Sample records for o-acetylserine thiol lyase

  1. Purification and characterization of O-acetylserine (thiol) lyase from spinach chloroplasts.

    PubMed

    Droux, M; Martin, J; Sajus, P; Douce, R

    1992-06-01

    O-Acetylserine (thiol) lyase, the last enzyme in the cysteine biosynthetic pathway, was purified to homogeneity from spinach leaf chloroplasts. The enzyme has a molecular mass of 68,000 and consists of two identical subunits of Mr 35,000. The absorption spectrum obtained at pH 7.5 exhibited a peak at 407 nm due to pyridoxal phosphate, and addition of O-acetylserine induced a considerable modification of the spectrum. The pyridoxal phosphate content was found to be 1.1 per subunit of 35,000, and the chromophore was displaced from the enzyme by O-acetylserine, leading to a progressive inactivation of the holoenzyme. Upon gel filtration chromatography on Superdex 200, part of the chloroplastic O-acetylserine (thiol) lyase eluted in association with serine acetyltransferase at a position corresponding to a molecular mass of 310,000 (such a complex called cysteine synthase has been characterized in bacteria). The activity of O-acetylserine (thiol) lyase was optimum between pH 7.5 and 8.5. The apparent Km for O-acetylserine was 1.3 mM and for sulfide was 0.25 mM. The calculated activation energy was 12.6 kcal/mol at 10 mM O-acetylserine. The overall amino-acid composition of spinach chloroplast O-acetylserine (thiol) lyase was different than that determined for the same enzyme (cytosolic?) obtained from a crude extract of spinach leaves. A polyclonal antibody prepared against the chloroplastic O-acetylserine (thiol) lyase exhibited a very low cross-reactivity with a preparation of mitochondrial matrix and cytosolic proteins suggesting that the chloroplastic isoform was distinct from the mitochondrial and cytosolic counterparts.

  2. Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants--structural and kinetic properties of the free and bound enzymes.

    PubMed

    Droux, M; Ruffet, M L; Douce, R; Job, D

    1998-07-01

    The last steps of cysteine synthesis in plants involve two consecutive enzymes. The first enzyme, serine acetyltransferase, catalyses the acetylation of L-serine in the presence of acetyl-CoA to form O-acetylserine. The second enzyme, O-acetylserine (thiol) lyase, converts O-acetylserine to L-cysteine in the presence of sulfide. We have, in the present work, over-produced in Escherichia coli harboring various type of plasmids, either a plant serine acetyltransferase or this enzyme with a plant O-acetylserine (thiol) lyase. The free recombinant serine acetyltransferase (subunit mass of 34 kDa) exhibited a high propensity to form high-molecular-mass aggregates and was found to be highly unstable in solution. However, these aggregates were prevented in the presence of O-acetylserine (thiol) lyase (subunit mass of 36 kDa). Under these conditions homotetrameric serine acetyltransferase associated with two molecules of homodimeric O-acetylserine (thiol) lyase to form a bienzyme complex (molecular mass approximately 300 kDa) called cysteine synthase containing 4 mol pyridoxal 5'-phosphate/mol complex. O-Acetylserine triggered the dissociation of the bienzyme complex, whereas sulfide counteracted the action of O-acetylserine. Protein-protein interactions within the bienzyme complex strongly modified the kinetic properties of plant serine acetyltransferase: there was a transition from a typical Michaelis-Menten model to a model displaying positive kinetic co-operativity with respect to serine and acetyl-CoA. On the other hand, the formation of the bienzyme complex resulted in a very dramatic decrease in the catalytic efficiency of bound O-acetylserine (thiol) lyase. The latter enzyme behaved as if it were a structural and/or regulatory subunit of serine acetyltransferase. Our results also indicated that bound serine acetyltransferase produces a build-up of O-acetylserine along the reaction path and that the full capacity for cysteine synthesis can only be achieved in the presence of a large excess of free O-acetylserine (thiol) lyase. These findings contradict the widely held belief that such a bienzyme complex is required to channel the metabolite intermediate O-acetylserine.

  3. Purification and Kinetic Properties of Serine Acetyltransferase Free of O-Acetylserine(thiol)lyase from Spinach Chloroplasts.

    PubMed

    Ruffet, M. L.; Droux, M.; Douce, R.

    1994-02-01

    Serine acetyltransferase, a key enzyme in the L-cysteine biosynthetic pathway, was purified over 300,000-fold from the stroma of spinach (Spinacia oleracea) leaf chloroplasts. The purification procedure consisted of ammonium sulfate precipitation, anion-exchange chromatography (Trisacryl M DEAE and Mono Q HR10/10), hydroxylapatite chromatography, and gel filtration (Superdex 200). The purified enzyme exhibited a specific activity higher than 200 units mg-1 and a subunit molecular mass of about 33 kD upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Moreover, the purified serine acetyltransferase appeared to be essentially free of O-acetyleserine(thiol)lyase, another enzyme component in the L-cysteine biosynthetic pathway. A steady-state kinetic analysis indicated that the mechanism of the enzyme-catalyzed reaction involves a double displacement. The apparent Km for the two substrates, L-serine and acetyl-coenzyme A, were 2.29 [plus or minus] 0.43 and 0.35 [plus or minus] 0.02 mM, respectively. The rate of L-cysteine synthesis in vitro was measured in a coupled enzyme assay using extensively purified O-acetylserine(thiol)lyase and serine acetyltransferase. This rate was maximum when the assay contained approximately a 400-fold excess of O-acetylserine(thiol)lyase over serine acetyltransferase. Measurements of the relative level of O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma indicated that the former enzyme was present in much larger quantities than the latter. Thus, the activity ratio for these two enzymes [O-acetylserine(thiol)lyase activity/serine acetyltransferase activity] measured in the stromal protein extract was 345. This strongly suggested that all the O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma are involved in bringing a full synthesis of L-cysteine in the chloroplast.

  4. Purification and Kinetic Properties of Serine Acetyltransferase Free of O-Acetylserine(thiol)lyase from Spinach Chloroplasts.

    PubMed Central

    Ruffet, M. L.; Droux, M.; Douce, R.

    1994-01-01

    Serine acetyltransferase, a key enzyme in the L-cysteine biosynthetic pathway, was purified over 300,000-fold from the stroma of spinach (Spinacia oleracea) leaf chloroplasts. The purification procedure consisted of ammonium sulfate precipitation, anion-exchange chromatography (Trisacryl M DEAE and Mono Q HR10/10), hydroxylapatite chromatography, and gel filtration (Superdex 200). The purified enzyme exhibited a specific activity higher than 200 units mg-1 and a subunit molecular mass of about 33 kD upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Moreover, the purified serine acetyltransferase appeared to be essentially free of O-acetyleserine(thiol)lyase, another enzyme component in the L-cysteine biosynthetic pathway. A steady-state kinetic analysis indicated that the mechanism of the enzyme-catalyzed reaction involves a double displacement. The apparent Km for the two substrates, L-serine and acetyl-coenzyme A, were 2.29 [plus or minus] 0.43 and 0.35 [plus or minus] 0.02 mM, respectively. The rate of L-cysteine synthesis in vitro was measured in a coupled enzyme assay using extensively purified O-acetylserine(thiol)lyase and serine acetyltransferase. This rate was maximum when the assay contained approximately a 400-fold excess of O-acetylserine(thiol)lyase over serine acetyltransferase. Measurements of the relative level of O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma indicated that the former enzyme was present in much larger quantities than the latter. Thus, the activity ratio for these two enzymes [O-acetylserine(thiol)lyase activity/serine acetyltransferase activity] measured in the stromal protein extract was 345. This strongly suggested that all the O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma are involved in bringing a full synthesis of L-cysteine in the chloroplast. PMID:12232109

  5. Localization of ATP Sulfurylase and O-Acetylserine(thiol)lyase in Spinach Leaves.

    PubMed

    Lunn, J E; Droux, M; Martin, J; Douce, R

    1990-11-01

    The intracellular compartmentation of ATP sulfurylase and O-acetylserine(thiol)lyase in spinach (Spinacia oleracea L.) leaves has been investigated by isolation of organelles and fractionation of protoplasts. ATP sulfurylase is located predominantly in the chloroplasts, but is also present in the cytosol. No evidence was found for ATP sulfurylase activity in the mitochondria. Two forms of ATP sulfurylase were separated by anion-exchange chromatography. The more abundant form is present in the chloroplasts, the second is cytosolic. O-Acetylserine(thiol)lyase activity is located primarily in the chloroplasts and cytosol, but is also present in the mitochondria. Three forms of O-acetylserine(thiol)lyase were separated by anion-exchange chromatography, and each was found to be specific to one intracellular compartment. The cytosolic ATP sulfurylase may not be active in vivo due to the unfavorable equilibrium constant of the reaction, and the presence of micromolar concentrations of inorganic pyrophosphate in the cytosol, therefore its role remains unknown. It is suggested that the plant cell may be unable to transport cysteine between the different compartments, so that the cysteine required for protein synthesis must be synthesized in situ, hence the presence of O-acetylserine(thiol)lyase in the three compartments where proteins are synthesized.

  6. Localization of ATP Sulfurylase and O-Acetylserine(thiol)lyase in Spinach Leaves

    PubMed Central

    Lunn, John E.; Droux, Michel; Martin, Jacqueline; Douce, Roland

    1990-01-01

    The intracellular compartmentation of ATP sulfurylase and O-acetylserine(thiol)lyase in spinach (Spinacia oleracea L.) leaves has been investigated by isolation of organelles and fractionation of protoplasts. ATP sulfurylase is located predominantly in the chloroplasts, but is also present in the cytosol. No evidence was found for ATP sulfurylase activity in the mitochondria. Two forms of ATP sulfurylase were separated by anion-exchange chromatography. The more abundant form is present in the chloroplasts, the second is cytosolic. O-Acetylserine(thiol)lyase activity is located primarily in the chloroplasts and cytosol, but is also present in the mitochondria. Three forms of O-acetylserine(thiol)lyase were separated by anion-exchange chromatography, and each was found to be specific to one intracellular compartment. The cytosolic ATP sulfurylase may not be active in vivo due to the unfavorable equilibrium constant of the reaction, and the presence of micromolar concentrations of inorganic pyrophosphate in the cytosol, therefore its role remains unknown. It is suggested that the plant cell may be unable to transport cysteine between the different compartments, so that the cysteine required for protein synthesis must be synthesized in situ, hence the presence of O-acetylserine(thiol)lyase in the three compartments where proteins are synthesized. PMID:16667839

  7. O-acetylserine(thiol)lyase from spinach (Spinacia oleracea L.) leaf: cDNA cloning, characterization, and overexpression in Escherichia coli of the chloroplast isoform.

    PubMed

    Rolland, N; Droux, M; Lebrun, M; Douce, R

    1993-01-01

    The last enzymatic step for L-cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL, EC 4.2.99.8) which synthesizes L-cysteine from O-acetylserine and "sulfide." We have isolated and characterized a full-length cDNA (1432 bp) from a lambda gt11 library of spinach leaf encoding the complete precursor of the chloroplast isoform. The 1149-nucleotide open reading frame coding for O-acetylserine(thiol)lyase was in the direction opposite that of the lambda gt11 beta-galactosidase gene. The derived amino acid sequence indicates that the protein precursor consists of 383 amino acid residues including a N-terminal presequence peptide of 52 residues. The amino acid sequence of mature spinach chloroplast O-acetylserine(thiol)lyase shows 40 and 57% homology with its bacterial counterparts. Sequence comparison with several pyridoxal 5'-phosphate-containing proteins reveals the presence of a lysine residue assumed to be involved in cofactor binding. A synthetic cDNA was constructed, coding for the entire 331-amino-acid mature O-acetylserine(thiol)lyase and for an initiating methionine. A high level of expression of the active mature chloroplast isoform was achieved in an Escherichia coli strain carrying the T7 RNA polymerase system (F. W. Studier, A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff, 1990, in Methods in Enzymology, D. V. Goeddel, Ed., Vol. 185, pp. 60-89, Academic Press, San Diego, CA). Addition of pyridoxine to the bacterial growth medium enhanced the enzyme activity due to the recombinant protein. The extent of production is 25-fold higher than in chloroplast from spinach leaves and the recombinant protein presents the relative molecular mass and immunological properties of the natural enzyme from spinach leaf chloroplast. This work, together with our previous biochemical studies, are in accordance with a prokaryotic type enzyme for L-cysteine biosynthesis in higher plant chloroplasts. Southern blot analysis indicated that O-acetylserine(thiol)lyase is encoded by multiple genes in the spinach leaf genomic DNA.

  8. Subcellular Distribution of O-Acetylserine(thiol)lyase in Cauliflower (Brassica oleracea L.) Inflorescence.

    PubMed

    Rolland, N; Droux, M; Douce, R

    1992-03-01

    The subcellular localization of O-acetyiserine(thiol)lyase (EC 4.2.99.8) in nongreen tissue from higher plants has been studied using purified proplastids, mitochondria, and protoplasts from cauliflower (Brassica oleracea L.) buds as a source of subcellular fractions. O-Acetylserine(thiol)lyase has been detected in both organelles (proplastids and mitochondria) and a cytosolic extract obtained by protoplast fractionation. We confirmed these observations, demonstrating that a form of the enzyme different in global charge and separated from others by anion-exchange chromatography corresponded to each subcellular location. Our observations are consistent with the need for cysteine biosynthesis in each subcellular compartment where the synthesis of proteins occurs.

  9. Subcellular Distribution of O-Acetylserine(thiol)lyase in Cauliflower (Brassica oleracea L.) Inflorescence

    PubMed Central

    Rolland, Norbert; Droux, Michel; Douce, Roland

    1992-01-01

    The subcellular localization of O-acetyiserine(thiol)lyase (EC 4.2.99.8) in nongreen tissue from higher plants has been studied using purified proplastids, mitochondria, and protoplasts from cauliflower (Brassica oleracea L.) buds as a source of subcellular fractions. O-Acetylserine(thiol)lyase has been detected in both organelles (proplastids and mitochondria) and a cytosolic extract obtained by protoplast fractionation. We confirmed these observations, demonstrating that a form of the enzyme different in global charge and separated from others by anion-exchange chromatography corresponded to each subcellular location. Our observations are consistent with the need for cysteine biosynthesis in each subcellular compartment where the synthesis of proteins occurs. ImagesFigure 1 PMID:16668766

  10. Increased Cysteine Biosynthesis Capacity of Transgenic Tobacco Overexpressing an O-Acetylserine(thiol) Lyase Modifies Plant Responses to Oxidative Stress1

    PubMed Central

    Youssefian, Shohab; Nakamura, Michimi; Orudgev, Emin; Kondo, Noriaki

    2001-01-01

    O-Acetylserine(thiol) lyase (OASTL), a key enzyme of plant sulfur metabolism, catalyzes the formation of Cys from sulfide and O-acetylserine. The biosynthesis of Cys is regarded as the exclusive function of sulfur reduction in plants, and a key limiting step in the production of glutathione (GSH), a thiol implicated in various cellular functions, including sulfur transport, gene expression, scavenging of reactive oxygen species (ROS), and resistance to biotic and abiotic stresses. To examine whether an increased capacity for cysteine (Cys) biosynthesis alters cellular responses to such stresses, we studied the differential changes in thiol levels and ROS scavenging of transgenic tobacco (Nicotiana tabacum) plants expressing the wheat (Triticum aestivum) OASTL gene, cys1, to SO2 and to the ROS generator, methyl viologen. Intracellular Cys and GSH contents were generally higher in cys1 transgenics than in controls under normal growth conditions, but became especially elevated in transgenic plants after SO2 exposure. An examination of differences in the ROS scavenging system of the transgenic plants also demonstrated the specific accumulation of Cu/Zn superoxide dismutase transcripts, known to be induced by Cys or GSH, and elevated cellular superoxide dismutase activities. The transgenic plants accordingly showed dramatic reductions in the extent of both foliar and photooxidative damage in response to acute SO2, as well as reduced levels of chlorosis and membrane damage following methyl viologen treatment. Overall, our results imply that OASTL plays a pivotal role in the synthesis of Cys and GSH that are required for regulation of plant responses to oxidative stress. PMID:11457951

  11. Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid.

    PubMed

    Barroso, C; Romero, L C; Cejudo, F J; Vega, J M; Gotor, C

    1999-07-01

    The expression of Atcys-3A gene coding for cytosolic O-acetylserine(thiol)lyase, a key enzyme in cysteine biosynthesis, from Arabidopsis thaliana is significantly induced by exposure to salt and heavy-metal stresses. Addition of NaCl to mature plants induced a rapid accumulation of the mRNA throughout the leaf lamina and roots, and later on in stems, being mainly restricted to vascular tissues. The salt-specific regulation of Atcys-3A was also mediated by abscisic acid (ABA) since: (1) exogenous addition of ABA to the culture medium mimicked the salt-induced plant response by raising the level of Atcys-3A transcript, and (2) Arabidopsis mutants aba-1 and abi2-1 were not able to respond to NaCl. Our results suggest that a high rate of cysteine biosynthesis is required in Arabidopsis under salt stress necessary for a plant protection or adaptation mechanism. This hypothesis was supported by the observation that intracellular levels of cysteine and glutathione increased up to 3-fold after salt treatment.

  12. Isolation of Nicotiana plumbaginifolia cDNAs encoding isoforms of serine acetyltransferase and O-acetylserine (thiol) lyase in a yeast two-hybrid system with Escherichia coli cysE and cysK genes as baits.

    PubMed

    Liszewska, Frantz; Gaganidze, Dali; Sirko, Agnieszka

    2005-01-01

    We applied the yeast two-hybrid system for screening of a cDNA library of Nicotiana plumbaginifolia for clones encoding plant proteins interacting with two proteins of Escherichia coli: serine acetyltransferase (SAT, the product of cysE gene) and O-acetylserine (thiol)lyase A, also termed cysteine synthase (OASTL-A, the product of cysK gene). Two plant cDNA clones were identified when using the cysE gene as a bait. These clones encode a probable cytosolic isoform of OASTL and an organellar isoform of SAT, respectively, as indicated by evolutionary trees. The second clone, encoding SAT, was identified independently also as a "prey" when using cysK as a bait. Our results reveal the possibility of applying the two-hybrid system for cloning of plant cDNAs encoding enzymes of the cysteine synthase complex in the two-hybrid system. Additionally, using genome walking sequences located upstream of the sat1 cDNA were identified. Subsequently, in silico analyses were performed aiming towards identification of the potential signal peptide and possible location of the deduced mature protein encoded by sat1.

  13. O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana.

    PubMed

    Wirtz, Markus; Droux, Michel; Hell, Rüdiger

    2004-08-01

    The synthesis of cysteine is positioned at a decisive stage of assimilatory sulphate reduction, marking the fixation of inorganic sulphide into a carbon skeleton. O-acetylserine (thiol) lyase (OAS-TL) catalyses the reaction of inorganic sulphide with O-acetylserine (OAS). Despite its prominent position in the pathway OAS-TL is generally regarded as a non-limiting enzyme without regulatory function, due to low substrate affinities and semi-constitutive expression patterns. To resolve this apparent contradiction, the kinetic properties of three OAS-TLs from Arabidopsis thaliana, localized in the cytosol (A), plastids (B), and mitochondria (C), were analysed. The recombinant expressed OAS-TLs were purified to apparent homogeneity without any fusion tag to maintain their native forms. The proteins displayed high specific activities of 550-900 micromol min(-1) mg(-1). Using an improved and highly sensitive assay method for cysteine determination, the apparent K(m)(sulphide) was 3-6 microM for OAS-TL A, B, and C and thus 10-100 times lower than previously reported for plant OAS-TLs. K(m)(OAS) was between 310 microM and 690 microM for OAS-TL isoform A, B, and C, whereas the apparent dissociation binding constant for OAS was much lower (K(d)<1 microM OAS). A HPLC method was developed for OAS quantification that revealed fast increases of the cellular OAS concentration in response to sulphate deprivation. The observed fluctuations of intracellular OAS concentrations, combined with the OAS dissociation constant and the catalytic properties of OAS-TL, support the model of a dynamic cysteine synthesis system with regulatory function as can be expected from the position of the reaction in the sulphur assimilation pathway.

  14. Spinach chloroplast 0-acetylserine (thiol)-lyase exhibits two catalytically non-equivalent pyridoxal-5'-phosphate-containing active sites.

    PubMed

    Rolland, N; Ruffet, M L; Job, D; Douce, R; Droux, M

    1996-02-15

    A synthetic gene encoding the mature spinach- chloroplast O-acetylserine (thiol)-lyase was constructed and expressed in an Escherichia coli strain carrying the T7 RNA polymerase system. The pure recombinant protein was obtained at high yield (6 mg/l cell culture) using a new purification procedure that includes affinity chromatography on Green A agarose. Its specific activity was of the order of 1000 U/mg, and its physical properties were similar to those previously reported for the natural enzyme isolated from spinach chloroplasts. In particular the recombinant enzyme, as for the natural enzyme, behaved as a homodimer composed of two identical subunits each of Mr 35000. From steady-state kinetic studies using sulfide or 5-thio(2-nitrobenzoate) (Nbs) as alternative nucleophilic co-substrates, the enzyme exhibited positive kinetic co-operativity with respect to O-acetylserine [Ser(Ac)] in the presence of sulfide and a negative kinetic co-operativity in the presence of Nbs. Binding of Ser(Ac) to the enzyme was also investigated by absorbance and fluorescence measurements to obtain insight into the role of pyridoxal 5'-phosphate and of the single tryptophan residue (Trp176) present in the enzyme molecule. Addition of Ser(Ac) to the enzyme provoked the disappearance of the 409-nm absorbance band of the pyridoxal 5'-phosphate Schiff base and the appearance of two new absorbance bands, the one located between 320 nm and 360 nm and the other centered at 470 nm. Also, the fluorescence emission of the pyridoxal 5'-phosphate Schiff base was quenched upon addition of Ser(Ac) to the enzyme. These changes were most presumably due to the formation of a Schiff base intermediate between alpha-aminoacrylate and the pyridoxal 5'-phosphate cofactor. The fluorescence emission of Trp176 was also quenched upon Ser(Ac) binding to the enzyme. Quantitative analysis of the absorbance and fluorescence equilibrium data disclosed a co-operative behavior in Ser(Ac) binding, in agreement with the steady-state kinetic results. Fluorescence quenching experiments with the acrylamide and iodide revealed that the indole ring of Trp176 was largely exposed and located within the pyridoxal 5'-phosphate active site. These results are consistent with the finding that the native enzyme is composed of two identical subunits. Yet, presumably due to subunit-subunit interactions, the enzyme exhibits two non-equivalent pyridoxal-5'-phosphate-containing active sites.

  15. The cysteine synthase complex from plants. Mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein-protein interaction.

    PubMed

    Wirtz, M; Berkowitz, O; Droux, M; Hell, R

    2001-02-01

    Serine acetyltransferase (SAT) catalyzes the rate-limiting step of cysteine biosynthesis in bacteria and plants and functions in association with O-acetylserine (thiol) lyase (OAS-TL) in the cysteine synthase complex. Very little is known about the structure and catalysis of SATs except that they share a characteristic C-terminal hexapeptide-repeat domain with a number of enzymatically unrelated acyltransferases. Computational modeling of this domain was performed for the mitochondrial SAT isoform from Arabidopsis thaliana, based on crystal structures of bacterial acyltransferases. The results indicate a left-handed parallel beta-helix consisting of beta-sheets alternating with turns, resulting in a prism-like structure. This model was challenged by site-directed mutagenesis and tested for a suspected dual function of this domain in catalysis and hetero-oligomerization. The bifunctionality of the SAT C-terminus in transferase activity and interaction with OAS-TL is demonstrated and discussed with respect to the putative role of the cysteine synthase complex in regulation of cysteine biosynthesis.

  16. Selenium treatment differentially affects sulfur metabolism in high and low glucosinolate producing cultivars of broccoli (Brassica oleracea L.).

    PubMed

    McKenzie, Marian J; Chen, Ronan K Y; Leung, Susanna; Joshi, Srishti; Rippon, Paula E; Joyce, Nigel I; McManus, Michael T

    2017-12-01

    The effect of selenium (Se) application on the sulfur (S)-rich glucosinolate (GSL)-containing plant, broccoli (Brassica oleracea L. var. italica) was examined with a view to producing germplasm with increased Se and GSL content for human health, and to understanding the influence of Se on the regulation of GSL production. Two cultivars differing in GSL content were compared. Increased Se application resulted in an increase in Se uptake in planta, but no significant change in total S or total GSL content in either cultivar. Also no significant change was observed in the activity of ATP sulfurylase (ATPS, EC 2.7.7.4) or O-acetylserine(thiol) lyase (OASTL, EC 2.5.1.47) with increased Se application. However, in the first investigation of APS kinase (APSK, EC 2.7.1.25) expression in response to Se fertilisation, an increase in transcript abundance of one variant of APS kinase 1 (BoAPSK1A) was observed in both cultivars, and an increase in BoAPSK2 transcript abundance was observed in the low GSL producing cultivar. A mechanism by which increased APSK transcription may provide a means of controlling the content of S-containing compounds, including GSLs, following Se uptake is proposed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Transcripts of sulphur metabolic genes are co-ordinately regulated in developing seeds of common bean lacking phaseolin and major lectins

    PubMed Central

    Marsolais, Frédéric

    2012-01-01

    The lack of phaseolin and phytohaemagglutinin in common bean (dry bean, Phaseolus vulgaris) is associated with an increase in total cysteine and methionine concentrations by 70% and 10%, respectively, mainly at the expense of an abundant non-protein amino acid, S-methyl-cysteine. Transcripts were profiled between two genetically related lines differing for this trait at four stages of seed development using a high density microarray designed for common bean. Transcripts of multiple sulphur-rich proteins were elevated, several previously identified by proteomics, including legumin, basic 7S globulin, albumin-2, defensin, albumin-1, the Bowman–Birk type proteinase inhibitor, the double-headed trypsin inhibitor, and the Kunitz trypsin inhibitor. A co-ordinated regulation of transcripts coding for sulphate transporters, sulphate assimilatory enzymes, serine acetyltransferases, cystathionine β-lyase, homocysteine S-methyltransferase and methionine gamma-lyase was associated with changes in cysteine and methionine concentrations. Differential gene expression of sulphur-rich proteins preceded that of sulphur metabolic enzymes, suggesting a regulation by demand from the protein sink. Up-regulation of SERAT1;1 and -1;2 expression revealed an activation of cytosolic O-acetylserine biosynthesis. Down-regulation of SERAT2;1 suggested that cysteine and S-methyl-cysteine biosynthesis may be spatially separated in different subcellular compartments. Analysis of free amino acid profiles indicated that enhanced cysteine biosynthesis was correlated with a depletion of O-acetylserine. These results contribute to our understanding of the regulation of sulphur metabolism in developing seed in response to a change in the composition of endogenous proteins. PMID:23066144

  18. Transcripts of sulphur metabolic genes are co-ordinately regulated in developing seeds of common bean lacking phaseolin and major lectins.

    PubMed

    Liao, Dengqun; Pajak, Agnieszka; Karcz, Steven R; Chapman, B Patrick; Sharpe, Andrew G; Austin, Ryan S; Datla, Raju; Dhaubhadel, Sangeeta; Marsolais, Frédéric

    2012-10-01

    The lack of phaseolin and phytohaemagglutinin in common bean (dry bean, Phaseolus vulgaris) is associated with an increase in total cysteine and methionine concentrations by 70% and 10%, respectively, mainly at the expense of an abundant non-protein amino acid, S-methyl-cysteine. Transcripts were profiled between two genetically related lines differing for this trait at four stages of seed development using a high density microarray designed for common bean. Transcripts of multiple sulphur-rich proteins were elevated, several previously identified by proteomics, including legumin, basic 7S globulin, albumin-2, defensin, albumin-1, the Bowman-Birk type proteinase inhibitor, the double-headed trypsin inhibitor, and the Kunitz trypsin inhibitor. A co-ordinated regulation of transcripts coding for sulphate transporters, sulphate assimilatory enzymes, serine acetyltransferases, cystathionine β-lyase, homocysteine S-methyltransferase and methionine gamma-lyase was associated with changes in cysteine and methionine concentrations. Differential gene expression of sulphur-rich proteins preceded that of sulphur metabolic enzymes, suggesting a regulation by demand from the protein sink. Up-regulation of SERAT1;1 and -1;2 expression revealed an activation of cytosolic O-acetylserine biosynthesis. Down-regulation of SERAT2;1 suggested that cysteine and S-methyl-cysteine biosynthesis may be spatially separated in different subcellular compartments. Analysis of free amino acid profiles indicated that enhanced cysteine biosynthesis was correlated with a depletion of O-acetylserine. These results contribute to our understanding of the regulation of sulphur metabolism in developing seed in response to a change in the composition of endogenous proteins.

  19. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants

    PubMed Central

    Tavares, Sílvia; Wirtz, Markus; Beier, Marcel P.; Bogs, Jochen; Hell, Rüdiger; Amâncio, Sara

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription. PMID:25741355

  20. Sulphur alters chromium (VI) toxicity in Solanum melongena seedlings: Role of sulphur assimilation and sulphur-containing antioxidants.

    PubMed

    Singh, Madhulika; Kushwaha, Bishwajit Kumar; Singh, Samiksha; Kumar, Vipin; Singh, Vijay Pratap; Prasad, Sheo Mohan

    2017-03-01

    The present study investigates modulation in hexavalent chromium [Cr(VI) 25 μM] toxicity by sulphur (S; 0.5, 1.0 and 1.5 mM S as low (LS), medium (MS) and high sulphur (HS), respectively) in Solanum melongena (eggplant) seedlings. Biomass accumulation (fresh and dry weights), photosynthetic pigments, photosynthetic oxygen evolution and S content were declined by Cr(VI) toxicity. Furthermore, fluorescence characteristics (JIP-test) were also affected by Cr(VI), but Cr(VI) toxicity on photosystem II photochemistry was ameliorated by HS treatment via reducing damaging effect on PS II reaction centre and its reduction side. Enhanced respiration, Cr content and oxidative biomarkers: superoxide radical, hydrogen peroxide, lipid peroxidation and membrane damage were observed under Cr(VI) stress. Though Cr(VI) enhanced adenosine triphasphate sulfurylase (ATPS) and o-acetylserine(thiol)lyase (OASTL), glutathione-S-transferase (GST), glutathione reductase (GR) and ascorbate peroxidase (APX) activity, and content of total glutathione, cysteine and NP-SH, however, their levels/activity were further enhanced by S being maximum with HS treatment. The results show that Cr(VI) toxicity does increase under LS treatment while HS protected Cr(VI)-induced damaging effects in brinjal seedlings. Under HS treatment, in mitigating Cr(VI) toxicity, S assimilation and its associated metabolites such as cysteine, glutathione and NP-SH play crucial role. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Impact of overexpression of cytosolic isoform of O-acetylserine sulfhydrylase on soybean nodulation and nodule metabolome

    USDA-ARS?s Scientific Manuscript database

    Nitrogen-fixing nodules, which are also major sites of sulfur assimilation, contribute significantly to the sulfur needs of the whole soybean plants. Nodules are the predominant sites for cysteine accumulation and the activity of O-acetylserine sulfhydrylase (OASS; also known as O-acetylserine(thio...

  2. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-05-16

    The development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium. Yeast strains with an increased β-lyase activity grew rapidly because of their ability to release ammonium from SMC in comparison to others, and allowed for the easy isolation and differentiation of yeasts with promising properties in oenology, or another field, for aromatic thiol release. The selective medium was also helpful for the discrimination between those S. cerevisiae strains, which present a common 38-bp deletion in the IRC7 sequence (present in around 88% of the wild strains tested and are likely to be less functional for 4-mercapto-4-methylpentan-2-one (4MMP) production), and those S. cerevisiae strains homozygous for the full-length IRC7 allele. The medium was also helpful for the selection of non-Saccharomyces yeasts with increased β-lyase activity. Based on the same medium, a highly sensitive, reproducible and non-expensive GC-MS method for the evaluation of the potential volatile thiol release by different yeast isolates was developed. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Inhibition of cystathionine-gamma-lyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS.

    PubMed

    Diwakar, Latha; Ravindranath, Vijayalakshmi

    2007-01-01

    Oxidative stress has been implicated in the pathogenesis and progression of neurodegenerative disorders and antioxidants potentially have a major role in neuroprotection. Optimum levels of glutathione (gamma-glutamylcysteinyl glycine), an endogenous thiol antioxidant are required for the maintenance of the redox status of cells. Cystathionine gamma-lyase is the rate-limiting enzyme for the synthesis of cysteine from methionine and availability of cysteine is a critical factor in glutathione synthesis. In the present study, we have examined the role of cystathionine gamma-lyase in maintaining the redox homeostasis in brain, particularly with reference to mitochondrial function since the complex I of the electron transport chain is sensitive to redox perturbation. Inhibition of cystathionine gamma-lyase by l-propargylglycine caused loss of glutathione and decrease in complex I activity in the brain although the enzyme activity in mouse brain was 1% of the corresponding hepatic activity. We then examined the effect of this inhibition on the neurotoxicity mediated by the excitatory amino acid, l-beta-oxalyl amino-l-alanine, which is the causative factor of a type of motor neuron disease, neurolathyrism. l-beta-Oxalyl amino-l-alanine toxicity was exacerbated by l-propargylglycine measured as loss of complex I activity indicating the importance of cystathionine gamma-lyase in maintaining glutathione levels and in turn the mitochondrial function during excitotoxicity. Oxidative stress generated by l-beta-oxalyl amino-l-alanine itself inhibited cystathionine gamma-lyase, which could be prevented by prior treatment with thiol antioxidant. Thus, cystathionine gamma-lyase itself is susceptible to inactivation by oxidative stress and this can potentially exacerbate oxidant-induced damage. Cystathionine gamma-lyase is present in neuronal cells in human brain and its activity is several-fold higher compared to mouse brain. It could potentially play an important role in maintaining glutathione and protein thiol homeostasis in brain and hence afford neuroprotection.

  4. The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response.

    PubMed

    Müller, Sara M; Wang, Shanshan; Telman, Wilena; Liebthal, Michael; Schnitzer, Helena; Viehhauser, Andrea; Sticht, Carsten; Delatorre, Carolina; Wirtz, Markus; Hell, Rüdiger; Dietz, Karl-Josef

    2017-09-01

    The integration of redox- and reactive oxygen species-dependent signaling and metabolic activities is fundamental to plant acclimation to biotic and abiotic stresses. Previous data suggest the existence of a dynamically interacting module in the chloroplast stroma consisting of cyclophilin 20-3 (Cyp20-3), O-acetylserine(thiol)lyase B (OASTL-B), 2-cysteine peroxiredoxins A/B (2-CysPrx) and serine acetyltransferase 2;1 (SERAT2;1). The functionality of this COPS module is influenced by redox stimuli and oxophytodienoic acid (OPDA), which is the precursor for jasmonic acid. The concept of an integrating function of these proteins in stress signaling was challenged by combining transcriptome and biochemical analyses in Arabidopsis mutants devoid of oastlB, serat2;1, cyp20-3 and 2-cysprxA/B, and wild-type (WT). Leaf transcriptomes were analyzed 6 h after transfer to light intensity 10-fold in excess of growth light or under growth light. The survey of KEGG-based gene ontology groups showed common upregulation of translation- and protein homeostasis-associated transcripts under control conditions in all mutants compared with WT. The results revealed that the interference of the module was accompanied with disturbance of carbohydrate, sulfur and nitrogen metabolism, and also citric acid cycle intermediates. Apart from common regulation, specific responses at the transcriptome and metabolite level linked Cyp20-3 to cell wall-bound carbohydrates and oxylipin signaling, and 2-CysPrx to photosynthesis, sugar and amino acid metabolism. Deletion of either OASTL-B or SERAT2;1 frequently induced antagonistic changes in biochemical or molecular features. Enhanced sensitivity of mutant seedlings to OPDA and leaf discs to NaHS-administration confirmed the presumed functional interference of the COPS module in redox and oxylipin signaling. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavour applications.

    PubMed

    Allegrini, Alessandra; Astegno, Alessandra; La Verde, Valentina; Dominici, Paola

    2017-04-01

    Volatile thiols have substantial impact on the aroma of many beverages and foods. Thus, the control of their formation, which has been linked to C-S lyase enzymatic activities, is of great significance in industrial applications involving food flavours. Herein, we have carried out a spectroscopic and functional characterization of a putative pyridoxal 5'-phosphate (PLP)-dependent C-S lyase from the lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 (LDB C-S lyase). Recombinant LDB C-S lyase exists as a tetramer in solution and shows spectral properties of enzymes containing PLP as cofactor. The enzyme has a broad substrate specificity toward sulphur-containing amino acids with aminoethyl-L-cysteine and L-cystine being the most effective substrates over L-cysteine and L-cystathionine. Notably, the protein also reveals cysteine-S-conjugate β-lyase activity in vitro, and is able to cleave a cysteinylated substrate precursor into the corresponding flavour-contributing thiol, with a catalytic efficiency higher than L-cystathionine. Contrary to similar enzymes of other lactic acid bacteria however, LDB C-S lyase is not capable of α,γ-elimination activity towards L-methionine to produce methanethiol, which is a significant compound in flavour development. Based on our results, future developments can be expected regarding the flavour-forming potential of Lactobacillus C-S lyase and its use in enhancing food flavours. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  6. Genetic Determinants of Volatile-Thiol Release by Saccharomyces cerevisiae during Wine Fermentation

    PubMed Central

    Howell, Kate S.; Klein, Mathias; Swiegers, Jan H.; Hayasaka, Yoji; Elsey, Gordon M.; Fleet, Graham H.; Høj, Peter B.; Pretorius, Isak S.; de Barros Lopes, Miguel A.

    2005-01-01

    Volatile thiols, particularly 4-mercapto-4-methylpentan-2-one (4MMP), make an important contribution to the aroma of wine. During wine fermentation, Saccharomyces cerevisiae mediates the cleavage of a nonvolatile cysteinylated precursor in grape juice (Cys-4MMP) to release the volatile thiol 4MMP. Carbon-sulfur lyases are anticipated to be involved in this reaction. To establish the mechanism of 4MMP release and to develop strains that modulate its release, the effect of deleting genes encoding putative yeast carbon-sulfur lyases on the cleavage of Cys-4MMP was tested. The results led to the identification of four genes that influence the release of the volatile thiol 4MMP in a laboratory strain, indicating that the mechanism of release involves multiple genes. Deletion of the same genes from a homozygous derivative of the commercial wine yeast VL3 confirmed the importance of these genes in affecting 4MMP release. A strain deleted in a putative carbon-sulfur lyase gene, YAL012W, produced a second sulfur compound at significantly higher concentrations than those produced by the wild-type strain. Using mass spectrometry, this compound was identified as 2-methyltetrathiophen-3-one (MTHT), which was previously shown to contribute to wine aroma but was of unknown biosynthetic origin. The formation of MTHT in YAL012W deletion strains indicates a yeast biosynthetic origin of MTHT. The results demonstrate that the mechanism of synthesis of yeast-derived wine aroma components, even those present in small concentrations, can be investigated using genetic screens. PMID:16151133

  7. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms

    PubMed Central

    2013-01-01

    Background Cadmium is a non-essential metal that is toxic because of its interference with essential metals such as iron, calcium and zinc causing numerous detrimental metabolic and cellular effects. The amount of this metal in the environment has increased dramatically since the advent of the industrial age as a result of mining activities, the use of fertilizers and sewage sludge in farming, and discharges from manufacturing activities. The metal bioremediation utility of phototrophic microbes has been demonstrated through their ability to detoxify Hg(II) into HgS under aerobic conditions. Metal sulfides are generally very insoluble and therefore, biologically unavailable. Results When Cd(II) was exposed to cells it was bioconverted into CdS by the green alga Chlamydomonas reinhardtii, the red alga Cyanidioschyzon merolae, and the cyanobacterium, Synechoccocus leopoliensis. Supplementation of the two eukaryotic algae with extra sulfate, but not sulfite or cysteine, increased their cadmium tolerances as well as their abilities to produce CdS, indicating an involvement of sulfate assimilation in the detoxification process. However, the combined activities of extracted serine acetyl-transferase (SAT) and O-acetylserine(thiol)lyase (OASTL) used to monitor sulfate assimilation, was not significantly elevated during cell treatments that favored sulfide biosynthesis. It is possible that the prolonged incubation of the experiments occurring over two days could have compensated for the low rates of sulfate assimilation. This was also the case for S. leopoliensis where sulfite and cysteine as well as sulfate supplementation enhanced CdS synthesis. In general, conditions that increased cadmium sulfide production also resulted in elevated cysteine desulfhydrase activities, strongly suggesting that cysteine is the direct source of sulfur for CdS synthesis. Conclusions Cadmium(II) tolerance and CdS formation were significantly enhanced by sulfate supplementation, thus indicating that algae and cyanobacteria can produce CdS in a manner similar to that of HgS. Significant increases in sulfate assimilation as measured by SAT-OASTL activity were not detected. However, the enhanced activity of cysteine desulfhydrase indicates that it is instrumental in the provision of H2S for aerobic CdS biosynthesis. PMID:23855952

  8. INACTIVATION OF E. COLI PYRUVATE FORMATE-LYASE: ROLE OF AdhE AND SMALL MOLECULES

    PubMed Central

    Nnyepi, Mbako R.; Peng, Yi; Broderick, Joan B.

    2007-01-01

    E. coli AdhE has been reported to harbor three distinct enzymatic activities: alcohol dehydrogenase, acetaldehyde-CoA dehydrogenase, and pyruvate formate-lyase (PFL) deactivase. Herein we report on the cloning, expression, and purification of E. coli AdhE, and the re-investigation of its purported enzymatic activities. While both the alcohol dehydrogenase and acetaldehyde-CoA dehydrogenase activities were readily detectible, we were unable to obtain any evidence for catalytic deactivation of PFL by AdhE, regardless of whether the reported cofactors for deactivation (Fe(II), NAD, and CoA) were present. Our results demonstrate that AdhE is not a PFL deactivating enzyme. We have also examined the potential for deactivation of active PFL by small-molecule thiols. Both β-mercaptoethanol and dithiothreitol deactivate PFL efficiently, with the former providing quite rapid deactivation. PFL deactivated by these thiols can be reactivated, suggesting that this deactivation is non-destructive transfer of an H atom equivalent to quench the glycyl radical. PMID:17280641

  9. Structure of soybean serine acetyltransferase and formation of the cysteine regulatory complex as a molecular chaperone

    USDA-ARS?s Scientific Manuscript database

    Serine acetyltransferase (SAT) catalyzes the limiting reaction in plant and microbial biosynthesis of cysteine. In addition to its enzymatic function, SAT forms a macromolecular complex with O-acetylserine sulfhydrylase (OASS). Formation of the cysteine regulatory complex (CRC) is a critical biochem...

  10. Snapshots of C-S Cleavage in Egt2 Reveals Substrate Specificity and Reaction Mechanism.

    PubMed

    Irani, Seema; Naowarojna, Nathchar; Tang, Yang; Kathuria, Karan R; Wang, Shu; Dhembi, Anxhela; Lee, Norman; Yan, Wupeng; Lyu, Huijue; Costello, Catherine E; Liu, Pinghua; Zhang, Yan Jessie

    2018-05-17

    Sulfur incorporation in the biosynthesis of ergothioneine, a histidine thiol derivative, differs from other well-characterized transsulfurations. A combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation and a subsequent pyridoxal 5'-phosphate (PLP)-mediated C-S lyase reaction leads to the net transfer of a sulfur atom from a cysteine to a histidine. In this study, we structurally and mechanistically characterized a PLP-dependent C-S lyase Egt2, which mediates the sulfoxide C-S bond cleavage in ergothioneine biosynthesis. A cation-π interaction between substrate and enzyme accounts for Egt2's preference of sulfoxide over thioether as a substrate. Using mutagenesis and structural biology, we captured three distinct states of the Egt2 C-S lyase reaction cycle, including a labile sulfenic intermediate captured in Egt2 crystals. Chemical trapping and high-resolution mass spectrometry were used to confirm the involvement of the sulfenic acid intermediate in Egt2 catalysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Engineering Saccharomyces cerevisiae To Release 3-Mercaptohexan-1-ol during Fermentation through Overexpression of an S. cerevisiae Gene, STR3, for Improvement of Wine Aroma▿

    PubMed Central

    Holt, Sylvester; Cordente, Antonio G.; Williams, Simon J.; Capone, Dimitra L.; Jitjaroen, Wanphen; Menz, Ian R.; Curtin, Chris; Anderson, Peter A.

    2011-01-01

    Sulfur-containing aroma compounds are key contributors to the flavor of a diverse range of foods and beverages. The tropical fruit characters of Vitis vinifera L. cv. Sauvignon blanc wines are attributed to the presence of the aromatic thiols 3-mercaptohexan-1-ol (3MH), 3-mercaptohexan-1-ol-acetate, and 4-mercapto-4-methylpentan-2-one (4MMP). These volatile thiols are found in small amounts in grape juice and are formed from nonvolatile cysteinylated precursors during fermentation. In this study, we overexpressed a Saccharomyces cerevisiae gene, STR3, which led to an increase in 3MH release during fermentation of a V. vinifera L. cv. Sauvignon blanc juice. Characterization of the enzymatic properties of Str3p confirmed it to be a pyridoxal-5′-phosphate-dependent cystathionine β-lyase, and we demonstrated that this enzyme was able to cleave the cysteinylated precursors of 3MH and 4MMP to release the free thiols. These data provide direct evidence for a yeast enzyme able to release aromatic thiols in vitro that can be applied in the development of self-cloned yeast to enhance wine flavor. PMID:21478306

  12. Bioinformatic and Biochemical Characterizations of C–S Bond Formation and Cleavage Enzymes in the Fungus Neurospora crassa Ergothioneine Biosynthetic Pathway

    PubMed Central

    2015-01-01

    Ergothioneine is a histidine thiol derivative. Its mycobacterial biosynthetic pathway has five steps (EgtA-E catalysis) with two novel reactions: a mononuclear nonheme iron enzyme (EgtB) catalyzed oxidative C–S bond formation and a PLP-mediated C–S lyase (EgtE) reaction. Our bioinformatic and biochemical analyses indicate that the fungus Neurospora crassa has a more concise ergothioneine biosynthetic pathway because its nonheme iron enzyme, Egt1, makes use of cysteine instead of γ-Glu-Cys as the substrate. Such a change of substrate preference eliminates the competition between ergothioneine and glutathione biosyntheses. In addition, we have identified the N. crassa C–S lyase (NCU11365) and reconstituted its activity in vitro, which makes the future ergothioneine production through metabolic engineering feasible. PMID:25275953

  13. Structural insights into the catalytic mechanism of cysteine (hydroxyl) lyase from the hydrogen sulfide-producing oral pathogen, Fusobacterium nucleatum.

    PubMed

    Kezuka, Yuichiro; Ishida, Tetsuo; Yoshida, Yasuo; Nonaka, Takamasa

    2018-02-16

    Hydrogen sulfide (H 2 S) plays important roles in the pathogenesis of periodontitis. Oral pathogens typically produce H 2 S from l-cysteine in addition to pyruvate and [Formula: see text] However, fn1055 from Fusobacterium nucleatum subsp. nucleatum ATCC 25586 encodes a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the production of H 2 S and l-serine from l-cysteine and H 2 O, an unusual cysteine (hydroxyl) lyase reaction (β-replacement reaction). To reveal the reaction mechanism, the crystal structure of substrate-free Fn1055 was determined. Based on this structure, a model of the l-cysteine-PLP Schiff base suggested that the thiol group forms hydrogen bonds with Asp 232 and Ser 74 , and the substrate α-carboxylate interacts with Thr 73 and Gln 147 Asp 232 is a unique residue to Fn1055 and its substitution to asparagine (D232N) resulted in almost complete loss of β-replacement activity. The D232N structure obtained in the presence of l-cysteine contained the α-aminoacrylate-PLP Schiff base in the active site, indicating that Asp 232 is essential for the addition of water to the α-aminoacrylate to produce the l-serine-PLP Schiff base. Rapid-scan stopped-flow kinetic analyses showed an accumulation of the α-aminoacrylate intermediate during the reaction cycle, suggesting that water addition mediated by Asp 232 is the rate-limiting step. In contrast, mutants containing substitutions of other active-site residues (Ser 74 , Thr 73 , and Gln 147 ) exhibited reduced β-replacement activity by more than 100-fold. Finally, based on the structural and biochemical analyses, we propose a mechanism of the cysteine (hydroxyl) lyase reaction by Fn1055. The present study leads to elucidation of the H 2 S-producing mechanism in F. nucleatum . © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. A combined computational-experimental analyses of selected metabolic enzymes in Pseudomonas species.

    PubMed

    Perumal, Deepak; Lim, Chu Sing; Chow, Vincent T K; Sakharkar, Kishore R; Sakharkar, Meena K

    2008-09-10

    Comparative genomic analysis has revolutionized our ability to predict the metabolic subsystems that occur in newly sequenced genomes, and to explore the functional roles of the set of genes within each subsystem. These computational predictions can considerably reduce the volume of experimental studies required to assess basic metabolic properties of multiple bacterial species. However, experimental validations are still required to resolve the apparent inconsistencies in the predictions by multiple resources. Here, we present combined computational-experimental analyses on eight completely sequenced Pseudomonas species. Comparative pathway analyses reveal that several pathways within the Pseudomonas species show high plasticity and versatility. Potential bypasses in 11 metabolic pathways were identified. We further confirmed the presence of the enzyme O-acetyl homoserine (thiol) lyase (EC: 2.5.1.49) in P. syringae pv. tomato that revealed inconsistent annotations in KEGG and in the recently published SYSTOMONAS database. These analyses connect and integrate systematic data generation, computational data interpretation, and experimental validation and represent a synergistic and powerful means for conducting biological research.

  15. Role of the pyridine nitrogen in pyridoxal 5'-phosphate catalysis: activity of three classes of PLP enzymes reconstituted with deazapyridoxal 5'-phosphate.

    PubMed

    Griswold, Wait R; Toney, Michael D

    2011-09-21

    Pyridoxal 5'-phosphate (PLP; vitamin B(6))-catalyzed reactions have been well studied, both on enzymes and in solution, due to the variety of important reactions this cofactor catalyzes in nitrogen metabolism. Three functional groups are central to PLP catalysis: the C4' aldehyde, the O3' phenol, and the N1 pyridine nitrogen. In the literature, the pyridine nitrogen has traditionally been assumed to be protonated in enzyme active sites, with the protonated pyridine ring providing resonance stabilization of carbanionic intermediates. This assumption is certainly correct for some PLP enzymes, but the structures of other active sites are incompatible with protonation of N1, and, consequently, these enzymes are expected to use PLP in the N1-unprotonated form. For example, aspartate aminotransferase protonates the pyridine nitrogen for catalysis of transamination, while both alanine racemase and O-acetylserine sulfhydrylase are expected to maintain N1 in the unprotonated, formally neutral state for catalysis of racemization and β-elimination. Herein, kinetic results for these three enzymes reconstituted with 1-deazapyridoxal 5'-phosphate, an isosteric analogue of PLP lacking the pyridine nitrogen, are compared to those for the PLP enzyme forms. They demonstrate that the pyridine nitrogen is vital to the 1,3-prototropic shift central to transamination, but not to reactions catalyzed by alanine racemase or O-acetylserine sulfhydrylase. Not all PLP enzymes require the electrophilicity of a protonated pyridine ring to enable formation of carbanionic intermediates. It is proposed that modulation of cofactor electrophilicity plays a central role in controlling reaction specificity in PLP enzymes.

  16. Redox Signaling Regulated by Cysteine Persulfide and Protein Polysulfidation.

    PubMed

    Kasamatsu, Shingo; Nishimura, Akira; Morita, Masanobu; Matsunaga, Tetsuro; Abdul Hamid, Hisyam; Akaike, Takaaki

    2016-12-15

    For decades, reactive persulfide species including cysteine persulfide (CysSSH) have been known to exist endogenously in organisms. However, the physiological significance of endogenous persulfides remains poorly understood. That cystathionine β-synthase and cystathionine γ-lyase produced CysSSH from cystine was recently demonstrated. An endogenous sulfur transfer system involving CysSSH evidently generates glutathione persulfide (GSSH) that exists at concentrations greater than 100 μM in vivo. Because reactive persulfide species such as CysSSH and GSSH have higher nucleophilicity than parental cysteine (Cys) and glutathione do, these reactive species exhibit strong scavenging activities against oxidants, e.g., hydrogen peroxide, and electrophiles, which contributes to redox signaling regulation. Also, several papers indicated that various proteins and enzymes have Cys polysulfides including CysSSH at their specific Cys residues, which is called protein polysulfidation. Apart from the redox signaling regulatory mechanism, another plausible function of protein polysulfidation is providing protection for protein thiol residues against irreversible chemical modification caused by oxidants and electrophiles. Elucidation of the redox signaling regulatory mechanism of reactive persulfide species including small thiol molecules and thiol-containing proteins should lead to the development of new therapeutic strategies and drug discoveries for oxidative and electrophilic stress-related diseases.

  17. Signaling in the plant cytosol: cysteine or sulfide?

    PubMed

    Gotor, Cecilia; Laureano-Marín, Ana M; Moreno, Inmaculada; Aroca, Ángeles; García, Irene; Romero, Luis C

    2015-10-01

    Cysteine (Cys) is the first organic compound containing reduced sulfur that is synthesized in the last stage of plant photosynthetic assimilation of sulfate. It is a very important metabolite not only because it is crucial for the structure, function and regulation of proteins but also because it is the precursor molecule of an enormous number of sulfur-containing metabolites essential for plant health and development. The biosynthesis of Cys is accomplished by the sequential reaction of serine acetyltransferase (SAT) and O-acetylserine(thiol)synthase (OASTL). In Arabidopsis thaliana, the analysis of specific mutants of members of the SAT and OASTL families has demonstrated that the cytosol is the compartment where the bulk of Cys synthesis takes place and that the cytosolic OASTL enzyme OAS-A1 is the responsible enzyme. Another member of the OASTL family is DES1, a novel L-cysteine desulfhydrase that catalyzes the desulfuration of Cys to produce sulfide, thus acting in a manner opposite to that of OAS-A1. Detailed studies of the oas-a1 and des1 null mutants have revealed the involvement of the DES1 and OAS-A1 proteins in coordinate regulation of Cys homeostasis and the generation of sulfide in the cytosol for signaling purposes. Thus, the levels of Cys in the cytosol strongly affect plant responses to both abiotic and biotic stress conditions, while sulfide specifically generated from the degradation of Cys negatively regulates autophagy induced in different situations. In conclusion, modulation of the levels of Cys and sulfide is likely critical for plant performance.

  18. Regulation of L-phenylalanine ammonia-lyase from Rhizoctonia solani.

    PubMed Central

    Kalghatgi, K K; Subba Rao, P V

    1976-01-01

    Maximal levels of L-henylalanine ammonia-lyase activity were observed when the mycelial felts of Rhizoctonia solani were grown for 4.5 days on Byrde synthetic medium containing 3.5% glucose and 0.3% L-phenylalanine, Differential centrifugation studies have indicated that the enzyme is localized in the soluble fraction. The time course of induction of L-phenylalanine ammonia-lyase activity by L-phenylalanine showed a lag period of 1 to 1.5 h and reached a maximum around 4 to 6 h after the addition of the inducer to the medium. L-Phenylalanine, L-tyrosine, and L-tryptophan were nearly equally efficient inducers of the enzyme. D-Phenylalanine was as efficient as the L-isomer, whereas D-tyrosine was a poor inducer. Light, gibberellic acid, indole 3-acetic acid, and kinetin had no effect on the induction of L-phenylalanine ammonia-lyase activity. Cycloheximide did not inhibit the uptake of amino acids by the mycelia but completely blocked the incorporation of radioactive amino acids into soluble proteins and the development of L-phenylalanine ammonia-lyase activity. Actinomycin D inhibited both the incorporation of 32P into ribonucleic acid and the enzyme activity. Conclusive evidence for de novo synthesis of L-phenylalanine ammonia-lyase was obtained by the incorporation of radioactive amino acids into the enzyme. Electrophoretic analysis of the purified preparation showed a single protein band that coincided with radioactivity and L-phenylalanine ammonia-lyase activity. Glucose and intermediates of the tricarboxylic acid cycle, like citric acid, alpha-ketoglutaric acid, and succinic acid, and the metabolites of L-phenylalanine, like o-coumaric acid, o-hydroxyphenylacetic acid, and protocatechuic acid, significantly repressed L-phenylalanine ammonia-lyase activity. The observed repression was not relieved by cyclic adenosine 5'-triphosphate. Images PMID:1262311

  19. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide

    PubMed Central

    Fomenko, Dmitri E.; Koc, Ahmet; Agisheva, Natalia; Jacobsen, Michael; Kaya, Alaattin; Malinouski, Mikalai; Rutherford, Julian C.; Siu, Kam-Leung; Jin, Dong-Yan; Winge, Dennis R.; Gladyshev, Vadim N.

    2011-01-01

    Hydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H2O2 response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, we found that Saccharomyces cerevisiae cells lacking all eight thiol peroxidases were viable and withstood redox stresses. They transcriptionally responded to various redox treatments, but were unable to activate and repress gene expression in response to H2O2. Further studies involving redox transcription factors suggested that thiol peroxidases are major regulators of global gene expression in response to H2O2. The data suggest that thiol peroxidases sense and transfer oxidative signals to the signaling proteins and regulate transcription, whereas a direct interaction between H2O2 and other cellular proteins plays a secondary role. PMID:21282621

  20. A Novel Eliminase from a Marine Bacterium That Degrades Hyaluronan and Chondroitin Sulfate*

    PubMed Central

    Han, Wenjun; Wang, Wenshuang; Zhao, Mei; Sugahara, Kazuyuki; Li, Fuchuan

    2014-01-01

    Lyases cleave glycosaminoglycans (GAGs) in an eliminative mechanism and are important tools for the structural analysis and oligosaccharide preparation of GAGs. Various GAG lyases have been identified from terrestrial but not marine organisms even though marine animals are rich in GAGs with unique structures and functions. Herein we isolated a novel GAG lyase for the first time from the marine bacterium Vibrio sp. FC509 and then recombinantly expressed and characterized it. It showed strong lyase activity toward hyaluronan (HA) and chondroitin sulfate (CS) and was designated as HA and CS lyase (HCLase). It exhibited the highest activities to both substrates at pH 8.0 and 0.5 m NaCl at 30 °C. Its activity toward HA was less sensitive to pH than its CS lyase activity. As with most other marine enzymes, HCLase is a halophilic enzyme and very stable at temperatures from 0 to 40 °C for up to 24 h, but its activity is independent of divalent metal ions. The specific activity of HCLase against HA and CS reached a markedly high level of hundreds of thousands units/mg of protein under optimum conditions. The HCLase-resistant tetrasaccharide Δ4,5HexUAα1-3GalNAc(6-O-sulfate)β1-4GlcUA(2-O-sulfate)β1-3GalNAc(6-O-sulfate) was isolated from CS-D, the structure of which indicated that HCLase could not cleave the galactosaminidic linkage bound to 2-O-sulfated d-glucuronic acid (GlcUA) in CS chains. Site-directed mutagenesis indicated that HCLase may work via a catalytic mechanism in which Tyr-His acts as the Brønsted base and acid. Thus, the identification of HCLase provides a useful tool for HA- and CS-related research and applications. PMID:25122756

  1. A novel eliminase from a marine bacterium that degrades hyaluronan and chondroitin sulfate.

    PubMed

    Han, Wenjun; Wang, Wenshuang; Zhao, Mei; Sugahara, Kazuyuki; Li, Fuchuan

    2014-10-03

    Lyases cleave glycosaminoglycans (GAGs) in an eliminative mechanism and are important tools for the structural analysis and oligosaccharide preparation of GAGs. Various GAG lyases have been identified from terrestrial but not marine organisms even though marine animals are rich in GAGs with unique structures and functions. Herein we isolated a novel GAG lyase for the first time from the marine bacterium Vibrio sp. FC509 and then recombinantly expressed and characterized it. It showed strong lyase activity toward hyaluronan (HA) and chondroitin sulfate (CS) and was designated as HA and CS lyase (HCLase). It exhibited the highest activities to both substrates at pH 8.0 and 0.5 m NaCl at 30 °C. Its activity toward HA was less sensitive to pH than its CS lyase activity. As with most other marine enzymes, HCLase is a halophilic enzyme and very stable at temperatures from 0 to 40 °C for up to 24 h, but its activity is independent of divalent metal ions. The specific activity of HCLase against HA and CS reached a markedly high level of hundreds of thousands units/mg of protein under optimum conditions. The HCLase-resistant tetrasaccharide Δ(4,5)HexUAα1-3GalNAc(6-O-sulfate)β1-4GlcUA(2-O-sulfate)β1-3GalNAc(6-O-sulfate) was isolated from CS-D, the structure of which indicated that HCLase could not cleave the galactosaminidic linkage bound to 2-O-sulfated d-glucuronic acid (GlcUA) in CS chains. Site-directed mutagenesis indicated that HCLase may work via a catalytic mechanism in which Tyr-His acts as the Brønsted base and acid. Thus, the identification of HCLase provides a useful tool for HA- and CS-related research and applications. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Overexpression of serine acetlytransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume

    PubMed Central

    Tabe, Linda; Wirtz, Markus; Molvig, Lisa; Droux, Michel; Hell, Ruediger

    2010-01-01

    There have been many attempts to increase concentrations of the nutritionally essential sulphur amino acids by modifying their biosynthetic pathway in leaves of transgenic plants. This report describes the first modification of cysteine biosyntheis in developing seeds; those of the grain legume, narrow leaf lupin (Lupinus angustifolius, L.). Expression in developing lupin embryos of a serine acetyltransferase (SAT) from Arabidopsis thaliana (AtSAT1 or AtSerat 2;1) was associated with increases of up to 5-fold in the concentrations of O-acetylserine (OAS), the immediate product of SAT, and up to 26-fold in free cysteine, resulting in some of the highest in vivo concentrations of these metabolites yet reported. Despite the dramatic changes in free cysteine in developing embryos of SAT overexpressers, concentrations of free methionine in developing embryos, and the total cysteine and methionine concentrations in mature seeds were not significantly altered. Pooled F2 seeds segregating for the SAT transgene and for a transgene encoding a methionine- and cysteine-rich sunflower seed storage protein also had increased OAS and free cysteine, but not free methionine, during development, and no increase in mature seed total sulphur amino acids compared with controls lacking SAT overexpression. The data support the view that the cysteine biosynthetic pathway is active in developing seeds, and indicate that SAT activity limits cysteine biosynthesis, but that cysteine supply is not limiting for methionine biosynthesis or for storage protein synthesis in maturing lupin embryos in conditions of adequate sulphur nutrition. OAS and free methionine, but not free cysteine, were implicated as signalling metabolites controlling expression of a gene for a cysteine-rich seed storage protein. PMID:19939888

  3. Overexpression of serine acetlytransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume.

    PubMed

    Tabe, Linda; Wirtz, Markus; Molvig, Lisa; Droux, Michel; Hell, Ruediger

    2010-03-01

    There have been many attempts to increase concentrations of the nutritionally essential sulphur amino acids by modifying their biosynthetic pathway in leaves of transgenic plants. This report describes the first modification of cysteine biosynthesis in developing seeds; those of the grain legume, narrow leaf lupin (Lupinus angustifolius, L.). Expression in developing lupin embryos of a serine acetyltransferase (SAT) from Arabidopsis thaliana (AtSAT1 or AtSerat 2;1) was associated with increases of up to 5-fold in the concentrations of O-acetylserine (OAS), the immediate product of SAT, and up to 26-fold in free cysteine, resulting in some of the highest in vivo concentrations of these metabolites yet reported. Despite the dramatic changes in free cysteine in developing embryos of SAT overexpressers, concentrations of free methionine in developing embryos, and the total cysteine and methionine concentrations in mature seeds were not significantly altered. Pooled F(2) seeds segregating for the SAT transgene and for a transgene encoding a methionine- and cysteine-rich sunflower seed storage protein also had increased OAS and free cysteine, but not free methionine, during development, and no increase in mature seed total sulphur amino acids compared with controls lacking SAT overexpression. The data support the view that the cysteine biosynthetic pathway is active in developing seeds, and indicate that SAT activity limits cysteine biosynthesis, but that cysteine supply is not limiting for methionine biosynthesis or for storage protein synthesis in maturing lupin embryos in conditions of adequate sulphur nutrition. OAS and free methionine, but not free cysteine, were implicated as signalling metabolites controlling expression of a gene for a cysteine-rich seed storage protein.

  4. Reversible inactivation of CO dehydrogenase with thiol compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreß, Oliver; Gnida, Manuel; Pelzmann, Astrid M.

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceedsmore » at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed.« less

  5. Preparation of Novel Hydrolyzing Urethane Modified Thiol-Ene Networks

    DTIC Science & Technology

    2011-10-25

    EtO EtO EtO Si EtO OEt OEt O OEt Si OEt OEt OEt HO HOEt H H O H H H Si OEt EtO EtO ... EtO H H SiO H H OEt OEt OEt H Polymers 2011, 3 1851 Thiol-ene “click” chemistry, as a means to form polymer networks...Table 3. Analysis of kinetic rates for fluorine modified systems. Sample name a Zero order k r2 First order k r2 Higuchi KH r2

  6. Hydrangea-like magneto-fluorescent nanoparticles through thiol-inducing assembly

    NASA Astrophysics Data System (ADS)

    Chen, Shun; Zhang, Junjun; Song, Shaokun; Xiong, Chuanxi; Dong, Lijie

    2017-01-01

    Magneto-fluorescent nanoparticles (NPs), recognized as an emerging class of materials, have drawn much attention because of their potential applications. Due to surface functionalization and thiol-metal bonds, a simple method has been put forward for fabricating hydrangea-like magneto-fluorescent Fe3O4-SH@QD NPs, through assembling thiol-modified Fe3O4 NPs with sub-size multi-layer core/shell CdSe/CdS/ZnS QDs. After a refined but controllable silane hydrolysis process, thiol-modified Fe3O4 was fabricated, resulting in Fe3O4-SH@QD NPs with QDs, while preventing the quenching of the QDs. As a result, the core Fe3O4 NPs were 18 nm in diameter, while the scattered CdSe/CdS/ZnS QDs were 7 nm in diameter. The resultant magneto-fluorescent Fe3O4-SH@QD NPs exhibit efficient fluorescence, superparamagnetism at room temperature, and rapid response to the external field, which make them ideal candidates for difunctional probes in MRI and bio-labels, targeting and photodynamic therapy, and cell tracking and separation.

  7. Liquid—liquid interface-mediated Au—ZnO composite membrane using ‘thiol-ene’ click chemistry

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed; Ghosh, Sujit Kumar

    2015-07-01

    A nanoparticle-decorated composite membrane has been devised at the water/CCl4 interface based on the self-assembly of ligand-stabilized gold and zinc oxide nanoparticles, exploiting the ‘thiol-ene’ click chemistry between the thiol groups of 11-mercaptoundecanoic acid-stabilized ZnO nanoparticles and the ene functionality of cinnamic acid attached to gold nanoparticles. The interfacial assembly of ultrasmall particles leads to a multilayer film that exhibits charge-dependent permeability of amino acid molecules across the membrane.

  8. Submicrodeterminations of thiols, disulphides and thiol esters in serum by using o-hydroxymercuribenzoic acid and dithiofluorescein

    PubMed Central

    Wroński, Mieczysław

    1967-01-01

    1. Methods are described for selective estimation of thiols, disulphides and thiol esters in standard solutions and in serum. The methods are based on the reaction with the excess of o-hydroxymercuribenzoic acid (HMB) in alkaline solution with subsequent addition of dithiofluorescein in excess and determination of the extinction at 588mμ. The sensitivity of the methods amounts to 1·5×10−9g.equiv. in 5ml. of final solution. Of results obtained on standard solutions 80% have the errors within the range ±4%. 2. It has been found that serum contains an unidentified substance (substance X) producing green complexes with dithiofluorescein which undergo decomposition on addition of formaldehyde. The correction for substance X must be estimated in a separate sample and taken into account. The concentration of substance X can be calculated from extinctions measured at 588mμ and 635mμ in the presence of dithiofluorescein in excess. 3. The selective determination of thiols and disulphides is based on different reaction rates with formaldehyde. The complexes between HMB and cysteine can be selectively decomposed by formaldehyde, and free glutathione can be selectively removed by formaldehyde in the presence of protein thiols. 4. Thiols are determined in the presence of triethylamine, thiols plus disulphides in the presence of triethylamine and sulphite, and thiols plus thiol esters in the presence of dimethylamine, with subsequent addition of ammonium sulphate. PMID:6049936

  9. Thiol dioxygenase turnover yields benzothiazole products from 2-mercaptoaniline and O2-dependent oxidation of primary alcohols.

    PubMed

    Morrow, William P; Sardar, Sinjinee; Thapa, Pawan; Hossain, Mohammad S; Foss, Frank W; Pierce, Brad S

    2017-10-01

    Thiol dioxygenases are non-heme mononuclear iron enzymes that catalyze the O 2 -dependent oxidation of free thiols (-SH) to produce the corresponding sulfinic acid (-SO 2 - ). Previous chemical rescue studies identified a putative Fe III -O 2 - intermediate that precedes substrate oxidation in Mus musculus cysteine dioxygenase (Mm CDO). Given that a similar reactive intermediate has been identified in the extradiol dioxygenase 2, 3-HCPD, it is conceivable that these enzymes share other mechanistic features with regard to substrate oxidation. To explore this possibility, enzymatic reactions with Mm CDO (as well as the bacterial 3-mercaptopropionic acid dioxygenase, Av MDO) were performed using a substrate analogue (2-mercaptoaniline, 2ma). This aromatic thiol closely approximates the catecholic substrate of homoprotocatechuate of 2, 3-HPCD while maintaining the 2-carbon thiol-amine separation preferred by Mm CDO. Remarkably, both enzymes exhibit 2ma-gated O 2 -consumption; however, none of the expected products for thiol dioxygenase or intra/extradiol dioxygenase reactions were observed. Instead, benzothiazoles are produced by the condensation of 2ma with aldehydes formed by an off-pathway oxidation of primary alcohols added to aqueous reactions to solubilize the substrate. The observed oxidation of 1º-alcohols in 2ma-reactions is consistent with the formation of a high-valent intermediate similar to what has been reported for cytochrome P450 and mononuclear iron model complexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule.

    PubMed

    Calderwood, Alexander; Kopriva, Stanislav

    2014-09-15

    Sulfur is essential in all organisms for the synthesis of amino acids cysteine and methionine and as an active component of numerous co-factors and prosthetic groups. However, only plants, algae, fungi, and some prokaryotes are capable of using the abundant inorganic source of sulfur, sulfate. Plants take sulfate up, reduce it, and assimilate into organic compounds with cysteine being the first product of the pathway and a donor of reduced sulfur for synthesis of other S-containing compounds. Cysteine is formed in a reaction between sulfide, derived from reduction of sulfite and an activated amino acid acceptor, O-acetylserine. Sulfide is thus an important intermediate in sulfur metabolism, but numerous other functions in plants has been revealed. Hydrogen sulfide can serve as an alternative source of sulfur for plants, which may be significant in anaerobic conditions of waterlogged soils. On the other hand, emissions of hydrogen sulfide have been detected from many plant species. Since the amount of H2S discharged correlated with sulfate supply to the plants, the emissions were considered a mechanism for dissipation of excess sulfur. Significant hydrogen sulfide emissions were also observed in plants infected with pathogens, particularly with fungi. H2S thus seems to be part of the widely discussed sulfur-induced-resistance/sulfur-enhanced-defense. Recently, however, more evidence has emerged for a role for H2S in regulation and signaling. Sulfide stabilizes the cysteine synthase complex, increasing so the synthesis of its acceptor O-acetylserine. H2S has been implicating in regulation of plant stress response, particularly draught stress. There are more and more examples of processes regulated by H2S in plants being discovered, and hydrogen sulfide is emerging as an important signaling molecule, similar to its role in the animal and human world. How similar the functions, and homeostasis of H2S are in these diverse organisms, however, remains to be elucidated. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Redox Reactivity of Cerium Oxide Nanoparticles Induces the Formation of Disulfide Bridges in Thiol-Containing Biomolecules.

    PubMed

    Rollin-Genetet, Françoise; Seidel, Caroline; Artells, Ester; Auffan, Mélanie; Thiéry, Alain; Vidaud, Claude

    2015-12-21

    The redox state of disulfide bonds is implicated in many redox control systems, such as the cysteine-cystine couple. Among proteins, ubiquitous cysteine-rich metallothioneins possess thiolate metal binding groups susceptible to metal exchange in detoxification processes. CeO2 NPs are commonly used in various industrial applications due to their redox properties. These redox properties that enable dual oxidation states (Ce(IV)/Ce(III)) to exist at their surface may act as oxidants for biomolecules. The interaction among metallothioneins, cysteine, and CeO2 NPs was investigated through various biophysical approaches to shed light on the potential effects of the Ce(4+)/Ce(3+) redox system on the thiol groups of these biomolecules. The possible reaction mechanisms include the formation of a disulfide bridge/Ce(III) complex resulting from the interaction between Ce(IV) and the thiol groups, leading to metal unloading from the MTs, depending on their metal content and cluster type. The formation of stable Ce(3+) disulfide complexes has been demonstrated via their fluorescence properties. This work provides the first evidence of thiol concentration-dependent catalytic oxidation mechanisms between pristine CeO2 NPs and thiol-containing biomolecules.

  12. Purification, characterization and specificity of chondroitin lyases and glycuronidase from Flavobacterium heparinum.

    PubMed Central

    Gu, K; Linhardt, R J; Laliberté, M; Gu, K; Zimmermann, J

    1995-01-01

    The chondroitin lyases from Flavobacterium heparinum (Cytophaga heparinia) have been widely used in depolymerization of glycosaminoglycan and proteoglycan chondroitin sulphates. Oligosaccharide products derived from chondroitin sulphate can be further degraded by glycuronidases and sulphatases obtained from the same organism. There has been no reported purification of these enzymes to homogeneity nor is there any information on their physical and kinetic characteristics. The absence of pure enzymes has resulted in a lack of understanding of the optimal conditions for their catalytic activity and their substrate specificity. This has limited the use of these enzymes as reagents for preparation of oligosaccharides for structure and activity studies. Reproducible schemes to purify a chondroitin AC lyase, a glycuronidase and chondroitin B lyase from Flavobacterium heparinum to apparent homogeneity are described. Chondroitin AC lyase (chondroitinase AC, EC 4.2.2.5), glycuronidase [chondro-(1-->3)-glycuronidase, no EC number] and chondroitin B lyase (chondroitinase B, no EC number) have M(r) values (assessed by SDS/PAGE) of 74,000, 41,800 and 55,200 respectively, and isoelectric points (determined by isoelectric focusing) of 8.85, 9.28 and 9.05 respectively. Chondroitin lyase AC and B contain pyroglutamic acid at their N-termini precluding their analysis by Edman degradation. Deblocking with pyroglutamate aminopeptidase facilitated the determination of their N-terminal sequences. The kinetic properties of these enzymes have been determined as well as the optimum conditions for their catalytic activity. The specificity of the glycouronidase, determined using 17 different disaccharide substrates, shows that it only acts on unsulphated or 6-O-sulphated 1-->3 linkages. The chondroitin lyases are both endolytic enzymes, and oligosaccharide mapping shows their expected specificity towards the chondroitin and dermatan sulphate polymers. Images Figure 2 Figure 4 PMID:8526872

  13. Facile synthesis of thiol-polyethylene glycol functionalized magnetic titania nanomaterials for highly efficient enrichment of N-linked glycopeptides.

    PubMed

    Wang, Jiawen; Yao, Jizong; Sun, Nianrong; Deng, Chunhui

    2017-08-25

    As protein N-glycosylation involved in generation and development of various cancers and diseases, it is vital to capture glycopeptides from complex biological samples for biomarker discovery. In this work, by taking advantages of the interaction between titania and thiol groups, thiol-polyethylene glycol functionalized magnetic titania nanomaterials (denoted as Fe 3 O 4 @TiO 2 @PEG) were firstly fabricated as an excellent hydrophilic adsorbent of N-linked glycopeptides. On one hand, the special interaction of titanium-thiol makes the synthetic manipulation simple and provides a new idea for design and synthesis of novel nanomaterials; on the other hand, strong magnetic response could realize rapid separation and the outstanding hydrophilicity of polyethylene glycol makes Fe 3 O 4 @TiO 2 @PEG nanomaterials show superior performance for glycopeptides enrichment with ultralow limit of detection (0.1mol/μL) and high selectivity (1:100). As a result, 24 and 33 glycopeptides enriched from HRP and IgG digests were identified respectively by MALDI-TOF MS, and 300 glycopeptides corresponding to 106 glycoproteins were recognized from merely 2μL human serum, indicating a great potential of Fe 3 O 4 @TiO 2 @PEG nanomaterials for glycoproteomic research. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Microbial β-etherases and glutathione lyases for lignin valorisation in biorefineries: current state and future perspectives.

    PubMed

    Husarcíková, Jana; Voß, Hauke; Domínguez de María, Pablo; Schallmey, Anett

    2018-05-04

    Lignin is the major aromatic biopolymer in nature, and it is considered a valuable feedstock for the future supply of aromatics. Hence, its valorisation in biorefineries is of high importance, and various chemical and enzymatic approaches for lignin depolymerisation have been reported. Among the enzymes known to act on lignin, β-etherases offer the possibility for a selective cleavage of the β-O-4 aryl ether bonds present in lignin. These enzymes, together with glutathione lyases, catalyse a reductive, glutathione-dependent ether bond cleavage displaying high stereospecificity. β-Etherases and glutathione lyases both belong to the superfamily of glutathione transferases, and several structures have been solved recently. Additionally, different approaches for their application in lignin valorisation have been reported in the last years. This review gives an overview on the current knowledge on β-etherases and glutathione lyases, their biochemical and structural features, and critically discusses their potential for application in biorefineries.

  15. Regulation of the Cardiac Muscle Ryanodine Receptor by O2 Tension and S-Nitrosoglutathione†

    PubMed Central

    Sun, Junhui; Yamaguchi, Naohiro; Xu, Le; Eu, Jerry P.; Stamler, Jonathan S.; Meissner, Gerhard

    2009-01-01

    The cardiac and skeletal muscle sarcoplasmic reticulum ryanodine receptor Ca2+ release channels contain thiols that are potential targets of endogenously produced reactive oxygen and nitrogen intermediates. Previously, we showed that the skeletal muscle ryanodine receptor (RyR1) has O2-sensitive thiols; only when these thiols are in the reduced state (pO2 ~ 10 mmHg) can physiological concentrations of NO (nanomolar) activate RyR1. Here, we report that cardiac muscle ryanodine receptor (RyR2) activity also depends on pO2, but unlike RyR1, RyR2 was not activated or S-nitrosylated directly by NO. Rather, activation and S-nitrosylation of RyR2 required S-nitrosoglutathione. The effects of peroxynitrite were indiscriminate on RyR1 and RyR2. Our results indicate that both RyR1 and RyR2 are pO2-responsive yet point to different mechanisms by which NO and S-nitrosoglutathione influence cardiac and skeletal muscle sarcoplasmic reticulum Ca2+ release. PMID:19053230

  16. Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@metal-organic framework core-shell magnetic microspheres

    NASA Astrophysics Data System (ADS)

    Ke, Fei; Jiang, Jing; Li, Yizhi; Liang, Jing; Wan, Xiaochun; Ko, Sanghoon

    2017-08-01

    In this work, we report a novel type of thiol-functionalized magnetic core-shell metal-organic framework (MOF) microspheres that can be potentially used for selective removal of Hg2+ and Pb2+ in the presence of other background ions from wastewater. The monodisperse Fe3O4@Cu3(btc)2 core-shell magnetic microspheres have been fabricated by a versatile step-by-step assembly strategy. Further, the thiol-functionalized Fe3O4@Cu3(btc)2 magnetic microspheres were successfully synthesized by utilizing a facile postsynthetic strategy. Significantly, the thiol-functionalized Fe3O4@Cu3(btc)2 magnetic microspheres exhibit remarkably selective adsorption affinity for Hg2+ (Kd = 5.98 × 104 mL g-1) and Pb2+ (Kd = 1.23 × 104 mL g-1), while a weaker binding affinity occurred for the other background ions such as Ni2+, Na+, Mg2+, Ca2+, Zn2+ and Cd2+. The adsorption kinetics follow the pseudo-second-order rate equation and with an almost complete removal of Hg2+ and Pb2+ from the mixed heavy metal ions wastewater (0.5 mM) within 120 min. Moreover, this adsorbent can be easily recycled because of the presence of the magnetic Fe3O4 core. This work provides a promising functionalized porous magnetic Fe3O4@MOF-based adsorbent with easy recycling property for the selective removal of heavy metal ions from wastewater.

  17. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins

    PubMed Central

    Yao, Chunxiang; Behring, Jessica B.; Shao, Di; Sverdlov, Aaron L.; Whelan, Stephen A.; Elezaby, Aly; Yin, Xiaoyan; Siwik, Deborah A.; Seta, Francesca; Costello, Catherine E.; Cohen, Richard A.; Matsui, Reiko; Colucci, Wilson S.; McComb, Mark E.; Bachschmid, Markus M.

    2015-01-01

    Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2), react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat), an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a ‘Tandem Mass Tag’ (TMT) labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg) mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation. PMID:26642319

  18. Proteome-wide detection and quantitative analysis of irreversible cysteine oxidation using long column UPLC-pSRM.

    PubMed

    Lee, Chia-Fang; Paull, Tanya T; Person, Maria D

    2013-10-04

    Reactive oxygen species (ROS) play an important role in normal biological functions and pathological processes. ROS is one of the driving forces for oxidizing proteins, especially on cysteine thiols. The labile, transient, and dynamic nature of oxidative modifications poses enormous technical challenges for both accurate modification site determination and quantitation of cysteine thiols. The present study describes a mass spectrometry-based approach that allows effective discovery and quantification of irreversible cysteine modifications. The utilization of a long reverse phase column provides high-resolution chromatography to separate different forms of modified cysteine thiols from protein complexes or cell lysates. This Fourier transform mass spectrometry (FT-MS) approach enabled detection and quantitation of ataxia telangiectasia mutated (ATM) complex cysteine sulfoxidation states using Skyline MS1 filtering. When we applied the long column ultra high pressure liquid chromatography (UPLC)-MS/MS analysis, 61 and 44 peptides from cell lysates and cells were identified with cysteine modifications in response to in vitro and in vivo H2O2 oxidation, respectively. Long column ultra high pressure liquid chromatography pseudo selected reaction monitoring (UPLC-pSRM) was then developed to monitor the oxidative level of cysteine thiols in cell lysate under varying concentrations of H2O2 treatment. From UPLC-pSRM analysis, the dynamic conversion of sulfinic (S-O2H) and sulfonic acid (S-O3H) was observed within nucleoside diphosphate kinase (Nm23-H1) and heat shock 70 kDa protein 8 (Hsc70). These methods are suitable for proteome-wide studies, providing a highly sensitive, straightforward approach to identify proteins containing redox-sensitive cysteine thiols in biological systems.

  19. Thiolated citrus low-methoxyl pectin: Synthesis, characterization and rheological and oxidation-responsive gelling properties.

    PubMed

    Chen, Jinfeng; Ye, Fayin; Zhou, Yun; Zhao, Guohua

    2018-02-01

    In the present study, citrus low-methoxyl pectin was modified by conjugating cysteine via amide bonds, and the resultant polymer (CYS-PEC) was characterized. CYS-PEC conjugates with thiol contents varying from 77.8μmol/g to 296μmol/g were synthesized, and the successful conjugation was evidenced by elemental, and FT-IR analyses. The sulfur in CYS-PEC is predominately in the thiol form, with a minor fraction forming disulfide bonds (∼15%), which occur when thiol/disulfide interchange interrupts the intended thiolation. Both native and modified pectin dispersions exhibited strong pseudoplastic properties, and the frequency sweeps revealed them to be dispersions containing microgel particles. Dynamic viscoelastic analysis was used to determine the oxidation-response gelling capacities of polymer dispersions containing H 2 O 2 , especially those that are highly thiolated and have cross-linked gel properties. For oxidation-induced CYS-PEC gels, their gelation time, hardness, viscosity and elastic moduli and swelling-disintegration ratio are dependent on the thiol group content, H 2 O 2 concentration and polymer concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Inhibition of tyrosine phenol-lyase by tyrosine homologues.

    PubMed

    Do, Quang; Nguyen, Giang T; Phillips, Robert S

    2016-09-01

    We have designed, synthesized, and evaluated tyrosine homologues and their O-methyl derivatives as potential inhibitors for tyrosine phenol lyase (TPL, E.C. 4.1.99.2). Recently, we reported that homologues of tryptophan are potent inhibitors of tryptophan indole-lyase (tryptophanase, TIL, E.C. 4.1.99.1), with K i values in the low µM range (Do et al. Arch Biochem Biophys 560:20-26, 2014). As the structure and mechanism for TPL is very similar to that of TIL, we postulated that tyrosine homologues could also be potent inhibitors of TPL. However, we have found that homotyrosine, bishomotyrosine, and their corresponding O-methyl derivatives are competitive inhibitors of TPL, which exhibit K i values in the range of 0.8-1.5 mM. Thus, these compounds are not potent inhibitors, but instead bind with affinities similar to common amino acids, such as phenylalanine or methionine. Pre-steady-state kinetic data were very similar for all compounds tested and demonstrated the formation of an equilibrating mixture of aldimine and quinonoid intermediates upon binding. Interestingly, we also observed a blue-shift for the absorbance peak of external aldimine complexes of all tyrosine homologues, suggesting possible strain at the active site due to accommodating the elongated side chains.

  1. 1,1,1-tris(hydroxymethyl)ethane as a new, efficient, and versatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols.

    PubMed

    Chen, Yao-Jung; Chen, Hsin-Hung

    2006-11-23

    1,1,1-tris(hydroxymethyl)ethane was presented as a new, efficient, and versatile tridentate O-donor ligand suitable for the copper-catalyzed formation of C-N, C-S, and C-O bonds. This inexpensive and commercially available tripod ligand has been demonstrated to facilitate the copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols to afford the corresponding desired products in good to excellent yields. [reaction: see text].

