Sample records for o-glcnac processing enzymes

  1. Engineering of GlcNAc-1-Phosphotransferase for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement Therapy.

    PubMed

    Liu, Lin; Lee, Wang-Sik; Doray, Balraj; Kornfeld, Stuart

    2017-06-16

    Several lysosomal enzymes currently used for enzyme replacement therapy in patients with lysosomal storage diseases contain very low levels of mannose 6-phosphate, limiting their uptake via mannose 6-phosphate receptors on the surface of the deficient cells. These enzymes are produced at high levels by mammalian cells and depend on endogenous GlcNAc-1-phosphotransferase α/β precursor to phosphorylate the mannose residues on their glycan chains. We show that co-expression of an engineered truncated GlcNAc-1-phosphotransferase α/β precursor and the lysosomal enzyme of interest in the producing cells resulted in markedly increased phosphorylation and cellular uptake of the secreted lysosomal enzyme. This method also results in the production of highly phosphorylated acid β-glucocerebrosidase, a lysosomal enzyme that normally has just trace amounts of this modification.

  2. Bisecting GlcNAc restricts conformations of branches in model N-glycans with GlcNAc termini.

    PubMed

    Hanashima, Shinya; Suga, Akitsugu; Yamaguchi, Yoshiki

    2018-02-01

    Bisected N-glycans play significant roles in tumor migration and Alzheimer's disease through modulating the action and localization of their carrier proteins. Such biological functions are often discussed in terms of the conformation of the attached N-glycans with or without bisecting GlcNAc. To obtain insights into the effects of bisecting GlcNAc on glycan conformation, a systematic NMR structural analysis was performed on two pairs of synthetic N-glycans, with and without bisecting GlcNAc. The analysis reveals that terminal GlcNAcs and bisecting GlcNAc cooperate to restrict the conformations of both the α1-3 and α1-6 branches of N-glycans. 1 H and 13 C chemical shift comparisons suggest that bisecting GlcNAc directly modulates local conformation. Unique NOE correlations between core-mannose and the α1-3 branch mannose as well as the 3 J C-H constant of the glycoside linkage indicate that bisecting GlcNAc restricts the conformation of the 1-3 branch. The angles of the glycosidic bonds between core-mannose and α1-6 branch mannose derived from 3 J C-H and 3 J H-H coupling constants show that terminal GlcNAcs restrict the distribution of the ψ angle to 180° and the bisecting GlcNAc increases the distribution of the ω angle +60° in the presence of terminal GlcNAcs. It is feasible that restriction of branch conformations by bisecting GlcNAc has important consequences for protein-glycan interplay and following biological events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Glycoprotein synthesis in yeast. Identification of Man8GlcNAc2 as an essential intermediate in oligosaccharide processing.

    PubMed

    Byrd, J C; Tarentino, A L; Maley, F; Atkinson, P H; Trimble, R B

    1982-12-25

    Synthesis of the N-linked oligosaccharides of Saccharomyces cerevisiae glycoproteins has been studied in vivo by labeling with [2-3H]mannose and gel filtration analysis of the products released by endoglycosidase H. Both small oligosaccharides, Man8-14GlcNAc, and larger products, Man greater than 20GlcNAc, were labeled. The kinetics of continuous and pulse-chase labeling demonstrated that Glc3Man9GlcNAc2, the initial product transferred to protein, was rapidly (t1/2 congruent to 3 min) trimmed to Man8GlcNAc2 and then more slowly (t1/2 = 10-20 min) elongated to larger oligosaccharides. No oligosaccharides smaller than Man8GlcNAc2 were evident with either labeling procedure. In confirmation of the trimming reaction observed in vivo, 3H-labeled Man9-N-acetylglucosaminitol from bovine thyroglobulin and [14C]Man9GlcNAc2 from yeast oligosaccharide-lipid were converted in vitro by broken yeast cells to 3H-labeled Man8-N-acetylglucosaminitol and [14C]Man8GlcNAc2. Man8GlcNAc and Man9GlcNAc from yeast invertase and from bovine thyroglobulin were purified by gel filtration and examined by high field 1H-NMR analysis. Invertase Man8GlcNAc (B) and Man9GlcNAc (C) were homogeneous compounds, which differed from the Man9GlcNAc (A) of thyroglobulin by the absence of a specific terminal alpha 1,2-linked mannose residue. The Man9GlcNAc of invertase (C) had an additional terminal alpha 1,6-linked mannose and appeared identical in structure with that isolated from yeast containing the mnn1 and mnn2 mutations (Cohen, R. E., Zhang, W.-j., and Ballou, C. E. (1982) J. Biol. Chem. 257, 5730-5737). It is concluded that Man8GlcNAc2, formed by removal of glucose and a single mannose from Glc3Man9GlcNAc2, is the ultimate product of trimming and the minimal precursor for elongation of the oligosaccharides on yeast glycoproteins. The results suggest that removal of a particular terminal alpha 1,2-linked mannose from Man9GlcNAc2 by a highly specific alpha-mannosidase exposes the nascent Man-alpha 1

  4. Stress-induced O-GlcNAcylation: an adaptive process of injured cells.

    PubMed

    Martinez, Marissa R; Dias, Thiago Braido; Natov, Peter S; Zachara, Natasha E

    2017-02-08

    In the 30 years, since the discovery of nucleocytoplasmic glycosylation, O -GlcNAc has been implicated in regulating cellular processes as diverse as protein folding, localization, degradation, activity, post-translational modifications, and interactions. The cell co-ordinates these molecular events, on thousands of cellular proteins, in concert with environmental and physiological cues to fine-tune epigenetics, transcription, translation, signal transduction, cell cycle, and metabolism. The cellular stress response is no exception: diverse forms of injury result in dynamic changes to the O -GlcNAc subproteome that promote survival. In this review, we discuss the biosynthesis of O -GlcNAc, the mechanisms by which O -GlcNAc promotes cytoprotection, and the clinical significance of these data. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  5. GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system

    PubMed Central

    Yoshimura, Takeshi; Hayashi, Akiko; Handa-Narumi, Mai; Yagi, Hirokazu; Ohno, Nobuhiko; Koike, Takako; Yamaguchi, Yoshihide; Uchimura, Kenji; Kadomatsu, Kenji; Sedzik, Jan; Kitamura, Kunio; Kato, Koichi; Trapp, Bruce D.; Baba, Hiroko; Ikenaka, Kazuhiro

    2017-01-01

    Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy. PMID:28186137

  6. GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system.

    PubMed

    Yoshimura, Takeshi; Hayashi, Akiko; Handa-Narumi, Mai; Yagi, Hirokazu; Ohno, Nobuhiko; Koike, Takako; Yamaguchi, Yoshihide; Uchimura, Kenji; Kadomatsu, Kenji; Sedzik, Jan; Kitamura, Kunio; Kato, Koichi; Trapp, Bruce D; Baba, Hiroko; Ikenaka, Kazuhiro

    2017-02-10

    Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P 0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy.

  7. Characterization of the specificities of human blood group H gene-specified alpha 1,2-L-fucosyltransferase toward sulfated/sialylated/fucosylated acceptors: evidence for an inverse relationship between alpha 1,2-L-fucosylation of Gal and alpha 1,6-L-fucosylation of asparagine-linked GlcNAc.

    PubMed

    Chandrasekaran, E V; Jain, R K; Larsen, R D; Wlasichuk, K; Matta, K L

    1996-07-09

    The assembly of complex structures bearing the H determinant was examined by characterizing the specificities of a cloned blood group H gene-specified alpha 1,2-L-fucosyltransferase (FT) toward a variety of sulfated, sialylated, or fucosylated Gal beta 1,3/4GlcNAc beta- or Gal beta 1,3GalNAc alpha-based acceptor structures. (a) As compared to the basic type 2, Gal beta 1,4GlcNAc beta-(K(m) = 1.67 mM), the basic type 1 was 137% active (K(m) = 0.83 mM). (b) On C-6 sulfation of Gal, type 1 became 142.1% active and type 2 became 223.0% active (K(m) = 0.45 mM). (c) On C-6 sulfation of GlcNAc, type 2 showed 33.7% activity. (d) On C-3 or C-4 fucosylation of GlcNAc, both types 1 and 2 lost activity. (e) Type 1 showed 70.8% and 5.8% activity, respectively, on C-6 and C-4 O-methylation of GlcNAc. (f) Type 1 retained 18.8% activity on alpha 2,6-sialylation of GlcNAc. (g) Terminal type 1 or 2 of extended chain had lower activity. (h) With Gal in place of GlcNAc in type 1, the activity became 43.2%. (i) Compounds with terminal alpha 1,3-linked Gal were inactive. (j) Gal beta 1,3GalNAc alpha- (the T-hapten) was approximately 0.4-fold as active as Gal beta 1,4GlcNAc beta-. (k) C-6 sulfation of Gal on the T-hapten did not affect the acceptor activity. (l) C-6 sulfation of GalNAc decreased the activity to 70%, whereas on C-6 sulfation of both Gal and GalNAc the T-hapten lost the acceptor ability. (m) C-6 sialylation of GalNAc also led to inactivity. (n) beta 1,6 branching from GalNAc of the T-hapten by a GlcNAc residue or by units such as Gal beta 1, 4GlcNAc-, Gal beta 1,4(Fuc alpha 1,3)GlcNAc-, or 3-sulfoGal beta 1,4GlcNAc- resulted in 111.9%, 282.8%, 48.3%, and 75.3% activities, respectively. (o) The enhancement of enzyme affinity by a sulfo group on C-6 of Gal was demonstrated by an increase (approximately 5-fold) in the K(m) for Gal beta 1,4GlcNAc beta 1,6(Gal beta 1,3)GalNAc alpha-O-Bn in presence of 6-sulfoGal beta 1,- 4GlcNAc beta-O-Me (3.0 mM). (p) Among the two sites in

  8. Calreticulin discriminates the proximal region at the N-glycosylation site of Glc1Man9GlcNAc2 ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Makoto; Adachi, Yuka; Ito, Yukishige

    Calreticulin (CRT) is well known as a lectin-like chaperone that recognizes Glc1Man9GlcNAc2 (G1M9)-glycoproteins in the endoplasmic reticulum (ER). However, whether CRT can directly interact with the aglycone moiety (protein portion) of the glycoprotein remains controversial. To improve our understanding of CRT interactions, structure-defined G1M9-derivatives with different aglycones (–OH, –Gly–NH{sub 2}, and –Gly–Glu–{sup t}Bu) were used as CRT ligands, and their interactions with recombinant CRT were analyzed using thermal shift analysis. The results showed that CRT binds strongly to a G1M9-ligand in the order –Gly–Glu–{sup t}Bu > –Gly–NH{sub 2} > –OH, which is the same as that of the reglucosylation of Man9GlcNAc2 (M9)-derivatives by themore » folding sensor enzyme UGGT (UDP-glucose: glycoprotein glucosyltransferase). Our results indicate that, similar to UGGT, CRT discriminates the proximal region at the N-glycosylation site, suggesting a similar mechanism mediating the recognition of aglycone moieties in the ER glycoprotein quality control system. - Highlights: • Glc1Man9GlcNAc2 (G1M9) ligands with different aglycones were chemically prepared. • Calreticulin (CRT) discriminates the aglycone of Glc1Man9GlcNAc2 (G1M9) ligand. • CRT binds with G1M9 ligands in a similar manner to folding sensor enzyme.« less

  9. Functional Expression of Enterobacterial O-Polysaccharide Biosynthesis Enzymes in Bacillus subtilis

    PubMed Central

    Schäffer, Christina; Wugeditsch, Thomas; Messner, Paul; Whitfield, Chris

    2002-01-01

    The expression of heterologous bacterial glycosyltransferases is of interest for potential application in the emerging field of carbohydrate engineering in gram-positive organisms. To assess the feasibility of using enzymes from gram-negative bacteria, the functional expression of the genes wbaP (formerly rfbP), wecA (formerly rfe), and wbbO (formerly rfbF) from enterobacterial lipopolysaccharide O-polysaccharide biosynthesis pathways was examined in Bacillus subtilis. WbaP and WecA are initiation enzymes for O-polysaccharide formation, catalyzing the transfer of galactosyl 1-phosphate from UDP-galactose and N-acetylglucosaminyl 1-phosphate from UDP-N-acetylglucosamine, respectively, to undecaprenylphosphate. The WecA product (undecaprenylpyrophosphoryl GlcNAc) is used as an acceptor to which the bifunctional wbbO gene product sequentially adds a galactopyranose and a galactofuranose residue from the corresponding UDP sugars to form a lipid-linked trisaccharide. Genes were cloned into the shuttle vectors pRB374 and pAW10. In B. subtilis hosts, the genes were effectively transcribed under the vegII promoter control of pRB374, but the plasmids were susceptible to rearrangements and deletion. In contrast, pAW10-based constructs, in which genes were cloned downstream of the tet resistance cassette, were stable but yielded lower levels of enzyme activity. In vitro glycosyltransferase assays were performed in Escherichia coli and B. subtilis, using membrane preparations as sources of enzymes and endogenous undecaprenylphosphate as an acceptor. Incorporation of radioactivity from UDP-α-d-14C-sugar into reaction products verified the functionality of WbaP, WecA, and WbbO in either host. Enzyme activities in B. subtilis varied between 20 and 75% of those measured in E. coli. PMID:12324313

  10. Characterization of the endomannosidase pathway for the processing of N-linked oligosaccharides in glucosidase II-deficient and parent mouse lymphoma cells.

    PubMed

    Moore, S E; Spiro, R G

    1992-04-25

    Studies on N-linked oligosaccharide processing in the mouse lymphoma glucosidase II-deficient mutant cell line (PHAR2.7) as well as the parent BW5147 cells indicated that the former maintain their capacity to synthesize complex carbohydrate units through the use of the deglucosylation mechanism provided by endomannosidase. The in vivo activity of this enzyme was evident in the mutant cells from their production of substantial amounts of glucosylated mannose saccharides, predominantly Glc2Man; moreover, in the presence of 1-deoxymannojirimycin or kifunensine to prevent processing by mannosidase I, N-linked Man8GlcNAc2 was observed entirely in the form of the characteristic isomer in which the terminal mannose of the alpha 1,3-linked branch is missing (isomer A). In contrast, parent lymphoma cells, as well as HepG2 cells in the presence of 1-deoxymannojirimycin accumulated Man9GlcNAc2 as the primary deglucosylated N-linked oligosaccharide and contained only about 16% of their Man8GlcNAc2 as isomer A. In the presence of the glucosidase inhibitor castanospermine the mutant released Glc3Man instead of Glc2Man, and the parent cells converted their deglucosylation machinery to the endomannosidase route. Despite the mutant's capacity to accommodate a large traffic through this pathway no increase in the in vitro determined endomannosidase activity was evident. The exclusive utilization of endomannosidase by the mutant for the deglucosylation of its predominant N-linked Glc2Man9GlcNAc2 permitted an exploration of the in vivo site of this enzyme's action. Pulse-chase studies utilizing sucrose-D2O density gradient centrifugation indicated that the Glc2Man9GlcNAc2 to Man8GlcNAc2 conversion is a relatively late event that is temporally separated from the endoplasmic reticulum-situated processing of Glc3Man9GlcNAc2 to Glc2Man9GlcNAc2 and in contrast to the latter takes place in the Golgi compartment.

  11. Epigenetic activation of MGAT3 and corresponding bisecting GlcNAc shortens the survival of cancer patients.

    PubMed

    Kohler, Reto S; Anugraham, Merrina; López, Mónica Núñez; Xiao, Christina; Schoetzau, Andreas; Hettich, Timm; Schlotterbeck, Goetz; Fedier, André; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2016-08-09

    Bisecting GlcNAc on N-glycoproteins is described in E-cadherin-, EGF-, Wnt- and integrin- cancer-associated signaling pathways. However, the mechanisms regulating bisecting GlcNAc expression are not clear. Bisecting GlcNAc is attached to N-glycans through beta 1-4 N-acetylglucosaminyl transferase III (MGAT3), which is encoded by two exons flanked by high-density CpG islands. Despite a recently described correlation of MGAT3 and bisecting GlcNAc in ovarian cancer cells, it remains unknown whether DNA methylation is causative for the presence of bisecting GlcNAc. Here, we narrow down the regulatory genomic region and show that reconstitution of MGAT3 expression with 5-Aza coincides with reduced DNA methylation at the MGAT3 transcription start site. The presence of bisecting GlcNAc on released N-glycans was detected by mass spectrometry (LC-ESI-qTOF-MS/MS) in serous ovarian cancer cells upon DNA methyltransferase inhibition. The regulatory impact of DNA methylation on MGAT3 was further evaluated in 18 TCGA cancer types (n = 6118 samples) and the results indicate an improved overall survival in patients with reduced MGAT3 expression, thereby identifying long-term survivors of high-grade serous ovarian cancers (HGSOC). Epigenetic activation of MGAT3 was also confirmed in basal-like breast cancers sharing similar molecular and genetic features with HGSOC. These results provide novel insights into the epigenetic regulation of MGAT3/bisecting GlcNAc and demonstrate the importance of N-glycosylation in cancer progression.

  12. Revisiting the substrate specificity of mammalian α1,6-fucosyltransferase reveals that it catalyzes core fucosylation of N-glycans lacking α1,3-arm GlcNAc.

    PubMed

    Yang, Qiang; Zhang, Roushu; Cai, Hui; Wang, Lai-Xi

    2017-09-08

    The mammalian α1,6-fucosyltransferase (FUT8) catalyzes the core fucosylation of N -glycans in the biosynthesis of glycoproteins. Previously, intensive in vitro studies with crude extract or purified enzyme concluded that the attachment of a GlcNAc on the α1,3 mannose arm of N -glycan is essential for FUT8-catalyzed core fucosylation. In contrast, we have recently shown that expression of erythropoietin in a GnTI knock-out, FUT8-overexpressing cell line results in the production of fully core-fucosylated glycoforms of the oligomannose substrate Man 5 GlcNAc 2 , suggesting that FUT8 can catalyze core fucosylation of N -glycans lacking an α1,3-arm GlcNAc in cells. Here, we revisited the substrate specificity of FUT8 by examining its in vitro activity toward an array of selected N -glycans, glycopeptides, and glycoproteins. Consistent with previous studies, we found that free N -glycans lacking an unmasked α1,3-arm GlcNAc moiety are not FUT8 substrates. However, Man 5 GlcNAc 2 glycan could be efficiently core-fucosylated by FUT8 in an appropriate protein/peptide context, such as with the erythropoietin protein, a V3 polypeptide derived from HIV-1 gp120, or a simple 9-fluorenylmethyl chloroformate-protected Asn moiety. Interestingly, when placed in the V3 polypeptide context, a mature bi-antennary complex-type N -glycan also could be core-fucosylated by FUT8, albeit at much lower efficiency than the Man 5 GlcNAc 2 peptide. This study represents the first report of in vitro FUT8-catalyzed core fucosylation of N -glycans lacking the α1,3-arm GlcNAc moiety. Our results suggest that an appropriate polypeptide context or other adequate structural elements in the acceptor substrate could facilitate the core fucosylation by FUT8. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Substrate specificities and intracellular distributions of three N-glycan processing enzymes functioning at a key branch point in the insect N-glycosylation pathway.

    PubMed

    Geisler, Christoph; Jarvis, Donald L

    2012-03-02

    Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2) is a key branch point intermediate in the insect N-glycosylation pathway because it can be either trimmed by a processing β-N-acetylglucosaminidase (FDL) to produce paucimannosidic N-glycans or elongated by N-acetylglucosaminyltransferase II (GNT-II) to produce complex N-glycans. N-acetylglucosaminyltransferase I (GNT-I) contributes to branch point intermediate production and can potentially reverse the FDL trimming reaction. However, there has been no concerted effort to evaluate the relationships among these three enzymes in any single insect system. Hence, we extended our previous studies on Spodoptera frugiperda (Sf) FDL to include GNT-I and -II. Sf-GNT-I and -II cDNAs were isolated, the predicted protein sequences were analyzed, and both gene products were expressed and their acceptor substrate specificities and intracellular localizations were determined. Sf-GNT-I transferred N-acetylglucosamine to Man(5)GlcNAc(2), Man(3)GlcNAc(2), and GlcNAc(β1-2)Man(α1-6)[Man(α1-3)]ManGlcNAc(2), demonstrating its role in branch point intermediate production and its ability to reverse FDL trimming. Sf-GNT-II only transferred N-acetylglucosamine to Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2), demonstrating that it initiates complex N-glycan production, but cannot use Man(3)GlcNAc(2) to produce hybrid or complex structures. Fluorescently tagged Sf-GNT-I and -II co-localized with an endogenous Sf Golgi marker and Sf-FDL co-localized with Sf-GNT-I and -II, indicating that all three enzymes are Golgi resident proteins. Unexpectedly, fluorescently tagged Drosophila melanogaster FDL also co-localized with Sf-GNT-I and an endogenous Drosophila Golgi marker, indicating that it is a Golgi resident enzyme in insect cells. Thus, the substrate specificities and physical juxtapositioning of GNT-I, GNT-II, and FDL support the idea that these enzymes function at the N-glycan processing branch point and are major factors determining the

  14. Cysteine S-linked N-acetylglucosamine (S-GlcNAcylation), A New Post-translational Modification in Mammals.

    PubMed

    Maynard, Jason C; Burlingame, Alma L; Medzihradszky, Katalin F

    2016-11-01

    Intracellular GlcNAcylation of Ser and Thr residues is a well-known and widely investigated post-translational modification. This post-translational modification has been shown to play a significant role in cell signaling and in many regulatory processes within cells. O-GlcNAc transferase is the enzyme responsible for glycosylating cytosolic and nuclear proteins with a single GlcNAc residue on Ser and Thr side-chains. Here we report that the same enzyme may also be responsible for S-GlcNAcylation, i.e. for linking the GlcNAc unit to the peptide by modifying a cysteine side-chain. We also report that O-GlcNAcase, the enzyme responsible for removal of O-GlcNAcylation does not appear to remove the S-linked sugar. Such Cys modifications have been detected and identified in mouse and rat samples. This work has established the occurrence of 14 modification sites assigned to 11 proteins unambiguously. We have also identified S-GlcNAcylation from human Host Cell Factor 1 isolated from HEK-cells. Although these site assignments are primarily based on electron-transfer dissociation mass spectra, we also report that S-linked GlcNAc is more stable under collisional activation than O-linked GlcNAc derivatives. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Chitinase Chi1 from Myceliophthora thermophila C1, a Thermostable Enzyme for Chitin and Chitosan Depolymerization.

    PubMed

    Krolicka, Malgorzata; Hinz, Sandra W A; Koetsier, Martijn J; Joosten, Rob; Eggink, Gerrit; van den Broek, Lambertus A M; Boeriu, Carmen G

    2018-02-21

    A thermostable Chitinase Chi1 from Myceliophthora thermophila C1 was homologously produced and characterized. Chitinase Chi1 shows high thermostability at 40 °C (>140 h 90% activity), 50 °C (>168 h 90% activity), and 55 °C (half-life 48 h). Chitinase Chi1 has broad substrate specificity and converts chitin, chitosan, modified chitosan, and chitin oligosaccharides. The activity of Chitinase Chi1 is strongly affected by the degree of deacetylation (DDA), molecular weight (Mw), and side chain modification of chitosan. Chitinase Chi1 releases mainly (GlcNAc) 2 from insoluble chitin and chito-oligosaccharides with a polymerization degree (DP) ranging from 2 to 12 from chitosan, in a processive way. Chitinase Chi1 shows higher activity toward chitin oligosaccharides (GlcNAc) 4-6 than toward (GlcNAc) 3 and is inactive for (GlcNAc) 2 . During hydrolysis, oligosaccharides bind at subsites -2 to +2 in the enzyme's active site. Chitinase Chi1 can be used for chitin valorisation and for production of chitin- and chito-oligosaccharides at industrial scale.

  16. Too sweet to resist: Control of immune cell function by O-GlcNAcylation.

    PubMed

    de Jesus, Tristan; Shukla, Sudhanshu; Ramakrishnan, Parameswaran

    2018-06-02

    O-linked β-N-acetyl glucosamine modification (O-GlcNAcylation) is a dynamic, reversible posttranslational modification of cytoplasmic and nuclear proteins. O-GlcNAcylation depends on nutrient availability and the hexosamine biosynthetic pathway (HBP), which produces the donor substrate UDP-GlcNAc. O-GlcNAcylation is mediated by a single enzyme, O-GlcNAc transferase (OGT), which adds GlcNAc and another enzyme, O-GlcNAcase (OGA), which removes O-GlcNAc from proteins. O-GlcNAcylation controls vital cellular processes including transcription, translation, the cell cycle, metabolism, and cellular stress. Aberrant O-GlcNAcylation has been implicated in various pathologies including Alzheimer's disease, diabetes, obesity, and cancer. Growing evidences indicate that O-GlcNAcylation plays crucial roles in regulating immunity and inflammatory responses, especially under hyperglycemic conditions. This review will highlight the emerging functions of O-GlcNAcylation in mammalian immunity under physiological and various pathological conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Reciprocal relationship between alpha1,2 mannosidase processing and reglucosylation in the rough endoplasmic reticulum of Man-P-Dol deficient cells.

    PubMed

    Duvet, S; Chirat, F; Mir, A M; Verbert, A; Dubuisson, J; Cacan, R

    2000-02-01

    The study of the glycosylation pathway of a mannosylphosphoryldolichol-deficient CHO mutant cell line (B3F7) reveals that truncated Glc(0-3)Man5GlcNAc2 oligosaccharides are transferred onto nascent proteins. Pulse-chase experiments indicate that these newly synthesized glycoproteins are retained in intracellular compartments and converted to Man4GlcNAc2 species. In this paper, we demonstrate that the alpha1,2 mannosidase, which is involved in the processing of Man5GlcNAc2 into Man4GlcNAc2, is located in the rough endoplasmic reticulum. The enzyme was shown to be inhibited by kifunensine and deoxymannojirimycin, indicating that it is a class I mannosidase. In addition, Man4GlcNAc2 species were produced at the expense of Glc1Man5GlcNAc2 species. Thus, the trimming of Man5GlcNAc2 to Man4GlcNAc2, which is catalyzed by this mannosidase, could be involved in the control of the glucose-dependent folding pathway.

  18. GlcNAc-1-P-transferase–tunicamycin complex structure reveals basis for inhibition of N-glycosylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jiho; Mashalidis, Ellene H.; Kuk, Alvin C. Y.

    N-linked glycosylation is a predominant post-translational modification of protein in eukaryotes, and its dysregulation is the etiology of several human disorders. The enzyme UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosaminephosphotransferase (GlcNAc-1-P-transferase or GPT) catalyzes the first and committed step of N-linked glycosylation in the endoplasmic reticulum membrane, and it is the target of the natural product tunicamycin. Tunicamycin has potent antibacterial activity, inhibiting the bacterial cell wall synthesis enzyme MraY, but its usefulness as an antibiotic is limited by off-target inhibition of human GPT. Our understanding of how tunicamycin inhibits N-linked glycosylation and efforts to selectively target MraY are hampered by a lack of structuralmore » information. Here we present crystal structures of human GPT in complex with tunicamycin. In conclusion, structural and functional analyses reveal the difference between GPT and MraY in their mechanisms of inhibition by tunicamycin. We demonstrate that this difference could be exploited to design MraY-specific inhibitors as potential antibiotics.« less

  19. Carboxy-terminal glycosyl hydrolase 18 domain of a carbohydrate active protein of Chitinophaga pinensis is a non-processive exochitinase.

    PubMed

    Ramakrishna, Bellamkonda; Vaikuntapu, PapaRao; Mallakuntla, Mohan Krishna; Bhuvanachandra, Bhoopal; Sivaramakrishna, Dokku; Uikey, Sheetal; Podile, Appa Rao

    2018-05-01

    The recombinant C-terminal domain of chitinase C of Chitinophaga pinensis (CpChiC-GH18 C ) exhibits the highest activity at pH 6.0 and 35 °C, with a K m of 76.13 (mg -1  ml), a k cat of 10.16 (s -1 ), and a k cat /K m of 0.133 (mg -1  ml s -1 ) on colloidal chitin. Analysis of degradation of (GlcNAc) 3-6 oligomers shows that CpChiC-GH18 C releases (GlcNAc) 2 as the main product, indicating an exo-type cleavage pattern. CpChiC-GH18 C hydrolyzes the chitin polymers yielding GlcNAc, (GlcNAc) 2 , and (GlcNAc) 3 as end products with no sign of processivity. Circular dichroism spectra indicate that the secondary and tertiary structures of CpChiC-GH18 C are unaltered up to 45 °C and the protein denatures without an intermediate state. The urea-induced unfolding is a two-state process and the unfolding of native CpChiC-GH18 C occurs in a single step. Among the metal ions tested, Hg 2+ completely inhibits the enzyme activity. The chemical modulators, p-hydroxymercuribenzoic acid and N-bromosuccinimide considerably decrease the enzyme activity. Sequence analysis and homology modeling suggest that CpChiC-GH18 C lacks a tryptophan residue at the aglycon site. Further, the CpChiC-GH18 C has a shallow and open groove, suggesting that CpChiC-GH18 C is non-processive exo-type chitinase with properties suitable for the bioconversion of chitin waste. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Heterologous expression and characterization of processing α-glucosidase I from Aspergillus brasiliensis ATCC 9642.

    PubMed

    Miyazaki, Takatsugu; Matsumoto, Yuji; Matsuda, Kana; Kurakata, Yuma; Matsuo, Ichiro; Ito, Yukishige; Nishikawa, Atsushi; Tonozuka, Takashi

    2011-12-01

    A gene for processing α-glucosidase I from a filamentous fungus, Aspergillus brasiliensis (formerly called Aspergillus niger) ATCC 9642 was cloned and fused to a glutathione S-transferase tag. The active construct with the highest production level was a truncation mutant deleting the first 16 residues of the hydrophobic N-terminal domain. This fusion enzyme hydrolyzed pyridylaminated (PA-) oligosaccharides Glc(3)Man(9)GlcNAc(2)-PA and Glc(3)Man(4)-PA and the products were identified as Glc(2)Man(9)GlcNAc(2)-PA and Glc(2)Man(4)-PA, respectively. Saturation curves were obtained for both Glc(3)Man(9)GlcNAc(2)-PA and Glc(3)Man(4)-PA, and the K (m) values for both substrates were estimated in the micromolar range. When 1 μM Glc(3)Man(4)-PA was used as a substrate, the inhibitors kojibiose and 1-deoxynojirimycin had similar effects on the enzyme; at 20 μM concentration, both inhibitors reduced activity by 50%. © Springer Science+Business Media, LLC 2011

  1. A robust protocol for directed aryl sulfotransferase evolution toward the carbohydrate building block GlcNAc.

    PubMed

    Islam, Shohana; Mate, Diana M; Martínez, Ronny; Jakob, Felix; Schwaneberg, Ulrich

    2018-05-01

    Bacterial aryl sulfotransferases (AST) utilize p-nitrophenylsulfate (pNPS) as a phenolic donor to sulfurylate typically a phenolic acceptor. Interest in aryl sulfotransferases is growing because of their broad variety of acceptors and cost-effective sulfuryl-donors. For instance, aryl sulfotransferase A (ASTA) from Desulfitobacterium hafniense was recently reported to sulfurylate d-glucose. In this study, a directed evolution protocol was developed and validated for aryl sulfotransferase B (ASTB). Thereby the well-known pNPS quantification system was advanced to operate efficiently as a continuous screening system in 96-well MTP format with a true coefficient of variation of 14.3%. A random mutagenesis library (SeSaM library) of ASTB was screened (1,760 clones) to improve sulfurylation of the carbohydrate building block N-acetylglucosamine (GlcNAc). The beneficial variant ASTB-V1 (Val579Asp) showed an up to 3.4-fold increased specific activity toward GlcNAc when compared to ASTB-WT. HPLC- and MS-analysis confirmed ASTB-V1's increased GlcNAc monosulfurylation (2.4-fold increased product formation) representing the validation of the first successful directed evolution round of an AST for a saccharide substrate. © 2017 Wiley Periodicals, Inc.

  2. Candida albicans Adheres to Chitin by Recognizing N-acetylglucosamine (GlcNAc).

    PubMed

    Ishijima, Sanae A; Yamada, Tsuyoshi; Maruyama, Naho; Abe, Shigeru

    2017-01-01

    The binding of Candida albicans cells to chitin was examined in a cell-binding assay. Microscopic observations indicated that both living and heat-killed Candida cells bound to chitin-coated substrates. C. albicans preferentially bound to chitin-coated plastic plates over chitosan-coated and uncoated plates. We prepared 125 I-labeled Candida cells for quantitative analysis of their binding to chitin. Heat-killed 125 I-labeled Candida cells bound to chitin-coated plates in a time-dependent manner until 1.5 hours after start of incubation at 4℃. The binding of 125 I-labeled Candida cells to chitin-coated plates was inhibited by adding unlabeled living or unlabeled heat-killed Candida cells. The binding of Candida to chitin was also reduced by addition of 25 mg/ml chitin or chitosan up to 10%. N-acetylglucosamine (GlcNAc), which is a constituent of chitin, inhibited binding of Candida to chitin in a dose-dependent manner between 12.5 and 200 mM. Glucosamine, which is a constituent of chitosan, showed no such inhibitory effect. These findings suggest that the binding of Candida to chitin may be mediated by recognition of GlcNAc.

  3. ZnO-Based Amperometric Enzyme Biosensors

    PubMed Central

    Zhao, Zhiwei; Lei, Wei; Zhang, Xiaobing; Wang, Baoping; Jiang, Helong

    2010-01-01

    Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol), respectively. Moreover, recent developments in enzyme electrochemical biosensors based on ZnO nanomaterials are reviewed with an emphasis on the fabrications and features of ZnO, approaches for biosensor construction (e.g., modified electrodes and enzyme immobilization) and biosensor performances. PMID:22205864

  4. AglH, a thermophilic UDP-N-acetylglucosamine-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase initiating protein N-glycosylation pathway in Sulfolobus acidocaldarius, is capable of complementing the eukaryal Alg7.

    PubMed

    Meyer, Benjamin H; Shams-Eldin, Hosam; Albers, Sonja-Verena

    2017-01-01

    AglH, a predicted UDP-GlcNAc-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase, is initiating the protein N-glycosylation pathway in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. AglH successfully replaced the endogenous GlcNAc-1-phosphotransferase activity of Alg7 in a conditional lethal Saccharomyces cerevisiae strain, in which the first step of the eukaryal protein N-glycosylation process was repressed. This study is one of the few examples of cross-domain complementation demonstrating a conserved polyprenyl phosphate transferase reaction within the eukaryal and archaeal domain like it was demonstrated for Methanococcus voltae (Shams-Eldin et al. 2008). The topology prediction and the alignment of the AglH membrane protein with GlcNAc-1-phosphotransferases from the three domains of life show significant conservation of amino acids within the different proposed cytoplasmic loops. Alanine mutations of selected conserved amino acids in the putative cytoplasmic loops II (D 100 ), IV (F 220 ) and V (F 264 ) demonstrated the importance of these amino acids for cross-domain AlgH activity in in vitro complementation assays in S. cerevisiae. Furthermore, antibiotic treatment interfering directly with the activity of dolichyl phosphate GlcNAc-1-phosphotransferases confirmed the essentiality of N-glycosylation for cell survival.

  5. Effects of hypo-O-GlcNAcylation on Drosophila development.

    PubMed

    Mariappa, Daniel; Ferenbach, Andrew T; van Aalten, Daan M F

    2018-05-11

    Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc ( O -GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila , null mutants of the Polycomb gene O -GlcNAc transferase ( OGT ; also known as super sex combs ( sxc )) display homeotic phenotypes. To dissect the requirement for O -GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxc K872M , was recessive lethal, whereas a second mutant, the hypomorphic sxc H537A , was homozygous viable. We observed that reduced total protein O -GlcNAcylation in the sxc H537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxc H537A and a null allele of Drosophila host cell factor ( dHcf ), encoding an extensively O -GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxc H537A flies lacking a copy of skuld ( skd ), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxc H537A enabled us to identify pleiotropic effects of globally reduced protein O -GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development. © 2018 Mariappa et al.

  6. Regulation of asparagine-linked oligosaccharide processing. Oligosaccharide processing in Aedes albopictus mosquito cells.

    PubMed

    Hsieh, P; Robbins, P W

    1984-02-25

    We have examined the synthesis and processing of asparagine-linked oligosaccharides from Aedes albopictus C6/36 mosquito cells. These cells synthesized a glucose-containing lipid-linked oligosaccharide with properties identical to that of Glc3Man9GlcNAc2-PP-dolichol. Results of brief pulse label experiments with [3H]mannose were consistent with the transfer of Glc3Man9GlcNAc2 to protein followed by the rapid removal of glucose residues. Pulse-chase experiments established that further processing of oligosaccharides in C6/36 cells resulted in the removal of up to six alpha-linked mannose residues yielding Man3GlcNAc2 whose structure is identical to that of the trimannosyl "core" of N-linked oligosaccharides of vertebrate cells and yeast. Complex-type oligosaccharides were not observed in C6/36 cells. When Sindbis virus was grown in mosquito cells, Man3GlcNAc2 glycans were preferentially located at the two glycosylation sites which were previously shown to have complex glycans in virus grown in vertebrate cells. These Man3GlcNAc2 structures are the most extensively processed oligosaccharides in A. albopictus, and as such, are analogous to the complex glycans of vertebrate cells. We suggest that determinants of oligosaccharide processing which reside in the polypeptide are universally recognized despite evolutionary divergence of the oligosaccharide-processing pathway between insects and vertebrates.

  7. Increased O-GlcNAcylation of Endothelial Nitric Oxide Synthase Compromises the Anti-contractile Properties of Perivascular Adipose Tissue in Metabolic Syndrome.

    PubMed

    da Costa, Rafael M; da Silva, Josiane F; Alves, Juliano V; Dias, Thiago B; Rassi, Diane M; Garcia, Luis V; Lobato, Núbia de Souza; Tostes, Rita C

    2018-01-01

    Under physiological conditions, the perivascular adipose tissue (PVAT) negatively modulates vascular contractility. This property is lost in experimental and human obesity and in the metabolic syndrome, indicating that changes in PVAT function may contribute to vascular dysfunction associated with increased body weight and hyperglycemia. The O -linked β-N-acetylglucosamine ( O -GlcNAc) modification of proteins ( O -GlcNAcylation) is a unique posttranslational process that integrates glucose metabolism with intracellular protein activity. Increased flux of glucose through the hexosamine biosynthetic pathway and the consequent increase in tissue-specific O -GlcNAc modification of proteins have been linked to multiple facets of vascular dysfunction in diabetes and other pathological conditions. We hypothesized that chronic consumption of glucose, a condition that progresses to metabolic syndrome, leads to increased O -GlcNAc modification of proteins in the PVAT, decreasing its anti-contractile effects. Therefore, the current study was devised to determine whether a high-sugar diet increases O -GlcNAcylation in the PVAT and how increased O -GlcNAc interferes with PVAT vasorelaxant function. To assess molecular mechanisms by which O -GlcNAc contributes to PVAT dysfunction, thoracic aortas surrounded by PVAT were isolated from Wistar rats fed either a control or high sugar diet, for 10 and 12 weeks. Rats chronically fed a high sugar diet exhibited metabolic syndrome features, increased O -GlcNAcylated-proteins in the PVAT and loss of PVAT anti-contractile effect. PVAT from high sugar diet-fed rats for 12 weeks exhibited decreased NO formation, reduced expression of endothelial nitric oxide synthase (eNOS) and increased O -GlcNAcylation of eNOS. High sugar diet also decreased OGA activity and increased superoxide anion generation in the PVAT. Visceral adipose tissue samples from hyperglycemic patients showed increased levels of O -GlcNAc-modified proteins, increased ROS

  8. Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type N-glycans in solution.

    PubMed

    Nishima, Wataru; Miyashita, Naoyuki; Yamaguchi, Yoshiki; Sugita, Yuji; Re, Suyong

    2012-07-26

    The introduction of bisecting GlcNAc and core fucosylation in N-glycans is essential for fine functional regulation of glycoproteins. In this paper, the effect of these modifications on the conformational properties of N-glycans is examined at the atomic level by performing replica-exchange molecular dynamics (REMD) simulations. We simulate four biantennary complex-type N-glycans, namely, unmodified, two single-substituted with either bisecting GlcNAc or core fucose, and disubstituted forms. By using REMD as an enhanced sampling technique, five distinct conformers in solution, each of which is characterized by its local orientation of the Manα1-6Man glycosidic linkage, are observed for all four N-glycans. The chemical modifications significantly change their conformational equilibria. The number of major conformers is reduced from five to two and from five to four upon the introduction of bisecting GlcNAc and core fucosylation, respectively. The population change is attributed to specific inter-residue hydrogen bonds, including water-mediated ones. The experimental NMR data, including nuclear Overhauser enhancement and scalar J-coupling constants, are well reproduced taking the multiple conformers into account. Our structural model supports the concept of "conformer selection", which emphasizes the conformational flexibility of N-glycans in protein-glycan interactions.

  9. Insolubilization process increases enzyme stability

    NASA Technical Reports Server (NTRS)

    Billingham, J.; Lyn, J.

    1971-01-01

    Enzymes complexed with polymeric matrices contain properties suggesting application to enzyme-controlled reactions. Stability of insolubilized enzyme derivatives is markedly greater than that of soluble enzymes and physical form of insolubilized enzymes is useful in column and batch processes.

  10. Sulfated N-linked oligosaccharides affect secretion but are not essential for the transport, proteolytic processing, and sorting of lysosomal enzymes in Dictyostelium discoideum.

    PubMed

    Cardelli, J A; Bush, J M; Ebert, D; Freeze, H H

    1990-05-25

    Although previous studies have indicated that N-linked oligosaccharides on lysosomal enzymes in Dictyostelium discoideum are extensively phosphorylated and sulfated, the role of these modifications in the sorting and function of these enzymes remains to be determined. We have used radiolabel pulse-chase, subcellular fractionation, and immunofluorescence microscopy to analyze the transport, processing, secretion, and sorting of two lysosomal enzymes in a mutant, HL244, which is almost completely defective in sulfation. [3H]Mannose-labeled N-linked oligosaccharides were released from immunoprecipitated alpha-mannosidase and beta-glucosidase of HL244 by digestion with peptide: N-glycosidase. The size, Man9-10GlcNAc2, and processing of the neutral species were similar to that found in the wild type, but the anionic oligosaccharides were less charged than those from the wild-type enzymes. All of the negative charges on the oligosaccharides for HL244 were due to the presence of 1, 2, or 3 phosphodiesters and not to sulfate esters. The rate of proteolytic processing of precursor forms of alpha-mannosidase and beta-glucosidase to mature forms in HL244 was identical to wild type. The precursor polypeptides in the mutant and the wild type were membrane associated until being processed to mature forms; therefore, sulfated sugars are not essential for this association. Furthermore, the rate of transport of alpha-mannosidase and beta-glucosidase from the endoplasmic reticulum to the Golgi complex was normal in the mutant as determined by the rate at which the newly synthesized proteins became resistant to the enzyme, endo-beta-N-acetylglucosaminidase H. There was no increase in the percentage of newly synthesized mutant precursors which escaped sorting and were secreted, and the intracellularly retained lysosomal enzymes were properly localized to lysosomes as determined by fractionation of cell organelles on Percoll gradients and immunofluorescence microscopy. However, the

  11. Assembly of asparagine-linked oligosaccharides in baby hamster kidney cells treated with castanospermine, an inhibitor of processing glucosidases.

    PubMed

    Foddy, L; Hughes, R C

    1988-08-01

    We have shown previously that the processing of asparagine-linked oligosaccharides in baby hamster kidney (BHK) cells is blocked only partially by the glucosidase inhibitors, 1-deoxynojirimycin and N-methyl-1-deoxynojirimycin [Hughes, R. C., Foddy, L. & Bause, E. (1987) Biochem. J. 247, 537-544]. Similar results are now reported for castanospermine, another inhibitor of processing glucosidases, and a detailed study of oligosaccharide processing in the inhibited cells is reported. In steady-state conditions the major endo-H-released oligosaccharides contained glucose residues but non-glycosylated oligosaccharides, including Man9GlcNAc to Man5GlcNAc, were also present. To determine the processing sequences occurring in the presence of castanospermine, BHK cells were pulse-labelled for various times with [3H]mannose and the oligosaccharide intermediates, isolated by gel filtration and paper chromatography, characterized by acetolysis and sensitivity to jack bean alpha-mannosidase. The data show that Glc3Man9GlcNAc2 is transferred to protein and undergoes processing to produce Glc3Man8GlcNAc2 and Glc3Man7GlcNAc2 as major species as well as a smaller amount of Man9GlcNAc2. Glucosidase-processed intermediates, Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2, were also obtained as well as a Man7GlcNAc2 species derived from Glc1Man7GlcNAc2 and different from the Man7GlcNAc2 isomer formed in the usual processing pathway. No evidence for the direct transfer of non-glucosylated oligosaccharides to proteins was obtained and we conclude that the continued assembly of complex-type glycans in castanospermine-inhibited BHK cells results from residual activity of processing glucosidases.

  12. Inhibition of processing of plant N-linked oligosaccharides by castanospermine.

    PubMed

    Hori, H; Pan, Y T; Molyneux, R J; Elbein, A D

    1984-02-01

    Castanospermine (1,6,7,8-tetrahydroxyoctahydroindolizine) is a plant alkaloid that inhibits lysosomal alpha- and beta-glucosidase. It also inhibits processing of influenza viral glycoproteins by inhibiting glucosidase I and leads to altered glycoproteins with Glc3Man7GlcNAc2 structures. Castanospermine was tested as an inhibitor of glycoprotein processing in suspension-cultured soybean cells. Soybean cells were pulse-labeled with [2-3H]mannose and chased for varying periods in unlabeled medium. In normal cells, the initial glycopeptides contained oligosaccharides having Glc3Man9GlcNAc2 to Glc1Man9GlcNAc2 structures and these were trimmed during the chase to Man9GlcNac2 to Man7GlcNAc2 structures. In the presence of castanospermine, no trimming of glucose residues occurred although some mannose residues were apparently still removed. Thus, the major oligosaccharide in the glycopeptides of castanospermine-incubated cells after a 90-min chase was a Glc3Man7GlcNAc2 structure. Smaller amounts of Glc3Man6GlcNAc2 and Glc3Man5GlcNAc2 were also identified. Thus, in plant cells, castanospermine also prevents the removal of the outermost glucose residue.

  13. OGT (O-GlcNAc Transferase) Selectively Modifies Multiple Residues Unique to Lamin A.

    PubMed

    Simon, Dan N; Wriston, Amanda; Fan, Qiong; Shabanowitz, Jeffrey; Florwick, Alyssa; Dharmaraj, Tejas; Peterson, Sherket B; Gruenbaum, Yosef; Carlson, Cathrine R; Grønning-Wang, Line M; Hunt, Donald F; Wilson, Katherine L

    2018-05-17

    The LMNA gene encodes lamins A and C with key roles in nuclear structure, signaling, gene regulation, and genome integrity. Mutations in LMNA cause over 12 diseases ('laminopathies'). Lamins A and C are identical for their first 566 residues. However, they form separate filaments in vivo, with apparently distinct roles. We report that lamin A is β- O -linked N -acetylglucosamine- (O -GlcNAc)-modified in human hepatoma (Huh7) cells and in mouse liver. In vitro assays with purified O -GlcNAc transferase (OGT) enzyme showed robust O -GlcNAcylation of recombinant mature lamin A tails (residues 385⁻646), with no detectable modification of lamin B1, lamin C, or 'progerin' (Δ50) tails. Using mass spectrometry, we identified 11 O -GlcNAc sites in a 'sweet spot' unique to lamin A, with up to seven sugars per peptide. Most sites were unpredicted by current algorithms. Double-mutant (S612A/T643A) lamin A tails were still robustly O -GlcNAc-modified at seven sites. By contrast, O -GlcNAcylation was undetectable on tails bearing deletion Δ50, which causes Hutchinson⁻Gilford progeria syndrome, and greatly reduced by deletion Δ35. We conclude that residues deleted in progeria are required for substrate recognition and/or modification by OGT in vitro. Interestingly, deletion Δ35, which does not remove the majority of identified O -GlcNAc sites, does remove potential OGT-association motifs (lamin A residues 622⁻625 and 639⁻645) homologous to that in mouse Tet1. These biochemical results are significant because they identify a novel molecular pathway that may profoundly influence lamin A function. The hypothesis that lamin A is selectively regulated by OGT warrants future testing in vivo, along with two predictions: genetic variants may contribute to disease by perturbing OGT-dependent regulation, and nutrient or other stresses might cause OGT to misregulate wildtype lamin A.

  14. Disruption of the processing alpha-mannosidase gene does not prevent outer chain synthesis in Saccharomyces cerevisiae.

    PubMed Central

    Puccia, R; Grondin, B; Herscovics, A

    1993-01-01

    Processing of N-linked oligosaccharides in Saccharomyces cerevisiae begins with the removal of glucose and mannose residues from Glc3Man9GlcNAc2 to form a single isomer of Man8GlcNAc2. The importance of mannose removal for subsequent outer chain synthesis was examined in strains of S. cerevisiae disrupted in the MNS1 gene encoding a specific alpha 1,2-mannosidase responsible for Man8GlcNAc2 synthesis [Camirand, Heysen, Grondin and Herscovics (1991) J. Biol. Chem. 266, 15120-15127]. Both MNS1 transcripts of 1.85 kb and 1.7 kb were not observed in Northern blots of mns1 cells (i.e. cells containing the disrupted gene). Analysis on Bio-Gel P-6 of endo-beta-N-acetylglucosaminidase-H-sensitive oligosaccharides following a 10 min pulse with [2-3H]mannose revealed similar amounts of labelled outer chains excluded from the gel in both control and mns1 cells. H.p.l.c. of the included oligosaccharides showed that a Man9GlcNAc, rather than a Man8GlcNAc, intermediate was formed in mns1 cells. Analysis of [3H]mannose-labelled core oligosaccharides from immunoprecipitated CPY and invertase by h.p.l.c. showed a similar size distribution in mns1 and control cells. Invertase immunoprecipitated from [35S]methionine-labelled mns1 cells was highly glycosylated, but migrated slightly faster than that from control cells on denaturing PAGE, indicating a small difference in glycosylation. A similar difference in mobility was observed for invertase activity stain following non-denaturing gel electrophoresis. It is concluded that the alpha-mannosidase encoded by MNS1 is the only enzyme responsible for mannose removal in vivo, and that this processing step is not essential for outer chain synthesis. Images Figure 1 Figure 4 PMID:8439291

  15. Disruption of the processing alpha-mannosidase gene does not prevent outer chain synthesis in Saccharomyces cerevisiae.

    PubMed

    Puccia, R; Grondin, B; Herscovics, A

    1993-02-15

    Processing of N-linked oligosaccharides in Saccharomyces cerevisiae begins with the removal of glucose and mannose residues from Glc3Man9GlcNAc2 to form a single isomer of Man8GlcNAc2. The importance of mannose removal for subsequent outer chain synthesis was examined in strains of S. cerevisiae disrupted in the MNS1 gene encoding a specific alpha 1,2-mannosidase responsible for Man8GlcNAc2 synthesis [Camirand, Heysen, Grondin and Herscovics (1991) J. Biol. Chem. 266, 15120-15127]. Both MNS1 transcripts of 1.85 kb and 1.7 kb were not observed in Northern blots of mns1 cells (i.e. cells containing the disrupted gene). Analysis on Bio-Gel P-6 of endo-beta-N-acetylglucosaminidase-H-sensitive oligosaccharides following a 10 min pulse with [2-3H]mannose revealed similar amounts of labelled outer chains excluded from the gel in both control and mns1 cells. H.p.l.c. of the included oligosaccharides showed that a Man9GlcNAc, rather than a Man8GlcNAc, intermediate was formed in mns1 cells. Analysis of [3H]mannose-labelled core oligosaccharides from immunoprecipitated CPY and invertase by h.p.l.c. showed a similar size distribution in mns1 and control cells. Invertase immunoprecipitated from [35S]methionine-labelled mns1 cells was highly glycosylated, but migrated slightly faster than that from control cells on denaturing PAGE, indicating a small difference in glycosylation. A similar difference in mobility was observed for invertase activity stain following non-denaturing gel electrophoresis. It is concluded that the alpha-mannosidase encoded by MNS1 is the only enzyme responsible for mannose removal in vivo, and that this processing step is not essential for outer chain synthesis.

  16. Oligosaccharide processing at individual glycosylation sites on MOPC 104E immunoglobulin M. Differences in alpha 1,2-linked mannose processing.

    PubMed

    Brown, P H; Hickman, S

    1986-02-25

    Processing of the asparagine-linked oligosaccharides at the known glycosylation sites on the mu-chain of IgM secreted by MOPC 104E murine plasmacytoma cells was investigated. Oligosaccharides present on intracellular mu-chain precursors were of the high mannose type, remaining susceptible to endo-beta-N-acetylglucosaminidase H. However, only 26% of the radioactivity was released from [3H]mannose-labeled secreted IgM glycopeptides, consistent with the presence of high mannose-type and complex-type oligosaccharides on the mature mu-chain. [3H]Mannose-labeled cyanogen bromide glycopeptides derived from mu-chains of secreted IgM were isolated and analyzed to identify the glycopeptide containing the high mannose-type oligosaccharide from those containing complex-type structures. [3H]Mannose-labeled intracellular mu-chain cyanogen bromide glycopeptides corresponding to those from secreted IgM were isolated also, and the time courses of oligosaccharide processing at the individual glycosylation sites were determined. The major oligosaccharides on all intracellular mu-chain glycopeptides after 20 min of pulse labeling with [3H]mannose were identified as Man8GlcNAc2, Man9GlcNAc2, and Glc1Man9GlcNAc2. Processing of the oligosaccharide destined to become the high mannose-type structure on the mature protein was rapid. After 30 min of chase incubation the predominant structures of this oligosaccharide were Man5GlcNAc2 and Man6GlcNAc2 which were also identified on the high mannose-type oligosaccharide of the secreted mu-chain. In contrast, processing of oligosaccharides destined to become complex type was considerably slower. Even after 180 min of chase incubation, Man7GlcNAc2 and Man8GlcNAc2 were the predominant structures at some of these glycosylation sites. The isomeric structures of Man8GlcNAc2 obtained from all of the glycosylation sites were identical. Thus, the different rates of processing were not the result of a different sequence of alpha 1,2-mannose removal.

  17. Modifying an Insect Cell N-Glycan Processing Pathway Using CRISPR-Cas Technology.

    PubMed

    Mabashi-Asazuma, Hideaki; Kuo, Chu-Wei; Khoo, Kay-Hooi; Jarvis, Donald L

    2015-10-16

    Fused lobes (FDL) is an enzyme that simultaneously catalyzes a key trimming reaction and antagonizes elongation reactions in the insect N-glycan processing pathway. Accordingly, FDL function accounts, at least in part, for major differences in the N-glycosylation patterns of glycoproteins produced by insect and mammalian cells. In this study, we used the CRISPR-Cas9 system to edit the fdl gene in Drosophila melanogaster S2 cells. CRISPR-Cas9 editing produced a high frequency of site-specific nucleotide insertions and deletions, reduced the production of insect-type, paucimannosidic products (Man3GlcNAc2), and led to the production of partially elongated, mammalian-type complex N-glycans (GlcNAc2Man3GlcNAc2) in S2 cells. As CRISPR-Cas9 has not been widely used to analyze or modify protein glycosylation pathways or edit insect cell genes, these results underscore its broad utility as a tool for these purposes. Our results also confirm the key role of FDL at the major branch point distinguishing insect and mammalian N-glycan processing pathways. Finally, the new FDL-deficient S2 cell derivative produced in this study will enable future bottom-up glycoengineering efforts designed to isolate insect cell lines that can efficiently produce recombinant glycoproteins with chemically predefined oligosaccharide side-chain structures.

  18. O 2 Activation by Non-Heme Iron Enzymes

    DOE PAGES

    Solomon, Edward I.; Goudarzi, Serra; Sutherlin, Kyle D.

    2016-10-28

    The non-heme Fe enzymes are ubiquitous in nature and perform a wide range of functions involving O 2 activation. These had been difficult to study relative to heme enzymes; however, spectroscopic methods have now been developed that provide significant insight into the correlation of structure with function. This Current Topics article summarizes both the molecular mechanism these enzymes use to control O 2 activation in the presence of cosubstrates and the oxygen intermediates these reactions generate. Three types of O 2 activation are observed. First, non-heme reactivity is shown to be different from heme chemistry where a low-spin Fe III-OOHmore » non-heme intermediate directly reacts with substrate. Also, two subclasses of non-heme Fe enzymes generate high-spin Fe IV=O intermediates that provide both σ and π frontier molecular orbitals that can control selectivity. Lastly, for several subclasses of non-heme Fe enzymes, substrate binding to the Fe II site leads to the one electron reductive activation of O 2 to an Fe III-superoxide capable of H-atom abstraction and electrophilic attack.« less

  19. O 2 Activation by Non-Heme Iron Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Edward I.; Goudarzi, Serra; Sutherlin, Kyle D.

    The non-heme Fe enzymes are ubiquitous in nature and perform a wide range of functions involving O 2 activation. These had been difficult to study relative to heme enzymes; however, spectroscopic methods have now been developed that provide significant insight into the correlation of structure with function. This Current Topics article summarizes both the molecular mechanism these enzymes use to control O 2 activation in the presence of cosubstrates and the oxygen intermediates these reactions generate. Three types of O 2 activation are observed. First, non-heme reactivity is shown to be different from heme chemistry where a low-spin Fe III-OOHmore » non-heme intermediate directly reacts with substrate. Also, two subclasses of non-heme Fe enzymes generate high-spin Fe IV=O intermediates that provide both σ and π frontier molecular orbitals that can control selectivity. Lastly, for several subclasses of non-heme Fe enzymes, substrate binding to the Fe II site leads to the one electron reductive activation of O 2 to an Fe III-superoxide capable of H-atom abstraction and electrophilic attack.« less

  20. Enzymes in Fish and Seafood Processing

    PubMed Central

    Fernandes, Pedro

    2016-01-01

    Enzymes have been used for the production and processing of fish and seafood for several centuries in an empirical manner. In recent decades, a growing trend toward a rational and controlled application of enzymes for such goals has emerged. Underlying such pattern are, among others, the increasingly wider array of enzyme activities and enzyme sources, improved enzyme formulations, and enhanced requirements for cost-effective and environmentally friendly processes. The better use of enzyme action in fish- and seafood-related application has had a significant impact on fish-related industry. Thus, new products have surfaced, product quality has improved, more sustainable processes have been developed, and innovative and reliable analytical techniques have been implemented. Recent development in these fields are presented and discussed, and prospective developments are suggested. PMID:27458583

  1. New ELISA-based method for the detection of O-GlcNAc transferase activity in vitro.

    PubMed

    Qi, Jieqiong; Wang, Ruihong; Zeng, Yazhen; Yu, Wengong; Gu, Yuchao

    2017-08-09

    O-GlcNAcylation is a dynamic, reversible, post-translational modification that regulates many cellular processes. O-GlcNAc transferase (OGT) is the sole enzyme transferring N-acetylglucosamine from uridine diphosphate (UDP)-GlcNAc to selected serine/threonine residues of cytoplasm and nucleus proteins. Aberrant of OGT activity is associated with several diseases, suggesting OGT as a novel therapeutic target. In this study, we created a new enzyme linked immunosorbent assays (ELISA)-based method for detection of OGT activity. First, casein kinase II (CKII), a well-known OGT substrate, was coated onto ELISA plate. Second, the GlcNAc transferred by OGT from UDP-GlcNAc to CKII was detected using an antibody to O-GlcNAc and then the horseradish peroxidase (HRP)-labeled secondary antibody. At last, 3,3',5,5'-tetramethylbenzidine (TMB), the substrate of HRP, was used to detect the O-GlcNAcylation level of CKII which reflected the activity of OGT. Based on a series of optimization experiments, the RL2 antibody was selected for O-GlcNAc detection and the concentrations of CKII, OGT, and UDP-GlcNAc were determined in this study. ST045849, a commercial OGT inhibitor, was used to verify the functionality of the system. Altogether, this study showed a method that could be applied to detect OGT activity and screen OGT inhibitors.

  2. O-GlcNAc reports ambient temperature and confers heat resistance on ectotherm development.

    PubMed

    Radermacher, Pablo T; Myachina, Faina; Bosshardt, Fritz; Pandey, Rahul; Mariappa, Daniel; Müller, H-Arno J; Lehner, Christian F

    2014-04-15

    Effects of temperature on biological processes are complex. Diffusion is less affected than the diverse enzymatic reactions that have distinct individual temperature profiles. Hence thermal fluctuations pose a formidable challenge to ectothermic organisms in which body temperature is largely dictated by the ambient temperature. How cells in ectotherms cope with the myriad disruptive effects of temperature variation is poorly understood at the molecular level. Here we show that nucleocytoplasmic posttranslational modification of proteins with O-linked GlcNAc (O-GlcNAc) is closely correlated with ambient temperature during development of distantly related ectotherms ranging from the insect Drosophila melanogaster to the nematode Caenorhabditis elegans to the fish Danio rerio. Regulation seems to occur at the level of activity of the only two enzymes, O-GlcNAc transferase and O-GlcNAcase, that add and remove, respectively, this posttranslational modification in nucleus and cytoplasm. With genetic approaches in D. melanogaster and C. elegans, we demonstrate the importance of high levels of this posttranslational modification for successful development at elevated temperatures. Because many cytoplasmic and nuclear proteins in diverse pathways are O-GlcNAc targets, temperature-dependent regulation of this modification might contribute to an efficient coordinate adjustment of cellular processes in response to thermal change.

  3. Processing of MOPC 315 immunoglobulin A oligosaccharides: evidence for endoplasmic reticulum and trans Golgi alpha 1,2-mannosidase activity

    PubMed Central

    1984-01-01

    The processing of asparagine-linked oligosaccharides on the alpha- chains of an immunoglobulin A (IgA) has been investigated using MOPC 315 murine plasmacytoma cells. These cells secrete IgA containing complex-type oligosaccharides that were not sensitive to endo-beta-N- acetylglucosaminidase H. In contrast, oligosaccharides present on the intracellular alpha-chain precursor were of the high mannose-type, remaining sensitive to endo-beta-N-acetylglucosaminidase H despite a long intracellular half-life of 2-3 h. The major [3H]mannose-labeled alpha-chain oligosaccharides identified after a 20-min pulse were Man8GlcNAc2 and Man9GlcNAc2. Following chase incubations, the major oligosaccharide accumulating intracellularly was Man6GlcNAc2, which was shown to contain a single alpha 1,2-linked mannose residue. Conversion of Man6GlcNAc2 to complex-type oligosaccharides occurred at the time of secretion since appreciable amounts of Man5GlcNAc2 or further processed structures could not be detected intracellularly. The subcellular locations of the alpha 1,2-mannosidase activities were studied using carbonyl cyanide m-chlorophenylhydrazone and monensin. Despite inhibiting the secretion of IgA, these inhibitors of protein migration did not effect the initial processing of Man9GlcNAc2 to Man6GlcNAc2. Furthermore, no large accumulation of Man5GlcNAc2 occurred, indicating the presence of two subcellular locations of alpha 1,2-mannosidase activity involved in oligosaccharide processing in MOPC 315 cells. Thus, the first three alpha 1,2-linked mannose residues were removed shortly after the alpha-chain was glycosylated, most likely in rough endoplasmic reticulum, since this processing occurred in the presence of carbonyl cyanide m-chlorophenylhydrazone. However, the removal of the final alpha 1,2-linked mannose residue as well as subsequent carbohydrate processing occurred just before IgA secretion, most likely in the trans Golgi complex since processing of Man6GlcNAc2 to Man5GlcNAc2

  4. Processing of MOPC 315 immunoglobulin A oligosaccharides: evidence for endoplasmic reticulum and trans Golgi alpha 1,2-mannosidase activity.

