%). This research demonstrated that the majority of messages in 3 Canadian magazines between 2003 and 2008 were accurate and reflected Canadian nutrition policies. Because Canadian women continue to receive much nutrition information via print media, this research provides important insights for dietitians into media messaging.
Papillard-Marechal, Solesne; Sznajder, Marc; Hurtado-Nedelec, Margarita; Alibay, Yasmin; Martin-Schmitt, Caroline; Dehoux, Monique; Westerman, Mark; Beaumont, Carole; Chevallier, Bertrand; Puy, Herve; Stheneur, Chantal
2012-03-01
Only a few studies based on small cohorts have been carried out on iron status in anorexia nervosa (AN) patients. The aim of this study was to evaluate the role of hepcidin in hyperferritinemia in AN adolescents. Twenty-seven adolescents hospitalized for AN in the pediatric inpatient unit of Ambroise Paré Academic Hospital were enrolled in the study. The control group comprised 11 patients. Hematologic variables and markers of iron status, including serum hepcidin, were measured before and after nutritional rehabilitation. The mean age of patients was 14.4 y. Except for 2 AN patients and 1 control patient, all patients presented normal hemoglobin, vitamin B-12, and folate concentrations. Markers of inflammation and cytokines were normal throughout the study. None of the muscular lysis markers were elevated. Most AN patients had normal serum iron concentrations on admission. Serum ferritin concentrations were significantly higher in patients than in control subjects (198 compared with 49 μg/L, respectively; P < 0.001). The median hepcidin concentration was significantly higher in AN patients than in the control group (186.5 compared with 39.5 μg/L, respectively; P = 0.002). There was a highly significant correlation between ferritinemia and serum hepcidin concentrations (P < 0.0001). After nutritional rehabilitation, a significant reduction was observed (P = 0.004) in serum ferritin. Serum hepcidin analyzed in a smaller number of patients also returned to within the normal range. Hepcidin and ferritin concentrations were higher in the serum of AN patients, without any evidence of iron overload or inflammation. These concentrations returned to normal after nutritional rehabilitation. These results suggest that nutritional stress induced by malnourishment in the hepatocyte could be yet another mechanism that regulates hepcidin.
Gibson, Sigrid
2003-12-01
To examine associations between breakfast cereal consumption and the dietary habits, nutrient intakes and nutritional status of young people, considering both nutrient adequacy and safety issues (fortification). Using archived data from 1688 children in the (British) National Diet and Nutrition Survey of Young People aged 4 to 18 years, nutrient intakes and status were compared across thirds of breakfast cereal consumption (T1 to T3), adjusted for age and energy intake. Cereals provided on average 2%, 6% and 12% of energy in T1, T2 and T3, respectively, for boys; 1%, 4% and 10%, respectively, for girls. Intakes of iron, B vitamins and vitamin D were around 20-60% higher in T3 compared with T1, with significant linear relationships observed for iron, thiamin, riboflavin and folate (T1
Duque, Ximena; Vilchis, Jenny; Mera, Robertino; Trejo-Valdivia, Belem; Goodman, Karen J.; Mendoza, Maria-Eugenia; Navarro, Fabiola; Roque, Victoria; Moran, Segundo; Torres, Javier; Correa, Pelayo
2013-01-01
Objectives The aim of the present study was to estimate the incidence and spontaneous clearance rate of Helicobacter pylori infection and the effect of some variables on these outcomes in schoolchildren. Methods From May 2005 to December 2010, 718 schoolchildren enrolled in 3 public boarding schools in Mexico City participated in the follow-up. At the beginning of the study and every 6 months thereafter, breath samples were taken to detect H pylori infection; blood samples and anthropometric measurements were taken to evaluate nutritional status. Data on sociodemographic characteristics were collected. Results The prevalence of H pylori infection was 38%. The incidence rate was 6.36%/year. Schoolchildren with anemia or iron deficiency at the beginning of the study (who received iron supplements) showed a higher infection acquisition rate than those with normal iron nutritional status, hazard ratio (HR) 12.52 (95% confidence interval [CI] 4.01%–39.12%), P <0.001 and HR 2.05 (95% CI 1.09%–3.87%), P = 0.027, respectively. The spontaneous clearance rate of the infection was 4.74%/year. The spontaneous clearance rate was higher in children who had iron deficiency (who received iron supplements), HR 5.02 (95% CI 1.33%–18.99%), P = 0.017, compared with those with normal nutritional iron status. It was lower in schoolchildren with ≥2 siblings compared with schoolchildren with 1 or no siblings, HR 0.23 (95% CI 0.08%–0.63%), P = 0.004. Conclusions H pylori infection status is dynamic in schoolchildren. Variables related to health status and infection transmission, such as iron status and number of siblings, are important for the incidence and spontaneous clearance of H pylori infection. PMID:22227999
Mineral essential elements for nutrition in different chocolate products.
Cinquanta, Luciano; Di Cesare, Cinzia; Manoni, Remo; Piano, Angela; Roberti, Piero; Salvatori, Giancarlo
2016-11-01
In this work, the essential mineral nutritional elements in cocoa beans, in chocolates at different cocoa percentage (60,70,80 and 90%) and in milk chocolate are evaluated. Dark chocolates are confirmed as an excellent source of magnesium (252.2 mg/100 g) and iron (10.9 mg/100 g): in chocolate containing 90% cocoa, their content corresponds to, respectively, 67.0% and 80.3 of Nutrient Reference Values (NRV) in the European Union. The chocolate containing 90% cocoa is also a good source of zinc (3.5 mg/100 g), which is important for the immune system, and selenium (0.1 mg/100 g). Three main components suitable to explain the mineral concentrations are analyzed by factor analysis. The component 1 can be interpreted as the contribution from the cocoa beans, owing to the mineral characteristics of the soil in which they have grown; the component 2 is mainly due to the manipulation and transformation of the cocoa in chocolate, while the component 3 represents the milk powder.
Minerals leached into drinking water from rubber stoppers.
Kennedy, B W; Beal, T S
1991-06-01
Drinking water and its delivery system are potential sources of variation in animal research. Concern arose that rubber stoppers used to cork water bottles might be a source of some nutritionally required minerals which could leach into drinking water. Six types of stoppers, each having different compositions, were cleaned with stainless-steel sipper tubes inserted into them and attached to polypropylene bottles filled with either deionized water (pH 4.5) or acidified-deionized water (pH 2.5). After six days of contact, water levels of copper, magnesium, iron, manganese, zinc, chromium, and selenium were determined by atomic absorption spectroscopy. Additionally, three of the stopper types were analyzed for mineral content. Minerals were present in both stoppers and drinking water. Acidified-deionized water generally leached minerals from the stoppers than did deionized water. The black stopper which is commonly used in animal facilities contained and leached measurable levels of some minerals, but it still can be recommended for typical animal husbandry uses, although other types of stoppers would be more suitable for specific nutritional and toxicologic studies.
Papanikolaou, Yanni; Fulgoni, Victor L.
2017-01-01
The 2015–2020 Dietary Guidelines for Americans (2015-2020 DGA) maintains recommendations for increased consumption of whole grains while limiting intake of enriched/refined grains. A variety of enriched grains are sources of several shortfall nutrients identified by 2015-2020 DGA, including dietary fiber, folate, iron, and magnesium. The purpose of this study was to determine food sources of energy and nutrients for free-living U.S. adults using data from the National Health and Nutrition Examination Survey, 2009–2012. Analyses of grain food sources were conducted using a single 24-h recall collected in adults ≥19 years of age (n = 10,697). Sources of nutrients contained in all grain foods were determined using United States Department of Agriculture nutrient composition databases and the food grouping scheme for grains (excluding mixed dishes). Mean energy and nutrient intakes from the total diet and from various grain food groups were adjusted for the sample design using appropriate weights. All grains provided 285 ± 5 kcal/day or 14 ± 0.2% kcal/day in the total diet in adult ≥19 years of age. In the total daily diet, the grain category provided 7.2 ± 0.2% (4.9 ± 0.1 g/day) total fat, 5.4 ± 0.2% (1.1 ± 0.03 g/day) saturated fat, 14.6 ± 0.3% (486 ± 9 mg/day) sodium, 7.9 ± 0.2% (7.6 ± 0.2 g/day) total sugar, 22.8 ± 0.4% (3.9 ± 0.1 g/day) dietary fiber, 13.2 ± 0.3% (122 ± 3 mg/day) calcium, 33.6 ± 0.5% (219 ± 4 mcg dietary folate equivalents (DFE)/day) folate, 29.7 ± 0.4% (5.3 ± 0.1 mg/day) iron, and 13.9 ± 0.3% (43.7 ± 1.1 mg/day) magnesium. Individual grain category analyses showed that breads, rolls and tortillas and ready-to-eat cereals provided minimal kcal/day in the total diet in men and women ≥19 years of age. Similarly, breads, rolls and tortillas, and ready-to-eat cereals supplied meaningful contributions of shortfall nutrients, including dietary fiber, folate and iron, while concurrently providing minimal amounts of nutrients to limit. Cumulatively, a variety of grain food groups consumed by American adults contribute to nutrient density in the total diet and have the potential to increase consumption of shortfall nutrients as identified by 2015–2020 DGA, particularly dietary fiber, folate, and iron. PMID:28805734
Papanikolaou, Yanni; Fulgoni, Victor L
2017-08-14
The 2015-2020 Dietary Guidelines for Americans (2015-2020 DGA) maintains recommendations for increased consumption of whole grains while limiting intake of enriched/refined grains. A variety of enriched grains are sources of several shortfall nutrients identified by 2015-2020 DGA, including dietary fiber, folate, iron, and magnesium. The purpose of this study was to determine food sources of energy and nutrients for free-living U.S. adults using data from the National Health and Nutrition Examination Survey, 2009-2012. Analyses of grain food sources were conducted using a single 24-h recall collected in adults ≥19 years of age ( n = 10,697). Sources of nutrients contained in all grain foods were determined using United States Department of Agriculture nutrient composition databases and the food grouping scheme for grains (excluding mixed dishes). Mean energy and nutrient intakes from the total diet and from various grain food groups were adjusted for the sample design using appropriate weights. All grains provided 285 ± 5 kcal/day or 14 ± 0.2% kcal/day in the total diet in adult ≥19 years of age. In the total daily diet, the grain category provided 7.2 ± 0.2% (4.9 ± 0.1 g/day) total fat, 5.4 ± 0.2% (1.1 ± 0.03 g/day) saturated fat, 14.6 ± 0.3% (486 ± 9 mg/day) sodium, 7.9 ± 0.2% (7.6 ± 0.2 g/day) total sugar, 22.8 ± 0.4% (3.9 ± 0.1 g/day) dietary fiber, 13.2 ± 0.3% (122 ± 3 mg/day) calcium, 33.6 ± 0.5% (219 ± 4 mcg dietary folate equivalents (DFE)/day) folate, 29.7 ± 0.4% (5.3 ± 0.1 mg/day) iron, and 13.9 ± 0.3% (43.7 ± 1.1 mg/day) magnesium. Individual grain category analyses showed that breads, rolls and tortillas and ready-to-eat cereals provided minimal kcal/day in the total diet in men and women ≥19 years of age. Similarly, breads, rolls and tortillas, and ready-to-eat cereals supplied meaningful contributions of shortfall nutrients, including dietary fiber, folate and iron, while concurrently providing minimal amounts of nutrients to limit. Cumulatively, a variety of grain food groups consumed by American adults contribute to nutrient density in the total diet and have the potential to increase consumption of shortfall nutrients as identified by 2015-2020 DGA, particularly dietary fiber, folate, and iron.
Nutritional Strategies for Women Participating in Competitive/Recreational Sports.
ERIC Educational Resources Information Center
Fort, Inza L.; Di Brezzo, Ro
The preponderance of articles and research on nutrition can be confusing. The active woman over 30 can enhance performance and health with a high-quality diet. Specific nutritional concerns for women after the college years, such as nutrient content, iron, calcium, vitamin supplementation, and caffeine are discussed. Evidence that processed foods…
USDA-ARS?s Scientific Manuscript database
Iron deficiency chlorosis (IDC) is a nutritional disease of soybean (Glycine max (L.) Merr.) which when left unchecked can result in a severe yield penalty or even death in the most extreme cases. In order to curb these effects, resistance to the disease is needed. Breeding for resistance has been ...
Gómez, Mariel Fajer; Field, Catherine J; Olstad, Dana Lee; Loehr, Sarah; Ramage, Stephanie; McCargar, Linda J
2015-10-01
Maternal nutrient intake in the prenatal period is an important determinant of fetal growth and development and supports maternal health. Many women, however, fail to meet their prenatal nutrient requirements through diet alone and are therefore advised to consume nutrient supplements. The purpose of this study was to describe the use of natural health products (NHP) by pregnant women in each trimester of pregnancy. Women (n = 599) participating in the first cohort of the Alberta Pregnancy Outcomes and Nutrition (APrON) study completed an interviewer-administered supplement intake questionnaire during each trimester of pregnancy. NHP use was high, with >90% taking multivitamin/mineral supplements, and nearly half taking at least one additional single-nutrient supplement. Compliance with supplementation guidelines was high for folic acid (>90%), vitamin D (∼70%) and calcium (∼80%), but low for iron (<30%) and for all four nutrients together (≤11%). On average, women met or exceeded the recommended dietary allowance for folic acid, vitamin D and iron from NHPs alone, with median daily intakes of 1000 μg, 400 IU and 27 mg, respectively. The median calcium intake was 250 mg d(-1) . Up to 26% of women exceeded the tolerable upper intake level for folic acid and up to 19% did so for iron at some point of their pregnancy. Findings highlight the need to consider both dietary and supplemental sources of micronutrients when assessing the nutrient intakes of pregnant women. © 2013 John Wiley & Sons Ltd.
Joshi, Mohan; Gumashta, Raghvendra
2013-03-20
Nutritional anaemia in India is common morbidity seen in late adolescent and young female population. There are many conflicting opinions regarding dosage of iron folic acid supplementation for managing this simple nutritional deficiency disorder. Hence, this 'Randomized Controlled Trial' was undertaken in adolescent girls suffering from Iron Deficiency Anaemia visiting 'Urban Health and Training Centre' situated in urban slum area. The aim of this study was to assess the (a) Impact of weekly iron folic acid supplementation in comparison with daily iron supplementation for the management of Iron Deficiency Anaemia in adolescent girls visiting 'Urban Health and Training Centre'; (b) Adverse drug reaction profile in 'Weekly Iron Folic Acid Supplementation' and 'Daily Iron Folic Acid Supplementation' regimes; (c) Compliance profile for 'Weekly Iron Folic Acid Supplementation' and 'Daily Iron Folic Acid Supplementation' regimes in adolescent girls. Randomized controlled trial was conducted in adolescent girls visiting 'Urban Health and Training Centre' during the study period June, 2011 to October, 2012. The 120 anaemic (Haemoglobin < 12 gm%) adolescent girls (10-19 years) were distributed randomly by block randomization in two groups; one receiving daily Iron and Folic Acid supplementation and in other group receiving weekly Iron and Folic Acid supplementation for 3 months. All the study subjects were given de-worming (Albendazole 400 mg) and required health education separately. Both the groups were monitored for Haemoglobin estimation, compliance and adverse drug reactions, if any. Open-Epi Statistical Software was used for data analysis. The mean age of study subjects in 'Daily Iron and Folic Acid Supplementation' and 'Weekly Iron and Folic Acid Supplementation' group was 13.48 and 13.55 years respectively. Their mean pre intervention Haemoglobin was 10.1±1.1 gm/dl and 10.4±1.1 gm/dl respectively. The mean rise in Haemoglobin after lean period of 1 month in respective groups was almost equal i.e. 1.0±0.7 gm/dl and 1.0±0.8 gm/dl. Adverse Drug Reactions were 8.3% in weekly regime as compared to 13.35% in daily regime, abdominal pain being the commonest adverse drug reaction seen .The compliance calculated as mean of unconsumed 'Iron and Folic Acid' tablets was 6.1±10.98 in 'Daily Iron Folic Acid Supplementation' group, while it was 1.3±3.15 in 'Weekly Iron Folic Acid Supplementation' group (p=0.0012), making weekly regime more promising than daily regime with better treatment compliance. Weekly supplementation of 'Iron and Folic Acid' in 'Iron Deficiency Anaemia' patients is as good as daily supplementation with added benefits of less adverse reactions and better compliance.
[The nutrition status of lactating women in China].
Dong, C X; Yin, S A
2016-12-06
Nutritional status of lactating women is considered to be a quantitative indicator reflecting the status of reproductive health. To improve nutrition status of lactating women and promote breastfeeding through targeted intervention measures, their dietary and nutritional situations, and related problems, should be fully understood. Generally, energy and macronutrient intake of lactating women can reach or exceed recommended levels, especially during the first month postpartum. However, the intake of some micronutrients is difficult to meet the requirement. These include vitamin D and vitamin B 12 , iron and zinc, and calcium, if milk and dairy product consumption is very low, suggesting that extra supplementation should be considered. The percentage of obesity or postpartum weight retention showed an increasing trend in urban and rural areas and was related to decreased or delayed breastfeeding or early weaning. Common micronutrient deficiencies included in vitamin D, vitamin B 12 , iron and zinc. In this paper, we reviewed various characteristics of the lactating women, including nutritional status, postpartum weight retention and micronutrient deficiencies. We suggest that improved suggestions be developed for China, based on data from National Nutrition Survey, Chinese National Nutrition and Health Surveillance and related studies conducted over the past 10 years.
Excess adiposity, inflammation, and iron-deficiency in female adolescents.
Tussing-Humphreys, Lisa M; Liang, Huifang; Nemeth, Elizabeta; Freels, Sally; Braunschweig, Carol A
2009-02-01
Iron deficiency is more prevalent in overweight children and adolescents but the mechanisms that underlie this condition remain unclear. The purpose of this cross-sectional study was to assess the relationship between iron status and excess adiposity, inflammation, menarche, diet, physical activity, and poverty status in female adolescents included in the National Health and Nutrition Examination Survey 2003-2004 dataset. Descriptive and simple comparative statistics (t test, chi(2)) were used to assess differences between normal-weight (5th < or = body mass index [BMI] percentile <85th) and heavier-weight girls (< or = 85th percentile for BMI) for demographic, biochemical, dietary, and physical activity variables. In addition, logistic regression analyses predicting iron deficiency and linear regression predicting serum iron levels were performed. Heavier-weight girls had an increased prevalence of iron deficiency compared to those with normal weight. Dietary iron, age of and time since first menarche, poverty status, and physical activity were similar between the two groups and were not independent predictors of iron deficiency or log serum iron levels. Logistic modeling predicting iron deficiency revealed having a BMI > or = 85th percentile and for each 1 mg/dL increase in C-reactive protein the odds ratio for iron deficiency more than doubled. The best-fit linear model to predict serum iron levels included both serum transferrin receptor and C-reactive protein following log-transformation for normalization of these variables. Findings indicate that heavier-weight female adolescents are at greater risk for iron deficiency and that inflammation stemming from excess adipose tissue contributes to this phenomenon. Food and nutrition professionals should consider elevated BMI as an additional risk factor for iron deficiency in female adolescents.
ERIC Educational Resources Information Center
Katz, David A.
1992-01-01
Describes an activity in which students can investigate and evaluate the amount of iron found in most fortified breakfast cereals or cream of wheat. Includes a list of necessary materials, safety precautions, experimental procedure, disposal protocol, and nutritional explanation, utilization, and variations. (JJK)
Biofortification in Millets: A Sustainable Approach for Nutritional Security.
Vinoth, A; Ravindhran, R
2017-01-01
Nutritional insecurity is a major threat to the world's population that is highly dependent on cereals-based diet, deficient in micronutrients. Next to cereals, millets are the primary sources of energy in the semi-arid tropics and drought-prone regions of Asia and Africa. Millets are nutritionally superior as their grains contain high amount of proteins, essential amino acids, minerals, and vitamins. Biofortification of staple crops is proved to be an economically feasible approach to combat micronutrient malnutrition. HarvestPlus group realized the importance of millet biofortification and released conventionally bred high iron pearl millet in India to tackle iron deficiency. Molecular basis of waxy starch has been identified in foxtail millet, proso millet, and barnyard millet to facilitate their use in infant foods. With close genetic-relatedness to cereals, comparative genomics has helped in deciphering quantitative trait loci and genes linked to protein quality in finger millet. Recently, transgenic expression of zinc transporters resulted in the development of high grain zinc while transcriptomics revealed various calcium sensor genes involved in uptake, translocation, and accumulation of calcium in finger millet. Biofortification in millets is still limited by the presence of antinutrients like phytic acid, polyphenols, and tannins. RNA interference and genome editing tools [zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)] needs to be employed to reduce these antinutrients. In this review paper, we discuss the strategies to accelerate biofortification in millets by summarizing the opportunities and challenges to increase the bioavailability of macro and micronutrients.
Biofortification in Millets: A Sustainable Approach for Nutritional Security
Vinoth, A.; Ravindhran, R.
2017-01-01
Nutritional insecurity is a major threat to the world’s population that is highly dependent on cereals-based diet, deficient in micronutrients. Next to cereals, millets are the primary sources of energy in the semi-arid tropics and drought-prone regions of Asia and Africa. Millets are nutritionally superior as their grains contain high amount of proteins, essential amino acids, minerals, and vitamins. Biofortification of staple crops is proved to be an economically feasible approach to combat micronutrient malnutrition. HarvestPlus group realized the importance of millet biofortification and released conventionally bred high iron pearl millet in India to tackle iron deficiency. Molecular basis of waxy starch has been identified in foxtail millet, proso millet, and barnyard millet to facilitate their use in infant foods. With close genetic-relatedness to cereals, comparative genomics has helped in deciphering quantitative trait loci and genes linked to protein quality in finger millet. Recently, transgenic expression of zinc transporters resulted in the development of high grain zinc while transcriptomics revealed various calcium sensor genes involved in uptake, translocation, and accumulation of calcium in finger millet. Biofortification in millets is still limited by the presence of antinutrients like phytic acid, polyphenols, and tannins. RNA interference and genome editing tools [zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)] needs to be employed to reduce these antinutrients. In this review paper, we discuss the strategies to accelerate biofortification in millets by summarizing the opportunities and challenges to increase the bioavailability of macro and micronutrients. PMID:28167953
Handa, Chanu; Goomer, Sangeeta; Siddhu, Anupa
2011-04-01
The benefits of wholegrain finger millet and sorghum were combined with that of fructan in form of fructoligosaccharide in the pilot-scale production (10 kg) of cookies. Complete nutritional analysis of the cookies was carried out to provide nutritional information to the consumers. Whole-multigrain cookies with fructan can be categorized as "High Fiber" as they suffice 21% daily value (DV) of fiber and a "Good Source" of iron as they suffice 12.8% DV of iron. A total of 300 consumers (M=110 and F=190), aged between 8 and 66 y evaluated cookies. The overall acceptability (OAA) score of 300 consumers was 8.0±0.58 on a 9-point hedonic scale. Females rated cookies significantly (P<0.05) higher than males in terms of flavor, texture, appearance, and OAA. Males rated cookies significantly (P<0.05) higher on color attribute than females. Encouraging response of consumers signified ample scope for viability and marketability of cookies at the commercial scale. Consumers are looking at snack and convenience foods to provide increased fiber in their diet and there is a tremendous interest in low-calorie and low-sugar foods. The demand of whole and multigrain products is also on the rise because of the Government's emphasis. The present study would assist in assessing feasibility of commercial production of such novel health foods. Together with this, it will ascertain the marketability and commercial viability of the product by means of the consumer preference trials. Availability of such cookies in the market would offer consumers "health" with "convenience" and "taste."
Mbhenyane, Xikombiso; Cherane, Matodzi
2017-09-01
Anaemia due to iron deficiency is recognized as one of the major nutritional deficiencies in women and children in developing countries. Daily iron supplementation for pregnant women is recommended in many countries. The aim of the study was to investigate the factors that contribute to compliance to the consumption of iron and folate supplements by pregnant woman in Mafikeng local municipality, North West Province, South Africa. A mixed method of descriptive, exploratory and cross-sectional design was used. Ten clinics were used as a sample frame where 57 pregnant women and 10 health workers were purposefully and conveniently selected. Quantitative techniques were used to collect data on attendance, consumption and nutrition knowledge using the self-reported questionnaire by pregnant women, and structured interview for health workers. Qualitative design was used to conduct in - depth focus-group discussions to gather information on compliance to the consumption of supplements by pregnant women. The findings of the study revealed good antenatal clinic attendance, availability of supplements and 93% compliance to the consumption of iron and folate supplements. High compliance to the consumption of iron and folate supplements by pregnant women was reported, and this should be reinforced.
The historical evolution of thought regarding multiple micronutrient nutrition.
Semba, Richard D
2012-01-01
Multiple micronutrient nutrition is an idea that originated in the 1940s and exemplifies the iterative nutritional paradigm. In the first four decades of the 20th century, scientists sought to separate and characterize the vitamins that were responsible for xerophthalmia, rickets, pellagra, scurvy, and beriberi. The dietary requirements of the different micronutrients began to be established in the early 1940s. Surveys showed that multiple micronutrient deficiencies were widespread in industrialized countries, and the problem was addressed by use of cod-liver oil, iodized salt, fortified margarine, and flour fortification with multiple micronutrients, and, with rising living standards, the increased availability and consumption of animal source foods. After World War II, surveys showed that multiple micronutrient deficiencies were widespread in developing countries. Approaches to the elimination of multiple micronutrient deficiencies include periodic vitamin A supplementation, iodized salt, targeted iron/folate supplementation, fortified flour, other fortified foods, home fortification with micronutrient powders, and homestead food production. The prevention of multiple micronutrient malnutrition is a key factor in achieving the Millennium Development Goals, given the important effects of micronutrients on health and survival.
[Role of black bean Phaseolus vulgaris on the nutritional status of Guatemalan population].
Serrano, José; Goñi, Isabel
2004-03-01
Guatemala provides an example of epidemiological superposition, in which health problems typical of developed countries and developing countries are both observed. Nutritional deficiencies in some micronutrients like vitamin A and iron coexist alongside chronic diseases such as diabetes type II and cardiovascular diseases. The importance of black beans in the normal Guatemala diet is well known:70g per capita of black beans are consumed daily. Black beans are an important sources of protein and energy in the diet. They contain "lente" digestion carbohydrates and a high proportion of non-digested carbohydrates that may be fermented in the large intestine. Theses types of carbohydrates are associated with a low glycemic response, low serum cholesterol levels, and a decrease of colon cancer risk factors. These physiological effects may be related to colonic fermentation end products (propionic and butyric acids). Black beans also contain several antinutritional compounds (enzymatic inhibitors, haemaglutenins, saponins and phytic acid, etc.), some of them thermolabiles that are partially eliminated during culinary processes and may modify the nutritional quality of beans. Black beans play a crucial role in the etiology of several diseases in Guatemala.
Galicia, Luis; Grajeda, Rubén; de Romaña, Daniel López
2016-08-01
To determine the current nutritional status in Latin America and the Caribbean (LAC) and identify data gaps and trends in nutrition surveillance. A systematic Internet search was conducted to identify official sources that allowed for monitoring of LAC countries' nutritional status, including progress toward World Health Organization Global Nutrition Targets 2025. Reports from national nutrition surveillance systems and reports on nationally representative surveys were collected and collated to 1) analyze nutritional status, based on life-course anthropometric indicators and biomarkers, and 2) identify gaps in data availability and trends in nutritional deficiencies. Information on iron, vitamin A, iodine, folate, and vitamin B12 deficiency was also collected and collated. Twenty-two of the 46 LAC countries/territories (48%) had information on undernutrition (stunting, underweight, and wasting) in children under 5 years old and women of reproductive age (WRA). Seventeen countries (38%) had information on anemia in children under 5 years old and WRA, and 12 (27%) had information on anemia in pregnant women. Although overall nutritional status has improved in the past few decades in all countries in the region, some LAC countries still had a high prevalence of stunting and anemia in children and WRA. Overweight affected at least 50% of WRA in nine countries with available data, and was increasing in children. Data for school-age children, adolescents, adult males, and older adults were scarce in the region. Overall nutritional status has improved in the LAC countries with available information, but more efforts are needed to scale up nutrition-sensitive and nutrition-specific interventions to tackle malnutrition in all its forms, as stunting, anemia, and vitamin A deficiency are still a public health problem in many countries, and overweight is an epidemic. Nutrition information systems are weak in the region, and countries need to strengthen their capacity to monitor nutritional status indicators.
Harding, Kimberly B.; Neufeld, Lynnette M.
2012-01-01
WHO recommendations on iron supplementation for infants and young children in malaria-endemic areas changed dramatically from universal to targeted supplementation for iron-deficient children only, after a trial in a high malaria transmission area showed an increased risk of hospital admission and mortality among iron-replete children following iron and folic acid supplementation. Since this time, there has been much debate and little agreement among the nutrition research community on how to move forward, and country policy and program decision makers have been left with incomplete guidance on how to address young child iron deficiency and anemia in their countries. The focus of a recent symposium during the American Society for Nutrition annual meeting, held in Washington, DC, in April 2011, was on exploring options for addressing iron deficiency and anemia among infants and young children in malaria-endemic areas, now, with safe, effective, and feasible interventions that provide iron. Papers based on the invited presentations are included in this supplement. The first paper is a review of the relationship between iron and malaria. The second is an analysis of theoretical and practical considerations regarding the targeted approach of providing iron and includes results from field testing noninvasive screening devices. This is followed by a review of the safety of universal provision of iron through home-fortification products in malaria-endemic areas. The final papers provide a call to action by highlighting pending research issues (fourth paper) and feasible strategies to move programs forward (fifth paper). PMID:22797991
Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality
2016-01-01
Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry. PMID:27482521
Ahn, Jeong-Ah; Park, JeeWon; Kim, Chun-Ja
2017-09-07
The effects of an individualised nutritional education and support programme on dietary habits, nutritional knowledge and nutritional status of 71 older adults living alone were examined. Although a regular dietary meal plan is recommended for improving nutritional status of older adults living alone, little research is done in this field in Korea. A pre- and post-test controlled quasi-experimental design was used at public health centres. The intervention group participated in an intensive nutritional education and support programme once a week for 8 weeks with dietary menus provided by home visiting nurses/dieticians; control group received usual care. Dietary habits and nutritional knowledge were assessed using structured questionnaires; nutritional intake status was analysed using Computer Aided Nutritional Analysis Program 5.0. The mean age of participants was 77.6 years, and 81.7% of the participants were women. At 8 weeks, there were significant interactions of group by time for dietary habits, nutritional knowledge and selected nutritional status of protein, iron and vitamins of B 2 and C. Changes over time in the mean score of dietary habits and nutritional knowledge were significantly improved in the intervention group compared to the control group. The percentages of normal nutrition intake of protein, iron and vitamins A and C in the intervention group were significantly higher than the control group at 8 weeks. Nutritional education and support programme positively impacted dietary habits, nutritional knowledge and selected nutritional status in older adults living alone, and we highlight the need for community-based nutritional education and counselling programmes. Older adults living alone in a community have relatively poor nutritional status and thus require tailored nutritional intervention according to objective nutritional analysis. It is necessary to link visiting nurses with dieticians in the community to manage effective nutritional programme continuously. © 2017 John Wiley & Sons Ltd.
Redox, iron, and nutritional status of children during swimming training.
Kabasakalis, Athanasios; Kalitsis, Konstantinos; Nikolaidis, Michalis G; Tsalis, George; Kouretas, Dimitris; Loupos, Dimitris; Mougios, Vassilis
2009-11-01
Effects of exercise training on important determinants of children's long-term health, such as redox and iron status, have not been adequately investigated. The aim of the present study was to examine changes in markers of the redox, iron and nutritional status of boy and girl swimmers during a prolonged period of training. 11 boys and 13 girls, aged 10-11 years, were members of a swimming club. They were assessed at the beginning of the training season, at 13 weeks and at 23 weeks through blood sampling and recording of the diet. Reduced glutathione increased at 13 and 23 weeks, whereas oxidised glutathione decreased at 13 weeks, resulting in an increase of the reduced/oxidised glutathione ratio at 13 and 23 weeks. Total antioxidant capacity, catalase, thiobarbituric acid-reactive substances, hemoglobin, transferrin saturation and ferritin did not change significantly. Carbohydrate intake was below 50% of energy and fat intake was above 40% of energy. Intakes of saturated fatty acids and cholesterol were excessive. Iron intake was adequate but intakes of folate, vitamin E, calcium and magnesium did not meet the recommended daily allowances. No significant differences were found between sexes in any of the parameters measured. In conclusion, child swimmers improved the redox status of glutathione during training, although the intake of antioxidant nutrients did not change. The iron status was not impaired by training. Suboptimal intake of several nutrients suggests the need for nutritional monitoring and education of children athletes.
Iron deficiency enhances bioactive phenolics in lemon juice.
Mellisho, Carmen D; González-Barrio, Rocío; Ferreres, Federico; Ortuño, María F; Conejero, Wenceslao; Torrecillas, Arturo; García-Mina, José M; Medina, Sonia; Gil-Izquierdo, Angel
2011-09-01
This study was designed to describe the phenolic status of lemon juice obtained from fruits of lemon trees differing in iron (Fe) nutritional status. Three types of Fe(III) compound were used in the experiment, namely a synthetic chelate and two complexes derived from natural polymers of humic and lignine nature. All three Fe(III) compounds were able to improve the Fe nutritional status of lemon trees, though to different degrees. This Fe(III) compound effect led to changes in the polyphenol content of lemon juice. Total phenolics were decreased (∼33% average decrease) and, in particular, flavanones, flavones and flavonols were affected similarly. Iron-deficient trees showed higher phenolic contents than Fe(III) compound-treated trees, though Fe deficiency had negative effects on the yield and visual quality of fruits. However, from a human nutritional point of view and owing to the health-beneficial properties of their bioavailable phenolic compounds, the nutritional quality of fruits of Fe-deficient lemon trees in terms of phenolics was higher than that of fruits of Fe(III) compound-treated lemon trees. Moreover, diosmetin-6,8-di-C-glucoside in lemon juice can be used as a marker for correction of Fe deficiency in lemon trees. Copyright © 2011 Society of Chemical Industry.
Mineral Properties and Dietary Value of Raw and Processed Stinging Nettle (Urtica dioica L.)
Xu, Yixiang; Ramirez, Elizabeth
2013-01-01
Stinging nettle (Urtica dioica L.) has a long history of usage and is currently receiving attention as a source of fiber and alternative medicine. In many cultures, nettle is also eaten as a leafy vegetable. In this study, we focused on nettle yield (edible portion) and processing effects on nutritive and dietary properties. Actively growing shoots were harvested from field plots and leaves separated from stems. Leaf portions (200 g) were washed and processed by blanching (1 min at 96–98°C) or cooking (7 min at 98-99°C) with or without salt (5 g·L−1). Samples were cooled immediately after cooking and kept in frozen storage before analysis. Proximate composition, mineral, amino acid, and vitamin contents were determined, and nutritive value was estimated based on 100 g serving portions in a 2000 calorie diet. Results show that processed nettle can supply 90%–100% of vitamin A (including vitamin A as β-carotene) and is a good source of dietary calcium, iron, and protein. We recommend fresh or processed nettle as a high-protein, low-calorie source of essential nutrients, minerals, and vitamins particularly in vegetarian, diabetic, or other specialized diets. PMID:26904610
Regulation of yeast fatty acid desaturase in response to iron deficiency.
Romero, Antonia María; Jordá, Tania; Rozès, Nicolas; Martínez-Pastor, María Teresa; Puig, Sergi
2018-06-01
Unsaturated fatty acids (UFA) are essential components of phospholipids that greatly contribute to the biophysical properties of cellular membranes. Biosynthesis of UFAs relies on a conserved family of iron-dependent fatty acid desaturases, whose representative in the model yeast Saccharomyces cerevisiae is Ole1. OLE1 expression is tightly regulated to adapt UFA biosynthesis and lipid bilayer properties to changes in temperature, and in UFA or oxygen availability. Despite iron deficiency being the most extended nutritional disorder worldwide, very little is known about the mechanisms and the biological relevance of fatty acid desaturases regulation in response to iron starvation. In this report, we show that endoplasmic reticulum-anchored transcription factor Mga2 activates OLE1 transcription in response to nutritional and genetic iron deficiencies. Cells lacking MGA2 display low UFA levels and do not grow under iron-limited conditions, unless UFAs are supplemented or OLE1 is overexpressed. The proteasome, E3 ubiquitin ligase Rsp5 and the Cdc48 Npl4/Ufd1 complex are required for OLE1 activation during iron depletion. Interestingly, Mga2 also activates the transcription of its own mRNA in response to iron deficiency, hypoxia, low temperature and low UFAs. MGA2 up-regulation contributes to increase OLE1 expression in these situations. These results reveal the mechanism of OLE1 regulation when iron is scarce and identify the MGA2 auto-regulation as a potential activation strategy in multiple stresses. Copyright © 2018 Elsevier B.V. All rights reserved.
Desalegn, Amare; Mossie, Andualem; Gedefaw, Lealem
2014-01-01
Iron deficiency anemia (IDA) is a global public health problem among school age children, which retards psychomotor development and impairs cognitive performance. There is limited data on prevalence and risk factors for IDA. The aim of this study was to determine the prevalence, severity, and predictors of nutritional IDA in school age children in Southwest Ethiopia. A community based cross-sectional study was conducted in Jimma Town, Southwest Ethiopia from April to July 2013. A total of 616 school children aged 6 to 12 years were included in the study using multistage sampling technique. A structured questionnaire was used to collect sociodemographic data. Five milliliter venous blood was collected from each child for hematological examinations. Anemia was defined as a hemoglobin level lower than 11.5 g/dl and 12 g/dl for age group of 5-11 years and 12-15 years, respectively. Iron deficiency anemia was defined when serum iron and ferritin levels are below 10 µmol/l and 15 µg/dl, respectively. Moreover, fresh stool specimen was collected for diagnosis of intestinal parasitic infection. Stained thick and thin blood films were examined for detection of Plasmodium infection and study of red blood cell morphology. Dietary patterns of the study subjects were assessed using food frequency questionnaire and anthropometric measurements were done. Data were analyzed using SPSS V-20.0 for windows. Overall, prevalence of anemia was 43.7%, and that of IDA was 37.4%. Not-consuming protein source foods [AOR = 2.30, 95%CI(1.04,5.14)], not-consuming dairy products [AOR = 1.83, 95%CI(1.14,5.14)], not-consuming discretionary calories [AOR = 2.77, 95%CI(1.42,5.40)], low family income [AOR = 6.14, 95%CI(2.90,12.9)] and intestinal parasitic infections [AOR = 1.45, 95%CI(1.23, 5. 27)] were predictors of IDA. Iron deficiency anemia is a moderate public health problem in the study site. Dietary deficiencies and intestinal parasitic infections were predictors of IDA. Therefore, emphasis should be given to the strategies for the prevention of risk factors for IDA.
Chan, Lingtak-Neander; Mike, Leigh Ann
2014-08-01
Nutritional anemia is the most common type of anemia, affecting millions of people in all age groups worldwide. While inadequate access to food and nutrients can lead to anemia, patients with certain health status or medical conditions are also at increased risk of developing nutritional anemia. Iron, cobalamin, and folate are the most recognized micronutrients that are vital for the generation of erythrocytes. Iron deficiency is associated with insufficient production of hemoglobin. Deficiency of cobalamin or folate leads to impaired synthesis of deoxyribonucleic acid, proteins, and cell division. Recent research has demonstrated that the status of copper and zinc in the body can significantly affect iron absorption and utilization. With an increasing number of patients undergoing bariatric surgical procedures, more cases of anemia associated with copper and zinc deficiencies have also emerged. The intestinal absorption of these 5 critical micronutrients are highly regulated and mediated by specific apical transport mechanisms in the enterocytes. Health conditions that persistently alter the histology of the upper intestinal architecture, expression, or function of these substrate-specific transporters, or the normal digestion and flow of these key micronutrients, can lead to nutritional anemia. The focus of this article is to review the science of intestinal micronutrient absorption, discuss the clinical assessment of micronutrient deficiencies in relation to anemia, and suggest an effective treatment plan and monitoring strategies using an evidence-based approach. © 2014 American Society for Parenteral and Enteral Nutrition.
Bokhari, F; Derbyshire, E; Li, W; Brennan, C S; Stojceska, V
2012-02-01
Iron-deficiency anaemia is particularly prevalent in pregnancy. The present study aimed to determine whether functional bread containing teff flour (i.e. naturally rich in iron) could be an alternative way of improving iron status. However, before testing whether its consumption can improve pregnancy iron status, the bio-availability of iron was determined in a sample of nonpregnant women. Fifty-eight women (20-50 years) were recruited from the University. Blood samples were taken at baseline to assess iron status and participants were screened to account for other factors affecting iron status. Twenty-four participants (haemoglobin 9.5-14.0g dL(-1) ) were recruited to take part in the intervention and allocated to five groups: (i) control bread (CB); (ii) teff bread (TB); (iii) TB+level 1 phytase (TB+P1); (iv) TB+level 2 phytase (TB+P2); or (v) a supplement containing 10 mg of ferrous sulphate. Venous blood samples were taken before the intervention and after 180-210min, aiming to determine changes in serum iron. Consuming three or four slices of TB provided statistically significantly more iron (7.6mg) than CB (5.1mg) (P<0.001). Because participants were fasted, serum iron levels declined in all bread groups (average -1.5μm), although the smallest reduction was observed in the TB+P2 group (-0.3 μm). The area-under-the-curve from baseline to 210min was lower in the TB+P2 (-78.8μmol min L(-1) ) group compared to the other bread interventions, indicating higher levels of iron absorption in this group. The results obtained in the present study show that TB consumption may help to maintain serum iron levels, especially when phytase is added. The findings from the study also demonstrate there may be potential to further improve the bio-availability of iron from non-haem food sources. © 2011 Manchester Metropolitan University. Journal of Human Nutrition and Dietetics © 2011 The British Dietetic Association Ltd.
Vaz-Tostes, Maria das Graças; Verediano, Thaisa Agrizzi; de Mejia, Elvira Gonzalez; Brunoro Costa, Neuza Maria
2016-03-15
Biofortified beans have been produced with higher nutrient concentrations. The objective was to evaluate the in vitro and in vivo iron and zinc bioavailability of common beans Pontal (PO), targeted for biofortification, compared with conventional Perola (PE) and their effects on the iron and zinc nutritional status of preschool children. In Caco-2 cells, PO and PE beans did not show differences in ferritin (PO, 13.1 ± 1.4; PE, 13.6 ± 1.4 ng mg(-1) protein) or zinc uptake (PO, 15.9 ± 1.5; PE, 15.5 ± 3.5 µmol mg(-1) protein). In the rat, PO and PE beans presented high iron bioavailability (PO, 109.6 ± 29.5; PE, 110.7 ± 13.9%). In preschool children, no changes were observed in iron and zinc nutritional status comparing before and after PO consumption (ferritin, 41.2 ± 23.2 and 28.9 ± 40.4 µg L(-1) ; hemoglobin, 13.7 ± 2.2 and 13.1 ± 3.2 g dL(-1) ; plasma zinc, 119.2 ± 24.5 and 133.9 ± 57.7 µg dL(-1) ; erythrocyte zinc, 53.5 ± 13.8 and 59.4 ± 17.1 µg g(-1) hemoglobin). Iron and zinc bioavailability in PO and PE beans was not statistically different using either cell culture, animal or human models. Efforts should focus on increasing mineral bioavailability of beans targeted for biofortification. © 2015 Society of Chemical Industry.
2014-01-01
Many of the messages presented in respectable scientific publications are, in fact, based on various forms of rumors. Some of these rumors appear so frequently, and in such complex, colorful, and entertaining ways that we can think of them as academic urban legends. The explanation for this phenomenon is usually that authors have lazily, sloppily, or fraudulently employed sources, and peer reviewers and editors have not discovered these weaknesses in the manuscripts during evaluation. To illustrate this phenomenon, I draw upon a remarkable case in which a decimal point error appears to have misled millions into believing that spinach is a good nutritional source of iron. Through this example, I demonstrate how an academic urban legend can be conceived and born, and can continue to grow and reproduce within academia and beyond. PMID:25272616
Blair, Matthew W; Knewtson, Sharon Jb; Astudillo, Carolina; Li, Chee-Ming; Fernandez, Andrea C; Grusak, Michael A
2010-10-05
Iron deficiency anemia is a global problem which often affects women and children of developing countries. Strategy I plants, such as common bean (Phaseolus vulgaris L.) take up iron through a process that involves an iron reduction mechanism in their roots; this reduction is required to convert ferric iron to ferrous iron. Root absorbed iron is critical for the iron nutrition of the plant, and for the delivery of iron to the shoot and ultimately the seeds. The objectives of this study were to determine the variability and inheritance for iron reductase activity in a range of genotypes and in a low × high seed iron cross (DOR364 x G19833), to identify quantitative trait loci (QTL) for this trait, and to assess possible associations with seed iron levels. The experiments were carried out with hydroponically grown plants provided different amounts of iron varying between 0 and 20 μM Fe(III)-EDDHA. The parents, DOR364 and G19833, plus 13 other cultivated or wild beans, were found to differ in iron reductase activity. Based on these initial experiments, two growth conditions (iron limited and iron sufficient) were selected as treatments for evaluating the DOR364 × G19833 recombinant inbred lines. A single major QTL was found for iron reductase activity under iron-limited conditions (1 μM Fe) on linkage group b02 and another major QTL was found under iron sufficient conditions (15 μM Fe) on linkage group b11. Associations between the b11 QTL were found with several QTL for seed iron. Genes conditioning iron reductase activity in iron sufficient bean plants appear to be associated with genes contributing to seed iron accumulation. Markers for bean iron reductase (FRO) homologues were found with in silico mapping based on common bean synteny with soybean and Medicago truncatula on b06 and b07; however, neither locus aligned with the QTL for iron reductase activity. In summary, the QTL for iron reductase activity under iron limited conditions may be useful in environments where beans are grown in alkaline soils, while the QTL for iron reductase under sufficiency conditions may be useful for selecting for enhanced seed nutritional quality.
Interactive relations among maternal depressive symptomatology, nutrition, and parenting.
Aubuchon-Endsley, Nicki L; Thomas, David G; Kennedy, Tay S; Grant, Stephanie L; Valtr, Tabitha
2012-01-01
Theoretical models linking maternal nutrition, depressive symptomatology, and parenting are underdeveloped. However, existing literature suggests that iron status and depressive symptomatology interact in relation to problematic parenting styles (authoritarian, permissive). Therefore, in the current study the authors investigate these interactive relations in a sample of breastfeeding mothers (n = 105) interviewed at three months postpartum. Participants completed questionnaires (from December 2008 to January 2011) regarding their depressive symptomatology and parenting styles. Iron status (i.e., hemoglobin, soluble transferrin receptors, and serum ferritin concentrations) was assessed from blood samples. Significant interactions were found between iron status and depressive symptomatology in relation to authoritarian parenting style (low warmth, high punishment and directiveness). For those women with hemoglobin below 14.00 g/dL, depressive symptomatology was positively related to authoritarian parenting style (p < 0.001). Thus, screening for poor iron status and depressive sympatomology in postpartum women may help to identify those at risk for problematic parenting. Dietary interventions may help to eliminate relations between depressive symptoms and problematic parenting.
ERIC Educational Resources Information Center
Wolfe, Pat; Burkman, Mary Anne; Streng, Katharina
2000-01-01
Nutrition and learning are inextricably connected. Protein, fat, B vitamins, iron, choline, and antioxidants promote brain functions. The USDA's "Food Guide Pyramid for Young Children" (and adaptations for school-age kids) offers guidelines for formulating a child's diet. Breakfast, family meal-sharing, and exercise are essential.…
Vasconcelos, Marta W.; Clemente, Thomas E.; Grusak, Michael A.
2014-01-01
Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the reduction of ferric to ferrous iron at several locations throughout the plant, prior to transmembrane trafficking of ferrous iron. In this study, soybean plants that constitutively expressed the AtFRO2 iron reductase gene were analyzed for leaf iron reductase activity, as well as the effect of this transgene’s expression on root, leaf, pod wall, and seed mineral concentrations. High Fe supply, in combination with the constitutive expression of AtFRO2, resulted in significantly higher concentrations of different minerals in roots (K, P, Zn, Ca, Ni, Mg, and Mo), pod walls (Fe, K, P, Cu, and Ni), leaves (Fe, P, Cu, Ca, Ni, and Mg) and seeds (Fe, Zn, Cu, and Ni). Leaf and pod wall iron concentrations increased as much as 500% in transgenic plants, while seed iron concentrations only increased by 10%, suggesting that factors other than leaf and pod wall reductase activity were limiting the translocation of iron to seeds. Protoplasts isolated from transgenic leaves had three-fold higher reductase activity than controls. Expression levels of the iron storage protein, ferritin, were higher in the transgenic leaves than in wild-type, suggesting that the excess iron may be stored as ferritin in the leaves and therefore unavailable for phloem loading and delivery to the seeds. Also, citrate and malate levels in the roots and leaves of transgenic plants were significantly higher than in wild-type, suggesting that organic acid production could be related to the increased accumulation of minerals in roots, leaves, and pod walls, but not in the seeds. All together, these results suggest a more ubiquitous role for the iron reductase in whole-plant mineral accumulation and distribution. PMID:24765096
Sharma, S; Sheehy, T; Kolonel, L N
2013-04-01
To describe the sources of meat and their contributions to vitamin B₁₂, iron and zinc in five ethnic groups in the USA. Dietary data for the Multiethnic Cohort, established in Hawaii and Los Angeles, were collected using a quantitative food frequency questionnaire from more than 215,000 subjects, aged 45-75 years at baseline (1993-1996). Participants included African American, Latino, Japanese American, Native Hawaiian and Caucasian men and women. Servings of meat items were calculated based on the US Department of Agriculture recommendations and their contributions to intakes of total meat, red meat, vitamin B₁₂, iron and zinc were determined. Of all types of meat, poultry contributed the most to meat consumption, followed by red meat and fish among all ethnicities, except for Latino (born in Mexico and Central/South America) men who consumed more beef. Lean beef was the most commonly consumed red meat for all ethnic-sex groups (9.3-14.3%), except for Native Hawaiian and Japanese American men, and Japanese American women whose top contributor was stew/curry with beef/lamb and stir-fried beef/pork with vegetables, respectively. The contribution of meat was most substantial for zinc (11.1-29.3%) and vitamin B₁₂ (19.7-40%) and, to a lesser extent, for iron (4.3-14.2%). This is the first large multiethnic cohort study to describe meat sources and their contributions to selected nutrients among ethnic minorities in the USA. These findings may be used to develop ethnic-specific recommendations for meat consumption aiming to improve dietary quality among these groups. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.
[Vegetarian diets in the nutrition of pregnant and breastfeeding women].
Brzezińska, Małgorzata; Kucharska, Alicja; Sińska, Beata
2016-04-01
Pregnant and breastfeeding women who eat vegetarian are a source of much controversy. This is the result of concern that eliminating some or all animal produce may lead to nutritional deficiencies and thus adversely affect the mother's and child's health. The American Dietetic Association's position is that appropriately planned vegan, lacto-vegetarian and lacto-ovo-vegetarian diets ensure a normal course of pregnancy and lactation. However, in practice the balancing of such a diet can pose certain difficulties, especially for individuals without the necessary experience or knowledge about nutrition. Nutrients to which particular attention needs to be paid to ensure their sufficient supply include: protein (essential amino acids), Omega-3 essential fatty acids, iron and calcium as well as vitamins D and B(12). The proper adherence to recommendations can be attained with a varied diet containing suitable plant products compensating for the nutritional value of the eliminated animal products. Supplementation with vitamin D and vitamin B(12) is also necessary. Research shows that infants born to vegetarian mothers are born at term and have normal birth weight. There is an increased risk of hypospadias in boys. The main difference in the composition of vegetarian mothers' milk compared to non-vegetarians' is lower content of docosahexaenoic acid and higher content of Linoleic and α-Linolenic acid. © 2016 MEDPRESS.
Gil, Marian; Głodek, Elzbieta; Rudy, Mariusz
2012-01-01
To function properly the human body needs, from a nutritional point of view, the supply of a wide variety of nutrients. In this respect, in addition to essential nutrients, vitamins and minerals play an important role. Particular attention should be paid to the nutrition of studying youth as in their diet there are observed many irregularities arising from the specific nature of student life. The aim of the study was to identify and assess the level of intake of selected vitamins and minerals in a group of students with consideration of gender. The study included the group of 200 persons studying at the Faculty of Biology and Agriculture at the University of Rzeszów. The assessment of intake was made using the method of immediate recording of products and beverages consumed by students within three successive days. Using the Tables of Nutritional Value of Foods and Dishes there was calculated the average daily intake of minerals (sodium, potassium, calcium, phosphorus, magnesium, iron, zinc, copper, manganese) and vitamins (A, D, E, thiamine, riboflavin, niacin, vitamin B6, folates and vitamin B12). It was found that the nutrition of women had seriously deficient intake of vitamin D (49%), folates (54%), thiamine and niacin. In terms of mineral intake in women there was diagnosed insufficient contribution of iron (46%), potassium (51.4%), calcium (55.4%) and magnesium (71.6%) in the diet. In the group of men deficiencies were found in the case of vitamin D (79.4%), foliates (71.6%) and vitamin C (76.0%). The excess of manganese (210.0%), phosphorus (198.9%), sodium (170.2%) in the diet and deficiency of potassium (65.5%), calcium (67.0%) and magnesium (73.9%) were found. The diet of men to a greater extent fulfils the need for vitamins and minerals. The results of the study show the necessity of education in order to foster healthy nutritional habits and to increase the share of natural sources of vitamins and minerals in the diet to prevent the occurrence of adverse effects related to their insufficient consumption.