  2. 3-Bromopyruvate as a potential pharmaceutical in the light of experimental data.

    PubMed

    Szczuka, Izabela; Gamian, Andrzej; Terlecki, Grzegorz

    2017-12-08

    3-Bromopyruvate (3-BrPA) is an halogenated analogue of pyruvic acid known for over four decades as an alkylating agent reacting with thiol groups of many proteins. It enters animal cells like a lactate: via monocarboxylic acid transporters. Increasing interest in this compound, in recent times, is mainly due to hopes associated with its anticancer action. It is based on the impairment of energy metabolism of tumor cells by inhibiting enzymes in the glycolysis pathway (hexokinase II, glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate kinase) and the oxidative phosphorylation (succinate dehydrogenase). Two cases of clinical application of this compound in the treatment of advanced cancers were reported. By using 3-BrPA, rheumatoid arthritis in SKG mice has been reduced. This compound has also antiparasitic activity: lowers cell viability of Trypanosoma brucei, decreases intracellular proliferation of Toxoplasma gondii and reduces the metabolic activity of Schistosoma mansoni. It also has antifungal properties; particularly it acts strongly on Cryptococcus neoformans, as well as Saccharomyces cerevisiae. An inhibitory effect on bacterial enzymes was also described on: isocitrate lyase from Escherichia coli, Mycobacterium tuberculosis, Pseudomonas indigofera and 2-methylisocitrate lyase, succinate dehydrogenase and acetohydroxylic acid synthase from Escherichia coli. Wherever undesirable (cancer, parasitic) cells differ from normal by more intense glycolysis and higher energy needs, there is a good chance of successful 3-BrPA use. However, this compound acts on all cells and it, therefore, seems that its future as a pharmaceutical is dependent upon the development of appropriate methods for its effective and safe application.

  3. Molecular cloning and characterization of Bacillus alvei thiol-dependent cytolytic toxin expressed in Escherichia coli.

    PubMed

    Geoffroy, C; Alouf, J E

    1988-07-01

    A chromosomal DNA fragment from Bacillus alvei, encoding a thiol-dependent haemolytic product known as alveolysin (Mr 60,000, pI 5.0) was cloned in Escherichia coli SK1592, using pBR322 as the vector plasmid. Only a single haemolysin-positive clone was identified, by testing for haemolysis on blood agar plates. The haemolytic material was associated with the host bacterial cell. It was released by ultrasonic disruption and purified 267-fold. A 64 kDa polypeptide of pI 8.2 cofractionated with haemolytic activity during gel filtration chromatography and isoelectric focusing. It behaved identically to alveolysin in its activation by thiols, inactivation by thiol group reagents, inhibition by cholesterol, and neutralization, immunoprecipitation and immunoblotting by immune sera raised against alveolysin and streptolysin O.

  4. Separation of thiol and cyanide hydrolysis products of chemical warfare agents by capillary electrophoresis.

    PubMed

    Copper, Christine L; Collins, Greg E

    2004-03-01

    The fluorescence derivatizing agent, o-phthalaldehyde (OPA), has been applied to the separation and detection of cyanide and several structurally similar thiols by capillary electrophoresis (CE)-laser induced fluorescence (LIF). Of particular interest to this investigation was the separation of 2-dimethylaminoethanethiol, 2-diethylaminoethanethiol, and cyanide, each of which are hydrolysis products or hydrolysis product simulants of the chemical warfare (CW) agents O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), O-isobutyl S-2-diethylaminoethyl methylphosphonothiolate (R-VX), and tabun (GA). Other structurally similar thiols simultaneously resolved by this method include 1-pentanethiol and 2-mercaptoethanol. Instrumental parameters were probed and optimum values for capillary length (50 cm) and inner diameter (75 microm), injection time (30 s) and field strength (15 kV) were determined. Sample stacking methods enabled detection limits of 9.3 microg/L for cyanide, 1.8 microg/L for 2-diethylaminoethanethiol, 35 microg/L for 2-dimethylaminoethanethiol, 15 microg/L for 2-mercaptoethanol, and 89 microg/L for 1-pentanethiol. The linearity of the method was verified over an order of magnitude and the reproducibility was found to be 3.0%.

  5. Catabolism and Detoxification of 1-Aminoalkylphosphonic Acids: N-Acetylation by the phnO Gene Product

    PubMed Central

    Hove-Jensen, Bjarne; McSorley, Fern R.; Zechel, David L.

    2012-01-01

    In Escherichia coli uptake and catabolism of organophosphonates are governed by the phnCDEFGHIJKLMNOP operon. The phnO cistron is shown to encode aminoalkylphosphonate N-acetyltransferase, which utilizes acetylcoenzyme A as acetyl donor and aminomethylphosphonate, (S)- and (R)-1-aminoethylphosphonate, 2-aminoethyl- and 3-aminopropylphosphonate as acetyl acceptors. Aminomethylphosphonate, (S)-1-aminoethylphosphonate, 2-aminoethyl- and 3-aminopropylphosphonate are used as phosphate source by E. coli phn+ strains. 2-Aminoethyl- or 3-aminopropylphosphonate but not aminomethylphosphonate or (S)-1-aminoethylphosphonate is used as phosphate source by phnO strains. Neither phn+ nor phnO strains can use (R)-1-aminoethylphosphonate as phosphate source. Utilization of aminomethylphosphonate or (S)-1-aminoethylphosphonate requires the expression of phnO. In the absence of phnO-expression (S)-1-aminoethylphosphonate is bacteriocidal and rescue of phnO strains requires the simultaneous addition of d-alanine and phosphate. An intermediate of the carbon-phosphorus lyase pathway, 5′-phospho-α-d-ribosyl 1′-(2-N-acetamidoethylphosphonate), a substrate for carbon-phosphorus lyase, was found to accumulate in cultures of a phnP mutant strain. The data show that the physiological role of N-acetylation by phnO-specified aminoalkylphosphonate N-acetyltransferase is to detoxify (S)-1-aminoethylphosphonate, an analog of d-alanine, and to prepare (S)-1-aminoethylphosphonate and aminomethylphosphonate for utilization of the phosphorus-containing moiety. PMID:23056305

  6. Bacterial Conversion of Hydroxylamino Aromatic Compounds by both Lyase and Mutase Enzymes Involves Intramolecular Transfer of Hydroxyl Groups

    PubMed Central

    Nadeau, Lloyd J.; He, Zhongqi; Spain, Jim C.

    2003-01-01

    Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H218O did not indicate any 18O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was 18O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups. PMID:12732549

  7. Spectroscopic Characterization of Extracellular Polymeric Substances from Escherichia coli and Serratia marcescens: Suppression using Sub-Inhibitory Concentrations of Bismuth Thiols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badireddy, Appala R.; Korpol, Bhoom Reddy; Chellam, Shankararaman

    2008-10-21

    Free and capsular EPS produced by Escherichia coli and Serratia marcescens were characterized in detail using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Total EPS production decreased upon treatment with sub-inhibitory concentrations of lipophilic bismuth thiols (bismuth dimercaptopropanol, BisBAL; bismuth ethanedithiol, BisEDT; and bismuth pyrithione, BisPYR), BisBAL being most effective. Bismuth thiols also influenced acetylation and carboxylation of polysaccharides in EPS from S. marcescens. Extensive homology between EPS samples in the presence and absence of bismuth was observed with proteins, polysaccharides, and nucleic acids varying predominantly only in the total amount expressed. Secondmore » derivative analysis of the amide I region of FTIR spectra revealed decreases in protein secondary structures in the presence of bismuth thiols. Hence, anti-fouling properties of bismuth thiols appear to originate in their ability to suppress O-acetylation and protein secondary structures in addition to total EPS secretion.« less

  8. Magnetic Fe3O4@MCM-41 core-shell nanoparticles functionalized with thiol silane for efficient l-asparaginase immobilization.

    PubMed

    Ulu, Ahmet; Noma, Samir Abbas Ali; Koytepe, Suleyman; Ates, Burhan

    2018-06-06

    l-Asparaginase (l-ASNase) is a vital enzyme for medical treatment and food industry. Here, we assessed the use of Fe 3 O 4 @Mobil Composition of Matter No. 41 (MCM-41) magnetic nanoparticles as carrier matrix for l-ASNase immobilization. In addition, surface of Fe 3 O 4 @MCM-41 magnetic nanoparticles was functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) to enhance stability of l-ASNase. The chemical structure, thermal properties, magnetic profile and morphology of the thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles were characterized with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray (EDX) spectroscopy and zeta-potential measurement. l-ASNase was covalently immobilized onto the thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles. The properties of the immobilized enzyme, including optimum pH, temperature, kinetic parameters, thermal stability, reusability and storage stability were investigated and compared to free one. Immobilized enzyme was found to be stable over a wide range of pH and temperature range than free enzyme. The immobilized l-ASNase also showed higher thermal stability after 180 min incubation at 50 °C. The immobilized enzyme still retained 63% of its original activity after 16 times of reuse. The Km value for the immobilized enzyme was 1.15-fold lower than the free enzyme, which indicates increased affinity for the substrate. Additionally, the immobilized enzyme was active over 65% and 53% after 30 days of storage at 4 °C and room temperature (∼25 °C), respectively. Thereby, the results confirmed that thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles had high efficiency for l-ASNase immobilization and improved stability of L-ASNase.

  9. The role of glutathione in DNA damage by potassium bromate in vitro.

    PubMed

    Parsons, J L; Chipman, J K

    2000-07-01

    We have investigated the role of reduced glutathione (GSH) in the genetic toxicity of the rodent renal carcinogen potassium bromate (KBrO(3)). A statistically significant increase in the concentration of 8-oxodeoxyguanosine (8-oxodG) relative to deoxyguanosine was measured following incubation of calf thymus DNA with KBrO(3) and GSH or N-acetylcysteine (NACys). This was dependent on these thiols and was associated with the loss of GSH and production of oxidized glutathione. A short-lived (<6 min) intermediate was apparent which did not react with the spin trap dimethylpyrroline N-oxide. DNA oxidation was not evident when potassium chlorate (KClO(3)) or potassium iodate (KIO(3)) were used instead of KBrO(3), though GSH depletion also occurred with KIO(3), but not with KClO(3). Other reductants and thiols in combination with KBrO(3) did not cause a significant increase in DNA oxidation. DNA strand breakage was also induced by KBrO(3) in human white blood cells (5 mM) and rat kidney epithelial cells (NRK-52E, 1.5 mM). This was associated with an apparent small depletion of thiols in NRK-52E cells at 15 min and with an elevation of 8-oxodG at a delayed time of 24 h. Depletion of intra-cellular GSH by diethylmaleate in human lymphocytes decreased the amount of strand breakage induced by KBrO(3). Extracellular GSH, however, protected against DNA strand breakage by KBrO(3), possibly due to the inability of the reactive product to enter the cell. In contrast, membrane-permeant NACys enhanced KBrO(3)-induced DNA strand breakage in these cells. DNA damage by KBrO(3) is therefore largely dependent on access to intracellular GSH.

  10. Chemical synthesis of oligonucleotides containing a free sulphydryl group and subsequent attachment of thiol specific probes.

    PubMed Central

    Connolly, B A; Rider, P

    1985-01-01

    Oligonucleotides containing a free sulphydryl group at their 5'-termini have been synthesised and further derivatised with thiol specific probes. The nucleotide sequence required is prepared using standard solid phase phosphoramidite techniques and an extra round of synthesis is then performed using the S-triphenylmethyl O-methoxymorpholinophosphite derivatives of 2-mercaptoethanol, 3-mercaptopropan (1) ol or 6-mercaptohexan (1) ol. After cleavage from the resin and removal of the phosphate and base protecting groups, this yields an oligonucleotide containing an S-triphenylmethyl group attached to the 5'-phosphate group via a two, three or six carbon chain. The triphenylmethyl group can be readily removed with silver nitrate to give the free thiol. With the three and six carbon chain oligonucleotides, this thiol can be used, at pH 8, for the attachment of thiol specific probes as illustrated by the reaction with fluorescent conjugates of iodoacetates and maleiimides. However, oligonucleotides containing a thiol attached to the 5'-phosphate group via a two carbon chain are unstable at pH 8 decomposing to the free 5'-phosphate and so are unsuitable for further derivatisation. PMID:4011448

  11. Patchy micelles based on coassembly of block copolymer chains and block copolymer brushes on silica particles.

    PubMed

    Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying

    2015-04-14

    Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.

  12. Functional Exploration of the Polysaccharide Lyase Family PL6

    PubMed Central

    Mathieu, Sophie; Henrissat, Bernard; Labre, Flavien; Skjåk-Bræk, Gudmund; Helbert, William

    2016-01-01

    Alginate, the main cell-wall polysaccharide of brown algae, is composed of two residues: mannuronic acid (M-residues) and, its C5-epimer, guluronic acid (G-residues). Alginate lyases define a class of enzymes that cleave the glycosidic bond of alginate by β-elimination. They are classified according to their ability to recognize the distribution of M- and G-residues and are named M-, G- or MG-lyases. In the CAZy database, alginate lyases have been grouped by sequence similarity into seven distinct polysaccharide lyase families. The polysaccharide lyase family PL6 is subdivided into three subfamilies. Subfamily PL6_1 includes three biochemically characterized enzymes (two alginate lyases and one dermatan sulfatase lyase). No characterized enzymes have been described in the two other subfamilies (PL6_2 and PL6_3). To improve the prediction of polysaccharide-lyase activity in the PL6 family, we re-examined the classification of the PL6 family and biochemically characterized a set of enzymes reflecting the diversity of the protein sequences. Our results show that subfamily PL6_1 includes two dermatan sulfates lyases and several alginate lyases that have various substrate specificities and modes of action. In contrast, subfamilies PL6_2 and PL6_3 were found to contain only endo-poly-MG-lyases. PMID:27438604

  13. Fluorescence analysis of 6-mercaptopurine with the use of a nano-composite consisting of BSA-capped Au nano-clusters and core-shell Fe3O4-SiO2 nanoparticles.

    PubMed

    Li, Zhuo; Wang, Yong; Ni, Yongnian; Kokot, Serge

    2015-08-15

    A magnetic and fluorescent nano-composite was prepared. It comprised of a core of Fe3O4 nanoparticles (NPs), a silica shell and satellitic Au nano-clusters (AuNCs) capped with bovine serum albumin (BSA). This nano-composite has many desirable properties, e.g. magnetism, red emission, high water solubility, and high resistance to photo-bleaching. On addition of the analyte, 6-mercaptopurine (6-MP) or indeed other similar thiols, AuNCs formed aggregates because the existing cross-links within the Fe3O4 NPs@SiO2 and AuNC structure were broken in favor of the gold-thiol bonds. On suitable irradiation of such aggregates, red fluorescence was emitted at 613 nm. It decreased significantly as a function of the added 6-MP concentration, and the quenching ratio (F0 - F) / F0 was related linearly to the concentration of 6-MP in the range of 0.01 to 0.5 μmol L(-1). The detection limit was 0.004 μmol L(-1) (S/N=3). The method was strongly selective for 6-MP in the presence of oxidants, phenols, heavy-metal ions, and especially bio-thiols. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. alpha-1,4-Glucan lyase, a new class of starch/glycogen degrading enzyme. III. Substrate specificity, mode of action, and cleavage mechanism.

    PubMed

    Yu, S; Ahmad, T; Kenne, L; Pedersén, M

    1995-05-11

    The alpha-1,4-glucan lyase (EC 4.2.2.-), purified from the red alga Gracilariopsis lemaneiformis, is a single polypeptide with a molecular mass of 116,654 Da as determined by matrix-assisted laser-desorption mass spectrometry. It degraded maltose, maltosaccharides, amylose, amylopectin and glycogen, forming 1,5-anhydro-D-fructose from the non-reducing end groups. The substrate specificity, mode of action, and cleavage mechanism of the enzyme were studied by using various naturally occurring and synthesized substrates. This enzyme was highly specific for the alpha-1,4-D-glucosidic bond. When a linear alpha-1,4-glucan was used as substrate, the enzyme split the substrate from the non-reducing end and released 1,5-anhydro-D-fructose successively until only one glucose unit was left. When a branched pentasaccharide of 6(2)-alpha-maltosylmaltotriose, obtained from glycogen by alpha-amylase limitation, was used as substrate, the glucose group in the 4-position of the 4,6-branched residue was not cleaved off. Using maltoheptaose as substrate and following the reaction with HPLC and 1H-NMR spectroscopy, it was found that the action mode of the lyase followed a multichain attack mechanism. 1H- and 13C-NMR spectroscopic studies on unlabelled and labelled amylose (1-2H, 2-2H, 1-13C) as substrates indicated that the lyase cleaved the C-(1')-O(4) bond forming a double bond between C-1' and C-2', thus forming the enol form of 1,5-anhydro-D-fructose. It also indicated that the catalytic process of the lyase involved proton exchanges among C-1, C-2, C-3 and the solvent.

  15. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions

    NASA Astrophysics Data System (ADS)

    Odio, Oscar F.; Lartundo-Rojas, Luis; Palacios, Elia Guadalupe; Martínez, Ricardo; Reguera, Edilso

    2016-11-01

    We report a novel strategy for the synthesis of magnetic nano-platforms containing free thiol groups. It first involves the synthesis of a poly(acrylic acid) copolymer containing disulfide bridges between the linear chains through di-ester linkages, followed by the anchoring of this new ligand to magnetite nanoparticles using a ligand exchange reaction. Finally, free sbnd SH groups are obtained by treating the resulting disulfide-functionalized magnetic nano-system with tributyl phosphine as reducing agent. The characterization of the resulting 17 nm nanoparticles (Fe3O4@PAA-HEDred) by FTIR and TGA confirms the attachment of the copolymer through iron carboxylates. XRD, TEM and magnetic measurements indicate an increase in the inorganic core diameter and the occurrence of strong magnetic inter-particle interactions during the exchange reaction, although coercitivity and remanence drop to near zero at room temperature. Afterwards, Fe3O4@PAA-HEDred nanoparticles were tested as sorbent for Pb2+ and Cd2+ cations in aqueous media. XPS measurements were performed in order to unravel the role of both carboxyl and thiol functions in the adsorption process. For the sake of comparison, the same study was performed using bare Fe3O4 nanoparticles and a nanosystem with disulfide groups (Fe3O4@DMSA). The joint analysis of the Pb 4f, Cd 3d, Fe 2p and S 2p high resolution spectra for the nanostructured materials indicates that metal-sulfur interactions are dominant if free sbnd SH groups are present, but if not, the main adsorption route entails metal-carboxyl interactions. Even in presence of unbound thiol moieties, carboxyl groups participate due to favoured steric availability.

  16. Sulfur Hydrogen Bonding in Isolated Monohydrates: Furfuryl Mercaptan versus Furfuryl Alcohol.

    PubMed

    Juanes, Marcos; Lesarri, Alberto; Pinacho, Ruth; Charro, Elena; Rubio, José E; Enríquez, Lourdes; Jaraíz, Martín

    2018-05-02

    The hydrogen bonds involving sulfur in the furfuryl mercaptan monohydrate are compared with the interactions originating from the hydroxyl group in furfuryl alcohol. The dimers with water were created in a supersonic jet expansion and characterized using microwave spectroscopy and supporting molecular orbital calculations. In furfuryl alcohol-water, a single isomer is observed, in which the water molecule forms an insertion complex with two simultaneous hydrogen bonds to the alcohol (O-H⋅⋅⋅O w ) and the ring oxygen (O w -H⋅⋅⋅O r ). When the alcohol is replaced by a thiol group in furfuryl mercaptan-water, two isomers are observed, with the thiol group preferentially behaving as proton donor to water. The first isomer is topologically equivalent to the alcohol analog but the stronger hydrogen bond is now established by water and the ring oxygen, assisted by a thiol S-H⋅⋅⋅O w hydrogen bond. In the second isomer the sulfur group accepts a proton from water, forming a O w -H⋅⋅⋅S hydrogen bond. Binding energies for the mercaptan-water dimer are predicted around 12 kJ mol -1 weaker than in the alcohol hydrate (B3LYP-D3(BJ)). The non-covalent interactions in the furfuryl dimers are dominantly electrostatic according to a SAPT(0) energy decomposition, but with increasing dispersion components in the mercaptan dimers, which are larger for the isomer with the weaker O w -H⋅⋅⋅S interaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.).

    PubMed

    Peng, Renyi; Bian, Zhiyuan; Zhou, Lina; Cheng, Wei; Hai, Na; Yang, Changquan; Yang, Tao; Wang, Xinyu; Wang, Chongying

    2016-11-01

    Our data present H 2 S in a new role, serving as a multi-faceted transducer to different response mechanisms during NO-induced acquisition of tolerance to flooding-induced hypoxia in maize seedling roots. Nitric oxide (NO), serving as a secondary messenger, modulates physiological processes in plants. Recently, hydrogen sulfide (H 2 S) has been demonstrated to have similar signaling functions. This study focused on the effects of treatment with H 2 S on NO-induced hypoxia tolerance in maize seedlings. The results showed that treatment with the NO donor sodium nitroprusside (SNP) enhanced survival rate of submerged maize roots through induced accumulation of endogenous H 2 S. The induced H 2 S then enhanced endogenous Ca 2+ levels as well as the Ca 2+ -dependent activity of alcohol dehydrogenase (ADH), improving the capacity for antioxidant defense and, ultimately, the hypoxia tolerance in maize seedlings. In addition, NO induced the activities of key enzymes in H 2 S biosynthesis, such as L-cysteine desulfhydrases (L-CDs), O-acetyl-L-serine (thiol)lyase (OAS-TL), and β-Cyanoalanine Synthase (CAS). SNP-induced hypoxia tolerance was enhanced by the application of NaHS, but was eliminated by the H 2 S-synthesis inhibitor hydroxylamine (HA) and the H 2 S-scavenger hypotaurine (HT). H 2 S concurrently enhanced the transcriptional levels of relative hypoxia-induced genes. Together, our findings indicated that H 2 S serves as a multi-faceted transducer that enhances the nitric oxide-induced hypoxia tolerance in maize (Zea mays L.).

  18. Aromatic thiol-mediated cleavage of N-O bonds enables chemical ubiquitylation of folded proteins

    NASA Astrophysics Data System (ADS)

    Weller, Caroline E.; Dhall, Abhinav; Ding, Feizhi; Linares, Edlaine; Whedon, Samuel D.; Senger, Nicholas A.; Tyson, Elizabeth L.; Bagert, John D.; Li, Xiaosong; Augusto, Ohara; Chatterjee, Champak

    2016-09-01

    Access to protein substrates homogenously modified by ubiquitin (Ub) is critical for biophysical and biochemical investigations aimed at deconvoluting the myriad biological roles for Ub. Current chemical strategies for protein ubiquitylation, however, employ temporary ligation auxiliaries that are removed under harsh denaturing conditions and have limited applicability. We report an unprecedented aromatic thiol-mediated N-O bond cleavage and its application towards native chemical ubiquitylation with the ligation auxiliary 2-aminooxyethanethiol. Our interrogation of the reaction mechanism suggests a disulfide radical anion as the active species capable of cleaving the N-O bond. The successful semisynthesis of full-length histone H2B modified by the small ubiquitin-like modifier-3 (SUMO-3) protein further demonstrates the generalizability and compatibility of our strategy with folded proteins.

  19. Nanostructure-Directed Chemical Sensing: The IHSAB Principle and the Effect of Nitrogen and Sulfur Functionalization on Metal Oxide Decorated Interface Response

    PubMed Central

    Laminack, William I.; Gole, James L.

    2013-01-01

    The response matrix, as metal oxide nanostructure decorated n-type semiconductor interfaces are modified in situ through direct amination and through treatment with organic sulfides and thiols, is demonstrated. Nanostructured TiO2, SnOx, NiO and CuxO (x = 1,2), in order of decreasing Lewis acidity, are deposited to a porous silicon interface to direct a dominant electron transduction process for reversible chemical sensing in the absence of significant chemical bond formation. The metal oxide sensing sites can be modified to decrease their Lewis acidity in a process appearing to substitute nitrogen or sulfur, providing a weak interaction to form the oxynitrides and oxysulfides. Treatment with triethylamine and diethyl sulfide decreases the Lewis acidity of the metal oxide sites. Treatment with acidic ethane thiol modifies the sensor response in an opposite sense, suggesting that there are thiol (SH) groups present on the surface that provide a Brønsted acidity to the surface. The in situ modification of the metal oxides deposited to the interface changes the reversible interaction with the analytes, NH3 and NO. The observed change for either the more basic oxynitrides or oxysulfides or the apparent Brønsted acid sites produced from the interaction of the thiols do not represent a simple increase in surface basicity or acidity, but appear to involve a change in molecular electronic structure, which is well explained using the recently developed inverse hard and soft acids and bases (IHSAB) model. PMID:28348345

  20. Leveraging zinc interstitials and oxygen vacancies for sensitive biomolecule detection through selective surface functionalization

    NASA Astrophysics Data System (ADS)

    Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Chaudhry, Shajee; Prasad, Shalini

    2015-03-01

    In this study, functionally engineered EIS technique was implemented to investigate the influence of surface functionalization on sensitivity of biomolecule detection using nanostructured ZnO platform. Organic molecules with thiol and carboxylic functional groups were chosen to control biomolecule immobilization on zinc and oxygen-terminated 2D planar and 1D nanostructured ZnO surfaces. The amount of functionalization and its influence on charge perturbations at the ZnO-electrolyte interface were studied using fluorescence and EIS measurements. We observed the dependence of charge transfer on both the polarity of platform and concentration of cross-linker molecules. Such selectively modified surfaces were used for detection of cortisol, a major stress indicator. Results demonstrated preferential binding of thiol groups to Zn terminations and thus leveraging ZnO interstitials increases the sensitivity of detection over larger dynamic range with detection limit at 10fg/mL.

  1. Coordination chemistry controls the thiol oxidase activity of the B12-trafficking protein CblC

    PubMed Central

    Li, Zhu; Shanmuganathan, Aranganathan; Ruetz, Markus; Yamada, Kazuhiro; Lesniak, Nicholas A.; Kräutler, Bernhard; Brunold, Thomas C.; Koutmos, Markos; Banerjee, Ruma

    2017-01-01

    The cobalamin or B12 cofactor supports sulfur and one-carbon metabolism and the catabolism of odd-chain fatty acids, branched-chain amino acids, and cholesterol. CblC is a B12-processing enzyme involved in an early cytoplasmic step in the cofactor-trafficking pathway. It catalyzes the glutathione (GSH)-dependent dealkylation of alkylcobalamins and the reductive decyanation of cyanocobalamin. CblC from Caenorhabditis elegans (ceCblC) also exhibits a robust thiol oxidase activity, converting reduced GSH to oxidized GSSG with concomitant scrubbing of ambient dissolved O2. The mechanism of thiol oxidation catalyzed by ceCblC is not known. In this study, we demonstrate that novel coordination chemistry accessible to ceCblC-bound cobalamin supports its thiol oxidase activity via a glutathionyl-cobalamin intermediate. Deglutathionylation of glutathionyl-cobalamin by a second molecule of GSH yields GSSG. The crystal structure of ceCblC provides insights into how architectural differences at the α- and β-faces of cobalamin promote the thiol oxidase activity of ceCblC but mute it in wild-type human CblC. The R161G and R161Q mutations in human CblC unmask its latent thiol oxidase activity and are correlated with increased cellular oxidative stress disease. In summary, we have uncovered key architectural features in the cobalamin-binding pocket that support unusual cob(II)alamin coordination chemistry and enable the thiol oxidase activity of ceCblC. PMID:28442570

  2. The influence of cyclomaltooligosaccharides (cyclodextrins) on the enzymatic decomposition of l-phenylalanine catalyzed by phenylalanine ammonia-lyase.

    PubMed

    Gubica, Tomasz; Pełka, Agnieszka; Pałka, Katarzyna; Temeriusz, Andrzej; Kańska, Marianna

    2011-09-27

    Cyclomaltohexaose (α-cyclodextrin) and cyclomaltoheptaose (β-cyclodextrin) as well as their four methyl ether derivatives, that is, hexakis(2,3-di-O-methyl)cyclomaltohexaose, hexakis(2,3,6-tri-O-methyl)cyclomaltohexaose, heptakis(2,3-di-O-methyl)cyclomaltoheptaose, and heptakis(2,3,6-tri-O-methyl)cyclomaltoheptaose were investigated as the additives in the course of enzymatic decomposition of l-phenylalanine catalyzed by phenylalanine ammonia-lyase. Only a few of those additives behaved like classical inhibitors of the enzymatic reaction under investigation because the values of the Michaelis constants that were obtained, as well as the maximum velocity values depended mostly atypically on the concentrations of those additives. In most cases cyclodextrins caused mixed inhibition, both competitive and noncompetitive, but they also acted as activators for selected concentrations. This atypical behaviour of cyclodextrins is caused by three different and independent effects. The inhibitory effect of cyclodextrins is connected with the decrease of substrate concentration and unfavourable influence on the flexibility of the enzyme molecules. On the other hand, the activating effect is connected with the decrease of product concentration (the product is an inhibitor of the enzymatic reaction under investigation). All these effects are caused by the ability of the cyclodextrins to form inclusion complexes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro.

    PubMed

    Jarosz, Artur P; Wei, Wanlei; Gauld, James W; Auld, Janeen; Özcan, Filiz; Aslan, Mutay; Mutus, Bulent

    2015-12-01

    Hydrogen sulfide (H2S) is produced enzymatically by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), as well as other enzymes in mammalian tissues. These discoveries have led to the crowning of H2S as yet another toxic gas that serves as a gasotransmitter like NO and CO. H2S is thought to exert its biological effects through its reaction with cysteine thiols in proteins, yielding sulfurated thiol (-SSH) derivatives. One of the first proteins shown to be modified by H2S was glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [1] where the S-sulfuration of the active site cysteine (Cys 152) resulted in ~7-fold increase in the activity of the enzyme. In the present study we have attempted to reproduce this result with no success. GAPDH in its reduced, or hydrogen peroxide, or glutathione disulfide, or nitrosonium oxidized forms was reacted with sulfide or polysulfides. Sulfide had no effect on reduced GAPDH activity, while polysulfides inhibited GAPDH to ~42% of control. S-sulfuration of GAPDH occurred at Cys 247 after sulfide treatment, Cys 156 and Cys 247 after polysulfide treatment. No evidence of S-sulfuration at active site Cys 152 was discovered. Both sulfide and polysulfide was able to restore the activity of glutathione disulfide oxidized GAPDH, but not to control untreated levels. Treatment of glutathione disulfide oxidized GAPDH with polysulfide also produced S-sulfuration of Cys 156. Treatment of a C156S mutant of GAPDH with sulfide and polysulfide resulted in S-sulfuration of Cys 152, which also caused a decrease and not an increase in enzymatic activity. Computational chemistry shows S-sulfuration of Cys 156 may affect the position of catalytic Cys 152, raising its pKa by 0.5, which may affect the nucleophilicity of Cys 152. The current study raises significant questions about the reported ability of H2S to activate GAPDH by the sulfuration of its active site thiol, and indicates that polysulfide is a stronger protein S-sulfurating agent than sulfide. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Optimization of culturing condition and medium composition for the production of alginate lyase by a marine Vibrio sp. YKW-34

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoting; Lin, Hong; Kim, Sang Moo

    2008-02-01

    Carbohydrases secreted by marine Vibrio sp. YKW-34 with strong Laminaria cell wall degrading ability were screened, and among them alginate lyase was found to be dominant. The effects of medium composition and culturing condition on the production of alginate lyase by marine Vibrio sp. YKW-34 in flask were investigated in this study. In the culture medium of marine broth, no alginate lyase was produced. The activity of the alginate lyase, after being induced, reached 5 UmL-1. The best inoculum volume and inoculum age were 10% and 12 h, respectively. The optimal temperature for alginate lyase production was 25°C. The fermentation medium was composed of 0.5% of Laminaria powder and 0.2% of KNO3 with an initial acidity of pH 8.0. Alginate could induce alginate lyase production but not as efficiently as Laminaria powder did. The addition of fucoidan, cellulose and glucose had negative effect on the alginate lyase production. Other kinds of nitrogen sources, such as yeast extract, beef extract and peptone, had positive effect on the growth of the microorganism and negative effect on alginate lyase production. In addition, the time course of alginate lyase production under the optimized condition was described. The optimal harvest time was 48 h.

  5. Cysteine S-conjugate β-lyases: Important roles in the metabolism of naturally occurring sulfur and selenium-containing compounds, xenobiotics and anticancer agents

    PubMed Central

    Cooper, Arthur J. L.; Krasnikov, Boris F.; Niatsetskaya, Zoya V.; Pinto, John T.; Callery, Patrick S.; Villar, Maria T.; Artigues, Antonio; Bruschi, Sam A.

    2010-01-01

    Summary Cysteine S-conjugate β-lyases are pyridoxal 5′-phosphate-containing enzymes that catalyze β-elimination reactions with cysteine S-conjugates that possess a good leaving group in the β-position. The end products are aminoacrylate and a sulfur-containing fragment. The aminoacrylate tautomerizes and hydrolyzes to pyruvate and ammonia. The mammalian cysteine S-conjugate β-lyases thus far identified are enzymes involved in amino acid metabolism that catalyze β-lyase reactions as non-physiological side reactions. Most are aminotransferases. In some cases the lyase is inactivated by reaction products. The cysteine S-conjugate β-lyases are of much interest to toxicologists because they play an important key role in the bioactivation (toxication) of halogenated alkenes, some of which are produced on an industrial scale and are environmental contaminants. The cysteine S-conjugate β-lyases have been reviewed in this journal previously [Cooper and Pinto, 2006]. Here we focus on more recent findings regarding: 1) the identification of enzymes associated with high-Mr cysteine S-conjugate β-lyases in the cytosolic and mitochondrial fractions of rat liver and kidney; 2) the mechanism of syncatalytic inactivation of rat liver mitochondrial aspartate aminotransferase by the nephrotoxic β-lyase substrate S-(1,1,2,2-tetrafluoroethyl)-L-cysteine (the cysteine S-conjugate of tetrafluoroethylene); 3) toxicant channeling of reactive fragments from the active site of mitochondrial aspartate aminotransferase to susceptible proteins in the mitochondria; 4) the involvement of cysteine S-conjugate β-lyases in the metabolism/bioactivation of drugs and natural products; and 5) the role of cysteine S-conjugate β-lyases in the metabolism of selenocysteine Se-conjugates. This review emphasizes the fact that the cysteine S-conjugate β-lyases are biologically more important than hitherto appreciated. PMID:20306345

  6. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: prevention by thiol group protecting agents.

    PubMed

    Custódio, José B A; Cardoso, Carla M P; Santos, Maria S; Almeida, Leonor M; Vicente, Joaquim A F; Fernandes, Maria A S

    2009-05-02

    Cisplatin (CisPt) is the most important platinum anticancer drug widely used in the treatment of head, neck, ovarian and testicular cancers. However, the mechanisms by which CisPt induces cytotoxicity, namely hepatotoxicity, are not completely understood. The goal of this study was to investigate the influence of CisPt on rat liver mitochondrial functions (Ca(2+)-induced mitochondrial permeability transition (MPT), mitochondrial bioenergetics, and mitochondrial oxidative stress) to better understand the mechanism underlying its hepatotoxicity. The effect of thiol group protecting agents and some antioxidants against CisPt-induced mitochondrial damage was also investigated. Treatment of rat liver mitochondria with CisPt (20nmol/mg protein) induced Ca(2+)-dependent mitochondrial swelling, depolarization of membrane potential (DeltaPsi), Ca(2+) release, and NAD(P)H fluorescence intensity decay. These effects were prevented by cyclosporine A (CyA), a potent and specific inhibitor of the MPT. In the concentration range of up to 40nmol/mg protein, CisPt slightly inhibited state 3 and stimulated state 2 and state 4 respiration rates using succinate as respiratory substrate. The respiratory indexes, respiratory control ratio (RCR) and ADP/O ratios, the DeltaPsi, and the ADP phosphorylation rate were also depressed. CisPt induced mitochondrial inner membrane permeabilization to protons (proton leak) but did not induce significant changes on mitochondrial H(2)O(2) generation. All the effects induced by CisPt on rat liver mitochondria were prevented by thiol group protecting agents namely, glutathione (GSH), dithiothreitol (DTT), N-acetyl-L-cysteine (NAC) and cysteine (CYS), whereas superoxide-dismutase (SOD), catalase (CAT) and ascorbate (ASC) were without effect. In conclusion, the anticancer drug CisPt: (1) increases the sensitivity of mitochondria to Ca(2+)-induced MPT; (2) interferes with mitochondrial bioenergetics by increasing mitochondrial inner membrane permeabilization to H(+); (3) does not significantly affect H(2)O(2) generation by mitochondria; (4) its mitochondrial damaging effects are protected by thiol group protecting agents. Based on these conclusions, it is possible to hypothesise that small changes on the redox-status of thiol groups, affecting membrane permeability to cations (Ca(2+) and H(+)) underlie CisPt-induced liver mitochondrial damage, putatively responsible for its hepatotoxicity. Therefore, we propose that CisPt-induced mitochondrial damage and consequent hepatotoxicity could be prevented by using thiol group protecting agents as therapeutic adjuvants.

  7. Reconstruction of Cysteine Biosynthesis Using Engineered Cysteine-Free and Methionine-Free Enzymes

    NASA Technical Reports Server (NTRS)

    Wang, Kendrick; Fujishima, Kosuke; Abe, Nozomi; Nakahigashi, Kenji; Endy, Drew; Rothschild, Lynn J.

    2016-01-01

    Ten of the proteinogenic amino acids can be generated abiotically while the remaining thirteen require biology for their synthesis. Paradoxically, the biosynthesis pathways observed in nature require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine. Here, we substituted alternate amino acids for cysteine and also methionine, which is biosynthesized from cysteine, in serine acetyl transferase (CysE) and O-acetylserine sulfhydrylase (CysM). CysE function was rescued by cysteine-and-methionine-free enzymes and CysM function was rescued by cysteine-free enzymes. Structural modeling suggests that methionine stabilizes CysM and is present in the active site of CysM. Cysteine is not conserved among CysE and CysM protein orthologs, suggesting that cysteine is not functionally important for its own synthesis. Engineering biosynthetic enzymes that lack the amino acids being synthesized provides insights into the evolution of amino acid biosynthesis and pathways for bioengineering.

  8. In vitro effects of platinum compounds on renal cellular respiration in mice.

    PubMed

    Almarzooqi, Saeeda-S; Alfazari, Ali-S; Abdul-Kader, Hidaya-M; Saraswathiamma, Dhanya; Albawardi, Alia-S; Souid, Abdul-Kader

    2015-01-01

    Cisplatin, carboplatin and oxaliplatin are structurally-related compounds, which are commonly used in cancer therapy. Cisplatin (Platinol(®)) has Boxed Warning stating: "Cumulative renal toxicity associated with PLATINOL is severe", while carboplatin and oxaliplatin are less nephrotoxic. These drugs form platinum adducts with cellular DNA. Their bindings to cellular thiols (e.g., glutathione and metallothionein) are known to contribute to drug resistance while thiol depletion augments platinum toxicity. Using phosphorescence oxygen analyzer, this study investigated the effects of platinum drugs on renal cellular respiration (mitochondrial O2 consumption) in the presence and absence of the thiol blocking agent N-ethylmaleimide (used here as a model for thiol depletion). Renal cellular ATP was also determined. Kidney fragments from C57BL/6 mice were incubated at 37 °C in Krebs-Henseleit buffer (gassed with 95% O2:5% CO2) with and without 100 μM platinum drug in the presence and absence of 100 μM N-ethylmaleimide for ≤ 6 h. Platinum drugs alone had no effects on cellular respiration (P ≥ 0.143) or ATP (P ≥ 0.161). N-ethylmaleimide lowered cellular respiration (P ≤ 0.114) and ATP (P = 0.008). The combination of platinum drug and N-ethylmaleimide significantly lowered both cellular respiration (P ≤ 0.006) and ATP (P ≤ 0.003). Incubations with N-ethylmaleimide alone were associated with moderate-to-severe tubular necrosis. Incubations with cisplatin+N-ethylmaleimide vs. cisplatin alone produced similar severities of tubular necrosis. Tubular derangements were more prominent in carboplatin+N-ethylmaleimide vs. carboplatin alone and in oxaliplatin+N-ethylmaleimide vs. oxaliplatin alone. These results demonstrate the adverse events of thiol depletion on platinum-induced nephrotoxicities. The results suggest cellular bioenergetics is a useful surrogate biomarker for assessing drug-induced nephrotoxicities.

  9. Crystallization and preliminary X-ray analysis of an exotype alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, a member of polysaccharide lyase family 15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochiai, Akihito; Yamasaki, Masayuki; Mikami, Bunzo

    2006-05-01

    The crystallization and preliminary X-ray characterization of a family PL-15 exotype alginate lyase are presented. Almost all alginate lyases depolymerize alginate in an endolytical fashion via a β-elimination reaction. The alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, consisting of 776 amino-acid residues, is a novel exotype alginate lyase classified into polysaccharide lyase family 15. The enzyme was crystallized at 293 K by sitting-drop vapour diffusion with polyethylene glycol 4000 as a precipitant. Preliminary X-ray analysis showed that the Atu3025 crystal belonged to space group P2{sub 1} and diffracted to 2.8 Å resolution, with unit-cell parameters a = 107.7, bmore » = 108.3, c = 149.5 Å, β = 91.5°.« less

  10. Molecular cloning and heterologous expression of a biosynthetic gene cluster for the antitubercular agent D-cycloserine produced by Streptomyces lavendulae.

    PubMed

    Kumagai, Takanori; Koyama, Yusuke; Oda, Kosuke; Noda, Masafumi; Matoba, Yasuyuki; Sugiyama, Masanori

    2010-03-01

    In the present study, we successfully cloned a 21-kb DNA fragment containing a d-cycloserine (DCS) biosynthetic gene cluster from a DCS-producing Streptomyces lavendulae strain, ATCC 11924. The putative gene cluster consists of 10 open reading frames (ORFs), designated dcsA to dcsJ. This cluster includes two ORFs encoding D-alanyl-D-alanine ligase (dcsI) and a putative membrane protein (dcsJ) as the self-resistance determinants of the producer organism, indicated by our previous work. When the 10 ORFs were introduced into DCS-nonproducing Streptomyces lividans 66 as a heterologous host cell, the transformant acquired DCS productivity. This reveals that the introduced genes are responsible for the biosynthesis of DCS. As anticipated, the disruption of dcsG, seen in the DCS biosynthetic gene cluster, made it possible for the strain ATCC 11924 to lose its DCS production. We here propose the DCS biosynthetic pathway. First, L-serine is O acetylated by a dcsE-encoded enzyme homologous to homoserine O-acetyltransferase. Second, O-acetyl-L-serine accepts hydroxyurea via an O-acetylserine sulfhydrylase homolog (dcsD product) and forms O-ureido-L-serine. The hydroxyurea must be supplied by the catalysis of a dcsB-encoded arginase homolog using the L-arginine derivative, N(G)-hydroxy-L-arginine. The resulting O-ureido-L-serine is then racemized to O-ureido-D-serine by a homolog of diaminopimelate epimerase. Finally, O-ureido-D-serine is cyclized to form DCS with the release of ammonia and carbon dioxide. The cyclization must be done by the dcsG or dcsH product, which belongs to the ATP-grasp fold family of protein.

  11. Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor-Ca2+ release channel by NADPH oxidase 4

    PubMed Central

    Sun, Qi-An; Hess, Douglas T.; Nogueira, Leonardo; Yong, Sandro; Bowles, Dawn E.; Eu, Jerry; Laurita, Kenneth R.; Meissner, Gerhard; Stamler, Jonathan S.

    2011-01-01

    Physiological sensing of O2 tension (partial O2 pressure, pO2) plays an important role in some mammalian cellular systems, but striated muscle generally is not considered to be among them. Here we describe a molecular mechanism in skeletal muscle that acutely couples changes in pO2 to altered calcium release through the ryanodine receptor–Ca2+-release channel (RyR1). Reactive oxygen species are generated in proportion to pO2 by NADPH oxidase 4 (Nox4) in the sarcoplasmic reticulum, and the consequent oxidation of a small set of RyR1 cysteine thiols results in increased RyR1 activity and Ca2+ release in isolated sarcoplasmic reticulum and in cultured myofibers and enhanced contractility of intact muscle. Thus, Nox4 is an O2 sensor in skeletal muscle, and O2-coupled hydrogen peroxide production by Nox4 governs the redox state of regulatory RyR1 thiols and thereby governs muscle performance. These findings reveal a molecular mechanism for O2-based signaling by an NADPH oxidase and demonstrate a physiological role for oxidative modification of RyR1. PMID:21896730

  12. The thiol of human serum albumin: Acidity, microenvironment and mechanistic insights on its oxidation to sulfenic acid.

    PubMed

    Bonanata, Jenner; Turell, Lucía; Antmann, Laura; Ferrer-Sueta, Gerardo; Botasini, Santiago; Méndez, Eduardo; Alvarez, Beatriz; Coitiño, E Laura

    2017-07-01

    Human serum albumin (HSA) has a single reduced cysteine residue, Cys34, whose acidity has been controversial. Three experimental approaches (pH-dependence of reactivity towards hydrogen peroxide, ultraviolet titration and infrared spectroscopy) are used to determine that the pK a value in delipidated HSA is 8.1±0.2 at 37°C and 0.1M ionic strength. Molecular dynamics simulations of HSA in the sub-microsecond timescale show that while sulfur exposure to solvent is limited and fluctuating in the thiol form, it increases in the thiolate, stabilized by a persistent hydrogen-bond (HB) network involving Tyr84 and bridging waters to Asp38 and Gln33 backbone. Insight into the mechanism of Cys34 oxidation by H 2 O 2 is provided by ONIOM(QM:MM) modeling including quantum water molecules. The reaction proceeds through a slightly asynchronous S N 2 transition state (TS) with calculated Δ ‡ G and Δ ‡ H barriers at 298K of respectively 59 and 54kJmol -1 (the latter within chemical accuracy from the experimental value). A post-TS proton transfer leads to HSA-SO - and water as products. The structured reaction site cages H 2 O 2 , which donates a strong HB to the thiolate. Loss of this HB before reaching the TS modulates Cys34 nucleophilicity and contributes to destabilize H 2 O 2 . The lack of reaction-site features required for differential stabilization of the TS (positive charges, H 2 O 2 HB strengthening) explains the striking difference in kinetic efficiency for the same reaction in other proteins (e.g. peroxiredoxins). The structured HB network surrounding HSA-SH with sequestered waters carries an entropic penalty on the barrier height. These studies contribute to deepen the understanding of the reactivity of HSA-SH, the most abundant thiol in human plasma, and in a wider perspective, provide clues on the key aspects that modulate thiol reactivity against H 2 O 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials

    NASA Astrophysics Data System (ADS)

    Pham, Chuyen V.; Repp, Sergej; Thomann, Ralf; Krueger, Michael; Weber, Stefan; Erdem, Emre

    2016-05-01

    To harness the unique properties of graphene and ZnO nanoparticles (NPs) for novel applications, the development of graphene-ZnO nanoparticle hybrid materials has attracted great attention and is the subject of ongoing research. For this contribution, graphene-oxide-ZnO (GO-ZnO) and thiol-functionalized reduced graphene oxide-ZnO (TrGO-ZnO) nanohybrid materials were prepared by novel self-assembly processes. Based on electron paramagnetic resonance (EPR) and photoluminescence (PL) investigations on bare ZnO NPs, GO-ZnO and TrGO-ZnO hybrid materials, we found that several physical phenomena were occurring when ZnO NPs were hybridized with GO and TrGO. The electrons trapped in Zn vacancy defects (VZn-) within the core of ZnO NPs vanished by transfer to GO and TrGO in the hybrid materials, thus leading to the disappearance of the core signals in the EPR spectra of ZnO NPs. The thiol groups of TrGO and sulfur can effectively ``heal'' the oxygen vacancy (VO+) related surface defects of ZnO NPs while oxygen-containing functionalities have low healing ability at a synthesis temperature of 100 °C. Photoexcited electron transfer from the conduction band of ZnO NPs to graphene leads to photoluminescence (PL) quenching of near band gap emission (NBE) of both GO-ZnO and TrGO-ZnO. Simultaneously, electron transfer from graphene to defect states of ZnO NPs is the origin of enhanced green defect emission from GO-ZnO. This observation is consistent with the energy level diagram model of hybrid materials.To harness the unique properties of graphene and ZnO nanoparticles (NPs) for novel applications, the development of graphene-ZnO nanoparticle hybrid materials has attracted great attention and is the subject of ongoing research. For this contribution, graphene-oxide-ZnO (GO-ZnO) and thiol-functionalized reduced graphene oxide-ZnO (TrGO-ZnO) nanohybrid materials were prepared by novel self-assembly processes. Based on electron paramagnetic resonance (EPR) and photoluminescence (PL) investigations on bare ZnO NPs, GO-ZnO and TrGO-ZnO hybrid materials, we found that several physical phenomena were occurring when ZnO NPs were hybridized with GO and TrGO. The electrons trapped in Zn vacancy defects (VZn-) within the core of ZnO NPs vanished by transfer to GO and TrGO in the hybrid materials, thus leading to the disappearance of the core signals in the EPR spectra of ZnO NPs. The thiol groups of TrGO and sulfur can effectively ``heal'' the oxygen vacancy (VO+) related surface defects of ZnO NPs while oxygen-containing functionalities have low healing ability at a synthesis temperature of 100 °C. Photoexcited electron transfer from the conduction band of ZnO NPs to graphene leads to photoluminescence (PL) quenching of near band gap emission (NBE) of both GO-ZnO and TrGO-ZnO. Simultaneously, electron transfer from graphene to defect states of ZnO NPs is the origin of enhanced green defect emission from GO-ZnO. This observation is consistent with the energy level diagram model of hybrid materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00393a

  14. The genetic and functional basis of isolated 17,20-lyase deficiency.

    PubMed

    Geller, D H; Auchus, R J; Mendonça, B B; Miller, W L

    1997-10-01

    Human male sexual differentiation requires production of fetal testicular testosterone, whose biosynthesis requires steroid 17,20-lyase activity. Patients with putative isolated 17,20-lyase deficiency have been reported. The existence of true isolated 17,20-lyase deficiency, however, has been questioned because 17 alpha-hydroxylase and 17,20-lyase activities are catalyzed by a single enzyme, microsomal cytochrome P450c17, and because the index case of apparent isolated 17,20-lyase deficiency had combined deficiencies of both activities. We studied two patients with clinical and hormonal findings suggestive of isolated 17,20-lyase deficiency. We found two patients homozygous for substitution mutations in CYP17, the gene encoding P450c17. When expressed in COS-1 cells, the mutants retained 17 alpha-hydroxylase activity but had minimal 17,20-lyase activity. Substrate competition experiments suggested that the mutations did not alter the enzyme's substrate-binding capacity, but co-transfection of cells with P450 oxidoreductase, the electron donor used by P450c17, indicated that the mutants had a diminished ability to interact with redox partners. Computer-graphic modelling of P450c17 suggests that both mutations lie in or near the redox-partner binding site, on the opposite side of the haem from the substrate-binding pocket. These mutations alter electrostatic charge distribution in the redox-partner binding site, so that electron transfer for the 17,20-lyase reaction is selectively lost or diverted to uncoupling reactions. These are the first proven cases of isolated 17,20-lyase deficiency, and they demonstrate a novel mechanism for loss of enzymatic activity.

  15. Screening of alginate lyase-excreting microorganisms from the surface of brown algae.

    PubMed

    Wang, Mingpeng; Chen, Lei; Zhang, Zhaojie; Wang, Xuejiang; Qin, Song; Yan, Peisheng

    2017-12-01

    Alginate lyase is a biocatalyst that degrades alginate to produce oligosaccharides, which have many bioactive functions and could be used as renewable biofuels. Here we report a simple and sensitive plate assay for screening alginate lyase-excreting microorganisms from brown algae. Brown algae Laminaria japonica, Sargassum horneri and Sargassum siliquatrum were cultured in sterile water. Bacteria growing on the surface of seaweeds were identified and their capacity of excreting alginate lyase was analyzed. A total of 196 strains were recovered from the three different algae samples and 12 different bacterial strains were identified capable of excreting alginate lyases. Sequence analysis of the 16S rRNA gene revealed that these alginate lyase-excreting strains belong to eight genera: Paenibacillus (4/12), Bacillus (2/12), Leclercia (1/12), Isoptericola (1/12), Planomicrobium (1/12), Pseudomonas (1/12), Lysinibacillus (1/12) and Sphingomonas (1/12). Further analysis showed that the LJ-3 strain (Bacillus halosaccharovorans) had the highest enzyme activity. To our best knowledge, this is the first report regarding alginate lyase-excreting strains in Paenibacillus, Planomicrobium and Leclercia. We believe that our method used in this study is relatively easy and reliable for large-scale screening of alginate lyase-excreting microorganisms.

  16. Elastic Modulus and Thermal Conductivity of Thiolene/TiO2 Nanocomposites

    PubMed Central

    2017-01-01

    Metal oxide based polymer nanocomposites find diverse applications as functional materials, and in particular thiol-ene/TiO2 nanocomposites are promising candidates for dental restorative materials. The important mechanical and thermal properties of the nanocomposites, however, are still not well understood. In this study, the elastic modulus and thermal conductivity of thiol-ene/TiO2 nanocomposite thin films with varying weight fractions of TiO2 nanoparticles are investigated by using Brillouin light scattering spectroscopy and 3ω measurements, respectively. As the TiO2 weight fraction increases from 0 to 90%, the effective elastic longitudinal modulus of the films increases from 6.2 to 37.5 GPa, and the effective thermal conductivity from 0.04 to 0.76 W/m K. The former increase could be attributed to the covalent cross-linking of the nanocomposite constituents. The latter one could be ascribed to the addition of high thermal conductivity TiO2 nanoparticles and the formation of possible conductive channels at high TiO2 weight fractions. The linear dependence of the thermal conductivity on the sound velocity, reported for amorphous polymers, is not observed in the present nanocomposite system. PMID:29755637

  17. Electron transport chain dysfunction by H(2)O (2) is linked to increased reactive oxygen species production and iron mobilization by lipoperoxidation: studies using Saccharomyces cerevisiae mitochondria.

    PubMed

    Cortés-Rojo, Christian; Estrada-Villagómez, Mirella; Calderón-Cortés, Elizabeth; Clemente-Guerrero, Mónica; Mejía-Zepeda, Ricardo; Boldogh, Istvan; Saavedra-Molina, Alfredo

    2011-04-01

    The mitochondrial electron transport chain (ETC) contains thiol groups (-SH) which are reversibly oxidized to modulate ETC function during H(2)O(2) overproduction. Since deleterious effects of H(2)O(2) are not limited to -SH oxidation, due to the formation of other H(2)O(2)-derived species, some processes like lipoperoxidation could enhance the effects of H(2)O(2) over ETC enzymes, disrupt their modulation by -SH oxidation and increase superoxide production. To verify this hypothesis, we tested the effects of H(2)O(2) on ETC activities, superoxide production and iron mobilization in mitochondria from lipoperoxidation-resistant native yeast and lipoperoxidation-sensitized yeast. Only complex III activity from lipoperoxidation-sensitive mitochondria exhibited a higher susceptibility to H(2)O(2) and increased superoxide production. The recovery of ETC activity by the thiol reductanct β-mercaptoethanol (BME) was also altered at complex III, and a role was attributed to lipoperoxidation, the latter being also responsible for iron release. A hypothetical model linking lipoperoxidation, increased complex III damage, superoxide production and iron release is given.

  18. Thermodynamics of Alkanethiol Self-Assembled Monolayer Assembly on Pd Surfaces.

    PubMed

    Kumar, Gaurav; Van Cleve, Timothy; Park, Jiyun; van Duin, Adri; Medlin, J Will; Janik, Michael J

    2018-06-05

    We investigate the structure and binding energy of alkanethiolate self-assembled monolayers (SAMs) on Pd (111), Pd (100), and Pd (110) facets at different coverages. Dispersion-corrected density functional theory calculations are used to correlate the binding energy of alkanethiolates with alkyl chain length and coverage. The equilibrium coverage of thiolate layers strongly prefers 1/3 monolayer (ML) on the Pd (111) surface. The coverage of thiolates varies with chemical potential on Pd (100) and Pd (110), increasing from 1/3 to 1/2 ML on (100) and from 1/4 to 1/2 ML on (110) as the thiol chemical potential is increased. Higher coverages are driven by attractive dispersion interactions between the extended alkyl chains, such that transitions to higher coverages occur at lower thiol chemical potentials for longer chain thiolates. Stronger adsorption to the Pd (100) surface causes the equilibrium Wulff construction of Pd particles to take on a cubic shape upon saturation with thiols. The binding of H, O, and CO adsorbates is weakened as the thiolate coverage is increased, with saturation coverages causing unfavorable binding of O and CO on Pd (100) and weakened binding on other facets. Temperature-dependent CO diffuse reflectance infrared Fourier transform spectroscopy experiments are used to corroborate the weakened binding of CO in the presence of thiolate SAMs of varying surface density. Preliminary results of multiscale modeling efforts on the Pd-thiol system using a reactive force field, ReaxFF, are also discussed.

  19. Selenite Protection of Tellurite Toxicity Toward Escherichia coli

    PubMed Central

    Vrionis, Helen A.; Wang, Siyuan; Haslam, Bronwyn; Turner, Raymond J.

    2015-01-01

    In this work the influence of selenite on metal resistance in Escherichia coli was examined. Both synergistic and antagonistic resistance and toxicities were found upon co exposure with selenite. In wild type cells co-exposure to selenite had little effect on arsenic resistance, decreased resistance to cadmium and mercury but led to a dramatically increased resistance to tellurite of 32-fold. Due to the potential importance of thiol chemistry in metal biochemistry, deletion strains in γ-glutamylcysteine synthetase (key step in glutathione biosynthesis, encoded by gshA), thioredoxin (trxA), glutaredoxin (grxA), glutathione oxidoreductase (gor), and the periplasmic glutathione transporter (cydD) were also evaluated for resistance to various metals in the presence of selenite. The protective effect of selenite on tellurite toxicity was seen in several of the mutants and was pronounced in the gshA mutant were resistance to tellurite was increased up to 1000-fold relative to growth in the absence of selenite. Thiol oxidation studies revealed a faster rate of loss of reduced thiol content in the cell with selenite than with tellurite, indicating differential thiol reactivity. Selenite addition resulted in reactive oxygen species (ROS) production equivalent to levels associated with H2O2 addition. Tellurite addition resulted in considerably lower ROS generation while vanadate and chromate treatment did not increase ROS production above that of background. This work shows increased resistance toward most oxyanions in mutants of thiol redox suggesting that metalloid reaction with thiol components such as glutathione actually enhances toxicity of some metalloids. PMID:26732755

  20. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia.

    PubMed

    Kurmanbayeva, Assylay; Bekturova, Aizat; Srivastava, Sudhakar; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Khan, Mohammad Suhail; Salazar, Octavio; Fedoroff, Nina; Sagi, Moshe

    2017-09-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia : the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H 2 S, NH 3 , and pyruvate. The major function of O -acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H 2 S. This activity was significantly higher in Sarcocornia than in Salicornia , especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia . © 2017 American Society of Plant Biologists. All Rights Reserved.

  1. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia1[OPEN

    PubMed Central

    Kurmanbayeva, Assylay; Bekturova, Aizat; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Salazar, Octavio; Fedoroff, Nina

    2017-01-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H2S, NH3, and pyruvate. The major function of O-acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5′-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia. PMID:28743765

  2. Photosynthetic Adaptation to Length of Day Is Dependent on S-Sulfocysteine Synthase Activity in the Thylakoid Lumen1[W

    PubMed Central

    Bermúdez, María Ángeles; Galmés, Jeroni; Moreno, Inmaculada; Mullineaux, Philip M.; Gotor, Cecilia; Romero, Luis C.

    2012-01-01

    Arabidopsis (Arabidopsis thaliana) chloroplasts contain two O-acetyl-serine(thiol)lyase (OASTL) homologs, OAS-B, which is an authentic OASTL, and CS26, which has S-sulfocysteine synthase activity. In contrast with OAS-B, the loss of CS26 function resulted in dramatic phenotypic changes, which were dependent on the light treatment. We have performed a detailed characterization of the photosynthetic and chlorophyll fluorescence parameters in cs26 plants compared with those of wild-type plants under short-day growth conditions (SD) and long-day growth conditions (LD). Under LD, the photosynthetic characterization, which was based on substomatal CO2 concentrations and CO2 concentration in the chloroplast curves, revealed significant reductions in most of the photosynthetic parameters for cs26, which were unchanged under SD. These parameters included net CO2 assimilation rate, mesophyll conductance, and mitochondrial respiration at darkness. The analysis also showed that cs26 under LD required more absorbed quanta per driven electron flux and fixed CO2. The nonphotochemical quenching values suggested that in cs26 plants, the excess electrons that are not used in photochemical reactions may form reactive oxygen species. A photoinhibitory effect was confirmed by the background fluorescence signal values under LD and SD, which were higher in young leaves compared with mature ones under SD. To hypothesize the role of CS26 in relation to the photosynthetic machinery, we addressed its location inside of the chloroplast. The activity determination and localization analyses that were performed using immunoblotting indicated the presence of an active CS26 enzyme exclusively in the thylakoid lumen. This finding was reinforced by the observation of marked alterations in many lumenal proteins in the cs26 mutant compared with the wild type. PMID:22829322

  3. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water.

    PubMed

    Ke, Fei; Qiu, Ling-Guang; Yuan, Yu-Peng; Peng, Fu-Min; Jiang, Xia; Xie, An-Jian; Shen, Yu-Hua; Zhu, Jun-Fa

    2011-11-30

    The presence of coordinatively unsaturated metal centers in metal-organic frameworks (MOFs) provides an accessible way to selectively functionalize MOFs through coordination bonds. In this work, we describe thiol-functionalization of MOFs by choosing a well known three-dimensional (3D) Cu-based MOF, i.e. [Cu(3)(BTC)(2)(H(2)O)(3)](n) (HKUST-1, BTC=benzene-1,3,5-tricarboxylate), by a facile coordination-based postsynthetic strategy, and demonstrate their application for removal of heavy metal ion from water. A series of [Cu(3)(BTC)(2)](n) samples stoichiometrically decorated with thiol groups has been prepared through coordination bonding of coordinatively unsaturated metal centers in HKUST-1 with -SH group in dithioglycol. The obtained thiol-functionalized samples were characterized by powder X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, infrared spectroscopy, and N(2) sorption-desorption isothermal. Significantly, the thiol-functionalized [Cu(3)(BTC)(2)](n) exhibited remarkably high adsorption affinity (K(d)=4.73 × 10(5)mL g(-1)) and high adsorption capacity (714.29 mg g(-1)) for Hg(2+) adsorption from water, while the unfunctionalized HKUST-1 showed no adsorption of Hg(2+) under the same condition. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Controlled free radical attack in the apoplast: A hypothesis for roles of O, N and S species in regulatory and polysaccharide cleavage events during rapid abscission by Azolla

    PubMed Central

    Cohen, Michael F.; Gurung, Sushma; Fukuto, Jon M.; Yamasaki, Hideo

    2014-01-01

    Shedding of organs by abscission is a key terminal step in plant development and stress responses. Cell wall (CW) loosening at the abscission zone can occur through a combination chain breakage of apoplastic polysaccharides and tension release of cellulose microfibrils. Two distinctly regulated abscission cleavage events are amenable to study in small water ferns of the genus Azolla; one is a rapid abscission induced by environmental stimuli such as heat or chemicals, and the other is an ethylene-induced process occurring more slowly through the action of hydrolytic enzymes. Although free radicals are suggested to be involved in the induction of rapid root abscission, its mechanism is not fully understood. The apoplast contains peroxidases, metal-binding proteins and phenolic compounds that potentially generate free radicals from H2O2 to cleave polysaccharides in the CW and middle lamella. Effects of various thiol-reactive agents implicate the action of apoplastic peroxidases having accessible cysteine thiols in rapid abscission. The Ca2+ dependency of rapid abscission may reflect the stabilization Ca2+ confers to peroxidase structure and binding to pectin. To spur further investigation, we present a hypothetical model for small signaling molecules H2O2 and NO and their derivatives in regulating, via modification of putative protein thiols, free radical attack of apoplastic polysaccharides. PMID:24467903

  5. Cryptococcus neoformans ADS lyase is an enzyme essential for virulence whose crystal structure reveals features exploitable in antifungal drug design.

    PubMed

    Chitty, Jessica L; Blake, Kirsten L; Blundell, Ross D; Koh, Y Q Andre E; Thompson, Merinda; Robertson, Avril A B; Butler, Mark S; Cooper, Matthew A; Kappler, Ulrike; Williams, Simon J; Kobe, Bostjan; Fraser, James A

    2017-07-14

    There is significant clinical need for new antifungal agents to manage infections with pathogenic species such as Cryptococcus neoformans Because the purine biosynthesis pathway is essential for many metabolic processes, such as synthesis of DNA and RNA and energy generation, it may represent a potential target for developing new antifungals. Within this pathway, the bifunctional enzyme adenylosuccinate (ADS) lyase plays a role in the formation of the key intermediates inosine monophosphate and AMP involved in the synthesis of ATP and GTP, prompting us to investigate ADS lyase in C. neoformans. Here, we report that ADE13 encodes ADS lyase in C. neoformans. We found that an ade13 Δ mutant is an adenine auxotroph and is unable to successfully cause infections in a murine model of virulence. Plate assays revealed that production of a number of virulence factors essential for dissemination and survival of C. neoformans in a host environment was compromised even with the addition of exogenous adenine. Purified recombinant C. neoformans ADS lyase shows catalytic activity similar to its human counterpart, and its crystal structure, the first fungal ADS lyase structure determined, shows a high degree of structural similarity to that of human ADS lyase. Two potentially important amino acid differences are identified in the C. neoformans crystal structure, in particular a threonine residue that may serve as an additional point of binding for a fungal enzyme-specific inhibitor. Besides serving as an antimicrobial target, C. neoformans ADS lyase inhibitors may also serve as potential therapeutics for metabolic disease; rather than disrupt ADS lyase, compounds that improve the stability the enzyme may be used to treat ADS lyase deficiency disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Homozygous Mutation G539R in the Gene for P450 Oxidoreductase in a Family Previously Diagnosed as Having 17,20-Lyase Deficiency

    PubMed Central

    Hershkovitz, Eli; Parvari, Ruthi; Wudy, Stefan A.; Hartmann, Michaela F.; Gomes, Larissa G.; Loewental, Neta; Miller, Walter L.

    2008-01-01

    Context: Very few patients have been described with isolated 17,20-lyase deficiency who have had their mutations in P450c17 (17α-hydroxylase/17,20-lyase) proven by DNA sequencing and in vitro characterization of the mutations. Most patients with 17,20-lyase deficiency have mutations in the domain of P450c17 that interact with the electron-donating redox partner, P450 oxidoreductase (POR). Objective: Our objective was to clarify the genetic and functional basis of isolated 17,20-lyase deficiency in familial cases who were previously reported as having 17,20-lyase deficiency. Patients: Four undervirilized males of an extended Bedouin family were investigated. One of these has previously been reported to carry mutations in the CYP17A1 gene encoding P450c17 causing isolated 17,20-lyase deficiency. Methods: Serum hormones were evaluated before and after stimulation with ACTH. Urinary steroid metabolites were profiled by gas chromatography-mass spectrometry. Exons 1 and 8 of CYP17A1 previously reported to harbor mutations in one of these patients and all 15 coding exons of POR were sequenced. Results: Gas chromatography-mass spectrometry (GC-MS) urinary steroid profiling and serum steroid measurements showed combined deficiencies of 17,20-lyase and 21-hydroxylase. Sequencing of exons 1 and 8 of CYP17A1 in two different laboratories showed no mutations. Sequencing of POR showed that all four patients were homozygous for G539R, a previously studied mutation that retains 46% of normal capacity to support the 17α-hydroxylase activity but only 8% of the 17,20-lyase activity of P450c17. Conclusion: POR deficiency can masquerade clinically as isolated 17,20-lyase deficiency. PMID:18559916

  7. Homozygous mutation G539R in the gene for P450 oxidoreductase in a family previously diagnosed as having 17,20-lyase deficiency.

    PubMed

    Hershkovitz, Eli; Parvari, Ruthi; Wudy, Stefan A; Hartmann, Michaela F; Gomes, Larissa G; Loewental, Neta; Miller, Walter L

    2008-09-01

    Very few patients have been described with isolated 17,20-lyase deficiency who have had their mutations in P450c17 (17alpha-hydroxylase/17,20-lyase) proven by DNA sequencing and in vitro characterization of the mutations. Most patients with 17,20-lyase deficiency have mutations in the domain of P450c17 that interact with the electron-donating redox partner, P450 oxidoreductase (POR). Our objective was to clarify the genetic and functional basis of isolated 17,20-lyase deficiency in familial cases who were previously reported as having 17,20-lyase deficiency. Four undervirilized males of an extended Bedouin family were investigated. One of these has previously been reported to carry mutations in the CYP17A1 gene encoding P450c17 causing isolated 17,20-lyase deficiency. Serum hormones were evaluated before and after stimulation with ACTH. Urinary steroid metabolites were profiled by gas chromatography-mass spectrometry. Exons 1 and 8 of CYP17A1 previously reported to harbor mutations in one of these patients and all 15 coding exons of POR were sequenced. Gas chromatography-mass spectrometry (GC-MS) urinary steroid profiling and serum steroid measurements showed combined deficiencies of 17,20-lyase and 21-hydroxylase. Sequencing of exons 1 and 8 of CYP17A1 in two different laboratories showed no mutations. Sequencing of POR showed that all four patients were homozygous for G539R, a previously studied mutation that retains 46% of normal capacity to support the 17alpha-hydroxylase activity but only 8% of the 17,20-lyase activity of P450c17. POR deficiency can masquerade clinically as isolated 17,20-lyase deficiency.

  8. Requirement for two or more Erwinia carotovora subsp. carotovora pectolytic gene products for maceration of potato tuber tissue by Escherichia coli.

    PubMed

    Roberts, D P; Berman, P M; Allen, C; Stromberg, V K; Lacy, G H; Mount, M S

    1986-07-01

    Several genes encoding enzymes capable of degrading plant cell wall components have been cloned from Erwinia carotovora subsp. carotovora EC14. Plasmids containing cloned EC14 DNA mediate the production of endo-pectate lyases, exo-pectate lyase, endo-polygalacturonase, and cellulase(s). Escherichia coli strains containing one of these plasmids or combinations of two plasmids were tested for their ability to macerate potato tuber slices. Only one E. coli strain, containing two plasmids that encode endo-pectate lyases, exo-pectate lyase, and endo-polygalacturonase, caused limited maceration. The pectolytic proteins associated with one of these plasmids, pDR1, have been described previously (D. P. Roberts, P. M. Berman, C. Allen, V. K. Stromberg, G. H. Lacy, and M. S. Mount, Can. J. Plant Pathol. 8:17-27, 1986) and include two secreted endo-pectate lyases. The second plasmid, pDR30, contains a 2.1-kilobase EC14 DNA insert that mediates the production of an exo-pectate lyase and an endo-polygalacturonase. These enzymes are similar in physicochemical properties to those produced by EC14. Our results suggest that the concerted activities of endo-pectate lyases with endo-polygalacturonase or exo-pectate lyase or both cause maceration.

  9. Requirement for two or more Erwinia carotovora subsp. carotovora pectolytic gene products for maceration of potato tuber tissue by Escherichia coli.

    PubMed Central

    Roberts, D P; Berman, P M; Allen, C; Stromberg, V K; Lacy, G H; Mount, M S

    1986-01-01

    Several genes encoding enzymes capable of degrading plant cell wall components have been cloned from Erwinia carotovora subsp. carotovora EC14. Plasmids containing cloned EC14 DNA mediate the production of endo-pectate lyases, exo-pectate lyase, endo-polygalacturonase, and cellulase(s). Escherichia coli strains containing one of these plasmids or combinations of two plasmids were tested for their ability to macerate potato tuber slices. Only one E. coli strain, containing two plasmids that encode endo-pectate lyases, exo-pectate lyase, and endo-polygalacturonase, caused limited maceration. The pectolytic proteins associated with one of these plasmids, pDR1, have been described previously (D. P. Roberts, P. M. Berman, C. Allen, V. K. Stromberg, G. H. Lacy, and M. S. Mount, Can. J. Plant Pathol. 8:17-27, 1986) and include two secreted endo-pectate lyases. The second plasmid, pDR30, contains a 2.1-kilobase EC14 DNA insert that mediates the production of an exo-pectate lyase and an endo-polygalacturonase. These enzymes are similar in physicochemical properties to those produced by EC14. Our results suggest that the concerted activities of endo-pectate lyases with endo-polygalacturonase or exo-pectate lyase or both cause maceration. Images PMID:3013836

  10. A novel C-S lyase from the latex-producing plant Taraxacum brevicorniculatum displays alanine aminotransferase and l-cystine lyase activity.

    PubMed

    Munt, Oliver; Prüfer, Dirk; Schulze Gronover, Christian

    2013-01-01

    We isolated a novel pyridoxal-5-phosphate-dependent l-cystine lyase from the dandelion Taraxacum brevicorniculatum. Real time qPCR analysis showed that C-S lyase from Taraxacum brevicorniculatum (TbCSL) mRNA is expressed in all plant tissues, although at relatively low levels in the latex and pedicel. The 1251 bp TbCSL cDNA encodes a protein with a calculated molecular mass of 46,127 kDa. It is homologous to tyrosine and alanine aminotransferases (AlaATs) as well as to an Arabidopsis thaliana carbon-sulfur lyase (C-S lyase) (SUR1), which has a role in glucosinolate metabolism. TbCSL displayed in vitrol-cystine lyase and AlaAT activities of 4 and 19nkatmg(-1) protein, respectively. However, we detected no in vitro tyrosine aminotransferase (TyrAT) activity and RNAi knockdown of the enzyme had no effect on phenotype, showing that TbCSL substrates might be channeled into redundant pathways. TbCSL is in vivo localized in the cytosol and functions as a C-S lyase or an aminotransferase in planta, but the purified enzyme converts at least two substrates specifically, and can thus be utilized for further in vitro applications. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Attaching Thiolated Superconductor Grains on Gold Surfaces for Nanoelectronics Applications

    NASA Astrophysics Data System (ADS)

    De Los Santos Valladares, Luis; Bustamante Dominguez, Angel; Llandro, Justin; Suzuki, Seiichi; Mitrelias, Thanos; Bellido Quispe, Richard; Barnes, Crispin H. W.; Majima, Yutaka

    2010-09-01

    We report that the high critical temperature superconductor (HTCS) LaCaBaCu3O7 in the form of nanograins can be linked to Au(111) surfaces through self assembled monolayers (SAMs) of HS-C8H16-HS [octane (di)thiol]. We show that La1113 particles (100 nm mean diameter) can be functionalized by octane (di)thiol without affecting their superconducting critical temperature (TC=80 K). X-ray photoemission spectroscopy (XPS) analysis reveals that the thiol functional heads link the superconducting grain surfaces creating sulfonates and we deduce that bonding between the S atoms and Cu(1) atoms of the La1113 structure would be formed. We suggest a design for a superconducting transistor fabricated by immobilized La1113 nanograins in between two gold electrodes which could be controlled by an external magnetic field gate.

  12. Purification and characterization of an alginate lyase from marine Bacterium Vibrio sp. mutant strain 510-64.

    PubMed

    Hu, Xiaoke; Jiang, Xiaolu; Hwang, Huey-Min

    2006-08-01

    Marine Vibrio sp. 510 was chosen as a parent strain for screening high producers of alginate lyase using the complex mutagenesis of Ethyl Methanesulphonate and UV radiation treatments. The mutant strain Vibrio sp. 510-64 was selected and its alginate lyase activity was increased by 3.87-fold (reaching 46.12 EU/mg) over that of the parent strain. An extracellular alginate lyase was purified from Vibrio sp. 510-64 cultural supernatant by successive fractionation on DEAE Sepharose FF and two steps of Superdex 75. The purified enzyme yielded a single band on SDS-PAGE with the molecular weight of 34.6 kDa. Data of the N-terminal amino acid sequence indicated that this protein might be a novel alginate lyase. The substrate specificity results demonstrated that the alginate lyase had the specificity for poly G block.

  13. Distribution of Neuraminidase and N-Acetylneuraminate Lyase Activities Among Corynebacteria, Mycobacteria, and Nocardias

    PubMed Central

    Arden, Sheldon B.; Chang, Woo-Hyun; Barksdale, Lane

    1972-01-01

    In Corynebacterium diphtheriae and closely related neuraminidase-producing corynebacteria, we have found an N-acetylneuraminate (NAN) lyase activity which cleaves NAN into N-acetyl-d-mannosamine and, presumably, pyruvate. In vitro, these lyases can be shown to synthesize NAN. A survey of representative corynebacteria, “plant pathogenic corynebacteria,” mycobacteria, and nocardias revealed that only those corynebacteria closely related to C. diphtheriae exhibited both neuraminidase and NAN lyase activities. PMID:4629654

  14. Solvent isotope-induced equilibrium perturbation for isocitrate lyase.

    PubMed

    Quartararo, Christine E; Hadi, Timin; Cahill, Sean M; Blanchard, John S

    2013-12-23

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacterium's life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage ((D₂O)V = 2.0 ± 0.1, and (D₂O)[V/K(isocitrate)] = 2.2 ± 0.3) arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of the succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate, and succinate prepared in D₂O would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by ¹H NMR spectroscopy shows a clear equilibrium perturbation in D₂O. The final equilibrium isotopic composition of reactants in D₂O revealed dideuterated succinate, protiated glyoxylate, and monodeuterated isocitrate, with the transient appearance and disappearance of monodeuterated succinate. A model for the equilibrium perturbation of substrate species and their time-dependent isotopic composition is presented.

  15. Stereoselective synthesis of novel thioglycosyl heterocycles

    NASA Astrophysics Data System (ADS)

    El Ashry, El Sayed H.; Awad, Laila F.; Al Moaty, Mohamed N. Abd; Ghabbour, Hazem A.; Barakat, Assem

    2018-01-01

    In this work, the synthesis of novel 1,2,4-triazole thioglycoside heterocycles 4, 5, and 8 were achieved by the reaction of 1,2,3,4,6-penta-O-acetyl-β-D-glucopyranose (2) and galactopyranose (3) with 4-((4-arylidene)amino)-5-methyl-1,2,4-triazole-3-thiol derivatives 1 and 6 in the presence of boron trifluoride etherate (BF3·Et2O) as a promoter under nitrogen in CH2Cl2. Exclusive β-stereoselectivity of the formed glycosidic bond was confirmed by X-ray analysis of 4 as well as its spectral data. Different stereoselectivities were observed when the acceptor 9, having an ortho phenolic OH group, was coupled with the donors 2 or 3, under the same reaction conditions. Similarly, treatment of a mixture of 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose (16) and the thiol acceptors 1 and 15 afforded the β-thioribofuranosides 17 and 18, respectively. The β-stereoselectivity of the reaction was confirmed by 1H, 13C, 1Hsbnd 1H 2D, and 1Hsbnd 13C 2D NMR spectral analysis.

  16. Metabolic Design of Corynebacterium glutamicum for Production of l-Cysteine with Consideration of Sulfur-Supplemented Animal Feed.

    PubMed

    Joo, Young-Chul; Hyeon, Jeong Eun; Han, Sung Ok

    2017-06-14

    l-Cysteine is a valuable sulfur-containing amino acid widely used as a nutrition supplement in industrial food production, agriculture, and animal feed. However, this amino acid is mostly produced by acid hydrolysis and extraction from human or animal hairs. In this study, we constructed recombinant Corynebacterium glutamicum strains that overexpress combinatorial genes for l-cysteine production. The aims of this work were to investigate the effect of the combined overexpression of serine acetyltransferase (CysE), O-acetylserine sulfhydrylase (CysK), and the transcriptional regulator CysR on l-cysteine production. The CysR-overexpressing strain accumulated approximately 2.7-fold more intracellular sulfide than the control strain (empty pMT-tac vector). Moreover, in the resulting CysEKR recombinant strain, combinatorial overexpression of genes involved in l-cysteine production successfully enhanced its production by approximately 3.0-fold relative to that in the control strain. This study demonstrates a biotechnological model for the production of animal feed supplements such as l-cysteine using metabolically engineered C. glutamicum.

  17. A missense mutation in the human cytochrome b5 gene causes 46,XY disorder of sex development due to true isolated 17,20 lyase deficiency.

    PubMed

    Idkowiak, Jan; Randell, Tabitha; Dhir, Vivek; Patel, Pushpa; Shackleton, Cedric H L; Taylor, Norman F; Krone, Nils; Arlt, Wiebke

    2012-03-01

    Isolated 17,20 lyase deficiency is commonly defined by apparently normal 17α-hydroxylase activity but severely reduced 17,20 lyase activity of the bifunctional enzyme cytochrome P450 (CYP) enzyme 17A1 (CYP17A1), resulting in sex steroid deficiency but normal glucocorticoid and mineralocorticoid reserve. Cytochrome b5 (CYB5A) is thought to selectively enhance 17,20 lyase activity by facilitating the allosteric interaction of CYP17A1 with its electron donor P450 oxidoreductase (POR). We investigated a large consanguineous family including three siblings with 46,XY disorder of sex development (DSD) presenting with isolated 17,20 lyase deficiency. We investigated the clinical and biochemical phenotype, conducted genetic analyses, and functionally characterized the identified CYB5A mutation in cell-based CYP17A1 coexpression assays. All three siblings presented with 46,XY DSD, sex steroid deficiency, normal mineralocorticoids and glucocorticoids, and a urine steroid metabolome suggestive of isolated 17,20 lyase deficiency. CYP17A1 and POR sequences were normal, but we detected a homozygous CYB5A missense mutation (g.28,400A→T; p.H44L). Functional in vitro analysis revealed normal CYP17A1 17α-hydroxylase activity but severely impaired 17,20 lyase activity. In silico analysis suggested the disruption of CYB5A heme binding by p.H44L. We have identified the first human CYB5A missense mutation as the cause of isolated 17,20 lyase deficiency in three individuals with 46,XY DSD. Detailed review of previously reported cases with apparently isolated 17,20 lyase deficiency due to mutant CYP17A1 and POR reveals impaired 17α-hydroxylase activity as assessed by steroid metabolome analysis and short cosyntropin testing. This suggests that truly isolated 17,20 lyase deficiency is observed only in individuals with inactivating CYB5A mutations.

  18. Polyisobutylene chain end transformations: Block copolymer synthesis and click chemistry functionalizations

    NASA Astrophysics Data System (ADS)

    Magenau, Andrew Jackson David

    The primary objectives of this research were twofold: (1) development of synthetic procedures for combining quasiliving carbocationic polymerization (QLCCP) of isobutylene (IB) and reversible addition fragmentation chain transfer (RAFT) polymerization for block copolymer synthesis; (2) utilization of efficient, robust, and modular chemistries for facile functionalization of polyisobutylene (PIB). In the first study block copolymers consisting of PIB, and either PMMA or PS block segments, were synthesized by a site transformation approach combining living cationic and reversible addition-fragmentation chain transfer (RAFT) polymerizations. The initial PIB block was synthesized via quasiliving cationic polymerization using the TMPCl/TiCl4 initiation system and was subsequently converted into a hydroxylterminated PIB. Site transformation of the hydroxyl-terminated PIB into a macro chain transfer agent (PIB-CTA) was accomplished by N,N'-dicyclohexylcarbodiimide/dimethylaminopyridine-catalyzed esterification with 4-cyano-4-(dodecylsulfanylthiocarbonylsulfanyl)pentanoic acid. In the second study another site transformation approach was developed to synthesize a novel block copolymer, composed of PIB and PNIPAM segments. The PIB block was prepared via quasiliving cationic polymerization and end functionalized by in-situ quenching to yield telechelic halogen-terminated PIB. Azido functionality was obtained by displacement of the terminal halogen through nucleophilic substitution, which was confirmed by both 1H and 13C NMR. Coupling of an alkyne-functional chain transfer agent (CTA) to azido PIB was successfully accomplished through a copper catalyzed click reaction. Structure of the resulting PIB-based macro-CTA was verified with 1H NMR, FTIR, and GPC; whereas coupling reaction kinetics were monitored by real time variable temperature (VT) 1H NMR. In a third study, a click chemistry functionalization procedure was developed based upon the azide-alkyne 1,3-dipolar cycloaddition reaction. 1-(o-Azidoalkyl)pyrrolyl-terminated PIB was successfully synthesized both by substitution of the terminal halide of 1-(o-haloalkyl)pyrrolyl-terminated PIB with sodium azide and by in situ quenching of quasiliving PIB with a 1-(o-azidoalkyl)pyrrole. GPC indicated the absence of coupled PIB under optimized conditions, confirming exclusive mono-substitution on each pyrrole ring. In a fourth study, radical thiol-ene hydrothiolation "Click" chemistry was explored and adapted to easily and rapidly modify exo -olefin PIB with an array of thiol compounds bearing useful functionalities, including primary halogen, primary amine, primary hydroxyl, and carboxylic acid. The thiol-ene "click" procedure was shown to be applicable to both mono and difunctional exo-olefin polyisobutylene. Telechelic mono- and difunctional exo-olefin PIBs were synthesized via quasiliving cationic polymerization followed by quenching with the hindered amine, 1,2,2,6,6-pentamethylpiperidine. Lower reaction temperatures were found to increase exo-olefin conversion to near quantitative amounts. In the fifth study, thiol-terminated polyisobutylene (PIB-SH) was synthesized by reaction of thiourea with alpha,o-bromine-terminated PIB in a three step one-pot procedure. First the alkylisothiouronium salt was produced using a 1:1 (v:v) DMF:heptane cosolvent mixture at 90°C. Hydrolysis of the salt by aqueous base produced thiolate chain ends, which were then acidified to form the desired thiol functional group. An extension of this reaction was performed by a sequential thiol-ene/thiol-yne procedure to produce tetra-hydroxy functionalized PIB. 1H NMR was used to confirm formation of both alkyne and tetrahydroxyl functional species. Further utility of PIB-SH was demonstrated by base catalyzed thiol-isocyanate reactions. A model reaction was conducted with phenyl isocyanate in THF using triethylamine as the catalyst. Last, conversion of PIB-SH directly into a RAFT macro-CTA was accomplished, as shown by 1H NMR, by treatment of PIB-SH with triethylamine in carbon disulfide and subsequent alkylation with 2-bromopropionic acid. (Abstract shortened by UMI.)