    PubMed

    Hickman, S; Theodorakis, J L; Greco, J M; Brown, P H

    1984-02-01

    The processing of asparagine-linked oligosaccharides on the alpha-chains of an immunoglobulin A (IgA) has been investigated using MOPC 315 murine plasmacytoma cells. These cells secrete IgA containing complex-type oligosaccharides that were not sensitive to endo-beta-N-acetylglucosaminidase H. In contrast, oligosaccharides present on the intracellular alpha-chain precursor were of the high mannose-type, remaining sensitive to endo-beta-N-acetylglucosaminidase H despite a long intracellular half-life of 2-3 h. The major [3H]mannose-labeled alpha-chain oligosaccharides identified after a 20-min pulse were Man8GlcNAc2 and Man9GlcNAc2. Following chase incubations, the major oligosaccharide accumulating intracellularly was Man6GlcNAc2, which was shown to contain a single alpha 1,2-linked mannose residue. Conversion of Man6GlcNAc2 to complex-type oligosaccharides occurred at the time of secretion since appreciable amounts of Man5GlcNAc2 or further processed structures could not be detected intracellularly. The subcellular locations of the alpha 1,2-mannosidase activities were studied using carbonyl cyanide m-chlorophenylhydrazone and monensin. Despite inhibiting the secretion of IgA, these inhibitors of protein migration did not effect the initial processing of Man9GlcNAc2 to Man6GlcNAc2. Furthermore, no large accumulation of Man5GlcNAc2 occurred, indicating the presence of two subcellular locations of alpha 1,2-mannosidase activity involved in oligosaccharide processing in MOPC 315 cells. Thus, the first three alpha 1,2-linked mannose residues were removed shortly after the alpha-chain was glycosylated, most likely in rough endoplasmic reticulum, since this processing occurred in the presence of carbonyl cyanide m-chlorophenylhydrazone. However, the removal of the final alpha 1,2-linked mannose residue as well as subsequent carbohydrate processing occurred just before IgA secretion, most likely in the trans Golgi complex since processing of Man6GlcNAc2 to Man5GlcNAc2

  5. Development of enzyme technology for Aspergillus oryzae, A. sojae, and A. luchuensis, the national microorganisms of Japan.

    PubMed

    Ichishima, Eiji

    2016-09-01

    This paper describes the modern enzymology in Japanese bioindustries. The invention of Takadiastase by Jokiti Takamine in 1894 has revolutionized the world of industrial enzyme production by fermentation. In 1949, a new γ-amylase (glucan 1,4-α-glucosidase, EC 3.2.1.3) from A. luchuensis (formerly designated as A. awamori), was found by Kitahara. RNase T1 (guanyloribonuclease, EC 3.1.27.3) was discovered by Sato and Egami. Ando discovered Aspergillus nuclease S1 (single-stranded nucleate endonuclease, EC 3.1.30.1). Aspergillopepsin I (EC 3.4.23.18) from A. tubingensis (formerly designated as A. saitoi) activates trypsinogen to trypsin. Shintani et al. demonstrated Asp76 of aspergillopepsin I as the binding site for the basic substrate, trypsinogen. The new oligosaccharide moieties Man10GlcNAc2 and Man11GlcNAc2 were identified with α-1,2-mannosidase (EC 3.2.1.113) from A. tubingensis. A yeast mutant compatible of producing Man5GlcNAc2 human compatible sugar chains on glycoproteins was constructed. The acid activation of protyrosinase from A. oryzae at pH 3.0 was resolved. The hyper-protein production system of glucoamylase was established in a submerged culture.

  6. Chitinase Chi1 from Myceliophthora thermophila C1, a Thermostable Enzyme for Chitin and Chitosan Depolymerization

    PubMed Central

    2018-01-01

    A thermostable Chitinase Chi1 from Myceliophthora thermophila C1 was homologously produced and characterized. Chitinase Chi1 shows high thermostability at 40 °C (>140 h 90% activity), 50 °C (>168 h 90% activity), and 55 °C (half-life 48 h). Chitinase Chi1 has broad substrate specificity and converts chitin, chitosan, modified chitosan, and chitin oligosaccharides. The activity of Chitinase Chi1 is strongly affected by the degree of deacetylation (DDA), molecular weight (Mw), and side chain modification of chitosan. Chitinase Chi1 releases mainly (GlcNAc)2 from insoluble chitin and chito-oligosaccharides with a polymerization degree (DP) ranging from 2 to 12 from chitosan, in a processive way. Chitinase Chi1 shows higher activity toward chitin oligosaccharides (GlcNAc)4–6 than toward (GlcNAc)3 and is inactive for (GlcNAc)2. During hydrolysis, oligosaccharides bind at subsites −2 to +2 in the enzyme’s active site. Chitinase Chi1 can be used for chitin valorisation and for production of chitin- and chito-oligosaccharides at industrial scale. PMID:29359934

  7. Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans

    PubMed Central

    Peng, Wenjie; Pranskevich, Jennifer; Nycholat, Corwin; Gilbert, Michel; Wakarchuk, Warren; Paulson, James C; Razi, Nahid

    2012-01-01

    Poly-N-acetyllactosamine extensions on N- and O-linked glycans are increasingly recognized as biologically important structural features, but access to these structures has not been widely available. Here, we report a detailed substrate specificity and catalytic efficiency of the bacterial β3-N-acetylglucosaminyltransferase (β3GlcNAcT) from Helicobacter pylori that can be adapted to the synthesis of a rich diversity of glycans with poly-LacNAc extensions. This glycosyltransferase has surprisingly broad acceptor specificity toward type-1, -2, -3 and -4 galactoside motifs on both linear and branched glycans, found commonly on N-linked, O-linked and I-antigen glycans. This finding enables the production of complex ligands for glycan-binding studies. Although the enzyme shows preferential activity for type 2 (Galβ1-4GlcNAc) acceptors, it is capable of transferring N-acetylglucosamine (GlcNAc) in β1-3 linkage to type-1 (Galβ1-3GlcNAc) or type-3/4 (Galβ1-3GalNAcα/β) sequences. Thus, by alternating the use of the H. pylori β3GlcNAcT with galactosyltransferases that make the β1-4 or β1-3 linkages, various N-linked, O-linked and I-antigen acceptors could be elongated with type-2 and type-1 LacNAc repeats. Finally, one-pot incubation of di-LacNAc biantennary N-glycopeptide with the β3GlcNAcT and GalT-1 in the presence of uridine diphosphate (UDP)-GlcNAc and UDP-Gal, yielded products with 15 additional LacNAc units on the precursor, which was seen as a series of sequential ion peaks representing alternative additions of GlcNAc and Gal residues, on matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Overall, our data demonstrate a broader substrate specificity for the H. pylori β3GlcNAcT than previously recognized and demonstrate its ability as a potent resource for preparative chemo-enzymatic synthesis of complex glycans. PMID:22786570

  8. Process for preparing multilayer enzyme coating on a fiber

    DOEpatents

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  9. Semisupervised Gaussian Process for Automated Enzyme Search.

    PubMed

    Mellor, Joseph; Grigoras, Ioana; Carbonell, Pablo; Faulon, Jean-Loup

    2016-06-17

    Synthetic biology is today harnessing the design of novel and greener biosynthesis routes for the production of added-value chemicals and natural products. The design of novel pathways often requires a detailed selection of enzyme sequences to import into the chassis at each of the reaction steps. To address such design requirements in an automated way, we present here a tool for exploring the space of enzymatic reactions. Given a reaction and an enzyme the tool provides a probability estimate that the enzyme catalyzes the reaction. Our tool first considers the similarity of a reaction to known biochemical reactions with respect to signatures around their reaction centers. Signatures are defined based on chemical transformation rules by using extended connectivity fingerprint descriptors. A semisupervised Gaussian process model associated with the similar known reactions then provides the probability estimate. The Gaussian process model uses information about both the reaction and the enzyme in providing the estimate. These estimates were validated experimentally by the application of the Gaussian process model to a newly identified metabolite in Escherichia coli in order to search for the enzymes catalyzing its associated reactions. Furthermore, we show with several pathway design examples how such ability to assign probability estimates to enzymatic reactions provides the potential to assist in bioengineering applications, providing experimental validation to our proposed approach. To the best of our knowledge, the proposed approach is the first application of Gaussian processes dealing with biological sequences and chemicals, the use of a semisupervised Gaussian process framework is also novel in the context of machine learning applied to bioinformatics. However, the ability of an enzyme to catalyze a reaction depends on the affinity between the substrates of the reaction and the enzyme. This affinity is generally quantified by the Michaelis constant KM

  10. N-linked glycosylation of recombinant cellobiohydrolase I (Cel7A) from Penicillium verruculosum and its effect on the enzyme activity.

    PubMed

    Dotsenko, Anna S; Gusakov, Alexander V; Volkov, Pavel V; Rozhkova, Aleksandra M; Sinitsyn, Arkady P

    2016-02-01

    Cellobiohydrolase I from Penicillium verruculosum (PvCel7A) has four potential N-glycosylation sites at its catalytic module: Asn45, Asn194, Asn388, and Asn430. In order to investigate how the N-glycosylation influences the activity and other properties of the enzyme, the wild type (wt) PvCel7A and its mutant forms, carrying Asn to Ala substitutions, were cloned into Penicillium canescens PCA10 (niaD-) strain, a fungal host for production of heterologous proteins. The rPvCel7A-wt and N45A, N194A, N388A mutants were successfully expressed and purified for characterization, whereas the expression of N430A mutant was not achieved. The MALDI-TOF mass spectrometry fingerprinting of peptides, obtained as a result of digestion of rPvCel7A forms with specific proteases, showed that the N-linked glycans represent variable high-mannose oligosaccharides and the products of their sequential enzymatic trimming, according to the formula (Man)0-13 (GlcNAc)2 , or a single GlcNAc residue. Mutations had no notable effect on pH-optimum of PvCel7A activity and enzyme thermostability. However, the mutations influenced both the enzyme adsorption ability on Avicel and its activity against natural and synthetic substrates. In particular, the N45A mutation led to a significant increase in the rate of Avicel and milled aspen wood hydrolysis, while the substrate digestion rates in the case of N194A and N388A mutants were notably lower relative to rPvCel7A-wt. These data, together with data of 3D structural modeling of the PvCel7A catalytic module, indicate that the N-linked glycans are an important part of the processive catalytic machinery of PvCel7A. © 2015 Wiley Periodicals, Inc.

  11. Human Chitotriosidase Is an Endo-Processive Enzyme

    PubMed Central

    Sørlie, Morten; Väljamäe, Priit

    2017-01-01

    Human chitotriosidase (HCHT) is involved in immune response to chitin-containing pathogens in humans. The enzyme is able to degrade chitooligosaccharides as well as crystalline chitin. The catalytic domain of HCHT is connected to the carbohydrate binding module (CBM) through a flexible hinge region. In humans, two active isoforms of HCHT are found–the full length enzyme and its truncated version lacking CBM and the hinge region. The active site architecture of HCHT is reminiscent to that of the reducing-end exo-acting processive chitinase ChiA from bacterium Serratia marcescens (SmChiA). However, the presence of flexible hinge region and occurrence of two active isoforms are reminiscent to that of non-processive endo-chitinase from S. marcescens, SmChiC. Although the studies on soluble chitin derivatives suggest the endo-character of HCHT, the mode of action of the enzyme on crystalline chitin is not known. Here, we made a thorough characterization of HCHT in terms of the mode of action, processivity, binding, and rate constants for the catalysis and dissociation using α-chitin as substrate. HCHT efficiently released the end-label from reducing-end labelled chitin and had also high probability (95%) of endo-mode initiation of processive run. These results qualify HCHT as an endo-processive enzyme. Processivity and the rate constant of dissociation of HCHT were found to be in-between those, characteristic to processive exo-enzymes, like SmChiA and randomly acting non-processive endo-enzymes, like SmChiC. Apart from increasing the affinity for chitin, CBM had no major effect on kinetic properties of HCHT. PMID:28129403

  12. Enzymes- An Existing and Promising Tool of Food Processing Industry.

    PubMed

    Ray, Lalitagauri; Pramanik, Sunita; Bera, Debabrata

    2016-01-01

    The enzyme catalyzed process technology has enormous potential in the food sectors as indicated by the recent patents studies. It is very well realized that the adaptation of the enzyme catalyzed process depends on the availability of enzyme in affordable prices. Enzymes may be used in different food sectors like dairy, fruits & vegetable processing, meat tenderization, fish processing, brewery and wine making, starch processing and many other. Commercially only a small number of enzymes are used because of several factors including instability of enzymes during processing and high cost. More and more enzymes for food technology are now derived from specially selected or genetically modified microorganisms grown in industrial scale fermenters. Enzymes with microbial source have commercial advantages of using microbial fermentation rather than animal and plant extraction to produce food enzymes. At present only a relatively small number of enzymes are used commercially in food processing. But the number is increasing day by day and field of application will be expanded more and more in near future. The purpose of this review is to describe the practical applications of enzymes in the field of food processing.

  13. Recombinant fungal lectin as a new tool to investigate O-GlcNAcylation processes.

    PubMed

    Machon, Oriane; Baldini, Steffi F; Ribeiro, João P; Steenackers, Agata; Varrot, Annabelle; Lefebvre, Tony; Imberty, Anne

    2017-01-01

    Glycosylation is a group of post-translational modifications that displays a large variety of structures and are implicated in a plethora of biological processes. Therefore, studying glycosylation requires different technical approaches and reliable tools, lectins being part of them. Here, we describe the use of the recombinant mushroom lectin PVL to discriminate O-GlcNAcylation, a modification consisting in the attachment of a single N-acetylglucosamine residue to proteins confined within the cytosolic, nuclear and mitochondrial compartments. Recombinant PVL (Psathyrella velutina lectin) (rPVL) displays significantly stronger affinity for GlcNAc over Neu5Ac residues as verified by thermal shift assays and surface plasmon resonance experiments, being therefore an excellent alternative to WGA (wheat germ agglutinin). Labeling of rPVL with biotin or HRP (horseradish peroxidase) allows its useful and efficient utilization by western blot. The staining of whole cell lysates with  labeled-rPVL was dramatically decreased in response to O-GlcNAc transferase knockdown and seen to increase after pharmacological blockade of O-GlcNAcase. Also, HRP-rPVL seemed to be more sensitive than the anti-O-GlcNAc antibody RL2. Thus, rPVL is a potent new tool to selectively detect O-GlcNAcylated proteins. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. O-GlcNAcase Fragment Discovery with Fluorescence Polarimetry.

    PubMed

    Borodkin, Vladimir S; Rafie, Karim; Selvan, Nithya; Aristotelous, Tonia; Navratilova, Iva; Ferenbach, Andrew T; van Aalten, Daan M F

    2018-05-18

    The attachment of the sugar N-acetyl-D-glucosamine (GlcNAc) to specific serine and threonine residues on proteins is referred to as protein O-GlcNAcylation. O-GlcNAc transferase (OGT) is the enzyme responsible for carrying out the modification, while O-GlcNAcase (OGA) reverses it. Protein O-GlcNAcylation has been implicated in a wide range of cellular processes including transcription, proteostasis, and stress response. Dysregulation of O-GlcNAc has been linked to diabetes, cancer, and neurodegenerative and cardiovascular disease. OGA has been proposed to be a drug target for the treatment of Alzheimer's and cardiovascular disease given that increased O-GlcNAc levels appear to exert a protective effect. The search for specific, potent, and drug-like OGA inhibitors with bioavailability in the brain is therefore a field of active research, requiring orthogonal high-throughput assay platforms. Here, we describe the synthesis of a novel probe for use in a fluorescence polarization based assay for the discovery of inhibitors of OGA. We show that the probe is suitable for use with both human OGA, as well as the orthologous bacterial counterpart from Clostridium perfringens, CpOGA, and the lysosomal hexosaminidases HexA/B. We structurally characterize CpOGA in complex with a ligand identified from a fragment library screen using this assay. The versatile synthesis procedure could be adapted for making fluorescent probes for the assay of other glycoside hydrolases.

  15. Studies on the synthesis and processing of the asparagine-linked carbohydrate units of glycoproteins.

    PubMed

    Spiro, R G; Spiro, M J

    1982-12-24

    It has become apparent in recent years from the work of a number of laboratories that the N-glycosylation of both membrane and secretory glycoproteins is effected by the transfer en bloc to nascent polypeptides of a glucose-containing oligosaccharide (Glc3Man9GlcNAc2) from a dolichyl pyrophosphoryl carrier; this is followed by a series of modifying reactions to yield the mature polymannose and complex asparagine-linked carbohydrate units. The enzymic steps involved in the assembly of the precursor oligosaccharide, its transfer to protein and its subsequent processing represent potential sites for the regulation of glycoprotein synthesis. Studies performed in our laboratory have dealt primarily with thyroid slices and particulate enzymes with special regard to the role of glucose in these events. Thyroglobulin, the major secretory glycoprotein of this tissue, has well defined complex and polymannose saccharide units, and indeed the most complete form of the latter (Man9GlcNAc2) has the same structure as the lipid-linked oligosaccharide without the glucose. Our studies indicate that effective N-glycosylation requires a complete glucose chain (Glc3) and that the glucose sequence is assembled from dolichol-P-glucose in a stepwise manner through the concerted action of at least two transferases in a fashion complementary to the subsequent excision of this sugar by glucosidases. Pulse-chase studies indicate that, after the transfer to protein, the removal of all three glucose residues as well as of the first mannose takes place in the endoplasmic reticulum and three additional mannoses are excised in the Golgi complex, because in the presence of an inhibitor of intracellular transport, carbonyl cyanide m-chlorophenylhydrazone (CCCP), there is a pronounced accumulation of protein-linked Man8GlcNAc2. Studies with metabolic inhibitors (CCCP, antimycin, N2) indicate that, under conditions of energy depletion, glucosylation of oligosaccharide-lipid is selectively impaired

  16. Proglobulin processing enzyme in vacuoles isolated from developing pumpkin cotyledons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara-Nishimura, I.; Nishimura, M.

    1987-10-01

    The enzymic conversion of proglobulin to globulin catalyzed by the extracts of vacuoles isolated from developing pumpkin (Cucurbita sp. cv Kurokawa Amakuri Nankin) cotyledons was investigated. The endoplasmic reticulum fraction isolated from the developing cotyledons pulse-labeled with (/sup 35/S)methionine was shown to contain mainly the radiolabeled proglobulin, which was used as a substrate for assaying the proteolytic processing in vitro. The vacuolar extracts catalyzed the proteolytic processing of the proglobulin molecule to produce globulin containing two kinds of polypeptide chains, ..gamma.. and delta. The pH optimum for the vacuole-mediated conversion was at pH 5.0. The proteolytic processing of proglobulin bymore » the vacuolar extracts was inhibited in the presence of various thiol reagents, e.g. p-chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, Hg/sup 2 +/, and Cu/sup 2 +/, but not phenylmethylsulfonyl fluoride, EDTA, o-phenanthroline, leupeptin, antipain, pepstatin, chymostatin, or pumpkin trypsin inhibitor, and was activated in the presence of dithiothreitol and cysteine, indicating that the processing enzyme is a thiol protease. The suborganellar fractionation of the vacuoles showed that the processing activity was localized in the matrix fraction, but not in the membrane or crystalloid fractions. During the seed development, the enzyme was shown to increase, exhibiting the maximal activity at the late developmental stage. The matrix fraction of the protein bodies isolated from the dry castor bean (Ricinus communis) exhibited the processing activity toward the pumpkin proglobulin molecules in the same manner as that by the matrix fraction of pumpkin vacuoles.« less

  17. Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism.

    PubMed

    Świątek, Magdalena A; Urem, Mia; Tenconi, Elodie; Rigali, Sébastien; van Wezel, Gilles P

    2012-01-01

    N-acetylglucosamine (GlcNAc), the monomer of chitin and constituent of bacterial peptidoglycan, is a preferred carbon and nitrogen source for streptomycetes. Recent studies have revealed new functions of GlcNAc in nutrient signaling of bacteria. Exposure to GlcNAc activates development and antibiotic production of Streptomyces coelicolor under poor growth conditions (famine) and blocks these processes under rich conditions (feast). Glucosamine-6-phosphate (GlcN-6P) is a key molecule in this signaling pathway and acts as an allosteric effector of a pleiotropic transcriptional repressor DasR, the regulon of which includes the GlcNAc metabolic enzymes N-actetylglucosamine-6-phosphate (GlcNAc-6P) deacetylase (NagA) and GlcN-6P deaminase (NagB). Intracellular accumulation of GlcNAc-6P and GlcN-6P enhanced production of the pigmented antibiotic actinorhodin. When the nagB mutant was challenged with GlcNAc or GlcN, spontaneous second-site mutations that relieved the toxicity of the accumulated sugar phosphates were obtained. Surprisingly, deletion of nagA also relieved toxicity of GlcN, indicating novel linkage between the GlcN and GlcNAc utilization pathways. The strongly enhanced antibiotic production observed for many suppressor mutants shows the potential of the modulation of GlcNAc and GlcN metabolism as a metabolic engineering tool toward the improvement of antibiotic productivity or even the discovery of novel compounds.

  18. Structural Insights into Cellulolytic and Chitinolytic Enzymes Revealing Crucial Residues of Insect β-N-acetyl-D-hexosaminidase

    PubMed Central

    Liu, Tian; Zhou, Yong; Chen, Lei; Chen, Wei; Liu, Lin; Shen, Xu; Zhang, Wenqing; Zhang, Jianzhen; Yang, Qing

    2012-01-01

    The chemical similarity of cellulose and chitin supports the idea that their corresponding hydrolytic enzymes would bind β-1,4-linked glucose residues in a similar manner. A structural and mutational analysis was performed for the plant cellulolytic enzyme BGlu1 from Oryza sativa and the insect chitinolytic enzyme OfHex1 from Ostrinia furnacalis. Although BGlu1 shows little amino-acid sequence or topological similarity with OfHex1, three residues (Trp490, Glu328, Val327 in OfHex1, and Trp358, Tyr131 and Ile179 in BGlu1) were identified as being conserved in the +1 sugar binding site. OfHex1 Glu328 together with Trp490 was confirmed to be necessary for substrate binding. The mutant E328A exhibited a 8-fold increment in K m for (GlcNAc)2 and a 42-fold increment in K i for TMG-chitotriomycin. A crystal structure of E328A in complex with TMG-chitotriomycin was resolved at 2.5 Å, revealing the obvious conformational changes of the catalytic residues (Glu368 and Asp367) and the absence of the hydrogen bond between E328A and the C3-OH of the +1 sugar. V327G exhibited the same activity as the wild-type, but acquired the ability to efficiently hydrolyse β-1,2-linked GlcNAc in contrast to the wild-type. Thus, Glu328 and Val327 were identified as important for substrate-binding and as glycosidic-bond determinants. A structure-based sequence alignment confirmed the spatial conservation of these three residues in most plant cellulolytic, insect and bacterial chitinolytic enzymes. PMID:23300622

  19. Probing the substrate specificity of Golgi alpha-mannosidase II by use of synthetic oligosaccharides and a catalytic nucleophile mutant.

    PubMed

    Zhong, Wei; Kuntz, Douglas A; Ember, Brian; Singh, Harminder; Moremen, Kelley W; Rose, David R; Boons, Geert-Jan

    2008-07-16

    Inhibition of Golgi alpha-mannosidase II (GMII), which acts late in the N-glycan processing pathway, provides a route to blocking cancer-induced changes in cell surface oligosaccharide structures. To probe the substrate requirements of GMII, oligosaccharides were synthesized that contained an alpha(1,3)- or alpha(1,6)-linked 1-thiomannoside. Surprisingly, these oligosaccharides were not observed in X-ray crystal structures of native Drosophila GMII (dGMII). However, a mutant enzyme in which the catalytic nucleophilic aspartate was changed to alanine (D204A) allowed visualization of soaked oligosaccharides and led to the identification of the binding site for the alpha(1,3)-linked mannoside of the natural substrate. These studies also indicate that the conformational change of the bound mannoside to a high-energy B 2,5 conformation is facilitated by steric hindrance from, and the formation of strong hydrogen bonds to, Asp204. The observation that 1-thio-linked mannosides are not well tolerated by the catalytic site of dGMII led to the synthesis of a pentasaccharide containing the alpha(1,6)-linked Man of the natural substrate and the beta(1,2)-linked GlcNAc moiety proposed to be accommodated by the extended binding site of the enzyme. A cocrystal structure of this compound with the D204A enzyme revealed the molecular interactions with the beta(1,2)-linked GlcNAc. The structure is consistent with the approximately 80-fold preference of dGMII for the cleavage of substrates containing a nonreducing beta(1,2)-linked GlcNAc. By contrast, the lysosomal mannosidase lacks an equivalent GlcNAc binding site and kinetic analysis indicates oligomannoside substrates without non-reducing-terminal GlcNAc modifications are preferred, suggesting that selective inhibitors for GMII could exploit the additional binding specificity of the GlcNAc binding site.

  20. Intracellular compartmentalization and degradation of free polymannose oligosaccharides released during glycoprotein biosynthesis.

    PubMed

    Moore, S E; Spiro, R G

    1994-04-29

    The intracellular site for the degradation of free polymannose oligosaccharides released during glycoprotein biosynthesis has been studied by permeabilizing the plasma membrane of metabolically radiolabeled HepG2 cells with streptolysin O. This pore-forming agent permitted us to examine the breakdown in both the cytosolic and vesicular compartments of the previously recognized (Anumula, K. R., and Spiro, R. G. (1983) J. Biol. Chem. 258, 15274-15282) polymannose components terminating in a di-N-acetylchitobiose sequence (OS-Glc-NAc2) or a single N-acetylglucosamine residue (OS-Glc-NAc1) residue. Pulse-chase studies indicated that although the OS-GlcNAc2 saccharides were about equally distributed between vesicles and cytosol and rapidly disappeared after reaching the Man8 stage, the OS-GlcNAc1 species were found predominantly in the extravesicular compartment and there underwent a distinctive demannosylation sequence resulting in the formation of a Man5GlcNAc isomer (Man alpha 1-->2Man alpha 1-->2Man alpha 1-->3(Man alpha 1-->6)Man beta 1-->4GlcNAc) which was different from the product of Golgi processing enzymes. Further trimming of this cytosolic limit product required its translocation into a vesicular compartment, believed to be lysosomes, in which Man2-4GlcNAc components appeared as the metabolic chase progressed. The accumulation of Glc1Man5GlcNAc in the cytosol during the chase suggested that glucose interferes with the cytosolic-vesicular transfer and this became even more evident by the pronounced pile-up of extravesicular Glc3Man5GlcNAc when the cells were incubated in the presence of castanospermine. Although the biological significance and mechanism of free polymannose oligosaccharide entry into the cytosol is not yet known, the possibility that it may reflect an endoplasmic reticulum-situated degradative process of glycoproteins merits consideration.

  1. Ketone isosteres of 2-N-acetamidosugars as substrates for metabolic cell surface engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, Howard C.; Bertozzi, Carolyn R.

    2000-08-22

    Novel chemical reactivity can be engendered on cell surfaces by the metabolic incorporation of unnatural sugars into cell surface glycoconjuagtes. 2-N-Acetamido sugars such as GalNAc and GlcNAc are abundant components of cell surface glycoconjugates, and hence attractive targets for metabolic cell surface engineering. Here we report (1) the synthesis of isosteric analogs bearing a ketone group in place of the N-acetamido group, and (2) evaluation of their metabolic incorporation into mammalian cell surface glycans. A ketone isostere of GalNAc was metabolized by CHO cells through the salvage pathway and delivered to O-linked glycoproteins on the cell surface. Its residence atmore » the core position of O-linked glycans is suggested by studies with a-benzyl GalNAc, an inhibitor of O-linked oligosaccharide extension. A mutant CHO cell line lacking endogenous UDP-GalNAc demonstrated enhanced metabolism of the GalNAc analog, suggesting that competition with native intermediates might limits enzymatic transformation in mammalian cells. A ketone isostere of GlcNAc could not be detected on CHO or human cell surfaces after incubation. Thus, the enzymes in the GlcNAc salvage pathway might be less permissive of unnatural substrates than those comprising the GalNAc salvage pathway. Alternatively, high levels of endogenous GlcNAc derivatives might compete with the ketone isostere and prevent its incorporation into oligosaccharides.« less

  2. Transfer of free polymannose-type oligosaccharides from the cytosol to lysosomes in cultured human hepatocellular carcinoma HepG2 cells.

    PubMed

    Saint-Pol, A; Bauvy, C; Codogno, P; Moore, S E

    1997-01-13

    Large, free polymannose oligosaccharides generated during glycoprotein biosynthesis rapidly appear in the cytosol of HepG2 cells where they undergo processing by a cytosolic endo H-like enzyme and a mannosidase to yield the linear isomer of Man5GlcNAc (Man[alpha 1-2]Man[alpha 1-2]Man[alpha 1-3][Man alpha 1-6]Man[beta 1-4] GlcNAc). Here we have examined the fate of these partially trimmed oligosaccharides in intact HepG2 cells. Subsequent to pulse-chase incubations with D-[2-3H]mannose followed by permeabilization of cells with streptolysin O free oligosaccharides were isolated from the resulting cytosolic and membrane-bound compartments. Control pulse-chase experiments revealed that total cellular free oligosaccharides are lost from HepG2 cells with a half-life of 3-4 h. In contrast use of the vacuolar H+/ATPase inhibitor, concanamycin A, stabilized total cellular free oligosaccharides and enabled us to demonstrate a translocation of partially trimmed oligosaccharides from the cytosol into a membrane-bound compartment. This translocation process was unaffected by inhibitors of autophagy but inhibited if cells were treated with either 100 microM swainsonine, which provokes a cytosolic accumulation of large free oligosaccharides bearing 8-9 residues of mannose, or agents known to reduce cellular ATP levels which lead to the accumulation of the linear isomer of Man5GlcNAc in the cytosol. Subcellular fractionation studies on Percoll density gradients revealed that the cytosol-generated linear isomer of Man5GlcNAc is degraded in a membrane-bound compartment that cosediments with lysosomes.

  3. Enzymes in bast fibrous plant processing.

    PubMed

    Kozlowski, Ryszard; Batog, Jolanta; Konczewicz, Wanda; Mackiewicz-Talarczyk, Maria; Muzyczek, Malgorzata; Sedelnik, Natalia; Tanska, Bogumila

    2006-05-01

    The program COST Action 847 Textile Quality and Biotechnology (2000-2005) has given an excellent chance to review the possibilities of the research, aiming at development of the industrial application of enzymes for bast fibrous plant degumming and primary processing. The recent advancements in enzymatic processing of bast fibrous plants (flax, hemp, jute, ramie and alike plants) and related textiles are given. The performance of enzymes in degumming, modification of bast fibres, roving, yarn, related fabrics as well as enzymatic bonding of lignocellulosic composites is provided.

  4. Microbial Enzymes: Tools for Biotechnological Processes

    PubMed Central

    Adrio, Jose L.; Demain, Arnold L.

    2014-01-01

    Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi. PMID:24970208

  5. Photobiodegradation of chlorinated water pollutants by a combined TiO2-polyaniline-enzyme catalytic system

    NASA Astrophysics Data System (ADS)

    Campanella, Luigi; Crescentini, G.; Militerno, S.

    1995-10-01

    The removal of xenobiotic compounds, such as chlorophenols and pesticides, from municipal and industrial wastewaters is an important task because of the toxicity and the tendency to bioaccumulation of these compounds. Among the several methods proposed, photodegradation catalyzed by suspended inorganic semiconductors (i.e. TiO2) has lately received wide attention because this process is fast, leads to non-toxic final products and shows a high degradation efficiency. In this work, the results obtained in the photodegradation of monochlorophenols using a new catalyst, made of TiO2 and polyaniline both immobilized on a polyvinylchloride (PVC) membrane, in presence (and in absence) of an enzyme are presented. Different enzymes have been tested by adding 5, 10 or 15 U/mL to 50 mL of aqueous solution (1 multiplied by 10-4 mol/L) of o-chloro-phenol containing the catalytic membrane. The samples were irradiated using a QUV panel accelerated weathering tester, which simulates very well the solar radiation up to lambda equals 400 nm and HPLC was used to measure the variation of the compound's concentration with the time. While some enzymes (i.e., peroxidase) do not improve the photodegradation process since they do not survive under the irradiation conditions used, some of them show marked effect both in terms of rate degradation and time required to reach the total degradation of the compound examined. For example, the addition of Laccase reduces the 100% degradation time from 35 hrs to about 20 hrs. Attempts to immobilize the enzyme on the catalytic membrane (by adsorption) have been carried out and the performance of the catalyst with non-immobilized and immobilized enzyme has been studied.

  6. Mammalian O-Mannosylation Pathway: Glycan Structures, Enzymes, and Protein Substrates

    PubMed Central

    2015-01-01

    The mammalian O-mannosylation pathway for protein post-translational modification is intricately involved in modulating cell–matrix interactions in the musculature and nervous system. Defects in enzymes of this biosynthetic pathway are causative for multiple forms of congenital muscular dystophy. The application of advanced genetic and biochemical technologies has resulted in remarkable progress in this field over the past few years, culminating with the publication of three landmark papers in 2013 alone. In this review, we will highlight recent progress focusing on the dramatic expansion of the set of genes known to be involved in O-mannosylation and disease processes, the concurrent acceleration of the rate of O-mannosylation pathway protein functional assignments, the tremendous increase in the number of proteins now known to be modified by O-mannosylation, and the recent progress in protein O-mannose glycan quantification and site assignment. Also, we attempt to highlight key outstanding questions raised by this abundance of new information. PMID:24786756

  7. Human cytochrome-P450 enzymes metabolize N-(2-methoxyphenyl)hydroxylamine, a metabolite of the carcinogens o-anisidine and o-nitroanisole, thereby dictating its genotoxicity.

    PubMed

    Naiman, Karel; Martínková, Markéta; Schmeiser, Heinz H; Frei, Eva; Stiborová, Marie

    2011-12-24

    N-(2-Methoxyphenyl)hydroxylamine is a component in the human metabolism of two industrial and environmental pollutants and bladder carcinogens, viz. 2-methoxyaniline (o-anisidine) and 2-methoxynitrobenzene (o-nitroanisole), and it is responsible for their genotoxicity. Besides its capability to form three deoxyguanosine adducts in DNA, N-(2-methoxyphenyl)-hydroxylamine is also further metabolized by hepatic microsomal enzymes. To investigate its metabolism by human hepatic microsomes and to identify the major microsomal enzymes involved in this process are the aims of this study. N-(2-Methoxyphenyl)hydroxylamine is metabolized by human hepatic microsomes predominantly to o-anisidine, one of the parent carcinogens from which N-(2-methoxyphenyl)hydroxylamine is formed, while o-aminophenol and two N-(2-methoxyphenyl)hydroxylamine metabolites, whose exact structures have not been identified as yet, are minor products. Selective inhibitors of microsomal CYPs, NADPH:CYP reductase and NADH:cytochrome-b(5) reductase were used to characterize human liver microsomal enzymes reducing N-(2-methoxyphenyl)hydroxylamine to o-anisidine. Based on these studies, we attribute the main activity for this metabolic step in human liver to CYP3A4, 2E1 and 2C (more than 90%). The enzymes CYP2D6 and 2A6 also partake in this N-(2-methoxyphenyl)hydroxylamine metabolism in human liver, but only to ∼6%. Among the human recombinant CYP enzymes tested in this study, human CYP2E1, followed by CYP3A4, 1A2, 2B6 and 2D6, were the most efficient enzymes metabolizing N-(2-methoxyphenyl)hydroxylamine to o-anisidine. The results found in this study indicate that genotoxicity of N-(2-methoxyphenyl)hydroxylamine is dictated by its spontaneous decomposition to nitrenium/carbenium ions generating DNA adducts, and by its susceptibility to metabolism by CYP enzymes. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Recent Advances in Marine Enzymes for Biotechnological Processes.

    PubMed

    Lima, R N; Porto, A L M

    In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds. © 2016 Elsevier Inc. All rights reserved.

  9. A small-molecule switch for Golgi sulfotransferases.

    PubMed

    de Graffenried, Christopher L; Laughlin, Scott T; Kohler, Jennifer J; Bertozzi, Carolyn R

    2004-11-30

    The study of glycan function is a major frontier in biology that could benefit from small molecules capable of perturbing carbohydrate structures on cells. The widespread role of sulfotransferases in modulating glycan function makes them prime targets for small-molecule modulators. Here, we report a system for conditional activation of Golgi-resident sulfotransferases using a chemical inducer of dimerization. Our approach capitalizes on two features shared by these enzymes: their requirement of Golgi localization for activity on cellular substrates and the modularity of their catalytic and localization domains. Fusion of these domains to the proteins FRB and FKBP enabled their induced assembly by the natural product rapamycin. We applied this strategy to the GlcNAc-6-sulfotransferases GlcNAc6ST-1 and GlcNAc6ST-2, which collaborate in the sulfation of L-selectin ligands. Both the activity and specificity of the inducible enzymes were indistinguishable from their WT counterparts. We further generated rapamycin-inducible chimeric enzymes comprising the localization domain of a sulfotransferase and the catalytic domain of a glycosyltransferase, demonstrating the generality of the system among other Golgi enzymes. The approach provides a means for studying sulfate-dependent processes in cellular systems and, potentially, in vivo.

  10. N-acetylglucosamine, the building block of chitin, inhibits growth of Neurospora crassa.

    PubMed

    Gaderer, Romana; Seidl-Seiboth, Verena; de Vries, Ronald P; Seiboth, Bernhard; Kappel, Lisa

    2017-10-01

    N-acetylglucosamine (GlcNAc) is the monomer of the polysaccharide chitin, an essential structural component of the fungal cell wall and the arthropod exoskeleton. We recently showed that the genes encoding the enzymes for GlcNAc catabolism are clustered in several ascomycetes. In the present study we tested these fungi for growth on GlcNAc and chitin. All fungi, containing the GlcNAc gene cluster, could grow on GlcNAc with the exception of four independent Neurospora crassa wild-type isolates, which were however able to grow on chitin. GlcNAc even inhibited their growth in the presence of other carbon sources. Genes involved in GlcNAc catabolism were strongly upregulated in the presence of GlcNAc, but during growth on chitin their expression was not increased. Deletion of hxk-3 (encoding the first catabolic enzyme, GlcNAc-hexokinase) and ngt-1 (encoding the GlcNAc transporter) improved growth of N. crassa on GlcNAc in the presence of glycerol. A crucial step in GlcNAc catabolism is enzymatic conversion from glucosamine-6-phosphate to fructose-6-phosphate, catalyzed by the glucosamine-6-phosphate deaminase, DAM-1. To assess, if DAM-1 is compromised in N. crassa, the orthologue from Trichoderma reesei, Trdam1, was expressed in N. crassa. Trdam1 expression partially alleviated the negative effects of GlcNAc in the presence of a second carbon source, but did not fully restore growth on GlcNAc. Our results indicate that the GlcNAc-catabolism pathway is bypassed during growth of N. crassa on chitin by use of an alternative pathway, emphasizing the different strategies that have evolved in the fungal kingdom for chitin utilization. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Agm1/Pgm3-Mediated Sugar Nucleotide Synthesis Is Essential for Hematopoiesis and Development▿

    PubMed Central

    Greig, Kylie T.; Antonchuk, Jennifer; Metcalf, Donald; Morgan, Phillip O.; Krebs, Danielle L.; Zhang, Jian-Guo; Hacking, Douglas F.; Bode, Lars; Robb, Lorraine; Kranz, Christian; de Graaf, Carolyn; Bahlo, Melanie; Nicola, Nicos A.; Nutt, Stephen L.; Freeze, Hudson H.; Alexander, Warren S.; Hilton, Douglas J.; Kile, Benjamin T.

    2007-01-01

    Carbohydrate modification of proteins includes N-linked and O-linked glycosylation, proteoglycan formation, glycosylphosphatidylinositol anchor synthesis, and O-GlcNAc modification. Each of these modifications requires the sugar nucleotide UDP-GlcNAc, which is produced via the hexosamine biosynthesis pathway. A key step in this pathway is the interconversion of GlcNAc-6-phosphate (GlcNAc-6-P) and GlcNAc-1-P, catalyzed by phosphoglucomutase 3 (Pgm3). In this paper, we describe two hypomorphic alleles of mouse Pgm3 and show there are specific physiological consequences of a graded reduction in Pgm3 activity and global UDP-GlcNAc levels. Whereas mice lacking Pgm3 die prior to implantation, animals with less severe reductions in enzyme activity are sterile, exhibit changes in pancreatic architecture, and are anemic, leukopenic, and thrombocytopenic. These phenotypes are accompanied by specific rather than wholesale changes in protein glycosylation, suggesting that while universally required, the functions of certain proteins and, as a consequence, certain cell types are especially sensitive to reductions in Pgm3 activity. PMID:17548465

  12. The effects of altered N-linked oligosaccharide structures on maturation and targeting of lysosomal enzymes in Dictyostelium discoideum.

    PubMed

    Freeze, H H; Koza-Taylor, P; Saunders, A; Cardelli, J A

    1989-11-15

    We have examined the relationship of N-linked oligosaccharide structures to the proper targeting and proteolytic processing of two lysosomal enzymes, alpha-mannosidase and beta-glucosidase, in the slime mold Dictyostelium discoideum. Two different mutant strains, HL241 and HL243, each synthesize the same nonglucosylated, truncated, lipid-linked oligosaccharide precursor, Man6GlcNAc2. [3H]Mannose-labeled N-linked oligosaccharides were studied following their release from immunoprecipitated alpha-mannosidase and beta-glucosidase by digestion with peptide:N-glycosidase F. The oligosaccharides from both mutants resembled each other, but they were smaller and contained fewer anionic groups than those from the wild-type. The oligosaccharides from the mutants strains were reduced in sulfate and Man-6-P content, and all Man-6-P was in the form of acid-stable phosphodiesters. Pulse-chase radiolabeling experiments using [35S] methionine indicated that the precursor forms of both enzymes were smaller than wild-type, and that this difference was due solely to differences in N-linked oligosaccharides. The precursor forms of the enzymes were not over-secreted, but appeared to be proteolytically processed into mature forms at approximately 50% the rate of wild-type. This is mainly due to their prolonged retention in the rough endoplasmic reticulum, but, ultimately, both enzymes were properly targeted to lysosomes. These studies indicate that a reduction in the amount of sulfation, phosphorylation or size of the N-linked oligosaccharides in these mutants is not critical for the proteolytic processing and targeting of the lysosomal enzymes, but that these changes may influence their rate of exit from the rough endoplasmic reticulum.

  13. Artificial concurrent catalytic processes involving enzymes.

    PubMed

    Köhler, Valentin; Turner, Nicholas J

    2015-01-11

    The concurrent operation of multiple catalysts can lead to enhanced reaction features including (i) simultaneous linear multi-step transformations in a single reaction flask (ii) the control of intermediate equilibria (iii) stereoconvergent transformations (iv) rapid processing of labile reaction products. Enzymes occupy a prominent position for the development of such processes, due to their high potential compatibility with other biocatalysts. Genes for different enzymes can be co-expressed to reconstruct natural or construct artificial pathways and applied in the form of engineered whole cell biocatalysts to carry out complex transformations or, alternatively, the enzymes can be combined in vitro after isolation. Moreover, enzyme variants provide a wider substrate scope for a given reaction and often display altered selectivities and specificities. Man-made transition metal catalysts and engineered or artificial metalloenzymes also widen the range of reactivities and catalysed reactions that are potentially employable. Cascades for simultaneous cofactor or co-substrate regeneration or co-product removal are now firmly established. Many applications of more ambitious concurrent cascade catalysis are only just beginning to appear in the literature. The current review presents some of the most recent examples, with an emphasis on the combination of transition metal with enzymatic catalysis and aims to encourage researchers to contribute to this emerging field.

  14. Dioxygen Binding, Activation, and Reduction to H2O by Cu Enzymes.

    PubMed

    Solomon, Edward I

    2016-07-05

    Oxygen intermediates in copper enzymes exhibit unique spectroscopic features that reflect novel geometric and electronic structures that are key to reactivity. This perspective will describe: (1) the bonding origin of the unique spectroscopic features of the coupled binuclear copper enzymes and how this overcomes the spin forbiddenness of O2 binding and activates monooxygenase activity, (2) how the difference in exchange coupling in the non-coupled binuclear Cu enzymes controls the reaction mechanism, and (3) how the trinuclear Cu cluster present in the multicopper oxidases leads to a major structure/function difference in enabling the irreversible reductive cleavage of the O-O bond with little overpotential and generating a fully oxidized intermediate, different from the resting enzyme studied by crystallography, that is key in enabling fast PCET in the reductive half of the catalytic cycle.

  15. Transfer of Free Polymannose-type Oligosaccharides from the Cytosol to Lysosomes in Cultured Human Hepatocellular Carcinoma HEPG2 Cells

    PubMed Central

    Saint-Pol, Agnès; Bauvy, Chantal; Codogno, Patrice; Moore, Stuart E.H.

    1997-01-01

    Large, free polymannose oligosaccharides generated during glycoprotein biosynthesis rapidly appear in the cytosol of HepG2 cells where they undergo processing by a cytosolic endo H–like enzyme and a mannosidase to yield the linear isomer of Man5GlcNAc (Man[α1-2]Man[α1-2]Man[α1-3][Man α1-6]Man[β14]GlcNAc). Here we have examined the fate of these partially trimmed oligosaccharides in intact HepG2 cells. Subsequent to pulse–chase incubations with d-[2- 3H]mannose followed by permeabilization of cells with streptolysin O free oligosaccharides were isolated from the resulting cytosolic and membrane-bound compartments. Control pulse–chase experiments revealed that total cellular free oligosaccharides are lost from HepG2 cells with a half-life of 3–4 h. In contrast use of the vacuolar H+/ATPase inhibitor, concanamycin A, stabilized total cellular free oligosaccharides and enabled us to demonstrate a translocation of partially trimmed oligosaccharides from the cytosol into a membrane-bound compartment. This translocation process was unaffected by inhibitors of autophagy but inhibited if cells were treated with either 100 μM swainsonine, which provokes a cytosolic accumulation of large free oligosaccharides bearing 8-9 residues of mannose, or agents known to reduce cellular ATP levels which lead to the accumulation of the linear isomer of Man5GlcNAc in the cytosol. Subcellular fractionation studies on Percoll density gradients revealed that the cytosol-generated linear isomer of Man5GlcNAc is degraded in a membrane-bound compartment that cosediments with lysosomes. PMID:9008702

  16. Optimization of a novel enzyme treatment process for early-stage processing of sheepskins.

    PubMed

    Lim, Y F; Bronlund, J E; Allsop, T F; Shilton, A N; Edmonds, R L

    2010-01-01

    An enzyme treatment process for early-stage processing of sheepskins has been previously reported by the Leather and Shoe Research Association of New Zealand (LASRA) as an alternative to current industry operations. The newly developed process had marked benefits over conventional processing in terms of a lowered energy usage (73%), processing time (47%) as well as water use (49%), but had been developed as a "proof of principle''. The objective of this work was to develop the process further to a stage ready for adoption by industry. Mass balancing was used to investigate potential modifications for the process based on the understanding developed from a detailed analysis of preliminary design trials. Results showed that a configuration utilising a 2 stage counter-current system for the washing stages and segregation and recycling of enzyme float prior to dilution in the neutralization stage was a significant improvement. Benefits over conventional processing include a reduction of residual TDS by 50% at the washing stages and 70% savings on water use overall. Benefits over the un-optimized LASRA process are reduction of solids in product after enzyme treatment and neutralization stages by 30%, additional water savings of 21%, as well as 10% savings of enzyme usage.

  17. Retinal O-linked N-acetylglucosamine protein modifications: implications for postnatal retinal vascularization and the pathogenesis of diabetic retinopathy

    PubMed Central

    Sieg, Kelsey M.; Shallow, Keegan D.; Sorenson, Christine M.; Sheibani, Nader

    2013-01-01

    Purpose Hyperglycemia activates several metabolic pathways, including the hexosamine biosynthetic pathway. Uridine diphosphate N-acetylglucosamine (GlcNAc) is the product of the hexosamine biosynthetic pathway and the substrate for O-linked GlcNAc (O-GlcNAc) modification. This modification affects a wide range of proteins by altering their activity, cellular localization, and/or protein interactions. However, the role O-GlcNAcylation may play in normal postnatal retinal vascular development and in the ocular complications of diabetes, including diabetic retinopathy, requires further investigation. Methods The total levels of O-GlcNAc-modified proteins were evaluated by western blot analysis of lysates prepared from retinas obtained at different days during postnatal retinal vascularization and oxygen-induced ischemic retinopathy. Similar experiments were performed with retinal lysate prepared from diabetic Ins2Akita/+ mice with different durations of diabetes and retinal vascular cells cultured under various glucose conditions. The localization of O-GlcNAc-modified proteins in the retinal vasculature was confirmed by immunofluorescence staining. The impact of altered O-GlcNAcylation on the migration of retinal vascular cells was determined using scratch wound and transwell migration assays. Results We detected an increase in protein O-GlcNAcylation during mouse postnatal retinal vascularization and aging, in part through the regulation of the enzymes that control this modification. The study of the diabetic Ins2Akita/+ mouse retina showed an increase in the O-GlcNAc modification of retinal proteins. We also observed an increase in retinal O-GlcNAcylated protein levels during the neovascularization phase of oxygen-induced ischemic retinopathy. Our fluorescence microscopy data confirmed that the alterations in retinal O-GlcNAcylation are similarly represented in the retinal vasculature and in retinal pericytes and endothelial cells. Particularly, the migration of

  18. Mammalian α-1,6-Fucosyltransferase (FUT8) Is the Sole Enzyme Responsible for the N-Acetylglucosaminyltransferase I-independent Core Fucosylation of High-mannose N-Glycans*

    PubMed Central

    Yang, Qiang; Wang, Lai-Xi

    2016-01-01

    Understanding the biosynthetic pathway of protein glycosylation in various expression cell lines is important for controlling and modulating the glycosylation profiles of recombinant glycoproteins. We found that expression of erythropoietin (EPO) in a HEK293S N-acetylglucosaminyltransferase I (GnT I)−/− cell line resulted in production of the Man5GlcNAc2 glycoforms, in which more than 50% were core-fucosylated, implicating a clear GnT I-independent core fucosylation pathway. Expression of GM-CSF and the ectodomain of FcγIIIA receptor led to ∼30% and 3% core fucosylation, suggesting that the level of core fucosylation also depends on the nature of the recombinant proteins. To elucidate the GnT I-independent core fucosylation pathway, we generated a stable HEK293S GnT I−/− cell line with either knockdown or overexpression of FUT8 by a highly efficient lentivirus-mediated gene transfer approach. We found that the EPO produced from the FUT8 knockdown cell line was the pure Man5GlcNAc2 glycoform, whereas that produced from the FUT8-overexpressing cell line was found to be fully core-fucosylated oligomannose glycan (Man5GlcNAc2Fuc). These results provide direct evidence that FUT8, the mammalian α1,6-fucosyltransferase, is the sole enzyme responsible for the GnT I-independent core fucosylation pathway. The production of the homogeneous core-fucosylated Man5GlcNAc2 glycoform of EPO in the FUT8-overexpressed HEK293S GnT I−/− cell line represents the first example of production of fully core-fucosylated high-mannose glycoforms. PMID:27008861

  19. Synthesis, evaluation, and mechanism of N,N,N-trimethyl-D-glucosamine-(1→4)-chitooligosaccharides as selective inhibitors of glycosyl hydrolase family 20 β-N-acetyl-D-hexosaminidases.

    PubMed

    Yang, You; Liu, Tian; Yang, Yongliang; Wu, Qingyue; Yang, Qing; Yu, Biao

    2011-02-11

    GH20 β-N-acetyl-D-hexosaminidases are enzymes involved in many vital processes. Inhibitors that specifically target GH20 enzymes in pests are of agricultural and economic importance. Structural comparison has revealed that the bacterial chitindegrading β-N-acetyl-D-hexosaminidases each have an extra +1 subsite in the active site; this structural difference could be exploited for the development of selective inhibitors. N,N,Ntrimethyl-D-glucosamine (TMG)-chitotriomycin, which contains three GlcNAc residues, is a natural selective inhibitor against bacterial and insect β-N-acetyl-D-hexosaminidases. However, our structural alignment analysis indicated that the two GlcNAc residues at the reducing end might be unnecessary. To prove this hypothesis, we designed and synthesized a series of TMG-chitotriomycin analogues containing one to four GlcNAc units. Inhibitory kinetics and molecular docking showed that TMG-(GlcNAc)(2), is as active as TMG-chitotriomycin [TMG-(GlcNAc)(3)]. The selective inhibition mechanism of TMG-chitotriomycin was also explained. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Application of residual polysaccharide-degrading enzymes in dried shiitake mushrooms as an enzyme preparation in food processing.

    PubMed

    Tatsumi, E; Konishi, Y; Tsujiyama, S

    2016-11-01

    To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing. Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C. Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.

  1. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes: Targeted quantification of functional enzyme dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Minjing; Gao, Yuqian; Qian, Wei-Jun

    Microbially mediated biogeochemical processes are catalyzed by enzymes that control the transformation of carbon, nitrogen, and other elements in environment. The dynamic linkage between enzymes and biogeochemical species transformation has, however, rarely been investigated because of the lack of analytical approaches to efficiently and reliably quantify enzymes and their dynamics in soils and sediments. Herein, we developed a signature peptide-based technique for sensitively quantifying dissimilatory and assimilatory enzymes using nitrate-reducing enzymes in a hyporheic zone sediment as an example. Moreover, the measured changes in enzyme concentration were found to correlate with the nitrate reduction rate in a way different frommore » that inferred from biogeochemical models based on biomass or functional genes as surrogates for functional enzymes. This phenomenon has important implications for understanding and modeling the dynamics of microbial community functions and biogeochemical processes in environments. Our results also demonstrate the importance of enzyme quantification for the identification and interrogation of those biogeochemical processes with low metabolite concentrations as a result of faster enzyme-catalyzed consumption of metabolites than their production. The dynamic enzyme behaviors provide a basis for the development of enzyme-based models to describe the relationship between the microbial community and biogeochemical processes.« less

  2. Insulin/IGF-I Signaling Pathways Enhances Tumor Cell Invasion through Bisecting GlcNAc N-glycans Modulation. An Interplay with E-Cadherin

    PubMed Central

    Dias, Ana M.; Oliveira, Patrícia; Cabral, Joana; Seruca, Raquel; Oliveira, Carla; Morgado-Díaz, José Andrés; Reis, Celso A.; Pinho, Salomé S.

    2013-01-01

    Changes in glycosylation are considered a hallmark of cancer, and one of the key targets of glycosylation modifications is E-cadherin. We and others have previously demonstrated that E-cadherin has a role in the regulation of bisecting GlcNAc N-glycans expression, remaining to be determined the E-cadherin-dependent signaling pathway involved in this N-glycans expression regulation. In this study, we analysed the impact of E-cadherin expression in the activation profile of receptor tyrosine kinases such as insulin receptor (IR) and IGF-I receptor (IGF-IR). We demonstrated that exogenous E-cadherin expression inhibits IR, IGF-IR and ERK 1/2 phosphorylation. Stimulation with insulin and IGF-I in MDA-MD-435 cancer cells overexpressing E-cadherin induces a decrease of bisecting GlcNAc N-glycans that was accompanied with alterations on E-cadherin cellular localization. Concomitantly, IR/IGF-IR signaling activation induced a mesenchymal-like phenotype of cancer cells together with an increased tumor cell invasion capability. Altogether, these results demonstrate an interplay between E-cadherin and IR/IGF-IR signaling as major networking players in the regulation of bisecting N-glycans expression, with important effects in the modulation of epithelial characteristics and tumor cell invasion. Here we provide new insights into the role that Insulin/IGF-I signaling play during cancer progression through glycosylation modifications. PMID:24282611

  3. O-GLYCBASE Version 3.0: a revised database of O-glycosylated proteins.

    PubMed Central

    Hansen, J E; Lund, O; Nilsson, J; Rapacki, K; Brunak, S

    1998-01-01

    O-GLYCBASE is a revised database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the sequence databases. Entries include information about species, sequence, glycosylation sites and glycan type and is fully cross-referenced. Compared to version 2.0 the number of entries has increased by 20%. Sequence logos displaying the acceptor specificity patterns for the GalNAc, mannose and GlcNAc transferases are shown. The O-GLYCBASE database is available through the WWW at http://www.cbs.dtu. dk/databases/OGLYCBASE/ PMID:9399880

  4. Portable Enzyme-Paper Biosensors Based on Redox-Active CeO2 Nanoparticles.

    PubMed

    Karimi, A; Othman, A; Andreescu, S

    2016-01-01

    Portable, nanoparticle (NP)-enhanced enzyme sensors have emerged as powerful devices for qualitative and quantitative analysis of a variety of analytes for biomedicine, environmental applications, and pharmaceutical fields. This chapter describes a method for the fabrication of a portable, paper-based, inexpensive, robust enzyme biosensor for the detection of substrates of oxidase enzymes. The method utilizes redox-active NPs of cerium oxide (CeO2) as a sensing platform which produces color in response to H2O2 generated by the action of oxidase enzymes on their corresponding substrates. This avoids the use of peroxidases which are routinely used in conjunction with glucose oxidase. The CeO2 particles serve dual roles, as high surface area supports to anchor high loadings of the enzyme as well as a color generation reagent, and the particles are recycled multiple times for the reuse of the biosensor. These sensors are small, light, disposable, inexpensive, and they can be mass produced by standard, low-cost printing methods. All reagents needed for the analysis are embedded within the paper matrix, and sensors stored over extended periods of time without performance loss. This novel sensor is a general platform for the in-field detection of analytes that are substrates for oxidase enzymes in clinical, food, and environmental samples. © 2016 Elsevier Inc. All rights reserved.

  5. Enzyme clustering accelerates processing of intermediates through metabolic channeling

    PubMed Central

    Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.

    2015-01-01

    We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299

  6. An OGA-Resistant Probe Allows Specific Visualization and Accurate Identification of O-GlcNAc-Modified Proteins in Cells.

    PubMed

    Li, Jing; Wang, Jiajia; Wen, Liuqing; Zhu, He; Li, Shanshan; Huang, Kenneth; Jiang, Kuan; Li, Xu; Ma, Cheng; Qu, Jingyao; Parameswaran, Aishwarya; Song, Jing; Zhao, Wei; Wang, Peng George

    2016-11-18

    O-linked β-N-acetyl-glucosamine (O-GlcNAc) is an essential and ubiquitous post-translational modification present in nucleic and cytoplasmic proteins of multicellular eukaryotes. The metabolic chemical probes such as GlcNAc or GalNAc analogues bearing ketone or azide handles, in conjunction with bioorthogonal reactions, provide a powerful approach for detecting and identifying this modification. However, these chemical probes either enter multiple glycosylation pathways or have low labeling efficiency. Therefore, selective and potent probes are needed to assess this modification. We report here the development of a novel probe, 1,3,6-tri-O-acetyl-2-azidoacetamido-2,4-dideoxy-d-glucopyranose (Ac 3 4dGlcNAz), that can be processed by the GalNAc salvage pathway and transferred by O-GlcNAc transferase (OGT) to O-GlcNAc proteins. Due to the absence of a hydroxyl group at C4, this probe is less incorporated into α/β 4-GlcNAc or GalNAc containing glycoconjugates. Furthermore, the O-4dGlcNAz modification was resistant to the hydrolysis of O-GlcNAcase (OGA), which greatly enhanced the efficiency of incorporation for O-GlcNAcylation. Combined with a click reaction, Ac 3 4dGlcNAz allowed the selective visualization of O-GlcNAc in cells and accurate identification of O-GlcNAc-modified proteins with LC-MS/MS. This probe represents a more potent and selective tool in tracking, capturing, and identifying O-GlcNAc-modified proteins in cells and cell lysates.

  7. Increasing the Thermostable Sugar-1-Phosphate Nucleotidylyltransferase Activities of the Archaeal ST0452 Protein through Site Saturation Mutagenesis of the 97th Amino Acid Position.

    PubMed

    Honda, Yuki; Zang, Qian; Shimizu, Yasuhiro; Dadashipour, Mohammad; Zhang, Zilian; Kawarabayasi, Yutaka

    2017-02-01

    The ST0452 protein is a bifunctional protein exhibiting sugar-1-phosphate nucleotidylyltransferase (sugar-1-P NTase) and amino-sugar-1-phosphate acetyltransferase activities and was isolated from the thermophilic archaeon Sulfolobus tokodaii Based on the previous observation that five single mutations increased ST0452 sugar-1-P NTase activity, nine double-mutant ST0452 proteins were generated with the intent of obtaining enzymes exhibiting a further increase in catalysis, but all showed less than 15% of the wild-type N-acetyl-d-glucosamine-1-phosphate uridyltransferase (GlcNAc-1-P UTase) activity. The Y97A mutant exhibited the highest activity of the single-mutant proteins, and thus site saturation mutagenesis of the 97th position (Tyr) was conducted. Six mutants showed both increased GlcNAc-1-P UTase and glucose-1-phosphate uridyltransferase activities, eight mutants showed only enhanced GlcNAc-1-P UTase activity, and six exhibited higher GlcNAc-1-P UTase activity than that of the Y97A mutant. Kinetic analyses of three typical mutants indicated that the increase in sugar-1-P NTase activity was mainly due to an increase in the apparent k cat value. We hypothesized that changing the 97th position (Tyr) to a smaller amino acid with similar electronic properties would increase activity, and thus the Tyr at the corresponding 103rd position of the Escherichia coli GlmU (EcGlmU) enzyme was replaced with the same residues. The Y103N mutant EcGlmU showed increased GlcNAc-1-P UTase activity, revealing that the Tyr at the 97th position of the ST0452 protein (103rd position in EcGlmU) plays an important role in catalysis. The present results provide useful information regarding how to improve the activity of natural enzymes and how to generate powerful enzymes for the industrial production of sugar nucleotides. It is typically difficult to increase enzymatic activity by introducing substitutions into a natural enzyme. However, it was previously found that the ST0452 protein

  8. Structural Determinants of an Insect β-N-Acetyl-d-hexosaminidase Specialized as a Chitinolytic Enzyme*

    PubMed Central

    Liu, Tian; Zhang, Haitao; Liu, Fengyi; Wu, Qingyue; Shen, Xu; Yang, Qing

    2011-01-01

    β-N-Acetyl-d-hexosaminidase has been postulated to have a specialized function. However, the structural basis of this specialization is not yet established. OfHex1, the enzyme from the Asian corn borer Ostrinia furnacalis (one of the most destructive pests) has previously been reported to function merely in chitin degradation. Here the vital role of OfHex1 during the pupation of O. furnacalis was revealed by RNA interference, and the crystal structures of OfHex1 and OfHex1 complexed with TMG-chitotriomycin were determined at 2.1 Å. The mechanism of selective inhibition by TMG-chitotriomycin was related to the existence of the +1 subsite at the active pocket of OfHex1 and a key residue, Trp490, at this site. Mutation of Trp490 to Ala led to a 2,277-fold decrease in sensitivity toward TMG-chitotriomycin as well as an 18-fold decrease in binding affinity for the substrate (GlcNAc)2. Although the overall topology of the catalytic domain of OfHex1 shows a high similarity with the human and bacterial enzymes, OfHex1 is distinguished from these enzymes by large conformational changes linked to an “open-close” mechanism at the entrance of the active site, which is characterized by the “lid” residue, Trp448. Mutation of Trp448 to Ala or Phe resulted in a more than 1,000-fold loss in enzyme activity, due mainly to the effect on kcat. The current work has increased our understanding of the structure-function relationship of OfHex1, shedding light on the structural basis that accounts for the specialized function of β-N-acetyl-d-hexosaminidase as well as making the development of species-specific pesticides a likely reality. PMID:21106526

  9. Enzyme processing of textiles in reverse micellar solution.

    PubMed

    Sawada, K; Ueda, M

    2001-08-23

    Scouring of cotton using pectinase enzyme, bioscouring, in reverse micellar system was studied. The effectiveness of bioscouring was evaluated by measuring weight loss of cotton, analyzing pectin and cotton wax remaining and by wetness testing. Pectinase enzyme showed excellent activity even in organic media, and the effectiveness of scouring was equivalent or better than that achieved by conventional alkaline process or bioscouring in aqueous media. Enzymatic modification of wool using protease enzyme in the same system was also studied. It has found that felting property and tensile strength of wool fabrics treated by protease in reverse micellar system were superior to those in aqueous media. Possibilities of utilization of the same system for the subsequent textile dyeing process were also investigated. It was found that cotton and polyester fabrics were dyed satisfactorily by reverse micellar system compared to conventional aqueous system.