Sánchez-Hevia, Dione L; Yuste, Luis; Moreno, Renata; Rojo, Fernando
2018-04-30
Metabolically versatile bacteria use catabolite repression control to select their preferred carbon sources, thus optimizing carbon metabolism. In pseudomonads, this occurs through the combined action of the proteins Hfq and Crc, which form stable tripartite complexes at target mRNAs, inhibiting their translation. The activity of Hfq/Crc is antagonised by small RNAs of the CrcZ family, the amounts of which vary according to carbon availability. The present work examines the role of Pseudomonas putida Hfq protein under conditions of low-level catabolite repression, in which Crc protein would have a minor role since it is sequestered by CrcZ/CrcY. The results suggest that, under these conditions, Hfq remains operative and plays an important role in iron homeostasis. In this scenario, Crc appears to participate indirectly by helping CrcZ/CrcY to control the amount of free Hfq in the cell. Iron homeostasis in pseudomonads relies on regulatory elements such as the Fur protein, the PrrF1-F2 sRNAs, and several extracytoplasmic sigma factors. Our results show that the absence of Hfq is paralleled by a reduction in PrrF1-F2 small RNAs. Hfq thus provides a regulatory link between iron and carbon metabolism, coordinating the iron supply to meet the needs of the enzymes operational under particular nutritional regimes. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Tooley, Ursula A.; Makhoul, Zeina; Fisher, Philip A.
2016-01-01
Objective Children in foster care are at greater risk for poor health, physical, cognitive, behavioral, and developmental outcomes than are children in the general population. Considerable research links early nutrition to later cognitive and behavioral outcomes. The aim of this narrative review is to examine the prevalence of poor nutrition and its relation to subsequent health and development in foster children. Method Relevant studies for inclusion were identified from numerous sources (e.g., PubMed, Google Scholar, and reference sections). Inclusion criteria were studies published between 1990 and 2016 of (i) the nutritional status of children in foster care or (ii) the nutritional status of children exposed to early adversity (e.g., low-income and internationally adopted children) or (iii) the developmental effects of poor nutrition and micronutrient deficiencies. Results Two key findings that have adverse implications for cognitive development emerged: (i) the prevalence of anemia and iron-deficiency anemia is higher among foster children than among the general population of children in the U.S., and (ii) the developmental demands of catch-up growth post-placement may lead to micronutrient deficiencies even after children have begun sufficient dietary intake of these nutrients. Moreover, there is a paucity of recent studies on the nutritional status of children in foster care, despite the multiple factors that may place them at risk for malnutrition. Conclusion Attention to nutritional status among care providers and medical professionals may remove one of the possible negative influences on foster children's development and in turn significantly alter their trajectories and place them on a more positive path early in life. Recommendations for further research, policy, and practice are discussed. PMID:28626279
Tooley, Ursula A; Makhoul, Zeina; Fisher, Philip A
2016-11-01
Children in foster care are at greater risk for poor health, physical, cognitive, behavioral, and developmental outcomes than are children in the general population. Considerable research links early nutrition to later cognitive and behavioral outcomes. The aim of this narrative review is to examine the prevalence of poor nutrition and its relation to subsequent health and development in foster children. Relevant studies for inclusion were identified from numerous sources (e.g., PubMed, Google Scholar, and reference sections). Inclusion criteria were studies published between 1990 and 2016 of (i) the nutritional status of children in foster care or (ii) the nutritional status of children exposed to early adversity (e.g., low-income and internationally adopted children) or (iii) the developmental effects of poor nutrition and micronutrient deficiencies. Two key findings that have adverse implications for cognitive development emerged: (i) the prevalence of anemia and iron-deficiency anemia is higher among foster children than among the general population of children in the U.S., and (ii) the developmental demands of catch-up growth post-placement may lead to micronutrient deficiencies even after children have begun sufficient dietary intake of these nutrients. Moreover, there is a paucity of recent studies on the nutritional status of children in foster care, despite the multiple factors that may place them at risk for malnutrition. Attention to nutritional status among care providers and medical professionals may remove one of the possible negative influences on foster children's development and in turn significantly alter their trajectories and place them on a more positive path early in life. Recommendations for further research, policy, and practice are discussed.
Nutritional disparities among women in urban India.
Agarwal, Siddharth; Sethi, Vani
2013-12-01
The paper presents a wealth quartile analysis of the urban subset of the third round of Demographic Health Survey of India to unmask intra-urban nutrition disparities in women. Maternal thinness and moderate/ severe anaemia among women of the poorest urban quartile was 38.5% and 20% respectively and 1.5-1.8 times higher than the rest of urban population. Receipt of pre- and postnatal nutrition and health education and compliance to iron folic acid tablets during pregnancy was low across all quartiles. One-fourth (24.5%) of households in the lowest urban quartile consumed salt with no iodine content, which was 2.8 times higher than rest of the urban population (8.7%). The study highlights the need to use poor-specific urban data for planning and suggests (i) routine field assessment of maternal nutritional status in outreach programmes, (ii) improving access to food subsidies, subsidized adequately-iodized salt and food supplementation programmes, (iii) identifying alternative iron supplementation methods, and (iv) institutionalizing counselling days.
Nutritional Disparities among Women in Urban India
Sethi, Vani
2013-01-01
The paper presents a wealth quartile analysis of the urban subset of the third round of Demographic Health Survey of India to unmask intra-urban nutrition disparities in women. Maternal thinness and moderate/severe anaemia among women of the poorest urban quartile was 38.5% and 20% respectively and 1.5-1.8 times higher than the rest of urban population. Receipt of pre- and postnatal nutrition and health education and compliance to iron folic acid tablets during pregnancy was low across all quartiles. One-fourth (24.5%) of households in the lowest urban quartile consumed salt with no iodine content, which was 2.8 times higher than rest of the urban population (8.7%). The study highlights the need to use poor-specific urban data for planning and suggests (i) routine field assessment of maternal nutritional status in outreach programmes, (ii) improving access to food subsidies, subsidized adequately-iodized salt and food supplementation programmes, (iii) identifying alternative iron supplementation methods, and (iv) institutionalizing counselling days. PMID:24592595
Landim, Liejy Agnes; Pessoa, Marcia Luiza Dos Santos Beserra; Brandão, Amanda de Castro Amorim Serpa; Morgano, Marcelo Antonio; Marcos Antônio de Mota Araújo, Marcos Antônio De Mota Araújo; Rocha, Maurisrael De Moura; Arêas, José Alfredo Gomes; Moreira-Araújo, Regilda Saraiva Dos Reis
2016-09-20
Nutritional intervention in pre-school children using cookies prepared with wheat flour enriched with iron and folic acid (CWFFeFA) and cookies prepared with cowpea (Vigna unguiculata (L.) Walp) flour fortified with iron and zinc and wheat flour enriched with iron and folic acid (CCFFeZn + WFFeFA). To assess the impact of the ingestion of CWFFeFA and CCFFeZn + WFFeFA by pre-school children, using the cowpea variety BRS-Xiquexique, to control iron-deficiency anaemia. Nutritional intervention was conducted in municipal day care centres selected at random (n = 262) involving pre-school children aged 2 to 5 years living in Teresina, state of Piauí, Brazil. To assess the socioeconomic data, BMI-for-age, haemoglobin levels before and after intervention, and dietary intake, the children were divided into group 1 (G1), which received CWFFeFA (30 g), and group 2 (G2), which received CCFFeZn + WFFeFA (30 g). Food acceptance was evaluated daily. The prevalence of anaemia in G1 and G2 before the nutritional intervention was 12.2% (n = 18) and 11.5% (n = 30), respectively. After intervention, the prevalence decreased to 1.4% in G1 (n = 2) and to 4.2% in G2 (n = 11). Food acceptance by pre-school children in G1 and G2 was 97.4% and 94.3%, respectively. The use of both types of cookie formulations decreased the prevalence of anaemia among pre-school children, and CCFFeZn + WFFeFA yielded the greatest decrease.
Gutzeit, D; Winterhalter, P; Jerz, G
2008-08-01
Processing effects on the mineral content were investigated during juice production from sea buckthorn (Hippophaë rhamnoides L. ssp. rhamnoides, Elaeagnaceae) using berries from 2 different growing areas. The major and trace elements of sea buckthorn berries and juices were determined by atomic absorption spectroscopy (AAS)--(calcium, iron, magnesium, potassium, sodium) and inductively coupled plasma-mass spectrometry (ICP-MS)--(arsenic, boron, chromium, copper, manganese, molybdenum, nickel, selenium, zinc). Potassium is the most abundant major element in sea buckthorn berries and juices. The production process increased the potassium content in the juice by about 20%. Moreover, the processing of juice increased the value of manganese up to 32% compared to the content in berries. During industrial juice production, the technological steps caused a loss of about 53% to 77% of the chromium concentration, 50% of the copper content, 64% to 75% of the molybdenum amount, and up to 45% of the iron concentration in the final juice product. Consumption of sea buckthorn juice represents a beneficial source of chromium, copper, manganese, molybdenum, iron, and potassium for the achievement of the respective dietary requirements.
Wheat Vacuolar Iron Transporter TaVIT2 Transports Fe and Mn and Is Effective for Biofortification.
Connorton, James M; Jones, Eleanor R; Rodríguez-Ramiro, Ildefonso; Fairweather-Tait, Susan; Uauy, Cristobal; Balk, Janneke
2017-08-01
Increasing the intrinsic nutritional quality of crops, known as biofortification, is viewed as a sustainable approach to alleviate micronutrient deficiencies. In particular, iron deficiency anemia is a major global health issue, but the iron content of staple crops such as wheat ( Triticum aestivum ) is difficult to change because of genetic complexity and homeostasis mechanisms. To identify target genes for the biofortification of wheat, we functionally characterized homologs of the VACUOLAR IRON TRANSPORTER ( VIT ). The wheat genome contains two VIT paralogs, TaVIT1 and TaVIT2 , which have different expression patterns but are both low in the endosperm. TaVIT2, but not TaVIT1, was able to rescue the growth of a yeast ( Saccharomyces cerevisiae ) mutant defective in vacuolar iron transport. TaVIT2 also complemented a manganese transporter mutant but not a vacuolar zinc transporter mutant. By overexpressing TaVIT2 under the control of an endosperm-specific promoter, we achieved a greater than 2-fold increase in iron in white flour fractions, exceeding minimum legal fortification levels in countries such as the United Kingdom. The antinutrient phytate was not increased and the iron in the white flour fraction was bioavailable in vitro, suggesting that food products made from the biofortified flour could contribute to improved iron nutrition. The single-gene approach impacted minimally on plant growth and also was effective in barley ( Hordeum vulgare ). Our results show that by enhancing vacuolar iron transport in the endosperm, this essential micronutrient accumulated in this tissue, bypassing existing homeostatic mechanisms. © 2017 American Society of Plant Biologists. All Rights Reserved.
Jones, Eleanor R.; Rodríguez-Ramiro, Ildefonso
2017-01-01
Increasing the intrinsic nutritional quality of crops, known as biofortification, is viewed as a sustainable approach to alleviate micronutrient deficiencies. In particular, iron deficiency anemia is a major global health issue, but the iron content of staple crops such as wheat (Triticum aestivum) is difficult to change because of genetic complexity and homeostasis mechanisms. To identify target genes for the biofortification of wheat, we functionally characterized homologs of the VACUOLAR IRON TRANSPORTER (VIT). The wheat genome contains two VIT paralogs, TaVIT1 and TaVIT2, which have different expression patterns but are both low in the endosperm. TaVIT2, but not TaVIT1, was able to rescue the growth of a yeast (Saccharomyces cerevisiae) mutant defective in vacuolar iron transport. TaVIT2 also complemented a manganese transporter mutant but not a vacuolar zinc transporter mutant. By overexpressing TaVIT2 under the control of an endosperm-specific promoter, we achieved a greater than 2-fold increase in iron in white flour fractions, exceeding minimum legal fortification levels in countries such as the United Kingdom. The antinutrient phytate was not increased and the iron in the white flour fraction was bioavailable in vitro, suggesting that food products made from the biofortified flour could contribute to improved iron nutrition. The single-gene approach impacted minimally on plant growth and also was effective in barley (Hordeum vulgare). Our results show that by enhancing vacuolar iron transport in the endosperm, this essential micronutrient accumulated in this tissue, bypassing existing homeostatic mechanisms. PMID:28684433
Jobarteh, Modou Lamin; McArdle, Harry J; Holtrop, Grietje; Sise, Ebrima A; Prentice, Andrew M; Moore, Sophie E
2017-07-01
Background: The role of the placenta in regulating micronutrient transport in response to maternal status is poorly understood. Objective: We investigated the effect of prenatal nutritional supplementation on the regulation of placental iron and zinc transport. Methods: In a randomized trial in rural Gambia [ENID (Early Nutrition and Immune Development)], pregnant women were allocated to 1 of 4 nutritional intervention arms: 1 ) iron and folic acid (FeFol) tablets (FeFol group); 2 ) multiple micronutrient (MMN) tablets (MMN group); 3 ) protein energy (PE) as a lipid-based nutrient supplement (LNS; PE group); and 4 ) PE and MMN (PE+MMN group) as LNS. All arms included iron (60 mg/d) and folic acid (400 μg/d). The MMN and PE+MMN arms included 30 mg supplemental Zn/d. In a subgroup of ∼300 mother-infant pairs, we measured maternal iron status, mRNA levels of genes encoding for placental iron and zinc transport proteins, and cord blood iron levels. Results: Maternal plasma iron concentration in late pregnancy was 45% and 78% lower in the PE and PE+MMN groups compared to the FeFol and MMN groups, respectively ( P < 0.001). The mRNA levels of the placental iron uptake protein transferrin receptor 1 were 30-49% higher in the PE and PE+MMN arms than in the FeFol arm ( P < 0.031), and also higher in the PE+MMN arm (29%; P = 0.042) than in the MMN arm. Ferritin in infant cord blood was 18-22% lower in the LNS groups ( P < 0.024). Zinc supplementation in the MMN arm was associated with higher maternal plasma zinc concentrations (10% increase; P < 0.001) than in other intervention arms. mRNA levels for intracellular zinc-uptake proteins, in this case zrt, irt-like protein (ZIP) 4 and ZIP8, were 96-205% lower in the PE+MMN arm than in the intervention arms without added zinc ( P < 0.025). Furthermore, mRNA expression of ZIP1 was 85% lower in the PE+MMN group than in the PE group ( P = 0.003). Conclusion: In conditions of low maternal iron and in the absence of supplemental zinc, the placenta upregulates the gene expression of iron and zinc uptake proteins, presumably in order to meet fetal demands in the face of low maternal supply. The ENID trial was registered at www.controlled-trials.com as ISRCTN49285450.
Nutrition Research: Basis for Station Requirements
NASA Technical Reports Server (NTRS)
Lane, Helen W.; Rice, Barbara; Smith, Scott M.
2011-01-01
Prior to the Shuttle program, all understanding of nutritional needs in space came from Skylab metabolic research. Because Shuttle flights were short, most less than 14 days, research focused on major nutritional issues: energy (calories), protein and amino acids, water and electrotypes, with some more general physiology studies that related to iron and calcium. Using stable isotope tracer studies and diet intake records, we found that astronauts typically did not consume adequate calories to meet energy expenditure. To monitor energy and nutrient intake status and provide feedback to the flight surgeon and the astronauts, the International Space Station (ISS) program implemented a weekly food frequency questionnaire and routine body mass measurements. Other Shuttle investigations found that protein turnover was higher during flight, suggesting there was increased protein degradation and probably concurrent increase in protein synthesis, and this occurred even in cases of adequate protein and caloric intake. These results may partially explain some of the loss of leg muscle mass. Fluid and electrolyte flight studies demonstrated that water intake, like energy intake, was lower than required. However, sodium intakes were elevated during flight and likely related to other concerns such as calcium turnover and other health-related issues. NASA is making efforts to have tasty foods with much lower salt levels to reduce sodium intake and to promote fluid intake on orbit. Red blood cell studies conducted on the Shuttle found decreased erythrogenesis and increased serum ferritin levels. Given that the diet is high in iron there may be iron storage health concerns, especially related to the role of iron in oxidative damage, complicated by the stress and radiation. The Shuttle nutrition research lead to new monitoring and research on ISS. These data will be valuable for future NASA and commercial crewed missions.
Genomics of mineral nutrient biofortification: calcium, iron and zinc
USDA-ARS?s Scientific Manuscript database
Dietary deficiencies affect nearly half of the people on the planet, who simply do not receive sufficient nutrition from the food they buy or grow. Inadequate calcium, iron, and zinc consumption create short and long term health problems, which in turn can magnify and stagnate national development. ...
Biofortified indica rice attains iron and zinc nutrition dietary targets in the field
USDA-ARS?s Scientific Manuscript database
Iron (Fe) and zinc (Zn) deficiencies are the most prevalent micronutrient malnutrition globally1. Fe in rice has proven efficacious in improving serum ferritin concentration and body Fe levels2. Rapid progress in biofortification demonstrates the feasibility to enhance Fe in polished rice by expre...
Iron deficiency in plants: An insight from proteomic approaches
USDA-ARS?s Scientific Manuscript database
Iron (Fe) deficiency chlorosis is a major nutritional disorder for crops growing in calcareous soils, and causes decreases in vegetative growth as well as marked yield and quality losses. With the advances in mass spectrometry techniques, a substantial body of knowledge has arisen on the changes in ...
Demonstrating a Nutritional Advantage to the Fast-Cooking Dry Bean (Phaseolus vulgaris L.).
Wiesinger, Jason A; Cichy, Karen A; Glahn, Raymond P; Grusak, Michael A; Brick, Mark A; Thompson, Henry J; Tako, Elad
2016-11-16
Dry beans (Phaseolus vulgaris L.) are a nutrient-dense food rich in protein and micronutrients. Despite their nutritional benefits, long cooking times limit the consumption of dry beans worldwide, especially in nations where fuelwood for cooking is often expensive or scarce. This study evaluated the nutritive value of 12 dry edible bean lines that vary for cooking time (20-89 min) from four market classes (yellow, cranberry, light red kidney, and red mottled) of economic importance in bean-consuming regions of Africa and the Americas. When compared to their slower cooking counterparts within each market class, fast-cooking dry beans retain more protein and minerals while maintaining similar starch and fiber densities when fully cooked. For example, some of the highest protein and mineral retention values were measured in the fast-cooking yellow bean cultivar Cebo Cela, which offered 20% more protein, 10% more iron, and 10% more zinc with each serving when compared with Canario, a slow-cooking yellow bean that requires twice the cooking time to become palatable. A Caco-2 cell culture model also revealed the bioavailability of iron is significantly higher in faster cooking entries (r = -0.537, P = 0.009) as compared to slower cooking entries in the same market class. These findings suggest that fast-cooking bean varieties have improved nutritive value through greater nutrient retention and improved iron bioavailability.
Sotelo, Angela; González-Osnaya, Liliana; Sánchez-Chinchillas, Argelia; Trejo, Alberto
2010-02-01
The objectives of this research were to assess the bioavailability of iron in foodstuffs found in the Mexican diet, to provide data on the content of iron absorption inhibitors present in plant origin products and to assess the inhibitory effect of these compounds and of cooking on iron bioavailability; therefore, total content and bioavailable iron, tannins, phytic and oxalic acid were determined in vegetables, cereals, legumes and animal products, before and after cooking. Vegetables, although rich in iron, have poor iron bioavailability and a high content of inhibitory factors; cooking reduced the content of iron and inhibitory factors, whereas in animal products the treatment of cooking did not significantly reduce it. Iron bioavailability, phytate content and the phytate to iron molar ratio predicted poor iron bioavailability and, therefore, a negative impact on the nutritional status of people who rely on them as staple foods could be expected.
Heme compounds as iron sources for nonpathogenic Rhizobium bacteria.
Noya, F; Arias, A; Fabiano, E
1997-01-01
Many animal-pathogenic bacteria can use heme compounds as iron sources. Like these microorganisms, rhizobium strains interact with host organisms where heme compounds are available. Results presented in this paper indicate that the use of hemoglobin as an iron source is not restricted to animal-pathogenic microorganisms. We also demonstrate that heme, hemoglobin, and leghemoglobin can act as iron sources under iron-depleted conditions for Rhizobium meliloti 242. Analysis of iron acquisition mutant strains indicates that siderophore-, heme-, hemoglobin-, and leghemoglobin-mediated iron transport systems expressed by R. meliloti 242 share at least one component. PMID:9139934
Heme compounds as iron sources for nonpathogenic Rhizobium bacteria.
Noya, F; Arias, A; Fabiano, E
1997-05-01
Many animal-pathogenic bacteria can use heme compounds as iron sources. Like these microorganisms, rhizobium strains interact with host organisms where heme compounds are available. Results presented in this paper indicate that the use of hemoglobin as an iron source is not restricted to animal-pathogenic microorganisms. We also demonstrate that heme, hemoglobin, and leghemoglobin can act as iron sources under iron-depleted conditions for Rhizobium meliloti 242. Analysis of iron acquisition mutant strains indicates that siderophore-, heme-, hemoglobin-, and leghemoglobin-mediated iron transport systems expressed by R. meliloti 242 share at least one component.
Buried treasure: evolutionary perspectives on microbial iron piracy
Barber, Matthew F.; Elde, Nels C.
2015-01-01
Host-pathogen interactions provide valuable systems for the study of evolutionary genetics and natural selection. The sequestration of essential iron has emerged as a critical innate defense system termed nutritional immunity, leading pathogens to evolve mechanisms of `iron piracy' to scavenge this metal from host proteins. This battle for iron carries numerous consequences not only for host-pathogen evolution, but also microbial community interactions. Here we highlight recent and potential future areas of investigation on the evolutionary implications of microbial iron piracy in relation to molecular arms races, host range, competition, and virulence. Applying evolutionary genetic approaches to the study of microbial iron acquisition could also provide new inroads for understanding and combating infectious disease. PMID:26431675
Azarkhish, Iman; Raoufy, Mohammad Reza; Gharibzadeh, Shahriar
2012-06-01
Iron deficiency anemia (IDA) is the most common nutritional deficiency worldwide. Measuring serum iron is time consuming, expensive and not available in most hospitals. In this study, based on four accessible laboratory data (MCV, MCH, MCHC, Hb/RBC), we developed an artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) to diagnose the IDA and to predict serum iron level. Our results represent that the neural network analysis is superior to ANFIS and logistic regression models in diagnosing IDA. Moreover, the results show that the ANN is likely to provide an accurate test for predicting serum iron levels with high accuracy and acceptable precision.
Iron solubility related to particle sulfur content in source emission and ambient fine particles.
Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J
2012-06-19
The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (<1%, mineral dust and coal fly ash) up to 75% (mobile exhaust and biomass burning emissions). Differences in iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.
Chang, Chou-Yueh; Chang, Horng-Rong; Lin, Hsing-Chun; Chang, Han-Hsin
2018-03-13
Objective Vegetarian diets have been shown to increase the risk of certain nutritional deficiencies, such as iron. As a number of patients with chronic kidney disease (CKD) in Taiwan are lacto-ovo vegetarians, the aim of this study was to investigate the effects of different proportions and sources of protein in lacto-ovo vegetarian and omnivorous diets, as well as the influence of adequate dietary protein intake, on renal function and nutritional status of Taiwanese patients with stage 3 to stage 5 CKD. Methods This is a cross-sectional study. In total, 100 outpatients with stage 3 to stage 5 CKD were enrolled in this study, including 40 lacto-ovo vegetarians and 60 omnivores. Subjects were divided into the lacto-ovo vegetarian group and omnivorous group based on dietary protein patterns. The indicators of renal function included estimated glomerular filtration rate (eGFR), creatinine, and blood urea nitrogen (BUN). Albumin, hemoglobin (Hb), and red blood cell count (RBC) measurements served as nutritional indicators. The levels of dietary energy and protein, as well as protein sources (plant or animal), were also analyzed. Results The levels of serum phosphate and triglycerides were significantly lower in the lacto-ovo vegetarian group than in the omnivore group, suggesting that lacto-ovo vegetarian diets have both phosphate-lowering and lipid-lowering effects, which could reduce the development of hyperphosphatemia and dyslipidemia. However, since all groups consumed higher than the recommended amounts of protein diet intake, no significant differences were observed in other renal function indices between the two groups. Conclusion Although a larger cohort study is necessary, the findings of this study could help patients with CKD to make healthier food choices and be used to support future medical nutritional therapies.
Cunnane, Stephen C; Crawford, Michael A
2014-12-01
The human brain confronts two major challenges during its development: (i) meeting a very high energy requirement, and (ii) reliably accessing an adequate dietary source of specific brain selective nutrients needed for its structure and function. Implicitly, these energetic and nutritional constraints to normal brain development today would also have been constraints on human brain evolution. The energetic constraint was solved in large measure by the evolution in hominins of a unique and significant layer of body fat on the fetus starting during the third trimester of gestation. By providing fatty acids for ketone production that are needed as brain fuel, this fat layer supports the brain's high energy needs well into childhood. This fat layer also contains an important reserve of the brain selective omega-3 fatty acid, docosahexaenoic acid (DHA), not available in other primates. Foremost amongst the brain selective minerals are iodine and iron, with zinc, copper and selenium also being important. A shore-based diet, i.e., fish, molluscs, crustaceans, frogs, bird's eggs and aquatic plants, provides the richest known dietary sources of brain selective nutrients. Regular access to these foods by the early hominin lineage that evolved into humans would therefore have helped free the nutritional constraint on primate brain development and function. Inadequate dietary supply of brain selective nutrients still has a deleterious impact on human brain development on a global scale today, demonstrating the brain's ongoing vulnerability. The core of the shore-based paradigm of human brain evolution proposes that sustained access by certain groups of early Homo to freshwater and marine food resources would have helped surmount both the nutritional as well as the energetic constraints on mammalian brain development. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dietary iron intake, iron status, and gestational diabetes.
Zhang, Cuilin; Rawal, Shristi
2017-12-01
Pregnant women are particularly vulnerable to iron deficiency and related adverse pregnancy outcomes and, as such, are routinely recommended for iron supplementation. Emerging evidence from both animal and population-based studies, however, has raised potential concerns because significant associations have been observed between greater iron stores and disturbances in glucose metabolism, including increased risk of type 2 diabetes among nonpregnant individuals. Yet, the evidence is uncertain regarding the role of iron in the development of gestational diabetes mellitus (GDM), a common pregnancy complication which has short-term and long-term adverse health ramifications for both women and their children. In this review, we critically and systematically evaluate available data examining the risk of GDM associated with dietary iron, iron supplementation, and iron status as measured by blood concentrations of several indicators. We also discuss major methodologic concerns regarding the available epidemiologic studies on iron and GDM. © 2017 American Society for Nutrition.
Optimal copper supply is required for normal plant iron deficiency responses
Waters, Brian M; Armbrust, Laura C
2013-01-01
Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. Understanding crosstalk between Fe and Cu nutrition could lead to strategies for improved growth on soils with low or excess metals, with implications for agriculture and phytoremediation. Here, we show that Cu and Fe nutrition interact to increase or decrease Fe and/or Cu accumulation in leaves and Fe uptake processes. Leaf Cu concentration increased under low Fe supply, while high Cu lowered leaf Fe concentration. Ferric reductase activity, an indicator of Fe demand, was inhibited at insufficient or high Cu supply. Surprisingly, plants grown without Fe were more susceptible to Cu toxicity. PMID:24084753
Optimal copper supply is required for normal plant iron deficiency responses.
Waters, Brian M; Armbrust, Laura C
2013-01-01
Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. Understanding crosstalk between Fe and Cu nutrition could lead to strategies for improved growth on soils with low or excess metals, with implications for agriculture and phytoremediation. Here, we show that Cu and Fe nutrition interact to increase or decrease Fe and/or Cu accumulation in leaves and Fe uptake processes. Leaf Cu concentration increased under low Fe supply, while high Cu lowered leaf Fe concentration. Ferric reductase activity, an indicator of Fe demand, was inhibited at insufficient or high Cu supply. Surprisingly, plants grown without Fe were more susceptible to Cu toxicity.
Key Nutritional Strategies to Optimize Performance in Para Athletes.
Scaramella, Jacque; Kirihennedige, Nuwanee; Broad, Elizabeth
2018-05-01
Para athletes are a high-risk population for inadequate dietary intake leading to insufficiencies in nutrients important to athletic performance. This is partly due to minimal support and resources, especially in sport nutrition education, combined with limited prior nutrition knowledge and risks associated with different impairment types. Inadequate energy, carbohydrate, protein, iron, and vitamin D status are of particular concern in Para athletes. Assessment of these key nutrients, along with sport nutrition education, is needed to empower Para athletes with the knowledge to understand their individual nutrition needs and maximize athletic performance. Copyright © 2018 Elsevier Inc. All rights reserved.
Iron homeostasis during pregnancy.
Fisher, Allison L; Nemeth, Elizabeta
2017-12-01
During pregnancy, iron needs to increase substantially to support fetoplacental development and maternal adaptation to pregnancy. To meet these iron requirements, both dietary iron absorption and the mobilization of iron from stores increase, a mechanism that is in large part dependent on the iron-regulatory hormone hepcidin. In healthy human pregnancies, maternal hepcidin concentrations are suppressed in the second and third trimesters, thereby facilitating an increased supply of iron into the circulation. The mechanism of maternal hepcidin suppression in pregnancy is unknown, but hepcidin regulation by the known stimuli (i.e., iron, erythropoietic activity, and inflammation) appears to be preserved during pregnancy. Inappropriately increased maternal hepcidin during pregnancy can compromise the iron availability for placental transfer and impair the efficacy of iron supplementation. The role of fetal hepcidin in the regulation of placental iron transfer still remains to be characterized. This review summarizes the current understanding and addresses the gaps in knowledge about gestational changes in hematologic and iron variables and regulatory aspects of maternal, fetal, and placental iron homeostasis. © 2017 American Society for Nutrition.
Farina, Emily K; Taylor, Jonathan C; Means, Gary E; Murphy, Nancy E; Pasiakos, Stefan M; Lieberman, Harris R; McClung, James P
2017-07-03
Special Operations Forces (SOF) Soldiers deploy frequently and require high levels of physical and cognitive performance. Nutritional status is linked to cognitive and physical performance. Studies evaluating dietary intake and nutritional status in deployed environments are lacking. Therefore, this study assessed the effects of combat deployment on diet quality and serum concentrations of nutritional status markers, including iron, vitamin D, parathyroid hormone (PTH), glucose, and lipids, among elite United States (U.S.) Army SOF Soldiers. Changes from baseline to post-deployment were determined with a repeated measure within-subjects design for Healthy Eating Index-2010 (HEI-2010) scores, intake of foods, food groups, key nutrients, and serum nutritional status markers. Dietary intake was assessed with a Block Food Frequency Questionnaire. The association between post-deployment serum 25-hydroxy vitamin D (25-OH vitamin D) and PTH was determined. Analyses of serum markers were completed on 50 participants and analyses of dietary intake were completed on 33 participants. In response to deployment, HEI-2010 scores decreased for total HEI-2010 (70.3 ± 9.1 vs. 62.9 ± 11.1), total fruit (4.4 ± 1.1 vs. 3.7 ± 1.5), whole fruit (4.6 ± 1.0 vs. 4.2 ± 1.4), dairy (6.2 ± 2.7 vs. 4.8 ± 2.4), and empty calories (14.3 ± 3.2 vs. 11.1 ± 4.5) (P ≤ 0.05). Average daily intakes of foods and food groups that decreased included total dairy (P < 0.01), milk (P < 0.01), and non-juice fruit (P = 0.03). Dietary intake of calcium (P = 0.05) and vitamin D (P = 0.03) decreased. PTH increased from baseline (3.4 ± 1.6 vs. 3.8 ± 1.4 pmol/L, P = 0.04), while there was no change in 25-OH vitamin D. Ferritin decreased (385 ± 173 vs. 354 ± 161 pmol/L, P = 0.03) and soluble transferrin receptor increased (16.3 ± 3.7 vs. 17.1 ± 3.5 nmol/L, P = 0.01). There were no changes in glucose or lipids. Post-deployment, serum 25-OH vitamin D was inversely associated with PTH (r = -0.43, P < 0.01). HEI-2010 scores and dietary intake of milk, calcium, and vitamin D decreased following deployment. Serum PTH increased and iron stores were degraded. No Soldiers were iron deficient. Personnel that deploy frequently should maintain a high diet quality in the U.S. and while deployed by avoiding empty calories and consuming fruits, vegetables, and adequate sources of calcium, vitamin D, and iron. Improving availability and quality of perishable food during deployment may improve diet quality.
Nutritional Considerations for the Vegetarian and Vegan Dancer.
Brown, Derrick D
2018-03-15
Vegetarianism provides a catchall term for a variety of diets that exclude the consumption of some or all animal products. Contrary to popular claims, appropriately designed and managed vegetarian diets contain foods nutritionally sufficient for health, well-being, and physical performance. Vegetarian dancers can meet their protein needs from primarily or exclusively (vegan) plant-based sources when a variety of these foods are consumed daily and energy intake is adequate. However, the quality and timing of dietary intake is of key importance to meet the physical demands typical of high intensity, intermittent types of dance styles. Poorly planned, calorically restrictive, and nutrient poor diets confer a host of deficiencies that diminish health and ultimately performance. The recommendation for dietary macronutrient composition of carbohydrate, fat, and protein of 55%, 20% to 30%, and 12% to 15%, respectively, offers an acceptable baseline for all dancers across different dance styles. Vegetarians, in particular vegans, should ensure sufficient caloric and adequate intake of Vitamin B12, Vitamin D, ω-3 fatty acids, calcium, and zinc. Many of these micronutrients are derived from animal products, but, with sufficient knowledge, can be obtained from plantbased sources. However, the diminished bioavailability of iron from plants and lack of plant sources of Vitamin B12 in vegan type diets can have detrimental effects on physical performance. Thus, to prevent long-term deficiencies, vegan dancers require more diligence when preparing and managing dietary intake. This article reviews literature on vegetarian diets with regard to dance, gleaning findings from epidemiologic, clinical, and sport nutrition research. It also highlights potential micronutrient deficiencies that may occur in some plant-based diets and presents potential strategies to improve nutrient and caloric intake for dancers who opt for a plant-based diet.
Pfeiffer, Christine M; Looker, Anne C
2017-12-01
Biochemical assessment of iron status relies on serum-based indicators, such as serum ferritin (SF), transferrin saturation, and soluble transferrin receptor (sTfR), as well as erythrocyte protoporphyrin. These indicators present challenges for clinical practice and national nutrition surveys, and often iron status interpretation is based on the combination of several indicators. The diagnosis of iron deficiency (ID) through SF concentration, the most commonly used indicator, is complicated by concomitant inflammation. sTfR concentration is an indicator of functional ID that is not an acute-phase reactant, but challenges in its interpretation arise because of the lack of assay standardization, common reference ranges, and common cutoffs. It is unclear which indicators are best suited to assess excess iron status. The value of hepcidin, non-transferrin-bound iron, and reticulocyte indexes is being explored in research settings. Serum-based indicators are generally measured on fully automated clinical analyzers available in most hospitals. Although international reference materials have been available for years, the standardization of immunoassays is complicated by the heterogeneity of antibodies used and the absence of physicochemical reference methods to establish "true" concentrations. From 1988 to 2006, the assessment of iron status in NHANES was based on the multi-indicator ferritin model. However, the model did not indicate the severity of ID and produced categorical estimates. More recently, iron status assessment in NHANES has used the total body iron stores (TBI) model, in which the log ratio of sTfR to SF is assessed. Together, sTfR and SF concentrations cover the full range of iron status. The TBI model better predicts the absence of bone marrow iron than SF concentration alone, and TBI can be analyzed as a continuous variable. Additional consideration of methodologies, interpretation of indicators, and analytic standardization is important for further improvements in iron status assessment. © 2017 American Society for Nutrition.
Ross, Lynda J; Wilson, Michael; Banks, Merrilyn; Rezannah, Fiona; Daglish, Mark
2012-07-01
Chronic substance abuse is recognized to affect nutritional status and is associated with nutrient deficiencies and malnutrition. This study aimed to identify the prevalence of malnutrition and nutritional risk factors using a spread of measurements in patients undergoing alcohol and drug treatment. Sixty-seven patients (48 male, 19 female) admitted to a public hospital detoxification unit participated: 49 were alcohol dependent (73%) and the remaining were opiate, benzodiazepine, and/or amphetamine dependent. Nutritional status was assessed by the Subjective Global Assessment. An appetite questionnaire (Simplified Nutritional Appetite Questionnaire), a diet-quality questionnaire (Australian Recommended Food Score), and blood biochemistry and hematologic tests were also applied. The prevalence of mild/moderate malnutrition was 24% according to the Subjective Global Assessment. Weight and body mass index were associated with nutritional status (P < 0.05). Appetite and diet quality were poor overall, with 88% of all participants requiring advice and guidance. Blood markers showed that 50% of all subjects were deficient in iron or vitamins (low vitamin A levels in 21%, low iron levels in 18%, low-range potassium in 12%, and low vitamin C levels in 8%). The prevalence of malnutrition in this patient population is likely to underestimate the prevalence of nutritional risk factors and micronutrient undernutrition. Multiple tools assessing nutritional status, appetite, diet quality, and blood test results have different advantages and can further identify the specific needs and appropriateness of nutritional education in patients during treatment for drug and alcohol use. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Status and future developments in plant iron for animal and human nutrition
USDA-ARS?s Scientific Manuscript database
Plant foods play a critical role in providing dietary iron to humans and other animals. Much of the world's human population subsists on diets that are predominantly vegetarian, while for those who eat limited to excessive amounts of animal food products, most of these foods come from livestock who...
Yang, Fang; Ma, Ai-Guo; Zhang, Xiu-Zhen; Jiang, Dian-Chen
2006-05-01
To investigate the status of vitamin A(VA), vitamin B2 (VB2), iron and anoxidative function in anemic and non-anemic pregnant women. 426 anemic and 36 non-anemic pregnant women were included in the study. The survey of 24-hour's diet recall of pregnant women was made to evaluate intake of iron, VB2, folic acid, etc by the nutrition software provided by Beijing 301 hospital, iron and VA were measured by Radioimmunoassay (RIA) and by high-pressure liquid chromatography. VB2 status was detected using the assay for erythrocyte glutathione reductase (Egr; EC 1.6.4.2) activity. SOD and GSH-Px activities and MDA were determined using commercial kits. Peripheral blood erythrocyte membrane fluidity was detected by using 1,6-diphenyl-1,3,5-hexatriene as a probe, the degree of fluorescence polarization (P) at 25 degrees C of disrupted cells plasma membranes were compared for a variety of systems. Median intakes of protein and vitamin C met the current Chinese RNIs for pregnancy, whereas intakes of(VA) and VB2 were well below the recommendations. Intake of iron were above 90%, but the main sources of iron are vegetables. Plasma VA (1.25 micromol/L) and iron (20.57 microg/L) were lower, BGRAC (1.79) was higher than that in non-anemia group (VA 1.57 micromol/L, SF 33.16 microg/L, BGRAC 1.52). The level of plasma SOD (77.1U/ml) and the activity of GSH-Px (61.9U) were lower than those in non-anemia group (92.2U/ml, 71.6U, P < 0.05), while MDA (4.58 nmol/ml) level and erythrocyte membrane (P = 0.2622, eta = 2.7465) fluidity were higher than those non-anemia group(MDA = 3.78 nmol/ ml, P = 0.2360, eta = 2.3658). Plasam VA, VB2 and iron, antioxidantcapacity and erythrocyte membrane fluidity were decreased in the anemic pregnant women.
2009-06-01
greatly influenced by the sources of iron to the marine environment, which include riverine input, hydrothermal upwelling, and atmospheric...deposition (Jickells et al, 2005). While the amount of iron introduced to the oceans from riverine and hydrothermal sources is high, precipitation occurs...rapidly in both cases and removes iron from seawater, minimizing the impact of hydrothermal and riverine sources on the concentration of iron in the
Rocha, Daniela da Silva; Capanema, Flávio Diniz; Netto, Michele Pereira; de Almeida, Carlos Alberto Nogueira; Franceschini, Sylvia do Carmo Castro; Lamounier, Joel Alves
2011-12-01
Because of the high prevalence of iron-deficiency anemia in Brazil, individual control measures tend to be ineffective, and fortification of foods with iron is considered the most effective method to fight anemia. To evaluate the effectiveness of fortification of drinking water with iron and vitamin C in the reduction of anemia in children in day-care centers in Belo Horizonte, Brazil. This before-and-after study evaluated 318 children aged 6 to 74 months. Identification data and data on socioeconomic variables were collected; anthropometric and biochemical measurements were performed before and after 5 months of fortification of water with 5 mg of elemental iron and 50 mg of ascorbic acid per liter. The fortified water was used for drinking and cooking at the day-care center. Wilcoxon's nonparametric test was used to evaluate the differences in continuous variables, and McNemar's test was used to compare the prevalence rates of anemia. The prevalence of anemia decreased significantly from 29.3% before fortification to 7.9% at the end of the study, with a significant increase in hemoglobin levels. Reductions in the prevalence rates of stunting and underweight were observed. Fortification of water with iron and vitamin C significantly reduced the prevalence of anemia and improved nutritional status among children attending day-care centers.
Nutritional value of Kejeik: a dry fish product of the Sudan.
Hassan, Zahra M A; Sulieman, Abdel Moneim E; Elkhalifa, Elamin A
2014-10-01
Kejeik product samples were collected from two different locations in Sudan including Singah city (Blue Nile) and Kusti city (White Nile). The contents of protein, moisture, ash, fat, crude fiber and carbohydrates varied considerably and ranged between 63.52-78.06, 5.37-6.69, 5.78-11.8, 9.04-16.13, 0.55-1.34 and 0.59-1.61% respectively, in the various Kejeik samples. However, the production area has a non-significant effect in most of the chemical components. All Kejeik samples contained appreciable amounts of macro-minerals and the calcium was the highest in all samples. In addition, Kejeik samples contained most of the micro-minerals, however, Nawk and Ijl Kejeik collected from Singah contained the lowest concentrations of iron. The study concluded that Kejeik is a safe food with a highly nutritive value which is recommended to be utilized in Sudanese meals especially during shortage of protein and other nutrients sources.
Monte Carlo simulation of zinc protoporphyrin fluorescence in the retina
NASA Astrophysics Data System (ADS)
Chen, Xiaoyan; Lane, Stephen
2010-02-01
We have used Monte Carlo simulation of autofluorescence in the retina to determine that noninvasive detection of nutritional iron deficiency is possible. Nutritional iron deficiency (which leads to iron deficiency anemia) affects more than 2 billion people worldwide, and there is an urgent need for a simple, noninvasive diagnostic test. Zinc protoporphyrin (ZPP) is a fluorescent compound that accumulates in red blood cells and is used as a biomarker for nutritional iron deficiency. We developed a computational model of the eye, using parameters that were identified either by literature search, or by direct experimental measurement to test the possibility of detecting ZPP non-invasively in retina. By incorporating fluorescence into Steven Jacques' original code for multi-layered tissue, we performed Monte Carlo simulation of fluorescence in the retina and determined that if the beam is not focused on a blood vessel in a neural retina layer or if part of light is hitting the vessel, ZPP fluorescence will be 10-200 times higher than background lipofuscin fluorescence coming from the retinal pigment epithelium (RPE) layer directly below. In addition we found that if the light can be focused entirely onto a blood vessel in the neural retina layer, the fluorescence signal comes only from ZPP. The fluorescence from layers below in this second situation does not contribute to the signal. Therefore, the possibility that a device could potentially be built and detect ZPP fluorescence in retina looks very promising.
Severe anemia in 3 toddlers with gastric lactobezoar.
Klein-Franke, A; Kropshofer, G; Gassner, I; Meister, B; Salvador, C; Scholl-Bürgi, S; Mueller, T; Heinz-Erian, P
2013-05-01
Anemia in toddlers may result from many disorders including excessive feeding with cow's milk. Another sequel of age-inadequate cow's milk nutrition may be gastric lactobezoar (GLB), a dense lump of coagulated milk and mucus in the stomach. 3 toddlers presented with a history of excessive intake of full cream cow's milk, abdominal distension, vomiting, dehydration, fatigue, marked pallor and tachycardia. Diagnostic imaging revea-led large GLBs as the likely origin of the abdominal symptoms. Laboratory evaluation showed severe anemia with depleted iron stores and signs of protein catabolism. Non-cow's milk-induced causes of anemia including defects of erythropoiesis, hemoglobin structure, RBC-enzymes and blood coagulation, hemolysis, immune disorders, infection, inflammation, extraintestinal hemorrhage, nephropathy were - according to the available data - unlikely to cause the anemia in our patients. Thus their anemia is thought to be due to age-inadequate cow's milk nutrition leading to 1) low intake, decreased absorption/bioavailability and increased intestinal loss of iron, and 2) GLB which induced blood loss following mechanical irritation of the gastric mucosa and vomiting causing high gastric pH and decrease in duodenal iron absorption. The anemia in our patients is due to both exaggerated feeding with cow's milk and adverse effects of GLBs. This hypothesis is supported by the finding that, after erythrocyte transfusion, iron substitution, age-adapted nutrition and GLB-dissolution, the anemia did not recur. We propose to include GLB in the differential diagnosis of anemia in cow's milk fed small children. © Georg Thieme Verlag KG Stuttgart · New York.
Prevalence of celiac disease in nutritional anemia at a tertiary care center.
Kavimandan, Amit; Sharma, Meenakshi; Verma, Anil K; Das, Prasenjit; Mishra, Prabhash; Sinha, Sanjeev; Mohan, Anant; Sreenivas, V; Datta Gupta, Siddhartha; Makharia, Govind K
2014-03-01
While anemia occurs in 80 % to 90 % of patients with celiac disease (CD), it may be the sole manifestation of CD. The prevalence of CD in Indian patients with nutritional anemia is not known. Adolescent and adult patients presenting with nutritional anemia were prospectively screened for CD using IgA anti-tissue transglutaminase antibody (anti-tTG Ab) followed, if positive, by upper gastrointestinal endoscopy and duodenal biopsy. Ninety-six patients [mean ± SD age 32.1 ± 13.1 years and median duration of anemia 11 months (range 1 to 144 months)] were screened. Of these patients, 80 had iron deficiency anemia, 11 had megaloblastic anemia, and 5 had dimorphic anemia. Seventy-three patients were on hematinics and 36.4 % had received blood transfusions. Nineteen had a history of chronic diarrhea and the mean ± SD duration of diarrhea in them was 9.7 ± 35.8 months. IgA anti-tTG Ab was positive in 13 patients, of whom 12 agreed to undergo duodenal biopsy. Ten patients had villous atrophy (Marsh grade 3a in three, 3b in one, and 3c in six) and two did not. Thus, 10 patients with nutritional anemia (iron deficiency 9, vitamin B12 deficiency 1) were diagnosed to have CD. On multivariate logistic regression, age, duration of symptoms, and presence of diarrhea were found to be the predictors of CD. All the patients with CD were put on gluten-free diet and with iron and vitamin supplementations and showed a significant improvement in hemoglobin concentration. CD screening should be included in the work up of otherwise unexplained nutritional anemia.
Prado, Elizabeth L; Ashorn, Ulla; Phuka, John; Maleta, Kenneth; Sadalaki, John; Oaks, Brietta M; Haskell, Marjorie; Allen, Lindsay H; Vosti, Steve A; Ashorn, Per; Dewey, Kathryn G
2018-04-01
Pregnant and post-partum women require increased nutrient intake and optimal cognition, which depends on adequate nutrition, to enable reasoning and learning for caregiving. We aimed to assess (a) differences in maternal cognition and caregiving between women in Malawi who received different nutritional supplements, (b) 14 effect modifiers, and (c) associations of cognition and caregiving with biomarkers of iron, Vitamin A, B-vitamin, and fatty acid status. In a randomized controlled trial (n = 869), pregnant women daily received either multiple micronutrients (MMN), 20 g/day lipid-based nutrient supplements (LNS), or a control iron/folic acid (IFA) tablet. After delivery, supplementation continued in the MMN and LNS arms, and the IFA control group received placebo until 6 months post-partum, when cognition (n = 712), caregiving behaviour (n = 669), and biomarkers of nutritional status (n = 283) were assessed. In the full group, only one difference was significant: the IFA arm scored 0.22 SD (95% CI [0.01, 0.39], p = .03) higher than the LNS arm in mental rotation. Among subgroups of women with baseline low hemoglobin, poor iron status, or malaria, those who received LNS scored 0.4 to 0.7 SD higher than the IFA arm in verbal fluency. Breastmilk docosahexaenoic acid and Vitamin B12 concentrations were positively associated with verbal fluency and digit span forward (adjusting for covariates ps < .05). In this population in Malawi, maternal supplementation with MMN or LNS did not positively affect maternal cognition or caregiving. Maternal docosahexaenoic acid and B12 status may be important for post-partum attention and executive function. © 2017 The Authors. Maternal and Child Nutrition Published by John Wiley & Sons, Ltd.
The Role of Nutritional Supplements in the Treatment of ADHD: What the Evidence Says.
Lange, Klaus W; Hauser, Joachim; Lange, Katharina M; Makulska-Gertruda, Ewelina; Nakamura, Yukiko; Reissmann, Andreas; Sakaue, Yuko; Takano, Tomoyuki; Takeuchi, Yoshihiro
2017-02-01
Attention-deficit hyperactivity disorder (ADHD) is a common behavioral disorder in children and adolescents and may persist into adulthood. Insufficient nutritional supply of long-chain polyunsaturated fatty acids (LC-PUFAs) and other components including various minerals has been suggested to play a role in the development of ADHD symptoms. This review presents the evidence regarding the role of nutritional PUFA, zinc, iron, and magnesium supplements in the treatment of ADHD with a focus on the critical evaluation of the relevant literature published from 2014 to April 2016. The evaluation of therapeutic nutritional LC-PUFA supplementation in ADHD has shown mixed and inconclusive results and at best marginal beneficial effects. The benefits of PUFAs are much smaller than the effect sizes observed for traditional pharmacological treatments of ADHD. The effectiveness of PUFA supplements in reducing medication dosage has been suggested but needs to be confirmed. Zinc, iron, and magnesium supplementation may reduce ADHD symptoms in children with or at high risk of deficiencies in these minerals. However, convincing evidence in this regard is lacking.
Food sources of energy and nutrients in Finnish girls and boys 6-8 years of age - the PANIC study.
Eloranta, Aino-Maija; Venäläinen, Taisa; Soininen, Sonja; Jalkanen, Henna; Kiiskinen, Sanna; Schwab, Ursula; Lakka, Timo A; Lindi, Virpi
2016-01-01
Data on food sources of nutrients are needed to improve strategies to enhance nutrient intake among girls and boys in Western countries. To identify major food sources of energy, energy nutrients, dietary fibre, and micronutrients, and to study gender differences in these food sources among children. We assessed food consumption and nutrient intake using 4-day food records in a population sample of Finnish girls ( n =213) and boys ( n =217) aged 6-8 years from the Physical Activity and Nutrition in Children Study. We calculated the percentual contribution of 55 food groups for energy and nutrient intake using the population proportion method. Low-fibre grain products, skimmed milk, and high-fibre bread provided almost 23% of total energy intake. Skimmed milk was the top source of protein (18% of total intake), vitamin D (32%), potassium (20%), calcium (39%), magnesium (17%), and zinc (16%). Vegetable oils (15%) and high-fat vegetable oil-based spreads (14%) were the top sources of polyunsaturated fat. High-fibre bread was the top source of fibre (27%) and iron (12%). Non-root vegetables were the top source of folate (14%) and vitamin C (22%). Sugar-sweetened beverages provided 21% of sucrose intake. Pork was a more important source of protein and sausage was a more important source of total fat and monounsaturated fat in boys than in girls. Vegetable oils provided a higher proportion of unsaturated fat and vitamin E among boys, whereas high-fat vegetable oil-based spreads provided a higher proportion of these nutrients among girls. Commonly recommended foods, such as skimmed milk, high-fibre grain products, vegetables, vegetable oil, and vegetable oil-based spreads, were important sources of several nutrients, whereas sugar-sweetened beverages provided the majority of sucrose intake among children. This knowledge can be used in improving health among children by dietary interventions, nutrition education, and health policy decision making.