  19. Controlled free radical attack in the apoplast: a hypothesis for roles of O, N and S species in regulatory and polysaccharide cleavage events during rapid abscission by Azolla.

    PubMed

    Cohen, Michael F; Gurung, Sushma; Fukuto, Jon M; Yamasaki, Hideo

    2014-03-01

    Shedding of organs by abscission is a key terminal step in plant development and stress responses. Cell wall (CW) loosening at the abscission zone can occur through a combination chain breakage of apoplastic polysaccharides and tension release of cellulose microfibrils. Two distinctly regulated abscission cleavage events are amenable to study in small water ferns of the genus Azolla; one is a rapid abscission induced by environmental stimuli such as heat or chemicals, and the other is an ethylene-induced process occurring more slowly through the action of hydrolytic enzymes. Although free radicals are suggested to be involved in the induction of rapid root abscission, its mechanism is not fully understood. The apoplast contains peroxidases, metal-binding proteins and phenolic compounds that potentially generate free radicals from H2O2 to cleave polysaccharides in the CW and middle lamella. Effects of various thiol-reactive agents implicate the action of apoplastic peroxidases having accessible cysteine thiols in rapid abscission. The Ca(2+) dependency of rapid abscission may reflect the stabilization Ca(2+) confers to peroxidase structure and binding to pectin. To spur further investigation, we present a hypothetical model for small signaling molecules H2O2 and NO and their derivatives in regulating, via modification of putative protein thiols, free radical attack of apoplastic polysaccharides. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials.

    PubMed

    Pham, Chuyen V; Repp, Sergej; Thomann, Ralf; Krueger, Michael; Weber, Stefan; Erdem, Emre

    2016-05-05

    To harness the unique properties of graphene and ZnO nanoparticles (NPs) for novel applications, the development of graphene-ZnO nanoparticle hybrid materials has attracted great attention and is the subject of ongoing research. For this contribution, graphene-oxide-ZnO (GO-ZnO) and thiol-functionalized reduced graphene oxide-ZnO (TrGO-ZnO) nanohybrid materials were prepared by novel self-assembly processes. Based on electron paramagnetic resonance (EPR) and photoluminescence (PL) investigations on bare ZnO NPs, GO-ZnO and TrGO-ZnO hybrid materials, we found that several physical phenomena were occurring when ZnO NPs were hybridized with GO and TrGO. The electrons trapped in Zn vacancy defects (VZn(-)) within the core of ZnO NPs vanished by transfer to GO and TrGO in the hybrid materials, thus leading to the disappearance of the core signals in the EPR spectra of ZnO NPs. The thiol groups of TrGO and sulfur can effectively "heal" the oxygen vacancy (VO(+)) related surface defects of ZnO NPs while oxygen-containing functionalities have low healing ability at a synthesis temperature of 100 °C. Photoexcited electron transfer from the conduction band of ZnO NPs to graphene leads to photoluminescence (PL) quenching of near band gap emission (NBE) of both GO-ZnO and TrGO-ZnO. Simultaneously, electron transfer from graphene to defect states of ZnO NPs is the origin of enhanced green defect emission from GO-ZnO. This observation is consistent with the energy level diagram model of hybrid materials.

  1. A general route towards well-defined magneto- or fluorescent-plasmonic nanohybrids

    NASA Astrophysics Data System (ADS)

    Schmidtke, Christian; Kloust, Hauke; Bastús, Neus G.; Merkl, Jan-Philip; Tran, Huong; Flessau, Sandra; Feld, Artur; Schotten, Theo; Weller, Horst

    2013-11-01

    Herein, we present a general route towards defined nanohybrids, comprised of a fluorescent quantum dot (QD) or superparamagnetic iron oxide (Fe2O3) nanocrystal core and a tuneable corona of plasmonic gold or silver nanoparticles (NPs), adhered by a cross-linked poly(isoprene)-b-poly(ethylene glycol) diblock copolymer (PI-b-PEG) matrix. To this end, the PEG-terminus of the amphiphilic polymer was acylated with lipoic acid (LA), which, as is known, forms quasi-covalent Au-thiol- or Ag-thiol-bonds. Surprisingly, by variation of the ratio of the different NPs, inverse core/satellite structures bearing QDs or Fe2O3 around a metallic NP core were obtained. Furthermore, gold NPs or even closed gold shells were grown by in situ reductive deposition of Au3+ ions on Fe2O3 NP seeds. Finally, in order to demonstrate the scope of the method, ternary nanohybrids, composed of QDs, Fe2O3 and Au NPs, were accomplished. All magneto-plasmonic and fluorescent-plasmonic materials were thoroughly characterized by absorption and emission spectroscopy, TEM and TEM-EDX. Antibody conjugation to these novel nanohybrids proved their practical utility in a prototype immunoassay.Herein, we present a general route towards defined nanohybrids, comprised of a fluorescent quantum dot (QD) or superparamagnetic iron oxide (Fe2O3) nanocrystal core and a tuneable corona of plasmonic gold or silver nanoparticles (NPs), adhered by a cross-linked poly(isoprene)-b-poly(ethylene glycol) diblock copolymer (PI-b-PEG) matrix. To this end, the PEG-terminus of the amphiphilic polymer was acylated with lipoic acid (LA), which, as is known, forms quasi-covalent Au-thiol- or Ag-thiol-bonds. Surprisingly, by variation of the ratio of the different NPs, inverse core/satellite structures bearing QDs or Fe2O3 around a metallic NP core were obtained. Furthermore, gold NPs or even closed gold shells were grown by in situ reductive deposition of Au3+ ions on Fe2O3 NP seeds. Finally, in order to demonstrate the scope of the method, ternary nanohybrids, composed of QDs, Fe2O3 and Au NPs, were accomplished. All magneto-plasmonic and fluorescent-plasmonic materials were thoroughly characterized by absorption and emission spectroscopy, TEM and TEM-EDX. Antibody conjugation to these novel nanohybrids proved their practical utility in a prototype immunoassay. Electronic supplementary information (ESI) available: NMR spectra, magnetic purification, BrCN coupling of 2,2'-dithiobis(ethylamine), Au domain growth on OH- and COOH-functionalized iron oxide NPs, Ag/QD core/satellite hybrids and dot-blot analysis of Ms mAb to ovalbumin conjugated hybrids. See DOI: 10.1039/c3nr04155g

  2. Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment

    NASA Astrophysics Data System (ADS)

    Heinen, Wolfgang; Lauwers, Anne Marie

    1996-04-01

    The reaction of iron sulfide (FeS) with H2S in water, in presence of CO2 under anaerobic conditions was found to yield H2 and a variety of organic sulfur compounds, mainly thiols and small amounts of CS2 and dimethyldisulfide. The same compounds were produced when H2S was replaced by HCl, in the H2S-generating system FeS/HCl/CO2. The identification of the products was confirmed by GC-MS analyses and the incorporation of H2 in the organic sulfur compounds was demonstrated by experiments in which all hydrogen compounds were replaced by deuterium compounds. Generation of H2 and the synthesis of thiols were both dependent upon the relative abundance of FeS and HCl or H2S, i.e. the FeS/HCl- or FeS/H2S-proportions. Whether thiols or CS2 were formed as the main products depended also on the FeS/HCl-ratio: All conditions which create a H2 deficiency were found to initiate a proportional increase in the amount of CS2. The quantities of H2 and thiols generated depended on temperature: the production of H2 was significantly accelerated from 50°C onward and thiol synthesis above 75°C. The yield of thiols increased with the amount of FeS and HCl (H2S), given a certain FeS/HCl-ratio and a surplus of CO2. A deficiency of CO2 results in lower thiol systhesis. The end product, pyrite (FeS2), was found to appear as a silvery granular layer floating on the aqueous surface. The identity of the thiols was confirmed by mass spectrometry, and the reduction of CO2 demonstrated by the determination of deuterium incorporation with DCl and D2O. The described reactions can principally proceed under the conditions comparable to those obtaining around submarine hydrothermal vents, or the global situation about 4 billion years ago, before the dawn of life, and could replace the need for a reducing atmosphere on the primitive earth.

  3. Lumen Thiol Oxidoreductase1, a Disulfide Bond-Forming Catalyst, Is Required for the Assembly of Photosystem II in Arabidopsis[C][W

    PubMed Central

    Karamoko, Mohamed; Cline, Sara; Redding, Kevin; Ruiz, Natividad; Hamel, Patrice P.

    2011-01-01

    Here, we identify Arabidopsis thaliana Lumen Thiol Oxidoreductase1 (LTO1) as a disulfide bond–forming enzyme in the thylakoid lumen. Using topological reporters in bacteria, we deduced a lumenal location for the redox active domains of the protein. LTO1 can partially substitute for the proteins catalyzing disulfide bond formation in the bacterial periplasm, which is topologically equivalent to the plastid lumen. An insertional mutation within the LTO1 promoter is associated with a severe photoautotrophic growth defect. Measurements of the photosynthetic activity indicate that the lto1 mutant displays a limitation in the electron flow from photosystem II (PSII). In accordance with these measurements, we noted a severe depletion of the structural subunits of PSII but no change in the accumulation of the cytochrome b6f complex or photosystem I. In a yeast two-hybrid assay, the thioredoxin-like domain of LTO1 interacts with PsbO, a lumenal PSII subunit known to be disulfide bonded, and a recombinant form of the molecule can introduce a disulfide bond in PsbO in vitro. The documentation of a sulfhydryl-oxidizing activity in the thylakoid lumen further underscores the importance of catalyzed thiol-disulfide chemistry for the biogenesis of the thylakoid compartment. PMID:22209765

  4. Craig L. Perkins, Ph.D. | NREL

    Science.gov Websites

    molecular beam epitaxy systems, two photoemission systems, a field-emission scanning Auger microprobe, a ;Molecular Anchors for Self-Assembled Monolayers on ZnO: A Direct Comparison of the Thiol and Phosphonic Acid

  5. Smelling Sulfur: Copper and Silver Regulate the Response of Human Odorant Receptor OR2T11 to Low-Molecular-Weight Thiols.

    PubMed

    Li, Shengju; Ahmed, Lucky; Zhang, Ruina; Pan, Yi; Matsunami, Hiroaki; Burger, Jessica L; Block, Eric; Batista, Victor S; Zhuang, Hanyi

    2016-10-03

    Mammalian survival depends on ultrasensitive olfactory detection of volatile sulfur compounds, since these compounds can signal the presence of rancid food, O 2 depleted atmospheres, and predators (through carnivore excretions). Skunks exploit this sensitivity with their noxious spray. In commerce, natural and liquefied gases are odorized with t-BuSH and EtSH, respectively, as warnings. The 100-million-fold difference in olfactory perception between structurally similar EtSH and EtOH has long puzzled those studying olfaction. Mammals detect thiols and other odorants using odorant receptors (ORs), members of the family of seven transmembrane G-protein-coupled receptors (GPCRs). Understanding the regulator cofactors and response of ORs is particularly challenging due to the lack of X-ray structural models. Here, we combine computational modeling and site-directed mutagenesis with saturation transfer difference (STD) NMR spectroscopy and measurements of the receptor response profiles. We find that human thiol receptor OR2T11 responds specifically to gas odorants t-BuSH and EtSH requiring ionic copper for its robust activation and that this role of copper is mimicked by ionic and nanoparticulate silver. While copper is both an essential nutrient for life and, in excess, a hallmark of various pathologies and neurodegenerative diseases, its involvement in human olfaction has not been previously demonstrated. When screened against a series of alcohols, thiols, sulfides, and metal-coordinating ligands, OR2T11 responds with enhancement by copper to the mouse semiochemical CH 3 SCH 2 SH and derivatives, to four-membered cyclic sulfide thietane and to one- to four-carbon straight- and branched-chain and five-carbon branched-chain thiols but not to longer chain thiols, suggesting compact receptor dimensions. Alcohols are unreactive.

  6. Host-Pathogen interactions. 25. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, K.R.; Lyon, G.D.; Darvill, A.G.

    1984-01-01

    Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange chromatography on a CM-Sephadex (C-50) column, followed by agarose-affinity chromatography on a Bio-Gel A-0.5m gel filtration column. The heat-labile elicitor activity co-purified with two ..cap alpha..-1,4-endopolygalacturonic acid lyases (EC 4 x 2 x 2 x 2). Endopolygalacturonic acid lyase activity appeared to be necessary for elicitor activity because heat-inactivated enzyme preparations did not elicit phytoalexins. The purified endopolygalacturonicmore » acid lyases elicited pterocarpan phytoalexins at microbial-inhibitory concentrations in the soybean-cotyledon bioassay when applied at a concentration of 55 nanograms per milliliter (1 x 10/sup -9/ molar). One of these lyases released heat-stable elicitors from soybean cell walls, citrus pectin, and sodium polypectate. The heat-stable elicitor-active material solubilized from soybean cell walls by the lyase was composed of at least 90% (w/v) uronosyl residues. These results demonstrate that endopolygalacturonic acid lyase elicits phytoalexin accumulation by releasing fragments from pectic polysaccharides in plant cell walls.« less

  7. Regulation of L-phenylalanine ammonia-lyase by L-phenylalanine and nitrogen in Neurospora crassa.

    PubMed Central

    Sikora, L A; Marzluf, G A

    1982-01-01

    Neurospora crassa possesses an inducible L-phenylalanine ammonia-lyase that is expressed only when cells are derepressed for nitrogen in the presence of L-phenylalanine. Enzyme synthesis requires both induction by L-phenylalanine and simultaneous nitrogen catabolite derepression. Carbon limitation in the presence of phenylalanine does not elicit induction of L-phenylalanine ammonia-lyase. Specific induction by L-phenylalanine is required, and other amino acids completely failed to induce any lyase activity. The nit-2 gene is a major regulatory locus which is believed to mediate nitrogen catabolite repression in Neurospora. Mutants of nit-2 fail to express any phenylalanine ammonia-lyase activity under conditions of derepression and induction which lead to good enzyme induction in the wild type and in nit-2 revertants. The loss of lyase activity in nit-2 mutants does not result from inducer exclusion, which suggests that the nit-2 gene product has a direct role in controlling the expression of this enzyme. Substantial amounts of the enzyme were detected in the growth medium as well as in cell extracts. Inhibitors of protein synthesis or RNA synthesis block the induction of L-phenylalanine ammonia-lyase, suggesting that expression of this enzyme is controlled at the level of transcription. PMID:6210688

  8. Regulation of Glyoxysomal Enzymes during Germination of Cucumber

    PubMed Central

    Lamb, Jamie E.; Riezman, Howard; Becker, Wayne M.; Leaver, Christopher J.

    1978-01-01

    The glyoxysomal enzymes isocitrate lyase and catalase have been isolated from etiolated cucumber (Cucumis sativus) cotyledons. The enzymes co-purified through polyethyleneimine precipitation and (NH4)2SO4 precipitation, and were resolved by gel filtration on Sepharose 6B followed by chromatography on diethylaminoethyl-cellulose (isocitrate lyase) or hydroxylapatite (catalase). Purity of the isolated enzymes was assessed by sodium dodecyl sulfate-polyacrylamide electrophoresis, isoelectric focusing, and immunoelectrophoresis. Antibodies raised to both enzymes in rabbits and in tumor-bearing mice were shown to be monospecific by immunoelectrophoresis against total homogenate protein. Isocitrate lyase and catalase represent about 0.56% and 0.1%, respectively, of total extractable cotyledonary protein. Both enzymes appear to be present in a single form. Molecular weights of the native enzymes and its subunits are 225,000 and 54,500 for catalase, and 325,000 and 63,500 for isocitrate lyase. The pH optimum for isocitrate lyase is about 6.75 in morpholinopropane sulfonic acid buffer, but varies significantly with buffer used. The Km for d-isocitrate is 39 micromolar. A double antibody technique (rabbit anti-isocitrate lyase followed by 125I-labeled goat anti-rabbit immunoglobulin G) has been used to visualize isocitrate lyase subunit protein on sodium dodecyl sulfate-polyacrylamide with high specificity and sensitivity. ImagesFig. 5Fig. 6Fig. 7Fig. 8 PMID:16660600

  9. Proteomic Identification and Quantification of S-glutathionylation in Mouse Macrophages Using Resin-Assisted Enrichment and Isobaric Labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dian; Gaffrey, Matthew J.; Guo, Jia

    2014-02-11

    Protein S-glutathionylation (SSG) is an important regulatory posttranslational modification of protein cysteine (Cys) thiol redox switches, yet the role of specific cysteine residues as targets of modification is poorly understood. We report a novel quantitative mass spectrometry (MS)-based proteomic method for site-specific identification and quantification of S-glutathionylation across different conditions. Briefly, this approach consists of initial blocking of free thiols by alkylation, selective reduction of glutathionylated thiols and enrichment using thiol affinity resins, followed by on-resin tryptic digestion and isobaric labeling with iTRAQ (isobaric tags for relative and absolute quantitation) for MS-based identification and quantification. The overall approach was validatedmore » by application to RAW 264.7 mouse macrophages treated with different doses of diamide to induce glutathionylation. A total of 1071 Cys-sites from 690 proteins were identified in response to diamide treatment, with ~90% of the sites displaying >2-fold increases in SSG-modification compared to controls.. This approach was extended to identify potential SSG modified Cys-sites in response to H2O2, an endogenous oxidant produced by activated macrophages and many pathophysiological stimuli. The results revealed 364 Cys-sites from 265 proteins that were sensitive to S-glutathionylation in response to H2O2 treatment. These proteins covered a range of molecular types and molecular functions with free radical scavenging, and cell death and survival included as the most significantly enriched functional categories. Overall the results demonstrate that our approach is effective for site-specific identification and quantification of S-glutathionylated proteins. The analytical strategy also provides a unique approach to determining the major pathways and cell processes most susceptible to glutathionylation at a proteome-wide scale.« less

  10. Reactivities of some thiol collectors and their interactions with Ag (+1) ion by molecular modeling

    NASA Astrophysics Data System (ADS)

    Yekeler, Hulya; Yekeler, Meftuni

    2004-09-01

    The most commonly used collectors for sulfide minerals in the mining industry are the thiol collectors for the recovery of these minerals from their associated gangues by froth flotation. For this reason, a great deal of attention has been paid to understand the attachment mechanism of thiol collectors to metal sulfide surfaces. The density functional theory (DFT) calculations at the B3LYP/3-21G* and B3LYP/6-31++G** levels were employed to propose the flotation responses of these thiol collectors, namely, diethyl dithiocarbamate, ethyl dithiocarbamate, ethyl dithiocarbonate, ethyl trithiocarbonate and ethyl dithiophosphate ions, and to study the interaction energies of these collectors with Ag (+1) ion in connection to acanthite (Ag 2S) mineral. The calculated interaction energies, Δ E, were interpreted in terms of the highest occupied molecular orbital (HOMO) energies of the isolated collector ions. The results show that the HOMOs are strongly localized to the sulfur atoms and the HOMO energies can be used as a reactivity descriptor for the flotation ability of the thiol collectors. Using the HOMO and Δ E energies, the reactivity order of the collectors is found to be (C 2H 5) 2NCS 2- > C 2H 5NHCS 2- > C 2H 5OCS 2- > C 2H 5SCS 2- > (C 2H 5O)(OH)PS 2-. The theoretically obtained results are in good agreement with the experimental data reported.

  11. Investigation of the H2S poisoning process for sensing composite material based on carbon nanotubes and metal oxides

    PubMed Central

    Duan, Yichen; Pirolli, Laurent; Teplyakov, Andrew V.

    2016-01-01

    The poisoning of H2S sensing material based on the mixture of acid-treated carbon nanotubes, CuO and SnO2 was investigated by exposing the material to high doses of H2S (1% in volume) and following the changes spectroscopically. The presence of metal sulfides (CuS and SnS2), sulfates and thiols was confirmed on the surface of this material as the result of H2S poisoning. Further study revealed that leaving this material in air for extended period of time led to reoxidation of metal sulfides back to metal oxides. The formation of thiols and sulfates directly on carbon nanotubes is not reversible under these conditions; however, the extent of the overall surface reaction in this case is substantially lower than that for the composite material. PMID:27812240

  12. Cu-catalyzed aerobic oxidative cyclizations of 3-N-hydroxyamino-1,2-propadienes with alcohols, thiols, and amines to form α-O-, S-, and N-substituted 4-methylquinoline derivatives.

    PubMed

    Sharma, Pankaj; Liu, Rai-Shung

    2015-03-16

    A one-pot, two-step synthesis of α-O-, S-, and N-substituted 4-methylquinoline derivatives through Cu-catalyzed aerobic oxidations of N-hydroxyaminoallenes with alcohols, thiols, and amines is described. This reaction sequence involves an initial oxidation of N-hydroxyaminoallenes with NuH (Nu = OH, OR, NHR, and SR) to form 3-substituted 2-en-1-ones, followed by Brønsted acid catalyzed intramolecular cyclizations of the resulting products. Our mechanistic analysis suggests that the reactions proceed through a radical-type mechanism rather than a typical nitrone-intermediate route. The utility of this new Cu-catalyzed reaction is shown by its applicability to the synthesis of several 2-amino-4-methylquinoline derivatives, which are known to be key precursors to several bioactive molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Investigation of the H2S poisoning process for sensing composite material based on carbon nanotubes and metal oxides.

    PubMed

    Duan, Yichen; Pirolli, Laurent; Teplyakov, Andrew V

    2016-11-01

    The poisoning of H 2 S sensing material based on the mixture of acid-treated carbon nanotubes, CuO and SnO 2 was investigated by exposing the material to high doses of H 2 S (1% in volume) and following the changes spectroscopically. The presence of metal sulfides (CuS and SnS 2 ), sulfates and thiols was confirmed on the surface of this material as the result of H 2 S poisoning. Further study revealed that leaving this material in air for extended period of time led to reoxidation of metal sulfides back to metal oxides. The formation of thiols and sulfates directly on carbon nanotubes is not reversible under these conditions; however, the extent of the overall surface reaction in this case is substantially lower than that for the composite material.

  14. Laccase-catalyzed synthesis of 2,3-ethylenedithio-1,4-quinones

    DOE PAGES

    Cannatelli, Mark D.; Ragauskas, Arthur J.

    2015-06-05

    Laccases (benzenediol:oxygen oxidoreductase EC 1.10.3.2) are part of a family of multicopper oxidases. These environmentally friendly enzymes require O 2 as their only co-substrate and produce H 2O as their sole by-product. As a result, they have acquired increasing use in biotechnological applications, particularly in the field of organic synthesis. In the current study, laccases have been employed to successfully couple 1,2-ethanedithiol to various substituted hydroquinones to produce novel 2,3-ethylenedithio-1,4-quinones in good yields via an oxidation–addition–oxidation–addition–oxidation mechanism. The reactions proceeded in one-pot under mild conditions (room temperature, pH 5.0). This study further supports the use of laccases as green toolsmore » in organic chemistry. Furthermore, it provides evidence that laccase-catalyzed cross-coupling reactions involving small thiols are possible, in spite of research that suggests small thiols are potent inhibitors of laccases.« less

  15. Site-directed mutagenesis of lysine 193 in Escherichia coli isocitrate lyase by use of unique restriction enzyme site elimination.

    PubMed Central

    Diehl, P; McFadden, B A

    1993-01-01

    By a newly developed double-stranded mutagenesis technique, histidine (H), glutamate (E), arginine (R) and leucine (L) have been substituted for the lysyl 193 residue (K-193) in isocitrate lyase from Escherichia coli. The substitutions for this residue, which is present in a highly conserved, cationic region, significantly affect both the Km for Ds-isocitrate and the apparent kcat of isocitrate lyase. Specifically, the conservative substitutions, K-193-->H (K193H) and K193R, reduce catalytic activity by ca. 50- and 14-fold, respectively, and the nonconservative changes, K193E and K193L, result in assembled tetrameric protein that is completely inactive. The K193H and K193R mutations also increase the Km of the enzyme by five- and twofold, respectively. These results indicate that the cationic and/or acid-base character of K193 is essential for isocitrate lyase activity. In addition to the noted effects on enzyme activity, the effects of the mutations on growth of JE10, an E. coli strain which does not express isocitrate lyase, were observed. Active isocitrate lyase is necessary for E. coli to grow on acetate as the sole carbon source. It was found that a mutation affecting the activity of isocitrate lyase similarly affects the growth of E. coli JE10 on acetate when the mutated plasmid is expressed in this organism. Specifically, the lag time before growth increases over sevenfold and almost twofold for E. coli JE10 expressing the K193H and K193R isocitrate lyase variants, respectively. In addition, the rate of growth decreases by almost 40-fold for E. coli JE10 cells expressing form K193H and ca. 2-fold for those expressing the K193R variants. Thus, the onset and rate of E. coli growth on acetate appears to depend on isocitrate lyase activity. Images PMID:8385665

  16. A Novel Oxidative Stress Mediator in Acute Appendicitis: Thiol/Disulphide Homeostasis

    PubMed Central

    Turan, Umit; Kuvvetli, Adnan; Kilavuz, Huseyin; Karakaya, Burak; Ozaltun, Pınar; Alısık, Murat; Erel, Ozcan

    2016-01-01

    Aim. To investigate the role of a novel oxidative stress marker, thiol/disulphide homeostasis, in patients diagnosed with acute appendicitis (AA). Methods. In this study, seventy-one (43 male and 28 female) patients diagnosed with AA and 71 (30 male and 41 female) healthy volunteers were included. Age, gender, body mass index (BMI), haemoglobin (Hb), white blood cell (WBC), c-reactive protein (CRP), and thiol/disulphide homeostasis parameters (native thiol, total thiol, disulphide, disulphide/native thiol, native thiol/total thiol, and disulphide/total thiol ratios) were compared between the groups. Thiol/disulphide homeostasis was determined by a newly developed method by Erel and Neselioglu. Results. The native thiol, total thiol, and the native thiol/total thiol ratio levels were statistically significantly decreased in the AA compared with the control group (p < 0.001). Disulphide level and the ratios of disulphide/native thiol and disulphide/total thiol were higher in the AA group than in the control group (p < 0.001). There was a negative correlation of CRP with native thiol, total thiol, and native thiol/total thiol ratio while there was a positive correlation of CRP with disulphide/native thiol and disulphide/total thiol in the AA group. In the stepwise regression model, risk factors as disulphide/native thiol (OR = 1.368; p = 0.018) and CRP (OR = 1.635; p = 0.003) were determined as predictors of perforated appendicitis compared to the nonperforated group. Conclusion. This is the first study examining the thiol/disulphide homeostasis as a diagnostic aid in AA and establishing thiol/disulphide homeostatis balance shifted towards the disulphide formation due to thiol oxidation. Further studies are needed to optimize the use of this novel oxidative stress marker in AA. PMID:27642237

  17. Identification of one of the apurinic/apyrimidinic lyase active sites of topoisomerase V by structural and functional studies

    PubMed Central

    Rajan, Rakhi; Prasad, Rajendra; Taneja, Bhupesh; Wilson, Samuel H.; Mondragón, Alfonso

    2013-01-01

    Topoisomerase V (Topo-V) is the only member of a novel topoisomerase subtype. Topo-V is unique because it is a bifunctional enzyme carrying both topoisomerase and DNA repair lyase activities within the same protein. Previous studies had shown that the topoisomerase domain spans the N-terminus of the protein and is followed by 12 tandem helix–hairpin–helix [(HhH)2] domains. There are at least two DNA repair lyase active sites for apurinic/apyrimidinic (AP) site processing, one within the N-terminal region and the second within the C-terminal domain of Topo-V, but their exact locations and characteristics are unknown. In the present study, the N-terminal 78-kDa fragment of Topo-V (Topo-78), containing the topoisomerase domain and one of the lyase DNA repair domains, was characterized by structural and biochemical studies. The results show that an N-terminal 69-kDa fragment is the minimal fragment with both topoisomerase and AP lyase activities. The lyase active site of Topo-78 is at the junction of the fifth and sixth (HhH)2 domains. From the biochemical and structural data, it appears that Lys571 is the most probable nucleophile responsible for the lyase activity. Our experiments also suggest that Topo-V most likely acts as a Class I AP endonuclease in vivo. PMID:23125368

  18. Induction of L-phenylalanine ammonia-lyase during utilization of phenylalanine as a carbon or nitrogen source in Rhodotorula glutinis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marusich, W.C.; Jensen, R.A.; Zamir, L.O.

    Rhodotorula glutinis is a convenient source of L-phenylalanine ammonia-lyase, an enzyme that is useful as a biochemical reagent in the assay of L-phenylalanine. There have been previous descriptions of induced lyase production in complex medium where induction occurs late in exponential growth, suggesting a role in secondary metabolism such as is the case in higher plants. A higher specific activity of L-phenylalanine ammonia-lyase (sixfold higher than in complex medium) can be obtained during midexponential growth in a defined medium containing L-phenylalanine as the sole source of carbon. L-phenylalanine will also induce lyase synthesis during exponential growth in minimal medium inmore » which L-phenylalanine is the sole source of nitrogen. The appearance of lyase in complex medium supplemented with L-phenylalanine is probably triggered fortuitously by exhaustion late in growth of a prime source of nitrogen. In this study, R. glutinis appeared to express a single lyase enzyme, regardless of whether induction was nitrogen signaled or carbon signaled. Thin-layer chromatographic analysis of ether extracts prepared fom cultures induced with doubly labeled (U-/sup 14/C; ring-4-/sup 3/H) L-phenylalanine provided evidence of a catabolic sequence containing cinnamic acid, benzoic acid, and 4-hydroxybenzoic acid as degradative intermediates. 3,4-Dihydroxybenzoic acid was not identified as a catabolic intermediate.« less

  19. Induction of L-phenylalanine ammonia-lyase during utilization of phenylalanine as a carbon or nitrogen source in Rhodotorula glutinis.

    PubMed Central

    Marusich, W C; Jensen, R A; Zamir, L O

    1981-01-01

    Rhodotorula glutinis is a convenient source of L-phenylalanine ammonia-lyase, an enzyme that is useful as a biochemical reagent in the assay of L-phenylalanine. There have been previous descriptions of induced lyase production in complex medium where induction occurs late in exponential growth, suggesting a role in secondary metabolism such as is the case in higher plants. A higher specific activity of L-phenylalanine ammonia-lyase (sixfold higher than a complex medium) can be obtained during midexponential growth in a defined medium containing L-phenylalanine as the sole source of carbon. L-Phenylalanine will also induce lyase synthesis during exponential growth in minimal in which L-phenylalanine is the sole source of nitrogen. The appearance of lyase in complex medium supplemented with L-phenylalanine is probably triggered fortuitously by exhaustion late in growth of a prime source of nitrogen. In this study, R. glutinis appeared to express a single lyase enzyme, regardless of whether induction was nitrogen signaled or carbon signaled. Thin-layer chromatographic analysis of ether extracts prepared from cultures induced with doubly labeled (U-14C; ring-4-3H) L-phenylalanine provided evidence of a catabolic sequence containing cinnamic acid, benzoic acid, and 4-hydroxybenzoic acid as degradative intermediates. 3,4-Dihydroxybenzoic acid was not identified as a catabolic intermediate. PMID:7195398

  20. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl-CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon–carbon bond cleavage during α-oxidation of 3-methyl-branched fatty acids

    PubMed Central

    Foulon, Veerle; Antonenkov, Vasily D.; Croes, Kathleen; Waelkens, Etienne; Mannaerts, Guy P.; Van Veldhoven, Paul P.; Casteels, Minne

    1999-01-01

    In the third step of the α-oxidation of 3-methyl-branched fatty acids such as phytanic acid, a 2-hydroxy-3-methylacyl-CoA is cleaved into formyl-CoA and a 2-methyl-branched fatty aldehyde. The cleavage enzyme was purified from the matrix protein fraction of rat liver peroxisomes and identified as a protein made up of four identical subunits of 63 kDa. Its activity proved to depend on Mg2+ and thiamine pyrophosphate, a hitherto unrecognized cofactor of α-oxidation. Formyl-CoA and 2-methylpentadecanal were identified as reaction products when the purified enzyme was incubated with 2-hydroxy-3-methylhexadecanoyl-CoA as the substrate. Hence the enzyme catalyzes a carbon–carbon cleavage, and we propose calling it 2-hydroxyphytanoyl-CoA lyase. Sequences derived from tryptic peptides of the purified rat protein were used as queries to recover human expressed sequence tags from the databases. The composite cDNA sequence of the human lyase contained an ORF of 1,734 bases that encodes a polypeptide with a calculated molecular mass of 63,732 Da. Recombinant human protein, expressed in mammalian cells, exhibited lyase activity. The lyase displayed homology to a putative Caenorhabditis elegans protein that resembles bacterial oxalyl-CoA decarboxylases. Similarly to the decarboxylases, a thiamine pyrophosphate-binding consensus domain was present in the C-terminal part of the lyase. Although no peroxisome targeting signal, neither 1 nor 2, was apparent, transfection experiments with constructs encoding green fluorescent protein fused to the full-length lyase or its C-terminal pentapeptide indicated that the C terminus of the lyase represents a peroxisome targeting signal 1 variant. PMID:10468558

  1. The Syndrome of 17,20 Lyase Deficiency

    PubMed Central

    2012-01-01

    Context: Disorders of steroidogenesis have been instrumental in delineating human steroidogenic pathways. Each genetic disorder seemed to correspond to a different steroidogenic activity, helping to identify several enzymes. Beginning in 1972, several patients have been reported as having “17,20 lyase deficiency,” but there have been inconsistent genetic findings. Objective: This manuscript reviews the biochemistry, genetics, and clinical disorders of 17,20 lyase activity, which converts 21-carbon precursors of glucocorticoids to 19-carbon precursors of sex steroids. Findings: A single enzyme, cytochrome P450c17, catalyzes both 17α-hydroxylase activity and 17,20 lyase activity. The 17,20 lyase activity is especially sensitive to the activities of the accessory proteins P450 oxidoreductase and cytochrome b5. The first cases of genetically and biochemically proven 17,20 lyase deficiency were reported in 1997, in which specific P450c17 mutations were identified that lost 17,20 lyase activity but not 17α-hydroxylase activity when assayed in vitro. Subsequent work identified other P450c17 mutations and mutations in the genes encoding P450 oxidoreductase and cytochrome b5. Recently, the initially reported cases from 1972 were found to carry mutations in two aldo-keto reductases, AKR1C2 and AKR1C4. These AKR1C isozymes catalyze 3α-hydroxysteroid dehydrogenase activity in the so-called “backdoor pathway” by which the fetal testis produces dihydrotestosterone without the intermediacy of testosterone. Conclusions: 17,20 Lyase deficiency should be considered a syndrome with multiple causes, and not a single disease. Study of this very rare disorder has substantially advanced our understanding of the pathways, mechanisms, and control of androgen synthesis. Mutations in other, as-yet unidentified genes may also cause this phenotype. PMID:22072737

  2. Molecular characterization of a Penicillium chrysogenum exo-rhamnogalacturonan lyase that is structurally distinct from other polysaccharide lyase family proteins.

    PubMed

    Iwai, Marin; Kawakami, Takuya; Ikemoto, Takeshi; Fujiwara, Daisuke; Takenaka, Shigeo; Nakazawa, Masami; Ueda, Mitsuhiro; Sakamoto, Tatsuji

    2015-10-01

    We previously described an endo-acting rhamnogalacturonan (RG) lyase, termed PcRGL4A, of Penicillium chrysogenum 31B. Here, we describe a second RG lyase, called PcRGLX. We determined the cDNA sequence of the Pcrglx gene, which encodes PcRGLX. Based on analyses using a BLAST search and a conserved domain search, PcRGLX was found to be structurally distinct from known RG lyases and might belong to a new polysaccharide lyase family together with uncharacterized fungal proteins of Nectria haematococca, Aspergillus oryzae, and Fusarium oxysporum. The Pcrglx cDNA gene product (rPcRGLX) expressed in Escherichia coli demonstrated specific activity against RG but not against homogalacturonan. Divalent cations were not essential for the enzymatic activity of rPcRGLX. rPcRGLX mainly released unsaturated galacturonosyl rhamnose (ΔGR) from RG backbones used as the substrate from the initial stage of the reaction, indicating that the enzyme can be classified as an exo-acting RG lyase (EC 4.2.2.24). This is the first report of an RG lyase with this mode of action in Eukaryota. rPcRGLX acted synergistically with PcRGL4A to degrade soybean RG and released ΔGR. This ΔGR was partially decorated with galactose (Gal) residues, indicating that rPcRGLX preferred oligomeric RGs to polymeric RGs, that the enzyme did not require Gal decoration of RG backbones for degradation, and that the enzyme bypassed the Gal side chains of RG backbones. These characteristics of rPcRGLX might be useful in the determination of complex structures of pectins.

  3. Synthesis of a stationary phase based on silica modified with branched octadecyl groups by Michael addition and photoinduced thiol-yne click chemistry for the separation of basic compounds.

    PubMed

    Huang, Guang; Ou, Junjie; Wang, Hongwei; Ji, Yongsheng; Wan, Hao; Zhang, Zhang; Peng, Xiaojun; Zou, Hanfa

    2016-04-01

    A novel silica-based stationary phase with branched octadecyl groups was prepared by the sequential employment of the Michael addition reaction and photoinduced thiol-yne click chemistry with 3-aminopropyl-functionalized silica microspheres as the initial material. The resulting stationary phase denoted as SiO2 -N(C18)4 was characterized by elemental analysis, FTIR spectroscopy and Raman spectroscopy, demonstrating the existence of branched octadecyl groups in silica microspheres. The separations of benzene homologous compounds, acid compounds and amine analogues were conducted, demonstrating mixed-mode separation mechanism on SiO2 -N(C18)4 . Baseline separation of basic drugs mixture was acquired with the mobile phase of acetonitrile/H2 O (5%, v/v). SiO2 -N(C18)4 was further applied to separate Corydalis yanhusuo Wang water extracts, and more baseline separation peaks were obtained for SiO2 -N(C18)4 than those on Atlantis dC18 column. It can be expected that this new silica-based stationary phase will exhibit great potential in the analysis of basic compounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Modeling of S-Nitrosothiol-Thiol Reactions of Biological Significance: HNO Production by S-Thiolation Requires a Proton Shuttle and Stabilization of Polar Intermediates.

    PubMed

    Ivanova, Lena V; Cibich, Daniel; Deye, Gregory; Talipov, Marat R; Timerghazin, Qadir K

    2017-04-18

    Nitroxyl (HNO), a reduced form of the important gasotransmitter nitric oxide, exhibits its own unique biological activity. A possible biological pathway of HNO formation is the S-thiolation reaction between thiols and S-nitrosothiols (RSNOs). Our density functional theory (DFT) calculations suggested that S-thiolation proceeds through a proton transfer from the thiol to the RSNO nitrogen atom, which increases electrophilicity of the RSNO sulfur, followed by nucleophilic attack by thiol, yielding a charge-separated zwitterionic intermediate structure RSS + (R)N(H)O - (Zi), which decomposes to yield HNO and disulfide RSSR. In the gas phase, the proton transfer and the S-S bond formation are asynchronous, resulting in a high activation barrier (>40 kcal mol -1 ), making the reaction infeasible. However, the barrier can decrease below the S-N bond dissociation energy in RSNOs (≈30 kcal mol -1 ) upon transition into an aqueous environment that stabilizes Zi and provides a proton shuttle to synchronize the proton transfer and the S-S bond formation. These mechanistic features suggest that S-thiolation can easily lend itself to enzymatic catalysis and thus can be a possible route of endogenous HNO production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Regulation of Pectate Lyase Synthesis in Pseudomonas fluorescens and Erwinia carotovora

    PubMed Central

    Zucker, Milton; Hankin, Lester

    1970-01-01

    Inducible synthesis of extracellular pectate lyase occurs in Erwinia carotovora, a bacterial soft-rot pathogen of plants, and, to a lesser extent, in a nonpathogenic isolate of Pseudomonas fluorescens. A combination of pectin and a heat-labile factor in fresh potato tissue or acetone powders of the tissue provided the best carbon source for induction. Yields of inducible pectate lyase were much greater than those usually reported. The pathogen, but not the saprophyte, produced a small amount of constitutive enzyme when grown on glucose. The relatively low level or absence of constitutive synthesis in these bacteria did not result from catabolite repression. Attempts were made to relieve any existing catabolite repression by restricting growth through slow feeding of glucose or by growing the organisms on glycerol. These conditions did not significantly alter the differential rate of lyase synthesis compared with changes observed in the presence of inducers. Previous growth history did not affect induction in the pathogen. However, P. fluorescens previously cultured on glucose required 10 to 20 generations of growth on inducing medium before appreciable lyase synthesis occurred. Differences between the pathogen and nonpathogen suggest that regulation of pectate lyase synthesis is related to pathogenicity of soft-rot bacteria. PMID:5473883

  6. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes: DISCOVERY OF P450-TYPE HYDROPEROXIDE LYASE ACTIVITY IN A CATALASE.

    PubMed

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E; Calcutt, Wade M; Brash, Alan R; Samel, Nigulas

    2015-08-07

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using (18)O-labeled substrate and incubations in H2(18)O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Investigation of thiol-disulphide balance in patients with acute urticaria and chronic spontaneous urticaria.

    PubMed

    Akbas, Ayse; Kilinc, Fadime; Sener, Sertac; Aktaş, Akın; Baran, Pervin; Ergin, Merve

    2017-09-01

    Thiol-disulphide balance plays a major role in health and diseases. This balance may be disrupted by various diseases. We aimed to determine status of the effect of thiol-disulphide balance in urticaria. We aimed to investigate the thiol-disulphide balance in patients with acute urticaria (AUP) and chronic spontaneous urticaria (CSU). Study included 53 AUP and 47 healthy controls plus 57 patients with chronic spontaneous urticaria (CSUP) and 57 healthy controls. Levels of native thiols, disulphides and total thiols were evaluated in plasma using a new and automated spectrophotometric method. Ratios of disulphides/total thiols, disulphides/native thiols and native thiols/total thiols were calculated. For AU, there was no statistical difference compared to control group in levels of native thiols, disulphides and total thiols. For CSU, however, there was an increase in levels of native thiols, disulphides and total thiols and the ratio of thiol/disulphide in favour of disulphide. Thiol-disulphide balance was not affected by AU but shifted towards to disulphide in CSU indicating the presence of oxidative stress (OS).

  8. Influence of reagents reacting with metal, thiol and amino sites of catalytic activity and l-phenylalanine inhibition of rat intestinal alkaline phosphatase

    PubMed Central

    Fishman, William H.; Ghosh, Nimai K.

    1967-01-01

    1. Studies on the inactivation of rat intestinal alkaline phosphatase by several metal-binding agents, namely EDTA, 8-hydroxyquinoline, pyridine-2,6-dicarboxylic acid, αα′-bipyridyl, o-phenanthroline and sodium cyanide, indicated the functional role of a metal, probably zinc, in the catalysis. The metal ligands lowered stereospecific uncompetitive inhibition of the enzyme by l-phenylalanine by an extent that paralleled the decline in enzyme activity. 2. The thiol reagents p-hydroxymercuribenzoate, iodoacetamide and iodine inactivated rat intestinal phosphatase. The enzyme could be protected from inactivation by either cysteine or substrate. The l-phenylalanine inhibition remained unchanged only in the presence of moderately inactivating concentrations of the thiol reagents. 3. Inactivation of the enzyme by the amino-group-blocking reagent, O-methylisourea, provided ample evidence for the participation in the catalysis of the ∈-amino group of lysine. At the same time, l-phenylalanine inhibition remained unaltered even when the enzyme was strongly inactivated. This ∈-amino-group-blocked enzyme exhibited no change in migration in starch gel, in contrast with enzyme treated with acetic anhydride, formaldehyde or succinic anhydride. The Michaelis constant of the enzyme was enhanced by such modifications, but the optimum pH remained the same. 4. d-Phenylalanine acted as a competitive or `co-operative' activator for intestinal alkaline phosphatase after it had been modified by acetylation. PMID:16742542

  9. Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins.

    PubMed

    Kaya, Alaattin; Gerashchenko, Maxim V; Seim, Inge; Labarre, Jean; Toledano, Michel B; Gladyshev, Vadim N

    2015-08-25

    Aerobic respiration is a fundamental energy-generating process; however, there is cost associated with living in an oxygen-rich environment, because partially reduced oxygen species can damage cellular components. Organisms evolved enzymes that alleviate this damage and protect the intracellular milieu, most notably thiol peroxidases, which are abundant and conserved enzymes that mediate hydrogen peroxide signaling and act as the first line of defense against oxidants in nearly all living organisms. Deletion of all eight thiol peroxidase genes in yeast (∆8 strain) is not lethal, but results in slow growth and a high mutation rate. Here we characterized mechanisms that allow yeast cells to survive under conditions of thiol peroxidase deficiency. Two independent ∆8 strains increased mitochondrial content, altered mitochondrial distribution, and became dependent on respiration for growth but they were not hypersensitive to H2O2. In addition, both strains independently acquired a second copy of chromosome XI and increased expression of genes encoded by it. Survival of ∆8 cells was dependent on mitochondrial cytochrome-c peroxidase (CCP1) and UTH1, present on chromosome XI. Coexpression of these genes in ∆8 cells led to the elimination of the extra copy of chromosome XI and improved cell growth, whereas deletion of either gene was lethal. Thus, thiol peroxidase deficiency requires dosage compensation of CCP1 and UTH1 via chromosome XI aneuploidy, wherein these proteins support hydroperoxide removal with the reducing equivalents generated by the electron transport chain. To our knowledge, this is the first evidence of adaptive aneuploidy counteracting oxidative stress.

  10. Testing of WW-85

    DTIC Science & Technology

    2005-11-21

    secondary ROS, superoxide (O2 -) and hydrogen peroxide (H2O2), the latter can react via Fenton chemistry with cellular metal ions to produce additional ·OH...nitrogen dioxide (NO2), and nitrosonium cation. Oxidations of thiols, sulfides, transition metal complexes, deoxyribose, phenols and other...respiratory chain and disruption of the zinc-thiolate center at the active site of enzymes. Peroxynitrite has been shown to inhibit a variety of ion

  11. Alginate Lyase (AlgL) Activity Is Required for Alginate Biosynthesis in Pseudomonas aeruginosa

    PubMed Central

    Albrecht, Mark T.; Schiller, Neal L.

    2005-01-01

    To determine whether AlgL's lyase activity is required for alginate production in Pseudomonas aeruginosa, an algLΔ::Gmr mutant (FRD-MA7) was created. algL complementation of FRD-MA7 restored alginate production, but algL constructs containing mutations inactivating lyase activity did not, demonstrating that the enzymatic activity of AlgL is required for alginate production. PMID:15901714

  12. S-Nitroso-Proteome in Poplar Leaves in Response to Acute Ozone Stress

    PubMed Central

    Vanzo, Elisa; Ghirardo, Andrea; Merl-Pham, Juliane; Lindermayr, Christian; Heller, Werner; Hauck, Stefanie M.; Durner, Jörg; Schnitzler, Jörg-Peter

    2014-01-01

    Protein S-nitrosylation, the covalent binding of nitric oxide (NO) to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = −3.6) and caffeic acid O-methyltransferase (−3.4), key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure. PMID:25192423

  13. Influence of glucagon or 5-(tetradecyloxy)-2-furoic acid on binding to mitochondria and phosphorylation of ATP-citrate lyase.

    PubMed

    Janski, A M; Cornell, N W

    1982-02-01

    To study the binding to mitochondria and the phosphorylation of ATP-citrate lyase (EC 4.1.3.8), isolated rat hepatocytes were fractionated by exposure to digitonin. After incubation of hepatocytes with the hypolipidemic agent 5-(tetradecyloxy)-2-furoic acid, which decreases the cellular CoA, the amount of bound ATP-citrate lyase was increased, but the content of acid-stable phosphate in the enzyme was diminished. Glucagon, in contrast, decreased the amount of bound enzyme but increased phosphorylation. This inverse relationship might indicate either that the bound ATP-citrate lyase is less readily phosphorylated or that the phosphorylated enzyme binds less readily to mitochondria.

  14. Reconstruction of cysteine biosynthesis using engineered cysteine-free enzymes.

    PubMed

    Fujishima, Kosuke; Wang, Kendrick M; Palmer, Jesse A; Abe, Nozomi; Nakahigashi, Kenji; Endy, Drew; Rothschild, Lynn J

    2018-01-29

    Amino acid biosynthesis pathways observed in nature typically require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine: serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase (CysK/CysM). To solve this chicken-and-egg problem, we substituted alternate amino acids in CysE, CysK and CysM for cysteine and methionine, which are the only two sulfur-containing proteinogenic amino acids. Using a cysteine-dependent auxotrophic E. coli strain, CysE function was rescued by cysteine-free and methionine-deficient enzymes, and CysM function was rescued by cysteine-free enzymes. CysK function, however, was not rescued in either case. Enzymatic assays showed that the enzymes responsible for rescuing the function in CysE and CysM also retained their activities in vitro. Additionally, substitution of the two highly conserved methionines in CysM decreased but did not eliminate overall activity. Engineering amino acid biosynthetic enzymes to lack the so-produced amino acids can provide insights into, and perhaps eventually fully recapitulate via a synthetic approach, the biogenesis of biotic amino acids.

  15. CuO nanoparticles catalyzed C-N, C-O, and C-S cross-coupling reactions: scope and mechanism.

    PubMed

    Jammi, Suribabu; Sakthivel, Sekarpandi; Rout, Laxmidhar; Mukherjee, Tathagata; Mandal, Santu; Mitra, Raja; Saha, Prasenjit; Punniyamurthy, Tharmalingam

    2009-03-06

    CuO nanoparticles have been studied for C-N, C-O, and C-S bond formations via cross-coupling reactions of nitrogen, oxygen, and sulfur nucleophiles with aryl halides. Amides, amines, imidazoles, phenols, alcohols and thiols undergo reactions with aryl iodides in the presence of a base such as KOH, Cs(2)CO(3), and K(2)CO(3) at moderate temperature. The procedure is simple, general, ligand-free, and efficient to afford the cross-coupled products in high yield.

  16. Structural Basis for the Entrance into the Phenylpropanoid Metabolism Catalyzed by Phenylalanine Ammonia-Lyase

    PubMed Central

    Ritter, Holger; Schulz, Georg E.

    2004-01-01

    Because of its key role in secondary phenylpropanoid metabolism, Phe ammonia-lyase is one of the most extensively studied plant enzymes. To provide a basis for detailed structure–function studies, the enzyme from parsley (Petroselinum crispum) was crystallized, and the structure was elucidated at 1.7-Å resolution. It contains the unusual electrophilic 4-methylidene-imidazole-5-one group, which is derived from a tripeptide segment in two autocatalytic dehydration reactions. The enzyme resembles His ammonia-lyase from the general His degradation pathway but contains 207 additional residues, mainly in an N-terminal extension rigidifying a domain interface and in an inserted α-helical domain restricting the access to the active center. Presumably, Phe ammonia-lyase developed from His ammonia-lyase when fungi and plants diverged from the other kingdoms. A pathway of the catalyzed reaction is proposed in agreement with established biochemical data. The inactivation of the enzyme by a nucleophile is described in detail. PMID:15548745

  17. Homo- and heteroleptic bismuth(III/V) thiolates from N-heterocyclic thiones: synthesis, structure and anti-microbial activity.

    PubMed

    Luqman, Ahmad; Blair, Victoria L; Brammananth, Rajini; Crellin, Paul K; Coppel, Ross L; Andrews, Philip C

    2014-10-27

    Homo- and heteroleptic bismuth thiolato complexes have been synthesised and characterised from biologically relevant tetrazole-, imidazole-, thiadiazole- and thiazole-based heterocyclic thiones (thiols): 1-methyl-1H-tetrazole-5-thiol (1-MMTZ(H)); 4-methyl-4H-1,2,4-triazole-3-thiol (4-MTT(H)); 1-methyl-1H-imidazole-2-thiol (2-MMI(H)); 5-methyl-1,3,4-thiadiazole-2-thiol (5-MMTD(H)); 1,3,4-thiadiazole-2-dithiol (2,5-DMTD(H)2 ); and 4-(4-bromophenyl)thiazole-2-thiol (4-BrMTD(H)). Reaction of BiPh3 with 1-MMTZ(H) produced the rare Bi(V) thiolato complex [BiPh(1-MMTZ)4 ], which undergoes reduction in DMSO to give [BiPh(1-MMTZ)2 {(1-MMTZ(H)}2 ]. Reactions with PhBiCl2 or BiPh3 generally produced monophenylbismuth thiolates, [BiPh(SR)2 ]. The crystal structures of [BiPh(1-MMTZ)2 {1-MMTZ(H)}2 ], [BiPh(5-MMTD)2 ], [BiPh{2,5-DMTD(H)}2 (Me2 CO)] and [Bi(4-BrMTD)3 ] were obtained. Evaluation of the bactericidal properties against M. smegmatis, S. aureus, MRSA, VRE, E. faecalis and E. coli showed complexes containing the anionic ligands 1- MMTZ, 4-MTT and 4-BrMTD to be most effective. The dithiolato dithione complexes [BiPh(4-MTT)2 {4-MTT(H)}2 ] and [BiPh(1-MMTZ)2 {1-MMTZ(H)}2 ] were most effective against all the bacteria: MICs 0.34 μM for [BiPh(4-MTT)2 {4-MTT(H)}2 ] against VRE, and 1.33 μM for [BiPh(1-MMTZ)2 {1-MMTZ(H)}2 ] against M. smegmatis and S. aureus. Tris-thiolato Bi(III) complexes were least effective overall. All complexes showed little or no toxicity towards mammalian COS-7 cells at 20 μg mL(-1) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Crystallization and preliminary X-ray analysis of alginate lyases A1-II and A1-II′ from Sphingomonas sp. A1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamasaki, Masayuki; Ogura, Kohei; Moriwaki, Satoko

    The crystallization and preliminary characterization of the family PL-7 alginate lyases A1-II and A1-II′ from Sphingomonas sp. A1 are presented. Alginate lyases depolymerize alginate, a heteropolysaccharide consisting of α-l-guluronate and β-d-mannuronate, through a β-elimination reaction. The alginate lyases A1-II (25 kDa) and A1-II′ (25 kDa) from Sphingomonas sp. A1, which belong to polysaccharide lyase family PL-7, exhibit 68% homology in primary structure but have different substrate specificities. To determine clearly the structural basis for substrate recognition in the depolymerization mechanism by alginate lyases, both proteins were crystallized at 293 K using the vapour-diffusion method. A crystal of A1-II belonged tomore » space group P2{sub 1} and diffracted to 2.2 Å resolution, with unit-cell parameters a = 51.3, b = 30.1, c = 101.6 Å, β = 100.2°, while a crystal of A1-II′ belonged to space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to 1.0 Å resolution, with unit-cell parameters a = 34.6, b = 68.5, c = 80.3 Å.« less

  19. A novel cysteine desulfurase influencing organosulfur compounds in Lentinula edodes

    PubMed Central

    Liu, Ying; Lei, Xiao-Yu; Chen, Lian-Fu; Bian, Yin-Bing; Yang, Hong; Ibrahim, Salam A.; Huang, Wen

    2015-01-01

    Organosulfur compounds are the basis for the unique aroma of Lentinula edodes, and cysteine sulfoxide lyase (C-S lyase) is the key enzyme in this trait. The enzyme from Alliium sativum has been crystallized and well-characterized; however, there have been no reports of the characterization of fungi C-S lyase at the molecular level. We identified a L. edodes C-S lyase (Lecsl), cloned a gene of Csl encoded Lecsl and then combined modeling, simulations, and experiments to understand the molecular basis of the function of Lecsl. Our analysis revealed Lecsl to be a novel cysteine desulfurase and not a type of cysteine sulfoxide lyase. The pyridoxal-5-phosphate (PLP) molecule bonded tightly to Lecsl to form a Lecsl-PLP complex. Moreover, the Lecsl had one active center that served to bind two kinds of substrates, S-methyl-L-cysteine sulfoxide and L-cysteine, and had both cysteine sulfoxide lyase and cysteine desulfurase activity. We found that the amino acid residue Asn393 was essential for the catalytic activity of Lecsl and that the gene Csl encoded a novel cysteine desulfurase to influence organosulfur compounds in L. edodes. Our results provide a new insight into understanding the formation of the unique aroma of L. edodes. PMID:26054293

  20. A novel cysteine desulfurase influencing organosulfur compounds in Lentinula edodes.

    PubMed

    Liu, Ying; Lei, Xiao-Yu; Chen, Lian-Fu; Bian, Yin-Bing; Yang, Hong; Ibrahim, Salam A; Huang, Wen

    2015-06-09

    Organosulfur compounds are the basis for the unique aroma of Lentinula edodes, and cysteine sulfoxide lyase (C-S lyase) is the key enzyme in this trait. The enzyme from Alliium sativum has been crystallized and well-characterized; however, there have been no reports of the characterization of fungi C-S lyase at the molecular level. We identified a L. edodes C-S lyase (Lecsl), cloned a gene of Csl encoded Lecsl and then combined modeling, simulations, and experiments to understand the molecular basis of the function of Lecsl. Our analysis revealed Lecsl to be a novel cysteine desulfurase and not a type of cysteine sulfoxide lyase. The pyridoxal-5-phosphate (PLP) molecule bonded tightly to Lecsl to form a Lecsl-PLP complex. Moreover, the Lecsl had one active center that served to bind two kinds of substrates, S-methyl-L-cysteine sulfoxide and L-cysteine, and had both cysteine sulfoxide lyase and cysteine desulfurase activity. We found that the amino acid residue Asn393 was essential for the catalytic activity of Lecsl and that the gene Csl encoded a novel cysteine desulfurase to influence organosulfur compounds in L. edodes. Our results provide a new insight into understanding the formation of the unique aroma of L. edodes.

  1. Kinetic and thermodynamic properties of alginate lyase and cellulase co-produced by Exiguobacterium species Alg-S5.

    PubMed

    Mohapatra, Bidyut R

    2017-05-01

    In an effort to screen out the alginolytic and cellulolytic bacteria from the putrefying invasive seaweed Sargassum species accumulated off Barbados' coast, a potent bacterial strain was isolated. This bacterium, which simultaneously produced alginate lyase and cellulase, was identified as Exiguobacterium sp. Alg-S5 via the phylogenetic approach targeting the 16S rRNA gene. The co-produced alginate lyase and cellulase exhibited maximal enzymatic activity at pH 7.5 and at 40°C and 45°C, respectively. The K m and V max values recorded as 0.91mg/mL and 21.8U/mg-protein, respectively, for alginate lyase, and 10.9mg/mL and 74.6U/mg-protein, respectively, for cellulase. First order kinetic analysis of the thermal denaturation of the co-produced alginate lyase and cellulase in the temperature range from 40°C to 55°C revealed that both the enzymes were thermodynamically efficient by displaying higher activation energy and enthalpy of denaturation. These enzymatic properties indicate the potential industrial importance of this bacterium in algal biomass conversion. This appears to be the first report on assessing the efficacy of a bacterium for the co-production of alginate lyase and cellulase. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Clearance of phenylalanine ammonia-lyase from normal and tumor-bearing mice.

    PubMed

    Shen, R S; Fritz, R R; Abell, C W

    1977-04-01

    Yeast phenylalanine ammonia-lyase was administered i.p. to normal and tumor-bearing mice, and its clearance from plasma was studied. Single and multiple weekly injections at dosages of 10,20,50 and 100 units/kg were administered to C57BL female, C57BL X DBA/2F1 male, and A/J female mice. L5178Y murine lymphoblastic leukemia, B16 melanoma, BW10232 adenocarcinoma, and 15091A anaplastic carcinoma were implanted 7 to 11 days prior to enzyme injection in the appropriate host. After a single injection, the average plasma half-lives of phenylalanine ammonia-lyase were 18 to 24 hr in all groups studied. While the other tumors had no effect on the plasma level of phenylalanine ammonia-lyase after a single injection, L5178Y murine lymphoblastic leukemia and 15091A anaplastic carcinoma significantly depressed the maximal level of phenylalanine ammonia-lyase attained in the plasma. After repeated injections of phenylalanine ammonia-lyase, the initial plasma enzyme level was significantly reduced when 20 units/kg were administered, and the clearance of the enzyme from the plasma was greatly accelerated regardless of the amount administered. Furthermore, in tumor-bearing mice, the rate of clearance was significantly more rapid than in the appropriate non-tumor-bearing control.

  3. Stress-Induced Protein S-Glutathionylation and S-Trypanothionylation in African Trypanosomes—A Quantitative Redox Proteome and Thiol Analysis

    PubMed Central

    Ulrich, Kathrin; Finkenzeller, Caroline; Merker, Sabine; Rojas, Federico; Matthews, Keith; Ruppert, Thomas

    2017-01-01

    Abstract Aims: Trypanosomatids have a unique trypanothione-based thiol redox metabolism. The parasite-specific dithiol is synthesized from glutathione and spermidine, with glutathionylspermidine as intermediate catalyzed by trypanothione synthetase. In this study, we address the oxidative stress response of African trypanosomes with special focus on putative protein S-thiolation. Results: Challenging bloodstream Trypanosoma brucei with diamide, H2O2 or hypochlorite results in distinct levels of reversible overall protein S-thiolation. Quantitative proteome analyses reveal 84 proteins oxidized in diamide-stressed parasites. Fourteen of them, including several essential thiol redox proteins and chaperones, are also enriched when glutathione/glutaredoxin serves as a reducing system indicating S-thiolation. In parasites exposed to H2O2, other sets of proteins are modified. Only three proteins are S-thiolated under all stress conditions studied in accordance with a highly specific response. H2O2 causes primarily the formation of free disulfides. In contrast, in diamide-treated cells, glutathione, glutathionylspermidine, and trypanothione are almost completely protein bound. Remarkably, the total level of trypanothione is decreased, whereas those of glutathione and glutathionylspermidine are increased, indicating partial hydrolysis of protein-bound trypanothione. Depletion of trypanothione synthetase exclusively induces protein S-glutathionylation. Total mass analyses of a recombinant peroxidase treated with T(SH)2 and either diamide or hydrogen peroxide verify protein S-trypanothionylation as stable modification. Innovation: Our data reveal for the first time that trypanosomes employ protein S-thiolation when exposed to exogenous and endogenous oxidative stresses and trypanothione, despite its dithiol character, forms protein-mixed disulfides. Conclusion: The stress-specific responses shown here emphasize protein S-trypanothionylation and S-glutathionylation as reversible protection mechanism in these parasites. Antioxid. Redox Signal. 27, 517–533. PMID:28338335

  4. Benzofurazan Sulfides for Thiol Imaging and Quantification in Live Cells through Fluorescence Microscopy

    PubMed Central

    Li, Yinghong; Yang, Yang; Guan, Xiangming

    2012-01-01

    Thiol groups play a significant role in various cellular functions. Cellular thiol concentrations can be affected by various physiological or pathological factors. A fluorescence imaging agent that can effectively and specifically image thiols in live cells through fluorescence microscopy is desirable for live cell thiol monitoring. Benzofurazan sulfides 1a–e were synthesized and found to be thiol specific fluorogenic agents except 1d. They are not fluorescent but form strong fluorescent thiol adducts after reacting with thiols through a sulfide-thiol exchange reaction. On the other hand, they exhibit no reaction with other biologically relevant nucleophilic functional groups such as -NH2, -OH, or -COOH revealing the specificity for the detection of thiols. Sulfide 1a was selected to confirm its ability to image cellular thiols through fluorescence microscopy. The compound was demonstrated to effectively image and quantify thiol changes in live cells through fluorescence microscopy using 430 nm and 520 nm as the excitation and emission wavelengths respectively. The quantification results of total thiol in live cells obtained from fluorescence microscopy were validated by an HPLC/UV total thiol assay method. The reagents and method will be of a great value to thiol redox-related research. PMID:22794193

  5. Solvent Isotope-induced Equilibrium Perturbation for Isocitrate Lyase

    PubMed Central

    Quartararo, Christine E.; Hadi, Timin; Cahill, Sean M.; Blanchard, John S.

    2014-01-01

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacteria’s life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage of D2OV = 2.0 ± 0.1 and D2O[V/Kisocitrate] = 2.2 ± 0.3 arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate and succinate prepared in D2O, would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of NMR spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by 1H NMR spectroscopy shows a clear equilibrium perturbation in D2O. The final equilibrium isotopic composition of reactants in D2O revealed di-deuterated succinate, protiated glyoxylate, and mono-deuterated isocitrate, with the transient appearance and disappearance of mono-deuterated succinate. A model for the equilibrium perturbation of substrate species, and their time-dependent isotopic composition is presented. PMID:24261638

  6. Identification of compounds inhibiting the C-S lyase activity of a cell extract from a Staphylococcus sp. isolated from human skin.

    PubMed

    Egert, M; Höhne, H-M; Weber, T; Simmering, R; Banowski, B; Breves, R

    2013-12-01

    The C-S lyase activity of bacteria in the human armpit releases highly malodorous, volatile sulfur compounds from nonvolatile precursor molecules. Such compounds significantly contribute to human body odour. Hence, C-S lyase represents an attractive target for anti-body-odour cosmetic products. Here, aiming at a final use in an ethanol-based deodorant formulation, 267 compounds and compound mixtures were screened for their ability to inhibit the C-S lyase activity of a Stapyhlococcus sp. crude extract. Staphylococcus sp. Isolate 128, closely related to Staphylococcus hominis, was chosen as the test bacterium, as it showed a reproducibly high specific C-S lyase activity on three different culturing media. Using a photometric assay and benzylcysteine as substrate, six rather complex, plant-derived compound mixtures and five well defined chemical compounds or compound mixtures were identified as inhibitors, leading to an inhibition of ≥70% at concentrations of ≤0·5% in the assay. The inhibition data have demonstrated that compounds with two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue are characteristic for the inhibition. The substances identified as C-S lyase inhibitors have the potential to improve the performance of anti-body-odour cosmetic products, for example, ethanol-based deodorants. Bacterial C-S lyase represents one of the key enzymes involved in human body odour formation. The aim of this study was to identify compounds inhibiting the C-S lyase activity of a Staphylococcus sp. isolate from the human skin. The compounds identified as the best inhibitors are characterized by the following features: two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue. They might be used to improve the performance of cosmetic products aiming to prevent the formation of microbially caused human body odour, for example, ethanol-based deodorants. © 2013 The Society for Applied Microbiology.

  7. Effect of Ammonia Production by Colletotrichum gloeosporioides on pelB Activation, Pectate Lyase Secretion, and Fruit Pathogenicity

    PubMed Central

    Kramer-Haimovich, H.; Servi, E.; Katan, T.; Rollins, J.; Okon, Y.; Prusky, D.

    2006-01-01

    The accumulation of ammonia and associated tissue alkalinization predispose avocado fruit to attack by Colletotrichum gloeosporioides. Secretion of ammonia by C. gloeosporioides in the presence of KNO3 was induced by decreasing the pH from 7.0 to 4.0. When the fungus was grown at pH 4.0 or 6.0 in the absence of a nitrogen source, ammonia did not accumulate, and neither pelB (encoding pectate lyase) transcription nor pectate lyase secretion was detected. Under these nitrogen starvation conditions, only transcriptional activation of areA, which encodes the global nitrogen regulator, was detected. pelB transcription and pectate lyase secretion were both detected when C. gloeosporioides was grown at pH 6.0 in the presence of ammonia accumulated from different nitrogen sources. The early accumulation of ammonia induced early pelB expression and pectate lyase secretion. As the external pH increased from 4.0 to 6.0, transcripts of pac1, the C. gloeosporioides pacC homolog, also could be detected. Nit mutants of C. gloeosporioides, which cannot utilize KNO3 as a nitrogen source, did not secrete ammonia, alkalinize the medium, or secrete pectate lyase. If Nit mutants were grown at pH 6.0 in the presence of glutamate, then pectate lyase secretion was induced. Infiltration of 0.1 M ammonium hydroxide at pH 10 into ripening avocado fruits enhanced the activation of quiescent infection and symptom development by C. gloeosporioides. These results suggest that ambient pH alkalinization resulting from ammonia accumulation and the availability of ammonia as a nitrogen source independently regulate pelB expression, pectate lyase secretion, and virulence of C. gloeosporioides. These data suggest that alkalinization during C. gloeosporioides infection is important for its transformation from the quiescent biotrophic stage to the necrotrophic stage of fungal colonization in the fruit host. PMID:16461646

  8. Thiol Specific and Mitochondria Selective Fluorogenic Benzofurazan Sulfide for Live Cell Nonprotein Thiol Imaging and Quantification in Mitochondria.

    PubMed

    Wang, Shenggang; Yin, Huihui; Huang, Yue; Guan, Xiangming

    2018-06-11

    Cellular thiols are divided into two major categories: nonprotein thiols (NPSH) and protein thiols (PSH). Thiols are unevenly distributed inside the cell and compartmentalized in subcellular structures. Most of our knowledge on functions/dysfunctions of cellular/subcellular thiols is based on the quantification of cellular/subcellular thiols through homogenization of cellular/subcellular structures followed by a thiol quantification method. We would like to report a thiol-specific mitochondria-selective fluorogenic benzofurazan sulfide {7,7'-thiobis( N-rhodamine-benzo[c][1,2,5]oxadiazole-4-sulfonamide) (TBROS)} that can effectively image and quantify live cell NPSH in mitochondria through fluorescence intensity. Limited methods are available for imaging thiols in mitochondria in live cells especially in a quantitative manner. The thiol specificity of TBROS was demonstrated by its ability to react with thiols and inability to react with biologically relevant nucleophilic functional groups other than thiols. TBROS, with minimal fluorescence, formed strong fluorescent thiol adducts (λ ex = 550 nm, λ em = 580 nm) when reacting with NPSH confirming its fluorogenicity. TBROS failed to react with PSH from bovine serum albumin and cell homogenate proteins. The high mitochondrial thiol selectivity of TBROS was achieved by its mitochondria targeting structure and its higher reaction rate with NPSH at mitochondrial pH. Imaging of mitochondrial NPSH in live cells was confirmed by two colocalization methods and use of a thiol-depleting reagent. TBROS effectively imaged NPSH changes in a quantitative manner in mitochondria in live cells. The reagent will be a useful tool in exploring physiological and pathological roles of mitochondrial thiols.

  9. Thiol/disulphide homeostasis in celiac disease

    PubMed Central

    Kaplan, Mustafa; Ates, Ihsan; Yuksel, Mahmut; Ozderin Ozin, Yasemin; Alisik, Murat; Erel, Ozcan; Kayacetin, Ertugrul

    2017-01-01

    AIM To determine dynamic thiol/disulphide homeostasis in celiac disease and to examine the associate with celiac autoantibodies and gluten-free diet. METHODS Seventy three patients with celiac disease and 73 healthy volunteers were enrolled in the study. In both groups, thiol/disulphide homeostasis was examined with a new colorimetric method recently developed by Erel and Neselioglu. RESULTS In patients with celiac disease, native thiol (P = 0.027) and total thiol (P = 0.031) levels were lower, while disulphide (P < 0.001) level, disulphide/native thiol (P < 0.001) and disulphide/total thiol (P < 0.001) ratios were higher compared to the control group. In patients who do not comply with a gluten-free diet, disulphide/native thiol ratio was found higher compared to the patients who comply with the diet (P < 0.001). In patients with any autoantibody-positive, disulphide/native thiol ratio was observed higher compared to the patients with autoantibody-negative (P < 0.05). It is found that there is a negative correlation between celiac autoantibodies, and native thiol, total thiol levels and native thiol/total thiol ratio, while a positive correlation is observed between disulphide, disulphide/native thiol and disulphide/total thiol levels. CONCLUSION This study is first in the literature which found that the patients with celiac disease the dynamic thiol/disulphide balance shifts through disulphide form compared to the control group. PMID:28533921

  10. Engineering disease resistance with pectate lyase-like genes

    DOEpatents

    Vogel, John; Somerville, Shauna

    2005-03-08

    A mutant gene coding for pectate lyase and homologs thereof is provided, which when incorporated in transgenic plants effect an increased level disease resistance in such plants. Also is provided the polypeptide sequence for the pectate lyase of the present invention. Methods of obtaining the mutant gene, producing transgenic plants which include the nucleotide sequence for the mutant gene and producing improved disease resistance in a crop of such transgenic plants are also provided.

  11. The release of alginate lyase from growing Pseudomonas syringae pathovar phaseolicola

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Day, D. F.; Koenig, D. W.; Pierson, D. L.

    2001-01-01

    Pseudomonas syringae pathovar phaseolicola, which produces alginate during stationary growth phase, displayed elevated extracellular alginate lyase activity during both mid-exponential and late-stationary growth phases of batch growth. Intracellular activity remained below 22% of the total activity during exponential growth, suggesting that alginate lyase has an extracellular function for this organism. Extracellular enzyme activity in continuous cultures, grown in either nutrient broth or glucose-simple salts medium, peaked at 60% of the washout rate, although nutrient broth-grown cultures displayed more than twice the activity per gram of cell mass. These results imply that growth rate, nutritional composition, or both initiate a release of alginate lyase from viable P. syringae pv. phaseolicola, which could modify its entrapping biofilm.

  12. Dynamic thiol/disulfide homeostasis and effects of smoking on homeostasis parameters in patients with psoriasis.

    PubMed

    Emre, Selma; Demirseren, Duriye Deniz; Alisik, Murat; Aktas, Akin; Neselioglu, Salim; Erel, Ozcan

    2017-12-01

    Recently, increased reactive oxygen species (ROS), reduced antioxidant capacity, and oxidative stress have been suggested in the pathogenesis of psoriasis. The aim of this study to evaluate the thiol/disulfide homeostasis in patients with psoriasis. Ninety patients with psoriasis who did not receive any systemic treatment in the last six  months were included in the study. Seventy-six age and gender-matched healthy volunteers served as control group. Thiol/disulfide homeostasis was measured in venous blood samples obtained from patient and control groups. Native thiol and total thiol levels were significantly higher in patients than in control group. When thiol/disulfide hemostasis parameters and clinical and demographic characteristics were compared, a negative correlation was detected between native thiol and total thiol with age. The levels of total thiols had also negative correlation with PASI and duration of the disease. When we divided the patients into smokers and non-smokers, native thiol and total thiol levels were significantly higher in smokers than in controls, whereas native thiol and total thiol levels were comparable in non-smoker patients and controls. Thiol/disulfide balance shifted towards thiol in psoriasis patients and this may be responsible for increased keratinocyte proliferation in the pathogenesis of psoriasis.

  13. Mercury-resistance and mercuric reductase activity in Chromobacterium, Erwinia, and Bacillus species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trevors, J.T.

    1987-06-01

    Mercury resistant bacteria have been the most extensively studied of all the metal-tolerant bacteria. Mercury resistance is usually mediated by two distinctly different enzymes encoded by plasmids. Mercuric reductase reduces Hg/sup 2 +/ to metallic mercury (Hg/sup 0/). Organomercurial lyases have a molecular weight of 20,000 to 40,000, are composed of 1 or 2 subunits and require the presence of thiol. Plasmic-encoded Hg/sup 2 +/ resistance and mercuric reductase activity have not been detected in many species of bacteria. A Chromobacterium, Erwinia and Bacillus species isolated from environmental samples were capable of growth in the presence of 50 ..mu..M HgCl/submore » 2/. Cell-free extracts of the 3 organisms exhibited mercuric reductase activity that oxidized NADPH in the presence of HgCl/sub 2/. Negligible oxidation of NADPH was observed in the absence of HgCl/sub 2/. The Chromobacterium sp. did not contain any plasmid DNA. This would suggest that Hg/sup 2 +/ resistance was carried on the chromosome in Chromobacterium. A single 3 Mdal plasmid in the Bacillus sp. was refractory to curing. The Erwinia sp. contained 3 plasmids which were also refractory to curing. The location of the resistance genes is unknown in the Bacillus and Erwinia isolates.« less

  14. Non-protein thiol imaging and quantification in live cells with a novel benzofurazan sulfide triphenylphosphonium fluorogenic compound.

    PubMed

    Yang, Yang; Guan, Xiangming

    2017-05-01

    Thiols (-SH) play various roles in biological systems. They are divided into protein thiols (PSH) and non-protein thiols (NPSH). Due to the significant roles thiols play in various physiological/pathological functions, numerous analytical methods have been developed for thiol assays. Most of these methods are developed for glutathione, the major form of NPSH. Majority of these methods require tissue/cell homogenization before analysis. Due to a lack of effective thiol-specific fluorescent/fluorogenic reagents, methods for imaging and quantifying thiols in live cells are limited. Determination of an analyte in live cells can reveal information that cannot be revealed by analysis of cell homogenates. Previously, we reported a thiol-specific thiol-sulfide exchange reaction. Based on this reaction, a benzofurazan sulfide thiol-specific fluorogenic reagent was developed. The reagent was able to effectively image and quantify total thiols (PSH+NPSH) in live cells through fluorescence microscopy. The reagent was later named as GUALY's reagent. Here we would like to report an extension of the work by synthesizing a novel benzofurazan sulfide triphenylphosphonium derivative [(((7,7'-thiobis(benzo[c][1,2,5]oxadiazole-4,4'-sulfonyl))bis(methylazanediyl))bis(butane-4,1-diyl))bis(triphenylphosphonium) (TBOP)]. Like GUALY's reagent, TBOP is a thiol-specific fluorogenic agent that is non-fluorescent but forms fluorescent thiol adducts in a thiol-specific fashion. Different than GUALY's reagent, TBOP reacts only with NPSH but not with PSH. TBOP was effectively used to image and quantify NPSH in live cells using fluorescence microscopy. TBOP is a complementary reagent to GUALY's reagent in determining the roles of PSH, NPSH, and total thiols in thiol-related physiological/pathological functions in live cells through fluorescence microscopy. Graphical Abstract Live cell imaging and quantification of non-protein thiols by TBOP.

  15. Protein S-Bacillithiolation Functions in Thiol Protection and Redox Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase Gap in Staphylococcus aureus Under Hypochlorite Stress

    PubMed Central

    Imber, Marcel; Huyen, Nguyen Thi Thu; Pietrzyk-Brzezinska, Agnieszka J.; Loi, Vu Van; Hillion, Melanie; Bernhardt, Jörg; Thärichen, Lena; Kolšek, Katra; Saleh, Malek; Hamilton, Chris J.; Adrian, Lorenz; Gräter, Frauke; Wahl, Markus C.

    2018-01-01

    Abstract Aims: Bacillithiol (BSH) is the major low-molecular-weight thiol of the human pathogen Staphylococcus aureus. In this study, we used OxICAT and Voronoi redox treemaps to quantify hypochlorite-sensitive protein thiols in S. aureus USA300 and analyzed the role of BSH in protein S-bacillithiolation. Results: The OxICAT analyses enabled the quantification of 228 Cys residues in the redox proteome of S. aureus USA300. Hypochlorite stress resulted in >10% increased oxidation of 58 Cys residues (25.4%) in the thiol redox proteome. Among the highly oxidized sodium hypochlorite (NaOCl)-sensitive proteins are five S-bacillithiolated proteins (Gap, AldA, GuaB, RpmJ, and PpaC). The glyceraldehyde-3-phosphate (G3P) dehydrogenase Gap represents the most abundant S-bacillithiolated protein contributing 4% to the total Cys proteome. The active site Cys151 of Gap was very sensitive to overoxidation and irreversible inactivation by hydrogen peroxide (H2O2) or NaOCl in vitro. Treatment with H2O2 or NaOCl in the presence of BSH resulted in reversible Gap inactivation due to S-bacillithiolation, which could be regenerated by the bacilliredoxin Brx (SAUSA300_1321) in vitro. Molecular docking was used to model the S-bacillithiolated Gap active site, suggesting that formation of the BSH mixed disulfide does not require major structural changes. Conclusion and Innovation: Using OxICAT analyses, we identified 58 novel NaOCl-sensitive proteins in the pathogen S. aureus that could play protective roles against the host immune defense and include the glycolytic Gap as major target for S-bacillithiolation. S-bacillithiolation of Gap did not require structural changes, but efficiently functions in redox regulation and protection of the active site against irreversible overoxidation in S. aureus. Antioxid. Redox Signal. 28, 410–430. PMID:27967218

  16. Protein S-Bacillithiolation Functions in Thiol Protection and Redox Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase Gap in Staphylococcus aureus Under Hypochlorite Stress.

    PubMed

    Imber, Marcel; Huyen, Nguyen Thi Thu; Pietrzyk-Brzezinska, Agnieszka J; Loi, Vu Van; Hillion, Melanie; Bernhardt, Jörg; Thärichen, Lena; Kolšek, Katra; Saleh, Malek; Hamilton, Chris J; Adrian, Lorenz; Gräter, Frauke; Wahl, Markus C; Antelmann, Haike

    2018-02-20

    Bacillithiol (BSH) is the major low-molecular-weight thiol of the human pathogen Staphylococcus aureus. In this study, we used OxICAT and Voronoi redox treemaps to quantify hypochlorite-sensitive protein thiols in S. aureus USA300 and analyzed the role of BSH in protein S-bacillithiolation. The OxICAT analyses enabled the quantification of 228 Cys residues in the redox proteome of S. aureus USA300. Hypochlorite stress resulted in >10% increased oxidation of 58 Cys residues (25.4%) in the thiol redox proteome. Among the highly oxidized sodium hypochlorite (NaOCl)-sensitive proteins are five S-bacillithiolated proteins (Gap, AldA, GuaB, RpmJ, and PpaC). The glyceraldehyde-3-phosphate (G3P) dehydrogenase Gap represents the most abundant S-bacillithiolated protein contributing 4% to the total Cys proteome. The active site Cys151 of Gap was very sensitive to overoxidation and irreversible inactivation by hydrogen peroxide (H 2 O 2 ) or NaOCl in vitro. Treatment with H 2 O 2 or NaOCl in the presence of BSH resulted in reversible Gap inactivation due to S-bacillithiolation, which could be regenerated by the bacilliredoxin Brx (SAUSA300_1321) in vitro. Molecular docking was used to model the S-bacillithiolated Gap active site, suggesting that formation of the BSH mixed disulfide does not require major structural changes. Conclusion and Innovation: Using OxICAT analyses, we identified 58 novel NaOCl-sensitive proteins in the pathogen S. aureus that could play protective roles against the host immune defense and include the glycolytic Gap as major target for S-bacillithiolation. S-bacillithiolation of Gap did not require structural changes, but efficiently functions in redox regulation and protection of the active site against irreversible overoxidation in S. aureus. Antioxid. Redox Signal. 28, 410-430.

  17. Thermally Stable Gold Nanoparticles with a Crosslinked Diblock Copolymer Shell

    NASA Astrophysics Data System (ADS)

    Jang, Se Gyu; Khan, Anzar; Hawker, Craig J.; Kramer, Edward J.

    2010-03-01

    The use of polymer-coated Au nanoparticles prepared using oligomeric- or polymeric-ligands tethered by Au-S bonds for incorporation into block copolymer templates under thermal processing has been limited due to dissociation of the Au-S bond at T > 100^oC where compromises their colloidal stability. We report a simple route to prepare sub-5nm gold nanoparticles with a thermally stable polymeric shell. An end-functional thiol ligand consisting of poly(styrene-b-1,2&3,4-isoprene-SH) is synthesized by anionic polymerization. After a standard thiol ligand synthesis of Au nanoparticles, the inner PI block is cross-linked through reaction with 1,1,3,3-tetramethyldisiloxane. Gold nanoparticles with the cross-linked shell are stable in organic solvents at 160^oC as well as in block copolymer films of PS-b-P2VP annealed in vacuum at 170^oC for several days. These nanoparticles can be designed to strongly segregate to the PS-P2VP interface resulting in very large Au nanoparticle volume fractions φp without macrophase separation as well as transitions between lamellar and bicontinuous morphologies as φp increases.

  18. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  19. Silencing of SlPL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould.

    PubMed

    Yang, Lu; Huang, Wei; Xiong, Fangjie; Xian, Zhiqiang; Su, Deding; Ren, Maozhi; Li, Zhengguo

    2017-12-01

    Pectate lyase genes have been documented as excellent candidates for improvement of fruit firmness. However, implementation of pectate lyase in regulating fruit postharvest deterioration has not been fully explored. In this report, 22 individual pectate lyase genes in tomato were identified, and one pectate lyase gene SlPL (Solyc03g111690) showed dominant expression during fruit maturation. RNA interference of SlPL resulted in enhanced fruit firmness and changes in pericarp cells. More importantly, the SlPL-RNAi fruit demonstrated greater antirotting and pathogen-resisting ability. Compared to wild-type, SlPL-RNAi fruit had higher levels of cellulose and hemicellulose, whereas the level of water-soluble pectin was lower. Consistent with this, the activities of peroxidase, superoxide dismutase and catalase were higher in SlPL-RNAi fruit, and the malondialdehyde concentration was lower. RNA-Seq results showed large amounts of differentially expressed genes involved in hormone signalling, cell wall modification, oxidative stress and pathogen resistance. Collectively, these data demonstrate that pectate lyase plays an important role in both fruit softening and pathogen resistance. This may advance knowledge of postharvest fruit preservation in tomato and other fleshy fruit. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Identification of amino acid residues involved in the dRP-lyase activity of human Pol ι.

    PubMed

    Miropolskaya, Nataliya; Petushkov, Ivan; Kulbachinskiy, Andrey; Makarova, Alena V

    2017-08-31

    Besides X-family DNA polymerases (first of all, Pol β) several other human DNA polymerases from Y- and A- families were shown to possess the dRP-lyase activity and could serve as backup polymerases in base excision repair (Pol ι, Rev1, Pol γ and Pol θ). However the exact position of the active sites and the amino acid residues involved in the dRP-lyase activity in Y- and A- family DNA polymerases are not known. Here we carried out functional analysis of fifteen amino acid residues possibly involved in the dRP-lyase activity of human Pol ι. We show that substitutions of residues Q59, K60 and K207 impair the dRP-lyase activity of Pol ι while residues in the HhH motif of the thumb domain are dispensable for this activity. While both K60G and K207A substitutions decrease Schiff-base intermediate formation during dRP group cleavage, the latter substitution also strongly affects the DNA polymerase activity of Pol ι, suggesting that it may impair DNA binding. These data are consistent with an important role of the N-terminal region in the dRP-lyase activity of Pol ι, with possible involvement of residues from the finger domain in the dRP group cleavage.