  10. Enzyme Analysis to Determine Glucose Content

    NASA Astrophysics Data System (ADS)

    Carpenter, Charles; Ward, Robert E.

    Enzyme analysis is used for many purposes in food science and technology. Enzyme activity is used to indicate adequate processing, to assess enzyme preparations, and to measure constituents of foods that are enzyme substrates. In this experiment, the glucose content of corn syrup solids is determined using the enzymes, glucose oxidase and peroxidase. Glucose oxidase catalyzes the oxidation of glucose to form hydrogen peroxide (H2O2), which then reacts with a dye in the presence of peroxidase to give a stable colored product.

  11. Structural and functional determination of homologs of the Mycobacterium tuberculosisN-acetylglucosamine-6-phosphate deacetylase (NagA).

    PubMed

    Ahangar, Mohd Syed; Furze, Christopher M; Guy, Collette S; Cooper, Charlotte; Maskew, Kathryn S; Graham, Ben; Cameron, Alexander D; Fullam, Elizabeth

    2018-05-04

    The Mycobacterium tuberculosis (Mtb) pathogen encodes an N -acetylglucosamine-6-phosphate deacetylase enzyme, NagA (Rv3332), that belongs to the amidohydrolase superfamily. NagA enzymes catalyze the deacetylation of N -acetylglucosamine-6-phosphate (GlcNAc6P) to glucosamine-6-phosphate (GlcN6P). NagA is a potential anti-tubercular drug target because it represents the key enzymatic step in the generation of essential amino-sugar precursors required for Mtb cell wall biosynthesis and also influences recycling of cell wall peptidoglycan fragments. Here, we report the structural and functional characterization of NagA from Mycobacterium smegmatis (MSNagA) and Mycobacterium marinum (MMNagA), close relatives of Mtb Using a combination of X-ray crystallography, site-directed mutagenesis, and biochemical and biophysical assays, we show that these mycobacterial NagA enzymes are selective for GlcNAc6P. Site-directed mutagenesis studies revealed crucial roles of conserved residues in the active site that underpin stereo-selective recognition, binding, and catalysis of substrates. Moreover, we report the crystal structure of MSNagA in both ligand-free form and in complex with the GlcNAc6P substrate at 2.6 Å and 2.0 Å resolutions, respectively. The GlcNAc6P-complex structure disclosed the precise mode of GlcNAc6P binding and the structural framework of the active site, including two divalent metals located in the α/β binuclear site. Furthermore, we observed a cysteine residue located on a flexible loop region that occludes the active site. This cysteine is unique to mycobacteria and may represent a unique subsite for targeting mycobacterial NagA enzymes. Our results provide critical insights into the structural and mechanistic properties of mycobacterial NagA enzymes having an essential role in amino-sugar and nucleotide metabolism in mycobacteria. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  12. A glycosynthase derived from an inverting GH19 chitinase from the moss Bryum coronatum.

    PubMed

    Ohnuma, Takayuki; Fukuda, Tatsuya; Dozen, Satoshi; Honda, Yuji; Kitaoka, Motomitsu; Fukamizo, Tamo

    2012-06-15

    BcChi-A, a GH19 chitinase from the moss Bryum coronatum, is an endo-acting enzyme that hydrolyses the glycosidic bonds of chitin, (GlcNAc)(n) [a β-1,4-linked polysaccharide of GlcNAc (N-acetylglucosamine) with a polymerization degree of n], through an inverting mechanism. When the wild-type enzyme was incubated with α-(GlcNAc)2-F [α-(GlcNAc)(2) fluoride] in the absence or presence of (GlcNAc)(2), (GlcNAc)(2) and hydrogen fluoride were found to be produced through the Hehre resynthesis-hydrolysis mechanism. To convert BcChi-A into a glycosynthase, we employed the strategy reported by Honda et al. [(2006) J. Biol. Chem. 281, 1426-1431; (2008) Glycobiology 18, 325-330] of mutating Ser(102), which holds a nucleophilic water molecule, and Glu(70), which acts as a catalytic base, producing S102A, S102C, S102D, S102G, S102H, S102T, E70G and E70Q. In all of the mutated enzymes, except S102T, hydrolytic activity towards (GlcNAc)(6) was not detected under the conditions we used. Among the inactive BcChi-A mutants, S102A, S102C, S102G and E70G were found to successfully synthesize (GlcNAc)(4) as a major product from α-(GlcNAc)(2)-F in the presence of (GlcNAc)(2). The S102A mutant showed the greatest glycosynthase activity owing to its enhanced F(-) releasing activity and its suppressed hydrolytic activity. This is the first report on a glycosynthase that employs amino sugar fluoride as a donor substrate.

  13. Understanding the Role of O-GlcNAc Modifications in Plant Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, Neil, E.

    2011-06-16

    This project has contributed towards understanding the role of O-GlcNAc (O-linked N-acetylglucosamine) transferases (OGTs) in plants. Through analyses of single and double mutants, we have investigated the unique and overlapping functions of SECRET AGENT (SEC) and SPINDLY (SPY), the arabidopsis OGTs. This work showed that SEC functions as negative regulators of the long-day flowering pathway. SEC also has a positive role in regulation of rosette. An E. coli co-expression system that allows potential substrates to be co-expressed with and O-GlcNAc modified by SEC was developed. We showed that SEC is a bona fide OGT that modifies itself with single O-linkedmore » GlcNAc(s). Using this system, we tested a number of proteins that were hypothesized to be substrates of SEC and identified a number of substrates include GIGANTEA (GI), a component of the long day flowering pathway. The hypothesis that O-GlcNAc modification controls GI activity was tested by first mapping where E. coli-expressed SEC modifies GI and then assessing the activity of a non-modifiable mutant form of GI. The activity of the mutant form of GI was indistinguishable from that of wild type suggesting that either O-GlcNAc does not regulate GI activity or that additional modification sites exist on GI. In collaboration with Dr. Juan Antonio Garcia at Universidad Autónoma de Madrid the role of O-GlcNAc modification of the plum pox virus coat protein (PPV-CP) was investigated. SEC was shown to O-GlcNAc modify PPV-CP and the modification was shown to facilitate the infection process. E. coli-expressed SEC was shown to modify the same PPV-CP sites that are modified in plants. SEC has a large protein interaction domain called the TPR domain that has been hypothesized to have a role in determining the substrate specificity of the enzyme and/or to regulate its activity. A mutational analysis of the TPR domain did not find evidence for a role in substrate specificity but did obtain evidence that the domain

  14. Quality-related enzymes in plant-based products: effects of novel food-processing technologies part 3: ultrasonic processing.

    PubMed

    Terefe, Netsanet Shiferaw; Buckow, Roman; Versteeg, Cornelis

    2015-01-01

    High-power ultrasound is a versatile technology which can potentially be used in many food processing applications including food preservation. This is part 2 of a series of review articles dealing with the effectiveness of nonthermal food processing technologies in food preservation focusing on their effect on enzymes. Typically, ultrasound treatment alone does not efficiently cause microbial or enzyme inactivation sufficient for food preservation. However, combined with mild heat with or without elevated pressure (P ≤ 500 kPa), ultrasound can effectively inactivate enzymes and microorganisms. Synergistic effects between ultrasound and mild heat have been reported for the inactivation of both enzymes and microorganisms. The application of ultrasound has been shown to enhance the rate of inactivation of quality degrading enzymes including pectin methylesterase (PME), polygalacturonase (PG), peroxidase (POD), polyphenol oxidase (PPO), and lipoxygenase (LOX) at mild temperature by up to 400 times. Moreover, ultrasound enables the inactivation of relatively heat-resistant enzymes such as tomato PG1 and thermostable orange PME at mild temperature conditions. The extent to which ultrasound enhances the inactivation rate depends on the type of enzyme, the medium in which the enzyme is suspended, and the processing condition including frequency, ultrasonic intensity, temperature, and pressure. The physical and chemical effects of cavitation are considered to be responsible for the ultrasound-induced inactivation of enzymes, although the dominant mechanism depends on the structure of the enzyme.

  15. Glycosylation and processing of high-mannose oligosaccharides of thyroid-stimulating hormone subunits: comparison to nonsecretory cell glycoproteins.

    PubMed

    Ronin, C; Stannard, B S; Rosenbloom, I L; Magner, J A; Weintraub, B D

    1984-09-25

    Thyroid-stimulating hormone (TSH) subunit glycosylation was compared to that of total cell glycoproteins in mouse thyrotropic tumors. Lipid-linked oligosaccharides, total cell glycoproteins, and TSH subunits were labeled with either [3H]mannose, [3H]galactose, or [3H]glucose in pulse and pulse-chase experiments. The various oligosaccharides were isolated respectively by lipid extraction and mild acid hydrolysis, by selective immunoprecipitation, or by acid precipitation followed by trypsin and endoglycosidase H treatment. The nature of the oligosaccharides was assessed by their migration in paper chromatography, their relative incorporation of different precursors, and also their resistance to alpha-mannosidase. At 60 min, lipid-linked oligosaccharides were found to be composed of Glc3-2Man9GlcNAc2, Man9-8GlcNAc2, and Man5GlcNAc2. At 10 or 60 min of labeling, total cell proteins contained Glc3Man9GlcNAc2, Glc1Man9GlcNAc2, Man9GlcNAc2, Glc1Man8GlcNAc2, Man8GlcNAc2, and Man7GlcNAc2. The largest oligosaccharide, Glc3Man9GlcNAc2, had an unusually long half-life of about 2 h. In contrast, no Glc3Man9GlcNAc2 was found either on TSH + alpha subunits or on free beta subunits isolated either by immunoprecipitation or by sodium dodecyl sulfate gel electrophoresis. Instead, primarily Man9GlcNAc2 was found after a 10-min pulse both on TSH + alpha subunits and on beta subunits. When the pulse was followed by a chase up to 2 h, there was a progressive increase in Man8GlcNAc2 in higher amounts on TSH + alpha-subunit carbohydrate chains than on beta subunits.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. A two-stage process facilitating microbial lipid production from N-acetylglucosamine by Cryptococcus curvatus cultured under non-sterile conditions.

    PubMed

    Tang, Mou; Zhou, Wenting; Liu, Yi; Yan, Jiabao; Gong, Zhiwei

    2018-06-01

    N-acetylglucosamine (GlcNAc), the monomeric constituent of chitin, is rarely studied for lipid production by oleaginous species. This study demonstrated that Cryptococcus curvatus had a great capacity to convert GlcNAc into lipid with high yield using a two-stage production process. Optimal inoculum age and inoculation size strongly improved the two-stage lipid production efficiency. More interestingly, this process rendered superior lipid production under non-sterile condition. The acetate liberated from GlcNAc was consumed timely, while the NH 4 + released was rarely assimilated. Lipid titre, lipid content and lipid yield reached 9.9 g/L, 56.9% and 0.23 g/g, respectively, which were significantly higher than those from the conventional process where cell growth and lipid accumulation were coupled. The resulting lipid samples had similar fatty acid compositional profiles to those of vegetable oil, suggesting their potential for biodiesel production. These findings strongly supported the two-stage process as an attractive strategy for better techno-economics of the chitin-to-biodiesel routes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme

    NASA Technical Reports Server (NTRS)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The synthesis of indole-3-acetyl-1-O-beta-D-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as rho-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed.

  18. Exquisite Enzyme-Fenton Biomimetic Catalysts for Hydroxyl Radical Production by Mimicking an Enzyme Cascade.

    PubMed

    Zhang, Qi; Chen, Shuo; Wang, Hua; Yu, Hongtao

    2018-03-14

    Hydrogen peroxide (H 2 O 2 ) is a key reactant in the Fenton process. As a byproduct of enzymatic reaction, H 2 O 2 can be obtained via catalytical oxidation of glucose using glucose oxidase in the presence of O 2 . Another oxidation product (gluconic acid) can suitably adjust the microenvironmental pH contributing to the Fe 3+ /Fe 2+ cycle in the Fenton reaction. Enzymes are extremely efficient at catalyzing a variety of reactions with high catalytic activity, substrate specificity, and yields in living organisms. Inspired by the multiple functions of natural multienzyme systems, an exquisite nanozyme-modified α-FeOOH/porous carbon (PC) biomimetic catalyst constructed by in situ growth of glucose oxidase-mimicking Au nanoparticles and crystallization of adsorbed ferric ions within carboxyl into hierarchically PC is developed as an efficient enzyme-Fenton catalyst. The products (H 2 O 2 , ∼4.07 mmol·L -1 ) of the first enzymatic reaction are immediately used as substrates for the second Fenton-like reaction to generate the valuable • OH (∼96.84 μmol·L -1 ), thus mimicking an enzyme cascade pathway. α-FeOOH nanocrystals, attached by C-O-Fe bondings, are encapsulated into the mesoporous PC frameworks, facilitating the electron transfer between α-FeOOH and the PC support and greatly suppressing iron leaching. This study paves a new avenue for designing biomimetic enzyme-based Fenton catalysts mimicking a natural system for • OH production.

  19. Potentiometric glucose biosensor based on core-shell Fe3O4-enzyme-polypyrrole nanoparticles.

    PubMed

    Yang, Zhengpeng; Zhang, Chunjing; Zhang, Jianxin; Bai, Wanbei

    2014-01-15

    Core-shell Fe3O4-enzyme-polypyrrole (Ppy) nanoparticles with excellent magnetism and conductivity were successfully prepared via the surface modification and enzyme self-encapsulation within Ppy. A novel potentiometric glucose biosensor has been constructed by effectively attaching the proposed Fe3O4-enzyme-Ppy nanoparticles to the surface of the magnetic glassy carbon electrode (MGCE). The optimum biosensing conditions could be provided with polymerization time of pyrrole for 6h and 0.42 mg immobilization amount of Fe3O4-enzyme-Ppy nanoparticles on MGCE. The performance of the developed glucose biosensor was evaluated and the results indicated that a sensitive glucose biosensor could be fabricated. The obtained glucose biosensor presents shorter response time (6 s), wider linear range (0.5 μM to 34 mM), lower limit of detection (LOD, 0.3 μM), high-selectivity monitoring of glucose and good stability (with about 98.1% of the initial response signal retained after 20 days). The analytical application of the glucose biosensor confirms the feasibility of glucose detection in serum sample. © 2013 Elsevier B.V. All rights reserved.

  20. Identification of GIG1, a GlcNAc-Induced Gene in Candida albicans Needed for Normal Sensitivity to the Chitin Synthase Inhibitor Nikkomycin Z▿§

    PubMed Central

    Gunasekera, Angelo; Alvarez, Francisco J.; Douglas, Lois M.; Wang, Hong X.; Rosebrock, Adam P.; Konopka, James B.

    2010-01-01

    The amino sugar N-acetylglucosamine (GlcNAc) is known to be an important structural component of cells from bacteria to humans, but its roles in cell signaling are less well understood. GlcNAc induces two pathways in the human fungal pathogen Candida albicans. One activates cyclic AMP (cAMP) signaling, which stimulates the formation of hyphal cells and the expression of virulence genes, and the other pathway induces genes needed to catabolize GlcNAc. Microarray analysis of gene expression was carried out under four different conditions in order to characterize the transcriptional changes induced by GlcNAc. The most highly induced genes include those that encode a GlcNAc transporter (NGT1) and the GlcNAc catabolic enzymes (HXK1, DAC1, and NAG1). GlcNAc also activated most of the genes whose expression is increased when cells are triggered with other stimuli to form hyphae. Surprisingly, GlcNAc also induced a subset of genes that are regulated by galactose (GAL1, GAL7, and GAL10), which may be due to cross talk between signaling pathways. A novel GlcNAc-induced gene, GIG1, which is not essential for GlcNAc catabolism or the induction of hyphae, was identified. However, a Gig1-green fluorescent protein (GFP) fusion protein was specifically induced by GlcNAc, and not by other sugars. Gig1-GFP localized to the cytoplasm, where GlcNAc metabolism occurs. Significantly, a gig1Δ mutant displayed increased resistance to nikkomycin Z, which inhibits chitin synthase from converting UDP-GlcNAc into cell wall chitin. Gig1 is highly conserved in fungi, especially those that contain GlcNAc catabolic genes. These results implicate Gig1 in GlcNAc metabolism. PMID:20675577

  1. Enzymic Synthesis of Indole-3-Acetyl-1-O-β-d-Glucose 1

    PubMed Central

    Leznicki, Antoni J.; Bandurski, Robert S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-β-d-glucose from uridine-5′-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss. Images Fig. 4 PMID:11537438

  2. An Improved Ultrasensitive Enzyme-Linked Immunosorbent Assay Using Hydrangea-Like Antibody-Enzyme-Inorganic Three-in-One Nanocomposites.

    PubMed

    Wei, Tianxiang; Du, Dan; Zhu, Mei-Jun; Lin, Yuehe; Dai, Zhihui

    2016-03-01

    Protein-inorganic nanoflowers, composed of protein and copper(II) phosphate (Cu3(PO4)2), have recently grabbed people's attention. Because the synthetic method requires no organic solvent and because of the distinct hierarchical nanostructure, protein-inorganic nanoflowers display enhanced catalytic activity and stability and would be a promising tool in biocatalytical processes and biological and biomedical fields. In this work, we first coimmobilized the enzyme, antibody, and Cu3(PO4)2 into a three-in-one hybrid protein-inorganic nanoflower to enable it to possess dual functions: (1) the antibody portion retains the ability to specifically capture the corresponding antigen; (2) the nanoflower has enhanced enzymatic activity and stability to produce an amplified signal. The prepared antibody-enzyme-inorganic nanoflower was first applied in an enzyme-linked immunosorbent assay to serve as a novel enzyme-labeled antibody for Escherichia coli O157:H7 (E. coli O157:H7) determination. The detection limit is 60 CFU L(-1), which is far superior to commercial ELISA systems. The three-in-one antibody (anti-E. coli O157:H7 antibody)-enzyme (horseradish peroxidase)-inorganic (Cu3(PO4)2) nanoflower has some advantages over commercial enzyme-antibody conjugates. First, it is much easier to prepare and does not need any complex covalent modification. Second, it has fairly high capture capability and catalytic activity because it is presented as aggregates of abundant antibodies and enzymes. Third, it has enhanced enzymatic stability compared to the free form of enzyme due to the unique hierarchical nanostructure.

  3. OLED-based biosensing platform with ZnO nanoparticles for enzyme immobilization

    NASA Astrophysics Data System (ADS)

    Cai, Yuankun; Shinar, Ruth; Shinar, Joseph

    2009-08-01

    Organic light-emitting diode (OLED)-based sensing platforms are attractive for photoluminescence (PL)-based monitoring of a variety of analytes. Among the promising OLED attributes for sensing applications is the thin and flexible size and design of the OLED pixel array that is used for PL excitation. To generate a compact, fielddeployable sensor, other major sensor components, such as the sensing probe and the photodetector, in addition to the thin excitation source, should be compact. To this end, the OLED-based sensing platform was tested with composite thin biosensing films, where oxidase enzymes were immobilized on ZnO nanoparticles, rather than dissolved in solution, to generate a more compact device. The analytes tested, glucose, cholesterol, and lactate, were monitored by following their oxidation reactions in the presence of oxygen and their respective oxidase enzymes. During such reactions, oxygen is consumed and its residual concentration, which is determined by the initial concentration of the above-mentioned analytes, is monitored. The sensors utilized the oxygen-sensitive dye Pt octaethylporphyrin, embedded in polystyrene. The enzymes were sandwiched between two thin ZnO layers, an approach that was found to improve the stability of the sensing probes.

  4. A performance comparison of choline biosensors: anodic or cathodic detections of H2O2 generated by enzyme immobilized on a conducting polymer.

    PubMed

    Rahman, Md Aminur; Park, Deog-Soo; Shim, Yoon-Bo

    2004-07-15

    Amperometric choline biosensors were fabricated by the covalent immobilization of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO/horseradish peroxidase (ChO/HRP) onto poly-5,2':5',2"-terthiophene-3'-carboxylic acid (poly-TTCA) modified electrodes (CPMEs). A sensor modified with ChO utilized the oxidation process of enzymatically generated H(2)O(2) in a choline solution at +0.6V. The other one modified with ChO/HRP utilized the reduction process of H(2)O(2) in a choline solution at -0.2V. Experimental parameters affecting the sensitivity of sensors, such as pH, applied potential, and temperature were optimized. A performance comparison of two sensors showed that one based on ChO/HRP/CPME had a linear range from 1.0 x 10(-6) to 8.0 x 10(-5) M and the other based on ChO/CPME from 1.0 x 10(-6) to 5.0 x 10(-5) M. The detection limits for choline employing ChO/HRP/CPME and ChO/CPME were determined to be about 1.0 x 10(-7) and 4.0 x 10(-7) M, respectively. The response time of sensors was less than 5s. Sensors showed good selectivity to interfering species. The long-term storage stability of the sensor based on ChO/HRP/CPME was longer than that based on ChO/CPME.

  5. A Knowledge-Based System for Display and Prediction of O-Glycosylation Network Behaviour in Response to Enzyme Knockouts

    PubMed Central

    McDonald, Andrew G.; Tipton, Keith F.; Davey, Gavin P.

    2016-01-01

    O-linked glycosylation is an important post-translational modification of mucin-type protein, changes to which are important biomarkers of cancer. For this study of the enzymes of O-glycosylation, we developed a shorthand notation for representing GalNAc-linked oligosaccharides, a method for their graphical interpretation, and a pattern-matching algorithm that generates networks of enzyme-catalysed reactions. Software for generating glycans from the enzyme activities is presented, and is also available online. The degree distributions of the resulting enzyme-reaction networks were found to be Poisson in nature. Simple graph-theoretic measures were used to characterise the resulting reaction networks. From a study of in-silico single-enzyme knockouts of each of 25 enzymes known to be involved in mucin O-glycan biosynthesis, six of them, β-1,4-galactosyltransferase (β4Gal-T4), four glycosyltransferases and one sulfotransferase, play the dominant role in determining O-glycan heterogeneity. In the absence of β4Gal-T4, all Lewis X, sialyl-Lewis X, Lewis Y and Sda/Cad glycoforms were eliminated, in contrast to knockouts of the N-acetylglucosaminyltransferases, which did not affect the relative abundances of O-glycans expressing these epitopes. A set of 244 experimentally determined mucin-type O-glycans obtained from the literature was used to validate the method, which was able to predict up to 98% of the most common structures obtained from human and engineered CHO cell glycoforms. PMID:27054587

  6. Nutraceutical composition of Zizyphus mauritiana Lamk (Indian ber): effect of enzyme-assisted processing.

    PubMed

    Koley, Tanmay Kumar; Walia, Shweta; Nath, Prerna; Awasthi, O P; Kaur, Charanjit

    2011-05-01

    Zizyphus (Indian ber) is an excellent source of several phenolic compounds. The effect of two cell wall degrading enzymes, namely pectinase and viscozyme, on the nutraceutical composition of Zizyphus juice was investigated in the present study. Enzyme assisted processing significantly (P < 0.05) improved the juice yield, total soluble solids, total phenolics and total antioxidant activity (AOX). There was significant increase in recovery of antioxidants, to the tune of 70.51%, 66%, and 45% respectively in ascorbic acid, total phenolics and total flavonoids through viscozyme. The in-vitro total AOX of juice extracted via enzyme-assisted processing was 20.9 and 15.59 μmol Trolox/ml in ferric-reducing antioxidant power and cupric-reducing antioxidant capacity assays, respectively. There was 41% increase in AOX of juice extracted with enzyme over straight pressed juice. Results indicate that enzyme-assisted processing can significantly improve the functional properties of the Zizyphus juice.

  7. Crystal structure of the mutant D52S hen egg white lysozyme with an oligosaccharide product.

    PubMed

    Hadfield, A T; Harvey, D J; Archer, D B; MacKenzie, D A; Jeenes, D J; Radford, S E; Lowe, G; Dobson, C M; Johnson, L N

    1994-11-11

    The crystal structure of a mutant hen egg white lysozyme, in which the key catalytic residue aspartic acid 52 has been changed to a serine residue (D52S HEWL), has been determined and refined to a crystallographic R value of 0.173 for all data F > 0 between 8 and 1.9 A resolution. The D52S HEWL structure is very similar to the native HEWL structure (r.m.s. deviation of main-chain atoms 0.20 A). Small shifts that result from the change in hydrogen bonding pattern on substitution of Asp by Ser were observed in the loop between beta-strands in the region of residues 46 to 49. D52S HEWL exhibits less than 1% activity against the bacterial cell wall substrate. Cocrystallisation experiments with the hexasaccharide substrate beta(1-4) polymer of N-acetyl-D-glucosamine (GlcNAc6) resulted in crystals between 5 days and 14 days after the initial mixing of enzyme and substrate. Analysis by laser absorption mass spectrometry of the oligosaccharides present after incubation with native and D52S HEWL under conditions similar to those used for crystal growth showed that after 14 days with native HEWL complete catalysis to GlcNAc3. GlcNAc2 and GlcNac had occurred but with D52S HEWL only partial catalysis to the major products GlcNAc4 and GlcNAc2 had occurred and at least 50% of the GlcNAc6 remained intact. X-ray analysis of the D52S-oligosaccharide complex crystals showed that they contained the product GlcNAc4. The structure of the D52S HEWL-GlcNAc4 complex has been determined and refined to an R value of 0.160 for data between 8 and 2 A resolution. GlcNAc4 occupies sites A to D in the active site cleft. Careful refinement and examination of 2Fo-Fc electron density maps showed that the sugar in site D has the sofa conformation, a conformation previously observed with the HEWL complex with tetra-N-acetylglucosamine lactone transition state analogue, the HEWL complex with the cell wall trisaccharide and the phage T4 lysozyme complex with a cell wall product. The semi-axial C(5)-C(6

  8. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays

    NASA Technical Reports Server (NTRS)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-beta-D-glucose from uridine-5'-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.

  9. A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures.

    PubMed

    Baloach, Qurrat-Ul-Ain; Tahira, Aneela; Mallah, Arfana Begum; Abro, Muhammad Ishaq; Uddin, Siraj; Willander, Magnus; Ibupoto, Zafar Hussain

    2016-11-14

    The production of a nanomaterial with enhanced and desirable electrocatalytic properties is of prime importance, and the commercialization of devices containing these materials is a challenging task. In this study, unique cupric oxide (CuO) nanostructures were synthesized using lysine as a soft template for the evolution of morphology via a rapid and boiled hydrothermal method. The morphology and structure of the synthesized CuO nanomaterial were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The prepared CuO nanostructures showed high potential for use in the electrocatalytic oxidation of glucose in an alkaline medium. The proposed enzyme-free glucose sensor demonstrated a robust response to glucose with a wide linear range and high sensitivity, selectivity, stability, and reproducibility. To explore its practical feasibility, the glucose content of serum samples was successfully determined using the enzyme-free sensor. An analytical recovery method was used to measure the actual glucose from the serum samples, and the results were satisfactory. Moreover, the presented glucose sensor has high chemical stability and can be reused for repetitive measurements. This study introduces an enzyme-free glucose sensor as an alternative tool for clinical glucose quantification.

  10. A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures

    PubMed Central

    Baloach, Qurrat-ul-Ain; Tahira, Aneela; Mallah, Arfana Begum; Abro, Muhammad Ishaq; Uddin, Siraj; Willander, Magnus; Ibupoto, Zafar Hussain

    2016-01-01

    The production of a nanomaterial with enhanced and desirable electrocatalytic properties is of prime importance, and the commercialization of devices containing these materials is a challenging task. In this study, unique cupric oxide (CuO) nanostructures were synthesized using lysine as a soft template for the evolution of morphology via a rapid and boiled hydrothermal method. The morphology and structure of the synthesized CuO nanomaterial were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The prepared CuO nanostructures showed high potential for use in the electrocatalytic oxidation of glucose in an alkaline medium. The proposed enzyme-free glucose sensor demonstrated a robust response to glucose with a wide linear range and high sensitivity, selectivity, stability, and reproducibility. To explore its practical feasibility, the glucose content of serum samples was successfully determined using the enzyme-free sensor. An analytical recovery method was used to measure the actual glucose from the serum samples, and the results were satisfactory. Moreover, the presented glucose sensor has high chemical stability and can be reused for repetitive measurements. This study introduces an enzyme-free glucose sensor as an alternative tool for clinical glucose quantification. PMID:27854253

  11. Genetic analysis of the roles of agaA, agaI, and agaS genes in the N-acetyl-D-galactosamine and D-galactosamine catabolic pathways in Escherichia coli strains O157:H7 and C

    PubMed Central

    2013-01-01

    Background The catabolic pathways of N-acetyl-D-galactosamine (Aga) and D-galactosamine (Gam) in E. coli were proposed from bioinformatic analysis of the aga/gam regulon in E. coli K-12 and later from studies using E. coli C. Of the thirteen genes in this cluster, the roles of agaA, agaI, and agaS predicted to code for Aga-6-P-deacetylase, Gam-6-P deaminase/isomerase, and ketose-aldolase isomerase, respectively, have not been experimentally tested. Here we study their roles in Aga and Gam utilization in E. coli O157:H7 and in E. coli C. Results Knockout mutants in agaA, agaI, and agaS were constructed to test their roles in Aga and Gam utilization. Knockout mutants in the N-acetylglucosamine (GlcNAc) pathway genes nagA and nagB coding for GlcNAc-6-P deacetylase and glucosamine-6-P deaminase/isomerase, respectively, and double knockout mutants ΔagaA ΔnagA and ∆agaI ∆nagB were also constructed to investigate if there is any interplay of these enzymes between the Aga/Gam and the GlcNAc pathways. It is shown that Aga utilization was unaffected in ΔagaA mutants but ΔagaA ΔnagA mutants were blocked in Aga and GlcNAc utilization. E. coli C ΔnagA could not grow on GlcNAc but could grow when the aga/gam regulon was constitutively expressed. Complementation of ΔagaA ΔnagA mutants with either agaA or nagA resulted in growth on both Aga and GlcNAc. It was also found that ΔagaI, ΔnagB, and ∆agaI ΔnagB mutants were unaffected in utilization of Aga and Gam. Importantly, ΔagaS mutants were blocked in Aga and Gam utilization. Expression analysis of relevant genes in these strains with different genetic backgrounds by real time RT-PCR supported these observations. Conclusions Aga utilization was not affected in ΔagaA mutants because nagA was expressed and substituted for agaA. Complementation of ΔagaA ΔnagA mutants with either agaA or nagA also showed that both agaA and nagA can substitute for each other. The ∆agaI, ∆nagB, and ∆agaI ∆nagB mutants were

  12. Quality-related enzymes in fruit and vegetable products: effects of novel food processing technologies, part 1: high-pressure processing.

    PubMed

    Terefe, Netsanet Shiferaw; Buckow, Roman; Versteeg, Cornelis

    2014-01-01

    The activity of endogenous deteriorative enzymes together with microbial growth (with associated enzymatic activity) and/or other non-enzymatic (usually oxidative) reactions considerably shorten the shelf life of fruits and vegetable products. Thermal processing is commonly used by the food industry for enzyme and microbial inactivation and is generally effective in this regard. However, thermal processing may cause undesirable changes in product's sensory as well as nutritional attributes. Over the last 20 years, there has been a great deal of interest shown by both the food industry and academia in exploring alternative food processing technologies that use minimal heat and/or preservatives. One of the technologies that have been investigated in this context is high-pressure processing (HPP). This review deals with HPP focusing on its effectiveness for controlling quality-degrading enzymes in horticultural products. The scientific literature on the effects of HPP on plant enzymes, mechanism of action, and intrinsic and extrinsic factors that influence the effectiveness of HPP for controlling plant enzymes is critically reviewed. HPP inactivates vegetative microbial cells at ambient temperature conditions, resulting in a very high retention of the nutritional and sensory characteristics of the fresh product. Enzymes such as polyphenol oxidase (PPO), peroxidase (POD), and pectin methylesterase (PME) are highly resistant to HPP and are at most partially inactivated under commercially feasible conditions, although their sensitivity towards pressure depends on their origin as well as their environment. Polygalacturonase (PG) and lipoxygenase (LOX) on the other hand are relatively more pressure sensitive and can be substantially inactivated by HPP at commercially feasible conditions. The retention and activation of enzymes such as PME by HPP can be beneficially used for improving the texture and other quality attributes of processed horticultural products as well as

  13. Effects of brefeldin A on oligosaccharide processing. Evidence for decreased branching of complex-type glycans and increased formation of hybrid-type glycans.

    PubMed

    Chawla, D; Hughes, R C

    1991-10-01

    Brefeldin A (BFA), a drug that induces redistribution of Golgi-apparatus proteins into the endoplasmic reticulum, was used to determine the role of subcellular compartmentalization in the processing of asparagine-linked oligosaccharides. Baby-hamster kidney cells were pulse-labelled with [3H]mannose for 30-60 min and chased for up to several hours in the presence or in the absence of BFA or labelled continuously for several hours with and without the drug. Cellular glycoproteins were digested to glycopeptides with Pronase and either fractionated into glycan classes by lectin affinity chromatography or digested further by endoglycosidase H and endoglycosidase D. Released oligosaccharides obtained in the latter procedure were then separated from each other and from endoglycosidase-resistant glycopeptides by paper chromatography. The results show that BFA induces a very fast processing of protein-linked Glc3Man9GlcNAc2 oligosaccharide down to man5GlcNAc2 and conversion into complex-type and hybrid-type glycans. The major difference between untreated and BFA-treated cells is a large increase in bi-antennary and hybrid-type glycans in the latter cells. These results indicate that galactosylation of a mono-antennary GlcNAcMan5GlcNAc2 hybrid blocks subsequent action by mannosidase II and N-acetylglucosaminyl transferase II, producing galactosylated hybrid-type glycans. Similarly, galactosylation of the product of N-acetylglucosaminyltransferases I and II, i.e. a Man3GlcNAc2 core substituted with GlcNAc beta 1----2 on both alpha 1----3- and alpha 1----6-linked mannose residues, blocks branching N-acetylglucosaminyltransferases IV and V, thereby causing an increase in bi-antennary glycans and a decrease in tri- and tetra-antennary glycans.

  14. Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system.

    PubMed

    Ohno, Misa; Kimura, Masahiro; Miyazaki, Haruko; Okawa, Kazuaki; Onuki, Riho; Nemoto, Chiyuki; Tabata, Eri; Wakita, Satoshi; Kashimura, Akinori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Nukina, Nobuyuki; Bauer, Peter O; Oyama, Fumitaka

    2016-11-24

    Chitinases are enzymes that hydrolyze chitin, a polymer of β-1, 4-linked N-acetyl-D-glucosamine (GlcNAc). Chitin has long been considered as a source of dietary fiber that is not digested in the mammalian digestive system. Here, we provide evidence that acidic mammalian chitinase (AMCase) can function as a major digestive enzyme that constitutively degrades chitin substrates and produces (GlcNAc) 2 fragments in the mouse gastrointestinal environment. AMCase was resistant to endogenous pepsin C digestion and remained active in the mouse stomach extract at pH 2.0. The AMCase mRNA levels were much higher than those of four major gastric proteins and two housekeeping genes and comparable to the level of pepsinogen C in the mouse stomach tissues. Furthermore, AMCase was expressed in the gastric pepsinogen-synthesizing chief cells. The enzyme was also stable and active in the presence of trypsin and chymotrypsin at pH 7.6, where pepsin C was completely degraded. Mouse AMCase degraded polymeric colloidal and crystalline chitin substrates in the gastrointestinal environments in presence of the proteolytic enzymes. Thus, AMCase can function as a protease-resistant major glycosidase under the conditions of stomach and intestine and degrade chitin substrates to produce (GlcNAc) 2 , a source of carbon, nitrogen and energy.

  15. Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system

    PubMed Central

    Ohno, Misa; Kimura, Masahiro; Miyazaki, Haruko; Okawa, Kazuaki; Onuki, Riho; Nemoto, Chiyuki; Tabata, Eri; Wakita, Satoshi; Kashimura, Akinori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Nukina, Nobuyuki; Bauer, Peter O.; Oyama, Fumitaka

    2016-01-01

    Chitinases are enzymes that hydrolyze chitin, a polymer of β-1, 4-linked N-acetyl-D-glucosamine (GlcNAc). Chitin has long been considered as a source of dietary fiber that is not digested in the mammalian digestive system. Here, we provide evidence that acidic mammalian chitinase (AMCase) can function as a major digestive enzyme that constitutively degrades chitin substrates and produces (GlcNAc)2 fragments in the mouse gastrointestinal environment. AMCase was resistant to endogenous pepsin C digestion and remained active in the mouse stomach extract at pH 2.0. The AMCase mRNA levels were much higher than those of four major gastric proteins and two housekeeping genes and comparable to the level of pepsinogen C in the mouse stomach tissues. Furthermore, AMCase was expressed in the gastric pepsinogen-synthesizing chief cells. The enzyme was also stable and active in the presence of trypsin and chymotrypsin at pH 7.6, where pepsin C was completely degraded. Mouse AMCase degraded polymeric colloidal and crystalline chitin substrates in the gastrointestinal environments in presence of the proteolytic enzymes. Thus, AMCase can function as a protease-resistant major glycosidase under the conditions of stomach and intestine and degrade chitin substrates to produce (GlcNAc)2, a source of carbon, nitrogen and energy. PMID:27883045

  16. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus.

    PubMed

    Eisenbeis, Simone; Lohmiller, Stefanie; Valdebenito, Marianne; Leicht, Stefan; Braun, Volkmar

    2008-08-01

    Among the 67 predicted TonB-dependent outer membrane transporters of Caulobacter crescentus, NagA was found to be essential for growth on N-acetyl-beta-D-glucosamine (GlcNAc) and larger chitin oligosaccharides. NagA (93 kDa) has a predicted typical domain structure of an outer membrane transport protein: a signal sequence, the TonB box EQVVIT, a hatch domain of 147 residues, and a beta-barrel composed of 22 antiparallel beta-strands linked by large surface loops and very short periplasmic turns. Mutations in tonB1 and exbBD, known to be required for maltose transport via MalA in C. crescentus, and in two additional predicted tonB genes (open reading frames cc2327 and cc3508) did not affect NagA-mediated GlcNAc uptake. nagA is located in a gene cluster that encodes a predicted PTS sugar transport system and two enzymes that convert GlcNAc-6-P to fructose-6-P. Since a nagA insertion mutant did not grow on and transport GlcNAc, diffusion of GlcNAc through unspecific porins in the outer membrane is excluded. Uptake of GlcNAc into tonB and exbBD mutants and reduction but not abolishment of GlcNAc transport by agents which dissipate the electrochemical potential of the cytoplasmic membrane (0.1 mM carbonyl cyanide 3-chlorophenylhydrazone and 1 mM 2,4-dinitrophenol) suggest diffusion of GlcNAc through a permanently open pore of NagA. Growth on (GlcNAc)(3) and (GlcNAc)(5) requires ExbB and ExbD, indicating energy-coupled transport by NagA. We propose that NagA forms a small pore through which GlcNAc specifically diffuses into the periplasm and functions as an energy-coupled transporter for the larger chitin oligosaccharides.

  17. Of enzyme use in cost-effective high solid simultaneous saccharification and fermentation processes.

    PubMed

    Sóti, Valentin; Lenaerts, Silvia; Cornet, Iris

    2018-03-20

    Enzyme cost is considered to be one of the most significant factors defining the final product price in lignocellulose hydrolysis and fermentation. Enzyme immobilization and recycling can be a tool to decrease costs. However, high solid loading is a key factor towards high product titers, and recovery of immobilized enzymes from this thick liquid is often overlooked. This paper aims to evaluate the economic feasibility of immobilized enzymes in simultaneous saccharification and fermentation (SSF) of lignocellulose biomass in general, as well as the recuperation of magnetic immobilized enzymes (m-CLEAs) during high solid loading in simultaneous saccharification, detoxification and fermentation processes (SSDF) of lignocellulose biomass. Enzyme prices were obtained from general cost estimations by Klein-Marcuschamer et al. [Klein-Marcuschamer et al. (2012) Biotechnol. Bioeng. 109, 1083-1087]. During enzyme cost analysis, the influence of inoculum recirculation as well as a shortened fermentation time was explored. Both resulted in 15% decrease of final enzyme product price. Enzyme recuperation was investigated experimentally and 99.5 m/m% of m-CLEAs was recovered from liquid medium in one step, while 88 m/m% could still be recycled from a thick liquid with high solid concentrations (SSF fermentation broth). A mathematical model was constructed to calculate the cost of immobilized and free enzyme utilization and showed that, with current process efficiencies and commercial enzyme prices, the cost reduction obtained by enzyme immobilization can reach around 60% compared to free enzyme utilization, while lower enzyme prices will result in a lower percentage of immobilization related savings, but overall enzyme costs will decrease significantly. These results are applied in a case study, estimating the viability of shifting from sugar to lignocellulose substrate for a 100 t lactic acid fermentation batch. It was concluded that it will only be economically feasible

  18. Enzyme-based processing of soybean carbohydrate: Recent developments and future prospects.

    PubMed

    Al Loman, Abdullah; Ju, Lu-Kwang

    2017-11-01

    Soybean is well known for its high-value oil and protein. Carbohydrate is, however, an underutilized major component, representing almost 26-30% (w/w) of the dried bean. The complex soybean carbohydrate is not easily hydrolyzable and can cause indigestibility when included in food and feed. Enzymes can be used to hydrolyze the carbohydrate for improving soybean processing and value of soybean products. Here the enzyme-based processing developed for the following purposes is reviewed: hydrolysis of different carbohydrate-rich by/products from soybean processing, improvement of soybean oil extraction, and increase of nutritional value of soybean-based food and animal feed. Once hydrolyzed into fermentable sugars, soybean carbohydrate can find more value-added applications and further improve the overall economics of soybean processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Analysis of the specificity of sialyltransferases toward mucin core 2, globo, and related structures. identification of the sialylation sequence and the effects of sulfate, fucose, methyl, and fluoro substituents of the carbohydrate chain in the biosynthesis of selectin and siglec ligands, and novel sialylation by cloned alpha2,3(O)sialyltransferase.

    PubMed

    Chandrasekaran, E V; Xue, Jun; Xia, Jie; Chawda, Ram; Piskorz, Conrad; Locke, Robert D; Neelamegham, Sriram; Matta, Khushi L

    2005-11-29

    Sialic acids are key determinants in many carbohydrates involved in biological recognition. We studied the acceptor specificities of three cloned sialyltransferases (STs) [alpha2,3(N)ST, alpha2,3(O)ST, and alpha2,6(N)ST] and another alpha2,3(O)ST present in prostate cancer cell LNCaP toward mucin core 2 tetrasaccharide [Galbeta1,4GlcNAcbeta1,6(Galbeta1,3)GalNAcalpha-O-Bn] and Globo [Galbeta1,3GalNAcbeta1,3Galalpha-O-Me] structures containing sialyl, fucosyl, sulfo, methyl, or fluoro substituents by identifying the products by electrospray ionization tandem mass spectral analysis and other biochemical methods. The Globo precursor was an efficient acceptor for both alpha2,3(N)ST and alpha2,3(O)ST, whereas only alpha2,3(O)ST used its deoxy analogue (d-Fucbeta1,3GalNAcbeta1,3-Gal-alpha-O-Me); 2-O-MeGalbeta1,3GlcNAc and 4-OMeGalbeta1,4GlcNAc were specific acceptors for alpha2,3(N)ST. Other major findings of this study include: (i) alpha2,3 sialylation of beta1,3Gal in mucin core 2 can proceed even after alpha1,3 fucosylation of beta1,6-linked LacNAc. (ii) Sialylation of beta1,3Gal must precede the sialylation of beta1,4Gal for favorable biosynthesis of mucin core 2 compounds. (iii) alpha2,3 sialylation of the 6-O-sulfoLacNAc moiety in mucin core 2 (e.g., GlyCAM-1) is facilitated when beta1,3Gal has already been alpha2,3 sialylated. (iv) alpha2,6(N)ST was absolutely specific for the beta1,4Gal in mucin core 2. Either alpha1,3 fucosylation or 6-O-sulfation of the GlcNAc moiety reduced the activity. Sialylation of beta1,3Gal in addition to 6-O-sulfation of GlcNAc moiety abolished the activity. (v) Prior alpha2,3 sialylation or 3-O-sulfation of beta1,3Gal would not affect alpha2,6 sialylation of Galbeta1,4GlcNAc of mucin core 2. (vi) A 3- or 4-fluoro substituent in beta1,4Gal resulted in poor acceptors for the cloned alpha2,6(N)ST and alpha2,3(N)ST, whereas 4-fluoro- or 4-OMe-Galbeta1,3GalNAcalpha was a good acceptor for cloned alpha2,3(O)ST. (vii) 4-O-Methylation of beta1

  20. Artificial enzyme mimics for catalysis and double natural enzyme co-immobilization.

    PubMed

    Li, Xiaohua; Zhang, Zhujun; Li, Yongbo

    2014-02-01

    This work presents a new chemiluminescent (CL) probe array assay. The new type CL probe array is based on enzyme mimics of Co3O4-SiO2 mesoporous nanocomposite material, which not only have an excellent catalytic effect on the luminol-H2O2 CL reaction in an alkaline medium but also can be used for the immobilization of enzymes. The linear range of the lactose concentration is 3.0 × 10(-7) to 1.0 × 10(-5) g mL(-1) and the detection limit is 6.9 × 10(-8) g mL(-1). β-Galactosidase and glucose oxidase were selected as a model for enzyme assays to demonstrate the applicability of Co3O4-SiO2 mesoporous nanocomposite material in multienzyme immobilization. The novel bifunctional CL probe array has been successfully applied to the determination of lactose in milk.

  1. Greater absolute rates of N2O production and consumption with soil warming dwarf variations in denitrification enzyme temperature sensitivities across seasons

    NASA Astrophysics Data System (ADS)

    Tiemann, L. K.; Billings, S. A.

    2010-12-01

    denitrification (i.e. consumption of gross N2O production into N2) to a greater degree, and permit release of a relatively smaller proportion of the nitrate they consumed as N2O; b) the suite of enzymes responsible for N2O production and the one enzyme responsible for its consumption exhibit differential temperature sensitivities in their production and expression during winter months, but the sensitivity of these processes converges during warmer seasons; c) in spite of the smaller proportion of NO3- released as N2O with warming, warming’s positive influence on the amount of NO3- transformed by denitrifying organisms resulted in far greater absolute quantities of N2O released with incubation and seasonal warming. Continuing work explores the influence that temperature may exert on the relative abundances of denitrifying populations and their gene expression, and links these microbial characteristics to denitrification processes with warming. These data signify the importance of understanding enzyme kinetics in concert with microbial adaptation and acclimation as a factor governing the net fluxes of N2O from soil vs. its transformation into N2 with warming.

  2. Enzymic Synthesis of Indole-3-Acetyl-1-O-β-d-Glucose 1

    PubMed Central

    Leznicki, Antoni J.; Bandurski, Robert S.

    1988-01-01

    The synthesis of indole-3-acetyl-1-O-β-d-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as ρ-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid, and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed. PMID:11537439

  3. Enzyme technology for precision functional food ingredient processes.

    PubMed

    Meyer, Anne S

    2010-03-01

    A number of naturally occurring dietary substances may exert physiological benefits. The production of enhanced levels or particularly tailored versions of such candidate functional compounds can be targeted by enzymatic catalysis. The recent literature contains examples of enhancing bioavailability of iron via enzyme-catalyzed degradation of phytate in wheat bran, increasing diacyl-glycerol and conjugated linoleic acid levels by lipase action, enhancing the absorption of the citrus flavonoid hesperetin via rhamnosidase treatment, and obtaining solubilized dietary fiber via enzymatic modification of potato starch processing residues. Such targeted enzyme-catalyzed reactions provide new invention opportunities for designing functional foods with significant health benefits. The provision of well-defined naturally structured compounds can, moreover, assist in obtaining the much-needed improved understanding of the physiological benefits of complex natural substances.

  4. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Minjing; Qian, Wei-jun; Gao, Yuqian

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes asmore » time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates« less

  5. Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization

    NASA Astrophysics Data System (ADS)

    Patel, Sanjay K. S.; Choi, Seung Ho; Kang, Yun Chan; Lee, Jung-Kul

    2016-03-01

    Multiple-shelled Fe2O3 yolk-shell particles were synthesized using the spray drying method and intended as a suitable support for the immobilization of commercial enzymes such as glucose oxidase (GOx), horseradish peroxidase (HRP), and laccase as model enzymes. Yolk-shell particles have an average diameter of 1-3 μm with pore diameters in the range of 16 to 28 nm. The maximum immobilization of GOx, HRP, and laccase resulted in the enzyme loading of 292, 307 and 398 mg per g of support, respectively. After cross-linking of immobilized laccase by glutaraldehyde, immobilization efficiency was improved from 83.5% to 90.2%. Km and Vmax values were 41.5 μM and 1722 μmol min-1 per mg protein for cross-linked laccase and those for free laccase were 29.3 μM and 1890 μmol min-1 per mg protein, respectively. The thermal stability of the enzyme was enhanced up to 18-fold upon cross-linking, and the enzyme retained 93.1% of residual activity after ten cycles of reuse. The immobilized enzyme has shown up to 32-fold higher stability than the free enzyme towards different solvents and it showed higher efficiency than free laccase in the decolorization of dyes and degradation of bisphenol A. The synthesized yolk-shell particles have 3-fold higher enzyme loading efficiency and lower acute toxicity than the commercial Fe2O3 spherical particles. Therefore, the use of unique yolk-shell structure Fe2O3 particles with multiple-shells will be promising for the immobilization of various enzymes in biotechnological applications with improved electrochemical properties. To the best of our knowledge, this is the first report on the use of one pot synthesized Fe2O3 yolk-shell structure particles for the immobilization of enzymes.Multiple-shelled Fe2O3 yolk-shell particles were synthesized using the spray drying method and intended as a suitable support for the immobilization of commercial enzymes such as glucose oxidase (GOx), horseradish peroxidase (HRP), and laccase as model enzymes

  6. Specificity of Processing α-glucosidase I is guided by the substrate conformation: crystallographic and in silico studies.

    PubMed

    Barker, Megan K; Rose, David R

    2013-05-10

    The enzyme “GluI” is key to the synthesis of critical glycoproteins in the cell. We have determined the structure of GluI, and modeled binding with its unique sugar substrate. The specificity of this interaction derives from a unique conformation of the substrate. Understanding the mechanism of the enzyme is of basic importance and relevant to potential development of antiviral inhibitors. Processing α-glucosidase I (GluI) is a key member of the eukaryotic N-glycosylation processing pathway, selectively catalyzing the first glycoprotein trimming step in the endoplasmic reticulum. Inhibition of GluI activity impacts the infectivity of enveloped viruses; however, despite interest in this protein from a structural, enzymatic, and therapeutic standpoint, little is known about its structure and enzymatic mechanism in catalysis of the unique glycan substrate Glc3Man9GlcNAc2. The first structural model of eukaryotic GluI is here presented at 2-Å resolution. Two catalytic residues are proposed, mutations of which result in catalytically inactive, properly folded protein. Using Autodocking methods with the known substrate and inhibitors as ligands, including a novel inhibitor characterized in this work, the active site of GluI was mapped. From these results, a model of substrate binding has been formulated, which is most likely conserved in mammalian GluI.

  7. CO2-H2O based pretreatment and enzyme hydrolysis of soybean hulls.

    PubMed

    Islam, S M Mahfuzul; Li, Qian; Loman, Abdullah Al; Ju, Lu-Kwang

    2017-11-01

    The high carbohydrate content of soybean hull makes it an attractive biorefinery resource. But hydrolyzing its complex structure requires concerted enzyme activities, at least cellulase, xylanase, pectinase and α-galactosidase. Effective pretreatment that generates minimal inhibitory products is important to facilitate enzymatic hydrolysis. Combined CO 2 -H 2 O pretreatment and enzymatic hydrolysis by Aspergillus niger and Trichoderma reesei enzyme broths was studied here. The pretreatment was evaluated at 80°C-180°C temperature and 750psi-1800psi pressure, with fixed moisture content (66.7%) and pretreatment time (30min). Ground hulls without and with different pretreatments were hydrolyzed by enzyme at 50°C and pH 4.8 and compared for glucose, xylose, galactose, arabinose, mannose and total reducing sugar release. CO 2 -H 2 O pretreatment at 1250psi and 130°C was found to be optimal. Compared to the unpretreated hulls hydrolyzed with 2.5-fold more enzyme, this pretreatment improved glucose, xylose, galactose, arabinose and mannose releases by 55%, 35%, 105%, 683% and 52%, respectively. Conversions of 97% for glucose, 98% for xylose, 41% for galactose, 59% for arabinose, 87% for mannose and 89% for total reducing sugar were achieved with Spezyme CP at 18FPU/g hull. Monomerization of all carbohydrate types was demonstrated. At the optimum pretreatment condition, generation of inhibitors acetic acid, furfural and hydroxymethylfurfural (HMF) was negligible, 1.5mg/g hull in total. The results confirmed the effective CO 2 -H 2 O pretreatment of soybean hulls at much lower pressure and temperature than those reported for biomass of higher lignin contents. The lower pressure requirement reduces the reactor cost and makes this new pretreatment method more practical and economical. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Compartmentalisation of Phosphorylated Free Oligosaccharides in Cells from a CDG Ig Patient Reveals a Novel ER-to-Cytosol Translocation Process

    PubMed Central

    Peric, Delphine; Durrant-Arico, Christelle; Delenda, Christophe; Dupré, Thierry; De Lonlay, Pascale; de Baulny, Hélène Ogier; Pelatan, Cécile; Bader-Meunier, Brigitte; Danos, Olivier; Chantret, Isabelle; Moore, Stuart E. H.

    2010-01-01

    Background Biosynthesis of the dolichol linked oligosaccharide (DLO) required for protein N-glycosylation starts on the cytoplasmic face of the ER to give Man5GlcNAc2-PP-dolichol, which then flips into the ER for further glycosylation yielding mature DLO (Glc3Man9GlcNAc2-PP-dolichol). After transfer of Glc3Man9GlcNAc2 onto protein, dolichol-PP is recycled to dolichol-P and reused for DLO biosynthesis. Because de novo dolichol synthesis is slow, dolichol recycling is rate limiting for protein glycosylation. Immature DLO intermediates may also be recycled by pyrophosphatase-mediated cleavage to yield dolichol-P and phosphorylated oligosaccharides (fOSGN2-P). Here, we examine fOSGN2-P generation in cells from patients with type I Congenital Disorders of Glycosylation (CDG I) in which defects in the dolichol cycle cause accumulation of immature DLO intermediates and protein hypoglycosylation. Methods and Principal Findings In EBV-transformed lymphoblastoid cells from CDG I patients and normal subjects a correlation exists between the quantities of metabolically radiolabeled fOSGN2-P and truncated DLO intermediates only when these two classes of compounds possess 7 or less hexose residues. Larger fOSGN2-P were difficult to detect despite an abundance of more fully mannosylated and glucosylated DLO. When CDG Ig cells, which accumulate Man7GlcNAc2-PP-dolichol, are permeabilised so that vesicular transport and protein synthesis are abolished, the DLO pool required for Man7GlcNAc2-P generation could be depleted by adding exogenous glycosylation acceptor peptide. Under conditions where a glycotripeptide and neutral free oligosaccharides remain predominantly in the lumen of the ER, Man7GlcNAc2-P appears in the cytosol without detectable generation of ER luminal Man7GlcNAc2-P. Conclusions and Significance The DLO pools required for N-glycosylation and fOSGN2-P generation are functionally linked and this substantiates the hypothesis that pyrophosphatase-mediated cleavage of DLO

  9. Determining the N and O isotope effects of microbial nitrite reduction: the global N cycle implications of an enzyme-dependent isotope effect

    NASA Astrophysics Data System (ADS)

    Martin, T. S.; Casciotti, K. L.

    2014-12-01

    The marine nitrogen (N) cycle is a dynamic system of critical importance, since nitrogen is the limiting nutrient in over half of the world's oceans. Denitrification and anammox, the main N loss processes from the ocean, have different effects on carbon cycling and greenhouse gas emission. Understanding the balance between the two processes is vital to understanding the role of the N cycle in global climate change. One approach for investigating these processes is by using stable isotope analysis to estimate the relative magnitudes of N fluxes, particularly for biologically mediated processes. In order to make the most of the currently available isotope analysis techniques, it is necessary to know the isotope effects for each processes occurring in the environment. Nitrite reduction is an important step in denitrification. Previous work had begun to explore the N isotope effects for nitrite reduction, but no oxygen (O) isotope effect has been measured. Additionally, no consideration has been given to the type of nitrite reductase carrying out the reaction. There are two main types of respiratory nitrite reductase, one that is Cu-based and another that is Fe-based. We performed batch culture experiments with denitrifier strains possessing either a Cu-type or Fe-type nitrite reductase. Both N and O isotope effects for nitrite reduction were determined for each of these experiments by measuring the NO2- concentration, as well as the N and O isotopes of nitrite and applying a Rayleigh fractionation model. Both the N and O isotope effects were found to be significantly different between the two types of enzymes. This enzyme-linked difference in isotope effects emphasizes the importance of microbial community composition within the global N cycle.

  10. Biosynthetic processing of the oligosaccharide chains of cellular fibronectin.

    PubMed

    Olden, K; Hunter, V A; Yamada, K M

    1980-10-15

    We have examined the maturation or processing of the oligosaccharides of cellular fibronectin in cultured chick embryo fibroblasts. Fibronectin was pulse-labeled with [2-3H]mannose of [35S]methionine, and the turnover rates of carbohydrate and polypeptide portions of immunoprecipitated fibronectin were compared. The oligosaccharides on fibronectin were analyzed by gel electrophoresis for alterations in sensitivity to the enzyme endo-beta-N-acetylgluosaminidase H, which specifically cleaves the 'high-mannose' class of asparagine-linked oligosaccharide. Incorporated mannose was removed only at early time points, suggesting that the structure of fibronectin oligosaccharides was altered due to processing. This possibility was confirmed by the analysis of glycopeptides generated by exhaustive pronase digestion. Two major glycopeptide structures were detected; their properties correspond to a 'high-mannose' oligosaccharide precursor and a 'complex' carbohydrate product. The precursor-product relationship of these two forms of oligosaccharide chains was demonstrated by pulse-chase labeling experiments. The precursor glycopeptide had an apparent size (Mr 2100) comparable to (Man)9GlcNAc (Mr 2080), and was sensitive to endo-beta-N-acetylglucosaminidase H; nearly all of the labeled mannose incorporated in a 10 min pulse was released from fibronectin glycopeptides by this enzyme. During a 90 min chase period, the glycopeptides became larger and increasingly resistant to endo-beta-N-acetylglucosaminidase H cleavage. The final 'complex' or processed oligosaccharide structure contained approximately two-thirds less [3H]mannose, was insensitive to endo-beta-N-acetylglucosaminidase H and had an apparent Mr of 2300 as estimated by gel filtration. We conclude that the carbohydrate portion of fibronectin is synthesized as a 'high-mannose' intermediate and is subsequently processed to give the characteristic 'complex' oligosaccharide chains of fibronectin.

  11. Structure of the N-linked oligosaccharides of MHC class I molecules from cells deficient in the antigenic peptide transporter. Implications for the site of peptide association.

    PubMed

    Hayes, B K; Esquivel, F; Bennink, J R; Yewdell, J W; Varki, A

    1995-10-15

    Class I molecules are N-linked glycoproteins encoded by the MHC. They carry cytosolic protein-derived peptides to the cell surface, displaying them to enable immune surveillance of cellular processes. Peptides are delivered to class I molecules by the transporter associated with Ag processing (TAP). Peptide association is known to occur before exposure of class I molecules to the medial Golgi-processing enzyme alpha-mannosidase II, but there is limited information regarding the location or timing of peptide binding within the earlier regions of the endoplasmic reticulum (ER)-Golgi pathway. A reported association of newly synthesized class I molecules with the ER chaperonin calnexin raises the possibility of persistence of the monoglycosylated N-linked oligosaccharide (NLO) Glc1Man8GlcNAc2, known to be recognized by this lectin. To explore these matters, we determined the structure of the NLOs on the subset of newly synthesized class I molecules awaiting the loading of peptide. We pulse-labeled murine MHC H-2Db class I molecules in RMA/S cells, which lack one of the TAP subunits, causing the great majority of the molecules to be retained for prolonged periods in an early secretory compartment, awaiting peptide binding. MHC molecules pulse-labeled with [3H]glucosamine were isolated, the NLOs specifically released and structurally analyzed by a variety of techniques. Within the chosen window of biosynthetic time, most Db molecules from parental RMA cells carried mature NLOs of the biantennary complex-type, with one to two sialic acid residues. In RMA/S cells, such chains were in the minority, the majority consisting of the precursor forms Man8GlcNAc2 and Man9GlcNAc2. No glucosylated forms were detected, nor were the later processing intermediates Man5-7GlcNAc2 or GlcNAc1Man4-5GlcNAc2. Thus, most Db molecules in TAP-deficient cells are retained in an early compartment of the secretory pathway, before the point of first access to the Golgi alpha-mannosidase I, which

  12. Heparin/heparan sulfate 6-O-sulfatase from Flavobacterium heparinum: integrated structural and biochemical investigation of enzyme active site and substrate specificity.