Food sources of energy and nutrients in Finnish girls and boys 6–8 years of age – the PANIC study
Eloranta, Aino-Maija; Venäläinen, Taisa; Soininen, Sonja; Jalkanen, Henna; Kiiskinen, Sanna; Schwab, Ursula; Lakka, Timo A.; Lindi, Virpi
2016-01-01
Background Data on food sources of nutrients are needed to improve strategies to enhance nutrient intake among girls and boys in Western countries. Objective To identify major food sources of energy, energy nutrients, dietary fibre, and micronutrients, and to study gender differences in these food sources among children. Design We assessed food consumption and nutrient intake using 4-day food records in a population sample of Finnish girls (n=213) and boys (n=217) aged 6–8 years from the Physical Activity and Nutrition in Children Study. We calculated the percentual contribution of 55 food groups for energy and nutrient intake using the population proportion method. Results Low-fibre grain products, skimmed milk, and high-fibre bread provided almost 23% of total energy intake. Skimmed milk was the top source of protein (18% of total intake), vitamin D (32%), potassium (20%), calcium (39%), magnesium (17%), and zinc (16%). Vegetable oils (15%) and high-fat vegetable oil–based spreads (14%) were the top sources of polyunsaturated fat. High-fibre bread was the top source of fibre (27%) and iron (12%). Non-root vegetables were the top source of folate (14%) and vitamin C (22%). Sugar-sweetened beverages provided 21% of sucrose intake. Pork was a more important source of protein and sausage was a more important source of total fat and monounsaturated fat in boys than in girls. Vegetable oils provided a higher proportion of unsaturated fat and vitamin E among boys, whereas high-fat vegetable oil–based spreads provided a higher proportion of these nutrients among girls. Conclusion Commonly recommended foods, such as skimmed milk, high-fibre grain products, vegetables, vegetable oil, and vegetable oil–based spreads, were important sources of several nutrients, whereas sugar-sweetened beverages provided the majority of sucrose intake among children. This knowledge can be used in improving health among children by dietary interventions, nutrition education, and health policy decision making. PMID:27702428
Benefice, Eric; Lévi, Pierre; Banouvong, Phonetip
2012-05-01
The high rates of rapid urban and economic growth occurring in Asia are bringing about parallel changes in both food consumption patterns and nutritional status. The aim of this study is to examine the impact of these changes on the nutritional and health status of mothers and their offspring in Vientiane, Lao PDR. Over 2 consecutive years, a follow-up study of 150 infant-mother pairs living at three different levels of urbanization was performed in Vientiane. The mothers completed a questionnaire on their eating habits. Clinical examinations and anthropometric measurements were also carried out. The results showed that, in general, the dietary energy content was low (providing only 83% of the energy requirement) and there were deficiencies in calcium, vitamin A, Folate and iron. The main energy source was rice (providing 40.9%), while 40% of the protein provided by meat and fish provided 19.8%. The differences observed in the food contribution to energy intakes and in food diversity varied with the level of urbanization. The prevalence of stunting (13.9%; CI 10.0 ∼ 18.6%) was less than that reported at the country level. Stunting was related to age, the sex of the child and the mother's physique and varied according to the level of urbanization. The level of urbanization in Vientiane influences the pace of the ongoing process of nutritional transition.
Tympa-Psirropoulou, E; Vagenas, C; Psirropoulos, D; Dafni, O; Matala, A; Skopouli, F
2005-02-01
Iron-deficiency anaemia (IDA) is a common problem all over the world, which mainly attacks pregnant women, infants and children. The main objectives were to assess the prevalence of IDA in children 12-24 months old in the area of Thessalia located in the central part of Greece and to identify, by means of a simple questionnaire, its nutritional risk factors. The research was applied as a cross-sectional and case-control study. In the first part of the study, the haemoglobin (Hb) levels were estimated by a mobile photometer analyser in 938 children (approximately one-third of the total children population). In the second part, children with Hb?11 g/dl were compared with their random selected healthy controls in haematological, anthropometric and nutritional parameters. The estimated laboratory values were Hb, haematocrit, mean corpuscular volume, mean corpuscular Hb, mean corpuscular Hb concentration, zinc protoporphyrin, serum iron, serum ferritin, transferring saturation, total iron binding capacity and Hb electrophoresis. Finally, 75 children (34 boys, 41 girls; mean age 17.51+/-3.5 months), who were found to have IDA, constituted the case group while 75 healthy children constituted the control group. The studied nutritional variables through the application of a standardized food frequency questionnaire were: duration of breast feeding, milk that the child drinks during the research, age of solid food introduction, child's health status according to the mother's point of view, child's appetite and frequency of bread, cereals, meat, fish, egg, legumes, chocolate, marmalade, vegetables, fruit and tea intake. The prevalence of IDA in the region was 7.99%. The carriers of b-thalassaemia (2.13%) were excluded from the study. Significant statistical difference has been observed between the two groups (P?0.001) in all haematological and anthropometric parameters except head circumference (P?=?0.85). Concerning the nutritional indices the two groups were statistically different (P?0.001) in the following: the cases were breastfed less, were drinking fresh cow's milk and tea, were eating meat, vegetables and fruit less often, had a bad appetite and were more likely to get sick. In conclusion, the prevalence of IDA in this area of Greece is approximately similar to other areas in the developed world. The application of simple food frequency questionnaires for the detection of the nutritional IDA risk factors could prognose and prevent anaemia.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Existing Affected Sources Classified as Large Iron and Steel Foundries 4 Table 4 to Subpart ZZZZZ of Part... Emission Standards for Hazardous Air Pollutants for Iron and Steel Foundries Area Sources Pt. 63, Subpt... Affected Sources Classified as Large Iron and Steel Foundries As required by § 63.10900(b), your...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Existing Affected Sources Classified as Large Iron and Steel Foundries 4 Table 4 to Subpart ZZZZZ of Part... Emission Standards for Hazardous Air Pollutants for Iron and Steel Foundries Area Sources Pt. 63, Subpt... Affected Sources Classified as Large Iron and Steel Foundries As required by § 63.10900(b), your...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Existing Affected Sources Classified as Large Iron and Steel Foundries 4 Table 4 to Subpart ZZZZZ of Part... Emission Standards for Hazardous Air Pollutants for Iron and Steel Foundries Area Sources Pt. 63, Subpt... Affected Sources Classified as Large Iron and Steel Foundries As required by § 63.10900(b), your...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Existing Affected Sources Classified as Large Iron and Steel Foundries 4 Table 4 to Subpart ZZZZZ of Part... Emission Standards for Hazardous Air Pollutants for Iron and Steel Foundries Area Sources Pt. 63, Subpt... Affected Sources Classified as Large Iron and Steel Foundries As required by § 63.10900(b), your...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Existing Affected Sources Classified as Large Iron and Steel Foundries 4 Table 4 to Subpart ZZZZZ of Part... Emission Standards for Hazardous Air Pollutants for Iron and Steel Foundries Area Sources Pt. 63, Subpt... Affected Sources Classified as Large Iron and Steel Foundries As required by § 63.10900(b), your...
Transcriptional response of Pasteurella multocida to defined iron sources.
Paustian, Michael L; May, Barbara J; Cao, Dongwei; Boley, Daniel; Kapur, Vivek
2002-12-01
Pasteurella multocida was grown in iron-free chemically defined medium supplemented with hemoglobin, transferrin, ferritin, and ferric citrate as iron sources. Whole-genome DNA microarrays were used to monitor global gene expression over seven time points after the addition of the defined iron source to the medium. This resulted in a set of data containing over 338,000 gene expression observations. On average, 12% of P. multocida genes were differentially expressed under any single condition. A majority of these genes encoded P. multocida proteins that were involved in either transport and binding or were annotated as hypothetical proteins. Several trends are evident when the data from different iron sources are compared. In general, only two genes (ptsN and sapD) were expressed at elevated levels under all of the conditions tested. The results also show that genes with increased expression in the presence of hemoglobin did not respond to transferrin or ferritin as an iron source. Correspondingly, genes with increased expression in the transferrin and ferritin experiments were expressed at reduced levels when hemoglobin was supplied as the sole iron source. Finally, the data show that genes that were most responsive to the presence of ferric citrate did not follow a trend similar to that of the other iron sources, suggesting that different pathways respond to inorganic or organic sources of iron in P. multocida. Taken together, our results demonstrate that unique subsets of P. multocida genes are expressed in response to different iron sources and that many of these genes have yet to be functionally characterized.
Tu, Ngu; King, Janet C; Dirren, Henri; Thu, Hoang Nga; Ngoc, Quyen Phi; Diep, Anh Nguyen Thi
2014-12-01
Maternal nutritional status is an important predictor of infant birthweight. Most previous attempts to improve birthweight through multiple micronutrient supplementation have been initiated after women are pregnant. Interventions to improve maternal nutritional status prior to conception may be more effective in preventing low birthweight and improving other infant health outcomes. To compare the effects of maternal supplementation with animal-source food from preconception to term or from mid-gestation to term with routine prenatal care on birthweight, the prevalence of preterm births, intrauterine growth restriction, and infant growth during the first 12 months of life and on maternal nutrient status and the incidence of maternal and infant infections. Young women from 29 rural communes in northwestern Vietnam were recruited when they registered to marry and were randomized to one of three interventions: animal-source food supplement 5 days per week from marriage to term (approximately 13 months), animal-source food supplement 5 days per week from 16 weeks of gestation to term (approximately 5 months), or routine prenatal care without supplementalfeeding. Data on infant birthweight and gestational age, maternal and infant anthropometry, micronutrient status, and infections in the infant and mother were collected at various time points. In a preliminary study of women of reproductive age in this area of Vietnam, 40% of the women were underweight (body mass index < 18.5) and anemic. About 50% had infections. Rice was the dietary staple, and nutrient-rich, animal-source foods were rarely consumed by women. Iron, zinc, vitamin A, folate, and vitamin B12 intakes were inadequate in about 40% of the women. The study is still ongoing, and further data are not yet available. The results of this study will provide important data regarding whether improved intake of micronutrient-rich animal-source foods that are locally available and affordable before and during pregnancy improves maternal and infant health and development. This food-based approach may have global implications regarding how and when to initiate sustainable nutritional interventions to improve maternal and infant health.
Zhai, Zhiyang; Gayomba, Sheena R; Jung, Ha-Il; Vimalakumari, Nanditha K; Piñeros, Miguel; Craft, Eric; Rutzke, Michael A; Danku, John; Lahner, Brett; Punshon, Tracy; Guerinot, Mary Lou; Salt, David E; Kochian, Leon V; Vatamaniuk, Olena K
2014-05-01
Iron is essential for both plant growth and human health and nutrition. Knowledge of the signaling mechanisms that communicate iron demand from shoots to roots to regulate iron uptake as well as the transport systems mediating iron partitioning into edible plant tissues is critical for the development of crop biofortification strategies. Here, we report that OPT3, previously classified as an oligopeptide transporter, is a plasma membrane transporter capable of transporting transition ions in vitro. Studies in Arabidopsis thaliana show that OPT3 loads iron into the phloem, facilitates iron recirculation from the xylem to the phloem, and regulates both shoot-to-root iron signaling and iron redistribution from mature to developing tissues. We also uncovered an aspect of crosstalk between iron homeostasis and cadmium partitioning that is mediated by OPT3. Together, these discoveries provide promising avenues for targeted strategies directed at increasing iron while decreasing cadmium density in the edible portions of crops and improving agricultural productivity in iron deficient soils. © 2014 American Society of Plant Biologists. All rights reserved.
Iron Deficiency Anemia: Focus on Infectious Diseases in Lesser Developed Countries
Shaw, Julia G.; Friedman, Jennifer F.
2011-01-01
Iron deficiency anemia is thought to affect the health of more than one billion people worldwide, with the greatest burden of disease experienced in lesser developed countries, particularly women of reproductive age and children. This greater disease burden is due to both nutritional and infectious etiologies. Individuals in lesser developed countries have diets that are much lower in iron, less access to multivitamins for young children and pregnant women, and increased rates of fertility which increase demands for iron through the life course. Infectious diseases, particularly parasitic diseases, also lead to both extracorporeal iron loss and anemia of inflammation, which decreases bioavailability of iron to host tissues. This paper will address the unique etiologies and consequences of both iron deficiency anemia and the alterations in iron absorption and distribution seen in the context of anemia of inflammation. Implications for diagnosis and treatment in this unique context will also be discussed. PMID:21738863
The Irony of Iron – Biogenic Iron Oxides as an Iron Source to the Ocean
Emerson, David
2016-01-01
Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity. PMID:26779157
Ooi, Der-Jiun; Iqbal, Shahid; Ismail, Maznah
2012-09-17
This study presents the proximate and mineral composition of Peperomia pellucida L., an underexploited weed plant in Malaysia. Proximate analysis was performed using standard AOAC methods and mineral contents were determined using atomic absorption spectrometry. The results indicated Peperomia pellucida to be rich in crude protein, carbohydrate and total ash contents. The high amount of total ash (31.22%)suggests a high-value mineral composition comprising potassium, calcium and iron as the main elements. The present study inferred that Peperomia pellucida would serve as a good source of protein and energy as well as micronutrients in the form of a leafy vegetable for human consumption.
Valenzuela-Muñoz, Valentina; Gallardo-Escárate, Cristian
2017-01-01
Sea lice are copepodid ectoparasites that produce high economic losses and environmental issues, thus impacting the salmon aquaculture worldwide. Atlantic salmon (Salmo salar) from Northern and Southern Hemispheres are primarily parasitized by Lepeophtheirus salmonis and Caligus rogercresseyi, respectively. To cope L. salmonis infestation, studies suggest that Atlantic salmon can restrict iron availability as a mechanism of nutritional immunity. However, no molecular studies of iron regulation from salmonids infected with C. rogercresseyi have been reported. The aim of this study was to determine if there are differences in the regulation of iron metabolism in Atlantic salmon infested with L. salmonis or C. rogercresseyi. For comparisons, skin and head kidney were profiled using qPCR of 15 genes related to iron regulation in Atlantic salmons infected with each sea louse species in Norway and Chile, respectively. Prior to infestation, no significant differences were observed between fish group. However, genes involved in iron transport and Heme biosynthesis were highly upregulated in Atlantic salmon infested with L. salmonis. Interestingly, hepcidin and Heme oxygenase, a component of the Heme degradation pathway, were upregulated during C. rogercresseyi infestation. Oxidative stress related genes were also evaluated, showing higher transcription activity in the head kidney than in the skin of Atlantic salmon infested with L. salmonis. These comparative results suggest pathogen-specific responses in infected Atlantic salmon, where iron metabolism is primarily regulated during the infestation with L. salmonis than C. rogercresseyi. Feeding behavior, for instance haematophagy, of the infesting sea lice species in relation to iron modulation is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sedimentary particulate iron: the missing micronutrients ?
NASA Astrophysics Data System (ADS)
Beghoura, Houda; Gorgues, Thomas; Aumont, Olivier; Planquette, Hélène
2017-04-01
Iron is known to regulate the marine primary production and to impact the structure of ecosystems. Indeed, iron is the limiting nutrient for the phytoplankton growth over about 30% of the global ocean. However, the nature of the external sources of iron to the ocean and their quantification remain uncertain. Among these external sources, the sediment sources have been recently shown to be underestimated. Besides, since the operationally defined dissolved iron (which is the sum of truly dissolved and colloidal iron) was traditionally assumed to be the only form available to phytoplankton and bacteria, most studies have focused on the supply of dissolved iron to the ocean, the role of the particulate fraction of iron being largely ignored. This traditional view has been recently challenged, noticeably, by observational evidences. Indeed, in situ observations have shown that large amounts of particulate iron are being resuspended from continental margins to the open ocean thanks to fine grained particles' transport over long distances. A fraction of this particulate iron may dissolve and thereby fuel the phytoplankton growth. The magnitude of the sedimentary sources of particulate iron and the releasing processes affecting this iron phase are not yet well constrained or quantified. As a consequence, the role of sedimentary particulate iron in the biogeochemical cycles is still unclear despite its potentially major widespread importance. Here, we propose a modeling exercise to assess the first order impacts of this newly considered particulate sedimentary iron on global ocean biogeochemistry. We designed global experiments with a coupled dynamical-biogeochemical model (NEMO-PISCES). First, a control simulation that includes only a sediment source of iron in the dissolved phase has been run. Then, this control simulation is being compared with simulations, in which we include a sediment source of iron in both phases (dissolved as well as particulate). Those latter simulations have been performed using a range of particulate iron dissolution rates (from published studies and laboratory experiment results) that will permit to test the sensitivity of the biogeochemical response.
Chemometric analysis of minerals in gluten-free products.
Gliszczyńska-Świgło, Anna; Klimczak, Inga; Rybicka, Iga
2018-06-01
Numerous studies indicate mineral deficiencies in people on a gluten-free (GF) diet. These deficiencies may indicate that GF products are a less valuable source of minerals than gluten-containing products. In the study, the nutritional quality of 50 GF products is discussed taking into account the nutritional requirements for minerals expressed as percentage of recommended daily allowance (%RDA) or percentage of adequate intake (%AI) for a model celiac patient. Elements analyzed were calcium, potassium, magnesium, sodium, copper, iron, manganese, and zinc. Analysis of %RDA or %AI was performed using principal component analysis (PCA) and hierarchical cluster analysis (HCA). Using PCA, the differentiation between products based on rice, corn, potato, GF wheat starch and based on buckwheat, chickpea, millet, oats, amaranth, teff, quinoa, chestnut, and acorn was possible. In the HCA, four clusters were created. The main criterion determining the adherence of the sample to the cluster was the content of all minerals included to HCA (K, Mg, Cu, Fe, Mn); however, only the Mn content differentiated four formed groups. GF products made of buckwheat, chickpea, millet, oats, amaranth, teff, quinoa, chestnut, and acorn are better source of minerals than based on other GF raw materials, what was confirmed by PCA and HCA. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Hilty, F M; Teleki, A; Krumeich, F; Büchel, R; Hurrell, R F; Pratsinis, S E; Zimmermann, M B
2009-11-25
Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe2O4) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.
[TEEN MOTHER AND NEWBORN NUTRITIONAL STATUS IN A GROUP OF TEENAGERS OF THE CITY OF MEDELLIN].
Restrepo-Mesa, Sandra Lucia; Zapata López, Natalia; Parra Sosa, Beatriz Elena; Escudero Vásquez, Luz Estela; Betancur Arrovaye, Laura
2015-09-01
in developing countries, including Colombia, teen pregnancy is a public health problem. It brings social, health and nutritional consequences for the mother/son binomial. to assess demographic, socioeconomic, food security, health and nutritional status characteristics in a group of pregnant teenagers and their newborns. a cross sectional analytical study was performed in 294 pregnant teenagers in their third trimester of pregnancy enrolled in the prenatal care programs of the public network of hospitals in Medellin-Colombia between 2011 and 2012. Association between the mother's body mass index, iron nutritional status and newborn's weight at birth using explicative variables was assessed. monthly incomes under a minimum salary were associated with low mother's weight and newborns small for gestational age. Low gestational weight was higher in pregnant women under 15 years of age and with a gynecological age under five years. The prevalence of anemia was low in the first trimester and increased at the end of pregnancy; 5.6% had adequate iron reserves. Low weight at birth was associated with infections and mother's low weight in the third trimester of pregnancy. teenage pregnancy is a complex problem associated with negative effects in the nutritional, health and social status of the girl and their newborn. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Coal fly ash as a source of iron in atmospheric dust.
Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A; Scherer, Michelle M; Grassian, Vicki H
2012-02-21
Anthropogenic coal fly ash (FA) aerosol may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made that compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report here an investigation of iron dissolution for three FA samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust (AZTD), a reference material for mineral dust. The effects of pH, simulated cloud processing, and solar radiation on iron solubility have been explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provides the predominant component of dissolved iron. Iron solubility of FA is substantially higher than of the crystalline minerals comprising AZTD. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology of aluminosilicate glass, a dominant material in FA particles. Iron is continuously released into the aqueous solution as FA particles break up into smaller fragments. These results suggest that the assessment of dissolved atmospheric iron deposition fluxes and their effect on the biogeochemistry at the ocean surface should be constrained by the source, environmental pH, iron speciation, and solar radiation.
Nutrition and behavior of lemurs.
Junge, Randall E; Williams, Cathy V; Campbell, Jennifer
2009-05-01
Attention to nutritional and behavioral factors is important for appropriate care of lemurs in captivity. Although only a few species are commonly held in captivity, differences between them are important. Knowledge of feeding ecology and natural diet guide nutrition guidelines, as well as management and prevention of common nutrition-related disorders, including obesity, diabetes, and iron-storage disease. Behavioral characteristics that influence captive management are related to social organization, reproductive behavior, territoriality, and infant care. Housing animals in appropriate social groupings in adequately complex environments reduces abnormal behaviors, and addition of enrichment activities and operant conditioning encourages normal behaviors.
Wang, Yang; Zhang, Xiao-jian; Chen, Chao; Pan, An-jun; Xu, Yang; Liao, Ping-an; Zhang, Su-xia; Gu, Jun-nong
2009-12-01
Red water phenomenon occurred in some communities of a city in China after water source switch in recent days. The origin of this red water problem and mechanism of iron release were investigated in the study. Water quality of local and new water sources was tested and tap water quality in suffered area had been monitored for 3 months since red water occurred. Interior corrosion scales on the pipe which was obtained from the suffered area were analyzed by XRD, SEM, and EDS. Corrosion rates of cast iron under the conditions of two source water were obtained by Annular Reactor. The influence of different source water on iron release was studied by pipe section reactor to simulate the distribution systems. The results indicated that large increase of sulfate concentration by water source shift was regarded as the cause of red water problem. The Larson ratio increased from about 0.4 to 1.7-1.9 and the red water problem happened in the taps of some urban communities just several days after the new water source was applied. The mechanism of iron release was concluded that the stable shell of scales in the pipes had been corrupted by this kind of high-sulfate-concentration source water and it was hard to recover soon spontaneously. The effect of sulfate on iron release of the old cast iron was more significant than its effect on enhancing iron corrosion. The rate of iron release increased with increasing Larson ratio, and the correlation of them was nonlinear on the old cast-iron. The problem remained quite a long time even if the water source re-shifted into the blended one with only small ratio of the new source and the Larson ratio reduced to about 0.6.
Nutrition assessment of patients with inflammatory bowel disease.
Vagianos, Kathy; Bector, Savita; McConnell, Joseph; Bernstein, Charles N
2007-01-01
Malnutrition among inflammatory bowel disease (IBD) subjects is well documented in the literature and may arise from factors including inadequate dietary intake, malabsorption, and disease activity. The aims of this present study were to complete a comprehensive nutrition assessment of IBD subjects. One hundred twenty-six consecutive adults with IBD completed anthropometric measures, 4-day food-record assessments, and biochemical markers of nutrition. A high prevalence of inadequate nutrient consumption was observed: vitamin E (63%), vitamin D (36%), vitamin A (26%), calcium (23%), folate (19%), iron (13%), and vitamin C (11%). Several biochemical deficiencies were also observed. The prevalence of subnormal serum levels was hemoglobin (40%), ferritin (39.2%), vitamin B(6) (29%), carotene (23.4%), vitamin B(12) (18.4%), vitamin D (17.6%), albumin (17.6%), and zinc (15.2%). Dietary intake was not correlated with serum levels in all instances; there was a highly significant correlation between diet and serum values of vitamin B(12), folate, and vitamin B(6) for all IBD subjects, independent of disease activity, and for vitamin D among all IBD subjects in remission. Subjects with IBD have a high rate of iron deficiency and anemia, which are most likely not secondary to diet. Supplementing with iron should be warranted only if a true iron deficiency exists. The routine evaluation of serum vitamin B(6) and vitamin D levels is recommended. Routine multivitamin supplementation is warranted in IBD in view of numerous dietary and biochemical deficiencies observed among adult IBD subjects. Even if subjects with IBD seem to be well nourished, they may harbor vitamin/mineral deficiencies.
Solubility of iron from combustion source particles in acidic media linked to iron speciation.
Fu, Hongbo; Lin, Jun; Shang, Guangfeng; Dong, Wenbo; Grassian, Vichi H; Carmichael, Gregory R; Li, Yan; Chen, Jianmin
2012-10-16
In this study, iron solubility from six combustion source particles was investigated in acidic media. For comparison, a Chinese loess (CL) dust was also included. The solubility experiments confirmed that iron solubility was highly variable and dependent on particle sources. Under dark and light conditions, the combustion source particles dissolved faster and to a greater extent relative to CL. Oil fly ash (FA) yielded the highest soluble iron as compared to the other samples. Total iron solubility fractions measured in the dark after 12 h ranged between 2.9 and 74.1% of the initial iron content for the combustion-derived particles (Oil FA > biomass burning particles (BP) > coal FA). Ferrous iron represented the dominant soluble form of Fe in the suspensions of straw BP and corn BP, while total dissolved Fe presented mainly as ferric iron in the cases of oil FA, coal FA, and CL. Mössbauer measurements and TEM analysis revealed that Fe in oil FA was commonly presented as nanosized Fe(3)O(4) aggregates and Fe/S-rich particles. Highly labile source of Fe in corn BP could be originated from amorphous Fe form mixed internally with K-rich particles. However, Fe in coal FA was dominated by the more insoluble forms of both Fe-bearing aluminosilicate glass and Fe oxides. The data presented herein showed that iron speciation varies by source and is an important factor controlling iron solubility from these anthropogenic emissions in acidic solutions, suggesting that the variability of iron solubility from combustion-derived particles is related to the inherent character and origin of the aerosols themselves. Such information can be useful in improving our understanding on iron solubility from combustion aerosols when they undergo acidic processing during atmospheric transport.
Greffeuille, Valérie; Polycarpe Kayodé, A P; Icard-Vernière, Christèle; Gnimadi, Muriel; Rochette, Isabelle; Mouquet-Rivier, Claire
2011-06-15
The effect of the different unit operations of processing traditionally used to produce four maize foods commonly consumed in Africa on the nutritional composition of the products was investigated, using Benin as a study context. The impact of the processes on lipid, fibre, phytate, iron and zinc contents varied with the process. The lowest IP6/Fe and IP6/Zn molar ratios, the indices used to assess Fe and Zn bioavailability were obtained in mawè, a fermented dough. Analysis of maize products highlighted a significant increase in iron content after milling, as a result of contamination by the equipment used. Evaluation of iron bioaccessibility by in vitro enzymatic digestion followed by dialysis revealed that the iron contamination, followed by lactic acid fermentation, led to a considerable increase in bioaccessible iron content. Extrinsic iron supplied to food products by the milling equipment could play a role in iron intake in developing countries. Copyright © 2010 Elsevier Ltd. All rights reserved.
Leishmania and its quest for iron: An update and overview.
Zaidi, Amir; Singh, Krishn Pratap; Ali, Vahab
2017-01-01
Parasites of genus Leishmania are the causative agents of complex neglected diseases called leishmaniasis and continue to be a significant health concern globally. Iron is a vital nutritional requirement for virtually all organisms, including pathogenic trypanosomatid parasites, and plays a crucial role in many facets of cellular metabolism as a cofactor of several enzymes. Iron acquisition is essential for the survival of parasites. Yet parasites are also vulnerable to the toxicity of iron and reactive oxygen species. The aim of this review is to provide an update on the current knowledge about iron acquisition and usage by Leishmania species. We have also discussed about host strategy to modulate iron availability and the strategies deployed by Leishmania parasites to overcome iron withholding defences and thus favour parasite growth within host macrophages. Since iron plays central roles in the host's response and parasite metabolism, a comprehensive understanding of the iron metabolism is beneficial to identify potential viable therapeutic opportunities against leishmaniasis. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of malnutrition on iron homeostasis in black-necked swans (Cygnus melanocoryphus).
Norambuena, M Cecilia; Bozinovic, Francisco
2009-12-01
The Cayumapu River black-necked swan (Cygnus melanocoryphus) population in southern Chile suffered a syndrome of malnutrition and hyperferremia in 2005. The iron metabolic imbalance could not be explained on the basis of the quality of their diet. Hence, the primary objective of this study was to determine the relationship between malnutrition and iron homeostasis in black-necked swans. It was proposed that catabolic processes could increase serum iron levels due to the release of endogenous iron from tissues. A free-living swan population undergoing natural nutritional imbalance due to molting was studied. In addition, swans captured were subjected to a diet restriction until they became emaciated. The results revealed that neither lipolytic activity nor emaciation affected serum iron concentrations. The increment of total iron binding capacity observed was in agreement with the reduction of endogenous iron stored, with the increase of erythropoeitic demand, or with both. Future studies are needed to determine the effect of incremental erythropoietic activity on iron homeostasis in anemic, malnourished birds.
Zhao, Ai; Xue, Yong; Zhang, Yumei; Li, Wenjun; Yu, Kai; Wang, Peiyu
2016-01-01
Objectives of this study were 1) to investigate the mineral intake by Chinese lactating women, 2) to explore the dietary source of minerals, and 3) the ratios between different dietary minerals. A total of 468 lactating women in 5-240 days post-partum participated in this study. Food intakes by participants were measured using one time of 24-hour dietary recall, and minerals from food were calculated based on the Chinese Food Composition Table, second edition. In post-partum, women had inadequate food intake. 81.0% of women's daily intake of dairy products was lower than 300g, and 97.1% of women's daily intake of salt over 6g. For mineral intake, there were 81.8%, 59.0%, 47.6%, 45.7% and 66.8% of women's calcium, magnesium, iron, zinc and selenium intake lower than the estimated average requirement, respectively, and 91.7% of women's excessive intake of sodium. The calcium/phosphorus and sodium/potassium ratios were 0.41±0.26/1 and 3.13±2.89/1, respectively. Considering the dietary sources of minerals, 27.3%, 25.3% and 30.1% of iron, zinc and calcium were from animal-based food, respectively, and 60.3%, 66.1% and 58.0% of iron, zinc and calcium were from plant-based food, respectively. The phosphorus-protein ratio was 0.014±0.003/1. Lactation stage was associated with nutrient intake. Women within 30 days post-partum and the ones who live in Guangzhou had a significantly lower intake of certain minerals, while women with a high education experience had a high intake of calcium, potassium, iron and zinc. Productive age, whether obese or not, and delivery ways were not associated with mineral intakes (P all >0.05). Chinese women in three studied cities had an inappropriate food intake and resulted in both insufficient and excessive intakes of certain minerals.
Is red meat required for the prevention of iron deficiency among children and adolescents?
Savva, Savvas C; Kafatos, Anthony
2014-01-01
Iron deficiency remains the most common nutritional deficiency worldwide despite the fact that global prevention is a high priority. Recent guidelines suggest intake of red meat both in infants and toddlers to prevent iron deficiency. However frequent consumption of red and processed meat may be associated with an increased risk for cancer, cardiovascular disease and diabetes. Evidence also suggests that even in vegetarian diets or diets with little consumption of white or red meat, iron status may not be adversely affected. The Eastern Orthodox Christian Church dietary recommendations which is a type of periodic vegetarian diet, has proved beneficial for the prevention of iron deficiency and avoidance of excess iron intake. This paper aims to provide examples of meals for children and adolescents that may be sufficient to meet age specific iron requirements without consumption of red meat beyond the recommended consumption which is once or twice per month.
Unexplained chronic leukopenia treated with oral iron supplements.
Abuirmeileh, Ayman; Bahnassi, Anas; Abuirmeileh, Amjad
2014-04-01
A 67-year-old woman known to have iron deficiency anemia and persistent unexplained chronic leukopenia was cared for by our medical center for about 16 years. During this period she was examined thoroughly and diagnosed to have chronic idiopathic neutropenia (also known as chronic benign neutropenia). Her iron deficiency was attributed to nutritional factors and she was non-compliant with her oral iron supplements. The patient fully received her iron supplement medication by nursing staff for two and a half months during an unexpected prolonged hospital stay after her suffering an acute ischemic cerebrovascular accident. An astonishing outcome was that in addition to having her iron deficiency anemia treated, her long-term unexplained neutropenia was also corrected. Some patients diagnosed with chronic idiopathic neutropenia and clinically present as having unexplained chronic neutropenia might actually be suffering from a form of not yet described iron deficiency induced neutropenia.
Mallard, Simonette R; Houghton, Lisa A; Filteau, Suzanne; Chisenga, Molly; Siame, Joshua; Kasonka, Lackson; Mullen, Anne; Gibson, Rosalind S
2016-10-01
In the monitoring of infant and young child feeding, dietary diversity is used as an indicator of micronutrient adequacy; however, their relation may have weakened with the increasing use of fortified complementary foods. The objectives were to assess the relation between dietary diversity and micronutrient adequacy in an urban infant population with a high consumption of fortified foods and to investigate whether dietary diversity and micronutrient adequacy were independently associated with subsequent growth. We used longitudinal data on 811 infants in the Chilenje Infant Growth, Nutrition, and Infection Study conducted in Lusaka, Zambia. The relation between mean micronutrient adequacies and dietary diversity scores derived from 24-h diet recalls at 6 mo of age was investigated with the use of Spearman rank correlation. Multiple linear regression was used to assess the association between micronutrient adequacy, dietary diversity, and subsequent growth to 18 mo of age. Overall mean micronutrient density adequacy (MMDA) and MMDA of "problem micronutrients," defined as those micronutrients (calcium, iron, zinc) with mean density adequacies less than half of estimated needs, were correlated with dietary diversity scores (ρ = 0.36 and 0.30, respectively, both P < 0.0001). Consumption of "sentinel foods" (iron rich, fortified, animal source, dairy) showed better correlation with MMDA than with dietary diversity (ρ = 0.58-0.69, all P < 0.0001). In fully adjusted analyses, MMDA calcium, iron, zinc, and dietary diversity, but not overall MMDA, were associated with linear growth to 18 mo (both P ≤ 0.028). Micronutrient adequacy in infants consuming fortified foods may be more accurately assessed using locally specific sentinel food indicators rather than dietary diversity scores. Nonetheless, dietary diversity has a positive effect on subsequent linear growth apart from that of micronutrient adequacy, warranting its continued monitoring and further investigation into the mechanisms underlying this finding. This trial was registered at www.controlled-trials.com as ISRCTN37460449. © 2016 American Society for Nutrition.
Nutritional status survey of aplastic anemia patients--a single center experience in China.
Li, Xinli; Feng, Yanyan; Wang, Hongyan; Song, Meijuan; Jin, Jingjing; Cui, Zhenzhu; Zheng, Yizhou
2016-05-01
To analyze the nutritional status of aplastic anemia (AA) patients. The nutrition-related anthropometric indicators and blood biochemical index of 622 newly-diagnosed AA patients were retrospectively analyzed. Of the cohort of AA patients, body mass index of non-severe AA (NSAA) patients were higher than those of severe AA (SAA) (p<0.05). The serum total protein and albumin protein levels of SAA patients differed from those of NSAA, and lower hemoglobin was correlated with lower serum albumin protein concentration (p<0.01). The concentration of B vitamins (folic acid and vitamin B12) of urban patients significantly differed from rural ones (P<0.01). Of the 97 cases of iron overload (15.6% of the entire patient group), the iron overload rate of SAA patients (19.1%) was much higher than that of NSAA (8.1%). AA patients exhibited malnutrition conditions; it would be helpful to conduct individualized dietary guidance and health education for patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Giménez, M A; Drago, S R; Bassett, M N; Lobo, M O; Sammán, N C
2016-05-15
In this study, the nutritional quality of pasta-like product (spaghetti-type), made with corn (Zea mays) flour enriched with 30% broad bean (Vicia faba) flour and 20% of quinoa (Chenopodium quinoa) flour, was determined. Proximate chemical composition and iron, zinc and dietary fiber were determined. A biological assay was performed to assess the protein value using net protein utilization (NPU), true digestibility (TD) and protein digestibility-corrected amino acid score (PDCAAS). Iron and zinc availability were estimated by measuring dialyzable mineral fraction (%Da) resulting from in vitro gastrointestinal digestion. Nutritionally improved, gluten-free spaghetti (NIS) showed significantly increased NPU and decreased TD compared with a non-enriched control sample. One NIS-portion supplied 10-20% of recommended fiber daily intake. Addition of quinoa flour had a positive effect on the FeDa% as did broad bean flour on ZnDa%. EDTA increased Fe- and ZnDa% in all NIS-products, but it also impaired sensorial quality. Copyright © 2016. Published by Elsevier Ltd.
López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J
2016-03-15
Studies about simultaneous fertilisation with several micronutrients have increased in recent years, as Fe, Mn and Zn deficiencies may appear in the same culture conditions. In fertigation, the replacement of sulfates by synthetic chelates is essential in areas with high pH irrigation water and substrates. Ethylenediamine-N-(2-hydroxyphenylacetic acid)-N'-(4-hydroxyphenylacetic acid) (o,p-EDDHA) and ethylenediamine disuccinic acid (EDDS) are novel chelating agents whose efficacy in simultaneous fertilisation of Zn, Mn and Cu is unknown. This work evaluates the effectiveness of both ligands compared to traditional ligands (EDTA, HEEDTA and DTPA) applied as micronutrient chelate mixtures to soybean and navy bean plants grown in soil-less cultures at high pH by analysing the SPAD and micronutrient nutritional status, including the Composition Nutritional Diagnosis (CND) analysis tool. The application of micronutrients using o,p-EDDHA was more effective in providing Mn and Zn than traditional ligands or sulfates. The application using EDDS increased the Zn nutrition. The results are well correlated with the chemical stability of the formulations. The combined application of Mn and Zn as o,p-EDDHA chelates can represent a more effective source than traditional chelates in micronutrient fertiliser mixtures in soil-less cultures at a high pH. © 2015 Society of Chemical Industry.
Li, Jiang; Xiao, Cheng; Yang, Hui; Zhou, Yun; Wang, Rui; Cao, Yongtong
2017-12-09
Previous studies have shown that there is a controversial relationship between iron homeostasis and obesity. This study aims to explore the relationship of anemia and iron status with different body size phenotypes in adult Chinese population. Using information on iron status-related parameters and lifestyle data from 8462 participants of the 2009 wave of China Health and Nutrition Survey (2009 CHNS), we performed multivariable logistic regression analyses to estimate the odds ratios (ORs) for the risk of anemia and iron parameters according to different body size phenotypes. Participants with higher body mass index (BMI) had a lower anemia prevalence with significant trends in both metabolic status groups (P < 0.001). Serum ferritin, transferrin, and soluble transferrin receptor (sTfR)/log ferritin index were significant in different metabolic status groups and in different body size phenotypes, respectively. The ORs for higher ferritin and transferrin increased across different body size phenotypes in both genders, and for sTfR/log ferritin index decreased (P < 0.01 for trend). This association was still statistically significant after adjustment for multiple confounders. We found an inverse association of BMI levels with the prevalence of anemia and strong association of serum ferritin and transferrin with higher risk of obesity or overweight in both metabolic status groups.
Brannon, Patsy M; Stover, Patrick J; Taylor, Christine L
2017-12-01
This report addresses the evidence and the uncertainties, knowledge gaps, and research needs identified by participants at the NIH workshop related to iron screening and routine iron supplementation of largely iron-replete pregnant women and young children (6-24 mo) in developed countries. The workshop presentations and panel discussions focused on current understanding and knowledge gaps related to iron homeostasis, measurement of and evidence for iron status, and emerging concerns about supplementing iron-replete members of these vulnerable populations. Four integrating themes emerged across workshop presentations and discussion and centered on 1 ) physiologic or developmental adaptations of iron homeostasis to pregnancy and early infancy, respectively, and their implications, 2 ) improvement of the assessment of iron status across the full continuum from iron deficiency anemia to iron deficiency to iron replete to iron excess, 3 ) the linkage of iron status with health outcomes beyond hematologic outcomes, and 4 ) the balance of benefit and harm of iron supplementation of iron-replete pregnant women and young children. Research that addresses these themes in the context of the full continuum of iron status is needed to inform approaches to the balancing of benefits and harms of screening and routine supplementation. © 2017 American Society for Nutrition.
Nutrition and nutritional issues for dancers.
Sousa, Mónica; Carvalho, Pedro; Moreira, Pedro; Teixeira, Vítor H
2013-09-01
Proper nutrition, not simply adequate energetic intake, is needed to achieve optimal dance performance. However, little scientific research exists concerning nutrition in dance, and so, to propose nutritional guidelines for this field, recommendations need to be based mainly on studies done in other physically active groups. To diminish the risk of energy imbalance and associated disorders, dancers must consume at least 30 kcal/kg fat-free mass/day, plus the training energy expenditure. For macronutrients, a daily intake of 3 to 5 g carbohydrates/kg, 1.2 to 1.7 g protein/kg, and 20 to 35% of energy intake from fat can be recommended. Dancers may be at increased risk of poor micronutrient status due to their restricted energy intake; micronutrients that deserve concern are iron, calcium, and vitamin D. During training, dancers should give special attention to fluid and carbohydrate intake in order to maintain optimal cognition, motivation, and motor skill performance. For competition/stage performance preparation, it is also important to ensure that an adequate dietary intake is being achieved. Nutritional supplements that may help in achieving specific nutritional goals when dietary intake is inadequate include multivitamins and mineral, iron, calcium, and vitamin D supplements, sports drinks, sports bars, and liquid meal supplements. Caffeine can also be used as an ergogenic aid. It is important that dancers seek dietary advice from qualified specialists, since the pressure to maintain a low body weight and low body fat levels is high, especially in styles as ballet, and this can lead to an unbalanced diet and health problems if not correctly supervised.
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2010-01-01
This slide presentation reviews some of the effects that space flight has on humans nutritional biochemistry. Particular attention is devoted to the study of protein breakdown, inflammation, hypercatabolism, omega 3 fatty acids, vitamin D, calcium, urine, folate and nutrient stability of certain vitamins, the fluid shift and renal stone risk, acidosis, iron/hematology, and the effects on bone of dietary protein, potassium. inflammation, and omega-3 fatty acids
Pulgar, Rodrigo; Hödar, Christian; Travisany, Dante; Zuñiga, Alejandro; Domínguez, Calixto; Maass, Alejandro; González, Mauricio; Cambiazo, Verónica
2015-07-04
Piscirickettsiosis or Salmonid Rickettsial Septicaemia (SRS) is a bacterial disease that has a major economic impact on the Chilean salmon farming industry. Despite the fact that Piscirickettsia salmonis has been recognized as a major fish pathogen for over 20 years, the molecular strategies underlying the fish response to infection and the bacterial mechanisms of pathogenesis are poorly understood. We analysed and compared the head kidney transcriptional response of Atlantic salmon (Salmo salar) families with different levels of susceptibility to P. salmonis infection in order to reveal mechanisms that might confer infection resistance. We ranked forty full-sibling Atlantic salmon families according to accumulated mortality after a challenge with P. salmonis and selected the families with the lowest and highest cumulative mortalities for microarray gene expression analysis. A comparison of the response to P. salmonis infection between low and high susceptibility groups identified biological processes presumably involved in natural resistance to the pathogen. In particular, expression changes of genes linked to cellular iron depletion, as well as low iron content and bacterial load in the head kidney of fish from low susceptibility families, suggest that iron-deprivation is an innate immunity defence mechanism against P. salmonis. To complement these results, we predicted a set of iron acquisition genes from the P. salmonis genome. Identification of putative Fur boxes and expression of the genes under iron-depleted conditions revealed that most of these genes form part of the Fur regulon of P. salmonis. This study revealed, for the first time, differences in the transcriptional response to P. salmonis infection among Atlantic salmon families with varied levels of susceptibility to the infection. These differences correlated with changes in the abundance of transcripts encoding proteins directly and indirectly involved in the immune response; changes that highlighted the role of nutritional immunity through iron deprivation in host defence mechanisms against P. salmonis. Additionally, we found that P. salmonis has several mechanisms for iron acquisition, suggesting that this bacterium can obtain iron from different sources, including ferric iron through capturing endogenous and exogenous siderophores and ferrous iron. Our results contribute to determining the underlying resistance mechanisms of Atlantic salmon to P. salmonis infection and to identifying future treatment strategies.
Lopez, Hubert W; Duclos, Virgile; Coudray, Charles; Krespine, Virginie; Feillet-Coudray, Christine; Messager, Arnaud; Demigné, Christian; Rémésy, Christian
2003-06-01
We compared the effects of different kinds of bread fermentation on mineral bioavailability. Wistar rats were fed one of the following experimental diets for 21 d: control, reconstituted whole wheat flour (white flour plus bran), yeast bread, and sourdough bread. The apparent mineral absorption and intestinal fermentation were measured in each animal. Phytate contents in yeast and sourdough bread were lower than in reconstituted whole wheat flour (-52% and -71%, respectively). Total cecal pool of short-chain fatty acids, in particular the butyrate pool, was significantly increased by the ingestion of unrefined products. Calcium homeostasis was not modified by these nutritional conditions, whereas magnesium absorption was significantly greater in rats fed the control and sourdough diets than in those consuming whole wheat flour and yeast bread. Magnesium kidney excretion was slightly stimulated by sourdough bread. Compared with the control diet, iron balance was significantly reduced by reconstituted whole wheat flour diet. Yeast bread making counteracted the deleterious effects of whole wheat on iron absorption, whereas sourdough bread making enhanced iron absorption. Further, liver and plasma iron and transferrin saturation levels were lower in rats adapted to the flour diet than in other groups. Zinc absorption was strongly depressed in the presence of unprocessed reconstituted whole wheat flour in the diet, but yeast fermentation afforded a zinc assimilation comparable to the control diet, whereas the sourdough bread led to maximal zinc absorption. Copper absorption increased significantly when rats were fed the sourdough bread, whereas unprocessed whole flour depressed copper absorption (-41% versus control diet). Mineral bioavailability from reconstituted whole wheat flour can be improved by bread making. Although yeast fermentation minimizes the unfavorable effects of phytic acid, sourdough bread is a better source of available minerals, especially magnesium, iron, and zinc.
Fungo, Robert; Muyonga, John; Kaaya, Archileo; Okia, Clement; Tieguhong, Juius C; Baidu-Forson, Jojo J
2015-01-01
Baillonella toxisperma, Pentaclethra macrophylla and Trichoscypha abut are important foods for communities living around forests in Cameroon. Information on the nutritional value and bioactive content of these foods is required to establish their contribution to the nutrition and health of the communities. Samples of the three foods were obtained from four villages in east and three villages in south Cameroon. The foods were analyzed for proximate composition, minerals and bioactive content using standard chemical analysis methods. T. abut was found to be an excellent source of bioactive compounds; flavonoids (306 mg/100 g), polyphenols (947 mg/100 g), proanthocyanins (61.2 mg/100 g), vitamin C (80.05 mg/100 g), and total oxalates (0.6 mg/100 g). P. macrophylla was found to be a rich source of total fat (38.71%), protein (15.82%) and total fiber (17.10%) and some bioactive compounds; vitamin E (19.4 mg/100 g) and proanthocyanins (65.0 mg/100 g). B. toxisperma, was found to have high content of carbohydrates (89.6%), potassium (27.5 mg/100 g) and calcium (37.5 mg/100 g). Flavonoids, polyphenols, vitamins C and E are the main bioactive compounds in these forest foods. The daily consumption of some of these fruits may coffer protection against some ailments and oxidative stress. Approximately 200 g of either B. toxisperma or P. macrophylla, can supply 100% iron and zinc RDAs for children aged 1–3 years, while 300 g of the two forest foods can supply about 85% iron and zinc RDAs for non-pregnant non-lactating women. The three foods provide 100% daily vitamins C and E requirements for both adults and children. The results of this study show that Baillonella toxisperma, Pentaclethra macrophylla and Trichoscypha abut can considerably contribute towards the human nutrient requirements. These forest foods also contain substantial levels of health promoting phytochemicals notably flavonoids, polyphenols, vitamins C and E. These foods therefore have potential to promote nutrition and health, especially among forest dependent communities who consume them in substantial amounts. PMID:26288721
Nutrients Composition in Fit Snacks Made from Ostrich, Beef and Chicken Dried Meat.
Zdanowska-Sąsiadek, Żaneta; Marchewka, Joanna; Horbańczuk, Jarosław Olav; Wierzbicka, Agnieszka; Lipińska, Paulina; Jóźwik, Artur; Atanasov, Atanas G; Huminiecki, Łukasz; Sieroń, Aleksander; Sieroń, Karolina; Strzałkowska, Nina; Stelmasiak, Adrian; De Smet, Stefaan; Van Hecke, Thomas; Hoffman, Louwrens C
2018-05-25
The aim of the study was to compare three types of meat snacks made from ostrich, beef, and chicken meat in relation to their nutrients content including fat, fatty acids, heme iron, and peptides, like anserine and carnosine, from which human health may potentially benefit. Dry meat samples were produced, from one type of muscle, obtained from ostrich ( m. ambiens ), beef ( m. semimembranosus ), and broiler chicken meat ( m. pectoralis major ). The composition of dried ostrich, beef, and chicken meat, with and without spices was compared. We show that meat snacks made from ostrich, beef, and chicken meat were characterized by high concentration of nutrients including proteins, minerals (heme iron especially in ostrich, than in beef), biologically active peptides (carnosine-in beef, anserine-in ostrich then in chicken meat). The, beneficial to human health, n -3 fatty acids levels differed significantly between species. Moreover, ostrich jerky contained four times less fat as compared to beef and half of that in chicken. In conclusion we can say that dried ostrich, beef, and chicken meat could be a good source of nutritional components.
Rivera, Juan A; Pedraza, Lilia S; Aburto, Tania C; Batis, Carolina; Sánchez-Pimienta, Tania G; González de Cosío, Teresita; López-Olmedo, Nancy; Pedroza-Tobías, Andrea
2016-09-01
Mexico is facing the double burden of malnutrition: stunting and micronutrient deficiencies in young children, iron deficiency in pregnant women, and widespread obesity across age groups. The aim was to summarize and discuss findings published in this supplement on dietary intakes and the eating habits of the Mexican population. A 24-h recall questionnaire that used the multiple-pass method with a repeated measure in a fraction of the sample was applied in a nationally representative sample. We estimated mean intakes and percentages of inadequacy for macronutrients and micronutrients; mean intakes and percentages of the population who adhere to dietary recommendations for food groups; sources of added sugars; intakes of discretionary foods by mealtime, place, and activity; and mean dietary intakes in children <2 y old. Infant formula was consumed by almost half of infants aged <6 mo and sugar-sweetened beverages were consumed by two-thirds of children aged 12-23 mo. In the different age groups, a high proportion of the population had excessive intakes of added sugars (58-85%) and saturated fats (54-92%), whereas a high prevalence of insufficient intakes was found for fiber (65-87%), vitamin A (8-70%), folates (13-69%), calcium (26-88%), and iron (46-89%). Discretionary foods (nonbasic foods high in saturated fats and/or added sugars) contributed 26% of the population's total energy intake, whereas only 1-23% met recommendations for legumes, seafood, fruit, vegetables, and dairy foods. High proportions of Mexicans consume diets that do not meet recommendations. Breastfeeding and complementary feeding diverged from recommendations, intakes of discretionary foods were high, and the prevalence of nutrient inadequacies and age groups not meeting intake recommendations of basic food groups were also high. The results are consistent with the high prevalence of the double burden of malnutrition and are useful to design food and nutrition policies. © 2016 American Society for Nutrition.
The placenta: the forgotten essential organ of iron transport
Cao, Chang
2016-01-01
Optimal iron nutrition in utero is essential for development of the fetus and helps establish birth iron stores adequate to sustain growth in early infancy. In species with hemochorial placentas, such as humans and rodents, iron in the maternal circulation is transferred to the fetus by directly contacting placental syncytiotrophoblasts. Early kinetic studies provided valuable data on the initial uptake of maternal transferrin, an iron-binding protein, by the placenta. However, the remaining steps of iron trafficking across syncytiotrophoblasts and through the fetal endothelium into the fetal blood remain poorly characterized. Over the last 20 years, identification of transmembrane iron transporters and the iron regulatory hormone hepcidin has greatly expanded the knowledge of cellular iron transport and its regulation by systemic iron status. In addition, emerging human and animal data demonstrating comprised fetal iron stores in severe maternal iron deficiency challenge the classic dogma of exclusive fetal control over the transfer process and indicate that maternal and local signals may play a role in regulating this process. This review compiles current data on the kinetic, molecular, and regulatory aspects of placental iron transport and considers new questions and knowledge gaps raised by these advances. PMID:27261274
Yacon effects in immune response and nutritional status of iron and zinc in preschool children.
Vaz-Tostes, Maria das Graças; Viana, Mirelle Lomar; Grancieri, Mariana; Luz, Tereza Cecília dos Santos; Paula, Heberth de; Pedrosa, Rogério Graça; Costa, Neuza Maria Brunoro
2014-06-01
The aim of this study was to evaluate the effect of yacon flour on iron and zinc nutritional status and immune response biomarkers in preschool children. Preschool children ages 2 to 5 y were selected from two nurseries and were placed into a control group (n = 58) or a yacon group (n = 59). The yacon group received yacon flour in preparations for 18 wk at a quantity to provide 0.14 g of fructooligosaccharides/kg of body weight daily. Anthropometric parameters were measured before and after the intervention and dietary intake was measured during the intervention. To assess iron and zinc status, erythrograms, serum iron, ferritin, and plasma, and erythrocyte zinc were evaluated. Systemic immune response was assessed by the biomarkers interleukin IL-4, IL-10, IL-6, and tumor necrosis factor-alfa (TNF-α). Intestinal immune response was analyzed by secretory IgA (sIgA) levels before and after the intervention. Statistical significance was evaluated using the paired t test (α = 5%). Before and after the study, the children presented a high prevalence of overweight and an inadequate dietary intake of zinc and fiber. The yacon group presented with lower hemoglobin, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration at the end of the study (P < 0.05). Erythrocyte zinc was reduced in both groups at the end of the study (P < 0.05). Yacon intake increased the serum levels of IL-4 and fecal sIgA (P < 0.05). The control group had lower serum TNF-α after the study period (P < 0.05). Yacon improved intestinal immune response but demonstrated no effect on the nutritional status of iron and zinc in preschool children. Copyright © 2014 Elsevier Inc. All rights reserved.