  1. Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1985-01-01

    The formation of alanine (ala) form C(14)-glyceraldehyde and ammonium phosphate in the presence or absence of a thiol is reported. At ambient temperature, ala synthesis was six times more rapid in the presence of 3-mercaptopropionic acid than in its absence (0.6 and 0.1 percent, respectively, after 60 days). Similarly, the presence of another thiol, N-acetylcysteinate, increased the production of ala, as well as of lactate. The reaction pathway of thiol-catalyzed synthesis of ala, with the lactic acid formed in a bypath, is suggested. In this, dehydration of glyceraldehyde is followed by the formation of hemithioacetal. In the presence of ammonia, an imine is formed, which eventually yields ala. This pathway is consistent with the observation that the rate ratio of ala/lactate remains constant throughout the process. The fact that the reaction takes place under anaerobic conditions in the presence of H2O and with the low concentrations of simple substrates and catalysts makes it an attractive model prebiotic reaction in the process of molecular evolution.

  2. Crosslinking Protein Glutathionylation Mediated by O2-Arylated Bis-Diazeniumdiolate “Double JS-K”

    PubMed Central

    Holland, Ryan J.; Maciag, Anna E.; Kumar, Varun; Shi, Lei; Saavedra, Joseph E.; Prud’homme, Robert K.; Chakrapani, Harinath; Keefer, Larry K.

    2012-01-01

    Attachment of glutathione (GSH) to cysteine residues in proteins (S-glutathionylation) is a reversible post-translational modification that can profoundly alter protein structure and function. Often serving in a protective role, e.g., by temporarily saving protein thiols from irreversible oxidation and inactivation, glutathionylation can be identified and semi-quantitatively assessed using anti-GSH antibodies, thought to be specific for recognition of the S-glutathionylation modification. Here we describe an alternate mechanism of protein glutathionylation in which the sulfur atoms of the GSH and the protein’s thiol group are covalently bound via a crosslinking agent, rather than through a disulfide bond. This form of thiol crosslinking has been shown to occur and confirmed by mass spectrometry at the solution chemistry level, as well as in experiments documenting the potent antiproliferative activity of the bis-diazeniumdiolate Double JS-K in H1703 cells in vitro and in vivo. The modification is recognized by the anti-GSH antibody as if it were authentic S-glutathionylation, requiring mass spectrometry to distinguish between them. PMID:23106594

  3. Metabolic Reactions among Organic Sulfur Compounds

    NASA Technical Reports Server (NTRS)

    Schulte, M.; Rogers, K.

    2005-01-01

    Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. Numerous authors have addressed the energy available from a variety of inorganic sulfur redox pairs. Less attention has been paid, however, to the energy required or gained from metabolic reactions among organic sulfur compounds. Work in this area has focused on the oxidation of alkyl sulfide or disulfide to thiol and formaldehyde, e.g. (CH3)2S + H2O yields CH3SH + HCHO + H2, eventually resulting in the formation of CO2 and SO4(-2). It is also found that reactions among thiols and disulfides may help control redox disequilibria between the cytoplasm and the periplasm. Building on our earlier efforts for thiols, we have compiled and estimated thermodynamic properties for alkyl sulfides. We are investigating metabolic reactions among various sulfur compounds in a variety of extreme environments, ranging from sea floor hydrothermal systems to organic-rich sludge. Using thermodynamic data and the revised HKF equation of state, along with constraints imposed by the geochemical environments sulfur-metabolizing organisms inhabit, we are able to calculate the amount of energy available to these organisms.

  4. Methemoglobin formation from butylated hydroxyanisole and oxyhemoglobin. Comparison with butylated hydroxytoluene and p-hydroxyanisole.

    PubMed

    Stolze, K; Nohl, H

    1992-01-01

    The widely used food additives butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) react with oxyhemoglobin, thereby forming methemoglobin. The reaction rates were measured using visible spectroscopy, and second order rate constants were established for BHA and compared with p-hydroxyanisole. Using ESR we investigated the involvement of free radical reaction intermediates. The expected one-electron oxidation product of BHA and BHT, the phenoxyl radical, could only be detected with pure 3-t-butyl-4-hydroxyanisole and oxyhemoglobin. With the commercial mixture of 2- and 3-t-butyl-4-hydroxyanisole a very strong ESR signal of a secondary free radical species was observed, similar to the one observed earlier with p-hydroxyanisole and dependent on the presence of free thiol groups, so that we assumed the intermediate existence of a perferryl species, the MetHb-H2O2 adduct. In a second series of experiments we investigated the reactivity of this postulated intermediate with BHA and BHT, starting with a pure MetHb/H2O2-phenol mixture in a stopped-flow apparatus linked to the ESR spectrometer, detecting the expected phenoxyl radicals from BHA and p-hydroxyanisole. Due to the low solubility and decreased reactivity of BHT only traces of phenoxyl type radical were found together with a high concentration of unreacted perferryl species. The reactivity of BHA, BHT and p-hydroxyanisole with free thiol groups is demonstrated by an increased reaction rate in the presence of the thiol group blocking substance NEM.

  5. Impaired Thiol-Disulfide Balance in Acute Brucellosis.

    PubMed

    Kolgelier, Servet; Ergin, Merve; Demir, Lutfi Saltuk; Inkaya, Ahmet Cagkan; Aktug Demir, Nazlim; Alisik, Murat; Erel, Ozcan

    2017-05-24

    The objective of this study was to examine a novel profile: thiol-disulfide homeostasis in acute brucellosis. The study included 90 patients with acute brucellosis, and 27 healthy controls. Thiol-disulfide profile tests were analyzed by a recently developed method, and ceruloplasmin levels were determined. Native thiol levels were 256.72 ± 48.20 μmol/L in the acute brucellosis group and 461.13 ± 45.37 μmol/L in the healthy group, and total thiol levels were 298.58 ± 51.78 μmol/L in the acute brucellosis group and 504.83 ± 51.05 μmol/L in the healthy group (p < 0.001, for both). The disulfide/native thiol ratios and disulfide/total thiol ratios were significantly higher, and native thiol/total thiol ratios were significantly lower in patients with acute brucellosis than in the healthy controls (p < 0.001, for all ratios). There were either positive or negative relationships between ceruloplasmin levels and thiol-disulfide parameters. The thiol-disulfide homeostasis was impaired in acute brucellosis. The strong associations between thiol-disulfide parameters and a positive acute-phase reactant reflected the disruption of the balance between the antioxidant and oxidant systems. Since thiol groups act as anti-inflammatory mediators, the alteration in the thiol-disulfide homeostasis may be involved in brucellosis.

  6. Synthesis of soybean oil-based thiol oligomers.

    PubMed

    Wu, Jennifer F; Fernando, Shashi; Weerasinghe, Dimuthu; Chen, Zhigang; Webster, Dean C

    2011-08-22

    Industrial grade soybean oil (SBO) and thiols were reacted to generate thiol-functionalized oligomers via a thermal, free radical initiated thiol-ene reaction between the SBO double bond moieties and the thiol functional groups. The effect of the reaction conditions, including thiol concentration, catalyst loading level, reaction time, and atmosphere, on the molecular weight and the conversion to the resultant soy-thiols were examined in a combinatorial high-throughput fashion using parallel synthesis, combinatorial FTIR, and rapid gel permeation chromatography (GPC). High thiol functionality and concentration, high thermal free radical catalyst concentration, long reaction time, and the use of a nitrogen reaction atmosphere were found to favor fast consumption of the SBO, and produced high molecular weight products. The thiol conversion during the reaction was inversely affected by a high thiol concentration, but was favored by a long reaction time and an air reaction atmosphere. These experimental observations were explained by the initial low affinity of the SBO and thiol, and the improved affinity between the generated soy-thiol oligomers and unreacted SBO during the reaction. The synthesized soy-thiol oligomers can be used for renewable thiol-ene UV curable materials and high molecular solids and thiourethane thermal cure materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Novel Cysteine-Centered Sulfur Metabolic Pathway in the Thermotolerant Methylotrophic Yeast Hansenula polymorpha

    PubMed Central

    Oh, Doo-Byoung; Kwon, Ohsuk; Lee, Sang Yup; Sibirny, Andriy A.; Kang, Hyun Ah

    2014-01-01

    In yeast and filamentous fungi, sulfide can be condensed either with O-acetylhomoserine to generate homocysteine, the precursor of methionine, or with O-acetylserine to directly generate cysteine. The resulting homocysteine and cysteine can be interconverted through transsulfuration pathway. Here, we systematically analyzed the sulfur metabolic pathway of the thermotolerant methylotrophic yeast Hansenula polymorpha, which has attracted much attention as an industrial yeast strain for various biotechnological applications. Quite interestingly, the detailed sulfur metabolic pathway of H. polymorpha, which was reconstructed based on combined analyses of the genome sequences and validation by systematic gene deletion experiments, revealed the absence of de novo synthesis of homocysteine from inorganic sulfur in this yeast. Thus, the direct biosynthesis of cysteine from sulfide is the only pathway of synthesizing sulfur amino acids from inorganic sulfur in H. polymorpha, despite the presence of both directions of transsulfuration pathway Moreover, only cysteine, but no other sulfur amino acid, was able to repress the expression of a subset of sulfur genes, suggesting its central and exclusive role in the control of H. polymorpha sulfur metabolism. 35S-Cys was more efficiently incorporated into intracellular sulfur compounds such as glutathione than 35S-Met in H. polymorpha, further supporting the cysteine-centered sulfur pathway. This is the first report on the novel features of H. polymorpha sulfur metabolic pathway, which are noticeably distinct from those of other yeast and filamentous fungal species. PMID:24959887

  8. Coumarin-Based Oxime Esters: Photobleachable and Versatile Unimolecular Initiators for Acrylate and Thiol-Based Click Photopolymerization under Visible Light-Emitting Diode Light Irradiation.

    PubMed

    Li, Zhiquan; Zou, Xiucheng; Zhu, Guigang; Liu, Xiaoya; Liu, Ren

    2018-05-09

    Developing efficient unimolecular visible light-emitting diode (LED) light photoinitiators (PIs) with photobleaching capability, which are essential for various biomedical applications and photopolymerization of thick materials, remains a great challenge. Herein, we demonstrate the synthesis of a series of novel PIs, containing coumarin moieties as chromophores and oxime ester groups as initiation functionalities and explore their structure-activity relationship. The investigated oxime esters can effectively induce acrylates and thiol-based click photopolymerization under 450 nm visible LED light irradiation. The initiator O-3 exhibited excellent photobleaching capability and enabled photopolymerization of thick materials (∼4.8 mm). The efficient unimolecular photobleachable initiators show great potential in dental materials and 3D printings.

  9. The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction.

    PubMed

    Netto, Luis E S; Antunes, Fernando

    2016-01-01

    A challenge in the redox field is the elucidation of the molecular mechanisms, by which H2O2 mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the H2O2 sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in H2O2 signaling that are not mutually exclusive. In the simplest pathway, H2O2 signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by H2O2 is too slow (10(1) M(-1)s(-1) range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high H2O2 concentrations, making the direct oxidation feasible. Alternatively, high H2O2 levels can hyperoxidize peroxiredoxins leading to local building up of H2O2 that then could oxidize a signaling protein (floodgate hypothesis). In a second model, H2O2 oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches.

  10. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    PubMed Central

    Wages, Phillip A.; Lavrich, Katelyn S.; Zhang, Zhenfa; Cheng, Wan-Yun; Corteselli, Elizabeth; Gold, Avram; Bromberg, Philip; Simmons, Steven O.; Samet, James M.

    2016-01-01

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0–1000 μM 1,2-NQ for 0–30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 μM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress. PMID:26605980

  11. Structural and Kinetic Basis of Steroid 17α,20-Lyase Activity in Teleost Fish Cytochrome P450 17A1 and Its Absence in Cytochrome P450 17A2*

    PubMed Central

    Pallan, Pradeep S.; Nagy, Leslie D.; Lei, Li; Gonzalez, Eric; Kramlinger, Valerie M.; Azumaya, Caleigh M.; Wawrzak, Zdzislaw; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 17A enzymes play a critical role in the oxidation of the steroids progesterone (Prog) and pregnenolone (Preg) to glucocorticoids and androgens. In mammals, a single enzyme, P450 17A1, catalyzes both 17α-hydroxylation and a subsequent 17α,20-lyase reaction with both Prog and Preg. Teleost fish contain two 17A P450s; zebrafish P450 17A1 catalyzes both 17α-hydroxylation and lyase reactions with Prog and Preg, and P450 17A2 is more efficient in pregnenolone 17α-hydroxylation but does not catalyze the lyase reaction, even in the presence of cytochrome b5. P450 17A2 binds all substrates and products, although more loosely than P450 17A1. Pulse-chase and kinetic spectral experiments and modeling established that the two-step P450 17A1 Prog oxidation is more distributive than the Preg reaction, i.e. 17α-OH product dissociates more prior to the lyase step. The drug orteronel selectively blocked the lyase reaction of P450 17A1 but only in the case of Prog. X-ray crystal structures of zebrafish P450 17A1 and 17A2 were obtained with the ligand abiraterone and with Prog for P450 17A2. Comparison of the two fish P450 17A-abiraterone structures with human P450 17A1 (DeVore, N. M., and Scott, E. E. (2013) Nature 482, 116–119) showed only a few differences near the active site, despite only ∼50% identity among the three proteins. The P450 17A2 structure differed in four residues near the heme periphery. These residues may allow the proposed alternative ferric peroxide mechanism for the lyase reaction, or residues removed from the active site may allow conformations that lead to the lyase activity. PMID:25533464

  12. Reaction kinetics and targeting to cellular glutathione S-transferase of the glutathione peroxidase mimetic PhSeZnCl and its D,L-polylactide microparticle formulation.

    PubMed

    Bartolini, D; Piroddi, M; Tidei, C; Giovagnoli, S; Pietrella, D; Manevich, Y; Tew, K D; Giustarini, D; Rossi, R; Townsend, D M; Santi, C; Galli, F

    2015-01-01

    Catalytic properties and cellular effects of the glutathione peroxidase (GPx)-mimetic compound PhSeZnCl or its d,l-lactide polymer microencapsulation form (M-PhSeZnCl) were investigated and compared with the prototypical Se-organic compounds ebselen and diselenide (PhSe)2. PhSeZnCl was confirmed to catalyze the ping-pong reaction of GPx with higher Vmax than ebselen and (PhSe)2, but the catalytic efficiency calculated for the cosubstrates glutathione (GSH) and H2O2, and particularly the high reactivity against thiols (lowest KM for GSH in the series of test molecules), suggested poor biological applicability of PhSeZnCl as a GPx mimetic. Cytotoxicity of PhSeZnCl was demonstrated in various cancer cell lines via increased reactive oxygen species (ROS) generation, depletion of intracellular thiols, and induction of apoptosis. Experiments carried out in GSH S-transferase P (GSTP)-overexpressing K562 human erythroleukemia cells and in GSTP1-1-knockout murine embryonic fibroblasts (MEFs) demonstrated that this cytosolic enzyme represents a preferential target of the redox disturbances produced by this Se-compound with a key role in controlling H2O2 generation and the perturbation of stress/survival kinase signaling. Microencapsulation was adopted as a strategy to control the thiol reactivity and oxidative stress effects of PhSeZnCl, then assessing applications alternative to anticancer. The uptake of this "depowered" GPx-mimetic formulation, which occurred through an endocytosis-like mechanism, resulted in a marked reduction of cytotoxicity. In MCF-7 cells transfected with different allelic variants of GSTP, M-PhSeZnCl lowered the burst of cellular ROS induced by the exposure to extracellular H2O2, and the extent of this effect changed between the GSTP variants. Microencapsulation is a straightforward strategy to mitigate the toxicity of thiol-reactive Se-organic drugs that enhanced the antioxidant and cellular protective effects of PhSeZnCl. A mechanistic linkage of these effects with the expression pattern and signaling properties of GSTP . This has overcome the GPx-mimetic paradigm proposed for Se-organic drugs with a more pragmatic concept of GSTP signaling modulators. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Reaction kinetics and targeting to cellular glutathione S-transferase of the glutathione peroxidase mimetic PhSeZnCl and its d,l-polylactide microparticle formulation

    PubMed Central

    Bartolini, D.; Piroddi, M.; Tidei, C.; Giovagnoli, S.; Pietrella, D.; Manevich, Y.; Tew, K.D.; Giustarini, D.; Rossi, R.; Townsend, D.M.; Santi, C.; Galli, F.

    2015-01-01

    Catalytic properties and cellular effects of the glutathione peroxidase (GPx)-mimetic compound PhSeZnCl or its d,l-lactide polymer microencapsulation form (M-PhSeZnCl) were investigated and compared with the prototypical Se-organic compounds ebselen and diselenide (PhSe)2. PhSeZnCl was confirmed to catalyze the ping-pong reaction of GPx with higher Vmax than ebselen and (PhSe)2, but the catalytic efficiency calculated for the cosubstrates glutathione (GSH) and H2O2, and particularly the high reactivity against thiols (lowest KM for GSH in the series of test molecules), suggested poor biological applicability of PhSeZnCl as a GPx mimetic. Cytotoxicity of PhSeZnCl was demonstrated in various cancer cell lines via increased reactive oxygen species (ROS) generation, depletion of intracellular thiols, and induction of apoptosis. Experiments carried out in GSH S-transferase P (GSTP)-overexpressing K562 human erythroleukemia cells and in GSTP1-1-knockout murine embryonic fibroblasts (MEFs) demonstrated that this cytosolic enzyme represents a preferential target of the redox disturbances produced by this Se-compound with a key role in controlling H2O2 generation and the perturbation of stress/survival kinase signaling. Microencapsulation was adopted as a strategy to control the thiol reactivity and oxidative stress effects of PhSeZnCl, then assessing applications alternative to anticancer. The uptake of this “depowered” GPx-mimetic formulation, which occurred through an endocytosis-like mechanism, resulted in a marked reduction of cytotoxicity. In MCF-7 cells transfected with different allelic variants of GSTP, M-PhSeZnCl lowered the burst of cellular ROS induced by the exposure to extracellular H2O2, and the extent of this effect changed between the GSTP variants. Microencapsulation is a straightforward strategy to mitigate the toxicity of thiol-reactive Se-organic drugs that enhanced the antioxidant and cellular protective effects of PhSeZnCl. A mechanistic linkage of these effects with the expression pattern and signaling properties of GSTP. This has overcome the GPx-mimetic paradigm proposed for Se-organic drugs with a more pragmatic concept of GSTP signaling modulators. PMID:25452145

  14. First report of a lyase for cepacian, the polysaccharide produced by Burkholderia cepacia complex bacteria.

    PubMed

    Cescutti, Paola; Scussolin, Silvia; Herasimenka, Yury; Impallomeni, Giuseppe; Bicego, Massimiliano; Rizzo, Roberto

    2006-01-20

    Bacteria belonging to the Burkholderia cepacia complex (Bcc) are interesting for their involvement in pulmonary infections in patients affected by cystic fibrosis (CF) or chronic granulomatous disease. Many Bcc strains isolated from CF patients produce high amounts of exopolysaccharides (EPS). Although different strains sometimes biosynthesise different EPS, the majority of Bcc bacteria produce only one type of polysaccharide, which is called cepacian. The polymer has a unique heptasaccharidic repeating unit, containing three side chains, and up to three O-acetyl substituents.. We here report for the first time the isolation and characterisation of a lyase active towards cepacian produced by a Bacillus sp., which was isolated in our laboratory. The enzyme molecular mass, evaluated by size-exclusion chromatography, is 32,700+/-1500Da. The enzyme catalyses a beta-elimination reaction of the disaccharide side chain beta-d-Galp-(1-->2)-alpha-d-Rhap-(1--> from the C-4 of the glucuronic acid residue present in the polymer backbone. Although active on both native and de-acetylated cepacian, the enzyme showed higher activity on the latter polymer.

  15. Isolation and genetic mapping of a Coffea canephora phenylalanine ammonia-lyase gene (CcPAL1) and its involvement in the accumulation of caffeoyl quinic acids.

    PubMed

    Mahesh, Venkataramaiah; Rakotomalala, Jean Jacques; Le Gal, Lénaïg; Vigne, Hélène; de Kochko, Alexandre; Hamon, Serge; Noirot, Michel; Campa, Claudine

    2006-09-01

    Biosynthesis of caffeoylquinic acids occurs via the phenylpropanoid pathway in which the phenylalanine ammonia-lyase (PAL) acts as a key-control enzyme. A full-length cDNA (pF6), corresponding to a PAL gene (CcPAL1), was isolated by screening a Coffea canephora fruit cDNA library and its corresponding genomic sequence was characterized. Amplification of total DNA from seven Coffea species revealed differences in intronic length. This interspecific polymorphism was used to locate the gene on a genetic map established for a backcross progeny between Coffea pseudozanguebariae and C. dewevrei. The CcPAL1 gene was found on the same linkage group, but genetically independent, as a caffeoyl-coenzyme A-O-methyltransferase gene, another gene intervening in the phenylpropanoid pathway. In the same backcross, a lower caffeoylquinic acid content was observed in seeds harvested from plants harbouring the C. pseudozanguebariae CcPAL1 allele. Involvement of the CcPAL1 allelic form in the differential accumulation of caffeoylquinic acids in coffee green beans is then discussed.

  16. "Self-catabolite repression" of pectate lyase in Erwinia carotovora.

    PubMed Central

    Tsuyumu, S

    1979-01-01

    The induction of pectate lyase of Erwinia carotovora was repressed by a high concentration of its inducer. The concomitant addition of cyclic adenosine 3',5'-monophosphate reversed this repression. PMID:217862

  17. Isocitrate Lyase Is Essential for Pathogenicity of the Fungus Leptosphaeria maculans to Canola (Brassica napus)

    PubMed Central

    Idnurm, Alexander; Howlett, Barbara J.

    2002-01-01

    A pathogenicity gene has been identified in Leptosphaeria maculans, the ascomycetous fungus that causes blackleg disease of canola (Brassica napus). This gene encodes isocitrate lyase, a component of the glyoxylate cycle, and is essential for the successful colonization of B. napus. It was identified by a reverse genetics approach whereby a plasmid conferring hygromycin resistance was inserted randomly into the L. maculans genome. Twelve of 516 transformants tested had reduced pathogenicity on cotyledons of B. juncea and B. napus, and 1 of these 12 had a deletion of the isocitrate lyase gene, as well as an insertion of the hygromycin resistance gene. This mutant was unable to grow on fatty acids, including monolaurate, and the isocitrate lyase transcript was not detected. When the wild-type gene was reintroduced into the mutant, growth on monolaurate was restored and pathogenicity was partially restored. L. maculans isocitrate lyase is produced during infection of B. napus cotyledons, while the plant homologue is not. When 2.5% glucose was added to the inoculum of the isocitrate lyase mutant, lesions of sizes similar to those caused by wild-type isolate M1 developed on B. napus cotyledons. These findings suggest that the glyoxylate pathway is essential for disease development by this plant-pathogenic fungus, as has been shown recently for a fungal and bacterial pathogen of animals and a bacterial pathogen of plants. Involvement of the glyoxylate pathway in pathogenesis in animals and plants presents potential drug targets for control of diseases. PMID:12455691

  18. Dynamic thiol/disulphide homeostasis in patients with basal cell carcinoma.

    PubMed

    Demirseren, Duriye Deniz; Cicek, Cagla; Alisik, Murat; Demirseren, Mustafa Erol; Aktaş, Akın; Erel, Ozcan

    2017-09-01

    The aim of this study is to measure and compare the dynamic thiol/disulphide homeostasis of patients with basal cell carcinoma and healthy subjects with a newly developed and original method. Thirty four patients attending our outpatient clinic and clinically and histopathologically diagnosed as nodular basal cell carcinoma, and age and gender matched 30 healthy individuals have been involved in the study. Thiol/disulphide homeostasis tests have been measured with a novel automatic spectrophotometric method developed and the results have been compared statistically. Serum native thiol and disulphide levels in the patient and control group show a considerable variance statistically (p = 0.028, 0.039, respectively). Total thiol levels do not reveal a considerable variation (p = 0.094). Disulphide/native thiol ratios and native thiol/total thiol ratios also show a considerable variance statistically (p = 0.012, 0.013, 0.010, respectively). Thiol disulphide homeostasis in patients with basal cell carcinoma alters in the way that disulphide gets lower and thiols get higher. Thiol/disulphide level is likely to have a role in basal cell carcinoma pathogenesis.

  19. [3-hydroxy-3-methylglutaric aciduria and recurrent Reye-like syndrome].

    PubMed

    Eirís, J; Ribes, A; Fernández-Prieto, R; Rodríguez-García, J; Rodríguez-Segade, S; Castro-Gago, M

    1998-06-01

    3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMG-CoA lyase) is an inborn error of ketogenesis and Leucine catabolism. HMG-CoA lyase catalyses the final step in leucine degradation, converting HMG-CoA to acetyl-CoA and acetoacetic acid. Clinical manifestations include hepatomegaly, lethargy or coma and apnoea. Biochemically there is a characteristic absence of ketosis with hypoglycemia, acidosis, hipertransaminasemia and variable hyperammoniemia. The urinary organic acid profile includes elevated concentrations of 3-hydroxy-3-isovaleric, 3-hydroxy-3-methylglutaric, 3-methylglutaconic and 3-methylglutaric acids. Here, we report the case of a 17-year-old girl who presented in both ten months and five years of age a clinical picture characterized by lethargy leading to apnea and coma, hepatomegaly, hypoglycemia, metabolic acidosis, hyperammoniemia, elevated serum transaminases and absence of ketonuria. Diagnostic of Reye syndrome was suggested by hystopathologic finding of hepatic steatosis and clinical and biochemical data. As of 11 years old, laboratory investigations revealed carnitine deficiency and characteristic aciduria. Confirmatory enzyme diagnosis revealing deficiency of HMG-CoA lyase was made in cultured fibroblasts. Our report constitutes an example of the presentation of HMG-CoA lyase deficiency as recurrent Reye-like syndrome.

  20. The importance of four histidine residues in isocitrate lyase from Escherichia coli.

    PubMed Central

    Diehl, P; McFadden, B A

    1994-01-01

    By site-directed mutagenesis, substitutions were made for His-184 (H-184), H-197, H-266, and H-306 in Escherichia coli isocitrate lyase. Of these changes, only mutations of H-184 and H-197 appreciably reduced enzyme activity. Mutation of H-184 to Lys, Arg, or Leu resulted in an inactive isocitrate lyase, and mutation of H-184 to Gln resulted in an enzyme with 0.28% activity. Nondenaturing polyacrylamide gel electrophoresis demonstrated that isocitrate lyase containing the Lys, Arg, Gln, and Leu substitutions at H-184 was assembled poorly into the tetrameric subunit complex. Mutation of H-197 to Lys, Arg, Leu, and Gln resulted in an assembled enzyme with less than 0.25% wild-type activity. Five substitutions for H-266 (Asp, Glu, Val, Ser, and Lys), four substitutions for H-306 (Asp, Glu, Val, and Ser), and a variant in which both H-266 and H-306 were substituted for showed little or no effect on enzyme activity. All the H-197, H-266, and H-306 mutants supported the growth of isocitrate lyase-deficient E. coli JE10 on acetate as the sole carbon source; however, the H-184 mutants did not. Images PMID:8300547

  1. Structure of a PL17 Family Alginate Lyase Demonstrates Functional Similarities among Exotype Depolymerases

    PubMed Central

    Park, David; Jagtap, Sujit; Nair, Satish K.

    2014-01-01

    Brown macroalgae represent an ideal source for complex polysaccharides that can be utilized as precursors for cellulosic biofuels. The lack of recalcitrant lignin components in macroalgae polysaccharide reserves provides a facile route for depolymerization of constituent polysaccharides into simple monosaccharides. The most abundant sugars in macroalgae are alginate, mannitol, and glucan, and although several classes of enzymes that can catabolize the latter two have been characterized, studies of alginate-depolymerizing enzymes have lagged. Here, we present several crystal structures of Alg17c from marine bacterium Saccharophagus degradans along with structure-function characterization of active site residues that are suggested to be involved in the exolytic mechanism of alginate depolymerization. This represents the first structural and biochemical characterization of a family 17 polysaccharide lyase enzyme. Despite the lack of appreciable sequence conservation, the structure and β-elimination mechanism for glycolytic bond cleavage by Alg17c are similar to those observed for family 15 polysaccharide lyases and other lyases. This work illuminates the evolutionary relationships among enzymes within this unexplored class of polysaccharide lyases and reinforces the notion of a structure-based hierarchy in the classification of these enzymes. PMID:24478312

  2. Lipoxygenase and Hydroperoxide Lyase in Germinating Watermelon Seedlings 1

    PubMed Central

    Vick, Brady A.; Zimmerman, Don C.

    1976-01-01

    Lipoxygenase (EC 1.13.1.13) was found in seedlings of Citrullus lanatus (Thunb.) Matsum. and Nakai (watermelon). The enzyme has pH optima of 4.4 and 5.5 and is inhibited by 0.2 mM nordihydroguaiaretic acid. It is present in two functional units with estimated molecular weights of 120,000 and 240,000, respectively. A new enzyme, tentatively termed hydroperoxide lyase, has been partially purified from watermelon seedlings. The enzyme, located principally in the region of the hypocotyl-root junction, catalyzes the conversion of 13-l-hydroperoxy-cis-9-trans-11-octadecadienoic acid to 12-oxo-trans-10-dodecenoic acid and hexanal. The hydroperoxide lyase enzyme from watermelon has a molecular weight in excess of 250,000, a pH optimum in the range of 6 to 6.5, and is inhibited by p-chloromercuribenzoic acid. Its presence has also been demonstrated in other cucurbits. The maximum activity of both enzymes occurs on the 6th day of germination. The identification of the products of the hydroperoxide lyase reaction suggests that lipoxygenase and hydroperoxide lyase may be involved in the conversion of certain polyunsaturated fatty acids to traumatic acid (trans-2-dodecenedioic acid). PMID:16659569

  3. Involvement of calcium and calmodulin in oxidative and temperature stress of Amaranthus lividus L. during early germination.

    PubMed

    Bhattacharjee, Soumen

    2009-07-01

    Both heat and chilling caused reduction in membrane protein thiol level and increased accumulation of thiobarbituric acid reactive substances in 72 hr old germinating tissues (indicators of oxidative stress) and reduced germination and early growth performances. Calcium chelator EGTA [Ethylene glycol-bis (2-aminoethylether)-N, N,N',N, tetra acetic acid] calcium channel blocker LaCI3 (Lanthanum chloride) and calmodulin inhibitor TFP (trifluroperazine) aggravated these effects of heat and chilling and added calcium reversed them. Imposition of heat and chilling stress during early germination also causes accumulation of reactive oxygen species (ROS) like 02(-) and H2O2. Calcium treatment significantly reduced the accumulation of both the toxic ROS, while EGTA, LaCl3 and TFP treatment enhanced the accumulation. Activities of antioxidative enzymes catalase (CAT), ascorbate peroxidase (APOX) and glutathione reductase (GR) and total thiol content decreased significantly under both heat and chilling stress in germinating Amaranthus seedlings. Seedlings raised with Ca2+ treatment under heat and chilling stress exhibit higher activities of CAT7 GR and APOX and total thiol level than the untreated plants. EGTA, LaCl3 and TFP treatment, on the other hand significantly reduce the activities of all anti-oxidative enzymes and total thiol level. The work clearly supports the view that Ca2+-signalling pathway plays significant role in limiting heat and chilling induced oxidative stress by upregulating antioxidative defense during recovery phase of post-germination event in Amaranthus lividus.

  4. Rapid Access to Phospholipid Analogs Using Thiol-yne Chemistry

    DTIC Science & Technology

    2015-05-19

    MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 lipids, membrane, self...functions and material and pharmaceutical applications, straightforward methods to synthesize phospholipids in high yield are limited.10 Phospholipid...This journal is © The Royal Society of Chemistry 2015 Chem. Sci., 2015, 6, 4365–4372 | 4365 Chemical Science EDGE ARTICLE O pe n A cc es s A rt ic le

  5. ortho- and meta-substituted aromatic thiols are efficient redox buffers that increase the folding rate of a disulfide-containing protein.

    PubMed

    Gough, Jonathan D; Barrett, Elvis J; Silva, Yenia; Lees, Watson J

    2006-08-20

    Thiol based redox buffers are used to enhance the folding rates of disulfide-containing proteins in vitro. Traditionally, small molecule aliphatic thiols such as glutathione are employed. Recently, we have demonstrated that aromatic thiols can further enhance protein-folding rates. In the presence of para-substituted aromatic thiols the folding rate of a disulfide-containing protein was increased by 4-23 times over that measured for glutathione. However, several important practical issues remain to be addressed. Aromatic thiols have never been tested in the presence of denaturants such as guanidine hydrochloride. Only two of the para-substituted aromatic thiols previously examined are commercially available. To expand the number of aromatic thiols for protein folding, several commercially available meta- and ortho-substituted aromatic thiols were studied. Furthermore, an ortho-substituted aromatic thiol, easily obtained from inexpensive starting materials, was investigated. Folding rates of scrambled ribonuclease A at pH 6.0, 7.0 and 7.7, with ortho- and meta-substituted aromatic thiols, were up to 10 times greater than those with glutathione. In the presence of the common denaturant guanidine hydrochloride (0.5M) aromatic thiols provided 100% yield of active protein while maintaining equivalent folding rates.

  6. Fast and Selective Modification of Thiol Proteins/Peptides by N-(Phenylseleno)phthalimide

    NASA Astrophysics Data System (ADS)

    Wang, Zhengfang; Zhang, Yun; Zhang, Hao; Harrington, Peter B.; Chen, Hao

    2012-03-01

    We previously reported that selenamide reagents such as ebselen and N-(phenylseleno)phthalimide (NPSP) can be used to selectively derivatize thiols for mass spectrometric analysis, and the introduced selenium tags are useful as they could survive or removed with collision-induced dissociation (CID). Described herein is the further study of the reactivity of various protein/peptide thiols toward NPSP and its application to derivatize thiol peptides in protein digests. With a modified protocol (i.e., dissolving NPSP in acetonitrile instead of aqueous solvent), we found that quantitative conversion of thiols can be obtained in seconds, using NPSP in a slight excess amount (NPSP:thiol of 1.1-2:1). Further investigation shows that the thiol reactivity toward NPSP reflects its chemical environment and accessibility in proteins/peptides. For instance, adjacent basic amino acid residues increase the thiol reactivity, probably because they could stabilize the thiolate form to facilitate the nucleophilic attack of thiol on NPSP. In the case of creatine phosphokinase, the native protein predominately has one thiol reacted with NPSP while all of four thiol groups of the denatured protein can be derivatized, in accordance with the corresponding protein conformation. In addition, thiol peptides in protein/peptide enzymatic digests can be quickly and effectively tagged by NPSP following tri- n-butylphosphine (TBP) reduction. Notably, all three thiols of the peptide QCCASVCSL in the insulin peptic digest can be modified simultaneously by NPSP. These results suggest a novel and selective method for protecting thiols in the bottom-up approach for protein structure analysis.

  7. Chemical Synthesis of Circular Proteins*

    PubMed Central

    Tam, James P.; Wong, Clarence T. T.

    2012-01-01

    Circular proteins, once thought to be rare, are now commonly found in plants. Their chemical synthesis, once thought to be difficult, is now readily achievable. The enabling methodology is largely due to the advances in entropic chemical ligation to overcome the entropy barrier in coupling the N- and C-terminal ends of large peptide segments for either intermolecular ligation or intramolecular ligation in end-to-end cyclization. Key elements of an entropic chemical ligation consist of a chemoselective capture step merging the N and C termini as a covalently linked O/S-ester intermediate to permit the subsequent step of an intramolecular O/S-N acyl shift to form an amide. Many ligation methods exploit the supernucleophilicity of a thiol side chain at the N terminus for the capture reaction, which makes cysteine-rich peptides ideal candidates for the entropy-driven macrocyclization. Advances in desulfurization and modification of the thiol-containing amino acids at the ligation sites to other amino acids add extra dimensions to the entropy-driven ligation methods. This minireview describes recent advances of entropy-driven ligation to prepare circular proteins with or without a cysteinyl side chain. PMID:22700959

  8. Principles in redox signaling: from chemistry to functional significance.

    PubMed

    Bindoli, Alberto; Rigobello, Maria Pia

    2013-05-01

    Reactive oxygen and nitrogen species are currently considered not only harmful byproducts of aerobic respiration but also critical mediators of redox signaling. The molecules and the chemical principles sustaining the network of cellular redox regulated processes are described. Special emphasis is placed on hydrogen peroxide (H(2)O(2)), now considered as acting as a second messenger, and on sulfhydryl groups, which are the direct targets of the oxidant signal. Cysteine residues of some proteins, therefore, act as sensors of redox conditions and are oxidized in a reversible reaction. In particular, the formation of sulfenic acid and disulfide, the initial steps of thiol oxidation, are described in detail. The many cell pathways involved in reactive oxygen species formation are reported. Central to redox signaling processes are the glutathione and thioredoxin systems controlling H(2)O(2) levels and, hence, the thiol/disulfide balance. Lastly, some of the most important redox-regulated processes involving specific enzymes and organelles are described. The redox signaling area of research is rapidly expanding, and future work will examine new pathways and clarify their importance in cellular pathophysiology.

  9. Recycling of the High Valence States of Heme Proteins by Cysteine Residues of Thimet-Oligopeptidase

    PubMed Central

    Ferreira, Juliana C.; Icimoto, Marcelo Y.; Marcondes, Marcelo F.; Oliveira, Vitor; Nascimento, Otaciro R.; Nantes, Iseli L.

    2013-01-01

    The peptidolytic enzyme THIMET-oligopeptidase (TOP) is able to act as a reducing agent in the peroxidase cycle of myoglobin (Mb) and horseradish peroxidase (HRP). The TOP-promoted recycling of the high valence states of the peroxidases to the respective resting form was accompanied by a significant decrease in the thiol content of the peptidolytic enzyme. EPR (electron paramagnetic resonance) analysis using DBNBS spin trapping revealed that TOP also prevented the formation of tryptophanyl radical in Mb challenged by H2O2. The oxidation of TOP thiol groups by peroxidases did not promote the inactivating oligomerization observed in the oxidation promoted by the enzyme aging. These findings are discussed towards a possible occurrence of these reactions in cells. PMID:24223886

  10. 1,4-Naphthoquinone activates the HSP90/HSF1 pathway through the S-arylation of HSP90 in A431 cells: Negative regulation of the redox signal transduction pathway by persulfides/polysulfides.

    PubMed

    Abiko, Yumi; Sha, Liang; Shinkai, Yasuhiro; Unoki, Takamitsu; Luong, Nho Cong; Tsuchiya, Yukihiro; Watanabe, Yasuo; Hirose, Reiko; Akaike, Takaaki; Kumagai, Yoshito

    2017-03-01

    The current consensus is that environmental electrophiles activate redox signal transduction pathways through covalent modification of sensor proteins with reactive thiol groups at low concentrations, while they cause cell damage at higher concentrations. We previously exposed human carcinoma A431 cells to the atmospheric electrophile 1,4-naphthoquinone (1,4-NQ) and found that heat shock protein 90 (HSP90), a negative regulator of heat shock factor 1 (HSF1), was a target of 1,4-NQ. In the study presented here, we determined whether 1,4-NQ activates HSF1. We also examined whether such redox signaling could be regulated by nucleophilic sulfur species. Exposure of A431 cells to 1,4-NQ covalently modified cellular HSP90, resulting in repression of the association between HSF1 with HSP90, thereby enhancing HSF1 translocation into the nuclei. Liquid chromatography-tandem mass spectrometry analysis with recombinant HSP90 revealed that the modifications site were Cys412 and Cys564. We found that HSF1 activation mediated by 1,4-NQ upregulated downstream genes, such as HSPA6. HSF1 knockdown accelerated 1,4-NQ-mediated cytotoxicity in the cells. While simultaneous treatment with reactive persulfide and polysulfide, Na 2 S 2 and Na 2 S 4 , blocked 1,4-NQ-dependent protein modification and HSF1 activation in A431 cells, the knockdown of Cys persulfide producing enzymes cystathionine β-synthase (CBS) and/or cystathionine γ-lyase (CSE) enhanced these phenomena. 1,4-NQ-thiol adduct and 1,4-NQ-S-1,4-NQ adduct were produced during the enzymatic reaction of recombinant CSE in the presence of 1,4-NQ. The results suggest that activation of the HSP90-HSF1 signal transduction pathway mediated by 1,4-NQ protects cells against 1,4-NQ and that per/polysulfides can diminish the reactivity of 1,4-NQ by forming sulfur adducts. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Structure-based functional annotation of putative conserved proteins having lyase activity from Haemophilus influenzae.

    PubMed

    Shahbaaz, Mohd; Ahmad, Faizan; Imtaiyaz Hassan, Md

    2015-06-01

    Haemophilus influenzae is a small pleomorphic Gram-negative bacteria which causes several chronic diseases, including bacteremia, meningitis, cellulitis, epiglottitis, septic arthritis, pneumonia, and empyema. Here we extensively analyzed the sequenced genome of H. influenzae strain Rd KW20 using protein family databases, protein structure prediction, pathways and genome context methods to assign a precise function to proteins whose functions are unknown. These proteins are termed as hypothetical proteins (HPs), for which no experimental information is available. Function prediction of these proteins would surely be supportive to precisely understand the biochemical pathways and mechanism of pathogenesis of Haemophilus influenzae. During the extensive analysis of H. influenzae genome, we found the presence of eight HPs showing lyase activity. Subsequently, we modeled and analyzed three-dimensional structure of all these HPs to determine their functions more precisely. We found these HPs possess cystathionine-β-synthase, cyclase, carboxymuconolactone decarboxylase, pseudouridine synthase A and C, D-tagatose-1,6-bisphosphate aldolase and aminodeoxychorismate lyase-like features, indicating their corresponding functions in the H. influenzae. Lyases are actively involved in the regulation of biosynthesis of various hormones, metabolic pathways, signal transduction, and DNA repair. Lyases are also considered as a key player for various biological processes. These enzymes are critically essential for the survival and pathogenesis of H. influenzae and, therefore, these enzymes may be considered as a potential target for structure-based rational drug design. Our structure-function relationship analysis will be useful to search and design potential lead molecules based on the structure of these lyases, for drug design and discovery.

  12. Identification and immunologic characterization of an allergen, alliin lyase, from garlic (Allium sativum).

    PubMed

    Kao, Shao-Hsuan; Hsu, Ching-Hsian; Su, Song-Nan; Hor, Wei-Ting; Chang T, Wen-Hong; Chow, Lu-Ping

    2004-01-01

    Garlic (Allium sativum) is one of the most common relishes used in cooking worldwide. Very few garlic allergens have been reported, and garlic allergy has been rarely studied. The aim of the study was to identify allergenic proteins in garlic and to investigate their importance in allergies to other Allium species (leek, shallot, and onion). A crude extract of garlic proteins was separated by SDS-PAGE and 2-dimensional electrophoresis; immunoblotting was then performed with the use of individual and pooled sera from patients with garlic allergy, and the major IgE-binding proteins were analyzed by amino acid sequencing and mass spectrometry. The putative allergens were further purified by chromatography; the antigenicity, allergenicity, and IgE-binding cross-reactivity of the purified protein were then studied by immunoblotting, periodate oxidation, skin tests, and IgE-binding inhibition assays. A major allergen, alliin lyase, was identified by mass spectrometry and Edman sequencing and purified to homogeneity through the use of a simple 2-step chromatographic method. Skin tests showed that the purified protein elicited IgE-mediated hypersensitive responses in patients with garlic allergy. Periodate oxidation showed that carbohydrate groups were involved in the antigenicity, allergenicity, and cross-reactivity. Garlic alliin lyase showed strong cross-reactivity with alliin lyases from other Allium species, namely leek, shallot, and onion. Alliin lyase was found to be a major garlic allergen in a garlic-allergic group of patients in Taiwan. The wide distribution of alliin lyase in Allium suggests it may be a new cross-reactive allergen.

  13. Facile Synthesis of Thick Films of Poly(methyl methacrylate), Poly(styrene), and Poly(vinyl pyridine) from Au Surfaces

    PubMed Central

    Saha, Sampa

    2011-01-01

    Atom transfer radical polymerization (ATRP) is commonly used to grow polymer brushes from Au surfaces, but the resulting film thicknesses are usually significantly less than with ATRP from SiO2 substrates. On Au, growth of poly(methyl methacrylate) (PMMA) blocks from poly(tert-butyl acrylate) brushes occurs more rapidly than growth of PMMA from initiator monolayers, suggesting that the disparity between growth rates from Au and SiO2 stems from the Au surface. Radical quenching by electron transfer from Au is probably not the termination mechanism because polymerization from thin, cross-linked initiators gives film thicknesses that are essentially the same as the thicknesses of films grown from SiO2 under the same polymerization conditions. However, this result is consistent with termination through desorption of thiols from non-cross-linked films, and reaction of these thiols with growing polymer chains. The enhanced stability of cross-linked initiators allows ATRP at temperatures up to ~100 °C and enables the growth of thick films of PMMA (350 nm), polystyrene (120 nm) and poly(vinyl pyridine) (200 nm) from Au surfaces in 1 hour. At temperatures >100 °C, the polymer brush layers delaminate as large area films. PMID:21728374

  14. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana.

    PubMed

    Wang, Zhen; Mao, Jie-Li; Zhao, Ying-Jun; Li, Chuan-You; Xiang, Cheng-Bin

    2015-02-01

    L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth. © 2014 Institute of Botany, Chinese Academy of Sciences.

  15. Reactivation of oxidized PTP1B and PTEN by Thioredoxin 1

    PubMed Central

    Schwertassek, Ulla; Haque, Aftabul; Krishnan, Navasona; Greiner, Romy; Weingarten, Lars; Dick, Tobias P.; Tonks, Nicholas K.

    2014-01-01

    The transient inactivation of protein phosphatases contributes to the efficiency and temporal control of kinase-dependent signal transduction. In particular, members of the protein tyrosine phosphatase family are known to undergo reversible oxidation of their active site cysteine. The thiol oxidation step requires activation of co-localized NADPH oxidases and is mediated by locally produced ROS, in particular H2O2. How oxidized phosphatases are returned to the reduced active state is less well studied. Both major thiol reductive systems, the thioredoxin and the glutathione systems, have been implicated in the reactivation of phosphatases. Here, we show that the protein tyrosine phosphatase PTP1B and the dual-specificity phosphatase PTEN are preferentially reactivated by the thioredoxin system. We show that inducible depletion of TRX1 slows down PTEN re-activation in intact living cells. Finally, using a mechanism-based trapping approach we demonstrate direct thiol disulfide exchange between the active sites of thioredoxin and either phosphatase. The application of thioredoxin trapping mutants represents a complementary approach to direct assays of PTP oxidation in elucidating the significance of redox regulation of PTP function in the control of cell signaling. PMID:24976139

  16. The Role of Follicular Fluid Thiol/Disulphide Homeostasis in Polycystic Ovary Syndrome.

    PubMed

    Tola, Esra Nur; Köroğlu, Nadiye; Ergin, Merve; Oral, Hilmi Baha; Turgut, Abdülkadir; Erel, Özcan

    2018-04-04

    Oxidative stress is suggested as a potential triggering factor in the etiopathogenesis of Polycystic ovary syndrome related infertility. Thiol/disulphide homeostasis, a recently oxidative stress marker, is one of the antioxidant mechanism in human which have critical roles in folliculogenesis and ovulation. The aim of our study is to investigate follicular fluid thiol/disulphide homeostasis in the etiopathogenesis of Polycystic ovary syndrome and to determine its' association with in vitro fertilization outcome. The study procedures were approved by local ethic committee. Cross sectional design Methods: Follicular fluid of twenty-two Polycystic ovary syndrome women and twenty ovulatory controls undergoing in vitro fertilization treatment were recruited. Thiol/disulphide homeostasis was analyzed via a novel spectrophotometric method. Follicular native thiol levels were found to be lower in Polycystic ovary syndrome group than non- Polycystic ovary syndrome group (p=0.041) as well as native thiol/total thiol ratio (p<0.0001). Disulphide level, disulphide/native thiol and disulphide/total thiol ratios were increased in Polycystic ovary syndrome group (p<0.0001). A positive correlation between fertilization rate and native thiol (p=0.01, r=0.53) and total thiol (p=0.01, r=0.052) among Polycystic ovary syndrome patients was found. A positive predictive effect of native thiol on fertilization rate among Polycystic ovary syndrome group was also found (p=0.03, β=0.45, 95% CI=0.031-0.643). Deterioration in thiol/disulphide homeostasis, especially elevated disulphide levels could be one of the etiopathogenetic mechanism in Polycystic ovary syndrome. Increased native thiol levels is related to fertilization rate among Polycystic ovary syndrome patients and also positive predictor marker of fertilization rate among Polycystic ovary syndrome patients. Improvement of thiol/disulphide homeostasis could be of importance in the treatment of Polycystic ovary syndrome to increase in vitro fertilization success in Polycystic ovary syndrome.

  17. Design of multimodal degradable hydrogels for controlled therapeutic delivery

    NASA Astrophysics Data System (ADS)

    Kharkar, Prathamesh Madhav

    Hydrogels are of growing interest for the delivery of therapeutics to specific sites in the body. For localized drug delivery, hydrophilic polymeric precursors often are laden with bioactive moieties and then directly injected to the site of interest for in situ gel formation. The release of physically entrapped cargo is dictated by Fickian diffusion, degradation of the drug carrier, or a combination of both. The goal of this work was to design and characterize degradable hydrogel formulations that are responsive to multiple biologically relevant stimuli for degradation-mediated delivery of cargo molecules such as therapeutic proteins, growth factors, and immunomodulatory agents. We began by demonstrating the use of cleavable click linkages formed by Michael-type addition reactions in conjunction with hydrolytically cleavable functionalities for the degradation of injectable hydrogels by endogenous stimuli for controlled protein release. Specifically, the reaction between maleimides and thiols was utilized for hydrogel formation, where thiol selection dictates the degradability of the resulting linkage under thiol-rich reducing conditions. Relevant microenvironments where degradation would occur in vivo include those rich in glutathione (GSH), a tripeptide that is found at elevated concentrations in carcinoma tissues. Degradation of the hydrogels was monitored with rheometry and volumetric swelling measurements. Arylthiol-based thioether succinimide linkages underwent degradation via click cleavage and thiol exchange reaction in the presence of GSH and via ester hydrolysis, whereas alkylthiol-based thioether succinimide linkages only undergo degradation by only ester hydrolysis. The resulting control over the degradation rate within a reducing microenvironment resulted in 2.5 fold differences in the release profile of the model protein, a fluorescently-labeled bovine serum albumin, from dually degradable hydrogels compared to non-degradable hydrogels, where the thiol exchange reaction facilitated rapid and responsive protein release in the presence of GSH. A photolabile o-nitrobenzyl ether group (o-NB) was subsequently incorporated within the PEG-based, gel-forming monomers to demonstrate cargo release triggered by exogenous stimuli for patient-specific therapies. Upon the application of cytocompatible doses of light, the photolabile o-NB linkage underwent irreversible cleavage yielding ketone and carboxylic acid-based cleavage products. Hydrogel degradation kinetics was characterized in response to externally applied cytocompatible light or GSH in aqueous microenvironments. By incorporating a photodegradable o-nitrobenzyl ether group, a thiol-sensitive succinimide thioether linkage, and ester linkages within the hydrogels, we demonstrated unique control over degradation via surface erosion or bulk degradation mechanisms, respectively, with degradation rate constants ranging from 10-1 min-1 to 10-4 min-1. As a proof of concept, the controlled release of nanobeads from the hydrogel was demonstrated in a preprogrammed and stimuli-responsive fashion. The multimodal degradable hydrogels were then investigated for the local controlled release of small molecular weight proteins, which are of interest for regulating various cellular functions and fates in vivo. Low molecular weight heparin, a highly sulfated polysaccharide was incorporated within the hydrogel network by Michael-type reaction due to its affinity with biologics such as growth factors and immunomodulatory proteins. Incorporation of reduction-sensitive linkages resulted in 2.3 fold differences in the release profile of fibroblast growth factor-2 (FGF-2) in the presence of GSH compared to non-reducing microenvironment. Bioactivity of released FGF-2 was comparable to pristine FGF-2, indicating the ability of the hydrogel to retain bioactivity of cargo molecules during encapsulation and release. Further, preliminary in vivo studies demonstrated control over hydrogel degradation by varying % degradable contents. Collectively, this research developed injectable hydrogels that are responsive to various endogenous and exogenous stimuli, establishing a platform for stimuli-responsive drug delivery carriers.

  18. Mass Spectrometry Profiles Superoxide-Induced Intra-molecular Disulfide in the FMN-binding Subunit of Mitochondrial Complex I

    PubMed Central

    Zhang, Liwen; Xu, Hua; Chen, Chwen-Lih; Green-Church, Kari B.; Freitas, Michael A.; Chen, Yeong-Renn

    2008-01-01

    Protein thiols with regulatory functions play a critical role in maintaining the homeostasis of the redox state in mitochondria. One major host of regulatory cysteines in mitochondria is complex I, with the thiols primarily located on its 51 kDa FMN-binding subunit. In response to oxidative stress, these thiols are expected to form intra-molecular disulfide bridges as one of their oxidative post-translational modifications. Here, to test this hypothesis and gain insights into the molecular pattern of disulfide in complex I, the isolated bovine complex I was prepared. Superoxide (O2•−) is generated by complex I under the conditions of enzyme turnover. O2•−-induced intra-molecular disulfide formation at the 51 kDa subunit was determined by tandem mass spectrometry and database searching, with the latter accomplished by adaptation of the in-house developed database search engine, MassMatrix [Xu H., et. al J. Proteome Res. (2008) 7, 138–44]. LC/MS/MS analysis of tryptic/chymotryptic digests of the 51 kDa subunit from alkylated complex I revealed that four specific cysteines (C125, C142, C187, and C206) of the 51 kDa subunit were involved in the formation of mixed intra-molecular disulfide linkages. In all, three cysteine pairs were observed: C125/C142, C187/C206, and C142/C206. The formation of disulfide bond was subsequently inhibited by superoxide dismutase, indicating the involvement of O2•−. These results elucidated by mass spectrometry indicates that the residues of C125, C142, C187, and C206 are the specific regulatory cysteines of complex I, and they participate in the oxidative modification with disulfide formation under the physiological or pathophysiological conditions of oxidative stress. PMID:18789718

  19. Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana.

    PubMed

    Zhang, Long-Bin; Tang, Li; Ying, Sheng-Hua; Feng, Ming-Guang

    2016-07-01

    Multiple glutaredoxins (Grx) and glutathione reductase (Glr) are vital for the thiol-disulfide redox system in budding yeast but generally unexplored in filamentous fungi. Here we characterized the Beauveria bassiana redox system comprising dithiol Grx1, monothiol Grx2-4, Grx-like Grx5, and Glr orthologue. Each grx or glr deletion was compensated by increased transcripts of some other grx genes in normal cultures. Particularly, grx3 compensated the absence of grx1, grx2, grx5, or glr under oxidative stress while its absence was compensated only by undeletable grx4 under normal conditions but by most of other undeleted grx and glr genes in response to menadione. Consequently, the redox state was disturbed in Δglr more than in Δgrx3 but not in Δgrx1/2/5. Superoxide dismutases were more active in normal Δgrx1-3 cultures but less in Δgrx5 or Δglr response to menadione. Total catalase activity increased differentially in all the mutant cultures stressed with or without H2O2 while total peroxidase activity decreased more in the normal or H2O2-stressed culture of Δglr than of Δgrx3. Among the mutants, Δgrx3 showed slightly increased sensitivity to menadione or H2O2; Δglr exhibited greater sensitivity to thiol-oxidizing diamide than thiol-reducing 1-chloro-2,4-dinitrobenzene as well as increased sensitivity to the two oxidants. Intriguingly, all the mutants grew slower in a Fe(3+)-inclusive medium perhaps due to elevated transcripts of two Fe(3+) transporter genes. More or fewer phenotypes linked with biocontrol potential were altered in four deletion mutants excluding Δgrx5. All the changes were restored by targeted gene complementation. Overall, Grx3 played more critical role than other Grx homologues in the Glr-dependent redox system of the fungal entomopathogen.

  20. Facile quantitation of free thiols in a recombinant monoclonal antibody by reversed-phase high performance liquid chromatography with hydrophobicity-tailored thiol derivatization.

    PubMed

    Welch, Leslie; Dong, Xiao; Hewitt, Daniel; Irwin, Michelle; McCarty, Luke; Tsai, Christina; Baginski, Tomasz

    2018-06-02

    Free thiol content, and its consistency, is one of the product quality attributes of interest during technical development of manufactured recombinant monoclonal antibodies (mAbs). We describe a new, mid/high-throughput reversed-phase-high performance liquid chromatography (RP-HPLC) method coupled with derivatization of free thiols, for the determination of total free thiol content in an E. coli-expressed therapeutic monovalent monoclonal antibody mAb1. Initial selection of the derivatization reagent used an hydrophobicity-tailored approach. Maleimide-based thiol-reactive reagents with varying degrees of hydrophobicity were assessed to identify and select one that provided adequate chromatographic resolution and robust quantitation of free thiol-containing mAb1 forms. The method relies on covalent derivatization of free thiols in denatured mAb1 with N-tert-butylmaleimide (NtBM) label, followed by RP-HPLC separation with UV-based quantitation of native (disulfide containing) and labeled (free thiol containing) forms. The method demonstrated good specificity, precision, linearity, accuracy and robustness. Accuracy of the method, for samples with a wide range of free thiol content, was demonstrated using admixtures as well as by comparison to an orthogonal LC-MS peptide mapping method with isotope tagging of free thiols. The developed method has a facile workflow which fits well into both R&D characterization and quality control (QC) testing environments. The hydrophobicity-tailored approach to the selection of free thiol derivatization reagent is easily applied to the rapid development of free thiol quantitation methods for full-length recombinant antibodies. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Fluorine-Labeling as a Diagnostic for Thiol-Ligand and Gold Nanocluster Self-Assembly

    DTIC Science & Technology

    2009-01-01

    A . Chandekar, S. K. Sengupta, C . M. F . Barry, J. L . Mead and J. E. Whitten...of O ( a factor up to 2.4) relative to its C:O:S:F composition remained although the relative compositions of C , S and F were consistent with the 6:2:1...and 2-prop- anol followed by a UV-ozone treatment (Samco International, Inc., Model UV-1 UV-Ozone stripper/cleaner) of 12 min at 150 C with a 0.50 L

  2. The Chemolithoautotroph Acidithiobacillus ferrooxidans Can Survive under Phosphate-Limiting Conditions by Expressing a C-P Lyase Operon That Allows It To Grow on Phosphonates▿ †

    PubMed Central

    Vera, Mario; Pagliai, Fernando; Guiliani, Nicolas; Jerez, Carlos A.

    2008-01-01

    The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans is of great importance in biomining operations. During the bioleaching of ores, microorganisms are subjected to a variety of environmental stresses and to the limitations of some nutrients, such as inorganic phosphate (Pi), which is an essential component for all living cells. Although the primary source of phosphorus for microorganisms is Pi, some bacteria are also able to metabolize Pi esters (with a C-O-P bond) and phosphonates (with a very inert C-P bond). By using bioinformatic analysis of genomic sequences of the type strain of A. ferrooxidans (ATCC 23270), we found that as part of a Pho regulon, this bacterium has a complete gene cluster encoding C-P lyase, which is the main bacterial enzyme involved in phosphonate (Pn) degradation in other microorganisms. A. ferrooxidans was able to grow in the presence of methyl-Pn or ethyl-Pn as an alternative phosphorus source. Under these growth conditions, a great reduction in inorganic polyphosphate (polyP) levels was seen compared with the level for cells grown in the presence of Pi. By means of reverse transcription-PCR (RT-PCR), DNA macroarrays, and real-time RT-PCR experiments, it was found that A. ferrooxidans phn genes were cotranscribed and their expression was induced when the microorganism was grown in methyl-Pn as the only phosphorus source. This is the first report of phosphonate utilization in a chemolithoautotrophic microorganism. The existence of a functional C-P lyase system is a clear advantage for the survival under Pi limitation, a condition that may greatly affect the bioleaching of ores. PMID:18203861

  3. Sensing hypoxia: physiology, genetics and epigenetics

    PubMed Central

    Prabhakar, Nanduri R

    2013-01-01

    The carotid body is a sensory organ for detecting arterial blood O2 levels and reflexly mediates systemic cardiac, vascular and respiratory responses to hypoxia. This article presents a brief review of the roles of gaseous messengers in the sensory transduction at the carotid body, genetic and epigenetic influences on hypoxic sensing and the role of the carotid body chemoreflex in cardiorespiratory diseases. Type I (also called glomus) cells, the site of O2 sensing in the carotid body, express haem oxygenase-2 and cystathionine-γ-lyase, the enzymes which catalyse the generation of CO and H2S, respectively. Physiological studies have shown that CO is an inhibitory gas messenger, which contributes to the low sensory activity during normoxia, whereas H2S is excitatory and mediates sensory stimulation by hypoxia. Hypoxia-evoked H2S generation in the carotid body requires the interaction of cystathionine-γ-lyase with haem oxygenase-2, which generates CO. Hypoxia-inducible factors 1 and 2 constitute important components of the genetic make-up in the carotid body, which influence hypoxic sensing by regulating the intracellular redox state via transcriptional regulation of pro- and antioxidant enzymes. Recent studies suggest that developmental programming of the carotid body response to hypoxia involves epigenetic changes, e.g. DNA methylation of genes encoding redox-regulating enzymes. Emerging evidence implicates heightened carotid body chemoreflex in the progression of autonomic morbidities associated with cardiorespiratory diseases, such as sleep-disordered breathing with apnoea, congestive heart failure and essential hypertension. PMID:23459758

  4. Microorganisms and methods for producing pyruvate, ethanol, and other compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Jennifer L.; Zhang, Xiaolin

    Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

  5. The enzymic hydrolysis of amygdalin

    PubMed Central

    Haisman, D. R.; Knight, D. J.

    1967-01-01

    Chromatographic examination has shown that the enzymic hydrolysis of amygdalin by an almond β-glucosidase preparation proceeds consecutively: amygdalin was hydrolysed to prunasin and glucose; prunasin to mandelonitrile and glucose; mandelonitrile to benzaldehyde and hydrocyanic acid. Gentiobiose was not formed during the enzymic hydrolysis. The kinetics of the production of mandelonitrile and hydrocyanic acid from amygdalin by the action of the β-glucosidase preparation favour the probability that three different enzymes are involved, each specific for one hydrolytic stage, namely, amygdalin lyase, prunasin lyase and hydroxynitrile lyase. Cellulose acetate electrophoresis of the enzyme preparation showed that it contained a number of enzymically active components. PMID:4291788

  6. Reduced phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities and lignin synthesis in wheat grown under low pressure sodium lamps

    NASA Technical Reports Server (NTRS)

    Guerra, D.; Anderson, A. J.; Salisbury, F. B.

    1985-01-01

    Wheat (Triticum aestivum L. cv Fremont) grown in hydroponic culture under 24-hour continuous irradiation at 560 to 580 micromoles per square meter per second from either metalhalide (MH), high pressure sodium (HPS), or low pressure sodium (LPS) lamps reached maturity in 70 days. Grain yields were similar under all three lamps, although LPS-grown plants lodged at maturity. Phenylalanine ammonia-lyase (PAL) and a tyrosine ammonia lyase (TAL) with lesser activity were detected in all extracts of leaf, inflorescence, and stem. Ammonia-lyase activities increased with age of the plant, and plants grown under the LPS lamp displayed PAL and TAL activities lower than wheat cultured under MH and HPS radiation. Greenhouse solar-grown wheat had the highest PAL and TAL activities. Lignin content of LPS-grown wheat was also significantly reduced from that of plants grown under MH or HPS lamps or in the greenhouse, showing a correlation with the reduced PAL and TAL activities. Ratios of far red-absorbing phytochrome to total phytochrome were similar for all three lamps, but the data do not yet warrant a conclusion about specific wavelengths missing from the LPS lamps that might have induced PAL and TAL activities in plants under the other lamps.

  7. Hematopoietic Sphingosine 1-Phosphate Lyase Deficiency Decreases Atherosclerotic Lesion Development in LDL-Receptor Deficient Mice

    PubMed Central

    Bot, Martine; Van Veldhoven, Paul P.; de Jager, Saskia C. A.; Johnson, Jason; Nijstad, Niels; Van Santbrink, Peter J.; Westra, Marijke M.; Van Der Hoeven, Gerd; Gijbels, Marion J.; Müller-Tidow, Carsten; Varga, Georg; Tietge, Uwe J. F.; Kuiper, Johan; Van Berkel, Theo J. C.; Nofer, Jerzy-Roch

    2013-01-01

    Aims Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1−/−) deficiency on leukocyte subsets relevant to atherosclerosis. Methods and Results LDL receptor deficient mice that were transplanted with Sgpl1−/− bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1−/− chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. Conclusions Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution. PMID:23700419

  8. The Structure of RdDddP from Roseobacter denitrificans Reveals That DMSP Lyases in the DddP-Family Are Metalloenzymes

    PubMed Central

    Hehemann, Jan-Hendrik; Law, Adrienne; Redecke, Lars; Boraston, Alisdair B.

    2014-01-01

    Marine microbes degrade dimethylsulfoniopropionate (DMSP), which is produced in large quantities by marine algae and plants, with DMSP lyases into acrylate and the gas dimethyl sulfide (DMS). Approximately 10% of the DMS vents from the sea into the atmosphere and this emission returns sulfur, which arrives in the sea through rivers and runoff, back to terrestrial systems via clouds and rain. Despite their key role in this sulfur cycle DMSP lyases are poorly understood at the molecular level. Here we report the first X-ray crystal structure of the putative DMSP lyase RdDddP from Roseobacter denitrificans, which belongs to the abundant DddP family. This structure, determined to 2.15 Å resolution, shows that RdDddP is a homodimeric metalloprotein with a binuclear center of two metal ions located 2.7 Å apart in the active site of the enzyme. Consistent with the crystallographic data, inductively coupled plasma mass spectrometry (ICP-MS) and total reflection X-ray fluorescence (TRXF) revealed the bound metal species to be primarily iron. A 3D structure guided analysis of environmental DddP lyase sequences elucidated the critical residues for metal binding are invariant, suggesting all proteins in the DddP family are metalloenzymes. PMID:25054772

  9. Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals.

    PubMed

    Fritz, R R; Hodgins, D S; Abell, C W

    1976-08-10

    Yeast phenylalanine ammonia-lyase (EC 4.3.1.5) catalyzes the deamination of L-phenylalanine to form trans-cinnamic acid and tyrosine to trans-coumaric acid. Maximal enzyme activity in Rhodotorula glutinis (2 units/g, wet weight, of yeast) was induced in late-log phase (12 to 14 hours) of growth in a culture medium containing 1.0% malt extract, 0.1% yeast extract, and 0.1% L-phenylalanine. A highly purified enzyme was obtained by fractionation with ammonium sulfate and sodium citrate followed by chromatography on DEAE-cellulose and Sephadex G-200. The active preparation yielded a major component on three different polyacrylamide gel electrophoretic systems. Antisera to phenylalanine ammonia-lyase was raised in rabbits and detected by double immunodiffusion. The antigen-antibody complex was enzymatically active in vitro. The biological half-life of the enzyme was approximately 21 hours in several mammalian species (mice without and with BW10232 adenocarcinoma and B16 melanoma, rats, and monkeys) after a single injection; however, upon repeated administration, phenylalanine ammonia-lyase had a much shorter biological half-life. The onset of rapid clearance occurred earlier in tumor-bearing than in nontumor-bearing mice indicating a direct or indirect influence by the tumor on the biological half-life of phenylalanine ammonia-lyase.

  10. Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism

    NASA Technical Reports Server (NTRS)

    Anterola, Aldwin M.; Jeon, Jae-Heung; Davin, Laurence B.; Lewis, Norman G.

    2002-01-01

    Transcriptional profiling of the phenylpropanoid pathway in Pinus taeda cell suspension cultures was carried out using quantitative real time PCR analyses of all known genes involved in the biosynthesis of the two monolignols, p-coumaryl and coniferyl alcohols (lignin/lignan precursors). When the cells were transferred to a medium containing 8% sucrose and 20 mm potassium iodide, the monolignol/phenylpropanoid pathway was induced, and transcript levels for phenylalanine ammonia lyase, cinnamate 4-hydroxylase, p-coumarate 3-hydroxylase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase, and cinnamyl alcohol dehydrogenase were coordinately up-regulated. Provision of increasing levels of exogenously supplied Phe to saturating levels (40 mm) to the induction medium resulted in further up-regulation of their transcript levels in the P. taeda cell cultures; this in turn was accompanied by considerable increases in both p-coumaryl and coniferyl alcohol formation and excretion. By contrast, transcript levels for both cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase were only slightly up-regulated. These data, when considered together with metabolic profiling results and genetic manipulation of various plant species, reveal that carbon allocation to the pathway and its differential distribution into the two monolignols is controlled by Phe supply and differential modulation of cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase activities, respectively. The coordinated up-regulation of phenylalanine ammonia lyase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase in the presence of increasing concentrations of Phe also indicates that these steps are not truly rate-limiting, because they are modulated according to metabolic demand. Finally, the transcript profile of a putative acid/ester O-methyltransferase, proposed as an alternative catalyst for O-methylation leading to coniferyl alcohol, was not up-regulated under any of the conditions employed, suggesting that it is not, in fact, involved in monolignol biosynthesis.

  11. Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism.

    PubMed

    Anterola, Aldwin M; Jeon, Jae-Heung; Davin, Laurence B; Lewis, Norman G

    2002-05-24

    Transcriptional profiling of the phenylpropanoid pathway in Pinus taeda cell suspension cultures was carried out using quantitative real time PCR analyses of all known genes involved in the biosynthesis of the two monolignols, p-coumaryl and coniferyl alcohols (lignin/lignan precursors). When the cells were transferred to a medium containing 8% sucrose and 20 mm potassium iodide, the monolignol/phenylpropanoid pathway was induced, and transcript levels for phenylalanine ammonia lyase, cinnamate 4-hydroxylase, p-coumarate 3-hydroxylase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase, and cinnamyl alcohol dehydrogenase were coordinately up-regulated. Provision of increasing levels of exogenously supplied Phe to saturating levels (40 mm) to the induction medium resulted in further up-regulation of their transcript levels in the P. taeda cell cultures; this in turn was accompanied by considerable increases in both p-coumaryl and coniferyl alcohol formation and excretion. By contrast, transcript levels for both cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase were only slightly up-regulated. These data, when considered together with metabolic profiling results and genetic manipulation of various plant species, reveal that carbon allocation to the pathway and its differential distribution into the two monolignols is controlled by Phe supply and differential modulation of cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase activities, respectively. The coordinated up-regulation of phenylalanine ammonia lyase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase in the presence of increasing concentrations of Phe also indicates that these steps are not truly rate-limiting, because they are modulated according to metabolic demand. Finally, the transcript profile of a putative acid/ester O-methyltransferase, proposed as an alternative catalyst for O-methylation leading to coniferyl alcohol, was not up-regulated under any of the conditions employed, suggesting that it is not, in fact, involved in monolignol biosynthesis.

  12. Synthesis of cyclic, multivalent Arg-Gly-Asp using sequential thiol-ene/thiol-yne photoreactions

    PubMed Central

    Aimetti, Alex A.; Feaver, Kristen R.

    2014-01-01

    A unique method has been developed for the formation of multivalent cyclic peptides. This procedure exploits on-resin peptide cyclization using a photoinitiated thiol-ene click reaction and subsequent clustering using thiol-yne photochemistry. Both reactions utilize the sulfhydryl group on natural cysteine amino acids to participate in the thiol-mediated reactions. PMID:20552127

  13. Molecular Characterization of Thiols in Fossil Fuels by Michael Addition Reaction Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan

    2016-10-04

    Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.

  14. Thiol/disulfide homeostasis in postmenopausal osteoporosis.

    PubMed

    Korkmaz, V; Kurdoglu, Z; Alisik, M; Turgut, E; Sezgın, O O; Korkmaz, H; Ergun, Y; Erel, O

    2017-04-01

    To evaluate the impact of postmenopausal osteoporosis on thiol/disulfide homeostasis. A total of 75 participants were divided into two groups: Group 1 (n = 40) was composed of healthy postmenopausal women, and group 2 (n = 35) was composed of women with postmenopausal osteoporosis. Clinical findings and thiol/disulfide homeostasis were compared between the two groups. The disulfide/native thiol ratio was 8.6% ± 3.6 in group 1 and 12.7% ± 8.4 in group 2 (p = 0.04). The disulfide/native thiol percent ratio was significantly higher in group 2 after adjustment for the years since menopause and age (p < 0.05). The native thiol/total thiol percent ratio was 85.6% ± 4.8 in group 1 and 73.8% ± 24.9 in group 2 (p = 0.01). The native thiol/total thiol percent ratio was significantly lower in group 2 after adjustment for the years since menopause and age (p < 0.05). Thiol/disulfide homeostasis shifted to the disulfide side independent of age and years since menopause in postmenopausal osteoporosis.

  15. Genetics Home Reference: 17 alpha-hydroxylase/17,20-lyase deficiency

    MedlinePlus

    ... Center Frequency 17α-hydroxylase/17,20-lyase deficiency accounts for about 1 percent of congenital adrenal hyperplasia cases. It is estimated to occur in 1 in 1 million people worldwide. Related Information What information about a genetic condition can statistics ...

  16. Crystal structure and characterization of a novel L-serine ammonia-lyase from Rhizomucor miehei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Zhen; Yan, Qiaojuan; Ma, Qingjun

    L-serine ammonia-lyase, as a member of the β-family of pyridoxal-5′-phosphate (PLP) dependent enzymes, catalyzes the conversion of L-serine (L-threonine) to pyruvate (α-ketobutyrate) and ammonia. The crystal structure of L-serine ammonia-lyase from Rhizomucor miehei (RmSDH) was solved at 1.76 Å resolution by X-ray diffraction method. The overall structure of RmSDH had the characteristic β-family PLP dependent enzyme fold. It consisted of two distinct domains, both of which show the typical open twisted α/β structure. A PLP cofactor was located in the crevice between the two domains, which was attached to Lys52 by a Schiff-base linkage. Unique residue substitutions (Gly78, Pro79, Ser146, Ser147more » and Thr312) were discovered at the catalytic site of RmSDH by comparison of structures of RmSDH and other reported eukaryotic L-serine ammonia-lyases. Optimal pH and temperature of the purified RmSDH were 7.5 and 40 °C, respectively. It was stable in the pH range of 7.0–9.0 and at temperatures below 40 °C. This is the first crystal structure of a fungal L-serine ammonia-lyase. It will be useful to study the catalytic mechanism of β-elimination enzymes and will provide a basis for further enzyme engineering. - Highlights: • The crystal structure of a fungal L-serine ammonia-lyase (RmSDH) was solved. • Five unique residue substitutions are found at the catalytic site of RmSDH. • RmSDH was expressed in Pichia. pastoris and biochemically characterized. • RmSDH has potential application in splitting D/L-serine.« less

  17. Biochemical, Kinetic, and Spectroscopic Characterization of Ruegeria pomeroyi DddW—A Mononuclear Iron-Dependent DMSP Lyase

    PubMed Central

    Brummett, Adam E.; Schnicker, Nicholas J.; Crider, Alexander; Todd, Jonathan D.; Dey, Mishtu

    2015-01-01

    The osmolyte dimethylsulfoniopropionate (DMSP) is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS), a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3. DddW is a 16.9 kDa enzyme that contains a C-terminal cupin domain and liberates acrylate, a proton, and DMS from the DMSP substrate. Our studies show that as-purified DddW is a metalloenzyme, like the DddQ and DddP DMSP lyases, but contains an iron cofactor. The metal cofactor is essential for DddW DMSP lyase activity since addition of the metal chelator EDTA abolishes its enzymatic activity, as do substitution mutations of key metal-binding residues in the cupin motif (His81, His83, Glu87, and His121). Measurements of metal binding affinity and catalytic activity indicate that Fe(II) is most likely the preferred catalytic metal ion with a nanomolar binding affinity. Stoichiometry studies suggest DddW requires one Fe(II) per monomer. Electronic absorption and electron paramagnetic resonance (EPR) studies show an interaction between NO and Fe(II)-DddW, with NO binding to the EPR silent Fe(II) site giving rise to an EPR active species (g = 4.29, 3.95, 2.00). The change in the rhombicity of the EPR signal is observed in the presence of DMSP, indicating that substrate binds to the iron site without displacing bound NO. This work provides insight into the mechanism of DMSP cleavage catalyzed by DddW. PMID:25993446

  18. Understanding Which Residues of the Active Site and Loop Structure of a Tyrosine Aminomutase Define Its Mutase and Lyase Activities.

    PubMed

    Attanayake, Gayanthi; Walter, Tyler; Walker, Kevin D

    2018-05-30

    Site-directed mutations and substrate analogues were used to gain insights into the branch-point reaction of the 3,5-dihydro-5-methylidene-4 H-imidazol-4-one (MIO)-tyrosine aminomutase from Oryza sativa ( OsTAM). Exchanging the active residues of OsTAM (Y125C/N446K) for those in a phenylalanine aminomutase TcPAM altered its substrate specificity from tyrosine to phenylalanine. The aminomutase mechanism of OsTAM surprisingly changed almost exclusively to that of an ammonia lyase making cinnamic acid (>95%) over β-phenylalanine [Walter, T., et al. (2016) Biochemistry 55, 3497-3503]. We hypothesized that the missing electronics or sterics on the aryl ring of the phenylalanine substrate, compared with the sizable electron-donating hydroxyl of the natural tyrosine substrate, influenced the unexpected lyase reactivity of the OsTAM mutant. The double mutant was incubated with 16 α-phenylalanine substituent analogues of varying electronic strengths and sterics. The mutant converted each analogue principally to its acrylate with ∼50% conversion of the p-Br substrate, making only a small amount of the β-amino acid. The inner loop structure over the entrance to the active site was also mutated to assess how the lyase and mutase activities are affected. An OsTAM loop mutant, matching the loop residues of TcPAM, still chiefly made >95% of the acrylate from each substrate. A combined active site:loop mutant was most reactive but remained a lyase, making 10-fold more acrylates than other mutants did. While mutations within the active site changed the substrate specificity of OsTAM, continued exploration is needed to fully understand the interplay among the inner loop, the substrate, and the active site in defining the mutase and lyase activities.

  19. Sequencing of chondroitin sulfate oligosaccharides using a novel exolyase from a marine bacterium that degrades hyaluronan and chondroitin sulfate/dermatan sulfate.

    PubMed

    Wang, Wenshuang; Cai, Xiaojuan; Han, Naihan; Han, Wenjun; Sugahara, Kazuyuki; Li, Fuchuan

    2017-11-09

    Glycosaminoglycans (GAGs) are a family of chemically heterogeneous polysaccharides that play important roles in physiological and pathological processes. Owing to the structural complexity of GAGs, their sophisticated chemical structures and biological functions have not been extensively studied. Lyases that cleave GAGs are important tools for structural analysis. Although various GAG lyases have been identified, exolytic lyases with unique enzymatic property are urgently needed for GAG sequencing. In the present study, a putative exolytic GAG lyase from a marine bacterium was recombinantly expressed and characterized in detail. Since it showed exolytic lyase activity toward hyaluronan (HA), chondroitin sulfate (CS), and dermatan sulfate (DS), it was designated as HCDLase. This novel exolyase exhibited the highest activity in Tris-HCl buffer (pH 7.0) at 30°C. Especially, it showed a specific activity that released 2-aminobenzamide (2-AB)-labeled disaccharides from the reducing end of 2-AB-labeled CS oligosaccharides, which suggest that HCDLase is not only a novel exolytic lyase that can split disaccharide residues from the reducing termini of sugar chains but also a useful tool for the sequencing of CS chains. Notably, HCDLase could not digest 2-AB-labeled oligosaccharides from HA, DS, or unsulfated chondroitin, which indicated that sulfates and bond types affect the catalytic activity of HCDLase. Finally, this enzyme combined with CSase ABC was successfully applied for the sequencing of several CS hexa- and octasaccharides with complex structures. The identification of HCDLase provides a useful tool for CS-related research and applications. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Thiol/disulfide homeostasis in patients with ankylosing spondylitis

    PubMed Central

    Dogru, Atalay; Balkarli, Ayse; Cetin, Gozde Yildirim; Neselioglu, Salim; Erel, Ozcan; Tunc, Sevket Ercan; Sahin, Mehmet

    2016-01-01

    Ankylosing spondylitis (AS) is a chronic inflammatory disease. In many inflammatory diseases, increased production of pro-inflammatory cytokines is associated with an increase in oxidative stress mediators. Thiol/disulfide homeostasis is a marker for oxidative stress. The aim of this study was to examine the dynamic thiol/disulfide homeostasis in AS. Sixty-nine patients with AS and 60 age- and sex-matched controls were included in the study. The Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and visual analogue scale (VAS) were used to determine the disease activity. Native thiol, total thiol, and disulfide levels were measured with a novel automated method recently described by Erel and Neselioglu. The aforementioned method is also optionally manual spectrophotometric assay. The total thiol levels were significantly lower in the AS group compared with the control group (p = 0.03). When the patients were divided into active (n = 35) and inactive (n = 34) subgroups using BASDAI scores, the native plasma thiol and total thiol levels were significantly lower in the active AS patients compared to the inactive AS patients (p = 0.02, p = 0.03 respectively). There was a negative correlation between the plasma native thiol levels and VAS, BASDAI scores. Thiol/disulfide homeostasis may be used for elucidating the effects of oxidative stress in AS. Understanding the role of thiol/disulfide homeostasis in AS might provide new therapeutic intervention strategies for patients. PMID:27186972

  1. Spectroscopic studies on the active site of hydroperoxide lyase; the influence of detergents on its conformation.

    PubMed

    Noordermeer, M A; Veldink, G A; Vliegenthart, J F

    2001-02-02

    Expression of high quantities of alfalfa hydroperoxide lyase in Escherichia coli made it possible to study its active site and structure in more detail. Circular dichroism (CD) spectra showed that hydroperoxide lyase consists for about 75% of alpha-helices. Electron paramagnetic resonance (EPR) spectra confirmed its classification as a cytochrome P450 enzyme. The positive influence of detergents on the enzyme activity is paralleled by a spin state transition of the heme Fe(III) from low to high spin. EPR and CD spectra showed that detergents induce a subtle conformational change, which might result in improved substrate binding. Because hydroperoxide lyase is thought to be a membrane bound protein and detergents mimic a membrane environment, the more active, high spin form likely represents the in vivo conformation. Furthermore, the spin state appeared to be temperature-dependent, with the low spin state favored at low temperature. Point mutants of the highly conserved cysteine in domain D indicated that this residue might be involved in heme binding.

  2. Chondroitin Sulfate (CS) Lyases: Structure, Function and Application in Therapeutics.

    PubMed

    Rani, Aruna; Patel, Seema; Goyal, Arun

    2018-01-01

    Glycosaminoglycans (GAGs) such as chondroitin sulfate (CS) are the chief natural polysaccharides which reside in biological tissues mainly in extracellular matrix. These CS along with adhesion molecules and growth factors are involved in central nervous system (CNS) development, cell progression and pathogenesis. The chondroitin lyases are the enzyme that degrade and alter the CS chains and hence modify various signalling pathways involving CS chains. These CS lyases are substrate specific, can precisely manipulate the CS polysaccharides and have various biotechnological, medical and therapeutic applications. These enzymes can be used to produce the unsaturated oligosaccharides, which have immune-modulatory, anti-inflammatory and neuroprotective properties. This review focuses on the major breakthrough of the chondroitin sulfate degrading enzymes, their structures and functioning mechanism. This also provides comprehensive information regarding production, purification, characterization of CS lyases and their major applications, both established as well as emerging ones such as neural development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate

    PubMed Central

    Song, Heng; Hu, Wen; Naowarojna, Nathchar; Her, Ampon Sae; Wang, Shu; Desai, Rushil; Qin, Li; Chen, Xiaoping; Liu, Pinghua

    2015-01-01

    Ergothioneine is a histidine thio-derivative isolated in 1909. In ergothioneine biosynthesis, the combination of a mononuclear non-heme iron enzyme catalyzed oxidative C-S bond formation reaction and a PLP-mediated C-S lyase (EgtE) reaction results in a net sulfur transfer from cysteine to histidine side-chain. This demonstrates a new sulfur transfer strategy in the biosynthesis of sulfur-containing natural products. Due to difficulties associated with the overexpression of Mycobacterium smegmatis EgtE protein, the proposed EgtE functionality remained to be verified biochemically. In this study, we have successfully overexpressed and purified M. smegmatis EgtE enzyme and evaluated its activities under different in vitro conditions: C-S lyase reaction using either thioether or sulfoxide as a substrate in the presence or absence of reductants. Results from our biochemical characterizations support the assignment of sulfoxide 4 as the native EgtE substrate and the involvement of a sulfenic acid intermediate in the ergothioneine C-S lyase reaction. PMID:26149121

  4. Benzaldehyde lyase, a novel thiamine PPi-requiring enzyme, from Pseudomonas fluorescens biovar I.

    PubMed Central

    González, B; Vicuña, R

    1989-01-01

    Pseudomonas fluorescens biovar I can grow on benzoin as the sole carbon and energy source. This ability is due to benzaldehyde lyase, a new type of enzyme that irreversibly cleaves the acyloin linkage of benzoin, producing two molecules of benzaldehyde. Benzaldehyde lyase was purified 70-fold and found to require catalytic amounts of thiamine PPi (TPP) and a divalent cation as cofactors. Optimal activity was obtained with a 1.0 mM concentration of Mn2+, Mg2+, or Ca2+. Gel permeation chromatography indicated a native molecular weight of 80,000, whereas the enzyme migrated in sodium dodecyl sulfate-containing polyacrylamide gels as a single polypeptide with a molecular weight of 53,000. Benzaldehyde lyase is highly specific; of a variety of structurally related compounds tested, only benzoin and anisoin (4,4'-dimethoxybenzoin) acted as substrates, their apparent Kms being 9.0 x 10(-3) and 3.25 x 10(-2) mM, respectively. A catalytic mechanism for the enzyme is proposed. Images PMID:2496105

  5. Gel Permeation Chromatography Characterization of the Chain Length Distributions in Thiol-Acrylate Photopolymer Networks

    PubMed Central

    Rydholm, Amber E.; Held, Nicole L.; Bowman, Christopher N.; Anseth, Kristi S.