    PubMed

    Myette, James R; Soundararajan, Venkataramanan; Shriver, Zachary; Raman, Rahul; Sasisekharan, Ram

    2009-12-11

    Heparin and heparan sulfate glycosaminoglycans (HSGAGs) comprise a chemically heterogeneous class of sulfated polysaccharides. The development of structure-activity relationships for this class of polysaccharides requires the identification and characterization of degrading enzymes with defined substrate specificity and enzymatic activity. Toward this end, we report here the molecular cloning and extensive structure-function analysis of a 6-O-sulfatase from the Gram-negative bacterium Flavobacterium heparinum. In addition, we report the recombinant expression of this enzyme in Escherichia coli in a soluble, active form and identify it as a specific HSGAG sulfatase. We further define the mechanism of action of the enzyme through biochemical and structural studies. Through the use of defined substrates, we investigate the kinetic properties of the enzyme. This analysis was complemented by homology-based molecular modeling studies that sought to rationalize the substrate specificity of the enzyme and mode of action through an analysis of the active-site topology of the enzyme including identifying key enzyme-substrate interactions and assigning key amino acids within the active site of the enzyme. Taken together, our structural and biochemical studies indicate that 6-O-sulfatase is a predominantly exolytic enzyme that specifically acts on N-sulfated or N-acetylated 6-O-sulfated glucosamines present at the non-reducing end of HSGAG oligosaccharide substrates. This requirement for the N-acetyl or N-sulfo groups on the glucosamine substrate can be explained through eliciting favorable interactions with key residues within the active site of the enzyme. These findings provide a framework that enables the use of 6-O-sulfatase as a tool for HSGAG structure-activity studies as well as expand our biochemical and structural understanding of this important class of enzymes.

  13. N-acetylglucosamine 6-Phosphate Deacetylase (nagA) Is Required for N-acetyl Glucosamine Assimilation in Gluconacetobacter xylinus

    PubMed Central

    Yadav, Vikas; Panilaitis, Bruce; Shi, Hai; Numuta, Keiji; Lee, Kyongbum; Kaplan, David L.

    2011-01-01

    Metabolic pathways for amino sugars (N-acetylglucosamine; GlcNAc and glucosamine; Gln) are essential and remain largely conserved in all three kingdoms of life, i.e., microbes, plants and animals. Upon uptake, in the cytoplasm these amino sugars undergo phosphorylation by phosphokinases and subsequently deacetylation by the enzyme N-acetylglucosamine 6-phosphate deacetylase (nagA) to yield glucosamine-6-phosphate and acetate, the first committed step for both GlcNAc assimilation and amino-sugar-nucleotides biosynthesis. Here we report the cloning of a DNA fragment encoding a partial nagA gene and its implications with regard to amino sugar metabolism in the cellulose producing bacterium Glucoacetobacter xylinus (formally known as Acetobacter xylinum). For this purpose, nagA was disrupted by inserting tetracycline resistant gene (nagA::tetr; named as ΔnagA) via homologous recombination. When compared to glucose fed conditions, the UDP-GlcNAc synthesis and bacterial growth (due to lack of GlcNAc utilization) was completely inhibited in nagA mutants. Interestingly, that inhibition occured without compromising cellulose production efficiency and its molecular composition under GlcNAc fed conditions. We conclude that nagA plays an essential role for GlcNAc assimilation by G. xylinus thus is required for the growth and survival for the bacterium in presence of GlcNAc as carbon source. Additionally, G. xylinus appears to possess the same molecular machinery for UDP-GlcNAc biosynthesis from GlcNAc precursors as other related bacterial species. PMID:21655093

  14. N-acetylglucosamine 6-phosphate deacetylase (nagA) is required for N-acetyl glucosamine assimilation in Gluconacetobacter xylinus.

    PubMed

    Yadav, Vikas; Panilaitis, Bruce; Shi, Hai; Numuta, Keiji; Lee, Kyongbum; Kaplan, David L

    2011-01-01

    Metabolic pathways for amino sugars (N-acetylglucosamine; GlcNAc and glucosamine; Gln) are essential and remain largely conserved in all three kingdoms of life, i.e., microbes, plants and animals. Upon uptake, in the cytoplasm these amino sugars undergo phosphorylation by phosphokinases and subsequently deacetylation by the enzyme N-acetylglucosamine 6-phosphate deacetylase (nagA) to yield glucosamine-6-phosphate and acetate, the first committed step for both GlcNAc assimilation and amino-sugar-nucleotides biosynthesis. Here we report the cloning of a DNA fragment encoding a partial nagA gene and its implications with regard to amino sugar metabolism in the cellulose producing bacterium Glucoacetobacter xylinus (formally known as Acetobacter xylinum). For this purpose, nagA was disrupted by inserting tetracycline resistant gene (nagA::tet(r); named as ΔnagA) via homologous recombination. When compared to glucose fed conditions, the UDP-GlcNAc synthesis and bacterial growth (due to lack of GlcNAc utilization) was completely inhibited in nagA mutants. Interestingly, that inhibition occured without compromising cellulose production efficiency and its molecular composition under GlcNAc fed conditions. We conclude that nagA plays an essential role for GlcNAc assimilation by G. xylinus thus is required for the growth and survival for the bacterium in presence of GlcNAc as carbon source. Additionally, G. xylinus appears to possess the same molecular machinery for UDP-GlcNAc biosynthesis from GlcNAc precursors as other related bacterial species.

  15. Defining the carbohydrate specificities of Abrus precatorius agglutinin as T (Gal beta 1----3GalNAc) greater than I/II (Gal beta 1----3/4GlcNAc).

    PubMed

    Wu, A M; Lin, S R; Chin, L K; Chow, L P; Lin, J Y

    1992-09-25

    The combining site of the nontoxic carbohydrate binding protein (Abrus precatorius agglutinin, APA) purified from the needs of Abrus precatorius (Jequirity bean), was studied by quantitative precipitin and precipitin-inhibition assays. Of 26 glycoproteins and polysaccharides tested, all, except sialic acid-containing glycoproteins and desialized ovine salivary glycoproteins, reacted strongly with the lectin, and precipitated over 70% of the lectin added, indicating that APA has a broad range of affinity and recognizes (internal) Gal beta 1----sequences of carbohydrate chains. The strong reaction with desialized porcine and rat salivary glycoproteins as well as pneumococcus type XIV polysaccharide suggests that APA has affinity for one or more of the following carbohydrate sequences: Thomsen-Friedenreich (T, Gal beta 1----3GalNAc), blood group precursor type I and/or type II (Gal beta 1----3/4GlcNAc) disaccharide determinants of complex carbohydrates. Among the oligosaccharides tested, the T structure was the best inhibitor; it was 2.4 and 3.2 times more active than type II and type I sequences, respectively. The blood group I Ma-active trisaccharide, Gal beta 1----4GlcNAc beta 1----6Gal, was about as active as the corresponding disaccharide (II). From the above results, we conclude that the size of the combining site of the A. precatorius agglutinin is probably as large as a disaccharide and most strongly complementary to the Gal beta 1----3GalNAc (T determinant) sequence. The carbohydrate specificities of this lectin will be further investigated once the related oligosaccharide structures become available.

  16. Enzyme processes for pulp and paper : a review of recent developments

    Treesearch

    William R. Kenealy; Thomas W. Jeffries

    2003-01-01

    The pulp and paper industry is applying new, ecologically sound technology in its manufacturing processes. Many interesting enzymatic applications have been proposed in the literature. Implemented technologies tend to change the existing industrial process as little as possible. Commercial applications include xylanases in prebleaching kraft pulps and various enzymes...

  17. A Novel Mechanism for Desulfation of Mucin: Identification and Cloning of a Mucin-Desulfating Glycosidase (Sulfoglycosidase) from Prevotella Strain RS2

    PubMed Central

    Rho, Jung-hyun; Wright, Damian P.; Christie, David L.; Clinch, Keith; Furneaux, Richard H.; Roberton, Anthony M.

    2005-01-01

    A novel enzyme which may be important in mucin degradation has been discovered in the mucin-utilizing anaerobe Prevotella strain RS2. This enzyme cleaves terminal 2-acetamido-2-deoxy-β-d-glucopyranoside 6-sulfate (6-SO3-GlcNAc) residues from sulfomucin and from the model substrate 4-nitrophenyl 2-acetamido-2-deoxy-β-d-glucopyranoside 6-sodium sulfate. The existence of this mucin-desulfating glycosidase (sulfoglycosidase) suggests an alternative mechanism by which this bacterium may desulfate sulfomucins, by glycosidic removal of a sulfated sugar from mucin oligosaccharide chains. Previously, mucin desulfation was thought to take place by the action of a specific desulfating enzyme, which then allowed glycosidases to remove desulfated sugar. Sulfate removal from sulfomucins is thought to be a rate-limiting step in mucin degradation by bacteria in the regions of the digestive tract with a significant bacterial flora. The sulfoglycosidase was induced by growth of the Prevotella strain on mucin and was purified 284-fold from periplasmic extracts. Tryptic digestion and sequencing of peptides from the 100-kDa protein enabled the sulfoglycosidase gene to be cloned and sequenced. Active recombinant enzyme was made in an Escherichia coli expression system. The sulfoglycosidase shows sequence similarity to hexosaminidases. The only other enzyme that has been shown to remove 6-SO3-GlcNAc from glycoside substrates is the human lysosomal enzyme β-N-acetylhexosaminidase A, point mutations in which cause the inheritable, lysosomal storage disorder Tay-Sachs disease. The human enzyme removes GlcNAc from glycoside substrates also, in contrast to the Prevotella enzyme, which acts on a nonsulfated substrate at a rate that is only 1% of the rate observed with a sulfated substrate. PMID:15716424

  18. Pulsed EPR investigations of systems modeling molybdenum enzymes: hyperfine and quadrupole parameters of oxo-17O in [Mo 17O(SPh)4]-.

    PubMed

    Astashkin, Andrei V; Neese, Frank; Raitsimring, Arnold M; Cooney, J Jon A; Bultman, Eric; Enemark, John H

    2005-11-30

    Ka band ESEEM spectroscopy was used to determine the hyperfine (hfi) and nuclear quadrupole (nqi) interaction parameters for the oxo-17O ligand in [Mo 17O(SPh)4]-, a spectroscopic model of the oxo-Mo(V) centers of enzymes. The isotropic hfi constant of 6.5 MHz found for the oxo-17O is much smaller than the values of approximately 20-40 MHz typical for the 17O nucleus of an equatorial OH(2) ligand in molybdenum enzymes. The 17O nqi parameter (e2qQ/h = 1.45 MHz, eta approximately = 0) is the first to be obtained for an oxo group in a metal complex. The parameters of the oxo-17O ligand, as well as other magnetic resonance parameters of [Mo 17O(SPh)4]- predicted by quasi-relativistic DFT calculations, were in good agreement with those obtained in experiment. From the electronic structure of the complex revealed by DFT, it follows that the SOMO is almost entirely molybdenum d(xy) and sulfur p, while the spin density on the oxo-17O is negative, determined by spin polarization mechanisms. The results of this work will enable direct experimental identification of the oxo ligand in a variety of chemical and biological systems.

  19. Synthesis of Fe3O4@nickel-silicate core-shell nanoparticles for His-tagged enzyme immobilizing agents

    NASA Astrophysics Data System (ADS)

    Shin, Moo-Kwang; Kang, Byunghoon; Yoon, Nam-Kyung; Kim, Myeong-Hoon; Ki, Jisun; Han, Seungmin; Ahn, Jung-Oh; Haam, Seungjoo

    2016-12-01

    Immobilizing enzymes on artificially fabricated carriers for their efficient use and easy removal from reactants has attracted enormous interest for decades. Specifically, binding platforms using inorganic nanoparticles have been widely explored because of the benefits of their large surface area, easy surface modification, and high stability in various pH and temperatures. Herein, we fabricated Fe3O4 encapsulated ‘sea-urchin’ shaped nickel-silicate nanoparticles with a facile synthetic route. The enzymes were then rapidly and easily immobilized with poly-histidine tags (His-tags) and nickel ion affinity. Porous nickel silicate covered nanoparticles achieved a high immobilization capacity (85 μg mg-1) of His-tagged tobacco etch virus (TEV) protease. To investigate immobilized TEV protease enzymatic activity, we analyzed the cleaved quantity of maltose binding protein-exendin-fused immunoglobulin fusion protein, which connected with the TEV protease-specific cleavage peptide sequence. Moreover, TEV protease immobilized nanocomplexes conveniently removed and recollected from the reactant by applying an external magnetic field, maintained their enzymatic activity after reuse. Therefore, our newly developed nanoplatform for His-tagged enzyme immobilization provides advantageous features for biotechnological industries including recombinant protein processing.

  20. O-GlcNAcylation and oxidation of proteins: is signalling in the cardiovascular system becoming sweeter?

    PubMed Central

    Lima, Victor V.; Spitler, Kathryn; Choi, Hyehun; Webb, R. Clinton; Tostes, Rita C.

    2012-01-01

    O-GlcNAcylation is an unusual form of protein glycosylation, where a single-sugar [GlcNAc (N-acetylglucosamine)] is added (via β-attachment) to the hydroxyl moiety of serine and threonine residues of nuclear and cytoplasmic proteins. A complex and extensive interplay exists between O-GlcNAcylation and phosphorylation. Many phosphorylation sites are also known glycosylation sites, and this reciprocal occupancy may produce different activities or alter the stability in a target protein. The interplay between these two post-translational modifications is not always reciprocal, as some proteins can be concomitantly phosphorylated and O-GlcNAcylated, and the adjacent phosphorylation or O-GlcNAcylation can regulate the addition of either moiety. Increased cardiovascular production of ROS (reactive oxygen species), termed oxidative stress, has been consistently reported in various chronic diseases and in conditions where O-GlcNAcylation has been implicated as a contributing mechanism for the associated organ injury/protection (for example, diabetes, Alzheimer's disease, arterial hypertension, aging and ischaemia). In the present review, we will briefly comment on general aspects of O-GlcNAcylation and provide an overview of what has been reported for this post-translational modification in the cardiovascular system. We will then specifically address whether signalling molecules involved in redox signalling can be modified by O-GlcNAc (O-linked GlcNAc) and will discuss the critical interplay between O-GlcNAcylation and ROS generation. Experimental evidence indicates that the interactions between O-GlcNAcylation and oxidation of proteins are important not only for cell regulation in physiological conditions, but also under pathological states where the interplay may become dysfunctional and thereby exacerbate cellular injury. PMID:22757958

  1. [Human drug metabolizing enzymes. II. Conjugation enzymes].

    PubMed

    Vereczkey, L; Jemnitz, K; Gregus, Z

    1998-09-01

    In this review we focus on human conjugation enzymes (UDP-glucuronyltransferases, methyl-trasferases, N-acetyl-transferases, O-acetyl-transferases, Amidases/carboxyesterases, sulfotransferases, Glutation-S-transferases and the enzymes involved in the conjugation with amino acids) that participate in the metabolism of xenobiotics. Although conjugation reactions in most of the cases result in detoxication, more and more publications prove that the reactions catalysed by these enzymes very often lead to activated molecules that may attack macromolecules (proteins, RNAs, DNAs), resulting in toxicity (liver, neuro-, embryotoxicity, allergy, carcinogenecity). We have summarised the data available on these enzymes concerning their catalytic profile and specificity, inhibition, induction properties, their possible role in the generation of toxic compounds, their importance in clinical practice and drug development.

  2. The genes and enzymes of sucrose metabolism in moderately thermophilic methanotroph Methylocaldum szegediense O12.

    PubMed

    But, Sergey Y; Solntseva, Natalia P; Egorova, Svetlana V; Mustakhimov, Ildar I; Khmelenina, Valentina N; Reshetnikov, Alexander; Trotsenko, Yuri A

    2018-05-01

    Four enzymes involved in sucrose metabolism: sucrose phosphate synthase (Sps), sucrose phosphate phosphatase (Spp), sucrose synthase (Sus) and fructokinase (FruK), were obtained as his-tagged proteins from the moderately thermophilic methanotroph Methylocaldum szegediense O12. Sps, Spp, FruK and Sus demonstrated biochemical properties similar to those of other bacterial counterparts, but the translated amino acid sequences of Sps and Spp displayed high divergence from the respective microbial enzymes. The Sus of M. szegediense O12 catalyzed the reversible reaction of sucrose cleavage in the presence of ADP or UDP and preferred ADP as a substrate, thus implying a connection between sucrose and glycogen metabolism. Sus-like genes were found only in a few methanotrophs, whereas amylosucrase was generally used in sucrose cleavage in this group of bacteria. Like other microbial fructokinases, FruK of M. szegediense O12 showed a high specificity to fructose.

  3. Architectural Organization of the Metabolic Regulatory Enzyme Ghrelin O-Acyltransferase*

    PubMed Central

    Taylor, Martin S.; Ruch, Travis R.; Hsiao, Po-Yuan; Hwang, Yousang; Zhang, Pingfeng; Dai, Lixin; Huang, Cheng Ran Lisa; Berndsen, Christopher E.; Kim, Min-Sik; Pandey, Akhilesh; Wolberger, Cynthia; Marmorstein, Ronen; Machamer, Carolyn; Boeke, Jef D.; Cole, Philip A.

    2013-01-01

    Ghrelin O-acyltransferase (GOAT) is a polytopic integral membrane protein required for activation of ghrelin, a secreted metabolism-regulating peptide hormone. Although GOAT is a potential therapeutic target for the treatment of obesity and diabetes and plays a key role in other physiologic processes, little is known about its structure or mechanism. GOAT is a member of the membrane-bound O-acyltransferase (MBOAT) family, a group of polytopic integral membrane proteins involved in lipid-biosynthetic and lipid-signaling reactions from prokaryotes to humans. Here we use phylogeny and a variety of bioinformatic tools to predict the topology of GOAT. Using selective permeabilization indirect immunofluorescence microscopy in combination with glycosylation shift immunoblotting, we demonstrate that GOAT contains 11 transmembrane helices and one reentrant loop. Development of the V5Glyc tag, a novel, small, and sensitive dual topology reporter, facilitated these experiments. The MBOAT family invariant residue His-338 is in the ER lumen, consistent with other family members, but conserved Asn-307 is cytosolic, making it unlikely that both are involved in catalysis. Photocross-linking of synthetic ghrelin analogs and inhibitors demonstrates binding to the C-terminal region of GOAT, consistent with a role of His-338 in the active site. This knowledge of GOAT architecture is important for a deeper understanding of the mechanism of GOAT and other MBOATs and could ultimately advance the discovery of selective inhibitors for these enzymes. PMID:24045953

  4. Architectural organization of the metabolic regulatory enzyme ghrelin O-acyltransferase.

    PubMed

    Taylor, Martin S; Ruch, Travis R; Hsiao, Po-Yuan; Hwang, Yousang; Zhang, Pingfeng; Dai, Lixin; Huang, Cheng Ran Lisa; Berndsen, Christopher E; Kim, Min-Sik; Pandey, Akhilesh; Wolberger, Cynthia; Marmorstein, Ronen; Machamer, Carolyn; Boeke, Jef D; Cole, Philip A

    2013-11-08

    Ghrelin O-acyltransferase (GOAT) is a polytopic integral membrane protein required for activation of ghrelin, a secreted metabolism-regulating peptide hormone. Although GOAT is a potential therapeutic target for the treatment of obesity and diabetes and plays a key role in other physiologic processes, little is known about its structure or mechanism. GOAT is a member of the membrane-bound O-acyltransferase (MBOAT) family, a group of polytopic integral membrane proteins involved in lipid-biosynthetic and lipid-signaling reactions from prokaryotes to humans. Here we use phylogeny and a variety of bioinformatic tools to predict the topology of GOAT. Using selective permeabilization indirect immunofluorescence microscopy in combination with glycosylation shift immunoblotting, we demonstrate that GOAT contains 11 transmembrane helices and one reentrant loop. Development of the V5Glyc tag, a novel, small, and sensitive dual topology reporter, facilitated these experiments. The MBOAT family invariant residue His-338 is in the ER lumen, consistent with other family members, but conserved Asn-307 is cytosolic, making it unlikely that both are involved in catalysis. Photocross-linking of synthetic ghrelin analogs and inhibitors demonstrates binding to the C-terminal region of GOAT, consistent with a role of His-338 in the active site. This knowledge of GOAT architecture is important for a deeper understanding of the mechanism of GOAT and other MBOATs and could ultimately advance the discovery of selective inhibitors for these enzymes.

  5. Cathepsin B is not the processing enzyme for mouse prorenin.

    PubMed

    Mercure, Chantal; Lacombe, Marie-Josée; Khazaie, Khashayarsha; Reudelhuber, Timothy L

    2010-05-01

    Renin, an aspartyl protease that catalyzes the rate-limiting step in the renin-angiotensin system (RAS), is proteolytically activated by a second protease [referred to as the prorenin processing enzyme (PPE)] before its secretion from the juxtaglomerular cells of the kidney. Although several enzymes are capable of activating renin in vitro, the leading candidate for the PPE in the kidney is cathepsin B (CTSB) due to is colocalization with the renin precursor (prorenin) in juxtaglomerular cell granules and because of its site-selective activation of human prorenin both in vitro and in transfected tissue culture cell models. To verify the role of CTSB in prorenin processing in vivo, we tested the ability of CTSB-deficient (CTSB-/-) mice to generate active renin. CTSB-/- mice do not exhibit any overt symptoms (renal malformation, preweaning mortality) typical of an RAS deficiency and have normal levels of circulating active renin, which, like those in control animals, rise more than 15-fold in response to pharmacologic inhibition of the RAS. The mature renin enzyme detected in kidney lysates of CTSB-/- mice migrates at the same apparent molecular weight as that in control mice, and the processing to active renin is not affected by chloroquine treatment of the animals. Finally, the distribution and morphology of renin-producing cells in the kidney is normal in CTSB-/- mice. In conclusion, CTSB-deficient mice exhibit no differences compared with controls in their ability to generate active renin, and our results do not support CTSB as the PPE in mice.

  6. Study on feasibility of determination of glucosamine content of fermentation process using a micro NIR spectrometer.

    PubMed

    Sun, Zhongyu; Li, Can; Li, Lian; Nie, Lei; Dong, Qin; Li, Danyang; Gao, Lingling; Zang, Hengchang

    2018-08-05

    N-acetyl-d-glucosamine (GlcNAc) is a microbial fermentation product, and NIR spectroscopy is an effective process analytical technology (PAT) tool in detecting the key quality attribute: the GlcNAc content. Meanwhile, the design of NIR spectrometers is under the trend of miniaturization, portability and low-cost nowadays. The aim of this study was to explore a portable micro NIR spectrometer with the fermentation process. First, FT-NIR spectrometer and Micro-NIR 1700 spectrometer were compared with simulated fermentation process solutions. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal FT-NIR and Micro-NIR 1700 models were 0.999, 0.999, 3.226 g/L, 1.388 g/L and 0.999, 0.999, 1.821 g/L, 0.967 g/L. Passing-Bablok regression method and paired t-test results showed there were no significant differences between the two instruments. Then the Micro-NIR 1700 was selected for the practical fermentation process, 135 samples from 10 batches were collected. Spectral pretreatment methods and variables selection methods (BiPLS, FiPLS, MWPLS and CARS-PLS) for PLS modeling were discussed. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal GlcNAc content PLS model of the practical fermentation process were 0.994, 0.995, 2.792 g/L and 1.946 g/L. The results have a positive reference for application of the Micro-NIR spectrometer. To some extent, it could provide theoretical supports in guiding the microbial fermentation or the further assessment of bioprocess. Copyright © 2018. Published by Elsevier B.V.

  7. Production and purification of a protease, a chitosanase, and chitin oligosaccharides by Bacillus cereus TKU022 fermentation.

    PubMed

    Liang, Tzu-Wen; Hsieh, Jia-Lin; Wang, San-Lang

    2012-11-15

    A protease- and chitosanase-producing strain was isolated and identified as Bacillus cereus TKU022. The protease and chitosanase were both produced using 1.5% (w/v) shrimp head powder (SHP) as the sole carbon/nitrogen source, and these enzymes were purified from the culture supernatant. The molecular masses of the TKU022 protease and chitosanase determined using SDS-PAGE were approximately 45 and 44kDa, respectively. The high stability of the TKU022 protease toward surfactants, an optimal pH of 10 and an optimal temperature of 50-60°C suggest that this high-alkaline protease has potential applications for various industrial processes. Concomitant with the production of the TKU022 chitosanase, N-acetyl chitooligosaccharides were also observed in the culture supernatant, including (GlcNAc)(2), (GlcNAc)(4), (GlcNAc)(5), and (GlcNAc)(6) at concentrations of 201.5, 12.4, 0.5, and 0.3μg/mL, respectively, as determined using an HPLC analysis. The chitin oligosaccharides products were also characterized using a MALDI-TOF mass spectrometer. A combination of the HPLC and MALDI-TOF MS results showed that the chitin oligosaccharides of the TKU022 culture supernatant comprise oligomers with degree of polymerization (DP) from 2 to 6. Using this method, the production of a protease, a chitosanase, and chitin oligosaccharides may be useful for various industrial and biological applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong alpha1-antitrypsin by human ER mannosidase I.

    PubMed

    Hosokawa, Nobuko; Tremblay, Linda O; You, Zhipeng; Herscovics, Annette; Wada, Ikuo; Nagata, Kazuhiro

    2003-07-11

    Misfolded glycoproteins synthesized in the endoplasmic reticulum (ER) are degraded by cytoplasmic proteasomes, a mechanism known as ERAD (ER-associated degradation). In the present study, we demonstrate that ERAD of the misfolded genetic variant-null Hong Kong alpha1-antitrypsin is enhanced by overexpression of the ER processing alpha1,2-mannosidase (ER ManI) in HEK 293 cells, indicating the importance of ER ManI in glycoprotein quality control. We showed previously that EDEM, an enzymatically inactive mannosidase homolog, interacts with misfolded alpha1-antitrypsin and accelerates its degradation (Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A., and Nagata, K. (2001) EMBO Rep. 2, 415-422). Herein we demonstrate a combined effect of ER ManI and EDEM on ERAD of misfolded alpha1-antitrypsin. We also show that misfolded alpha1-antitrypsin NHK contains labeled Glc1Man9GlcNAc and Man5-9GlcNAc released by endo-beta-N-acetylglucosaminidase H in pulse-chase experiments with [2-3H]mannose. Overexpression of ER ManI greatly increases the formation of Man8GlcNAc, induces the formation of Glc1Man8GlcNAc and increases trimming to Man5-7GlcNAc. We propose a model whereby the misfolded glycoprotein interacts with ER ManI and with EDEM, before being recognized by downstream ERAD components. This detailed characterization of oligosaccharides associated with a misfolded glycoprotein raises the possibility that the carbohydrate recognition determinant triggering ERAD may not be restricted to Man8GlcNAc2 isomer B as previous studies have suggested.

  9. Discovery of a nucleocytoplasmic O-mannose glycoproteome in yeast

    PubMed Central

    Halim, Adnan; Larsen, Ida Signe Bohse; Neubert, Patrick; Joshi, Hiren Jitendra; Petersen, Bent Larsen; Vakhrushev, Sergey Y.; Strahl, Sabine; Clausen, Henrik

    2015-01-01

    Dynamic cycling of N-Acetylglucosamine (GlcNAc) on serine and threonine residues (O-GlcNAcylation) is an essential process in all eukaryotic cells except yeast, including Saccharomyces cerevisiae and Schizosaccharomyces pombe. O-GlcNAcylation modulates signaling and cellular processes in an intricate interplay with protein phosphorylation and serves as a key sensor of nutrients by linking the hexosamine biosynthetic pathway to cellular signaling. A longstanding conundrum has been how yeast survives without O-GlcNAcylation in light of its similar phosphorylation signaling system. We previously developed a sensitive lectin enrichment and mass spectrometry workflow for identification of the human O-linked mannose (O-Man) glycoproteome and used this to identify a pleothora of O-Man glycoproteins in human cell lines including the large family of cadherins and protocadherins. Here, we applied the workflow to yeast with the aim to characterize the yeast O-Man glycoproteome, and in doing so, we discovered hitherto unknown O-Man glycosites on nuclear, cytoplasmic, and mitochondrial proteins in S. cerevisiae and S. pombe. Such O-Man glycoproteins were not found in our analysis of human cell lines. However, the type of yeast O-Man nucleocytoplasmic proteins and the localization of identified O-Man residues mirror that of the O-GlcNAc glycoproteome found in other eukaryotic cells, indicating that the two different types of O-glycosylations serve the same important biological functions. The discovery opens for exploration of the enzymatic machinery that is predicted to regulate the nucleocytoplasmic O-Man glycosylations. It is likely that manipulation of this type of O-Man glycosylation will have wide applications for yeast bioprocessing. PMID:26644575

  10. Characterization of PgPepO, a bacterial homologue of endothelin-converting enzyme-1.

    PubMed

    Carson, Julie A; Ansai, Toshihiro; Awano, Shuji; Yu, Weixian; Takehara, Tadamichi; Turner, Anthony J

    2002-08-01

    PgPepO is a homologue of endothelin-converting enzyme-1 (ECE-1), with which it shares 31% identity. PgPepO was isolated from the periodontal pathogen Porphyromonas gingivalis. Recent studies have suggested a link between periodontal and cardiovascular disease, and several groups have suggested that bacterial and viral infections may contribute to the latter. P. gingivalis possesses the ability to invade, and multiply within, aortic endothelial cells and has been localized to atherosclerotic plaques. PgPepO was expressed and purified to homogeneity and we have begun detailed functional analysis, in terms of substrate preference and inhibitor specificity, in order to provide active-site comparisons with other members of the neprilysin (NEP)/ECE family. PgPepO possesses similar substrate specificity to ECE-1 and has been shown to cleave big endothelin-1 (big ET-1), big ET-2 and big ET-3, converting the substrates into their respective mature endothelin peptides. Substance P, angiotensin I, angiotensin II and neurotensin are all cleaved at multiple sites by PgPepO and the kinetics of these reactions have been compared. The potent vasoconstrictor urotensin II is not hydrolysed by PgPepO. Cleavage of bradykinin by PgPepO occurs at the Pro(7)-Phe(8) bond and is inhibited by the NEP and ECE-1 inhibitor phosphoramidon in a pH-dependent fashion (IC(50) =10 microM at pH 7.0) but not by thiorphan, an NEP-specific inhibitor. PgPepO activity is completely inhibited by EDTA. Characterization of this enzyme is important in elucidating possible links between periodontal pathogens and cardiovascular disorders such as atherosclerosis, and provides an opportunity to gain structural information on a bacterial protein with striking similarity to human ECE-1.

  11. Demystifying O-GlcNAcylation: hints from peptide substrates.

    PubMed

    Shi, Jie; Ruijtenbeek, Rob; Pieters, Roland J

    2018-03-22

    O-GlcNAcylation, analogous to phosphorylation, is an essential post-translational modification of proteins at Ser/Thr residues with a single β-N-acetylglucosamine moiety. This dynamic protein modification regulates many fundamental cellular processes and its deregulation has been linked to chronic diseases such as cancer, diabetes and neurodegenerative disorders. Reversible attachment and removal of O-GlcNAc is governed only by O-GlcNAc transferase and O-GlcNAcase, respectively. Peptide substrates, derived from natural O-GlcNAcylation targets, function in the catalytic cores of these two enzymes by maintaining interactions between enzyme and substrate, which makes them ideal models for the study of O-GlcNAcylation and deglycosylation. These peptides provide valuable tools for a deeper understanding of O-GlcNAc processing enzymes. By taking advantage of peptide chemistry, recent progress in the study of activity and regulatory mechanisms of these two enzymes has advanced our understanding of their fundamental specificities as well as their potential as therapeutic targets. Hence, this review summarizes the recent achievements on this modification studied at the peptide level, focusing on enzyme activity, enzyme specificity, direct function, site-specific antibodies and peptide substrate-inspired inhibitors.

  12. Glucokinase expression is regulated by glucose through O-GlcNAc glycosylation.

    PubMed

    Baldini, Steffi F; Steenackers, Agata; Olivier-Van Stichelen, Stéphanie; Mir, Anne-Marie; Mortuaire, Marlène; Lefebvre, Tony; Guinez, Céline

    2016-09-16

    Blood glucose fluctuates with the fasting-feeding cycle. One of the liver's functions is to maintain blood glucose concentrations within a physiological range. Glucokinase (GCK) or hexokinase IV, is the main enzyme that regulates the flux and the use of glucose in the liver leading to a compensation of hyperglycemia. In hepatocytes, GCK catalyzes the phosphorylation of glucose into glucose-6-phosphate. This critical enzymatic reaction is determinant for the metabolism of glucose in the liver which includes glycogen synthesis, glycolysis, lipogenesis and gluconeogenesis. In liver, simultaneous increase of glucose and insulin enhances GCK activity and gene expression, changes its subcellular location and interaction with regulatory proteins. The post-translational O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) acts as a glucose-sensitive modification and is believed to take part in hepatic glucose sensing by modifying key regulatory proteins. Therefore, we aimed to determine whether GCK is modified by O-GlcNAcylation in the liver of mice and investigated the role that this modification plays in regulating GCK protein expression. We demonstrated that endogenous GCK expression correlated with O-GlcNAc levels in the pathophysiological model ob/ob mice. More specifically, in response to the pharmacological inhibition of O-GlcNAcase (OGA) contents of GCK increased. Using the GlcNAc specific lectin succinylated-WGA and click chemistry labeling approaches, we demonstrated that GCK is modified by O-GlcNAcylation. Further, we demonstrated that siRNA-mediated Ogt knock-down not only decreases O-GlcNAc content but also GCK protein level. Altogether, our in vivo and in vitro results demonstrate that GCK expression is regulated by nutrient-sensing O-GlcNAc cycling in liver. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Superoxide poisons mononuclear iron enzymes by causing mismetallation

    PubMed Central

    Gu, Mianzhi; Imlay, James A.

    2013-01-01

    Summary Superoxide (O2−) is a primary agent of intracellular oxidative stress. Genetic studies in many organisms have confirmed that excess O2− disrupts metabolism, but to date only a small family of [4Fe-4S] dehydratases have been identified as direct targets. This investigation reveals that in Escherichia coli O2− also poisons a broader cohort of non-redox enzymes that employ ferrous iron atoms as catalytic cofactors. These enzymes were inactivated by O2− both in vitro and in vivo. Although the enzymes are known targets of hydrogen peroxide, the outcome with O2− differs substantially. When purified enzymes were damaged by O2− in vitro, activity could be completely restored by iron addition, indicating that the O2− treatment generated an apoprotein without damaging the protein polypeptide. Superoxide stress inside cells caused the progressive mismetallation of these enzymes with zinc, which confers little activity. When O2− stress was terminated, cells gradually restored activity by extracting zinc from the proteins. The overloading of cells with zinc caused mismetallation even without O2− stress. These results support a model in which O2− repeatedly excises iron from these enzymes, allowing zinc to compete with iron for remetallation of their apoprotein forms. This action substantially expands the physiological imprint of O2− stress. PMID:23678969

  14. Lactobacillus casei Ferments the N-Acetylglucosamine Moiety of Fucosyl-α-1,3-N-Acetylglucosamine and Excretes l-Fucose

    PubMed Central

    Rodríguez-Díaz, Jesús; Rubio-del-Campo, Antonio

    2012-01-01

    We have previously characterized from Lactobacillus casei BL23 three α-l-fucosidases, AlfA, AlfB, and AlfC, which hydrolyze in vitro natural fucosyl-oligosaccharides. In this work, we have shown that L. casei is able to grow in the presence of fucosyl-α-1,3-N-acetylglucosamine (Fuc-α-1,3-GlcNAc) as a carbon source. Interestingly, L. casei excretes the l-fucose moiety during growth on Fuc-α-1,3-GlcNAc, indicating that only the N-acetylglucosamine moiety is being metabolized. Analysis of the genomic sequence of L. casei BL23 shows that downstream from alfB, which encodes the α-l-fucosidase AlfB, a gene, alfR, that encodes a transcriptional regulator is present. Divergently from alfB, three genes, alfEFG, that encode proteins with homology to the enzyme IIAB (EIIAB), EIIC, and EIID components of a mannose-class phosphoenolpyruvate:sugar phosphotransferase system (PTS) are present. Inactivation of either alfB or alfF abolishes the growth of L. casei on Fuc-α-1,3-GlcNAc. This proves that AlfB is involved in Fuc-α-1,3-GlcNAc metabolism and that the transporter encoded by alfEFG participates in the uptake of this disaccharide. A mutation in the PTS general component enzyme I does not eliminate the utilization of Fuc-α-1,3-GlcNAc, suggesting that the transport via the PTS encoded by alfEFG is not coupled to phosphorylation of the disaccharide. Transcriptional analysis with alfR and ccpA mutants shows that the two gene clusters alfBR and alfEFG are regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor AlfR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This work reports for the first time the characterization of the physiological role of an α-l-fucosidase in lactic acid bacteria and the utilization of Fuc-α-1,3-GlcNAc as a carbon source for bacteria. PMID:22544237

  15. Hybrid nanocatalysts containing enzymes and metallic nanoparticles for ethanol/O2 biofuel cell

    NASA Astrophysics Data System (ADS)

    Aquino Neto, S.; Almeida, T. S.; Palma, L. M.; Minteer, S. D.; de Andrade, A. R.

    2014-08-01

    We report the preparation of hybrid nanostructured bioanodes containing the enzyme alcohol dehydrogenase (ADH) with either Au, Pt, or Pt0.75Sn0.25 nanoparticles for use in ethanol/O2 hybrid biofuel cells. We describe two different methodologies for the preparation of the bioanodes: in a first case, multi walled carbon nanotubes (MWCNTs) were employed as a support for the metallic nanoparticles and TBAB-modified Nafion® aided enzyme immobilization. In the second case, we immobilized the enzymes using dendrimers-encapsulated nanoparticles as the agent for enzyme anchoring. The biofuel cell tests showed that the addition of metallic nanoparticles to the bioanode structure enhanced the overall biofuel cell performance. The bioelectrode containing Au nanoparticles displaying the best performance, with an open circuit potential of 0.61 ± 0.05 V and a maximum power density of 155 ± 11 μW cm-2. NADH cyclic voltammetric experiments indicated that Au nanoparticles behaved as a catalyst toward NADH oxidation. Comparing the two protocols we used to synthetized nanoparticles, the sample containing the Au nanoparticles supported on MWCNTs furnished fourfold higher values. Therefore, from the satisfactory results obtained, it can be inferred that the combination of small amounts of metallic nanoparticles with enzymes improve bioanode performance.

  16. Ubiquitin-conjugating enzyme UBE2O regulates cellular clock function by promoting the degradation of the transcription factor BMAL1.

    PubMed

    Chen, Suping; Yang, Jing; Zhang, Yang; Duan, Chunyan; Liu, Qing; Huang, Zhengyun; Xu, Ying; Zhou, Liang; Xu, Guoqiang

    2018-06-05

    Dysregulation of the circadian rhythm is associated with many diseases, including diabetes, obesity, and cancer. Aryl hydrocarbon receptor nuclear translocator-like protein 1 (Arntl or Bmal1) is the only clock gene whose loss disrupts circadian locomotor behavior in constant darkness. BMAL1 levels are affected by proteasomal inhibition and by several enzymes in the ubiquitin-proteasome system, but the exact molecular mechanism remains unclear. Here, using immunoprecipitation and MS analyses, we discovered an interaction between BMAL1 and ubiquitin-conjugating enzyme E2 O (UBE2O), an E3-independent, E2-ubiquitin-conjugating enzyme (i.e. hybrid E2/E3 enzyme). Biochemical experiments with cell lines and animal tissues validated this specific interaction and uncovered that UBE2O expression reduces BMAL1 levels by promoting its ubiquitination and degradation. Moreover, UBE2O expression and UBE2O knockdown diminished and increased, respectively, BMAL1-mediated transcriptional activity, but did not affect BMAL1 gene expression. Bioluminescence experiments disclosed that UBE2O knockdown elevates the amplitude of the circadian clock in human osteosarcoma U2OS cells. Furthermore, mapping of the BMAL1-interacting domain in UBE2O and analyses of BMAL1 stability and ubiquitination revealed that the conserved region 2 (CR2) in UBE2O significantly enhances BMAL1 ubiquitination and decreases BMAL1 protein levels. A Cys-to-Ser substitution in the CR2 domain identified the critical Cys residue responsible for BMAL1 ubiquitination mediated by the CR2 domain in UBE2O. This work identifies UBE2O as a critical regulator in the ubiquitin-proteasome system, which modulates BMAL1 transcriptional activity and circadian function by promoting BMAL1 ubiquitination and degradation under normal physiological conditions. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Multi-enzyme logic network architectures for assessing injuries: digital processing of biomarkers.

    PubMed

    Halámek, Jan; Bocharova, Vera; Chinnapareddy, Soujanya; Windmiller, Joshua Ray; Strack, Guinevere; Chuang, Min-Chieh; Zhou, Jian; Santhosh, Padmanabhan; Ramirez, Gabriela V; Arugula, Mary A; Wang, Joseph; Katz, Evgeny

    2010-12-01

    A multi-enzyme biocatalytic cascade processing simultaneously five biomarkers characteristic of traumatic brain injury (TBI) and soft tissue injury (STI) was developed. The system operates as a digital biosensor based on concerted function of 8 Boolean AND logic gates, resulting in the decision about the physiological conditions based on the logic analysis of complex patterns of the biomarkers. The system represents the first example of a multi-step/multi-enzyme biosensor with the built-in logic for the analysis of complex combinations of biochemical inputs. The approach is based on recent advances in enzyme-based biocomputing systems and the present paper demonstrates the potential applicability of biocomputing for developing novel digital biosensor networks.

  18. Enzymes in Fermented Fish.

    PubMed

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  19. Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2.

    PubMed Central

    Hernández-Ruiz, J; Arnao, M B; Hiner, A N; García-Cánovas, F; Acosta, M

    2001-01-01

    H2O2 is the usual oxidizing substrate of horseradish peroxidase C (HRP-C). In the absence in the reaction medium of a one-electron donor substrate, H2O2 is able to act as both oxidizing and reducing substrate. However, under these conditions the enzyme also undergoes a progressive loss of activity. There are several pathways that maintain the activity of the enzyme by recovering the ferric form, one of which is the decomposition of H2O2 to molecular oxygen in a similar way to the action of catalase. This production of oxygen has been kinetically characterized with a Clark-type electrode coupled to an oxygraph. HRP-C exhibits a weak catalase-like activity, the initial reaction rate of which is hyperbolically dependent on the H2O2 concentration, with values for K(2) (affinity of the first intermediate, compound I, for H2O2) and k(3) (apparent rate constant controlling catalase activity) of 4.0 +/- 0.6 mM and 1.78 +/- 0.12 s(-1) respectively. Oxygen production by HRP-C is favoured at pH values greater than approx. 6.5; under similar conditions HRP-C is also much less sensitive to inactivation during incubations with H2O2. We therefore suggest that this pathway is a major protective mechanism of HRP-C against such inactivation. PMID:11171085

  20. Identification and Characterization of Heptaprenylglyceryl Phosphate Processing Enzymes in Bacillus subtilis.

    PubMed

    Linde, Mona; Peterhoff, David; Sterner, Reinhard; Babinger, Patrick

    2016-07-08

    In Archaea, ether lipids play an essential role as the main building blocks of the cellular membrane. Recently, ether lipids have also been discovered in the domain of Bacteria, and the key enzymes that catalyze their synthesis, glycerol-1-phosphate dehydrogenase and heptaprenylglyceryl phosphate synthase, have been described. In Bacillales, heptaprenylglyceryl phosphate does not become linked to a second polyprenyl moiety like ether lipids in Archaea but is dephosphorylated and acetylated. Here, we report on the enzymes that catalyze these reactions. We enriched the phosphatase activity from a B. subtilis cell extract and suppose that dephosphorylation is catalyzed by the phosphatase PhoB or by any other phosphatase in an unspecific manner. By screening a B. subtilis knock-out library for deficiency in acetylation, the yvoF gene product was identified to be the acetyltransferase. The acetyl-CoA-dependent enzyme YvoF is a close relative of maltose O-acetyltransferase (MAT). Its catalytic properties were analyzed and compared with MAT. YvoF and MAT partially overlap in substrate and product range in vitro, but MAT is not able to complement the yvoF knock-out in vivo. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Plant nuclear pore complex proteins are modified by novel oligosaccharides with terminal N-acetylglucosamine.

    PubMed Central

    Heese-Peck, A; Cole, R N; Borkhsenious, O N; Hart, G W; Raikhel, N V

    1995-01-01

    Only a few nuclear pore complex (NPC) proteins, mainly in vertebrates and yeast but none in plants, have been well characterized. As an initial step to identify plant NPC proteins, we examined whether NPC proteins from tobacco are modified by N-acetylglucosamine (GlcNAc). Using wheat germ agglutinin, a lectin that binds specifically to GlcNAc in plants, specific labeling was often found associated with or adjacent to NPCs. Nuclear proteins containing GlcNAc can be partially extracted by 0.5 M salt, as shown by a wheat germ agglutinin blot assay, and at least eight extracted proteins were modified by terminal GlcNAc, as determined by in vitro galactosyltransferase assays. Sugar analysis indicated that the plant glycans with terminal GlcNAc differ from the single O-linked GlcNAc of vertebrate NPC proteins in that they consist of oligosaccharides that are larger in size than five GlcNAc residues. Most of these appear to be bound to proteins via a hydroxyl group. This novel oligosaccharide modification may convey properties to the plant NPC that are different from those of vertebrate NPCs. PMID:8589629

  2. Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants--structural and kinetic properties of the free and bound enzymes.

    PubMed

    Droux, M; Ruffet, M L; Douce, R; Job, D

    1998-07-01

    The last steps of cysteine synthesis in plants involve two consecutive enzymes. The first enzyme, serine acetyltransferase, catalyses the acetylation of L-serine in the presence of acetyl-CoA to form O-acetylserine. The second enzyme, O-acetylserine (thiol) lyase, converts O-acetylserine to L-cysteine in the presence of sulfide. We have, in the present work, over-produced in Escherichia coli harboring various type of plasmids, either a plant serine acetyltransferase or this enzyme with a plant O-acetylserine (thiol) lyase. The free recombinant serine acetyltransferase (subunit mass of 34 kDa) exhibited a high propensity to form high-molecular-mass aggregates and was found to be highly unstable in solution. However, these aggregates were prevented in the presence of O-acetylserine (thiol) lyase (subunit mass of 36 kDa). Under these conditions homotetrameric serine acetyltransferase associated with two molecules of homodimeric O-acetylserine (thiol) lyase to form a bienzyme complex (molecular mass approximately 300 kDa) called cysteine synthase containing 4 mol pyridoxal 5'-phosphate/mol complex. O-Acetylserine triggered the dissociation of the bienzyme complex, whereas sulfide counteracted the action of O-acetylserine. Protein-protein interactions within the bienzyme complex strongly modified the kinetic properties of plant serine acetyltransferase: there was a transition from a typical Michaelis-Menten model to a model displaying positive kinetic co-operativity with respect to serine and acetyl-CoA. On the other hand, the formation of the bienzyme complex resulted in a very dramatic decrease in the catalytic efficiency of bound O-acetylserine (thiol) lyase. The latter enzyme behaved as if it were a structural and/or regulatory subunit of serine acetyltransferase. Our results also indicated that bound serine acetyltransferase produces a build-up of O-acetylserine along the reaction path and that the full capacity for cysteine synthesis can only be achieved in the

  3. Biochemical characterization of an α1,2-colitosyltransferase from Escherichia coli O55:H7

    PubMed Central

    Wu, Zhigang; Zhao, Guohui; Li, Tiehai; Qu, Jingyao; Guan, Wanyi; Wang, Jiajia; Ma, Cheng; Li, Xu; Zhao, Wei; Wang, Peng G; Li, Lei

    2016-01-01

    Colitose, also known as 3,6-dideoxy-l-galactose or 3-deoxy-l-fucose, is one of only five naturally occurring 3,6-dideoxyhexoses. Colitose was found in lipopolysaccharide of a number of infectious bacteria, including Escherichia coli O55 & O111 and Vibrio cholera O22 & O139. To date, no colitosyltransferase (ColT) has been characterized, probably due to the inaccessibility of the sugar donor, GDP-colitose. In this study, starting with chemically prepared colitose, 94.6 mg of GDP-colitose was prepared via a facile and efficient one-pot two-enzyme system involving an l-fucokinase/GDP-l-Fuc pyrophosphorylase and an inorganic pyrophosphatase (EcPpA). WbgN, a putative ColT from E. coli O55:H5 was then cloned, overexpressed, purified and biochemically characterized by using GDP-colitose as a sugar donor. Activity assay and structural identification of the synthetic product clearly demonstrated that wbgN encodes an α1,2-ColT. Biophysical study showed that WbgN does not require metal ion, and is highly active at pH 7.5–9.0. In addition, acceptor specificity study indicated that WbgN exclusively recognizes lacto-N-biose (Galβ1,3-GlcNAc). Most interestingly, it was found that WbgN exhibits similar activity toward GDP-l-Fuc (kcat/Km = 9.2 min−1 mM−1) as that toward GDP-colitose (kcat/Km = 12 min−1 mM−1). Finally, taking advantage of this, type 1 H-antigen was successfully synthesized in preparative scale. PMID:26703456

  4. A Self-Powered Wearable Noninvasive Electronic-Skin for Perspiration Analysis Based on Piezo-Biosensing Unit Matrix of Enzyme/ZnO Nanoarrays.

    PubMed

    Han, Wuxiao; He, Haoxuan; Zhang, Linlin; Dong, Chuanyi; Zeng, Hui; Dai, Yitong; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2017-09-06

    The emerging multifunctional flexible electronic-skin for establishing body-electric interaction can enable real-time monitoring of personal health status as a new personalized medicine technique. A key difficulty in the device design is the flexible power supply. Here a self-powered wearable noninvasive electronic-skin for perspiration analysis has been realized on the basis of a piezo-biosensing unit matrix of enzyme/ZnO nanoarrays. The electronic-skin can detect lactate, glucose, uric acid, and urea in the perspiration, and no outside electrical power supply or battery is used in the biosensing process. The piezoelectric impulse of the piezo-biosensing units serves as the power supply and the data biosensor. The working mechanism can be ascribed to the piezoelectric-enzymatic-reaction coupling effect of enzyme/ZnO nanowires. The electronic-skin can real-time/continuously monitor the physiological state of a runner through analyzing the perspiration on his skin. This approach can promote the development of a new-type of body electric and self-powered biosensing electronic-skin.

  5. Predicting the Retention Behavior of Specific O-Linked Glycopeptides.

    PubMed

    Badgett, Majors J; Boyes, Barry; Orlando, Ron

    2017-09-01

    O -Linked glycosylation is a common post-translational modification that can alter the overall structure, polarity, and function of proteins. Reverse-phase (RP) chromatography is the most common chromatographic approach to analyze O -glycosylated peptides and their unmodified counterparts, even though this approach often does not provide adequate separation of these two species. Hydrophilic interaction liquid chromatography (HILIC) can be a solution to this problem, as the polar glycan interacts with the polar stationary phase and potentially offers the ability to resolve the peptide from its modified form(s). In this paper, HILIC is used to separate peptides with O - N -acetylgalactosamine ( O -GalNAc), O - N -acetylglucosamine ( O -GlcNAc), and O -fucose additions from their native forms, and coefficients representing the extent of hydrophilicity were derived using linear regression analysis as a means to predict the retention times of peptides with these modifications.

  6. N-Glycan Modification in Aspergillus Species▿

    PubMed Central

    Kainz, Elke; Gallmetzer, Andreas; Hatzl, Christian; Nett, Juergen H.; Li, Huijuan; Schinko, Thorsten; Pachlinger, Robert; Berger, Harald; Reyes-Dominguez, Yazmid; Bernreiter, Andreas; Gerngross, Tillmann; Wildt, Stefan; Strauss, Joseph

    2008-01-01

    The production by filamentous fungi of therapeutic glycoproteins intended for use in mammals is held back by the inherent difference in protein N-glycosylation and by the inability of the fungal cell to modify proteins with mammalian glycosylation structures. Here, we report protein N-glycan engineering in two Aspergillus species. We functionally expressed in the fungal hosts heterologous chimeric fusion proteins containing different localization peptides and catalytic domains. This strategy allowed the isolation of a strain with a functional α-1,2-mannosidase producing increased amounts of N-glycans of the Man5GlcNAc2 type. This strain was further engineered by the introduction of a functional GlcNAc transferase I construct yielding GlcNAcMan5GlcNac2 N-glycans. Additionally, we deleted algC genes coding for an enzyme involved in an early step of the fungal glycosylation pathway yielding Man3GlcNAc2 N-glycans. This modification of fungal glycosylation is a step toward the ability to produce humanized complex N-glycans on therapeutic proteins in filamentous fungi. PMID:18083888

  7. Effect of monensin on the levels of tachykinins and their processing enzyme activity in rat dorsal root ganglia.

    PubMed

    Chikuma, Toshiyuki; Inomata, Yuji; Tsuchida, Ken; Hojo, Hiroshi; Kato, Takeshi

    2002-06-28

    Th effect of monensin, which inhibits trans-Golgi function, on the levels of tachykinins and their processing enzyme activity was examined in organ-cultured rat dorsal root ganglia (DRG). Using an enzyme immunoassay method, we measured neurokinin A and substance P immunoreactivity in the DRG cultured for 72 h with and without 0.1 microM monensin. Both tachykinins were reduced in the DRG treated with monensin. Treatment with monensin also reduced the activity of carboxypeptidase E, which is one of the proteolytic processing enzymes of neuropeptides. These data suggest that proteolytic processing enzymes may in part modulate the biological activity of neuropeptides within a trans-Golgi apparatus.

  8. Enzyme Assay: An Investigative Approach to Enhance Science Process Skills

    ERIC Educational Resources Information Center

    Vartak, Rekha; Ronad, Anupama; Ghanekar, Vikrant

    2013-01-01

    Scientific investigations play a vital role in teaching and learning the process of science. An investigative task that was developed for pre-university students is described here. The task involves extraction of an enzyme from a vegetable source and its detection by biochemical method. At the beginning of the experiment, a hypothesis is presented…

  9. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2 O production.

    PubMed

    Blum, Jan-Michael; Su, Qingxian; Ma, Yunjie; Valverde-Pérez, Borja; Domingo-Félez, Carlos; Jensen, Marlene Mark; Smets, Barth F

    2018-05-01

    Nitrous oxide (N 2 O) is emitted during microbiological nitrogen (N) conversion processes, when N 2 O production exceeds N 2 O consumption. The magnitude of N 2 O production vs. consumption varies with pH and controlling net N 2 O production might be feasible by choice of system pH. This article reviews how pH affects enzymes, pathways and microorganisms that are involved in N-conversions in water engineering applications. At a molecular level, pH affects activity of cofactors and structural elements of relevant enzymes by protonation or deprotonation of amino acid residues or solvent ligands, thus causing steric changes in catalytic sites or proton/electron transfer routes that alter the enzymes' overall activity. Augmenting molecular information with, e.g., nitritation or denitrification rates yields explanations of changes in net N 2 O production with pH. Ammonia oxidizing bacteria are of highest relevance for N 2 O production, while heterotrophic denitrifiers are relevant for N 2 O consumption at pH > 7.5. Net N 2 O production in N-cycling water engineering systems is predicted to display a 'bell-shaped' curve in the range of pH 6.0-9.0 with a maximum at pH 7.0-7.5. Net N 2 O production at acidic pH is dominated by N 2 O production, whereas N 2 O consumption can outweigh production at alkaline pH. Thus, pH 8.0 may be a favourable pH set-point for water treatment applications regarding net N 2 O production. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Geometric and electronic structure contributions to function in non-heme iron enzymes.

    PubMed

    Solomon, Edward I; Light, Kenneth M; Liu, Lei V; Srnec, Martin; Wong, Shaun D

    2013-11-19

    Mononuclear non-heme Fe (NHFe) enzymes play key roles in DNA repair, the biosynthesis of antibiotics, the response to hypoxia, cancer therapy, and many other biological processes. These enzymes catalyze a diverse range of oxidation reactions, including hydroxylation, halogenation, ring closure, desaturation, and electrophilic aromatic substitution (EAS). Most of these enzymes use an Fe(II) site to activate dioxygen, but traditional spectroscopic methods have not allowed researchers to insightfully probe these ferrous active sites. We have developed a methodology that provides detailed geometric and electronic structure insights into these NHFe(II) active sites. Using these data, we have defined a general mechanistic strategy that many of these enzymes use: they control O2 activation (and limit autoxidation and self-hydroxylation) by allowing Fe(II) coordination unsaturation only in the presence of cosubstrates. Depending on the type of enzyme, O2 activation either involves a 2e(-) reduced Fe(III)-OOH intermediate or a 4e(-) reduced Fe(IV)═O intermediate. Nuclear resonance vibrational spectroscopy (NRVS) has provided the geometric structure of these intermediates, and magnetic circular dichroism (MCD) has defined the frontier molecular orbitals (FMOs), the electronic structure that controls reactivity. This Account emphasizes that experimental spectroscopy is critical in evaluating the results of electronic structure calculations. Therefore these data are a key mechanistic bridge between structure and reactivity. For the Fe(III)-OOH intermediates, the anticancer drug activated bleomycin (BLM) acts as the non-heme Fe analog of compound 0 in heme (e.g., P450) chemistry. However BLM shows different reactivity: the low-spin (LS) Fe(III)-OOH can directly abstract a H atom from DNA. The LS and high-spin (HS) Fe(III)-OOHs have fundamentally different transition states. The LS transition state goes through a hydroxyl radical, but the HS transition state is activated for

  11. Structure and kinetic investigation of Streptococcus pyogenes family GH38 alpha-mannosidase.

    PubMed

    Suits, Michael D L; Zhu, Yanping; Taylor, Edward J; Walton, Julia; Zechel, David L; Gilbert, Harry J; Davies, Gideon J

    2010-02-03

    The enzymatic hydrolysis of alpha-mannosides is catalyzed by glycoside hydrolases (GH), termed alpha-mannosidases. These enzymes are found in different GH sequence-based families. Considerable research has probed the role of higher eukaryotic "GH38" alpha-mannosides that play a key role in the modification and diversification of hybrid N-glycans; processes with strong cellular links to cancer and autoimmune disease. The most extensively studied of these enzymes is the Drosophila GH38 alpha-mannosidase II, which has been shown to be a retaining alpha-mannosidase that targets both alpha-1,3 and alpha-1,6 mannosyl linkages, an activity that enables the enzyme to process GlcNAc(Man)(5)(GlcNAc)(2) hybrid N-glycans to GlcNAc(Man)(3)(GlcNAc)(2). Far less well understood is the observation that many bacterial species, predominantly but not exclusively pathogens and symbionts, also possess putative GH38 alpha-mannosidases whose activity and specificity is unknown. Here we show that the Streptococcus pyogenes (M1 GAS SF370) GH38 enzyme (Spy1604; hereafter SpGH38) is an alpha-mannosidase with specificity for alpha-1,3 mannosidic linkages. The 3D X-ray structure of SpGH38, obtained in native form at 1.9 A resolution and in complex with the inhibitor swainsonine (K(i) 18 microM) at 2.6 A, reveals a canonical GH38 five-domain structure in which the catalytic "-1" subsite shows high similarity with the Drosophila enzyme, including the catalytic Zn(2+) ion. In contrast, the "leaving group" subsites of SpGH38 display considerable differences to the higher eukaryotic GH38s; features that contribute to their apparent specificity. Although the in vivo function of this streptococcal GH38 alpha-mannosidase remains unknown, it is shown to be an alpha-mannosidase active on N-glycans. SpGH38 lies on an operon that also contains the GH84 hexosaminidase (Spy1600) and an additional putative glycosidase. The activity of SpGH38, together with its genomic context, strongly hints at a function in

  12. Biosynthesis of the carbohydrate antigenic determinants, Globo H, blood group H, and Lewis b: a role for prostate cancer cell alpha1,2-L-fucosyltransferase.

    PubMed

    Chandrasekaran, E V; Chawda, Ram; Locke, Robert D; Piskorz, Conrad F; Matta, Khushi L

    2002-03-01

    Prostate carcinoma LNCaP cells were unique among several human cancer cell lines which include two other prostate cancer cell lines, PC-3 and DU-145, in expressing alpha1,2-L-fucosyltransferase (FT) as an exclusive FT activity. Affinity gel-GDP and Sephacryl S100 HR columns were used for a partial purification of this enzyme from 3.9 x 10(9) LNCaP cells (approximately 200-fold; 40% yield). The K(m) value (2.7 mM) for the LacNAc type 2 acceptor was quite similar to the one reported for the cloned blood group H gene-specified alpha1,2-FT [Chandrasekaran et al. (1996) Biochemistry 35, 8914-8924]. N-Ethylmaleimide was a potent inhibitor (K(i ) 12.5 microM). The enzyme showed four-fold acceptor preference for the LacNAc type 2 unit in comparison to the T-hapten in mucin core 2 structure. Its main features were similar to those of the cloned enzyme: (1) C-6 sulfation of terminal Gal in the LacNAc unit increased the acceptor efficiency, whereas C-6 sialylation abolished acceptor ability; (2) C-6 sulfation of GlcNAc in LacNAc type 2 decreased by 80% the acceptor ability, whereas LacNAc type 1 was unaffected; (3) Lewis x did not serve as an acceptor; (4) the C-4 hydroxyl rather than the C-6 hydroxyl group of the GlcNAc moiety in LacNAc type1 was essential for activity; and (5) the acrylamide copolymer of Galbeta1,3GlcNAcbeta-O-Al was the best acceptor among the acrylamide copolymers. Additionally, highly significant biological features of alpha1,2FT were identified in the present study. The synthesis of Globo H and Lewis b determinants became evident from the fact that Galbeta1,3GalNAcbeta1,3Galalpha-O-Me and Galbeta1,3(Fucalpha1,4)Glc-NAcbeta1,3Galbeta-O-Me served as high-affinity acceptors for this enzyme. Further, D-Fucbeta1,3Gal-NAcbeta1,3Galalpha-O-Me was a very efficient acceptor, indicating that the C-6 hydroxyl group of the terminal Gal moiety in Globo H is not essential for the enzyme activity. Thus, the present study was able to demonstrate three different

  13. Biochemical characterization of a recombinant plant class III chitinase from the pitcher of the carnivorous plant Nepenthes alata.