Zanin, Francisca Helena Calheiros; da Silva, Camilo Adalton Mariano; Bonomo, Élido; Teixeira, Romero Alves; Pereira, Cíntia Aparecida de Jesus; dos Santos, Karina Benatti; Fausto, Maria Arlene; Negrão-Correa, Deborah Aparecida; Lamounier, Joel Alves; Carneiro, Mariângela
2015-01-01
Iron deficiency anemia is one of the most common nutritional disorders worldwide. The aim was to identify the prevalence and incidence of anemia in children and to identify predictors of this condition, including intestinal parasites, social, nutritional and environmental factors, and comorbidities. A population-based cohort study was conducted in a sample of 414 children aged 6–71 months living in Novo Cruzeiro in the Minas Gerais State. Data were collected in 2008 and 2009 by interview and included socio-economic and demographic information about the children and their families. Blood samples were collected for testing of hemoglobin, ferritin and C-reactive protein. Anthropometric measurements and parasitological analyses of fecal samples were performed. To identify risk factors associated with anemia multivariate analyses were performed using the generalized estimating equations (GEE). In 2008 and 2009, respectively, the prevalence rates of anemia were 35.9% (95%CI 31.2–40.8) and 9.8% (95%CI 7.2–12.9), the prevalence rates of iron deficiency were 18.4% (95%CI 14.7–22.6) and 21.8% (95%CI 17.8–26.2), and the incidence rates of anemia and iron deficiency were 3.2% and 21.8%. The following risk factors associated with anemia were: iron deficiency (OR = 3.2; 95%CI 2.0-.5.3), parasitic infections (OR = 1.9; 95%CI 1.2–2.8), being of risk of or being a low length/height-for-age (OR = 2.1; 95%CI 1.4–3.2), and lower retinol intake (OR = 1.7; 95%CI 1.1–2.7), adjusted over time. Nutritional factors, parasitic infections and chronic malnutrition were identified as risk factors for anemia. These factors can be verified in a chronic process and have been classically described as risk factors for these conditions. PMID:26445270
Zanin, Francisca Helena Calheiros; da Silva, Camilo Adalton Mariano; Bonomo, Élido; Teixeira, Romero Alves; Pereira, Cíntia Aparecida de Jesus; dos Santos, Karina Benatti; Fausto, Maria Arlene; Negrão-Correa, Deborah Aparecida; Lamounier, Joel Alves; Carneiro, Mariângela
2015-01-01
Iron deficiency anemia is one of the most common nutritional disorders worldwide. The aim was to identify the prevalence and incidence of anemia in children and to identify predictors of this condition, including intestinal parasites, social, nutritional and environmental factors, and comorbidities. A population-based cohort study was conducted in a sample of 414 children aged 6-71 months living in Novo Cruzeiro in the Minas Gerais State. Data were collected in 2008 and 2009 by interview and included socio-economic and demographic information about the children and their families. Blood samples were collected for testing of hemoglobin, ferritin and C-reactive protein. Anthropometric measurements and parasitological analyses of fecal samples were performed. To identify risk factors associated with anemia multivariate analyses were performed using the generalized estimating equations (GEE). In 2008 and 2009, respectively, the prevalence rates of anemia were 35.9% (95%CI 31.2-40.8) and 9.8% (95%CI 7.2-12.9), the prevalence rates of iron deficiency were 18.4% (95%CI 14.7-22.6) and 21.8% (95%CI 17.8-26.2), and the incidence rates of anemia and iron deficiency were 3.2% and 21.8%. The following risk factors associated with anemia were: iron deficiency (OR = 3.2; 95%CI 2.0-.5.3), parasitic infections (OR = 1.9; 95%CI 1.2-2.8), being of risk of or being a low length/height-for-age (OR = 2.1; 95%CI 1.4-3.2), and lower retinol intake (OR = 1.7; 95%CI 1.1-2.7), adjusted over time. Nutritional factors, parasitic infections and chronic malnutrition were identified as risk factors for anemia. These factors can be verified in a chronic process and have been classically described as risk factors for these conditions.
Klemm, Rolf
2017-01-01
The Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project sought to inform the interpretation of iron and vitamin A biomarkers (ferritin, serum transferrin receptor, and retinol binding protein) in settings of prevalent inflammation as well as the prevention of and control strategies to address anemia. Our purpose is to comment on the contributions of the BRINDA to advance global knowledge with regard to iron and vitamin A status assessment in women and preschool children and to analyze the findings in terms of their rigor and usefulness for global nutrition research and programs. BRINDA investigators found that the acute-phase response is so prevalent that it must be assessed in surveys of iron and vitamin A status for valid interpretation of micronutrient biomarkers. Furthermore, they found that C-reactive protein and α-1-acid glycoprotein provide important and different information about these responses and that common survey variables cannot replace the information they provide. Developing a method for adjusting micronutrient biomarkers for the independent influence of inflammation is challenging and complex, and BRINDA has brought greater clarity to this challenge through the use of large and diverse data sets. When comparing approaches, the regression methods appear to perform best when sample sizes are sufficient and adequate statistical capacity is available. Further correction for malaria does not appear to materially alter regression-adjusted prevalence estimates. We suggest that researchers present both adjusted and unadjusted values for the micronutrient biomarkers. BRINDA findings confirm that iron deficiency is a common and consistent risk factor for anemia globally and that anemia control must combine iron interventions with control of infection and inflammation. Anemia control strategies must be informed by local data. By applying the knowledge in these studies, researchers, program planners, and evaluators working in populations with prevalent inflammation can use and interpret biomarkers with more confidence, tempered with necessary caution. PMID:28615252
Iron homeostasis in plants - a brief overview.
Connorton, James M; Balk, Janneke; Rodríguez-Celma, Jorge
2017-07-19
Iron plays a crucial role in biochemistry and is an essential micronutrient for plants and humans alike. Although plentiful in the Earth's crust it is not usually found in a form readily accessible for plants to use. They must therefore sense and interact with their environment, and have evolved two different molecular strategies to take up iron in the root. Once inside, iron is complexed with chelators and distributed to sink tissues where it is used predominantly in the production of enzyme cofactors or components of electron transport chains. The processes of iron uptake, distribution and metabolism are overseen by tight regulatory mechanisms, at the transcriptional and post-transcriptional level, to avoid iron concentrations building to toxic excess. Iron is also loaded into seeds, where it is stored in vacuoles or in ferritin. This is important for human nutrition as seeds form the edible parts of many crop species. As such, increasing iron in seeds and other tissues is a major goal for biofortification efforts by both traditional breeding and biotechnological approaches.
Nutrition in Patients with Gastric Cancer: An Update.
Rosania, Rosa; Chiapponi, Costanza; Malfertheiner, Peter; Venerito, Marino
2016-05-01
Nutritional management of patients with gastric cancer (GC) represents a challenge. This review provides an overview of the present evidence on nutritional support in patients with GC undergoing surgery as well as in those with advanced disease. For patients undergoing surgery, the preoperative nutritional condition directly affects postoperative prognosis, overall survival and disease-specific survival. Perioperative nutritional support enriched with immune-stimulating nutrients reduces overall complications and hospital stay but not mortality after major elective gastrointestinal surgery. Early enteral nutrition after surgery improves early and long-term postoperative nutritional status and reduces the length of hospitalization as well. Vitamin B12 and iron deficiency are common metabolic sequelae after gastrectomy and warrant appropriate replacement. In malnourished patients with advanced GC, short-term home complementary parenteral nutrition improves the quality of life, nutritional status and functional status. Total home parenteral nutrition represents the only modality of caloric intake for patients with advanced GC who are unable to take oral or enteral nutrition. Early evaluations of nutritional status and nutritional support represent key aspects in the management of GC patients with both operable and advanced disease.
Nutrition education and knowledge, attitude and hemoglobin status of Malaysian adolescents.
Yusoff, Hafzan; Daud, Wan Nudri Wan; Ahmad, Zulkifli
2012-01-01
A higher occurrence of iron deficiency anemia is present in rural Malaysia than urban Malaysia due to a lower socio-economic status of rural residents. This study was conducted in Tanah Merah, a rural district of Kelantan, Malaysia. Our objective was to investigate the impact of nutrition education alone, daily iron, folate and vitamin C supplementation or both on knowledge, attitudes and hemoglobin status of adolescent students. Two hundred eighty fourth year secondary students were each assigned by school to 1 of 4 different treatment groups. Each intervention was carried out for 3 months followed by 3 months without treatment. A validated self-reported knowledge and attitude questionnaire was administered; hemoglobin levels were measured before and after intervention. At baseline, no significant difference in hemoglobin was noted among the 4 groups (p = 0.06). The changes in hemoglobin levels at 3 months were 11, 4.6, 3.9 and -3.7% for the supplementation, nutrition education, combination and control groups, respectively. The changes at 6 months were 1.0, 6.8, 3.7 and -14.8%, respectively. Significant improvements in knowledge and attitude were evidenced in both the nutritional education and combination groups. The supplementation and control groups had no improvement in knowledge or attitudes. This study suggests nutritional education increases knowledge, attitudes and hemoglobin levels among Malaysian secondary school adolescents.
Nutritional adequacy of energy restricted diets for young obese women.
O'Connor, Helen; Munas, Zahra; Griffin, Hayley; Rooney, Kieron; Cheng, Hoi Lun; Steinbeck, Katharine
2011-01-01
Energy restricted meal plans may compromise nutrient intake. This study used diet modelling to assess the nutritional adequacy of energy restricted meal plans designed for weight management in young obese women. Diet modelling of 6000 kJ/d animal protein based meal plans was performed using Australian nutrient databases with adequacy compared to the Australian Nutrient Reference Values (NRVs) for women (19-30 years). One diet plan was based on the higher carbohydrate (HC) version of the Australian Guide to Healthy Eating for women 19-60 years. An alternative higher protein (HP) plan was adapted from the CSIRO Total Wellbeing Diet. Vegan and lacto-ovo versions of these plans were also modelled and compared to the appropriate vegetarian NRVs. Both animal protein diets met the estimated average requirement (EAR) or adequate intake (AI) for all nutrients analysed. The recommended dietary intake (RDI) was also satisfied, except for iron. HC met 75±30% and HP 81±31% of the iron RDI when red meat and iron fortified cereal were both included three days a week, and remained below the RDI even when red meat was increased to seven days. Iron for the modified vegan (57±5% HC; 66±4% HP) and lacto-ovo (48±6% HC; 59±7% HP) plans was below the RDI and zinc below the EAR for the vegan (76±8% HC; 84±9% HP) plans. The 6000 kJ/d animal protein meal plans met the RDI for all nutrients except iron. Iron and zinc failed to meet the vegetarian RDI and EAR respectively for the vegan plans.
Erythrocyte CuZn superoxide dismutase activity is decreased in iron-deficiency anemia.
Olivares, M; Araya, M; Pizarro, F; Letelier, A
2006-09-01
Iron and copper are essential microminerals that are intimately related. The present study was performed to determine the effect of iron-deficiency anemia (IDA) and treatment with iron on laboratory indicators of copper status. Hemoglobin, mean corpuscular volume erythrocyte Zn protoporphyrin, serum ferritin, serum copper, serum ceruloplasmin, and erythrocyte CuZn-superoxide dismutase (SOD) activity were studied in 12 adult women with IDA before and after iron treatment for 60-90 d (100 mg/d Fe, as ferric polymaltose) and in 27 women with normal iron status. Prior to treatment with iron, serum copper and ceruloplasmin were not different between the groups and treatment with iron did not affect these measures. IDA women, before and after treatment with iron, presented a 2.9- and 2-fold decrease in erythrocyte CuZn-SOD activity compared to women with normal iron status (p < 0.001). Treatment with iron increased erythrocyte CuZn-SOD activity of the IDA group; however, this change was not statistically significant. In conclusion, CuZn-SOD activity is decreased in IDA. Measurement of this enzyme activity is not useful for evaluating copper nutrition in iron-deficient subjects.
Khokhar, Santosh; Ashkanani, Fatemah; Garduño-Diaz, Sara D; Husain, Wafaa
2013-10-01
Lack of food composition data, recipe information and portion sizes for ethnic foods are commonly reported problems for dietary assessment of ethnic minority groups. One of the main aims of this study was to use food composition data to validate portion sizes, identify important sources of nutrients and describe the characteristics of the South Asian diet. The top five ethnic foods containing highest levels of selected nutrients were lamb balti (3mg/100g iron), lamb kebab (3.2mg/100g zinc), mixed dhal (62μg/100g folate), fish curry (1.4μg/100g vitamin D), ghee (968μg/100g retinol) and toor dhal (9.1g/100g dietary fibre). Typical adult South Asian diets included traditional cereals (chapatti, rice and paratha) and low consumption of meat dishes; with vegetable curries contributing most towards energy intake. A higher consumption of full fat milk and fruit juices by toddlers and school children were observed when compared with the National Diet and Nutrition Survey of the UK. Copyright © 2013. Published by Elsevier Ltd.
Hackl, Laura; Cercamondi, Colin I; Zeder, Christophe; Wild, Daniela; Adelmann, Horst; Zimmermann, Michael B; Moretti, Diego
2016-05-01
Iron fortification of rice is a promising strategy for improving iron nutrition. However, it is technically challenging because rice is consumed as intact grains, and ferric pyrophosphate (FePP), which is usually used for rice fortification, has low bioavailability. We investigated whether the addition of a citric acid/trisodium citrate (CA/TSC) mixture before extrusion increases iron absorption in humans from FePP-fortified extruded rice grains. We conducted an iron absorption study in iron-sufficient young women (n = 20), in which each participant consumed 4 different meals (4 mg Fe/meal): 1) extruded FePP-fortified rice (No CA/TSC); 2) extruded FePP-fortified rice with CA/TSC added before extrusion (CA/TSC extruded); 3) extruded FePP-fortified rice with CA/TSC solution added after cooking and before consumption (CA/TSC solution); and 4) nonextruded rice fortified with a FeSO4 solution added after cooking and before consumption (reference). Iron absorption was calculated from erythrocyte incorporation of stable iron isotopes 14 d after administration. In in vitro experiments, we assessed the soluble and dialyzable iron from rice meals in which CA/TSC was added at different preparation stages and from meals with different iron:CA:TSC ratios. Fractional iron absorption was significantly higher from CA/TSC-extruded meals (3.2%) than from No CA/TSC (1.7%) and CA/TSC solution (1.7%; all P < 0.05) and was not different from the FeSO4 reference meal (3.4%). In vitro solubility and dialyzability were higher in CA/TSC-extruded rice than in rice with No CA/TSC and CA/TSC solution, and solubility increased with higher amounts of added CA and TSC in extruded rice. Iron bioavailability nearly doubled when CA/TSC was extruded with FePP into fortified rice, resulting in iron bioavailability comparable to that of FeSO4 We attribute this effect to an in situ generation of soluble FePP citrate moieties during extrusion and/or cooking because of the close physical proximity of FePP and CA/TSC in the extruded rice matrix. This trial was registered at clinicaltrials.gov as NCT02176759. © 2016 American Society for Nutrition.
Anthropogenic combustion iron as a complex climate forcer.
Matsui, Hitoshi; Mahowald, Natalie M; Moteki, Nobuhiro; Hamilton, Douglas S; Ohata, Sho; Yoshida, Atsushi; Koike, Makoto; Scanza, Rachel A; Flanner, Mark G
2018-04-23
Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30-90 °S) by 52%, with a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m -2 globally and 0.22 W m -2 over East Asia. Our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.
Shaheen, Rubina; Persson, Lars Åke; Ahmed, Shakil; Streatfield, Peter Kim; Lindholm, Lars
2015-05-28
Absence of cost-effectiveness (CE) analyses limits the relevance of large-scale nutrition interventions in low-income countries. We analyzed if the effect of invitation to food supplementation early in pregnancy combined with multiple micronutrient supplements (MMS) on infant survival represented value for money compared to invitation to food supplementation at usual time in pregnancy combined with iron-folic acid. Outcome data, infant mortality (IM) rates, came from MINIMat trial (Maternal and Infant Nutrition Interventions, Matlab, ISRCTN16581394). In MINIMat, women were randomized to early (E around 9 weeks of pregnancy) or usual invitation (U around 20 weeks) to food supplementation and daily doses of 30 mg, or 60 mg iron with 400 μgm of folic acid, or MMS with 15 micronutrients including 30 mg iron and 400 μgm of folic acid. In MINIMat, EMMS significantly reduced IM compared to UFe60F (U plus 60 mg iron 400 μgm Folic acid). We present incremental CE ratios for incrementing UFe60F to EMMS. Costing data came mainly from a published study. By incrementing UFe60F to EMMS, one extra IM could be averted at a cost of US$907 and US$797 for NGO run and government run CNCs, respectively, and at US$1024 for a hypothetical scenario of highest cost. These comparisons generated one extra life year (LY) saved at US$30, US$27, and US$34, respectively. Incrementing UFe60F to EMMS in pregnancy seems worthwhile from health economic and public health standpoints. Maternal and Infant Nutrition Interventions, Matlab; ISRCTN16581394 ; Date of registration: Feb 16, 2009.
Estimated Nutritive Value of Low-Price Model Lunch Sets Provided to Garment Workers in Cambodia
Makurat, Jan; Pillai, Aarati; Wieringa, Frank T.; Chamnan, Chhoun; Krawinkel, Michael B.
2017-01-01
Background: The establishment of staff canteens is expected to improve the nutritional situation of Cambodian garment workers. The objective of this study is to assess the nutritive value of low-price model lunch sets provided at a garment factory in Phnom Penh, Cambodia. Methods: Exemplary lunch sets were served to female workers through a temporary canteen at a garment factory in Phnom Penh. Dish samples were collected repeatedly to examine mean serving sizes of individual ingredients. Food composition tables and NutriSurvey software were used to assess mean amounts and contributions to recommended dietary allowances (RDAs) or adequate intake of energy, macronutrients, dietary fiber, vitamin C (VitC), iron, vitamin A (VitA), folate and vitamin B12 (VitB12). Results: On average, lunch sets provided roughly one third of RDA or adequate intake of energy, carbohydrates, fat and dietary fiber. Contribution to RDA of protein was high (46% RDA). The sets contained a high mean share of VitC (159% RDA), VitA (66% RDA), and folate (44% RDA), but were low in VitB12 (29% RDA) and iron (20% RDA). Conclusions: Overall, lunches satisfied recommendations of caloric content and macronutrient composition. Sets on average contained a beneficial amount of VitC, VitA and folate. Adjustments are needed for a higher iron content. Alternative iron-rich foods are expected to be better suited, compared to increasing portions of costly meat/fish components. Lunch provision at Cambodian garment factories holds the potential to improve food security of workers, approximately at costs of <1 USD/person/day at large scale. Data on quantitative total dietary intake as well as physical activity among workers are needed to further optimize the concept of staff canteens. PMID:28754003
Rodriguez-Ramiro, Ildefonso; Perfecto, Antonio; Fairweather-Tait, Susan J.
2017-01-01
Iron deficiency is a major public health concern and nutritional approaches are required to reduce its prevalence. The aim of this study was to examine the iron bioavailability of a novel home fortificant, the “Lucky Iron Fish™” (LIF) (www.luckyironfish.com/shop, Guelph, Canada) and the impact of dietary factors and a food matrix on iron uptake from LIF in Caco-2 cells. LIF released a substantial quantity of iron (about 1.2 mM) at pH 2 but this iron was only slightly soluble at pH 7 and not taken up by cells. The addition of ascorbic acid (AA) maintained the solubility of iron released from LIF (LIF-iron) at pH 7 and facilitated iron uptake by the cells in a concentration-dependent manner. In vitro digestion of LIF-iron in the presence of peas increased iron uptake 10-fold. However, the addition of tannic acid to the digestion reduced the cellular iron uptake 7.5-fold. Additionally, LIF-iron induced an overproduction of reactive oxygen species (ROS), similar to ferrous sulfate, but this effect was counteracted by the addition of AA. Overall, our data illustrate the major influence of dietary factors on iron solubility and bioavailability from LIF, and demonstrate that the addition of AA enhances iron uptake and reduces ROS in the intestinal lumen. PMID:28895913
Saha, Supradip; Hedau, Nirmal K; Mahajan, Vinay; Singh, Gyanendra; Gupta, Hari S; Gahalain, Anita
2010-01-30
Screening of natural biodiversity for their better quality attributes is of prime importance for quality breeding programmes. A set of 53 tomato genotypes was measured for their textural [skin firmness, pericarp thickness, total soluble solids (TSS)], nutritional [phosphorus (P), potassium (K), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and titrable acidity (TA)] and functional (beta-carotene, lycopene and ascorbic acid) quality attributes. Three sets of data (textural, nutritional and functional attributes) were obtained and analysed for their mutual relationships. Wide variations were observed in most of the measurements, e.g. skin firmness (coefficient of variability (CV) 269-612 g), pericarp thickness (CV 1.4-4.9 mm), potassium (CV 229-371 mg 100 g(-1)), iron (CV 611-1772 mg 100 g(-1)), ascorbic acid (CV 12-86 mg 100 g(-1)), suggesting that there are considerable levels of genetic diversity. Significant correlations (P < 0.05, 0.01) were also detected among different attributes of tomato genotypes, such as phosphorus and zinc with a correlation coefficient of 0.74, ascorbic acid and copper of 0.57, pericarp thickness and lycopene of - 0.52. However, there were no correlations between textural and nutritional attributes. Five factors were computed by principal component analysis that explained 66% of the variation in the attributes, among which all micronutrients other than iron, TSS, firmness and beta-carotene were most important. Functional attributes except beta-carotene played a less important role in explaining total variation. This knowledge could aid in the efficient conservation of important parts of the agricultural biodiversity of India. These results are also potentially useful for tomato breeders working on the development of new varieties. (c) 2009 Society of Chemical Industry.
Ashorn, Ulla; Phuka, John; Maleta, Kenneth; Sadalaki, John; Oaks, Brietta M.; Haskell, Marjorie; Allen, Lindsay H.; Vosti, Steve A.; Ashorn, Per; Dewey, Kathryn G.
2017-01-01
Abstract Pregnant and post‐partum women require increased nutrient intake and optimal cognition, which depends on adequate nutrition, to enable reasoning and learning for caregiving. We aimed to assess (a) differences in maternal cognition and caregiving between women in Malawi who received different nutritional supplements, (b) 14 effect modifiers, and (c) associations of cognition and caregiving with biomarkers of iron, Vitamin A, B‐vitamin, and fatty acid status. In a randomized controlled trial (n = 869), pregnant women daily received either multiple micronutrients (MMN), 20 g/day lipid‐based nutrient supplements (LNS), or a control iron/folic acid (IFA) tablet. After delivery, supplementation continued in the MMN and LNS arms, and the IFA control group received placebo until 6 months post‐partum, when cognition (n = 712), caregiving behaviour (n = 669), and biomarkers of nutritional status (n = 283) were assessed. In the full group, only one difference was significant: the IFA arm scored 0.22 SD (95% CI [0.01, 0.39], p = .03) higher than the LNS arm in mental rotation. Among subgroups of women with baseline low hemoglobin, poor iron status, or malaria, those who received LNS scored 0.4 to 0.7 SD higher than the IFA arm in verbal fluency. Breastmilk docosahexaenoic acid and Vitamin B12 concentrations were positively associated with verbal fluency and digit span forward (adjusting for covariates ps < .05). In this population in Malawi, maternal supplementation with MMN or LNS did not positively affect maternal cognition or caregiving. Maternal docosahexaenoic acid and B12 status may be important for post‐partum attention and executive function. PMID:29098783
Golub, Mari S.; Hogrefe, Casey E.; Unger, Erica L.
2012-01-01
Social and emotional behavior are known to be sensitive to both developmental iron deficiency and monoamine oxidase A (MAOA) gene polymorphisms. In this study, male rhesus monkey infants deprived of dietary iron in utero (ID) were compared to iron sufficient (IS) controls (n=10/group). Half of each group had low MAOA activity genotypes and half had high MAOA activity genotypes. A series of social response tests were conducted at 3 to 14 months of age. MAOA genotype influenced attention to a video of aggressive behavior, emotional expression (fear grimace and sniff) in the social intruder test, social actions (displacement, grooming) in the social dyad test, and aggressive responses to a threatening picture. Interactions between MAOA and prenatal ID were seen in response to the aggressive video, in temperament ratings, in affiliative behavior in the social dyad test, in cortisol response in the social buffering test, and in response to a social intruder and to pictures with social and nonsocial themes. In general the effects of ID were dependent on MAOA genotype in terms of both direction and size of the effect. Nutrition/genotype interactions may shed new light on behavioral consequences of nutritional deprivation during brain development. PMID:22340208
Wu, Gangcheng; Johnson, Stuart K.; Bornman, Janet F.; Bennett, Sarita J.; Singh, Vijaya; Simic, Azra; Fang, Zhongxiang
2016-01-01
Background It has been predicted that the global temperature will rise in the future, which means crops including sorghum will likely be grown under higher temperatures, and consequently may affect the nutritional properties. Methods The effects of two growth temperatures (OT, day/night 32/21°C; HT 38/21°C) on tannin, phytate, mineral, and in vitro iron availability of raw and cooked grains (as porridge) of six sorghum genotypes were investigated. Results Tannin content significantly decreased across all sorghum genotypes under high growth temperature (P ≤0.05), while the phytate and mineral contents maintained the same level, increased or decreased significantly, depending on the genotype. The in vitro iron availability in most sorghum genotypes was also significantly reduced under high temperature, except for Ai4, which showed a pronounced increase (P ≤0.05). The cooking process significantly reduced tannin content in all sorghum genotypes (P ≤0.05), while the phytate content and in vitro iron availability were not significantly affected. Conclusions This research provides some new information on sorghum grain nutritional properties when grown under predicted future higher temperatures, which could be important for humans where sorghum grains are consumed as staple food. PMID:26859483
Rodriguez-Ramiro, I; Brearley, C A; Bruggraber, S F A; Perfecto, A; Shewry, P; Fairweather-Tait, S
2017-08-01
Myo-inositol hexakisphosphate (IP6), is the main iron chelator in cereals and bread. The aim of this study was to investigate the effect of three commercial baking processes (sourdough, conventional yeast and Chorleywood Bread Making Process (CBP)) on the IP6 content of wholemeal bread, its impact on iron uptake in Caco-2 cells and the predicted bioavailability of iron from these breads with added iron, simulating a mixed-meal. The sourdough process fully degraded IP6 whilst the CBP and conventional processes reduced it by 75% compared with wholemeal flour. The iron released in solution after a simulated digestion was 8-fold higher in sourdough bread than with others but no difference in cellular iron uptake was observed. Additionally, when iron was added to the different breads digestions only sourdough bread elicited a significant ferritin response in Caco-2 cells (4.8-fold compared to the other breads) suggesting that sourdough bread could contribute towards improved iron nutrition. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Coe, Christopher L; Lubach, Gabriele R; Busbridge, Mark; Chapman, Richard S
2013-06-01
The realization that pregnant and infant monkeys were challenged by high nutritional needs for iron led vendors to markedly increase iron concentrations in commercial diets. Yet, no systematic research was conducted to investigate the consequences of this important dietary change. Hematology and iron panels were determined for 142 infant rhesus monkeys gestated and reared on 3 different diets varying in iron concentration (180, 225 or 380 mg Fe/kg). Anemia was significantly more prevalent in offspring from females fed the 180 and 225 mg Fe/kg diets (32-41% versus 0 for the 380 mg Fe/kg diet, P<0.001). Higher hepcidin levels were protective against iron overload in infants from the 380 mg Fe/kg condition. These findings indicate a highly fortified diet during pregnancy continues to have postnatal benefits for the growing infant. However, for those interested in iron deficiency, lower iron diets provide a reliable way to generate anemic infant monkeys for research. Copyright © 2012 Elsevier Ltd. All rights reserved.
Food claims and nutrition facts of commercial infant foods.
Koo, Yu-Chin; Chang, Jung-Su; Chen, Yi Chun
2018-01-01
Composition claim, nutrition claim and health claim are often found on the commercial complementary food packaging. The introduction of complementary foods (CFs) to infants is a turning point in the development of their eating behavior, and their commercial use for Taiwanese infants is growing. In Taiwan, lots of the advertisements for CFs employed health or nutrition claims to promote the products, but the actual nutritional content of these CFs is not clear. The aim of this study was to compare the food claims of commercial complementary food products with their actual nutrition facts. A sample of 363 commercial CFs was collected from websites, local supermarkets, and other food stores, and their nutrition-related claims were classified into composition, nutrition, and health categories. Although the World Health Organization recommends that infants should be exclusively breastfed for the first 6 months, 48.2% of the commercial CFs were targeted at infants younger than 6 months. Therefore, marketing regulations should be implemented to curb early weaning as a result of products targeted at infants younger than 6 months. More than 50% of Taiwanese commercial CFs have high sugar content and more than 20% were high in sodium. Products with health claims, such as "provides good nutrition to children" or "improves appetite," have higher sodium or sugar content than do those without such claims. Moreover, products with calcium or iron content claims did not contain more calcium or iron than products without such claims. Additionally, a significantly greater proportion of the products with "no added sugar" claims were classified as having high sugar content as compared to those without such claims. Parents cannot choose the healthiest food products for their children by simply focusing on food claims. Government should regulate the labeling of nutrition facts and food claims for foods targeted at infants younger than 12 months.
Food claims and nutrition facts of commercial infant foods
Koo, Yu-Chin; Chang, Jung-Su
2018-01-01
Composition claim, nutrition claim and health claim are often found on the commercial complementary food packaging. The introduction of complementary foods (CFs) to infants is a turning point in the development of their eating behavior, and their commercial use for Taiwanese infants is growing. In Taiwan, lots of the advertisements for CFs employed health or nutrition claims to promote the products, but the actual nutritional content of these CFs is not clear. The aim of this study was to compare the food claims of commercial complementary food products with their actual nutrition facts. A sample of 363 commercial CFs was collected from websites, local supermarkets, and other food stores, and their nutrition-related claims were classified into composition, nutrition, and health categories. Although the World Health Organization recommends that infants should be exclusively breastfed for the first 6 months, 48.2% of the commercial CFs were targeted at infants younger than 6 months. Therefore, marketing regulations should be implemented to curb early weaning as a result of products targeted at infants younger than 6 months. More than 50% of Taiwanese commercial CFs have high sugar content and more than 20% were high in sodium. Products with health claims, such as “provides good nutrition to children” or “improves appetite,” have higher sodium or sugar content than do those without such claims. Moreover, products with calcium or iron content claims did not contain more calcium or iron than products without such claims. Additionally, a significantly greater proportion of the products with “no added sugar” claims were classified as having high sugar content as compared to those without such claims. Parents cannot choose the healthiest food products for their children by simply focusing on food claims. Government should regulate the labeling of nutrition facts and food claims for foods targeted at infants younger than 12 months. PMID:29489848
Aron, Allegra T; Heffern, Marie C; Lonergan, Zachery R; Vander Wal, Mark N; Blank, Brian R; Spangler, Benjamin; Zhang, Yaofang; Park, Hyo Min; Stahl, Andreas; Renslo, Adam R; Skaar, Eric P; Chang, Christopher J
2017-11-28
Iron is an essential metal for all organisms, yet disruption of its homeostasis, particularly in labile forms that can contribute to oxidative stress, is connected to diseases ranging from infection to cancer to neurodegeneration. Iron deficiency is also among the most common nutritional deficiencies worldwide. To advance studies of iron in healthy and disease states, we now report the synthesis and characterization of iron-caged luciferin-1 (ICL-1), a bioluminescent probe that enables longitudinal monitoring of labile iron pools (LIPs) in living animals. ICL-1 utilizes a bioinspired endoperoxide trigger to release d-aminoluciferin for selective reactivity-based detection of Fe 2+ with metal and oxidation state specificity. The probe can detect physiological changes in labile Fe 2+ levels in live cells and mice experiencing iron deficiency or overload. Application of ICL-1 in a model of systemic bacterial infection reveals increased iron accumulation in infected tissues that accompany transcriptional changes consistent with elevations in both iron acquisition and retention. The ability to assess iron status in living animals provides a powerful technology for studying the contributions of iron metabolism to physiology and pathology.
Revealing sources and chemical identity of iron ligands across the California Current System
NASA Astrophysics Data System (ADS)
Boiteau, R.; Repeta, D.; Fitzsimmons, J. N.; Parker, C.; Twining, B. S.; Baines, S.
2016-02-01
The California Current System is one of the most productive regions of the ocean, fueled by the upwelling of nutrient rich water. Differences in the supply of micronutrient iron to surface waters along the coast lead to a mosaic of iron-replete and iron-limited conditions across the region, affecting primary production and community composition. Most of the iron in this region is supplied by upwelling of iron from the benthic boundary layer that is complexed by strong organic ligands. However, the source, identity, and bioavailability of these ligands are unknown. Here, we used novel hyphenated chromatography mass spectrometry approaches to structurally characterize organic ligands across the region. With these methods, iron ligands are detected with liquid chromatography coupled to inductively coupled plasma mass spectrometry (LC-ICPMS), and then their mass and fragmentation spectra are determined by high resolution electrospray ionization mass spectrometry (LC-ESIMS). Iron isotopic exchange was used to compare the relative binding strengths of different ligands. Our survey revealed a broad range of ligands from multiple sources. Benthic boundary layers and anoxic sediments were sources of structurally amorphous weak ligands, likely organic degradation products, as well as siderophores, strong iron binding molecules that facilitate iron acquisition. In the euphotic zone, marine microbes and zooplankton grazing produced a wide distribution of other compounds that included known and novel siderophores. This work demonstrates that the chemical nature of ligands from different sources varies substantially and has important implications for iron biogeochemical cycling and availability to members of the microbial community.
Ferritin and ferrihydrite nanoparticles as iron sources for Pseudomonas aeruginosa
Dehner, Carolyn; Morales-Soto, Nydia; Behera, Rabindra K.; Shrout, Joshua; Theil, Elizabeth C.; Maurice, Patricia A.
2013-01-01
Metabolism of iron derived from insoluble and/ or scarce sources is essential for pathogenic and environmental microbes. The ability of Pseudomonas aeruginosa to acquire iron from exogenous ferritin was assessed; ferritin is an iron-concentrating and antioxidant protein complex composed of a catalytic protein and caged ferrihydrite nanomineral synthesized from Fe(II) and O2 or H2O2. Ferritin and free ferrihydrite supported growth of P. aeruginosa with indistinguishable kinetics and final culture densities. The P. aeruginosa PAO1 mutant (ΔpvdDΔpchEF), which is incapable of siderophore production, grew as well as the wild type when ferritin was the iron source. Such data suggest that P. aeruginosa can acquire iron by siderophore-independent mechanisms, including secretion of small-molecule reductant(s). Protease inhibitors abolished the growth of the siderophore-free strain on ferritins, with only a small effect on growth of the wild type; predictably, protease inhibitors had no effect on growth with free ferrihydrite as the iron source. Proteolytic activity was higher with the siderophore-free strain, suggesting that the role of proteases in the degradation of ferritin is particularly important for iron acquisition in the absence of siderophores. The combined results demonstrate the importance of both free ferrihydrite, a natural environmental form of iron and a model for an insoluble form of partly denatured ferritin called hemosiderin, and caged ferritin iron minerals as bacterial iron sources. Ferritin is also revealed as a growth promoter of opportunistic, pathogenic bacteria such a P. aeruginosa in diseased tissues such as the cystic fibrotic lung, where ferritin concentrations are abnormally high. PMID:23417538
... and S65C HFE gene mutations, diet, and life-style factors on iron status in the general Mediterranean ... Health Information Diabetes Digestive Diseases Kidney Disease Weight Management Liver Disease Urologic Diseases Endocrine Diseases Diet & Nutrition ...
Inverse-model estimates of the ocean's coupled phosphorus, silicon, and iron cycles
NASA Astrophysics Data System (ADS)
Pasquier, Benoît; Holzer, Mark
2017-09-01
The ocean's nutrient cycles are important for the carbon balance of the climate system and for shaping the ocean's distribution of dissolved elements. Dissolved iron (dFe) is a key limiting micronutrient, but iron scavenging is observationally poorly constrained, leading to large uncertainties in the external sources of iron and hence in the state of the marine iron cycle. Here we build a steady-state model of the ocean's coupled phosphorus, silicon, and iron cycles embedded in a data-assimilated steady-state global ocean circulation. The model includes the redissolution of scavenged iron, parameterization of subgrid topography, and small, large, and diatom phytoplankton functional classes. Phytoplankton concentrations are implicitly represented in the parameterization of biological nutrient utilization through an equilibrium logistic model. Our formulation thus has only three coupled nutrient tracers, the three-dimensional distributions of which are found using a Newton solver. The very efficient numerics allow us to use the model in inverse mode to objectively constrain many biogeochemical parameters by minimizing the mismatch between modeled and observed nutrient and phytoplankton concentrations. Iron source and sink parameters cannot jointly be optimized because of local compensation between regeneration, recycling, and scavenging. We therefore consider a family of possible state estimates corresponding to a wide range of external iron source strengths. All state estimates have a similar mismatch with the observed nutrient concentrations and very similar large-scale dFe distributions. However, the relative contributions of aeolian, sedimentary, and hydrothermal iron to the total dFe concentration differ widely depending on the sources. Both the magnitude and pattern of the phosphorus and opal exports are well constrained, with global values of 8. 1 ± 0. 3 Tmol P yr-1 (or, in carbon units, 10. 3 ± 0. 4 Pg C yr-1) and 171. ± 3. Tmol Si yr-1. We diagnose the phosphorus and opal exports supported by aeolian, sedimentary, and hydrothermal iron. The geographic patterns of the export supported by each iron type are well constrained across the family of state estimates. Sedimentary-iron-supported export is important in shelf and large-scale upwelling regions, while hydrothermal iron contributes to export mostly in the Southern Ocean. The fraction of the global export supported by a given iron type varies systematically with its fractional contribution to the total iron source. Aeolian iron is most efficient in supporting export in the sense that its fractional contribution to export exceeds its fractional contribution to the total source. Per source-injected molecule, aeolian iron supports 3. 1 ± 0. 8 times more phosphorus export and 2. 0 ± 0. 5 times more opal export than the other iron types. Conversely, per injected molecule, sedimentary and hydrothermal iron support 2. 3 ± 0. 6 and 4. ± 2. times less phosphorus export, and 1. 9 ± 0. 5 and 2. ± 1. times less opal export than the other iron types.
Celiac disease and the gluten-free diet: consequences and recommendations for improvement.
Theethira, Thimmaiah G; Dennis, Melinda
2015-01-01
Celiac disease (CD) is a chronic small intestinal immune-mediated enteropathy precipitated by exposure to dietary gluten in genetically susceptible individuals. CD-related enteropathy leads to multiple nutritional deficiencies involving macro- and micronutrients. Currently, medical nutrition therapy consisting of the gluten-free diet (GFD) is the only accepted treatment for CD. The GFD is the cornerstone of treatment for CD. Prior published studies have concluded that maintenance of the GFD results in improvement of the majority of nutritional deficiencies. In the past, counseling for CD focused mainly on the elimination of gluten in the diet. However, the GFD is not without its inadequacies; compliance to the GFD may result in certain deficiencies such as fiber, B vitamins, iron, and trace minerals. Paucity of fortified gluten-free foods may be responsible for certain deficiencies which develop on the GFD. Weight gain and obesity have been added to the list of nutritional consequences while on the GFD and have been partially attributed to hypercaloric content of commercially available gluten-free foods. Follow-up of patients diagnosed with CD after starting the GFD has been reported to be irregular and, hence, less than ideal. Monitoring of the nutritional status using blood tests and use of appropriate gluten-free supplementation are integral components in the management of CD. The ideal GFD should be nutrient-dense with naturally gluten-free foods, balanced with macro- and micronutrients, reasonably priced, and easily accessible. Rotation of the pseudo-cereals provides a good source of complex carbohydrates, protein, fiber, fatty acids, vitamins and minerals. Fortification/enrichment of commonly consumed gluten-free commercial grain products should be encouraged. Dietitians specializing in CD play a critical role in the education and maintenance of the GFD for patients with CD. © 2015 S. Karger AG, Basel.
Examining Means of Reaching Adolescent Girls for Iron Supplementation in Tigray, Northern Ethiopia
Mulugeta, Afework; Tessema, Masresha; H/sellasie, Kiday; Seid, Omer; Kidane, Gebremedhin; Kebede, Aweke
2015-01-01
Background: Iron deficiency is the most prevalent nutritional deficiency in adolescent girls from the developing world. One of the recommended interventions to improve iron status in adolescent girls is iron supplementation. Yet the provision of iron supplements to adolescent girls proved to be a challenging task for the health systems across the developing world. Objective: The objective of the study was to examine means of reaching adolescent girls for iron supplementation in Northern Ethiopia. Methodology: Analytical cross-sectional study consisting of both quantitative and qualitative approaches to data collection and analysis was used in this study. Stratified multi-stage systematic random sampling technique was adopted and primary quantitative data were collected from 828 (578 school attending and 250 non school attending) adolescent girls recruited from nine districts of Tigray. The primary quantitative data were analyzed using SPSS version 20 software. The qualitative data collected through key informant interviews and focus group discussions were transcribed verbatim and qualitatively analyzed. Results: The mean (SD) age of the girls was 16.7 (1.4) years. Four hundred forty seven (54%), 355 (42.9%) and 26 (3.1%) of the adolescent girls had low, medium and high diet diversity scores, respectively. More than half, 467 (56%), of the adolescent girls believed that adolescent girls were overloaded with household jobs everyday compared to boys from their respective communities. Key informants said that, there is no adolescent nutrition message promoted in the study area. Low community awareness, perceiving iron tablet as a contraceptive, religious and cultural influences, and lack of confidence in supplementation value of iron tablets, are some of the potential barriers mentioned by the key informant and focus group discussion participants. Schools (45%), health centers (27%) and health posts (26%) were the preferred public facilities for provision of iron supplements to student adolescent girls whereas schools (11%), health centers (47%) and health posts (41%) were the preferred public facilities for provision of iron supplements to adolescent girls who were not attending schools from the study communities. Conclusion: The health posts and health centers were the preferred health facilities for iron supplementation to adolescent girls who were not attending schools while the school was the preferred facility for iron supplementation of student adolescent girls. PMID:26540071
Examining Means of Reaching Adolescent Girls for Iron Supplementation in Tigray, Northern Ethiopia.
Mulugeta, Afework; Tessema, Masresha; H/Sellasie, Kiday; Seid, Omer; Kidane, Gebremedhin; Kebede, Aweke
2015-11-02
Iron deficiency is the most prevalent nutritional deficiency in adolescent girls from the developing world. One of the recommended interventions to improve iron status in adolescent girls is iron supplementation. Yet the provision of iron supplements to adolescent girls proved to be a challenging task for the health systems across the developing world. The objective of the study was to examine means of reaching adolescent girls for iron supplementation in Northern Ethiopia. Analytical cross-sectional study consisting of both quantitative and qualitative approaches to data collection and analysis was used in this study. Stratified multi-stage systematic random sampling technique was adopted and primary quantitative data were collected from 828 (578 school attending and 250 non school attending) adolescent girls recruited from nine districts of Tigray. The primary quantitative data were analyzed using SPSS version 20 software. The qualitative data collected through key informant interviews and focus group discussions were transcribed verbatim and qualitatively analyzed. The mean (SD) age of the girls was 16.7 (1.4) years. Four hundred forty seven (54%), 355 (42.9%) and 26 (3.1%) of the adolescent girls had low, medium and high diet diversity scores, respectively. More than half, 467 (56%), of the adolescent girls believed that adolescent girls were overloaded with household jobs everyday compared to boys from their respective communities. Key informants said that, there is no adolescent nutrition message promoted in the study area. Low community awareness, perceiving iron tablet as a contraceptive, religious and cultural influences, and lack of confidence in supplementation value of iron tablets, are some of the potential barriers mentioned by the key informant and focus group discussion participants. Schools (45%), health centers (27%) and health posts (26%) were the preferred public facilities for provision of iron supplements to student adolescent girls whereas schools (11%), health centers (47%) and health posts (41%) were the preferred public facilities for provision of iron supplements to adolescent girls who were not attending schools from the study communities. The health posts and health centers were the preferred health facilities for iron supplementation to adolescent girls who were not attending schools while the school was the preferred facility for iron supplementation of student adolescent girls.
Meeting the nutrient reference values on a vegetarian diet.
Reid, Michelle A; Marsh, Kate A; Zeuschner, Carol L; Saunders, Angela V; Baines, Surinder K
2013-08-19
Surveys over the past 10 years have shown that Australians are increasingly consuming more plant-based vegetarian meals. Many studies demonstrate the health benefits of vegetarian diets. As with any type of eating plan, vegetarian diets must be well planned to ensure nutritional needs are being met. This clinical focus project shows that well planned vegetarian diets can meet almost all the nutritional needs of children and adults of all ages. Sample single-day lacto-ovo-vegetarian meal plans were developed to comply with the nutrient reference values - including the increased requirements for iron and zinc at 180% and 150%, respectively, for vegetarians - for both sexes and all age groups set by Australia's National Health and Medical Research Council and the New Zealand Ministry of Health. With the exception of vitamin D, long-chain omega-3 fatty acids and extended iron requirements in pregnancy for vegetarians, the meal plans meet key requirements with respect to energy; protein; carbohydrate; total fat; saturated, poly- and monounsaturated fats; α-linolenic acid; fibre; iron; zinc; calcium; folate; and vitamins A, C, E and B₁₂.
Mineral metabolism in a black-necked swan (Cygnus melanocoryphus) population from southern Chile.
Norambuena, M Cecilia; Bozinovic, Francisco
2009-12-01
A population of black-necked swans (Cygnus melanocoryphus) residing in a perturbed habitat revealed a low body mass, malnutrition, and hyperferremia during 2005; the swans main dietary item, Egeria densa, was lost during an environmental crisis which occurred in 2004. The objective of this study was to monitor the diet and nutritional status of this population during 2006, as well as to verify how the consumption of sediment, as part of their new diet, may explain the mineral disorders observed in these birds. Results revealed that swans increased their body mass and had an adequate protein, lipid, and iron metabolism, in spite of the fact that they maintained the same new diet (sediment and roots) during 2005-2006. In addition, transferrine saturation was indicative of the high endogenous iron load in birds which agrees with the high iron load of their environment. On the other hand, the consumption of the Cayumapu River sediment in the diet (25%) did not affect the body mass nor the nutritional and hepatic function in domestic geese over a 45-day period.
Iron concentrations in breast milk and selected maternal factors of human milk bank donors.
Mello-Neto, Julio; Rondó, Patrícia H C; Morgano, Marcelo A; Oshiiwa, Marie; Santos, Mariana L; Oliveira, Julicristie M
2010-05-01
The aim of this study was to evaluate the relationship between iron concentration in mature breast milk and characteristics of 136 donors of a Brazilian milk bank. Iron, vitamin A, zinc, and copper concentrations were assessed in human milk and maternal blood. Data were collected on maternal anthropometrics, obstetric, socioeconomic, demographic, and lifestyle factors. Iron, zinc, and copper in milk and zinc and copper in blood were detected by spectrophotometry. Vitamin A in milk and blood was determined by high-performance liquid chromatography. Hemoglobin was measured by electronic counting and serum iron and ferritin by colorimetry and chemoluminescence, respectively. Transferrin and ceruloplasmin were determined by nephelometry. According to multivariate linear regression analysis, iron in milk was positively associated with vitamin A in milk and with smoking but negatively associated with timing of breast milk donation (P < .001). These results indicate that iron concentration in milk of Brazilian donors may be influenced by nutritional factors and smoking.
Alcañiz, Sara; Jordá, Juana D; Cerdán, Mar
2017-01-18
Two o,o-EDDHA/Fe 3+ formulations (meso, 93.5% w/w of meso isomer; and d,l-racemic, 91.3% w/w of d,l-racemic mixture) were prepared, and their efficacy to avoid or to relieve iron deficiency in Fe-sufficient and Fe-deficient tomato plants grown on hydroponic solution was compared with that of the current o,o-EDDHA/Fe 3+ formulations (50% of meso and d,l-racemic isomers). The effectiveness of the three o,o-EDDHA/Fe 3+ formulations was different depending on the iron nutritional status of plants. The three o,o-EDDHA/Fe 3+ formulations tested were effective in preventing iron chlorosis in healthy plants. However, the higher the meso concentration in the formulations, the higher the effectiveness in the recovery of iron chlorotic plants from iron deficiency. Accordingly, o,o-EDDHA/Fe 3+ formulations rich in meso isomer are recommended in hydroponic systems.
Iron acquisition by Haemophilus influenzae.
Pidcock, K A; Wooten, J A; Daley, B A; Stull, T L
1988-01-01
The mechanisms for acquisition of iron by Haemophilus influenzae and their role in pathogenesis are not known. Heme and nonheme sources of iron were evaluated for their effect on growth of type b and nontypable strains of H. influenzae in an iron-restricted, defined medium. All 13 strains acquired iron from heme, hemoglobin, hemoglobin-haptoglobin, and heme-hemopexin. Among nonheme sources of protein-bound iron, growth of H. influenzae was enhanced by partially saturated human transferrin but not by lactoferrin or ferritin. Purified ferrienterochelin and ferridesferrioxamine failed to provide iron to H. influenzae, and the supernatants of H. influenzae E1a grown in iron-restricted medium failed to enhance iron-restricted growth of siderophore-dependent strains of Escherichia coli, Salmonella typhimurium, and Arthrobacter terregens. Marked alterations in the profile of outer membrane proteins of H. influenzae were observed when the level of free iron was varied between 1 microM and 1 mM. Catechols were not detected in the supernatants of strain E1a; however, iron-related hydroxamate production was detected by two biochemical assays. We conclude that the sources of iron for H. influenzae are diverse. The significance of hydroxamate production and iron-related outer membrane proteins to H. influenzae iron acquisition is not yet clear. Images PMID:2964410
Iron solubility driven by speciation in dust sources to the ocean
Schroth, A.W.; Crusius, John; Sholkovitz, E.R.; Bostick, B.C.
2009-01-01
Although abundant in the Earths crust, iron is present at trace concentrations in sea water and is a limiting nutrient for phytoplankton in approximately 40% of the ocean. Current literature suggests that aerosols are the primary external source of iron to offshore waters, yet controls on iron aerosol solubility remain unclear. Here we demonstrate that iron speciation (oxidation state and bonding environment) drives iron solubility in arid region soils, glacial weathering products (flour) and oil combustion products (oil fly ash). Iron speciation varies by aerosol source, with soils in arid regions dominated by ferric (oxy)hydroxides, glacial flour by primary and secondary ferrous silicates and oil fly ash by ferric sulphate salts. Variation in iron speciation produces systematic differences in iron solubility: less than 1% of the iron in arid soils was soluble, compared with 2-3% in glacial products and 77-81% in oil combustion products, which is directly linked to fractions of more soluble phases. We conclude that spatial and temporal variations in aerosol iron speciation, driven by the distribution of deserts, glaciers and fossil-fuel combustion, could have a pronounced effect on aerosol iron solubility and therefore on biological productivity and the carbon cycle in the ocean. ?? 2009 Macmillan Publishers Limited.
Ihemere, Uzoma E.; Narayanan, Narayanan N.; Sayre, Richard T.
2012-01-01
We have engineered the tropical root crop cassava (Manihot esculenta) to express the Chlamydomonas reinhardtii iron assimilatory gene, FEA1, in its storage roots with the objective of enhancing the root nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500 g meal. Significantly, the expression of the FEA1 gene in storage roots did not alter iron levels in leaves. Transgenic plants also had normal levels of zinc in leaves and roots consistent with the specific uptake of ferrous iron mediated by the FEA1 protein. Relative to wild-type plants, fibrous roots of FEA1 expressing plants had reduced Fe (III) chelate reductase activity consistent with the more efficient uptake of iron in the transgenic plants. We also show that multiple cassava genes involved in iron homeostasis have altered tissue-specific patterns of expression in leaves, stems, and roots of transgenic plants consistent with increased iron sink strength in transgenic roots. These results are discussed in terms of strategies for the iron biofortification of plants. PMID:22993514
Paganini, Daniela; Zimmermann, Michael B
2017-12-01
In infants and young children in Sub-Saharan Africa, iron-deficiency anemia (IDA) is common, and many complementary foods are low in bioavailable iron. In-home fortification of complementary foods using iron-containing micronutrient powders (MNPs) and oral iron supplementation are both effective strategies to increase iron intakes and reduce IDA at this age. However, these interventions produce large increases in colonic iron because the absorption of their high iron dose (≥12.5 mg) is typically <20%. We reviewed studies in infants and young children on the effects of iron supplements and iron fortification with MNPs on the gut microbiome and diarrhea. Iron-containing MNPs and iron supplements can modestly increase diarrhea risk, and in vitro and in vivo studies have suggested that this occurs because increases in colonic iron adversely affect the gut microbiome in that they decrease abundances of beneficial barrier commensal gut bacteria (e.g., bifidobacteria and lactobacilli) and increase the abundance of enterobacteria including entropathogenic Escherichia coli These changes are associated with increased gut inflammation. Therefore, safer formulations of iron-containing supplements and MNPs are needed. To improve MNP safety, the iron dose of these formulations should be reduced while maximizing absorption to retain efficacy. Also, the addition of prebiotics to MNPs is a promising approach to mitigate the adverse effects of iron on the infant gut. © 2017 American Society for Nutrition.
Wu, Ting-Ying; Gruissem, Wilhelm; Bhullar, Navreet K
2018-05-01
Iron deficiency affects one third of the world population. Most iron biofortification strategies have focused on genes involved in iron uptake and storage but facilitating internal long-distance iron translocation has been understudied for increasing grain iron concentrations. Citrate is a primary iron chelator, and the transporter FERRIC REDUCTASE DEFECTIVE 3 (FRD3) loads citrate into the xylem. We have expressed AtFRD3 in combination with AtNAS1 (NICOTIANAMINE SYNTHASE 1) and PvFER (FERRITIN) or with PvFER alone to facilitate long-distance iron transport together with efficient iron uptake and storage in the rice endosperm. The citrate and iron concentrations in the xylem sap of transgenic plants increased two-fold compared to control plants. Iron and zinc levels increased significantly in polished and unpolished rice grains to more than 70% of the recommended estimated average requirement (EAR) for iron and 140% of the recommended EAR for zinc in polished rice grains. Furthermore, the transformed lines showed normal phenotypic growth, were tolerant to iron deficiency and aluminum toxicity, and had grain cadmium levels similar to control plants. Together, our results demonstrate that deploying FRD for iron biofortification has no obvious anti-nutritive effects and should be considered as an effective strategy for reducing human iron deficiency anemia. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Inadequate dietary intake in patients with thalassemia.