    2008-01-01

    Crosslinked, degradable networks formed from the photopolymerization of thiol and acrylate monomers are explored as potential biomaterials. The degradation behavior and material properties of these networks are influenced by the molecular weight of the nondegradable thiol-polyacrylate backbone chains that form during photopolymerization. Here, gel permeation chromatography was used to characterize the thiol-polyacrylate backbone chain lengths in degraded thiol-acrylate networks. Increasing thiol functionality from 1 to 4 increased the backbone molecular weight (M̄w = 2.3 ± 0.07 × 104 Da for monothiol and 3.6 ± 0.1 × 104 Da for tetrathiol networks). Decreasing thiol functional group concentration from 30 to 10 mol% also increased the backbone lengths (M̄w = 7.3 ± 1.1 × 104 Da for the networks containing 10 mol% thiol groups as compared to 3.6 ± 0.1 × 104 Da for 30 mol% thiol). Finally, the backbone chain lengths were probed at various stages of degradation and an increase in backbone molecular weight was observed as mass loss progressed from 10 to 70%. PMID:19079733

  6. Determinations of dimethylsulphoniopropionate (DMSP) lyase activity using headspace analysis of dimethylsulphide (DMS)

    NASA Astrophysics Data System (ADS)

    Steinke, M.; Malin, G.; Turner, S. M.; Liss, P. S.

    2000-08-01

    The osmolyte dimethylsulphoniopropionate (DMSP) can be enzymatically cleaved to dimethylsulphide (DMS), acrylate and a proton. The enzyme involved in this reaction is dimethylpropiothetin dethiomethylase (DMSP lyase; enzyme classification number 4.4.1.3.). Although the importance of this reaction for the global sulphur cycle, the influence of DMS on atmospheric acidity and the possible effect on climate regulation have been widely recognised, our knowledge of DMSP lyases is limited to just a few studies. Activity measurements of DMSP lyases offer an important step towards a better understanding of the conditions under which DMS is produced. In the available published data somewhat similar methods have been used before, but a critical examination of the method limitations has not been reported. To encourage further research on this enzyme, we suggest and detail two protocols for measurements of DMSP lyase activity: An in vitro assay for crude cell extracts or purified enzyme and an in vivo method for whole cells, which we recently started to use. After addition of DMSP, samples incubated in a gas tight vial may produce DMS from enzymatic cleavage under suitable conditions, and a DMS production rate can be estimated from time-series measurements of DMS in the headspace of the vial. Headspace analysis of DMS is a useful and rapid technique to estimate and compare DMSP lyase activities from different sources. The relative rates of DMS production in the liquid and of the gas transfer between liquid and headspace, determine the rate of DMS production measured via headspace analysis. If DMS production in the liquid is higher than the rate of transfer, headspace measurements will not reflect the actual amount of DMS produced in the liquid. In this case, extracts have to be diluted to a level that ensures linearity between dilution factor and reduction of enzyme activity. Additionally, incubation volumes and vials should be selected to provide a high surface-to-volume ratio to ensure maximum flux of DMS from the aqueous phase into the headspace. The methods can be adapted to further investigate species- and strain-specific activities, biogeographical distribution, cellular location and biochemical properties of various DMSP lyases.

  7. Alleviation of isoproturon toxicity to wheat by exogenous application of glutathione.

    PubMed

    Nemat Alla, Mamdouh M; Hassan, Nemat M

    2014-06-01

    Treatment with the recommended field dose of isoproturon to 7-d-old wheat seedlings significantly decreased shoot height, fresh and dry weights during the subsequent 15days. Meanwhile contents of carotenoids, chlorophylls and anthocyanin as well as activities of δ-aminolevulinate dehydratase (ALA-D), phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) were significantly inhibited. On the other hand, the herbicide significantly increased malondialdehyde (MDA), a naturally occurring product of lipid peroxidation and H2O2, while it significantly decreased the contents of glutathione (GSH) and ascorbic acid (AsA) and reduced the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). These findings indicate an induction of a stress status in wheat seedlings following isoproturon treatment. However, exogenous GSH appeared to limit the toxic effects of isoproturon and seemed to overcome this stress status. Most likely, contents of pigment and activities of enzymes were raised to approximate control levels. Moreover, antioxidants were elevated and the oxidative stress indices seemed to be alleviated by GSH application. These results indicate that exogenous GSH enhances enzymatic and nonenzymatic antioxidants to alleviate the effects of isoproturon. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Simultaneous LC/MS/MS determination of thiols and disulfides in urine samples based on differential labeling with ferrocene-based maleimides.

    PubMed

    Seiwert, Bettina; Karst, Uwe

    2007-09-15

    A method for the simultaneous determination of a series of thiols and disulfides in urine samples has been developed based on the sequential labeling of free and bound thiol functionalities with two ferrocene-based maleimide reagents. The sample is first exposed to N-(2-ferroceneethyl)maleimide, thus leading to the derivatization of free thiol groups in the sample. After quantitative reaction and subsequent reduction of the disulfide-bound thiols by tris(2-carboxyethyl)phosphine, the newly formed thiol functionalities are reacted with ferrocenecarboxylic acid-(2-maleimidoyl)ethylamide. The reaction products are determined by LC/MS/MS in the multiple reaction mode, and precursor ion scan as well as neutral loss scan is applied to detect unknown further thiols. The method was successfully applied to the analysis of free and disulfide-bound thiols in urine samples. Limits of detection are 30 to 110 nM, and the linear range comprises two decades of concentration, thus covering the relevant concentration range of thiols in urine samples. The thiol and disulfide concentrations were referred to the creatinine content to compensate for different sample volumes. As some calibration standards for the disulfides are not commercially available, they were synthesized in an electrochemical flow-through cell. This allowed the synthesis of hetero- and homodimeric disulfides.

  9. Hydrogen sulfide deactivates common nitrobenzofurazan-based fluorescent thiol labeling reagents.

    PubMed

    Montoya, Leticia A; Pluth, Michael D

    2014-06-17

    Sulfhydryl-containing compounds, including thiols and hydrogen sulfide (H2S), play important but differential roles in biological structure and function. One major challenge in separating the biological roles of thiols and H2S is developing tools to effectively separate the reactivity of these sulfhydryl-containing compounds. To address this challenge, we report the differential responses of common electrophilic fluorescent thiol labeling reagents, including nitrobenzofurazan-based scaffolds, maleimides, alkylating agents, and electrophilic aldehydes, toward cysteine and H2S. Although H2S reacted with all of the investigated scaffolds, the photophysical response to each scaffold was significantly different. Maleimide-based, alkylating, and aldehydic thiol labeling reagents provided a diminished fluorescence response when treated with H2S. By contrast, nitrobenzofurazan-based labeling reagents were deactivated by H2S addition. Furthermore, the addition of H2S to thiol-activated nitrobenzofurazan-based reagents reduced the fluorescence signal, thus establishing the incompatibility of nitrobenzofurazan-based thiol labeling reagents in the presence of H2S. Taken together, these studies highlight the differential reactivity of thiols and H2S toward common thiol-labeling reagents and suggest that sufficient care must be taken when labeling or measuring thiols in cellular environments that produce H2S due to the potential for both false-positive and eroded responses.

  10. Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces.

    PubMed

    Briand, Elisabeth; Humblot, Vincent; Landoulsi, Jessem; Petronis, Sarunas; Pradier, Claire-Marie; Kasemo, Bengt; Svedhem, Sofia

    2011-01-18

    The aim of this work was to create patterned surfaces for localized and specific biochemical recognition. For this purpose, we have developed a protocol for orthogonal and material-selective surface modifications of microfabricated patterned surfaces composed of SiO(2) areas (100 μm diameter) surrounded by Au. The SiO(2) spots were chemically modified by a sequence of reactions (silanization using an amine-terminated silane (APTES), followed by amine coupling of a biotin analogue and biospecific recognition) to achieve efficient immobilization of streptavidin in a functional form. The surrounding Au was rendered inert to protein adsorption by modification by HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH (thiol-OEG). The surface modification protocol was developed by testing separately homogeneous SiO(2) and Au surfaces, to obtain the two following results: (i) SiO(2) surfaces which allowed the grafting of streptavidin, and subsequent immobilization of biotinylated antibodies, and (ii) Au surfaces showing almost no affinity for the same streptavidin and antibody solutions. The surface interactions were monitored by quartz crystal microbalance with dissipation monitoring (QCM-D), and chemical analyses were performed by polarization modulation-reflexion absorption infrared spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to assess the validity of the initial orthogonal assembly of APTES and thiol-OEG. Eventually, microscopy imaging of the modified Au/SiO(2) patterned substrates validated the specific binding of streptavidin on the SiO(2)/APTES areas, as well as the subsequent binding of biotinylated anti-rIgG and further detection of fluorescent rIgG on the functionalized SiO(2) areas. These results demonstrate a successful protocol for the preparation of patterned biofunctional surfaces, based on microfabricated Au/SiO(2) templates and supported by careful surface analysis. The strong immobilization of the biomolecules resulting from the described protocol is advantageous in particular for micropatterned substrates for cell-surface interactions.

  11. Investigation of eggshell thickness and biochemical indicators of contaminant exposure in Great Blue Herons(Ardea herodias) from Mason Neck National Wildlife Refuge

    USGS Publications Warehouse

    Johnson, K.N.; Pinkney, A.E.; Melancon, M.J.; Hoffman, D.J.

    2001-01-01

    Mason Neck National Wildlife Refuge supports the largest great blue heron (Ardea herodias) rookery in the State of Virginia. The presence of bioaccumulative compounds such as polychlorinated biphenyls and DDT in fish collected from the Potomac River and tidal tributaries along the Refuge led to this study. The objective was to determine if there were any indications of pollutant-induced eggshell thinning or evidence of biochemical exposure to contaminants. We examined eggshell thickness and biomarkers of contaminant exposure in livers of embryos collected from the refuge and Coaches Island, a reference location in Chesapeake Bay. There was no evidence of eggshell thinning. Cytochrome P450 activity, measured as ethoxyresomfin-O-dealkylase (EROD) and benzyloxy-resorufin-O-dealkylase (BROD), was not significantly different in embryos from the two colonies. Biochemical indicators of oxidative stress can be reflected as changes in levels of reduced thiols, oxidized glutathione, and thiobarbituric reactive substances (TBARS). Although there were significant differences in the levels of reduced glutathione (GSH) and total thiol (TSH) activities in the embryo livers, there were no statistically significant differences in TBARS, protein-bound sulfhydryls (PBSH), oxidized glutathione (GSSG) and the ratio of GSSG to GSH. In fact, the concentrations of GSH and TSH were higher in the Mason Neck birds relative to Coaches Island. Under conditions of increased oxidative stress at least one or more of the following would be expected: decreased concentrations of reduced thiols (GSH and TSH), increased GSSG, and increased TBARS. In conclusion, we did not detect eggshell thinning or find evidence of a biochemical response to contaminant exposure in the Mason Neck great blue herons.

  12. Thiols in the alphaIIbbeta3 integrin are necessary for platelet aggregation.

    PubMed

    Manickam, Nagaraj; Sun, Xiuhua; Hakala, Kevin W; Weintraub, Susan T; Essex, David W

    2008-07-01

    Sulfhydryl groups of platelet surface proteins are important in platelet aggregation. While p-chloromercuribenzene sulphonate (pCMBS) has been used in most studies on platelet surface thiols, the specific thiol-proteins that pCMBS reacts with to inhibit aggregation have not been well defined. Since the thiol-containing P2Y(12) ADP receptor is involved in most types of platelet aggregation, we used the ADP scavenger apyrase and the P2Y(12) receptor antagonist 2-MeSAMP to examine thiol-dependent reactions in the absence of contributions from this receptor. We provide evidence for a non-P2Y(12) thiol-dependent reaction near the final alphaIIbbeta3-dependent events of aggregation. We then used 3-(N-maleimidylpropionyl)biocytin (MPB) and pCMBS to study thiols in alphaIIbbeta3. As previously reported, disruption of the receptor was required to obtain labelling of thiols with MPB. Specificity of labelling for thiols in the alphaIIb and beta3 subunits was confirmed by identification of the purified proteins by mass spectrometry and by inhibition of labelling with 5,5'-dithiobis-(2-nitrobenzoic acid). In contrast to MPB, pCMBS preferentially reacted with thiols in alphaIIbbeta3 and blocked aggregation under physiological conditions. Similarly, pCMBS preferentially inhibited signalling-independent activation of alphaIIbbeta3 by Mn(2+). Our results suggest that the thiols in alphaIIbbeta3 that are blocked by pCMBS are important in the activation of this integrin.

  13. The constitutive production of pectinase by the CT1 mutant of Penicillium occitainis is modulated by pH.

    PubMed

    Romdhane, Zamen Ben; Tounsi, Hajer; Hadj-Sassi, Azza; Hadj-Taieb, Noomen; Gargouri, Ali

    2013-01-01

    The aim of the present study was to investigate pectinases production by CT1 mutant of Penicillium occitanis on glucose based media. Two main groups of pectinases were followed: lyases (pectin and pectate lyases) and hydrolases (polygalacturonases and polymethylgalacturonases). When cultivated in different liquid media, where either the starting glucose concentration or the nature of nitrogen sources used was varied, the CT1 mutant secreted either lyases or hydrolases. In fact, the pH of these various media seemed to correlate with the activity produced: The lyases were highly and exclusively produced at neutral or alkaline ambient pH, whereas hydrolases were highly produced on acidic ambient pH. Such conclusion was confirmed by following pectinase production in the same culture medium (with the same glucose concentration and the same nitrogen source) set at two initial pH of 4 and 7. Altogether, these results suggest that the pectinases control by PacC signaling pathway of P. occitanis should resemble to that of Aspergillus and its ability to "activate the expression of alkaline-expressed genes and repress acid-expressed genes" remains intact in the CT1 over-producing and constitutive strain. Enzymes produced at acidic pH (hydrolases) and at neutral pH (lyases) were applied in the hydrolysis of orange peel and gave results comparable to commercial enzymes.

  14. The Structure of L-Tyrosine 2,3-Aminomutase frmo the C-1027 Enediyne Antitumor Antibiotic Biosynthetic Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christianson,C.; Montavon, T.; Van Lanen, S.

    2007-01-01

    The SgcC4 L-tyrosine 2,3-aminomutase (SgTAM) catalyzes the formation of (S)-{beta}-tyrosine in the biosynthetic pathway of the enediyne antitumor antibiotic C-1027. SgTAM is homologous to the histidine ammonia lyase family of enzymes whose activity is dependent on the methylideneimidazole-5-one (MIO) cofactor. Unlike the lyase enzymes, SgTAM catalyzes additional chemical transformations resulting in an overall stereospecific 1,2-amino shift in the substrate L-tyrosine to generate (S)-{beta}-tyrosine. Previously, we provided kinetic, spectroscopic, and mutagenesis data supporting the presence of MIO in the active site of SgTAM [Christenson, S. D.; Wu, W.; Spies, A.; Shen, B.; and Toney, M. D. (2003) Biochemistry 42, 12708-12718]. Heremore » we report the first X-ray crystal structure of an MIO-containing aminomutase, SgTAM, and confirm the structural homology of SgTAM to ammonia lyases. Comparison of the structure of SgTAM to the L-tyrosine ammonia lyase from Rhodobacter sphaeroides provides insight into the structural basis for aminomutase activity. The results show that SgTAM has a closed active site well suited to retain ammonia and minimize the formation of lyase elimination products. The amino acid determinants for substrate recognition and catalysis can be predicted from the structure, setting the framework for detailed mechanistic investigations.« less

  15. The replicative DNA polymerase of herpes simplex virus 1 exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities

    PubMed Central

    Bogani, Federica; Boehmer, Paul E.

    2008-01-01

    Base excision repair (BER) is essential for maintaining genome stability both to counter the accumulation of unusual bases and to protect from base loss in the DNA. Herpes simplex virus 1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery, including enzymes involved in nucleotide metabolism. We report on a replicative family B and a herpesvirus-encoded DNA Pol that possesses DNA lyase activity. We have discovered that the catalytic subunit of the HSV-1 DNA polymerase (Pol) (UL30) exhibits apurinic/apyrimidinic (AP) and 5′-deoxyribose phosphate (dRP) lyase activities. These activities are integral to BER and lead to DNA cleavage on the 3′ side of abasic sites and 5′-dRP residues that remain after cleavage by 5′-AP endonuclease. The UL30-catalyzed reaction occurs independently of divalent cation and proceeds via a Schiff base intermediate, indicating that it occurs via a lyase mechanism. Partial proteolysis of the Schiff base shows that the DNA lyase activity resides in the Pol domain of UL30. These observations together with the presence of a virus-encoded uracil DNA glycosylase indicates that HSV-1 has the capacity to perform critical steps in BER. These findings have implications on the role of BER in viral genome maintenance during lytic replication and reactivation from latency. PMID:18695225

  16. Adsorption of Dissolved Metals in the Berkeley Pit using Thiol-Functionalized Self-Assembled Monolayers on Mesoporous Supports (Thiol-SAMMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betancourt, Amaury P.; Mattigod, Shas V.; Wellman, Dawn M.

    2010-03-07

    The Berkeley Pit in Butte, Montana, is heavily contaminated with dissolved metals. Adsorption and extraction of these metals can be accomplished through the use of a selective adsorbent. For this research, the adsorbent used was thiol-functionalized Self-Assembled Monolayers on Mesoporous Supports (thiol-SAMMS), which was developed at Pacific Northwest National Laboratory (PNNL). Thiol-SAMMS selectively binds to numerous types of dissolved metals. The objective of this research was to evaluate the loading and kinetics of aluminum, beryllium, copper, and zinc on thiol-SAMMS. For the loading tests, a series of Berkeley Pit water to thiol-SAMMS ratios (mL:g) were tested. These ratios were 1000:1,more » 500:1, 100:1, and 50:1. Berkeley Pit water is acidic (pH {approx} 2.5). This can affect the performance of SAMMS materials. Therefore, the effect of pH was evaluated by conducting parallel series of loading tests wherein the Berkeley Pit water was neutralized before or after addition of thiol-SAMMS, and a series of kinetics tests wherein the Berkeley Pit water was neutralized before addition of thiol-SAMMS for the first test and was not neutralized for the second test. For the kinetics tests, one Berkeley Pit water to thiol-SAMMS ratio was tested, which was 2000:1. The results of the loading and kinetics tests suggest that a significant decrease in dissolved metal concentration at Berkeley Pit could be realized through neutralization of Berkeley Pit water. Thiol-SAMMS technology has a limited application under the highly acidic conditions posed by the Berkeley Pit. However, thiol-SAMMS could provide a secondary remedial technique which would complete the remedial system and remove dissolved metals from the Berkeley Pit to below drinking water standards.« less

  17. Study of Highly Selective and Efficient Thiol Derivatization using Selenium Reagents by Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kehua; Zhang, Yun W.; Tang, Bo

    2010-08-15

    Biological thiols are critical physiological components and their detection often involves derivatization. This paper reports a systemic mass spectrometry (MS) investigation of the cleavage of Se-N bond by thiol to form a new Se-S bond, the new selenium chemistry for thiol labeling. Our data shows that the reaction is highly selective, rapid, reversible and efficient. For instance, among twenty amino acids, only cysteine was found to be reactive with Se-N containing reagents and the reaction takes place in seconds. By adding dithiothreitol (DTT), the newly formed Se-S bond of peptides/proteins can be reduced back to free thiol. The high selectivitymore » and excellent reversibility of the reaction provide potential of using this chemistry for selective identification of thiol compounds or enriching and purifying thiol peptides/proteins. In addition, the derivatized thiol peptides have interesting dissociation behavior, which is tunable using different selenium reagents. For example, by introducing an adjacent nucleophilic group into the selenium reagent in the case of using ebselen, the reaction product of ebselen with glutathione (GSH) is easy to lose the selenium tag upon collision-induced dissociation (CID), which is useful to "fish out" those peptides containing free cysteine residues by precursor ion scan. By contrast, the selenium tag of N-(phenylseleno) phthalimide reagent can be stable and survive in CID process, which would be of value in pinpointing thiol location using a top-down proteomic approach. Also, the high conversion yield of the reaction allows the counting of total number of thiol in proteins. We believe that ebselen or N-(phenylseleno) phthalimide as tagging thiol-protein reagents will have important applications in both qualitative and quantitative analysis of different thiol-proteins derived from living cells by MS method.« less

  18. Evaluation of dynamic thiol/disulphide homeostasis as a novel indicator of oxidative stress in maple syrup urine disease patients under treatment.

    PubMed

    Zubarioglu, Tanyel; Kiykim, Ertugrul; Cansever, Mehmet Serif; Neselioglu, Salim; Aktuglu-Zeybek, Cigdem; Erel, Ozcan

    2017-02-01

    Maple syrup urine disease (MSUD) is a metabolic disorder that is caused by deficiency of branched-chain α-keto acid dehydrogenase complex. Although accumulation of toxic metabolites is associated with neurotoxicity, mechanisms underlying brain damage remain unclear. Aim of this study is to evaluate thiol/disulphide homeostasis as a novel indicator of oxidative stress in MSUD patients under treatment. Twenty patients with MSUD and 20 healthy individuals were included in study. All patients were under regular follow-up and had a good metabolic control. Serum native thiol (-SH), total thiol (-SH + -S-S-), disulphide (-S-S) levels were measured in all subjects. Disulphide/native thiol, disulphide/total thiol and native thiol/total thiol ratios were calculated from these values. Simultaneous blood sampling for plasma quantitative amino acid analysis was performed in both groups. Any significant difference was not observed in -SH, -SH + -S-S-, -S-S levels between two groups. In addition no increase of disulphide/native thiol and disulphide/total thiol ratios was detected in patient group. This study is the first study that evaluates dynamic thiol/disulphide homeostasis as an indicator of oxidative stress in MSUD patients. Among previous studies that were made to determine oxidative stress in treated MSUD patients, this study had the largest sample size also. In recent studies, it was claimed that oxidative stress could be responsible from neurotoxicity even in treated patients. Here, dynamic thiol/disulfide homeostasis status showed that providing good metabolic control in MSUD patients prevent oxidative stress. Under regular follow-up and good compliance with diet, additional antioxidant therapies would possibly not be necessary.

  19. Cross-Dehydrogenative Coupling Reactions Between P(O)-H and X-H (X = S, N, O, P) Bonds.

    PubMed

    Hosseinian, Akram; Farshbaf, Sepideh; Fekri, Leila Zare; Nikpassand, Mohammad; Vessally, Esmail

    2018-05-26

    P(O)-X (X = S, N, O, P) bond-containing compounds have extensive application in medicinal chemistry, agrochemistry, and material chemistry. These useful organophosphorus compounds also have many applications in organic synthesis. In light of the importance of titled compounds, there is continuing interest in the development of synthetic methods for P(O)-X bonds construction. In the last 4 years, the direct coupling reaction of P(O)-H compounds with thiols, alcohols, and amines/amides has received much attention because of the atom-economic character. This review aims to give an overview of new developments in cross-dehydrogenative coupling reactions between P(O)-H and X-H (X = S, N, O, P) bonds, with special emphasis on the mechanistic aspects of the reactions.

  20. Thiol/disulfide status regulates the activity of thiol-containing kinases related to energy homeostasis in rat kidney.

    PubMed

    Rech, Virginia C; Mezzomo, Nathana J; Athaydes, Genaro A; Feksa, Luciane R; Figueiredo, Vandré C; Kessler, Adriana; Franceschi, Itiane D DE; Wannmacher, Clovis M D

    2018-01-01

    Considering that thiol-containing enzymes like kinases are critical for several metabolic pathways and energy homeostasis, we investigated the effects of cystine dimethyl ester and/or cysteamine administration on kinases crucial for energy metabolism in the kidney of Wistar rats. Animals were injected twice a day with 1.6 µmol/g body weight cystine dimethyl ester and/or 0.26 µmol/g body weight cysteamine from the 16th to the 20th postpartum day and euthanized after 12 hours. Pyruvate kinase, adenylate kinase, creatine kinase activities and thiol/disulfide ratio were determined. Cystine dimethyl ester administration reduced thiol/disulfide ratio and inhibited the kinases activities. Cysteamine administration increased the thiol/disulfide ratio and co-administration with cystine dimethyl ester prevented the inhibition of the enzymes. Regression between the thiol/disulfide ratio, and the kinases activities were significant. These results suggest that redox status may regulate energy metabolism in the rat kidney. If thiol-containing enzymes inhibition and oxidative stress occur in patients with cystinosis, it is possible that lysosomal cystine depletion may not be the only beneficial effect of cysteamine administration, but also its antioxidant and thiol-protector effect.

  1. The Role of Thiol/Disulphide Homeostasis in Anthracycline Associated Cardiac Toxicity.

    PubMed

    Topuz, Mustafa; Şen, Omer; Kaplan, Mehmet; Akkus, Oguz; Erel, Ozcan; Gur, Mustafa

    2017-02-07

    The aim of the present study was to evaluate whether the baseline thiol/disulfide state can predict the occurrence of anthracycline induced cardiac toxicity. A total of 186 cancer patients receiving anthracycline (doxorubicin)-based chemotherapy were enrolled. All patients underwent 2-dimensional (2D) speckle tracking echocardiography (STE) to determine their left ventricular ejection fraction (LVEF) and blood samples for measuring thiol forms were obtained before treatment and 4 weeks after completion of the chemotherapy. The mean dose of doxorubicin exposure was 255 ± 39.2 mg/m 2 . Baseline native thiol was found to be lower whereas baseline disulfide and the disulfide/total thiol ratio were found to be higher in patients who had a decrease in LVEF after anthracycline therapy. Also, the amount of decrease in LVEF was well correlated with the delta value of the thiol forms. Logistic regression analysis revealed that changes in BNP and global longitudinal strain (GLS), baseline level of native thiol, disulfide, and the disulfide/total thiol ratio were strong predictors for a decrease in LVEF.The thiol/disulfide pathway may be a factor for predicting chemotherapy-induced cardiac toxicity as one of the oxidative stress mechanisms.

  2. Changes in Thiol-Disulfide Homeostasis of the Body to Surgical Trauma in Laparoscopic Cholecystectomy Patients.

    PubMed

    Polat, Murat; Ozcan, Onder; Sahan, Leyla; Üstündag-Budak, Yasemin; Alisik, Murat; Yilmaz, Nigar; Erel, Özcan

    2016-12-01

    We aimed to investigate the short-term effect of laparoscopic surgery on serum thiol-disulfide homeostasis levels as a marker of oxidant stress of surgical trauma in elective laparoscopic cholecystectomy patients. Venous blood samples were collected, and levels of native thiols, total thiols, and disulfides were determined with a novel automated assay. Total antioxidant capacity (measured as the ferric-reducing ability of plasma) and serum ischemia modified albumin, expressed as absorbance units assayed by the albumin cobalt binding test, were determined. The major findings of the present study were that native thiol (283 ± 45 versus 241 ± 61 μmol/L), total thiol (313 ± 49 versus 263 ± 67 μmol/L), and disulfide (14.9 ± 4.6 versus 11.0 ± 6.1 μmol/L) levels were decreased significantly during operation and although they increased, they did not return to preoperation levels 24 hours after laparoscopic surgery compared to the levels at baseline. Disulfide/native thiol and disulfide/total thiol levels did not change during laparoscopic surgery. The decrease in plasma level of native and total thiol groups suggests impairment of the antioxidant capacity of plasma; however, the delicate balance between the different redox forms of thiols was maintained during surgery.

  3. Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives.

    PubMed

    Chen, Ying; Xu, Pengcheng; Li, Xinxin

    2010-07-02

    This paper presents a novel sensing layer modification technique for static micro-cantilever sensors that detect trace explosives by measuring specific adsorption-induced surface stress. For the first time, a method of directly modifying a siloxane sensing bilayer on an SiO(2) surface is proposed to replace the conventional self-assembled monolayers (SAMs) of thiols on Au to avoid the trouble from long-term unstable Au-S bonds. For modifying the long-term reliable sensing bilayer on the piezoresistor-integrated micro-cantilevers, a siloxane-head bottom layer is self-assembled directly on the SiO(2) cantilever surface, which is followed by grafting another explosive-sensing-group functionalized molecule layer on top of the siloxane layer. The siloxane-modified sensor has experimentally exhibited a highly resoluble response to 0.1 ppb TNT vapor. More importantly, the repeated detection results after 140 days show no obvious attenuation in sensing signal. Also observed experimentally, the specific adsorption of the siloxane sensing bilayer to TNT molecules causes a tensile surface stress on the cantilever. Herein the measured tensile surface stress is in contrast to the compressive surface stress normally measured from conventional cantilever sensors where the sensitive thiol-SAMs are modified on an Au surface. The reason for this newly observed phenomenon is discussed and preliminarily analyzed.

  4. Formation of Monolayers by the Coadsorption of Thiols on Gold: Variation in the Length of the Head Group, Tail Group, and Solvent

    DTIC Science & Technology

    1989-05-01

    The lack of a stable gold oxide1 9 obviates the need for special handling procedures and simplifies analysis by ellipsometry (the optical constants... analysis of a series of samples of varying composition. The standard error in both the O(ls) intensity and O/Au ratio was 3%. The O(ls) and Au(4f7/2...involved in the analysis of the XPS data. -0.5 120 Water 0.0 -90 COSOa 0.5 60 ,30 1.0. , 0 0.6 H Bromide 50 e Nitrile 0.7 0 Alcohol 0 Carboxylic

  5. Proteomic detection of oxidized and reduced thiol proteins in cultured cells.

    PubMed

    Cuddihy, Sarah L; Baty, James W; Brown, Kristin K; Winterbourn, Christine C; Hampton, Mark B

    2009-01-01

    The oxidation and reduction of cysteine residues is emerging as an important post-translational control of protein function. We describe a method for fluorescent labelling of either reduced or oxidized thiols in combination with two-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (2DE) to detect changes in the redox proteome of cultured cells. Reduced thiols are labelled with the fluorescent compound 5-iodoacetamidofluorescein. To monitor oxidized thiols, the reduced thiols are first blocked with N-ethyl-maleimide, then the oxidized thiols reduced with dithiothreitol and labelled with 5-iodoacetamidofluorescein. The method is illustrated by treating Jurkat T-lymphoma cells with hydrogen peroxide and monitoring increased labelling of oxidized thiol proteins. A decrease in labelling can also be detected, and this is attributed to the formation of higher oxidation states of cysteine that are not reduced by dithiothreitol.

  6. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles.

    PubMed

    Yantasee, Wassana; Warner, Cynthia L; Sangvanich, Thanapon; Addleman, R Shane; Carter, Timothy G; Wiacek, Robert J; Fryxell, Glen E; Timchalk, Charles; Warner, Marvin G

    2007-07-15

    We have shown that superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) are an effective sorbent material for toxic soft metals such as Hg, Ag, Pb, Cd, and Tl, which effectively bind to the DMSA ligands and for As, which binds to the iron oxide lattices. The nanoparticles are highly dispersible and stable in solutions, have a large surface area (114 m2/g), and have a high functional group content (1.8 mmol thiols/g). They are attracted to a magnetic field and can be separated from solution within a minute with a 1.2 T magnet. The chemical affinity, capacity, kinetics, and stability of the magnetic nanoparticles were compared to those of conventional resin based sorbents (GT-73), activated carbon, and nanoporous silica (SAMMS) of similar surface chemistries in river water, groundwater, seawater, and human blood and plasma. DMSA-Fe3O4 had a capacity of 227 mg of Hg/g, a 30-fold larger value than GT-73. The nanoparticles removed 99 wt% of 1 mg/L Pb within a minute, while it took over 10 and 120 min for Chelex-100 and GT-73 to remove 96% of Pb.

  7. The Redox Code

    PubMed Central

    Jones, Dean P.

    2015-01-01

    Abstract Significance: The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O2 and H2O2 contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. Recent Advances: Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. Critical Issues: Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be learned. Future Directions: Detailed knowledge of the molecular patterns generated from the principles of the redox code under defined physiological or pathological conditions in cells and organs will contribute to understanding the redox component in health and disease. Ultimately, there will be a scientific basis to a modern redox medicine. Antioxid. Redox Signal. 23, 734–746. PMID:25891126

  8. Enzymes immobilization on Fe 3O 4-gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalska-Szostko, B.; Rogowska, M.; Dubis, A.; Szymański, K.

    2012-01-01

    In the present study Fe3O4 magnetic nanoparticles were synthesized by coprecipitation of Fe2+ and Fe3+ from chlorides. In the next step magnetite-gold core-shell nanoparticles were synthesized from HAuCl4 using an ethanol as a reducing agent. Finally, magnetic nanoparticles were functionalized by hexadecanethiol. The immobilization of biological molecules (trypsin and glucose oxidase) to the thiol-modified and unmodified magnetite-gold nanoparticles surface was tested. The resulting nanoparticles were characterized by infrared spectroscopy, differential scanning calorimetry, Mössbauer spectroscopy and transmission electron microscopy.

  9. Multicomponent inorganic Janus particles with controlled compositions, morphologies, and dimensions.

    PubMed

    Lyubarskaya, Yekaterina L; Shestopalov, Alexander A

    2013-08-14

    We report a new protocol for the preparation of shape-controlled multicomponent particles comprising metallic (Au and Ti), magnetic (Ni), and oxide (SiO2, TiO2) layers. Our method allows for a precise control over the composition, shape, and size and permits fabrication of nonsymmetrical particles, whose opposite sides can be orthogonally functionalized using well-established organosilanes and thiol chemistries. Because of their unique geometries and surface chemistries, these colloids represent ideal materials with which to study nonsymmetrical self-assembly at the meso- and microscales.

  10. Gold nanoparticles with different capping systems: an electronic and structural XAS analysis.

    PubMed

    López-Cartes, C; Rojas, T C; Litrán, R; Martínez-Martínez, D; de la Fuente, J M; Penadés, S; Fernández, A

    2005-05-12

    Gold nanoparticles (NPs) have been prepared with three different capping systems: a tetralkylammonium salt, an alkanethiol, and a thiol-derivatized neoglycoconjugate. Also gold NPs supported on a porous TiO(2) substrate have been investigated. X-ray absorption spectroscopy (XAS) has been used to determine the electronic behavior of the different capped/supported systems regarding the electron/hole density of d states. Surface and size effects, as well as the role of the microstructure, have been also studied through an exhaustive analysis of the EXAFS (extended X-ray absorption fine structure) data. Very small gold NPs functionalized with thiol-derivatized molecules show an increase in d-hole density at the gold site due to Au-S charge transfer. This effect is overcoming size effects (which lead to a slightly increase of the d-electron density) for high S:Au atomic ratios and core-shell microstructures where an atomically abrupt Au-S interface likely does not exist. It has been also shown that thiol functionalization of very small gold NPs is introducing a strong distortion as compared to fcc order. To the contrary, electron transfer from reduced support oxides to gold NPs can produce a higher increase in d-electron density at the gold site, as compared to naked gold clusters.

  11. Assessment of the aroma impact of major odor-active thiols in pan-roasted white sesame seeds by calculation of odor activity values.

    PubMed

    Tamura, Hitoshi; Fujita, Akira; Steinhaus, Martin; Takahisa, Eisuke; Watanabe, Hiroyuki; Schieberle, Peter

    2011-09-28

    Eleven odor-active thiols, namely, 2-methyl-1-propene-1-thiol, (Z)-3-methyl-1-butene-1-thiol, (E)-3-methyl-1-butene-1-thiol, (Z)-2-methyl-1-butene-1-thiol, (E)-2-methyl-1-butene-1-thiol, 2-methyl-3-furanthiol, 3-mercapto-2-pentanone, 2-mercapto-3-pentanone, 4-mercapto-3-hexanone, 3-mercapto-3-methylbutyl formate, and 2-methyl-3-thiophenethiol, recently identified in an extract prepared from white sesame seeds, were quantitated in sesame using stable isotope dilution analyses. For that purpose, the following deuterium-labeled compounds were synthesized and used as internal standards in the quantitation assays: [2H6]-2-methyl-1-propene-1-thiol, [2H3]-(E)- and [2H3]-(Z)-2-methyl-1-butene-1-thiol, [2H3]-2-methyl-3-furanthiol, [2H2]-3-mercapto-2-pentanone, [2H3]-4-mercapto-3-hexanone, [2H6]-3-mercapto-3-methylbutyl formate, and [2H3]-2-methyl-3-thiophenethiol. On the basis of the results obtained, odor activity values (OAVs) were calculated as ratio of the concentration and odor threshold of the individual compounds in cooking oil. According to their high OAVs, particularly the 3-methyl-1-butene-1-thiols (OAV: 2400) and the 2-methyl-1-butene-1-thiols (OAV: 960) were identified as the most odor-active compounds in pan-roasted white sesame seeds. These compounds were therefore suggested to be mainly responsible for the characteristic but rather unstable sulfury aroma of freshly pan-roasted white sesame seeds.

  12. Thiol surface functionalization via continuous phase plasma polymerization of allyl mercaptan, with subsequent maleimide-linked conjugation of collagen.

    PubMed

    Stynes, Gil D; Gengenbach, Thomas R; Kiroff, George K; Morrison, Wayne A; Kirkland, Mark A

    2017-07-01

    Thiol groups can undergo a large variety of chemical reactions and are used in solution phase to conjugate many bioactive molecules. Previous research on solid substrates with continuous phase glow discharge polymerization of thiol-containing monomers may have been compromised by oxidation. Thiol surface functionalization via glow discharge polymerization has been reported as requiring pulsing. Herein, continuous phase glow discharge polymerization of allyl mercaptan (2-propene-1-thiol) was used to generate significant densities of thiol groups on a mixed macrodiol polyurethane and tantalum. Three general classes of chemistry are used to conjugate proteins to thiol groups, with maleimide linkers being used most commonly. Here the pH specificity of maleimide reactions was used effectively to conjugate surface-bound thiol groups to amine groups in collagen. XPS demonstrated surface-bound thiol groups without evidence of oxidation, along with the subsequent presence of maleimide and collagen. Glow discharge reactor parameters were optimized by testing the resistance of bound collagen to degradation by 8 M urea. The nature of the chemical bonding of collagen to surface thiol groups was effectively assessed by colorimetric assay (ELISA) of residual collagen after incubation in 8 M urea over 8 days and after incubation with keratinocytes over 15 days. The facile creation of useable solid-supported thiol groups via continuous phase glow discharge polymerization of allyl mercaptan opens a route for attaching a vast array of bioactive molecules. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1940-1948, 2017. © 2017 Wiley Periodicals, Inc.

  13. Kinetic and stoichiometric constraints determine the pathway of H2O2 consumption by red blood cells.

    PubMed

    Orrico, Florencia; Möller, Matías N; Cassina, Adriana; Denicola, Ana; Thomson, Leonor

    2018-05-09

    Red blood cells (RBC) are considered as a circulating sink of H 2 O 2 , but a significant debate remains over the role of the different intraerythocyte peroxidases. Herein we examined the kinetic of decomposition of exogenous H 2 O 2 by human RBC at different cell densities, using fluorescent and oxymetric methods, contrasting the results against a mathematical model. Fluorescent measurements as well as oxygen production experiments showed that catalase was responsible for most of the decomposition of H 2 O 2 at cell densities suitable for both experimental settings (0.1-10 × 10 10 cell L -1 ), since sodium azide but not N-ethylmaleimide (NEM) inhibited H 2 O 2 consumption. Oxygen production decreased at high cell densities until none was detected above 1.1 × 10 12 cell L- 1 , being recovered after inhibition of the thiol dependent systems by NEM. This result underlined that the consumption of H 2 O 2 by catalase prevail at RBC densities regularly used for research, while the thiol dependent systems predominate when the cell density increases, approaching the normal number in blood (5 × 10 12 cell L- 1 ). The mathematical model successfully reproduced experimental results and at low cell number it showed a time sequence involving Prx as the first line of defense, followed by catalase, with a minor role by Gpx. The turning points were given by the total consumption of reduced Prx in first place and reduced GSH after that. However, Prx alone was able to account for the added H 2 O 2 (50µM) at physiological RBC density, calling attention to the importance of cell density in defining the pathway of H 2 O 2 consumption and offering an explanation to current apparently conflicting results in the literature. Copyright © 2018. Published by Elsevier Inc.

  14. Quantitation of heparosan with heparin lyase III and spectrophotometry.

    PubMed

    Huang, Haichan; Zhao, Yingying; Lv, Shencong; Zhong, Weihong; Zhang, Fuming; Linhardt, Robert J

    2014-02-15

    Heparosan is Escherichia coli K5 capsule polysaccharide, which is the key precursor for preparing bioengineered heparin. A rapid and effective quantitative method for detecting heparosan is important in the large-scale production of heparosan. Heparin lyase III (Hep III) effectively catalyzes the heparosan depolymerization, forming unsaturated disaccharides that are measurable using a spectrophotometer at 232 nm. We report a new method for the quantitative detection of heparosan with heparin lyase III and spectrophotometry that is safer and more specific than the traditional carbazole assay. In an optimized detection system, heparosan at a minimum concentration of 0.60 g/L in fermentation broth can be detected. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Application of Atmospheric Pressure Photoionization H/D-exchange Mass Spectrometry for Speciation of Sulfur-containing Compounds.

    PubMed

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Ha, Ji-Hyoung; Kim, Sunghwan

    2017-08-01

    Herein we report the observation of atmospheric pressure in-source hydrogen-deuterium exchange (HDX) of thiol group for the first time. The HDX for thiol group was optimized for positive atmospheric pressure photoionization (APPI) mass spectrometry (MS). The optimized HDX-MS was applied for 31 model compounds (thiols, thiophenes, and sulfides) to demonstrate that exchanged peaks were observed only for thiols. The optimized method has been successfully applied to the isolated fractions of sulfur-rich oil samples. The exchange of one and two thiol hydrogens with deuterium was observed in the thiol fraction; no HDX was observed in the other fractions. Thus, the results presented in this study demonstrate that the HDX-MS method using APPI ionization source can be effective for speciation of sulfur compounds. This method has the potential to be used to access corrosion problems caused by thiol-containing compounds. Graphical Abstract ᅟ.

  16. Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles.

    PubMed

    Devi, J Meena

    2017-06-01

    The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Synthesis of a thiol-β-cyclodextrin, a potential agent for controlling enzymatic browning in fruits and vegetables.

    PubMed

    Manta, Carmen; Peralta-Altier, Gabriela; Gioia, Larissa; Méndez, María F; Seoane, Gustavo; Ovsejevi, Karen

    2013-11-27

    A thiol-β-cyclodextrin was synthesized by a simple and environmentally friendly three-step method comprising epoxy activation of β-cyclodextrin, thiosulfate-mediated oxirane opening, and further reduction of the S-alkyl thiosulfate to a thiol group. The final step was optimized by using thiopropyl-agarose, a solid phase reducing agent with many advantages over soluble ones. β-Cyclodextrin thiolation was confirmed by titration with a thiol-reactive reagent, NMR studies, and MALDI-TOF/TOF. Thiolated cyclodextrin had an average value of one thiol group per molecule. Thiol-β-cyclodextrin proved to be an excellent agent for controlling polyphenol oxidase activity. This copper-containing enzyme is responsible for browning in fruits and vegetables. Under the same conditions, thiol-β-cyclodextrin generated a reductive microenvironment that increased the antibrowning effect on Red Delicious apples compared to unmodified β-cyclodextrin.

  18. The Expanding Landscape of the Thiol Redox Proteome*

    PubMed Central

    Yang, Jing; Carroll, Kate S.; Liebler, Daniel C.

    2016-01-01

    Cysteine occupies a unique place in protein chemistry. The nucleophilic thiol group allows cysteine to undergo a broad range of redox modifications beyond classical thiol-disulfide redox equilibria, including S-sulfenylation (-SOH), S-sulfinylation (-SO2H), S-sulfonylation (-SO3H), S-nitrosylation (-SNO), S-sulfhydration (-SSH), S-glutathionylation (-SSG), and others. Emerging evidence suggests that these post-translational modifications (PTM) are important in cellular redox regulation and protection against oxidative damage. Identification of protein targets of thiol redox modifications is crucial to understanding their roles in biology and disease. However, analysis of these highly labile and dynamic modifications poses challenges. Recent advances in the design of probes for thiol redox forms, together with innovative mass spectrometry based chemoproteomics methods make it possible to perform global, site-specific, and quantitative analyses of thiol redox modifications in complex proteomes. Here, we review chemical proteomic strategies used to expand the landscape of thiol redox modifications. PMID:26518762

  19. Protein glutathionylation protects wheat (Triticum aestivum Var. Sonalika) against Fusarium induced oxidative stress.

    PubMed

    Mohapatra, Subhalaxmi; Mittra, Bhabatosh

    2016-12-01

    Fusarium induced oxidative stress could be recovered by reversible protein oxidative modification through the process of glutathionylation in co-stressed (low-dose (50 μM) Cd 2+ pre-treatment followed by Fusarium inoculation) wheat seedlings. Co-stressed seedlings showed low disease severity index as compared to Fusarium infected seedlings. A reduced level of hydrogen peroxide (H 2 O 2 ) and carbonyl contents due to irreversible protein oxidation were observed in co-stressed seedlings as compared to Fusarium infected seedlings. Further, a comparative biochemical assay showed an enhanced glutathione content in co-stressed tissues as compared to Fusarium infected tissues. In an investigation, reduced glutathione pre-coated agarose gel beads were used to pull down proteins having affinity with GSH. Fructose-1, 6-bisphosphate aldolase and 3-Phosphoglycerate kinase were observed to be co-existed in co-stressed seedlings when analysed by LC-MS/MS after being processed through protein-pull assay. Co-stressed tissues showed an enhanced free protein thiol content as compared to Fusarium infected tissues. The ratio of free thiol to thiol disulfides was also observed to be increased in co-stressed tissues as compared to Fusarium infected tissues. In contrast, the quantitative assay by Ellman's reagent and qualitative analysis by diagonal gel electrophoresis showed enhanced protein thiol disulfides in Fusarium infected tissues as compared to co-stressed tissues. Further, glutaredoxin, responsible for the reverse reduction of proteins was observed to be enhanced in co-stressed tissues as compared to Fusarium infected tissues. Thus, a low dose Cd 2+ triggered glutathionylation is suggestive of offering tolerance against Fusarium induced oxidative stress and protects target proteins from irreversible modification and permanent damage in wheat. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Mechanistic investigation of the formation of H2 from HCOOH with a dinuclear Ru model complex for formate hydrogen lyase.

    PubMed

    Tokunaga, Taisuke; Yatabe, Takeshi; Matsumoto, Takahiro; Ando, Tatsuya; Yoon, Ki-Seok; Ogo, Seiji

    2017-01-01

    We report the mechanistic investigation of catalytic H 2 evolution from formic acid in water using a formate-bridged dinuclear Ru complex as a formate hydrogen lyase model. The mechanistic study is based on isotope-labeling experiments involving hydrogen isotope exchange reaction.

  1. Cooperative functioning between phenylalanine ammonia lyase and isochorishmate synthase activities contributes to salicylic acid biosynthesis in soybean

    USDA-ARS?s Scientific Manuscript database

    Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL), or the isochorishmate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We...

  2. Effects of phenylalanine ammonia lyase (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium

    USDA-ARS?s Scientific Manuscript database

    Phenylalanine Ammonia Lyase (PAL) catalyzes the first step in the phenylpropanoid pathway in plants, controlling biosynthesis of a variety of structural and defense compounds including monolignols that polymerize into lignin. Gaps remain in our understanding of how genetic alterations to this pathwa...

  3. A Facile Stable-Isotope Dilution Method for Determination of Sphingosine Phosphate Lyase Activity

    PubMed Central

    Suh, Jung H.; Eltanawy, Abeer; Rangan, Apoorva; Saba, Julie D.

    2015-01-01

    A new technique for quantifying sphingosine phosphate lyase activity in biological samples is described. In this procedure, 2-hydrazinoquinoline is used to convert (2E)-hexadecenal into the corresponding hydrazone derivative to improve ionization efficiency and selectivity of detection. Combined utilization of liquid chromatographic separation and multiple reaction monitoring-mass spectrometry allows for simultaneous quantification of the substrate S1P and product (2E)-hexadecenal. Incorporation of (2E)-d5-hexadecenal as an internal standard improves detection accuracy and precision. A simple one-step derivatization procedure eliminates the need for further extractions. Limits of quantification for (2E)-hexadecenal and sphingosine-1-phosphate are 100 and 50 fmol, respectively. The assay displays a wide dynamic detection range useful for detection of low basal sphingosine phosphate lyase activity in wild type cells, SPL-overexpressing cell lines, and wild type mouse tissues. Compared to current methods, the capacity for simultaneous detection of sphingosine-1-phosphate and (2E)-hexadecenal greatly improves the accuracy of results and shows excellent sensitivity and specificity for sphingosine phosphate lyase activity detection. PMID:26408264

  4. Isocitrate Lyase from Flax 1

    PubMed Central

    Khan, Fazal R.; McFadden, Bruce A.

    1982-01-01

    The cleavage of Ds-isocitrate catalyzed by isocitrate lyase from Linum usitatissimum results in the ordered release of succinate and glyoxylate. The glyoxylate analog 3-bromopyruvate irreversibly inactivates the flax enzyme in a process exhibiting saturation kinetics and protection by glyoxylate or isocitrate or the competitive inhibitor l-tartrate. Succinate provides considerably less protection. Results with 3-bromopyruvate suggest that this reagent modifies plant and prokaryotic isocitrate lyases differently. Treatment of the tetrameric 264,000-dalton flax enzyme with carboxypeptidase A results in a release of one histidine/subunit which is concordant with loss of activity. The only N-terminal residue is methionine. Treatment of flax enzyme with diethylpyrocarbonate at pH 6.5 selectively modifies two histidines per 67,000-dalton subunit. The reaction of one histidine residue is abolished by the binding of l-tartrate and the modification of one is coincident with inactivation. The carboxy-terminal and active-site modifications establish that one histidine residue/monomer is essential in the flax enzyme and considerably extend information heretofore available only for fungal and bacterial isocitrate lyase. PMID:16662648

  5. A cDNA clone highly expressed in ripe banana fruit shows homology to pectate lyases.

    PubMed

    Dominguez-Puigjaner, E; LLop, I; Vendrell, M; Prat, S

    1997-07-01

    A cDNA clone (Ban17), encoding a protein homologous to pectate lyase, has been isolated from a cDNA library from climacteric banana fruit by means of differential screening. Northern analysis showed that Ban17 mRNA is first detected in early climacteric fruit, reaches a steady-state maximum at the climacteric peak, and declines thereafter in overripe fruit. Accumulation of the Ban17 transcript can be induced in green banana fruit by exogenous application of ethylene. The demonstrates that expression of this gene is under hormonal control, its induction being regulated by the rapid increase in ethylene production at the onset of ripening. The deduced amino acid sequence derived from the Ban17 cDNA shares significant identity with pectate lyases from pollen and plant pathogenic bacteria of the genus Erwinia. Similarity to bacterial pectate lyases that were proven to break down the pectic substances of the plant cell wall suggest that Ban17 might play a role in the loss of mesocarp firmness during fruit ripening.

  6. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids

    PubMed Central

    Eoh, Hyungjin; Rhee, Kyu Y.

    2014-01-01

    Few mutations attenuate Mycobacterium tuberculosis (Mtb) more profoundly than deletion of its isocitrate lyases (ICLs). However, the basis for this attenuation remains incompletely defined. Mtb’s ICLs are catalytically bifunctional isocitrate and methylisocitrate lyases required for growth on even and odd chain fatty acids. Here, we report that Mtb’s ICLs are essential for survival on both acetate and propionate because of its methylisocitrate lyase (MCL) activity. Lack of MCL activity converts Mtb’s methylcitrate cycle into a “dead end” pathway that sequesters tricarboxylic acid (TCA) cycle intermediates into methylcitrate cycle intermediates, depletes gluconeogenic precursors, and results in defects of membrane potential and intrabacterial pH. Activation of an alternative vitamin B12-dependent pathway of propionate metabolism led to selective corrections of TCA cycle activity, membrane potential, and intrabacterial pH that specifically restored survival, but not growth, of ICL-deficient Mtb metabolizing acetate or propionate. These results thus resolve the biochemical basis of essentiality for Mtb’s ICLs and survival on fatty acids. PMID:24639517

  7. Conserved water-mediated H-bonding dynamics of catalytic Asn 175 in plant thiol protease.

    PubMed

    Nandi, Tapas K; Bairagya, Hridoy R; Mukhopadhyay, Bishnu P; Sekar, K; Sukul, Dipankar; Bera, Asim K

    2009-03-01

    The role of invariant water molecules in the activity of plant cysteine protease is ubiquitous in nature. On analysing the 11 different Protein DataBank (PDB) structures of plant thiol proteases, the two invariant water molecules W1 and W2 (W220 and W222 in the template 1PPN structure) were observed to form H-bonds with the O b atom of Asn 175. Extensive energy minimization and molecular dynamics simulation studies up to 2 ns on all the PDB and solvated structures clearly revealed the involvement of the H-bonding association of the two water molecules in fixing the orientation of the asparagine residue of the catalytic triad. From this study,it is suggested that H-bonding of the water molecule at the W1 invariant site better stabilizes the Asn residue at the active site of the catalytic triad.

  8. Towards thiol functionalization of vanadium pentoxide nanotubes using gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavayen, V.; O'Dwyer, C.; Cardenas, G.

    2007-04-12

    Template-directed synthesis is a promising route to realize vanadate-based 1-D nanostructures, an example of which is the formation of vanadium pentoxide nanotubes and associated nanostructures. In this work, we report the interchange of long-chained alkyl amines with alkyl thiols. This reaction was followed using gold nanoparticles prepared by the Chemical Liquid Deposition (CLD) method with an average diameter of {approx}0.9nm and a stability of {approx}85 days. V{sub 2}O{sub 5} nanotubes (VOx-NTs) with lengths of {approx}2{mu}m and internal hollow diameters of 20-100nm were synthesized and functionalized in a Au-acetone colloid with a nominal concentration of {approx}4x10{sup -3}mol dm{sup -3}. The interchangemore » reaction with dodecylamine is found only to occur in polar solvents and incorporation of the gold nanoparticles is not observed in the presence of n-decane.« less

  9. Determination of acidity and nucleophilicity in thiols by reaction with monobromobimane and fluorescence detection.

    PubMed

    Sardi, Florencia; Manta, Bruno; Portillo-Ledesma, Stephanie; Knoops, Bernard; Comini, Marcelo A; Ferrer-Sueta, Gerardo

    2013-04-01

    A method based on the differential reactivity of thiol and thiolate with monobromobimane (mBBr) has been developed to measure nucleophilicity and acidity of protein and low-molecular-weight thiols. Nucleophilicity of the thiolate is measured as the pH-independent second-order rate constant of its reaction with mBBr. The ionization constants of the thiols are obtained through the pH dependence of either second-order rate constant or initial rate of reaction. For readily available thiols, the apparent second-order rate constant is measured at different pHs and then plotted and fitted to an appropriate pH function describing the observed number of ionization equilibria. For less available thiols, such as protein thiols, the initial rate of reaction is determined in a wide range of pHs and fitted to the appropriate pH function. The method presented here shows excellent sensitivity, allowing the use of nanomolar concentrations of reagents. The method is suitable for scaling and high-throughput screening. Example determinations of nucleophilicity and pK(a) are presented for captopril and cysteine as low-molecular-weight thiols and for human peroxiredoxin 5 and Trypanosoma brucei monothiol glutaredoxin 1 as protein thiols. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Low-molecular-weight thiols in streptomycetes and their potential role as antioxidants.

    PubMed Central

    Newton, G L; Fahey, R C; Cohen, G; Aharonowitz, Y

    1993-01-01

    The intracellular low-molecular-weight thiols present in five gram-positive Streptomyces species and one Flavobacterium species were analyzed by high-performance liquid chromatography after fluorescence labeling with monobromobimane. Bacteria were chosen to include penicillin and cephalosporin beta-lactam producers and nonproducers. No significant amount of glutathione was found in any of the streptomycetes. Major intracellular thiols in all strains examined were cysteine, coenzyme A, sulfide, thiosulfate, and an unknown thiol designated U17. Those streptomycetes that make beta-lactam antibiotics also produce significant amounts of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV), a key intermediate in their biosynthesis. In Streptomyces clavuligerus, a potent producer of beta-lactams, the level of ACV was low during the early phase of growth and increased rapidly toward the end of exponential growth, paralleling that of antibiotic production. These and other observations indicate that ACV does not function as a protective thiol in streptomycetes. U17 may have this role since it was the major thiol in all streptomycetes and appeared to occur at levels about 10-fold higher than those of the other thiols measured, including ACV. Purification and amino acid analysis of U17 indicated that it contains cysteine and an unusual amine that is not one of the common amino acids. This thiol is identical to an unknown thiol found previously in Micrococcus roseus and Streptomyces griseus. A high level of ergothioneine was found in Streptomyces lactamdurans, and several unidentified thiols were detected in this and other streptomycetes. PMID:8478335

  11. Probing the Active Center of Benzaldehyde Lyase with Substitutions and the Pseudosubstrate Analogue Benzoylphosphonic Acid Methyl Ester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit

    2008-07-28

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg{sup 2+} as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these types of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analogue of benzoylformic acid, is used tomore » probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 {angstrom} (Protein Data Bank entry 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase.« less

  12. Probing the active center of benzaldehyde lyase with substitutions and the pseudo-substrate analog benzoylphosphonic acid methyl ester

    PubMed Central

    Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J.; Yep, Alejandra; Kenyon, George L.; Petsko, Gregory A.; Jordan, Frank; Ringe, Dagmar

    2009-01-01

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg2+ as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these type of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analog of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 Å (PDB ID: 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase. PMID:18570438

  13. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans.

    PubMed

    Cartmell, Alan; Lowe, Elisabeth C; Baslé, Arnaud; Firbank, Susan J; Ndeh, Didier A; Murray, Heath; Terrapon, Nicolas; Lombard, Vincent; Henrissat, Bernard; Turnbull, Jeremy E; Czjzek, Mirjam; Gilbert, Harry J; Bolam, David N

    2017-07-03

    The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for Bacteroides thetaiotaomicron , a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases and sulfatases that mediate degradation. It is possible that the bacterium recruits lyases with highly plastic specificities and expresses a repertoire of enzymes that target substructures of the glycosaminoglycans with variable sulfation or that the glycans are desulfated before cleavage by the lyases. To distinguish between these mechanisms, the components of the B. thetaiotaomicron Hep/HS degrading apparatus were analyzed. The data showed that the bacterium expressed a single-surface endo-acting lyase that cleaved HS, reflecting its higher molecular weight compared with Hep. Both Hep and HS oligosaccharides imported into the periplasm were degraded by a repertoire of lyases, with each enzyme displaying specificity for substructures within these glycosaminoglycans that display a different degree of sulfation. Furthermore, the crystal structures of a key surface glycan binding protein, which is able to bind both Hep and HS, and periplasmic sulfatases reveal the major specificity determinants for these proteins. The locus described here is highly conserved within the human gut Bacteroides , indicating that the model developed is of generic relevance to this important microbial community.

  14. Docosahexaenoic acid attenuates oxidative stress and protects human gingival fibroblasts against cytotoxicity induced by hydrogen peroxide and butyric acid.

    PubMed

    Zgorzynska, Emilia; Wierzbicka-Ferszt, Anita; Dziedzic, Barbara; Witusik-Perkowska, Monika; Zwolinska, Anna; Janas, Anna; Walczewska, Anna

    2015-01-01

    The oxidative burst of the host cells associated with bacterial pathogen infection contributes to the destruction of periodontal tissue. The present study investigates the effect of docosahexaenoic acid (DHA) on human gingival fibroblast (HGF) viability and ROS generation. The cell viability by MTT assay, ROS level using H2DCF-DA probe, and protein thiol content were measured in HGFs after 24h preincubation with different concentrations of DHA followed by treatment with H2O2. The cell death rate was determined by Annexin V/propidium iodide staining, and mitochondrial membrane potential (ΔΨm) was examined by MitoTracker Red probe in H2O2- and butyric acid-treated HGFs. The fatty acid composition of plasma membranes after incubation with DHA was determined by gas chromatography mass spectrometry. DHA preincubation in a dose-dependent manner increased the viability of HGFs exposed to H2O2 and decreased ROS generation compared to the control cells. In HGFs preincubated with 30μM DHA, the ΔΨm significantly increased in both H2O2- and butyric acid-treated cells. Moreover, incubation with DHA preserved the protein thiol level as effectively as N-acetylcysteine. Application of 50μM DHA increased the quantity of viable cells, decreased the number of necrotic cells after H2O2 treatment, and protected HGFs from apoptosis induced by butyric acid. DHA in the plasma membranes of these HGFs represented about 6% of the total amount of fatty acids. These results demonstrate that enrichment of HGFs with DHA reduces ROS generation and enhances the mitochondrial membrane potential protecting the fibroblasts against cytotoxic factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The roles of protein disulphide isomerase family A, member 3 (ERp57) and surface thiol/disulphide exchange in human spermatozoa-zona pellucida binding.

    PubMed

    Wong, Chi-Wai; Lam, Kevin K W; Lee, Cheuk-Lun; Yeung, William S B; Zhao, Wei E; Ho, Pak-Chung; Ou, Jian-Ping; Chiu, Philip C N

    2017-04-01

    Are multimeric sperm plasma membrane protein complexes, ERp57 and sperm surface thiol content involved in human spermatozoa-zona pellucida (ZP) interaction? ERp57 is a component of a multimeric spermatozoa-ZP receptor complex involved in regulation of human spermatozoa-ZP binding via up-regulation of sperm surface thiol content. A spermatozoon acquires its fertilization capacity within the female reproductive tract by capacitation. Spermatozoa-ZP receptor is suggested to be a composite structure that is assembled into a functional complex during capacitation. Sperm surface thiol content is elevated during capacitation. ERp57 is a protein disulphide isomerase that modulates the thiol-disulphide status of proteins. The binding ability and components of protein complexes in extracted membrane protein fractions of spermatozoa were studied. The roles of capacitation, thiol-disulphide reagent treatments and ERp57 on sperm functions and sperm surface thiol content were assessed. Spermatozoa were obtained from semen samples from normozoospermic men. Human oocytes were obtained from an assisted reproduction programme. Blue native polyacrylamide gel electrophoresis, western ligand blotting and mass spectrometry were used to identify the components of solubilized ZP/ZP3-binding complexes. The localization and expression of sperm surface thiol and ERp57 were studied by immunostaining and sperm surface protein biotinylation followed by western blotting. Sperm functions were assessed by standard assays. Several ZP-binding complexes were isolated from the cell membrane of capacitated spermatozoa. ERp57 was a component of one of these complexes. Capacitation significantly increased the sperm surface thiol content, acrosomal thiol distribution and ERp57 expression on sperm surface. Sperm surface thiol and ERp57 immunoreactivity were localized to the acrosomal region of spermatozoa, a region responsible for ZP-binding. Up-regulation of the surface thiol content or ERp57 surface expression in vitro stimulated ZP-binding capacity of human spermatozoa. Blocking of ERp57 function by specific antibody or inhibitors against ERp57 reduced the surface thiol content and ZP-binding capacity of human spermatozoa. N/A. The mechanisms by which up-regulation of surface thiol content stimulates spermatozoa-ZP binding have not been depicted. Thiol-disulphide exchange is a crucial event in capacitation. ERp57 modulates the event and the subsequent fertilization process. Modulation of the surface thiol content of the spermatozoa of subfertile men may help to increase fertilization rate in assisted reproduction. This work was supported by The Hong Kong Research Grant Council Grant HKU764611 and HKU764512M to P.C.N.C. The authors have no competing interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  16. Pectate lyase PelI of Erwinia chrysanthemi 3937 belongs to a new family.

    PubMed Central

    Shevchik, V E; Robert-Baudouy, J; Hugouvieux-Cotte-Pattat, N

    1997-01-01

    Erwinia chrysanthemi 3937 secretes five major isoenzymes of pectate lyases encoded by the pel4, pelB, pelC, pelD, and pelE genes and a set of secondary pectate lyases, two of which, pelL and pelZ, have been already identified. We cloned the pelI gene, encoding a ninth pectate lyase of E. chrysanthemi 3937. The pelI reading frame is 1,035 bases long, corresponding to a protein of 344 amino acids including a typical amino-terminal signal sequence of 19 amino acids. The purified mature PelI protein has an isoelectric point of about 9 and an apparent molecular mass of 34 kDa. PelI has a preference for partially methyl esterified pectin and presents an endo-cleaving activity with an alkaline pH optimum and an absolute requirement for Ca2+ ions. PelI is an extracellular protein secreted by the Out secretory pathway of E. chrysanthemi. The PelI protein is very active in the maceration of plant tissues. A pelI mutant displayed reduced pathogenicity on chicory leaves, but its virulence did not appear to be affected on potato tubers or Saintpaulia ionantha plants. The pelI gene constitutes an independent transcriptional unit. As shown for the other pel genes, the transcription of pelI is dependent on various environmental conditions. It is induced by pectic catabolic products and affected by growth phase, oxygen limitation, temperature, nitrogen starvation, and catabolite repression. Regulation of pelI expression appeared to be dependent on the three repressors of pectinase synthesis, KdgR, PecS, and PecT, and on the global activator of sugar catabolism, cyclic AMP receptor protein. A functional KdgR binding site was identified close to the putative pelI promoter. Analysis of the amino acid sequence of PelI revealed high homology with a pectate lyase from Erwinia carotovora subsp. carotovora (65% identity) and low homology with pectate lyases of the phytopathogenic fungus Nectria haematococca (Fusarium solani). This finding indicates that PelI belongs to pectate lyase class III. Using immunoblotting experiments, we detected PelI homologs in various strains of E. chrysanthemi and E. carotovora subsp. carotovora but not in E. carotovora subsp. atroseptica. PMID:9393696

  17. Visible light-initiated interfacial thiol-norbornene photopolymerization for forming islet surface conformal coating

    PubMed Central

    Shih, Han; Mirmira, Raghavendra G.; Lin, Chien-Chi

    2015-01-01

    A cytocompatible visible light-mediated interfacial thiol-norbornene photopolymerization scheme was developed for creating hydrogel conformal coating on pancreatic islets. The step-growth thiol-norbornene reaction affords high consistency and tunability in gel coating thickness. Furthermore, isolated islets coated with thiol-norbornene gel maintained their viability and function in vitro. PMID:26509035

  18. Functional thiols as repair and doping agents of defective MoS2 monolayers

    NASA Astrophysics Data System (ADS)

    Förster, Anja; Gemming, Sibylle; Seifert, Gotthard

    2018-06-01

    Recent experimental and theoretical studies indicate that thiols (R-SH) can be used to repair sulfur vacancy defects in MoS2 monolayers (MLs). This density functional theory study investigates how the thiol repair mechanism process can be used to dope MoS2 MLs. Fluorinated thiols as well as amine-containing ones are used to p- and n-dope the MoS2 ML, respectively. It is shown that functional groups are only physisorbed on the repaired MoS2 surface. This explains the reversible doping with fluorinated thiols.

  19. Thiol/disulfide homeostasis in asphalt workers.

    PubMed

    Yilmaz, Ömer Hınç; Bal, Ceylan; Neşelioglu, Salim; Büyükşekerci, Murat; Gündüzöz, Meşide; Eren, Funda; Tutkun, Lutfiye; Yilmaz, Fatma Meric

    2016-09-02

    The aim of this study was to investigate thiol/disulfide homeostasis in asphalt workers who are exposed to polycyclic aromatic hydrocarbons occupationally. The study was carried out in 34 nonsmoker asphalt workers. Additionally, 35 healthy nonsmoker volunteers were recruited as control group. Thiol and disulfide concentrations were determined using the novel automated measurement method. Levels of urinary 1-OH-pyrene were analyzed by liquid chromatography. Disulfide/thiol ratio was significantly higher in exposed group (p = .034). Also, a positive correlation was detected between disulfide/thiol ratio and 1-OH-pyrene values (r = .249, p = .036). Thiol/disulfide homeostasis was found to be disturbed in asphalt workers. The novel test used in this study may be useful for evaluating the oxidative status in polycyclic aromatic hydrocarbon (PAH) exposure.

  20. Negative Electron Transfer Dissociation Sequencing of 3-O-Sulfation-Containing Heparan Sulfate Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Wu, Jiandong; Wei, Juan; Hogan, John D.; Chopra, Pradeep; Joshi, Apoorva; Lu, Weigang; Klein, Joshua; Boons, Geert-Jan; Lin, Cheng; Zaia, Joseph

    2018-03-01

    Among dissociation methods, negative electron transfer dissociation (NETD) has been proven the most useful for glycosaminoglycan (GAG) sequencing because it produces informative fragmentation, a low degree of sulfate losses, high sensitivity, and translatability to multiple instrument types. The challenge, however, is to distinguish positional sulfation. In particular, NETD has been reported to fail to differentiate 4-O- versus 6-O-sulfation in chondroitin sulfate decasaccharide. This raised the concern of whether NETD is able to differentiate the rare 3-O-sulfation from predominant 6-O-sulfation in heparan sulfate (HS) oligosaccharides. Here, we report that NETD generates highly informative spectra that differentiate sites of O-sulfation on glucosamine residues, enabling structural characterizations of synthetic HS isomers containing 3-O-sulfation. Further, lyase-resistant 3-O-sulfated tetrasaccharides from natural sources were successfully sequenced. Notably, for all of the oligosaccharides in this study, the successful sequencing is based on NETD tandem mass spectra of commonly observed deprotonated precursor ions without derivatization or metal cation adduction, simplifying the experimental workflow and data interpretation. These results demonstrate the potential of NETD as a sensitive analytical tool for detailed, high-throughput structural analysis of highly sulfated GAGs. [Figure not available: see fulltext.

  1. Mechanistic investigation of Fe(III) oxide reduction by low molecular weight organic sulfur species

    NASA Astrophysics Data System (ADS)

    Eitel, Eryn M.; Taillefert, Martial

    2017-10-01

    Low molecular weight organic sulfur species, often referred to as thiols, are known to be ubiquitous in aquatic environments and represent important chemical reductants of Fe(III) oxides. Thiols are excellent electron shuttles used during dissimilatory iron reduction, and in this capacity could indirectly affect the redox state of sediments, release adsorbed contaminants via reductive dissolution, and influence the carbon cycle through alteration of bacterial respiration processes. Interestingly, the reduction of Fe(III) oxides by thiols has not been previously investigated in environmentally relevant conditions, likely due to analytical limitations associated with the detection of thiols and their oxidized products. In this study, a novel electrochemical method was developed to simultaneously determine thiol/disulfide pair concentrations in situ during the reduction of ferrihydrite in batch reactors. First order rate laws with respect to initial thiol concentration were confirmed for Fe(III) oxyhydroxide reduction by four common thiols: cysteine, homocysteine, cysteamine, and glutathione. Zero order was determined for both Fe(III) oxyhydroxide and proton concentration at circumneutral pH. A kinetic model detailing the molecular mechanism of the reaction was optimized with proposed intermediate surface structures. Although metal oxide overall reduction rate constants were inversely proportional to the complexity of the thiol structure, the extent of metal reduction increased with structure complexity, indicating that surface complexes play a significant role in the ability of these thiols to reduce iron. Taken together, these results demonstrate the importance of considering the molecular reaction mechanism at the iron oxide surface when investigating the potential for thiols to act as electron shuttles during dissimilatory iron reduction in natural environments.

  2. Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins.

    PubMed

    Avan, Aslı Neslihan; Demirci Çekiç, Sema; Uzunboy, Seda; Apak, Reşat

    2016-08-12

    Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET)-based total antioxidant capacity (TAC) assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC), and ferric reducing antioxidant power (FRAP), were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols) mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol) and (phenol + protein) mixtures with minimal relative error. As ABTS/TEAC and FRAP methods gave small and large deviations, respectively, from additivity of absorbances arising from these components in mixtures, mercury(II) compounds were added to stabilize the thiol components in the form of Hg(II)-thiol complexes so as to enable selective spectrophotometric determination of phenolic components. This error compensation was most efficient for the FRAP method in testing (thiols + phenols) mixtures.

  3. An evaluation of thiol/disulphide homeostasis in patients with psoriasis

    PubMed Central

    Yorulmaz, Ahu; Erdogan, Serpil; Cakmak, Seray Kulcu; Guney, Elif; Sen, Orhan; Erel, Ozcan

    2017-01-01

    Introduction The role of oxidative stress in the pathogenesis of psoriasis has been investigated in previous studies with conflicting results. On the other hand, well-established treatments currently used in psoriasis exert their effects via a boost of oxidative stress. Recently, a strong positive association between psoriasis, metabolic syndrome and dyslipidemia has also been described showing the complex nature of the disease. Aim To examine thiol/disulphide homeostasis, a newly developed homeostasis assay in psoriasis and evaluate the possible association between thiol/disulphide homeostasis and dyslipidemia in psoriasis. Material and methods The study population included 92 psoriasis patients and 71 healthy subjects. Serum native thiol, total thiol and disulphide levels were investigated in patients with psoriasis and in healthy subjects. In addition, lipid profile (serum total cholesterol, triglyceride, high-density lipoprotein cholesterol and low-density lipoprotein cholesterol) levels were investigated in both groups. The association between thiol-disulphide parameters and dyslipidemia was also evaluated. Results Serum total cholesterol and triglyceride levels were found to be higher in patients with psoriasis than in the healthy group. Lower plasma disulphide and higher native thiol levels were found in patients with psoriasis indicating an antioxidant status. Conclusions To our knowledge, this is the first study showing the shift of dynamic thiol/disulphide homeostasis towards the thiol form in psoriasis which indicate higher antioxidant status. PMID:29507562

  4. Intercalation of gaseous thiols and sulfides into Ag+ ion-exchanged aluminum dihydrogen triphosphate.

    PubMed

    Hayashi, Aki; Saimen, Hiroki; Watanabe, Nobuaki; Kimura, Hitomi; Kobayashi, Ayumi; Nakayama, Hirokazu; Tsuhako, Mitsutomo

    2005-08-02

    Ag(+) ion-exchanged layered aluminum dihydrogen triphosphate (AlP) with the interlayer distance of 0.85 nm was synthesized by the ion-exchange of proton in triphosphate with Ag(+) ion. The amount of exchanged Ag(+) ion depended on the concentration of AgNO(3) aqueous solution. Ag(+) ion-exchanged AlP adsorbed gaseous thiols and sulfides into the interlayer region. The adsorption amounts of thiols were more than those of sulfides, thiols with one mercapto group > thiol with two mercapto groups > sulfides, and depended on the amount of exchanged Ag(+) ion in the interlayer region. The thiols with one mercapto group were intercalated to expand the interlayer distance of Ag(+) ion-exchanged AlP, whereas there was no expansion in the adsorption of sulfide. In the case of thiol with two mercapto groups, there was observed contraction of the interlayer distance through the bridging with Ag(+) ions of the upper and lower sides of the interlayer region.

  5. Detection of intracellular glutathione using ThiolTracker violet stain and fluorescence microscopy.

    PubMed

    Mandavilli, Bhaskar S; Janes, Michael S

    2010-07-01

    Glutathione plays an important role in protecting mammalian cells from oxidative stress and cell death. Because reduced glutathione (GSH) represents the large majority of intracellular free thiols, cell-permeant, thiol-reactive fluorescent probes represent potentially useful indicators of intracellular GSH. The ThiolTracker Violet stain (a registered trademark of Invitrogen) is a bright fluorescent probe that is highly reactive to thiols and can be used as a convenient and effective indicator of intracellular GSH and general redox status by a variety of detection modalities. While this probe has been validated in flow cytometry and microplate fluorimetry assays, the following method will describe details on the use of the ThiolTracker Violet dye in traditional fluorescence microscopy, as well as high-content imaging and analysis.

  6. Moderate physical exercise induces the oxidation of human blood protein thiols.

    PubMed

    Inayama, Takayo; Oka, Jun; Kashiba, Misato; Saito, Makoto; Higuchi, Mitsuru; Umegaki, Keizo; Yamamoto, Yorihiro; Matsuda, Mitsuo

    2002-03-15

    Exercise is known to induce the oxidation of blood low-molecular-weight (LMW) thiols such as reduced glutathione (GSH). We previously reported that full-marathon running induced a decrease in human plasma levels of protein-bound sulfhydryl groups (p-SHs). Moderate exercise, a 30-min running at the intensity of the individual ventilatory threshold, performed by untrained healthy females caused a significant decrease in erythrocyte levels of p-SHs (mostly hemoglobin cysteine residues) and LMW thiols, but their levels returned to each baseline by 2 h. No significant change in plasma LMW thiols was observed. However, plasma levels of p-SHs significantly decreased after running and remained unchanged after 24 h. These results suggest that moderate exercise causes the oxidation of blood thiols, especially protein-bound thiols.

  7. Superoxide produced in the matrix of mitochondria enhances methylmercury toxicity in human neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mailloux, Ryan J.; Yumvihoze, Emmanuel; Chan, Hing Man, E-mail: laurie.chan@uottawa.ca

    2015-12-15

    The mechanism of intracellular metabolism of methylmercury (MeHg) is not fully known. It has been shown that superoxide (O{sub 2}·{sup −}), the proximal reactive oxygen species (ROS) generated by mitochondria, is responsible for MeHg demethylation. Here, we investigated the impact of different mitochondrial respiratory inhibitors, namely rotenone and antimycin A, on the O{sub 2}·{sup −} mediated degradation of MeHg in human neuroblastoma cells SH-K-SN. We also utilized paraquat (PQ) which generates O{sub 2}·{sup −} in the mitochondrial matrix. We found that the cleavage of the carbon-metal bond in MeHg was highly dependent on the topology of O{sub 2}·{sup −} productionmore » by mitochondria. Both rotenone and PQ, which increase O{sub 2}·{sup −} in the mitochondrial matrix at a dose-dependent manner, enhanced the conversion of MeHg to inorganic mercury (iHg). Surprisingly, antimycin A, which prompts emission of O{sub 2}·{sup −} into the intermembrane space, did not have the same effect even though antimycin A induced a dose dependent increase in O{sub 2}·{sup −} emission. Rotenone and PQ also enhanced the toxicity of sub-toxic doses (0.1 μM) MeHg which correlated with the accumulation of iHg in mitochondria and depletion of mitochondrial protein thiols. Taken together, our results demonstrate that MeHg degradation is mediated by mitochondrial O{sub 2}·{sup −}, specifically within the matrix of mitochondria when O{sub 2}·{sup −} is in adequate supply. Our results also show that O{sub 2}·{sup −} amplifies MeHg toxicity specifically through its conversion to iHg and subsequent interaction with protein cysteine thiols (R-SH). The implications of our findings in mercury neurotoxicity are discussed herein. - Highlights: • Superoxide produced in the matrix of mitochondria degrades MeHg. • Superoxide produced in intermembrane space does not degrade MeHg. • Matrix-generated superoxide enhances Hg toxicity by converting MeHg to iHg.« less

  8. Interaction between cysteine synthase and serine O-acetyltransferase proteins and their stage specific expression in Leishmania donovani.

    PubMed

    Singh, Kuljit; Singh, Krishn Pratap; Equbal, Asif; Suman, Shashi S; Zaidi, Amir; Garg, Gaurav; Pandey, Krishna; Das, Pradeep; Ali, Vahab

    2016-12-01

    Leishmania possess a unique trypanothione redox metabolism with undebated roles in protection from oxidative damage and drug resistance. The biosynthesis of trypanothione depends on l-cysteine bioavailability which is regulated by cysteine biosynthesis pathway. The de novo cysteine biosynthesis pathway is comprised of serine O-acetyltransferase (SAT) and cysteine synthase (CS) enzymes which sequentially mediate two consecutive steps of cysteine biosynthesis, and is absent in mammalian host. However, despite the apparent dependency of redox metabolism on cysteine biosynthesis pathway, the role of SAT and CS in redox homeostasis has been unexplored in Leishmania parasites. Herein, we have characterized CS and SAT to investigate their interaction and relative abundance of these proteins in promastigote vs. amastigote growth stages of L. donovani. CS and SAT genes of L. donovani (LdCS and LdSAT) were cloned, expressed, and fusion proteins purified to homogeneity with affinity column chromatography. Purified LdCS contains PLP as cofactor and showed optimum enzymatic activity at pH 7.5. Enzyme kinetics showed that LdCS catalyses the synthesis of cysteine using O-acetylserine and sulfide with a K m of 15.86 mM and 0.17 mM, respectively. Digitonin fractionation and indirect immunofluorescence microscopy showed that LdCS and LdSAT are localized in the cytoplasm of promastigotes. Size exclusion chromatography, co-purification, pull down and immuno-precipitation assays demonstrated a stable complex formation between LdCS and LdSAT proteins. Furthermore, LdCS and LdSAT proteins expression/activity was upregulated in amastigote growth stage of the parasite. Thus, the stage specific differential expression of LdCS and LdSAT suggests that it may have a role in the redox homeostasis of Leishmania. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. cGMP in ozone and NO dependent responses

    PubMed Central

    Ederli, Luisa; Meier, Stuart; Borgogni, Andrea; Reale, Lara; Ferranti, Francesco; Gehring, Chris

    2008-01-01

    We have recently reported that ozone (O3) can inhibit mitochondrial respiration and induce activation of the alternative oxidase (AOX) pathway and in particular AOX1a in tobacco. While O3 causes mitochondrial H2O2, early leaf nitric oxide (NO) as well as transient ethylene (ET) accumulation, the levels of jasmonic acid and 12-oxo-phytodienoic acid remained unchanged. It was shown that both, NO and ET dependent pathways can induce AOX1a transcription by O3. AOX plays a role in reducing reactive oxygen species (ROS) which in turn are linked to biotic and abiotic plant stresses, much like the second messengers guanosine 3′, 5′-cyclic monophosphate (cGMP). The goal is to unravel specific cGMP signatures and induction pathways downstream from O3 and NO, including transcription of AOX1a. Here we propose that some late (>3 h) responses to NO, e.g., the accumulation of phenylalanine lyase (PAL) transcripts, are critically cGMP dependent, while the early (<2 h) responses, including AOX1a induction are not. PMID:19704720

  10. Phenylpropanoid Metabolism in Suspension Cultures of Vanilla planifolia Andr. 1

    PubMed Central

    Funk, Christoph; Brodelius, Peter E.

    1992-01-01

    Kinetin is used as an elicitor to induce vanillic acid formation in cell suspension cultures of Vanilla planifolia. Maximal induction is observed at a kinetin concentration of 20 micrograms per gram of fresh weight of cells. Vanillic acid synthesis is observed a few hours after elicitation. The effects of kinetin on the activity of some enzymes of the phenylpropanoid pathway, i.e. phenylalanine ammonia-lyase, 4-hydroxycinnamate:coenzyme A ligase and uridine 5′-diphosphate-glucose:trans-cinnamic acid glucosyltransferase, are reported and compared to the effects of chitosan. The former two enzymes are induced by chitosan with a maximum activity of approximately 25 to 40 hours after elicitation. All three enzymes are induced by kinetin with maximum activities for phenylalanine ammonia lyase and 4-hydroxycinnamate:coenzyme A ligase at approximately 50 hours after induction, whereas maximum glucosyltransferase activity is seen already after 24 hours. Furthermore, both elicitors induced the formation of lignin-like material, whereas only kinetin induced vanillic acid biosynthesis. Finally, kinetin but not chitosan induces catechol-4-O-methyltransferase activity, catalyzing the formation of 4-methoxycinnamic acids, which were shown to be intermediates of hydroxybenzoic acid biosynthesis within cells of V. planifolia. It is suggested that this methyltransferase is directly involved in the biosynthesis of vanillic acid. PMID:16668858

  11. The Sequential Action of a Dipeptidase and a β-Lyase Is Required for the Release of the Human Body Odorant 3-Methyl-3-sulfanylhexan-1-ol from a Secreted Cys-Gly-(S) Conjugate by Corynebacteria*S⃞

    PubMed Central

    Emter, Roger; Natsch, Andreas

    2008-01-01

    Human axillary odor is formed by the action of Corynebacteria on odorless axilla secretions. Sulfanylalkanols, 3-methyl-3-sulfanylhexan-1-ol in particular, form one key class of the odoriferous compounds. A conjugate with the dipeptide Cys-Gly has been reported as the secreted precursor for 3-methyl-3-sulfanylhexan-1-ol. Here, we confirm the Cys-Gly-(S) conjugate as the major precursor of this odorant, with lower levels of the Cys-(S) conjugate being present in axilla secretions. The enzymatic release of 3-methyl-3-sulfanylhexan-1-ol from the Cys-Gly-(S) conjugate by the axilla isolate Corynebacterium Ax20 was thus investigated. Cellular extracts of Ax20 released 3-methyl-3-sulfanylhexan-1-ol from the Cys-Gly-(S) conjugate and from the Cys-(S) conjugate, whereas the previously isolated C-S lyase of this bacterial strain was only able to cleave the Cys-(S) conjugate. o-Phenanthroline blocked the release from the Cys-Gly-(S) conjugate but did not affect cleavage of the Cys-(S) conjugate, indicating that in a first step, a metal-dependent dipeptidase hydrolyzes the Cys-Gly bond. This enzyme was purified by four chromatographic steps and gel electrophoresis, and the partial amino acid sequence was determined. The corresponding gene was cloned and expressed in Escherichia coli. It codes for a novel dipeptidase with a high affinity toward the Cys-Gly-(S) conjugate of 3-methyl-3-sulfanylhexan-1-ol. Co-incubating either the synthetic Cys-Gly-(S) conjugate or fresh axilla secretions with both the C-S lyase and the novel dipeptidase did release 3-methyl-3-sulfanylhexan-1-ol, proving that the sequential action of these two enzymes from the skin bacterium Corynebacterium Ax20 does release the odorant from the key secreted precursor. PMID:18515361

  12. The sequential action of a dipeptidase and a beta-lyase is required for the release of the human body odorant 3-methyl-3-sulfanylhexan-1-ol from a secreted Cys-Gly-(S) conjugate by Corynebacteria.