    PubMed

    Ishisaki, Kana; Arai, Sachiko; Hamada, Tatsuro; Honda, Yuji

    2012-11-01

    A class III chitinase belonging to the GH18 family from Nepenthes alata (NaCHIT3) was expressed in Escherichia coli. The enzyme exhibited hydrolytic activity toward colloidal chitin, ethylene glycol chitin, and (GlcNAc)(n) (n=5 and 6). The enzyme hydrolyzed the fourth glycosidic linkage from the non-reducing end of (GlcNAc)(6). The anomeric form of the products indicated it was a retaining enzyme. The colloidal chitin hydrolytic reaction displayed high activity between pH 3.9 and 6.9, but the pH optimum of the (GlcNAc)(6) hydrolytic reaction was 3.9 at 37 °C. The optimal temperature for activity was 65 °C in 50 mM sodium acetate buffer (pH 3.9). The pH optima of NaCHIT3 and NaCHIT1 might be related to their roles in chitin degradation in the pitcher fluid. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Determination Hypoiodous Acid (HIO) By Peroxidase System Using Peroxidase Enzyme

    NASA Astrophysics Data System (ADS)

    Al-Baarri, A. N.; Legowo, A. M.; Widayat; Abduh, S. B. M.; Hadipernata, M.; Wisnubroto; Ardianti, D. K.; Susanto, M. N.; Yusuf, M.; Demasta, E. K.

    2018-02-01

    It has been understood that peroxidase enzyme including peroxidase serves as catalyzer to enzymatic reaction among hydrogen peroxide and halides, therefore this research was done for generating hypoiodous acid (HIO) from peroxidase system using peroxidase enzyme. Hydrogen peroxide, potassium iodide, and peroxidase enzyme were used to produce HIO. Determination the amount of formed HIO was done using 2,2'-azino-bis(3- ethylbenzothiazoline-6-sulphonic acid) or ABTS as substrate through the colorimetric measurement of hydrogen peroxide residue during reaction process using at 412 nm. The result indicated that residual hydrogen peroxide showed the minimum concentration after 60 minutes reaction time. Because the reaction started at the beginning time of mixing, hydrogen peroxide was unable to be eliminated totally to produce HIO. The reaction of peroxidase system was able to determine the beginning of mixing process but the reaction process could not eliminate the initial concentration of hydrogen peroxide indicating the maximum amount of production of HIO could be determined. In conclusion, the less of H2O2, higher HIO obtained and peroxidase enzymes can accelerate the formation of HIO.

  15. Structural Basis of Specific Recognition of Non-Reducing Terminal N-Acetylglucosamine by an Agrocybe aegerita Lectin

    PubMed Central

    Ren, Xiao-Ming; Li, De-Feng; Jiang, Shuai; Lan, Xian-Qing; Hu, Yonglin; Sun, Hui; Wang, Da-Cheng

    2015-01-01

    O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification that plays essential roles in many cellular pathways. Research in this field, however, is hampered by the lack of suitable probes to identify, accumulate, and purify the O-GlcNAcylated proteins. We have previously reported the identification of a lectin from the mushroom Agrocybe aegerita, i.e., Agrocybe aegerita lectin 2, or AAL2, that could bind terminal N-acetylglucosamine with higher affinities and specificity than other currently used probes. In this paper, we report the crystal structures of AAL2 and its complexes with GlcNAc and GlcNAcβ1-3Galβ1-4GlcNAc and reveal the structural basis of GlcNAc recognition by AAL2 and residues essential for the binding of terminal N-acetylglucosamine. Study on AAL2 may enable us to design a protein probe that can be used to identify and purify O-GlcNAcylated proteins more efficiently. PMID:26114302

  16. Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation

    PubMed Central

    Castilho, Alexandra; Gruber, Clemens; Thader, Andreas; Oostenbrink, Chris; Pechlaner, Maria; Steinkellner, Herta; Altmann, Friedrich

    2015-01-01

    We investigated N-glycan processing of immunoglobulin G1 using the monoclonal antibody cetuximab (CxMab), which has a glycosite in the Fab domain in addition to the conserved Fc glycosylation, as a reporter. Three GlcNAc (Gn) terminating bi-antennary glycoforms of CxMab differing in core fucosylation (α1,3- and α1,6-linkage) were generated in a plant-based expression platform. These GnGn, GnGnF3, and GnGnF6 CxMab variants were subjected in vivo to further processing toward sialylation and GlcNAc diversification (bisected and branching structures). Mass spectrometry-based glycan analyses revealed efficient processing of Fab glycans toward envisaged structures. By contrast, Fc glycan processing largely depend on the presence of core fucose. A particularly strong support of glycan processing in the presence of plant-specific core α1,3-fucose was observed. Consistently, molecular modeling suggests changes in the interactions of the Fc carbohydrate chain depending on the presence of core fucose, possibly changing the accessibility. Here, we provide data that reveal molecular mechanisms of glycan processing of IgG antibodies, which may have implications for the generation of glycan-engineered therapeutic antibodies with improved efficacies. PMID:26067753

  17. Elevated O-GlcNAcylation promotes gastric cancer cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling.

    PubMed

    Jiang, Mingzuo; Qiu, Zhaoyan; Zhang, Song; Fan, Xing; Cai, Xiqiang; Xu, Bing; Li, Xiaowei; Zhou, Jinfeng; Zhang, Xiangyuan; Chu, Yi; Wang, Weijie; Liang, Jie; Horvath, Tamas; Yang, Xiaoyong; Wu, Kaichun; Nie, Yongzhan; Fan, Daiming

    2016-09-20

    O-GlcNAc transferase (OGT) is the only enzyme in mammals that catalyzes the attachment of β-D-N-acetylglucosamine (GlcNAc) to serine or threonine residues of target proteins. Hyper-O-GlcNAcylation is becoming increasingly realized as a general feature of cancer and contributes to rapid proliferation of cancer cells. In this study, we demonstrated that O-GlcNAc and OGT levels were increased in all six gastric cancer (GC) cell lines as compared with immortal gastric epithelial cells. Downregulation of the O-GlcNAcylation level by silencing OGT inhibited cell viability and growth rate via the cdk-2, cyclin D1 and ERK 1/2 pathways. In vivo xenograft assays also demonstrated that the hyper-O-GlcNAc level markedly promoted the proliferation of tumors. Moreover, compared with noncancerous tissues, the O-GlcNAcylation level was increased in cancerous tissues. GC patients with higher levels of O-GlcNAcylation exhibited large tumor sizes (≥5 cm), deep tumor invasion (T3 and T4), high AJCC stages (stage III and IV), more lymph node metastases and lower overall survival. Notably, the phosphorylation level of ERK 1/2 was increased progressively with the increase of O-GlcNAcylation in both SGC 7901 and AGS cells. Consistently, human GC tissue arrays also revealed that ERK 1/2 signaling was positively correlated to O-GlcNAcylation (r = 0.348; P = 0.015). Taken together, here we reported that hyper-O-GlcNAcylation significantly promotes GC cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling, suggesting that inhibition of OGT may be a potential novel therapeutic target of GC.

  18. Vacuolar processing enzyme: an executor of plant cell death.

    PubMed

    Hara-Nishimura, Ikuko; Hatsugai, Noriyuki; Nakaune, Satoru; Kuroyanagi, Miwa; Nishimura, Mikio

    2005-08-01

    Apoptotic cell death in animals is regulated by cysteine proteinases called caspases. Recently, vacuolar processing enzyme (VPE) was identified as a plant caspase. VPE deficiency prevents cell death during hypersensitive response and cell death of limited cell layers at the early stage of embryogenesis. Because plants do not have macrophages, dying cells must degrade their materials by themselves. VPE plays an essential role in the regulation of the lytic system of plants during the processes of defense and development. VPE is localized in the vacuoles, unlike animal caspases, which are localized in the cytosol. Thus, plants might have evolved a regulated cellular suicide strategy that, unlike animal apoptosis, is mediated by VPE and the vacuoles.

  19. Microbial Tyrosinases: Promising Enzymes for Pharmaceutical, Food Bioprocessing, and Environmental Industry

    PubMed Central

    Zaidi, Kamal Uddin; Ali, Ayesha S.; Ali, Sharique A.; Naaz, Ishrat

    2014-01-01

    Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial applications. In environmental technology it is used for the detoxification of phenol-containing wastewaters and contaminated soils, as biosensors for phenol monitoring, and for the production of L-DOPA in pharmaceutical industries, and is also used in cosmetic and food industries as important catalytic enzyme. Melanin pigment synthesized by tyrosinase has found applications for protection against radiation cation exchangers, drug carriers, antioxidants, antiviral agents, or immunogen. The recombinant V. spinosum tryosinase protein can be used to produce tailor-made melanin and other polyphenolic materials using various phenols and catechols as starting materials. This review compiles the recent data on biochemical and molecular properties of microbial tyrosinases, underlining their importance in the industrial use of these enzymes. After that, their most promising applications in pharmaceutical, food processing, and environmental fields are presented. PMID:24895537

  20. Iron mediates catalysis of nucleic acid processing enzymes: support for Fe(II) as a cofactor before the great oxidation event.

    PubMed

    Okafor, C Denise; Lanier, Kathryn A; Petrov, Anton S; Athavale, Shreyas S; Bowman, Jessica C; Hud, Nicholas V; Williams, Loren Dean

    2017-04-20

    Life originated in an anoxic, Fe2+-rich environment. We hypothesize that on early Earth, Fe2+ was a ubiquitous cofactor for nucleic acids, with roles in RNA folding and catalysis as well as in processing of nucleic acids by protein enzymes. In this model, Mg2+ replaced Fe2+ as the primary cofactor for nucleic acids in parallel with known metal substitutions of metalloproteins, driven by the Great Oxidation Event. To test predictions of this model, we assay the ability of nucleic acid processing enzymes, including a DNA polymerase, an RNA polymerase and a DNA ligase, to use Fe2+ in place of Mg2+ as a cofactor during catalysis. Results show that Fe2+ can indeed substitute for Mg2+ in catalytic function of these enzymes. Additionally, we use calculations to unravel differences in energetics, structures and reactivities of relevant Mg2+ and Fe2+ complexes. Computation explains why Fe2+ can be a more potent cofactor than Mg2+ in a variety of folding and catalytic functions. We propose that the rise of O2 on Earth drove a Fe2+ to Mg2+ substitution in proteins and nucleic acids, a hypothesis consistent with a general model in which some modern biochemical systems retain latent abilities to revert to primordial Fe2+-based states when exposed to pre-GOE conditions. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Antioxidant enzyme activities are affected by salt content and temperature and influence muscle lipid oxidation during dry-salted bacon processing.

    PubMed

    Jin, Guofeng; He, Lichao; Yu, Xiang; Zhang, Jianhao; Ma, Meihu

    2013-12-01

    Fresh pork bacon belly was used as material and manufactured into dry-salted bacon through salting and drying-ripening. During processing both oxidative stability and antioxidant enzyme stability were evaluated by assessing peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and activities of catalase, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and their correlations were also analysed. The results showed that all antioxidant enzyme activities decreased (p<0.05) until the end of process; GSH-Px was the most unstable one followed by catalase. Antioxidant enzyme activities were negatively correlated with TBARS (p<0.05), but the correlations were decreased with increasing process temperature. Salt showed inhibitory effect on all antioxidant enzyme activities and was concentration dependent. These results indicated that when process temperature and salt content were low at the same time during dry-salted bacon processing, antioxidant enzymes could effectively control lipid oxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Endothelial Targeting of Semi-permeable Polymer Nanocarriers for Enzyme Therapies

    PubMed Central

    Dziubla, Thomas D; Shuvaev, Vladimir V.; Hong, Nan Kang; Hawkins, Brian; Muniswamy, Madesh; Takano, Hajime; Simone, Eric; Nakada, Marian T.; Fisher, Aron; Albelda, Steven M.; Muzykantov, Vladimir R.

    2007-01-01

    The medical utility of proteins, e.g. therapeutic enzymes, is greatly restricted by their liable nature and inadequate delivery. Most therapeutic enzymes do not accumulate in their targets and are inactivated by proteases. Targeting of enzymes encapsulated into substrate-permeable Polymeric Nano-Carriers (PNC) impermeable for proteases might overcome these limitations. To test this hypothesis, we designed endothelial targeted PNC loaded with catalase, the H2O2-detoxifying enzyme, and tested if this approach protects against vascular oxidative stress, a pathological process implicated in ischemia-reperfusion and other disease conditions. Encapsulation of catalase (MW 240KD), peroxidase (MW 42kD) and xanthine oxidase (XO, MW 300 kD) into ~300nm diameter PNC composed of co-polymers of PEG-PLGA (polyethylene glycol and poly-lactic/poly-glycolic acid) was in the range ~10% for all enzymes. PNC/catalase and PNC/peroxidase were protected from external proteolysis and exerted the enzymatic activity on their PNC diffusible substrates, H2O2 and ortho-phenylendiamine, whereas activity of encapsulated XO was negligible due to polymer impermeability to the substrate. PNC targeted to platelet-endothelial cell adhesion molecule-1 delivered active encapsulated catalase to endothelial cells and protected the endothelium against oxidative stress in cell culture and animal studies. Vascular targeting of PNC-loaded detoxifying enzymes may find wide medical applications including management of oxidative stress and other toxicities. PMID:17950837

  3. Spätzle-Processing Enzyme-independent Activation of the Toll Pathway in Drosophila Innate Immunity.

    PubMed

    Yamamoto-Hino, Miki; Goto, Satoshi

    2016-05-07

    The Toll pathway regulates innate immunity in insects and vertebrates. The Drosophila Toll receptor is activated by a processed form of a ligand, Spätzle. Spätzle-processing enzyme (SPE) is the only enzyme identified to date that functions in converting Spätzle to an active form during the immune response. In the present study, Toll activation induced by immune challenge was almost suppressed in spätzle mutant larvae and adults, whereas it was present in SPE mutant larvae challenged with Micrococcus luteus and adults challenged with Bacillus subtilis. Our data suggest that an unidentified protease besides SPE processes Spätzle under conditions of microbial challenge.

  4. Effects of N-glycan precursor length diversity on quality control of protein folding and on protein glycosylation

    PubMed Central

    Samuelson, John; Robbins, Phillips W.

    2014-01-01

    Asparagine-linked glycans (N-glycans) of medically important protists have much to tell us about the evolution of N-glycosylation and of N-glycan-dependent quality control (N-glycan QC) of protein folding in the endoplasmic reticulum. While host N-glycans are built upon a dolichol-pyrophosphate-linked precursor with 14 sugars (Glc3Man9GlcNAc2), protist N-glycan precursors vary from Glc3Man9GlcNAc2 (Acanthamoeba) to Man9GlcNAc2 (Trypanosoma) to Glc3Man5GlcNAc2 (Toxoplasma) to Man5GlcNAc2 (Entamoeba, Trichomonas, and Eimeria) to GlcNAc2 (Plasmodium and Giardia) to zero (Theileria). As related organisms have differing N-glycan lengths (e.g. Toxoplasma, Eimeria, Plasmodium, and Theileria), the present N-glycan variation is based upon secondary loss of Alg genes, which encode enzymes that add sugars to the N-glycan precursor. An N-glycan precursor with Man5GlcNAc2 is necessary but not sufficient for N-glycan QC, which is predicted by the presence of the UDP-glucose:glucosyltransferase (UGGT) plus calreticulin and/or calnexin. As many parasites lack glucose in their N-glycan precursor, UGGT product may be identified by inhibition of glucosidase II. The presence of an armless calnexin in Toxoplasma suggests secondary loss of N-glycan QC from coccidia. Positive selection for N-glycan sites occurs in secreted proteins of organisms with NG-QC and is based upon an increased likelihood of threonine but not serine in the second position versus asparagine. In contrast, there appears to be selection against N-glycan length in Plasmodium and N-glycan site density in Toxoplasma. Finally, there is suggestive evidence for N-glycan-dependent ERAD in Trichomonas, which glycosylates and degrades the exogenous reporter mutant carboxypeptidase Y (CPY*). PMID:25475176

  5. A novel analytical method for d-glucosamine quantification and its application in the analysis of chitosan degradation by a minimal enzyme cocktail.

    PubMed

    Mekasha, Sophanit; Toupalová, Hana; Linggadjaja, Eka; Tolani, Harish A; Anděra, Ladislav; Arntzen, Magnus Ø; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H; Agger, Jane W

    2016-10-04

    Enzymatic depolymerization of chitosan, a β-(1,4)-linked polycationic polysaccharide composed of d-glucosamine (GlcN) and N-acetyl-d-glucosamine (GlcNAc) provides a possible route to the exploitation of chitin-rich biomass. Complete conversion of chitosan to mono-sugars requires the synergistic action of endo- and exo- chitosanases. In the present study we have developed an efficient and cost-effective chitosan-degrading enzyme cocktail containing only two enzymes, an endo-attacking bacterial chitosanase, ScCsn46A, from Streptomyces coelicolor, and an exo-attacking glucosamine specific β-glucosaminidase, Tk-Glm, from the archaeon Thermococcus kodakarensis KOD1. Moreover, we developed a fast, reliable quantitative method for analysis of GlcN using high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The sensitivity of this method is high and less than 50 pmol was easily detected, which is about 1000-fold better than the sensitivity of more commonly used detection methods based on refractive index. We also obtained qualitative insight into product development during the enzymatic degradation reaction by means of ElectroSpray Ionization-Mass Spectrometry (ESI-MS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Electrospun Microfiber Scaffolds with Anti-Inflammatory Tributanoylated N-Acetyl-d-Glucosamine Promote Cartilage Regeneration

    PubMed Central

    Kim, Chaekyu; Shores, Lucas; Guo, Qiongyu; Aly, Ahmed; Jeon, Ok Hee; Kim, Do Hun; Bernstein, Nicholas; Bhattacharya, Rahul; Chae, Jemin Jeremy; Yarema, Kevin J.

    2016-01-01

    Tissue-engineering strategies offer promising tools for repairing cartilage damage; however, these strategies suffer from limitations under pathological conditions. As a model disease for these types of nonideal systems, the inflammatory environment in an osteoarthritic (OA) joint limits the efficacy of engineered therapeutics by disrupting joint homeostasis and reducing its capacity for regeneration. In this work, we investigated a sugar-based drug candidate, a tributanoylated N-acetyl-d-glucosamine analogue, called 3,4,6-O-Bu3GlcNAc, that is known to reduce nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in osteoarthritis. 3,4,6-O-Bu3GlcNAc not only inhibited NFκB signaling but also exerted chondrogenic and anti-inflammatory effects on chondrocytes isolated from patients with osteoarthritis. 3,4,6-O-Bu3GlcNAc also increased the expression of extracellular matrix proteins and induced cartilage tissue production in three-dimensional in vitro hydrogel culture systems. To translate these chondrogenic and anti-inflammatory properties to tissue regeneration in osteoarthritis, we implanted 3,4,6-O-Bu3GlcNAc-loaded poly(lactic-co-glycolic acid) microfiber scaffolds into rats. The drug-laden scaffolds were biocompatible, and when seeded with human OA chondrocytes, similarly promoted cartilage tissue formation. 3,4,6-O-Bu3GlcNAc combined with the appropriate structural environment could be a promising therapeutic approach for osteoarthritis. PMID:27019285

  7. The processing of asparagine-linked oligosaccharides in HT-29 cells is a function of their state of enterocytic differentiation. An accumulation of Man9,8-GlcNAc2-Asn species is indicative of an impaired N-glycan trimming in undifferentiated cells.

    PubMed

    Ogier-Denis, E; Codogno, P; Chantret, I; Trugnan, G

    1988-05-05

    Studies on the regulation of the enterocytic differentiation of the human colon cancer cell line HT-29, which is differentiated in the absence (Glc-) but not in the presence of glucose (Glc+), have recently shown that the post-translational processing of sucrase-isomaltase and particularly its glycosylation vary as a function of cell differentiation (Trugnan G., Rousset, M., Chantret, I., Barbat, A., and Zweibaum, A. (1987) J. Cell Biol. 104, 1199-1205). Other studies indicate that in undifferentiated HT-29 Glc+ cells there is an accumulation of UDP-N-acetylhexosamine, which is involved in the glycosylation process (Wice, B. M., Trugnan, G., Pinto, M., Rousset, M., Chevalier, G., Dussaulx, E., Lacroix, B., and Zweibaum, A. (1985) J. Biol. Chem. 260, 139-146). The purpose of the present work is to investigate whether an overall alteration of protein glycosylation is associated with the inability of HT-29 cells to differentiate. At least three alterations are detected: (i) after a 10-min pulse, the incorporation of D-[2-3H]mannose in undifferentiated cells is severely reduced, compared to differentiated cells. (ii) After a 24-h period of labeling with D-[2-3H]mannose, undifferentiated cells accumulate more than 60% of the radioactivity in the high mannose glycopeptides, whereas differentiated HT-29 Glc- cells accumulate only 38%. (iii) The analysis of the high mannose oligosaccharides transferred "en bloc" from the lipid precursor shows that Man9,8-GlcNAc2 species accumulate in undifferentiated cells, whereas no such accumulation can be detected in differentiated cells. This glycosylation pattern is consistent with an impairment of the trimming of high mannose into complex glycans. It is concluded that N-glycan processing is correlated with the state of enterocytic differentiation of HT-29 cells.

  8. Vacuolar processing enzyme in plant programmed cell death

    PubMed Central

    Hatsugai, Noriyuki; Yamada, Kenji; Goto-Yamada, Shino; Hara-Nishimura, Ikuko

    2015-01-01

    Vacuolar processing enzyme (VPE) is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an ortholog of animal asparaginyl endopeptidase (AEP/VPE/legumain). VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD) pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1. PMID:25914711

  9. Structure-Guided Functional Characterization of DUF1460 Reveals a Highly Specific NlpC/P60 Amidase Family

    DOE PAGES

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine; ...

    2014-11-20

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a novel, highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo-structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predictedmore » in silico based on structural and bioinformatics data, and were subsequently characterized experimentally. Ultimately, further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines a new amidase family.« less

  10. Structure-guided functional characterization of DUF1460 reveals a highly specific NlpC/P60 amidase family.

    PubMed

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine; Grant, Joanna C; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W; Godzik, Adam; Lesley, Scott A; Elsliger, Marc-André; Deacon, Ashley M; Wilson, Ian A

    2014-12-02

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predicted in silico based on structural and bioinformatics data, and subsequently were characterized experimentally. Further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines another amidase family. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Structure-Guided Functional Characterization of DUF1460 Reveals a Highly Specific NlpC/P60 Amidase Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a novel, highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo-structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predictedmore » in silico based on structural and bioinformatics data, and were subsequently characterized experimentally. Ultimately, further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines a new amidase family.« less

  12. Endo-beta-N-acetylglucosaminidase, an enzyme involved in processing of free oligosaccharides in the cytosol.

    PubMed

    Suzuki, Tadashi; Yano, Keiichi; Sugimoto, Seiji; Kitajima, Ken; Lennarz, William J; Inoue, Sadako; Inoue, Yasuo; Emori, Yasufumi

    2002-07-23

    Formation of oligosaccharides occurs both in the cytosol and in the lumen of the endoplasmic reticulum (ER). Luminal oligosaccharides are transported into the cytosol to ensure that they do not interfere with proper functioning of the glycan-dependent quality control machinery in the lumen of the ER for newly synthesized glycoproteins. Once in the cytosol, free oligosaccharides are catabolized, possibly to maximize the reutilization of the component sugars. An endo-beta-N-acetylglucosaminidase (ENGase) is a key enzyme involved in the processing of free oligosaccharides in the cytosol. This enzyme activity has been widely described in animal cells, but the gene encoding this enzyme activity has not been reported. Here, we report the identification of the gene encoding human cytosolic ENGase. After 11 steps, the enzyme was purified 150,000-fold to homogeneity from hen oviduct, and several internal amino acid sequences were analyzed. Based on the internal sequence and examination of expressed sequence tag (EST) databases, we identified the human orthologue of the purified protein. The human protein consists of 743 aa and has no apparent signal sequence, supporting the idea that this enzyme is localized in the cytosol. By expressing the cDNA of the putative human ENGase in COS-7 cells, the enzyme activity in the soluble fraction was enhanced 100-fold over the basal level, confirming that the human gene identified indeed encodes for ENGase. Careful gene database surveys revealed the occurrence of ENGase homologues in Drosophila melanogaster, Caenorhabditis elegans, and Arabidopsis thaliana, indicating the broad occurrence of ENGase in higher eukaryotes. This gene was expressed in a variety of human tissues, suggesting that this enzyme is involved in basic biological processes in eukaryotic cells.

  13. Role of UDP-N-Acetylglucosamine (GlcNAc) and O-GlcNAcylation of Hyaluronan Synthase 2 in the Control of Chondroitin Sulfate and Hyaluronan Synthesis*

    PubMed Central

    Vigetti, Davide; Deleonibus, Sara; Moretto, Paola; Karousou, Eugenia; Viola, Manuela; Bartolini, Barbara; Hascall, Vincent C.; Tammi, Markku; De Luca, Giancarlo; Passi, Alberto

    2012-01-01

    Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1–3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t½ >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies. PMID:22887999

  14. Heterogonous expression and characterization of a plant class IV chitinase from the pitcher of the carnivorous plant Nepenthes alata.

    PubMed

    Ishisaki, Kana; Honda, Yuji; Taniguchi, Hajime; Hatano, Naoya; Hamada, Tatsuro

    2012-03-01

    A class IV chitinase belonging to the glycoside hydrolase 19 family from Nepenthes alata (NaCHIT1) was expressed in Escherichia coli. The enzyme exhibited weak activity toward polymeric substrates and significant activity toward (GlcNAc)(n) [β-1,4-linked oligosaccharide of GlcNAc with a polymerization degree of n (n = 4-6)]. The enzyme hydrolyzed the third and fourth glycosidic linkages from the non-reducing end of (GlcNAc)(6). The pH optimum of the enzymatic reaction was 5.5 at 37°C. The optimal temperature for activity was 60°C in 50 mM sodium acetate buffer (pH 5.5). The anomeric form of the products indicated that it was an inverting enzyme. The k(cat)/K(m) of the (GlcNAc)(n) hydrolysis increased with an increase in the degree of polymerization. Amino acid sequence alignment analysis between NaCHIT1 and a class IV chitinase from a Picea abies (Norway spruce) suggested that the deletion of four loops likely led the enzyme to optimize the (GlcNAc)(n) hydrolytic reaction rather than the hydrolysis of polymeric substrates.

  15. Lack of O-GlcNAcylation enhances exercise-dependent glucose utilization potentially through AMP-activated protein kinase activation in skeletal muscle.

    PubMed

    Murata, Koichiro; Morino, Katsutaro; Ida, Shogo; Ohashi, Natsuko; Lemecha, Mengistu; Park, Shi-Young; Ishikado, Atsushi; Kume, Shinji; Choi, Cheol Soo; Sekine, Osamu; Ugi, Satoshi; Maegawa, Hiroshi

    2018-01-08

    O-GlcNAcylation is a post-translational modification that is characterized by the addition of N-acetylglucosamine (GlcNAc) to proteins by O-GlcNAc transferase (Ogt). The degree of O-GlcNAcylation is thought to be associated with glucotoxicity and diabetic complications, because GlcNAc is produced by a branch of the glycolytic pathway. However, its role in skeletal muscle has not been fully elucidated. In this study, we created skeletal muscle-specific Ogt knockout (Ogt-MKO) mice and analyzed their glucose metabolism. During an intraperitoneal glucose tolerance test, blood glucose was slightly lower in Ogt-MKO mice than in control Ogt-flox mice. High fat diet-induced obesity and insulin resistance were reversed in Ogt-MKO mice. In addition, 12-month-old Ogt-MKO mice had lower adipose and body mass. A single bout of exercise significantly reduced blood glucose in Ogt-MKO mice, probably because of higher AMP-activated protein kinase α (AMPKα) protein expression. Furthermore, intraperitoneal injection of 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, resulted in a more marked decrease in blood glucose levels in Ogt-MKO mice than in controls. Finally, Ogt knockdown by siRNA in C2C12 myotubes significantly increased protein expression of AMPKα, glucose uptake and oxidation. In conclusion, loss of O-GlcNAcylation facilitates glucose utilization in skeletal muscle, potentially through AMPK activation. The inhibition of O-GlcNAcylation in skeletal muscle may have an anti-diabetic effect, through an enhancement of glucose utilization during exercise. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mutant α-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin

    PubMed Central

    Ishii, Satoshi; Chang, Hui-Hwa; Kawasaki, Kunito; Yasuda, Kayo; Wu, Hui-Li; Garman, Scott C.; Fan, Jian-Qiang

    2007-01-01

    Fabry disease is a lysosomal storage disorder caused by the deficiency of α-Gal A (α-galactosidase A) activity. In order to understand the molecular mechanism underlying α-Gal A deficiency in Fabry disease patients with residual enzyme activity, enzymes with different missense mutations were purified from transfected COS-7 cells and the biochemical properties were characterized. The mutant enzymes detected in variant patients (A20P, E66Q, M72V, I91T, R112H, F113L, N215S, Q279E, M296I, M296V and R301Q), and those found mostly in mild classic patients (A97V, A156V, L166V and R356W) appeared to have normal Km and Vmax values. The degradation of all mutants (except E59K) was partially inhibited by treatment with kifunensine, a selective inhibitor of ER (endoplasmic reticulum) α-mannosidase I. Metabolic labelling and subcellular fractionation studies in COS-7 cells expressing the L166V and R301Q α-Gal A mutants indicated that the mutant protein was retained in the ER and degraded without processing. Addition of DGJ (1-deoxygalactonojirimycin) to the culture medium of COS-7 cells transfected with a large set of missense mutant α-Gal A cDNAs effectively increased both enzyme activity and protein yield. DGJ was capable of normalizing intracellular processing of mutant α-Gal A found in both classic (L166V) and variant (R301Q) Fabry disease patients. In addition, the residual enzyme activity in fibroblasts or lymphoblasts from both classic and variant hemizygous Fabry disease patients carrying a variety of missense mutations could be substantially increased by cultivation of the cells with DGJ. These results indicate that a large proportion of mutant enzymes in patients with residual enzyme activity are kinetically active. Excessive degradation in the ER could be responsible for the deficiency of enzyme activity in vivo, and the DGJ approach may be broadly applicable to Fabry disease patients with missense mutations. PMID:17555407

  17. Synthesis and Characterization of Magnetic Carriers Based on Immobilized Enzyme

    NASA Astrophysics Data System (ADS)

    Li, F. H.; Tang, N.; Wang, Y. Q.; Zhang, L.; Du, W.; Xiang, J.; Cheng, P. G.

    2018-05-01

    Several new types of carriers and technologies have been implemented to improve traditional enzyme immobilization in industrial biotechnology. The magnetic immobilized enzyme is a kind of new method of enzyme immobilization developed in recent years. An external magnetic field can be used to control the motion mode and direction of immobilized enzyme, and to improve the catalytic efficiency of immobilized enzyme. In this paper, Fe3O4-CaCO3-PDA complex and CaCO3/Fe3O4 composite modified by PEI were prepared. The results show that the morphology of Fe3O4-CaCO3-PDA complex formation is irregular, while the morphology of CaCO3/Fe3O4 composite modified by PEI is regular and has a porous structure.

  18. Processing of poultry feathers by alkaline keratin hydrolyzing enzyme from Serratia sp. HPC 1383.

    PubMed

    Khardenavis, Anshuman A; Kapley, Atya; Purohit, Hemant J

    2009-04-01

    The present study describes the production and characterization of a feather hydrolyzing enzyme by Serratia sp. HPC 1383 isolated from tannery sludge, which was identified by the ability to form clear zones around colonies on milk agar plates. The proteolytic activity was expressed in terms of the micromoles of tyrosine released from substrate casein per ml per min (U/mL min). Induction of the inoculum with protein was essential to stimulate higher activity of the enzyme, with 0.03% feathermeal in the inoculum resulting in increased enzyme activity (45U/mL) that further increased to 90U/mL when 3d old inoculum was used. The highest enzyme activity, 130U/mL, was observed in the presence of 0.2% yeast extract. The optimum assay temperature and pH for the enzyme were found to be 60 degrees C and 10.0, respectively. The enzyme had a half-life of 10min at 60 degrees C, which improved slightly to 18min in presence of 1mM Ca(2+). Inhibition of the enzyme by phenylmethyl sulfonyl fluoride (PMSF) indicated that the enzyme was a serine protease. The enzyme was also partially inhibited (39%) by the reducing agent beta-mercaptoethanol and by divalent metal ions such as Zn(2+) (41% inhibition). However, Ca(2+) and Fe(2+) resulted in increases in enzyme activity of 15% and 26%, respectively. The kinetic constants of the keratinase were found to be 3.84 microM (K(m)) and 108.7 microM/mLmin (V(max)). These results suggest that this extracellular keratinase may be a useful alternative and eco-friendly route for handling the abundant amount of waste feathers or for applications in other industrial processes.

  19. Deciphering the Mode of Action of the Processive Polysaccharide Modifying Enzyme Dermatan Sulfate Epimerase 1 by Hydrogen-Deuterium Exchange Mass Spectrometry.

    PubMed

    Tykesson, Emil; Mao, Yang; Maccarana, Marco; Pu, Yi; Gao, Jinshan; Lin, Cheng; Zaia, Joseph; Westergren-Thorsson, Gunilla; Ellervik, Ulf; Malmström, Lars; Malmström, Anders

    2016-02-01

    Distinct from template-directed biosynthesis of nucleic acids and proteins, the enzymatic synthesis of heterogeneous polysaccharides is a complex process that is difficult to study using common analytical tools. Therefore, the mode of action and processivity of those enzymes are largely unknown. Dermatan sulfate epimerase 1 (DS-epi1) is the predominant enzyme during the formation of iduronic acid residues in the glycosaminoglycan dermatan sulfate. Using recombinant DS-epi1 as a model enzyme, we describe a tandem mass spectrometry-based method to study the mode of action of polysaccharide processing enzymes. The enzyme action on the substrate was monitored by hydrogen-deuterium exchange mass spectrometry and the sequence information was then fed into mathematical models with two different assumptions of the mode of action for the enzyme: processive reducing end to non-reducing end, and processive non-reducing end to reducing end. Model data was scored by correlation to experimental data and it was found that DS-epi1 attacks its substrate on a random position, followed by a processive mode of modification towards the non-reducing end and that the substrate affinity of the enzyme is negatively affected by each additional epimerization event. It could also be shown that the smallest active substrate was the reducing end uronic acid in a tetrasaccharide and that octasaccharides and longer oligosaccharides were optimal substrates. The method of using tandem mass spectrometry to generate sequence information of the complex enzymatic products in combination with in silico modeling can be potentially applied to study the mode of action of other enzymes involved in polysaccharide biosynthesis.

  20. Mannostatin A, a new glycoprotein-processing inhibitor.

    PubMed

    Tropea, J E; Kaushal, G P; Pastuszak, I; Mitchell, M; Aoyagi, T; Molyneux, R J; Elbein, A D

    1990-10-30

    Mannostatin A is a metabolite produced by the microorganism Streptoverticillium verticillus and reported to be a potent competitive inhibitor of rat epididymal alpha-mannosidase. When tested against a number of other arylglycosidases, mannostatin A was inactive toward alpha- and beta-glucosidase and galactosidase as well as beta-mannosidase, but it was a potent inhibitor of jack bean, mung bean, and rat liver lysosomal alpha-mannosidases, with estimated IC50's of 70 nM, 450 nM, and 160 nM, respectively. The type of inhibition was competitive in nature. This compound also proved to be an effective competitive inhibitor of the glycoprotein-processing enzyme mannosidase II (IC50 of about 10-15 nM with p-nitrophenyl alpha-D-mannopyranoside as substrate, and about 90 nM with [3H]mannose-labeled GlcNAc-Man5GlcNAc as substrate). However, it was virtually inactive toward mannosidase I. The N-acetylated derivative of mannostatin A had no inhibitory activity. In cell culture studies, mannostatin A also proved to be a potent inhibitor of glycoprotein processing. Thus, in influenza virus infected Madin Darby canine kidney (MDCK) cells, mannostatin A blocked the normal formation of complex types of oligosaccharides on the viral glycoproteins and caused the accumulation of hybrid types of oligosaccharides. This observation is in keeping with other data which indicate that the site of action of mannostatin A is mannosidase II. Thus, mannostatin A represents the first nonalkaloidal processing inhibitor and adds to the growing list of chemical structures that can have important biological activity.

  1. Environmental biocatalysis: from remediation with enzymes to novel green processes.

    PubMed

    Alcalde, Miguel; Ferrer, Manuel; Plou, Francisco J; Ballesteros, Antonio

    2006-06-01

    Modern biocatalysis is developing new and precise tools to improve a wide range of production processes, which reduce energy and raw material consumption and generate less waste and toxic side-products. Biocatalysis is also achieving new advances in environmental fields, from enzymatic bioremediation to the synthesis of renewable and clean energies and biochemical cleaning of 'dirty' fossil fuels. Despite the obvious benefits of biocatalysis, the major hurdles hindering the exploitation of the repertoire of enzymatic processes are, in many cases, the high production costs and the low yields obtained. This article will discuss these issues, pinpointing specific new advances in recombinant DNA techniques amenable to future biocatalyst development, in addition to drawing the attention of the biotechnology community to the active pursuit and development of environmental biocatalysis, from remediation with enzymes to novel green processes.

  2. Single-step affinity purification of enzyme biotherapeutics: a platform methodology for accelerated process development.

    PubMed

    Brower, Kevin P; Ryakala, Venkat K; Bird, Ryan; Godawat, Rahul; Riske, Frank J; Konstantinov, Konstantin; Warikoo, Veena; Gamble, Jean

    2014-01-01

    Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non-antibody biologics. Multi-step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single-step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi-step purification trains. These models empower process development decision-making with drug substance-equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT). © 2014 American Institute of Chemical Engineers.

  3. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.

    PubMed

    Florencio, Camila; Cunha, Fernanda M; Badino, Alberto C; Farinas, Cristiane S; Ximenes, Eduardo; Ladisch, Michael R

    2016-08-01

    Cellulases and hemicellulases from Trichoderma reesei and Aspergillus niger have been shown to be powerful enzymes for biomass conversion to sugars, but the production costs are still relatively high for commercial application. The choice of an effective microbial cultivation process employed for enzyme production is important, since it may affect titers and the profile of protein secretion. We used proteomic analysis to characterize the secretome of T. reesei and A. niger cultivated in submerged and sequential fermentation processes. The information gained was key to understand differences in hydrolysis of steam exploded sugarcane bagasse for enzyme cocktails obtained from two different cultivation processes. The sequential process for cultivating A. niger gave xylanase and β-glucosidase activities 3- and 8-fold higher, respectively, than corresponding activities from the submerged process. A greater protein diversity of critical cellulolytic and hemicellulolytic enzymes were also observed through secretome analyses. These results helped to explain the 3-fold higher yield for hydrolysis of non-washed pretreated bagasse when combined T. reesei and A. niger enzyme extracts from sequential fermentation were used in place of enzymes obtained from submerged fermentation. An enzyme loading of 0.7 FPU cellulase activity/g glucan was surprisingly effective when compared to the 5-15 times more enzyme loadings commonly reported for other cellulose hydrolysis studies. Analyses showed that more than 80% consisted of proteins other than cellulases whose role is important to the hydrolysis of a lignocellulose substrate. Our work combined proteomic analyses and enzymology studies to show that sequential and submerged cultivation methods differently influence both titers and secretion profile of key enzymes required for the hydrolysis of sugarcane bagasse. The higher diversity of feruloyl esterases, xylanases and other auxiliary hemicellulolytic enzymes observed in the enzyme

  4. Accumulation of N-Acetylglucosamine Oligomers in the Plant Cell Wall Affects Plant Architecture in a Dose-Dependent and Conditional Manner1[W][OPEN

    PubMed Central

    Vanholme, Bartel; Vanholme, Ruben; Turumtay, Halbay; Goeminne, Geert; Cesarino, Igor; Goubet, Florence; Morreel, Kris; Rencoret, Jorge; Bulone, Vincent; Hooijmaijers, Cortwa; De Rycke, Riet; Gheysen, Godelieve; Ralph, John; De Block, Marc; Meulewaeter, Frank; Boerjan, Wout

    2014-01-01

    To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane. PMID:24664205

  5. ZnO/Cu nanocomposite: a platform for direct electrochemistry of enzymes and biosensing applications.

    PubMed

    Yang, Chi; Xu, Chunxiang; Wang, Xuemei

    2012-03-06

    Unique structured nanomaterials can facilitate the direct electron transfer between redox proteins and the electrodes. Here, in situ directed growth on an electrode of a ZnO/Cu nanocomposite was prepared by a simple corrosion approach, which enables robust mechanical adhesion and electrical contact between the nanostructured ZnO and the electrodes. This is great help to realize the direct electron transfer between the electrode surface and the redox protein. SEM images demonstrate that the morphology of the ZnO/Cu nanocomposite has a large specific surface area, which is favorable to immobilize the biomolecules and construct biosensors. Using glucose oxidase (GOx) as a model, this ZnO/Cu nanocomposite is employed for immobilization of GOx and the construction of the glucose biosensor. Direct electron transfer of GOx is achieved at ZnO/Cu nanocomposite with a high heterogeneous electron transfer rate constant of 0.67 ± 0.06 s(-1). Such ZnO/Cu nanocomposite provides a good matrix for direct electrochemistry of enzymes and mediator-free enzymatic biosensors.

  6. Investigation on the Influence of Bio-catalytic Enzyme Produced from Fruit and Vegetable Waste on Palm Oil Mill Effluent

    NASA Astrophysics Data System (ADS)

    Rasit, Nazaitulshila; Chee Kuan, Ooi

    2018-04-01

    Pre-consumer waste from supermarkets, such as vegetables and fruits dreg are always discarded as solid waste and disposed to landfill. Implementing waste recovery method as a form of waste management strategy will reduce the amount of waste disposed. One of the ways to achieve this goal is through fermentation of the pre-consumer supermarket waste to produce a solution known as garbage enzyme. This study has been conducted to produce and characterize biocatalytic garbage enzyme and to evaluate its influence on palm oil mill effluent as a pre-treatment process before further biological process takes place. Garbage enzyme was produced by three-month long fermentation of a mixture of molasses, pre-consumer supermarket residues, and water in the ratio of 1:3:10. Subsequently, the characterization of enzyme was conducted based on pH, total solids (TS), total suspended solids (TSS), total dissolved solids (TDS), chemical oxygen demand (COD), and enzyme activities. The influence of produced enzyme was evaluated on oil & grease (O&G), TSS and COD of palm oil mill effluent (POME). Different levels of dilution of garbage enzyme to POME samples (5%, 10%, 15%) were explored as pre-treatment (duration of six days) and the results showed that the garbage enzyme contained bio-catalytic enzyme such as amylase, protease, and lipase. The pre-treatment showed removal of 90% of O&G in 15% dilution of garbage enzyme. Meanwhile, reduction of TSS and COD in dilution of 10% garbage enzyme were measured at 50% and 25% respectively. The findings of this study are important to analyse the effectiveness of pre-treatment for further improvement of anaerobic treatment process of POME, especially during hydrolysis stage.

  7. Regulation-Structured Dynamic Metabolic Model Provides a Potential Mechanism for Delayed Enzyme Response in Denitrification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; Thomas, Dennis G.; Stegen, James C.

    In a recent study of denitrification dynamics in hyporheic zone sediments, we observed a significant time lag (up to several days) in enzymatic response to the changes in substrate concentration. To explore an underlying mechanism and understand the interactive dynamics between enzymes and nutrients, we developed a trait-based model that associates a community’s traits with functional enzymes, instead of typically used species guilds (or functional guilds). This enzyme-based formulation allows to collectively describe biogeochemical functions of microbial communities without directly parameterizing the dynamics of species guilds, therefore being scalable to complex communities. As a key component of modeling, we accountedmore » for microbial regulation occurring through transcriptional and translational processes, the dynamics of which was parameterized based on the temporal profiles of enzyme concentrations measured using a new signature peptide-based method. The simulation results using the resulting model showed several days of a time lag in enzymatic responses as observed in experiments. Further, the model showed that the delayed enzymatic reactions could be primarily controlled by transcriptional responses and that the dynamics of transcripts and enzymes are closely correlated. The developed model can serve as a useful tool for predicting biogeochemical processes in natural environments, either independently or through integration with hydrologic flow simulators.« less

  8. Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme.

    PubMed

    Watkins, Daniel W; Jenkins, Jonathan M X; Grayson, Katie J; Wood, Nicola; Steventon, Jack W; Le Vay, Kristian K; Goodwin, Matthew I; Mullen, Anna S; Bailey, Henry J; Crump, Matthew P; MacMillan, Fraser; Mulholland, Adrian J; Cameron, Gus; Sessions, Richard B; Mann, Stephen; Anderson, J L Ross

    2017-08-25

    Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H 2 O 2 . The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.Catalytic mechanisms of enzymes are well understood, but achieving diverse reaction chemistries in re-engineered proteins can be difficult. Here the authors show a highly efficient and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H 2 O 2 .

  9. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization.

    PubMed

    Johnson, Patrick A; Park, Hee Joon; Driscoll, Ashley J

    2011-01-01

    Immobilized enzymes are drawing significant attention for potential commercial applications as biocatalysts by reducing operational expenses and by increasing process utilization of the enzymes. Typically, immobilized enzymes have greater thermal and operational stability at various pH values, ionic strengths and are more resistant to denaturation that the soluble native form of the enzyme. Also, immobilized enzymes can be recycled by utilizing the physical or chemical properties of the supporting material. Magnetic nanoparticles provide advantages as the supporting material for immobilized enzymes over competing materials such as: higher surface area that allows for greater enzyme loading, lower mass transfer resistance, less fouling effect, and selective, nonchemical separation from the reaction mixture by an applied a magnetic field. Various surface modifications of magnetic nanoparticles, such as silanization, carbodiimide activation, and PEG or PVA spacing, aid in the binding of single or multienzyme systems to the particles, while cross-linking using glutaraldehyde can also stabilize the attached enzymes.

  10. Multifunctional Cellulolytic Enzymes Outperform Processive Fungal Cellulases for Coproduction of Nanocellulose and Biofuels

    DOE PAGES

    Yarbrough, John. M.; Zhang, Ruoran; Mittal, Ashutosh; ...

    2017-03-07

    Producing fuels, chemicals, and materials from renewable resources to meet societal demands remains an important step in the transition to a sustainable, clean energy economy. The use of cellulolytic enzymes for the production of nanocellulose enables the coproduction of sugars for biofuels production in a format that is largely compatible with the process design employed by modern lignocellulosic (second generation) biorefineries. However, yields of enzymatically produced nanocellulose are typically much lower than those achieved by mineral acid production methods. In this study, we compare the capacity for coproduction of nanocellulose and fermentable sugars using two vastly different cellulase systems: themore » classical 'free enzyme' system of the saprophytic fungus, Trichoderma reesei (T. reesei) and the complexed, multifunctional enzymes produced by the hot springs resident, Caldicellulosiruptor bescii (C. bescii). Here, we demonstrate by comparative digestions that the C. bescii system outperforms the fungal enzyme system in terms of total cellulose conversion, sugar production, and nanocellulose production. In addition, we show by multimodal imaging and dynamic light scattering that the nanocellulose produced by the C. bescii cellulase system is substantially more uniform than that produced by the T. reesei system. These disparities in the yields and characteristics of the nanocellulose produced by these disparate systems can be attributed to the dramatic differences in the mechanisms of action of the dominant enzymes in each system.« less

  11. Multifunctional Cellulolytic Enzymes Outperform Processive Fungal Cellulases for Coproduction of Nanocellulose and Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarbrough, John. M.; Zhang, Ruoran; Mittal, Ashutosh

    Producing fuels, chemicals, and materials from renewable resources to meet societal demands remains an important step in the transition to a sustainable, clean energy economy. The use of cellulolytic enzymes for the production of nanocellulose enables the coproduction of sugars for biofuels production in a format that is largely compatible with the process design employed by modern lignocellulosic (second generation) biorefineries. However, yields of enzymatically produced nanocellulose are typically much lower than those achieved by mineral acid production methods. In this study, we compare the capacity for coproduction of nanocellulose and fermentable sugars using two vastly different cellulase systems: themore » classical 'free enzyme' system of the saprophytic fungus, Trichoderma reesei (T. reesei) and the complexed, multifunctional enzymes produced by the hot springs resident, Caldicellulosiruptor bescii (C. bescii). Here, we demonstrate by comparative digestions that the C. bescii system outperforms the fungal enzyme system in terms of total cellulose conversion, sugar production, and nanocellulose production. In addition, we show by multimodal imaging and dynamic light scattering that the nanocellulose produced by the C. bescii cellulase system is substantially more uniform than that produced by the T. reesei system. These disparities in the yields and characteristics of the nanocellulose produced by these disparate systems can be attributed to the dramatic differences in the mechanisms of action of the dominant enzymes in each system.« less

  12. Cellular effects of deoxynojirimycin analogues: inhibition of N-linked oligosaccharide processing and generation of free glucosylated oligosaccharides.

    PubMed

    Mellor, Howard R; Neville, David C A; Harvey, David J; Platt, Frances M; Dwek, Raymond A; Butters, Terry D

    2004-08-01

    In the accompanying paper [Mellor, Neville, Harvey, Platt, Dwek and Butters (2004) Biochem. J. 381, 861-866] we treated HL60 cells with N-alk(en)yl-deoxynojirimycin (DNJ) compounds to inhibit glucosphingolipid (GSL) biosynthesis and identified a number of non-GSL-derived, small, free oligosaccharides (FOS) most likely produced due to inhibition of the oligosaccharide-processing enzymes a-glucosidases I and II. When HL60 cells were treated with concentrations of N-alk(en)ylated DNJ analogues that inhibited GSL biosynthesis completely, N-butyl- and N-nonyl-DNJ inhibited endoplasmic reticulum (ER) glucosidases I and II, but octadecyl-DNJ did not, probably due to the lack of ER lumen access for this novel, long-chain derivative. Glucosidase inhibition resulted in the appearance of free Glc1-3Man structures, which is evidence of Golgi glycoprotein endomannosidase processing of oligosaccharides with retained glucose residues. Additional large FOS was also detected in cells following a 16 h treatment with N-butyl- and N-nonyl-DNJ. When these FOS structures (>30, including >20 species not present in control cells) were characterized by enzyme digests and MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS, all were found to be polymannose-type oligosaccharides, of which the majority were glucosylated and had only one reducing terminal GlcNAc (N-acetylglucosamine) residue (FOS-GlcNAc1), demonstrating a cytosolic location. These results support the proposal that the increase in glucosylated FOS results from enzyme-mediated cytosolic cleavage of oligosaccharides from glycoproteins exported from the ER because of misfolding or excessive retention. Importantly, the present study characterizes the cellular properties of DNJs further and demonstrates that side-chain modifications allow selective inhibition of protein and lipid glycosylation pathways. This represents the most detailed characterization of the FOS structures arising from ER a

  13. Cellular effects of deoxynojirimycin analogues: inhibition of N-linked oligosaccharide processing and generation of free glucosylated oligosaccharides

    PubMed Central

    2004-01-01

    In the accompanying paper [Mellor, Neville, Harvey, Platt, Dwek and Butters (2004) Biochem. J. 381, 861–866] we treated HL60 cells with N-alk(en)yl-deoxynojirimycin (DNJ) compounds to inhibit glucosphingolipid (GSL) biosynthesis and identified a number of non-GSL-derived, small, free oligosaccharides (FOS) most likely produced due to inhibition of the oligosaccharide-processing enzymes α-glucosidases I and II. When HL60 cells were treated with concentrations of N-alk(en)ylated DNJ analogues that inhibited GSL biosynthesis completely, N-butyl- and N-nonyl-DNJ inhibited endoplasmic reticulum (ER) glucosidases I and II, but octadecyl-DNJ did not, probably due to the lack of ER lumen access for this novel, long-chain derivative. Glucosidase inhibition resulted in the appearance of free Glc1–3Man structures, which is evidence of Golgi glycoprotein endomannosidase processing of oligosaccharides with retained glucose residues. Additional large FOS was also detected in cells following a 16 h treatment with N-butyl- and N-nonyl-DNJ. When these FOS structures (>30, including >20 species not present in control cells) were characterized by enzyme digests and MALDI-TOF (matrix-assisted laser-desorption ionization–time-of-flight) MS, all were found to be polymannose-type oligosaccharides, of which the majority were glucosylated and had only one reducing terminal GlcNAc (N-acetylglucosamine) residue (FOS-GlcNAc1), demonstrating a cytosolic location. These results support the proposal that the increase in glucosylated FOS results from enzyme-mediated cytosolic cleavage of oligosaccharides from glycoproteins exported from the ER because of misfolding or excessive retention. Importantly, the present study characterizes the cellular properties of DNJs further and demonstrates that side-chain modifications allow selective inhibition of protein and lipid glycosylation pathways. This represents the most detailed characterization of the FOS structures arising from ER

  14. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

    PubMed Central

    Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul

    2015-01-01

    The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635

  15. Starch Biorefinery Enzymes.

    PubMed

    Läufer, Albrecht

    2017-03-07

    Nature uses enzymes to build and convert biomass; mankind uses the same enzymes and produces them on a large scale to make optimum use of biomass in biorefineries. Bacterial α-amylases and fungal glucoamylases have been the workhorses of starch biorefineries for many decades. Pullulanases were introduced in the 1980s. Proteases, cellulases, hemicellulases, and phytases have been on the market for a few years as process aids, improving yields, performance, and costs. Detailed studies of the complex chemical structures of biomass and of the physicochemical limitations of industrial biorefineries have led enzyme developers to produce novel tailor-made solutions for improving yield and profitability in the industry. This chapter reviews the development of enzyme applications in the major starch biorefining processes.

  16. Integration of Enzymes in Polyaniline-Sensitized 3D Inverse Opal TiO2 Architectures for Light-Driven Biocatalysis and Light-to-Current Conversion.

    PubMed

    Riedel, Marc; Lisdat, Fred

    2018-01-10

    Inspired by natural photosynthesis, coupling of artificial light-sensitive entities with biocatalysts in a biohybrid format can result in advanced photobioelectronic systems. Herein, we report on the integration of sulfonated polyanilines (PMSA1) and PQQ-dependent glucose dehydrogenase (PQQ-GDH) into inverse opal TiO 2 (IO-TiO 2 ) electrodes. While PMSA1 introduces sensitivity for visible light into the biohybrid architecture and ensures the efficient wiring between the IO-TiO 2 electrode and the biocatalytic entity, PQQ-GDH provides the catalytic activity for the glucose oxidation and therefore feeds the light-driven reaction with electrons for an enhanced light-to-current conversion. Here, the IO-TiO 2 electrodes with pores of around 650 nm provide a suitable interface and morphology needed for the stable and functional assembly of polymer and enzyme. The IO-TiO 2 electrodes have been prepared by a template approach applying spin coating, allowing an easy scalability of the electrode height and surface area. The successful integration of the polymer and the enzyme is confirmed by the generation of an anodic photocurrent, showing an enhanced magnitude with increasing glucose concentrations. Compared to flat and nanostructured TiO 2 electrodes, the three-layered IO-TiO 2 electrodes give access to a 24-fold and 29-fold higher glucose-dependent photocurrent due to the higher polymer and enzyme loading in IO films. The three-dimensional IO-TiO 2 |PMSA1|PQQ-GDH architecture reaches maximum photocurrent densities of 44.7 ± 6.5 μA cm -2 at low potentials in the presence of glucose (for a three TiO 2 layer arrangement). The onset potential for the light-driven substrate oxidation is found to be at -0.315 V vs Ag/AgCl (1 M KCl) under illumination with 100 mW cm -2 , which is more negative than the redox potential of the enzyme. The results demonstrate the advantageous properties of IO-TiO 2 |PMSA1|PQQ-GDH biohybrid architectures for the light-driven glucose conversion

  17. Degradation of phenolic compounds with hydrogen peroxide catalyzed by enzyme from Serratia marcescens AB 90027.

    PubMed

    Yao, Ri-Sheng; Sun, Min; Wang, Chun-Ling; Deng, Sheng-Song

    2006-09-01

    In this paper, the degradation of phenolic compounds using hydrogen peroxide as oxidizer and the enzyme extract from Serratia marcescens AB 90027 as catalyst was reported. With such an enzyme/H2O2 combination treatment, a high chemical oxygen demand (COD) removal efficiency was achieved, e.g., degradation of hydroquinone exceeded 96%. From UV-visible and IR spectra, the degradation mechanisms were judged as a process of phenyl ring cleavage. HPLC analysis shows that in the degradation p-benzoquinone, maleic acid and oxalic acid were formed as intermediates and that they were ultimately converted to CO2 and H2O. With the enzyme/H2O2 treatment, vanillin, hydroquinone, catechol, o-aminophenol, p-aminophenol, phloroglucinol and p-hydroxybenzaldehyde were readily degraded, whereas the degradation of phenol, salicylic acid, resorcinol, p-cholorophenol and p-nitrophenol were limited. Their degradability was closely related to the properties and positions of their side chain groups. Electron-donating groups, such as -OH, -NH2 and -OCH3 enhanced the degradation, whereas electron-withdrawing groups, such as -NO2, -Cl and -COOH, had a negative effect on the degradation of these compounds in the presence of enzyme/H2O2. Compounds with -OH at ortho and para positions were more readily degraded than those with -OH at meta positions.

  18. O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

    PubMed

    Shi, Jianhua; Gu, Jin-hua; Dai, Chun-ling; Gu, Jianlan; Jin, Xiaoxia; Sun, Jianming; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2015-09-28

    Apoptosis plays an important role in neural development and neurological disorders. In this study, we found that O-GlcNAcylation, a unique protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc), promoted apoptosis through attenuating phosphorylation/activation of AKT and Bad. By using co-immunoprecipitation and mutagenesis techniques, we identified O-GlcNAc modification at both Thr308 and Ser473 of AKT. O-GlcNAcylation-induced apoptosis was attenuated by over-expression of AKT. We also found a dynamic elevation of protein O-GlcNAcylation during the first four hours of cerebral ischemia, followed by continuous decline after middle cerebral artery occlusion (MCAO) in the mouse brain. The elevation of O-GlcNAcylation coincided with activation of cell apoptosis. Finally, we found a negative correlation between AKT phosphorylation and O-GlcNAcylation in ischemic brain tissue. These results indicate that cerebral ischemia induces a rapid increase of O-GlcNAcylation that promotes apoptosis through down-regulation of AKT activity. These findings provide a novel mechanism through which O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

  19. Ultrasound assisted process intensification of uricase and alkaline protease enzyme co-production in Bacillus licheniformis.

    PubMed

    Pawar, Shweta V; Rathod, Virendra K

    2018-07-01

    Low energy ultrasound irradiation was used to enhance co-production of enzymes uricase and alkaline protease using Bacillus licheniformis NRRL 14209. Production of uricase and alkaline protease was evaluated for different ultrasound parameters such as ultrasound power, time of irradiation, duty cycle and growth stage of organisms at which irradiation is carried out. Maximum uricase production of 0.825 U/mL and alkaline protease of 0.646 U/mL have been obtained when fermentation broth was irradiated at 6 h of growth stage with 60 W power for 15 min of duration having 40% of duty cycle. The enzyme yield was found to be enhanced by a factor of 1.9-3.8 and 1.2-2.2 for uricase and alkaline protease respectively. Nevertheless, intracellular uricase was also observed in a fermentation broth after ultrasonic process intensification. The results indicate the effectiveness of low frequency ultrasound in improving enzyme yields with a vision of commercial applicability of the process. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Accumulation of Free Oligosaccharides and Tissue Damage in Cytosolic α-Mannosidase (Man2c1)-deficient Mice

    PubMed Central

    Paciotti, Silvia; Persichetti, Emanuele; Klein, Katharina; Tasegian, Anna; Duvet, Sandrine; Hartmann, Dieter; Gieselmann, Volkmar; Beccari, Tommaso

    2014-01-01

    Free Man7–9GlcNAc2 is released during the biosynthesis pathway of N-linked glycans or from misfolded glycoproteins during the endoplasmic reticulum-associated degradation process and are reduced to Man5GlcNAc in the cytosol. In this form, free oligosaccharides can be transferred into the lysosomes to be degraded completely. α-Mannosidase (MAN2C1) is the enzyme responsible for the partial demannosylation occurring in the cytosol. It has been demonstrated that the inhibition of MAN2C1 expression induces accumulation of Man8–9GlcNAc oligosaccharides and apoptosis in vitro. We investigated the consequences caused by the lack of cytosolic α-mannosidase activity in vivo by the generation of Man2c1-deficient mice. Increased amounts of Man8–9GlcNAc oligosaccharides were recognized in all analyzed KO tissues. Histological analysis of the CNS revealed neuronal and glial degeneration with formation of multiple vacuoles in deep neocortical layers and major telencephalic white matter tracts. Enterocytes of the small intestine accumulate mannose-containing saccharides and glycogen particles in their apical cytoplasm as well as large clear vacuoles in retronuclear position. Liver tissue is characterized by groups of hepatocytes with increased content of mannosyl compounds and glycogen, some of them undergoing degeneration by hydropic swelling. In addition, lectin screening showed the presence of mannose-containing saccharides in the epithelium of proximal kidney tubules, whereas scattered glomeruli appeared collapsed or featured signs of fibrosis along Bowman's capsule. Except for a moderate enrichment of mannosyl compounds and glycogen, heterozygous mice were normal, arguing against possible toxic effects of truncated Man2c1. These findings confirm the key role played by Man2c1 in the catabolism of free oligosaccharides. PMID:24550399

  1. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process.

    PubMed

    Latka, Agnieszka; Maciejewska, Barbara; Majkowska-Skrobek, Grazyna; Briers, Yves; Drulis-Kawa, Zuzanna

    2017-04-01

    Bacteriophages are bacterial viruses that infect the host after successful receptor recognition and adsorption to the cell surface. The irreversible adherence followed by genome material ejection into host cell cytoplasm must be preceded by the passage of diverse carbohydrate barriers such as capsule polysaccharides (CPSs), O-polysaccharide chains of lipopolysaccharide (LPS) molecules, extracellular polysaccharides (EPSs) forming biofilm matrix, and peptidoglycan (PG) layers. For that purpose, bacteriophages are equipped with various virion-associated carbohydrate active enzymes, termed polysaccharide depolymerases and lysins, that recognize, bind, and degrade the polysaccharide compounds. We discuss the existing diversity in structural locations, variable architectures, enzymatic specificities, and evolutionary aspects of polysaccharide depolymerases and virion-associated lysins (VALs) and illustrate how these aspects can correlate with the host spectrum. In addition, we present methods that can be used for activity determination and the application potential of these enzymes as antibacterials, antivirulence agents, and diagnostic tools.

  2. Development of a highly efficient oil degumming process using a novel phosphatidylinositol-specific phospholipase C enzyme.

    PubMed

    Cerminati, Sebastián; Eberhardt, Florencia; Elena, Claudia E; Peirú, Salvador; Castelli, María E; Menzella, Hugo G

    2017-06-01

    Enzymatic degumming using phospholipase C (PLC) enzymes may be used in environmentally friendly processes with improved oil recovery yields. In this work, phosphatidylinositol-specific phospholipase C (PIPLC) candidates obtained from an in silico analysis were evaluated for oil degumming. A PIPLC from Lysinibacillus sphaericus was shown to efficiently remove phosphatidylinositol from crude oil, and when combined with a second phosphatidylcholine and phosphatidylethanolamine-specific phospholipase C, the three major phospholipids were completely hydrolyzed, providing an extra yield of oil greater than 2.1%, compared to standard methods. A remarkably efficient fed-batch Escherichia coli fermentation process producing ∼14 g/L of the recombinant PIPLC enzyme was developed, which may facilitate the adoption of this cost-effective oil-refining process.