Fung, Ellen B; Xu, Yan; Trachtenberg, Felicia; Odame, Isaac; Kwiatkowski, Janet L; Neufeld, Ellis J; Thompson, Alexis A; Boudreaux, Jeanne; Quinn, Charles T; Vichinsky, Elliott P
2012-07-01
Patients with thalassemia have low circulating levels of many nutrients, but the contribution of dietary intake has not been assessed. Our objective was to assess dietary intake in a large contemporary sample of subjects with thalassemia. A prospective, longitudinal cohort study using a validated food frequency questionnaire was conducted. Two hundred and twenty-one subjects (19.7±11.3 years, 106 were female) were categorized into the following age groups: young children (3 to 7.9 years), older children/adolescents (8 to 18.9 years), and adults (19 years or older); 78.8% had β-thalassemia and 90% were chronically transfused. This study took place at 10 hematology outpatient clinics in the United States and Canada. We conducted a comparison of intake with US Dietary Reference Intakes and correlated dietary intake of vitamin D with serum 25-OH vitamin D and dietary iron with total body iron stores. Intake was defined as inadequate if it was less than the estimated average requirement. χ(2), Fisher's exact, and Student's t test were used to compare intake between age categories and logistic regression analysis to test the relationship between intake and outcomes, controlling for age, sex, and race. More than 30% of subjects consumed inadequate levels of vitamin A, D, E, K, folate, calcium, and magnesium. The only nutrients for which >90% of subjects consumed adequate amounts were riboflavin, vitamin B-12, and selenium. Dietary inadequacy increased with increasing age group (P<0.01) for vitamins A, C, E, B-6, folate, thiamin, calcium, magnesium, and zinc. More than half of the sample took additional supplements of calcium and vitamin D, although circulating levels of 25-OH vitamin D remained insufficient in 61% of subjects. Dietary iron intake was not related to total body iron stores. Subjects with thalassemia have reduced intake of many key nutrients. These preliminary findings of dietary inadequacy are concerning and support the need for nutritional monitoring to determine which subjects are at greatest risk for nutritional deficiency. Future research should focus on the effect of dietary quality and nutritional status on health outcomes in thalassemia. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Massé, P G; Van den Berg, H; Livingstone, M M; Duguay, C; Beaulieu, G
1998-01-01
The present study was aimed to assess the psychological status of young healthy women after the administration of a triphasic contraceptive steroid preparation for six complete menstrual cycles. Subjects had never used oral contraceptives (OC) and had neither a familial history of depression nor psychological disturbances. OC-induced psychological disturbances were interpreted for years as evidence of pyridoxine (vitamin B6) deficiency. Other nutritional deficiencies, namely in cobalamin, folate and iron, can disturb the functioning of the central nervous system. In addition, a deficiency of any of these nutrients can lead to several anemia-induced symptoms that are highly susceptible to influence the psychological status. For ample evidence, nutritional status was then evaluated in parallel to psychological testing. Blood iron and vitamin levels of interest were found to be adequate and could not have biased the response to a psychological test (MMPI). This study showed that a 6-month Triphasil treatment did not modify significantly the psychological status of subjects. To our knowledge, this is the first psychological study on young never OC-users taking an identical triphasic contraceptive steroid preparation to investigate early psychological side-effects due to OC, at a similar time of the menstrual cycle, when nutritional status was also evaluated.
De la Cruz-Góngora, Vanessa; Villalpando, Salvador; Rebollar, Rosario; Shamah-Levy, Teresa; Méndez-Gómez Humarán, Ignacio
2012-01-01
To describe the frequency and severity of anemia and the nutritional variables associated to hemoglobin levels (Hb) in children <5 years of age. We studied 981 children measuring hemoglobin and serum concentrations of ferritin, soluble transferrin receptors (sTfR), C-reactive protein (CRP), zinc, iron, copper, magnesium, folate and vitamin B12. Ordinal logit or multiple regression models were constructed to assess the risk for anemia and the associations among nutritional variables. The overall prevalence of anemia was 20.6%, of which 14% were mild cases and 6.38% moderate. Anemia was associated with iron deficiency (ID) in 42.17% of the cases, whereas ID coexisted with either folate or vitamin B12 deficiency in 9%. Only 2% of cases of anemia were associated with either folate or vitamin B12 deficiencies. CRP (coef: 0.17 g/dl) and third tertile of s-copper (coef: -0.85 g/dl) were associated to unexplained anemia (p<0.05). ID is the main cause of anemia in children <5 y. Folate and vitamin B12 concentrations were associated with anemia. CRP was associated to unexplained anemia. However, vitamin A deficiency, which is associated with anemia, was not studied.
Nutrition and hydration concerns of the female football player.
Maughan, Ronald J; Shirreffs, Susan M
2007-08-01
There is little information on the nutritional habits of female football players at any level of the game. There is also a shortage of information on the nutrition and hydration strategies that players should adopt. In general, differences in nutritional needs between males and females are smaller than differences between individuals, so that principles developed for male players also apply to women. There is a need to address energy balance and body composition: prolonged energy deficits cannot be sustained without harm to health and performance. Published reports show mean carbohydrate intakes for female players of about 5 g/kg/day, and this seems to be too low to sustain consistent intensive training. The timing of protein intake may be as important as the amounts consumed, provided that the total intake is adequate. Dehydration adversely affects skill and stamina in women as it does in men, so an individualised hydration strategy should be developed. The prevalence of iron deficiency in women generally is high, but it seems to be alarmingly high in female players. All players should adopt dietary habits that ensure adequate iron intake. Football training seems to increase bone mass in the weight-bearing limbs, with positive implications for bone health in later life, but some players may be at risk from inadequate calcium dietary intake.
Anthropogenic combustion iron as a complex climate forcer
Matsui, Hitoshi; Mahowald, Natalie M.; Moteki, Nobuhiro; ...
2018-04-23
Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30–90 °S) by 52%, withmore » a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m –2 globally and 0.22 W m –2 over East Asia. In conclusion, our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.« less
Anthropogenic combustion iron as a complex climate forcer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, Hitoshi; Mahowald, Natalie M.; Moteki, Nobuhiro
Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30–90 °S) by 52%, withmore » a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m –2 globally and 0.22 W m –2 over East Asia. In conclusion, our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.« less
Vega-Franco, L; Mejía, A M; Robles, B; Moreno, L; Pérez, Y
1991-11-01
This study gave us the opportunity to know the roles iron deficiency and the presence of lead in blood play, as confounding variables, in relation to the state of malnutrition and the intellect of those children. A sample of 169 school children were classified according to their state of nutrition, their condition in reference to serum iron and lead concentrations. In addition, their intelligence was evaluated. The results confirmed that those children with lower weights and heights registered lesser points of intelligence; in fact, iron deficiency cancels out the difference in favor of those taller and weighing more. Lead did not contribute as a confounding variable, but more than half of the children showed possible toxic levels of this metal.
Helicobacter pylori and micronutrients.
Akcam, Mustafa
2010-02-01
Helicobacter pylori (HP) infection causes morbidity in several systems, especially in the gastrointestinal tract. The prevalence of disease is inversely related to social-economic and developmental status. It is more common in the developing than in developed countries. In the countries where social-economic status is low, not only HP infection, but also malnutrition and growth failure have a higher prevalence. According to these data, the relationship of nutrition and HP infection is still a question. Does HP infection affect nutritional status? On the contrary, does nutritional status affect HP infection? If so, how? This review was prepared after searching thoroughly almost all of the publications about relationship between HP infections and micronutrients, especially publications pertaining to childhood, from 1990 to 2009 in PubMed. Some valuable adult and experimental publications were also reviewed. These studies related H. pylori to iron, vitamin B12, vitamin C, vitamin A, vitamin E, folate, and selenium. Published studies reveal some evidence that HP has a negative effect on iron, vitamin B12 and vitamin C metabolism, but its influence on others is not clear.
Glew, Robert S; Vanderjagt, Dorothy
2006-01-01
People who live in food and water deficit regions of Sahelien West Africa employ various coping strategies as they attempt to meet their food and water needs. In this paper we discuss various coping strategies employed by rural Nigeriens living in the Tanout and Mirriya administrative regions of central Niger. In rural Niger people often harvest or buy wild plant foods to eat. Laboratory studies of the nutritional content of these plants indicate that there are benefits to eating wild plant foods. In this study we summarize the results of field research conducted during the summer of 2002 on the use of wild plant foods in three regions of rural central Niger. Comparing local use of various wild plant foods with major nutrition-related health problems including protein deficiency, essential fatty acid deficiency, iron deficiency and iron deficiency anemia, calcium deficiency rickets, and zinc deficiency, suggests potential recommendations for consumption of these plants. However, further research on the bioavailability of these nutrients is needed to confirm the potential benefits of these plants.
Tugault-Lafleur, C N; Black, J L; Barr, S I
2018-02-01
There is limited research on the dietary behaviours of Canadian children at school, including where students obtain food from during school hours or whether lunch-time food source influences diet quality. Nationally representative cross-sectional data from 24-h dietary recalls were analysed from the 2004 Canadian Community Health Survey (n = 4589). Dietary outcomes included school hour and school day dietary intakes and School Healthy Eating Index (S-HEI) scores. Survey-weighted covariate-adjusted linear regression models examined differences in dietary outcomes across lunch-time food source groups. The majority of children (72.8%) reported bringing lunch from home, whereas fewer students obtained lunch from off-campus locations (11.6%), schools (9.6%) or skipped lunch (5.9%). Compared to off-campus lunches, home-packed lunches were significantly higher in fibre, vitamins A, D and C, thiamin, magnesium, iron, grains, vegetables and fruit, but lower in total calories, fat and calories from minimally nutritious foods. Average school hour diet quality required improvement for all age groups, although S-HEI scores did not differ significantly by lunch-time food source among 6-8-year-old children. However, for children age 9-17 years, bringing a home-packed lunch was associated with significantly higher S-HEI scores compared to students obtaining lunch from off-campus locations. After adjusting for age and sex, lunch-time food source was also significantly associated with whole day dietary quality. Although the nutritional quality of off-campus lunches was lower than home-packed lunches, the quality of foods was suboptimal, regardless of food source. Strategies are needed to enhance access to nutritious foods on campus and improve the nutritional quality of packed lunches, which supply the majority of lunch-time foods consumed by Canadian children. © 2017 The British Dietetic Association Ltd.
Matak, Pavle; Zumerle, Sara; Mastrogiannaki, Maria; El Balkhi, Souleiman; Delga, Stephanie; Mathieu, Jacques R. R.; Canonne-Hergaux, François; Poupon, Joel; Sharp, Paul A.; Vaulont, Sophie; Peyssonnaux, Carole
2013-01-01
Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2α (HIF-2α) levels, a regulator of iron absorption. HIF-2α upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter – Dmt1) and ferric reductase – Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2α-regulated iron absorption genes in the gut. Our work identifies HIF-2α as an important regulator of iron transport machinery in copper deficiency. PMID:23555700
Controversy on iron needs, intake levels, deficiency stigmata and benefits from iron supplementation
Walker, Alexander R. P.
1969-01-01
At present there is considerable controversy over many aspects of iron nutrition, including: (1) iron needs and intake levels; (2) the bearing of iron intake on haematological levels; (3) iron deficiency anaemia and deficiency stigmata; and (4) iron therapy, prophylaxis, and the haematological and clinical benefits accruing. Differences of opinion prevail because of inadequacies of knowledge of the level of haemoglobin (or other parameter of iron status) below which unequivocal signs and symptoms of ill-health become manifest in the major proportion of those affected. Difficulties arise equally from lack of knowledge of the level of haemoglobin above which no clinical benefit, short-term or long-term, can be detected from iron supplementation. Clarification of the situation can be obtained only by carrying out the same meticulous and time-consuming procedures that have been used in respect of requirements and deficiency stigmata of other nutrients. Comprehensive iron depletion studies, real and simulated, and repletion studies, including the use of placebos, will be required. Epidemiological investigations bearing on haematological status and morbidity will also need to be undertaken, and include groups of subjects in both Western, and developing countries. PMID:4905446
Hu, Jun; Dong, Huiyu; Xu, Qiang; Ling, Wencui; Qu, Jiuhui; Qiang, Zhimin
2018-02-01
Switch of source water may induce "red water" episodes. This study investigated the impacts of water quality on iron release, dissolved oxygen consumption (ΔDO), corrosion scale evolution and bacterial community succession in cast iron pipes used for drinking water distribution at pilot scale, and proposed a source water switch strategy accordingly. Three sets of old cast iron pipe section (named BP, SP and GP) were excavated on site and assembled in a test base, which had historically transported blended water, surface water and groundwater, respectively. Results indicate that an increasing Cl - or SO 4 2- concentration accelerated iron release, but alkalinity and calcium hardness exhibited an opposite tendency. Disinfectant shift from free chlorine to monochloramine slightly inhibited iron release, while the impact of peroxymonosulfate depended on the source water historically transported in the test pipes. The ΔDO was highly consistent with iron release in all three pipe systems. The mass ratio of magnetite to goethite in the corrosion scales of SP was higher than those of BP and GP and kept almost unchanged over the whole operation period. Siderite and calcite formation confirmed that an increasing alkalinity and hardness inhibited iron release. Iron-reducing bacteria decreased in the BP but increased in the SP and GP; meanwhile, sulfur-oxidizing, sulfate-reducing and iron oxidizing bacteria increased in all three pipe systems. To avoid the occurrence of "red water", a source water switch strategy was proposed based on the difference between local and foreign water qualities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Iron Deficiency Induced by Chrysobactin in Saintpaulia Leaves Inoculated with Erwinia chrysanthemi.
Neema, C.; Laulhere, J. P.; Expert, D.
1993-01-01
In this communication, we examine the fate of iron during soft rot pathogenesis caused by Erwinia chrysanthemi on its host, Saintpaulia ionantha. The spread of soft rot caused by this enterobacterium was previously shown to depend on a functional genetic locus encoding a high-affinity iron assimilation system involving the catechol-type siderophore chrysobactin. Leaf intercellular fluid from healthy plants was analyzed with regard to the iron content and its availability for bacterial growth. It was compared to the fluid from diseased plants for the presence of strong iron ligands, using a new approach based on the iron-binding property of an ion-exchange resin. Further characterization allowed the identification of chrysobactin in diseased tissues, thus providing the first evidence for the external release of a microbial siderophore during pathogenesis. Competition for nutritional iron was also studied through a plant-bacterial cell system: iron incorporated into plant ferritin appeared to be considerably reduced in bacteria-treated suspension soybean cells. The same effect was visualized during treatment of soybean cells with axenic leaf intercellular fluid from E. chrysanthemi-inoculated saintpaulia leaves or with chrysobactin. PMID:12231882
Miranda, Melissa; Olivares, Manuel; Brito, Alex; Pizarro, Fernando
2014-01-01
The aim of this study was to determine the effect of combined calcium and iron versus single iron supplementation on iron status in Bolivian schoolchildren. Children ages 6 to 10 y old (N = 195), were randomly assigned to receive either 700 mg Ca (as calcium carbonate) plus 30 mg Fe (as ferrous sulfate) (Ca + Fe group) or 30 mg Fe (as ferrous sulfate) (Fe group). The doses were administered daily, from Monday to Friday, between meals at school over 3 mo. Iron status was assessed at baseline and after intervention. Additionally, overall nutritional status was assessed by anthropometry and an estimation of dietary intake. At baseline, the prevalence of anemia in the Ca + Fe group and the Fe group were 15% and 21.5%, respectively. After 3 mo follow-up, the prevalence of iron deficiency anemia dropped significantly (P < 0.001) to 3% in both groups (χ(2) = NS). Iron dietary intake was within recommended levels, but calcium intake only covered 39% of the Recommended Daily Intake. Combined calcium and iron supplementation is equally as effective as single iron supplementation in reducing the prevalence of iron deficiency anemia in Bolivian school children. Copyright © 2014 Elsevier Inc. All rights reserved.
Ferritin, an iron source in meat for Staphylococcus xylosus?
Vermassen, Aurore; Talon, Régine; Leroy, Sabine
2016-05-16
Staphylococcus xylosus is frequently isolated from food of animal origin. Moreover, this species is one of the major starter cultures used for meat fermentation. Iron is a key element for growth and survival of bacteria. Meat is particularly rich in haemic (myoglobin and haemoglobin) and non-haemic (ferritin and transferrin) iron sources. Ferritin is a storage protein able to capture large quantities of iron. It is highly resistant to microbial attack and few microorganisms can use it as an iron source. Surprisingly, we found that the S. xylosus C2a strain grows in the presence of ferritin as a sole iron source. A three-cistron operon was highly overexpressed under ferritin iron growth conditions. We generated a deletion-insertion in the first gene of the operon and evaluated the phenotype of the mutant. The mutant showed decreased growth because it was less able to acquire iron from ferritin. Transcriptional analysis of the mutant revealed downregulation of several genes involved in the response to oxidative stress. This study characterized for the first time the capacity of a Staphylococcus to use iron from ferritin and revealed that a potential reductive pathway was involved in this acquisition. We hypothesize that this ability could give an advantage to S. xylosus in meat products. Copyright © 2016 Elsevier B.V. All rights reserved.
Chege, Peter M; Ndungu, Zipporah W; Gitonga, Betty M
2016-07-22
HIV and AIDS affect most the productive people, leading to reduced capacity to either produce food or generate income. Children under-fives are the most vulnerable group in the affected households. There exists minimal information on food security status and its effect on nutritional status of children under-fives in households affected by HIV and AIDS. The aim of this study was to assess food security and nutritional status of children under-five in households affected by HIV and AIDS in Kiandutu informal settlement, Kiambu County. A cross-sectional analytical design was used. A formula by Fisher was used to calculate the desired sample size of 286. Systematic random sampling was used to select the children from a list of identified households affected by HIV. A questionnaire was used to collect data. Focus group discussion (FGD) guides were used to collect qualitative data. Nutri-survey software was used for analysis of nutrient intake while ENA for SMART software for nutritional status. Data were analyzed using SPSS computer software for frequency and means. Qualitative data was coded and summarized to capture the emerging themes Results show that HIV affected the occupation of people with majority being casual laborers (37.3 %), thus affecting the engagement in high income generating activities. Pearson correlation coefficient showed a significant relationship between dietary diversity score and energy intake (r = 0.54 p = 0.044) and intake of vitamin A, iron, and zinc (p < 0.05). A significant relationship was also noted on energy intake and nutritional status (r = 0.78 p = 0.038). Results from FGD noted that HIV status affected the occupation due to stigma and frequent episodes of illness. The main source of food was purchasing (52.7 %). With majority (54.1 %) of the households earning a monthly income less than US$ 65, and most of the income (25.7 %) being used for medication, there was food insecurity as indicated by a mean household dietary diversity score of 3.4 ± 0.2. This together with less number of meals per day (3.26 ± 0.07 SD) led to consumption of inadequate nutrients by 11.4, 73.9, 67.7, and 49.2 % for energy, vitamin A, iron, and zinc, respectively. This resulted to poor nutritional status noted by a prevalence of 9.9 % in wasting. Stunting and underweight was 17.5 and 5.5 %, respectively. Qualitative data shows that the stigma due to HIV affected the occupation and ability to earn income. The research recommends a food-based intervention program among the already malnourished children.
Hamid, Jan J M; Amal, Mitra K; Hasmiza, H; Pim, C D; Ng, L O; Wan, Manan W M
2011-08-01
The aim of this study was to investigate the relationship between gender, birth weight, nutritional status, and iron status of children with their academic performance and cognitive function. Two hundred and forty-nine children, seven to nine years of age, were recruited by systematic sampling from six primary schools in a rural area in Malaysia. Cognitive function was assessed by using Raven's Coloured Progressive Matrices (R-CPM). Academic performance of the children was recorded from their school final examination results in four subjects including Malay language, English, Mathematics, and Science. Birth weight was recorded from the birth certificate, and nutritional status was determined by weight-for-age z score and height-for-age z score. Girls had a significantly higher score in all the academic tests, but a lower cognitive score compared to boys. Nutritional status was found to be correlated significantly with academic performance. Academic and cognitive function scores were also found to be correlated significantly with birth weight, parents' education, and family income. In a multivariate analysis, gender remained the significant predictor of academic function, and iron status and haemoglobin were the significant predictors of cognitive function, after controlling for other variables. The study showed that girls performed better academically than boys in rural Malaysia. Nutritional status, parents' education and family income could be additional modifiable factors to improve academic performance of the children. More attention is needed to improve academic achievements of boys at their early school years.
Opportunities for improving maternal nutrition and birth outcomes: synthesis of country experiences.
Mason, John B; Saldanha, Lisa S; Ramakrishnan, Usha; Lowe, Alyssa; Noznesky, Elizabeth A; Girard, Amy Webb; McFarland, Deborah A; Martorell, Reynaldo
2012-06-01
Undernutrition in women in poor countries remains prevalent and affects maternal, neonatal and child health (MNCH) outcomes. Improving MNCH outcomes requires better policies and programs that enhance women's nutrition. The studies aimed to better understand awareness, perceptions, barriers to intervention, and policy and program priorities and approaches, through different platforms, addressing three related priority problems: anemia, intra-uterine growth retardation (IUGR), and maternal thinness and stunting (including incomplete growth with early pregnancy). Results of a global literature review on program effectiveness, and from case studies in Ethiopia, India, and Nigeria, were synthesized. Anemia can be reduced by iron-folate supplementation, but all aspects for successful implementation, from priority to resources to local capacity, require strengthening. For IUGR, additional interventions, offood supplementation or cash transfers, may be required for impact, plus measures to combat early pregnancy. Breaking the intergenerational cycle of women's undernutrition may also be helped by child nutrition programs. Potential interventions exist and need to be built on: iron-folate and multiple micronutrient supplementation, food fortification (including iodized salt),food supplementation and/or cash transfer programs, combatting early pregnancy, infant and young child nutrition. Potential platforms are: the health system especially antenatal care, community-based nutrition programs (presently usually child-oriented but can be extended to women), child health days, safety net programs, especially cash transfer and conditional cash transfer programs. Making these more effective requires system development and organization, capacity and training, technical guidelines and operational research, and advocacy (who takes the lead?), information, monitoring and evaluation.
Sharma, S.; Cao, X.; Harris, R.; Hennis, A. J. M.; Wu, S.-Y.; Leske, M. C.
2009-01-01
Background The dietary habits of the Caribbean have been changing to include more fast foods and a less nutrient dense diet. The aims of this study are to examine dietary patterns in Barbados and highlight foods for a nutritional intervention. Methods Four-day food diaries collected from control participants in the population-based, case-control Barbados National Cancer Study (BNCS). Results Forty-nine adult participants (91% response) completed the diaries providing 191 days of dietary data. Total energy intake was almost identical to data collected 5-years earlier in the Barbados Food Consumption and Anthropometric Survey 2000, but the percent energy derived from fat was from 2.1% to 5.2% higher. Sugar intake exceeded the Caribbean recommendation almost four-fold, while intakes of calcium, iron (women only), zinc and dietary fibre were below recommendations. Fish and chicken dishes were the two largest sources of energy and fat. Sweetened drinks and juices provided over 40% of total sugar intake. Conclusions These data provide existing dietary patterns and strongly justify a nutritional intervention program to reduce dietary risk factors for chronic disease. The intervention could focus on the specific foods highlighted, both regarding frequency and amount of consumption. Effectiveness can be evaluated pre- and post-intervention using our Food Frequency Questionnaire developed for BNCS. PMID:18339055
Sports Dietitians Australia position statement: sports nutrition for the adolescent athlete.
Desbrow, Ben; McCormack, Joanna; Burke, Louise M; Cox, Gregory R; Fallon, Kieran; Hislop, Matthew; Logan, Ruth; Marino, Nello; Sawyer, Susan M; Shaw, Greg; Star, Anita; Vidgen, Helen; Leveritt, Michael
2014-10-01
It is the position of Sports Dietitians Australia (SDA) that adolescent athletes have unique nutritional requirements as a consequence of undertaking daily training and competition in addition to the demands of growth and development. As such, SDA established an expert multidisciplinary panel to undertake an independent review of the relevant scientific evidence and consulted with its professional members to develop sports nutrition recommendations for active and competitive adolescent athletes. The position of SDA is that dietary education and recommendations for these adolescent athletes should reinforce eating for long term health. More specifically, the adolescent athlete should be encouraged to moderate eating patterns to reflect daily exercise demands and provide a regular spread of high quality carbohydrate and protein sources over the day, especially in the period immediately after training. SDA recommends that consideration also be given to the dietary calcium, Vitamin D and iron intake of adolescent athletes due to the elevated risk of deficiency of these nutrients. To maintain optimal hydration, adolescent athletes should have access to fluids that are clean, cool and supplied in sufficient quantities before, during and after participation in sport. Finally, it is the position of SDA that nutrient needs should be met by core foods rather than supplements, as the recommendation of dietary supplements to developing athletes over-emphasizes their ability to manipulate performance in comparison with other training and dietary strategies.
Micronutrient Composition of 35 Food Fishes from India and Their Significance in Human Nutrition.
Mohanty, Bimal P; Sankar, T V; Ganguly, Satabdi; Mahanty, Arabinda; Anandan, R; Chakraborty, Kajal; Paul, B N; Sarma, Debajit; Dayal, J Syama; Mathew, Suseela; Asha, K K; Mitra, Tandrima; Karunakaran, D; Chanda, Soumen; Shahi, Neetu; Das, Puspita; Das, Partha; Akhtar, Md Shahbaz; Vijayagopal, P; Sridhar, N
2016-12-01
The micronutrients (vitamins and minerals) are required in small amounts but are essential for health, development, and growth. Micronutrient deficiencies, which affect over two billion people around the globe, are the leading cause of many ailments including mental retardation, preventable blindness, and death during childbirth. Fish is an important dietary source of micronutrients and plays important role in human nutrition. In the present investigation, micronutrient composition of 35 food fishes (includes both finfishes and shellfishes) was investigated from varying aquatic habitats. Macrominerals (Na, K, Ca, Mg) and trace elements (Fe, Cu, Zn, Mn, Se) were determined by either atomic absorption spectroscopy (AAS) or inductively coupled plasma mass spectrometry (ICP-MS)/atomic emission spectrometry (ICP-AES). Phosphorus content was determined either spectrophotometrically or by ICP-AES. Fat-soluble vitamins (A, D, E, K) were analyzed by high-performance liquid chromatography (HPLC). The analysis showed that, in general, the marine fishes were rich in sodium and potassium; small indigenous fishes (SIFs) in calcium, iron, and manganese; coldwater fishes in selenium; and the brackishwater fishes in phosphorous. The marine fishes Sardinella longiceps and Epinephelus spp. and the SIFs were rich in all fat-soluble vitamins. All these recommendations were made according to the potential contribution (daily value %) of the species to the recommended daily allowance (RDA). Information on the micronutrients generated would enhance the utility of fish in both community and clinical nutrition.
Hernández-Calderón, Erasto; Aviles-Garcia, Maria Elizabeth; Castulo-Rubio, Diana Yazmín; Macías-Rodríguez, Lourdes; Ramírez, Vicente Montejano; Santoyo, Gustavo; López-Bucio, José; Valencia-Cantero, Eduardo
2018-02-01
Our results show that Sorghum bicolor is able to recognize bacteria through its volatile compounds and differentially respond to beneficial or pathogens via eliciting nutritional or defense adaptive traits. Plants establish beneficial, harmful, or neutral relationships with bacteria. Plant growth promoting rhizobacteria (PGPR) emit volatile compounds (VCs), which may act as molecular cues influencing plant development, nutrition, and/or defense. In this study, we compared the effects of VCs produced by bacteria with different lifestyles, including Arthrobacter agilis UMCV2, Bacillus methylotrophicus M4-96, Sinorhizobium meliloti 1021, the plant pathogen Pseudomonas aeruginosa PAO1, and the commensal rhizobacterium Bacillus sp. L2-64, on S. bicolor. We show that VCs from all tested bacteria, except Bacillus sp. L2-64, increased biomass and chlorophyll content, and improved root architecture, but notheworthy A. agilis induced the release of attractant molecules, whereas P. aeruginosa activated the exudation of growth inhibitory compounds by roots. An analysis of the expression of iron-transporters SbIRT1, SbIRT2, SbYS1, and SbYS2 and genes related to plant defense pathways COI1 and PR-1 indicated that beneficial, pathogenic, and commensal bacteria could up-regulate iron transporters, whereas only beneficial and pathogenic species could induce a defense response. These results show how S. bicolor could recognize bacteria through their volatiles profiles and highlight that PGPR or pathogens can elicit nutritional or defensive traits in plants.
Haas, Jere D; Luna, Sarah V; Lung'aho, Mercy G; Wenger, Michael J; Murray-Kolb, Laura E; Beebe, Stephen; Gahutu, Jean-Bosco; Egli, Ines M
2016-08-01
Food-based strategies to reduce nutritional iron deficiency have not been universally successful. Biofortification has the potential to become a sustainable, inexpensive, and effective solution. This randomized controlled trial was conducted to determine the efficacy of iron-biofortified beans (Fe-Beans) to improve iron status in Rwandan women. A total of 195 women (aged 18-27 y) with serum ferritin <20 μg/L were randomly assigned to receive either Fe-Beans, with 86 mg Fe/kg, or standard unfortified beans (Control-Beans), with 50 mg Fe/kg, 2 times/d for 128 d in Huye, Rwanda. Iron status was assessed by hemoglobin, serum ferritin, soluble transferrin receptor (sTfR), and body iron (BI); inflammation was assessed by serum C-reactive protein (CRP) and serum α1-acid glycoprotein (AGP). Anthropometric measurements were performed at baseline and at end line. Random weekly serial sampling was used to collect blood during the middle 8 wk of the feeding trial. Mixed-effects regression analysis with repeated measurements was used to evaluate the effect of Fe-Beans compared with Control-Beans on iron biomarkers throughout the course of the study. At baseline, 86% of subjects were iron-deficient (serum ferritin <15 μg/L) and 37% were anemic (hemoglobin <120 g/L). Both groups consumed an average of 336 g wet beans/d. The Fe-Beans group consumed 14.5 ± 1.6 mg Fe/d from biofortified beans, whereas the Control-Beans group consumed 8.6 ± 0.8 mg Fe/d from standard beans (P < 0.05). Repeated-measures analyses showed significant time-by-treatment interactions for hemoglobin, log serum ferritin, and BI (P < 0.05). The Fe-Beans group had significantly greater increases in hemoglobin (3.8 g/L), log serum ferritin (0.1 log μg/L), and BI (0.5 mg/kg) than did controls after 128 d. For every 1 g Fe consumed from beans over the 128 study days, there was a significant 4.2-g/L increase in hemoglobin (P < 0.05). The consumption of iron-biofortified beans significantly improved iron status in Rwandan women. This trial was registered at clinicaltrials.gov as NCT01594359. © 2016 American Society for Nutrition.
Shotton, Andrea D; Droke, Elizabeth A
2004-03-01
Diets with a higher proportion of polyunsaturated fatty acids (i.e., linoleic acid) have decreased iron absorption and utilization compared with diets containing a higher proportion of the saturated fatty acid stearic acid (e.g., beef tallow). However, less is known regarding the influence of other polyunsaturated or monounsaturated fatty acids, along with higher dietary iron, on iron absorption and utilization. The present study was conducted to compare the effects of dietary fat sources known to vary in (n-3), (n-6), and (n-9) fatty acids on iron utilization and liver mineral concentrations. Male weanling rats were fed a diet containing 10, 35, or 100 microg/g iron in combination with safflower oil, flaxseed oil, olive oil, or beef tallow for 8 wk. Indicators of iron status, iron utilization, and liver iron concentrations were unaffected by an interaction between the fat source and iron concentration. Plasma copper was the only variable affected by an interaction between the fat source and dietary iron. Findings of this study demonstrate that flaxseed oil and olive oil may alter tissue minerals and affect iron utilization. Further studies should be conducted to establish the effect of varying (n-3), (n-6), and (n-9) fatty acids on trace mineral status and iron utilization.
Intravenous ferric carboxymaltose for the treatment of iron deficiency anemia
Friedrisch, João Ricardo; Cançado, Rodolfo Delfini
2015-01-01
Nutritional iron deficiency anemia is the most common deficiency disorder, affecting more than two billion people worldwide. Oral iron supplementation is usually the first choice for the treatment of iron deficiency anemia, but in many conditions, oral iron is less than ideal mainly because of gastrointestinal adverse events and the long course needed to treat the disease and replenish body iron stores. Intravenous iron compounds consist of an iron oxyhydroxide core, which is surrounded by a carbohydrate shell made of polymers such as dextran, sucrose or gluconate. The first iron product for intravenous use was the high molecular weight iron dextran. However, dextran-containing intravenous iron preparations are associated with an elevated risk of anaphylactic reactions, which made physicians reluctant to use intravenous iron for the treatment of iron deficiency anemia over many years. Intravenous ferric carboxymaltose is a stable complex with the advantage of being non-dextran-containing and a very low immunogenic potential and therefore not predisposed to anaphylactic reactions. Its properties permit the administration of large doses (15 mg/kg; maximum of 1000 mg/infusion) in a single and rapid session (15-minute infusion) without the requirement of a test dose. The purpose of this review is to discuss some pertinent issues in relation to the history, pharmacology, administration, efficacy, and safety profile of ferric carboxymaltose in the treatment of patients with iron deficiency anemia. PMID:26670403
Sugars Increase Non-Heme Iron Bioavailability in Human Epithelial Intestinal and Liver Cells
Christides, Tatiana; Sharp, Paul
2013-01-01
Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55) increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions. PMID:24340076
Antioxidant-Mediated Effects in a Gerbil Model of Iron Overload
Otto-Duessel, Maya; Aguilar, Michelle; Moats, Rex; Wood, John C.
2010-01-01
Introduction Iron cardiomyopathy is a lethal complication of transfusion therapy in thalassemia major. Nutritional supplements decreasing cardiac iron uptake or toxicity would have clinical significance. Murine studies suggest taurine may prevent oxidative damage and inhibit Ca2+-channel-mediated iron transport. We hypothesized that taurine supplementation would decrease cardiac iron-overloaded toxicity by decreasing cardiac iron. Vitamin E and selenium served as antioxidant control. Methods Animals were divided into control, iron, taurine, and vitamin E/selenium groups. Following sacrifice, iron and selenium measurements, histology, and biochemical analyses were performed. Results No significant differences were found in heart and liver iron content between treatment groups, except for higher hepatic dry-weight iron concentrations in taurine-treated animals (p < 0.03). Serum iron increased with iron loading (751 ± 66 vs. 251 ± 54 μg/dl, p < 0.001) and with taurine (903 ± 136 μg/dl, p = 0.03). Conclusion Consistent with oxidative stress, iron overload increased cardiac malondialdehyde levels, decreased heart glutathione peroxidase (GPx) activity, and increased serum aspartate aminotransferase. Taurine ameliorated these changes, but only significantly for liver GPx activity. Selenium and vitamin E supplementation did not improve oxidative markers and worsened cardiac GPx activity. These results suggest that taurine acts primarily as an antioxidant rather than inhibiting iron uptake. Future studies should illuminate the complexity of these results. PMID:17940334
In Vitro Iron Bioavailability of Brazilian Food-Based by-Products.
Chiocchetti, Gabriela M; De Nadai Fernandes, Elisabete A; Wawer, Anna A; Fairweather-Tait, Susan; Christides, Tatiana
2018-05-16
Background : Iron deficiency is a public health problem in many low- and middle-income countries. Introduction of agro-industrial food by-products, as additional source of nutrients, could help alleviate this micronutrient deficiency, provide alternative sources of nutrients and calories in developed countries, and be a partial solution for disposal of agro-industry by-products. Methods : The aim of this study was to determine iron bioavailability of 5 by-products from Brazilian agro-industry (peels from cucumber, pumpkin, and jackfruit, cupuaçu seed peel, and rice bran), using the in vitro digestion/ Caco-2 cell model; with Caco-2 cell ferritin formation as a surrogate marker of iron bioavailability. Total and dialyzable Fe, macronutrients, the concentrations of iron-uptake inhibitors (phytic acid, tannins, fiber) and their correlation with iron bioavailability were also evaluated. Results : The iron content of all by-products was high, but the concentration of iron and predicted bioavailability were not related. Rice bran and cupuaçu seed peel had the highest amount of phytic acid and tannins, and lowest iron bioavailability. Cucumber peels alone, and with added extrinsic Fe, and pumpkin peels with extrinsic added iron, had the highest iron bioavailability. Conclusion : The results suggest that cucumber and pumpkin peel could be valuable alternative sources of bioavailable Fe to reduce iron deficiency in at-risk populations.
Spearing, K; Kolahdooz, F; Lukasewich, M; Mathe, N; Khamis, T; Sharma, S
2013-06-01
Accurate nutrient composition data for composite dishes unique to a population is essential for the development of a nutrient database and the calculation of dietary intake. The present study aimed to provide the nutritional composition of composite dishes frequently consumed in rural KwaZulu-Natal, South Africa. Commonly consumed composite dishes were identified using 24-h recalls collected from 79 randomly selected community members. Multiple recipes were collected for each reported dish. The mean nutritional composition of each dish was calculated per 100 g using the nutribase clinical nutrition manager (Cybersoft Inc., Phoenix, AZ, USA). A total of 79 recipes were collected for 16 commonly consumed dishes (seven meat-based, five starch-based and four legume/vegetable-based). 'Fried chicken' contained the most energy [1469 kJ (351 kcal)], protein (29.7 g), fat (23.7 g), cholesterol (123 mg) and niacin (8.4 mg). 'Fried beef' contained the most potassium (495 mg) and zinc (6.4 mg), whereas 'fish stew' had the most vitamin D (4.2 μg) and calcium (215 mg). 'Fried cabbage' and 'fried spinach' contained the largest percent energies from fat, at 79% and 76%, respectively. A traditional sweet bread, 'jeqe', made with fortified flour contributed significantly to iron (4.6 mg), niacin (4.5 μg) and folate (129 μg). The sodium content of dishes ranged from 88 to 679 mg per 100 g. The nutritional composition data for commonly consumed dishes in rural KwaZulu-Natal is presented. Although the dishes are good sources of protein, vitamins and minerals, they also contain substantial amounts of fat. This culturally appropriate information will enable the calculation of dietary intake and can be used to encourage the consumption of recipes rich in key nutrients. © 2012 The Authors Journal of Human Nutrition and Dietetics © 2012 The British Dietetic Association Ltd.
Vadivel, V; Janardhanan, K
2000-07-01
Four accessions of the under-utilized legume, velvet bean (Mucuna pruriens var. utilis (Wall. ex Wight) Bak. ex Burck), collected from three different locations of Western Ghats, South India were analysed for proximate composition, mineral profiles, the protein fractions, amino acid profiles of total seed protein, in vitro protein digestibility and certain anti-nutritional factors to determine their potential as an alternative source to alleviate protein-energy-malnutrition among the people of South India. The major findings of the study were as follows: crude protein ranged from 20.2-29.3%, crude lipid 6.3-7.4%, total dietary fibre 8.7-10.5%, ash 3.3-5.5% and carbohydrates 49.9-61.2%. The energy level of the seed (1562-1597 kJ 100 g-1 DM) was comparable with commonly consumed Indian pulses. Mineral profiles, viz. sodium, potassium, calcium, magnesium, phosphorus, iron, copper, zinc and manganese ranged from 43.1-150.1, 778.1-1846.0, 393.4-717.7, 174.9-387.6, 98.4-592.1, 10.8-15.0, 0.9-2.2, 5.0-10.9, 3.9-4.3 mg 100(-1) seed flour, respectively. The data on seed protein fractions revealed that the globulins constitute the major bulk of the seed protein as in most legumes. Profiles of amino acids of total seed proteins detected in the present study revealed that they contain relatively higher levels of all essential amino acids except threonine, leucine and lysine in black-coloured seed coat accessions and phenylalanine and tyrosine in white-coloured seed coat accession compared with the FAO/WHO (1991) requirement pattern. The in vitro protein digestibility of the legumes under study ranged from 72.4-76.9%. Anti-nutritional substances like total free phenolics, tannins, L-DOPA, trypsin inhibitor activity and phytohaemagglutinating activity also were investigated. The detected anti-nutritional factors probably have little nutritional significance if the beans are properly processed.
Iron deficiency stress can induce MxNRAMP1 protein endocytosis in M. xiaojinensis.
Pan, Haifa; Wang, Yi; Zha, Qian; Yuan, Mudan; Yin, Lili; Wu, Ting; Zhang, Xinzhong; Xu, Xuefeng; Han, Zhenhai
2015-08-10
Iron deficiency is one of the most common nutritional disorders in plants, especially in fruit trees grown in calcareous soil. Iron deficiency stress can induce a series of adaptive responses in plants, the cellular and molecular mechanisms of which remain unclear. NRAMPs (natural resistance-associated macrophage proteins) play an important role in divalent metal ion transportation. In this study, we cloned MxNRAMP1, an NRAMP family gene from a highly iron-efficient apple genotype, Malus xiaojinensis. Further research showed that iron deficiency stress could induce MxNRAMP1 expression in roots and leaves. A protoplast transient expression system and immune electron microscopy localization techniques were used to prove that MxNRAMP1 mainly exists in the plasma membrane and vesicles. Interestingly, iron deficiency stress could induce the MxNRAMP protein to transport iron ions to specific organelles (lysosome and chloroplast) through vesicle endocytosis. Stable transgenic tobacco showed that MxNRAMP1 over-expression could promote iron absorption and accumulation in plants, and increase the plant's resistance against iron deficiency stress. These results showed that, in M. xiaojinensis, MxNRAMP1 not only plays an important role in iron absorption and transportation, it can also produce adaptive responses against iron deficiency through endocytosis. Copyright © 2015 Elsevier B.V. All rights reserved.
Duncombe, V M; Bolin, T D; Davis, A E; Kelly, J D
1977-01-01
Malnutrition, anaemia, and gut parasites are commonly interrelated. Using the Nippostrongylus brasiliensis-rat model, the effect of iron and protein deficiency on the efficacy of benzimidazole anthelmintics was studied. It was demonstrated that the anthelmintics mebendazole and fenbendazole were significantly less effective in eradicating parasites when animals were deficient in iron and protein. This decreased efficacy of anthelmintics in iron and protein deficiency could not be overcome by intraperitoneal administration of the drug. Since nutritional deficiencies may act via impairment of the immune response, anthelmintic efficacy was determined in adequately nourished rats treated with the immunosuppressive drug dexamethasone. A similar decrease in efficacy of mebendazole was shown when these animals were treated with dexamethasone. Thus it is possible that lowered anthelmintic efficacy in iron and protein deficient animals is mediated by immune deficiency. These findings may be relevant to anthelmintic programmes in malnourished communities. PMID:590849
Growth stimulation of Porphyromonas endodontalis by hemoglobin and protoporphyrin IX.
Zerr, M A; Cox, C D; Johnson, W T; Drake, D R
2000-12-01
Porphyromonas endodontalis, like other Porphyromonas species, has a complex set of nutritional requirements. In addition to being an obligate anaerobe, the bacterium must be grown in a complex medium consisting of amino acids, reducing agents and heme compounds. P. endodontalis accumulates high concentrations of heme pigments to the extent that colonies appear black on blood agar. This accumulation of heme and the need for these compounds has been characterized as iron requirements by these species. However, in our studies, P. endodontalis demonstrated growth dependence on hemoglobin or protoporphyrin IX but not on free iron. Iron added to other heme compounds actually decreased growth stimulation by porphyrin-containing compounds. P. endodontalis actively transported free iron, but this process did not appear to be critical for growth. The maximum stimulation of growth by protoporphyrin IX, under conditions of iron deprivation, suggests that P. endodontalis requires the porphyrin moiety as a growth factor.
2010-01-01
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions. PMID:20967426
Ma, G; Li, Y; Jin, Y; Zhai, F; Kok, F J; Yang, X
2007-03-01
To assess the phytate intake and molar ratios of phytate to calcium, iron and zinc in the diets of people in China. 2002 China Nationwide Nutrition and Health Survey is a cross-sectional nationwide representative survey on nutrition and health. The information on dietary intakes was collected using consecutive 3 days 24 h recall by trained interviewers. The data of 68 962 residents aged 2-101 years old from 132 counties were analyzed. The median daily dietary intake of phytate, calcium, iron and zinc were 1186, 338.1, 21.2 and 10.6 mg, respectively. Urban residents consumed less phytate (781 vs 1342 mg/day), more calcium (374.5 vs 324.1 mg/day) and comparable amounts of iron (21.1 vs 21.2 mg/day) and zinc (10.6 vs 10.6 mg/day) than their rural counterparts. A wide variation in phytate intake among residents from six areas was found, ranging from 648 to 1433 mg/day. The median molar ratios of phytate to calcium, iron, zinc and phytate x calcium/zinc were 0.22, 4.88, 11.1 and 89.0, respectively, with a large variation between urban and rural areas. The phytate:zinc molar ratios ranged from 6.2 to 14.2, whereas the phytate x calcium/zinc molar ratios were from 63.7 to 107.2. The proportion of subjects with ratios above the critical values of phytate to iron, phytate to calcium, phytate to zinc and phytate x calcium/zinc were 95.4, 43.7, 23.1 and 8.7%, respectively. All the phytate/mineral ratios of rural residents were higher than that of their urban counterparts. The dietary phytate intake of people in China was higher than those in Western developed countries and lower than those in developing countries. Phytate may impair the bioavailability of iron, calcium and zinc in the diets of people in China.
Gibson, Rosalind S; Heath, Anne-Louise M; Szymlek-Gay, Ewa A
2014-07-01
Well-planned vegetarian diets are considered adequate for all stages of the life cycle, despite limited data on the zinc status of vegetarians during early childhood. The bioavailability of iron and zinc in vegetarian diets is poor because of their higher content of absorption inhibitors such as phytate and polyphenols and the absence of flesh foods. Consequently, children as well as adult vegetarians often have lower serum ferritin concentrations than omnivores, which is indicative of reduced iron stores, despite comparable intakes of total iron; hemoglobin differences are small and rarely associated with anemia. However, data on serum zinc concentrations, the recommended biomarker for identifying population groups at elevated risk of zinc deficiency, are sparse and difficult to interpret because recommended collection and analytic procedures have not always been followed. Existing data indicate no differences in serum zinc or growth between young vegetarian and omnivorous children, although there is some evidence of low serum zinc concentrations in vegetarian adolescents. Some vegetarian immigrants from underprivileged households may be predisposed to iron and zinc deficiency because of nondietary factors such as chronic inflammation, parasitic infections, overweight, and genetic hemoglobin disorders. To reduce the risk of deficiency, the content and bioavailability of iron and zinc should be enhanced in vegetarian diets by consumption of fortified cereals and milk, by consumption of leavened whole grains, by soaking dried legumes before cooking and discarding the soaking water, and by replacing tea and coffee at meals with vitamin C-rich drinks, fruit, or vegetables. Additional recommended practices include using fermented soy foods and sprouting at least some of the legumes consumed. Fortified foods can reduce iron deficiency, but whether they can also reduce zinc deficiency is less certain. Supplements may be necessary for vegetarian children following very restricted vegan diets. © 2014 American Society for Nutrition.
Golub, M S; Hogrefe, C E; Unger, E L
2012-04-01
Social and emotional behaviors are known to be sensitive to both developmental iron deficiency (ID) and monoamine oxidase A (MAOA) gene polymorphisms. In this study, male rhesus monkey infants deprived of dietary iron in utero were compared with iron sufficient (IS) controls (n = 10/group). Half of each group had low MAOA activity genotypes and half had high MAOA activity genotypes. A series of social response tests were conducted at 3-14 months of age. MAOA genotype influenced attention to a video of aggressive behavior, emotional expression (fear, grimace and sniff) in the social intruder test, social actions (displacement, grooming) in the social dyad test, and aggressive responses to a threatening picture. Interactions between MAOA and prenatal ID were seen in response to the aggressive video, in temperament ratings, in affiliative behavior in the social dyad test, in cortisol response in the social buffering test and in response to a social intruder and to pictures with social and nonsocial themes. In general, the effects of ID were dependent on MAOA genotype in terms of both direction and size of the effect. Nutrition/genotype interactions may shed new light on behavioral consequences of nutritional deprivation during brain development. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.
Iron balance and iron supplementation for the female athlete: A practical approach.
Pedlar, Charles R; Brugnara, Carlo; Bruinvels, Georgie; Burden, Richard
2018-03-01
Maintaining a positive iron balance is essential for female athletes to avoid the effects of iron deficiency and anaemia and to maintain or improve performance. A major function of iron is in the production of the oxygen and carbon dioxide carrying molecule, haemoglobin, via erythropoiesis. Iron balance is under the control of a number of factors including the peptide hormone hepcidin, dietary iron intake and absorption, environmental stressors (e.g. altitude), exercise, menstrual blood loss and genetics. Menstruating females, particularly those with heavy menstrual bleeding are at an elevated risk of iron deficiency. Haemoglobin concentration [Hb] and serum ferritin (sFer) are traditionally used to identify iron deficiency, however, in isolation these may have limited value in athletes due to: (1) the effects of fluctuations in plasma volume in response to training or the environment on [Hb], (2) the influence of inflammation on sFer and (3) the absence of sport, gender and individually specific normative data. A more detailed and longitudinal examination of haematology, menstrual cycle pattern, biochemistry, exercise physiology, environmental factors and training load can offer a superior characterisation of iron status and help to direct appropriate interventions that will avoid iron deficiency or iron overload. Supplementation is often required in iron deficiency; however, nutritional strategies to increase iron intake, rest and descent from altitude can also be effective and will help to prevent future iron deficient episodes. In severe cases or where there is a time-critical need, such as major championships, iron injections may be appropriate.
Effect of Dietary Iron on Fetal Growth in Pregnant Mice
Hubbard, Andrea C; Bandyopadhyay, Sheila; Wojczyk, Boguslaw S; Spitalnik, Steven L; Hod, Eldad A; Prestia, Kevin A
2013-01-01
Iron deficiency is the most common nutritional disorder. Children and pregnant women are at highest risk for developing iron deficiency because of their increased iron requirements. Iron-deficiency anemia during pregnancy is associated with adverse effects on fetal development, including low birth weight, growth retardation, hypertension, intrauterine fetal death, neurologic impairment, and premature birth. We hypothesized that pregnant mice fed an iron-deficient diet would have a similar outcome regarding fetal growth to that of humans. To this end, we randomly assigned female C57BL/6 mice to consume 1 of 4 diets (high-iron–low-bioavailability, high-iron–high-bioavailability, iron-replete, and iron-deficient) for 4 wk before breeding, followed by euthanasia on day 17 to 18 of gestation. Compared with all other groups, dams fed the high-iron–high-bioavailability diet had significantly higher liver iron. Hct and Hgb levels in dams fed the iron-deficient diet were decreased by at least 2.5 g/dL as compared with those of all other groups. In addition, the percentage of viable pups among dams fed the iron-deficient diet was lower than that of all other groups. Finally, compared with all other groups, fetuses from dams fed the iron-deficient diet had lower fetal brain iron levels, shorter crown–rump lengths, and lower weights. In summary, mice fed an iron-deficient diet had similar hematologic values and fetal outcomes as those of iron-deficient humans, making this a useful model for studying iron-deficiency anemia during pregnancy. PMID:23582419
Nutritional anemia in pregnancy: a study at the maternity hospital, Kuala Lumpur.
Tee E Siong; Kandiah, M; Ali, J; Kandiah, V; Zahari, M R; Kuladevan, R; Hamzah, Z
1984-06-01
The study presents recent data on the prevalence and pattern of nutritional anemia in the Maternity Hospital, Kuala Lumpur. A total of 309 pregnant women in their 3rd trimester, of Malay, Chinese and Indian origin from the lower socio-economic strata were randomly selected for the study. Hematological indices (including Hb, PCV, MCHC, and TRBC), serum iron, transferrin saturation and ferritin, serum folate as well as protein and albumin were determined. Based on Hb and PCV values, 30-40% of the women could be considered anemic; approximately 50% of them presented with unsatisfactory serum iron, transferrin saturation and ferritin values; 60.9% had low serum folate levels; and about 30% may be considered to be of poor protein nutriture. Anemia in the study population was seen to be related mostly to iron and to a lesser extent, folate deficiency. Hematological, iron, folate and protein status was observed to be the poorest amongst the Indian women, better in the Malay group and generally the best amongst the Chinese women. Birth records of 169 of these women revealed that all of them had live births. Nearly all the infants were delivered by normal vaginal delivery (NVD). The mean gestational age was 38.6 weeks. One of the infants had a birth weight of 2.0 kg; incidence of low birth weight, 2.5 kg, was 8.3%. Although there was a trend of deteriorating hematological, iron and protein status of women from the 0, 1-3 and 4 parity groups, these differences were not statistically significant.
Iron deficiency is unacceptably high in refugee children from Burma.
Kemmer, Teresa M; Bovill, Maria E; Kongsomboon, Wantanee; Hansch, Steven J; Geisler, Karen L; Cheney, Carrie; Shell-Duncan, Bettina K; Drewnowski, Adam
2003-12-01
Iron-deficiency anemia (IDA) in refugees is reported to be among the major medical problems worldwide. Because food rations are typically inadequate in iron, long-term reliance is a key predictor of anemia among displaced people. Comprehensive nutritional assessments of refugee children from Burma have not previously been completed. Refugee children aged 6-59 mo were studied to determine 1) the prevalences of anemia, iron deficiency (ID) and IDA and 2) the factors associated with anemia and ID. Cluster sampling in three camps and convenience sampling in two additional camps were used. Hemoglobin (Hb) levels were measured and micro mol zinc protoporphyrin/mol heme were determined in 975 children. Logistic regression analyses (95% CI) determined predictors of anemia and ID. The prevalences of IDA, anemia and ID in these refugee children were 64.9, 72.0 and 85.4%, respectively. Predictors of anemia included young age (P < 0.001), food ration lasting <1 mo (P = 0.001), daily consumption of dietary iron inhibitors (P < 0.05), weight-for-height Z-score of <-2 (P < 0.05), male gender (P < 0.05) and uneducated father (P < 0.001). Predictors of ID were young age (P < 0.001) and recently reported illness (P < 0.05). Laboratory tests confirmed that anemia and ID are major health problems among these refugee children and that ID is the leading cause of anemia. A comprehensive nutrition and public health-focused approach to combating anemia and ID is essential. Following the presentation of results to policy makers, the improvement of the micronutrient content of rations has been initiated.