    PubMed

    Emter, Roger; Natsch, Andreas

    2008-07-25

    Human axillary odor is formed by the action of Corynebacteria on odorless axilla secretions. Sulfanylalkanols, 3-methyl-3-sulfanylhexan-1-ol in particular, form one key class of the odoriferous compounds. A conjugate with the dipeptide Cys-Gly has been reported as the secreted precursor for 3-methyl-3-sulfanylhexan-1-ol. Here, we confirm the Cys-Gly-(S) conjugate as the major precursor of this odorant, with lower levels of the Cys-(S) conjugate being present in axilla secretions. The enzymatic release of 3-methyl-3-sulfanylhexan-1-ol from the Cys-Gly-(S) conjugate by the axilla isolate Corynebacterium Ax20 was thus investigated. Cellular extracts of Ax20 released 3-methyl-3-sulfanylhexan-1-ol from the Cys-Gly-(S) conjugate and from the Cys-(S) conjugate, whereas the previously isolated C-S lyase of this bacterial strain was only able to cleave the Cys-(S) conjugate. o-Phenanthroline blocked the release from the Cys-Gly-(S) conjugate but did not affect cleavage of the Cys-(S) conjugate, indicating that in a first step, a metal-dependent dipeptidase hydrolyzes the Cys-Gly bond. This enzyme was purified by four chromatographic steps and gel electrophoresis, and the partial amino acid sequence was determined. The corresponding gene was cloned and expressed in Escherichia coli. It codes for a novel dipeptidase with a high affinity toward the Cys-Gly-(S) conjugate of 3-methyl-3-sulfanylhexan-1-ol. Co-incubating either the synthetic Cys-Gly-(S) conjugate or fresh axilla secretions with both the C-S lyase and the novel dipeptidase did release 3-methyl-3-sulfanylhexan-1-ol, proving that the sequential action of these two enzymes from the skin bacterium Corynebacterium Ax20 does release the odorant from the key secreted precursor.

  13. Diversity of function in the isocitrate lyase enzyme superfamily: the Dianthus caryophyllus petal death protein cleaves alpha-keto and alpha-hydroxycarboxylic acids.

    PubMed

    Lu, Zhibing; Feng, Xiaohua; Song, Ling; Han, Ying; Kim, Alexander; Herzberg, Osnat; Woodson, William R; Martin, Brian M; Mariano, Patrick S; Dunaway-Mariano, Debra

    2005-12-20

    The work described in this paper was carried out to define the chemical function a new member of the isocitrate lyase enzyme family derived from the flowering plant Dianthus caryophyllus. This protein (Swiss-Prot entry Q05957) is synthesized in the senescent flower petals and is named the "petal death protein" or "PDP". On the basis of an analysis of the structural contexts of sequence markers common to the C-C bond lyases of the isocitrate lyase/phosphoenolpyruvate mutase superfamily, a substrate screen that employed a (2R)-malate core structure was designed. Accordingly, stereochemically defined C(2)- and C(3)-substituted malates were synthesized and tested as substrates for PDP-catalyzed cleavage of the C(2)-C(3) bond. The screen identified (2R)-ethyl, (3S)-methylmalate, and oxaloacetate [likely to bind as the hydrate, C(2)(OH)(2) gem-diol] as the most active substrates (for each, k(cat)/K(m) = 2 x 10(4) M(-)(1) s(-)(1)). In contrast to the stringent substrate specificities previously observed for the Escherichia coli isocitrate and 2-methylisocitrate lyases, the PDP tolerated hydrogen, methyl, and to a much lesser extent acetate substituents at the C(3) position (S configuration only) and hydoxyl, methyl, ethyl, propyl, and to a much lesser extent isobutyl substituents at C(2) (R configuration only). It is hypothesized that PDP functions in oxalate production in Ca(2+) sequestering and/or in carbon scavenging from alpha-hydroxycarboxylate catabolites during the biochemical transition accompanying petal senescence.

  14. Sensitive determination of thiols in wine samples by a stable isotope-coded derivatization reagent d0/d4-acridone-10-ethyl-N-maleimide coupled with high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis.

    PubMed

    Lv, Zhengxian; You, Jinmao; Lu, Shuaimin; Sun, Weidi; Ji, Zhongyin; Sun, Zhiwei; Song, Cuihua; Chen, Guang; Li, Guoliang; Hu, Na; Zhou, Wu; Suo, Yourui

    2017-03-31

    As the key aroma compounds, varietal thiols are the crucial odorants responsible for the flavor of wines. Quantitative analysis of thiols can provide crucial information for the aroma profiles of different wine styles. In this study, a rapid and sensitive method for the simultaneous determination of six thiols in wine using d 0 /d 4 -acridone-10-ethyl-N-maleimide (d 0 /d 4 -AENM) as stable isotope-coded derivatization reagent (SICD) by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) has been developed. Quantification of thiols was performed by using d 4 -AENM labeled thiols as the internal standards (IS), followed by stable isotope dilution HPLC-ESI-MS/MS analysis. The AENM derivatization combined with multiple reactions monitoring (MRM) not only allowed trace analysis of thiols due to the extremely high sensitivity, but also efficiently corrected the matrix effects during HPLC-MS/MS and the fluctuation in MS/MS signal intensity due to instrument. The obtained internal standard calibration curves for six thiols were linear over the range of 25-10,000pmol/L (R 2 ≥0.9961). Detection limits (LODs) for most of analytes were below 6.3pmol/L. The proposed method was successfully applied for the simultaneous determination of six kinds of thiols in wine samples with precisions ≤3.5% and recoveries ≥78.1%. In conclusion, the developed method is expected to be a promising tool for detection of trace thiols in wine and also in other complex matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A Study of Functional Polymer Colloids Prepared Using Thiol-Ene/Yne Click Chemistry

    NASA Astrophysics Data System (ADS)

    Durham, Olivia Z.

    This project demonstrates the first instance of thiol-ene chemistry as the polymerization method for the production of polymer colloids in two-phase heterogeneous suspensions, miniemulsions, and emulsions. This work was also expanded to thiol-yne chemistry for the production of polymer particles containing increased crosslinking density. The utility of thiol-ene and thiol-yne chemistries for polymerization and polymer modification is well established in bulk systems. These reactions are considered 'click' reactions, which can be defined as processes that are both facile and simple, offering high yields with nearly 100% conversion, no side products, easy product separation, compatibility with a diverse variety of commercially available starting materials, and orthogonality with other chemistries. In addition, thiol-ene and thiol-yne chemistry follow a step-growth mechanism for the development of highly uniform polymer networks, where polymer growth is dependent on the coupling of functional groups. These step-growth polymerization systems are in stark contrast to the chain-growth mechanisms of acrylic and styrenic monomers that have dominated the field of conventional heterogeneous polymerizations. Preliminary studies evaluated the mechanism of particle production in suspension and miniemulsion systems. Monomer droplets were compared to the final polymer particles to confirm that particle growth occurred through the polymerization of monomer droplets. Additional parameters examined include homogenization energy (mechanical mixing), diluent species and concentration, and monomer content. These reactions were conducted using photoinitiation to yield particles in a matter of minutes with diameters in the size range of several microns to hundreds of microns in suspensions or submicron particles in miniemulsions. Improved control over the particle size and size distribution was examined through variation of reaction parameters. In addition, a method of seeded suspension polymerization was attempted. This project was further expanded through an extensive evaluation of stabilizers in thiol-ene suspension polymerizations. The scope of stabilizers used included synthetic surfactants (ionic and nonionic), natural gums, and colloidal silica (Pickering stabilization). Suspension polymerizations were further expanded to include thiol-yne chemistry for the evaluation of polymer composition and thermal properties. In addition, polymer particles with excess ene, yne, or thiol functionality were successfully developed to demonstrate the potential for further functionalization. The self-limiting behavior of thiol-ene/yne reactions allows for successful synthesis of functional polymer colloids using off-stoichiometric amounts of monomers. This capacity to control functionality is illustrated through the creation of fluorescent polymer particles using both an in situ thiol-ene polymerization reaction with a vinyl chromophore as well as through post-polymerization modification of thiol-ene and thiol-yne polymers with excess thiol functionality via thiol-isocyanate chemistry. To produce smaller polymer particles without the need for intense homogenization energy or high stabilizer concentrations, an emulsion polymerization system was implemented using a water soluble-thermal initiator. It was found that unlike thiol-ene suspensions, which are limited to crosslinked systems, thiol-ene emulsion polymerizations allowed for the production of polymer particles comprised of either crosslinked or linear polymer networks. For the crosslinked systems, various anionic SDS surfactant concentrations were examined to observe the influence on particle size. In linear polymer systems, variations in polymer composition were examined. Preliminary studies performed with a monomer with an ethylene glycol-like structure indicated that the synthesis of polymer particles with narrower size distributions compared to any of the other emulsion compositions was possible. Finally, thiol-ene chemistry was also employed toward the synthesis of degradable polyanhydride polymer particles. Unlike the aforementioned studies, the approach to particle synthesis was conducted by using a premade thiol-ene polymer. Various linear thiol-ene polyanhydrides were emulsified in water or buffered solutions via sonication. Polymer latex was obtained upon solvent evaporation of the dichloromethane (DCM) solvent used to solubilize the polymer. In this work, variation of polymer composition as well as degradation was examined. Additional experiments included a study of the release of Rhodamine B dye, functionalization of the linear polymers, and studies involving the delay of degradation through the incorporation of crosslinking in the polymer particles. The projects presented herein provide an innovative approach to the synthesis of polymer colloids using thiol-ene and thiol-yne 'click' chemistry in both heterogeneous polymerizations as well as through solvent evaporation of premade polymer solutions. Polymer colloids prove to be an area of great interest for numerous applications that encompass various areas involving biomedical and industrial technologies including paints and coatings, cosmetics, diagnostics, and drug delivery. Improvements in methods of chemical synthesis as well as advances in the tailoring of material properties are of utmost importance for the ever increasing demands of new technologies and educational enlightenment.

  16. Structure of Methylobacterium extorquens malyl-CoA lyase: CoA-substrate binding correlates with domain shift

    DOE PAGES

    Gonzalez, Javier M.; Marti-Arbona, Ricardo; Chen, Julian C. -H.; ...

    2017-01-27

    Malyl-CoA lyase (MCL) is an Mg 2+-dependent enzyme that catalyzes the reversible cleavage of (2 S)-4-malyl-CoA to yield acetyl-CoA and glyoxylate. MCL enzymes, which are found in a variety of bacteria, are members of the citrate lyase-like family and are involved in the assimilation of one- and two-carbon compounds. Here, the 1.56 Å resolution X-ray crystal structure of MCL from Methylobacterium extorquens AM1 with bound Mg 2+is presented. Structural alignment with the closely related Rhodobacter sphaeroides malyl-CoA lyase complexed with Mg 2+, oxalate and CoA allows a detailed analysis of the domain motion of the enzyme caused by substrate binding.more » Alignment of the structures shows that a simple hinge motion centered on the conserved residues Phe268 and Thr269 moves the C-terminal domain by about 30° relative to the rest of the molecule. Furthermore, this domain motion positions a conserved aspartate residue located in the C-terminal domain in the active site of the adjacent monomer, which may serve as a general acid/base in the catalytic mechanism.« less

  17. PecS and PecT coregulate the synthesis of HrpN and pectate lyases, two virulence determinants in Erwinia chrysanthemi 3937.

    PubMed

    Nasser, William; Reverchon, Sylvie; Vedel, Regine; Boccara, Martine

    2005-11-01

    Erwinia chrysanthemi strain 3937 is a necrotrophic bacterial plant pathogen. Pectinolytic enzymes and, in particular, pectate lyases play a key role in soft rot symptoms; however, the efficient colonization of plants by E. chrysanthemi requires additional factors. These factors include HrpN (harpin), a heat-stable, glycine-rich hydrophilic protein, which is secreted by the type III secretion system. We investigated the expression of hrpN in E. chrysanthemi 3937 in various environmental conditions and different regulatory backgrounds. Using lacZ fusions, hrpN expression was markedly influenced by the carbon source, osmolarity, growth phase, and growth substrate. hrpN was repressed when pectinolysis started and negatively regulated by the repressors of pectate lyase synthesis, PecS and PecT. Primer extension data and in vitro DNA-protein interaction experiments support a model whereby PecS represses hrpN expression by binding to the hrpN regulatory region and inhibiting transcript elongation. The results suggest coordinated regulation of HrpN and pectate lyases by PecS and PecT. A putative model of the synthesis of these two virulence factors in E. chrysanthemi during pathogenesis is presented.

  18. Cloning and study of the pectate lyase gene of Erwinia carotovora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukanov, N.O.; Fonshtein, M.Yu.; Evtushenkov, A.N.

    1986-04-01

    The cloning of the gene of a secretable protein of Erwinia carotovora, pectate lyase, in Escherichia coli was described. Primary cloning was conducted using the phage vector lambda 47.1. In the gene library of E. carotovora obtained, eight phages carrying the gene sought were identified according to the appearance of enzymatic activity of the gene product, pectate lyase, in situ. The BamHI fragment of DNA, common to all these phages, was recloned on the plasmid pUC19. It was shown that the cloned pectate lyase gene is represented on the E. carotovora chromosome in one copy. Methods of production of representativemore » gene libraries on phage vectors from no less than 1 ..mu..g of cloned DNA even for the genomes of eukaryotes have now been developed. Vectors have been created, for example, lambda 47.1, permitting the selection only of hybrid molecules. A number of methods have been developed for the search for a required gene in the library, depending on whether the cloned gene can be expressed or not, and if it can, what properties it will impart to the hybrid clone containing it.« less

  19. Structure of Methylobacterium extorquens malyl-CoA lyase: CoA-substrate binding correlates with domain shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Javier M.; Marti-Arbona, Ricardo; Chen, Julian C. -H.

    Malyl-CoA lyase (MCL) is an Mg 2+-dependent enzyme that catalyzes the reversible cleavage of (2 S)-4-malyl-CoA to yield acetyl-CoA and glyoxylate. MCL enzymes, which are found in a variety of bacteria, are members of the citrate lyase-like family and are involved in the assimilation of one- and two-carbon compounds. Here, the 1.56 Å resolution X-ray crystal structure of MCL from Methylobacterium extorquens AM1 with bound Mg 2+is presented. Structural alignment with the closely related Rhodobacter sphaeroides malyl-CoA lyase complexed with Mg 2+, oxalate and CoA allows a detailed analysis of the domain motion of the enzyme caused by substrate binding.more » Alignment of the structures shows that a simple hinge motion centered on the conserved residues Phe268 and Thr269 moves the C-terminal domain by about 30° relative to the rest of the molecule. Furthermore, this domain motion positions a conserved aspartate residue located in the C-terminal domain in the active site of the adjacent monomer, which may serve as a general acid/base in the catalytic mechanism.« less

  20. Kinetic Resolution of sec-Thiols by Enantioselective Oxidation with Rationally Engineered 5-(Hydroxymethyl)furfural Oxidase.

    PubMed

    Pickl, Mathias; Swoboda, Alexander; Romero, Elvira; Winkler, Christoph K; Binda, Claudia; Mattevi, Andrea; Faber, Kurt; Fraaije, Marco W

    2018-03-05

    Various flavoprotein oxidases were recently shown to oxidize primary thiols. Herein, this reactivity is extended to sec-thiols by using structure-guided engineering of 5-(hydroxymethyl)furfural oxidase (HMFO). The variants obtained were employed for the oxidative kinetic resolution of racemic sec-thiols, thus yielding the corresponding thioketones and nonreacted R-configured thiols with excellent enantioselectivities (E≥200). The engineering strategy applied went beyond the classic approach of replacing bulky amino acid residues with smaller ones, as the active site was additionally enlarged by a newly introduced Thr residue. This residue established a hydrogen-bonding interaction with the substrates, as verified in the crystal structure of the variant. These strategies unlocked HMFO variants for the enantioselective oxidation of a range of sec-thiols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Activation energy determinations suggest that thiols reverse autooxidation of tetrahydrobiopterin by a different mechanism than ascorbate.

    PubMed

    Valent, Sándor; Tóth, Miklós

    2006-01-01

    In neutral aqueous solutions tetrahydrobiopterin is oxidized by dioxygen in a reaction that is succinctly described as autooxidation. Ascorbate and thiols moderate this reaction by reversing the oxidative process. In the present study the effect of various thiols on the apparent Arrhenius activation energy of tetrahydrobiopterin autooxidation was characterized and compared to that of ascorbate determined previously. We observed that - in sharp contrast to ascorbate - the efficiency of thiols to protect tetrahydrobiopterin decreased with the elevation of temperature from 22 to 37 degrees C. Accordingly, the apparent Arrhenius activation energies (in kJ/mol) measured in the presence of thiols were consistently greater than the value determined with tetrahydrobiopterin alone (59.6 +/- 1.4) or in the presence of ascorbate (59.9 +/- 2.8). Thus, the energy values were 88.8+/-1.1 with glutathione, 87.6 +/- 2.1 with N-acetylcysteine, 79.2 +/- 1.6 with cysteine, 75.1 +/- 2.4 with dithiotreitol and 70.3 +/- 0.9 with homocysteine. Since thiols are as potent reducing agents as ascorbate, these findings suggest that thiols and ascorbate protect tetrahydrobiopterin from oxidation acting at different steps of the oxidation process. It is likely that thiols reduce quinoidal dihydrobiopterin, whereas ascorbate scavenges the trihydrobiopterin radical to tetrahydrobiopterin. Furthermore, the results indicate that thiols are excellent tools to protect tetrahydrobiopterin from autooxidative decomposition in laboratory experiments conducted at relatively low temperatures, whereas the protective effect diminishes at 37 degrees C, i.e. under physiological conditions.

  2. Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins

    PubMed Central

    Avan, Aslı Neslihan; Demirci Çekiç, Sema; Uzunboy, Seda; Apak, Reşat

    2016-01-01

    Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET)-based total antioxidant capacity (TAC) assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC), and ferric reducing antioxidant power (FRAP), were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols) mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol) and (phenol + protein) mixtures with minimal relative error. As ABTS/TEAC and FRAP methods gave small and large deviations, respectively, from additivity of absorbances arising from these components in mixtures, mercury(II) compounds were added to stabilize the thiol components in the form of Hg(II)-thiol complexes so as to enable selective spectrophotometric determination of phenolic components. This error compensation was most efficient for the FRAP method in testing (thiols + phenols) mixtures. PMID:27529232

  3. The change in serum Thiol/Disulphide homeostasis after transrectal ultrasound guided prostate biopsy

    PubMed Central

    Tokgöz, Hüsnü; Taş, Selim; Giray, Özlem; Yalçınkaya, Soner; Tokgöz, Özlem; Koca, Cemile; Savaş, Murat; Erel, Özcan

    2017-01-01

    ABSTRACT Objectives The aim of this prospective clinical study was to investigate variations in a novel oxidative stress marker (thiol/disulphide homeostasis) in men who underwent transrectal ultrasound guided prostate biopsy (TRUSB). Materials and Methods A total of 22 men undergoing TRUSB of the prostate were enrolled in the study. Patients with abnormal digital rectal examination and/or total prostate specific antigen (PSA) over 4ng/mL underwent TRUSB with 12 cores. Serum samples were obtained before and just after the procedure to evaluate the possible changes in thiol/disulphide homeostasis. Mean age, total PSA and free PSA, prostate volume and histopathological data were also recorded. Results Mean age of the study population was 65.05±8.89 years. Significant decreases in native and total thiol levels were documented after the biopsy procedure. However, serum disulphide levels and disulphide/native thiol, disulphide/total thiol and native/total thiol ratios did not significantly change after TRUSB. No correlation was observed between oxidative parameters and total PSA and free PSA levels, prostate volume and histopathology of the prostate. However, mean patient age was significantly correlated with mean native and total thiol levels. Conclusion Significant decreases in serum native and total thiol levels related to the prostate biopsy procedure suggest that TRUSB causes acute oxidative stress in the human body. Since our trial is the first in the current literature to investigate these oxidative stress markers in urology practice, additional studies are warranted. PMID:28128906

  4. The change in serum Thiol/Disulphide homeostasis after transrectal ultrasound guided prostate biopsy.

    PubMed

    Tokgöz, Hüsnü; Taş, Selim; Giray, Özlem; Yalçınkaya, Soner; Tokgöz, Özlem; Koca, Cemile; Savaş, Murat; Erel, Özcan

    2017-01-01

    The aim of this prospective clinical study was to investigate variations in a novel oxidative stress marker (thiol/disulphide homeostasis) in men who underwent transrectal ultrasound guided prostate biopsy (TRUSB). A total of 22 men undergoing TRUSB of the prostate were enrolled in the study. Patients with abnormal digital rectal examination and/or total prostate specific antigen (PSA) over 4ng/mL underwent TRUSB with 12 cores. Serum samples were obtained before and just after the procedure to evaluate the possible changes in thiol/disulphide homeostasis. Mean age, total PSA and free PSA, prostate volume and histopathological data were also recorded. Mean age of the study population was 65.05±8.89 years. Significant decreases in native and total thiol levels were documented after the biopsy procedure. However, serum disulphide levels and disulphide/native thiol, disulphide/total thiol and native / total thiol ratios did not significantly change after TRUSB. No correlation was observed between oxidative parameters and total PSA and free PSA levels, prostate volume and histopathology of the prostate. However, mean patient age was significantly correlated with mean native and total thiol levels. Significant decreases in serum native and total thiol levels related to the prostate biopsy procedure suggest that TRUSB causes acute oxidative stress in the human body. Since our trial is the first in the current literature to investigate these oxidative stress markers in urology practice, additional studies are warranted. Copyright® by the International Brazilian Journal of Urology.

  5. Modification of Ag nanoparticles with mixed thiols for improved SERS detection of poorly adsorbing target molecules: detection of MDMA.

    PubMed

    Stewart, Alan; Bell, Steven E J

    2011-04-21

    Here we report an example of a mixed thiol monolayer on the surface of Ag nanoparticles which promotes adsorption and quantitative SERS detection of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"); the thiols in the mixed monolayers act synergistically since MDMA does not adsorb onto colloids modified with either of the thiols separately. © The Royal Society of Chemistry 2011

  6. Thiol Redox and pKa Properties of Mycothiol, the Predominant Low-Molecular-Weight Thiol Cofactor in the Actinomycetes.

    PubMed

    Sharma, Sunil V; Van Laer, Koen; Messens, Joris; Hamilton, Chris J

    2016-09-15

    The thiol pKa and standard redox potential of mycothiol, the major low-molecular-weight thiol cofactor in the actinomycetes, are reported. The measured standard redox potential reveals substantial discrepancies in one or more of the other previously measured intracellular parameters that are relevant to mycothiol redox biochemistry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 1: Copper-Catalyzed Oxidation.

    PubMed

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors as a result of hydrogen sulfide (H2S) and low-molecular-weight thiols are commonly encountered in wine production. These odors are usually removed by the process of Cu(II) fining, a process that remains poorly understood. The present study aims to elucidate the underlying mechanisms by which Cu(II) interacts with H2S and thiol compounds (RSH) under wine-like conditions. Copper complex formation was monitored along with H2S, thiol, oxygen, and acetaldehyde concentrations after the addition of Cu(II) (50 or 100 μM) to air-saturated model wine solutions containing H2S, cysteine, 6-sulfanylhexan-1-ol, or 3-sulfanylhexan-1-ol (300 μM each). The presence of H2S and thiols in excess to Cu(II) led to the rapid formation of ∼1.4:1 H2S/Cu and ∼2:1 thiol/Cu complexes, resulting in the oxidation of H2S and thiols and reduction of Cu(II) to Cu(I), which reacted with oxygen. H2S was observed to initially oxidize rather than form insoluble copper sulfide. The proposed reaction mechanisms provide insight into the extent to which H2S can be selectively removed in the presence of thiols in wine.

  8. Identification of novel aroma-active thiols in pan-roasted white sesame seeds.

    PubMed

    Tamura, Hitoshi; Fujita, Akira; Steinhaus, Martin; Takahisa, Eisuke; Watanabe, Hiroyuki; Schieberle, Peter

    2010-06-23

    Screening for aroma-active compounds in an aroma distillate obtained from freshly pan-roasted sesame seeds by aroma extract dilution analysis revealed 32 odorants in the FD factor range of 2-2048, 29 of which could be identified. The highest FD factors were found for the coffee-like smelling 2-furfurylthiol, the caramel-like smelling 4-hydroxy-2,5-dimethyl-3(2H)-furanone, the coffee-like smelling 2-thenylthiol (thiophen-2-yl-methylthiol), and the clove-like smelling 2-methoxy-4-vinylphenol. In addition, 9 odor-active thiols with sulfurous, meaty, and/or catty, black-currant-like odors were identified for the first time in roasted sesame seeds. Among them, 2-methyl-1-propene-1-thiol, (Z)-3-methyl-1-butene-1-thiol, (E)-3-methyl-1-butene-1-thiol, (Z)-2-methyl-1-butene-1-thiol, (E)-2-methyl-1-butene-1-thiol, and 4-mercapto-3-hexanone were previously unknown as food constituents. Their structures were confirmed by comparing their mass spectra and retention indices as well as their sensory properties with those of synthesized reference compounds. The relatively unstable 1-alkene-1-thiols represent a new class of food odorants and are suggested as the key contributors to the characteristic, but quickly vanishing, aroma of freshly ground roasted sesame seeds.

  9. [Studies of effects of aluminum oxide nanoparticles after intragastric administration].

    PubMed

    Shumakova, A A; Tananova, O N; Arianova, E A; Mal'tsev, G Iu; Trushina, É N; Mustafina, O K; Guseva, G V; Trusov, N V; Soto, S Kh; Sharanova, N É; Selifanov, A V; Gmoshinskiĭ, I V; Khotimchenko, S A

    2012-01-01

    Growing Wistar rats received intragastrically nanoparticles (NPs) of aluminum oxide (Al2O3) daily during 28 days at doses of 1 or 100 mg per kg body mass. There were studied body mass of animals, relative mass of internals, rate of protein macromolecules absorption in the gut, oxidative damage of DNA, pool of tissue thiols, activity of hepatic enzymes of xenobiotic detoxication system, biochemical and hematological blood indices, stability of lysosome membranes, condition of antioxidant defense system, apoptosis of hepatocytes. Conducted experiments didn't reveal any marked toxic action of Al2O3 NPs on rats after 28 days of administration both in high and low dose. Among effects probably related to NPs influence on animals there were lowering of relative liver and lung masses, decrease of hepatic thiol pool, activity of CYP1A1 isoform in liver and glutathione reductase in erythrocytes, increase of diene conjugates of fatty acids in blood plasma. Said shifts were small in magnitude, didn't come out of margins of physiological norm and didn't show any distinct relation to NPs dose. However considering great importance of this nanomaterial as probable environmental contaminant the studies of it's toxicity must be continued in conditions of low doses (less than 1 mg per kg body mass) for long period of time.

  10. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

    NASA Astrophysics Data System (ADS)

    Ang, Chung Yen; Tan, Si Yu; Lu, Yunpeng; Bai, Linyi; Li, Menghuan; Li, Peizhou; Zhang, Quan; Selvan, Subramanian Tamil; Zhao, Yanli

    2014-11-01

    A ``turn-on'' thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future.

  11. Thiol-ene chemistry guided preparation of thiolated polymeric nanocomposite for anodic stripping voltammetric analysis of Cd2+ and Pb2+.

    PubMed

    Su, Zhaohong; Liu, Ying; Zhang, Yi; Xie, Qingji; Chen, Li; Huang, Yi; Fu, Yingchun; Meng, Yue; Li, Xuejiao; Ma, Ming; Yao, Shouzhuo

    2013-02-21

    We report on the thiol-ene chemistry guided preparation of a novel thiolated polymeric nanocomposite involving polyaniline (PANI), a functionalized thiol, e.g., sulfur-rich 2,5-dimercapto-1,3,4-thiadiazole (DMcT), and multiwalled carbon nanotubes (MWCNTs) for the sensitive differential pulse anodic stripping voltammetric determination of Cd(2+) and Pb(2+) on a glassy carbon electrode (GCE). Briefly, the thiol-ene reaction of a thiol with oxidized PANI that was chemically synthesized in the presence of solution-dispersed acidified MWCNTs yielded a thiolated polymeric nanocomposite of thiol-PANI/MWCNTs. The thiols examined include DMcT, 1,6-hexanedithiol and β-mercaptoethanol. Quartz crystal microbalance, cyclic voltammetry, scanning electron microscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy were used for film characterization and process monitoring. Under the optimized conditions, the obtained Bi/Nafion/DMcT-PANI/MWCNTs/GCE can sensitively sense Cd(2+) and Pb(2+) with limits of detection of 0.01 and 0.04 μg L(-1), respectively.

  12. Influence of Glutathione and Glutathione S-transferases on DNA Interstrand Cross-Link Formation by 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine, the Active Anticancer Moiety Generated by Laromustine

    PubMed Central

    2015-01-01

    Prodrugs of 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) are promising anticancer agents. The 90CE moiety is a readily latentiated, short-lived (t1/2 ∼ 30 s) chloroethylating agent that can generate high yields of oxophilic electrophiles responsible for the chloroethylation of the O-6 position of guanine in DNA. These guanine O-6 alkylations are believed to be responsible for the therapeutic effects of 90CE and its prodrugs. Thus, 90CE demonstrates high selectivity toward tumors with diminished levels of O6-alkylguanine-DNA alkyltransferase (MGMT), the resistance protein responsible for O6-alkylguanine repair. The formation of O6-(2-chloroethyl)guanine lesions ultimately leads to the generation of highly cytotoxic 1-(N3-cytosinyl),-2-(N1-guaninyl)ethane DNA interstrand cross-links via N1,O6-ethanoguanine intermediates. The anticancer activity arising from this sequence of reactions is thus identical to this component of the anticancer activity of the clinically used chloroethylnitrosoureas. Herein, we evaluate the ability of glutathione (GSH) and other low molecular weight thiols, as well as GSH coupled with various glutathione S-transferase enzymes (GSTs) to attenuate the final yields of cross-links generated by 90CE when added prior to or immediately following the initial chloroethylation step to determine the major point(s) of interaction. In contrast to studies utilizing BCNU as a chloroethylating agent by others, GSH (or GSH/GST) did not appreciably quench DNA interstrand cross-link precursors. While thiols alone offered little protection at either alkylation step, the GSH/GST couple was able to diminish the initial yields of cross-link precursors. 90CE exhibited a very different GST isoenzyme susceptibility to that reported for BCNU, this could have important implications in the relative resistance of tumor cells to these agents. The protection afforded by GSH/GST was compared to that produced by MGMT. PMID:25012050

  13. Influence of glutathione and glutathione S-transferases on DNA interstrand cross-link formation by 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine, the active anticancer moiety generated by laromustine.

    PubMed

    Penketh, Philip G; Patridge, Eric; Shyam, Krishnamurthy; Baumann, Raymond P; Zhu, Rui; Ishiguro, Kimiko; Sartorelli, Alan C

    2014-08-18

    Prodrugs of 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) are promising anticancer agents. The 90CE moiety is a readily latentiated, short-lived (t1/2 ∼ 30 s) chloroethylating agent that can generate high yields of oxophilic electrophiles responsible for the chloroethylation of the O-6 position of guanine in DNA. These guanine O-6 alkylations are believed to be responsible for the therapeutic effects of 90CE and its prodrugs. Thus, 90CE demonstrates high selectivity toward tumors with diminished levels of O(6)-alkylguanine-DNA alkyltransferase (MGMT), the resistance protein responsible for O(6)-alkylguanine repair. The formation of O(6)-(2-chloroethyl)guanine lesions ultimately leads to the generation of highly cytotoxic 1-(N(3)-cytosinyl),-2-(N(1)-guaninyl)ethane DNA interstrand cross-links via N(1),O(6)-ethanoguanine intermediates. The anticancer activity arising from this sequence of reactions is thus identical to this component of the anticancer activity of the clinically used chloroethylnitrosoureas. Herein, we evaluate the ability of glutathione (GSH) and other low molecular weight thiols, as well as GSH coupled with various glutathione S-transferase enzymes (GSTs) to attenuate the final yields of cross-links generated by 90CE when added prior to or immediately following the initial chloroethylation step to determine the major point(s) of interaction. In contrast to studies utilizing BCNU as a chloroethylating agent by others, GSH (or GSH/GST) did not appreciably quench DNA interstrand cross-link precursors. While thiols alone offered little protection at either alkylation step, the GSH/GST couple was able to diminish the initial yields of cross-link precursors. 90CE exhibited a very different GST isoenzyme susceptibility to that reported for BCNU, this could have important implications in the relative resistance of tumor cells to these agents. The protection afforded by GSH/GST was compared to that produced by MGMT.

  14. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria

    PubMed Central

    Mailloux, Ryan J.; Treberg, Jason R.

    2015-01-01

    At its core mitochondrial function relies on redox reactions. Electrons stripped from nutrients are used to form NADH and NADPH, electron carriers that are similar in structure but support different functions. NADH supports ATP production but also generates reactive oxygen species (ROS), superoxide (O2·-) and hydrogen peroxide (H2O2). NADH-driven ROS production is counterbalanced by NADPH which maintains antioxidants in an active state. Mitochondria rely on a redox buffering network composed of reduced glutathione (GSH) and peroxiredoxins (Prx) to quench ROS generated by nutrient metabolism. As H2O2 is quenched, NADPH is expended to reactivate antioxidant networks and reset the redox environment. Thus, the mitochondrial redox environment is in a constant state of flux reflecting changes in nutrient and ROS metabolism. Changes in redox environment can modulate protein function through oxidation of protein cysteine thiols. Typically cysteine oxidation is considered to be mediated by H2O2 which oxidizes protein thiols (SH) forming sulfenic acid (SOH). However, problems begin to emerge when one critically evaluates the regulatory function of SOH. Indeed SOH formation is slow, non-specific, and once formed SOH reacts rapidly with a variety of molecules. By contrast, protein S-glutathionylation (PGlu) reactions involve the conjugation and removal of glutathione moieties from modifiable cysteine residues. PGlu reactions are driven by fluctuations in the availability of GSH and oxidized glutathione (GSSG) and thus should be exquisitely sensitive to changes ROS flux due to shifts in the glutathione pool in response to varying H2O2 availability. Here, we propose that energy metabolism-linked redox signals originating from mitochondria are mediated indirectly by H2O2 through the GSH redox buffering network in and outside mitochondria. This proposal is based on several observations that have shown that unlike other redox modifications PGlu reactions fulfill the requisite criteria to serve as an effective posttranslational modification that controls protein function. PMID:26773874

  15. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.

    PubMed

    Mailloux, Ryan J; Treberg, Jason R

    2016-08-01

    At its core mitochondrial function relies on redox reactions. Electrons stripped from nutrients are used to form NADH and NADPH, electron carriers that are similar in structure but support different functions. NADH supports ATP production but also generates reactive oxygen species (ROS), superoxide (O2(·-)) and hydrogen peroxide (H2O2). NADH-driven ROS production is counterbalanced by NADPH which maintains antioxidants in an active state. Mitochondria rely on a redox buffering network composed of reduced glutathione (GSH) and peroxiredoxins (Prx) to quench ROS generated by nutrient metabolism. As H2O2 is quenched, NADPH is expended to reactivate antioxidant networks and reset the redox environment. Thus, the mitochondrial redox environment is in a constant state of flux reflecting changes in nutrient and ROS metabolism. Changes in redox environment can modulate protein function through oxidation of protein cysteine thiols. Typically cysteine oxidation is considered to be mediated by H2O2 which oxidizes protein thiols (SH) forming sulfenic acid (SOH). However, problems begin to emerge when one critically evaluates the regulatory function of SOH. Indeed SOH formation is slow, non-specific, and once formed SOH reacts rapidly with a variety of molecules. By contrast, protein S-glutathionylation (PGlu) reactions involve the conjugation and removal of glutathione moieties from modifiable cysteine residues. PGlu reactions are driven by fluctuations in the availability of GSH and oxidized glutathione (GSSG) and thus should be exquisitely sensitive to changes ROS flux due to shifts in the glutathione pool in response to varying H2O2 availability. Here, we propose that energy metabolism-linked redox signals originating from mitochondria are mediated indirectly by H2O2 through the GSH redox buffering network in and outside mitochondria. This proposal is based on several observations that have shown that unlike other redox modifications PGlu reactions fulfill the requisite criteria to serve as an effective posttranslational modification that controls protein function. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes

    PubMed Central

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E.; Calcutt, Wade M.; Brash, Alan R.; Samel, Nigulas

    2015-01-01

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using 18O-labeled substrate and incubations in H218O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. PMID:26100625

  17. Investigation of a thiolated polymer in gene delivery

    NASA Astrophysics Data System (ADS)

    Bacalocostantis, Irene

    Thiol-containing bioreducible polymers show significant potential as delivery vectors in gene therapy, a rapidly growing field which seeks to treat genetic-based disorders by delivering functional synthetic genes to diseased cells. Studies have shown that thiolated polymers exhibit improved biodegradability and prolonged in vivo circulation times over non-thiolated polymers. However, the extent to which thiol concentrations impact the carrier's delivery potential has not been well explored. The aim of this dissertation is to investigate how relative concentrations of free thiols and disulfide crosslinks impact a polymeric carriers delivery performance with respect to DNA packaging, complex stability, cargo protection, gene release, internalization efficiency and cytotoxicity. To accomplish this goal, several fluorescent polymers containing varying concentrations of thiol groups were synthesized by conjugating thiol-pendant chains onto the primary amines of cationic poly(allylamine). In vitro delivery assays and characterization techniques were employed to assess the effect of thiols in gene delivery.

  18. Evaluation of low molecular mass thiols content in carotid atherosclerotic plaques.

    PubMed

    Zinellu, Angelo; Lepedda, Antonio; Sotgia, Salvatore; Zinellu, Elisabetta; Scanu, Bastianina; Turrini, Franco; Spirito, Rita; Deiana, Luca; Formato, Marilena; Carru, Ciriaco

    2009-06-01

    Despite the evidence that both homocysteine and cysteine are important risk factors for vascular disease and atherosclerosis no information are reported about their effective amount in plaque and on the relationship with the other low molecular weight thiols. We used capillary electrophoresis to measure thiols in both carotid plaque specimens and plasma samples from 37 patients undergoing carotid endarterectomy. Pearson's correlation shows that intraplaque homocysteine, cysteine and cysteinylglycine levels are related to their plasma concentrations. The distribution of intraplaque GSH and Glu-Cys was higher than that of the same thiols in plasma, whereas the other thiols were significantly less prevalent in plaque than in plasma. Intraplaque haemoglobin and GSH levels were correlated, thus suggesting their common origin from erythrocytes lysis. Data suggest that increased levels of intraplaque glutathione may induce important effects on plaque fate by perturbing the normal LMW thiol redox state.

  19. Silencing of grapevine pectate lyase-like genes VvPLL2 and VvPLL3 confers resistance against Erysiphe necator and differentially modulates gene expression

    USDA-ARS?s Scientific Manuscript database

    Broad-spectrum resistance against powdery mildew (PM) has been reported by silencing susceptibility genes in the model plant Arabidopsis. Here we used artificial microRNA constructs in PM-susceptible Vitis vinifera cv. Chardonnay to stably silence two pectate lyase-like orthologs (VvPLL2 and VvPLL3)...

  20. Methionine biosynthesis in higher plants. II. Purification and characterization of cystathionine beta-lyase from spinach chloroplasts.

    PubMed

    Droux, M; Ravanel, S; Douce, R

    1995-01-10

    Cystathionine beta-lyase, the second enzyme of the transsulfuration pathway leading to homocysteine synthesis was purified over 16,000-fold from spinach (Spinacia oleracea L.) leaf chloroplasts (soluble fraction). Enzyme activity was followed along the purification scheme by either a colorimetric method for the determination of cysteine or by fluorescence detection of the bimane derivative of L-homocysteine after reverse-phase HPLC. Cystathionine beta-lyase has a molecular mass of 170,000 +/- 5000 Da and consists of four identical subunits of 44,000 Da. The enzyme exhibits an absorption spectrum in the visible range with a maximum at 418 nm due to pyridoxal 5'-phosphate. The chloroplastic enzyme catalyzes alpha,beta-cleavage of the thioether L-cystathionine and the dithioacetal L-djenkolate with apparent Km values of 0.15 and 0.34 mM, respectively, and apparent Vm values corresponding to a specific activity of 13 Units mg-1. However, no activity was detected toward the disulfide L-cysteine. With either L-cystathionine and L-djenkolate as substrate, maximal activity was obtained between pH 8.3 and pH 9.0. Besides the chloroplastic enzyme form, anion exchange chromatography of a total spinach leaf extract allowed the detection of a second pool of cystathionine beta-lyase activity that is associated with the cytosolic compartment and eluted at a lower salt concentration than the chloroplastic isoform. Kinetics of inactivation of cystathionine beta-lyase by the L-alpha-(2-aminoethoxyvinyl) glycine (AVG), an analogue of L-cystathionine, are consistent with the existence of an intermediate reversible enzyme inhibitor complex (apparent inhibition constant Kappi of 110 microM) preceding the irreversible formation of a final inactivated state of the enzyme (kd = 4.8 x 10(-3) s-1). Pyridoxal 5'-phosphate free in solution binds AVG with an apparent dissociation constant Kapp in the order of 350 microM. The comparison between the Kapp (free pyridoxal 5'-phosphate) and Kappi (enzyme inactivation) values indicate that the prosthetic group of spinach chloroplast cystathionine beta-lyase is freely accessible to the inhibitor compound AVG.

  1. Evolution of thiol protective systems in prokaryotes

    NASA Technical Reports Server (NTRS)

    Fahey, R. C.; Newton, G. L.

    1986-01-01

    Biological thiols are essential elements in most aspects of cell function but undergo rapid oxidation to disulfides in the presence of oxygen. The evolution of systems to protect against such oxygen toxicity was essential to the emergence of aerobic life. The protection system used by eukaryotes is based upon glutathione (GSH) and GSH-dependent enzymes but many bacteria lack GSH and apparently use other mechanisms. The objective of this research is to elaborate the thiol protective mechanisms employed by prokaryotes of widely divergent evolutionary origin and to understand why GSH became the central thiol employed in essentially all higher organisms. Thiol-selective fluorescent labeling and HPLC analysis has been used to determine key monothiol components.

  2. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-02-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1-11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines.

  3. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    PubMed Central

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1–11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines. PMID:26888486

  4. Hydrogen sulfide synthesis enzymes reduced in lower esophageal sphincter of patients with achalasia.

    PubMed

    Zhang, L; Zhao, W; Zheng, Z; Wang, T; Zhao, C; Zhou, G; Jin, H; Wang, B

    2016-10-01

    The etiology of achalasia remains largely unknown. Considerable evidence reveals that the lower esophageal sphincter dysfunction is due to the lack of inhibitory neurotransmitter, secondary to esophageal neuronal inflammation or loss. Recent studies suggest hydrogen sulfide may act as an inhibitory transmitter in gastrointestinal tract, but study about hydrogen sulfide in human esophagus still lack. The aim of the study was to investigate if hydrogen sulfide synthesis enzymes could be detected in human esophagus and if the synthesis of the endogenous hydrogen sulfide could be affected in achalasia patients. Tissue samples in cardia, lower esophageal sphincter, 2 cm and 4 cm above lower esophageal sphincter were obtained from achalasia patients undergoing peroral endoscopic myotomy. Control tissues in lower esophageal sphincter were obtained from esophageal carcinoma patients. Expression of cystathionine-β-synthase and cystathionine-γ-lyase in lower esophageal sphincter of achalasia patients and control were detected by immunohistochemical staining. In addition, expression of cystathionine-β-synthase and cystathionine-γ-lyase were compared among different parts of esophagus in achalasia patients. Compared with control, the expression of cystathionine-β-synthase and cystathionine-γ-lyase in lower esophageal sphincter of achalasia patients was significantly reduced (χ 2 = 11.429, P = 0.010). The expression of cystathionine-β-synthase and cystathionine-γ-lyase were lower in lower esophageal sphincter than that in 2 cm and 4 cm above lower esophageal sphincter, respectively (all P < 0.05). In conclusion, the expression of hydrogen sulfide synthesis enzymes, cystathionine-β-synthase and cystathionine-γ-lyase, can be detected in human esophagus and is reduced in patients with achalasia, which implicates the involvement of the two hydrogen sulfide synthesis enzymes in the pathophysiology of achalasia. © 2015 International Society for Diseases of the Esophagus.

  5. Cloning and Sequence Analysis of Vibrio halioticoli Genes Encoding Three Types of Polyguluronate Lyase.

    PubMed

    Sugimura; Sawabe; Ezura

    2000-01-01

    The alginate lyase-coding genes of Vibrio halioticoli IAM 14596(T), which was isolated from the gut of the abalone Haliotis discus hannai, were cloned using plasmid vector pUC 18, and expressed in Escherichia coli. Three alginate lyase-positive clones, pVHB, pVHC, and pVHE, were obtained, and all clones expressed the enzyme activity specific for polyguluronate. Three genes, alyVG1, alyVG2, and alyVG3, encoding polyguluronate lyase were sequenced: alyVG1 from pVHB was composed of a 1056-bp open reading frame (ORF) encoding 352 amino acid residues; alyVG2 gene from pVHC was composed of a 993-bp ORF encoding 331 amino acid residues; and alyVG3 gene from pVHE was composed of a 705-bp ORF encoding 235 amino acid residues. Comparison of nucleotide and deduced amino acid sequences among AlyVG1, AlyVG2, and AlyVG3 revealed low homologies. The identity value between AlyVG1 and AlyVG2 was 18.7%, and that between AlyVG2 and AlyVG3 was 17.0%. A higher identity value (26.0%) was observed between AlyVG1 and AlyVG3. Sequence comparison among known polyguluronate lyases including AlyVG1, AlyVG2, and AlyVG3 also did not reveal an identical region in these sequences. However, AlyVG1 showed the highest identity value (36.2%) and the highest similarity (73.3%) to AlyA from Klebsiella pneumoniae. A consensus region comprising nine amino acid (YFKAGXYXQ) in the carboxy-terminal region previously reported by Mallisard and colleagues was observed only in AlyVG1 and AlyVG2.

  6. Constitutive and inducible pectinolytic enzymes from Aspergillus flavipes FP-500 and their modulation by pH and carbon source

    PubMed Central

    Martínez-Trujillo, Aurora; Aranda, Juan S.; Gómez-Sánchez, Carlos; Trejo-Aguilar, Blanca; Aguilar-Osorio, Guillermo

    2009-01-01

    Growth and enzymes production by Aspergillus flavipes FP-500 were evaluated on pectin, polygalacturonic acid, galacturonic acid, arabinose, rhamnose, xylose, glycerol and glucose at different initial pH values. We found that the strain produced exopectinases, endopectinases and pectin lyases. Exopectinases and pectin lyase were found to be produced at basal levels as constitutive enzymes and their production was modulated by the available carbon source and pH of culture medium and stimulated by the presence of inducer in the culture medium. Endo-pectinase was basically inducible and was only produced when pectin was used as carbon source. Our results suggest that pectinases in A. flavipes FP-500 are produced in a concerted way. The first enzyme to be produced was exopectinase followed by Pectin Lyase and Endo-pectinase. PMID:24031315

  7. Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins.

    PubMed

    Li, Yuting; Jongberg, Sisse; Andersen, Mogens L; Davies, Michael J; Lund, Marianne N

    2016-08-01

    Oxidation of polyphenols to quinones serves as an antioxidative mechanism, but the resulting quinones may induce damage to proteins as they react through a Michael addition with nucleophilic groups, such as thiols and amines to give protein adducts. In this study, rate constants for the reaction of 4-methylbenzoquinone (4MBQ) with proteins, thiol and amine compounds were determined under pseudo first-order conditions by UV-vis stopped-flow spectrophotometry. The chemical structures of the adducts were identified by LC-ESI-MS/MS. Proteins with free thiols were rapidly modified by 4MBQ with apparent second order rate constants, k2 of (3.1±0.2)×10(4)M(-1)s(-1) for bovine serum albumin (BSA) and (4.8±0.2)×10(3)M(-1)s(-1) for human serum albumin at pH 7.0. These values are at least 12-fold greater than that for α-lactalbumin (4.0±0.2)×10(2)M(-1)s(-1), which does not contain any free thiols. Reaction of Cys-34 of BSA with N-ethylmaleimide reduced the thiol concentration by ~59%, which resulted in a decrease in k2 by a similar percentage, consistent with rapid adduction at Cys-34. Reaction of 4MBQ with amines (Gly, Nα-acetyl-l-Lys, Nε-acetyl-l-Lys and l-Lys) and the guanidine group of Nα-acetyl-l-Arg was at least 5×10(5) slower than with low-molecular-mass thiols (l-Cys, Nα-acetyl-l-Cys, glutathione). The thiol-quinone interactions formed colorless thiol-phenol products via an intermediate adduct, while the amine-quinone interactions generated colored amine-quinone products that require oxygen involvement. These data provide strong evidence for rapid modification of protein thiols by quinone species which may be of considerable significance for biological and food systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Oxidative stress and decreased thiol level in patients with migraine: cross-sectional study.

    PubMed

    Eren, Yasemin; Dirik, Ebru; Neşelioğlu, Salim; Erel, Özcan

    2015-12-01

    Although migraine is a neurological disorder known since long, its physiopathology remains unclear. Recent studies suggest that migraine is associated with oxidative stress; however, they report divergent results. The aim of the present study was to evaluate total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and serum thiol level in migraine patients with or without aura. The study group consisted of 141 migraine patients. The control group included 70 healthy subjects. TAS, TOS, OSI were evaluated using a method developed by Erel. Serum thiol level was measured using the Hu method. No difference was found in TAS, TOS, OSI between the patients and controls. The level of thiol was significantly lower in patients than in controls. Negative correlations were detected between thiol level and Migraine Disability Assessment score in patients. Although TAS, TOS, and OSI were similar to those of the control group, serum thiol level, an important marker of antioxidant capacity, was significantly lower in migraines compared with controls, and caused more serious disability. Novel treatment approaches may be developed based on these data, and compounds containing thiol, such as alpha lipoic acid and N-acetyl cysteine, may be used in prophylaxis.

  9. Stable isotope labeling-solid phase extraction-mass spectrometry analysis for profiling of thiols and aldehydes in beer.

    PubMed

    Zheng, Shu-Jian; Wang, Ya-Lan; Liu, Ping; Zhang, Zheng; Yu, Lei; Yuan, Bi-Feng; Feng, Yu-Qi

    2017-12-15

    In this study, we developed a strategy for profiling of thiols and aldehydes in beer samples by stable isotope labeling-solid phase extraction-liquid chromatography-double precursor ion scan/double neutral loss scan-mass spectrometry analysis (SIL-SPE-LC-DPIS/DNLS-MS). A pair of isotope reagents (ω-bromoacetonylquinolinium bromide, BQB; ω-bromoacetonylquinolinium-d 7 bromide, BQB-d 7 ) were used to label thiols; while for the aldehydes, a pair of isotope reagents (4-(2-(trimethylammonio) ethoxy) benzenaminium halide, 4-APC; 4-(2-(trimethylammonio) ethoxy) benzenaminium halide-d 4 , 4-APC-d 4 ) were used. The labeled thiols and aldehydes were extracted and purified with solid-phase extraction, respectively, followed by LC-MS analysis. Using the proposed SIL-SPE-LC-DPIS/DNLS-MS methods, 76 thiol and 25 aldehyde candidates were found in beer. Furthermore, we established SIL-SPE-LC-MRM-MS methods for the relative quantitation of thiols and aldehydes in different beer samples. The results showed that the contents of thiols and aldehydes are closely related to the brands and origins of beers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Inactivation of Penicillins by Thiol Broth

    PubMed Central

    Murray, Patrick R.; Niles, Ann C.

    1982-01-01

    Thiol broth with sodium polyanetholesulfonate inactivated penicillin G, carbenicillin, nafcillin, oxacillin, and gentamicin, but had no effect on cephalothin, cefoxitin, clindamycin, chloramphenicol, erythromycin, and tetracycline. Only Thiol broth was capable of this inactivation, which was not influenced by the presence of blood. PMID:7153352

  11. Postharvest Exogenous Application of Abscisic Acid Reduces Internal Browning in Pineapple.

    PubMed

    Zhang, Qin; Liu, Yulong; He, Congcong; Zhu, Shijiang

    2015-06-10

    Internal browning (IB) is a postharvest physiological disorder causing economic losses in pineapple, but there is no effective control measure. In this study, postharvest application of 380 μM abscisic acid (ABA) reduced IB incidence by 23.4-86.3% and maintained quality in pineapple fruit. ABA reduced phenolic contents and polyphenol oxidase and phenylalanine ammonia lyase activities; increased catalase and peroxidase activities; and decreased O2(·-), H2O2, and malondialdehyde levels. This suggests ABA could control IB through inhibiting phenolics biosynthesis and oxidation and enhancing antioxidant capability. Furthermore, the efficacy of IB control by ABA was not obviously affected by tungstate, ABA biosynthesis inhibitor, nor by diphenylene iodonium, NADPH oxidase inhibitor, nor by lanthanum chloride, calcium channel blocker, suggesting that ABA is sufficient for controlling IB. This process might not involve H2O2 generation, but could involve the Ca(2+) channels activation. These results provide potential for developing effective measures for controlling IB in pineapple.

  12. Flavonol Glucoside and Antioxidant Enzyme Biosynthesis Affected by Mycorrhizal Fungi in Various Cultivars of Onion (Allium cepa L.).

    PubMed

    Mollavali, Mohanna; Bolandnazar, Saheb Ali; Schwarz, Dietmar; Rohn, Sascha; Riehle, Peer; Zaare Nahandi, Fariborz

    2016-01-13

    The objective of this study was to investigate the impact of mycorrhizal symbiosis on qualitative characteristics of onion (Allium cepa L.). For this reason, five onion cultivars with different scale color and three different strains of arbuscular mycorrhizal fungi (Diversispora versiformis, Rhizophagus intraradices, Funneliformis mosseae) were used. Red cultivars, mainly 'Red Azar-shahr', showed the highest content in vitamin C, flavonols, and antioxidant enzymes. Mycorrhizal inoculation increased total phenolic, pyruvic acid, and vitamin C of onion plants. Considerable increase was observed in quercetin-4'-O-monoglucoside and isorhamnetin-4'-O-monoglucoside content in plants inoculated with Diversispora versiformis, but quercetin-3,4'-O-diglucoside was not significantly influenced. Analyses for phenylalanine ammonia-lyase (PAL) and antioxiodant enzyme activities such as polyphenol oxidase (PPO), catalase (CAT), and peroxidase (POD) revealed that all except PPO were enhanced by mycorrhizal inoculation. Overall, these findings suggested that mycorrhizal inoculation influenced biosynthesis of flavonol glucosides and antioxidant enzymes by increasing nutrient uptake or by induction of the plant defense system.

  13. Factors affecting the morphology of isocitrate lyase crystals

    NASA Technical Reports Server (NTRS)

    Demattei, Robert C.; Feigelson, Robert S.; Weber, Patricia C.

    1992-01-01

    Isocitrate lyase crystals have been grown by the hanging drop vapor equilibration method in both 1-g and microgravity and by vapor equilibrium in small capillaries. The crystal morphologies obtained have ranged from dendritic to 'octagonal' prisms. Theoretical evaporation models have been applied to these growth regimes. The results of these analyses along with other experimental results, indicate the factors which must be controlled to produce good growth morphologies.

  14. Structural and Molecular Basis for the Novel Catalytic Mechanism and Evolution of DddP, an Abundant Peptidase-Like Bacterial Dimethylsulfoniopropionate Lyase: A New Enzyme from an Old Fold

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Z.; Wang, P.; Chen, X. L.; Li, C. Y.; Gao, X.; Zhu, D.; Xie, B. B.; Qin, Q. L.; Zhang, X. Y.; Su, H. N.; Zhou, B. C.; Xun, L.

    2015-12-01

    The microbial cleavage of dimethylsulfoniopropionate (DMSP) generates volatile dimethyl sulfide (DMS) and is an important step in global sulfur and carbon cycles. DddP is a DMSP lyase in marine bacteria and the deduced dddP gene product is abundant in marine metagenomic data sets. However, DddP belongs to the M24 peptidase family according to sequence alignment. Peptidases hydrolyze C-N bonds but DddP is deduced to cleave C-S bonds. Mechanisms responsible for this striking functional shift are currently unknown. We determined the structures of DMSP lyase RlDddP (the DddP from Ruegeria lacuscaerulensis ITI_1157) bound to inhibitory 2-(N-morpholino) ethanesulfonic acid or PO43- and of two mutants of RlDddP bound to acrylate. Based on structural, mutational and biochemical analyses, we characterized a new ion-shift catalytic mechanism of RlDddP for DMSP cleavage. Further, we suggested the structural mechanism leading to the loss of peptidase activity and the subsequent development of DMSP lyase activity in DddP. This study sheds light on the catalytic mechanism and the divergent evolution of DddP, leading to a better understanding of marine bacterial DMSP catabolism and global DMS production.

  15. Isolation and amino acid sequence of a dehydratase acting on d-erythro-3-hydroxyaspartate from Pseudomonas sp. N99, and its application in the production of optically active 3-hydroxyaspartate.

    PubMed

    Nagano, Hiroyuki; Shibano, Kana; Matsumoto, Yu; Yokota, Atsushi; Wada, Masaru

    2017-06-01

    An enzyme catalyzing the ammonia-lyase reaction for the conversion of d-erythro-3-hydroxyaspartate to oxaloacetate was purified from the cell-free extract of a soil-isolated bacterium Pseudomonas sp. N99. The enzyme exhibited ammonia-lyase activity toward l-threo-3-hydroxyaspartate and d-erythro-3-hydroxyaspartate, but not toward other 3-hydroxyaspartate isomers. The deduced amino acid sequence of the enzyme, which belongs to the serine/threonine dehydratase family, shows similarity to the sequence of l-threo-3-hydroxyaspartate ammonia-lyase (EC 4.3.1.16) from Pseudomonas sp. T62 (74%) and Saccharomyces cerevisiae (64%) and serine racemase from Schizosaccharomyces pombe (65%). These results suggest that the enzyme is similar to l-threo-3-hydroxyaspartate ammonia-lyase from Pseudomonas sp. T62, which does not act on d-erythro-3-hydroxyaspartate. We also then used the recombinant enzyme expressed in Escherichia coli to produce optically pure l-erythro-3-hydroxyaspartate and d-threo-3-hydroxyaspartate from the corresponding dl-racemic mixtures. The enzymatic resolution reported here is one of the simplest and the first enzymatic method that can be used for obtaining optically pure l-erythro-3-hydroxyaspartate.

  16. Modification of the mitochondrial sulfonylurea receptor by thiol reagents.

    PubMed

    Szewczyk, A; Wójcik, G; Lobanov, N A; Nalecz, M J

    1999-08-19

    The purpose of this study was to investigate the effects exerted by thiol-modifying reagents on themitochondrial sulfonylurea receptor. The thiol-oxidizing agents (timerosal and 5, 5'-dithio-bis(2-nitrobenzoic acid)) were found to produce a large inhibition (70% to 80%) of specific binding of [(3)H]glibenclamide to the beef heart mitochondrial membrane. Similar effects were observed with membrane permeable (N-ethylmaleimide) and non-permeable (mersalyl) thiol modifying agents. Glibenclamide binding was also decreased by oxidizing agents (hydrogen peroxide) but not by reducing agents (reduced gluthatione, dithiothreitol and the 2,3-dihydroxy-1,4-dithiolbutane). The results suggest that intact thiol groups, facing the mitochondrial matrix, are essential for glibenclamide binding to the mitochondrial sulfonylurea receptor. Copyright 1999 Academic Press.

  17. Redox mediators in visible light photocatalysis: photocatalytic radical thiol-ene additions.

    PubMed

    Tyson, Elizabeth L; Niemeyer, Zachary L; Yoon, Tehshik P

    2014-02-07

    Synthetically useful radical thiol-ene reactions can be initiated by visible light irradiation in the presence of transition metal polypyridyl photocatalysts. The success of this method relies upon the use of p-toluidine as an essential additive. Using these conditions, high-yielding thiol-ene reactions of cysteine-containing biomolecules can be accomplished using biocompatibile wavelengths of visible light, under aqueous conditions, and with the thiol component as the limiting reagent. We present evidence that p-toluidine serves as a redox mediator that is capable of catalyzing the otherwise inefficient photooxidation of thiols to the key thiyl radical intermediate. Thus, we show that co-catalytic oxidants can be important in the design of synthetic reactions involving visible light photoredox catalysis.

  18. Protein kinase G–regulated production of H2S governs oxygen sensing

    PubMed Central

    Yuan, Guoxiang; Vasavda, Chirag; Peng, Ying-Jie; Makarenko, Vladislav V.; Raghuraman, Gayatri; Nanduri, Jayasri; Gadalla, Moataz M.; Semenza, Gregg L.; Kumar, Ganesh K.; Snyder, Solomon H.; Prabhakar, Nanduri R.

    2015-01-01

    Reflexes initiated by the carotid body, the principal O2-sensing organ, are critical for maintaining cardio-respiratory homeostasis during hypoxia. O2 sensing by the carotid body requires carbon monoxide (CO) generation by heme oxygenase-2 (HO-2) and hydrogen sulfide (H2S) synthesis by cystathionine-γ-lyase (CSE). We report that O2 stimulated the generation of CO, but not that of H2S, and required two cysteine residues in the heme regulatory motif (Cys265 and Cys282) of HO-2. CO stimulated protein kinase G (PKG)–dependent phosphorylation of Ser377 of CSE, inhibiting the production of H2S. Hypoxia decreased the inhibition of CSE by reducing CO generation resulting in increased H2S, which stimulated carotid body neural activity. In carotid bodies from mice lacking HO-2, compensatory increased abundance of nNOS (neuronal nitric oxide synthase) mediated O2 sensing through PKG-dependent regulation of H2S by nitric oxide. These results provide a mechanism for how three gases work in concert in the carotid body to regulate breathing. PMID:25900831

  19. Selective chromogenic detection of thiol-containing biomolecules using carbonaceous nanospheres loaded with silver nanoparticles as carrier.

    PubMed

    Hu, Bo; Zhao, Yang; Zhu, Hai-Zhou; Yu, Shu-Hong

    2011-04-26

    Thiol-containing biomolecules show strong affinity with noble metal nanostructures and could not only stably protect them but also control the self-assembly process of these special nanostructures. A highly selective and sensitive chromogenic detection method has been designed for the low and high molecular weight thiol-containing biomolecules, including cysteine, glutathione, dithiothreitol, and bovine serum albumin, using a new type of carbonaceous nanospheres loaded with silver nanoparticles (Ag NPs) as carrier. This strategy relies upon the place-exchange process between the reporter dyes on the surface of Ag NPs and the thiol groups of thiol-containing biomolecules. The concentration of biomolecules can be determined by monitoring with the fluorescence intensity of reporter dyes dispersed in solution. This new chromogenic assay method could selectively detect these biomolecules in the presence of various other amino acids and monosaccharides and even sensitively detect the thiol-containing biomolecules with different molecular weight, even including proteins.

  20. Thiol-ene immobilisation of carbohydrates onto glass slides as a simple alternative to gold-thiol monolayers, amines or lipid binding.

    PubMed

    Biggs, Caroline I; Edmondson, Steve; Gibson, Matthew I

    2015-01-01

    Carbohydrate arrays are a vital tool in studying infection, probing the mechanisms of bacterial, viral and toxin adhesion and the development of new treatments, by mimicking the structure of the glycocalyx. Current methods rely on the formation of monolayers of carbohydrates that have been chemically modified with a linker to enable interaction with a functionalised surface. This includes amines, biotin, lipids or thiols. Thiol-addition to gold to form self-assembled monolayers is perhaps the simplest method for immobilisation as thiolated glycans are readily accessible from reducing carbohydrates in a single step, but are limited to gold surfaces. Here we have developed a quick and versatile methodology which enables the use of thiolated carbohydrates to be immobilised as monolayers directly onto acrylate-functional glass slides via a 'thiol-ene'/Michael-type reaction. By combining the ease of thiol chemistry with glass slides, which are compatible with microarray scanners this offers a cost effective, but also useful method to assemble arrays.

  1. Heavy metal ion removal by thiol functionalized aluminum oxide hydroxide nanowhiskers

    NASA Astrophysics Data System (ADS)

    Xia, Zhiyong; Baird, Lance; Zimmerman, Natasha; Yeager, Matthew

    2017-09-01

    In this study, we developed a cost effective method of using thiol functionalized γ-aluminum oxide hydroxide (γ-AlOOH) filters for removing three key heavy metals from water: mercury, lead, and cadmium under non-concomitant conditions. Compared to non-thiol treated γ-AlOOH filters, the introduction of thiol functional groups greatly improved the heavy metal removal efficiency under both static and dynamic filtration conditions. The adsorption kinetics of thiol functionalized γ-AlOOH were investigated using the Lagergren first order and pseudo-second order kinetics models; whereas the isothermal adsorption behavior of these membranes was revealed through the Langmuir and Freundlich models. Heavy metal concentration was quantified by Inductively Coupled Plasma-Mass Spectroscopy, and the thiol level on γ-AlOOH surface was measured by a colorimetric assay using Ellman's reagent. X-ray photoelectron spectroscopy was used to further address the surface sulfur state on the membranes after heavy metal exposure. Mechanisms for heavy metal adsorption were also discussed.

  2. The synthesis of novel hybrid thiol-functionalized nano-structured SBA-15

    NASA Astrophysics Data System (ADS)

    Hoang, Van Duc; Phuong Dang, Tuyet; Khieu Dinh, Quang; Phu Nguyen, Huu; Vu, Anh Tuan

    2010-09-01

    Mesoporous thiol-functionalized SBA-15 has been directly synthesized by co-condensation of tetraethyl orthosilicate (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) with triblock copolymer P123 as-structure-directing agent under hydrothermal conditions. Surfactant removal was performed by Soxhlet ethanol extraction. These materials have been characterized by powder x-ray diffraction (XRD), nitrogen adsorption/desorption (BET model), transmission electron microscopy (TEM), thermal analysis, infrared spectroscopy (IR) and energy-dispersive x-ray spectroscopy (EDX). The main parameters, such as the initial molar ratio of MPTMS to TEOS, the time of adding MPTMS to synthesized gel and the Soxhlet ethanol extraction on the thiol functionalized SBA-15 with high thiol content and highly ordered hexagonal mesostructure, were investigated and evaluated. The adsorption capacity of the thiol-functionalized and non-functionalized SBA-15 materials for Pb2+ ion from aqueous solution was tested. It was found that the Pb2+ adsorption capacity of the thiol functionalized SBA-15 is three times higher than that of non-functionalized SBA-15.

  3. ROS-dependent signal transduction

    PubMed Central

    Reczek, Colleen R; Chandel, Navdeep S

    2014-01-01

    Reactive oxygen species (ROS) are no longer viewed as just a toxic by-product of mitochondrial respiration, but are now appreciated for their role in regulating a myriad of cellular signaling pathways. H2O2, a type of ROS, is a signaling molecule that confers target specificity through thiol oxidation. Although redox-dependent signaling has been implicated in numerous cellular processes, the mechanism by which the ROS signal is transmitted to its target protein in the face of highly reactive and abundant antioxidants is not fully understood. In this review of redox-signaling biology, we discuss the possible mechanisms for H2O2-dependent signal transduction. PMID:25305438

  4. Detoxification of Atrazine by Low Molecular Weight Thiols in Alfalfa (Medicago sativa).

    PubMed

    Zhang, Jing Jing; Xu, Jiang Yan; Lu, Feng Fan; Jin, She Feng; Yang, Hong

    2017-10-16

    Low molecular weight (LMW) thiols in higher plants are a group of sulfur-rich nonprotein compounds and play primary and multiple roles in cellular redox homeostasis, enzyme activities, and xenobiotics detoxification. This study focused on identifying thiols-related protein genes from the legume alfalfa exposed to the herbicide atrazine (ATZ) residues in environment. Using high-throughput RNA-sequencing, a set of ATZ-responsive thiols-related protein genes highly up-regulated and differentially expressed in alfalfa was identified. Most of the differentially expressed genes (DEGs) were involved in regulation of biotic and abiotic stress responses. By analyzing the genes involved in thiols-mediated redox homeostasis, we found that many of them were thiols-synthetic enzymes such as γ-glutamylcysteine synthase (γECS), homoglutathione synthetase (hGSHS), and glutathione synthetase (GSHS). Using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), we further characterized a group of ATZ-thiols conjugates, which are the detoxified forms of ATZ in plants. Cysteine S-conjugate ATZ-HCl+Cys was the most important metabolite detected by MS. Several other ATZ-conjugates were also examined as ATZ-detoxified metabolites. Such results were validated by characterizing their analogs in rice. Our data showed that some conjugates under ATZ stress were detected in both plants, indicating that some detoxified mechanisms and pathways can be shared by the two plant species. Overall, these results indicate that LMW thiols play critical roles in detoxification of ATZ in the plants.

  5. Chromenoquinoline-based thiol probes: a study on the quencher position for controlling fluorescent Off-On characteristics.

    PubMed

    Kand, Dnyaneshwar; Kalle, Arunasree Marasanapalli; Talukdar, Pinaki

    2013-02-13

    The design, synthesis and thiol sensing ability of chromenoquinoline-based fluorescent probes 4, 5 and 6 and are reported here. The relative position of the maleimide moiety was varied along the chromenoquinoline fluorophore to decrease the background fluorescence. Lower background fluorescence in probes 4 and 6 was rationalized by the smaller k(r)/k(nr) values compared to that of probe 5. An intramolecular charge transfer (ICT) mechanism was proposed for quenching and the extent was dependent on the position of the maleimide quencher. Fluorescent Off-On characteristics were evaluated by theoretical calculations. All probes were selective only towards thiol containing amino acids. Thiol sensing by probes 4 and 6 were much better compared to 5. Probe 4 displayed a better fluorescence response for less hindered thiol (185-, 223- and 156-fold for Hcy, Cys and GSH, respectively), while for probe 6, a higher enhancement in fluorescence was observed with more hindered thiols (180-, 205- and 245-fold for Hcy, Cys and GSH, respectively). The better response to bulkier thiol, GSH by probe 6 was attributed to the steric crowding at the C-4 position and bulkiness of the GSH group which force the succinimide unit to be in a nearly orthogonal conformation. This spatial arrangement was important in reducing the fluorescence quenching ability of the succinimide moiety. The application of probes 4, 5 and 6 was demonstrated by naked eye detection thiols using a 96-well plate system as well as by live-cell imaging.

  6. Thiolated hydroxyethyl cellulose: design and in vitro evaluation of mucoadhesive and permeation enhancing nanoparticles.

    PubMed

    Rahmat, Deni; Müller, Christiane; Barthelmes, Jan; Shahnaz, Gul; Martien, Ronny; Bernkop-Schnürch, Andreas

    2013-02-01

    Within this study, HEC-cysteamine nanoparticles with free thiol groups in the range of 117-1548 μmol/g were designed and characterized. Nanoparticles were generated via ionic gelation of the cationic polymer with tripolyphosphate (TPP) followed by covalent crosslinking via disulfide bond formation using H2O2 as oxidant. The mean diameter of the particles was in the range of 270-360 nm, and zeta potential was determined to be +4 to +10 mV. Nanoparticles were evaluated in terms of mucoadhesive, permeation enhancing, and biocompatible properties as well as biodegradability. The particles remained attached to porcine intestinal mucosa up to 70% after 3h of incubation. The more nanoparticles were oxidized; however, the less were their mucoadhesive properties. Nanoparticles applied in a concentration of 0.5% (m/v) with the highest content of free thiol groups improved the transport of fluorescein isothiocyanate dextran 4 (FD4) across Caco-2 cell monolayer 3.94-fold in comparison with control (buffer). In addition, the transport of FD4 was even 1.84-fold enhanced in the presence of 0.5% (m/v) nanoparticles with the lowest free thiol group content. The higher the disulfide bond content within nanoparticles was, to a lower degree nanoparticles were hydrolyzed by cellulase. None of these nanoparticles showed pronounced cytotoxicity. Accordingly, HEC-cysteamine could be a promising excipient for nanoparticulate delivery systems for poorly absorbed drugs. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Refeeding syndrome in a young woman with argininosuccinate lyase deficiency.

    PubMed

    Stuy, M; Chen, G-F; Masonek, J M; Scharschmidt, B F

    2015-09-01

    A severely chronically protein and calorie restricted young woman with argininosuccinate lyase deficiency developed transient refeeding syndrome (RFS) and hyperammonemia after modest diet liberalization following initiation of glycerol phenylbutyrate (GPB). The patient required IV supportive care and supplementation with potassium, magnesium and calcium. She is now doing well on GPB and an appropriate maintenance diet. Susceptibility to RFS should be considered in chronically nutritionally restricted patients with metabolic disorders after liberalization of diet.

  8. Integration between anticipatory blocking and redox signaling by the peroxiredoxin/thioredoxin/thioredoxin-reductase system.

    PubMed

    Selvaggio, Gianluca; Coelho, Pedro M B M; Salvador, Armindo

    2014-10-01

    Cells are occasionally exposed to high H2O2 concentrations, often preceding exposure to other electrophylic compounds. Both H2O2 and these compounds can irreversibly modify protein thiols, with deleterious consequences. Induction of enzymatic defenses against those agents is too slow to avoid significant damage. Cells may solve this conundrum by reversibly "blocking" the thiols once H2O2 concentrations begin to increase. We term this mechanism "anticipatory blocking" because it acts in anticipation of irreversible damage upon detection of early signs of stress. Here we examine the design requirements for the Peroxiredoxin/Thioredoxin/Thioredoxin-Reductase/Protein-Dithiol System (PTTRDS) to effectively integrate H2O2 signaling and anticipatory blocking of protein dithiols as disulfides, and we compared them to the designs found in cells. To that effect, we developed a minimal model of the PTTRDS, and we defined a set of quantitative performance criteria that embody the requirements for (a) efficient scavenging capacity, (b) low NADPH consumption, (c) effective signal propagation, and (d) effective anticipatory blocking. We then sought the design principles (relationships among rate constants and species concentrations) that warrant fulfillment of all these criteria. Experimental data indicates that the design of the PTTRDS in human erythrocytes fulfills these principles and thus accomplishes effective integration between anticipatory blocking, antioxidant protection and redox signaling. A more general analysis suggests that the same principles hold in a wide variety of cell types and organisms. We acknowledge grants PEst-C/SAU/LA0001/2013-2014, PEst-OE/QUI/UI0612/2013, FCOMP-01-0124-FEDER-020978 (PTDC/QUI-BIQ/119657/2010) financed by FEDER through the "Programa Operacional Factores de Competitividade, COMPETE" and by national funds through "FCT, Fundação para a Ciência e a Tecnologia". Copyright © 2014. Published by Elsevier Inc.

  9. Mutielemental concentration and physiological responses of Lavandula pedunculata growing in soils developed on different mine wastes.

    PubMed

    Santos, Erika S; Abreu, Maria Manuela; Saraiva, Jorge A

    2016-06-01

    This study aimed to: i) evaluate the accumulation and translocation patterns of potentially hazardous elements into the Lavandula pedunculata and their influence in the concentrations of nutrients; and ii) compare some physiological responses associated with oxidative stress (concentration of chlorophylls (Chla, Chlb and total), carotenoids, and total protein) and several components involved in tolerance mechanisms (concentrations of proline and acid-soluble thiols and total/specific activity of catalase (CAT) and superoxide dismutase (SOD)), in plants growing in soils with a multielemental contamination and non-contaminated. Composite samples of soils, developed on mine wastes and/or host rocks, and L. pedunculata (roots and shoots) were collected in São Domingos mine (SE of Portugal) and in a reference area with non-contaminated soils, Corte do Pinto, with the same climatic conditions. São Domingos soils had high total concentrations of several hazardous elements (e.g. As and Pb) but their available fractions were small (mainly <5.8 % of the total). Translocation behaviour of elements was not clear according to the physiological importance of the elements. In general, plant shoots from São Domingos had the highest elements concentrations, but only As, Mn and Zn reached phytotoxic concentrations. Concentration of Chlb in shoots from São Domingos was higher than those from Corte do Pinto. No significant differences were obtained between concentrations of Chla, total protein, proline and acid-soluble thiols in shoots collected in both areas, as well as SOD activity (total and specific) and specific CAT activity. Total CAT activity varied with population being lower in the shoots of the plants from São Domingos, but no correlation was obtained between this enzymatic activity and the concentrations of the studied elements in shoots. Lavandula pedunculata plants are able to survive in soils developed on different mine wastes with multielemental contamination and low fertility showing no symptoms (visible and physiological) of phytotoxicity or deficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Arabidopsis GLUTATHIONE REDUCTASE1 Plays a Crucial Role in Leaf Responses to Intracellular Hydrogen Peroxide and in Ensuring Appropriate Gene Expression through Both Salicylic Acid and Jasmonic Acid Signaling Pathways1[C][W][OA

    PubMed Central

    Mhamdi, Amna; Hager, Jutta; Chaouch, Sejir; Queval, Guillaume; Han, Yi; Taconnat, Ludivine; Saindrenan, Patrick; Gouia, Houda; Issakidis-Bourguet, Emmanuelle; Renou, Jean-Pierre; Noctor, Graham

    2010-01-01

    Glutathione is a major cellular thiol that is maintained in the reduced state by glutathione reductase (GR), which is encoded by two genes in Arabidopsis (Arabidopsis thaliana; GR1 and GR2). This study addressed the role of GR1 in hydrogen peroxide (H2O2) responses through a combined genetic, transcriptomic, and redox profiling approach. To identify the potential role of changes in glutathione status in H2O2 signaling, gr1 mutants, which show a constitutive increase in oxidized glutathione (GSSG), were compared with a catalase-deficient background (cat2), in which GSSG accumulation is conditionally driven by H2O2. Parallel transcriptomics analysis of gr1 and cat2 identified overlapping gene expression profiles that in both lines were dependent on growth daylength. Overlapping genes included phytohormone-associated genes, in particular implicating glutathione oxidation state in the regulation of jasmonic acid signaling. Direct analysis of H2O2-glutathione interactions in cat2 gr1 double mutants established that GR1-dependent glutathione status is required for multiple responses to increased H2O2 availability, including limitation of lesion formation, accumulation of salicylic acid, induction of pathogenesis-related genes, and signaling through jasmonic acid pathways. Modulation of these responses in cat2 gr1 was linked to dramatic GSSG accumulation and modified expression of specific glutaredoxins and glutathione S-transferases, but there is little or no evidence of generalized oxidative stress or changes in thioredoxin-associated gene expression. We conclude that GR1 plays a crucial role in daylength-dependent redox signaling and that this function cannot be replaced by the second Arabidopsis GR gene or by thiol systems such as the thioredoxin system. PMID:20488891

  11. Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways.

    PubMed

    Mhamdi, Amna; Hager, Jutta; Chaouch, Sejir; Queval, Guillaume; Han, Yi; Taconnat, Ludivine; Saindrenan, Patrick; Gouia, Houda; Issakidis-Bourguet, Emmanuelle; Renou, Jean-Pierre; Noctor, Graham

    2010-07-01

    Glutathione is a major cellular thiol that is maintained in the reduced state by glutathione reductase (GR), which is encoded by two genes in Arabidopsis (Arabidopsis thaliana; GR1 and GR2). This study addressed the role of GR1 in hydrogen peroxide (H(2)O(2)) responses through a combined genetic, transcriptomic, and redox profiling approach. To identify the potential role of changes in glutathione status in H(2)O(2) signaling, gr1 mutants, which show a constitutive increase in oxidized glutathione (GSSG), were compared with a catalase-deficient background (cat2), in which GSSG accumulation is conditionally driven by H(2)O(2). Parallel transcriptomics analysis of gr1 and cat2 identified overlapping gene expression profiles that in both lines were dependent on growth daylength. Overlapping genes included phytohormone-associated genes, in particular implicating glutathione oxidation state in the regulation of jasmonic acid signaling. Direct analysis of H(2)O(2)-glutathione interactions in cat2 gr1 double mutants established that GR1-dependent glutathione status is required for multiple responses to increased H(2)O(2) availability, including limitation of lesion formation, accumulation of salicylic acid, induction of pathogenesis-related genes, and signaling through jasmonic acid pathways. Modulation of these responses in cat2 gr1 was linked to dramatic GSSG accumulation and modified expression of specific glutaredoxins and glutathione S-transferases, but there is little or no evidence of generalized oxidative stress or changes in thioredoxin-associated gene expression. We conclude that GR1 plays a crucial role in daylength-dependent redox signaling and that this function cannot be replaced by the second Arabidopsis GR gene or by thiol systems such as the thioredoxin system.

  12. Efficient renaturation of inclusion body proteins denatured by SDS.

    PubMed

    He, Chuan; Ohnishi, Kouhei

    2017-09-02

    Inclusion bodies are often formed when the foreign protein is over expressed in Escherichia coli. Since proteins in inclusion bodies are inactive, denaturing and refolding of inclusion body proteins are necessary to obtain the active form. Instead of the conventional denaturants, urea and guanidine hydrochloride, a strong anionic detergent SDS was used to solubilize C-terminal His-tag form of ulvan lyase in the inclusion bodies. Solution containing SDS-solubilized enzyme were kept on ice to precipitate SDS, followed by SDS-KCl insoluble crystal formation to remove SDS completely. After removing the precipitate by centrifugation, the supernatant was applied to Ni-NTA column to purify His-tagged ulvan lyase. The purified protein showed a dimeric form and ulvan lyase activity, demonstrating that SDS-denatured protein was renatured and recovered enzyme activity. This simple method could be useful for refolding other inclusion body proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Structural and functional features of formate hydrogen lyase, an enzyme of mixed-acid fermentation from Escherichia coli.

    PubMed

    Bagramyan, K; Trchounian, A

    2003-11-01

    Formate hydrogen lyase from Escherichia coli is a membrane-bound complex that oxidizes formic acid to carbon dioxide and molecular hydrogen. Under anaerobic growth conditions and fermentation of sugars (glucose), it exists in two forms. One form is constituted by formate dehydrogenase H and hydrogenase 3, and the other one is the same formate dehydrogenase and hydrogenase 4; the presence of small protein subunits, carriers of electrons, is also probable. Other proteins may also be involved in formation of the enzyme complex, which requires the presence of metal (nickel-cobalt). Its formation also depends on the external pH and the presence of formate. Activity of both forms requires F(0)F(1)-ATPase; this explains dependence of the complex functioning on proton-motive force. It is also possible that the formate hydrogen lyase complex will exhibit its own proton-translocating function.

  14. Ethylene: Indicator but Not Inducer of Phytoalexin Synthesis in Soybean 1

    PubMed Central

    Paradies, Inge; Konze, Jörg R.; Elstner, Erich F.; Paxton, Jack

    1980-01-01

    Cell wall preparations (elicitors) from Phytophthora megasperma var. sojae increase C2H4 formation, phenylalanine ammonia lyase activity, and glyceollin accumulation in soybean cotyledons within about 1.5, 3, and 6 hours after treatment, respectively. The immediate precursor of C2H4, 1-aminocyclopropane-1-carboxylic acid, stimulates C2H4 formation like the elicitor within 1.5 hours after administration, whereas phenylalanine ammonia lyase activity and glyceollin concentration remain unchanged. Aminoethoxyvinylglycine, a specific inhibitor of C2H4 formation in higher plants, inhibits elicitor-induced C2H4 formation by about 95% but has no effects on phenylalanine ammonia lyase or glyceollin accumulation. It was concluded that C2H4 is a signal accompanying the specific recognition process which finally leads to the induction of phytoalexin formation, but it is not functioning as a link or messenger in the induction sequence of glyceollin accumulation. Images PMID:16661585

  15. Xylella fastidiosa esterase rather than hydroxynitrile lyase.

    PubMed

    Torrelo, Guzman; Ribeiro de Souza, Fayene Zeferino; Carrilho, Emanuel; Hanefeld, Ulf

    2015-03-02

    In 2009, we reported that the product of the gene SCJ21.16 (XFa0032) from Xylella fastidiosa, a xylem-restricted plant pathogen that causes a range of diseases in several important crops, encodes a protein (XfHNL) with putative hydroxynitrile lyase activity. Sequence analysis and activity tests indicated that XfHNL exhibits an α/β-hydrolase fold and could be classified as a member of the family of FAD-independent HNLs. Here we provide a more detailed sequence analysis and new experimental data. Using pure heterologously expressed XfHNL we show that this enzyme cannot catalyse the cleavage/synthesis of mandelonitrile and that this protein is in fact a non-enantioselective esterase. Homology modelling and ligand docking simulations were used to study the active site and support these results. This finding could help elucidate the common ancestor of esterases and hydroxynitrile lyases with an α/β -hydrolase fold. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Thiol biochemistry of prokaryotes

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.

    1986-01-01

    The present studies have shown that GSH metabolism arose in the purple bacteria and cyanobacteria where it functions to protect against oxygen toxicity. Evidence was obtained indicating that GSH metabolism was incorporated into eucaryotes via the endosymbiosis giving rise to mitochrondria and chloroplasts. Aerobic bacteria lacking GSH utilize other thiols for apparently similar functions, the thiol being coenzyme A in Gram positive bacteria and chi-glutamylcysteine in the halobacteria. The thiol biochemistry of prokaryotes is thus seen to be much more highly diversified than that of eucaryotes and much remains to be learned about this subject.

  17. Au-thiol interaction chemistry to influence the structural transformation of semiconductor nanocrystals and formation of giant nanostructures.

    PubMed

    Bose, Riya; Manna, Goutam; Pradhan, Narayan

    2014-04-09

    Giant nanostructures which are difficult to design by the classical growth process can be fabricated in a facilitated and well programmed surface ligand removal protocol employing the thiol-gold strong interaction chemistry. When thiol capped small ZnSe seed nanocrystals are treated with amine capped gold particles, gold snatches the thiol ligands from ZnSe and forces them to agglomerate leading to the giant crystalline ZnSe nanostructures. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nitroolefin-based BODIPY as a novel water-soluble ratiometric fluorescent probe for detection of endogenous thiols

    NASA Astrophysics Data System (ADS)

    Kang, Jin; Huo, Fangjun; Chao, Jianbin; Yin, Caixia

    2018-04-01

    Small molecule biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play many crucial roles in physiological processes. In this work, we have prepared a nitroolefin-based BODIPY fluorescent probe with excellent water solubility for detection thiols, which displayed ratiometric fluorescent signal for thiols. Incorporation of a nitroolefin unit to the BODIPY dye would transform it into a strong Michael acceptor, which would be highly susceptible to sulfhydryl nucleophiles. This probe shows an obvious ratio change upon response with thiols, an increase of the emission at 517 nm along with a concomitant decrease of fluorescence peak at 573 nm. Moreover, these successes of intracellular imaging experiments in A549 cells indicated that this probe is suitable for imaging of ex-/endogenous thiols in living cells.