  3. Degradation of Misfolded Endoplasmic Reticulum Glycoproteins in Saccharomyces cerevisiae Is Determined by a Specific Oligosaccharide Structure

    PubMed Central

    Jakob, Claude A.; Burda, Patricie; Roth, Jürgen; Aebi, Markus

    1998-01-01

    In Saccharomyces cerevisiae, transfer of N-linked oligosaccharides is immediately followed by trimming of ER-localized glycosidases. We analyzed the influence of specific oligosaccharide structures for degradation of misfolded carboxypeptidase Y (CPY). By studying the trimming reactions in vivo, we found that removal of the terminal α1,2 glucose and the first α1,3 glucose by glucosidase I and glucosidase II respectively, occurred rapidly, whereas mannose cleavage by mannosidase I was slow. Transport and maturation of correctly folded CPY was not dependent on oligosaccharide structure. However, degradation of misfolded CPY was dependent on specific trimming steps. Degradation of misfolded CPY with N-linked oligosaccharides containing glucose residues was less efficient compared with misfolded CPY bearing the correctly trimmed Man8GlcNAc2 oligosaccharide. Reduced rate of degradation was mainly observed for mis- folded CPY bearing Man6GlcNAc2, Man7GlcNAc2 and Man9GlcNAc2 oligosaccharides, whereas Man8GlcNAc2 and, to a lesser extent, Man5GlcNAc2 oligosaccharides supported degradation. These results suggest a role for the Man8GlcNAc2 oligosaccharide in the degradation process. They may indicate the presence of a Man8GlcNAc2-binding lectin involved in targeting of misfolded glycoproteins to degradation in S. cerevisiae. PMID:9732283

  4. Atmospheric Hydrogen Scavenging: from Enzymes to Ecosystems

    PubMed Central

    Constant, Philippe; Hards, Kiel; Morales, Sergio E.; Oakeshott, John G.; Russell, Robyn J.; Taylor, Matthew C.; Berney, Michael; Conrad, Ralf; Cook, Gregory M.

    2014-01-01

    We have known for 40 years that soils can consume the trace amounts of molecular hydrogen (H2) found in the Earth's atmosphere. This process is predicted to be the most significant term in the global hydrogen cycle. However, the organisms and enzymes responsible for this process were only recently identified. Pure culture experiments demonstrated that several species of Actinobacteria, including streptomycetes and mycobacteria, can couple the oxidation of atmospheric H2 to the reduction of ambient O2. A combination of genetic, biochemical, and phenotypic studies suggest that these organisms primarily use this fuel source to sustain electron input into the respiratory chain during energy starvation. This process is mediated by a specialized enzyme, the group 5 [NiFe]-hydrogenase, which is unusual for its high affinity, oxygen insensitivity, and thermostability. Atmospheric hydrogen scavenging is a particularly dependable mode of energy generation, given both the ubiquity of the substrate and the stress tolerance of its catalyst. This minireview summarizes the recent progress in understanding how and why certain organisms scavenge atmospheric H2. In addition, it provides insight into the wider significance of hydrogen scavenging in global H2 cycling and soil microbial ecology. PMID:25501483

  5. Bioconversion of α-chitin into N-acetyl-glucosamine using chitinases produced by marine-derived Aeromonas caviae isolates.

    PubMed

    Cardozo, Flávio Augusto; Gonzalez, Juan Miguel; Feitosa, Valker Araujo; Pessoa, Adalberto; Rivera, Irma Nelly Gutierrez

    2017-10-27

    N-Acetyl-D-glucosamine (GlcNAc) is a monosaccharide with great application potential in the food, cosmetic, pharmaceutical, and biomaterial areas. GlcNAc is currently produced by chemical hydrolysis of chitin, but the current processes are environmentally unfriendly, have low yield and high cost. This study demonstrates the potential to produce GlcNAc from α-chitin using chitinases of ten marine-derived Aeromonas isolates as a sustainable alternative to the current chemical process. The isolates were characterized as Aeromonas caviae by multilocus sequence analysis (MLSA) using six housekeeping genes (gltA, groL, gyrB, metG, ppsA, and recA), not presented the virulence genes verified (alt, act, ast, ahh1, aer, aerA, hlyA, ascV and ascFG), but showed hemolytic activity on blood agar. GlcNAc was produced at 37 °C, pH 5.0, 2% (w/v) colloidal chitin and crude chitinase extracts (0.5 U mL -1 ) by all the isolates with yields from 14 to 85% at 6 h, 17-89% at 12 h and 19-93% after 24 h. The highest yield of GlcNAc was observed by A. caviae CH129 (93%). This study demonstrates one of the most efficient chitin enzymatic hydrolysis procedures and A. caviae isolates with great potential for chitinases expression and GlcNAc production.

  6. Permselective and enzyme-entrapping behaviours of an electropolymerized, non-conducting, poly(o-aminophenol) thin film-modified electrode: a critical study.

    PubMed

    Guerrieri, Antonio; Ciriello, Rosanna; Centonze, Diego

    2009-02-15

    Non-conducting polymeric films synthesised by the electrooxidation of o-aminophenol on a platinum electrode in acetate or phosphate buffer displayed an interesting permselective behaviour, which proved valuable in minimising the electrochemical interferences from ascorbate, acetaminophen, cysteine and urate sample molecules in amperometric detection mode. The electrosynthesis of poly(o-aminophenol) (p(oAP)) film showed also useful as permselective membrane for enzyme immobilization as demonstrated by the production of an interference-free glucose oxidase biosensor. In this respect, the glucose response time, t(0.95), evaluated in batch addition experiments, was lower than 5s while the calibration curve was linear up to 10mM of glucose with a sensitivity of 69.7nA/mM. Both the permselective behaviour and the enzyme-entrapping property of the film were critically compared with the relevant studies until now reported. With respect to the sophisticated but complex approaches described elsewhere, this study shows that simply a proper optimization of p(oAP) electrosynthesis and its permselective behaviour is the key to improve significantly the selectivity of the resulting analytical devices.

  7. Screening of Enzyme Biomarker for Nanotoxicity of Zinc Oxide in OREOCHROMIS MOSSAMBICUS

    NASA Astrophysics Data System (ADS)

    Subramanian, Periasamy; Bupesh, Giridharan

    2011-06-01

    Experiments were conducted to determine the effects of Zinc oxide (ZnO) nanoparticles (NPs) on fish models. Oreochromis mossambicus was orally administered with ZnO NPs (50-100 nm) once and its effects at five different concentrations (60 ppm-100 ppm) were observed for 12 days. Enzymatic assays were performed at every three days interval in the vital tissues of liver, gill, muscle and kidney. The defense enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S transferase (GST) exerted a dose dependent elevation up to 6 days. This hike then declines in higher concentrations and extended duration. Whereas the tissue damaging enzymes, glutamate oxaloacetic transaminase (GOT), glutamate pyruvic transaminase (GPT) and alkaline phosphatase (ALP) as well as the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) exhibited a dose and duration dependent increase until the end of the experiment. Among these enzymes, the antioxidant enzymes response to ZnO NP toxicity on fish showed notable continuous induction. This study demonstrates that antioxidant enzymes responses in O. mossambicus could be used as a biomarker for the early detection of nanotoxicity.

  8. BIOINSPIRED DESIGN AND DIRECTED EVOLUTION OF IRON CONTAINING ENZYMES FOR GREENSYNTHETIC PROCESSES AND BIOREMEDIATION

    EPA Science Inventory

    SU833912
    Title: Bioinspired Design and Directed Evolution of Iron Containing Enzymes for Green Synthetic Processes and BioremediationEdward I. Solomon, Shaun D. Wong, Lei Liu, Caleb B. Bell, IIICynthia Nolt-Helms
    Project Period: August 15, 2008 - August 14,...

  9. Development of in vivo biotransformation enzyme assays for ecotoxicity screening: In vivo measurement of phases I and II enzyme activities in freshwater planarians.

    PubMed

    Li, Mei-Hui

    2016-08-01

    The development of a high-throughput tool is required for screening of environmental pollutants and assessing their impacts on aquatic animals. Freshwater planarians can be used in rapid and sensitive toxicity bioassays. Planarians are known for their remarkable regeneration ability but much less known for their metabolic and xenobiotic biotransformation abilities. In this study, the activities of different phase I and II enzymes were determined in vivo by directly measuring fluorescent enzyme substrate disappearance or fluorescent enzyme metabolite production in planarian culture media. For phase I enzyme activity, O-deethylation activities with alkoxyresorufin could not be detected in planarian culture media. By contrast, O-deethylation activities with alkoxycoumarin were detected in planarian culture media. Increases in 7-ethoxycoumarin O-deethylase (ECOD) activities was only observed in planarians exposed to 1μM, but not 10μM, β-naphthoflavone for 24h. ECOD activity was inhibited in planarians exposed to 10 and 100μM rifampicin or carbamazepine for 24h. For phase II enzyme activity, DT-diaphorase, arylsulfatases, uridine 5'-diphospho (UDP)-glucuronosyltransferase or catechol-O-methyltransferase activity was determined in culture media containing planarians. The results of this study indicate that freshwater planarians are a promising model organism to monitor exposure to environmental pollutants or assess their impacts through the in vivo measurement of phase I and II enzyme activities. Copyright © 2016. Published by Elsevier Inc.

  10. The Predominant Molecular State of Bound Enzyme Determines the Strength and Type of Product Inhibition in the Hydrolysis of Recalcitrant Polysaccharides by Processive Enzymes*

    PubMed Central

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-01-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the 14C-labeled crystalline polymeric substrates 14C chitin nanowhiskers and 14C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki(obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki(obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. PMID:25767120

  11. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes.

    PubMed

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-05-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the (14)C-labeled crystalline polymeric substrates (14)C chitin nanowhiskers and (14)C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki (obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki (obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Enzyme class identification in cleaning products by hydrolysis followed by derivatization with o-phthaldialdehyde, HPLC and linear discriminant analysis.

    PubMed

    Beneito-Cambra, M; Bernabé-Zafón, V; Herrero-Martínez, J M; Simó-Alfonso, E F; Ramis-Ramos, G

    2009-07-15

    The enzymes present in raw materials of the cleaning industry (enzyme industrial concentrates) and in household cleaners were isolated by precipitation with acetone and hydrolyzed with HCl. The resulting amino acids were derivatized with o-phthaldialdehyde, and the derivatives were separated by HPLC. The peaks of 14 amino acids were observed using a C18 column and a multi-segmented gradient of acetonitrile-water in the presence of a 5 mM citric/citrate buffer of pH 6.5. Using either normalized peak areas (divided by the sum of the peak areas of the chromatogram) or ratios of pairs of peak areas as predictor variables, linear discriminant analysis models, capable of predicting the enzyme class, including proteases, lipases, amylases and cellulases, were constructed. For this purpose, both enzyme industrial concentrates and detergent bases spiked with them were included in the training set. In all cases, the enzymes of the evaluation set, including industrial concentrates, spiked detergent bases and commercial cleaners were correctly classified with assignment probabilities higher than 99%.

  13. Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: Evaluation of growth parameters, pigment contents and antioxidant enzyme activities.

    PubMed

    Movafeghi, Ali; Khataee, Alireza; Abedi, Mahboubeh; Tarrahi, Roshanak; Dadpour, Mohammadreza; Vafaei, Fatemeh

    2018-02-01

    Plants are essential components of all ecosystems and play a critical role in environmental fate of nanoparticles. However, the toxicological impacts of nanoparticles on plants are not well documented. Titanium dioxide nanoparticles (TiO 2 -NPs) are produced worldwide in large quantities for a wide range of purposes. In the present study, the uptake of TiO 2 -NPs by the aquatic plant Spirodela polyrrhiza and the consequent effects on the plant were evaluated. Initially, structural and morphological characteristics of the used TiO 2 -NPs were determined using XRD, SEM, TEM and BET techniques. As a result, an anatase structure with the average crystalline size of 8nm was confirmed for the synthesized TiO 2 -NPs. Subsequently, entrance of TiO 2 -NP S to plant roots was verified by fluorescence microscopic images. Activity of a number of antioxidant enzymes, as well as, changes in growth parameters and photosynthetic pigment contents as physiological indices were assessed to investigate the effects of TiO 2 -NPs on S. polyrrhiza. The increasing concentration of TiO 2 -NPs led to the significant decrease in all of the growth parameters and changes in antioxidant enzyme activities. The activity of superoxide dismutase enhanced significantly by the increasing concentration of TiO 2 -NPs. Enhancement of superoxide dismutase activity could be explained as promoting antioxidant system to scavenging the reactive oxygen species. In contrast, the activity of peroxidase was notably decreased in the treated plants. Reduced peroxidase activity could be attributed to either direct effect of these particles on the molecular structure of the enzyme or plant defense system damage due to reactive oxygen species. Copyright © 2017. Published by Elsevier B.V.

  14. Water Deficits Affect Caffeate O-Methyltransferase, Lignification, and Related Enzymes in Maize Leaves. A Proteomic Investigation1[w

    PubMed Central

    Vincent, Delphine; Lapierre, Catherine; Pollet, Brigitte; Cornic, Gabriel; Negroni, Luc; Zivy, Michel

    2005-01-01

    Drought is a major abiotic stress affecting all levels of plant organization and, in particular, leaf elongation. Several experiments were designed to study the effect of water deficits on maize (Zea mays) leaves at the protein level by taking into account the reduction of leaf elongation. Proteomic analyses of growing maize leaves allowed us to show that two isoforms of caffeic acid/5-hydroxyferulic 3-O-methyltransferase (COMT) accumulated mostly at 10 to 20 cm from the leaf point of insertion and that drought resulted in a shift of this region of maximal accumulation toward basal regions. We showed that this shift was due to the combined effect of reductions in growth and in total amounts of COMT. Several other enzymes involved in lignin and/or flavonoid synthesis (caffeoyl-CoA 3-O-methyltransferase, phenylalanine ammonia lyase, methylenetetrahydrofolate reductase, and several isoforms of S-adenosyl-l-methionine synthase and methionine synthase) were highly correlated with COMT, reinforcing the hypothesis that the zone of maximal accumulation corresponds to a zone of lignification. According to the accumulation profiles of the enzymes, lignification increases in leaves of control plants when their growth decreases before reaching their final size. Lignin levels analyzed by thioacidolysis confirmed that lignin is synthesized in the region where we observed the maximal accumulation of these enzymes. Consistent with the levels of these enzymes, we found that the lignin level was lower in leaves of plants subjected to water deficit than in those of well-watered plants. PMID:15728345

  15. Functional Analysis of the N-Acetylglucosamine Metabolic Genes of Streptomyces coelicolor and Role in Control of Development and Antibiotic Production

    PubMed Central

    Świątek, Magdalena A.; Tenconi, Elodie; Rigali, Sébastien

    2012-01-01

    N-Acetylglucosamine, the monomer of chitin, is a favored carbon and nitrogen source for streptomycetes. Its intracellular catabolism requires the combined actions of the N-acetylglucosamine-6-phosphate (GlcNAc-6P) deacetylase NagA and the glucosamine-6-phosphate (GlcN-6P) deaminase/isomerase NagB. GlcNAc acts as a signaling molecule in the DasR-mediated nutrient sensing system, activating development and antibiotic production under poor growth conditions (famine) and blocking these processes under rich conditions (feast). In order to understand how a single nutrient can deliver opposite information according to the nutritional context, we carried out a mutational analysis of the nag metabolic genes nagA, nagB, and nagK. Here we show that the nag genes are part of the DasR regulon in Streptomyces coelicolor, which explains their transcriptional induction by GlcNAc. Most likely as the result of the intracellular accumulation of GlcN-6P, nagB deletion mutants fail to grow in the presence of GlcNAc. This toxicity can be alleviated by the additional deletion of nagA. We recently showed that in S. coelicolor, GlcNAc is internalized as GlcNAc-6P via the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS). Considering the relevance of GlcNAc for the control of antibiotic production, improved insight into GlcNAc metabolism in Streptomyces may provide new leads toward biotechnological applications. PMID:22194457

  16. Enzyme leaps fuel antichemotaxis

    PubMed Central

    Jee, Ah-Young; Dutta, Sandipan; Cho, Yoon-Kyoung

    2018-01-01

    There is mounting evidence that enzyme diffusivity is enhanced when the enzyme is catalytically active. Here, using superresolution microscopy [stimulated emission-depletion fluorescence correlation spectroscopy (STED-FCS)], we show that active enzymes migrate spontaneously in the direction of lower substrate concentration (“antichemotaxis”) by a process analogous to the run-and-tumble foraging strategy of swimming microorganisms and our theory quantifies the mechanism. The two enzymes studied, urease and acetylcholinesterase, display two families of transit times through subdiffraction-sized focus spots, a diffusive mode and a ballistic mode, and the latter transit time is close to the inverse rate of catalytic turnover. This biochemical information-processing algorithm may be useful to design synthetic self-propelled swimmers and nanoparticles relevant to active materials. Executed by molecules lacking the decision-making circuitry of microorganisms, antichemotaxis by this run-and-tumble process offers the biological function to homogenize product concentration, which could be significant in situations when the reactant concentration varies from spot to spot. PMID:29255047

  17. Dual-Enzyme Characteristics of Polyvinylpyrrolidone-Capped Iridium Nanoparticles and Their Cellular Protective Effect against H2O2-Induced Oxidative Damage.

    PubMed

    Su, Hua; Liu, Dan-Dan; Zhao, Meng; Hu, Wei-Liang; Xue, Shan-Shan; Cao, Qian; Le, Xue-Yi; Ji, Liang-Nian; Mao, Zong-Wan

    2015-04-22

    Polyvinylpyrrolidone-stabilized iridium nanoparticles (PVP-IrNPs), synthesized by the facile alcoholic reduction method using abundantly available PVP as protecting agents, were first reported as enzyme mimics showing intrinsic catalase- and peroxidase-like activities. The preparation procedure was much easier and more importantly, kinetic studies found that the catalytic activity of PVP-IrNPs was comparable to previously reported platinum nanoparticles. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) characterization indicated that PVP-IrNPs had the average size of approximately 1.5 nm and mainly consisted of Ir(0) chemical state. The mechanism of PVP-IrNPs' dual-enzyme activities was investigated using XPS, Electron spin resonance (ESR) and cytochrome C-based electron transfer methods. The catalase-like activity was related to the formation of oxidized species Ir(0)@IrO2 upon reaction with H2O2. The peroxidase-like activity originated from their ability acting as electron transfer mediators during the catalysis cycle, without the production of hydroxyl radicals. Interestingly, the protective effect of PVP-IrNPs against H2O2-induced cellular oxidative damage was investigated in an A549 lung cancer cell model and PVP-IrNPs displayed excellent biocompatibility and antioxidant activity. Upon pretreatment of cells with PVP-IrNPs, the intracellular reactive oxygen species (ROS) level in response to H2O2 was decreased and the cell viability increased. This work will facilitate studies on the mechanism and biomedical application of nanomaterials-based enzyme mimic.

  18. Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae

    PubMed Central

    Izano, Era A.; Sadovskaya, Irina; Vinogradov, Evgeny; Mulks, Martha H.; Velliyagounder, Kabilan; Ragunath, Chandran; Kher, William B.; Ramasubbu, Narayanan; Jabbouri, Saïd; Perry, Malcolm B.; Kaplan, Jeffrey B.

    2007-01-01

    Most field isolates of the swine pathogen Actinobacillus pleuropneumoniae form tenacious biofilms on abiotic surfaces in vitro. We purified matrix polysaccharides from biofilms produced by A. pleuropneumoniae field isolates IA1 and IA5 (serotypes 1 and 5, respectively), and determined their chemical structures by using NMR spectroscopy. Both strains produced matrix polysaccharides consisting of linear chains of N-acetyl-D-glucosamine (GlcNAc) residues in β(1,6) linkage (poly-β-1,6-GlcNAc or PGA). A small percentage of the GlcNAc residues in each polysaccharide were N-deacetylated. These structures were nearly identical to those of biofilm matrix polysaccharides produced by Escherichia coli, Staphylococcus aureus and S. epidermidis. PCR analyses indicated that a gene encoding the PGA-specific glycoside transferase enzyme PgaC was present on the chromosome of 15 out of 15 A. pleuropneumoniae reference strains (serotypes 1-12) and 76 out of 77 A. pleuropneumoniae field isolates (serotypes 1, 5 and 7). A pgaC mutant of strain IA5 failed to form biofilms in vitro, as did wild-type strains IA1 and IA5 when grown in broth supplemented with the PGA-hydrolyzing enzyme dispersin B. Treatment of IA5 biofilms with dispersin B rendered them more sensitive to killing by ampicillin. Our findings suggest that PGA functions as a major biofilm adhesin in A. pleuropneumoniae. Biofilm formation may have relevance to the colonization and pathogenesis of A. pleuropneumoniae in pigs. PMID:17412552

  19. The effects of brefeldin-A on the high mannose oligosaccharides of mouse thyrotropin, free alpha-subunits, and total glycoproteins.

    PubMed

    Perkel, V S; Liu, A Y; Miura, Y; Magner, J A

    1988-07-01

    We have studied the effects of Brefeldin-A (BFA) on the processing of high mannose (Man) oligosaccharides of TSH. BFA is a drug that inhibits the intracellular translocation of newly synthesized glycoproteins and causes dilatation of the rough endoplasmic reticulum (RER) as well as mild swelling of the Golgi apparatus. Mouse pituitary thyrotropic tumor tissue was incubated with [3H]Man for a 2-h pulse, with and without a 3-h chase; BFA (5 micrograms/ml) was included during selected pulse and selected chase incubations. TSH and free alpha-subunits were obtained from detergent lysates of tissue by immunoprecipitation using specific antisera. Total glycoproteins were obtained by trichloroacetic acid precipitation. Endoglycosidase-H-released [3H]oligosaccharides were analyzed by paper chromatography. BFA inhibited carbohydrate processing of TSH, free alpha-subunits, and total glycoproteins, resulting in the accumulation of Man8GlcNAc2, Man7GlcNAc2, Man6GlcNAc2, and Man5GlcNAc2, especially during the chase period. Subcellular fractions enriched in RER, heavy (proximal) Golgi, and light (distal) Golgi were prepared by centrifugation in discontinuous sucrose gradients. [3H]Man-labeled oligosaccharides of TSH and total glycoproteins in the subcellular fractions were analyzed. In contrast to oligosaccharides with eight or nine Man residues found in control incubations, BFA caused the accumulation of oligosaccharides containing five to eight Man residues. These BFA-induced oligosaccharide alterations began in the RER and proximal Golgi with the 2-h pulse and extended into the distal Golgi during the chase incubations. Thus, BFA blocks the normal intracellular transport and processing of TSH, free alpha-subunits, and total glycoproteins within thyrotrophs, causing species with smaller than normal high Man oligosaccharides to appear in subcellular compartments as early as the RER. The translocation block between RER and Golgi produced by BFA may prevent the processing of Man8

  20. Enzyme reactor design under thermal inactivation.

    PubMed

    Illanes, Andrés; Wilson, Lorena

    2003-01-01

    Temperature is a very relevant variable for any bioprocess. Temperature optimization of bioreactor operation is a key aspect for process economics. This is especially true for enzyme-catalyzed processes, because enzymes are complex, unstable catalysts whose technological potential relies on their operational stability. Enzyme reactor design is presented with a special emphasis on the effect of thermal inactivation. Enzyme thermal inactivation is a very complex process from a mechanistic point of view. However, for the purpose of enzyme reactor design, it has been oversimplified frequently, considering one-stage first-order kinetics of inactivation and data gathered under nonreactive conditions that poorly represent the actual conditions within the reactor. More complex mechanisms are frequent, especially in the case of immobilized enzymes, and most important is the effect of catalytic modulators (substrates and products) on enzyme stability under operation conditions. This review focuses primarily on reactor design and operation under modulated thermal inactivation. It also presents a scheme for bioreactor temperature optimization, based on validated temperature-explicit functions for all the kinetic and inactivation parameters involved. More conventional enzyme reactor design is presented merely as a background for the purpose of highlighting the need for a deeper insight into enzyme inactivation for proper bioreactor design.

  1. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes.

    PubMed

    Meli, Vijaykumar S; Ghosh, Sumit; Prabha, T N; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2010-02-09

    In a globalized economy, the control of fruit ripening is of strategic importance because excessive softening limits shelf life. Efforts have been made to reduce fruit softening in transgenic tomato through the suppression of genes encoding cell wall-degrading proteins. However, these have met with very limited success. N-glycans are reported to play an important role during fruit ripening, although the role of any particular enzyme is yet unknown. We have identified and targeted two ripening-specific N-glycoprotein modifying enzymes, alpha-mannosidase (alpha-Man) and beta-D-N-acetylhexosaminidase (beta-Hex). We show that their suppression enhances fruit shelf life, owing to the reduced rate of softening. Analysis of transgenic tomatoes revealed approximately 2.5- and approximately 2-fold firmer fruits in the alpha-Man and beta-Hex RNAi lines, respectively, and approximately 30 days of enhanced shelf life. Overexpression of alpha-Man or beta-Hex resulted in excessive fruit softening. Expression of alpha-Man and beta-Hex is induced by the ripening hormone ethylene and is modulated by a regulator of ripening, rin (ripening inhibitor). Furthermore, transcriptomic comparative studies demonstrate the down-regulation of cell wall degradation- and ripening-related genes in RNAi fruits. It is evident from these results that N-glycan processing is involved in ripening-associated fruit softening. Genetic manipulation of N-glycan processing can be of strategic importance to enhance fruit shelf life, without any negative effect on phenotype, including yield.

  2. Characterization of the N-linked high-mannose oligosaccharides of the insulin pro-receptor and mature insulin receptor subunits.

    PubMed

    McElduff, A; Watkinson, A; Hedo, J A; Gorden, P

    1986-11-01

    The insulin receptor is synthesized as a 190,000-Mr single-chain precursor that contains exclusively asparagine-N-linked high-mannose-type carbohydrate chains. In this study we have characterized the structure of the pro-receptor oligosaccharides. IM-9 lymphocytes were pulse-chase-labelled with [3H]mannose, and the insulin pro-receptor was isolated by immunoprecipitation and SDS/polyacrylamide-gel electrophoresis. The pro-receptor oligosaccharides were removed from the protein backbone with endoglycosidase H and analysed by h.p.l.c. Immediately after a [3H]mannose pulse the largest oligosaccharide found in the pro-receptor was Glc1Man9GlcNAc2; this structure represented only a small fraction (3%) of the total. The predominant oligosaccharides present in the pro-receptor were Man9GlcNAc2 (25%) and Man8GlcNAc2 (48%). Smaller oligosaccharides were also detected: Man7GlcNAc2 (18%), Man6GlcNAc2 (3%) and Man5GlcNAc2 (3%). The relative distribution of the different oligosaccharides did not change at 1, 2 or 3 h after the pulse with the exception of the rapid disappearance of the Glc1Man9GlcNAc2 component. The mature alpha- and beta-subunits of the insulin receptor are known to contain both high-mannose-type and complex-type oligosaccharides. We have also examined here the structure of the high-mannose chains of these subunits. The predominant species in the alpha-subunit was Man8GlcNAc2 whereas in the beta-subunit it was Man7GlcNAc2. These results demonstrate that most (approx. 75%) oligosaccharides of the insulin pro-receptor are chains of the type Man8GlcNAc2 or Man9GlcNAc2. Thus, assuming that a Glc3Man9GlcNAc2 species is transferred co-translationally, carbohydrate processing of the pro-receptor appears to be very rapid and limited to the removal of the three glucose residues and one mannose residue. Further mannose removal does not occur until the pro-receptor has been proteolytically cleaved. In addition, the degree of mannose trimming appears to be different in the

  3. Characterization of the N-linked high-mannose oligosaccharides of the insulin pro-receptor and mature insulin receptor subunits.

    PubMed Central

    McElduff, A; Watkinson, A; Hedo, J A; Gorden, P

    1986-01-01

    The insulin receptor is synthesized as a 190,000-Mr single-chain precursor that contains exclusively asparagine-N-linked high-mannose-type carbohydrate chains. In this study we have characterized the structure of the pro-receptor oligosaccharides. IM-9 lymphocytes were pulse-chase-labelled with [3H]mannose, and the insulin pro-receptor was isolated by immunoprecipitation and SDS/polyacrylamide-gel electrophoresis. The pro-receptor oligosaccharides were removed from the protein backbone with endoglycosidase H and analysed by h.p.l.c. Immediately after a [3H]mannose pulse the largest oligosaccharide found in the pro-receptor was Glc1Man9GlcNAc2; this structure represented only a small fraction (3%) of the total. The predominant oligosaccharides present in the pro-receptor were Man9GlcNAc2 (25%) and Man8GlcNAc2 (48%). Smaller oligosaccharides were also detected: Man7GlcNAc2 (18%), Man6GlcNAc2 (3%) and Man5GlcNAc2 (3%). The relative distribution of the different oligosaccharides did not change at 1, 2 or 3 h after the pulse with the exception of the rapid disappearance of the Glc1Man9GlcNAc2 component. The mature alpha- and beta-subunits of the insulin receptor are known to contain both high-mannose-type and complex-type oligosaccharides. We have also examined here the structure of the high-mannose chains of these subunits. The predominant species in the alpha-subunit was Man8GlcNAc2 whereas in the beta-subunit it was Man7GlcNAc2. These results demonstrate that most (approx. 75%) oligosaccharides of the insulin pro-receptor are chains of the type Man8GlcNAc2 or Man9GlcNAc2. Thus, assuming that a Glc3Man9GlcNAc2 species is transferred co-translationally, carbohydrate processing of the pro-receptor appears to be very rapid and limited to the removal of the three glucose residues and one mannose residue. Further mannose removal does not occur until the pro-receptor has been proteolytically cleaved. In addition, the degree of mannose trimming appears to be different in the

  4. Digestive enzymes of the Californian two-spot octopus, Octopus bimaculoides (Pickford and McConnaughey, 1949).

    PubMed

    Ibarra-García, Laura Elizabeth; Tovar-Ramírez, Dariel; Rosas, Carlos; Campa-Córdova, Ángel Isidro; Mazón-Suástegui, José Manuel

    2018-01-01

    Octopus bimaculoides is an important commercially fished species in the California Peninsula with aquaculture potential; however, to date limited information is available regarding its digestive physiology. The objective of this study was focused on biochemically characterizing the main enzymes involved in the digestion of O. bimaculoides. Optimum pH, temperature and thermostability were determined for amylases, lipases, trypsin and chymotrypsin; optimum pH and protease inhibitor effect were assessed for acidic and alkaline proteases, and the effect of divalent ions on trypsin and chymotrypsin activity was evaluated in enzymatic extracts from the digestive (DG) and salivary glands (SG) and crop gastric juices (GJ). High amylase activity was detected in GD and GJ whereas this activity is very low in other cephalopods. Salivary glands had the greatest activity in most of the enzyme groups, showing the importance of this organ in digestion. Optimum pH was different depending on the organ and enzyme analyzed. The optimum pH in DG was 3 showing the predominance of acidic proteases in the digestion process. All enzymes were resistant and stable at high temperatures in contrast with other marine species. Trypsin and chymotrypsin activity were highly incremented with the presence of Mg 2+ , Co 2+ , Cu 2+ and Zn 2+ in some tissues. The inhibitor assay showed the importance of serine proteases, metalloproteases and aspartic proteases in the digestive process of this species. This study is the first in assessing the main digestive enzymes of O. bimaculoides and in remarking the importance of other digestive enzyme groups besides proteases in octopuses. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Computational Biochemistry-Enzyme Mechanisms Explored.

    PubMed

    Culka, Martin; Gisdon, Florian J; Ullmann, G Matthias

    2017-01-01

    Understanding enzyme mechanisms is a major task to achieve in order to comprehend how living cells work. Recent advances in biomolecular research provide huge amount of data on enzyme kinetics and structure. The analysis of diverse experimental results and their combination into an overall picture is, however, often challenging. Microscopic details of the enzymatic processes are often anticipated based on several hints from macroscopic experimental data. Computational biochemistry aims at creation of a computational model of an enzyme in order to explain microscopic details of the catalytic process and reproduce or predict macroscopic experimental findings. Results of such computations are in part complementary to experimental data and provide an explanation of a biochemical process at the microscopic level. In order to evaluate the mechanism of an enzyme, a structural model is constructed which can be analyzed by several theoretical approaches. Several simulation methods can and should be combined to get a reliable picture of the process of interest. Furthermore, abstract models of biological systems can be constructed combining computational and experimental data. In this review, we discuss structural computational models of enzymatic systems. We first discuss various models to simulate enzyme catalysis. Furthermore, we review various approaches how to characterize the enzyme mechanism both qualitatively and quantitatively using different modeling approaches. © 2017 Elsevier Inc. All rights reserved.

  6. Monitoring N2O Production Using a cNOR Modeled Active Site

    NASA Astrophysics Data System (ADS)

    Griffiths, Z. G.; Hegg, E. L.; Finders, C.; Haslun, J. A.

    2017-12-01

    Nitrous oxide (N2O) is a potent greenhouse gas with a 100-year global warming potential 265-296 times greater than carbon dioxide (CO2). It is the leading contributor to ozone depletion and can persist in the stratosphere for approximately 114 years. Hence, understanding the sources of atmospheric N2O emissions is critical to remediating the effects of climate change. Agricultural activities are the largest contributor to N2O emissions in the U.S. with microbial nitrification and denitrification as the dominating soil processes. The enzyme cytochrome c nitric oxide reductase (cNOR) is involved in bacterial denitrification. It is often difficult to study the enzymes involved in biotic N2O production, hence, model enzymes are a useful tool. The enzyme I107EFeBMb, a sperm whale myoglobin derivative, models the active site of cNOR and was used to simulate the anaerobic reduction of NO to N2O by cNOR. Dithionite was used to induce the catalytic activity of I107EFeBMb by reducing the enzyme. However, dithionite is a strong reductant that is capable of reducing NO to N2O directly. Therefore, the dithionite-enzyme mixture was passed through a size-exclusion column to isolate the reduced enzyme. This reduced and purified enzyme was then utilized to investigate N2O production from NO. This project will provide both an enzymatic and abiotic model to study N2O production.

  7. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    PubMed

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  8. Enzyme use in kibble diets formulated with wheat bran for dogs: effects on processing and digestibility.

    PubMed

    Sá, F C; Vasconcellos, R S; Brunetto, M A; Filho, F O R; Gomes, M O S; Carciofi, A C

    2013-05-01

    Recently, there is an interest in technologies that favour the use of coproducts for animal nutrition. The effect of adding two enzyme mixtures in diets for dogs formulated with wheat bran (WB) was evaluated. Two foods with similar compositions were formulated: negative control (NC; without WB) and test diet (25% of WB). The test diet was divided into four treatments: without enzyme (positive control), enzyme mixture 1 (ENZ1; added before extrusion β-glucanase, xylanase, cellulase, glucoamylase, phytase); enzyme mixture 2 (ENZ2; added before extrusion the ENZ1 more α-amylase); enzyme mixture 2 added after the extrusion (ENZ2ex). ENZ1 and ENZ2 were used to evaluate the enzyme effect on extruder pre-conditioner (processing additive) and ENZ2ex to evaluate the effect of enzyme supplementation for the animal. Digestibility was measured through total collection of faeces and urine. The experiment followed a randomized block design with five treatments (diets) and six dogs per diet, totalling 30 dogs (7.0 ± 1.2 years old and 11.0 ± 2.2 kg of body weight). Data were submitted to analysis of variance and means compared by Tukey's test and orthogonal contrasts (p < 0.05). Reducing sugars showed an important reduction after extrusion, suggesting the formation of carbohydrate complexes. The apparent total tract digestibility (ATTD) of dry matter, organic matter, crude protein, acid-hydrolysed fat and energy was higher in NC than in diets with WB (p < 0.001), without effects of enzyme additions. WB diets resulted in higher faecal production and concentration of short-chain fatty acids (SCFA) and reduced pH and ammonia concentration (p < 0.01), with no effect of enzyme addition. The enzyme addition did not result in improved digestibility of a diet high in non-starch polysaccharides; however, only ATTD was measured and nutrient fermentation in the large intestine may have interfered with the results obtained. WB modified fermentation product formation in the colon of dogs

  9. Residue Phe112 of the Human-Type Corrinoid Adenosyltransferase (PduO) Enzyme of Lactobacillus reuteri Is Critical to the Formation of the Four-Coordinate Co(II) Corrinoid Substrate and to the Activity of the Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mera, Paola E.; St. Maurice, Martin; Rayment, Ivan

    2009-06-08

    ATP:Corrinoid adenosyltransferases (ACAs) catalyze the transfer of the adenosyl moiety from ATP to cob(I)alamin via a four-coordinate cob(II)alamin intermediate. At present, it is unknown how ACAs promote the formation of the four-coordinate corrinoid species needed for activity. The published high-resolution crystal structure of the ACA from Lactobacillus reuteri (LrPduO) in complex with ATP and cob(II)alamin shows that the environment around the alpha face of the corrin ring consists of bulky hydrophobic residues. To understand how these residues promote the generation of the four-coordinate cob(II)alamin, variants of the human-type ACA enzyme from L. reuteri (LrPduO) were kinetically and structurally characterized. Thesemore » studies revealed that residue Phe112 is critical in the displacement of 5,6-dimethylbenzimidazole (DMB) from its coordination bond with the Co ion of the ring, resulting in the formation of the four-coordinate species. An F112A substitution resulted in a 80% drop in the catalytic efficiency of the enzyme. The explanation for this loss of activity was obtained from the crystal structure of the mutant protein, which showed cob(II)alamin bound in the active site with DMB coordinated to the cobalt ion. The crystal structure of an LrPduO(F112H) variant showed a DMB-off/His-on interaction between the corrinoid and the enzyme, whose catalytic efficiency was 4 orders of magnitude lower than that of the wild-type protein. The analysis of the kinetic parameters of LrPduO(F112H) suggests that the F112H substitution negatively impacts product release. Substitutions of other hydrophobic residues in the Cbl binding pocket did not result in significant defects in catalytic efficiency in vitro; however, none of the variant enzymes analyzed in this work supported AdoCbl biosynthesis in vivo.« less

  10. Technology Prospecting on Enzymes: Application, Marketing and Engineering

    PubMed Central

    Li, Shuang; Yang, Xiaofeng; Yang, Shuai; Zhu, Muzi; Wang, Xiaoning

    2012-01-01

    Enzymes are protein molecules functioning as specialized catalysts for chemical reactions. They have contributed greatly to the traditional and modern chemical industry by improving existing processes. In this article, we first give a survey of representative industrial applications of enzymes, focusing on the technical applications, feed industry, food processing and cosmetic products. The recent important developments and applications of enzymes in industry are reviewed. Then large efforts are dedicated to the worldwide enzyme market from the demand and production perspectives. Special attention is laid on the Chinese enzyme market. Although enzyme applications are being developed in full swing, breakthroughs are needed to overcome their weaknesses in maintaining activities during the catalytic processes. Strategies of metagomic analysis, cell surface display technology and cell-free system might give valuable solutions in novel enzyme exploiting and enzyme engineering. PMID:24688658

  11. New high-performance liquid chromatography assay for glycosyltransferases based on derivatization with anthranilic acid and fluorescence detection.

    PubMed

    Anumula, Kalyan Rao

    2012-07-01

    Assays were developed using the unique labeling chemistry of 2-aminobenzoic acid (2AA; anthranilic acid, AA) for measuring activities of both β1-4 galactosyltransferase (GalT-1) and α2-6 sialyltransferase (ST-6) by high-performance liquid chromatography (HPLC) with fluorescence detection (Anumula KR. 2006. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 350:1-23). N-Acetylglucosamine (GlcNAc) and N-acetyllactosamine were used as acceptors and uridine diphosphate (UDP)-galactose and cytidine monophosphate (CMP)-N-acetylneuraminic acid (NANA) as donors for GalT-1 and ST-6, respectively. Enzymatic products were labeled in situ with AA and were separated from the substrates on TSKgel Amide 80 column using normal-phase conditions. Enzyme units were determined from the peak areas by comparison with the concomitantly derivatized standards Gal-β1-4GlcNAc and NANA-α2-6 Gal-β1-4GlcNAc. Linearity (time and enzyme concentration), precision (intra- and interassay) and reproducibility for the assays were established. The assays were found to be useful in monitoring the enzyme activities during isolation and purification. The assays were highly sensitive and performed equal to or better than the traditional radioactive sugar-based measurements. The assay format can also be used for measuring the activity of other transferases, provided that the carbohydrate acceptors contain a reducing end for labeling. An assay for glycoprotein acceptors was developed using IgG. A short HPLC profiling method was developed for the separation of IgG glycans (biantennary G0, G1, G2, mono- and disialylated), which facilitated the determination of GalT-1 and ST-6 activities in a rapid manner. Furthermore, this profiling method should prove useful for monitoring the changes in IgG glycans in clinical settings.

  12. Dry-grind processing using amylase corn and superior yeast to reduce the exogenous enzyme requirements in bioethanol production.

    PubMed

    Kumar, Deepak; Singh, Vijay

    2016-01-01

    Conventional corn dry-grind ethanol production process requires exogenous alpha and glucoamylases enzymes to breakdown starch into glucose, which is fermented to ethanol by yeast. This study evaluates the potential use of new genetically engineered corn and yeast, which can eliminate or minimize the use of these external enzymes, improve the economics and process efficiencies, and simplify the process. An approach of in situ ethanol removal during fermentation was also investigated for its potential to improve the efficiency of high-solid fermentation, which can significantly reduce the downstream ethanol and co-product recovery cost. The fermentation of amylase corn (producing endogenous α-amylase) using conventional yeast and no addition of exogenous α-amylase resulted in ethanol concentration of 4.1 % higher compared to control treatment (conventional corn using exogenous α-amylase). Conventional corn processed with exogenous α-amylase and superior yeast (producing glucoamylase or GA) with no exogenous glucoamylase addition resulted in ethanol concentration similar to control treatment (conventional yeast with exogenous glucoamylase addition). Combination of amylase corn and superior yeast required only 25 % of recommended glucoamylase dose to complete fermentation and achieve ethanol concentration and yield similar to control treatment (conventional corn with exogenous α-amylase, conventional yeast with exogenous glucoamylase). Use of superior yeast with 50 % GA addition resulted in similar increases in yield for conventional or amylase corn of approximately 7 % compared to that of control treatment. Combination of amylase corn, superior yeast, and in situ ethanol removal resulted in a process that allowed complete fermentation of 40 % slurry solids with only 50 % of exogenous GA enzyme requirements and 64.6 % higher ethanol yield compared to that of conventional process. Use of amylase corn and superior yeast in the dry-grind processing industry

  13. Enzymes from Extreme Environments and Their Industrial Applications

    PubMed Central

    Littlechild, Jennifer A.

    2015-01-01

    This article will discuss the importance of specific extremophilic enzymes for applications in industrial biotechnology. It will specifically address those enzymes that have applications in the area of biocatalysis. Such enzymes now play an important role in catalyzing a variety of chemical conversions that were previously carried out by traditional chemistry. The biocatalytic process is carried out under mild conditions and with greater specificity. The enzyme process does not result in the toxic waste that is usually produced in a chemical process that would require careful disposal. In this sense, the biocatalytic process is referred to as carrying out “green chemistry” which is considered to be environmentally friendly. Some of the extremophilic enzymes to be discussed have already been developed for industrial processes such as an l-aminoacylase and a γ-lactamase. The industrial applications of other extremophilic enzymes, including transaminases, carbonic anhydrases, dehalogenases, specific esterases, and epoxide hydrolases, are currently being assessed. Specific examples of these industrially important enzymes that have been studied in the authors group will be presented in this review. PMID:26528475

  14. Modeling nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics.

    PubMed

    Zheng, Jianqiu; Doskey, Paul V

    2015-02-17

    An enzyme-explicit denitrification model with representations for pre- and de novo synthesized enzymes was developed to improve predictions of nitrous oxide (N2O) accumulations in soil and emissions from the surface. The metabolic model of denitrification is based on dual-substrate utilization and Monod growth kinetics. Enzyme synthesis/activation was incorporated into each sequential reduction step of denitrification to regulate dynamics of the denitrifier population and the active enzyme pool, which controlled the rate function. Parameterizations were developed from observations of the dynamics of N2O production and reduction in soil incubation experiments. The model successfully reproduced the dynamics of N2O and N2 accumulation in the incubations and revealed an important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Pre-synthesized denitrification enzymes contributed 20, 13, 43, and 62% of N2O that accumulated in 48 h incubations of soil collected from depths of 0-5, 5-10, 10-15, and 15-25 cm, respectively. An enzyme activity function (E) was defined to estimate the relative concentration of active enzymes and variation in response to environmental conditions. The value of E allows for activities of pre-synthesized denitrification enzymes to be differentiated from de novo synthesized enzymes. Incorporating explicit representations of denitrification enzyme kinetics into biogeochemical models is a promising approach for accurately simulating dynamics of the production and reduction of N2O in soils.

  15. Impact of pH and Total Soluble Solids on Enzyme Inactivation Kinetics during High Pressure Processing of Mango (Mangifera indica) Pulp.

    PubMed

    Kaushik, Neelima; Nadella, Tejaswi; Rao, P Srinivasa

    2015-11-01

    This study was undertaken with an aim to enhance the enzyme inactivation during high pressure processing (HPP) with pH and total soluble solids (TSS) as additional hurdles. Impact of mango pulp pH (3.5, 4.0, 4.5) and TSS (15, 20, 25 °Brix) variations on the inactivation of pectin methylesterase (PME), polyphenol oxidase (PPO), and peroxidase (POD) enzymes were studied during HPP at 400 to 600 MPa pressure (P), 40 to 70 °C temperature (T), and 6- to 20-min pressure-hold time (t). The enzyme inactivation (%) was modeled using second order polynomial equations with a good fit that revealed that all the enzymes were significantly affected by HPP. Response surface and contour models predicted the kinetic behavior of mango pulp enzymes adequately as indicated by the small error between predicted and experimental data. The predicted kinetics indicated that for a fixed P and T, higher pulse pressure effect and increased isobaric inactivation rates were possible at lower levels of pH and TSS. In contrast, at a fixed pH or TSS level, an increase in P or T led to enhanced inactivation rates, irrespective of the type of enzyme. PPO and POD were found to have similar barosensitivity, whereas PME was found to be most resistant to HPP. Furthermore, simultaneous variation in pH and TSS levels of mango pulp resulted in higher enzyme inactivation at lower pH and TSS during HPP, where the effect of pH was found to be predominant than TSS within the experimental domain. Exploration of additional hurdles such as pH, TSS, and temperature for enzyme inactivation during high pressure processing of fruits is useful from industrial point of view, as these parameters play key role in preservation process design. © 2015 Institute of Food Technologists®

  16. Strategies for an enzyme immobilization on electrodes: Structural and electrochemical characterizations

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Muthurasu, A.

    2012-04-01

    In this paper, we propose various strategies for an enzyme immobilization on electrodes (both metal and semiconductor electrodes). In general, the proposed methodology involves two critical steps viz., (1) chemical modification of substrates using functional monolayers [Langmuir - Blodgett (LB) films and/or self-assembled monolayers (SAMs)] and (2) anchoring of a target enzyme using specific chemical and physical interactions by attacking the terminal functionality of the modified films. Basically there are three ways to immobilize an enzyme on chemically modified electrodes. First method consists of an electrostatic interaction between the enzyme and terminal functional groups present within the chemically modified films. Second and third methods involve the introduction of nanomaterials followed by an enzyme immobilization using both the physical and chemical adsorption processes. As a proof of principle, in this work we demonstrate the sensing and catalytic activity of horseradish peroxidase (HRP) anchored onto SAM modified indium tin oxide (ITO) electrodes towards hydrogen peroxide (H2O2). Structural characterization of such modified electrodes is performed using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. The binding events and the enzymatic reactions are monitored using electrochemical techniques mainly cyclic voltammetry (CV).

  17. Structures of the Oligosaccharides of the Glycoprotein Coded by Early Region E3 of Adenovirus 2

    PubMed Central

    Kornfeld, Rosalind; Wold, William S. M.

    1981-01-01

    Early region E3 of adenovirus 2 encodes a glycoprotein, E3-gp25K, that is a good model with which to study structure-function relationships in transmembrane glycoproteins. We have determined the structures of the oligosaccharides linked to E3-gp25K. The oligosaccharides were labeled with [2-3H]mannose in adenovirus 2-early infected KB cells for 5.5h (pulse) or for 5.5 h followed by a 3-h chase (pulse-chase). E3-gp25K was extracted and purified by chromatography on DEAE-Sephacel in 7 M urea, followed by gel filtration on a column of Bio-Gel A-1.5m in 6 M guanidine hydrochloride. An analysis of the purified protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that it was >95% pure. The oligosaccharides were isolated by pronase digestion followed by gel filtration on a column of Bio-Gel P-6, then by digestion with endo-β-N-acetylglucosaminidase H, followed by gel filtration on Bio-Gel P-6, and finally by paper chromatography. The pulse sample contained equal amounts of Man9GlcNAc and Man8GlcNAc and small amounts of Man7GlcNAc and Man6GlcNAc. The pulse-chase sample had predominantly Man8GlcNAc and much less Man9GlcNAc, indicating that processing of the Man9GlcNAc to Man8GlcNAc had occurred during the chase period. Thus, Man8GlcNAc is the major oligosaccharide on mature E3-gp25K. The structures of these oligosaccharides were established by digestion with α-mannosidase, methylation analysis, and acetolysis. The oligosaccharides found had typical high-mannose structures that have been observed in other membrane and soluble glycoproteins, and the branching patterns and linkages of the mannose residues of Man9GlcNAc were identical to those of the lipid-linked Glc3Man9GlcNAc2 donor. Thus, adenovirus 2 infection (early stages) apparently does not affect the usual cellular high-mannose glycosylation pathways, and despite being virus coded, E3-gp25K is glycosylated in the same manner as a typical mammalian cell-coded glycoprotein. Images PMID:7321093

  18. Structures of the oligosaccharides of the glycoprotein coded by early region E3 of adenovirus 2.

    PubMed

    Kornfeld, R; Wold, W S

    1981-11-01

    Early region E3 of adenovirus 2 encodes a glycoprotein, E3-gp25K, that is a good model with which to study structure-function relationships in transmembrane glycoproteins. We have determined the structures of the oligosaccharides linked to E3-gp25K. The oligosaccharides were labeled with [2-(3)H]mannose in adenovirus 2-early infected KB cells for 5.5h (pulse) or for 5.5 h followed by a 3-h chase (pulse-chase). E3-gp25K was extracted and purified by chromatography on DEAE-Sephacel in 7 M urea, followed by gel filtration on a column of Bio-Gel A-1.5m in 6 M guanidine hydrochloride. An analysis of the purified protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that it was >95% pure. The oligosaccharides were isolated by pronase digestion followed by gel filtration on a column of Bio-Gel P-6, then by digestion with endo-beta-N-acetylglucosaminidase H, followed by gel filtration on Bio-Gel P-6, and finally by paper chromatography. The pulse sample contained equal amounts of Man(9)GlcNAc and Man(8)GlcNAc and small amounts of Man(7)GlcNAc and Man(6)GlcNAc. The pulse-chase sample had predominantly Man(8)GlcNAc and much less Man(9)GlcNAc, indicating that processing of the Man(9)GlcNAc to Man(8)GlcNAc had occurred during the chase period. Thus, Man(8)GlcNAc is the major oligosaccharide on mature E3-gp25K. The structures of these oligosaccharides were established by digestion with alpha-mannosidase, methylation analysis, and acetolysis. The oligosaccharides found had typical high-mannose structures that have been observed in other membrane and soluble glycoproteins, and the branching patterns and linkages of the mannose residues of Man(9)GlcNAc were identical to those of the lipid-linked Glc(3)Man(9)GlcNAc(2) donor. Thus, adenovirus 2 infection (early stages) apparently does not affect the usual cellular high-mannose glycosylation pathways, and despite being virus coded, E3-gp25K is glycosylated in the same manner as a typical mammalian cell

  19. Detection of pH and Enzyme-Free H2O2 Sensing Mechanism by Using GdO x Membrane in Electrolyte-Insulator-Semiconductor Structure.

    PubMed

    Kumar, Pankaj; Maikap, Siddheswar; Qiu, Jian-Tai; Jana, Surajit; Roy, Anisha; Singh, Kanishk; Cheng, Hsin-Ming; Chang, Mu-Tung; Mahapatra, Rajat; Chiu, Hsien-Chin; Yang, Jer-Ren

    2016-12-01

    A 15-nm-thick GdO x membrane in an electrolyte-insulator-semiconductor (EIS) structure shows a higher pH sensitivity of 54.2 mV/pH and enzyme-free hydrogen peroxide (H2O2) detection than those of the bare SiO2 and 3-nm-thick GdO x membranes for the first time. Polycrystalline grain and higher Gd content of the thicker GdO x films are confirmed by transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS), respectively. In a thicker GdO x membrane, polycrystalline grain has lower energy gap and Gd(2+) oxidation states lead to change Gd(3+) states in the presence of H2O2, which are confirmed by electron energy loss spectroscopy (EELS). The oxidation/reduction (redox) properties of thicker GdO x membrane with higher Gd content are responsible for detecting H2O2 whereas both bare SiO2 and thinner GdO x membranes do not show sensing. A low detection limit of 1 μM is obtained due to strong catalytic activity of Gd. The reference voltage shift increases with increase of the H2O2 concentration from 1 to 200 μM owing to more generation of Gd(3+) ions, and the H2O2 sensing mechanism has been explained as well.

  20. Applications of Microbial Enzymes in Food Industry.

    PubMed

    Raveendran, Sindhu; Parameswaran, Binod; Ummalyma, Sabeela Beevi; Abraham, Amith; Mathew, Anil Kuruvilla; Madhavan, Aravind; Rebello, Sharrel; Pandey, Ashok

    2018-03-01

    The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  1. Applications of Microbial Enzymes in Food Industry

    PubMed Central

    2018-01-01

    Summary The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed. PMID:29795993

  2. Engineering Cellulase Enzymes for Bioenergy

    NASA Astrophysics Data System (ADS)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  3. Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin.

    PubMed

    Xiong, Jian; Bhaskar, Ujjwal; Li, Guoyun; Fu, Li; Li, Lingyun; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J

    2013-09-10

    Heparin is a critically important anticoagulant drug that is prepared from pig intestine. In 2007-2008, there was a crisis in the heparin market when the raw material was adulterated with the toxic polysaccharide, oversulfated chondroitin sulfate, which was associated with 100 deaths in the U.S. alone. As the result of this crisis, our laboratory and others have been actively pursuing alternative sources for this critical drug, including synthetic heparins and bioengineered heparin. In assessing the bioengineering processing costs it has become clear that the use of both enzyme-catalyzed cofactor recycling and enzyme immobilization will be needed for commercialization. In the current study, we examine the use of immobilization of C₅-epimerase and 2-O-sulfotransferase involved in the first enzymatic step in the bioengineered heparin process, as well as arylsulfotransferase-IV involved in cofactor recycling in all three enzymatic steps. We report the successful immobilization of all three enzymes and their use in converting N-sulfo, N-acetyl heparosan into N-sulfo, N-acetyl 2-O-sulfo heparin. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Determination of enzyme thermal parameters for rational enzyme engineering and environmental/evolutionary studies.

    PubMed

    Lee, Charles K; Monk, Colin R; Daniel, Roy M

    2013-01-01

    Of the two independent processes by which enzymes lose activity with increasing temperature, irreversible thermal inactivation and rapid reversible equilibration with an inactive form, the latter is only describable by the Equilibrium Model. Any investigation of the effect of temperature upon enzymes, a mandatory step in rational enzyme engineering and study of enzyme temperature adaptation, thus requires determining the enzymes' thermodynamic parameters as defined by the Equilibrium Model. The necessary data for this procedure can be collected by carrying out multiple isothermal enzyme assays at 3-5°C intervals over a suitable temperature range. If the collected data meet requirements for V max determination (i.e., if the enzyme kinetics are "ideal"), then the enzyme's Equilibrium Model parameters (ΔH eq, T eq, ΔG (‡) cat, and ΔG (‡) inact) can be determined using a freely available iterative model-fitting software package designed for this purpose.Although "ideal" enzyme reactions are required for determination of all four Equilibrium Model parameters, ΔH eq, T eq, and ΔG (‡) cat can be determined from initial (zero-time) rates for most nonideal enzyme reactions, with substrate saturation being the only requirement.

  5. Extracellular Enzyme Composition and Functional Characteristics of Aspergillus niger An-76 Induced by Food Processing Byproducts and Based on Integrated Functional Omics.

    PubMed

    Liu, Lin; Gong, Weili; Sun, Xiaomeng; Chen, Guanjun; Wang, Lushan

    2018-02-07

    Byproducts of food processing can be utilized for the production of high-value-added enzyme cocktails. In this study, we utilized integrated functional omics technology to analyze composition and functional characteristics of extracellular enzymes produced by Aspergillus niger grown on food processing byproducts. The results showed that oligosaccharides constituted by arabinose, xylose, and glucose in wheat bran were able to efficiently induce the production of extracellular enzymes of A. niger. Compared with other substrates, wheat bran was more effective at inducing the secretion of β-glucosidases from GH1 and GH3 families, as well as >50% of proteases from A1-family aspartic proteases. Compared with proteins induced by single wheat bran or soybean dregs, the protein yield induced by their mixture was doubled, and the time required to reach peak enzyme activity was shortened by 25%. This study provided a technical platform for the complex formulation of various substrates and functional analysis of extracellular enzymes.

  6. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts

    PubMed Central

    Oliveira, Lilian C.G.; Ramos, Patricia Locosque; Marem, Alyne; Kondo, Marcia Y.; Rocha, Rafael C.S.; Bertolini, Thiago; Silveira, Marghuel A.V.; da Cruz, João Batista; de Vasconcellos, Suzan Pantaroto; Juliano, Luiz; Okamoto, Debora N.

    2015-01-01

    Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs). Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU) of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications. PMID:26273248

  7. Antioxidative capacity and enzyme activity in Haematococcus pluvialis cells exposed to superoxide free radicals

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Zhang, Xiaoli; Sun, Yanhong; Lin, Wei

    2010-01-01

    The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O{2/-}). The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H. pluvialis during exposure to reactive oxygen species (ROS) such as O{2/-}. Astaxanthin reacted with ROS much faster than did the protective enzymes, and had the strongest antioxidative capacity to protect against lipid peroxidation. The defensive mechanisms varied significantly between the three cell types and were related to the level of astaxanthin that had accumulated in those cells. Astaxanthin-enriched red cells had the strongest antioxidative capacity, followed by brown cells, and astaxanthin-deficient green cells. Although there was no significant increase in expression of protective enzymes, the malondialdehyde (MDA) content in red cells was sustained at a low level because of the antioxidative effect of astaxanthin, which quenched O{2/-} before the protective enzymes could act. In green cells, astaxanthin is very low or absent; therefore, scavenging of ROS is inevitably reliant on antioxidative enzymes. Accordingly, in green cells, these enzymes play the leading role in scavenging ROS, and the expression of these enzymes is rapidly increased to reduce excessive ROS. However, because ROS were constantly increased in this study, the enhance enzyme activity in the green cells was not able to repair the ROS damage, leading to elevated MDA content. Of the four defensive enzymes measured in astaxanthin-deficient green cells, SOD eliminates O{2/-}, POD eliminates H2O2, which is a by-product of SOD activity, and APX and CAT are then initiated to scavenge excessive ROS.

  8. A New Sucrase Enzyme Inhibitor from Azadirachta indica.

    PubMed

    Abdelhady, Mohamed I S; Shaheen, Usama; Bader, Ammar; Youns, Mahmoud A

    2016-05-01

    Sucrase enzyme inhibitor considered as an oral anti-diabetic therapy that delays the absorption of eaten carbohydrates, reducing the postprandial glucose and insulin peaks to reach normoglycemia. Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica growing in KSA, followed by in-vitro assay of sucrase enzyme inhibition activity. This investigation led to the isolation of a new remarkable sucrase enzyme inhibitor; 4'-methyl Quercetin-7-O-β-D-glucuronopyranoside (1) alongside with four known compounds; 2,3-hexahydroxydiphenoyl-(α/β)-D-(4)C1-glucopyranose (2), Avicularin (3), Castalagin (4) and Quercetin-3-O-glucoside (5). The structure of the new compound (1) was elucidated on the basis of its spectral data, including ESI-MS, UV, (1)H NMR, (13)C NMR, (1)H-(1)H COSY, HSQC, NOESY and HMBC. Under the assay conditions, hydroalcoholic extract of A. indica and compounds 1-5 exhibited significant sucrase enzyme inhibitory activity. Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica, led to the Isolation of a new flavonoid glycoside named 4'-methyl Quercetin-7-O-β-D-glucuronopyranoside, alongside to other 4 known polyphenols. The hydroalcoholic extract as well as the isolated compounds exhibited significant sucrase enzyme inhibitory activity. Abbreviations used: ESI-MS; electrospray ionization-mass spectrometry, UV; ultraviolet, NMR; nuclear magnetic resonance, 1H-1H COSY; 1H-1H correlation spectroscopy, NOESY; nuclear overhauser effect spectroscopy, and HSQC; heteronuclear multiple bond correlation. A. indica; Azadirachta indica.

  9. Mass Isotopomer Analysis of Metabolically Labeled Nucleotide Sugars and N- and O-Glycans for Tracing Nucleotide Sugar Metabolisms*

    PubMed Central

    Nakajima, Kazuki; Ito, Emi; Ohtsubo, Kazuaki; Shirato, Ken; Takamiya, Rina; Kitazume, Shinobu; Angata, Takashi; Taniguchi, Naoyuki

    2013-01-01

    Nucleotide sugars are the donor substrates of various glycosyltransferases, and an important building block in N- and O-glycan biosynthesis. Their intercellular concentrations are regulated by cellular metabolic states including diseases such as cancer and diabetes. To investigate the fate of UDP-GlcNAc, we developed a tracing method for UDP-GlcNAc synthesis and use, and GlcNAc utilization using 13C6-glucose and 13C2-glucosamine, respectively, followed by the analysis of mass isotopomers using LC-MS. Metabolic labeling of cultured cells with 13C6-glucose and the analysis of isotopomers of UDP-HexNAc (UDP-GlcNAc plus UDP-GalNAc) and CMP-NeuAc revealed the relative contributions of metabolic pathways leading to UDP-GlcNAc synthesis and use. In pancreatic insulinoma cells, the labeling efficiency of a 13C6-glucose motif in CMP-NeuAc was lower compared with that in hepatoma cells. Using 13C2-glucosamine, the diversity of the labeling efficiency was observed in each sugar residue of N- and O-glycans on the basis of isotopomer analysis. In the insulinoma cells, the low labeling efficiencies were found for sialic acids as well as tri- and tetra-sialo N-glycans, whereas asialo N-glycans were found to be abundant. Essentially no significant difference in secreted hyaluronic acids was found among hepatoma and insulinoma cell lines. This indicates that metabolic flows are responsible for the low sialylation in the insulinoma cells. Our strategy should be useful for systematically tracing each stage of cellular GlcNAc metabolism. PMID:23720760

  10. Computational Investigations of Trichoderma Reesei Cel7A Suggest New Routes for Enzyme Activity Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, G. T.; Payne, C. M.; Bu, L.