Nutrition status of junior elite Canadian female soccer athletes.
Gibson, Jennifer C; Stuart-Hill, Lynneth; Martin, Steven; Gaul, Catherine
2011-12-01
Adolescent female team-sport athletes are faced with the challenge of meeting nutrition requirements for growth and development, as well as sport performance. There is a paucity of evidence describing the dietary adequacy of this population in respect to these physiological demands. Therefore, the aim of this study was to comprehensively evaluate the nutrition status of junior elite female soccer athletes. A total of 33 athletes (15.7 ± 0.7 yr) completed anthropometric assessment, 4-day food records analyzed for macro- and micronutrient intake, and hematological analysis. Energy expenditure was estimated using predictive equations. Mean sum of 7 skinfolds was 103.1 ± 35.2 mm, and body-mass index was 22.7 ± 2.7. Mean energy intake was 2,079 ± 460 kcal/day, and estimated energy expenditure was 2,546 ± 190 kcal/day. Of the athletes, 51.5% consumed <5g/kg carbohydrate, 27.3% consumed <1.2g/kg protein, and 21.2% consumed <25% of energy intake from fat. A large proportion of athletes did not meet Dietary Reference Intakes for pantothenic acid (54.5%), vitamin D (100%), folate (69.7%), vitamin E (100%), and calcium (66.7%). Compared with recommendations for athletes, 89.3% and 50.0% of participants had depleted iron and 25-hydroxyvitamin D, respectively. A high proportion of players were not in energy balance, failed to meet carbohydrate and micronutrient recommendations, and presented with depleted iron and vitamin D status. Suboptimal nutrition status may affect soccer performance and physiological growth and development. More research is needed to understand the unique nutrition needs of this population and inform sport nutrition practice and research.
Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats
Walter, Patrick B.; Knutson, Mitchell D.; Paler-Martinez, Andres; Lee, Sonia; Xu, Yu; Viteri, Fernando E.; Ames, Bruce N.
2002-01-01
Approximately two billion people, mainly women and children, are iron deficient. Two studies examined the effects of iron deficiency and supplementation on rats. In study 1, mitochondrial functional parameters and mitochondrial DNA (mtDNA) damage were assayed in iron-deficient (≤5 μg/day) and iron-normal (800 μg/day) rats and in both groups after daily high-iron supplementation (8,000 μg/day) for 34 days. This dose is equivalent to the daily dose commonly given to iron-deficient humans. Iron-deficient rats had lower liver mitochondrial respiratory control ratios and increased levels of oxidants in polymorphonuclear-leukocytes, as assayed by dichlorofluorescein (P < 0.05). Rhodamine 123 fluorescence of polymorphonuclear-leukocytes also increased (P < 0.05). Lowered respiratory control ratios were found in daily high-iron-supplemented rats regardless of the previous iron status (P < 0.05). mtDNA damage was observed in both iron-deficient rats and rats receiving daily high-iron supplementation, compared with iron-normal rats (P < 0.05). Study 2 compared iron-deficient rats given high doses of iron (8,000 μg) either daily or every third day and found that rats given iron supplements every third day had less mtDNA damage on the second and third day after the last dose compared to daily high iron doses. Both inadequate and excessive iron (10 × nutritional need) cause significant mitochondrial malfunction. Although excess iron has been known to cause oxidative damage, the observation of oxidant-induced damage to mitochondria from iron deficiency has been unrecognized previously. Untreated iron deficiency, as well as excessive-iron supplementation, are deleterious and emphasize the importance of maintaining optimal iron intake. PMID:11854522
Andre, Christelle M; Ghislain, Marc; Bertin, Pierre; Oufir, Mouhssin; Herrera, María del Rosario; Hoffmann, Lucien; Hausman, Jean-François; Larondelle, Yvan; Evers, Danièle
2007-01-24
Potato tubers were evaluated as a source of antioxidants and minerals for the human diet. A genetically diverse sample of Solanum tuberosum L. cultivars native to the Andes of South America was obtained from a collection of nearly 1000 genotypes using microsatellite markers. This size-manageable collection of 74 landraces, representing at best the genetic diversity among potato germplasm, was analyzed for iron, zinc, calcium, total phenolic, total carotenoid, and total vitamin C contents. The hydrophilic antioxidant capacity of each genotype was also measured using the oxygen radical absorbance capacity (ORAC) assay. The iron content ranged from 29.87 to 157.96 microg g-1 of dry weight (DW), the zinc content from 12.6 to 28.83 microg g-1 of DW, and the calcium content from 271.09 to 1092.93 microg g-1 of DW. Total phenolic content varied between 1.12 and 12.37 mg of gallic acid equiv g-1 of DW, total carotenoid content between 2.83 and 36.21 microg g-1 of DW, and total vitamin C content between 217.70 and 689.47 microg g-1 of DW. The range of hydrophilic ORAC values was 28.25-250.67 micromol of Trolox equiv g-1 of DW. The hydrophilic antioxidant capacity and the total phenolic content were highly and positively correlated (r = 0.91). A strong relationship between iron and calcium contents was also found (r = 0.67). Principal component analysis on the studied nutritional contents of the core collection revealed that most potato genotypes were balanced in terms of antioxidant and mineral contents, but some of them could be distinguished by their high level in distinct micronutrients. Correlations between the micronutrient contents observed in the sample and the genetic distances assessed by microsatellites were weakly significant. However, this study demonstrated the wide variability of health-promoting micronutrient levels within the native potato germplasm as well as the significant contribution that distinct potato tubers may impart to the intake in dietary antioxidants, zinc, and iron.
Zhao, Ai; Xue, Yong; Zhang, Yumei; Li, Wenjun; Yu, Kai; Wang, Peiyu
2016-01-01
Objective Objectives of this study were 1) to investigate the mineral intake by Chinese lactating women, 2) to explore the dietary source of minerals, and 3) the ratios between different dietary minerals. Methods A total of 468 lactating women in 5–240 days post-partum participated in this study. Food intakes by participants were measured using one time of 24-hour dietary recall, and minerals from food were calculated based on the Chinese Food Composition Table, second edition. Results In post-partum, women had inadequate food intake. 81.0% of women’s daily intake of dairy products was lower than 300g, and 97.1% of women’s daily intake of salt over 6g. For mineral intake, there were 81.8%, 59.0%, 47.6%, 45.7% and 66.8% of women’s calcium, magnesium, iron, zinc and selenium intake lower than the estimated average requirement, respectively, and 91.7% of women’s excessive intake of sodium. The calcium/phosphorus and sodium/potassium ratios were 0.41±0.26/1 and 3.13±2.89/1, respectively. Considering the dietary sources of minerals, 27.3%, 25.3% and 30.1% of iron, zinc and calcium were from animal-based food, respectively, and 60.3%, 66.1% and 58.0% of iron, zinc and calcium were from plant-based food, respectively. The phosphorus-protein ratio was 0.014±0.003/1. Lactation stage was associated with nutrient intake. Women within 30 days post-partum and the ones who live in Guangzhou had a significantly lower intake of certain minerals, while women with a high education experience had a high intake of calcium, potassium, iron and zinc. Productive age, whether obese or not, and delivery ways were not associated with mineral intakes (P all >0.05). Conclusion Chinese women in three studied cities had an inappropriate food intake and resulted in both insufficient and excessive intakes of certain minerals. PMID:26730592
NASA Astrophysics Data System (ADS)
Sefton-Nash, Elliot; Catling, David C.
2008-05-01
Using diffusion-based models for concretion growth, we calculate growth times of hematitic concretions that have been found in the Burns formation at Meridiani Planum, Mars, by NASA's Opportunity Mars Exploration Rover. Growth times of ~ 350-1900 terrestrial years are obtained for the observed size range of the concretions over a range of parameters representing likely diagenetic conditions and allowing for an iron source from diagenetic redistribution. This time scale is consistent with radiometric age constraints for the growth time of iron oxide concretions in sandy sediments of the acid-saline Lake Brown in Western Australia (< 3000 yr) reported elsewhere. We consider the source of the iron for Meridiani concretions by calculating the constraints on the supply of Fe 3+ to growing concretions from the dissolution and oxidation rates of iron minerals on early Mars. Mass balance arguments suggest that acid dissolution of jarosite ((H 3O,K)(Fe 3+3(OH) 6(SO 4) 2) and minor ferric sulfates is probably the most plausible dominant contributor to Fe 3+ in the concretions. Ferrous iron released from melanterite (Fe 2+SO 4·7H 2O) that is subsequently oxidized could also have been an important iron source if melanterite existed prior to diagenesis. Our conclusion that the iron is sourced from iron sulfates may explain the global observation from orbiters that grey crystalline hematite occurs in association with sulfate deposits.
A lower trophic ecosystem model including iron effects in the Okhotsk Sea
NASA Astrophysics Data System (ADS)
Okunishi, Takeshi; Kishi, Michio J.; Ono, Yukiko; Yamashita, Toshihiko
2007-09-01
We applied a three-dimensional ecosystem-physical coupled model including iron the effect to the Okhotsk Sea. In order to clarify the sources of iron, four dissolved iron compartments, based on the sources of supply, were added to Kawamiya et al.'s [1995, An ecological-physical coupled model applied to Station Papa. Journal of Oceanography, 51, 635-664] model (KKYS) to create our ecosystem model (KKYS-Fe). We hypothesized that four processes supply iron to sea water: atmospheric loadings from Northeastern Asia, input from the Amur River, dissolution from sediments and regeneration by zooplankton and bacteria. We simulated one year, from 1 January 2001 to 31 December 2001, using both KKYS-Fe and KKYS. KKYS could not reproduce the surface nitrate distribution after the spring bloom, whereas KKYS-Fe agreed well with observations in the northwestern Pacific because it includes iron limitation of phytoplankton growth. During the spring bloom, the main source of iron at the sea surface is from the atmosphere. The contribution of riverine iron to the total iron utilized for primary production is small in the Okhotsk Sea. Atmospheric deposition, the iron flux from sediment and regeneration of iron in the water column play important roles in maintaining high primary production in the Okhotsk Sea.
Weng, Ting-Chia; Chang, Chia-Hsuin; Dong, Yaa-Hui; Chang, Yi-Cheng; Chuang, Lee-Ming
2015-01-01
Objective To obtain a pooled risk estimate on the long-term impact of anaemia and related nutritional deficiencies in patients receiving Roux-en-Y gastric bypass (RYGB) surgery. Design Systematic review and meta-analysis. Data sources MEDLINE, EMBASE and Cochrane databases were searched to identify English reports published before 16 May 2014. Eligibility criteria Articles with case numbers >100, follow-up period >12 months, and complete data from both before and after surgery were selected. Outcomes of interest were changes in baseline measurements of proportion of patients with anaemia, by haemoglobin, haematocrit, ferritin, iron, vitamin B12 and folate levels. Data collection and analysis Two reviewers independently reviewed data and selected six prospective and nine retrospective studies with a total of 5909 patients. A random effect model with inverse variance weighting was used to calculate summary estimates of outcomes at 6, 12, 24 and 36 months postoperatively. Results Proportion of patients with anaemia was 12.2% at baseline, which, respectively, increased to 20.9% and 25.9% at 12 and 24 months follow-up, consistent with decreases in haemoglobin and haematocrit levels. Although the serum iron level did not change substantially after surgery, the frequency of patients with ferritin deficiency increased from 7.9% at baseline to 13.4% and 23.0% at 12 and 24 months, respectively, postoperation. Vitamin B12 deficiency increased from 2.3% at baseline to 6.5% at 12 months after surgery in those subjects receiving RYGB. There was no obvious increase in folate deficiency. Conclusions RYGB surgery is associated with an increased risk of anaemia and deficiencies of iron and vitamin B12, but not folate. Ferritin is more sensitive when serum iron level is within normal range. PMID:26185175
Enculescu, Mihaela; Metzendorf, Christoph; Sparla, Richard; Hahnel, Maximilian; Bode, Johannes; Muckenthaler, Martina U; Legewie, Stefan
2017-01-01
Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional ferroportin-independent homeostasis mechanisms.
Sparla, Richard; Hahnel, Maximilian; Bode, Johannes; Muckenthaler, Martina U.; Legewie, Stefan
2017-01-01
Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional ferroportin-independent homeostasis mechanisms. PMID:28068331
Balancing ESA and iron therapy in a prospective payment environment.
Aronoff, George R; Gaweda, Adam E
2014-02-01
Ever since the introduction of EPO, ESAs and iron dosing have been driven by financial incentives. When ESAs were a profit center for providers, large doses were used. With ESAs becoming a cost center, a new trend has appeared, gradually replacing their use with iron to achieve the same therapeutic effect at lower cost. This financially driven approach, treating ESAs and iron as alternatives, is not consistent with human physiology where these agents act in a complementary manner. It is likely that we are still giving unnecessarily large doses of ESAs and iron, relative to what our patients' true needs are. Although we have highlighted the economic drivers of this outcome, many other factors play a role. These include our lack of understanding of the complex interplay of the anemia of chronic disease, inflammation, poor nutrition, blood loss through dialysis, ESAs and iron deficiency. We propose that physiology-driven modeling may provide some insight into the interactions between erythropoiesis and ferrokinetics. This insight can then be used to derive new, physiologically compatible dosing guidelines for ESAs and iron.
[Micronutrient deficiencies and linear growth: a systematic review of observational studies].
Pedraza, Dixis Figueroa; Rocha, Ana Carolina Dantas; Sales, Márcia Cristina
2013-11-01
This article seeks to evaluate the association of iron, vitamin A and zinc deficiencies with linear growth retardation. A systematic review of electronic databases in PubMed, LILACS and SciELO was conducted. Scientific papers published between January 1995 and March 2010 were selected, inserting the key words: (growth OR nutritional status) AND (child, preschool OR infant) AND (zinc AND iron AND vitamin A) OR (zinc AND iron) OR (zinc AND vitamin A) OR (iron AND vitamin A). Fourteen observational design studies were reviewed. In the cohort studies (two), one indicated a statistical association between iron levels and stunting; and the other revealed a statistical association between serum ferritin concentrations and an increase in height. Ten cross-sectional studies investigated the statistical association between micronutrient deficiencies and stunting, three of which resulted in an association with iron, two with vitamin A and none with zinc. Elucidation of the association between stunting and iron, vitamin A and zinc deficiencies involves difficulties of a biological nature and also related to the magnitude of these deficiencies, indicating the importance of a methodological standardization of the studies.
Cambi, Maria Paula Carlini; Marchesini, Simone Dallegrave; Baretta, Giorgio Alfredo Pedroso
2015-01-01
Bariatric surgery is effective treatment for weight loss, but demand continuous nutritional care and physical activity. They regain weight happens with inadequate diets, physical inactivity and high alcohol consumption. To investigate in patients undergoing Roux-Y-of gastroplasty weight regain, nutritional deficiencies, candidates for the treatment with endoscopic argon plasma, the diameter of the gastrojejunostomy and the size of the gastric pouch at the time of treatment with plasma. A prospective 59 patients non-randomized study with no control group undergoing gastroplasty with recurrence of weight and candidates for the endoscopic procedure of argon plasma was realized. The surgical evaluation consisted of investigation of complications in the digestive system and verification of the increased diameter of the gastrojejunostomy. Nutritional evaluation was based on body mass index at the time of operation, in the minimum BMI achieved after and in which BMI was when making the procedure with plasma. The laboratory tests included hemoglobin, erythrocyte volume, ferritin, vitamin D, B12, iron, calcium, zinc and serum albumin. Clinical analysis was based on scheduled follow-up. Of the 59 selected, five were men and 51 women; were included 49 people (four men and 44 women) with all the complete data. The exclusion was due to the lack of some of the laboratory tests. Of this total 19 patients (38.7%) had a restrictive ring, while 30 (61.2%) did not. Iron deficiency anemia was common; 30 patients (61.2%) were below 30 with ferritin (unit); 35 (71.4%) with vitamin B12 were below 300 pg/ml; vitamin D3 deficiency occurred in more than 90%; there were no cases of deficiency of protein, calcium and zinc; glucose levels were above 99 mg/dl in three patients (6.12%). Clinically all had complaints of labile memory, irritability and poor concentration. All reported that they stopped treatment with the multidisciplinary team in the first year after the operation. The profile of patients submitted to argon plasma procedure was: anastomosis in average with 27 mm; multiple nutritional deficiencies with predominance of iron deficiency anemia; ferritin below 30; vitamin B12 levels below 300 pg/ml; labile memory complaints, irritability and poor concentration.
NASA Astrophysics Data System (ADS)
Matsui, Y.; Watanabe, T.; Satani, T.; Muramatsu, M.; Tanaka, K.; Kitagawa, A.; Yoshida, Y.; Sato, F.; Kato, Y.; Iida, T.
2008-11-01
Multiply charged iron ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with the induction coil which is made from bare molybdenum wire and surrounding the pure iron rod. We optimize the shape of induction heating coil and operation of rf power supply. We conduct experiment to investigate reproducibility and stability in the operation and heating efficiency. Induction heating evaporator produces pure material vapor, because materials directly heated by eddy currents have non-contact with insulated materials which are impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10-4 to 10-3 Pa. We measure temperature of iron rod and film deposition rate by depositing iron vapor to crystal oscillator. We confirm stability and reproducibility of evaporator enough to conduct experiment in ECR ion source. We can obtain required temperature of iron under maximum power of power supply. We are aiming the evaporator higher melting point material than iron.
Bodnar, Lisa M; Simhan, Hyagriv N; Parker, Corette B; Meier, Heather; Mercer, Brian M; Grobman, William A; Haas, David M; Wing, Deborah A; Hoffman, Matthew K; Parry, Samuel; Silver, Robert M; Saade, George R; Wapner, Ronald; Iams, Jay D; Wadhwa, Pathik D; Elovitz, Michal; Peaceman, Alan M; Esplin, Sean; Barnes, Shannon; Reddy, Uma M
2017-06-01
The significance of periconceptional nutrition for optimizing offspring and maternal health and reducing social inequalities warrants greater understanding of diet quality among US women. Our objective was to evaluate racial or ethnic and education inequalities in periconceptional diet quality and sources of energy and micronutrients. Cross-sectional analysis of data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be cohort. Nulliparous women (N=7,511) were enrolled across eight US medical centers from 2010 to 2013. A semiquantitative food frequency questionnaire assessing usual dietary intake during the 3 months around conception was self-administered during the first trimester. Diet quality, measured using the Healthy Eating Index-2010 (HEI-2010), and sources of energy and micronutrients were the outcomes. Differences in diet quality were tested across maternal racial or ethnic and education groups using F tests associated with analysis of variance and χ 2 tests. HEI-2010 score increased with higher education, but the increase among non-Hispanic black women was smaller than among non-Hispanic whites and Hispanics (interaction P value <0.0001). For all groups, average scores for HEI-2010 components were below recommendations. Top sources of energy were sugar-sweetened beverages, pasta dishes, and grain desserts, but sources varied by race or ethnicity and education. Approximately 34% of energy consumed was from empty calories (the sum of energy from added sugars, solid fats, and alcohol beyond moderate levels). The primary sources of iron, folate, and vitamin C were juices and enriched breads. Diet quality is suboptimal around conception, particularly among women who are non-Hispanic black, Hispanic, or who had less than a college degree. Diet quality could be improved by substituting intakes of refined grains and foods empty in calories with vegetables, peas and beans (legumes), seafood, and whole grains. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
de Llanos, Rosa; Martínez-Garay, Carlos Andrés; Fita-Torró, Josep; Romero, Antonia María; Martínez-Pastor, María Teresa
2016-01-01
ABSTRACT Fungi, including the yeast Saccharomyces cerevisiae, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced baker's yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron in vivo and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interestingly, when simultaneously expressed in ccc1Δ cells, SFerH1 and SFerH2 assembled as heteropolymers, which further increased iron resistance and reduced the oxidative stress produced by excess iron compared to ferritin homopolymer complexes. Finally, soybean ferritin expression led to increased iron accumulation in both wild-type and ccc1Δ yeast cells at certain environmental iron concentrations. IMPORTANCE Iron deficiency is a worldwide nutritional disorder to which women and children are especially vulnerable. A common strategy to combat iron deficiency consists of dietary supplementation with inorganic iron salts, whose bioavailability is very low. Iron-enriched yeasts and cereals are alternative strategies to diminish iron deficiency. Animals and plants possess large ferritin complexes that accumulate, detoxify, or buffer excess cellular iron. However, the yeast Saccharomyces cerevisiae lacks ferritin and uses vacuoles as iron storage organelles. Here, we explored how soybean ferritin expression influenced yeast iron metabolism, confirming that yeasts that express soybean seed ferritin could be explored as a novel strategy to increase dietary iron absorption. PMID:26969708
EMISSION FACTORS FOR IRON AND STEEL SOURCES: CRITERIA AND TOXIC POLLUTANTS
The report provides a comprehensive set of emission factors for sources of both criteria and toxic air pollutants in integrated iron and steel plants and specialty electric arc shops (minimills). Emission factors are identified for process sources, and process and open source fug...
Santika, Otte; Fahmida, Umi; Ferguson, Elaine L
2009-01-01
Effective population-specific, food-based complementary feeding recommendations (CFR) are required to combat micronutrient deficiencies. To facilitate their formulation, a modeling approach was recently developed. However, it has not yet been used in practice. This study therefore aimed to use this approach to develop CFR for 9- to 11-mo-old Indonesian infants and to identify nutrients that will likely remain low in their diets. The CFR were developed using a 4-phase approach based on linear and goal programming. Model parameters were defined using dietary data collected in a cross-sectional survey of 9- to 11-mo-old infants (n = 100) living in the Bogor District, West-Java, Indonesia and a market survey of 3 local markets. Results showed theoretical iron requirements could not be achieved using local food sources (highest level achievable, 63% of recommendations) and adequate levels of iron, niacin, zinc, and calcium were difficult to achieve. Fortified foods, meatballs, chicken liver, eggs, tempe-tofu, banana, and spinach were the best local food sources to improve dietary quality. The final CFR were: breast-feed on demand, provide 3 meals/d, of which 1 is a fortified infant cereal; > or = 5 servings/wk of tempe/tofu; > or = 3 servings/wk of animal-source foods, of which 2 servings/wk are chicken liver; vegetables, daily; snacks, 2 times/d, including > or = 2 servings/wk of banana; and > or = 4 servings/wk of fortified-biscuits. Results showed that the approach can be used to objectively formulate population-specific CFR and identify key problem nutrients to strengthen nutrition program planning and policy decisions. Before recommending these CFR, their long-term acceptability, affordability, and effectiveness should be assessed.
Yang, Haibing; Wei, Hui; Ma, Guojie; ...
2016-04-07
Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusionmore » polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. In conclusion, CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Haibing; Wei, Hui; Ma, Guojie
Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusionmore » polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Haibing; Wei, Hui; Ma, Guojie
Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusionmore » polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. In conclusion, CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.« less
Dannhauser, A; Bester, C; Joubert, G; Badenhorst, P; Slabber, M; Badenhorst, A; Du Toit, E; Barnard, H; Botha, P; Nogabe, L
2000-09-01
To determine the nutritional status and household resources of preschool children. A cross-sectional survey. : Two informal settlement areas, Joe Slovo (JS) and JB Mafora (JBM) in Mangaung, near Bloemfontein, South Africa. Preschool children (<72 months) of a randomly selected sample of households in JS (experimental) (n = 162) and JBM (control) (n = 186) were included. Standard methods were used to obtain household and care-giver particulars, weight and height measurements, blood and stool samples, and 24-hour dietary recalls. Breast-feeding and dietary intake in the two areas were nearly similar; breast-feeding was continued for 12 months and longer. Although the children's total protein intake was sufficient, their energy intake was low. A low median intake of micronutrients prevailed, including iron, zinc, calcium, niacin, riboflavin, thiamine and vitamins C, B6, A and D. The prevalence of being underweight (JS = 19.8%; JBM = 18.8%), stunted (JS = 29%; JBM = 21. 5%) and wasted (JS = 6.5%; JBM = 3.7%) were fairly similar in both areas, as well as the prevalence of marginal vitamin A deficiency, anaemia, iron deficiency and parasite infestations. No significant associations could be found between household and nutritional status indicators, probably due to the small number of well-nourished children and the generally poor household situation of the participants. The generally poor nutritional status and environmental conditions emphasize the urgency of intervention for these children.
NASA Technical Reports Server (NTRS)
Bovell-Benjamin, Adelia C.; Guinard, Jean-Xavier
2003-01-01
Iron deficiency is the leading nutritional deficiency in the U.S. and the rest of the world, with its highest prevalences in the developing world. Iron fortification of food has been proposed as a strategy to reduce the high prevalence of iron deficiency. Poor consumer acceptance, unacceptable taste, and discoloration of the iron-fortified foods have been frequently listed as causes of unsuccessful iron fortification programs. An excellent prospect for improving consumer acceptance of iron-fortified foods is the incorporation of a thorough, organized, and unified approach to sensory evaluation practices into iron fortification programs for product optimization. The information gained from systematic sensory evaluation allows for the manipulation of the sensory attributes, and thus improvement of the sensory properties of the fortified food. However, iron fortification programs have not systematically measured the effect of fortification on the sensory quality of the food. Because sensory evaluation is an important criterion in successful iron fortification, an integrated approach is necessary. Therefore, nutritionists and sensory scientists should work closely with each other to select the most suitable sensory tests and methods. The objectives of this article are to: (1) critically review and discuss some traditional and contemporary approaches and applications of sensory evaluation practices in iron fortification programs, and (2) demonstrate the importance of incorporating a multidisciplinary, systematic sensory evaluation approach in iron fortification programs.
Perignon, Marlène; Barré, Tangui; Gazan, Rozenn; Amiot, Marie-Josèphe; Darmon, Nicole
2018-01-01
Nutritional adequacy depends on nutrient intakes and bioavailability which strongly varies with the plant- or animal-origin of foods. The aim was to estimate iron, zinc, protein and vitamin A bioavailability from individual diets, and investigate its relation with the animal-to-plant ratio (A/P) of diets. Bioavailability was estimated in 1899 French diets using diet-based algorithms or food-group specific conversion factors. Nutrient inadequacy was estimated based on i) bioavailability calculated in each individual diet and ii) average bioavailability assumed for Western-diets. Mean iron absorption, zinc absorption, protein quality and β-carotene conversion factor were 13%, 30%, 92%, and 17:1, respectively. Bioavailability displayed a high variability between individual diets, poorly explained by their A/P. Using individual bioavailability led to different inadequacy prevalence than with average factors assumed for Western-diets. In this population, the A/P does not seem sufficient to predict nutrient bioavailability and the corresponding recommended intakes. Nutritional adequacy should be assessed using bioavailability accounting for individual diets composition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Iron Bioavailability Studies of the First Generation of Iron-Biofortified Beans Released in Rwanda.
Glahn, Raymond; Tako, Elad; Hart, Jonathan; Haas, Jere; Lung'aho, Mercy; Beebe, Steve
2017-07-21
This paper represents a series of in vitro iron (Fe) bioavailability experiments, Fe content analysis and polyphenolic profile of the first generation of Fe biofortified beans ( Phaseolus vulgaris ) selected for human trials in Rwanda and released to farmers of that region. The objective of the present study was to demonstrate how the Caco-2 cell bioassay for Fe bioavailability can be utilized to assess the nutritional quality of Fe in such varieties and how they may interact with diets and meal plans of experimental studies. Furthermore, experiments were also conducted to directly compare this in vitro approach with specific human absorption studies of these Fe biofortified beans. The results show that other foods consumed with beans, such as rice, can negatively affect Fe bioavailability whereas potato may enhance the Fe absorption when consumed with beans. The results also suggest that the extrinsic labelling approach to measuring human Fe absorption can be flawed and thus provide misleading information. Overall, the results provide evidence that the Caco-2 cell bioassay represents an effective approach to evaluate the nutritional quality of Fe-biofortified beans, both separate from and within a targeted diet or meal plan.
Iron Bioavailability Studies of the First Generation of Iron-Biofortified Beans Released in Rwanda
Glahn, Raymond; Tako, Elad; Hart, Jonathan; Haas, Jere; Beebe, Steve
2017-01-01
This paper represents a series of in vitro iron (Fe) bioavailability experiments, Fe content analysis and polyphenolic profile of the first generation of Fe biofortified beans (Phaseolus vulgaris) selected for human trials in Rwanda and released to farmers of that region. The objective of the present study was to demonstrate how the Caco-2 cell bioassay for Fe bioavailability can be utilized to assess the nutritional quality of Fe in such varieties and how they may interact with diets and meal plans of experimental studies. Furthermore, experiments were also conducted to directly compare this in vitro approach with specific human absorption studies of these Fe biofortified beans. The results show that other foods consumed with beans, such as rice, can negatively affect Fe bioavailability whereas potato may enhance the Fe absorption when consumed with beans. The results also suggest that the extrinsic labelling approach to measuring human Fe absorption can be flawed and thus provide misleading information. Overall, the results provide evidence that the Caco-2 cell bioassay represents an effective approach to evaluate the nutritional quality of Fe-biofortified beans, both separate from and within a targeted diet or meal plan. PMID:28754026
Myeloid Neoplasms in the Guise of Nutritional Deficiency
Parthasarathy, Veda
2012-01-01
The classic BCR-ABL-negative myeloproliferative neoplasms (MPNs) which include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) are among the most frequent hematologic neoplasms. Because of their relatively smooth clinical course, it is likely that many of these MPNs actually go undetected. Considering the high prevalence of iron, folic-acid, and vitamin B12 deficiencies in developing countries, their coexistence with MPN can be expected frequently. In such situations where both disorders coexist, MPN is often overlooked. This causes considerable diagnostic delay. In this paper, two cases of PMF and one case of PV where the diagnosis of MPN was delayed for about 3 years are discussed. Presence of concomitant vitamin B12, folate, and iron deficiencies perhaps camouflaged the underlying MPN. Bearing in mind the possibility of MPN, even in the setting of apparent nutritional deficiency and performing a bone marrow evaluation, is the crucial step in unveiling the hidden MPN. PMID:23227377
NASA Astrophysics Data System (ADS)
Bityutskii, N. P.; Kaidun, P. I.
2008-12-01
The influence of earthworms ( Aporrectodea caliginosa, Lumbricus rubellus, L. terrestris, and Eisenia fetida) on the mobility of microelements and their availability for plants was studied. The contents of water-soluble Fe and Mn compounds extracted from the coprolites were 5-10 times higher than that in the soil (enriched in calcium carbonate and dried) consumed by the earthworms. This digestion-induced effect became higher with the age of the coprolites (up to 9 days) and took place under their alkalization. In the excreta (surface + enteric) of earthworms, the Fe concentration exceeded those of Mn and Zn by many times. Iron and manganese were mostly concentrated (>80% and >60%, respectively) in the organic part of the excrements. In the tests with hydroponics, the excreta were found to be a source of iron compounds available for plants that were similar to Fe2(SO4)3 or Fe-citrate by their physiological effect in the case when the Fe concentration in the excretions was above 0.7 μM. However, the single application of excreta of different earthworm species into the CaCO3 enriched soil did not significantly affect the plant (cucumber) nutrition. The analysis of the transport of microelements with xylem sap showed that this fact appeared to be due to the absence of an Fe deficit in the cucumber plants because of their high capability for the absorption of weakly soluble iron compounds.
Gimou, M-M; Charrondière, U R; Leblanc, J-C; Noël, L; Guérin, T; Pouillot, R
2013-01-01
Dietary exposure to 11 elements was assessed by the Total Diet Study (TDS) method. Sixty-four pooled samples representing 96.5% of the diet in Yaoundé, Cameroon, were prepared as consumed before analysis. Consumption data were sourced from a household budget survey. Dietary exposures were compared with nutritional or health-based guidance values (HBGV) and to worldwide TDS results. Elevated prevalence of inadequate intake was estimated for calcium (71.6%), iron (89.7%), magnesium (31.8%), zinc (46.9%) and selenium (87.3%). The percentage of the study population exceeding the tolerable upper intake levels was estimated as <3.2% for calcium, iron, magnesium, zinc and cobalt; 19.1% of the population exceeded the HBGV for sodium. No exceedance of the HBGV for inorganic mercury was predicted in the population. The margin of exposure ranged from 0.91 to 25.0 for inorganic arsenic depending on the reference point. The "Fish" food group was the highest contributor to intake for calcium (65%), cobalt (32%) and selenium (96%). This group was the highest contributor to the exposure to total arsenic (71%) and organic mercury (96%). The "Cereals and cereal products" highly contributed to iron (26%), zinc (26%) and chromium (25%) intakes. The "Tubers and starches" highly contributed to magnesium (39%) and potassium (52%) intakes. This study highlights the dietary deficiency of some essential elements and a low dietary exposure to toxic elements in Yaoundé.
The association of time in the US and diet during pregnancy in low-income women of Mexican descent.
Harley, Kim; Eskenazi, Brenda; Block, Gladys
2005-03-01
This study compared nutritional intake during pregnancy among women of Mexican descent according to country of birth (US vs. Mexico) and, for Mexico-born women, according to number of years lived in the US (
Shimbo, S; Moon, C S; Zhang, Z W; Watanabe, T; Ismail, N H; Ali, R M; Noor, I; Nakatsuka, H; Ikeda, M
1996-10-01
Nutrient intake was surveyed by the total food duplicate method in 49 adult ethnically Malay women (at the ages of 18 to 47 years and mostly at 30-39 years) working in Kuala Lumpur, Malaysia. Simultaneously, hematological examinations, serum biochemistry, anthropometry and clinical examination were conducted. Nutrient intakes were estimated in reference to the weight of each food item and the standard food composition tables. Lunch was the most substantial meal of the day with rice as a staple food. Compared with the Recommended Dietary Allowance (RDA) values, daily intakes of energy (1,917 kcal as an arithmetic mean), protein (62.2 g), vitamin B1 (0.83 mg) and vitamin B2 (1.18 mg) were sufficient, but intakes of minerals [i.e., calcium (347.8 mg) and iron (12.5 mg)] and some vitamins [i.e., vitamin A (equivalent to 627 micrograms retinol) and niacin (7.84 mg)] were less than RDA. When evaluated on an individual basis, the prevalence of those who took less than 80% RDA was highest for iron (92%), followed by niacin (80%), calcium (57%) and vitamin A (57%). The presence of 7 hypohemoglobinemia cases may be related to the insufficient iron intake. Overweight cases (14 women) were also detected, the prevalence of which increased at advanced ages. Lipid intake was rather high (28% of total food on energy basis), for which the major source was plants with limited contribution from fish/shellfish.
The glacial iron cycle from source to export
NASA Astrophysics Data System (ADS)
Hawkings, J.; Wadham, J. L.; Tranter, M.; Raiswell, R.; Benning, L. G.; Statham, P. J.; Tedstone, A. J.; Nienow, P. W.; Telling, J.; Bagshaw, E.; Simmons, S. L.
2014-12-01
Nutrient availability limits primary production in large sectors of the world's oceans. Iron is the major limiting nutrient in around one third of the oceanic euphotic zone, most significantly in the Southern Ocean proximal to Antarctica. In these areas the availability of bioavailable iron can influence the amount of primary production, and thus the strength of the biological pump and associated carbon drawdown from the atmosphere. Despite experiencing widespread iron limitation, the Polar oceans are among the most productive on Earth. Due to the extreme cold, remoteness and their perceived "stasis", ice sheets have previously been though of as insignificant in global biogeochemical cycles. However, large marine algal blooms have been observed in iron-limited areas where glacial influence is large, and it is possible that these areas are stimulated by glacial bioavailable iron input. Here we discuss the importance of the Greenland and Antarctic ice sheets in the global iron cycle. Using field collected trace element data, bulk meltwater chemistry and mineralogical analysis, including photomicrographs, EELS and XANES, we present, for the first time, a conceptual model of the glacial iron cycle from source to export. Using this data we discuss the sources of iron in glacial meltwater, transportation and alteration through the glacial system, and subsequent export to downstream environments. Data collected in 2012 and 2013 from two different Greenlandic glacial catchments are shown, with the most detailed breakdown of iron speciation and concentrations in glacial areas yet reported. Furthermore, the first data from Greenlandic icebergs is presented, allowing meltwater-derived and iceberg-derived iron export to be compared, and the influence of both in marine productivity to be estimated. Using our conceptual model and flux estimates from our dataset, glacial iron delivery in both the northern and southern hemisphere is discussed. Finally, we compare our flux estimates to other major iron sources to the polar regions such as aeolian dust, and discuss potential implications of increased melting of the ice sheets on the global iron cycle in the future.
Binns, Colin; Lee, Mi Kyung; Low, Wah Yun; Zerfas, Alfred
2017-10-01
The Sustainable Development Goals (SDGs) replaced the Millennium Development Goals (MDCs) in 2015, which included several goals and targets primarily related to nutrition: to eradicate extreme poverty and hunger and to reduce child mortality and improve maternal health. In the Asia-Pacific Academic Consortium for Public Health (APACPH) member countries as a group, infant and child mortality were reduced by more than 65% between 1990 and 2015, achieving the MDG target of two-thirds reduction, although these goals were not achieved by several smaller countries. The SDGs are broader in focus than the MDGs, but include several goals that relate directly to nutrition: 2 (zero hunger-food), 3 (good health and well-being-healthy life), and 12 (responsible consumption and production-sustainability). Other SDGs that are closely related to nutrition are 4 and 5 (quality education and equality in gender-education and health for girls and mothers, which is very important for infant health) and 13 (climate action). Goal 3 is "good health and well-being," which includes targets for child mortality, maternal mortality, and reducing chronic disease. The Global Burden of Disease Project has confirmed that the majority of risk for these targets can be attributed to nutrition-related targets. Dietary Guidelines were developed to address public health nutrition risk in the Asia Pacific region at the 48th APACPH 2016 conference and they are relevant to the achievement of the SDGs. Iron deficiency increases the risk of maternal death from haemorrhage, a cause of 300000 deaths world-wide each year. Improving diets and iron supplementation are important public health interventions in the APACPH region. Chronic disease and obesity rates in the APACPH region are now a major challenge and healthy life course nutrition is a major public health priority in answering this challenge. This article discusses the role of public health nutrition in achieving the SDGs. It also examines the role of APACPH in education and advocacy and in fulfilling the educational needs of public health students in public health nutrition.
Nutritional composition and safety aspects of edible insects.
Rumpold, Birgit A; Schlüter, Oliver K
2013-05-01
Insects, a traditional food in many parts of the world, are highly nutritious and especially rich in proteins and thus represent a potential food and protein source. A compilation of 236 nutrient compositions in addition to amino acid spectra and fatty acid compositions as well as mineral and vitamin contents of various edible insects as derived from literature is given and the risks and benefits of entomophagy are discussed. Although the data were subject to a large variation, it could be concluded that many edible insects provide satisfactorily with energy and protein, meet amino acid requirements for humans, are high in MUFA and/or PUFA, and rich in several micronutrients such as copper, iron, magnesium, manganese, phosphorous, selenium, and zinc as well as riboflavin, pantothenic acid, biotin, and in some cases folic acid. Liabilities of entomophagy include the possible content of allergenic and toxic substances as well as antinutrients and the presence of pathogens. More data are required for a thorough assessment of the nutritional potential of edible insects and proper processing and decontamination methods have to be developed to ensure food safety. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Soybean hulls as an iron source for bread enrichment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.D.; Berry, M.F.; Weaver, C.M.
Soybean hulls, a concentrated source of iron, may have potential as a source of iron fortification in baked products. Retention of /sup 59/Fe in rats from white bread containing intrinsically labeled soybean hulls did not differ significantly (p<0.05) from extrinsically labeled white bread fortified with bakery grade ferrous sulfate (70.4 and 63.1%, respectively). Physical and sensory evaluations of bread containing up to 5% soybean hulls did not differ from white bread in loaf volume, cross-sectional area, tenderness or overall acceptance. These results suggest that soybean hulls are a good source of available iron and may be added to bakery productsmore » without deleterious effects in baking performance and sensory acceptability.« less
2013-11-01
magnetic field as a heat source for the polymerization avoids some of these difficulties. EXPERIMENTAL SECTION Iron (III) chloride hexahydrate (ACS...reagent, 97%), iron (II) chloride tetrahydrate (ReagentPlus®, 98%), tetramethylammonium hydroxide solution (25 wt. % in water), and oleic acid (technical...Edwards Air Force Base and used without further purification. Preparation of Iron Oxide Magnetic Nanoparticles.51 Iron (III) chloride hexahydrate (11.75
Fiorentino, Marion; Landais, Edwige; Bastard, Guillaume; Carriquiry, Alicia; Wieringa, Frank T.; Berger, Jacques
2016-01-01
Due to rapid urbanization and high food prices and in the absence of nutrition programs, school children from urban areas in West Africa often have insufficient and inadequate diet leading to nutrient deficiencies that affect their health and schooling performance. Acute malnutrition and micronutrient deficiencies are prevalent in children from primary state schools of Dakar (Senegal). The objectives of the present study were to assess the overall diet of these children, to report insufficient/excessive energy and nutrient intakes and to investigate association between insufficient nutrient intake and micronutrient deficiencies. Children attending urban state primary schools in the Dakar area were selected through a two-stage random cluster sampling (30 schools × 20 children). Dietary intake data were obtained from two 24 h recalls and blood samples were collected from 545 children (aged 5–17 years, 45% < 10 years, 53% girls) and adjusted for intra-individual variability to estimate nutrient usual intakes. Energy intake was insufficient and unbalanced with insufficient contribution of protein and excessive contribution of fat to global energy intake in one third of the children. Proportions of children with insufficient intake were: 100% for calcium, 100% for folic acid, 79% for vitamin A, 69% for zinc, 53% for vitamin C and 46% for iron. Insufficient iron and protein intake were risk factors for iron deficiency (odds ratio, OR 1.5, 2.2). Insufficient zinc intake and energy intake from protein were risk factors for zinc deficiency (OR 1.8, 3.0, 1.7, 2.9). Insufficient iron and vitamin C intake, and insufficient energy intake from protein were risk factors for marginal vitamin A status (OR 1.8, 1.8, 3.3). To address nutritional deficiencies associated with a diet deficient in energy, protein and micronutrients, nutrition education or school feeding programs are needed in urban primary schools of Senegal. PMID:27775598
Hu, Peter J; Ley, Sylvia H; Bhupathiraju, Shilpa N; Li, Yanping; Wang, Dong D
2017-02-01
Although a high prevalence of anemia and related disease burden have been documented in China, limited evidence is available on the current population-level iron status and risk factors for iron imbalance. We explored the associations of dietary, lifestyle, and sociodemographic factors with iron status in Chinese adults. Our study population consisted of 7672 adults aged 18-65 y from the 2009 China Health and Nutrition Survey. Diet was assessed with the use of 3 consecutive 24-h dietary recalls. Serum ferritin, serum transferrin receptor, and hemoglobin concentrations were measured. The geometric means ± SDs for ferritin concentrations were 135.9 ± 2.7 ng/mL in men and 42.7 ± 3.1 ng/mL in women. After adjustment for potential risk factors, including high-sensitivity C-reactive protein concentration, the association between age and ferritin concentration was inverse in men (P-trend < 0.001) and positive in women (P-trend < 0.001). We observed a positive association between body mass index (in kg/m 2 ) and ferritin concentration in both men and women (both P-trends < 0.001). Dietary phytate intake was inversely associated with ferritin concentration in men (P-trend = 0.002) but not in women. Red meat consumption was positively associated with ferritin concentration both in men (P-trend = 0.002) and in older women (P-trend = 0.009). Lower intakes of grains and higher intakes of pork and poultry were associated with higher ferritin concentrations (all P-trends ≤ 0.05) in men but not in women. We observed variations in ferritin concentrations across different geographic regions (both P ≤ 0.01). Serum ferritin concentrations varied across different sociodemographic, lifestyle, and dietary factors in this Chinese population. A higher intake of red meat was associated with higher ferritin concentrations in men and older women. © 2017 American Society for Nutrition.
Crusell, Mie; Nilas, Lisbeth; Svare, Jens; Lauenborg, Jeannet
2016-10-01
The aim of the study is to explore the impact of time between Roux-en-Y gastric bypass (RYGB) and pregnancy on obstetrical outcome and nutritional derangements. In a retrospective cross-sectional study of pregnant women admitted for antenatal care at two tertiary hospitals, we examined 153 women with RYGB and a singleton pregnancy of at least 24 weeks. The women were stratified according to a pregnancy <18 months (40 women) or ≥18 months (113 women) after RYGB. Main outcome measures were nutritional parameters and glycated haemoglobin 1Ac (HbA1c) in second and third trimester of pregnancy, gestational hypertension, length of pregnancy, mode of delivery and foetal birth weight. The two groups were comparable regarding age, parity and prepregnancy body mass index. The frequency of iron deficiency anaemia (ferritin <12 μg/L and haemoglobin <6.5 mmol/L/10.5 g/dL) was significantly higher in the late group, 29 vs. 8 % in the early group, p = 0.010. No differences were found for vitamin B12, vitamin D and zinc. Median HbA1c was significantly higher in the late group than in the early group (33 vs. 31 mmol/mol, p = 0.027). There were no significant differences in the risk of adverse pregnancy outcome or birth weight between the two groups. A long surgery-to-pregnancy time interval after a RYGB increases the risk of iron deficiency anaemia but not of other nutritional deficits. Time interval does not seem to have an adverse effect on the obstetrical outcome, including intrauterine growth restriction. Specific attention is needed on iron deficit with increasing surgery-to-pregnancy time interval.
Ngui, Romano; Lim, Yvonne Ai Lian; Chong Kin, Liam; Sek Chuen, Chow; Jaffar, Shukri
2012-01-01
Given that micronutrient deficiency, neglected intestinal parasitic infections (IPIs) and poor socioeconomic status are closely linked, we conducted a cross-sectional study to assess the relationship between IPIs and nutritional status of children living in remote and rural areas in West Malaysia. A total of 550 children participated, comprising 520 (94.5%) school children aged 7 to 12 years old, 30 (5.5%) young children aged 1 to 6 years old, 254 (46.2%) boys and 296 (53.8%) girls. Of the 550 children, 26.2% were anaemic, 54.9% iron deficient and 16.9% had iron deficiency anaemia (IDA). The overall prevalence of helminths was 76.5% comprising Trichuris trichiura (71.5%), Ascaris lumbricoides (41.6%) and hookworm infection (13.5%). It was observed that iron deficiency was significantly higher in girls (p = 0.032) compared to boys. Univariate analysis demonstrated that low level of mother's education (OR = 2.52; 95% CI = 1.38-4.60; p = 0.002), non working parents (OR = 2.18; 95% CI = 2.06-2.31; p = 0.013), low household income (OR = 2.02; 95% CI = 1.14-3.59; p = 0.015), T. trichiura (OR = 2.15; 95% CI = 1.21-3.81; p = 0.008) and A. lumbricoides infections (OR = 1.63; 95% CI = 1.04-2.55; p = 0.032) were significantly associated with the high prevalence of IDA. Multivariate analysis confirmed that low level of mother's education (OR = 1.48; 95 CI% = 1.33-2.58; p<0.001) was a significant predictor for IDA in these children. It is crucial that a comprehensive primary health care programme for these communities that includes periodic de-worming, nutrition supplement, improved household economy, education, sanitation status and personal hygiene are taken into consideration to improve the nutritional status of these children.
Fiorentino, Marion; Landais, Edwige; Bastard, Guillaume; Carriquiry, Alicia; Wieringa, Frank T; Berger, Jacques
2016-10-20
Due to rapid urbanization and high food prices and in the absence of nutrition programs, school children from urban areas in West Africa often have insufficient and inadequate diet leading to nutrient deficiencies that affect their health and schooling performance. Acute malnutrition and micronutrient deficiencies are prevalent in children from primary state schools of Dakar (Senegal). The objectives of the present study were to assess the overall diet of these children, to report insufficient/excessive energy and nutrient intakes and to investigate association between insufficient nutrient intake and micronutrient deficiencies. Children attending urban state primary schools in the Dakar area were selected through a two-stage random cluster sampling (30 schools × 20 children). Dietary intake data were obtained from two 24 h recalls and blood samples were collected from 545 children (aged 5-17 years, 45% < 10 years, 53% girls) and adjusted for intra-individual variability to estimate nutrient usual intakes. Energy intake was insufficient and unbalanced with insufficient contribution of protein and excessive contribution of fat to global energy intake in one third of the children. Proportions of children with insufficient intake were: 100% for calcium, 100% for folic acid, 79% for vitamin A, 69% for zinc, 53% for vitamin C and 46% for iron. Insufficient iron and protein intake were risk factors for iron deficiency (odds ratio, OR 1.5, 2.2). Insufficient zinc intake and energy intake from protein were risk factors for zinc deficiency (OR 1.8, 3.0, 1.7, 2.9). Insufficient iron and vitamin C intake, and insufficient energy intake from protein were risk factors for marginal vitamin A status (OR 1.8, 1.8, 3.3). To address nutritional deficiencies associated with a diet deficient in energy, protein and micronutrients, nutrition education or school feeding programs are needed in urban primary schools of Senegal.
Breaking a pathogen’s iron will: inhibiting siderophore production as an antimicrobial strategy
Lamb, Audrey L.
2015-01-01
The rise of antibiotic resistance is a growing public health crisis. Novel antimicrobials are sought, preferably developing nontraditional chemical scaffolds that do not inhibit standard targets such as cell wall synthesis or the ribosome. Iron scavenging has been proposed as a viable target, because bacterial and fungal pathogens must overcome the nutritional immunity of the host to be virulent. This review highlights the recent work toward exploiting the biosynthetic enzymes of siderophore production for the design of next generation antimicrobials. PMID:25970810
Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia
Pokorzynski, Nick D.; Thompson, Christopher C.; Carabeo, Rey A.
2017-01-01
The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed “persistence.” This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen. PMID:28951853
Heaney, Susan; O'Connor, Helen; Gifford, Janelle; Naughton, Geraldine
2010-06-01
This study aimed to compare strategies for assessing nutritional adequacy in the dietary intake of elite female athletes. Dietary intake was assessed using an adapted food-frequency questionnaire in 72 elite female athletes from a variety of sports. Nutritional adequacy was evaluated and compared using mean intake; the proportion of participants with intakes below Australian nutrient reference values (NRV), U.S. military dietary reference intakes (MDRI), and current sports nutrition recommendations; and probability estimates of nutrient inadequacy. Mean energy intake was 10,551 +/- 3,836 kJ/day with macronutrient distribution 18% protein, 31% fat, and 46% carbohydrate, consistent with Australian acceptable macronutrient distribution ranges. Mean protein intake (1.6 g . kg(-1) . d(-1)) was consistent with (>1.2 g . kg(-1) . d(-1)), and carbohydrate intake (4.5 g . kg(-1) . d(-1)), below, current sports nutrition recommendations (>5 g . kg(-1) . d(-1)), with 30% and 65% of individuals not meeting these levels, respectively. Mean micronutrient intake met the relevant NRV and MDRI except for vitamin D and folate. A proportion of participants failed to meet the estimated average requirement for folate (48%), calcium (24%), magnesium (19%), and iron (4%). Probability estimates of inadequacy identified intake of folate (44%), calcium (22%), iron (19%), and magnesium (15%) as inadequate. Interpretation of dietary adequacy is complex and varies depending on whether the mean, proportion of participants below the relevant NRV, or statistical probability estimate of inadequacy is used. Further research on methods to determine dietary adequacy in athlete populations is required.
New perspectives on the regulation of iron absorption via cellular zinc concentrations in humans.
Knez, Marija; Graham, Robin D; Welch, Ross M; Stangoulis, James C R
2017-07-03
Iron deficiency is the most prevalent nutritional deficiency, affecting more than 30% of the total world's population. It is a major public health problem in many countries around the world. Over the years various methods have been used with an effort to try and control iron-deficiency anemia. However, there has only been a marginal reduction in the global prevalence of anemia. Why is this so? Iron and zinc are essential trace elements for humans. These metals influence the transport and absorption of one another across the enterocytes and hepatocytes, due to similar ionic properties. This paper describes the structure and roles of major iron and zinc transport proteins, clarifies iron-zinc interactions at these sites, and provides a model for the mechanism of these interactions both at the local and systemic level. This review provides evidence that much of the massive extent of iron deficiency anemia in the world may be due to an underlying deficiency of zinc. It explains the reasons for predominance of cellular zinc status in determination of iron/zinc interactions and for the first time thoroughly explains mechanisms by which zinc brings about these changes.
Iron management and production of electricity by microorganisms.
Folgosa, Filipe; Tavares, Pedro; Pereira, Alice S
2015-10-01
The increasing dependency on fossil fuels has driven researchers to seek for alternative energy sources. Renewable energy sources such as sunlight, wind, or water are the most common. However, since the 1990s, other sources for energy production have been studied. The use of microorganisms such as bacteria or archaea to produce energy is currently in great progress. These present several advantages even when compared with other renewable energy sources. Besides the energy production, they are also involved in bioremediation such as the removal of heavy metal contaminants from soils or wastewaters. Several research groups have demonstrated that these organisms are able to interact with electrodes via heme and non-heme iron proteins. Therefore, the role of iron as well as iron metabolism in these species must be of enormous relevance. Recently, the influence of cellular iron regulation by Fur in the Geobacter sulfurreducens growth and ability to produce energy was demonstrated. In this review, we aim to briefly describe the most relevant proteins involved in the iron metabolism of bacteria and archaea and relate them and their biological function with the ability of selected organisms to produce energy.