  19. Soft-lithography fabrication of microfluidic features using thiol-ene formulations.

    PubMed

    Ashley, John F; Cramer, Neil B; Davis, Robert H; Bowman, Christopher N

    2011-08-21

    In this work, a novel thiol-ene based photopolymerizable resin formulation was shown to exhibit highly desirable characteristics, such as low cure time and the ability to overcome oxygen inhibition, for the photolithographic fabrication of microfluidic devices. The feature fidelity, as well as various aspects of the feature shape and quality, were assessed as functions of various resin attributes, particularly the exposure conditions, initiator concentration and inhibitor to initiator ratio. An optical technique was utilized to evaluate the feature fidelity as well as the feature shape and quality. These results were used to optimize the thiol-ene resin formulation to produce high fidelity, high aspect ratio features without significant reductions in feature quality. For structures with aspect ratios below 2, little difference (<3%) in feature quality was observed between thiol-ene and acrylate based formulations. However, at higher aspect ratios, the thiol-ene resin exhibited significantly improved feature quality. At an aspect ratio of 8, raised feature quality for the thiol-ene resin was dramatically better than that achieved by using the acrylate resin. The use of the thiol-ene based resin enabled fabrication of a pinched-flow microfluidic device that has complex channel geometry, small (50 μm) channel dimensions, and high aspect ratio (14) features. This journal is © The Royal Society of Chemistry 2011

  20. Vinyl functionalized silica hybrid monolith-based trypsin microreactor for on line digestion and separation via thiol-ene "click" strategy.

    PubMed

    Chen, Yingzhuang; Wu, Minghuo; Wang, Keyi; Chen, Bo; Yao, Shouzhuo; Zou, Hanfa; Nie, Lihua

    2011-11-04

    A novel thiol-ene "click" strategy for the preparation of monolithic trypsin microreactor was proposed. The hybrid organic-inorganic monolithic capillary column with ene-functionality was fabricated by sol-gel process using tetramethoxysilane (TMOS) and γ-methacryloxypropyltrimethoxysilane (γ-MAPS) as precursors. The disulfide bonds of trypsin were reduced to form free thiol groups. Then the trypsin containing free thiol groups was attached on the γ-MAPS hybrid monolithic column with ene-functionality via thiol-ene click chemistry to form a trypsin microreactor. The activity of the trypsin microreactor was characterized by detecting the substrate (Nα-p-tosyl-L-arginine methyl ester hydrochloride, TAME) and the product (Nα-p-tosyl-L-arginine, TA) with on-line capillary zone electrophoresis. After investigating various synthesizing conditions, it was found that the microreactor with poly(N,N'-methylenebisacrylamide) as spacer can deliver the highest activity, yielding a rapid reaction rate. After repeatedly sampling and analyzing for 100 times, the monolithic trypsin microreactor still remained 87.5% of its initial activity. It was demonstrated that thiol-ene "click" strategy for the construction of enzyme microreactor is a promising method for the highly selective immobilization of proteins under mild conditions, especially enzymes with free thiol radicals. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Short communication: characterization of soluble thiols in bovine milk.

    PubMed

    Niero, G; De Marchi, M; Masi, A; Penasa, M; Cassandro, M

    2015-09-01

    Antioxidants are molecules essential for the maintenance of cell homeostasis and their intake through the diet has positive effects on human health. Among antioxidants, low-molecular-weight (LMW) thiols represent an important class of compounds. The aim of this study was to identify LMW thiols in bovine milk. A total of 96 individual milk samples from Brown Swiss, Holstein-Friesian, Alpine Grey, and Simmental cattle breeds were collected in 8 herds. The LMW thiols were extracted from the soluble fraction of milk and, following a derivatization protocol, they were separated by reverse phase HPLC and detected fluorimetrically. Six thiol species were detected and 2, glutathione (GSH) and cysteine-glycine (Cys-Gly), were identified and quantified. Regardless of the breed, the average concentration of Cys-Gly in milk was greater than that of GSH. Overall, milk from dual-purpose breeds (Simmental and Alpine Grey) was richer in LMW thiols than milk from dairy cows (Holstein-Friesian and Brown Swiss). Glutathione and Cys-Gly, closely linked metabolically, were strongly correlated. Pearson correlations of Cys-Gly with protein and casein contents were moderately low, and no relationship was found between GSH and milk chemical composition. Future research should focus on the identification of all detected LMW thiol species. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Presence of closely spaced protein thiols on the surface of mammalian cells.

    PubMed Central

    Donoghue, N.; Yam, P. T.; Jiang, X. M.; Hogg, P. J.

    2000-01-01

    It has been proposed that certain cell-surface proteins undergo redox reactions, that is, transfer of hydrogens and electrons between closely spaced cysteine thiols that can lead to reduction, formation, or interchange of disulfide bonds. This concept was tested using a membrane-impermeable trivalent arsenical to identify closely spaced thiols in cell-surface proteins. We attached the trivalent arsenical, phenylarsenoxide, to the thiol of reduced glutathione to produce 4-(N-(S-glutathionylacetyl)amino)phenylarsenoxide (GSAO). GSAO bound tightly to synthetic, peptide, and protein dithiols like thioredoxin, but not to monothiols. To identify cell-surface proteins that contain closely spaced thiols, we attached a biotin moiety through a spacer arm to the primary amino group of the gamma-glutamyl residue of GSAO (GSAO-B). Incorporation of GSAO-B into proteins was assessed by measuring the biotin using streptavidin-peroxidase. Up to 12 distinct proteins were labeled with GSAO-B on the surface of endothelial and fibrosarcoma cells. The pattern of labeled proteins differed between the different cell types. Protein disulfide isomerase was one of the proteins on the endothelial and fibrosarcoma cell surface that incorporated GSAO-B. These findings demonstrate that the cell-surface environment can support the existence of closely spaced protein thiols and suggest that at least some of these thiols are redox active. PMID:11206065

  3. Thiol Disulfide Homeostasis in Schizophrenic Patients Using Atypical Antipsychotic Drugs

    PubMed Central

    Ersan, Etem Erdal; Aydin, Hüseyin; Erdoğan, Serpil; Erşan, Serpil; Alişik, Murat; Bakir, Sevtap; Erel, Özcan; Koç, Derya

    2018-01-01

    Objective Schizophrenia is a severe, debilitating mental disorder characterized by behavioral abnormalities. Although several studies have investigated the role of oxidative stress and the effects of antipsychotic drugs on oxidative markers in schizophrenia, adequate information is not available on these issues. The aim of this study is to determine the changes in oxidative status and thiol disulfide homeostasis in schizophrenic patients using atypical antipsychotic drugs. Methods Thirteen schizophrenic patients using atypical antipsychotic drugs and 30 healthy controls were included this study. The concentrations of total oxidant status (TOS), total antioxidant status (TAS), native thiol, total thiol, and disulfide levels were determined in the study population. Results The TAS (p=0.001), total thiol, and native thiol levels (p<0.001) were higher in the patients compared to the controls, whereas the TOS and disulfide levels were lower in the patients than in the controls (p<0.001). Conclusion These results may suggest that atypical antipsychotic drugs have a useful therapeutic effect by reducing oxidative stress via the inhibition of the formation of disulfide bonds. The study population number was one of the limitations of this study. Therefore, further studies are needed to establish the association between thiol disulfide homeostasis in schizophrenic patients using atypical antipsychotic drugs. PMID:29397665

  4. The effect of SiO2/Au core-shell nanoparticles on breast cancer cell's radiotherapy.

    PubMed

    Darfarin, Ghazal; Salehi, Roya; Alizadeh, Effat; Nasiri Motlagh, Behnam; Akbarzadeh, Abolfazl; Farajollahi, Alireza

    2018-05-09

    Recently it has been shown that radiation dose enhancement could be achievable in radiotherapy using nanoparticles (NPs). In this study, evaluation was made to determine efficiency of gold-silica shell-core NP in megavoltage irradiation of MCF7 breath cancer cells. Gold-silicon oxide shell-core NPs were obtained by conjugation of gold NP with amine or thiol functionalized silica NPs (AuN@SiO 2 and AuS@SiO 2 ). Cellular uptake and cytotoxicity of NPs were examined by fluorescent microscopy and MTT assay, respectively. MCF-7 breast cancer cells were treated with both NPs and irradiation was made with X-ray energies of 6 and 18 MV to the absorbed dose of 2, 4 and 8 Gy using Simense linear accelerator. The efficiency of radiation therapy was then evaluated by MTT and Brdu assay, DAPI staining and cell cycle analysis. TEM images indicated that synthesized NPs had average diameter of 25 nm. Cellular uptake demonstrated that the internalization of AuS@SiO 2 and AuN@SiO 2 NPs amounted to 18% and 34%, 3 h post treatment, respectively. Nontoxicity of prepared NPs on MCF-7 cells was proved by MTT and Brdu assays as well as DAPI staining and cell cycle studies. The highest enhancement in radiation dose was observed in the cells that irradiated with radiation energy of 18 MV and absorbed of 8 Gy at NPs concentration of 200 ppm. The Brdu findings revealed that the cytotoxicity and apoptosis on MCF-7 cells are dose dependent with a significantly more death in AuN@SiO 2 (amine) exposed cells (p < .05). Analysis also revealed interruption in cell cycle by demonstrating lack of cells, in S phase in amine treated cells (AuN@SiO 2 ) at given dose of 8 Gy using 18 MV X-ray in comparison to thiol treated cells. Based on the results of the study it can be concluded that the gold-silicon oxide shell-core NPs could play an effective role in radiotherapy of MCF-7 breast cancer cells.

  5. How do background ozone concentrations affect the biosynthesis of rosmarinic acid in Melissa officinalis?

    PubMed

    Döring, Anne S; Pellegrini, Elisa; Della Batola, Michele; Nali, Cristina; Lorenzini, Giacomo; Petersen, Maike

    2014-03-01

    Lemon balm (Melissa officinalis; Lamiaceae) plants were exposed to background ozone (O3) dosages (80ppb for 5h), because high background levels of O3 are considered to be as harmful as episodic O3 peaks. Immediately at the end of fumigation the plants appeared visually symptomless, but necrotic lesions were observed later. The biosynthesis of rosmarinic acid (RA) comprises eight enzymes, among them phenylalanine ammonia-lyase (PAL), 4-coumarate:coenzyme A ligase (4CL), tyrosine aminotransferase (TAT) and rosmarinic acid synthase (RAS). The transcript levels of these genes have been investigated by quantitative RT-PCR. There was a quick up-regulation of all genes at 3h of O3 exposure, but at 24h from beginning of exposure (FBE) only RAS and PAL were up-regulated. The specific activity of RAS was closely correlated with a decrease of RA concentration in lemon balm leaves. The specific activity of PAL increased at 12h FBE to 163% in comparison to control levels. This work provides insight into the effect of O3 stress on the formation of the main phenolic ingredient of the pharmaceutically important plant M. officinalis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels.

    PubMed

    Smith, M Ryan; Vayalil, Praveen K; Zhou, Fen; Benavides, Gloria A; Beggs, Reena R; Golzarian, Hafez; Nijampatnam, Bhavitavya; Oliver, Patsy G; Smith, Robin A J; Murphy, Michael P; Velu, Sadanandan E; Landar, Aimee

    2016-08-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study demonstrates for the first time that mitochondrial thiol modification inhibits metabolism via inhibition of both aconitase and GAC in a breast cancer cell model. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Aliphatic C-C Bond Cleavage in α-Hydroxy Ketones by a Dioxygen-Derived Nucleophilic Iron-Oxygen Oxidant.

    PubMed

    Bhattacharya, Shrabanti; Rahaman, Rubina; Chatterjee, Sayanti; Paine, Tapan K

    2017-03-17

    A nucleophilic iron-oxygen oxidant, formed in situ in the reaction between an iron(II)-benzilate complex and O 2 , oxidatively cleaves the aliphatic C-C bonds of α-hydroxy ketones. In the cleavage reaction, α-hydroxy ketones without any α-C-H bond afford a 1:1 mixture of carboxylic acid and ketone. Isotope labeling studies established that one of the oxygen atoms from dioxygen is incorporated into the carboxylic acid product. Furthermore, the iron(II) complex cleaves an aliphatic C-C bond of 17-α-hydroxyprogesterone affording androstenedione and acetic acid. The O 2 -dependent aliphatic C-C bond cleavage of α-hydroxy ketones containing no α-C-H bond bears similarity to the lyase activity of the heme enzyme, cytochrome P450 17A1 (CYP17A1). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Gel-based methods in redox proteomics.

    PubMed

    Charles, Rebecca; Jayawardhana, Tamani; Eaton, Philip

    2014-02-01

    The key to understanding the full significance of oxidants in health and disease is the development of tools and methods that allow the study of proteins that sense and transduce changes in cellular redox. Oxidant-reactive deprotonated thiols commonly operate as redox sensors in proteins and a variety of methods have been developed that allow us to monitor their oxidative modification. This outline review specifically focuses on gel-based methods used to detect, quantify and identify protein thiol oxidative modifications. The techniques we discuss fall into one of two broad categories. Firstly, methods that allow oxidation of thiols in specific proteins or the global cellular pool to be monitored are discussed. These typically utilise thiol-labelling reagents that add a reporter moiety (e.g. affinity tag, fluorophore, chromophore), in which loss of labelling signifies oxidation. Secondly, we outline methods that allow specific thiol oxidation states of proteins (e.g. S-sulfenylation, S-nitrosylation, S-thionylation and interprotein disulfide bond formation) to be investigated. A variety of different gel-based methods for identifying thiol proteins that are sensitive to oxidative modifications have been developed. These methods can aid the detection and quantification of thiol redox state, as well as identifying the sensor protein. By understanding how cellular redox is sensed and transduced to a functional effect by protein thiol redox sensors, this will help us better appreciate the role of oxidants in health and disease. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Detection of Free Thiols and Fluorescence Response of Phycoerythrin Chromophore after Ultraviolet-B Radiation Stress.

    PubMed

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2017-03-01

    The chemistry of thiol-chromophore linkage plays a central role in the nature of fluorescence of phycoerythrin (PE). Interaction of thiol and chromophore is crucial for the energy transfer, redox signal and inhibition of oxidative damage. In the present investigation the effects of ultraviolet-B radiation on an emission fluorescence intensity and wavelength shift in PE due to interaction between thiol and chromophore by remarkable strategy of detection technique was studied. Purification of PE was done by using a gel permeation and ion exchange chromatography that yielded a quite high purity index (6.40) in a monomeric (αβ) form. UV-B radiation accelerated the quenching efficiency (24.9 ± 1.52%) by reducing fluorescence emission intensity of thiol linked chromophore after 240 min of UV-B exposure. However, after blocking of transiently released free thiol by N-ethylmaleimide, quenching efficiency was increased (36.8 ± 2.80%) with marked emission wavelength shift towards shorter wavelengths up to 562 nm as compared to 575 nm in control. Emission fluorescence of free thiol was at maximum after 240 min that was detected specifically by monobromobimane (mBrB) molecular probe. The association/dissociation of bilin chromophore was analyzed by SDS- and Native-PAGE that also indicated a complete reduction in emission fluorescence. Our work clearly shows an early detection of free thiols and relative interaction with chromophore after UV-B radiation which might play a significant role in structural and functional integrity of terminal PE.

  10. Thiol-Ene functionalized siloxanes for use as elastomeric dental impression materials

    PubMed Central

    Cole, Megan A.; Jankousky, Katherine C.; Bowman, Christopher N.

    2014-01-01

    Objectives Thiol- and allyl-functionalized siloxane oligomers are synthesized and evaluated for use as a radical-mediated, rapid set elastomeric dental impression material. Thiol-ene siloxane formulations are crosslinked using a redox-initiated polymerization scheme, and the mechanical properties of the thiol-ene network are manipulated through the incorporation of varying degrees of plasticizer and kaolin filler. Formulations with medium and light body consistencies are further evaluated for their ability to accurately replicate features on both the gross and microscopic levels. We hypothesize that thiol-ene functionalized siloxane systems will exhibit faster setting times and greater detail reproduction than commercially available polyvinylsiloxane (PVS) materials of comparable consistencies. Methods Thiol-ene functionalized siloxane mixtures formulated with varying levels of redox initiators, plasticizer, and kaolin filler are made and evaluated for their polymerization speed (FTIR), consistency (ISO4823.9.2), and surface energy (goniometer). Feature replication is evaluated quantitatively by SEM. The Tg, storage modulus, and creep behavior are determined by DMA. Results Increasing redox initiation rate increases the polymerization rate but at high levels also limits working time. Combining 0.86 wt% oxidizing agent with up to 5 wt% plasticizer gave a working time of 3 min and a setting time of 2 min. The selected medium and light body thiol-ene formulations also achieved greater qualitative detail reproduction than the commercial material and reproduced micrometer patterns with 98% accuracy. Significance Improving detail reproduction and setting speed is a primary focus of dental impression material design and synthesis. Radical-mediated polymerizations, particularly thiol-ene reactions, are recognized for their speed, reduced shrinkage, and ‘click’ nature. PMID:24553250

  11. Analysis of volatile thiols in alcoholic beverages by simultaneous derivatization/extraction and liquid chromatography-high resolution mass spectrometry.

    PubMed

    Vichi, Stefania; Cortés-Francisco, Nuria; Caixach, Josep

    2015-05-15

    A simultaneous derivatization/extraction method followed by liquid chromatography-electrospray-high resolution mass spectrometry for the determination of volatile thiols in hydroalcoholic matrixes was optimized and used to identify and quantify volatile thiols in wine and beer samples. The method was evaluated in terms of sensitivity, precision, accuracy and selectivity. The experimental LOQs of eleven thiols tested ranged between 0.01 ng/L and 10 ng/L. Intra-day relative standard deviation (RSD) was in general lower than 10% and inter-day RSD ranged between 10% and 30%. Recovery in the model and real matrixes ranged from 45% to 129%. The method was then applied for the analysis of four white wines and six beers. Five out of the eleven reference thiols were identified and quantified in the samples analyzed. The non-target approach, carried out by monitoring the diagnostic ion at m/z 275.9922 [C13H10ONSe](+) in the fragmentation spectrum, allowed detecting, in the same samples, fourteen non-target thiols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Modifying surface resistivity and liquid moisture management property of keratin fibers through thiol-ene click reactions.

    PubMed

    Yu, Dan; Cai, Jackie Y; Church, Jeffrey S; Wang, Lijing

    2014-01-22

    This paper reports on a new method for improving the antistatic and liquid moisture management properties of keratinous materials. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in keratin with tris(2-carboxyethyl) phosphine hydrochloride and subsequent grafting of hydrophilic groups onto the reduced keratin by reaction with an acrylate sulfonate or acrylamide sulfonate through thiol-ene click chemistry. The modified substrates were characterized with Raman spectroscopy and scanning electron microscopy and evaluated for their performance changes in liquid moisture management, surface resistivity, and wet burst strength. The results have revealed that the thiol-acrylate reaction is more efficient than the thiol-acrylamide reaction, and the keratinous substrate modified with an acrylate sulfonate salt exhibits significantly improved antistatic and liquid moisture management properties.

  13. Refeeding syndrome in a young woman with argininosuccinate lyase deficiency☆

    PubMed Central

    Stuy, M.; Chen, G.-F.; Masonek, J.M.; Scharschmidt, B.F.

    2015-01-01

    A severely chronically protein and calorie restricted young woman with argininosuccinate lyase deficiency developed transient refeeding syndrome (RFS) and hyperammonemia after modest diet liberalization following initiation of glycerol phenylbutyrate (GPB). The patient required IV supportive care and supplementation with potassium, magnesium and calcium. She is now doing well on GPB and an appropriate maintenance diet. Susceptibility to RFS should be considered in chronically nutritionally restricted patients with metabolic disorders after liberalization of diet. PMID:26937403

  14. Molecular characterization of plant growth promoting rhizobacteria that enhance peroxidase and phenylalanine ammonia-lyase activities in chile (Capsicum annuum L.) and tomato (Lycopersicon esculentum Mill.).

    PubMed

    Sharma, Alok; Pathak, Ashutosh; Sahgal, Manvika; Meyer, Jean-Marie; Wray, Victor; Johri, Bhavdish N

    2007-11-01

    Pythium and Phytophthora species are associated with damping-off diseases in vegetable nurseries and reduce seedling stand and yield. In this study, bacterial isolates were selected on the basis of in vitro antagonism potential to inhibit mycelial growth of damping-off pathogens along with plant growth properties for field assessment in wet and winter seasons. We demonstrate efficacy of bacterial isolates to protect chile and tomato plants under natural vegetable nursery and artificially created pathogen-infested (Pythium and Phytophthora spp.) nursery conditions. After 21 days of sowing, chile and tomato plants were harvested and analysed for peroxidase and phenylalanine ammonia-lyase activities. Pseudomonas sp. strains FQP PB-3, FQA PB-3 and GRP(3 )were most effective in increasing shoot length (P > 0.05%) in both artificial and natural field sites. For example, Pseudomonas sp. FQA PB-3 treatment increased shoot length by 40% in the artificial Pythium 4746 infested nursery site in chile plants in the wet season. The bacterial treatments significantly increased the activity of peroxidase and phenylalanine ammonia-lyase in chile and tomato plant tissues, which are well known as indicators of an active lignification process. Thus, we conclude that treatment with potential bacterial plant growth promoting agents help plants against pathogen invasion by modulating plant peroxidase and phenylalanine ammonia-lyase activities.

  15. Characterization of recombinant pectate lyase refolded from inclusion bodies generated in E. coli BL21(DE3).

    PubMed

    Kumar, Sandeep; Jain, Kavish Kumar; Singh, Anupam; Panda, Amulya K; Kuhad, Ramesh Chander

    2015-06-01

    Pectate lyase (EC 4.2.2.2) gene from Bacillus subtilis RCK was cloned and expressed in Escherichia coli to maximize its production. In addition to soluble fraction, bioactive pectate lyase was also obtained from inclusion body aggregates by urea solubilization and refolding under in vitro conditions. Enzyme with specific activity ∼3194IU/mg and ∼1493IU/mg were obtained from soluble and inclusion bodies (IBs) fraction with recovery of 56% and 74% in terms of activity, respectively. The recombinant enzyme was moderately thermostable (t1/2 60min at 50°C) and optimally active in wider alkaline pH range (7.0-10.5). Interaction of protein with its cofactor CaCl2 was found to stimulate the change in tertiary structure as revealed by near UV CD spectra. Intrinsic tryptophan fluorescence spectra indicated that tryptophan is involved in substrate binding and there might be independent binding of Ca(2+) and polygalacturonic acid to the active site. The recombinant enzyme was found to be capable of degrading pectin and polygalacturonic acid. The work reports novel conditions for refolding to obtain active recombinant pectate lyase from inclusion bodies and elucidates the effect of ligand and substrate binding on protein conformation by circular dichroism (CD) and fluorescence spectrofluorometry. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Structure-based engineering of a pectate lyase with improved specific activity for ramie degumming.

    PubMed

    Zhou, Zhanping; Liu, Yang; Chang, Zhenying; Wang, Huilin; Leier, André; Marquez-Lago, Tatiana T; Ma, Yanhe; Li, Jian; Song, Jiangning

    2017-04-01

    Biotechnological applications of microbial pectate lyases (Pels) in plant fiber processing are promising, eco-friendly substitutes for conventional chemical degumming processes. However, to potentiate the enzymes' use for industrial applications, resolving the molecular structure to elucidate catalytic mechanisms becomes necessary. In this manuscript, we report the high resolution (1.45 Å) crystal structure of pectate lyase (pelN) from Paenibacillus sp. 0602 in apo form. Through sequence alignment and structural superposition with other members of the polysaccharide lyase (PL) family 1 (PL1), we determined that pelN shares the characteristic right-handed β-helix and is structurally similar to other members of the PL1 family, while exhibiting key differences in terms of catalytic and substrate binding residues. Then, based on information from structure alignments with other PLs, we engineered a novel pelN. Our rational design yielded a pelN mutant with a temperature for enzymatic activity optimally shifted from 67.5 to 60 °C. Most importantly, this pelN mutant displayed both higher specific activity and ramie fiber degumming ability when compared with the wild-type enzyme. Altogether, our rational design method shows great potential for industrial applications. Moreover, we expect the reported high-resolution crystal structure to provide a solid foundation for future rational, structure-based engineering of genetically enhanced pelNs.

  17. Thiol oxidation by nitrosative stress: Cellular localization in human spermatozoa.

    PubMed

    Cabrillana, María E; Uribe, Pamela; Villegas, Juana V; Álvarez, Juan; Sánchez, Raúl; Fornés, Miguel W

    2016-10-01

    Peroxynitrite is a highly reactive nitrogen species and when it is generated at high levels it causes nitrosative stress, an important cause of impaired sperm function. High levels of peroxynitrite have been shown to correlate with decreased semen quality in infertile men. Thiol groups in sperm are mainly found in enzymes, antioxidant molecules, and structural proteins in the axoneme. Peroxynitrite primarily reacts with thiol groups of cysteine-containing proteins. Although it is well known that peroxynitrite oxidizes sulfhydryl groups in sperm, the subcellular localization of this oxidation remains unknown. The main objective of this study was to establish the subcellular localization of peroxynitrite-induced nitrosative stress in thiol groups and its relation to sperm motility in human spermatozoa. For this purpose, spermatozoa from healthy donors were exposed in vitro to 3-morpholinosydnonimine (SIN-1), a compound which generates peroxynitrite. In order to detect peroxynitrite and reduced thiol groups, the fluorescent probes, dihydrorhodamine 123 and monobromobimane (mBBr), were used respectively. Sperm viability was analyzed by propidium iodide staining. Peroxynitrite generation and thiol redox state were monitored by confocal microscopy whereas sperm viability was evaluated by flow cytometry. Sperm motility was analyzed by CASA using the ISAS(®) system. The results showed that exposure of human spermatozoa to peroxynitrite results in increased thiol oxidation which is mainly localized in the sperm head and principal piece regions. Thiol oxidation was associated with motility loss. The high susceptibility of thiol groups to peroxynitrite-induced oxidation could explain, at least in part, the negative effect of reactive nitrogen species on sperm motility. DHR: dihydrorhodamine 123; mBBr: monobromobimane ONOO(-): peroxynitrite RNS: reactive nitrogen species RFI: relative fluorescence intensity SIN-1: 3-morpholinosydnonimine CASA: Computer-Aided Sperm Analysis PARP: poli ADP ribose polimerasa VCL: curvilinear velocity VSL: straight-line velocity VAP: average path velocity PRDXs: peroxiredoxins ODF: outer dense fiber ODF1: outer dense fiber 1 PI: propidium iodide DMSO: dimethyl sulfoxide SD: standard deviation analysis of variance.

  18. Thiol/disulfide homeostasis in pregnant women with obstructive sleep apnea syndrome.

    PubMed

    Üstündağ, Yasemin; Demirci, Hakan; Balık, Rifat; Erel, Ozcan; Özaydın, Fahri; Kücük, Bilgen; Ertaş, Dilber; Ustunyurt, Emin

    2017-11-27

    Repetitive episodes of hypoxia and reoxygenation during sleep in patients with obstructive sleep apnea syndrome (OSAS) resemble an ischemia-reperfusion injury. We aimed to test the hypothesis that oxidative stress occurs in pregnant women with OSAS. We also aimed to compare thiol/disulfide homeostasis with ischemia-modified albumin (IMA) and total antioxidant capacity (TAC) as markers of ischemia-reperfusion injury in pregnant women with and without OSAS and healthy control. This study included 29 pregnant women with OSAS, 30 women without OSAS in the third trimester applying for periodic examinations, and 30 healthy women. Serum IMA and TAC (using the ferric reducing power of plasma method) were measured. Serum thiol/disulfide homeostasis was determined by a novel automated method. The mean age of the pregnant women with OSAS was 31.0 ± 4.7 years with a mean gestational age of 36.5 ± 3.0 weeks. The mean age of pregnant women without OSAS was 29.8 ± 4.9 years with a mean gestational age of 36.9 ± 2.7 weeks. The mean age of the nonpregnant control group was 29.7 ± 6.4 years. Both native thiol (291 ± 29 μmol/L versus 314 ± 30 μmol/L; p = .018) and total thiol (325 ± 32 versus 350 ± 32, p = .025) levels were lower in pregnant women with OSAS compared to pregnant women without OSAS, respectively (p < .01). This is the first study demonstrating the thiol/disulfide homeostasis in pregnant women with OSAS. Native thiol and total thiol levels were lower in pregnant women with OSAS compared to those without OSAS. However, dynamic thiol/disulfide homeostasis parameters cannot provide valuable information to discriminate OSAS in pregnant women.

  19. Functionalized Nano-adsorbent for Affinity Separation of Proteins

    NASA Astrophysics Data System (ADS)

    Zou, Xueyan; Yang, Fengbo; Sun, Xin; Qin, Mingming; Zhao, Yanbao; Zhang, Zhijun

    2018-05-01

    Thiol-functionalized silica nanospheres (SiO2-SH NSs) with an average diameter of 460 nm were synthesized through a hydrothermal route. Subsequently, the prepared SiO2-SH NSs were modified by SnO2 quantum dots to afford SnO2/SiO2 composite NSs possessing obvious fluorescence, which could be used to trace the target protein. The SnO2/SiO2 NSs were further modified by reduced glutathione (GSH) to obtain SnO2/SiO2-GSH NSs, which can specifically separate glutathione S-transferase-tagged (GST-tagged) protein. Moreover, the peroxidase activity of glutathione peroxidase 3 (GPX3) separated from SnO2/SiO2-GSH NSs in vitro was evaluated. Results show that the prepared SnO2/SiO2-GSH NSs exhibit negligible nonspecific adsorption, high concentration of protein binding (7.4 mg/g), and good reused properties. In the meantime, the GST-tagged GPX3 separated by these NSs can retain its redox state and peroxidase activity. Therefore, the prepared SnO2/SiO2-GSH NSs might find promising application in the rapid separation and purification of GST-tagged proteins.

  20. Proteome-wide Light/Dark Modulation of Thiol Oxidation in Cyanobacteria Revealed by Quantitative Site-specific Redox Proteomics*

    PubMed Central

    Guo, Jia; Nguyen, Amelia Y.; Dai, Ziyu; Su, Dian; Gaffrey, Matthew J.; Moore, Ronald J.; Jacobs, Jon M.; Monroe, Matthew E.; Smith, Richard D.; Koppenaal, David W.; Pakrasi, Himadri B.; Qian, Wei-Jun

    2014-01-01

    Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in photosynthetic organisms. Herein, we present proteome-wide quantitative and site-specific profiling of in vivo thiol oxidation modulated by light/dark in the cyanobacterium Synechocystis sp. PCC 6803, an oxygenic photosynthetic prokaryote, using a resin-assisted thiol enrichment approach. Our proteomic approach integrates resin-assisted enrichment with isobaric tandem mass tag labeling to enable site-specific and quantitative measurements of reversibly oxidized thiols. The redox dynamics of ∼2,100 Cys-sites from 1,060 proteins under light, dark, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosystem II inhibitor) conditions were quantified. In addition to relative quantification, the stoichiometry or percentage of oxidation (reversibly oxidized/total thiols) for ∼1,350 Cys-sites was also quantified. The overall results revealed broad changes in thiol oxidation in many key biological processes, including photosynthetic electron transport, carbon fixation, and glycolysis. Moreover, the redox sensitivity along with the stoichiometric data enabled prediction of potential functional Cys-sites for proteins of interest. The functional significance of redox-sensitive Cys-sites in NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxin (AhpC/TSA family protein Sll1621), and glucose 6-phosphate dehydrogenase was further confirmed with site-specific mutagenesis and biochemical studies. Together, our findings provide significant insights into the broad redox regulation of photosynthetic organisms. PMID:25118246

  1. One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hongye; Liu, Meiying; Tuo, Xun; Chen, Junyu; Mao, Liucheng; Wen, Yuanqing; Tian, Jianwen; Zhou, Naigen; Zhang, Xiaoyong; Wei, Yen

    2018-05-01

    Over the past years, fluorescent carbon nanoparticles have got growing interest for biological imaging. Fluorescent nanodiamonds (FNDs) are novel fluorescent carbon nanoparticles with multitudinous useful properties, including remarkable fluorescence properties, extremely low toxicity and high refractive index. However, facile preparation of FNDs with designable properties and functions from non-fluorescent detonation nanodiamonds (DNDs) has demonstrated to be challengeable. In this work, we reported for the first time that preparation of Polyethylene glycol (PEG) functionalized FNDs through a one-step thiol-ene click reaction using thiol containing PEG (PEG-SH) as the coating agent. Based on the characterization results, we demonstrated that PEG-SH could be efficiently introduced on DNDs to obtain FNDs through the thiol-ene click chemistry. The resultant FND-PEG composites showed high water dispersibility, strong fluorescence and low cytotoxicity. Moreover, FND-PEG composites could be internalized by cells and displayed good cell dyeing performance. All of these features implied that FND-PEG composites are of great potential for biological imaging. Taken together, a facile one-step strategy based on the one-step thiol-ene click reaction has been developed for efficient preparation of FND-PEG composites from non-fluorescent DNDs. The strategy should be also useful for fabrication of many other functional FNDs via using different thiol containing compounds for the universality of thiol-ene click reaction.

  2. Interfacial thiol-ene photoclick reactions for forming multilayer hydrogels.

    PubMed

    Shih, Han; Fraser, Andrew K; Lin, Chien-Chi

    2013-03-13

    Interfacial visible light-mediated thiol-ene photoclick reactions were developed for preparing step-growth hydrogels with multilayer structures. The effect of a noncleavage type photoinitiator eosin-Y on visible-light-mediated thiol-ene photopolymerization was first characterized using in situ photorheometry, gel fraction, and equilibrium swelling ratio. Next, spectrophotometric properties of eosin-Y in the presence of various relevant macromer species were evaluated using ultraviolet-visible light (UV-vis) spectrometry. It was determined that eosin-Y was able to reinitiate the thiol-ene photoclick reaction, even after light exposure. Because of its small molecular weight, most eosin-Y molecules readily leached out from the hydrogels. The diffusion of residual eosin-Y from preformed hydrogels was exploited for fabricating multilayer step-growth hydrogels. Interfacial hydrogel coating was formed via the same visible-light-mediated gelation mechanism without adding fresh initiator. The thickness of the thiol-ene gel coating could be easily controlled by adjusting visible light exposure time, eosin-Y concentration initially loaded in the core gel, or macromer concentration in the coating solution. The major benefits of this interfacial thiol-ene coating system include its simplicity and cytocompatibility. The formation of thiol-ene hydrogels and coatings neither requires nor generates any cytotoxic components. This new gelation chemistry may have great utilities in controlled release of multiple sensitive growth factors and encapsulation of multiple cell types for tissue regeneration.

  3. Bromo- and thiomaleimides as a new class of thiol-mediated fluorescence 'turn-on' reagents.

    PubMed

    Youziel, Judith; Akhbar, Ahmed R; Aziz, Qadeer; Smith, Mark E B; Caddick, Stephen; Tinker, Andrew; Baker, James R

    2014-01-28

    Bromo- and thiomaleimides are shown to serve as highly effective quenchers of a covalently attached fluorophore. Reactions with thiols that lead to removal of the maleimide conjugation, or detachment of the fluorophore from the maleimide, result in 'turn-on' of the fluorescence. These reagents thus offer opportunities in thiol sensing and intracellular reporting.

  4. Insight into the role of substrate-binding residues in conferring substrate specificity for the multifunctional polysaccharide lyase Smlt1473.

    PubMed

    MacDonald, Logan C; Berger, Bryan W

    2014-06-27

    Anionic polysaccharides are of growing interest in the biotechnology industry due to their potential pharmaceutical applications in drug delivery and wound treatment. Chemical composition and polymer length strongly influence the physical and biological properties of the polysaccharide and thus its potential industrial and medical applications. One promising approach to determining monomer composition and controlling the degree of polymerization involves the use of polysaccharide lyases, which catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. Utilization of these enzymes for the production of custom-made oligosaccharides requires a high degree of control over substrate specificity. Previously, we characterized a polysaccharide lyase (Smlt1473) from Stenotrophomonas maltophilia k279a, which exhibited significant activity against hyaluronan (HA), poly-β-d-glucuronic acid (poly-GlcUA), and poly-β-d-mannuronic acid (poly-ManA) in a pH-regulated manner. Here, we utilize a sequence structure guided approach based on a homology model of Smlt1473 to identify nine putative substrate-binding residues and examine their effect on substrate specificity via site-directed mutagenesis. Interestingly, single point mutations H221F and R312L resulted in increased activity and specificity toward poly-ManA and poly-GlcUA, respectively. Furthermore, a W171A mutant nearly eliminated HA activity, while increasing poly-ManA and poly-GlcUA activity by at least 35%. The effect of these mutations was analyzed by comparison with the high resolution structure of Sphingomonas sp. A1-III alginate lyase in complex with poly-ManA tetrasaccharide and by taking into account the structural differences between HA, poly-GlcUA, and poly-ManA. Overall, our results demonstrate that even minor changes in active site architecture have a significant effect on the substrate specificity of Smlt1473, whose structural plasticity could be applied to the design of highly active and specific polysaccharide lyases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Oxidative and Molecular Responses in Capsicum annuum L. after Hydrogen Peroxide, Salicylic Acid and Chitosan Foliar Applications

    PubMed Central

    Mejía-Teniente, Laura; de Dalia Durán-Flores, Flor; Chapa-Oliver, Angela María; Torres-Pacheco, Irineo; Cruz-Hernández, Andrés; González-Chavira, Mario M.; Ocampo-Velázquez, Rosalía V.; Guevara-González, Ramón G.

    2013-01-01

    Hydrogen peroxide (H2O2) is an important ROS molecule (Reactive oxygen species) that serves as a signal of oxidative stress and activation of signaling cascades as a result of the early response of the plant to biotic stress. This response can also be generated with the application of elicitors, stable molecules that induce the activation of transduction cascades and hormonal pathways, which trigger induced resistance to environmental stress. In this work, we evaluated the endogenous H2O2 production caused by salicylic acid (SA), chitosan (QN), and H2O2 elicitors in Capsicum annuum L. Hydrogen peroxide production after elicitation, catalase (CAT) and phenylalanine ammonia lyase (PAL) activities, as well as gene expression analysis of cat1, pal, and pathogenesis-related protein 1 (pr1) were determined. Our results displayed that 6.7 and 10 mM SA concentrations, and, 14 and 18 mM H2O2 concentrations, induced an endogenous H2O2 and gene expression. QN treatments induced the same responses in lesser proportion than the other two elicitors. Endogenous H2O2 production monitored during several days, showed results that could be an indicator for determining application opportunity uses in agriculture for maintaining plant alert systems against a stress. PMID:23676352

  6. Mechanism of protein decarbonylation.

    PubMed

    Wong, Chi-Ming; Marcocci, Lucia; Das, Dividutta; Wang, Xinhong; Luo, Haibei; Zungu-Edmondson, Makhosazane; Suzuki, Yuichiro J

    2013-12-01

    Ligand/receptor stimulation of cells promotes protein carbonylation that is followed by the decarbonylation process, which might involve thiol-dependent reduction (C.M. Wong et al., Circ. Res. 102:301-318; 2008). This study further investigated the properties of this protein decarbonylation mechanism. We found that the thiol-mediated reduction of protein carbonyls is dependent on heat-labile biologic components. Cysteine and glutathione were efficient substrates for decarbonylation. Thiols decreased the protein carbonyl content, as detected by 2,4-dinitrophenylhydrazine, but not the levels of malondialdehyde or 4-hydroxynonenal protein adducts. Mass spectrometry identified proteins that undergo thiol-dependent decarbonylation, which include peroxiredoxins. Peroxiredoxin-2 and -6 were carbonylated and subsequently decarbonylated in response to the ligand/receptor stimulation of cells. siRNA knockdown of glutaredoxin inhibited the decarbonylation of peroxiredoxin. These results strengthen the concept that thiol-dependent decarbonylation defines the kinetics of protein carbonylation signaling. © 2013 Elsevier Inc. All rights reserved.

  7. Mechanism of protein decarbonylation

    PubMed Central

    Wong, Chi-Ming; Marcocci, Lucia; Das, Dividutta; Wang, Xinhong; Luo, Haibei; Zungu-Edmondson, Makhosazane; Suzuki, Yuichiro J.

    2013-01-01

    Ligand/receptor-stimulation of cells promotes protein carbonylation that is followed by the decarbonylation process, which might involve thiol-dependent reduction (Wong et al., Circ. Res. 102 301-318, 2008). The present study further investigated the properties of this protein decarbonylation mechanism. We found that the thiol-mediated reduction of protein carbonyls is dependent on heat-labile biologic components. Cysteine and glutathione were found to be efficient substrates for decarbonylation. Thiols decreased the protein carbonyl content, as detected by 2,4-dinitrophenylhydrazine, but not the levels of malondialdehyde or 4-hydroxynonenal protein adducts. Mass spectrometry identified proteins that undergo thiol-dependent decarbonylation, which include peroxiredoxins. Peroxiredoxins-2 and -6 were found to be carbonylated and subsequent decarbonylated in response to the ligand/receptor-stimulation of cells. siRNA knockdown of glutaredoxin inhibited the decarbonylation of peroxiredoxin. These results strengthen the concept that thiol-dependent decarbonylation defines the kinetics of protein carbonylation signaling. PMID:24044890

  8. The compromise of dynamic disulfide/thiol homeostasis as a biomarker of oxidative stress in trichloroethylene exposure.

    PubMed

    Bal, C; Büyükşekerci, M; Koca, C; Ağış, E R; Erdoğan, S; Baran, P; Gündüzöz, M; Yilmaz, Öh

    2016-09-01

    In this study, we aimed to investigate disulfide/thiol homeostasis in trichloroethylene (TCE) exposure. The study was carried out in 30 nonsmoker TCE-exposed workers with a variety of occupations. Additionally, 30 healthy nonsmoker volunteers were recruited as the control group. TCE exposure was determined by measuring urinary trichloroacetic acid (TCA) concentration. Median urinary TCA levels of exposed workers (20.5 mg/L) were significantly higher than control subjects (5 mg/L). Thiol and disulfide concentrations were determined using a novel automated method. Disulfide/thiol ratio was significantly higher in the exposed group (p < 0.001). Thiol/disulfide homeostasis was found to be disturbed in TCE-exposed workers. We predict that in TCE-exposed workers this disturbance can be a therapeutic target, and the efficiency of the treatment can easily be monitored by the novel method we used. © The Author(s) 2015.

  9. Identification of Thiols in Yellow Onion (Allium cepa L.) Using Solvent Vented Large Volume Injection GC-MS.

    PubMed

    Wermes, Clint; Cannon, Robert; Haasnoot, Sytze; Colstee, Hans; Niedeveld, Cor; Koopmanschap, Gijs; Da Costa, Neil C

    2017-11-01

    Thiols are often highly odor active molecules and as such can significantly contribute to aroma while being present at extremely low concentrations. This paper details the identification of thiols in yellow onion juice by solvent extraction followed by thiol enrichment using a mercuric agarose gel column. Due to the inherent thermal instability and low concentrations of thiols in onion, chromatographic analysis utilized larger volume solvent elimination injections. New sulfur compounds in onion included 1,1-propanedithiol, bis-(1-sulfanylpropyl)-sulfide, 1-methylsulfanyl-1-propanethiol, 1-propylsulfanyl-1-propanethiol, and 1-allylsulfanyl-1-propanethiol. A discussion on the potential route of formation for each compound is included along with the orthonasal and retronasal evaluations of the synthesized molecules. This work investigated and identified 5 newly identified compounds present in onions that can impart onion character at low concentrations levels. © 2017 Institute of Food Technologists®.

  10. Mass Spectrometry in Studies of Protein Thiol Chemistry and Signaling: Opportunities and Caveats

    PubMed Central

    Devarie Baez, Nelmi O.; Reisz, Julie A.; Furdui, Cristina M.

    2014-01-01

    Mass spectrometry (MS) has become a powerful and widely utilized tool in the investigation of protein thiol chemistry, biochemistry, and biology. Very early biochemical studies of metabolic enzymes have brought to light the broad spectrum of reactivity profiles that distinguish cysteine thiols with functions in catalysis and protein stability from other cysteine residues in proteins. The development of MS methods for the analysis of proteins using electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI) coupled with the emergence of high-resolution mass analyzers have been instrumental in advancing studies of thiol modifications, both in single proteins and within the cellular context. This article reviews MS instrumentation and methods of analysis employed in investigations of thiols and their reactivity toward a range of small biomolecules. A selected number of studies are detailed to highlight the advantages brought about by the MS technologies along with the caveats associated with these analyses. PMID:25261734

  11. Preferred Conformers of Non-Proteinogenic Amino Acids Homoserine and Homocysteine

    NASA Astrophysics Data System (ADS)

    Díez, Verónica; Rodríguez, Miguel A.; Mata, Santiago; Alonso, E. R.; Cabezas, Carlos; Alonso, José L.

    2016-06-01

    Vaporization of solid homoserine and homocysteine by laser ablation in combination with Fourier transform microwave spectroscopy techniques made possible the detection of their most stable structures in a supersonic expansion. All detected conformers have been identified through their rotational and 14N quadrupole coupling constants. They show hydrogen bonds linking the amino and carboxylic group through N-H\\cdot\\cdot\\cdotO=C (type I) or N\\cdot\\cdot\\cdotH-O (type II) interactions. In some of them there are additional hydrogen bonds established between the amino group and the hydroxyl/thiol groups in the gamma position. Entropic effects related to the side chain have been found to be significant in determining the most populated conformations.

  12. ROS-dependent signal transduction.

    PubMed

    Reczek, Colleen R; Chandel, Navdeep S

    2015-04-01

    Reactive oxygen species (ROS) are no longer viewed as just a toxic by-product of mitochondrial respiration, but are now appreciated for their role in regulating a myriad of cellular signaling pathways. H2O2, a type of ROS, is a signaling molecule that confers target specificity through thiol oxidation. Although redox-dependent signaling has been implicated in numerous cellular processes, the mechanism by which the ROS signal is transmitted to its target protein in the face of highly reactive and abundant antioxidants is not fully understood. In this review of redox-signaling biology, we discuss the possible mechanisms for H2O2-dependent signal transduction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Self-assembled monolayer and multilayer films of the nanocluster [HxPMo12O40 subsetH4Mo72Fe30(O2CMe)15O254(H2O)68] on gold.

    PubMed

    Colorado, Ramon; Crouse, Christopher A; Zeigler, Christopher N; Barron, Andrew R

    2008-08-19

    Films of the molybdenum-iron nanocluster [H x PMo 12O 40 subsetH 4Mo 72Fe 30(O 2CMe) 15O 254(H2O) 68] (FeMoC) were generated on gold via the self-assembly technique using two divergent routes. The first route entails the self-assembly of unfunctionalized FeMoC onto a preprepared carboxyl-terminated SAM on gold. The second route involves the preparation of thiol-terminated functionalized FeMoC clusters, which are then allowed to self-assemble onto bare gold surfaces. Monolayer films of FeMoC clusters are attained via both routes, with the second route requiring shorter immersion times (2 days) than the first route (6 days). Multilayer films of FeMoC are formed via the second route for immersion times longer than 2 days. Characterization of these films using optical ellipsometry, X-ray photoelectron spectroscopy, and atomic force microscopy confirm the self-assembly of the clusters on the surfaces.

  14. Automated tagging of pharmaceutically active thiols under flow conditions using monobromobimane.

    PubMed

    Tzanavaras, Paraskevas D; Karakosta, Theano D

    2011-03-25

    The thiol-specific derivatization reagent monobromobimane (MBB) is applied--for the first time--under flow conditions. Sequential injection analysis allows the handling of precise volumes of the reagent in the micro-liter range. The effect of the main chemical and instrumental variables was investigated using captopril (CAP), N-acetylcysteine (NAC) and penicillamine (PEN) as representative pharmaceutically active thiols. Previously reported hydrolysis of MBB due to interaction with nucleophilic components of the buffers was avoided kinetically under flow conditions. The proposed analytical scheme is suitable for the fluorimetric determination of thiols at a sampling rate of 36 h(-1). Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Enzymatic Continuous Flow Synthesis of Thiol-Terminated Poly(δ-Valerolactone) and Block Copolymers.

    PubMed

    Zhu, Ning; Huang, Weijun; Hu, Xin; Liu, Yihuan; Fang, Zheng; Guo, Kai

    2018-04-01

    Thiol-terminated poly(δ-valerolactone) is directly synthesized via enzymatic 6-mercapto-1-hexanol initiated ring-opening polymerization in both batch and microreactor. By using Candida antartica Lipase B immobilized tubular reactor, narrowly dispersed poly(δ-valerolactone) with higher thiol fidelity is more efficiently prepared in contrast to the batch reactor. Moreover, the integrated enzyme packed tubular reactor system is established to perform the chain extension experiments. Thiol-terminated poly(δ-valerolactone)-block-poly(ε-caprolactone) and poly(ε-caprolactone)-block-poly(δ-valerolactone) are easily prepared by modulating the monomer introduction sequence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Can thiol compounds be used as biomarkers of aquatic ecosystem contamination by cadmium?

    PubMed Central

    Kovářová, Jana; Svobodová, Zdeňka

    2009-01-01

    Due to anthropogenic activities, heavy metals still represent a threat for various trophic levels. If aquatic animals are exposed to heavy metals we can obviously observe considerable toxicity. It is well known that an organism affected by cadmium (Cd) synthesize low molecular mass thiol compounds rich in cysteine (Cys), such as metallothioneins (MT) and glutathione (GSH/GSSG). The aim of this study was to summarize the effect of Cd on level of thiol compounds in aquatic organisms, and evaluate that the concentrations of thiol compounds are effective indicators of Cd water pollution and explain their potential use in biomonitoring applications. PMID:21217850

  17. The yeast Hsp70 Ssa1 is a sensor for activation of the heat shock response by thiol-reactive compounds

    PubMed Central

    Wang, Yanyu; Gibney, Patrick A.; West, James D.; Morano, Kevin A.

    2012-01-01

    The heat shock transcription factor HSF1 governs the response to heat shock, oxidative stresses, and xenobiotics through unknown mechanisms. We demonstrate that diverse thiol-reactive molecules potently activate budding yeast Hsf1. Hsf1 activation by thiol-reactive compounds is not consistent with the stresses of misfolding of cytoplasmic proteins or cytotoxicity. Instead, we demonstrate that the Hsp70 chaperone Ssa1, which represses Hsf1 in the absence of stress, is hypersensitive to modification by a thiol-reactive probe. Strikingly, mutation of two conserved cysteine residues to serine in Ssa1 rendered cells insensitive to Hsf1 activation and subsequently induced thermotolerance by thiol-reactive compounds, but not by heat shock. Conversely, substitution with the sulfinic acid mimic aspartic acid resulted in constitutive Hsf1 activation. Cysteine 303, located within the nucleotide-binding domain, was found to be modified in vivo by a model organic electrophile, demonstrating that Ssa1 is a direct target for thiol-reactive molecules through adduct formation. These findings demonstrate that Hsp70 is a proximal sensor for Hsf1-mediated cytoprotection and can discriminate between two distinct environmental stressors. PMID:22809627

  18. A Central Role for Thiols in Plant Tolerance to Abiotic Stress

    PubMed Central

    Zagorchev, Lyuben; Seal, Charlotte E.; Kranner, Ilse; Odjakova, Mariela

    2013-01-01

    Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance. PMID:23549272

  19. Confirmation of 1-Phenylethane-1-thiol as the Character Impact Aroma Compound in Curry Leaves and Its Behavior during Tissue Disruption, Drying, and Frying.

    PubMed

    Steinhaus, Martin

    2017-03-15

    The most odor-active compounds previously identified by application of an aroma extract dilution analysis were quantitated in freshly picked curry leaves, either by stable isotope dilution assays in combination with GC-GC-MS or by GC-FID after simultaneous extraction/fractionation. Odor activity values (OAVs) were calculated as ratios of concentrations to odor threshold values. The topmost OAVs were obtained for (3Z)-hex-3-enal (grassy; OAV 180 000), (1S)-1-phenylethane-1-thiol (sulfury, burnt; OAV 150 000), (1R)-1-phenylethane-1-thiol (sulfury, burnt; OAV 120 000), (3R)-linalool (citrusy; OAV 58 000), and myrcene (geranium leaf-like; OAV 23 000). The high OAVs calculated for its enantiomers confirmed 1-phenylethane-1-thiol as character impact compound of the typical sulfury and burnt aroma of curry leaves. The 1-phenylethane-1-thiol concentration in curry leaves decreased upon tissue disruption and drying, as well as upon frying of fresh leaves. By contrast, frying of dried leaves led to an increase of 1-phenylethane-1-thiol, indicating a yet unknown thermolabile precursor.

  20. Identification and In Silico Analysis of Major Redox Modulated Proteins from Brassica juncea Seedlings Using 2D Redox SDS PAGE (2-Dimensional Diagonal Redox Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis).

    PubMed

    Chaurasia, Satya Prakash; Deswal, Renu

    2017-02-01

    The thiol-disulphide exchange regulates the activity of proteins by redox modulation. Many studies to analyze reactive oxygen species (ROS), particularly, hydrogen peroxide (H 2 O 2 ) induced changes in the gene expression have been reported, but efforts to detect H 2 O 2 modified proteins are comparatively few. Two-dimensional diagonal redox sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) was used to detect polypeptides which undergo thiol-disulphide exchange in Brassica juncea seedlings following H 2 O 2 (10 mM) treatment for 30 min. Eleven redox responsive polypeptides were identified which included cruciferin, NLI [Nuclear LIM (Lin11, Isl-1 & Mec-3 domains)] interacting protein phosphatase, RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) large subunit, and myrosinase. Redox modulation of RuBisCO large subunit was further confirmed by western blotting. However, the small subunit of RuBisCO was not affected by these redox changes. All redox modulated targets except NLI interacting protein (although it contains two cysteines) showed oxidation sensitive cysteines by in silico analysis. Interestingly, interactome of cruciferin and myrosinase indicated that they may have additional function(s) beside their well-known roles in the seedling development and abiotic stress respectively. Cruciferin showed interactions with stress associated proteins like defensing-like protein 192 and 2-cys peroxiredoxin. Similarly, myrosinase showed interactions with nitrilase and cytochrome p450 which are involved in nitrogen metabolism and/or hormone biosynthesis. This simple procedure can be used to detect major stress mediated redox changes in other plants.

  1. The effects of resveratrol on markers of oxidative stress in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial.

    PubMed

    Seyyedebrahimi, ShadiSadat; Khodabandehloo, Hadi; Nasli Esfahani, Ensieh; Meshkani, Reza

    2018-04-01

    Oxidative stress plays a pivotal role in the pathogenesis of type 2 diabetes (T2D). In vitro and animal studies have shown that resveratrol exerts an antioxidant effect, but clinical trials addressing this effect in patients with T2D are limited. The aim of this study was to determine whether resveratrol supplementation affects oxidative stress markers in a randomized, placebo-controlled, double-blind clinical trial. A total of 48 patients with T2D randomly were assigned to receive 800 mg/day resveratrol or placebo for 2 months. Plasma total antioxidant capacity, malondialdehyde concentration, protein carbonyl and total thiol contents, intracellular superoxide anion (O 2 - ·) and hydrogen peroxide (H 2 O 2 ) in PBMCs, the expression of genes involved in oxidative stress responses (Nrf2, SOD, Cat, HO-1, RAGE, NOS) in PBMCs, and metabolic and anthropometric parameters were measured at the baseline and at the trial end. Compared with the placebo group, resveratrol reduced plasma protein carbonyl content and PBMCs O 2 - · level and significantly increased plasma total antioxidant capacity and total thiol content. Furthermore, the expression of Nrf2 and SOD was significantly increased after resveratrol consumption. Resveratrol had no significant effects on the metabolic and anthropometric parameters except for a significant reduction in weight, BMI, and blood pressure levels. Resveratrol was well tolerated, and no serious adverse event was occurred. Our study demonstrated that 8 weeks of supplementation with 800 mg/day resveratrol has an antioxidant effect in the blood and PBMCs of patients with T2D. Clinical Trial Registry number and website IRCT registration number: IRCT2015072523336N1 and http://en.search.irct.ir/view/24752 .

  2. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 2: Iron- and Copper-Catalyzed Oxidation.

    PubMed

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors arising during wine production are frequently removed by Cu(II) fining. In part 1 of this study ( 10.1021/acs.jafc.6b00641 ), the reaction of H2S and thiols with Cu(II) was examined; however, the interaction of iron and copper is also known to play an important synergistic role in mediating non-enzymatic wine oxidation. The interaction of these two metals in the oxidation of H2S and thiols (cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol) was therefore examined under wine-like conditions. H2S and thiols (300 μM) were reacted with Fe(III) (100 or 200 μM) alone and in combination with Cu(II) (25 or 50 μM), and concentrations of H2S and thiols, oxygen, and acetaldehyde were monitored over time. H2S and thiols were shown to be slowly oxidized in the presence of Fe(III) alone and were not bound to Fe(III) under model wine conditions. However, Cu(II) added to model wine containing Fe(III) was quickly reduced by H2S and thiols to form Cu(I) complexes, which then rapidly reduced Fe(III) to Fe(II). Oxidation of Fe(II) in the presence of oxygen regenerated Fe(III) and completed the iron redox cycle. In addition, sulfur-derived oxidation products were observed, and the formation of organic polysulfanes was demonstrated.

  3. Promoting Thiol Expression Increases The Durability of Antitumor T cell Functions

    PubMed Central

    Scurti, Gina; Thyagarajan, Krishnamurthy; Kaur, Navtej; Husain, Shahid; Fang, Quan; Naga, Osama S.; Simms, Patricia; Beeson, Gyda; Voelkel-Johnson, Christina; Garrett-Mayer, Elizabeth; Beeson, Craig C.; Nishimura, Michael I.; Mehrotra, Shikhar

    2014-01-01

    Ex vivo-expanded CD8+ T cells used for adoptive immunotherapy generally acquire an effector memory-like phenotype (TEM cells). With regard to therapeutic applications, two undesired features of this phenotype in vivo are limited persistence and reduced anti-tumor efficacy, relative to CD8+ T cells with a central memory-like phenotype (TCM cells). Further, there is incomplete knowledge about all the differences between TEM and TCM cells that may influence tumor treatment outcomes. Given that TCM cells survive relatively longer in oxidative tumor microenvironments, we investigated the hypothesis that TCM possess relatively greater anti-oxidative capacity than TEM cells. Here we report that TCM cells exhibit a relative increase compared to TEM cells in expression of cell surface thiols, a key target of cellular redox controls, along with other antioxidant molecules. Increased expression of redox regulators in TCM cells inversely correlated with the generation of reactive oxygen and nitrogen species, proliferative capacity and glycolytic enzyme levels. Notably, TCR-transduced T cells pretreated with thiol donors, such as N-acetyl cysteine or rapamycin, up-regulated thiol levels and antioxidant genes. A comparison of anti-tumor CD8+ T cell populations on the basis of surface thiol expression showed that thiol-high cells persisted longer in vivo and exerted superior tumor control. Our results suggest that higher levels of reduced cell surface thiols are a key characteristic of T cells that can control tumor growth, and that profiling this biomarker may have benefits to T cell adoptive immunotherapy protocols. PMID:25164014

  4. Thiol-redox signaling, dopaminergic cell death, and Parkinson's disease.

    PubMed

    Garcia-Garcia, Aracely; Zavala-Flores, Laura; Rodriguez-Rocha, Humberto; Franco, Rodrigo

    2012-12-15

    Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta, which has been widely associated with oxidative stress. However, the mechanisms by which redox signaling regulates cell death progression remain elusive. Early studies demonstrated that depletion of glutathione (GSH), the most abundant low-molecular-weight thiol and major antioxidant defense in cells, is one of the earliest biochemical events associated with PD, prompting researchers to determine the role of oxidative stress in dopaminergic cell death. Since then, the concept of oxidative stress has evolved into redox signaling, and its complexity is highlighted by the discovery of a variety of thiol-based redox-dependent processes regulating not only oxidative damage, but also the activation of a myriad of signaling/enzymatic mechanisms. GSH and GSH-based antioxidant systems are important regulators of neurodegeneration associated with PD. In addition, thiol-based redox systems, such as peroxiredoxins, thioredoxins, metallothioneins, methionine sulfoxide reductases, transcription factors, as well as oxidative modifications in protein thiols (cysteines), including cysteine hydroxylation, glutathionylation, and nitrosylation, have been demonstrated to regulate dopaminergic cell loss. In this review, we summarize major advances in the understanding of the role of thiol-redox signaling in dopaminergic cell death in experimental PD. Future research is still required to clearly understand how integrated thiol-redox signaling regulates the activation of the cell death machinery, and the knowledge generated should open new avenues for the design of novel therapeutic approaches against PD.

  5. Pectinolytic enzymes of anaerobic fungi.

    PubMed

    Kopecný, J; Hodrová, B

    1995-05-01

    Pectinolytic enzymes of four rumen fungi have been described. Three fungal species were monocentric Neocallimastix spp. H15, JL3 and OC2, and one isolate was a polycentric strain of Orpinomyces joyonii, A4. They differed in degree of pectin degradation and utilization. Only the strain Neocallimastix sp. H15 and partially Orpinomyces joyonii A4 were able to utilize pectin to a higher extent. The most important pectinolytic activity in all these isolates represented pectin lyase (EC 4.2.2.10) and polygalacturonase (EC 3.2.1.15). Their specific activities were in the range of 100-900 and 10-450 micrograms galacturonic acid h-1 mg protein-1 for pectin lyase and polygalacturonase, respectively. Polygalacturonase, located mainly in the endocellular fraction, was inhibited by calcium ions and had the main pH optimum at pH 6.0. All strains produced pectate lyase (EC 4.2.2.2). None of the strains tested produced pectinesterase (EC 3.1.1.11).

  6. Production of cell wall-degrading enzymes by Aspergillus nidulans: a model system for fungal pathogenesis of plants.

    PubMed Central

    Dean, R A; Timberlake, W E

    1989-01-01

    The cell wall-degrading enzymes polygalacturonase and pectate lyase have been suggested to be crucial for penetration and colonization of plant tissues by some fungal pathogens. We have found that Aspergillus nidulans (= Emericella nidulans), a saprophytic Ascomycete, produces levels of these enzymes equal to those produced by soft-rotting Erwinia species. Induction of polygacturonase and pectate lyase in A. nidulans requires substrate and is completely repressed by glucose. Surprisingly, inoculation of excised plant tissues with A. nidulans conidia leads to formation of necrotic, water-soaked lesions within which the organism sporulates. Thus, A. nidulans has phytopathogenic potential. The release of glucose and other sugars from wounded tissues may repress pectolytic enzyme production and limit disease development. Therefore, we tested creA204, a mutation that relieves glucose repression of some A. nidulans carbon utilization enzymes, for its effect on production of pectolytic enzymes. creA204 failed to relieve catabolite repression of polygalacturonase or pectate lyase and had no effect on disease severity. PMID:2535501

  7. Atomic resolution crystal structures and quantum chemistry meet to reveal subtleties of hydroxynitrile lyase catalysis.

    PubMed

    Schmidt, Andrea; Gruber, Karl; Kratky, Christoph; Lamzin, Victor S

    2008-08-01

    Hydroxynitrile lyases are versatile enzymes that enantiospecifically cope with cyanohydrins, important intermediates in the production of various agrochemicals or pharmaceuticals. We determined four atomic resolution crystal structures of hydroxynitrile lyase from Hevea brasiliensis: one native and three complexes with acetone, isopropyl alcohol, and thiocyanate. We observed distinct distance changes among the active site residues related to proton shifts upon substrate binding. The combined use of crystallography and ab initio quantum chemical calculations allowed the determination of the protonation states in the enzyme active site. We show that His(235) of the catalytic triad must be protonated in order for catalysis to proceed, and we could reproduce the cyanohydrin synthesis in ab initio calculations. We also found evidence for the considerable pK(a) shifts that had been hypothesized earlier. We envision that this knowledge can be used to enhance the catalytic properties and the stability of the enzyme for industrial production of enantiomerically pure cyanohydrins.

  8. Degumming of ramie fiber and the production of reducing sugars from waste peels using nanoparticle supplemented pectate lyase.

    PubMed

    Mukhopadhyay, Arka; Dutta, Nalok; Chattopadhyay, Dhrubajyoti; Chakrabarti, Krishanu

    2013-06-01

    Banana, citrus and potato peels were subjected to treatment with hydroxyapatite nanoparticle (NP) supplemented purified pectate lyase (NP-PL), isolated from Bacillus megaterium AK2 to produce reducing sugar (RS). At both 50 and 90°C production of RS by NP-PL was almost twofold greater than that by untreated pectate lyase (PL) from each of the three peels. The optimal production of RS from banana and citrus peels were after 24 and 6h of incubation while it was 24 and 4h for potato peels at 50 and 90°C, respectively, on NP-PL treatment. NP-PL could degum raw, decorticated ramie fibers as well as enhance fiber tenacity and fineness. The weight loss of the fibers were 24% and 31% better (compared to PL treatment) after 24 and 48 h of processing. These findings have potential implications for the bio-ethanol, bio-fuel and textile industries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Hit-to-lead evaluation of a novel class of sphingosine 1-phosphate lyase inhibitors.

    PubMed

    Dinges, Jurgen; Harris, Christopher M; Wallace, Grier A; Argiriadi, Maria A; Queeney, Kara L; Perron, Denise C; Dominguez, Eric; Kebede, Tegest; Desino, Kelly E; Patel, Hetal; Vasudevan, Anil

    2016-05-01

    Inhibition of sphingosine-1-phosphate lyase has recently been proposed as a potential treatment option for inflammatory disorders such as multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. In this report we describe our hit-to-lead evaluation of the isoxazolecarboxamide 6, a high-throughput screening hit (in vitro IC50=1.0 μM, cell IC50=1.8 μM), as a novel S1P lyase inhibitor. We were able to establish basic structure-activity relationships around 6 and succeeded in obtaining X-ray structural information which enabled structure-based design. With the discovery of 28, enzyme activity was quickly improved to IC50=120 nM and cell potency to IC50=230 nM. The main liability in the established isoxazolecarboxamide hit series was determined to be metabolic stability. In particular we identified that future lead-optimization efforts to overcome this problem should focus on blocking the N-dealkylation on the secondary amine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A new family of nucleophiles for photoinduced, copper-catalyzed cross-couplings via single-electron transfer: reactions of thiols with aryl halides under mild conditions (O °C).

    PubMed

    Uyeda, Christopher; Tan, Yichen; Fu, Gregory C; Peters, Jonas C

    2013-06-26

    Building on the known photophysical properties of well-defined copper-carbazolide complexes, we have recently described photoinduced, copper-catalyzed N-arylations and N-alkylations of carbazoles. Until now, there have been no examples of the use of other families of heteroatom nucleophiles in such photoinduced processes. Herein, we report a versatile photoinduced, copper-catalyzed method for coupling aryl thiols with aryl halides, wherein a single set of reaction conditions, using inexpensive CuI as a precatalyst without the need for an added ligand, is effective for a wide range of coupling partners. As far as we are aware, copper-catalyzed C-S cross-couplings at 0 °C have not previously been achieved, which renders our observation of efficient reaction of an unactivated aryl iodide at -40 °C especially striking. Mechanistic investigations are consistent with these photoinduced C-S cross-couplings following a SET/radical pathway for C-X bond cleavage (via a Cu(I)-thiolate), which contrasts with nonphotoinduced, copper-catalyzed processes wherein a concerted mechanism is believed to occur.

  11. Roles of the Yap1 Transcription Factor and Antioxidants in Saccharomyces cerevisiae's Tolerance to Furfural and 5-Hydroxymethylfurfural, Which Function as Thiol-Reactive Electrophiles Generating Oxidative Stress

    PubMed Central

    Kim, Daehee

    2013-01-01

    Development of the tolerance of Saccharomyces cerevisiae strains to furfural and 5-hydroxymethylfurfural (HMF) is an important issue for cellulosic ethanol production. Although furfural and HMF are known to induce oxidative stress, the underlying mechanisms are largely unknown. In this study, we show that both furfural and HMF act as thiol-reactive electrophiles, thus directly activating the Yap1 transcription factor via the H2O2-independent pathway, depleting cellular glutathione (GSH) levels, and accumulating reactive oxygen species in Saccharomyces cerevisiae. However, furfural showed higher reactivity than did HMF toward GSH in vitro and in vivo. In line with such toxic mechanisms, overexpression of YAP1C620F, a constitutively active mutant of YAP1, and Yap1 target genes encoding catalases (CTA1 and CTT1) increased tolerance to furfural and HMF. However, increasing GSH levels by overexpression of genes for GSH biosynthesis (GSH1 and GLR1) or by the exogenous addition of GSH to the culture medium enhanced tolerance to furfural but not to HMF. PMID:23793623

  12. Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress.

    PubMed

    Kim, Daehee; Hahn, Ji-Sook

    2013-08-01

    Development of the tolerance of Saccharomyces cerevisiae strains to furfural and 5-hydroxymethylfurfural (HMF) is an important issue for cellulosic ethanol production. Although furfural and HMF are known to induce oxidative stress, the underlying mechanisms are largely unknown. In this study, we show that both furfural and HMF act as thiol-reactive electrophiles, thus directly activating the Yap1 transcription factor via the H2O2-independent pathway, depleting cellular glutathione (GSH) levels, and accumulating reactive oxygen species in Saccharomyces cerevisiae. However, furfural showed higher reactivity than did HMF toward GSH in vitro and in vivo. In line with such toxic mechanisms, overexpression of YAP1(C620F), a constitutively active mutant of YAP1, and Yap1 target genes encoding catalases (CTA1 and CTT1) increased tolerance to furfural and HMF. However, increasing GSH levels by overexpression of genes for GSH biosynthesis (GSH1 and GLR1) or by the exogenous addition of GSH to the culture medium enhanced tolerance to furfural but not to HMF.

  13. Protective effects of anethole dithiolethione against oxidative stress-induced cytotoxicity in human Jurkat T cells.

    PubMed

    Khanna, S; Sen, C K; Roy, S; Christen, M O; Packer, L

    1998-07-01

    The protective effects of anethole dithiolethione (ADT) against H2O2- or 4-hydroxynonenal (HNE)-induced cytotoxicity in human Jurkat T cells were investigated. Jurkat T cells were pretreated with ADT (10-50 microM) for 18 hr and then challenged with H202 or HNE for up to 4 hr. Cytotoxicity was assessed by measuring: 1) leakage of lactate dehydrogenase from cells to medium; and 2) exclusion of the DNA intercalating fluorescent probe propidium iodide by viable cells. Pretreatment of cells with ADT (10 or 25 microM) for 18 hr significantly protected cells against H202- or HNE-induced cytotoxicity. Treatment of cells with ADT (10-50 microM) for 72 hr significantly increased the activities of catalase and glutathione reductase. The maximum effect of ADT treatment on the activity of these enzymes was observed when cells were treated with 25 microM of ADT for 72 hr. A significant increase in cellular GSH was observed in cells that were treated with ADT for 72 hr. Using monobromobimane as a thiol probe, we consistently observed that cells pretreated for 18 hr with ADT (25 or 50 microM) had also increased total thiol content. Exposure of Jurkat T cells to H202 or HNE resulted in a time-dependent decrease in cellular GSH. ADT (10-50 microM, 18 hr) pretreatment circumvented H202-dependent lowering of cellular GSH. In conclusion, ADT proved to be a potent cytoprotective thiol antioxidant with multifaceted mechanisms of action, suggesting that the drug has a remarkable therapeutic potential.

  14. Thiolated alkyl-modified carbomers: Novel excipients for mucoadhesive emulsions.

    PubMed

    Bonengel, Sonja; Hauptstein, Sabine; Leonaviciute, Gintare; Griessinger, Julia; Bernkop-Schnürch, Andreas

    2015-07-30

    The aim of this study was the design and evaluation of mucoadhesive emulsifying polymeric excipients. Three thiol bearing ligands with increasing pKa values of their sulfhydryl group, namely 4-aminothiophenol (pKa=6.86), l-cysteine (pKa=8.4) and d/l-homocysteine (pKa=10.0) were coupled to the polymeric backbone of alkyl-modified carbomer (PA1030). Resulting conjugates displayed 818.5μmol 4-aminothiophenol, 698.5μmol cysteine and 651.5μmol homocysteine per gram polymer and were evaluated regarding the reactivity of thiol groups, emulsifying and mucoadhesive properties. In general, the synthesized conjugates showed a pH dependent reactivity, whereby the fastest oxidation occurred in PA1030-cysteine, as almost no free thiol groups could be detected after 120min. Emulsification of medium chain triglycerides was feasible with all synthesized conjugates leading to oil-in-water-emulsions. Emulsions with PA1030-cysteine displayed the highest stability and the smallest droplet size among the tested formulations. Oxidation and consequently cross-linking of the thiomers prior to the emulsification process led to an overall decreased emulsion stability. Evaluating mucosal residence time of thiomer emulsions on porcine buccal mucosa, a 9.2-fold higher amount of formulation based on PA1030-cysteine remained on the mucosal tissue within 3h compared to the unmodified polymer. According to these results, the highest reactive ligand l-cysteine seems to be most promising in order to obtain thiolated polymers for the preparation of mucoadhesive o/w-emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Kidney-selective prodrugs of 6-mercaptopurine: biochemical basis of the kidney selectivity of S-(6-purinyl)-L-cysteine and metabolism of new analogs in rats.

    PubMed

    Hwang, I Y; Elfarra, A A

    1991-07-01

    Recently, we have reported that S-(6-purinyl)-L-cysteine (PC) is a kidney-selective prodrug of 6-mercaptopurine. In the present study, the in vivo metabolism of PC and the biochemical basis of its renal selectivity were further investigated. In addition, several PC analogs were synthesized and evaluated as prodrugs of 6-mercaptopurine by determining the concentrations of 6-mercaptopurine and its metabolites, 6-methylmercaptopurine and 6-thiouric acid, in urine after rats were given the analogs. At 30 min after PC treatments, kidney metabolite concentrations were dependent on the PC dose at 40 to 130 mumol/kg and were not increased when a 400 mumol PC/kg dose was given. At the 400 mumol PC/kg dose, metabolite concentrations in the kidneys were higher at 30 min than at 1 or 3 hr, and were nearly 2.5- and 100-fold higher than those in liver and plasma, respectively. Rates of PC in vitro metabolism by liver and kidney cytosolic cysteine conjugate beta-lyases (beta-lyases) were similar, but metabolism by renal mitochondrial beta-lyase occurred at a 3-fold higher rate than the rate obtained with hepatic mitochondrial beta-lyase. When rats were given aminooxyacetic acid (500 mumol/kg) or probenecid (270 mumol/kg) before PC (130 mumol/kg), total kidney metabolite concentrations were reduced by 55 and 36%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase.

    PubMed

    Filippov, Sergey; Pinkosky, Stephen L; Newton, Roger S

    2014-08-01

    To review the profile of ETC-1002, as shown in preclinical and clinical studies, including LDL-cholesterol (LDL-C)-lowering activity and beneficial effects on other cardiometabolic risk markers as they relate to the inhibition of adenosine triphosphate-citrate lyase and the activation of adenosine monophosphate-activated protein kinase. ETC-1002 is an adenosine triphosphate-citrate lyase inhibitor/adenosine monophosphate-activated protein kinase activator currently in Phase 2b clinical development. In seven Phase 1 and Phase 2a clinical studies, ETC-1002 dosed once daily for 2-12 weeks has lowered LDL-C and reduced high-sensitivity C-reactive protein by up to 40%, with neutral to positive effects on glucose levels, blood pressure, and body weight. Importantly, use of ETC-1002 in statin-intolerant patients has shown statin-like lowering of LDL-C without the muscle pain and weakness responsible for discontinuation of statin use by many patients. ETC-1002 has also been shown to produce an incremental benefit, lowering LDL-C as an add-on therapy to a low-dose statin. In over 300 individuals in studies of up to 12 weeks, ETC-1002 has been well tolerated with no serious adverse effects. Because adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase play central roles in regulating lipid and glucose metabolism, pharmacological modulation of these two enzymes could provide an important therapeutic alternative for statin-intolerant patients with hypercholesterolemia.

  17. 3- and 4-pyridylalkyl adamantanecarboxylates: inhibitors of human cytochrome P450(17 alpha) (17 alpha-hydroxylase/C17,20-lyase). Potential nonsteroidal agents for the treatment of prostatic cancer.

    PubMed

    Chan, F C; Potter, G A; Barrie, S E; Haynes, B P; Rowlands, M G; Houghton, J; Jarman, M

    1996-08-16

    Various 3- and 4-pyridylalkyl 1-adamantanecarboxylates have been synthesized and tested for inhibitory activity toward the 17 alpha-hydroxylase and C17,20-lyase activities of human testicular cytochrome P450(17 alpha). The 4-pyridylalkyl esters were much more inhibitory than their 3-pyridylalkyl counterparts. The most potent was (S)-1-(4-pyridyl)ethyl 1-adamantanecarboxylate (3b; IC50 for lyase, 1.8 nM), whereas the (R)-enantiomer 3a was much less inhibitory (IC50 74 nM). Nearly as potent as 3b was the dimethylated counterpart, the 2-(4-pyridylpropan-2-yl) ester 5 (IC50 2.7 nM), which was also more resistant to degradation by esterases. In contrast to their 4-pyridyl analogs, the enantiomers of the 1-(3-pyridyl)ethyl ester were similarly inhibitory (IC50 for lyase; (R)-isomer 8a 150 nM, (S)-isomer 8b 230 nM). Amides corresponding to the 4-pyridylmethyl ester 1 and the (S)-1-(4-pyridyl)ethyl ester 3b, respectively 11 and 15b, were much less inhibitory than their ester counterparts. On the basis of a combination of inhibitory potency and resistance to esterases, the ester 5 was the best candidate for further development as a potential nonsteroidal inhibitor of cytochrome P450(17 alpha) for the treatment of prostate cancer.

  18. Using in vivo oxidation status of one- and two-component redox relays to determine H2O2 levels linked to signaling and toxicity.

    PubMed

    Domènech, Alba; Ayté, José; Antunes, Fernando; Hidalgo, Elena

    2018-06-01

    Hydrogen peroxide (H 2 O 2 ) is generated as a by-product of metabolic reactions during oxygen use by aerobic organisms, and can be toxic or participate in signaling processes. Cells, therefore, need to be able to sense and respond to H 2 O 2 in an appropriate manner. This is often accomplished through thiol switches: Cysteine residues in proteins that can act as sensors, and which are both scarce and finely tuned. Bacteria and eukaryotes use different types of such sensors-either a one-component (OxyR) or two-component (Pap1-Tpx1) redox relay, respectively. However, the biological significance of these two different signaling modes is not fully understood, and the concentrations and peroxides driving those types of redox cascades have not been determined, nor the intracellular H 2 O 2 levels linked to toxicity. Here we elucidate the characteristics, rates, and dynamic ranges of both systems. By comparing the activation of both systems in fission yeast, and applying mathematical equations to the experimental data, we estimate the toxic threshold of intracellular H 2 O 2 able to halt aerobic growth, and the temporal gradients of extracellular to intracellular peroxides. By calculating both the oxidation rates of OxyR and Tpx1 by peroxides, and their reduction rates by the cellular redoxin systems, we propose that, while Tpx1 is a sensor and an efficient H 2 O 2 scavenger because it displays fast oxidation and reduction rates, OxyR is strictly a H 2 O 2 sensor, since its reduction kinetics are significantly slower than its oxidation by peroxides, and therefore, it remains oxidized long enough to execute its transcriptional role. We also show that these two paradigmatic H 2 O 2 -sensing models are biologically similar at pre-toxic peroxide levels, but display strikingly different activation behaviors at toxic doses. Both Tpx1 and OxyR contain thiol switches, with very high reactivity towards peroxides. Nevertheless, the fast reduction of Tpx1 defines it as a scavenger, and this efficient recycling dramatically changes the Tpx1-Pap1 response to H 2 O 2 and connects H 2 O 2 sensing to the redox state of the cell. In contrast, OxyR is a true H 2 O 2 sensor but not a scavenger, being partially insulated from the cellular electron donor capacity.

  19. In vitro antifugal activity of medicinal plant extract against Fusarium oxysporum f. sp. lycopersici race 3 the causal agent of tomato wilt.

    PubMed

    Isaac, G S; Abu-Tahon, M A

    2014-03-01

    Medicinal plant extracts of five plants; Adhatoda vasica, Eucalyptus globulus, Lantana camara, Nerium oleander and Ocimum basilicum collected from Cairo, Egypt were evaluated against Fusarium oxysporum f. sp. lycopersici race 3 in vitro conditions using water and certain organic solvents. The results revealed that cold distilled water extracts of O. basilicum and E. globulus were the most effective ones for inhibiting the growth of F. oxysporum f. sp. lycopersici. Butanolic and ethanolic extracts of the tested plants inhibited the pathogen growth to a higher extent than water extracts. Butanolic extract of O. basilicum completely inhibited the growth of F. oxysporum f. sp. lycopersici at concentrations 1.5 and 2.0% (v/v). Butanolic extracts (2.0%) of tested plants had a strong inhibitory effect on hydrolytic enzymes; β-glucosidase, pectin lyase and protease of F. oxysporum f. sp. lycopersici. This study has confirmed that the application of plant extracts, especially from O. basilicum for controlling F. oxysporum f. sp. lycopersici is environmentally safe, cost effective and does not disturb ecological balance. Investigations are in progress to test the efficacy of O. basilicum extract under in vivo conditions.

  20. A chromenoquinoline-based fluorescent off-on thiol probe for bioimaging.

    PubMed

    Kand, Dnyaneshwar; Kalle, Arunasree Marasanapalli; Varma, Sreejith Jayasree; Talukdar, Pinaki

    2012-03-11

    A new chromenoquinoline-based fluorescent off-on thiol probe 2 is reported. In aqueous buffer solutions at physiological pH, the probe exhibited 223-fold enhancement in fluorescence intensity by a Michael addition of cysteine to the maleimide appended to a chromenoquinoline. Cell permeability and live cell imaging of thiols are also demonstrated. This journal is © The Royal Society of Chemistry 2012

  1. A Novel Tool for the Assessment Oxidative Stress in Age-Related Macular Degeneration: Thiol/Disulfide Homeostasis Revisited.

    PubMed

    Arıkan Yorgun, Mücella; Toklu, Yasin; Altınkaynak, Hasan; Tanrıverdi, Burak; Ergin, Merve; Biçer, Cemile

    2016-12-01

    To investigate thiol/disulfide status using a novel automated assay in patients with age-related macular degeneration (AMD) compared to age-matched healthy controls. A total of 64 AMD patients [51 (79%) non-exudative, 13 (21%) exudative AMD] and 21 age-matched healthy control subjects were enrolled in this study. Plasma total thiol, native thiol, disulfide levels were measured and native thiol/disulfide ratio (TDR) was calculated using a novel spectrophotometric assay. Patients with AMD had significantly lower levels of total thiol (434.8 ± 7.0 μmol/L vs. 472.2 ± 7.9 μmol/L, p < 0.001), native thiol (393.6 ± 6.5 μmol/L vs. 437.5 ± 7.1 μmol/L, p = 0.004) compared to healthy controls. However, plasma disulfide levels were higher in AMD patients (20.6 ± 0.9 μmol/L vs. 17.3 ± 1.3 μmol/L, p = 0.113) compared to healthy controls. The TDR was not statistically different between the early AMD group and healthy controls (24.2 ± 2.3 vs. 29.5 ± 3.1, p = 0.345). However, intermediate and advanced stage AMD groups had significantly lower levels of TDR compared to healthy controls (21.6 ± 2.6 vs. 29.5 ± 3.1, p = 0.023 and 20.3 ± 1.2 vs. 29.5 ± 3.1, p = 0.005, respectively). Native TDR was significantly lower in patients with exudative and non-exudative AMD (19.9 ± 2.3 vs. 29.5 ± 3.1, p = 0.024 and 21.8 ± 1.14 vs. 29.47 ± 3.1 respectively, p = 0.011). A greater extent of thiol consumption occurred in AMD patients compared to age-matched healthy controls. However, despite the similar levels of total thiol levels between several grades of AMD, the plasma native TDR value was decreased in accordance with the severity of the disease, which reflected the disease grade better.

  2. Enhancement of bismuth antibacterial activity with lipophilic thiol chelators.

    PubMed Central

    Domenico, P; Salo, R J; Novick, S G; Schoch, P E; Van Horn, K; Cunha, B A

    1997-01-01

    The antibacterial properties of bismuth are greatly enhanced when bismuth is combined with certain lipophilic thiol compounds. Antibacterial activity was enhanced from 25- to 300-fold by the following seven different thiols, in order of decreasing synergy: 1,3-propanedithiol, dimercaprol (BAL), dithiothreitol, 3-mercapto-2-butanol, beta-mercaptoethanol, 1-monothioglycerol, and mercaptoethylamine. The dithiols produced the greatest synergy with bismuth at optimum bismuth-thiol molar ratios of from 3:1 to 1:1. The monothiols were generally not as synergistic and required molar ratios of from 1:1 to 1:4 for optimum antibacterial activity. The most-active mono- or dithiols were also the most soluble in butanol. The intensity of the yellow formed by bismuth-thiol complexes reflected the degree of chelation and correlated with antibacterial potency at high molar ratios. The bismuth-BAL compound (BisBAL) was active against most bacteria, as assessed by broth dilution, agar diffusion, and agar dilution analyses. Staphylococci (MIC, 5 to 7 microM Bi3+) and Helicobacter pylori (MIC, 2.2 microM) were among the most sensitive bacteria. Gram-negative bacteria were sensitive (MIC, < 17 microM). Enterococci were relatively resistant (MIC, 63 microM Bi3+). The MIC range for anaerobes was 15 to 100 microM Bi3+, except for Clostridium difficile (MIC, 7.5 microM). Bactericidal activity averaged 29% above the MIC. Bactericidal activity increased with increasing pH and/or increasing temperature. Bismuth-thiol solubility, stability, and antibacterial activity depended on pH and the bismuth-thiol molar ratio. BisBAL was stable but ineffective against Escherichia coli at pH 4. Activity and instability (reactivity) increased with increasing alkalinity. BisBAL was acid soluble at a molar ratio of greater than 3:2 and alkaline soluble at a molar ratio of less than 2:3. In conclusion, certain lipophilic thiol compounds enhanced bismuth antibacterial activity against a broad spectrum of bacteria. The activity, solubility, and stability of BisBAL were strongly dependent on the pH, temperature, and molar ratio. Chelation of bismuth with certain thiol agents enhanced the solubility and lipophilicity of this cationic heavy metal, thereby significantly enhancing its potency and versatility as an antibacterial agent. PMID:9257744

  3. Fundamental studies of desulfurization processes: reaction of methanethiol on ZnO and Cs/ZnO

    NASA Astrophysics Data System (ADS)

    Dvorak, Joseph; Jirsak, Tomas; Rodriguez, José A.