    2012-01-01

    The Trichoderma reesei Family 7 cellulase (Cel7A) is a key industrial enzyme in the production of biofuels from lignocellulosic biomass. It is a multi-modular enzyme with a Family 1 carbohydrate-binding module, a flexible O-glycosylated linker, and a large catalytic domain. We have used simulation to elucidate new functions for the 3 sub-domains, which suggests new routes to increase the activity of this central enzyme. These findings include new roles for glycosylation, which we have shown can be used to tune the binding affinity. We have also examined the structures of the catalytically-active complex of Cel7A and its non-processive counterpart, Cel7B,more » engaged on cellulose, which suggests allosteric mechanisms involved in chain binding when these cellulases are complexed on cellulose. Our computational results also suggest that product inhibition varies significantly between Cel7A and Cel7B, and we offer a molecular-level explanation for this observation. Finally, we discuss simulations of the absolute and relative binding free energy of cellulose ligands and various mutations along the CD tunnel, which will affect processivity and the ability of Cel7A (and related enzymes) to digest cellulose. These results highlight new considerations in protein engineering for processive and non-processive cellulases for production of lignocellulosic biofuels.« less

  11. Electrostatic interaction between an enzyme and electrodes in the electric double layer examined in a view of direct electron transfer-type bioelectrocatalysis.

    PubMed

    Sugimoto, Yu; Kitazumi, Yuki; Tsujimura, Seiya; Shirai, Osamu; Yamamoto, Masahiro; Kano, Kenji

    2015-01-15

    Effects of the electrode poential on the activity of an adsorbed enzyme has been examined by using copper efflux oxidase (CueO) as a model enzyme and by monitoring direct electron transfer (DET)-type bioelectrocatalysis of oxygen reduction. CueO adsorbed on bare Au electrodes at around the point of zero charge (E(pzc)) shows the highest DET activity, and the activity decreases as the adsorption potential (E(ad); at which the enzyme adsorbs) is far from E(pzc). We propose a model to explain the phenomena in which the electrostatic interaction between the enzyme and electrodes in the electric double layer affects the orientation and the stability of the adsorbed enzyme. The self-assembled monolayer of butanethiol on Au electrodes decreases the electric field in the outside of the inner Helmholtz plane and drastically diminishes the E(ad) dependence of the DET activity of CueO. When CueO is adsorbed on bare Au electrodes under open circuit potential and then is held at hold potentials (E(ho)) more positive than E(pzc), the DET activity of the CueO rapidly decreases with the hold time. The strong electric field with positive surface charge density on the metallic electrode (σ(M)) leads to fatal denaturation of the adsorbed CueO. Such denaturation effect is not so serious at E(ho)process. A positively charged neomycin shows a promoter ability to CueO adsorbed at E(ad)

  12. [Fabrication and evaluation of the enzyme immunosensor for rapid detection of Vibrio parahaemolyticus based on chitosan-SiO2 hybrid membrane].

    PubMed

    Zhao, Guang-Ying; Ma, Chao; Li, Jian-Rong

    2010-01-01

    To improve the key technology of immunesensors in immobilizing bio-sensitive element and keeping its bioactivity, an enzyme immunosensor based on chitosan-SiO(2) (CS-Sio(2)) hybrid membrane was fabricated. To estimate the new immunosensor Vibrio parahaemolyticus which was the main pathogens of aquatic products. A CS-SiO(2) hybrid membrane was prepared using sol-gel method. The enzyme immunosensor was fabricated by coating the membrane and horseradish peroxidase labeled Vibrio parahaemolyticus antibody (HRP-anti-VP) on the surface of four-channel screen-printed carbon electrode. The immunosensor was characterized by cyclic voltammetry. Vibrio parahaemolyticus could be detected according to the decrease percentage (DP) of peak current before and after immune response, while cyclic voltammetry was used as an electrochemical mean to detect the products of the enzymatic reaction. Seven kinds of bacteria, like Vibrio alginolyticus, were selected for specific experiments. By studying the infrared spectrum of three kinds of films, the CS-SiO(2) hybrid membrane was prepared and HRP-anti-VP was fixed in the hybrid membrane. Under the optimum conditions of immunoreaction and electrochemical detection, the DP of peak current before and after immune response showed a linear relation with lgC in the range of 10(4) - 10(9) cfu/ml, while the linear regression equation was: DP = 6.5 lgC-3.319, the correlation coefficient was 0.9958 and the detection limit was 6.9 x 10(3) cfu/ml (S/N = 3). The immunosensor possessed acceptable specificity, reproducibility (RSD < 6%), stability (the amperometric response was 95% of the initial response after a week) and accuracy (96.7% of the results obtained by the immunosensor were in agreement with those obtained by GB/T 4789.7-2003). The enzyme immunosensor based on CS-SiO(2) hybrid membrane gave a good performance in rapid detection of Vibrio parahaemolyticus.

  13. Enzyme-MOF (metal-organic framework) composites.

    PubMed

    Lian, Xizhen; Fang, Yu; Joseph, Elizabeth; Wang, Qi; Li, Jialuo; Banerjee, Sayan; Lollar, Christina; Wang, Xuan; Zhou, Hong-Cai

    2017-06-06

    The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.

  14. Cellulolytic enzyme compositions and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Prashant; Gaspar, Armindo Ribiero; Croonenberghs, James

    The present invention relates enzyme composition comprising a cellulolytic preparation and an acetylxylan esterase (AXE); and the used of cellulolytic enzyme compositions for hydrolyzing acetylated cellulosic material. Finally the invention also relates to processes of producing fermentation products from acetylated cellulosic materials using a cellulolytic enzyme composition of the invention.

  15. Allosteric regulation of epigenetic modifying enzymes.

    PubMed

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Expanding the substrate scope of chitooligosaccharide oxidase from Fusarium graminearum by structure-inspired mutagenesis.

    PubMed

    Ferrari, Alessandro R; Lee, Misun; Fraaije, Marco W

    2015-06-01

    Chitooligosaccharide oxidase from Fusarium graminearum (ChitO) oxidizes N-acetyl-D-glucosamine (GlcNAc) and its oligomers with high efficiency at the C1-hydroxyl moiety while it shows poor or no activity with other carbohydrates. By sequence and structural comparison with other known carbohydrate oxidases (glucooligosaccharide oxidase from Acremonium strictum and lactose oxidase from Microdochium nivale) eleven mutants were designed to redirect the catalytic scope of ChitO for improved oxidation of lactose, cellobiose and maltose. The catalytic properties of the most interesting mutants were further improved by combining single mutations. This has resulted in the creation of a set of ChitO variants that display totally different substrate tolerances. One ChitO variant shows a dramatic improvement in catalytic efficiency towards oxidation of glucose, cellobiose, lactose, and maltose. We also describe a ChitO variant with the highest catalytic efficiency in GlcNAc oxidation so far reported in the literature. © 2015 Wiley Periodicals, Inc.

  17. N-Glycosylation analysis of yeast Carboxypeptidase Y reveals the ultimate removal of phosphate from glycans at Asn368.

    PubMed

    B S, Gnanesh Kumar; Surolia, Avadhesha

    2017-05-01

    Carboxypeptidase Y from Saccharomyces cerivisiae was characterized for its site specific N-glycosylation through mass spectrometry. The N-glycopeptides were derived using non specific proteases and are analysed directly on liquid chromatography coupled to ion trap mass spectrometer in tandem mode. The evaluation of glycan fragment ions and the Y 1 ions (peptide+HexNAc) +n revealed the glycan sequence and the corresponding site of attachment. We observed the microheterogeneity in N-glycans such as Man 11-15 GlcNAc 2 at Asn 13 , Man 8-12 GlcNAc 2 at Asn 87 , Man 9-14 GlcNAc 2 at Asn 168 and phosphorylated Man 12-17 GlcNAc 2 as well as Man 11-16 GlcNAc 2 at Asn 368 . The presence of N-glycans with Man <18 GlcNAc 2 indicated that in vacuoles the steady release of mannose/phospho mannose residues from glycans occurs initially at Asn 13 or Asn 168 followed by at Asn 368 . However, glycans at Asn 87 which comprises Man 8-12 residues as reported earlier remain intact suggesting its inaccessibility for a similar processing. This in turn indicates the interaction of the glycan at Asn 87 with the polypeptide chain implicating it in the folding of the protein. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A New Sucrase Enzyme Inhibitor from Azadirachta indica

    PubMed Central

    Abdelhady, Mohamed I. S.; Shaheen, Usama; Bader, Ammar; Youns, Mahmoud A.

    2016-01-01

    Background: Sucrase enzyme inhibitor considered as an oral anti-diabetic therapy that delays the absorption of eaten carbohydrates, reducing the postprandial glucose and insulin peaks to reach normoglycemia. Materials and Methods: Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica growing in KSA, followed by in-vitro assay of sucrase enzyme inhibition activity. Results: This investigation led to the isolation of a new remarkable sucrase enzyme inhibitor; 4’-methyl Quercetin-7-O-β-D-glucuronopyranoside (1) alongside with four known compounds; 2,3-hexahydroxydiphenoyl-(α/β)-D-4C1-glucopyranose (2), Avicularin (3), Castalagin (4) and Quercetin-3-O-glucoside (5). The structure of the new compound (1) was elucidated on the basis of its spectral data, including ESI-MS, UV, 1H NMR, 13C NMR, 1H-1H COSY, HSQC, NOESY and HMBC. Conclusion: Under the assay conditions, hydroalcoholic extract of A. indica and compounds 1-5 exhibited significant sucrase enzyme inhibitory activity. SUMMARY Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica, led to the Isolation of a new flavonoid glycoside named 4’-methyl Quercetin-7-O-β-D-glucuronopyranoside, alongside to other 4 known polyphenols. The hydroalcoholic extract as well as the isolated compounds exhibited significant sucrase enzyme inhibitory activity. Abbreviations used: ESI-MS; electrospray ionization-mass spectrometry, UV; ultraviolet, NMR; nuclear magnetic resonance, 1H-1H COSY; 1H-1H correlation spectroscopy, NOESY; nuclear overhauser effect spectroscopy, and HSQC; heteronuclear multiple bond correlation. A. indica; Azadirachta indica. PMID:27563214

  19. Co-immobilized Coupled Enzyme Systems in Biotechnology

    DTIC Science & Technology

    2010-01-01

    Dongen et a /. , A three-enzyme cascade reaction through positional assembly of enzymes in a polymersome nanoreactor. Chemistry -A European Journal...coupled to a second immobilized peroxidase reac- tor, for example, produces a variety of flavonoids and pyrone derivatives (Kim et al., 2009...Lipase-catalyzed regioselective one-step synthesis of penta-O-acetyl-3-hydroxylactal. Europeall Joumal of Organic Chemistry , 2009(20): 3327-3329

  20. [Establishment of chemiluminescent enzyme immunoassay for detecting antibodies against foot-and-mouth disease virus serotype O in swine].

    PubMed

    Cui, Chen; Huang, Ligang; Li, Jing; Zou, Xingqi; Zhu, Yuanyuan; Xie, Lei; Zhao, Qizu; Yang, Limin; Liu, Wenjun

    2016-11-25

    Recombinant structural protein VP1 of foot-and-mouth disease virus serotype O was expressed in Escherichia coli and then purified using Nickel affinity chromatography. A chemiluminescent enzyme immunoassay (CLEIA) method was established using the purified recombinant protein as coating antigen to detect antibody of foot-and-mouth disease virus serotype O in swine. The specificity of VP1-CLEIA method is 100%. The coefficients of variation in the plate and between plates are 1.10%-6.70% and 0.66%-4.80%, respectively. Comparing with the commercial indirect ELISA kit or liquid phase block ELISA kit, the calculated coincidence rate is 93.50% or 94.00%. The high specificity and stability suggested this detection method can be used to monitor the antibody level of foot-and-mouth disease virus serotype O in swine.

  1. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.

    PubMed

    Kurogochi, Masaki; Mori, Masako; Osumi, Kenji; Tojino, Mami; Sugawara, Shu-Ichi; Takashima, Shou; Hirose, Yuriko; Tsukimura, Wataru; Mizuno, Mamoru; Amano, Junko; Matsuda, Akio; Tomita, Masahiro; Takayanagi, Atsushi; Shoda, Shin-Ichiro; Shirai, Takashi

    2015-01-01

    Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells, and

  2. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    NASA Astrophysics Data System (ADS)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  3. Rates of processing of the high mannose oligosaccharide units at the three glycosylation sites of mouse thyrotropin and the two sites of free alpha-subunits.

    PubMed

    Miura, Y; Perkel, V S; Magner, J A

    1988-09-01

    We have determined the structures of high mannose (Man) oligosaccharide units at individual glycosylation sites of mouse TSH. Mouse thyrotropic tumor tissue was incubated with D-[2-3H]Man with or without [14C]tyrosine ([14C] Tyr) for 2, 3, or 6 h, and for a 3-h pulse followed by a 2-h chase. TSH heterodimers or free alpha-subunits were obtained from homogenates using specific antisera. After reduction and alkylation, subunits were treated with trypsin. The tryptic fragments were then loaded on a reverse phase HPLC column to separate tryptic fragments bearing labeled oligosaccharides. The N-linked oligosaccharides were released with endoglycosidase-H and analyzed by paper chromatography. Man9GlcNac2 and Man8GlcNac2 units predominated at each time point and at each specific glycosylation site, but the processing of high Man oligosaccharides differed at each glycosylation site. The processing at Asn23 of TSH beta-subunits was slower than that at Asn56 or Asn82 of alpha-subunits. The processing at Asn82 was slightly faster than that at Asn56 for both alpha-subunits of TSH heterodimers and free alpha-subunits. The present study demonstrates that the early processing of oligosaccharides differs at the individual glycosylation sites of TSH and free alpha-subunits, perhaps because of local conformational differences.

  4. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Hozuki, T.; Arai, K.; Toyoda, S.; Koba, K.; Fujiwara, T.; Yoshida, N.

    2014-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas and produced in denitrification and nitrification by various microorganisms. Site preference (SP) of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathways. To determine representative SP values for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR) from Paracoccus denitrificans. The SP value for NOR reaction (-5.9 ± 2.1‰) showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰) was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2-) reduction (which is followed by NO reduction) to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for the NH2OH oxidation pathway possibly due to a small contribution of NO2- reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  5. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Hozuki, T.; Arai, K.; Toyoda, S.; Koba, K.; Fujiwara, T.; Yoshida, N.

    2013-10-01

    Nitrous oxide (N2O) is a potent greenhouse gas and produced in denitrification and nitrification in environmental nitrogen cycle by various microorganism. Site preference (SP) of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathway. To determine representative SP value for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR) from Paracoccus denitrificans, respectively. The SP value for NOR reaction (-5.9 ± 2.1‰) showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰) was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2-) reduction (which is followed by NO reduction) to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for NH2OH oxidation pathway possibly due to a small contribution of NO2- reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  6. Shifted Golgi targeting of glycosyltransferases and α-mannosidase IA from giantin to GM130-GRASP65 results in formation of high mannose N-glycans in aggressive prostate cancer cells.

    PubMed

    Bhat, Ganapati; Hothpet, Vishwanath-Reddy; Lin, Ming-Fong; Cheng, Pi-Wan

    2017-11-01

    There is a pressing need for biomarkers that can distinguish indolent from aggressive prostate cancer to prevent over-treatment of patients with indolent tumor. Golgi targeting of glycosyltransferases was characterized by confocal microscopy after knockdown of GM130, giantin, or both. N-glycans on a trans-Golgi enzyme β4galactosyltransferase-1 isolated by immunoprecipitation from androgen-sensitive and independent prostate cancer cells were determined by matrix-assisted laser desorption-time of flight-mass spectrometry. In situ proximity ligation assay was employed to determine co-localization of (a) α-mannosidase IA, an enzyme required for processing Man 8 GlcNAc 2 down to Man 5 GlcNAc 2 to enable synthesis of complex-type N-glycans, with giantin, GM130, and GRASP65, and (b) trans-Golgi glycosyltransferases with high mannose N-glycans terminated with α3-mannose. Defective giantin in androgen-independent prostate cancer cells results in a shift of Golgi targeting of glycosyltransferases and α-mannosidase IA from giantin to GM130-GRASP65. Consequently, trans-Golgi enzymes and cell surface glycoproteins acquire high mannose N-glycans, which are absent in cells with functional giantin. In situ proximity ligation assays of co-localization of α-mannosidase IA with GM130 and GRASP65, and trans-Golgi glycosyltransferases with high mannose N-glycans are negative in androgen-sensitive LNCaP C-33 cells but positive in androgen-independent LNCaP C-81 and DU145 cells, and LNCaP C-33 cells devoid of giantin. In situ proximity ligation assays of Golgi localization of α-mannosidase IA at giantin versus GM130-GRASP65 site, and absence or presence of N-glycans terminated with α3-mannose on trans-Golgi glycosyltransferases may be useful for distinguishing indolent from aggressive prostate cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Processing of N-linked oligosaccharides from precursor- to mature-form herpes simplex virus type 1 glycoprotein gC.

    PubMed Central

    Serafini-Cessi, F; Dall'Olio, F; Pereira, L; Campadelli-Fiume, G

    1984-01-01

    Immature and mature forms of glycoprotein gC were purified by immunoadsorbent from herpes simplex virus type 1-infected BHK cells labeled with [3H]mannose for a 20-min pulse or for 11 h followed by a 3-h chase. The nature of N-asparagine-linked oligosaccharides carried by the immature form, pgC (molecular weight = 92,000), and the mature gC (molecular weight = 120,000) has been investigated. All pronase-digested glycopeptides of pgC were susceptible to endo-beta-N-acetylglucosaminidase H treatment; thus they have a high-mannose structure. Using thin-layer chromatography to separate endo-beta-N-acetylglucosaminidase H-cleaved oligosaccharides, polymannosyl chains of different sizes, ranging from Man9GlcNAc to Man5GlcNAc, were separated. The major components were Man8GlcNAc and Man7GlcNAc, suggesting that pgC labeled in a 20-min pulse represents the form of glycoprotein already routed to the Golgi apparatus. Analysis of glycopeptides of mature gC showed that the majority (95%) of N-linked glycans were converted to complex-type glycans. Ion-exchange chromatography and affinity chromatography on concanavalin A-Sepharose and leucoagglutinin-agarose revealed that diantennary and triantennary glycans predominated, whereas tetrantennary chains were not present. Parts of the di- and triantennary chains were not fully sialylated. The high heterogeneity of complex-type chains found in mature gC may be related to the high number of N-glycosylation sites of the glycoprotein as predicted by DNA sequencing studies (Frink et al., J. Virol. 45:634-647, 1983). Images PMID:6088806

  8. Processing of N-linked oligosaccharides from precursor- to mature-form herpes simplex virus type 1 glycoprotein gC.

    PubMed

    Serafini-Cessi, F; Dall'Olio, F; Pereira, L; Campadelli-Fiume, G

    1984-09-01

    Immature and mature forms of glycoprotein gC were purified by immunoadsorbent from herpes simplex virus type 1-infected BHK cells labeled with [3H]mannose for a 20-min pulse or for 11 h followed by a 3-h chase. The nature of N-asparagine-linked oligosaccharides carried by the immature form, pgC (molecular weight = 92,000), and the mature gC (molecular weight = 120,000) has been investigated. All pronase-digested glycopeptides of pgC were susceptible to endo-beta-N-acetylglucosaminidase H treatment; thus they have a high-mannose structure. Using thin-layer chromatography to separate endo-beta-N-acetylglucosaminidase H-cleaved oligosaccharides, polymannosyl chains of different sizes, ranging from Man9GlcNAc to Man5GlcNAc, were separated. The major components were Man8GlcNAc and Man7GlcNAc, suggesting that pgC labeled in a 20-min pulse represents the form of glycoprotein already routed to the Golgi apparatus. Analysis of glycopeptides of mature gC showed that the majority (95%) of N-linked glycans were converted to complex-type glycans. Ion-exchange chromatography and affinity chromatography on concanavalin A-Sepharose and leucoagglutinin-agarose revealed that diantennary and triantennary glycans predominated, whereas tetrantennary chains were not present. Parts of the di- and triantennary chains were not fully sialylated. The high heterogeneity of complex-type chains found in mature gC may be related to the high number of N-glycosylation sites of the glycoprotein as predicted by DNA sequencing studies (Frink et al., J. Virol. 45:634-647, 1983).

  9. Mediator-free interaction of glucose oxidase, as model enzyme for immobilization, with Al-doped and undoped ZnO thin films laser-deposited on polycarbonate supports.

    PubMed

    V T K P, Fidal; Inguva, Saikumar; Krishnamurthy, Satheesh; Marsili, Enrico; Mosnier, Jean-Paul; T S, Chandra

    2017-01-01

    Al doped and undoped ZnO thin films were deposited by pulsed-laser deposition on polycarbonate sheets. The films were characterized by optical transmission, Hall effect measurement, XRD and SEM. Optical transmission and surface reflectometry studies showed good transparency with thicknesses ∼100nm and surface roughness of 10nm. Hall effect measurements showed that the sheet carrier concentration was -1.44×10 15 cm -2 for AZO and -6×10 14 cm -2 for ZnO. The films were then modified by drop-casting glucose oxidase (GOx) without the use of any mediators. Higher protein concentration was observed on ZnO as compared to AZO with higher specific activity for ZnO (0.042Umg -1 ) compared to AZO (0.032Umg -1 ), and was in agreement with cyclic voltemmetry (CV). X-ray photoelectron spectroscopy (XPS) suggested that the protein was bound by dipole interactions between AZO lattice oxygen and the amino group of the enzyme. Chronoamperometry showed sensitivity of 5.5μAmM -1 cm -2 towards glucose for GOx/AZO and 2.2μAmM -1 cm -2 for GOx/ZnO. The limit of detection (LoD) was 167μM of glucose for GOx/AZO, as compared to 360μM for GOx/ZnO. The linearity was 0.28-28mM for GOx/AZO whereas it was 0.6-28mM for GOx/ZnO with a response time of 10s. Possibly due to higher enzyme loading, the decrease of impedance in presence of glucose was larger for GOx/ZnO as compared to GOx/AZO in electrochemical impedance spectroscopy (EIS). Analyses with clinical blood serum samples showed that the systems had good reproducibility and accuracy. The characteristics of novel ZnO and AZO thin films with GOx as a model enzyme, should prove useful for the future fabrication of inexpensive, highly sensitive, disposable electrochemical biosensors for high throughput diagnostics. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Lipolytic enzymes in Mycobacterium tuberculosis.

    PubMed

    Côtes, K; Bakala N'goma, J C; Dhouib, R; Douchet, I; Maurin, D; Carrière, F; Canaan, S

    2008-04-01

    Mycobacterium tuberculosis is a bacterial pathogen that can persist for decades in an infected patient without causing a disease. In vivo, the tubercle bacillus present in the lungs store triacylglycerols in inclusion bodies. The same process can be observed in vitro when the bacteria infect adipose tissues. Indeed, before entering in the dormant state, bacteria accumulate lipids originating from the host cell membrane degradation and from de novo synthesis. During the reactivation phase, these lipids are hydrolysed and the infection process occurs. The degradation of both extra and intracellular lipids can be directly related to the presence of lipolytic enzymes in mycobacteria, which have been ignored during a long period particularly due to the difficulties to obtain a high expression level of these enzymes in M. tuberculosis. The completion of the M. tuberculosis genome offered new opportunity to this kind of study. The aim of this review is to focus on the recent results obtained in the field of mycobacterium lipolytic enzymes and although no experimental proof has been shown in vivo, it is tempting to speculate that these enzymes could be involved in the virulence and pathogenicity processes.

  11. The development, characterization, and application of biomimetic nanoscale enzyme immobilization

    NASA Astrophysics Data System (ADS)

    Haase, Nicholas R.

    The utilization of enzymes is of interest for applications such as biosensors and biofuel cells. Immobilizing enzymes provides a means to develop these applications. Previous immobilization efforts have been accomplished by exposing surfaces on which silica-forming molecules are present to solutions containing an enzyme and a silica precursor. This approach leads to the enzyme being entrapped in a matrix three orders of magnitude larger than the enzyme itself, resulting in low retention of enzyme activity. The research herein introduces a method for the immobilization of enzymes during the layer-by-layer buildup of Si-O and Ti-O coatings which are nanoscale in thickness. This approach is an application of a peptide-induced mineral deposition method developed in the Sandhage and Kroger groups, and it involves the alternating exposure of a surface to solutions containing the peptide protamine and then an aqueous precursor solution of silicon- or titanium-oxide at near-neutral pH. A method has been developed that enables in situ immobilization of enzymes in the protamine/mineral oxide coatings. Depending on the layer and mineral (silica or titania) within which the enzyme is incorporated, the resulting multilayer biocatalytic hybrid materials retain 20 -- 100% of the enzyme activity. Analyses of kinetic properties of the immobilized enzyme, coupled with characterization of physical properties of the mineral-bearing layers (thickness, porosity, pore size distribution), indicates that the catalytic activities of the enzymes immobilized in the different layers are largely determined by substrate diffusion. The enzyme was also found to be substantially stabilized against heat-induced denaturation and largely protected from proteolytic attack. These functional coatings are then developed for use as antimicrobial materials. Glucose oxidase, which catalyzes production of the cytotoxic agent hydrogen peroxide, was immobilized with silver nanoparticles, can release

  12. Iminosugars Inhibit Dengue Virus Production via Inhibition of ER Alpha-Glucosidases--Not Glycolipid Processing Enzymes.

    PubMed

    Sayce, Andrew C; Alonzi, Dominic S; Killingbeck, Sarah S; Tyrrell, Beatrice E; Hill, Michelle L; Caputo, Alessandro T; Iwaki, Ren; Kinami, Kyoko; Ide, Daisuke; Kiappes, J L; Beatty, P Robert; Kato, Atsushi; Harris, Eva; Dwek, Raymond A; Miller, Joanna L; Zitzmann, Nicole

    2016-03-01

    It has long been thought that iminosugar antiviral activity is a function of inhibition of endoplasmic reticulum-resident α-glucosidases, and on this basis, many iminosugars have been investigated as therapeutic agents for treatment of infection by a diverse spectrum of viruses, including dengue virus (DENV). However, iminosugars are glycomimetics possessing a nitrogen atom in place of the endocyclic oxygen atom, and the ubiquity of glycans in host metabolism suggests that multiple pathways can be targeted via iminosugar treatment. Successful treatment of patients with glycolipid processing defects using iminosugars highlights the clinical exploitation of iminosugar inhibition of enzymes other than ER α-glucosidases. Evidence correlating antiviral activity with successful inhibition of ER glucosidases together with the exclusion of alternative mechanisms of action of iminosugars in the context of DENV infection is limited. Celgosivir, a bicyclic iminosugar evaluated in phase Ib clinical trials as a therapeutic for the treatment of DENV infection, was confirmed to be antiviral in a lethal mouse model of antibody-enhanced DENV infection. In this study we provide the first evidence of the antiviral activity of celgosivir in primary human macrophages in vitro, in which it inhibits DENV secretion with an EC50 of 5 μM. We further demonstrate that monocyclic glucose-mimicking iminosugars inhibit isolated glycoprotein and glycolipid processing enzymes and that this inhibition also occurs in primary cells treated with these drugs. By comparison to bicyclic glucose-mimicking iminosugars which inhibit glycoprotein processing but do not inhibit glycolipid processing and galactose-mimicking iminosugars which do not inhibit glycoprotein processing but do inhibit glycolipid processing, we demonstrate that inhibition of endoplasmic reticulum-resident α-glucosidases, not glycolipid processing, is responsible for iminosugar antiviral activity against DENV. Our data suggest that

  13. Virulence-Associated Enzymes of Cryptococcus neoformans

    PubMed Central

    Almeida, Fausto; Wolf, Julie M.

    2015-01-01

    Enzymes play key roles in fungal pathogenesis. Manipulation of enzyme expression or activity can significantly alter the infection process, and enzyme expression profiles can be a hallmark of disease. Hence, enzymes are worthy targets for better understanding pathogenesis and identifying new options for combatting fungal infections. Advances in genomics, proteomics, transcriptomics, and mass spectrometry have enabled the identification and characterization of new fungal enzymes. This review focuses on recent developments in the virulence-associated enzymes from Cryptococcus neoformans. The enzymatic suite of C. neoformans has evolved for environmental survival, but several of these enzymes play a dual role in colonizing the mammalian host. We also discuss new therapeutic and diagnostic strategies that could be based on the underlying enzymology. PMID:26453651

  14. G₂/M cell cycle arrest by an N-acetyl-D-glucosamine specific lectin from Psathyrella asperospora.

    PubMed

    Rouf, Razina; Stephens, Alexandre S; Spaan, Lina; Arndt, Nadia X; Day, Christopher J; May, Tom W; Tiralongo, Evelin; Tiralongo, Joe

    2014-01-01

    A new N-acetyl-D-glucosamine (GlcNAc) specific lectin was identified and purified from the fruiting body of the Australian indigenous mushroom Psathyrella asperospora. The functional lectin, named PAL, showed hemagglutination activity against neuraminidase treated rabbit and human blood types A, B and O, and exhibited high binding specificity towards GlcNAc, as well as mucin and fetuin, but not against asialofetuin. PAL purified to homogeneity by a combination of ammonium sulfate precipitation, chitin affinity chromatography and size exclusion chromatography, was monomeric with a molecular mass of 41.8 kDa, was stable at temperatures up to 55 °C and between pH 6-10, and did not require divalent cations for optimal activity. De novo sequencing of PAL using LC-MS/MS, identified 10 tryptic peptides that revealed substantial sequence similarity to the GlcNAc recognizing lectins from Psathyrella velutina (PVL) and Agrocybe aegerita (AAL-II) in both the carbohydrate binding and calcium binding sites. Significantly, PAL was also found to exert a potent anti-proliferative effect on HT29 cells (IC50 0.48 μM) that was approximately 3-fold greater than that observed on VERO cells; a difference found to be due to the differential expression of cell surface GlcNAc on HT29 and VERO cells. Further characterization of this activity using propidium iodine staining revealed that PAL induced cell cycle arrest at G2/M phase in a manner dependent on its ability to bind GlcNAc.

  15. From molecular engineering to process engineering: development of high-throughput screening methods in enzyme directed evolution.

    PubMed

    Ye, Lidan; Yang, Chengcheng; Yu, Hongwei

    2018-01-01

    With increasing concerns in sustainable development, biocatalysis has been recognized as a competitive alternative to traditional chemical routes in the past decades. As nature's biocatalysts, enzymes are able to catalyze a broad range of chemical transformations, not only with mild reaction conditions but also with high activity and selectivity. However, the insufficient activity or enantioselectivity of natural enzymes toward non-natural substrates limits their industrial application, while directed evolution provides a potent solution to this problem, thanks to its independence on detailed knowledge about the relationship between sequence, structure, and mechanism/function of the enzymes. A proper high-throughput screening (HTS) method is the key to successful and efficient directed evolution. In recent years, huge varieties of HTS methods have been developed for rapid evaluation of mutant libraries, ranging from in vitro screening to in vivo selection, from indicator addition to multi-enzyme system construction, and from plate screening to computation- or machine-assisted screening. Recently, there is a tendency to integrate directed evolution with metabolic engineering in biosynthesis, using metabolites as HTS indicators, which implies that directed evolution has transformed from molecular engineering to process engineering. This paper aims to provide an overview of HTS methods categorized based on the reaction principles or types by summarizing related studies published in recent years including the work from our group, to discuss assay design strategies and typical examples of HTS methods, and to share our understanding on HTS method development for directed evolution of enzymes involved in specific catalytic reactions or metabolic pathways.

  16. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    PubMed

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-05

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. 21 CFR 173.150 - Milk-clotting enzymes, microbial.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Milk-clotting enzymes, microbial. 173.150 Section... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.150 Milk-clotting enzymes, microbial. Milk-clotting enzyme produced by pure-culture fermentation process may be safely used in the production...

  18. 21 CFR 173.150 - Milk-clotting enzymes, microbial.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Milk-clotting enzymes, microbial. 173.150 Section... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.150 Milk-clotting enzymes, microbial. Milk-clotting enzyme produced by pure-culture fermentation process may be safely used in the production...

  19. 21 CFR 173.150 - Milk-clotting enzymes, microbial.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Milk-clotting enzymes, microbial. 173.150 Section... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.150 Milk-clotting enzymes, microbial. Milk-clotting enzyme produced by pure-culture fermentation process may be safely used in the production...

  20. Effects of combined pressure and temperature on enzymes related to quality of fruits and vegetables: from kinetic information to process engineering aspects.

    PubMed

    Ludikhuyze, L; Van Loey, A; Indrawati; Smout, C; Hendrickx, M

    2003-01-01

    Throughout the last decade, high pressure technology has been shown to offer great potential to the food processing and preservation industry in delivering safe and high quality products. Implementation of this new technology will be largely facilitated when a scientific basis to assess quantitatively the impact of high pressure processes on food safety and quality becomes available. Besides, quantitative data on the effects of pressure and temperature on safety and quality aspects of foods are indispensable for design and evaluation of optimal high pressure processes, i.e., processes resulting in maximal quality retention within the constraints of the required reduction of microbial load and enzyme activity. Indeed it has to be stressed that new technologies should deliver, apart from the promised quality improvement, an equivalent or preferably enhanced level of safety. The present paper will give an overview from a quantitative point of view of the combined effects of pressure and temperature on enzymes related to quality of fruits and vegetables. Complete kinetic characterization of the inactivation of the individual enzymes will be discussed, as well as the use of integrated kinetic information in process engineering.

  1. Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose

    PubMed Central

    2011-01-01

    Background Pretreatment is a critical step in the conversion of lignocellulose to fermentable sugars. Although many pretreatment processes are currently under investigation, none of them are entirely satisfactory in regard to effectiveness, cost, or environmental impact. The use of hydrogen peroxide at pH 11.5 (alkaline hydrogen peroxide (AHP)) was shown by Gould and coworkers to be an effective pretreatment of grass stovers and other plant materials in the context of animal nutrition and ethanol production. Our earlier experiments indicated that AHP performed well when compared against two other alkaline pretreatments. Here, we explored several key parameters to test the potential of AHP for further improvement relevant to lignocellulosic ethanol production. Results The effects of biomass loading, hydrogen peroxide loading, residence time, and pH control were tested in combination with subsequent digestion with a commercial enzyme preparation, optimized mixtures of four commercial enzymes, or optimized synthetic mixtures of pure enzymes. AHP pretreatment was performed at room temperature (23°C) and atmospheric pressure, and after AHP pretreatment the biomass was neutralized with HCl but not washed before enzyme digestion. Standard enzyme digestion conditions were 0.2% glucan loading, 15 mg protein/g glucan, and 48 h digestion at 50°C. Higher pretreatment biomass loadings (10% to 20%) gave higher monomeric glucose (Glc) and xylose (Xyl) yields than the 2% loading used in earlier studies. An H2O2 loading of 0.25 g/g biomass was almost as effective as 0.5 g/g, but 0.125 g/g was significantly less effective. Optimized mixtures of four commercial enzymes substantially increased post-AHP-pretreatment enzymatic hydrolysis yields at all H2O2 concentrations compared to any single commercial enzyme. At a pretreatment biomass loading of 10% and an H2O2 loading of 0.5 g/g biomass, an optimized commercial mixture at total protein loadings of 8 or 15 mg/g glucan gave

  2. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes.

    PubMed

    Sirisha, V L; Jain, Ankita; Jain, Amita

    Immobilized enzymes can be used in a wide range of processes. In recent years, a variety of new approaches have emerged for the immobilization of enzymes that have greater efficiency and wider usage. During the course of the last two decades, this area has rapidly expanded into a multidisciplinary field. This current study is a comprehensive review of a variety of literature produced on the different enzymes that have been immobilized on various supporting materials. These immobilized enzymes have a wide range of applications. These include applications in the sugar, fish, and wine industries, where they are used for removing organic compounds from waste water. This study also reviews their use in sophisticated biosensors for metabolite control and in situ measurements of environmental pollutants. Immobilized enzymes also find significant application in drug metabolism, biodiesel and antibiotic production, bioremediation, and the food industry. The widespread usage of immobilized enzymes is largely due to the fact that they are cheaper, environment friendly, and much easier to use when compared to equivalent technologies. © 2016 Elsevier Inc. All rights reserved.

  3. Enzyme recycle and fed-batch addition for high-productivity soybean flour processing to produce enriched soy protein and concentrated hydrolysate of fermentable sugars.

    PubMed

    Loman, Abdullah Al; Islam, S M Mahfuzul; Li, Qian; Ju, Lu-Kwang

    2017-10-01

    Despite having high protein and carbohydrate, soybean flour utilization is limited to partial replacement of animal feed to date. Enzymatic process can be exploited to increase its value by enriching protein content and separating carbohydrate for utilization as fermentation feedstock. Enzyme hydrolysis with fed-batch and recycle designs were evaluated here for achieving this goal with high productivities. Fed-batch process improved carbohydrate conversion, particularly at high substrate loadings of 250-375g/L. In recycle process, hydrolysate retained a significant portion of the limiting enzyme α-galactosidase to accelerate carbohydrate monomerization rate. At single-pass retention time of 6h and recycle rate of 62.5%, reducing sugar concentration reached up to 120g/L using 4ml/g enzyme. When compared with batch and fed-batch processes, the recycle process increased the volumetric productivity of reducing sugar by 36% (vs. fed-batch) to 57% (vs. batch) and that of protein product by 280% (vs. fed-batch) to 300% (vs. batch). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Expression, function and regulation of mouse cytochrome P450 enzymes: comparison with human P450 enzymes.

    PubMed

    Hrycay, E G; Bandiera, S M

    2009-12-01

    The present review focuses on the expression, function and regulation of mouse cytochrome P450 (Cyp) enzymes. Information compiled for mouse Cyp enzymes is compared with data collected for human CYP enzymes. To date, approximately 40 pairs of orthologous mouse-human CYP genes have been identified that encode enzymes performing similar metabolic functions. Recent knowledge concerning the tissue expression of mouse Cyp enzymes from families 1 to 51 is summarized. The catalytic activities of microsomal, mitochondrial and recombinant mouse Cyp enzymes are discussed and their involvement in the metabolism of exogenous and endogenous compounds is highlighted. The role of nuclear receptors, such as the aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor, in regulating the expression of mouse Cyp enzymes is examined. Targeted disruption of selected Cyp genes has generated numerous Cyp null mouse lines used to decipher the role of Cyp enzymes in metabolic, toxicological and biological processes. In conclusion, the laboratory mouse is an indispensable model for exploring human CYP-mediated activities.

  5. Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants.

    PubMed

    Anjum, Naser A; Sharma, Pallavi; Gill, Sarvajeet S; Hasanuzzaman, Mirza; Khan, Ekhlaque A; Kachhap, Kiran; Mohamed, Amal A; Thangavel, Palaniswamy; Devi, Gurumayum Devmanjuri; Vasudhevan, Palanisamy; Sofo, Adriano; Khan, Nafees A; Misra, Amarendra Narayan; Lukatkin, Alexander S; Singh, Harminder Pal; Pereira, Eduarda; Tuteja, Narendra

    2016-10-01

    Plants have to counteract unavoidable stress-caused anomalies such as oxidative stress to sustain their lives and serve heterotrophic organisms including humans. Among major enzymatic antioxidants, catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) are representative heme enzymes meant for metabolizing stress-provoked reactive oxygen species (ROS; such as H2O2) and controlling their potential impacts on cellular metabolism and functions. CAT mainly occurs in peroxisomes and catalyzes the dismutation reaction without requiring any reductant; whereas, APX has a higher affinity for H2O2 and utilizes ascorbate (AsA) as specific electron donor for the reduction of H2O2 into H2O in organelles including chloroplasts, cytosol, mitochondria, and peroxisomes. Literature is extensive on the glutathione-associated H2O2-metabolizing systems in plants. However, discussion is meager or scattered in the literature available on the biochemical and genomic characterization as well as techniques for the assays of CAT and APX and their modulation in plants under abiotic stresses. This paper aims (a) to introduce oxidative stress-causative factors and highlights their relationship with abiotic stresses in plants; (b) to overview structure, occurrence, and significance of CAT and APX in plants; (c) to summarize the principles of current technologies used to assay CAT and APX in plants; (d) to appraise available literature on the modulation of CAT and APX in plants under major abiotic stresses; and finally, (e) to consider a brief cross-talk on the CAT and APX, and this also highlights the aspects unexplored so far.

  6. Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF

    DOE PAGES

    Park, Kiyoung; Li, Ning; Kwak, Yeonju; ...

    2017-05-01

    Binuclear non-heme iron enzymes activate O 2 for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O 2. Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reactionmore » shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. As a result, this activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.« less

  7. Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kiyoung; Li, Ning; Kwak, Yeonju

    Binuclear non-heme iron enzymes activate O 2 for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O 2. Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reactionmore » shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. As a result, this activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.« less

  8. Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica.

    PubMed

    Chandran, Rashmi; Sivakumar, A A; Mohandass, S; Aruchami, M

    2005-01-01

    Heavy metal stress results in the production of O(2)(.-), H(2)O(2) and (.)OH, which affect various cellular processes, mostly the functioning of membrane systems. Cells are normally protected against free oxyradicals by the operation of intricate antioxidant systems. The aim of the present work is to examine the effect of CdCl(2) and ZnSO(4) on antioxidative enzyme activity in the gastropod, Achatina fulica. The concentrations of antioxidant enzymes--superoxide dismutase (SOD), catalase (Cat) and glutathione peroxidase (GPx)--and nonenzymatic antioxidants--glutathione and vitamin-C--were found to be decreased in both digestive gland and kidney of the gastropod, Achatina fulica treated with individual concentrations of 0.5 ppm and 1ppm of CdCl(2) and ZnSO(4), compared to that of control animals. Based on the above study, it is evident that Achatina fulica can be used as a bioindicator to monitor the environmental heavy metal pollution.

  9. The biosynthesis, processing, and secretion of laminin by human choriocarcinoma cells.

    PubMed

    Peters, B P; Hartle, R J; Krzesicki, R F; Kroll, T G; Perini, F; Balun, J E; Goldstein, I J; Ruddon, R W

    1985-11-25

    Laminin, a glycoprotein component of basal laminae, is synthesized and secreted in culture by a human malignant cell line (JAR) derived from gestational choriocarcinoma. Biosynthetically labeled human laminin subunits A (Mr approximately 400,000) and B (Mr = 200,000 doublet) are glycoslyated with asparagine-linked high mannose oligosaccharides that are processed to complex oligosaccharides before the laminin molecule is externalized by the cell. The rate-limiting step in the processing of the asparagine-linked glycans of laminin is at the point of action of alpha-mannosidase I since the principal laminin forms that accumulate in JAR cells contain Man9GlcNAc2 and Man8GlcNAc2 oligosaccharide units. The combination of subunits to form the disulfide-linked laminin molecule (Mr approximately 950,000) occurs rapidly within the cell at a time when the subunits contain these high mannose oligosaccharides. The production of laminin is limited by the availability of the A subunit such that excess B subunit forms accumulate intracellularly as uncombined B and a disulfide-linked B dimer. Pulse-chase kinetic studies establish these B forms as intermediates in the assembly of the laminin molecule. The fully assembled laminin undergoes further oligosaccharide processing and translocation to the cell surface, but uncombined B and B dimer are neither processed nor secreted to any significant extent. Therefore, laminin subunit combination appears to be a prerequisite for intracellular translocation, processing, and secretion. The mature laminin that contains complex oligosaccharides does not accumulate intracellularly but is rapidly externalized upon completion, either secreted into the culture medium (25%) or associated with the cell surface (75%) as determined by susceptibility to degradation by trypsin. About one-third of the laminin molecules secreted or shed by JAR cells into the chase medium contain a smaller A subunit form that appears to have been modified by limited

  10. Characterization of human liver cytochrome P-450 enzymes involved in the O-demethylation of a new P-glycoprotein inhibitor HM-30181.

    PubMed

    Paek, In Bok; Kim, Sung Yeon; Kim, Maeng Sup; Kim, John; Lee, Gwansun; Lee, Hye Suk

    2007-08-01

    HM-30181, 4-oxo-4H-chromene-2-carboxylic acid [2-(2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-2H-tetrazol-5-yl)-4,5-dimethoxy-phenyl]-amide, is a new P-glycoprotein inhibitor with the potential to increase the cytotoxic activity of orally coadministered paclitaxel. This study was performed to characterize human cytochrome P-450 (CYP) enzymes involved in the metabolism of HM-30181 to 4- or 5-O-desmethyl-HM-30181 (M2) and 6- or 7-O-desmethyl-HM-30181 (M3) and to investigate the inhibitory potential of HM-30181 on CYP enzymes in human liver microsomes. CYP3A4 was identified as the major isozyme responsible for the O-demethylation of HM-30181 to M2 and M3 based on the correlation analysis, chemical inhibition and immuno-inhibition study and metabolism in cDNA-expressed human CYP isozymes. HM-30181 itself had no inhibitory effects on CYPs 1A2, 2A6, 2C8, 2C9, 2C19, 2D6, and 3A4 in human liver microsomes, suggesting the possibility that the pharmacokinetics of HM-30181 could be changed with coadministration of known CYP3A4 inducers or inhibitors.

  11. Position of human blood group O(H) and phenotype-determining enzymes in growth and infectious disease.

    PubMed

    Arend, Peter

    2018-05-12

    The human ABO(H) blood group phenotypes arise from the evolutionarily oldest genetic system found in primate populations. While the blood group antigen A is considered the ancestral primordial structure, under the selective pressure of life-threatening diseases blood group O(H) came to dominate as the most frequently occurring blood group worldwide. Non-O(H) phenotypes demonstrate impaired formation of adaptive and innate immunoglobulin specificities due to clonal selection and phenotype formation in plasma proteins. Compared with individuals with blood group O(H), blood group A individuals not only have a significantly higher risk of developing certain types of cancer but also exhibit high susceptibility to malaria tropica or infection by Plasmodium falciparum. The phenotype-determining blood group A glycotransferase(s), which affect the levels of anti-A/Tn cross-reactive immunoglobulins in phenotypic glycosidic accommodation, might also mediate adhesion and entry of the parasite to host cells via trans-species O-GalNAc glycosylation of abundantly expressed serine residues that arise throughout the parasite's life cycle, while excluding the possibility of antibody formation against the resulting hybrid Tn antigen. In contrast, human blood group O(H), lacking this enzyme, is indicated to confer a survival advantage regarding the overall risk of developing cancer, and individuals with this blood group rarely develop life-threatening infections involving evolutionarily selective malaria strains. © 2018 New York Academy of Sciences.

  12. Microfluidic bioassay system based on microarrays of hydrogel sensing elements entrapping quantum dot-enzyme conjugates.

    PubMed

    Jang, Eunji; Kim, Sinyoung; Koh, Won-Gun

    2012-01-15

    This paper presents a simple method to fabricate a microfluidic biosensor that is able to detect substrates for H(2)O(2)-generating oxidase. The biosensor consists of three components (quantum dot-enzyme conjugates, hydrogel microstructures, and a set of microchannels) that were hierarchically integrated into a microfluidic device. The quantum dot (QD)-enzyme conjugates were entrapped within the poly(ethylene glycol) (PEG)-based hydrogel microstructures that were fabricated within the microchannels by a photopatterning process. Glucose oxidase (GOX) and alcohol oxidase (AOX) were chosen as the model oxidase enzymes, conjugated to carboxyl-terminated CdSe/ZnS QDs, and entrapped within the hydrogel microstructures, which resulted in a fluorescent hydrogel microarray that was responsive to glucose or alcohol. The hydrogel-entrapped GOX and AOX were able to perform enzyme-catalyzed oxidation of glucose and alcohol, respectively, to produce H(2)O(2), which subsequently quenched the fluorescence of the conjugated QDs. The fluorescence intensity of the hydrogel microstructures decreased as the glucose and alcohol concentrations increased, and the detection limits of this system were found to be 50 μM of glucose and 70 μM of alcohol. Because each microchannel was able to carry out different assays independently, the simultaneous detection of glucose and alcohol was possible using our novel microfluidic device composed of multiple microchannels. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Making MgO/SiO2 Glasses By The Sol-Gel Process

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    Silicon dioxide glasses containing 15 mole percent magnesium oxide prepared by sol-gel process. Not made by conventional melting because ingredients immiscible liquids. Synthesis of MgO/SiO2 glass starts with mixing of magnesium nitrate hexahydrate with silicon tetraethoxide, both in alcohol. Water added, and transparent gel forms. Subsequent processing converts gel into glass. Besides producing glasses of new composition at lower processing temperatures, sol-gel method leads to improved homogeneity and higher purity.

  14. Chemical stress induced by heliotrope (Heliotropium europaeum L.) allelochemicals and increased activity of antioxidant enzymes.

    PubMed

    Abdulghader, Kalantar; Nojavan, Majid; Naghshbandi, Nabat

    2008-03-15

    The aims of this study were to evaluate the allelopathic potential of heliotrope on some biochemical processes of dodder. The preliminary experiments revealed that the effect of aqueous extract of leaves of heliotrope is higher than its seeds and roots. So, the aqueous extract of leaves was used in remaining experiments. Leaf extracts of 5 g powder per 100 mL H2O inhibited the germination of dodder seeds up to 95% and that of radish up to 100%. While, the aqueous extract of vine leaves which is a non-allelopathic plant did not have any inhibitory effect on these seeds. Vine leaf was used as a control to show that the inhibitory effect of heliotrope is due to an inhibitory compound but not due to the concentration. The leaf extract of heliotrope at 0.0, 0.1, 1.0, 2, 3, 4 and 5 g powder per 100 mL H2O reduced the radish seedling growth from 14 cm to about 0.5 cm and that of dodder from 7.5 cm to about 0.25 cm. The effects of heliotrope allelochemicals on some physiological and biochemical processes of radish was also Investigated. The activity of auxin oxidase increased in leaves and roots of radish. Suggesting that the reduced radish growth is due to the decreased active auxin levels in its leaves and roots. The activity of alpha-amylase was reduced, so reduction of starch degradation and lack of respiratory energy is the prime reason of germination inhibition in dodder and radish seeds. The level of soluble sugars increased. This is an indication of reduction of the activity of some respiratory enzymes and reduced consumption of these sugars. Proline levels were also increased, indicating that, the chemical stress is induced by leaf extract. Finally, the activities of GPX and CAT which are antioxidant enzymes were increased, along with increased extract concentration. These finding shows that the chemical stress induced by leaf extract produces super oxide (O2*) and H2O2, which is neutralized to H2O and O2 by these enzymes.

  15. A DNA enzyme that cleaves RNA

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Joyce, G. F.; Hoyce, G. F. (Principal Investigator)

    1994-01-01

    BACKGROUND: Several types of RNA enzymes (ribozymes) have been identified in biological systems and generated in the laboratory. Considering the variety of known RNA enzymes and the similarity of DNA and RNA, it is reasonable to imagine that DNA might be able to function as an enzyme as well. No such DNA enzyme has been found in nature, however. We set out to identify a metal-dependent DNA enzyme using in vitro selection methodology. RESULTS: Beginning with a population of 10(14) DNAs containing 50 random nucleotides, we carried out five successive rounds of selective amplification, enriching for individuals that best promote the Pb(2+)-dependent cleavage of a target ribonucleoside 3'-O-P bond embedded within an otherwise all-DNA sequence. By the fifth round, the population as a whole carried out this reaction at a rate of 0.2 min-1. Based on the sequence of 20 individuals isolated from this population, we designed a simplified version of the catalytic domain that operates in an intermolecular context with a turnover rate of 1 min-1. This rate is about 10(5)-fold increased compared to the uncatalyzed reaction. CONCLUSIONS: Using in vitro selection techniques, we obtained a DNA enzyme that catalyzes the Pb(2+)-dependent cleavage of an RNA phosphoester in a reaction that proceeds with rapid turnover. The catalytic rate compares favorably to that of known RNA enzymes. We expect that other examples of DNA enzymes will soon be forthcoming.

  16. Process for fabricating ZnO-based varistors

    DOEpatents

    Lauf, Robert J.

    1985-01-01

    The invention is a process for producing ZnO-based varistors incorporating a metal oxide dopant. In one form, the invention comprises providing a varistor powder mix of colloidal particles of ZnO and metal-oxide dopants including Bi.sub.2 O.sub.3. The mix is hot-pressed to form a compact at temperatures below 850.degree. C. and under conditions effecting reduction of the ZnO to sub-stoichiometric oxide. This promotes densification while restricting liquid formation and grain growth. The compact then is heated under conditions restoring the zinc oxide to stoichiometric composition, thus improving the varistor properties of the compact. The process produces fine-grain varistors characterized by a high actual breakdown voltage and a high average breakdown voltage per individual grain boundary.

  17. Microbial enzymes with special characteristics for biotechnological applications.

    PubMed

    Nigam, Poonam Singh

    2013-08-23

    This article overviews the enzymes produced by microorganisms, which have been extensively studied worldwide for their isolation, purification and characterization of their specific properties. Researchers have isolated specific microorganisms from extreme sources under extreme culture conditions, with the objective that such isolated microbes would possess the capability to bio-synthesize special enzymes. Various Bio-industries require enzymes possessing special characteristics for their applications in processing of substrates and raw materials. The microbial enzymes act as bio-catalysts to perform reactions in bio-processes in an economical and environmentally-friendly way as opposed to the use of chemical catalysts. The special characteristics of enzymes are exploited for their commercial interest and industrial applications, which include: thermotolerance, thermophilic nature, tolerance to a varied range of pH, stability of enzyme activity over a range of temperature and pH, and other harsh reaction conditions. Such enzymes have proven their utility in bio-industries such as food, leather, textiles, animal feed, and in bio-conversions and bio-remediations.

  18. Enzyme-based solutions for textile processing and dye contaminant biodegradation-a review.

    PubMed

    Chatha, Shahzad Ali Shahid; Asgher, Muhammad; Iqbal, Hafiz M N

    2017-06-01

    The textile industry, as recognized conformist and stake industry in the world's economy, is facing serious environmental challenges. In numerous industries, in practice, various chemical-based processes from initial sizing to final washing are fascinating harsh environment concerns. Some of these chemicals are corrosive to equipment and cause serious damage itself. Therefore, in the twenty-first century, chemical and allied industries quest a paradigm transition from traditional chemical-based concepts to a greener, sustainable, and environmentally friendlier catalytic alternative, both at the laboratory and industrial scales. Bio-based catalysis offers numerous benefits in the context of biotechnological industry and environmental applications. In recent years, bio-based processing has received particular interest among the scientist for inter- and multi-disciplinary investigations in the areas of natural and engineering sciences for the application in biotechnology sector at large and textile industries in particular. Different enzymatic processes such as chemical substitution have been developed or in the process of development for various textile wet processes. In this context, the present review article summarizes current developments and highlights those areas where environment-friendly enzymatic textile processing might play an increasingly important role in the textile industry. In the first part of the review, a special focus has been given to a comparative discussion of the chemical-based "classical/conventional" treatments and the modern enzyme-based treatment processes. Some relevant information is also reported to identify the major research gaps to be worked out in future.

  19. Following the compositional changes of fresh grape skin cell walls during the fermentation process in the presence and absence of maceration enzymes.

    PubMed

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Trygg, Johan; Vivier, Melané A

    2015-03-18

    Cell wall profiling technologies were used to follow compositional changes that occurred in the skins of grape berries (from two different ripeness levels) during fermentation and enzyme maceration. Multivariate data analysis showed that the fermentation process yielded cell walls enriched in hemicellulose components because pectin was solubilized (and removed) with a reduction as well as exposure of cell wall proteins usually embedded within the cell wall structure. The addition of enzymes caused even more depectination, and the enzymes unravelled the cell walls enabling better access to, and extraction of, all cell wall polymers. Overripe grapes had cell walls that were extensively hydrolyzed and depolymerized, probably by natural grape-tissue-ripening enzymes, and this enhanced the impact that the maceration enzymes had on the cell wall monosaccharide profile. The combination of the techniques that were used is an effective direct measurement of the hydrolysis actions of maceration enzymes on the cell walls of grape berry skin.

  20. 21 CFR 184.1150 - Bacterially-derived protease enzyme preparation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (EC 3.4.24.28), which catalyze the hydrolysis of peptide bonds in proteins. (b) The ingredient meets... ingredient is used as an enzyme as defined in § 170.3(o)(9) of this chapter to hydrolyze proteins or... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bacterially-derived protease enzyme preparation...

  1. 21 CFR 184.1150 - Bacterially-derived protease enzyme preparation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...: (1) The ingredient is used as an enzyme as defined in § 170.3(o)(9) of this chapter to hydrolyze... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Bacterially-derived protease enzyme preparation... subtilisin (EC 3.4.21.62) and neutral proteinase (EC 3.4.24.28), which catalyze the hydrolysis of peptide...

  2. 21 CFR 184.1150 - Bacterially-derived protease enzyme preparation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: (1) The ingredient is used as an enzyme as defined in § 170.3(o)(9) of this chapter to hydrolyze... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bacterially-derived protease enzyme preparation... subtilisin (EC 3.4.21.62) and neutral proteinase (EC 3.4.24.28), which catalyze the hydrolysis of peptide...

  3. 21 CFR 184.1150 - Bacterially-derived protease enzyme preparation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: (1) The ingredient is used as an enzyme as defined in § 170.3(o)(9) of this chapter to hydrolyze... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bacterially-derived protease enzyme preparation... subtilisin (EC 3.4.21.62) and neutral proteinase (EC 3.4.24.28), which catalyze the hydrolysis of peptide...

  4. 21 CFR 184.1150 - Bacterially-derived protease enzyme preparation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...: (1) The ingredient is used as an enzyme as defined in § 170.3(o)(9) of this chapter to hydrolyze... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bacterially-derived protease enzyme preparation... subtilisin (EC 3.4.21.62) and neutral proteinase (EC 3.4.24.28), which catalyze the hydrolysis of peptide...

  5. Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners

    PubMed Central

    Yu, Seok-Ho; Boyce, Michael; Wands, Amberlyn M.; Bond, Michelle R.; Bertozzi, Carolyn R.; Kohler, Jennifer J.

    2012-01-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification found on hundreds of nuclear and cytoplasmic proteins in higher eukaryotes. Despite its ubiquity and essentiality in mammals, functional roles for the O-GlcNAc modification remain poorly defined. Here we develop a combined genetic and chemical approach that enables introduction of the diazirine photocrosslinker onto the O-GlcNAc modification in cells. We engineered mammalian cells to produce diazirine-modified O-GlcNAc by expressing a mutant form of UDP-GlcNAc pyrophosphorylase and subsequently culturing these cells with a cell-permeable, diazirine-modified form of GlcNAc-1-phosphate. Irradiation of cells with UV light activated the crosslinker, resulting in formation of covalent bonds between O-GlcNAc-modified proteins and neighboring molecules, which could be identified by mass spectrometry. We used this method to identify interaction partners for the O-GlcNAc-modified FG-repeat nucleoporins. We observed crosslinking between FG-repeat nucleoporins and nuclear transport factors, suggesting that O-GlcNAc residues are intimately associated with essential recognition events in nuclear transport. Further, we propose that the method reported here could find widespread use in investigating the functional consequences of O-GlcNAcylation. PMID:22411826

  6. Specificity of the high-mannose recognition site between Enterobacter cloacae pili adhesin and HT-29 cell membranes.

    PubMed Central

    Pan, Y T; Xu, B; Rice, K; Smith, S; Jackson, R; Elbein, A D

    1997-01-01

    Enterobacter cloacae has been implicated as one of the causative agents in neonatal infection and causes a septicemia thought to be initiated via the gastrointestinal tract. The adhesion of radiolabeled E. cloacae to HT-29 cells was concentration and temperature dependent and was effectively blocked by unlabeled bacteria or by millimolar concentrations of alpha-mannosides and micromolar concentrations of high-mannose oligosaccharides. A variety of well-characterized mannose oligosaccharides were tested as inhibitors of adhesion. The best inhibitor was the Man9(GlcNAc)2-tyrosinamide, which was considerably better than other tyrosinamide-linked oligosaccharides such as Man7(GlcNAc)2, Man6(GlcNAc)2 or Man5(GlcNAc)2. Further evidence that the bacteria preferred Man9(GlcNAc)2 structures was obtained by growing HT-29 cells in the presence of glycoprotein processing inhibitors that block mannosidase I and increase the amount of protein-bound Man9(GlcNAc)2 at the cell surface. Such cells bound 1.5- to 2-fold more bacteria than did control cells. The adhesin involved in binding to high-mannose structures was purified from isolated pili. On sodium dodecyl sulfate-gels, a 35-kDa protein was identified by its specific binding to a mannose-containing biotinylated albumin. The amino acid sequences of several peptides from the 35-kDa subunit showed over 85% identity to FimH, the mannose-specific adhesin of Salmonella typhimurium. Pili were labeled with 125I and examined for the ability to bind to HT-29 cells. Binding showed saturation kinetics and was inhibited by the addition of Man9(GlcNAc)2-tyrosinamide but not by oligosaccharides with fewer mannose residues. Polyclonal antibody against this 35-kDa protein also effectively blocked adhesion of pili or E. cloacae, but no effect was observed with nonspecific antibody. These studies demonstrate that the 35-kDa pilus subunit is a lectin whose specificity is directed toward Man, (GlcNAc)2 oligosaccharides. PMID:9317027

  7. Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis

    PubMed Central

    Qin, Wei; Lv, Pinou; Fan, Xinqi; Quan, Baiyi; Zhu, Yuntao; Qin, Ke; Chen, Ying; Wang, Chu

    2017-01-01

    O-linked GlcNAcylation (O-GlcNAcylation), a ubiquitous posttranslational modification on intracellular proteins, is dynamically regulated in cells. To analyze the turnover dynamics of O-GlcNAcylated proteins, we developed a quantitative time-resolved O-linked GlcNAc proteomics (qTOP) strategy based on metabolic pulse-chase labeling with an O-GlcNAc chemical reporter and stable isotope labeling with amino acids in cell culture (SILAC). Applying qTOP, we quantified the turnover rates of 533 O-GlcNAcylated proteins in NIH 3T3 cells and discovered that about 14% exhibited minimal removal of O-GlcNAc or degradation of protein backbones. The stability of those hyperstable O-GlcNAcylated proteins was more sensitive to O-GlcNAcylation inhibition compared with the more dynamic populations. Among the hyperstable population were three core proteins of box C/D small nucleolar ribonucleoprotein complexes (snoRNPs): fibrillarin (FBL), nucleolar protein 5A (NOP56), and nucleolar protein 5 (NOP58). We showed that O-GlcNAcylation stabilized these proteins and was essential for snoRNP assembly. Blocking O-GlcNAcylation on FBL altered the 2′-O-methylation of rRNAs and impaired cancer cell proliferation and tumor formation in vivo. PMID:28760965

  8. DNA end-processing enzyme polynucleotide kinase as a potential target in the treatment of cancer.

    PubMed

    Allinson, Sarah L

    2010-06-01

    Pharmacological inhibition of DNA-repair pathways as an approach for the potentiation of chemo- and radio-therapeutic cancer treatments has attracted increasing levels of interest in recent years. Inhibitors of several enzymes involved in the repair of DNA strand breaks are currently at various stages of the drug development process. Polynucleotide kinase (PNK), a bifunctional DNA-repair enzyme that possesses both 3'-phosphatase and 5'-kinase activities, plays an important role in the repair of both single strand and double strand breaks and as a result, RNAi-mediated knockdown of PNK sensitizes cells to a range of DNA-damaging agents. Recently, a small molecule inhibitor of PNK has been developed that is able to sensitize cells to ionizing radiation and the topoisomerase I poison, camptothecin. Although still in the early stages of development, PNK inhibition represents a promising means of enhancing the efficacy of existing cancer treatments.