Rodríguez-Lucena, Patricia; Ropero, Edgar; Hernández-Apaolaza, Lourdes; Lucena, Juan J
2010-12-01
Synthetic Fe chelates are commonly used to overcome Fe deficiencies in crops, but most of them are scarcely biodegradable. Iminodisuccinic acid (IDHA) is a biodegradable chelating agent that is currently being evaluated as an alternative to EDTA. In this work, the efficacy of the foliar application of IDHA/Fe(3+) to soybean chlorotic plants under controlled conditions was studied, testing the influence of the adjuvant used and of the plant nutritional status. When IDHA/Fe(3+) was applied to soybean plants with severe Fe chlorosis and the foliar sprays were the sole source of Fe, this chelate behaved similarly to the EDTA/Fe(3+) and the recovery of the plants was slight in both cases. The same chelates were tested when foliar sprays were an additional source of Fe for mildly chlorotic plants, which were also being supplied with low concentrations of Fe applied to the nutrient solution. Then, plant recovery was appreciable in all cases, and the IDHA/Fe(3+) was as effective as EDTA/Fe(3+). Among the adjuvants studied, a urea-based product was the only one that did not damage the leaf surface and that could improve the efficiency of IDHA/Fe(3+) up tp the level of EDTA/Fe(3+). Thus, it was concluded the foliar application of IDHA/Fe(3+) can be an environmentally friendly alternative to the non-biodegradable chelate EDTA/Fe(3+) when the appropriate adjuvant is used. Copyright © 2010 Society of Chemical Industry.
Iglesias-Gutiérrez, Eduardo; García-Rovés, Pablo M; Rodríguez, Carmen; Braga, Socorro; García-Zapico, Pedro; Patterson, Angeles M
2005-02-01
The aim of this study was to assess the food habits and nutritional status of high level adolescent soccer players (N = 33; ages 14-16 yrs) living in their home environment. Body composition (height, mass, skinfolds), biochemical and hematological parameters, performance in soccer-specific tests (sprinting, jumping, intermittent endurance), and dietary intake (weighed food intake method) and related behaviors (nutrient supplement use, daily activity profile) were assessed. Daily energy expenditure and energy intake were 12.5 MJ and 12.6 MJ, respectively. Protein (16% of energy intake; 1.9 g/kg of body mass), lipid (38%), and cholesterol (385 mg) intake were above recommendations, while carbohydrates (45%) were below. The food intake of these adolescents was based on cereals and derivates; meat, fish, and eggs; milk and dairy products; biscuits and confectionery; and oil, butter and margarine, which provided 78% of total energy intake, 85% of proteins, 64% of carbohydrates, 90% of lipids, and 47% of fiber. Although diet provided sufficient iron, 48% of individuals showed iron deficiency without anemia. Based on these results, a well designed nutrition intervention would be advisable for optimizing performance, and especially for promoting healthy eating habits in adolescent soccer players.
Ojeda, Jenifer F.; Martinson, David A.; Menscher, Evan A.
2012-01-01
The Brucella BhuQ protein is a homolog of the Bradyrhizobium japonicum heme oxygenases HmuD and HmuQ. To determine if this protein plays a role in the ability of Brucella abortus 2308 to use heme as an iron source, an isogenic bhuQ mutant was constructed and its phenotype evaluated. Although the Brucella abortus bhuQ mutant DCO1 did not exhibit a defect in its capacity to use heme as an iron source or evidence of increased heme toxicity in vitro, this mutant produced increased levels of siderophore in response to iron deprivation compared to 2308. Introduction of a bhuQ mutation into the B. abortus dhbC mutant BHB2 (which cannot produce siderophores) resulted in a severe growth defect in the dhbC bhuQ double mutant JFO1 during cultivation under iron-restricted conditions, which could be rescued by the addition of FeCl3, but not heme, to the growth medium. The bhuQ gene is cotranscribed with the gene encoding the iron-responsive regulator RirA, and both of these genes are repressed by the other major iron-responsive regulator in the alphaproteobacteria, Irr. The results of these studies suggest that B. abortus 2308 has at least one other heme oxygenase that works in concert with BhuQ to allow this strain to efficiently use heme as an iron source. The genetic organization of the rirA-bhuQ operon also provides the basis for the proposition that BhuQ may perform a previously unrecognized function by allowing the transcriptional regulator RirA to recognize heme as an iron source. PMID:22636783
Morton, Siyuan C; Zhang, Yan; Edwards, Marc A
2005-08-01
Control of microbial regrowth in iron pipes is a major challenge for water utilities. This work examines the inter-relationship between iron corrosion and bacterial regrowth, with a special focus on the potential of iron pipe to serve as a source of phosphorus. Under some circumstances, corroding iron and steel may serve as a source for all macronutrients necessary for bacterial regrowth including fixed carbon, fixed nitrogen and phosphorus. Conceptual models and experimental data illustrate that levels of phosphorus released from corroding iron are significant relative to that necessary to sustain high levels of biofilm bacteria. Consequently, it may not be possible to control regrowth on iron surfaces by limiting phosphorus in the bulk water.
Nutritional status of children from Cochabamba, Bolivia: a cross-sectional study.
Masuet-Aumatell, Cristina; Ramon-Torrell, Josep Maria; Banqué-Navarro, Marta; Dávalos-Gamboa, María Del Rosario; Montaño-Rodríguez, Sandra Lucía
2015-12-01
To assess the adequacy of energy and nutritional intakes compared to recommended daily intakes (RDIs) in schoolchildren from the Cochabamba region (Bolivia) and to determine micronutrient intake distributions across different ages and genders. This nutritional study (n = 315) was part of a larger population-based crosssectional study (the "Bolkid" survey) that collected data on schoolchildren 5-16 years old in 2010 in the Cochabamba region. Information about food intake was gathered with a semiquan-titative, food-frequency, parent-administered questionnaire about l2 months before the study. Descriptive and bivariate analyses of energy and nutrient intakes were assessed. For all ages studied and both genders, the average energy and micronutrient intakes were acceptable but below the requirements. The diet included high amounts of fiber, some minerals (iron, magnesium, phosphorus, potassium, sodium), and vitamins (pantothenic acid, niacin, vitamins B2, B12, C, and E), but was low in calcium and vitamin D. However, more than half the children had insufficient energy intake, and low calcium, vitamin A, and vitamin D intakes, according to RDIs adjusted for age and gender; one-third of the children had insufficient folate and magnesium intakes; and adolescent girls had low iron intakes. Regardless of recommendations or demographic characteristics, the vast majority of children in Cochabamba consumed insufficient energy and too little calcium, folate, magnesium, and vitamin A and D. In addition, adolescent girls consumed insufficient iron. Higher energy intake for schoolchildren through increased food availability, frequency, and size portions in daily meals should be a priority for Bolivian public health institutions.
The Lives Saved Tool (LiST) as a Model for Prevention of Anemia in Women of Reproductive Age.
Heidkamp, Rebecca; Guida, Renee; Phillips, Erica; Clermont, Adrienne
2017-11-01
Background: Anemia in women is a major public health burden worldwide, particularly in low- and middle-income countries (LMICs). It is a complex condition with multiple nutritional and non-nutritional causes, and geographic heterogeneity of burden. The World Health Assembly has set a target of a 50% reduction in anemia among women of reproductive age (WRA) by 2025. Objective: This article seeks to identify the leading causes of anemia among women in LMICs, review the evidence supporting interventions to address anemia in these settings, and ultimately use this information to decide which interventions should be included in the Lives Saved Tool (LiST) model of anemia. It also seeks to examine the link between anemia and cause-specific maternal mortality. Methods: The leading causes of anemia in WRA were inventoried to identify preventive and curative interventions available for implementation at the public health scale. A literature review was then conducted for each identified intervention, as well as for the link between anemia and maternal mortality. Results: The interventions for which data were available fell into the following categories: provision of iron, malaria prevention, and treatment of parasitic infestation. Ultimately, 5 interventions were included in the LiST model for anemia: blanket iron supplementation or fortification, iron and folic acid supplementation in pregnancy, multiple micronutrient supplementation in pregnancy, intermittent preventive treatment of malaria in pregnancy, and household ownership of an insecticide-treated bednet. In addition, anemia was linked in the model with risk of maternal mortality due to hemorrhage. Conclusion: The updated LiST model for anemia reflects the state of the current scientific evidence and should be of use to researchers, program managers, and policymakers who seek to model the impact of scaling up nutrition and health interventions on anemia, and ultimately on maternal mortality. © 2017 American Society for Nutrition.
Supply of Soluble Iron from Combustion and Dust Sources to the Ocean
NASA Astrophysics Data System (ADS)
Ito, A.
2012-12-01
Bioavailable iron (Fe) from atmospheric particle is an essential nutrient for phytoplankton. Global models have been used to deduce atmospheric iron supply to the ocean, but uncertainty in the deposition flux remains large, which can influence the air-sea fluxes of carbon dioxide and thus radiative forcing significantly. Here, a global chemical transport model is used to investigate the effect of aerosol emissions from ship plumes on iron solubility in particles from the combustion and dust sources. The emission data sets for combustion-generated aerosols such as those from biomass and fossil fuel burnings are taken from the emission inventory. The iron from combustion sources such as biomass and fossil fuels burning is readily released into solutions in aerosols assuming constant iron solubility (i.e., the mass fraction of dissolved to total iron). In contrast, the emissions of dust are calculated on-line, based on the surface wind speed and soil wetness from the GMAO assimilated meteorological fields. Further, the iron solubility dynamically changes from that in the originally emitted dust aerosols (which is 0.45%) due to reactions with acidic species. The model results reveal that the oil combustion from shipping mainly contributes to high iron solubility at low mass concentration observed over the high latitude North Atlantic Ocean. The model results suggest that the combustion source from ships contributes to a significant deposition of soluble iron to the high latitude oceans in the Northern Hemisphere. Due to continuing growth in global shipping and no regulations regarding particles emissions, the input of bioavailable iron from ship plumes is likely to increase in a future warmer climate when oceanic primary production may be more dependent on the nutrient input from atmospheric aerosols.
Elemental and iron isotopic composition of aerosols collected in a parking structure.
Majestic, Brian J; Anbar, Ariel D; Herckes, Pierre
2009-09-01
The trace metal contents and iron isotope composition of size-resolved aerosols were determined in a parking structure in Tempe, AZ, USA. Particulate matter (PM)<2.5 microm in diameter (the fine fraction) and PM>2.5 microm were collected. Several air toxics (e.g., arsenic, cadmium, and antimony) were enriched above the crustal average, implicating automobiles as an important source. Extremely high levels of fine copper (up to 1000 ng m(-3)) were also observed in the parking garage, likely from brake wear. The iron isotope composition of the aerosols were found to be +0.15+/-0.03 per thousand and +0.18+/-0.03 per thousand for the PM<2.5 microm and PM>2.5 microm fractions, respectively. The similarity of isotope composition indicates a common source for each size fraction. To better understand the source of iron in the parking garage, the elemental composition in four brake pads (two semi-metallic and two ceramic), two tire tread samples, and two waste oil samples were determined. Striking differences in the metallic and ceramic brake pads were observed. The ceramic brake pads contained 10-20% copper by mass, while the metallic brake pads contained about 70% iron, with very little copper. Both waste oil samples contained significant amounts of calcium, phosphorous, and zinc, consistent with the composition of some engine oil additives. Differences in iron isotope composition were observed between the source materials; most notably between the tire tread (average=+0.02 per thousand) and the ceramic brake linings (average=+0.65 per thousand). Differences in isotopic composition were also observed between the metallic (average=+0.18 per thousand) and ceramic brake pads, implying that iron isotope composition may be used to resolve these sources. The iron isotope composition of the metallic brake pads was found to be identical to the aerosols, implying that brake dust is the dominant source of iron in a parking garage.
Koduru, Pramoda; Abraham, Bincy P
2016-01-01
Iron deficiency anemia (IDA) is the most common form of nutritional anemia worldwide. Iron plays a pivotal role in vital functioning of almost every organ system. IDA affects both physical and psychological functioning of humans. Oral iron is considered as first-line therapy for the treatment of IDA due to low cost, good safety profile and ease of administration. However, the absorption of oral iron is affected by several factors and incidence of gastrointestinal side effects can lead to lack of adherence to therapy as well as poor efficacy. This has led to the emergence of intravenous iron therapy which is clearly superior to oral iron with higher increment of hemoglobin levels and rapid replenishment of iron stores. Ferric carboxymaltose (FCM) is a novel non-dextran intravenous iron form which has been approved for use in patients with iron deficiency who have had inadequate response to oral iron therapy, intolerance to oral iron, or nondialysis-dependent chronic kidney disease. The safety and efficacy of using FCM for the treatment of IDA has been demonstrated in several clinical trials. One dose can provide a large amount of iron and has a very short infusion time. It should be considered as first-line therapy in patients with active inflammation like inflammatory bowel disease when gastrointestinal absorption of oral iron may be compromised. It should also be given to patients who have inadequate response to oral iron therapy. It has been shown to be noninferior to other intravenous iron formulations with a good safety profile and produced fewer anaphylactic reactions.
Nitric oxide and plant iron homeostasis.
Buet, Agustina; Simontacchi, Marcela
2015-03-01
Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. © 2015 New York Academy of Sciences.
[Research advances on anaerobic ferrous-oxidizing microorganisms].
Zhang, Meng; Zheng, Ping; Ji, Jun-yuan
2013-08-01
Anaerobic ferrous-oxidizing microorganisms (AFOM) are one of the important discoveries in microbiology, geology and environmental science. The study of AFOM is of significance to make clear the banded iron formations (BIFs), promote the biogeochemical cycles of iron, nitrogen and carbon, enrich the microbiological content, develop new biotechnologies for anaerobic iron oxidation, and explore the ancient earth environment and extraterrestrial life. This paper summarized the research advances on AFOM, introduced the habitats of AFOM, discussed the biodiversity and the nutritive and metabolic characteristics of AFOM, and assessed the potential functions of AFOM. An outlook was made on the future researches of new species AFOM, their microbial metabolism mechanisms, and their development and applications.
Theriot, Corey A; Westby, Christian M; Morgan, Jennifer L L; Zwart, Sara R; Zanello, Susana B
2016-01-01
Radiation exposure in combination with other space environmental factors including microgravity, nutritional status, and deconditioning is a concern for long-duration space exploration missions. Astronauts experience altered iron homeostasis due to adaptations to microgravity and an iron-rich food system. Iron intake reaches three to six times the recommended daily allowance due to the use of fortified foods on the International Space Station. Iron is associated with certain optic neuropathies and can potentiate oxidative stress. This study examined the response of eye and vascular tissue to gamma radiation exposure (3 Gy fractionated at 37.5 cGy per day every other day for 8 fractions) in rats fed an adequate-iron diet or a high-iron diet. Twelve-week-old Sprague-Dawley rats were assigned to one of four experimental groups: adequate-iron diet/no radiation (CON), high-iron diet/no radiation (IRON), adequate-iron diet/radiation (RAD), and high-iron diet/radiation (IRON+RAD). Animals were maintained on the corresponding iron diet for 2 weeks before radiation exposure. As previously published, the high-iron diet resulted in elevated blood and liver iron levels. Dietary iron overload altered the radiation response observed in serum analytes, as evidenced by a significant increase in catalase levels and smaller decrease in glutathione peroxidase and total antioxidant capacity levels. 8-OHdG immunostaining, showed increased intensity in the retina after radiation exposure. Gene expression profiles of retinal and aortic vascular samples suggested an interaction between the response to radiation and high dietary iron. This study suggests that the combination of gamma radiation and high dietary iron has deleterious effects on retinal and vascular health and physiology. PMID:28725729
Melse-Boonstra, A; Pee, S; Martini, E; Halati, S; Sari, M; Kosen, S; Muhilal; Bloem, M
2000-11-01
To estimate the potential of various industrially produced foods, to serve as a carrier for micronutrient fortification based on the frequency of their consumption in different socio-economic strata; to determine the role of fortified instant noodles as a source of micronutrients; to assess the contribution of plant foods, animal foods and fortified foods to vitamin A intake. A survey was conducted in rural South Sulawesi and urban South Kalimantan between November 1996 and January 1997. Households (1500 in South Sulawesi; 2112 in South Kalimantan) were selected randomly by multi-stage cluster sampling. From each household, data were collected from the mother and her youngest child (0-5 y). Mothers were interviewed on various topics, including socio-economic status, food consumption, receipt of high-dose vitamin A capsules, health and nutritional status. Monosodium glutamate and salt were consumed daily in almost all households in both areas, and consumption was not associated with socio-economic status. Instant noodles were consumed in nearly all households in both areas, but consumption of fortified noodles was related to socio-economic status; it was highest among households of government employees and private investors, and lowest among farmers and share-croppers. Vegetables were the most important source of vitamin A in rural South Sulawesi, while foods of animal origin were the most important source in urban South Kalimantan. The results support double or triple fortification of salt and/or monosodium glutamate with iodine, vitamin A and/or iron. Efforts to overcome associated technical and logistical difficulties are urgently needed. Opportunities for Micronutrient Interventions (OMNI); United States Agency for International Development (USAID). European Journal of Clinical Nutrition (2000) 54, 822-827
The clinical content of preconception care: nutrition and dietary supplements.
Gardiner, Paula M; Nelson, Lauren; Shellhaas, Cynthia S; Dunlop, Anne L; Long, Richard; Andrist, Sara; Jack, Brian W
2008-12-01
Women of child-bearing age should achieve and maintain good nutritional status prior to conception to help minimize health risks to both mothers and infants. Many women may not be aware of the importance of preconception nutrition and supplementation or have access to nutrition information. Health care providers should be knowledgeable about preconception/pregnancy-related nutrition and take the initiative to discuss this information during preconception counseling. Women of reproductive age should be counseled to consume a well-balanced diet including fruits and vegetables, iron and calcium-rich foods, and protein-containing foods as well as 400 microg of folic acid daily. More research is critically needed on the efficacy and safety of dietary supplements and the role of obesity in birth outcomes. Preconception counseling is the perfect opportunity for the health care provider to discuss a healthy eating guideline, dietary supplement intake, and maintaining a healthy weight status.
Kopp-Woodroffe, S A; Manore, M M; Dueck, C A; Skinner, J S; Matt, K S
1999-03-01
Chronic energy deficit is one of the strongest factors contributors to exercise-induced menstrual dysfunction. In such cases, macro- and micronutrient intakes may also be low. This study presents the results of a diet and exercise training intervention program. designed to reverse athletic amenorrhea, on improving energy balance and nutritional status in 4 amenorrheic athletes. The 20-week program provided a daily sport nutrition supplement and 1 day of rest/week. The program increased protein intakes for the 3 athletes with a protein deficit to within the recommended levels for active individuals. Micronutrient intakes increased, as did serum concentrations of vitamin B12, folate, zinc, iron, and ferritin. These results indicate that some amenorrheic athletes have poor nutritional status due to restricted EIs and poor food selections. A sport nutrition supplement may improve energy balance and nutritional status in active amenorrheic women.
Nutritional Requirements for Space Station Freedom Crews
NASA Technical Reports Server (NTRS)
Lane, Helen W.; Rice, Barbara L.; Wogan, Christine F. (Editor)
1992-01-01
The purpose of this report was to set preliminary nutritional requirements for crewmembers flying from 90 to 180 day missions on Space Station Freedom. Specific recommendations included providing crewmembers with in flight feedback on nutritional intake, weight and strength, and incorporating issues of energy intake, body weight, body composition, strength, and protein intake in the flight medicine program. Exercise must be considered an integral part of any plan to maintain nutritional status, especially those modes that stress the skeleton and maintain body weight. Nutrient intake, amount of exercise, and drugs ingested must be recorded daily; high priority should be given to development of fully automated record systems that minimize astronauts' effort. A system of nutritional supplements should be developed to provide a method for reducing intake deficits that become apparent. Finally, post flight monitoring should include bone density, muscle mass and function, and iron status at three and six months after landing.
Drakakaki, Georgia; Marcel, Sylvain; Glahn, Raymond P; Lund, Elizabeth K; Pariagh, Sandra; Fischer, Rainer; Christou, Paul; Stoger, Eva
2005-12-01
We have generated transgenic maize plants expressing Aspergillus phytase either alone or in combination with the iron-binding protein ferritin. Our aim was to produce grains with increased amounts of bioavailable iron in the endosperm. Maize seeds expressing recombinant phytase showed enzymatic activities of up to 3 IU per gram of seed. In flour paste prepared from these seeds, up to 95% of the endogenous phytic acid was degraded, with a concomitant increase in the amount of available phosphate. In seeds expressing ferritin in addition to phytase, the total iron content was significantly increased. To evaluate the impact of the recombinant proteins on iron absorption in the human gut, we used an in vitro digestion/Caco-2 cell model. We found that phytase in the maize seeds was associated with increased cellular iron uptake, and that the rate of iron uptake correlated with the level of phytase expression regardless of the total iron content of the seeds. We also investigated iron bioavailability under more complex meal conditions by adding ascorbic acid, which promotes iron uptake, to all samples. This resulted in a further increase in iron absorption, but the effects of phytase and ascorbic acid were not additive. We conclude that the expression of recombinant ferritin and phytase could help to increase iron availability and enhance the absorption of iron, particularly in cereal-based diets that lack other nutritional components.
Gibson, Sigrid; Ashwell, Margaret
2003-06-01
To examine the association between consumption of red and processed meat (RPM) and iron intakes and status in adults. Further analysis of the Dietary and Nutritional Survey of British Adults, a cross-sectional study of 2197 adults aged 16-64 years carried out in 1986/7. Adults (836 men and 838 women) with serum ferritin measurements, who were not taking iron supplements, were classified into four groups according to RPM consumption (from 7-day weighed records). Iron absorbed was estimated from equations based on haem and non-haem iron and the influence of iron stores. Women who ate least meat (<90 g day-1) had three times the risk of a low iron intake (below the Lower Reference Nutrient Intake) compared with high consumers of RPM (>140 g day-1). Men who ate no RPM also had a higher risk of low iron intake. Using an estimate of minimal values for iron losses, there was a twofold difference in the potential risk of negative iron balance between women non-RPM consumers and high RPM consumers. Status measurements indicated that, among women, anaemia was least prevalent (6%) among high consumers compared with 12-14% among average RPM consumers. Inverse trends were also observed for serum ferritin in both sexes. Low consumption of RPM has implications for iron intakes and iron status in men and women, since the risk of negative iron balance and its consequences are increased. Dietary messages must consider these implications and provide appropriate advice.
[Iron deficiency in ND-CKD: from diagnosis to treatment].
Liberti, Maria Elena; Garofalo, Carlo; Sagliocca, Adelia; Borrelli, Silvio; Conte, Giuseppe; De Nicola, Luca; Minutolo, Roberto
2017-09-28
In non-dialysis-chronic kidney disease (CKD), iron deficiency is a frequent nutritional disorder due to either the greater tendency to occult gastrointestinal bleeding or to the chronic inflammatory state resulting in a reduced intestinal iron reabsorption through an increased synthesis of hepcidin. These phenomenon are responsible for a negative iron balance that compromises erythropoiesis and contributes to the pathogenesis of anemia in CKD. Several laboratory tests are now available to allow an adequate diagnosis of iron deficiency. Among the new parameters, the percentage of hypochromic red cells (% HYPO) and the reticulocyte hemoglobin content (CHr) are now considered as the most specific markers for diagnosing iron-deficiency erythropoiesis. Unfortunately, their implementation in clinical practice is limited by the scarce availability. In non-dialyzed CKD , subjects intolerant or non-responsive to oral iron therapy, can be effectively treated with novel intravenous iron preparations, such as iron carboxymaltose, that allow a complete and rapid correction of iron deficient anemia. Furthermore, this iron compound is associated with lower rate of adverse effects since the carbohydrate shell (carboxymaltose) is more stable than gluconate and saccarate thus reducing the release of free iron in the bloodstream. Of note, the possibility of administering this drug at high doses and reduced frequency decreases the risk of infusion reactions. Finally, a substantial economic saving mainly dependent on a reduction in indirect costs represents a further advantage in the use of iron carboxymaltose in this population. Copyright by Società Italiana di Nefrologia SIN, Rome, Italy.
Bioavailability of iron from a traditional Tunisian meal with chickpeas fed to healthy rats.
Hamdaoui, M; Doghri, T; Tritar, B
1992-01-01
The influence of a diet of couscous with chickpeas, a traditional Tunisian meal, or one providing iron as ferrous sulfate, on the utilization of 59Fe was evaluated in studies with rats. The iron content of the couscous and chickpea preparation was 30 mg/kg dry weight. There was no difference in the relative absorption of iron from ferrous sulfate or couscous with chickpeas, suggesting that iron from this preparation may be a good dietary source of nonheme iron for rats. Couscous and chickpeas consumption in Tunisia are estimated at 13.3 and 3.2 kg per capita/year, respectively. Our results in rats indicate that these foods could contribute a large proportion of an individual's iron requirement. We conclude that the plant foods, especially the chickpeas, can be excellent sources of dietary-available iron.
Dias-Lopes, Geovane; Saboia-Vahia, Leonardo; Margotti, Eliane Trindade; Fernandes, Nilma de Souza; Castro, Cássia Luana de Faria; Oliveira, Francisco Odencio; Peixoto, Juliana Figueiredo; Britto, Constança; Silva, Fernando Costa E; Cuervo, Patricia; Jesus, José Batista de
2017-10-01
Trichomonas vaginalis is the aetiological agent of human trichomoniasis, which is one of the most prevalent sexually transmitted diseases in humans. Iron is an important element for the survival of this parasite and the colonisation of the host urogenital tract. In this study, we investigated the effects of iron on parasite proliferation in the dynamics of pseudocyst formation and morphologically characterised iron depletion-induced pseudocysts. We performed structural and ultrastructural analyses using light microscopy, scanning electron microscopy and transmission electron microscopy. It was observed that iron depletion (i) interrupts the proliferation of T. vaginalis, (ii) induces morphological changes in typical multiplicative trophozoites to spherical non-proliferative, non-motile pseudocysts, and (iii) induces the arrest of cell division at different stages of the cell cycle; (iv) iron is the fundamental element for the maintenance of typical trophozoite morphology; (v) pseudocysts induced by iron depletion are viable and reversible forms; and, finally, (vi) we demonstrated that pseudocysts induced by iron depletion are able to interact with human epithelial cells maintaining their spherical forms. Together, these data suggest that pseudocysts could be induced as a response to iron nutritional stress and could have a potential role in the transmission and infection of T. vaginalis.
Dias-Lopes, Geovane; Saboia-Vahia, Leonardo; Margotti, Eliane Trindade; Fernandes, Nilma de Souza; Castro, Cássia Luana de Faria; Oliveira, Francisco Odencio; Peixoto, Juliana Figueiredo; Britto, Constança; Silva, Fernando Costa e; Cuervo, Patricia; de Jesus, José Batista
2017-01-01
BACKGROUND Trichomonas vaginalis is the aetiological agent of human trichomoniasis, which is one of the most prevalent sexually transmitted diseases in humans. Iron is an important element for the survival of this parasite and the colonisation of the host urogenital tract. OBJECTIVES In this study, we investigated the effects of iron on parasite proliferation in the dynamics of pseudocyst formation and morphologically characterised iron depletion-induced pseudocysts. METHODS We performed structural and ultrastructural analyses using light microscopy, scanning electron microscopy and transmission electron microscopy. FINDINGS It was observed that iron depletion (i) interrupts the proliferation of T. vaginalis, (ii) induces morphological changes in typical multiplicative trophozoites to spherical non-proliferative, non-motile pseudocysts, and (iii) induces the arrest of cell division at different stages of the cell cycle; (iv) iron is the fundamental element for the maintenance of typical trophozoite morphology; (v) pseudocysts induced by iron depletion are viable and reversible forms; and, finally, (vi) we demonstrated that pseudocysts induced by iron depletion are able to interact with human epithelial cells maintaining their spherical forms. MAIN CONCLUSIONS Together, these data suggest that pseudocysts could be induced as a response to iron nutritional stress and could have a potential role in the transmission and infection of T. vaginalis. PMID:28953994
Dimperio, D
1990-01-01
Preconceptional nutrition assessment and intervention is essential for optimal pregnancy outcome. Attainment of an appropriate prepregnancy weight is crucial to the success of a subsequent pregnancy. Metabolic stabilization of disease states or surgery induced imbalances are vital in any woman in which these problems occur. The effect of medications on nutrient status and use of nutrient supplements should be evaluated. Prior to conception women should be counseled to increase the nutrient density of their diet with special emphasis on iron, calcium, magnesium, zinc, folate, and vitamin B-6.
1981-01-02
brucellosis, dur- in control subjects. Persistent leuko- min E in healthy volunteers inhibit ing iron repletion therapy .’" cytosis in magnesium-deficient...isoniazid reaction. An anergic patient could be liferative responsiveness of lympho- therapy (pyridoxine deficiency). studied further by purposeful der...suppressive therapy , a high-PUFA sons currently consume large quanti- ty to generate a localized inflammato- diet caused an additional delay in the ties of
2012-02-01
child health and nutrition programs to distribute micronutrient sprinkles and educate parents on their use is feasible and acceptable (Loechl et al...Children Teresa M. Kemmer1, Preston S. Omer2, Vinod K. Gidvani-Diaz3 and Miguel Coello4 1Health and Nutritional Sciences, SDSU Extension and...Antonio Uniformed Services Health Education Consortium, Pediatric Residency San Antonio, 4U.S. Medical Element, Joint Task Force-Bravo, Soto Cano Air
Noble, Abigail E.; Moran, Dawn M.; Allen, Andrew E.; Saito, Mak A.
2013-01-01
Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO3−4 ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic expeditions. PMID:24790953
NASA Astrophysics Data System (ADS)
Noble, Abigail; Saito, Mak; Moran, Dawn; Allen, Andrew
2013-10-01
Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO43- ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic expeditions.
Schroth, A.W.; Crusius, John; Chever, F.; Bostick, B.C.; Rouxel, O.J.
2011-01-01
Riverine iron (Fe) derived from glacial weathering is a critical micronutrient source to ecosystems of the Gulf of Alaska (GoA). Here we demonstrate that the source and chemical nature of riverine Fe input to the GoA could change dramatically due to the widespread watershed deglaciation that is underway. We examine Fe size partitioning, speciation, and isotopic composition in tributaries of the Copper River which exemplify a long-term GoA watershed evolution from one strongly influenced by glacial weathering to a boreal-forested watershed. Iron fluxes from glacierized tributaries bear high suspended sediment and colloidal Fe loads of mixed valence silicate species, with low concentrations of dissolved Fe and dissolved organic carbon (DOC). Iron isotopic composition is indicative of mechanical weathering as the Fe source. Conversely, Fe fluxes from boreal-forested systems have higher dissolved Fe concentrations corresponding to higher DOC concentrations. Iron colloids and suspended sediment consist of Fe (hydr)oxides and organic complexes. These watersheds have an iron isotopic composition indicative of an internal chemical processing source. We predict that as the GoA watershed evolves due to deglaciation, so will the source, flux, and chemical nature of riverine Fe loads, which could have significant ramifications for Alaskan marine and freshwater ecosystems.
Swain, James H; Newman, Samuel M; Hunt, Janet R
2003-11-01
Foods are fortified with elemental forms of iron to reduce iron deficiency. However, the nutritional efficacy of current, commercially produced elemental iron powders has not been verified. We determined the bioavailability of six commercial elemental iron powders and examined how physicochemistry influences bioavailability. Relative biological value (RBV) of the iron powders was determined using a hemoglobin repletion/slope ratio method, treating iron-deficient rats with repletion diets fortified with graded quantities of iron powders, bakery-grade ferrous sulfate or no added iron. Iron powders were assessed physicochemically by measuring iron solubility in hydrochloric acid at pH 1.0 and 1.7, surface area by nitrogen gas adsorption and surface microstructure by electron microscopy. Bioavailability from the iron powders, based on absolute iron intake, was significantly less than from FeSO4 (100%; P < 0.05) with the following rank order: Carbonyl (64%; Ferronyl, U.S.) > Electrolytic (54%; A-131, U.S.) > Electrolytic (46%; Electrolytic Iron, India) > H-Reduced (42%; AC-325, U.S.) > Reduced (24%; ATOMET 95SP, Canada) > CO-Reduced (21%; RSI-325, Sweden). Solubility testing of the iron powders resulted in different relative rankings and better RBV predictability with increasing time at pH 1.7 (R2 = 0.65 at 150 min). The prediction was improved with less time and lower pH (R2 = 0.82, pH 1.0 at 30 min). Surface area, ranging from 90 to 370 m2/kg, was also highly predictive of RBV (R2 = 0.80). Bioavailability of iron powders is less than bakery-grade ferrous sulfate and varies up to three times among different commercial forms. Solubility at pH 1.0 and surface area were predictive of iron bioavailability in rats.
Monitoring and prevention of anemia relying on nutrition and environmental conditions in sports.
Sacirović, Selim; Asotic, Jasminka; Maksimovic, Radmila; Radevic, Borislav; Muric, Benin; Mekic, Hasim; Biocanin, Rade
2013-01-01
none declared. Anemia is a blood disorder characterized by abnormally low levels of healthy red blood cells or reduced hemoglobin, the iron-bearing protein in red blood cells that delivers oxygen to tissues throughout the body. The most common symptoms of this disorder are fatigue, weakness and, in extreme cases, shortness of breath or palpitations, or you may have no symptoms at all. Sports anemia is a term loosely applied to a least three different conditions: hemodilution, iron deficiency anemia and foot-strike anemia. Not exclusive to athletes, iron deficiency anemia occurs most often among women who may lose more iron each month when they menstruate than they take in. Therefore, we examined its effect on the physical condition of female athletes. Several years (since 2010th until 2012th), we studied how anemia among girls (pioneers, juniors and seniors categories) that are involved in sports (women's soccer, volleyball and handball) in Rasina's district (Serbia), affecting their physical fitness. When their trainers approach to us, complaining that they have players who are great, so extraordinary talents, but by no means able to withstand more than twenty minutes in the game, we suggest them to perform laboratory tests. It was tested 134th female athletes. Anemia was observed in 43. (9. pioneers, 19. juniors and 15. seniors). So, laboratory results showed that in these girls anemia causes poor sport condition. After that, the girls enhanced nutrition. Their diet consisted of iron supplements and vitamins. Altitude training was organized for them, also. After all these treatments, condition significantly improved. It was first time that trainers in Rasina's district realizing significance of laboratory tests.
Cosmic meteor dust: potentially the dominant source of bio-available iron in the Southern Ocean
NASA Astrophysics Data System (ADS)
Dyrud, L. P.; Marsh, D. R.; Del Castillo, C. E.; Fentzke, J.; Lopez-Rosado, R.; Behrenfeld, M.
2012-12-01
Johnson, 2001 [Johnson, Kenneth. S. (2001), Iron supply and demand in the upper ocean: Is extraterrestrial dust a significant source of bioavailable iron?, Global Biogeochem. Cycles, 15(1), 61-63, doi:10.1029/2000GB001295], first suggested that meteoric particulate flux could be a significant source of bio-available iron, particularly in regions with little or no eolean sources, such as the Southern Ocean. While these calculations raised intriguing questions, there were many large unknowns in the input calculations between meteor flux and bio-available ocean molecular densities. There has been significant research in the intervening decade on related topics, such as the magnitude (~200 ktons per year) and composition of the meteoric flux, its atmospheric evaporation, transport, mesospheric formation of potentially soluble meteoric smoke, and extraterrestrial iron isotope identification. Paramount of these findings are recent NCAR WACCM atmosphere model results demonstrating that the majority of meteoric constituents are transported towards the winter poles and the polar vortex. This may lead to a focusing of meteoritic iron deposition towards the Southern Ocean. We present a proposed research plan involving Southern Ocean sample collection and analysis and atmospheric and biological modeling to determine both the current relevance of meteoric iron, and examine the past and future consequences of cosmic dust under a changing climate.
Sharma, S; Hopping, B N; Roache, C; Sheehy, T
2013-12-01
Inuit in Nunavut, Canada, are currently undergoing a nutritional transition that may contribute to an increased prevalence of chronic disease. Information is lacking about the extent to which contemporary Inuit diets are meeting current dietary recommendations. A culturally appropriate quantitative food frequency questionnaire (QFFQ) developed and validated for Inuit in Nunavut, Canada, was used to assess food and nutrient intake in a cross-sectional sample of adults. Participants included 175 women and 36 men with mean (SD) ages of 42.4 (13.2) and 42.1 (15.0) years, respectively. The response rate for those who completed the study was 79% with 208 QFFQs included for analysis. Reported mean daily energy intakes were: men 15,171 kJ (3626 kcal); women 11,593 kJ (2771 kcal). Dietary inadequacy was expressed as the percentage of participants reporting intakes below the sex- and age-specific estimated average requirements (EARs). For nutrients without EARs, adequate intakes were used. Energy and sodium intakes exceeded the recommendations. Less than 10% of participants met recommendations for dietary fibre intake. Vitamin E intakes were below EARs for ≥97% of participants, whereas >20% reported inadequate vitamin A, folate and magnesium intakes. Among women, >50% reported inadequate calcium and vitamin D intakes. Non-nutrient-dense foods contributed 30% of energy, 73% of sugars and 22% of fat. Traditional foods contributed 56% of protein and 49% of iron. The present study demonstrates a relatively high prevalence of inadequate nutrient intakes among Inuit. The results may be used to monitor the nutrition transition among Inuit, evaluate nutritional interventions, and inform public health policy decision-making. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.
Shapira, Niva
2009-01-01
Though eggs have the unique capacity, like breastmilk, to concentrate essential nutrients required for early growth and brain development of offspring - i.e. n-3 PUFA, increasingly deficient and sources contaminated - cholesterol and allergy concerns often exclude them from perinatal recommendations. Egg's potential contribution of key nutrients required for peak brain development are re-evaluated vis-à-vis fortification, accessibility, and risks. Contributions of standard (USDA) and fortified (selected market-available) egg compositions to perinatal requirements for critical brain-supporting nutrients were compared to human and cow milks, and risks and recommendations evaluated. Standard egg has already higher concentrations/kcal of iron, selenium, zinc, choline, vitamins B12 and E, and essential amino acids (plus taurine) than human milk. Fortified egg could further yield significant n-3 PUFA % recommendations for pregnancy-lactation (total n-3 69.6-75.0% [DRI=1400-1300 mg/day]), including DHA (120.1-129.3%, mostly approximately 80% [calculated DRI=140-130 mg/day]), plus antioxidant vitamins A (9.0-15.2%) and E (51.6-65.3%), and minerals iodine (33.6-44.5%) and selenium (33.7-39.3%); % recommendations for children (1-3 y) even more. Cholesterol, important for nerve membranes and learning, may not be generally contraindicated in childbearing-aged women (approximately 10.5% hypercholesterolemia), and early-life egg exposure may increase tolerance. Egg-inclusive perinatal nutrition programs have shown significant contributions. Eggs, especially target-fortified, may provide a unique nutritional supplement for peak brain development continously during pregnancy, nursing, and infancy (from 6 months), especially vs. insufficiencies. Missing nutritional opportunities by egg exclusion vs. concerns of hypercholesterolemia or allergy could be addressed individually, rather than as general recommendations, warranting further research and targeted egg design.
Influence of type of muscles on nutritional value of foal meat.
Lorenzo, José M; Pateiro, Mirian
2013-03-01
The effect of type of muscle on nutritional characteristic (fatty acid profile, amino acid content, cholesterol and major and minor mineral) of foal meat was investigated. Six muscles: longissimus dorsi (LD), semimembranosus (SM), semitendinosus (ST), biceps femoris (BF), triceps brachii (TB) and psoas major & minor (PM) from twelve foals slaughtered at 15 months from an extensive production system in freedom regimen were extracted for this study. Horse meat is characterized by low fat, low cholesterol content, rich in iron and in vitamin B. Statistical analysis showed that the cholesterol content did not show significant differences (P>0.05) among muscle with mean value range between 0.62 and 0.57 mg/100g. Most fatty acid presented significant differences (P<0.05) with respect to the type of muscle. The obtained results showed that except for the polyunsaturated linoleic acid, the highest contents of fatty acids were found in the hindquarter muscles. Regarding amino acid profile, significant differences (P<0.05) were observed among muscles and our results indicated that, 100g of foal meat covered from 80.6 to 86.7% for the daily requirement for an adult man weighing 70 kg for essential amino acids for ST and LD muscles, respectively. Statistical analysis showed significant differences (P=0.050) for the EAA (essential amino acids) index, which was highest for TB muscle, followed by BF and SM muscles, while the lowest values were reported by ST muscle. Finally, foal meat seems to be a very good nutritional source of major and minor minerals. The higher nutritional value of foal meat will be of great importance in the promotion of this meat. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Byung-Kook; Kim, Yangho, E-mail: yanghokm@nuri.net
Introduction: We present data from the Korean National Health and Nutrition Examination Survey 2008-2009 on the distribution of blood cadmium levels and their association with iron deficiency in a representative sample of the adult Korean population. Methods: Serum ferritin was categorized into three levels: low (serum ferritin <15.0 {mu}g/L), low normal (15.0-30.0 {mu}g/L for women and 15.0-50.0 for men), and normal ({>=}30.0 {mu}g/L for women and {>=}50.0 for men), and its association with blood cadmium level was assessed after adjustment for various demographic and lifestyle factors. Results: Geometric means of blood cadmium in the low serum ferritin group in women,more » men, and all participants were significantly higher than in the normal group. Additionally, multiple regression analysis after adjusting for various covariates showed that blood cadmium was significantly higher in the low-ferritin group in women, men, and all participants compared with the normal group. We also found an association between serum ferritin and blood cadmium among never-smoking participants. Discussion: We found, similar to other recent population-based studies, an association between iron deficiency and increased blood cadmium in men and women, independent of smoking status. The results of the present study show that iron deficiency is associated with increased levels of blood cadmium in the general population.« less
Gynecological care in young women: a high-risk period of life.
Bitzer, Johannes; Sultan, Charles; Creatsas, George; Palacios, Santiago
2014-08-01
Adolescence has been described as period of life when emotions are heightened and regulatory controls are reduced, and this can result in an escalation in risk-taking. Importantly for younger females, risk behaviors associated with the onset of sexual activity, and alcohol and substance abuse may coincide with pathologies such as polycystic ovary syndrome (PCOS) and abnormal uterine bleeding, an iron-deficient diet (vegetarian or vegan) and a negative body image leading to eating disorders. Girls transitioning through adolescence face a number of specific emotional and physical issues related to the onset of menarche and regular menstrual cycles. Menstruation combined with these risk behaviors and pathologies, and the rapid growth and development that is taking place, often results in numerous unwanted effects including iron deficiency. A low iron level is the most common cause of anemia in adolescent girls and can be detrimental to mood and cognition as well as physical well-being. In this article we review the impact of menarche, poor nutrition and some of the risk behaviors and pathologies that predispose females to challenges associated with adolescence, including anemia. We also examine factors that need to be taken into consideration during the initial, and follow-up, consultations with young women. Finally, we present some of the latest advice regarding nutrition and oral iron supplementation, particularly extended-release ferrous sulfate with mucoproteose, with a view to minimizing the development and risks of anemia in this vulnerable population.
Pereira, Elenilda J; Carvalho, Lucia M J; Dellamora-Ortiz, Gisela M; Cardoso, Flávio S N; Carvalho, José L V
2016-01-01
The cowpea (Vigna unguiculata L. Wap.) is an excellent source of iron and zinc. However, iron from plant sources is poorly absorbed compared with iron from animal sources. The objective of this study was to evaluate iron and zinc bioaccessibility in cowpea cultivars after processing. Zinc and iron bioaccessibilities in cowpea samples were determined based on an in vitro method involving simulated gastrointestinal digestion with suitable modifications. When water-soaked beans were cooked in a regular pan, the highest percentage of bioaccessible iron obtained was 8.92%, whereas when they were cooked in a pressure cooker without previous soaking, the highest percentage was 44.33%. Also, the percentage of bioaccessible zinc was 52.78% when they were cooked in a regular pan without prior soaking. Higher percentages of bioaccessible iron were found when cooking was done in a pressure cooker compared with regular pan cooking. In all cultivars, cooking of cowpea beans in both pressure cooker and in a regular pan yielded higher percentages of bioaccessible zinc compared with availability of bioaccessible iron. Iron bioaccessibility values suggest that cooking in a regular pan did not have a good effect on iron availability, since the percentage of bioaccessible iron was lower than that of zinc. The determination of iron and zinc bioaccessibility makes it possible to find out the actual percentage of absorption of such minerals and allows the development of efficient strategies for low-income groups to access foods with high levels of these micronutrients.
Iron Bioavailability and Provitamin A from Sweet Potato- and Cereal-Based Complementary Foods
Christides, Tatiana; Amagloh, Francis Kweku; Coad, Jane
2015-01-01
Iron and vitamin A deficiencies in childhood are public health problems in the developing world. Introduction of cereal-based complementary foods, that are often poor sources of both vitamin A and bioavailable iron, increases the risk of deficiency in young children. Alternative foods with higher levels of vitamin A and bioavailable iron could help alleviate these micronutrient deficiencies. The objective of this study was to compare iron bioavailability of β-carotene-rich sweet potato-based complementary foods (orange-flesh based sweet potato (OFSP) ComFa and cream-flesh sweet potato based (CFSP) ComFa with a household cereal-based complementary food (Weanimix) and a commercial cereal (Cerelac®), using the in vitro digestion/Caco-2 cell model. Iron bioavailability relative to total iron, concentrations of iron-uptake inhibitors (fibre, phytates, and polyphenols), and enhancers (ascorbic acid, ß-carotene and fructose) was also evaluated. All foods contained similar amounts of iron, but bioavailability varied: Cerelac® had the highest, followed by OFSP ComFa and Weanimix, which had equivalent bioavailable iron; CFSP ComFa had the lowest bioavailability. The high iron bioavailability from Cerelac® was associated with the highest levels of ascorbic acid, and the lowest levels of inhibitors; polyphenols appeared to limit sweet potato-based food iron bioavailability. Taken together, the results do not support that CFSP- and OFSP ComFa are better sources of bioavailable iron compared with non-commercial/household cereal-based weaning foods; however, they may be a good source of provitamin A in the form of β-carotene. PMID:28231217
Poigner, Harald; Wilhelms-Dick, Dorothee; Abele, Doris; Staubwasser, Michael; Henkel, Susann
2015-09-01
Iron stable isotope signatures (δ(56)Fe) in hemolymph (bivalve blood) of the Antarctic bivalve Laternula elliptica were analyzed by Multiple Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) to test whether the isotopic fingerprint can be tracked back to the predominant sources of the assimilated Fe. An earlier investigation of Fe concentrations in L. elliptica hemolymph suggested that an assimilation of reactive and bioavailable Fe (oxyhydr)oxide particles (i.e. ferrihydrite), precipitated from pore water Fe around the benthic boundary, is responsible for the high Fe concentration in L. elliptica (Poigner et al., 2013 b). At two stations in Potter Cove (King George Island, Antarctica) bivalve hemolymph showed mean δ(56)Fe values of -1.19 ± 0.34‰ and -1.04 ± 0.39 ‰, respectively, which is between 0.5‰ and 0.85‰ lighter than the pool of easily reducible Fe (oxyhydr)oxides of the surface sediments (-0.3‰ to -0.6‰). This is in agreement with the enrichment of lighter Fe isotopes at higher trophic levels, resulting from the preferential assimilation of light isotopes from nutrition. Nevertheless, δ(56)Fe hemolymph values from both stations showed a high variability, ranging between -0.21‰ (value close to unaltered/primary Fe(oxyhydr)oxide minerals) and -1.91‰ (typical for pore water Fe or diagenetic Fe precipitates), which we interpret as a "mixed" δ(56)Fe signature caused by Fe assimilation from different sources with varying Fe contents and δ(56)Fe values. Furthermore, mass dependent Fe fractionation related to physiological processes within the bivalve cannot be ruled out. This is the first study addressing the potential of Fe isotopes for tracing back food sources of bivalves. Copyright © 2015 Elsevier Ltd. All rights reserved.
Current understanding of iron homeostasis.
Anderson, Gregory J; Frazer, David M
2017-12-01
Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.
The young athlete with chronic disease.
Small, E; Bar-Or, O
1995-07-01
Iron deficiency anemia can affect athletic performance. Physicians must be wary of the at risk population, namely vegetarians, female adolescents, and long distance athletes. Particular attention must be paid to nutritional intake and to the use of nonsteroidal anti-inflammatory agents and aspirin.
Boonyaves, Kulaporn; Gruissem, Wilhelm; Bhullar, Navreet K
2016-02-01
Rice is a staple food for over half of the world's population, but it contains only low amounts of bioavailable micronutrients for human nutrition. Consequently, micronutrient deficiency is a widespread health problem among people who depend primarily on rice as their staple food. Iron deficiency anemia is one of the most serious forms of malnutrition. Biofortification of rice grains for increased iron content is an effective strategy to reduce iron deficiency. Unlike other grass species, rice takes up iron as Fe(II) via the IRON REGULATED TRANSPORTER (IRT) in addition to Fe(III)-phytosiderophore chelates. We expressed Arabidopsis IRT1 (AtIRT1) under control of the Medicago sativa EARLY NODULIN 12B promoter in our previously developed high-iron NFP rice lines expressing NICOTIANAMINE SYNTHASE (AtNAS1) and FERRITIN. Transgenic rice lines expressing AtIRT1 alone had significant increases in iron and combined with NAS and FERRITIN increased iron to 9.6 µg/g DW in the polished grains that is 2.2-fold higher as compared to NFP lines. The grains of AtIRT1 lines also accumulated more copper and zinc but not manganese. Our results demonstrate that the concerted expression of AtIRT1, AtNAS1 and PvFERRITIN synergistically increases iron in both polished and unpolished rice grains. AtIRT1 is therefore a valuable transporter for iron biofortification programs when used in combination with other genes encoding iron transporters and/or storage proteins.
Jones, Alexander M.; Wildermuth, Mary C.
2011-01-01
High-affinity iron scavenging through the use of siderophores is a well-established virulence determinant in mammalian pathogenesis. However, few examples have been reported for plant pathogens. Here, we use a genetic approach to investigate the role of siderophores in Pseudomonas syringae pv. tomato DC3000 (DC3000) virulence in tomato. DC3000, an agronomically important pathogen, has two known siderophores for high-affinity iron scavenging, yersiniabactin and pyoverdin, and we uncover a third siderophore, citrate, required for growth when iron is limiting. Though growth of a DC3000 triple mutant unable to either synthesize or import these siderophores is severely restricted in iron-limited culture, it is fully pathogenic. One explanation for this phenotype is that the DC3000 triple mutant is able to directly pirate plant iron compounds such as heme/hemin or iron-nicotianamine, and our data indicate that DC3000 can import iron-nicotianamine with high affinity. However, an alternative explanation, supported by data from others, is that the pathogenic environment of DC3000 (i.e., leaf apoplast) is not iron limited but is iron replete, with available iron of >1 μM. Growth of the triple mutant in culture is restored to wild-type levels by supplementation with a variety of iron chelates at >1 μM, including iron(III) dicitrate, a dominant chelate of the leaf apoplast. This suggests that lower-affinity iron import would be sufficient for DC3000 iron nutrition in planta and is in sharp contrast to the high-affinity iron-scavenging mechanisms required in mammalian pathogenesis. PMID:21441525
NASA Astrophysics Data System (ADS)
Hilty, Florentine M.; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T. N.; Ehrensperger, Felix; Hurrell, Richard F.; Pratsinis, Sotiris E.; Langhans, Wolfgang; Zimmermann, Michael B.
2010-05-01
Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO4), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area ~190 m2 g-1) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO4 and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO4 and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.
Harmonization of blood-based indicators of iron status: making the hard work matter.
Hoofnagle, Andrew N
2017-12-01
Blood-based indicators that are used in the assessment of iron status are assumed to be accurate. In practice, inaccuracies in these measurements exist and stem from bias and variability. For example, the analytic variability of serum ferritin measurements across laboratories is very high (>15%), which increases the rate of misclassification in clinical and epidemiologic studies. The procedures that are used in laboratory medicine to minimize bias and variability could be used effectively in clinical research studies, particularly in the evaluation of iron deficiency and its associated anemia in pregnancy and early childhood and in characterizing states of iron repletion and excess. The harmonization and standardization of traditional and novel bioindicators of iron status will allow results from clinical studies to be more meaningfully translated into clinical practice by providing a firm foundation for clinical laboratories to set appropriate cutoffs. In addition, proficiency testing monitors the performance of the methods over time. It is important that measures of iron status be evaluated, validated, and performed in a manner that is consistent with standard procedures in laboratory medicine. © 2017 American Society for Nutrition.
Hilty, Florentine M; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T N; Ehrensperger, Felix; Hurrell, Richard F; Pratsinis, Sotiris E; Langhans, Wolfgang; Zimmermann, Michael B
2010-05-01
Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO(4)), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area approximately 190 m(2) g(-1)) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO(4) and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO(4) and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.