    2001-05-01

    The reaction of methanethiol on ZnO and Cs promoted ZnO surfaces has been studied with synchrotron based photoemission and thermal desorption spectroscopy. On ZnO, methanethiol undergoes selective reaction to produce carbon monoxide (37-58%), methane (23-38%), formaldehyde (12-15%), ethane (1-11%), and a mixture of ethylene and acetylene (3-13%). At low temperatures (<100 K), methanethiol reacts to yield thiolate intermediate bound to Zn 2+ cations. The thiolate is stable to 500 K. Above this temperature, C-S bond cleavage occurs to yield methyl intermediate and atomic S. Carbon is removed from the surface as gaseous products above 500 K, and atomic sulfur remains bound to the zinc sites of the surface. Submonolayer amounts of cesium do not have a significant promotional effect on C-S bond cleavage, whereas Cs multilayers are found to significantly lower the activation barrier for C-S bond cleavage. This study illustrates the chemistry associated with the desulfurization of thiols on a catalytically relevant oxide surface.

  4. Bioassay-guided fractionation of a hepatoprotective and antioxidant extract of pea by-product.

    PubMed

    Seida, Ahmed A; El Tanbouly, Nebal D; Islam, Wafaa T; Eid, Hanaa H; El Maraghy, Shohda A; El Senousy, Amira S

    2015-01-01

    The hepatoprotective and antioxidant activities of the hydroalcoholic extract (PE) of pea (Pisum sativum L.) by-product were evaluated, using CCl4-induced oxidative stress and hepatic damage in rats. These activities were assessed via measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST), total protein and albumin, malondialdehyde (MDA), reduced glutathione (GSH), protein thiols (PSH), nitrite/nitrate levels, glutathione-peroxidase (GSH-Px), glutathione-S-transferase (GST) activities, as well as, histopathological evaluation. PE revealed significant hepatoprotective and antioxidant activities mostly found in n-butanol fraction. Chromatographic fractionation of this active fraction led to the isolation of five flavonoid glycosides namely, quercetin-3-O-sophorotrioside (1), quercetin-3-O-rutinoside (2), quercetin-3-O-(6″″-O-E sinapoyl)-sophorotrioside (3), quercetin-3-O-(6″″-O-E feruloyl)-sophorotrioside (4) and quercetin-3-O-β-D-glucopyranoside (5). The isolated compounds were quantified in PE, using a validated HPLC method and the nutritional composition of pea by-product was also investigated. Our results suggest that pea by-product contained biologically active constituents which can be utilised to obtain high value added products for nutraceutical use.

  5. Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells.

    PubMed

    McGoldrick, Trevor A; Lock, Edward A; Rodilla, Vicente; Hawksworth, Gabrielle M

    2003-07-01

    Proximal tubular cells from human (HPT) and rat (RPT) kidneys were isolated, grown to confluence and incubated with S-(1,2-dichlorovinyl)- l-cysteine (DCVC), S-(1,2,2-trichlorovinyl)- l-cysteine (TCVC), S-(1,1,2,2-tetrafluoroethyl)- l-cysteine (TFEC) and S-(2-chloro-1,1-difluorethyl)- l-cysteine (CDFEC), the cysteine conjugates of nephrotoxicants. The cultures were exposed to the conjugates for 12, 24 and 48 h and the toxicity determined using the MTT assay. All four conjugates caused dose-dependent toxicity to RPT cells over the range 50-1,000 microM, the order of toxicity being DCVC>TCVC>TFEC=CDFEC. The inclusion of aminooxyacetic acid (AOAA; 250 microM), an inhibitor of pyridoxal phosphate-dependent enzymes such as C-S lyase, afforded protection, indicating that C-S lyase has a role in the bioactivation of these conjugates. In HPT cultures only DCVC caused significant time- and dose-dependent toxicity. Exposure to DCVC (500 microM) for 48 h decreased cell viability to 7% of control cell values, whereas co-incubation of DCVC (500 microM) with AOAA (250 microM) resulted in cell viability of 71%. Human cultures were also exposed to S-(1,2-dichlorovinyl)-glutathione (DCVG). DCVG was toxic to HPT cells, but the onset of toxicity was delayed compared with the corresponding cysteine conjugate. AOAA afforded almost complete protection from DCVG toxicity. Acivicin (250 microM), an inhibitor of gamma-glutamyl transferase (gamma-GT), partially protected against DCVG (500 microM)-induced toxicity at 48 h (5% viability and 53% viability in the absence and presence of acivicin, respectively). These results suggest that DCVG requires processing by gamma-GT prior to bioactivation by C-S lyase in HPT cells. The activity of C-S lyase, using TFEC as a substrate, and glutamine transaminase K (GTK) was measured in rat and human cells with time in culture. C-S lyase activity in RPT and HPT cells decreased to approximately 30% of fresh cell values by the time the cells reached confluence (120 h), whereas the decline in GTK activity was less marked (50% of the fresh cell values at confluence). Rat cells had threefold higher activity than human cells at each time point. This higher activity may partly explain the differences in toxicity between rat and human proximal tubular cells in culture.

  6. Evidence that cytochrome b5 acts as a redox donor in CYP17A1 mediated androgen synthesis.

    PubMed

    Duggal, Ruchia; Liu, Yilin; Gregory, Michael C; Denisov, Ilia G; Kincaid, James R; Sligar, Stephen G

    2016-08-19

    Cytochrome P450 17A1 (CYP17A1) is an important drug target for castration resistant prostate cancer. It is a bi-functional enzyme, catalyzing production of glucocorticoid precursors by hydroxylation of pregnene-nucleus, and androgen biosynthesis by a second CC lyase step, at the expense of glucocorticoid production. Cytochrome b5 (cyt b5) is known to be a key regulator of the androgen synthesis reaction in vivo, by a mechanism that is not well understood. Two hypotheses have been proposed for the mechanism by which cyt b5 increases androgen biosynthesis. Cyt b5 could act as an allosteric effector, binding to CYP17A1 and either changing its selective substrate affinity or altering the conformation of the P450 to increase the catalytic rate or decrease unproductive uncoupling channels. Alternatively, cyt b5 could act as a redox donor for supply of the second electron in the P450 cycle, reducing the oxyferrous complex to form the reactive peroxo-intermediate. To understand the mechanism of lyase enhancement by cyt b5, we generated a redox-inactive form of cyt b5, in which the heme is replaced with a Manganese-protoporphyrin IX (Mn-b5), and investigated enhancement of androgen producing lyase reaction by CYP17A1. Given the critical significance of a stable membrane anchor for all of the proteins involved and the need for controlled stoichiometric ratios, we employed the Nanodisc system for this study. The redox inactive form was observed to have no effect on the lyase reaction, while reactions with the normal heme-iron containing cyt b5 were enhanced ∼5 fold as compared to reactions in the absence of cyt b5. We also performed resonance Raman measurements on ferric CYP17A1 bound to Mn-b5. Upon addition of Mn-b5 to Nanodisc reconstituted CYP17A1, we observed clear evidence for the formation of a b5-CYP17A1 complex, as noted by changes in the porphyrin modes and alteration in the proximal FeS vibrational frequency. Thus, although Mn-b5 binds to CYP17A1, it is unable to enhance the lyase reaction, strongly suggesting that cyt b5 has a redox effector role in enhancement of the CYP17A1 mediated lyase reaction necessary for androgen synthesis. Published by Elsevier Inc.

  7. Design strategies of fluorescent probes for selective detection among biothiols.

    PubMed

    Niu, Li-Ya; Chen, Yu-Zhe; Zheng, Hai-Rong; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng

    2015-10-07

    Simple thiol derivatives, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play key roles in biological processes, and the fluorescent probes to detect such thiols in vivo selectively with high sensitivity and fast response times are critical for understanding their numerous functions. However, the similar structures and reactivities of these thiols pose considerable challenges to the development of such probes. This review focuses on various strategies for the design of fluorescent probes for the selective detection of biothiols. We classify the fluorescent probes for discrimination among biothiols according to reaction types between the probes and thiols such as cyclization with aldehydes, conjugate addition-cyclization with acrylates, native chemical ligation, and aromatic substitution-rearrangement.

  8. Spray-deposition and photopolymerization of organic-inorganic thiol-ene resins for fabrication of superamphiphobic surfaces.

    PubMed

    Xiong, Li; Kendrick, Laken L; Heusser, Hannele; Webb, Jamie C; Sparks, Bradley J; Goetz, James T; Guo, Wei; Stafford, Christopher M; Blanton, Michael D; Nazarenko, Sergei; Patton, Derek L

    2014-07-09

    Superamphiphobic surfaces, exhibiting high contact angles and low contact angle hysteresis to both water and low surface tension liquids, have attracted a great deal attention in recent years because of the potential of these materials in practical applications such as liquid-resistant textiles, self-cleaning surfaces, and antifouling/anticorrosion coatings. In this work, we present a simple strategy for fabricating of superamphiphobic coatings based on photopolymerization of hybrid thiol-ene resins. Spray-deposition and UV photopolymerization of thiol-ene resins containing hydrophobic silica nanoparticles and perfluorinated thiols provide a multiscale topography and low-energy surface that endows the surface with superamphiphobicity. The wettability and chemical composition of the surfaces were characterized by contact-angle goniometry and X-ray photoelectron spectroscopy, respectively. The hierarchical roughness features of the thiol-ene surfaces were investigated with field-emission scanning electron microscopy. Droplet impact and sandpaper abrasion tests indicate the coatings respectively possess a robust antiwetting behavior and good mechanical durability.

  9. Distribution and abundance of organic thiols

    NASA Technical Reports Server (NTRS)

    Fahey, R.

    1985-01-01

    The role of glutathione (GSH) in protecting against the toxicity of oxygen and oxygen by products is well established for all eukaryotes studied except Entamoeba histolytica which lacks mitochrondria, chloroplasts, and microtubules. The GSH is not universal among prokaryotes. Entamoeba histolytica does not produce GSH or key enzymes of GSH metabolism. A general method of thiol analysis based upon fluorescent labeling with monobromobimane and HPLC separation of the resulting thiol derivatives was developed to determine the occurrence of GSH and other low molecular weight thiols in bacteria. Glutathione is the major thiol in cyanobacteria and in most bacteria closely related to the purple photosynthetic bacteria, but GSH was not found in archaebacteria, green bacteria, or GRAM positive bacteria. It suggested that glutathione metabolism was incorporated into eukaryotes at the time that mitochondria and chloroplasts were acquired by endosymbiosis. In Gram positive aerobes, coenzyme A occurs at millimolar levels and CoA disulfide reductases are identified. The CoA, rather than glutathione, may function in the oxygen detoxification processes of these organisms.

  10. Synchrotron radiation based STXM analysis and micro-XRF mapping of differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on Fe(2+) and S(0).

    PubMed

    Xia, Jin-Lan; Liu, Hong-Chang; Nie, Zhen-Yuan; Peng, An-An; Zhen, Xiang-Jun; Yang, Yun; Zhang, Xiu-Li

    2013-09-01

    The differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on substrates Fe(2+) and S(0) was investigated by using synchrotron radiation based scanning transmission X-ray microscopy (STXM) imaging and microbeam X-ray fluorescence (μ-XRF) mapping. The extracellular thiol groups (SH) were first alkylated by iodoacetic acid forming Protein-SCH2COOH and then the P-SCH2COOH was marked by calcium ions forming P-SCH2COOCa. The STXM imaging and μ-XRF mapping of SH were based on analysis of SCH2COO-bonded Ca(2+). The results indicated that the thiol group content of A. ferrooxidans grown on S(0) is 3.88 times to that on Fe(2+). Combined with selective labeling of SH by Ca(2+), the STXM imaging and μ-XRF mapping provided an in situ and rapid analysis of differential expression of extracellular thiol groups. © 2013.

  11. An excited state intramolecular proton transfer dye based fluorescence turn-on probe for fast detection of thiols and its applications in bioimaging

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Xue, Yuanyuan; Li, Haoyang; Zhu, Ruitao; Ren, Yuehong; Shi, Qinghua; Wang, Song; Guo, Wei

    2017-03-01

    In this study, a new fluorescent probe 2-(2‧-hydroxy-5‧-N-maleimide phenyl)-benzothiazole (probe 1), was designed and synthesized by linking the excited state intramolecular proton transfer (ESIPT) fluorophore to the maleimide group for selective detection of thiols in aqueous solution. The fluorescence of probe 1 is strongly quenched by maleimide group through the photo-induced electron transfer (PET) mechanism, but after reaction with thiol, the fluorescence of ESIPT fluorophore is restored, affording a large Stokes shifts. Upon addition of cysteine (Cys), probe 1 exhibited a fast response time (complete within 30 s) and a high signal-to-noise ratio (up to 23-fold). It showed a high selectivity and excellent sensitivity to thiols over other relevant biological species, with a detection limit of 3.78 × 10- 8 M (S/N = 3). Moreover, the probe was successfully applied to the imaging of thiols in living cells.

  12. Photogenerated Lectin Sensors Produced by Thiol-Ene/Yne Photo-Click Chemistry in Aqueous Solution

    PubMed Central

    Norberg, Oscar; Lee, Irene H.; Aastrup, Teodor; Yan, Mingdi; Ramström, Olof

    2012-01-01

    The photoinitiated radical reactions between thiols and alkenes/alkynes (thiol-ene and thiol-yne chemistry) have been applied to a functionalization methodology to produce carbohydrate-presenting surfaces for analyses of biomolecular interactions. Polymer-coated quartz surfaces were functionalized with alkenes or alkynes in a straightforward photochemical procedure utilizing perfluorophenylazide (PFPA) chemistry. The alkene/alkyne surfaces were subsequently allowed to react with carbohydrate thiols in water under UV-irradiation. The reaction can be carried out in a drop of water directly on the surface without photoinitiator and any disulfide side products were easily washed away after the functionalization process. The resulting carbohydrate-presenting surfaces were evaluated in real-time studies of protein-carbohydrate interactions using a quartz crystal microbalance flow-through system with recurring injections of selected lectins with intermediate regeneration steps using low pH buffer. The resulting methodology proved fast, efficient and scalable to high-throughput analysis formats, and the produced surfaces showed significant protein binding with expected selectivities of the lectins used in the study. PMID:22341757

  13. Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Beisert, Beata; Navascués, Eva; Marquina, Domingo; Calderón, Fernando; Rauhut, Doris; Benito, Santiago; Santos, Antonio

    2017-09-18

    In last years, non-Saccharomyces yeasts have emerged as innovative tools to improve wine quality, being able to modify the concentration of sensory-impact compounds. Among them, varietal thiols released by yeasts, play a key role in the distinctive aroma of certain white wines. In this context, Torulaspora delbrueckii is in the spotlight because of its positive contribution to several wine quality parameters. This work studies the physiological properties of an industrial T. delbrueckii strain, for the production of wines with increased thiol concentrations. IRC7 gene, previously described in S. cerevisiae, has been identified in T. delbrueckii, establishing the genetics basis of its thiol-releasing capability. Fermentations involving T. delbrueckii showed improvements on several parameters (such as glycerol content, ethanol index, and major volatile compounds composition), but especially on thiols release. These results confirm the potential of T. delbrueckii on wine improvement, describing new metabolic features regarding the release of cysteinylated aroma precursors. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Odorant Screening and Quantitation of Thiols in Carmenere Red Wine by Gas Chromatography-Olfactometry and Stable Isotope Dilution Assays.

    PubMed

    Pavez, Carolina; Agosin, Eduardo; Steinhaus, Martin

    2016-05-04

    The sensory impact of thiols in Vitis vinifera 'Carmenere' red wines was evaluated. For this purpose, aroma extract dilution analysis was applied to the thiols isolated from a Carmenere red wine by affinity chromatography with a mercurated agarose gel. Results revealed the presence of four odorants, identified as 2-furanylmethanethiol, 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, and 2-methyl-3-sulfanyl-1-butanol, with the latter being described here for the first time in Carmenere red wines. Quantitation of the four thiols in the Carmenere wine screened by aroma extract dilution analysis and in three additional Carmenere wines by stable isotope dilution assays resulted in concentrations above the respective orthonasal odor detection threshold values. Triangle tests applied to wine model solutions with and without the addition of the four thiols showed significant differences, thus suggesting that the compounds do have the potential to influence the overall aroma of red wine.

  15. Mangiferin, a natural occurring glucosyl xanthone, increases susceptibility of rat liver mitochondria to calcium-induced permeability transition.

    PubMed

    Andreu, Gilberto Lázaro Pardo; Delgado, René; Velho, Jesus Antonio; Curti, Carlos; Vercesi, Anibal E

    2005-07-15

    Mitochondrial permeability transition (MPT) is a Ca(2+)-dependent, cyclosporine A-sensitive, non-selective inner membrane permeabilization induced by a wide range of agents or conditions, which has often been associated with necrotic or apoptotic cell death. When mitochondria isolated from livers of rats treated with the natural occurring glucosyl xanthone mangiferin (40 mg/kg body weight) were exposed in vitro to Ca(2+), they underwent CsA, NEM, and ADP-sensitive high amplitude swelling and associated membrane potential dissipation, release of pre-accumulated Ca(2+), oxidation of thiol groups, and depletion of GSH, without changes in the NAD(P)H redox state. The same treatment reduced the phosphorylation rate of mitochondria and the resting respiration by around 4 and 11%, respectively, as well as generation of reactive oxygen species (ROS) by organelle. The in vitro exposure of untreated mitochondria to mangiferin plus Ca(2+) also resulted in oxidation of thiol groups, in the same way that the compound inhibited the Ca(2+)-induced peroxidation of mitochondrial membrane lipids. The spectrum of mangiferin during its oxidation by the H(2)O(2)/HRP system showed a characteristic absorption peak at 380 nm, which decreased immediately after reaction was started; two isosbestic points at around 336 and 412 nm, with a blue shift in the position of the maxima absorption of mangiferin were observed, suggesting their conversion into one oxidation product. Glutathione abolished this decrease of absorbance, suggesting that the oxidation product of mangiferin forms adducts with GSH. We propose that Ca(2+) increases levels of mitochondria-generated ROS, which reacts with mangiferin producing quinoid derivatives, which in turn react with the most accessible mitochondrial thiol groups, thus triggering MPT. It seems probable that the free radical scavenging activity of mangiferin shifts its anti-oxidant protection to the thiol arylation. An interesting proposition is that accumulation of mangiferin quinoid products would take place in cells exposed to an overproduction of ROS, such as cancer cells, where the occurrence of MPT-mediated apoptosis may be a cellular defence mechanism against excessive ROS formation.

  16. Basic Principles and Emerging Concepts in the Redox Control of Transcription Factors

    PubMed Central

    Flohé, Leopold

    2011-01-01

    Abstract Convincing concepts of redox control of gene transcription have been worked out for prokaryotes and lower eukaryotes, whereas the knowledge on complex mammalian systems still resembles a patchwork of poorly connected findings. The article, therefore, reviews principles of redox regulation with special emphasis on chemical feasibility, kinetic requirements, specificity, and physiological context, taking well investigated mammalian transcription factor systems, nuclear transcription factor of bone marrow-derived lymphocytes (NF-κB), and kelch-like ECH-associated protein-1 (Keap1)/Nrf2, as paradigms. Major conclusions are that (i) direct signaling by free radicals is restricted to O2•− and •NO and can be excluded for fast reacting radicals such as •OH, •OR, or Cl•; (ii) oxidant signals are H2O2, enzymatically generated lipid hydroperoxides, and peroxynitrite; (iii) free radical damage is sensed via generation of Michael acceptors; (iv) protein thiol oxidation/alkylation is the prominent mechanism to modulate function; (v) redox sensors must be thiol peroxidases by themselves or proteins with similarly reactive cysteine or selenocysteine (Sec) residues to kinetically compete with glutathione peroxidase (GPx)- and peroxiredoxin (Prx)-type peroxidases or glutathione-S-transferases, respectively, a postulate that still has to be verified for putative mammalian sensors. S-transferases and Prxs are considered for system complementation. The impact of NF-κB and Nrf2 on hormesis, management of inflammatory diseases, and cancer prevention is critically discussed. Antioxid. Redox Signal. 15, 2335–2381. PMID:21194351

  17. Purification and characterization of multiple forms of the pineapple-stem-derived cysteine proteinases ananain and comosain.

    PubMed Central

    Napper, A D; Bennett, S P; Borowski, M; Holdridge, M B; Leonard, M J; Rogers, E E; Duan, Y; Laursen, R A; Reinhold, B; Shames, S L

    1994-01-01

    A mixture of ananain (EC 3.4.22.31) and comosain purified from crude pineapple stem extract was found to contain numerous closely related enzyme forms. Chromatographic separation of the major enzyme forms was achieved after treatment of the mixture with thiol-modifying reagents: reversible modification with 2-hydroxyethyl disulphide provided enzyme for kinetic studies, and irreversible alkylation with bromotrifluoroacetone or iodoacetamide gave enzyme for structural analyses by 19F-n.m.r. and electrospray mass spectrometry respectively. Structural and kinetic analyses revealed comosain to be closely related to stem bromelain (EC 3.4.22.32), whereas ananain differed markedly from both comosain and stem bromelain. Nevertheless, differences were seen between comosain and stem bromelain in amino acid composition and kinetic specificity towards the epoxide inhibitor E-64. Differences between five isolatable alternative forms of ananain were characterized by amidolytic activity, thiol stoichiometry and accurate mass determinations. Three of the enzyme forms displayed ananain-like amidolytic activity, whereas the other two forms were inactive. Thiol-stoichiometry determinations revealed that the active enzyme forms contained one free thiol, whereas the inactive forms lacked the reactive thiol required for enzyme activity. M.s. provided direct evidence for oxidation of the active-site thiol to the corresponding sulphinic acid. Images Figure 3 Figure 4 PMID:8053898

  18. Relationship between Extracellular Low-Molecular-Weight Thiols and Mercury Species in Natural Lake Periphytic Biofilms.

    PubMed

    Leclerc, Maxime; Planas, Dolors; Amyot, Marc

    2015-07-07

    The uptake of mercury by microorganisms is a key step in the production of methylmercury, a biomagnifiable toxin. Mercury complexation by low-molecular-weight (LMW) thiols can affect its bioavailability and thus the production of methylmercury. Freshwater biofilms were sampled in the summer using artificial Teflon substrates submerged for over a year to allow natural community colonization in the littoral zone of a Boreal Shield lake. Inside biofilms, concentrations of different extracellular thiol species (thioglycolic acid, l-cysteine-l-glycine, cysteine, and glutathione) were up to 3 orders of magnitude greater than in the surrounding water column, potentially more readily controlling mercury speciation than in the water column. All biofilm thiols except thioglycolic acid were highly correlated to chlorophyll a, likely indicating an algal origin. Extracellular total mercury represented 3 ± 1% of all biofilm mercury and was preferentially found in the capsular fraction. Levels of LMW thiols of presumed algal origins were highly correlated with total mercury in the mobile colloidal fraction of biofilms. We propose that periphytic phototrophic microorganisms such as algae likely affect the bioavailability of mercury through the exudation of LMW thiols, and thus they may play a key role in the production of methylmercury in biofilms.

  19. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.

    PubMed

    Dröse, Stefan; Brandt, Ulrich; Wittig, Ilka

    2014-08-01

    The respiratory chain of the inner mitochondrial membrane is a unique assembly of protein complexes that transfers the electrons of reducing equivalents extracted from foodstuff to molecular oxygen to generate a proton-motive force as the primary energy source for cellular ATP-synthesis. Recent evidence indicates that redox reactions are also involved in regulating mitochondrial function via redox-modification of specific cysteine-thiol groups in subunits of respiratory chain complexes. Vice versa the generation of reactive oxygen species (ROS) by respiratory chain complexes may have an impact on the mitochondrial redox balance through reversible and irreversible thiol-modification of specific target proteins involved in redox signaling, but also pathophysiological processes. Recent evidence indicates that thiol-based redox regulation of the respiratory chain activity and especially S-nitrosylation of complex I could be a strategy to prevent elevated ROS production, oxidative damage and tissue necrosis during ischemia-reperfusion injury. This review focuses on the thiol-based redox processes involving the respiratory chain as a source as well as a target, including a general overview on mitochondria as highly compartmentalized redox organelles and on methods to investigate the redox state of mitochondrial proteins. This article is part of a Special Issue entitled: Thiol-Based Redox Processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Striped gold nanoparticles: New insights from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velachi, Vasumathi, E-mail: vasuphy@gmail.com; Cordeiro, M. Natália D. S., E-mail: ncordeir@fc.up.pt; Bhandary, Debdip

    Recent simulations have improved our knowledge of the molecular-level structure and hydration properties of mixed self-assembled monolayers (SAMs) with equal and unequal alkyl thiols at three different arrangements, namely, random, patchy, and Janus. In our previous work [V. Vasumathi et al., J. Phys. Chem. C 119, 3199–3209 (2015)], we showed that the bending of longer thiols over shorter ones clearly depends on the thiols’ arrangements and chemical nature of their terminal groups. In addition, such a thiol bending revealed to have a strong impact on the structural and hydration properties of SAMs coated on gold nanoparticles (AuNPs). In this paper,more » we extend our previous atomistic simulation study to investigate the bending of longer thiols by increasing the stripe thickness of mixed SAMs of equal and unequal lengths coated on AuNPs. We study also the effect of stripe thickness on the structural morphology and hydration of the coated SAMs. Our results show that the structural and hydration properties of SAMs are affected by the stripe thickness for mixtures of alkyl thiols with unequal chain length but not for equal length. Hence, the stability of the stripe configuration depends on the alkyl’s chain length, the length difference between the thiol mixtures, and solvent properties.« less

  1. Formation of mercury sulfide from Hg(II)−thiolate complexes in natural organic matter

    USGS Publications Warehouse

    Alain Manceau,; Cyprien Lemouchi,; Mironel Enescu,; Anne-Claire Gaillot,; Martine Lanson,; Valerie Magnin,; Pieter Glatzel,; Poulin, Brett; Ryan, Joseph N.; Aiken, George R.; Isabelle Gautier-Lunea,; Kathryn L. Nagy,

    2015-01-01

    Methylmercury is the environmental form of neurotoxic mercury that is biomagnified in the food chain. Methylation rates are reduced when the metal is sequestered in crystalline mercury sulfides or bound to thiol groups in macromolecular natural organic matter. Mercury sulfide minerals are known to nucleate in anoxic zones, by reaction of the thiol-bound mercury with biogenic sulfide, but not in oxic environments. We present experimental evidence that mercury sulfide forms from thiol-bound mercury alone in aqueous dark systems in contact with air. The maximum amount of nanoparticulate mercury sulfide relative to thiol-bound mercury obtained by reacting dissolved mercury and soil organic matter matches that detected in the organic horizon of a contaminated soil situated downstream from Oak Ridge, TN, in the United States. The nearly identical ratios of the two forms of mercury in field and experimental systems suggest a common reaction mechanism for nucleating the mineral. We identified a chemical reaction mechanism that is thermodynamically favorable in which thiol-bound mercury polymerizes to mercury–sulfur clusters. The clusters form by elimination of sulfur from the thiol complexes via breaking of mercury–sulfur bonds as in an alkylation reaction. Addition of sulfide is not required. This nucleation mechanism provides one explanation for how mercury may be immobilized, and eventually sequestered, in oxygenated surface environments.

  2. Thiol-Based Redox Switches and Gene Regulation

    PubMed Central

    2011-01-01

    Abstract Cysteine is notable among the universal, proteinogenic amino acids for its facile redox chemistry. Cysteine thiolates are readily modified by reactive oxygen species (ROS), reactive electrophilic species (RES), and reactive nitrogen species (RNS). Although thiol switches are commonly triggered by disulfide bond formation, they can also be controlled by S-thiolation, S-alkylation, or modification by RNS. Thiol-based switches are common in both prokaryotic and eukaryotic organisms and activate functions that detoxify reactive species and restore thiol homeostasis while repressing functions that would be deleterious if expressed under oxidizing conditions. Here, we provide an overview of the best-understood examples of thiol-based redox switches that affect gene expression. Intra- or intermolecular disulfide bond formation serves as a direct regulatory switch for several bacterial transcription factors (OxyR, OhrR/2-Cys, Spx, YodB, CrtJ, and CprK) and indirectly regulates others (the RsrA anti-σ factor and RegB sensory histidine kinase). In eukaryotes, thiol-based switches control the yeast Yap1p transcription factor, the Nrf2/Keap1 electrophile and oxidative stress response, and the Chlamydomonas NAB1 translational repressor. Collectively, these regulators reveal a remarkable range of chemical modifications exploited by Cys residues to effect changes in gene expression. Antioxid. Redox Signal. 14, 1049—1063. PMID:20626317

  3. Thiol-Disulfide Exchange in Peptides Derived from Human Growth Hormone

    PubMed Central

    Chandrasekhar, Saradha; Epling, Daniel E.; Sophocleous, Andreas M.; Topp, Elizabeth M.

    2014-01-01

    Disulfide bonds stabilize proteins by crosslinking distant regions into a compact three-dimensional structure. They can also participate in hydrolytic and oxidative pathways to form non-native disulfide bonds and other reactive species. Such covalent modifications can contribute to protein aggregation. Here we present experimental data for the mechanism of thiol-disulfide exchange in tryptic peptides derived from human growth hormone in aqueous solution. Reaction kinetics were monitored to investigate the effect of pH (6.0-10.0), temperature (4-50 °C), oxidation suppressants (EDTA and N2 sparging) and peptide secondary structure (amide cyclized vs. open form). The concentrations of free thiol containing peptides, scrambled disulfides and native disulfide-linked peptides generated via thiol-disulfide exchange and oxidation reactions were determined using RP-HPLC and LC-MS. Concentration vs. time data were fitted to a mathematical model using non-linear least squares regression analysis. At all pH values, the model was able to fit the data with R2≥0.95. Excluding oxidation suppressants (EDTA and N2 sparging) resulted in an increase in the formation of scrambled disulfides via oxidative pathways but did not influence the intrinsic rate of thiol-disulfide exchange. In addition, peptide secondary structure was found to influence the rate of thiol-disulfide exchange. PMID:24549831

  4. A periodic mixed gaussians-plane waves DFT study on simple thiols on Au(111): adsorbate species, surface reconstruction, and thiols functionalization.

    PubMed

    Rajaraman, Gopalan; Caneschi, Andrea; Gatteschi, Dante; Totti, Federico

    2011-03-07

    Here we present DFT calculations based on a periodic mixed gaussians/plane waves approach to study the energetics, structure, bonding of SAMs of simple thiols on Au(111). Several open issues such as structure, bonding and the nature of adsorbate are taken into account. We started with methyl thiols (MeSH) on Au(111) to establish the nature of the adsorbate. We have considered several structural models embracing the reconstructed surface scenario along with the MeS˙-Au(ad)-MeS˙ type motif put forward in recent years. Our calculations suggest a clear preference for the homolytic cleavage of the S-H bond leading to a stable MeS˙ on a gold surface. In agreement with the recent literature studies, the reconstructed models of the MeS˙ species are found to be energetically preferred over unreconstructed models. Besides, our calculations reveal that the model with 1:2 Au(ad)/thiols ratio, i.e. MeS˙-Au(ad)-MeS˙, is energetically preferred compared to the clean and 1:1 ratio models, in agreement with the experimental and theoretical evidences. We have also performed Molecular Orbital/Natural Bond Orbital, MO/NBO, analysis to understand the electronic structure and bonding in different structural motifs and many useful insights have been gained. Finally, the studies have then been extended to alkyl thiols of the RSR' (R, R' = Me, Et and Ph) type and here our calculations again reveal a preference for the RS˙ type species adsorption for clean as well as for reconstructed 1:2 Au(ad)/thiols ratio models.

  5. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.

    PubMed

    Nietzel, Thomas; Mostertz, Jörg; Hochgräfe, Falko; Schwarzländer, Markus

    2017-03-01

    Mitochondria are hotspots of cellular redox biochemistry. Respiration as a defining mitochondrial function is made up of a series of electron transfers that are ultimately coupled to maintaining the proton motive force, ATP production and cellular energy supply. The individual reaction steps involved require tight control and flexible regulation to maintain energy and redox balance in the cell under fluctuating demands. Redox regulation by thiol switching has been a long-standing candidate mechanism to support rapid adjustment of mitochondrial protein function at the posttranslational level. Here we review recent advances in our understanding of cysteine thiol switches in the mitochondrial proteome with a focus on their operation in vivo. We assess the conceptual basis for thiol switching in mitochondria and discuss to what extent insights gained from in vitro studies may be valid in vivo, considering thermodynamic, kinetic and structural constraints. We compare functional proteomic approaches that have been used to assess mitochondrial protein thiol switches, including thioredoxin trapping, redox difference gel electrophoresis (redoxDIGE), isotope-coded affinity tag (OxICAT) and iodoacetyl tandem mass tag (iodoTMT) labelling strategies. We discuss conditions that may favour active thiol switching in mitochondrial proteomes in vivo, and appraise recent advances in dissecting their impact using combinations of in vivo redox sensing and quantitative redox proteomics. Finally we focus on four central facets of mitochondrial biology, aging, carbon metabolism, energy coupling and electron transport, exemplifying the current emergence of a mechanistic understanding of mitochondrial regulation by thiol switching in living plants and animals. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  6. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.

    PubMed

    Netto, Luis Eduardo S; de Oliveira, Marcos Antonio; Tairum, Carlos A; da Silva Neto, José Freire

    2016-01-01

    Thiol-disulfide exchange reactions are highly reversible, displaying nucleophilic substitutions mechanism (S(N)2 type). For aliphatic, low molecular thiols, these reactions are slow, but can attain million times faster rates in enzymatic processes. Thioredoxin (Trx) proteins were the first enzymes described to accelerate thiol-disulfide exchange reactions and their high reactivity is related to the high nucleophilicity of the attacking thiol. Substrate specificity in Trx is achieved by several factors, including polar, hydrophobic, and topological interactions through a groove in the active site. Glutaredoxin (Grx) enzymes also contain the Trx fold, but they do not share amino acid sequence similarity with Trx. A conserved glutathione binding site is a typical feature of Grx that can reduce substrates by two mechanisms (mono and dithiol). The high reactivity of Grx enzymes is related to the very acid pK(a) values of reactive Cys that plays roles as good leaving groups. Therefore, although distinct oxidoreductases catalyze similar thiol–disulfide exchange reactions, their enzymatic mechanisms vary. PDI and DsbA are two other oxidoreductases, but they are involved in disulfide bond formation, instead of disulfide reduction, which is related to the oxidative environment where they are found. PDI enzymes and DsbC are endowed with disulfide isomerase activity, which is related with their tetra-domain architecture. As illustrative description of specificity in thiol-disulfide exchange, redox aspects of transcription activation in bacteria, yeast, and mammals are presented in an evolutionary perspective. Therefore, thiol-disulfide exchange reactions play important roles in conferring specificity to pathways, a required feature for signaling.

  7. X-ray photoelectron spectroscopy characterization of gold nanoparticles functionalized with amine-terminated alkanethiols

    PubMed Central

    Techane, Sirnegeda D.; Gamble, Lara J.; Castner, David G.

    2011-01-01

    Gold nanoparticles (AuNPs) functionalized with a short chain amine-terminated alkanethiol (HS-(CH2)2NH2 or C2 NH2-thiol) are prepared via a direct synthesis method and then ligand-exchanged with a long chain amine-terminated alkanethiol (HS-(CH2)11NH2 or C11 NH2-thiol). Transmission electron microscopy analysis showed the AuNPs were relatively spherical with a median diameter of 24.2±4.3 nm. X-ray photoelectron spectroscopy was used to determine surface chemistry of the functionalized and purified AuNPs. The ligand-exchange process was monitored within the time range from 30 min to 61 days. By the fourth day of exchange all the C2 NH2-thiol molecules had been replaced by C11 NH2-thiol molecules. C11 NH2-thiol molecules continued to be incorporated into the C11 NH2 self-assembled monolayer between days 4 and 14 of ligand-exchange. As the length of the exchange time increased, the functionalized AuNPs became more stable against aggregation. The samples were purified by a centrifugation and resuspension method. The C2 NH2 covered AuNPs aggregated immediately when purification was attempted. The C11 NH2 covered AuNPs could be purified with minimal or no aggregation. Small amounts of unbound thiol (∼15%) and oxidized sulfur (∼20%) species were detected on the ligand-exchanged AuNPs. Some of the unbound thiol and all of the oxidized sulfur could be removed by treating the functionalized AuNPs with HCl. PMID:21974680

  8. Cloning, expression, purification, crystallization and preliminary X-ray studies of argininosuccinate lyase (Rv1659) from Mycobacterium tuberculosis

    PubMed Central

    Paul, A.; Mishra, A.; Surolia, A.; Vijayan, M.

    2013-01-01

    The last enzyme in the arginine-biosynthesis pathway, argininosuccinate lyase, from Mycobacterium tuberculosis has been cloned, expressed, purified and crystallized, and preliminary X-ray studies have been carried out on the crystals. The His-tagged tetrameric enzyme with a subunit molecular weight of 50.9 kDa crystallized with two tetramers in the asymmetric unit of the orthorhombic unit cell, space group P212121. Molecular-replacement calculations and self-rotation calculations confirmed the space group and the tetrameric nature of the molecule. PMID:24316845

  9. Kinetic resolution and stereoselective synthesis of 3-substituted aspartic acids by using engineered methylaspartate ammonia lyases.

    PubMed

    Raj, Hans; Szymanski, Wiktor; de Villiers, Jandré; Puthan Veetil, Vinod; Quax, Wim J; Shimamoto, Keiko; Janssen, Dick B; Feringa, Ben L; Poelarends, Gerrit J

    2013-08-19

    Enzymatic amino acid synthesis: Kinetic resolution and asymmetric synthesis of various valuable 3-substituted aspartic acids, which were obtained in fair to good yields with diastereomeric ratio values of up to >98:2 and enantiomeric excess values of up to >99 %, by using engineered methylaspartate ammonia lyases are described. These biocatalytic methodologies for the selective preparation of aspartic acid derivatives appear to be attractive alternatives for existing chemical methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. In vitro screening of 50 highly prescribed drugs for thiol adduct formation--comparison of potential for drug-induced toxicity and extent of adduct formation.

    PubMed

    Gan, Jinping; Ruan, Qian; He, Bing; Zhu, Mingshe; Shyu, Wen C; Humphreys, W Griffith

    2009-04-01

    Reactive metabolite formation has been associated with drug-induced liver, skin, and hematopoietic toxicity of many drugs that has resulted in serious clinical toxicity, leading to clinical development failure, black box warnings, or, in some cases, withdrawal from the market. In vitro and in vivo screening for reactive metabolite formation has been proposed and widely adopted in the pharmaceutical industry with the aim of minimizing the property and thus the risk of drug-induced toxicity (DIT). One of the most common screening methods is in vitro thiol trapping of reactive metabolites. Although it is well-documented that many hepatotoxins form thiol adducts, there is no literature describing the adduct formation potential of safer drugs that are widely used. The objective of this study was to quantitatively assess the thiol adduct formation potential of 50 drugs (10 associated with DIT and 40 not associated) and document apparent differences in adduct formation between toxic and safer drugs. Dansyl glutathione was used as a trapping agent to aid the quantitation of adducts following in vitro incubation of drugs with human liver microsomes in the presence and absence of NADPH. Metabolic turnover of these drugs was also monitored by LC/UV. Overall, 15 out of the 50 drugs screened formed detectable levels of thiol adducts. There were general trends toward more positive findings in the DIT group vs the non-DIT group. These trends became more marked when the relative amount of thiol adducts was taken into account and improved further when dose and total daily reactive metabolite burdens were considered. In conclusion, there appears to be a general trend between the extent of thiol adduct formation and the potential for DIT, which would support the preclinical measurement and minimization of the property through screening of thiol adduct formation as part of an overall discovery optimization paradigm.

  11. Depletion of Intracellular Thiols and Increased Production of 4-Hydroxynonenal that Occur During Cryopreservation of Stallion Spermatozoa Lead to Caspase Activation, Loss of Motility, and Cell Death.

    PubMed

    Martin Muñoz, Patricia; Ortega Ferrusola, Cristina; Vizuete, Guillermo; Plaza Dávila, Maria; Rodriguez Martinez, Heriberto; Peña, Fernando J

    2015-12-01

    Oxidative stress has been linked to sperm death and the accelerated senescence of cryopreserved spermatozoa. However, the molecular mechanisms behind this phenomenon remain poorly understood. Reactive oxygen species (ROS) are considered relevant signaling molecules for sperm function, only becoming detrimental when ROS homeostasis is lost. We hereby hypothesize that a major component of the alteration of ROS homeostasis in cryopreserved spermatozoa is the exhaustion of intrinsic antioxidant defense mechanisms. To test this hypothesis, semen from seven stallions was frozen using a standard technique. The parameters of sperm quality (motility, velocity, and membrane integrity) and markers of sperm senescence (caspase 3, 4-hydroxynonenal, and mitochondrial membrane potential) were assessed before and after cryopreservation. Changes in the intracellular thiol content were also monitored. Cryopreservation caused significant increases in senescence markers as well as dramatic depletion of intracellular thiols to less than half of the initial values (P < 0.001) postthaw. Interestingly, very high and positive correlations were observed among thiol levels with sperm functionality postthaw: total motility (r = 0.931, P < 0.001), progressive motility (r = 0.904, P < 0.001), and percentage of live spermatozoa without active caspase 3 (r = 0.996, P < 0.001). In contrast, negative correlations were detected between active caspase 3 and thiol content both in living (r = -0.896) and dead (r = -0.940) spermatozoa; additionally, 4-hydroxynonenal levels were negatively correlated with thiol levels (r = -0.856). In conclusion, sperm functionality postthaw correlates with the maintenance of adequate levels of intracellular thiols. The accelerated senescence of thawed spermatozoa is related to oxidative and electrophilic stress induced by increased production of 4-hydroxynoneal in thawed samples once intracellular thiols are depleted. © 2015 by the Society for the Study of Reproduction, Inc.

  12. Hydrogen-atom tunneling through a very high barrier; spontaneous thiol → thione conversion in thiourea isolated in low-temperature Ar, Ne, H2 and D2 matrices.

    PubMed

    Rostkowska, Hanna; Lapinski, Leszek; Nowak, Maciej J

    2018-05-23

    Spontaneous thiol → thione hydrogen-atom transfer has been investigated for molecules of thiourea trapped in Ar, Ne, normal-H2 (n-H2) and normal-D2 (n-D2) low-temperature matrices. The most stable thione isomer was the only form of the compound present in the matrices after their deposition. According to MP2/6-311++G(2d,p) calculations, the thiol tautomer should be higher in energy by 62.5 kJ mol-1. This less stable thiol form of the compound was photochemically generated in a thione → thiol process, occurring upon UV irradiation of the matrix. Subsequently, a very slow spontaneous conversion of the thiol tautomer into the thione form was observed for the molecules isolated in Ar, Ne, n-H2 and n-D2 matrices kept at 3.5 K and in the dark. Since the thiol → thione transformation in thiourea is a process involving the dissociation of a chemical bond, the barrier for this hydrogen-atom transfer is very high (104-181 kJ mol-1). Crossing such a high potential-energy barrier at a temperature as low as 3.5 K, is possible only by hydrogen-atom tunneling. The experimentally measured time constants of this tunneling process: 52 h (Ar), 76 h (Ne), 94 h (n-H2) and 94 h (n-D2), do not differ much from one another. Hence, the dependence of the tunneling rate on the matrix environment is not drastic. The progress of the thiol → thione conversion was also monitored for Ar matrices at different temperature: 3.5 K, 9 K and 15 K. For this temperature range, the experiments revealed no detectable temperature dependence of the rate of the tunneling process.

  13. Photoreduction of Hg(II) and photodemethylation of methylmercury: the key role of thiol sites on dissolved organic matter

    USGS Publications Warehouse

    Jeremiason, Jeffrey D.; Portner, Joshua C.; Aiken, George R.; Hiranaka, Amber J.; Dvorak, Michelle T.; Tran, Khuyen T.; Latch, Douglas E.

    2015-01-01

    This study examined the kinetics of photoreduction of Hg(II) and photodemethylation of methylmercury (MeHg+) attached to, or in the presence of, dissolved organic matter (DOM). Both Hg(II) and MeHg+ are principally bound to reduced sulfur groups associated with DOM in many freshwater systems. We propose that a direct photolysis mechanism is plausible for reduction of Hg(II) bound to reduced sulfur groups on DOM while an indirect mechanism is supported for photodemethylation of MeHg+ bound to DOM. UV spectra of Hg(II) and MeHg+ bound to thiol containing molecules demonstrate that the Hg(II)–S bond is capable of absorbing UV-light in the solar spectrum to a much greater extent than MeHg+–S bonds. Experiments with chemically distinct DOM isolates suggest that concentration of DOM matters little in the photochemistry if there are enough reduced S sites present to strongly bind MeHg+ and Hg(II); DOM concentration does not play a prominent role in photodemethylation other than to screen light, which was demonstrated in a field experiment in the highly colored St. Louis River where photodemethylation was not observed at depths ≥10 cm. Experiments with thiol ligands yielded slower photodegradation rates for MeHg+ than in experiments with DOM and thiols; rates in the presence of DOM alone were the fastest supporting an intra-DOM mechanism. Hg(II) photoreduction rates, however, were similar in experiments with only DOM, thiols plus DOM, or only thiols suggesting a direct photolysis mechanism. Quenching experiments also support the existence of an intra-DOM photodemethylation mechanism for MeHg+. Utilizing the difference in photodemethylation rates measured for MeHg+ attached to DOM or thiol ligands, the binding constant for MeHg+ attached to thiol groups on DOM was estimated to be 1016.7.

  14. Systems Rebalancing of Metabolism in Response to Sulfur Deprivation, as Revealed by Metabolome Analysis of Arabidopsis Plants1[w

    PubMed Central

    Nikiforova, Victoria J.; Kopka, Joachim; Tolstikov, Vladimir; Fiehn, Oliver; Hopkins, Laura; Hawkesford, Malcolm J.; Hesse, Holger; Hoefgen, Rainer

    2005-01-01

    Sulfur is an essential macroelement in plant and animal nutrition. Plants assimilate inorganic sulfate into two sulfur-containing amino acids, cysteine and methionine. Low supply of sulfate leads to decreased sulfur pools within plant tissues. As sulfur-related metabolites represent an integral part of plant metabolism with multiple interactions, sulfur deficiency stress induces a number of adaptive responses, which must be coordinated. To reveal the coordinating network of adaptations to sulfur deficiency, metabolite profiling of Arabidopsis has been undertaken. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry techniques revealed the response patterns of 6,023 peaks of nonredundant ion traces and relative concentration levels of 134 nonredundant compounds of known chemical structure. Here, we provide a catalogue of the detected metabolic changes and reconstruct the coordinating network of their mutual influences. The observed decrease in biomass, as well as in levels of proteins, chlorophylls, and total RNA, gives evidence for a general reduction of metabolic activity under conditions of depleted sulfur supply. This is achieved by a systemic adjustment of metabolism involving the major metabolic pathways. Sulfur/carbon/nitrogen are partitioned by accumulation of metabolites along the pathway O-acetylserine to serine to glycine, and are further channeled together with the nitrogen-rich compound glutamine into allantoin. Mutual influences between sulfur assimilation, nitrogen imbalance, lipid breakdown, purine metabolism, and enhanced photorespiration associated with sulfur-deficiency stress are revealed in this study. These responses may be assembled into a global scheme of metabolic regulation induced by sulfur nutritional stress, which optimizes resources for seed production. PMID:15834012

  15. Occurrence of low molecular weight thiols in biological systems

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.; Newton, Gerald L.

    1983-01-01

    Bromobimane labeling and high performance chromatography analysis were applied to various species of bacteria, plant tissues, and animal tissues. The reaction between thiols and monobromobimane is studied. Chromatograms revealing peaks produced by nonthiols and thiols are analyzed and compared. It is observed that all the bacteria species contain hydrogen sulfide, and glutathione is contained in facultative and aerobic gram-negative bacteria. For the plant tissues, the data reveal that mung bean sprouts contain homoglutathione and no glutathione; alfalfa sprouts contain homoglutathione and glutathione; the pea seed, nonlegumes, and fungi contain glutathione and no homoglutathione. It is detected that the main thiol in the animal tissues is glutathione. Based on the data, it is suggested that glutathione has an essential function in higher organisms.

  16. Toposelective electrochemical desorption of thiol SAMs from neighboring polycrystalline gold surfaces.

    PubMed

    Tencer, Michal; Berini, Pierre

    2008-11-04

    We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.

  17. L-alanine-glyoxylate aminotransferase II of rat kidney and liver mitochondria possesses cysteine S-conjugate beta-lyase activity: a contributing factor to the nephrotoxicity/hepatotoxicity of halogenated alkenes?

    PubMed Central

    Cooper, Arthur J L; Krasnikov, Boris F; Okuno, Etsuo; Jeitner, Thomas M

    2003-01-01

    Several halogenated alkenes are metabolized in part to cysteine S-conjugates, which are mitochondrial toxicants of kidney and, to a lesser extent, other organs. Toxicity is due to cysteine S-conjugate beta-lyases, which convert the cysteine S-conjugate into pyruvate, ammonia and a reactive sulphur-containing fragment. A section of the human population is exposed to halogenated alkenes. To understand the health effects of such exposure, it is important to identify cysteine S-conjugate beta-lyases that contribute to mitochondrial damage. Mitochondrial aspartate aminotransferase [Cooper, Bruschi, Iriarte and Martinez-Carrion (2002) Biochem. J. 368, 253-261] and mitochondrial branched-chain aminotransferase [Cooper, Bruschi, Conway and Hutson (2003) Biochem. Pharmacol. 65, 181-192] exhibit beta-lyase activity toward S -(1,2-dichlorovinyl)-L-cysteine (the cysteine S-conjugate of trichloroethylene) and S -(1,1,2,2-tetrafluoroethyl)-L-cysteine (the cysteine S-conjugate of tetrafluoroethylene). Turnover leads to eventual inactivation of these enzymes. Here we report that mitochondrial L-alanine-glyoxylate aminotransferase II, which, in the rat, is most active in kidney, catalyses cysteine S-conjugate beta-lyase reactions with S -(1,1,2,2-tetrafluoroethyl)-L-cysteine, S -(1,2-dichlorovinyl)-L-cysteine and S -(benzothiazolyl-L-cysteine); turnover leads to inactivation. Previous workers showed that the reactive-sulphur-containing fragment released from S -(1,1,2,2-tetrafluoroethyl)-L-cysteine and S -(1,2-dichlorovinyl)-L-cysteine is toxic by acting as a thioacylating agent - particularly of lysine residues in nearby proteins. Toxicity, however, may also involve 'self-inactivation' of key enzymes. The present findings suggest that alanine-glyoxylate aminotransferase II may be an important factor in the well-established targeting of rat kidney mitochondria by toxic halogenated cysteine S-conjugates. Previous reports suggest that alanine-glyoxylate aminotransferase II is absent in some humans, but present in others. Alanine-glyoxylate aminotransferase II may contribute to the bioactivation (toxification) of halogenated cysteine S-conjugates in a subset of individuals exposed to halogenated alkenes. PMID:12859250

  18. Crystal Structures of Two Bacterial 3-Hydroxy-3-methylglutaryl-CoA Lyases Suggest a Common Catalytic Mechanism among a Family of TIM Barrel Metalloenzymes Cleaving Carbon-Carbon Bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forouhar,F.; Hussain, M.; Farid, R.

    The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase catalyzes the terminal steps in ketone body generation and leucine degradation. Mutations in this enzyme cause a human autosomal recessive disorder called primary metabolic aciduria, which typically kills victims because of an inability to tolerate hypoglycemia. Here we present crystal structures of the HMG-CoA lyases from Bacillus subtilis and Brucella melitensis at 2.7 and 2.3 {angstrom} resolution, respectively. These enzymes share greater than 45% sequence identity with the human orthologue. Although the enzyme has the anticipated triose-phosphate isomerase (TIM) barrel fold, the catalytic center contains a divalent cation-binding site formed by a cluster ofmore » invariant residues that cap the core of the barrel, contrary to the predictions of homology models. Surprisingly, the residues forming this cation-binding site and most of their interaction partners are shared with three other TIM barrel enzymes that catalyze diverse carbon-carbon bond cleavage reactions believed to proceed through enolate intermediates (4-hydroxy-2-ketovalerate aldolase, 2-isopropylmalate synthase, and transcarboxylase 5S). We propose the name 'DRE-TIM metallolyases' for this newly identified enzyme family likely to employ a common catalytic reaction mechanism involving an invariant Asp-Arg-Glu (DRE) triplet. The Asp ligates the divalent cation, while the Arg probably stabilizes charge accumulation in the enolate intermediate, and the Glu maintains the precise structural alignment of the Asp and Arg. We propose a detailed model for the catalytic reaction mechanism of HMG-CoA lyase based on the examination of previously reported product complexes of other DRE-TIM metallolyases and induced fit substrate docking studies conducted using the crystal structure of human HMG-CoA lyase (reported in the accompanying paper by Fu, et al. (2006) J. Biol. Chem. 281, 7526-7532). Our model is consistent with extensive mutagenesis results and can guide subsequent studies directed at definitive experimental elucidation of this enzyme's reaction mechanism.« less

  19. Manipulation of Strawberry Fruit Softening by Antisense Expression of a Pectate Lyase Gene1

    PubMed Central

    Jiménez-Bermúdez, Silvia; Redondo-Nevado, José; Muñoz-Blanco, Juan; Caballero, José L.; López-Aranda, José M.; Valpuesta, Victoriano; Pliego-Alfaro, Fernando; Quesada, Miguel A.; Mercado, José A.

    2002-01-01

    Strawberry (Fragaria × ananassa, Duch., cv Chandler) is a soft fruit with a short postharvest life, mainly due to a rapid lost of firm texture. To control the strawberry fruit softening, we obtained transgenic plants that incorporate an antisense sequence of a strawberry pectate lyase gene under the control of the 35S promoter. Forty-one independent transgenic lines (Apel lines) were obtained, propagated in the greenhouse for agronomical analysis, and compared with control plants, non-transformed plants, and transgenic lines transformed with the pGUSINT plasmid. Total yield was significantly reduced in 33 of the 41 Apel lines. At the stage of full ripen, no differences in color, size, shape, and weight were observed between Apel and control fruit. However, in most of the Apel lines, ripened fruits were significantly firmer than controls. Six Apel lines were selected for further analysis. In all these lines, the pectate lyase gene expression in ripened fruit was 30% lower than in control, being totally suppressed in three of them. Cell wall material isolated from ripened Apel fruit showed a lower degree of in vitro swelling and a lower amount of ionically bound pectins than control fruit. An analysis of firmness at three different stages of fruit development (green, white, and red) showed that the highest reduction of softening in Apel fruit occurred during the transition from the white to the red stage. The postharvest softening of Apel fruit was also diminished. Our results indicate that pectate lyase gene is an excellent candidate for biotechnological improvement of fruit softening in strawberry. PMID:11842178

  20. Metabolism of Acrylate to β-Hydroxypropionate and Its Role in Dimethylsulfoniopropionate Lyase Induction by a Salt Marsh Sediment Bacterium, Alcaligenes faecalis M3A

    PubMed Central

    Ansede, John H.; Pellechia, Perry J.; Yoch, Duane C.

    1999-01-01

    Dimethylsulfoniopropionate (DMSP) is degraded to dimethylsulfide (DMS) and acrylate by the enzyme DMSP lyase. DMS or acrylate can serve as a carbon source for both free-living and endophytic bacteria in the marine environment. In this study, we report on the mechanism of DMSP-acrylate metabolism by Alcaligenes faecalis M3A. Suspensions of citrate-grown cells expressed a low level of DMSP lyase activity that could be induced to much higher levels in the presence of DMSP, acrylate, and its metabolic product, β-hydroxypropionate. DMSP was degraded outside the cell, resulting in an extracellular accumulation of acrylate, which in suspensions of citrate-grown cells was then metabolized at a low endogenous rate. The inducible nature of acrylate metabolism was evidenced by both an increase in the rate of its degradation over time and the ability of acrylate-grown cells to metabolize this molecule at about an eight times higher rate than citrate-grown cells. Therefore, acrylate induces both its production (from DMSP) and its degradation by an acrylase enzyme. 1H and 13C nuclear magnetic resonance analyses were used to identify the products resulting from [1-13C]acrylate metabolism. The results indicated that A. faecalis first metabolized acrylate to β-hydroxypropionate outside the cell, which was followed by its intracellular accumulation and subsequent induction of DMSP lyase activity. In summary, the mechanism of DMSP degradation to acrylate and the subsequent degradation of acrylate to β-hydroxypropionate in the aerobic β-Proteobacterium A. faecalis has been described. PMID:10543825

  1. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars

    PubMed Central

    Verma, Dheeraj; Kanagaraj, Anderson; Jin, Shuangxia; Singh, Nameirakpam D.; Kolattukudy, Pappachan E; Daniell, Henry

    2009-01-01

    Summary It is widely recognized that biofuel production from lignocellulosic materials is limited by inadequate technology to efficiently and economically release fermentable sugars from the complex multi-polymeric raw materials. Therefore, endoglucanases, exoglucanase, pectate lyases, cutinase, swollenin, xylanase, acetyl xylan esterase, beta glucosidase and lipase genes from bacteria or fungi were expressed in E. coli or tobacco chloroplasts. A PCR based method was used to clone genes without introns from Trichoderma reesei genomic DNA. Homoplasmic transplastomic lines showed normal phenotype and were fertile. Based on observed expression levels, up to 49, 64 and 10,751 million units of pectate lyases or endoglucanase can be produced annually, per acre of tobacco. Plant production cost of endoglucanase is 3,100-fold and pectate lyase is 1,057 or 1,480 fold lower than the same recombinant enzymes sold commercially, produced via fermentation. Chloroplast-derived enzymes had higher temperature stability and wider pH optima than enzymes expressed in E. coli. Plant crude-extracts showed higher enzyme activity than E. coli with increasing protein concentration, demonstrating their direct utility without purification. Addition of E. coli extracts to the chloroplast-derived enzymes significantly decreased their activity. Chloroplast-derived crude-extract enzyme cocktails yielded more (up to 3,625%) glucose from filter paper, pine wood or citrus peel than commercial cocktails. Furthermore, pectate lyase transplastomic plants showed enhanced resistance to Erwina soft rot. This is the first report of using plant-derived enzyme cocktails for production of fermentable sugars from lignocellulosic biomass. Limitations of higher cost and lower production capacity of fermentation systems are addressed by chloroplast-derived enzyme cocktails. PMID:20070870

  2. Molecular variability and evolution of the pectate lyase (pel-2) parasitism gene in cyst nematodes parasitizing different solanaceous plants.

    PubMed

    Geric Stare, Barbara; Fouville, Didier; Širca, Saša; Gallot, Aurore; Urek, Gregor; Grenier, Eric

    2011-02-01

    While pectate lyases are major parasitism factors in plant-parasitic nematodes, there is little information on the variability of these genes within species and their utility as pathotype or host range molecular markers. We have analysed polymorphisms of pectate lyase 2 (pel-2) gene, which degrades the unesterified polygalacturonate (pectate) of the host cell-wall, in the genus Globodera. Molecular variability of the pel-2 gene and the predicted protein was evaluated in populations of G. rostochiensis, G. pallida, G. "mexicana" and G. tabacum. Seventy eight pel-2 sequences were obtained and aligned. Point mutations were observed at 373 positions, 57% of these affect the coding part of the gene and produce 129 aa replacements. The observed polymorphism does not correlate either to the pathotypes proposed in potato cyst nematodes (PCN) or the subspecies described in tobacco cyst nematodes. The trees reveal a topology different from the admitted species topology as G. rostochiensis and G. pallida sequences are more similar to each other than to G. tabacum. Species-specific sites, potentially applicable for identification, and sites distinguishing PCN from tobacco cyst nematodes, were identified. As both G. rostochiensis and G. pallida display the same host range, but distinct from G. tabacum, which cannot parasitize potato plants, it is tempting to speculate that pel-2 genes polymorphism may be implicated in this adaptation, a view supported by the fact that no active pectate lyase 2 was found in G. "mexicana", a close relative of G. pallida that is unable to develop on cultivated potato varieties.

  3. Biochemical Validation of the Glyoxylate Cycle in the Cyanobacterium Chlorogloeopsis fritschii Strain PCC 9212.

    PubMed

    Zhang, Shuyi; Bryant, Donald A

    2015-05-29

    Cyanobacteria are important photoautotrophic bacteria with extensive but variable metabolic capacities. The existence of the glyoxylate cycle, a variant of the TCA cycle, is still poorly documented in cyanobacteria. Previous studies reported the activities of isocitrate lyase and malate synthase, the key enzymes of the glyoxylate cycle in some cyanobacteria, but other studies concluded that these enzymes are missing. In this study the genes encoding isocitrate lyase and malate synthase from Chlorogloeopsis fritschii PCC 9212 were identified, and the recombinant enzymes were biochemically characterized. Consistent with the presence of the enzymes of the glyoxylate cycle, C. fritschii could assimilate acetate under both light and dark growth conditions. Transcript abundances for isocitrate lyase and malate synthase increased, and C. fritschii grew faster, when the growth medium was supplemented with acetate. Adding acetate to the growth medium also increased the yield of poly-3-hydroxybutyrate. When the genes encoding isocitrate lyase and malate synthase were expressed in Synechococcus sp. PCC 7002, the acetate assimilation capacity of the resulting strain was greater than that of wild type. Database searches showed that the genes for the glyoxylate cycle exist in only a few other cyanobacteria, all of which are able to fix nitrogen. This study demonstrates that the glyoxylate cycle exists in a few cyanobacteria, and that this pathway plays an important role in the assimilation of acetate for growth in one of those organisms. The glyoxylate cycle might play a role in coordinating carbon and nitrogen metabolism under conditions of nitrogen fixation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur

    PubMed Central

    Ueki, Iori

    2010-01-01

    Synthesis of cysteine as a product of the transsulfuration pathway can be viewed as part of methionine or homocysteine degradation, with cysteine being the vehicle for sulfur conversion to end products (sulfate, taurine) that can be excreted in the urine. Transsulfuration is regulated by stimulation of cystathionine β-synthase and inhibition of methylene tetrahydrofolate reductase in response to changes in the level of S-adenosylmethionine, and this promotes homocysteine degradation when methionine availability is high. Cysteine is catabolized by several desulfuration reactions that release sulfur in a reduced oxidation state, generating sulfane sulfur or hydrogen sulfide (H2S), which can be further oxidized to sulfate. Cysteine desulfuration is accomplished by alternate reactions catalyzed by cystathionine β-synthase and cystathionine γ-lyase. Cysteine is also catabolized by pathways that require the initial oxidation of the cysteine thiol by cysteine dioxygenase to form cysteinesulfinate. The oxidative pathway leads to production of taurine and sulfate in a ratio of approximately 2:1. Relative metabolism of cysteine by desulfuration versus oxidative pathways is influenced by cysteine dioxygenase activity, which is low in animals fed low-protein diets and high in animals fed excess sulfur amino acids. Thus, desulfuration reactions dominate when cysteine is deficient, whereas oxidative catabolism dominates when cysteine is in excess. In rats consuming a diet with an adequate level of sulfur amino acids, about two thirds of cysteine catabolism occurs by oxidative pathways and one third by desulfuration pathways. Cysteine dioxygenase is robustly regulated in response to cysteine availability and may function to provide a pathway to siphon cysteine to less toxic metabolites than those produced by cysteine desulfuration reactions. PMID:20162368

  5. Inhibition of Carbamyl Phosphate Synthetase-I and Glutamine Synthetase by Hepatotoxic Doses of Acetaminophen in Mice

    PubMed Central

    Gupta, Sanjiv; Rogers, Lynette K.; Taylor, Sarah K.; Smith, Charles V.

    2016-01-01

    The primary mechanisms proposed for acetaminophen-induced hepatic necrosis should deplete protein thiols, either by covalent binding and thioether formation or by oxidative reactions such as S-thiolations. However, in previous studies we did not detect significant losses of protein thiol contents in response to administration of hepatotoxic doses of acetaminophen in vivo. In the present study we employed derivatization with the thiol-specific agent monobromobimane and separation of proteins by SDS–PAGE to investigate the possible loss of specific protein thiols during the course of acetaminophen-induced hepatic necrosis. Fasted adult male mice were given acetaminophen, and protein thiol status was examined subsequently in subcellular fractions isolated by differential centrifugation. No decreases in protein thiol contents were indicated, with the exception of a marked decrease in the fluorescent intensity, but not of protein content, as indicated by staining with Coomassie blue, of a single band of approximately 130 kDa in the mitochondrial fractions of acetaminophen-treated mice. This protein was identified by isolation and N-terminal sequence analysis as carbamyl phosphate synthetase-I (CPS-I) (EC 6.3.4.16). Hepatic CPS-I activities were decreased in mice given hepatotoxic doses of acetaminophen. In addition, hepatic glutamine synthetase activities were lower, and plasma ammonia levels were elevated in mice given hepatotoxic doses of acetaminophen. The observed hyperammonemia may contribute to the adverse effects of toxic doses of acetaminophen, and elucidation of the specific mechanisms responsible for the hyperammonemia may prove to be useful clinically. However, the preferential depletion of protein thiol content of a mitochondrial protein by chemically reactive metabolites generated in the endoplasmic reticulum presents a challenging and potentially informative mechanistic question. PMID:9344900

  6. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative

    NASA Astrophysics Data System (ADS)

    Liang, Beibei; Wang, Baiyan; Ma, Qiujuan; Xie, Caixia; Li, Xian; Wang, Suiping

    2018-03-01

    Biological thiols, like cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play crucial roles in biological systems and in lysosomal processes. Highly selective probes for detecting biological thiols in lysomes of living cells are rare. In this work, a lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells was designed and synthesized based on a 1,8-naphthalimide derivative. The probe has a 4-(2-aminoethyl)morpholine unit as a lysosome-targetable group and an acrylate group as the thiol recognition unit as well as a fluorescence quencher. In the absence of biothiols, the probe displayed weak fluorescence due to the photoinduced electron transfer (PET) process. Upon the addition of biothiols, the probe exhibited an enhanced fluorescence emission centered at 550 nm due to cleavage of the acrylate moiety. The probe had high selectivity toward biothiols. Moreover, the probe features fast response time, excitation in the visible region and ability of working in a wide pH range. The linear response range covers a concentration range of Cys from 1.5 × 10- 7 to 1.0 × 10- 5 mol·L- 1 and the detection limit is 6.9 × 10- 8 mol·L- 1 for Cys. The probe has been successfully applied to the confocal imaging of biothiols in lysosomes of A549 cells with low cell toxicity. Furthermore, the method was successfully applied to the determination of thiols in a complex multicomponent mixture such as human serum, which suggests our proposed method has great potential for diagnostic purposes. All of such good properties prove it can be used to monitor biothiols in lysosomes of living cells and to be a good fluorescent probe for the selective detection of thiols.

  7. Dynamic Thiol/Disulphide Homeostasis in Children and Adolescents with Non-Autoimmune Subclinical Hypothyroidism

    PubMed Central

    Uçaktürk, Seyit Ahmet; Alışık, Murat; Uğur, Çağatay; Elmaoğulları, Selin; Mengen, Eda; Erel, Özcan

    2018-01-01

    Objective To evaluate the thiol/disulphide homeostasis in children with non-autoimmune subclinical hypothyroidism (SHT). Subjects and Methods Thiol/disulphide homeosta sis, involving native thiol (SH), disulphide (SS), and total thiol (SS + SH), was evaluated in 60 children and adolescents who were negative for thyroid auto-antibodies (anti-thyroid peroxidase, anti-thyroglobulin) and had a thyroid-stimulating hormone (TSH) value of > 5 mIU/L, and in 40 sex- and age-matched healthy control subjects who were negative for thyroid autoantibodies and had normal TSH levels. Lipid profiles and urine iodine levels were also determined. Results SH (466 ± 32.8 vs. 462 ± 32.1 μmol/L p = 0.59), SH + SS (508 ± 34.0 vs. 506 ± 32.7 μmol/L, p = 0.81), SS (21 ± 5.5 vs. 22 ± 5.8 μmol/L, p = 0.41), SS/SH (4.5 ± 1.2 vs. 4.8 ± 1.3%, p = 0.36), SS/SH + SS (4.1 ± 1.0 vs. 4.3 ± 1.1%, p = 0.36) and SH/SH + SS (91 ± 2.1 vs. 91 ± 2.1%, p = 0.31) levels were similar in children with SHT and control subjects (p > 0.05). There was no difference between total cholesterol, triglyceride, and low-density lipoprotein levels in SHT patients and controls. No difference was detected between the patients with or without iodine deficiency in the SHT group in terms of thiol/disulphide homeostasis parameters. Conclusion The status of dynamic thiol/disulphide homeostasis did not change in children and adolescents with non-autoimmune SHT. Future studies are needed for the evaluation of oxidative stress in patients with long-standing non-autoimmune SHT. PMID:29402856

  8. Allyl isothiocyanate enhances shelf life of minimally processed shredded cabbage.

    PubMed

    Banerjee, Aparajita; Penna, Suprasanna; Variyar, Prasad S

    2015-09-15

    The effect of allyl isothiocyanate (AITC), in combination with low temperature (10°C) storage on post harvest quality of minimally processed shredded cabbage was investigated. An optimum concentration of 0.05μL/mL AITC was found to be effective in maintaining the microbial and sensory quality of the product for a period of 12days. Inhibition of browning was shown to result from a down-regulation (1.4-fold) of phenylalanine ammonia lyase (PAL) gene expression and a consequent decrease in PAL enzyme activity and o-quinone content. In the untreated control samples, PAL activity increased following up-regulation in PAL gene expression that could be linearly correlated with enhanced o-quinone formation and browning. The efficacy of AITC in extending the shelf life of minimally processed shredded cabbage and its role in down-regulation of PAL gene expression resulting in browning inhibition in the product is reported here for the first time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Expression and Bioinformatics Analysis of Pectate Lyase Gene from Bacillus subtilis521

    NASA Astrophysics Data System (ADS)

    Xiao, Jing; Lu, Fu-Ping; Li, Yu; Li, Jin-Ting

    In order to exploit new genetic resources, Pectate lyase(PEL) gene was amplified by PCR using the genome DNA from an alkaline Bacillus subtilis521. The PCR product was inserted into pET22b(+) vector. The recombinant plasmids were cloned in E.coli DH5α and then expressed in E.coli BL21. When cultured in the optimized medium, the positive clones E.coli BL21(pET22b(+)pel)showed intracellular pectate lyase activity of 90.0 U/mL. It was indicated that we had obtained the correct PEL gene. The pel has an open reading frame of 1263 nucleotides and codes for a product of 420 amino acids with a calculated molecular mass of 45.5 kD. Based on computer assisted analysis, a signal peptides and two conserved domains were revealed. The sequence analysis for PEL showed that it shares 26-82% homology with other strains in GenBank. In addition, the advanced structure of PEL were also predicted and analysed. This study will help to the experimental design of PEL fermentation and production purification and enzyme evolution.

  10. Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis.

    PubMed

    Alagöz, Dilek; Tükel, S Seyhan; Yildirim, Deniz

    2015-11-01

    The carrier-based and carrier-free (cross-linked enzyme aggregate) covalent immobilizations of Prunus dulcis hydroxynitrile lyase were investigated. The immobilized preparations were tested for enantioselective carbon-carbon bond formation activity in the biphasic medium. Of the tested preparations, only cross-linked enzyme aggregate of P. dulcis hydroxynitrile lyase (PdHNL-CLEA) achieved the synthesis of (R)-mandelonitrile with 93% yield and 99% enantiopurity. PdHNL-CLEA was also used in the synthesis of various (R)-cyanohydrins from corresponding aldehydes/ketones and hydrocyanic acid. When 4-methoxybenzaldehyde, 4-methyl benzaldehyde, and 4-hydroxybenzaldehyde were used as substrates, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were obtained as 95-95, 85-79, and 2-25%, respectively, after 96 h at pH 4.0 and 5 °C. For acetophenone, 4-fluoroacetophenone, 4-chloroacetophenone, 4-bromoacetophenone, and 4-iodoacetophenone, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were 1-99, 20-84, 11-95, 5-99, and 3-24%, respectively at the same conditions. The results demonstrate PdHNL-CLEA can be effectively used in the synthesis of (R)-mandelonitrile.

  11. Structure of the ThDP-dependent enzyme benzaldehyde lyase refined to 1.65 Å resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maraite, Andy; Schmidt, Thomas; Ansörge-Schumacher, Marion B.

    2007-07-01

    The X-ray crystal structure of the ThDP-dependent enzyme benzaldehyde lyase has been refined to 1.65 Å. Benzaldehyde lyase (BAL; EC 4.1.2.38) is a thiamine diphosphate (ThDP) dependent enzyme that catalyses the enantioselective carboligation of two molecules of benzaldehyde to form (R)-benzoin. BAL has hence aroused interest for its potential in the industrial synthesis of optically active benzoins and derivatives. The structure of BAL was previously solved to a resolution of 2.6 Å using MAD experiments on a selenomethionine derivative [Mosbacher et al. (2005 ▶), FEBS J.272, 6067–6076]. In this communication of parallel studies, BAL was crystallized in an alternative spacemore » group (P2{sub 1}2{sub 1}2{sub 1}) and its structure refined to a resolution of 1.65 Å, allowing detailed observation of the water structure, active-site interactions with ThDP and also the electron density for the co-solvent 2-methyl-2,4-pentanediol (MPD) at hydrophobic patches of the enzyme surface.« less

  12. Oral-Fluid Thiol-Detection Test Identifies Underlying Active Periodontal Disease Not Detected by the Visual Awake Examination.

    PubMed

    Queck, Katherine E; Chapman, Angela; Herzog, Leslie J; Shell-Martin, Tamara; Burgess-Cassler, Anthony; McClure, George David

    Periodontal disease in dogs is highly prevalent but can only be accurately diagnosed by performing an anesthetized oral examination with periodontal probing and dental radiography. In this study, 114 dogs had a visual awake examination of the oral cavity and were administered an oral-fluid thiol-detection test prior to undergoing a a full-mouth anesthetized oral examination and digital dental radiographs. The results show the visual awake examination underestimated the presence and severity of active periodontal disease. The thiol-detection test was superior to the visual awake examination at detecting the presence and severity of active periodontal disease and was an indicator of progression toward alveolar bone loss. The thiol-detection test detected active periodontal disease at early stages of development, before any visual cues were present, indicating the need for intervention to prevent periodontal bone loss. Early detection is important because without intervention, dogs with gingivitis (active periodontal disease) progress to irreversible periodontal bone loss (stage 2+). As suggested in the current AAHA guidelines, a thiol-detection test administered in conjunction with the visual awake examination during routine wellness examinations facilitates veterinarian-client communication and mitigates under-diagnosis of periodontal disease and underutilization of dental services. The thiol-detection test can be used to monitor the periodontal health status of the conscious patient during follow-up examinations based on disease severity.

  13. Thiol/disulfide redox states in signaling and sensing

    PubMed Central

    Go, Young-Mi; Jones, Dean P.

    2015-01-01

    Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady-states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling, and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities. PMID:23356510

  14. Functionalization to control microstructural, optical, electronic and wetting properties of metal oxide surfaces

    NASA Astrophysics Data System (ADS)

    Singh, Jagdeep

    This thesis focuses on engineering the surface chemistry of oxide surfaces in order to control their microstructural, optical, electronic and wetting properties. Several different types of experiments have been performed to tailor the properties of silicon oxide, titanium dioxide, and zinc oxide surfaces. Applications of this work include organic electronics, sensors and nanomanufacturing. Adsorption of 3-mercaptopropyltrimethoxysilane (MPS) on hydroxylated silicon oxide substrates by immersion in MPS solution or exposure to MPS vapor has been compared using X-ray photoelectron spectroscopy (XPS). To aid the interpretation, MPS has also been cryogenically condensed in ultrahigh vacuum (UHV) onto gold surfaces. Condensation of MPS vapor on gold in the absence of water does not result in MPS polymerization, as evidenced by multilayer desorption upon warming to room temperature. The C1s XPS spectrum has been used to infer the relative abundance of methoxy groups. Vapor-deposition on hydroxylated silicon oxide leads to an unpolymerized MPS monolayer consisting of molecules with two methoxy groups. UV induced hydrophilicity of titanium dioxide surfaces could possibly be used to provide a means of registration and alignment in high-rate nanomanufacturing applications or to induce transfer of nanoelements. In order to understand the nature and magnitude of intermolecular forces, force-distance curves have been measured on TiO2. Toward the goal of possibly using light to induce nanoparticle transfer, force curves have been recorded using an SiO2 colloidal probe before and after irradiating the TiO 2 surface with UV light. In order to eliminate the effects of capillary forces, the relative humidity has been kept below 1% by flowing either N 2 or N2/O2 (1:1) into the AFM chamber. In a dry nitrogen environment, no difference is observed in adhesive forces measured with and without UV exposure. Gold-coated atomic force microscope (AFM) tips functionalized with amine-, hydroxyl, carboxylic acid, and methyl-terminated alkanethiol molecules have been used to probe the adhesive forces of polystyrene and poly(acrylic acid) films in dry air (relative humidity < 0.5%). XPS and contact angle measurements confirm the quality and uniformity of similarly treated gold surfaces and the polymer films. XPS indicates that the amine-functionalized thiol films are protonated and comprised of multilayers. Toward the goal of modifying its optical properties, ZnO nanorod surfaces have been modified using 3-mercaptopropyltriethoxysilane (MPTES) and 1-propanethiol (PPT), and XPS has been used to investigate the changes occurring on the nanorods after surface modification. XPS reveals that in the case of MPTES-modified nanorods, bonding occurs via both S-Zn and Si-O-Zn bond formation. For comparison, 3-mercaptopropyltrimethoxysilane (MPTMS), dodecanethiol and methanethiol have been adsorbed on sputter-cleaned Zn-terminated ZnO (0001) in ultrahigh vacuum (UHV). In this case, XPS indicates that bonding of thiols on ZnO surfaces occurs via S-Zn bond formation. Photoluminescence spectroscopy has been used to study the effect of surface functionalization on the optical properties of the nanorods. MPTES- and PPT-functionalized nano-ZnO show an increase in intensity of the UV emission peak relative to the unfunctionalized nanorods due to reduced probability of surface dependent non-radiative processes. A decrease in the visible peak in both cases is believed to be due to passivation of surface defects. A simple method for encapsulating zinc oxide nanoparticles within an organic matrix has been discovered that consists of dispersing them in an ethanolic solution, adding an organothiol and stirring while heating. Electron microscopy, photoemission, Raman spectroscopy and thermal gray metric analyses demonstrate that partial dissolution of the oxide occurs accompanied by encapsulation within a matrix consisting of a 1:2 zinc-thiol complex. Using this methodology, it is possible to surround ZnO within diverse matrices, including fluorescent ones. (Abstract shortened by UMI.)

  15. Redox sensitivity of the MyD88 immune signaling adapter.

    PubMed

    Stottmeier, Benjamin; Dick, Tobias P

    2016-12-01

    The transcription factor nuclear factor-κB (NF-κB) mediates expression of key genes involved in innate immunity and inflammation. NF-κB activation has been repeatedly reported to be modulated by hydrogen peroxide (H 2 O 2 ). Here, we show that the NF-κB-activating signaling adapter myeloid differentiation primary response gene 88 (MyD88) is highly sensitive to oxidation by H 2 O 2 and may be redox-regulated in its function, thus facilitating an influence of H 2 O 2 on the NF-κB signaling pathway. Upon oxidation, MyD88 forms distinct disulfide-linked conjugates which are reduced by the MyD88-interacting oxidoreductase nucleoredoxin (Nrx). MyD88 cysteine residues functionally modulate MyD88-dependent NF-κB activation, suggesting a link between MyD88 thiol oxidation state and immune signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The chemical foundations of nitroalkene fatty acid signaling through addition reactions with thiols.

    PubMed

    Turell, Lucía; Steglich, Martina; Alvarez, Beatriz

    2018-03-22

    Nitroalkene fatty acids can be formed in vivo and administered exogenously. They exert pleiotropic signaling actions with cytoprotective and antiinflammatory effects. The presence of the potent electron withdrawing nitro group confers electrophilicity to the adjacent β-carbon. Thiols (precisely, thiolates) are strong nucleophiles and can react with nitroalkene fatty acids through reversible Michael addition reactions. In addition, nitroalkene fatty acids can undergo several other processes including metabolic oxidation, reduction, esterification, nitric oxide release and partition into hydrophobic compartments. The signaling actions of nitroalkenes are mainly mediated by reactions with critical thiols in regulatory proteins. Thus, the thio-Michael addition reaction provides a framework for understanding the molecular basis of the biological effects of nitroalkene fatty acids at the crossroads of thiol signaling and electrophilic lipid signaling. In this review, we describe the reactions of nitroalkene fatty acids in biological contexts. We focus on the Michael addition-elimination reaction with thiols and its mechanism, and extrapolate kinetic and thermodynamic considerations to in vivo settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Electrophilic Triterpenoid Enones: A Comparative Thiol-Trapping and Bioactivity Study.

    PubMed

    Del Prete, Danilo; Taglialatela-Scafati, Orazio; Minassi, Alberto; Sirignano, Carmina; Cruz, Cristina; Bellido, Maria L; Muñoz, Eduardo; Appendino, Giovanni

    2017-08-25

    Bardoxolone methyl (1) is the quintessential member of triterpenoid cyanoacrylates, an emerging class of bioactive compounds capable of transient covalent binding to thiols. The mechanistic basis for this unusual "pulsed reactivity" profile and the mode of its biological translation are unknown. To provide clues on these issues, a series of Δ 1 -dehydrooleanolates bearing an electron-withdrawing group at C-2 (7a-m) were prepared from oleanolic acid (3a) and comparatively investigated in terms of reactivity with thiols and bioactivity against a series of electrophile-sensitive transcription factors (Nrf2, NF-κB, STAT3). The emerging picture suggests that the triterpenoid scaffold sharply decreases the reactivity of the enone system by steric encumbrance and that only strongly electrophilic and sterically undemanding substituents such as a cyanide or a carboxylate group can re-establish Michael reactivity, albeit in a transient way for the cyanide group. In general, a substantial dissection between the thiol-trapping ability and the modulation of biological end-points sensitive to thiol alkylation was observed, highlighting the role of shape complementarity for the activity of triterpenoid thia-Michael acceptors.

  18. Development of ionic gels using thiol-based monomers in ionic liquid

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Naga, Naofumi; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    Ionic gels (IGs) using ionic liquids (ILs) can propose diverse applications in the field of optics, sensors and separation have opened wide prospects in materials science. ILs have attracted remarkable interest for gel polymer electrolytes and batteries based on their useful properties such as non-volatility, non-flammability, a wide electrochemical window, high thermal stability and a high ionic conductivity. The formation of gel in IL media makes it possible to immobilize ILs within organic or inorganic matrices and to take advantage of their unique properties in the solid state, thus eliminating some shortcomings related to shaping and risk of leakage. In this work for the first time we used multifunctional thiol monomers having uniform structure and good compatibility with the IL of our interest. Therefore we focused on developing thiol monomer-based IGs using multifunctional thiol monomers and acrylate crosslinkers utilizing thiol-ene reaction between monomer and crosslinking molecules in an IL medium and characterize their physico-chemical properties like thermal, conductive, mechanical properties etc.. This work has been focused mainly to improve the mechanical strength of IGs and make prospects of IGs in tribology and lubricants.

  19. Acid-Activatable Michael-Type Fluorescent Probes for Thiols and for Labeling Lysosomes in Live Cells.

    PubMed

    Dai, Chun-Guang; Du, Xiao-Jiao; Song, Qin-Hua

    2015-12-18

    A Michael addition is usually taken as a base-catalyzed reaction. Most fluorescent probes have been designed to detect thiols in slightly alkaline solutions (pH 7-9). The sensing reactions of almost all Michael-type fluorescent probes for thiols are faster in a high pH solution than in a low pH solution. In this work, we synthesized a series of 7-substituted 2-(quinolin-2-ylmethylene)malonic acids (QMAs, substituents: NEt2, OH, H, Cl, or NO2) and their ethyl esters (QMEs) as Michael-type fluorescent probes for thiols. The sensing reactions of QMAs and QMEs occur in distinct pH ranges, pH < 7 for QMAs and pH > 7 for QMEs. On the basis of experimental and theoretic studies, we have clarified the distinct pH effects on the sensing reactivity between QMAs and QMEs and demonstrated that two QMAs (NEt2, OH) are highly sensitive and selective fluorescent probes for thiols in acidic solutions (pH < 7) and promising dyes that can label lysosomes in live cells.

  20. A novel route for the removal of bodily heavy metal lead (II)

    NASA Astrophysics Data System (ADS)

    Huang, Weirong; Zhang, Penghua; Xu, Hui; Chang, Shengli; He, Yongju; Wang, Fei; Liang, Gaowei

    2015-09-01

    The lead ion concentration in bile is considerably higher than in blood, and bile is released into the alimentary tract. Thiol-modified SBA-15 administered orally can combine with lead ions in the alimentary tract. In this paper, the in vitro lead absorption of bile was investigated. This thiol-modified SBA-15 material was used in pharmacodynamics studies on rabbits. The result that the lead content in faeces was notably higher indicates that thiol-modified SBA-15 can efficiently remove lead. The mechanism could include the following: thiol-modified SBA-15 material cuts off the heavy metal lead recirculation in the process of bile enterohepatic circulation by chelating the lead in the alimentary tract, causing a certain proportion of lead to be removed by the thiol mesoporous material, and the lead is subsequently egested out of the body in faeces. The results indicate that this material might be a potential non-injection material for the removal bodily heavy metal lead in the alimentary tract. This material may also be a useful means of lead removal, especially for non-acute sub-poisoning symptoms.

Top