Zhu, Le; Glahn, Raymond P; Nelson, Deanna; Miller, Dennis D
2009-06-10
Iron bioavailability from supplements and fortificants varies depending upon the form of the iron and the presence or absence of iron absorption enhancers and inhibitors. Our objectives were to compare the effects of pH and selected enhancers and inhibitors and food matrices on the bioavailability of iron in soluble ferric pyrophosphate (SFP) to other iron fortificants using a Caco-2 cell culture model with or without the combination of in vitro digestion. Ferritin formation was the highest in cells treated with SFP compared to those treated with other iron compounds or chelates. Exposure to pH 2 followed by adjustment to pH 7 markedly decreased FeSO(4) bioavailability but had a smaller effect on bioavailabilities from SFP and sodium iron(III) ethylenediaminetetraacetate (NaFeEDTA), suggesting that chelating agents minimize the effects of pH on iron bioavailability. Adding ascorbic acid (AA) and cysteine to SFP in a 20:1 molar ratio increased ferritin formation by 3- and 2-fold, respectively, whereas adding citrate had no significant effect on the bioavailability of SFP. Adding phytic acid (10:1) and tannic acid (1:1) to iron decreased iron bioavailability from SFP by 91 and 99%, respectively. The addition of zinc had a marked inhibitory effect on iron bioavailability. Calcium and magnesium also inhibited iron bioavailability but to a lesser extent. Incorporating SFP in rice greatly reduced iron bioavailability from SFP, but this effect can be partially reversed with the addition of AA. SFP and FeSO(4) were taken up similarly when added to nonfat dry milk. Our results suggest that dietary factors known to enhance and inhibit iron bioavailability from various iron sources affect iron bioavailability from SFP in similar directions. However, the magnitude of the effects of iron absorption inhibitors on SFP iron appears to be smaller than on iron salts, such as FeSO(4) and FeCl(3). This supports the hypothesis that SFP is a promising iron source for food fortification and dietary supplements.
Pereira, Dora I.A.; Bruggraber, Sylvaine F.A.; Faria, Nuno; Poots, Lynsey K.; Tagmount, Mani A.; Aslam, Mohamad F.; Frazer, David M.; Vulpe, Chris D.; Anderson, Gregory J.; Powell, Jonathan J.
2014-01-01
Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P < 0.0001) and direct in vitro cellular uptake (P = 0.001), but not with gastric solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. From the Clinical Editor This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition. PMID:24983890
Urzica, Eugen I.; Casero, David; Yamasaki, Hiroaki; Hsieh, Scott I.; Adler, Lital N.; Karpowicz, Steven J.; Blaby-Haas, Crysten E.; Clarke, Steven G.; Loo, Joseph A.; Pellegrini, Matteo; Merchant, Sabeeha S.
2012-01-01
We surveyed the iron nutrition-responsive transcriptome of Chlamydomonas reinhardtii using RNA-Seq methodology. Presumed primary targets were identified in comparisons between visually asymptomatic iron-deficient versus iron-replete cells. This includes the known components of high-affinity iron uptake as well as candidates for distributive iron transport in C. reinhardtii. Comparison of growth-inhibited iron-limited versus iron-replete cells revealed changes in the expression of genes in chloroplastic oxidative stress response pathways, among hundreds of other genes. The output from the transcriptome was validated at multiple levels: by quantitative RT-PCR for assessing the data analysis pipeline, by quantitative proteomics for assessing the impact of changes in RNA abundance on the proteome, and by cross-species comparison for identifying conserved or universal response pathways. In addition, we assessed the functional importance of three target genes, VITAMIN C 2 (VTC2), MONODEHYDROASCORBATE REDUCTASE 1 (MDAR1), and CONSERVED IN THE GREEN LINEAGE AND DIATOMS 27 (CGLD27), by biochemistry or reverse genetics. VTC2 and MDAR1, which are key enzymes in de novo ascorbate synthesis and ascorbate recycling, respectively, are likely responsible for the 10-fold increase in ascorbate content of iron-limited cells. CGLD27/At5g67370 is a highly conserved, presumed chloroplast-localized pioneer protein and is important for growth of Arabidopsis thaliana in low iron. PMID:23043051
Effects of iron overload in a rat nutritional model of non-alcoholic fatty liver disease.
Kirsch, Richard; Sijtsema, Helene P; Tlali, Mpho; Marais, Adrian D; Hall, Pauline de la M
2006-12-01
This study sought to determine whether excess hepatic iron potentiates liver injury in the methionine choline-deficient (MCD) model of non-alcoholic fatty liver disease (NAFLD). Iron-loaded rats were fed either MCD or control diets [MCD diet plus choline bitartrate (2 g/kg) and DL-methionine (3 g/kg)] for 4 and 12 weeks, after which liver pathology, hepatic iron, triglyceride, lipid peroxidation products and hydroxyproline (HYP) levels and serum alanine aminotransferase (ALT) levels were evaluated. Iron supplementation in MCD animals resulted in histologic evidence of hepatic iron overload at 4 and 12 weeks and a 14-fold increase in hepatic iron concentration at 12 weeks (P < 0.001). Iron supplementation in these animals was associated with increased lobular necroinflammation at 4 weeks (P < 0.02) and decreased hepatic steatosis (P < 0.01), hepatic triglyceride levels (P < 0.01), hepatic-conjugated dienes (CD; P < 0.02) and serum ALT levels (P < 0.002) at 12 weeks. Reduced hepatic steatosis (P < 0.005) and CD (P < 0.01) were apparent by 4 weeks. Iron supplementation was associated with a trend towards increased perivenular fibrosis not hepatic HYP content. Hepatic iron overload in the MCD model of NAFLD is associated with decreased hepatic lipid, decreased early lipid peroxidation products, increased necroinflammation and a trend towards increased perivenular fibrosis.
Yang, Haibing; Wei, Hui; Ma, Guojie; Antunes, Mauricio S; Vogt, Stefan; Cox, Joseph; Zhang, Xiao; Liu, Xiping; Bu, Lintao; Gleber, S Charlotte; Carpita, Nicholas C; Makowski, Lee; Himmel, Michael E; Tucker, Melvin P; McCann, Maureen C; Murphy, Angus S; Peer, Wendy A
2016-10-01
Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusion polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Latunde-Dada, Gladys O; Pereira, Dora IA; Tempest, Bethan; Ilyas, Hibah; Flynn, Angela C; Aslam, Mohamad F; Simpson, Robert J; Powell, Jonathan J
2014-01-01
Background: Iron (Fe) deficiency anemia remains the largest nutritional deficiency disorder worldwide. How the gut acquires iron from nano Fe(III), especially at the apical surface, is incompletely understood. Objective: We developed a novel Fe supplement consisting of nanoparticulate tartrate-modified Fe(III) poly oxo-hydroxide [here termed nano Fe(III)], which mimics the Fe oxide core of ferritin and effectively treats iron deficiency anemia in rats. Methods: We determined transfer to the systemic circulation of nano Fe(III) in iron-deficient and iron-sufficient outbread Swiss mouse strain (CD1) mice with use of 59Fe-labeled material. Iron deficiency was induced before starting the Fe-supplementation period through reduction of Fe concentrations in the rodent diet. A control group of iron-sufficient mice were fed a diet with adequate Fe concentrations throughout the study. Furthermore, we conducted a hemoglobin repletion study in which iron-deficient CD1 mice were fed for 7 d a diet supplemented with ferrous sulfate (FeSO4) or nano Fe(III). Finally, we further probed the mechanism of cellular acquisition of nano Fe(III) by assessing ferritin formation, as a measure of Fe uptake and utilization, in HuTu 80 duodenal cancer cells with targeted inhibition of divalent metal transporter 1 (DMT1) and duodenal cytochrome b (DCYTB) before exposure to the supplemented iron sources. Differences in gene expression were assessed by quantitative polymerase chain reaction. Results: Absorption (means ± SEMs) of nano Fe(III) was significantly increased in iron-deficient mice (58 ± 19%) compared to iron-sufficient mice (18 ± 17%) (P = 0.0001). Supplementation of the diet with nano Fe(III) or FeSO4 significantly increased hemoglobin concentrations in iron-deficient mice (170 ± 20 g/L, P = 0.01 and 180 ± 20 g/L, P = 0.002, respectively). Hepatic hepcidin mRNA expression reflected the nonheme-iron concentrations of the liver and was also comparable for both nano Fe(III)– and FeSO4-supplemented groups, as were iron concentrations in the spleen and duodenum. Silencing of the solute carrier family 11 (proton-coupled divalent metal ion transporter), member 2 (Slc11a2) gene (DMT1) significantly inhibited ferritin formation from FeSO4 (P = 0.005) but had no effect on uptake and utilization of nano Fe(III). Inhibiting DCYTB with an antibody also had no effect on uptake and utilization of nano Fe(III) but significantly inhibited ferritin formation from ferric nitrilotriacetate chelate (Fe-NTA) (P = 0.04). Similarly, cellular ferritin formation from nano Fe(III) was unaffected by the Fe(II) chelator ferrozine, which significantly inhibited uptake and utilization from FeSO4 (P = 0.009) and Fe-NTA (P = 0.005). Conclusions: Our data strongly support direct nano Fe(III) uptake by enterocytes as an efficient mechanism of dietary iron acquisition, which may complement the known Fe(II)/DMT1 uptake pathway. PMID:25342699
Iron incorporation in InP layers using a ferrocene source in atmospheric pressure MOVPE
NASA Astrophysics Data System (ADS)
Robein, D.; Kazmierski, C.; Pougnet, A. M.; Rose, B.
1991-02-01
Iron incorporation into InP has been studied using an AP MOVPE method. A very good control of the iron doping has been obtained with a ferrocene diffusion cell source. Semi-insulating material with a resistivity as a high as 5 × 10 8 Ω cm has been measured on n-SI-n diodes with iron-doped 1 mum thick layers. A compensation activity of iron near 100% has been found. An iron incorporation activition energy of 2.5 eV has been determined below the solubility limit. The iron concentration was found to be proportional to the gas-phase ferrocene concentration and to follow an inverse square-root law under increasing phosphine flow. In order to explain the observed phenomena, an incorporation mechanism model is developed assuming a two-phosphorus vacancy— substitutional iron complex as the incorporated species.
USDA-ARS?s Scientific Manuscript database
An extruded grain designed to look like a rice kernel fortified with one of two sources of iron (elemental iron and ferrous sulfate), with and without multiple fortificant (zinc, thiamin and folic acid) was mixed with milled Calrose rice at low (1:200), medium (1:100) and high (1:50) concentrations....
Tarifeño-Saldivia, Estefanía; Aguilar, Andrea; Contreras, David; Mercado, Luis; Morales-Lange, Byron; Márquez, Katherine; Henríquez, Adolfo; Riquelme-Vidal, Camila; Boltana, Sebastian
2018-01-01
Iron is a trace element, essential to support life due to its inherent ability to exchange electrons with a variety of molecules. The use of iron as a cofactor in basic metabolic pathways is essential to both pathogenic microorganisms and their hosts. During evolution, the shared requirement of micro- and macro-organisms for this important nutrient has shaped the pathogen-host relationship. Infectious pancreatic necrosis virus (IPNv) affects salmonids constituting a sanitary problem for this industry as it has an important impact on post-smolt survival. While immune modulation induced by IPNv infection has been widely characterized on Salmo salar , viral impact on iron host metabolism has not yet been elucidated. In the present work, we evaluate short-term effect of IPNv on several infected tissues from Salmo salar . We observed that IPNv displayed high tropism to headkidney, which directly correlates with a rise in oxidative stress and antiviral responses. Transcriptional profiling on headkidney showed a massive modulation of gene expression, from which biological pathways involved with iron metabolism were remarkable. Our findings suggest that IPNv infection increase oxidative stress on headkidney as a consequence of iron overload induced by a massive upregulation of genes involved in iron metabolism.
A cross-sectional survey of the growth and nutrition of the Bedouin of the South Sinai Peninsula.
Beverley, David; Henderson, Catriona
2003-09-01
A total of 271 Bedouin, 140 of them younger than 16 years and 110 of them female, were examined as part of a health survey. The Bedouin of the southern Sinai showed evidence of stunted growth. Sixty-six subjects (24 female) were clinically anaemic. This might have been nutritional or secondary to giardiasis. Simple nutritional strategies to increase the protein and iron content of the diet might help to prevent these problems. Twenty Bedouin had sensorineural hearing loss that was thought to be autosomal recessive in one family grouping. In addition, ten adults had had an uvulectomy, a traditional means of thirst quenching.
Proximate composition and nutritional evaluation of the adductor muscle of pen shell.
Wu, Shengjun; Wu, Yuping
2017-07-01
The proximate composition of pen shell adductor muscle (PSAM) was determined, and its nutrition value was evaluated. Proximate composition analysis indicated that PSAM contained 91.07% (w/w) protein, 5.77% (w/w) ash, and 2.46% (w/w) fat. Calcium was the predominant mineral followed by zinc and then iron. The amino acid profile was in accordance with the recommended pattern of FAO/WHO except for histidine. At the same time, the first limiting amino acid was histidine. Fatty acid composition showed that docosahexaenoic acid was the major fatty acid, followed by palmitic, stearic, and arachidonic acids. Results indicated that PSAM was rich in nutrition and may be developed as a functional food.
Iron supplement use in pregnancy - Are the right women taking the right amount?
Chatterjee, Rahul; Shand, Antonia; Nassar, Natasha; Walls, Mariyam; Khambalia, Amina Z
2016-06-01
To examine the prevalence and determinants of iron supplement use and the amount of iron consumed from iron-containing supplements. A cross-sectional survey was performed in antenatal clinics in two tertiary hospitals in Sydney, Australia between January and March 2014. Of 612 (91% response rate) pregnant women, 589 with complete data were analysed. Overall iron-containing supplement use was 88.0%, of which 70.1% was multivitamin (MV) only, 7.2% was iron-only and 22.2% was both. Use of iron-containing supplements was associated with increased gestational age, a diagnosis of anaemia or iron deficiency (ID) in the current pregnancy and pre-pregnancy use of an iron-containing supplement. Several risk factors for ID or anaemia such as non-red meat eating and previous miscarriage were not associated with current iron supplement use. About 65% of women diagnosed with ID, and 62.3% of women diagnosed with anaemia were taking an iron-only supplement, with or without a MV. The proportion of women consuming low (<30), preventative (30-99) and treatment (≥100) mg/day doses were 36.8%, 45.4%, and 17.8%, respectively. Only 46.7% of women diagnosed with ID were taking ≥100 mg/day iron from supplements, while 23.3% were taking <30 mg/day. Women are consuming varying doses of iron and some high-risk women are taking inadequate doses of iron to prevent or treat ID or iron deficiency anaemia. Healthcare professionals are best positioned to advise women on iron supplement use in pregnancy and should educate women individually about the type and dose of supplement best suited to their needs. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Davidsson, L; Walczyk, T; Morris, A; Hurrell, R F
1998-05-01
The influence of ascorbic acid on iron absorption from an iron-fortified, chocolate-flavored milk drink (6.3 mg total Fe per serving) was evaluated with a stable-isotope technique in 20 6-7-y-old Jamaican children. Each child received two test meals labeled with 5.6 mg 57Fe and 3.0 mg 58Fe as ferrous sulfate on 2 consecutive days. Three different doses of ascorbic acid (0, 25, and 50 mg per 25-g serving) were evaluated in two separate studies by using a crossover design. Iron isotope ratios were measured by negative thermal ionization mass spectrometry. In the first study, iron absorption was significantly greater (P < 0.0001) after the addition of 25 mg ascorbic acid: geometric mean iron absorption was 1.6% (range: 0.9-4.2%) and 5.1% (2.2-17.3%) for the test meals containing 0 and 25 mg ascorbic acid, respectively. In the second study, a significant difference (P < 0.05) in iron absorption was observed when the ascorbic acid content was increased from 25 to 50 mg: geometric mean iron absorption was 5.4% (range: 2.7-10.8%) compared with 7.7% (range: 4.7-16.5%), respectively. The chocolate drink contained relatively high amounts of polyphenolic compounds, phytic acid, and calcium, all well-known inhibitors of iron absorption. The low iron absorption without added ascorbic acid shows that chocolate milk is a poor vehicle for iron fortification unless sufficient amounts of an iron-absorption enhancer are added. Regular consumption of iron-fortified chocolate milk drinks containing added ascorbic acid could have a positive effect on iron nutrition in population groups vulnerable to iron deficiency.
Malpeli, Agustina; Ferrari, María Guillermina; Varea, Ana; Falivene, Mariana; Etchegoyen, Graciela; Vojkovic, María; Carmuega, Estéban; Disalvo, Liliana; Apezteguía, María; Pereyras, Silvia; Tournier, Andrea; Vogliolo, Daniel; Gonzalez, Horacio F
2013-11-01
We studied the impact of a food supplementation program (Plan Más Vida (PMV)) on the micronutrient nutritional condition of pregnant women from low-income families 1 year after its implementation. The food program provided supplementary diet (wheat and maize--fortified flour, rice or sugar, and fortified soup). We performed a prospective, nonexperimental, cross-sectional study in the province of Buenos Aires, Argentina, evaluating pregnant women at baseline (n = 164) and 1 year after PMV implementation (n = 108). Biochemical tests (hemogram, ferritin, vitamin A, zinc, and folic acid), anthropometric assessments (weight and height), and dietary surveys (24 h recall) were performed at the two study points. One year after PMV implementation, no significant changes in anthropometric values were observed. Folic acid deficiency and the risk of vitamin A deficiency (retinol, 20-30 μg/dl) decreased significantly (35.8 to 6.1 % and 64 to 41 %, respectively; p < 0.000). Anemia and prevalence of iron and zinc deficiency values did not change. Diet survey results showed that although nutrient intake increased significantly, it was still below recommendations. Implementation of the PMV and of the government nutritional strategies had a high impact on the prevalence of folic acid deficiency. We also observed a decrease in the risk of vitamin A deficiency, and no impact on iron and zinc nutritional status. Adherence to the specific fortified food (soup) was not good and intra-family dilution and distribution of food was high.
Nutrition Status of Young Elite Female German Football Players.
Braun, Hans; von Andrian-Werburg, Judith; Schänzer, Wilhelm; Thevis, Mario
2018-02-01
To investigate energy intake, energy expenditure, and the nutritional status of young female elite football players using 7-day food and activity records and blood parameters. A total of 56 female elite football players [14.8 (0.7) y] completed the requested food and activity protocols. Misreporting was assessed by the ratio of energy intake to energy expenditure. The food records were analyzed concerning energy and macronutrient and micronutrient intakes, and energy expenditure was calculated using predictive equations. Hematological data and 25-hydroxyvitamin D serum concentrations were determined. Mean energy intake was 2262 (368) kcal/d [40.5 (7.0) kcal/kg/d] and estimated EE averaged 2403 (195) kcal/d. Fifty-three percent of the players exhibited an energy availability <30 kcal/kg lean body mass; 31% of the athletes consumed <5 g/kg carbohydrates and 34% consumed <1.2 g/kg proteins. A large proportion of players (%) had intakes below the recommended daily allowance of folate (75%), vitamin D (100%), iron (69%), and calcium (59%). Ferritin and 25-hydroxyvitamin D serum levels were below the recommendations of 59% and 38%, respectively. A remarkable number of players failed to meet the energy balance and the recommended carbohydrate and protein intakes. Low iron and 25-hydroxyvitamin D serum levels were observed showing a suboptimal nutrition status of some young female football players. As a consequence, strategies have to be developed for a better information and application of sport nutrition practice among young female football players.
Bouis, Howarth E; Eozenou, Patrick; Rahman, Aminur
2011-03-01
The recent rise in agricultural commodity prices has been dramatic, and food prices are likely to follow an upward trend, at least in the medium-term. Moreover, the recent financial crisis has also lowered incomes and increased food prices. Not only does this reduce dietary quality, but expenditures for health, sanitation, and education will decline, all of which will have a detrimental effect on health and nutrition outcomes. To provide some perspectives on the role of major socioeconomic factors in driving health and nutrition outcomes. We use demand elasticity parameters estimated from household-level survey data to simulate an increase in food prices, which is then mapped into energy and nutrient intakes. Furthermore, we also use household-level data to analyze the implications of unequal intrahousehold distribution of food for the nutritional status of adult women and female children. A 50% increase in food prices results in a decrease in energy intake of 5% to 15% and in a decrease in iron intake of 10% to 30%, depending on the strength of the induced income effect. In a country like the Philippines, this would be equivalent to an increase of 25 percentage points in the proportion of women not meeting their requirements for iron intake. Increasing food prices will make fighting micronutrient malnutrition in developing countries more difficult. In societies where preference is given to males in the intrahousehold distribution of nonstaple foods, this objective will be even more challenging.
Crack, Jason C; Green, Jeffrey; Thomson, Andrew J; Le Brun, Nick E
2014-10-21
Iron-sulfur cluster proteins exhibit a range of physicochemical properties that underpin their functional diversity in biology, which includes roles in electron transfer, catalysis, and gene regulation. Transcriptional regulators that utilize iron-sulfur clusters are a growing group that exploit the redox and coordination properties of the clusters to act as sensors of environmental conditions including O2, oxidative and nitrosative stress, and metabolic nutritional status. To understand the mechanism by which a cluster detects such analytes and then generates modulation of DNA-binding affinity, we have undertaken a combined strategy of in vivo and in vitro studies of a range of regulators. In vitro studies of iron-sulfur cluster proteins are particularly challenging because of the inherent reactivity and fragility of the cluster, often necessitating strict anaerobic conditions for all manipulations. Nevertheless, and as discussed in this Account, significant progress has been made over the past decade in studies of O2-sensing by the fumarate and nitrate reduction (FNR) regulator and, more recently, nitric oxide (NO)-sensing by WhiB-like (Wbl) and FNR proteins. Escherichia coli FNR binds a [4Fe-4S] cluster under anaerobic conditions leading to a DNA-binding dimeric form. Exposure to O2 converts the cluster to a [2Fe-2S] form, leading to protein monomerization and hence loss of DNA binding ability. Spectroscopic and kinetic studies have shown that the conversion proceeds via at least two steps and involves a [3Fe-4S](1+) intermediate. The second step involves the release of two bridging sulfide ions from the cluster that, unusually, are not released into solution but rather undergo oxidation to sulfane (S(0)) subsequently forming cysteine persulfides that then coordinate the [2Fe-2S] cluster. Studies of other [4Fe-4S] cluster proteins that undergo oxidative cluster conversion indicate that persulfide formation and coordination may be more common than previously recognized. This remarkable feature suggested that the original [4Fe-4S] cluster can be restored using persulfide as the source of sulfide ion. We have demonstrated that only iron and a source of electrons are required to promote efficient conversion back from the [2Fe-2S] to the [4Fe-4S] form. We propose this as a novel in vivo repair mechanism that does not require the intervention of an iron-sulfur cluster biogenesis pathway. A number of iron-sulfur regulators have evolved to function as sensors of NO. Although it has long been known that the iron-sulfur clusters of many phylogenetically unrelated proteins are vulnerable to attack by NO, our recent studies of Wbl proteins and FNR have provided new insights into the mechanism of cluster nitrosylation, which overturn the commonly accepted view that the product is solely a mononuclear iron dinitrosyl complex (known as a DNIC). The major reaction is a rapid, multiphase process involving stepwise addition of up to eight NO molecules per [4Fe-4S] cluster. The major iron nitrosyl product is EPR silent and has optical characteristics similar to Roussin's red ester, [Fe2(NO)4(RS)2] (RRE), although a species similar to Roussin's black salt, [Fe4(NO)7(S)3](-) (RBS) cannot be ruled out. A major future challenge will be to clarify the nature of these species.
Denney, Liya; Afeiche, Myriam C.; Eldridge, Alison L.; Villalpando-Carrión, Salvador
2017-01-01
Food sources of nutrients in Mexican children are not well known. To fill the knowledge gap, dietary intake was assessed in 2057 children using a 24-h dietary recall. All reported foods and beverages were assigned to one of 76 food groups. Percent contribution of each food group to nutrient intake was estimated for four age groups: 0–5.9, 6–11.9, 12–23.9, and 24–47.9 months. Breast milk, infant formula, and cow’s milk were the top sources of energy and nutrients, especially in younger groups. Among infants aged 6–11.9 months, the top food sources of energy included soups and stews, cookies, fruit, tortillas, eggs and egg dishes, and traditional beverages. The same foods plus sweetened breads, dried beans, and sandwiches and tortas were consumed as the top sources of energy among toddlers and young children. Milk, soups, and stews were the top contributors for all nutrients and tortillas, eggs, and egg dishes were among the top contributors for iron and zinc. This study showed that low nutrient-dense cookies, sweetened breads, and traditional beverages were among the core foods consumed early in life in Mexico. This compromises the intake of more nutritious foods such as vegetables and fortified cereals and increases the risk of obesity. PMID:28505084
Denney, Liya; Afeiche, Myriam C; Eldridge, Alison L; Villalpando-Carrión, Salvador
2017-05-13
Food sources of nutrients in Mexican children are not well known. To fill the knowledge gap, dietary intake was assessed in 2057 children using a 24-hour dietary recall. All reported foods and beverages were assigned to one of 76 food groups. Percent contribution of each food group to nutrient intake was estimated for four age groups: 0-5.9, 6-11.9, 12-23.9, and 24-47.9 months. Breast milk, infant formula, and cow's milk were the top sources of energy and nutrients, especially in younger groups. Among infants aged 6-11.9 months, the top food sources of energy included soups and stews, cookies, fruit, tortillas, eggs and egg dishes, and traditional beverages. The same foods plus sweetened breads, dried beans, and sandwiches and tortas were consumed as the top sources of energy among toddlers and young children. Milk, soups, and stews were the top contributors for all nutrients and tortillas, eggs, and egg dishes were among the top contributors for iron and zinc. This study showed that low nutrient-dense cookies, sweetened breads, and traditional beverages were among the core foods consumed early in life in Mexico. This compromises the intake of more nutritious foods such as vegetables and fortified cereals and increases the risk of obesity.
Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.).
Birla, Deep Shikha; Malik, Kapil; Sainger, Manish; Chaudhary, Darshna; Jaiwal, Ranjana; Jaiwal, Pawan K
2017-07-24
Rice is a staple food for more than 3 billion people in more than 100 countries of the world but ironically it is deficient in many bioavailable vitamins, minerals, essential amino- and fatty-acids and phytochemicals that prevent chronic diseases like type 2 diabetes, heart disease, cancers, and obesity. To enhance the nutritional and other quality aspects of rice, a better understanding of the regulation of the processes involved in the synthesis, uptake, transport, and metabolism of macro-(starch, seed storage protein and lipid) and micronutrients (vitamins, minerals and phytochemicals) is required. With the publication of high quality genomic sequence of rice, significant progress has been made in identification, isolation, and characterization of novel genes and their regulation for the nutritional and quality enhancement of rice. During the last decade, numerous efforts have been made to refine the nutritional and other quality traits either by using the traditional breeding with high through put technologies such as marker assisted selection and breeding, or by adopting the transgenic approach. A significant improvement in vitamins (A, folate, and E), mineral (iron), essential amino acid (lysine), and flavonoids levels has been achieved in the edible part of rice, i.e., endosperm (biofortification) to meet the daily dietary allowance. However, studies on bioavailability and allergenicity on biofortified rice are still required. Despite the numerous efforts, the commercialization of biofortified rice has not yet been achieved. The present review summarizes the progress and challenges of genetic engineering and/or metabolic engineering technologies to improve rice grain quality, and presents the future prospects in developing nutrient dense rice to save the everincreasing population, that depends solely on rice as the staple food, from widespread nutritional deficiencies.
Xiao, Haihua; Yin, Liping; Xu, Xuefeng; Li, Tianzhong; Han, Zhenhai
2008-01-01
Background and Aims Iron deficiency is one of the most common nutritional disorders in plants, especially in fruit trees grown in calcareous soil. Malus baccata is widely used as an apple rootstock in north China and is highly resistant to low temperatures. There are few studies on iron absorption by this species at the molecular level. It is very important to understand the mechanism of iron uptake and transport in such woody plants. As a helpful tool, the aim of the present study was the cloning and functional analysis of NRAMP (natural resistance-associated macrophage protein) genes from the apple tree in relation to trafficking of micronutrients (Fe, Mn and Cd). Methods Reverse transcription-PCR (RT-PCR) combined with RACE (rapid amplification of cDNA ends) was adopted to isolate the full-length NRAMP1 cDNA. Southern blotting was used to test gene copy information, and northern blot was used to detect the gene's expression level. Complementation experiments using the yeast mutant strains DEY1453 and SLY8 were employed to confirm the iron- and manganese-transporting ability of NRAMP1 from apple, and inductively coupled plasma (ICP) spectrometry was used to measure Cd accumulation in yeast. NRAMP1–green fluorescent protein (GFP) fusion protein was used to determine the cellular localization in yeast. Key Results A 2090 bp cDNA was isolated and named MbNRAMP1. It encodes a predicted polypeptide of 551 amino acids. MbNRAMP1 exists in the M. baccata genome as a single copy and was expressed mainly in roots. MbNRAMP1 rescued the phenotype of yeast mutant strains DEY1453 and SLY8, and also increased Cd2+ sensitivity and accumulation. MbNRAMP1 expression in yeast was largely influenced by iron status, and the expression pattern of MbNRAMP1–GFP varied with the environmental iron nutrition status. Conclusions MbNRAMP1 encodes a functional metal transporter capable of mediating the distribution of ions as well as transport of the micronutrients, Fe and Mn, and the toxic metal, Cd. PMID:18819951
Distinct iron isotopic signatures and supply from marine sediment dissolution.
Homoky, William B; John, Seth G; Conway, Tim M; Mills, Rachel A
2013-01-01
Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from 'non-reductive' dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean.
Distinct iron isotopic signatures and supply from marine sediment dissolution
Homoky, William B.; John, Seth G.; Conway, Tim M.; Mills, Rachel A.
2013-01-01
Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from ‘non-reductive’ dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean. PMID:23868399
Yokota, M E; Frison, P S; Marcante, R C; Jorge, L F; Valle, J S; Dragunski, D C; Colauto, N B; Linde, G A
2016-02-22
Translocation of minerals from substrate to mushrooms can change the medicinal characteristics, commercial value, and biological efficiency of mushroom. In the present study, we demonstrated that addition of iron to the substrate reduces the yield of Pleurotus ostreatus mushroom. The biological efficiency of the mushroom varied from 36.53% on the unsupplemented substrate to 2.08% for the substrate with 500 mg/kg iron added. The maximum iron concentration obtained for mushroom was 478.66 mg/kg (dry basis) and the maximum solubility in vitro was 293.70 mg/kg (dry basis). Iron translocation increased the ash and protein content, reduced antioxidant activity, and enhanced the aroma and flavor characteristics of the mushroom. However mushroom has higher amounts of iron than vegetables like collard greens, it is not feasible to use mushrooms as the only dietary source of iron. The study also indicated that because of more bioaccumulation of iron in mycelium than in the mushroom, mycelium and not mushroom, could be a better alternative as a non-animal iron source.
ANEMIA IN PREGNANCY: IMPACT ON WEIGHT AND IN THE DEVELOPMENT OF ANEMIA IN NEWBORN.
de Sá, Solange Augusta; Willner, Erica; Duraes Pereira, Tatiane Aguiar; de Souza, Vanessa Rosse; Teles Boaventura, Gilson; Blondet de Azeredo, Vilma
2015-11-01
nutritional deficiencies are still a common problem during pregnancy causing anemia. Gestational anemia is still considered a public health problem in Brazil, because it is hazardous to both mother and fetus, and is associated with increased risk of maternal-fetal morbidity, as well as the nutritional status of child. to evaluate the frequency of maternal gestational anemia in newborns and its relation to the nutritional status of the child at birth. anthropometric data of pregnant women and their newborns were obtained. Blood was collected from pregnant women and the umbilical cord of newborns for analysis of hemoglobin, hematocrit, RDW, iron, ferritin and transferrin saturation index in automatic devices. The results are presented such as the arithmetic mean and the standard deviation. GraphPadinStat Software version 3.0 was used, with a maximum significance level of 5%. the frequency of maternal anemia was 53.7%, and 32.6% in newborns. Half the newborns were anemic children of anemic mothers. 79.3% of the anemic pregnant women had mild anemia and in 20.7% moderate. The average concentration of hemoglobin and hematocrit was lower in anemic pregnant women (9.7 ± 0.9 g/dL and 29.8 ± 3.2%) compared with non-anemic (11.9 ± 0.7 g/ dL and 36.5 ± 2.7%). The maternal iron was positively correlated with ferritin (r = 0.3889, p = 0.01) from umbilical cord blood. The newborns' weight, length and head circumference of anemic mothers were 3 375.9 ± 506,9 g, 51.2 ± 1.7 cm and 34.5 ± 1.5 cm, respectively, while of nonanemic mothers were 3 300.2 ± 458,4 g, 50.3 ± 2.0 cm and 34.2 ± 2.0 cm, respectively. There were no significant correlations between maternal hemoglobin, iron and ferritin with weight, length and head circumference of newborns. the results of this study show that maternal iron deficiency anemia (mild to moderate) can affect the blood profile and iron concentrations in umbilical cord blood of newborns, but without interfering with the child's anthropometric parameters. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Effect of Dietary Iron Loading on Recognition Memory in Growing Rats
Han, Murui; Kim, Jonghan
2015-01-01
While nutritional and neurobehavioral problems are associated with both iron deficiency during growth and overload in the elderly, the effect of iron loading in growing ages on neurobehavioral performance has not been fully explored. To characterize the role of dietary iron loading in memory function in the young, weanling rats were fed iron-loading diet (10,000 mg iron/kg diet) or iron-adequate control diet (50 mg/kg) for one month, during which a battery of behavioral tests were conducted. Iron-loaded rats displayed elevated non-heme iron levels in serum and liver, indicating a condition of systemic iron overload. In the brain, non-heme iron was elevated in the prefrontal cortex of iron-loaded rats compared with controls, whereas there was no difference in iron content in other brain regions between the two diet groups. While iron loading did not alter motor coordination or anxiety-like behavior, iron-loaded rats exhibited a better recognition memory, as represented by an increased novel object recognition index (22% increase from the reference value) than control rats (12% increase; P=0.047). Western blot analysis showed an up-regulation of dopamine receptor 1 in the prefrontal cortex from iron-loaded rats (142% increase; P=0.002). Furthermore, levels of glutamate receptors (both NMDA and AMPA) and nicotinic acetylcholine receptor (nAChR) were significantly elevated in the prefrontal cortex of iron-loaded rats (62% increase in NR1; 70% increase in Glu1A; 115% increase in nAChR). Dietary iron loading also increased the expression of NMDA receptors and nAChR in the hippocampus. These results support the idea that iron is essential for learning and memory and further reveal that iron supplementation during developmental and rapidly growing periods of life improves memory performance. Our investigation also demonstrates that both cholinergic and glutamatergic neurotransmission pathways are regulated by dietary iron and provides a molecular basis for the role of iron loading in improved memory. PMID:25746420
Oral iron acutely elevates bacterial growth in human serum.
Cross, James H; Bradbury, Richard S; Fulford, Anthony J; Jallow, Amadou T; Wegmüller, Rita; Prentice, Andrew M; Cerami, Carla
2015-11-23
Iron deficiency is the most common nutrient deficiency worldwide and routine supplementation is standard policy for pregnant mothers and children in most low-income countries. However, iron lies at the center of host-pathogen competition for nutritional resources and recent trials of iron administration in African and Asian children have resulted in significant excesses of serious adverse events including hospitalizations and deaths. Increased rates of malaria, respiratory infections, severe diarrhea and febrile illnesses of unknown origin have all been reported, but the mechanisms are unclear. We here investigated the ex vivo growth characteristics of exemplar sentinel bacteria in adult sera collected before and 4 h after oral supplementation with 2 mg/kg iron as ferrous sulfate. Escherichia coli, Yersinia enterocolitica and Salmonella enterica serovar Typhimurium (all gram-negative bacteria) and Staphylococcus epidermidis (gram-positive) showed markedly elevated growth in serum collected after iron supplementation. Growth rates were very strongly correlated with transferrin saturation (p < 0.0001 in all cases). Growth of Staphylococcus aureus, which preferentially scavenges heme iron, was unaffected. These data suggest that even modest oral supplements with highly soluble (non-physiological) iron, as typically used in low-income settings, could promote bacteremia by accelerating early phase bacterial growth prior to the induction of immune defenses.
NASA Astrophysics Data System (ADS)
Lu, Zhengda; Erickson, David
2017-03-01
Vitamin A and iron deficiency are common malnutrition affecting billions of people worldwide. However, in infrastructure limited settings, access to blood vitamin A and iron status test is limited because of the complexity and cost of traditional diagnostic methods. Direct measurements of vitamin A and iron level is not easy to perform, and it is necessary to measure approximate marker for obtaining vitamin A and iron deficiency status. Measurement of inflammatory marker is also necessary because the vitamin A and iron level are altered by inflammation status. Here we introduced a multiplex rapid point-of-care (POC) diagnostic devices that simultaneously characterize three markers relevant to vitamin A, iron and inflammation status: retinol binding protein 4, ferritin and C-reactive protein with lateral flow immunoassay test strips. Level of retinol binding protein 4, ferritin and C-reactive protein are indicated by excitation intensity of fluorescence tags with three different colors. The test can be done within 15 minutes and a complete sample-answer quantitative results of vitamin A, iron and inflammation status level can be obtained with assists of a smartphone and an external device. We also demonstrated the device is able to perform colorimetric analysis on single test area. which gives the device potential to perform more tests simultaneously at the same time.
Impact of vegetarian diet on serum immunoglobulin levels in children.
Gorczyca, Daiva; Prescha, Anna; Szeremeta, Karolina
2013-03-01
Nutrition plays an important role in immune response. We evaluated the effect of nutrient intake on serum immunoglobulin levels in vegetarian and omnivore children. Serum immunoglobulin levels and iron status were estimated in 22 vegetarian and 18 omnivore children. Seven-day food records were used to assess the diet. There were no significant differences in serum IgA, IgM, and IgG levels between groups of children. Serum immunoglobulin levels were lower in vegetarian children with iron deficiency in comparison with those without iron deficiency. In the vegetarians, IgG level correlated positively with energy, zinc, copper, and vitamin B(6) intake. In the omnivores, these correlations were stronger with IgM level. Despite negligible differences in serum immunoglobulin levels between vegetarian and omnivore children, the impact of several nutrient intakes on IgM and IgG levels differed between groups. Low iron status in vegetarian children can lead to decreased immunoglobulin levels.
Smitasiri, Suttilak; Solon, Florentino S
2005-12-01
Lack of effective implementation mechanisms is identified as a major obstacle in the prevention and control of iron-deficiency anemia. This paper discusses experiences gained from implementing iron-folic acid supplementation in the Philippines, Vietnam, and Cambodia. The understanding of contextual elements is proposed as a foundation for planning interventions. Moreover, it is suggested that a social marketing framework should provide a way of thinking about how to influence related behaviors. The application of a social marketing framework applied using a "5 P's" approach: public relations and collaboration, product, price, place, and promotion, is described, as well as enabling factors (possibilities) and inhibiting factors (challenges) of this approach. Although a program to improve iron nutrition among women of reproductive age may not be simple to implement, it is essential to enhancing health, human development, and economic advancement in developing countries.
Studier, E H; Viele, D P; Sevick, S H
1991-01-01
1. Analysis of nitrogen, sodium, calcium, magnesium, iron, and potassium levels in big brown bat guano throughout much of the summer roosting period was performed. 2. Based on the tenet that low, non-variable levels of an element in feces indicate dietary inadequacy for that element, female big brown bats are routinely and severely stressed for calcium and may become stressed for iron by the end of the summer. Similar elemental stresses, although not as severe, exist for males.
Haile, Zelalem T; Teweldeberhan, Asli K; Chertok, Ilana R A
2016-01-01
To analyze the associations between oral contraceptive (OC) use and markers of iron deficiency, objectively measured using hemoglobin and soluble transferrin receptor. A secondary data analysis was performed of a population-based cross-sectional study using data from the 2010 Tanzania Demographic and Health Survey. Weighted percentages were calculated. Multivariable logistic regression was used to examine the associations between OC use and iron deficiency, anemia, and iron deficiency anemia. Of the 4336 participants, only 7.3% reported a history of OC use. The prevalence rates of iron deficiency, anemia, and iron deficiency anemia were 30.3%, 40.9%, and 15.1%, respectively. Use of OCs was negatively associated with anemia and iron deficiency anemia, independent of potential confounders. Compared with OC nonusers, the multivariable-adjusted odds ratio among OC users was 0.44 (95% confidence interval 0.32-0.59; P<0.001) for anemia and 0.43 (95% confidence interval 0.27-0.68; P<0.001) for iron deficiency anemia. A longer duration of OC use was negatively associated with iron deficiency (P=0.003 for trend), anemia (P<0.001 for trend), and iron deficiency anemia (P<0.001 for trend). The significant association between OC use and iron status has important implications for educating healthcare providers and women about additional nutritional benefits of the use of OCs. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
Prevalence of anaemia in pregnant & lactating women in India.
Agarwal, K N; Agarwal, D K; Sharma, A; Sharma, K; Prasad, K; Kalita, M C; Khetarpaul, N; Kapoor, A C; Vijayalekshmi, L; Govilla, A K; Panda, S M; Kumari, P
2006-08-01
The prevalence of anaemia during pregnancy and lactation was significantly lower in the National Family Health Survey 1998-1999 (NFHS-2), using the hemocue method for haemoglobin estimation compared to earlier surveys. The present study selected seven States and used the same districts and villages studied in the NFHS-2, to see if the reported reduction in prevalence of anaemia was due to health and nutrition inputs and/or due to a different method for haemoglobin estimation. A total of 1,751 women (1,148 pregnant and 603 lactating- exclusively breastfeeding up to 3 months of age), from seven States- Himachal Pradesh and Haryana in north; Assam and Orissa in east; Kerala and Tamil Nadu in south and Madhya Pradesh in central India, were selected. Haemoglobin was estimated by the cyanmethaemoglobin method, so that comparison was possible with earlier studies. Data on socio-demographic characteristics, pregnancy, nutritional status and dietary intakes were collected. Prevalence as well as severity of anaemia was significantly higher in the present study as compared to the NFHS-2 study data. The difference could be due to haemocue method, which gives higher haemoglobin values. The contributing factors found on multiple regression analysis for anaemia in pregnancy and lactation were: literacy, occupation and standard living index of the study women; their awareness about anaemia, its prevention by regular consumption of ironfolate tablets and increase in food intake. Maternal height, age of marriage, parity and foetal loss also contributed to haemoglobin level. There were interstate differences; lower fertility, higher literacy and better diet was observed in Himachal Pradesh as compared to Haryana. The literacy and nutritional status of women in Tamil Nadu was lower than Kerala. The remaining 3 states had poor fertility, lower social living index and nutritional status with >90 per cent women being anaemic in pregnancy and lactation. Low prevalence of severe anaemia in Orissa as compared to Assam was due to availability and consumption of iron folate tablets. The antenatal services in the first trimester and checkup by a doctor, along with availability and consumption of iron folate tablets over 3 months in all the States influenced haemoglobin levels. Despite the measures taken to control anaemia in pregnancy and lactation in the last two decades, the severity of nutritional anaemia continues to remain a public health issue of great magnitude, suggesting that these measures have been largely ineffective. The present findings also showed interstate differences particularly in fertility, women education, nutrition status and occupation; availability of antenatal services and iron folate tablets as possible factors responsible for differences in prevalence of anaemia.
Schneider, Nora; Garcia-Rodenas, Clara L.
2017-01-01
Adequate nutrition is important for neurodevelopmental outcomes in preterm-born infants. In this review, we aim to summarize the current knowledge on nutritional interventions initiated during the hospital stay targeting brain and cognitive development benefits in preterm human infants. Studies can broadly be split in general dietary intervention studies and studies investigating specific nutrients or nutritional supplements. In general, mother’s breast milk was reported to be better for preterm infants’ neurodevelopment compared to infant formula. The differences in methodologies make it difficult to conclude any effects of interventions with individual nutrients. Only protein and iron level studies showed some consistent findings regarding optimal doses; however, confirmatory studies are needed. This review does not support some widely accepted associations, such as that between long-chain polyunsaturated fatty acid supplementation and visual development. Clear nutritional recommendations cannot be made based on this review. However, the type of infant nutrition (i.e., breast milk versus formula or donor milk), the timing of the nutritional intervention, and the dose of the nutrient/supplement have been found to be relevant factors in determining the success of nutritional intervention studies in preterm infants. PMID:28241501
Canadian infants' nutrient intakes from complementary foods during the first year of life
2010-01-01
Background Complementary feeding is currently recommended after six months of age, when the nutrients in breast milk alone are no longer adequate to support growth. Few studies have examined macro- and micro-nutrient intakes from complementary foods (CF) only. Our purpose was to assess the sources and nutritional contribution of CF over the first year of life. Methods In July 2003, a cross-sectional survey was conducted on a nationally representative sample of mothers with infants aged three to 12 months. The survey was administered evenly across all regions of the country and included a four-day dietary record to assess infants' CF intakes in household (tablespoon) measures (breast milk and formula intakes excluded). Records from 2,663 infants were analyzed for nutrient and CF food intake according to 12 categories. Mean daily intakes for infants at each month of age from CF were pooled and compared to the Dietary Reference Intakes for the respective age range. Results At three months of age, 83% of infants were already consuming infant cereals. Fruits and vegetables were among the most common foods consumed by infants at all ages, while meats were least common at all ages except 12 months. Macro- and micro-nutrient intakes from CF generally increased with age. All mean nutrient intakes, except vitamin D and iron, met CF recommendations at seven to 12 months. Conclusions Complementary foods were introduced earlier than recommended. Although mean nutrient intakes from CF at six to 12 months appear to be adequate among Canadian infants, further attention to iron and vitamin D intakes and sources may be warranted. PMID:20565759
Bepary, Rejaul Hoque; Wadikar, D D; Neog, Seuji Borah; Patki, P E
2017-03-01
Rice bean ( Vigna umbellata ) is grown in South and Southeast Asia, and the bean has gained importance due to its nutritional strength in terms of dietary fiber, quality protein and minerals. In current study, the nutritional and functional components, cooking and thermo-gravimetric properties of eleven rice bean varieties from NE India were investigated. Results revealed that the major nutrients among the varieties ranged as follows: 54.21-60.49% carbohydrates, 15.64-21.60% protein, 1.22-2.3% fat, 5.53-6.56% crude fibre, 3.34-3.8% ash; while the functional, anti-nutritional factors and mineral were present as 1189.32-1645.8 mg gallic acid equivalent (GAE)/100 g polyphenols, 205.38-432.14 mg/100 g phytic acid, 23.14-34.12 mg/100 g oxalate, 690.7-1589.5 mg/100 g saponins, 49.90-158.17 μg/100 g hydrocyanide, 111.51-168 calcium, 5.50-10.44 zinc, 3.72-8.37 iron. Principal component analysis revealed that varieties with higher calcium, iron and ash content had lower cooking time, swelling ratio, and cooked grain hardness. It is also revealed that varieties with higher weight loss at sixth stage in thermogravimetric graph had lower carbohydrate and higher protein content. Nagadal variety had higher fat, potassium, magnesium, calcium, sodium, iron, copper and chromium content and better cooking quality as compared to the other varieties. The study revealed that Nagadal variety was superior to other varieties with respect to mineral content, cooking and thermal properties and hence have better potential in the development of value added products.
Nutritional intake of French soccer players at the clairefontaine training center.
Leblanc, J Ch; Le Gall, F; Grandjean, V; Verger, Ph
2002-09-01
Young, French male athletes undergoing intensive elite sports training at the National Training Centre in Clairefontaine served as the subjects (N = 180; age range: 13 to 16 years) in a 3-year dietary survey aimed at characterizing their nutritional intake in terms of energy, macronutrients, calcium, and iron. Each year, the subjects were grouped by level into 3 promotions so that 9 groups could be studied. Dietary intake data were collected each year for each subject in the 9 groups, using a 5-day food record. The results showed that their total energy intake (TEI) was insufficient for athletes (ranging from 2352 454 to 3395 396 kcal/d as opposed to the recommended range of between 3819 and 5185 kcal/d). Furthermore, their diet was unbalanced, with too great an emphasis upon fatty foods (29.1 2.8 to 34.1 3.1% TEI vs. the 20% recommended), to the detriment of carbohydrates (48.5 4.3 to 56.6 3.1% TEI vs. the 55 to 60% recommended). The calcium intake was too low in 5 of the 9 groups while, in contrast, the iron intake was satisfactory in all groups. Furthermore, during this 3-year period at the Clairefontaine Centre, the subjects significantly (p <.05) improved their calcium and iron intakes (1021 197 and 12 2 mg/d in 1996, 1299 155 and 16 2 mg/d in 1997, and 1252 184 and 17 2 mg/d in 1998). This rise in micronutrient intakes may have been due to a physiological adaptation to growth or to the positive effects of courses on nutrition given during their stay at the Centre.
The best sources of iron include: Dried beans Dried fruits Eggs (especially egg yolks) Iron-fortified cereals Liver Lean red meat (especially beef) Oysters Poultry, dark red meat Salmon Tuna Whole ...
NASA Astrophysics Data System (ADS)
Borrione, I.; Aumont, O.; Nielsdóttir, M. C.; Schlitzer, R.
2013-07-01
In high-nutrient low-chlorophyll waters of the western Atlantic sector of the Southern Ocean, an intense phytoplankton bloom is observed annually north of South Georgia, most likely due to an enhanced supply of the limiting micronutrient iron. Shallow sediments and atmospheric dust deposition are believed to be the main iron sources. However, their relative importance is still unclear and in the South Georgia region have yet not been ascertained because iron measurements are very few. In this study, we use austral summer dissolved iron (dFe) data around South Georgia (January and February 2008) with a coupled regional hydrodynamic and biogeochemical model to investigate natural iron fertilization around the island. The biogeochemical component of the model includes an iron cycle, where sediments and dust deposition are the sources of iron to the ocean. The model captures the characteristic flow patterns around South Georgia, hence simulating a large phytoplankton bloom to the north, i.e., downstream, of the island. Modelled dFe concentrations agree well with observations (mean difference and root mean square errors of ~0.02 nM and ~0.81 nM) and form a large plume to the north of the island that extends eastwards for more than 800 km. In agreement with observations, highest dFe concentrations are located along the coast and decrease with distance from the island. Sensitivity tests indicate that most of the iron measured in the main bloom area originates from the coast and the very shallow shelf-sediments (depths < 20 m) while dust deposition plays a minor role, with almost no effects on surface chlorophyll a concentrations. Iron sources such as run-off not represented explicitly in the model, but that likely contribute to the iron plumes observed around South Georgia, are also discussed together with the potential effects their temporal variability may have on the system.
Taylor, Christine L; Brannon, Patsy M
2017-12-01
The NIH Office of Dietary Supplements convened a public workshop on iron screening and supplementation in iron-replete pregnant women and young children in 2016 in Bethesda, Maryland. The starting point for the workshop was the recent reports from the US Preventive Services Task Force concluding that there was insufficient evidence to evaluate the benefits and harms associated with iron screening and routine supplementation among asymptomatic pregnant women and young children (6-24 mo old) in the United States. The goal of the workshop was to explore and refine understanding about the existing knowledge gaps and research needs associated with these preventive services for these groups. Given the focus on the United States, planning for the workshop took into account the higher iron status in the United States compared with developing countries and, in turn, included a focus on iron-replete individuals consistent with the U-shaped risk curve for nutrient-health relations. Topic areas included adaptations in iron homeostasis associated with pregnancy and young childhood, the impact of inflammation, measurement of iron status, current estimates of iron status for pregnant women and young children in the United States and in Europe, and emerging evidence suggesting adverse effects associated with iron supplementation of iron-replete individuals. A crosscutting dialogue conducted at the close of the workshop formed the basis for a workshop summary that specified evidence gaps and research needs in a range of areas centered on the relation of these adaptations of iron homeostasis with the response to and risk from iron supplementation as well as the need for indicators informative of the full continuum of iron status and based on health outcomes, not just erythropoiesis. © 2017 American Society for Nutrition.
Iron deficiency anaemia among apparently healthy pre-school children in Lagos, Nigeria.
Akodu, Olufemi S; Disu, Elizabeth A; Njokanma, Olisamedua F; Kehinde, Omolara A
2016-03-01
Iron deficiency, and specifically iron deficiency anaemia, remains one of the most severe and important nutritional deficiencies in the world today. To estimate the prevalence and associated factors for iron deficiency anaemia among pre-school children in Lagos. The study was conducted from December 2009 to February 2010 at the outpatient clinics of Lagos State University Teaching Hospital, Lagos. Serum iron, total iron binding capacity, transferrin saturation and serum ferritin were assayed in subjects. The primary outcome measured was iron deficiency anaemia established based on the following criteria: hemoglobin <11.0 g/dl1 plus 2 or more of the following: MCV <70fl, transferrin saturation <10% or serum ferritin <15ng/dL. Statistical analysis included Pearson Chi square analysis and logistic regression analysis. A total of 87 apparently healthy subjects were recruited. Only one subject had iron depletion and this child belonged to the ≤ 2 years age category. None of the recruited subjects had iron deficiency without anaemia. Nine of the study subjects (10.11%) had iron deficiency anaemia. The prevalence of iron deficiency anaemia was significantly higher among younger age group than in the older age group (19.1% Vs 2.1%, p = 0.022). The prevalence of iron deficiency anaemia was significantly higher among subjects with weight-for-age, and weight-for-height Z scores below two standard scores (83.3% and 75.0% respectively, p = <0.001 and 0.001 respectively). The overall prevalence of iron deficiency anaemia among study subjects was 10.11%. Iron deficiency anaemia was more common in children aged two years and below. Weight-for-age and weight-for-height Z scores below minus two standard scores were strongly associated with iron deficiency anaemia.