  9. Random-walk enzymes.

    PubMed

    Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  10. Random-walk enzymes

    PubMed Central

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-01-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  11. Random-walk enzymes

    NASA Astrophysics Data System (ADS)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  12. [Application of enzymes in pulp and paper industry].

    PubMed

    Lin, Ying

    2014-01-01

    The application of enzymes has a high potential in the pulp and paper industry to improve the economics of the paper production process and to achieve, at the same time, a reduced environmental burden. Specific enzymes contribute to reduce the amount of chemicals, water and energy in various processes. This review is aimed at presenting the latest progresses of applying enzymes in bio-pulping, bio-bleaching, bio-deinking, enzymatic control of pitch and enzymatic modification of fibers.

  13. Indicators: Sediment Enzymes

    EPA Pesticide Factsheets

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  14. Process for fabricating ZnO-based varistors

    DOEpatents

    Lauf, R.J.

    The invention is a process for producing ZnO-based varistors incorporating a metal oxide dopant. In one form, the invention comprises providing a varistor powder mix of colloidal particles of ZnO and metal-oxide dopants including Bi/sub 2/O/sub 3/. The mix is hot-pressed to form a compact at temperatures below 850/sup 0/C and under conditions effecting reduction of the ZnO to sub-stoichiometric oxide. This promotes densification while restricting liquid formation and grain growth. The compact then is heated under conditions restoring the zinc oxide to stoichiometric composition, thus improving the varistor properties of the compact. The process produces fine-grain varistors characterized by a high actual breakdown voltage and a high average breakdown voltage per individual grain boundary.

  15. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    PubMed

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  16. Virus scaffolds as enzyme nano-carriers.

    PubMed

    Cardinale, Daniela; Carette, Noëlle; Michon, Thierry

    2012-07-01

    The cooperative organization of enzymes by cells is a key feature for the efficiency of living systems. In the field of nanotechnologies, effort currently aims at mimicking this natural organization. Nanoscale resolution and high-registration alignment are necessary to control enzyme distribution in nano-containers or on the surface of solid supports. Virus capsid self-assembly is driven by precise supramolecular combinations of protein monomers, which have made them attractive building blocks to engineer enzyme nano-carriers (ENCs). We discuss some examples of what in our opinion constitute the latest advances in the use of plant viruses, bacteriophages and virus-like particles (VLPs) as nano-scaffolds for enzyme selection, enzyme confinement and patterning, phage therapy, raw material processing, and single molecule enzyme kinetics studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Optimization of process variables by central composite design for the immobilization of urease enzyme on functionalized gold nanoparticles for various applications.

    PubMed

    Talat, Mahe; Singh, Ashwani Kumar; Srivastava, O N

    2011-08-01

    In the present study, enzyme urease has been immobilized on amine-functionalized gold nanoparticles (AuNPs). AuNPs were synthesized using natural precursor, i.e., clove extract and amine functionalized through 0.004 M L: -cysteine. Enzyme (urease) was extracted and purified from the vegetable waste, i.e., seeds of pumpkin to apparent homogeneity (sp. activity 353 U/mg protein). FTIR spectroscopy and transmission electron microscopy was used to characterize the immobilized enzyme. The immobilized enzyme exhibited enhanced activity as compared with the enzyme in the solution, especially, at lower enzyme concentration. Based on the evaluation of activity assay of the immobilized enzyme, it was found that the immobilized enzyme was quite stable for about a month and could successfully be used even after eight cycles having enzyme activity of about 47%. In addition to this central composite design (CCD) with the help of MINITAB version 15 Software was utilized to optimize the process variables viz., pH and temperature affecting the enzyme activity upon immobilization on AuNPs. The results predicted by the design were found in good agreement (R2 = 96.38%) with the experimental results indicating the applicability of proposed model. The multiple regression analysis and ANOVA showed the individual and cumulative effect of pH and temperature on enzyme activity indicating that the activity increased with the increase of pH up to 7.5 and temperature 75 °C. The effects of each variables represented by main effect plot, 3D surface plot, isoresponse contour plot and optimized plot were helpful in predicting results by performing a limited set of experiments.

  18. A novel liquid/liquid extraction process composed of surfactant and acetonitrile for purification of polygalacturonase enzyme from Durio zibethinus.

    PubMed

    Amid, Mehrnoush; Manap, Yazid; Azmira, Farhana; Hussin, Muhaini; Sarker, Zaidul Islam

    2015-07-01

    Polygalacturonase is one of the important enzymes used in various industries such as food, detergent, pharmaceutical, textile, pulp and paper. A novel liquid/liquid extraction process composed of surfactant and acetonitrile was employed for the first time to purify polygalacturonase from Durio zibethinus. The influences of different parameters such as type and concentration of surfactants, concentrations of acetonitrile and composition of surfactant/acetonitrile on partitioning behavior and recovery of polygalacturonase was investigated. Moreover, the effect of pH of system and crude load on purification fold and yield of purified polygalacturonase were studied. The results of the experiment indicated the polygalacturonase was partitioned into surfactant top rich phase with impurities being partitioned into acetonitrile bottom rich phase in the novel method of liquid/liquid process composed of 23% (w/w) Triton X-100 and 19% (w/w) acetonitrile, at 55.6% of TLL (tie line length) crude load of 25% (w/w) at pH 6.0. Recovery and recycling of components also was measured in each successive step of liquid/liquid extraction process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 97.3% while phase components were also recovered and recycled above 95%. This study demonstrated that the novel method of liquid/liquid extraction process can be used as an efficient and economical extraction method rather than the traditional methods of extraction for the purification and recovery of the valuable enzyme. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. C5-epimerase and 2-O-sulfotransferase associate in vitro to generate contiguous epimerized and 2-O-sulfated heparan sulfate domains.

    PubMed

    Préchoux, Aurélie; Halimi, Célia; Simorre, Jean-Pierre; Lortat-Jacob, Hugues; Laguri, Cédric

    2015-04-17

    Heparan sulfate (HS), a complex polysaccharide of the cell surface, is endowed with the remarkable ability to bind numerous proteins and, as such, regulates a large variety of biological processes. Protein binding depends on HS structure; however, in the absence of a template driving its biosynthesis, the mechanism by which protein binding sequences are assembled remains poorly known. Here, we developed a chemically defined 13C-labeled substrate and NMR based experiments to simultaneously follow in real time the activity of HS biosynthetic enzymes and characterize the reaction products. Using this new approach, we report that the association of C5-epimerase and 2-O-sulfotransferase, which catalyze the production of iduronic acid and its 2-O-sulfation, respectively, is necessary to processively generate extended sequences of contiguous IdoA2S-containing disaccharides, whereas modifications are randomly introduced when the enzymes are uncoupled. These data shed light on the mechanisms by which HS motifs are generated during biosynthesis. They support the view that HS structure assembly is controlled not only by the availability of the biosynthetic enzymes but also by their physical association, which in the case of the C5-epimerase and 2-O-sulfotransferase was characterized by an affinity of 80 nM as demonstrated by surface plasmon resonance experiments.

  20. Enzyme-free homogeneous electrochemical biosensor for DNA assay using toehold-triggered strand displacement reaction coupled with host-guest recognition of Fe3O4@SiO2@β-CD nanocomposites.

    PubMed

    Jiang, Jingjing; Lin, Xinyi; Ding, Dong; Diao, Guowang

    2018-04-17

    Taking advantages of the toehold-triggered strand displacement reaction (TSDR) and host-guest interaction of β-cyclodextrin (β-CD), a facile enzyme-free and homogeneous electrochemical sensing strategy was designed for the sensitive assay of target DNA using Fe 3 O 4 @SiO 2 @β-CD nanocomposites and ferrocene-labeled hairpin DNA (H-1) as the capture and electrochemical probes, respectively. Upon addition of target molecule, the initiated TSDR process induced the conformational change of H-1, and subsequently stimulated the dynamic assembly of assist probes (A-1 and A-2) to generate H-1:A-1:A-2 duplex along with the release of target sequence. The released target could drive the next TSDR recycling and finally result in the formation of numerous DNA duplex. After the molecular recognition of Fe 3 O 4 @SiO 2 @β-CD nanocomposites, a large number of duplex were easily separated from the supernatant solution under an external magnetic field, which led to a decreased H-1 concentration in residual solution, concomitant with a remarkable reduction of peak current. Under the optimized conditions, wide linear range (1-5000 pM), low detection limit (0.3 pM), desirable reproducibility, good selectivity, and satisfactory practical analysis were obtained by the combination of the superior recognition capability of β-CD, TSDR-induced signal amplification, and homogeneous electroanalytical method. The proposed detection strategy could offer a universal approach for the monitoring of various biological analytes via the rational design of probe sequences. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors.

    PubMed

    Patiño, Tania; Feiner-Gracia, Natalia; Arqué, Xavier; Miguel-López, Albert; Jannasch, Anita; Stumpp, Tom; Schäffer, Erik; Albertazzi, Lorenzo; Sánchez, Samuel

    2018-06-27

    The use of enzyme catalysis to power micro- and nanomachines offers unique features such as biocompatibility, versatility, and fuel bioavailability. Yet, the key parameters underlying the motion behavior of enzyme-powered motors are not completely understood. Here, we investigate the role of enzyme distribution and quantity on the generation of active motion. Two different micromotor architectures based on either polystyrene (PS) or polystyrene coated with a rough silicon dioxide shell (PS@SiO 2 ) were explored. A directional propulsion with higher speed was observed for PS@SiO 2 motors when compared to their PS counterparts. We made use of stochastically optical reconstruction microscopy (STORM) to precisely detect single urease molecules conjugated to the micromotors surface with a high spatial resolution. An asymmetric distribution of enzymes around the micromotor surface was observed for both PS and PS@SiO 2 architectures, indicating that the enzyme distribution was not the only parameter affecting the motion behavior. We quantified the number of enzymes present on the micromotor surface and observed a 10-fold increase in the number of urease molecules for PS@SiO 2 motors compared to PS-based micromotors. To further investigate the number of enzymes required to generate a self-propulsion, PS@SiO 2 particles were functionalized with varying amounts of urease molecules and the resulting speed and propulsive force were measured by optical tracking and optical tweezers, respectively. Surprisingly, both speed and force depended in a nonlinear fashion on the enzyme coverage. To break symmetry for active propulsion, we found that a certain threshold number of enzymes molecules per micromotor was necessary, indicating that activity may be due to a critical phenomenon. Taken together, these results provide new insights into the design features of micro/nanomotors to ensure an efficient development.

  2. Determining the safety of enzymes used in animal feed.

    PubMed

    Pariza, Michael W; Cook, Mark

    2010-04-01

    The purpose of this paper is to provide guidance for evaluating the safety of enzyme preparations used in animal feed. Feed enzymes are typically added to animal feed to increase nutrient bioavailability by acting on feed components prior to or after consumption, i.e., within the gastrointestinal tract. In contrast, food processing enzymes are generally used during processing and then inactivated or removed prior to consumption. The enzymes used in both applications are almost always impure mixtures of active enzyme and other metabolites from the production strain, hence similar safety evaluation procedures for both are warranted. We propose that the primary consideration should be the safety of the production strain and that the decision tree mechanism developed previously for food processing enzymes (Pariza and Johnson, 2001) is appropriate for determining the safety of feed enzymes. Thoroughly characterized non-pathogenic, non-toxigenic microbial strains with a history of safe use in enzyme manufacture are also logical candidates for generating safe strain lineages, from which additional strains may be derived via genetic modification by traditional and non-traditional strategies. For new feed enzyme products derived from a safe strain lineage, it is important to ensure a sufficiently high safety margin for the intended use, and that the product complies with appropriate specifications for chemical and microbial contamination. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Porous NiCo2O4 nanoarray-integrated binder-free 3D open electrode offers a highly efficient sensing platform for enzyme-free glucose detection.

    PubMed

    Luo, X; Huang, M; He, D; Wang, M; Zhang, Y; Jiang, P

    2018-05-29

    High electrical conductivity and the exposure to more active sites are crucial to boost the performance of a glucose sensor. A porous binary metal oxide nanoarray integrated on a binder-free 3D electrode is expected to offer a highly sensitive sensing platform. As a model, porous NiCo2O4 nanowire arrays supported on carbon cloth (NiCo2O4 NWA/CC) have been prepared and used for enzyme-free glucose sensing. NiCo2O4 NWA/CC shows larger effective surface area, superior electronic conductivity, and higher catalytic activity towards enzyme-free glucose sensing, with a linear range from 1 μM to 0.63 mM, a sensitivity of 4.12 mA mM-1 cm-2, and low detection limit of 0.5 μM. Moreover, NiCo2O4 NWA/CC also displays good selectivity and stability and thus, it can be reliable for glucose detection in human serum samples. These findings inspire the fabrication of a high-performance electrochemical sensing platform by preparing porous binary metal oxide nanoarrays supported on a 3D conductive substrate.

  4. An Effective Degumming Enzyme from Bacillus sp. Y1 and Synergistic Action of Hydrogen Peroxide and Protease on Enzymatic Degumming of Ramie Fibers

    PubMed Central

    Guo, Fenfen; Zou, Mouyong; Li, Xuezhi; Zhao, Jian; Qu, Yinbo

    2013-01-01

    Enzymatic degumming, as an alternative to chemical processing, has attracted wide attention. However, to date, little information about other enzyme components with effective degumming except pectinase has been reported, and there is no report about the effect of bleaching agent (H2O2) on enzymatic degumming and combining enzymatic degumming and H2O2 bleaching process. In this study, we found that the crude enzyme of wild-type Bacillus sp. Y1 had a powerful and fast degumming ability. Its PGL activity was the highest at pH 9.6–10.0 and 60°C and stable at pH 7–10.5 and 30–50°C, having a wide scope of pH and temperature. Its PGL also had a high H2O2 tolerance, and the gum loss and brightness of fibers could be significantly improved when H2O2 was added into it for degumming. The synergistic action was also found between it and H2O2 on the degumming and bleaching of ramie fibers. All showed that it was very suitable for a joint process of enzymatic degumming and H2O2 bleaching. It also contained more proteins compared with a control pectinase, and its high protease content was further substantiated as a factor for effective degumming. Protease and pectinase also had a synergistic action on degumming. PMID:23586022

  5. TMG-chitotriomycin, an enzyme inhibitor specific for insect and fungal beta-N-acetylglucosaminidases, produced by actinomycete Streptomyces anulatus NBRC 13369.

    PubMed

    Usuki, Hirokazu; Nitoda, Teruhiko; Ichikawa, Misato; Yamaji, Nahoko; Iwashita, Takashi; Komura, Hajime; Kanzaki, Hiroshi

    2008-03-26

    A novel beta-N-acetylglucosaminidase (GlcNAcase) inhibitor named TMG-chitotriomycin (1) was isolated from the culture filtrate of Streptomyces anulatus NBRC13369. The strain produced 1 only when colloidal chitin was used as the sole carbon source in the production medium. The structure of 1 was determined by spectral and constitutive sugar analyses of the corresponding alditol derivatives to be an equilibrated mixture of alpha-d-N,N,N-triMeGlcNH2-(1,4)-beta-d-GlcNAc-(1,4)-beta-d-GlcNAc-(1,4)-d-GlcNAc and its C-2 epimer of the reducing end residue. TMG-chitotriomycin (1) showed potent and selective inhibition of insect and fungal GlcNAcases with no inhibition of mammalian and plant GlcNAcases. In contrast, the known GlcNAcase inhibitor nagstatin potently inhibited all GlcNAcases. It should be emphasized that synthesized d-N,N,N-triMeGlcNH2, which is the component sugar of 1, showed no inhibition of the insect Spodoptera litura GlcNAcase. These results suggest that the (GlcNAc)3 unit positioned at the reducing end of 1 is essential for its enzyme inhibitory activity. The unique inhibitory spectrum of 1 will be useful to study chitinolytic systems and to develop selective fungicides or pesticides.

  6. Characterization of Inulin Hydrolyzing Enzyme(s) in Oleaginous Yeast Trichosporon cutaneum in Consolidated Bioprocessing of Microbial Lipid Fermentation.

    PubMed

    Wang, Juan; Zhang, Huizhan; Bao, Jie

    2015-11-01

    Oleaginous yeast Trichosporon cutaneum CGMCC 2.1374 was found to utilize inulin directly for microbial lipid fermentation without a hydrolysis step. The potential inulinase-like enzyme(s) in T. cutaneum CGMCC 2.1374 were characterized and compared with other inulinase enzymes produced by varied yeast strains. The consolidated bioprocessing (CBP) for lipid accumulated using inulin was optimized with 4.79 g/L of lipid produced from 50 g/L inulin with the lipid content of 33.6% in dry cells. The molecular weight of the enzyme was measured which was close to invertase in Saccharomyces cerevisiae. The study provided information for inulin hydrolyzing enzyme(s) in oleaginous yeasts, as well as a preliminary CBP process for lipid production from inulin feedstock.

  7. Enzyme-triggered cargo release from methionine sulfoxide containing copolypeptide vesicles.

    PubMed

    Rodriguez, April R; Kramer, Jessica R; Deming, Timothy J

    2013-10-14

    We have developed a facile, scalable method for preparation of enzyme-responsive copolypeptide vesicles that requires no protecting groups or expensive components. We designed amphiphilic copolypeptides containing segments of water-soluble methionine sulfoxide, M(O), residues that were prepared by synthesis of a fully hydrophobic precursor diblock copolypeptide, poly(l-methionine)65-b-poly(L-leucine0.5-stat-L-phenylalanine0.5)20, M65(L0.5/F0.5)20, followed by its direct oxidation in water to give the amphiphilic M(O) derivative, M(O)65(L0.5/F0.5)20. Assembly of M(O)65(L0.5/F0.5)20 in water gave vesicles with average diameters of a few micrometers that could then be extruded to nanoscale diameters. The M(O) segments in the vesicles were found to be substrates for reductase enzymes, which regenerated hydrophobic M segments and resulted in a change in supramolecular morphology that caused vesicle disruption and release of cargos.

  8. Enzyme Engineering for In Situ Immobilization.

    PubMed

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  9. Construction and Characterization of a Chitosan-Immobilized-Enzyme and β-Cyclodextrin-Included-Ferrocene-Based Electrochemical Biosensor for H2O2 Detection

    PubMed Central

    Dong, Wenbo; Wang, Kaiyin; Chen, Yu; Li, Weiping; Ye, Yanchun; Jin, Shaohua

    2017-01-01

    An electrochemical detection biosensor was prepared with the chitosan-immobilized-enzyme (CTS-CAT) and β-cyclodextrin-included-ferrocene (β-CD-FE) complex for the determination of H2O2. Ferrocene (FE) was included in β-cyclodextrin (β-CD) to increase its stability. The structure of the β-CD-FE was characterized. The inclusion amount, inclusion rate, and electrochemical properties of inclusion complexes were determined to optimize the reaction conditions for the inclusion. CTS-CAT was prepared by a step-by-step immobilization method, which overcame the disadvantages of the conventional preparation methods. The immobilization conditions were optimized to obtain the desired enzyme activity. CTS-CAT/β-CD-FE composite electrodes were prepared by compositing the CTS-CAT with the β-CD-FE complex on a glassy carbon electrode and used for the electrochemical detection of H2O2. It was found that the CTS-CAT could produce a strong reduction peak current in response to H2O2 and the β-CD-FE could amplify the current signal. The peak current exhibited a linear relationship with the H2O2 concentration in the range of 1.0 × 10−7–6.0 × 10−3 mol/L. Our work provided a novel method for the construction of electrochemical biosensors with a fast response, good stability, high sensitivity, and a wide linear response range based on the composite of chitosan and cyclodextrin. PMID:28773229

  10. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules.

    PubMed

    Taqieddin, Ehab; Amiji, Mansoor

    2004-05-01

    Alginate-chitosan core-shell microcapsules were prepared in order to develop a biocompatible matrix for enzyme immobilization, where the protein is retained either in a liquid or solid core and the shell allows permeability control over substrates and products. The permeability coefficients of different molecular weight compounds (vitamin B2, vitamin B12, and myoglobin) were determined through sodium tripolyphosphate (Na-TPP)-crosslinked chitosan membrane. The microcapsule core was formed by crosslinking sodium alginate with either calcium or barium ions. The crosslinked alginate core was uniformly coated with a chitosan layer and crosslinked with Na-TPP. In the case of calcium alginate, the phosphate ions of Na-TPP were able to extract the calcium ions from alginate and liquefy the core. A model enzyme, beta-galactosidase, was immobilized in the alginate core and the catalytic activity was measured with o-nitrophenyl-beta-D-galactopyranoside (ONPG). Change in the activity of free and immobilized enzyme was determined at three different temperatures. Na-TPP crosslinked chitosan membranes were found to be permeable to solutes of up to 17,000Da molecular weight. The enzyme loading efficiency was higher in the barium alginate core (100%) as compared to the calcium alginate core (60%). The rate of ONPG conversion to o-nitrophenol was faster in the case of calcium alginate-chitosan microcapsules as compared to barium alginate-chitosan microcapsules. Barium alginate-chitosan microcapsules, however, did improve the stability of the enzyme at 37 degrees C relative to calcium alginate-chitosan microcapsules or free enzyme. This study illustrates a new method of enzyme immobilization for biotechnology applications using liquid or solid core and shell microcapsule technology.

  11. Immobilization of oxalate-degrading enzymes into p(HEMA) for inhibiting encrustation on ureteral stents

    NASA Astrophysics Data System (ADS)

    Mellman, James Kenneth

    the highest retention. In a six moth trial period in urine, immobilized OxO lost 30% activity to 0.7 muM/min-mug, whereas the activity for immobilized OxDc fell 50% from about 5.9 to 2.9 muM/min-mug. Coating p(HEMA) onto polyurethane ureteral stents was applied by dip coating into a monomer-based coating solution. To achieve successful coatings, the viscosity of the coating solution and adhesion to the stent were optimized through a series of experiments with glycerol and superglue to form a primer of p(HEMA). The enzymes were applied to the primer through successive layers without the use of glycerol or superglue. The enzyme activity was used to compare various processing routes, such as dip time, dip cycles, and the use of Triton X-100. An encrustation model was established using artificial and real urine, and an antibiotic/antimycotic solution was added to prevent infection. The solutions were spiked with 0.5 mM oxalate to optimize encrustation conditions. The encrustation study was conducted up to two months in these solutions, and samples were analyzed using polarized light microscopy. Immobilized OxDc inhibited crystal growth up to two-months, although OxO developed encrustation to a similar extent of the control group. This opens the possibility of utilizing the immobilized enzyme as a therapy for degrading oxalate concentrations in urine, which can be employed as a coating on ureteral stents.

  12. An update on the Enzyme Portal: an integrative approach for exploring enzyme knowledge

    PubMed Central

    Onwubiko, J.; Zaru, R.; Rosanoff, S.; Antunes, R.; Bingley, M.; Watkins, X.; O'Donovan, C.; Martin, M. J.

    2017-01-01

    Abstract Enzymes are a key part of life processes and are increasingly important for various areas of research such as medicine, biotechnology, bioprocessing and drug research. The goal of the Enzyme Portal is to provide an interface to all European Bioinformatics Institute (EMBL-EBI) data about enzymes (de Matos, P., et al., (2013), BMC Bioinformatics, 14 (1), 103). These data include enzyme function, sequence features and family classification, protein structure, reactions, pathways, small molecules, diseases and the associated literature. The sources of enzyme data are: the UniProt Knowledgebase (UniProtKB) (UniProt Consortium, 2015), the Protein Data Bank in Europe (PDBe), (Valenkar, S., et al., Nucleic Acids Res.2016; 44, D385–D395) Rhea—a database of enzyme-catalysed reactions (Morgat, A., et al., Nucleic Acids Res. 2015; 43, D459-D464), Reactome—a database of biochemical pathways (Fabregat, A., et al., Nucleic Acids Res. 2016; 44, D481–D487), IntEnz—a resource with enzyme nomenclature information (Fleischmann, A., et al., Nucleic Acids Res. 2004 32, D434–D437) and ChEBI (Hastings, J., et al., Nucleic Acids Res. 2013) and ChEMBL (Bento, A. P., et al., Nucleic Acids Res. 201442, 1083–1090)—resources which contain information about small-molecule chemistry and bioactivity. This article describes the redesign of Enzyme Portal and the increased functionality added to maximise integration and interpretation of these data. Use case examples of the Enzyme Portal and the versatile workflows its supports are illustrated. We welcome the suggestion of new resources for integration. PMID:28158609

  13. An update on the Enzyme Portal: an integrative approach for exploring enzyme knowledge.

    PubMed

    Pundir, S; Onwubiko, J; Zaru, R; Rosanoff, S; Antunes, R; Bingley, M; Watkins, X; O'Donovan, C; Martin, M J

    2017-03-01

    Enzymes are a key part of life processes and are increasingly important for various areas of research such as medicine, biotechnology, bioprocessing and drug research. The goal of the Enzyme Portal is to provide an interface to all European Bioinformatics Institute (EMBL-EBI) data about enzymes (de Matos, P., et al. , (2013), BMC Bioinformatics , (1), 103). These data include enzyme function, sequence features and family classification, protein structure, reactions, pathways, small molecules, diseases and the associated literature. The sources of enzyme data are: the UniProt Knowledgebase (UniProtKB) (UniProt Consortium, 2015), the Protein Data Bank in Europe (PDBe), (Valenkar, S., et al ., Nucleic Acids Res. 2016; , D385-D395) Rhea-a database of enzyme-catalysed reactions (Morgat, A., et al .,  Nucleic Acids Res.  2015; , D459-D464), Reactome-a database of biochemical pathways (Fabregat, A., et al ., Nucleic Acids Res. 2016;  , D481-D487), IntEnz-a resource with enzyme nomenclature information (Fleischmann, A., et al ., Nucleic Acids Res.  2004 , D434-D437) and ChEBI (Hastings, J., et al .,  Nucleic Acids Res. 2013) and ChEMBL (Bento, A. P., et al ., Nucleic Acids Res.  2014 , 1083-1090)-resources which contain information about small-molecule chemistry and bioactivity. This article describes the redesign of Enzyme Portal and the increased functionality added to maximise integration and interpretation of these data. Use case examples of the Enzyme Portal and the versatile workflows its supports are illustrated. We welcome the suggestion of new resources for integration. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  14. Amino Sugars Enhance the Competitiveness of Beneficial Commensals with Streptococcus mutans through Multiple Mechanisms

    PubMed Central

    Farivar, Tanaz; Burne, Robert A.

    2016-01-01

    ABSTRACT Biochemical and genetic aspects of the metabolism of the amino sugars N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) by commensal oral streptococci and the effects of these sugars on interspecies competition with the dental caries pathogen Streptococcus mutans were explored. Multiple S. mutans wild-type isolates displayed long lag phases when transferred from glucose-containing medium to medium with GlcNAc as the primary carbohydrate source, but commensal streptococci did not. Competition in liquid coculture or dual-species biofilms between S. mutans and Streptococcus gordonii showed that S. gordonii was particularly dominant when the primary carbohydrate was GlcN or GlcNAc. Transcriptional and enzymatic assays showed that the catabolic pathway for GlcNAc was less highly induced in S. mutans than in S. gordonii. Exposure to H2O2, which is produced by S. gordonii and antagonizes the growth of S. mutans, led to reduced mRNA levels of nagA and nagB in S. mutans. When the gene for the transcriptional regulatory NagR was deleted in S. gordonii, the strain produced constitutively high levels of nagA (GlcNAc-6-P deacetylase), nagB (GlcN-6-P deaminase), and glmS (GlcN-6-P synthase) mRNA. Similar to NagR of S. mutans (NagRSm), the S. gordonii NagR protein (NagRSg) could bind to consensus binding sites (dre) in the nagA, nagB, and glmS promoter regions of S. gordonii. Notably, NagRSg binding was inhibited by GlcN-6-P, but G-6-P had no effect, unlike for NagRSm. This study expands the understanding of amino sugar metabolism and NagR-dependent gene regulation in streptococci and highlights the potential for therapeutic applications of amino sugars to prevent dental caries. IMPORTANCE Amino sugars are abundant in the biosphere, so the relative efficiency of particular bacteria in a given microbiota to metabolize these sources of carbon and nitrogen might have a profound impact on the ecology of the community. Our investigation reveals that several oral commensal

  15. Amino Sugars Enhance the Competitiveness of Beneficial Commensals with Streptococcus mutans through Multiple Mechanisms.

    PubMed

    Zeng, Lin; Farivar, Tanaz; Burne, Robert A

    2016-06-15

    Biochemical and genetic aspects of the metabolism of the amino sugars N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) by commensal oral streptococci and the effects of these sugars on interspecies competition with the dental caries pathogen Streptococcus mutans were explored. Multiple S. mutans wild-type isolates displayed long lag phases when transferred from glucose-containing medium to medium with GlcNAc as the primary carbohydrate source, but commensal streptococci did not. Competition in liquid coculture or dual-species biofilms between S. mutans and Streptococcus gordonii showed that S. gordonii was particularly dominant when the primary carbohydrate was GlcN or GlcNAc. Transcriptional and enzymatic assays showed that the catabolic pathway for GlcNAc was less highly induced in S. mutans than in S. gordonii Exposure to H2O2, which is produced by S. gordonii and antagonizes the growth of S. mutans, led to reduced mRNA levels of nagA and nagB in S. mutans When the gene for the transcriptional regulatory NagR was deleted in S. gordonii, the strain produced constitutively high levels of nagA (GlcNAc-6-P deacetylase), nagB (GlcN-6-P deaminase), and glmS (GlcN-6-P synthase) mRNA. Similar to NagR of S. mutans (NagRSm), the S. gordonii NagR protein (NagRSg) could bind to consensus binding sites (dre) in the nagA, nagB, and glmS promoter regions of S. gordonii Notably, NagRSg binding was inhibited by GlcN-6-P, but G-6-P had no effect, unlike for NagRSm This study expands the understanding of amino sugar metabolism and NagR-dependent gene regulation in streptococci and highlights the potential for therapeutic applications of amino sugars to prevent dental caries. Amino sugars are abundant in the biosphere, so the relative efficiency of particular bacteria in a given microbiota to metabolize these sources of carbon and nitrogen might have a profound impact on the ecology of the community. Our investigation reveals that several oral commensal bacteria have a much

  16. An Integrated Circuit for Chip-Based Analysis of Enzyme Kinetics and Metabolite Quantification.

    PubMed

    Cheah, Boon Chong; Macdonald, Alasdair Iain; Martin, Christopher; Streklas, Angelos J; Campbell, Gordon; Al-Rawhani, Mohammed A; Nemeth, Balazs; Grant, James P; Barrett, Michael P; Cumming, David R S

    2016-06-01

    We have created a novel chip-based diagnostic tools based upon quantification of metabolites using enzymes specific for their chemical conversion. Using this device we show for the first time that a solid-state circuit can be used to measure enzyme kinetics and calculate the Michaelis-Menten constant. Substrate concentration dependency of enzyme reaction rates is central to this aim. Ion-sensitive field effect transistors (ISFET) are excellent transducers for biosensing applications that are reliant upon enzyme assays, especially since they can be fabricated using mainstream microelectronics technology to ensure low unit cost, mass-manufacture, scaling to make many sensors and straightforward miniaturisation for use in point-of-care devices. Here, we describe an integrated ISFET array comprising 2(16) sensors. The device was fabricated with a complementary metal oxide semiconductor (CMOS) process. Unlike traditional CMOS ISFET sensors that use the Si3N4 passivation of the foundry for ion detection, the device reported here was processed with a layer of Ta2O5 that increased the detection sensitivity to 45 mV/pH unit at the sensor readout. The drift was reduced to 0.8 mV/hour with a linear pH response between pH 2-12. A high-speed instrumentation system capable of acquiring nearly 500 fps was developed to stream out the data. The device was then used to measure glucose concentration through the activity of hexokinase in the range of 0.05 mM-231 mM, encompassing glucose's physiological range in blood. Localised and temporal enzyme kinetics of hexokinase was studied in detail. These results present a roadmap towards a viable personal metabolome machine.

  17. Structural and functional diversity in Listeria cell wall teichoic acids.

    PubMed

    Shen, Yang; Boulos, Samy; Sumrall, Eric; Gerber, Benjamin; Julian-Rodero, Alicia; Eugster, Marcel R; Fieseler, Lars; Nyström, Laura; Ebert, Marc-Olivier; Loessner, Martin J

    2017-10-27

    Wall teichoic acids (WTAs) are the most abundant glycopolymers found on the cell wall of many Gram-positive bacteria, whose diverse surface structures play key roles in multiple biological processes. Despite recent technological advances in glycan analysis, structural elucidation of WTAs remains challenging due to their complex nature. Here, we employed a combination of ultra-performance liquid chromatography-coupled electrospray ionization tandem-MS/MS and NMR to determine the structural complexity of WTAs from Listeria species. We unveiled more than 10 different types of WTA polymers that vary in their linkage and repeating units. Disparity in GlcNAc to ribitol connectivity, as well as variable O -acetylation and glycosylation of GlcNAc contribute to the structural diversity of WTAs. Notably, SPR analysis indicated that constitution of WTA determines the recognition by bacteriophage endolysins. Collectively, these findings provide detailed insight into Listeria cell wall-associated carbohydrates, and will guide further studies on the structure-function relationship of WTAs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The antioxidant enzymes activity in the conditions of systemic hypersilicemia.

    PubMed

    Najda, J; Goss, M; Gmínski, J; Weglarz, L; Siemianowicz, K; Olszowy, Z

    1994-07-01

    The effect of an excessive inorganic silicon oral intake on the activity of basic antioxidant enzymes was studied in rats. Activities of superoxide dismutase, catalase, and glutathione peroxidase were measured in liver and kidney tissues of animals receiving per os sodium metasilicate nonahydrate (Na2SiO3.9H2O) (Sigma, [St. Louis, MO]) dissolved in their drinking water. A decrease of the activity of all the studied enzymes was found in the samples derived from the experimental group. The results obtained indicate the free oxygen radicals participation in the potential pathologic events in the conditions of systemic hypersilicemia.

  19. Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2

    PubMed Central

    Larsen, Ida Signe Bohse; Narimatsu, Yoshiki; Joshi, Hiren Jitendra; Yang, Zhang; Harrison, Oliver J.; Brasch, Julia; Shapiro, Lawrence; Honig, Barry; Vakhrushev, Sergey Y.; Clausen, Henrik; Halim, Adnan

    2017-01-01

    Protein O-mannosylation is found in yeast and metazoans, and a family of conserved orthologous protein O-mannosyltransferases is believed to initiate this important post-translational modification. We recently discovered that the cadherin superfamily carries O-linked mannose (O-Man) glycans at highly conserved residues in specific extracellular cadherin domains, and it was suggested that the function of E-cadherin was dependent on the O-Man glycans. Deficiencies in enzymes catalyzing O-Man biosynthesis, including the two human protein O-mannosyltransferases, POMT1 and POMT2, underlie a subgroup of congenital muscular dystrophies designated α-dystroglycanopathies, because deficient O-Man glycosylation of α-dystroglycan disrupts laminin interaction with α-dystroglycan and the extracellular matrix. To explore the functions of O-Man glycans on cadherins and protocadherins, we used a combinatorial gene-editing strategy in multiple cell lines to evaluate the role of the two POMTs initiating O-Man glycosylation and the major enzyme elongating O-Man glycans, the protein O-mannose β-1,2-N-acetylglucosaminyltransferase, POMGnT1. Surprisingly, O-mannosylation of cadherins and protocadherins does not require POMT1 and/or POMT2 in contrast to α-dystroglycan, and moreover, the O-Man glycans on cadherins are not elongated. Thus, the classical and evolutionarily conserved POMT O-mannosylation pathway is essentially dedicated to α-dystroglycan and a few other proteins, whereas a novel O-mannosylation process in mammalian cells is predicted to serve the large cadherin superfamily and other proteins. PMID:28512129

  20. Effects of multiple enzyme-substrate interactions in basic units of cellular signal processing

    NASA Astrophysics Data System (ADS)

    Seaton, D. D.; Krishnan, J.

    2012-08-01

    Covalent modification cycles are a ubiquitous feature of cellular signalling networks. In these systems, the interaction of an active enzyme with the unmodified form of its substrate is essential for signalling to occur. However, this interaction is not necessarily the only enzyme-substrate interaction possible. In this paper, we analyse the behaviour of a basic model of signalling in which additional, non-essential enzyme-substrate interactions are possible. These interactions include those between the inactive form of an enzyme and its substrate, and between the active form of an enzyme and its product. We find that these additional interactions can result in increased sensitivity and biphasic responses, respectively. The dynamics of the responses are also significantly altered by the presence of additional interactions. Finally, we evaluate the consequences of these interactions in two variations of our basic model, involving double modification of substrate and scaffold-mediated signalling, respectively. We conclude that the molecular details of protein-protein interactions are important in determining the signalling properties of enzymatic signalling pathways.

  1. Nanoparticle cages for enzyme catalysis in organic media.

    PubMed

    Wu, Changzhu; Bai, Shuo; Ansorge-Schumacher, Marion B; Wang, Dayang

    2011-12-15

    Encapsulation of enzymes in Pickering emulsions results in a large interfacial area of the enzyme-containing aqueous phase for biocatalysis in organic media. This immobilization technique minimizes enzyme inactivation through stabilizing immiscible liquids by particles, facilitates separation processes, and significantly increases catalytic performance of both stable and vulnerable enzymes. Thus, a broad technical applicability can be envisioned. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Gastric Glycoform of MUC5AC Is a Biomarker of Mucinous Cysts of the Pancreas

    PubMed Central

    Sinha, Jessica; Cao, Zheng; Dai, Jianliang; Tang, Huiyuan; Partyka, Katie; Hostetter, Galen; Simeone, Diane M.; Feng, Ziding; Allen, Peter J.; Brand, Randall E.; Haab, Brian B.

    2016-01-01

    Molecular indicators to specify the risk posed by a pancreatic cyst would benefit patients. Previously we showed that most cancer-precursor cysts, termed mucinous cysts, produce abnormal glycoforms of the proteins MUC5AC and endorepellin. Here we sought to validate the glycoforms as a biomarker of mucinous cysts and to specify the oligosaccharide linkages that characterize MUC5AC. We hypothesized that mucinous cysts secrete MUC5AC displaying terminal N-acetylglucosamine (GlcNAc) in either alpha or beta linkage. We used antibody-lectin sandwich assays to detect glycoforms of MUC5AC and endorepellin in cyst fluid samples from three independent cohorts of 49, 32, and 66 patients, and we used monoclonal antibodies to test for terminal, alpha-linked GlcNAc and the enzyme that produces it. A biomarker panel comprising the previously-identified glycoforms of MUC5AC and endorepellin gave 96%, 96%, and 87% accuracy for identifying mucinous cysts in the three cohorts with an average sensitivity of 92% and an average specificity of 94%. Glycan analysis showed that MUC5AC produced by a subset of mucinous cysts displays terminal alpha-GlcNAc, a motif expressed in stomach glands. The alpha-linked glycoform of MUC5AC was unique to intraductal papillary mucinous neoplasms (IPMN), whereas terminal beta-linked GlcNAc was increased in both IPMNs and mucinous cystic neoplasms (MCN). The enzyme that synthesizes alpha-GlcNAc, A4GNT, was expressed in the epithelia of mucinous cysts that expressed alpha-GlcNAc, especially in regions with high-grade dysplasia. Thus IPMNs secrete a gastric glycoform of MUC5AC that displays terminal alpha-GlcNAc, and the combined alpha-GlcNAc and beta-GlcNAc glycoforms form an accurate biomarker of mucinous cysts. PMID:27992432

  3. Protein conformational disorder and enzyme catalysis.

    PubMed

    Schulenburg, Cindy; Hilvert, Donald

    2013-01-01

    Though lacking a well-defined three-dimensional structure, intrinsically unstructured proteins are ubiquitous in nature. These molecules play crucial roles in many cellular processes, especially signaling and regulation. Surprisingly, even enzyme catalysis can tolerate substantial disorder. This observation contravenes conventional wisdom but is relevant to an understanding of how protein dynamics modulates enzyme function. This chapter reviews properties and characteristics of disordered proteins, emphasizing examples of enzymes that lack defined structures, and considers implications of structural disorder for catalytic efficiency and evolution.

  4. Industrial applications of enzyme biocatalysis: Current status and future aspects.

    PubMed

    Choi, Jung-Min; Han, Sang-Soo; Kim, Hak-Sung

    2015-11-15

    Enzymes are the most proficient catalysts, offering much more competitive processes compared to chemical catalysts. The number of industrial applications for enzymes has exploded in recent years, mainly owing to advances in protein engineering technology and environmental and economic necessities. Herein, we review recent progress in enzyme biocatalysis, and discuss the trends and strategies that are leading to broader industrial enzyme applications. The challenges and opportunities in developing biocatalytic processes are also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Therapeutic Enzymes: Applications and Approaches to Pharmacological Improvement.

    PubMed

    Yari, Maryam; Ghoshoon, Mohammad B; Vakili, Bahareh; Ghasemi, Younes

    2017-01-01

    Among therapeutic proteins, enzymes represent small and of course profitable market. They can be used to treat important, rare, and deadly diseases. Enzyme therapy is the only available treatment for certain disorders. Here, pharmaceutical enzymes are reviewed. They are categorized in four main groups, enzymes in replacement therapy, enzymes in cancer treatment, enzymes for fibrinolysis, and finally enzymes that are used topically for various treatments. Furthermore, enzyme gene therapy and future perspective of therapeutic enzymes are mentioned in brief. There are many important approved enzymes in pharmaceutical market. Several approaches such as point mutation, fusion protein designing, glycoengineering, and PEGylation were used to achieve improved enzymes. Although sometimes enzymes were engineered to facilitate production and purification process, appropriate delivery to target sites, extending half-life, and reducing immunogenicity are among the main goals of engineering approaches. Overall, enzymes play a critical role in treatment of common and rare diseases. Evaluation of new enzymes as well as improvement of approved enzymes are of the most important challenges in biotechnology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Enzyme-Responsive Nanomaterials for Controlled Drug Delivery

    PubMed Central

    Hu, Quanyin; Katti, Prateek S.; Gu, Zhen

    2015-01-01

    Enzymes underpin physiological function and exhibit dysregulation in many disease-associated microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression for diagnostics, drug targeting, and drug release is tremendously promising. When combined with booming research in nanobiotechnology, enzyme-responsive nanomaterials for controlled drug release have achieved significant development and been studied as an important class of drug delivery devices in nanomedicine. In this review, we describe enzymes such as proteases, phospholipase and oxidoreductases that serve as delivery triggers. Subsequently, we explore recently developed enzyme-responsive nanomaterials with versatile applications for extracellular and intracellular drug delivery. We conclude by discussing future opportunities and challenges in this area. PMID:25251024

  7. Enzyme-responsive nanomaterials for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Hu, Quanyin; Katti, Prateek S.; Gu, Zhen

    2014-10-01

    Enzymes underpin physiological function and exhibit dysregulation in many disease-associated microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression for diagnostics, drug targeting, and drug release is tremendously promising. When combined with booming research in nanobiotechnology, enzyme-responsive nanomaterials used for controlled drug release have achieved significant development and have been studied as an important class of drug delivery strategies in nanomedicine. In this review, we describe enzymes such as proteases, phospholipases and oxidoreductases that serve as delivery triggers. Subsequently, we explore recently developed enzyme-responsive nanomaterials with versatile applications for extracellular and intracellular drug delivery. We conclude by discussing future opportunities and challenges in this area.

  8. Dissolution process for ZrO.sub.2 -UO.sub.2 -CaO fuels

    DOEpatents

    Paige, Bernice E.

    1976-06-22

    The present invention provides an improved dissolution process for ZrO.sub.2 -UO.sub.2 -CaO-type pressurized water reactor fuels. The zirconium cladding is dissolved with hydrofluoric acid, immersing the ZrO.sub.2 -UO.sub.2 -CaO fuel wafers in the resulting zirconium-dissolver-product in the dissolver vessel, and nitric acid is added to the dissolver vessel to facilitate dissolution of the uranium from the ZrO.sub.2 -UO.sub.2 -CaO fuel wafers.

  9. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    PubMed

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Biomimetic/Bioinspired Design of Enzyme@capsule Nano/Microsystems.

    PubMed

    Shi, J; Jiang, Y; Zhang, S; Yang, D; Jiang, Z

    2016-01-01

    Enzyme@capsule nano/microsystems, which refer to the enzyme-immobilized capsules, have received tremendous interest owing to the combination of the high catalytic activities of encapsulated enzymes and the hierarchical structure of the capsule. The preparation of capsules and simultaneous encapsulation of enzymes is recognized as the core process for the rational design and construction of enzyme@capsule nano/microsystems. The strategy used has three major steps: (a) generation of the templates, (b) surface coating on the templates, and (c) removal of the templates, and it has been proven to be effective and versatile for the construction of enzyme@capsule nano/microsystems. Several conventional methods, including layer-by-layer assembly of polyelectrolytes, liquid crystalline templating method, etc., were used to design and construct enzyme@capsule nano/microsystems, but these have two major drawbacks. One is the low mechanical stability of the systems and the second is the harsh conditions used in the construction process. Learning from nature, several biomimetic/bioinspired methods such as biomineralization, biomimetic/bioinspired adhesion, and their combination have been exploited for the construction of enzyme@capsule nano/microsystems. In this chapter, we will present a general protocol for the construction of enzyme@capsule nano/microsystems using the latter approach. Some suggestions for improved design, construction, and characterization will also be presented with detailed procedures for specific examples. © 2016 Elsevier Inc. All rights reserved.

  11. Oxygen isotope effects of enzyme-catalyzed organophosphorus hydrolysis reactions: implications for interpretation of dissolved PO4 δ18O values in natural waters

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Blake, R. E.

    2002-12-01

    The geochemical cycling of P in Earth surface environments is controlled largely by biota. It has been recently demonstrated that intracellular cycling of P in microbial cultures and biological turnover of P in natural waters leads to temperature-dependent O isotope equilibrium between dissolved inorganic PO4 (Pi) and ambient water, and that the δ18O of Pi can be a useful tracer of biological reactions and P cycling in aquatic systems/sediments. Oxygen isotope exchange between Pi and water during biological turnover of P is catalyzed by enzymes at low-temperature. Phosphoenzymes play a crucial role in the intracellular functions of all living organisms and also have important extracellular functions in aquatic ecosystems such as regeneration of Pi from organophosphorus compounds (e.g., phosphoesters). Laboratory experiments indicate that extracellular enzyme reactions may result in incomplete Pi turnover and non-equilibrium Pi-water O isotope exchange. Determination of the O isotope effects of phosphoenzyme-catalyzed reactions is fundamental to the understanding of mechanisms of PO4-water O isotope exchange, pathways of biogeochemical P cycling, and interpretation of PO4 δ18O values from natural systems. Here we report on the O isotope fractionation between enzymatically-released Pi and water, in cell-free abiotic systems. Alkaline phosphatase (Apase) is a non-specific phosphohydrolase commonly found in fresh and marine coastal waters that catalyzes the hydrolysis of Pi from phosphomonoesters. We examined the O isotope effects of Apase derived from both microbial and eukaryotic sources and acting on different phosphomonoester substrates (e.g., α-D-Glucose 1-Phosphate, β-Glycerophosphate, AMP) in 18O-labeled waters. Oxygen isotope ratios of Pi released by Apase indicate that only 1 of the 4 O atoms in PO4 is incorporated from water with little or no apparent O isotopic fractionation at the site of incorporation. This observation is consistent with

  12. Functional enzyme-based modeling approach for dynamic simulation of denitrification process in hyporheic zone sediments: Genetically structured microbial community model

    NASA Astrophysics Data System (ADS)

    Song, H. S.; Li, M.; Qian, W.; Song, X.; Chen, X.; Scheibe, T. D.; Fredrickson, J.; Zachara, J. M.; Liu, C.

    2016-12-01

    Modeling environmental microbial communities at individual organism level is currently intractable due to overwhelming structural complexity. Functional guild-based approaches alleviate this problem by lumping microorganisms into fewer groups based on their functional similarities. This reduction may become ineffective, however, when individual species perform multiple functions as environmental conditions vary. In contrast, the functional enzyme-based modeling approach we present here describes microbial community dynamics based on identified functional enzymes (rather than individual species or their groups). Previous studies in the literature along this line used biomass or functional genes as surrogate measures of enzymes due to the lack of analytical methods for quantifying enzymes in environmental samples. Leveraging our recent development of a signature peptide-based technique enabling sensitive quantification of functional enzymes in environmental samples, we developed a genetically structured microbial community model (GSMCM) to incorporate enzyme concentrations and various other omics measurements (if available) as key modeling input. We formulated the GSMCM based on the cybernetic metabolic modeling framework to rationally account for cellular regulation without relying on empirical inhibition kinetics. In the case study of modeling denitrification process in Columbia River hyporheic zone sediments collected from the Hanford Reach, our GSMCM provided a quantitative fit to complex experimental data in denitrification, including the delayed response of enzyme activation to the change in substrate concentration. Our future goal is to extend the modeling scope to the prediction of carbon and nitrogen cycles and contaminant fate. Integration of a simpler version of the GSMCM with PFLOTRAN for multi-scale field simulations is in progress.

  13. Insights into RNA processing pathways and associated-RNA degrading enzymes in Archaea.

    PubMed

    Clouet-d'Orval, Béatrice; Batista, Manon; Bouvier, Marie; Quentin, Yves; Fichant, Gwennaele; Marchfelder, Anita; Maier, Lisa-Katharina

    2018-04-19

    RNA processing pathways are at the center of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes is still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed.

  14. Cosmetic wastewater treatment by the ZVI/H2O2 process.

    PubMed

    Bogacki, Jan; Marcinowski, Piotr; Zapałowska, Ewa; Maksymiec, Justyna; Naumczyk, Jeremi

    2017-10-01

    The ZVI/H 2 O 2 process was applied for cosmetic wastewater treatment. Two commercial zero-valent iron (ZVI) types with different granulations were chosen: Hepure Ferrox PRB and Hepure Ferrox Target. In addition, the pH and stirring method influence on ZVI/H 2 O 2 process efficiency was studied. During the ZVI and ZVI/H 2 O 2 processes, linear Fe ions concentration increase was observed. The addition of H 2 O 2 significantly accelerated the iron dissolution process. The highest COD removal was obtained using finer ZVI (Hepure Ferrox Target) for doses of reagents ZVI/H 2 O 2 1500/1600 mg/L, in a H 2 O 2 /COD weight ratio 2:1, at pH 3.0 with stirring on a magnetic stirrer. After 120 min of the process, 84.0% COD removal (from 796 to 127 mg/L) was achieved. It was found that the efficiency of the process depends, as in the case of the Fenton process, on the ratio of the reagents (ZVI/H 2 O 2 ) and their dose in relation to the COD (H 2 O 2 /COD) but does not depend on the dose of the iron itself. Statistical analysis confirms that COD removal efficiency depends primarily on H 2 O 2 /COD ratio and ZVI granulation, but ZVI dose influence is not statistically significant. The head space, solid-phase microextraction, gas chromatography, mass spectrometry results confirm high efficiency of the ZVI/H 2 O 2 process.

  15. Effect of mannosamine on the formation of lipid-linked oligosaccharides and glycoproteins in canine kidney cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y.T.; Elbein, A.D.

    1985-11-01

    Madin-Darby canine kidney (MDCK) cells normally form lipid-linked oligosaccharides having mostly the Glc3Man9GlcNAc2 oligosaccharide. However, when MDCK cells are incubated in 1 to 10 mM mannosamine and labeled with (2-/sup 3/H)mannose, the major oligosaccharides associated with the dolichol were Man5GlcNAc2 and Man6GlcNAc2 structures. Since both of these oligosaccharides were susceptible to digestion by endo-beta-N-acetylglucosaminidase H, the Man5GlcNAc2 must be different in structure than the Man5GlcNAc2 usually found as a biosynthetic intermediate in the lipid-linked oligosaccharides. Since pulse chase studies indicated that the lesion was in biosynthesis, it appears that mannosamine inhibits the in vivo formation of lipid-linked oligosaccharides perhaps bymore » inhibiting the alpha-1,2-mannosyl transferases. Although the lipid-linked oligosaccharides produced in the presence of mannosamine were smaller in size than those of control cells and did not contain glucose, the oligosaccharides were still transferred in vivo to protein. Furthermore, the oligosaccharide portions of the glycoproteins were still processed as shown by the fact that the glycopeptides were of the complex and hybrid types and were labeled with (/sup 3/H)mannose or (/sup 3/H)galactose.« less

  16. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa.

    PubMed

    Ojeda, Deyanira; Jiménez-Ferrer, Enrique; Zamilpa, Alejandro; Herrera-Arellano, Armando; Tortoriello, Jaime; Alvarez, Laura

    2010-01-08

    The beverages of Hibiscus sabdariffa calyces are widely used in Mexico as diuretic, for treating gastrointestinal disorders, liver diseases, fever, hypercholesterolemia and hypertension. Different works have demonstrated that Hibiscus sabdariffa extracts reduce blood pressure in humans, and recently, we demonstrated that this effect is due to angiotensin converting enzyme (ACE) inhibitor activity. The aim of the current study was to isolate and characterizer the constituents responsible of the ACE activity of the aqueous extract of Hibiscus sabdariffa. Bioassay-guided fractionation of the aqueous extract of dried calyces of Hibiscus sabdariffa using preparative reversed-phase HPLC, and the in vitro ACE Inhibition assay, as biological monitor model, were used for the isolation. The isolated compounds were characterized by spectroscopic methods. The anthocyanins delphinidin-3-O-sambubioside (1) and cyanidin-3-O-sambubioside (2) were isolated by bioassay-guided purification. These compounds showed IC(50) values (84.5 and 68.4 microg/mL, respectively), which are similar to those obtained by related flavonoid glycosides. Kinetic determinations suggested that these compounds inhibit the enzyme activity by competing with the substrate for the active site. The competitive ACE inhibitor activity of the anthocyanins 1 and 2 is reported for the first time. This activity is in good agreement with the folk medicinal use of Hibiscus sabdariffa calyces as antihypertensive. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Enzymes: principles and biotechnological applications

    PubMed Central

    Robinson, Peter K.

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249

  18. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach.

    PubMed

    Glorieux, Christophe; Calderon, Pedro Buc

    2017-09-26

    This review is centered on the antioxidant enzyme catalase and will present different aspects of this particular protein. Among them: historical discovery, biological functions, types of catalases and recent data with regard to molecular mechanisms regulating its expression. The main goal is to understand the biological consequences of chronic exposure of cells to hydrogen peroxide leading to cellular adaptation. Such issues are of the utmost importance with potential therapeutic extrapolation for various pathologies. Catalase is a key enzyme in the metabolism of H2O2 and reactive nitrogen species, and its expression and localization is markedly altered in tumors. The molecular mechanisms regulating the expression of catalase, the oldest known and first discovered antioxidant enzyme, are not completely elucidated. As cancer cells are characterized by an increased production of reactive oxygen species (ROS) and a rather altered expression of antioxidant enzymes, these characteristics represent an advantage in terms of cell proliferation. Meanwhile, they render cancer cells particularly sensitive to an oxidant insult. In this context, targeting the redox status of cancer cells by modulating catalase expression is emerging as a novel approach to potentiate chemotherapy.

  19. A thermodynamic and theoretical view for enzyme regulation.

    PubMed

    Zhao, Qinyi

    2015-01-01

    Precise regulation is fundamental to the proper functioning of enzymes in a cell. Current opinions about this, such as allosteric regulation and dynamic contribution to enzyme regulation, are experimental models and substantially empirical. Here we proposed a theoretical and thermodynamic model of enzyme regulation. The main idea is that enzyme regulation is processed via the regulation of abundance of active conformation in the reaction buffer. The theoretical foundation, experimental evidence, and experimental criteria to test our model are discussed and reviewed. We conclude that basic principles of enzyme regulation are laws of protein thermodynamics and it can be analyzed using the concept of distribution curve of active conformations of enzymes.

  20. Development of a fully integrated falling film microreactor for gas-liquid-solid biotransformation with surface immobilized O2 -dependent enzyme.

    PubMed

    Bolivar, Juan M; Krämer, Christina E M; Ungerböck, Birgit; Mayr, Torsten; Nidetzky, Bernd

    2016-09-01

    Microstructured flow reactors are powerful tools for the development of multiphase biocatalytic transformations. To expand their current application also to O2 -dependent enzymatic conversions, we have implemented a fully integrated falling film microreactor that provides controllable countercurrent gas-liquid phase contacting in a multi-channel microstructured reaction plate. Advanced non-invasive optical sensing is applied to measure liquid-phase oxygen concentrations in both in- and out-flow as well as directly in the microchannels (width: 600 μm; depth: 200 μm). Protein-surface interactions are designed for direct immobilization of catalyst on microchannel walls. Target enzyme (here: d-amino acid oxidase) is fused to the positively charged mini-protein Zbasic2 and the channel surface contains a negatively charged γ-Al2 O3 wash-coat layer. Non-covalent wall attachment of the chimeric Zbasic2 _oxidase resulted in fully reversible enzyme immobilization with fairly uniform surface coverage and near complete retention of biological activity. The falling film at different gas and liquid flow rates as well as reactor inclination angles was shown to be mostly wavy laminar. The calculated film thickness was in the range 0.5-1.3 × 10(-4)  m. Direct O2 concentration measurements at the channel surface demonstrated that the liquid side mass transfer coefficient (KL ) for O2 governed the overall gas/liquid/solid mass transfer and that the O2 transfer rate (≥0.75 mM · s(-1) ) vastly exceeded the maximum enzymatic reaction rate in a wide range of conditions. A value of 7.5 (±0.5) s(-1) was determined for the overall mass transfer coefficient KL a, comprising a KL of about 7 × 10(-5)  m · s(-1) and a specific surface area of up to 10(5)  m(-1) . Biotechnol. Bioeng. 2016;113: 1862-1872. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. 21 CFR 184.1027 - Mixed carbohydrase and protease enzyme product.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... practice conditions of use: (1) The ingredient is used as an enzyme, as defined in § 170.3(o)(9) of this... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Mixed carbohydrase and protease enzyme product..._regulations/ibr_locations.html. (c) In accordance with § 184.1(b)(1), the ingredient is used in food with no...

  2. Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs

    PubMed Central

    Osaki, Tomohiro; Kurozumi, Seiji; Sato, Kimihiko; Terashi, Taro; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Minami, Saburo; Okamoto, Yoshiharu

    2015-01-01

    N-acetyl-d-glucosamine (GlcNAc) is a monosaccharide that polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin. GlcNAc is a basic component of hyaluronic acid and keratin sulfate found on the cell surface. The aim of this study was to examine amino acid metabolism after oral GlcNAc administration in dogs. Results showed that plasma levels of ectoine were significantly higher after oral administration of GlcNAc than prior to administration (p < 0.001). To our knowledge, there have been no reports of increased ectoine concentrations in the plasma. The mechanism by which GlcNAc administration leads to increased ectoine plasma concentration remains unclear; future studies are required to clarify this mechanism. PMID:26262626

  3. Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics.

    PubMed

    Taniguchi, Naoyuki; Kizuka, Yasuhiko

    2015-01-01

    Glycosylation is catalyzed by various glycosyltransferase enzymes which are mostly located in the Golgi apparatus in cells. These enzymes glycosylate various complex carbohydrates such as glycoproteins, glycolipids, and proteoglycans. The enzyme activity of glycosyltransferases and their gene expression are altered in various pathophysiological situations including cancer. Furthermore, the activity of glycosyltransferases is controlled by various factors such as the levels of nucleotide sugars, acceptor substrates, nucleotide sugar transporters, chaperons, and endogenous lectin in cancer cells. The glycosylation results in various functional changes of glycoproteins including cell surface receptors and adhesion molecules such as E-cadherin and integrins. These changes confer the unique characteristic phenotypes associated with cancer cells. Therefore, glycans play key roles in cancer progression and treatment. This review focuses on glycan structures, their biosynthetic glycosyltransferases, and their genes in relation to their biological significance and involvement in cancer, especially cancer biomarkers, epithelial-mesenchymal transition, cancer progression and metastasis, and therapeutics. Major N-glycan branching structures which are directly related to cancer are β1,6-GlcNAc branching, bisecting GlcNAc, and core fucose. These structures are enzymatic products of glycosyltransferases, GnT-V, GnT-III, and Fut8, respectively. The genes encoding these enzymes are designated as MGAT5 (Mgat5), MGAT3 (Mgat3), and FUT8 (Fut8) in humans (mice in parenthesis), respectively. GnT-V is highly associated with cancer metastasis, whereas GnT-III is associated with cancer suppression. Fut8 is involved in expression of cancer biomarker as well as in the treatment of cancer. In addition to these enzymes, GnT-IV and GnT-IX (GnT-Vb) will be also discussed in relation to cancer. © 2015 Elsevier Inc. All rights reserved.

  4. Watching Individual Enzymes at Work

    NASA Astrophysics Data System (ADS)

    Blank, Kerstin; Rocha, Susana; De Cremer, Gert; Roeffaers, Maarten B. J.; Uji-i, Hiroshi; Hofkens, Johan

    Single-molecule fluorescence experiments are a powerful tool to analyze reaction mechanisms of enzymes. Because of their unique potential to detect heterogeneities in space and time, they have provided unprecedented insights into the nature and mechanisms of conformational changes related to the catalytic reaction. The most important finding from experiments with single enzymes is the generally observed phenomenon that the catalytic rate constants fluctuate over time (dynamic disorder). These fluctuations originate from conformational changes occurring on time scales, which are similar to or slower than that of the catalytic reaction. Here, we summarize experiments with enzymes that show dynamic disorder and introduce new experimental strategies showing how single-molecule fluorescence experiments can be applied to address other open questions in medical and industrial enzymology, such as enzyme inactivation processes, reactant transfer in cascade reactions, and the mechanisms of interfacial catalysis.

  5. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation.

    PubMed

    Feng, Dawei; Liu, Tian-Fu; Su, Jie; Bosch, Mathieu; Wei, Zhangwen; Wan, Wei; Yuan, Daqiang; Chen, Ying-Pin; Wang, Xuan; Wang, Kecheng; Lian, Xizhen; Gu, Zhi-Yuan; Park, Jihye; Zou, Xiaodong; Zhou, Hong-Cai

    2015-01-19

    Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.

  6. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Liu, Tian-Fu; Su, Jie; Bosch, Mathieu; Wei, Zhangwen; Wan, Wei; Yuan, Daqiang; Chen, Ying-Pin; Wang, Xuan; Wang, Kecheng; Lian, Xizhen; Gu, Zhi-Yuan; Park, Jihye; Zou, Xiaodong; Zhou, Hong-Cai

    2015-01-01

    Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.

  7. Structure and Function of TET Enzymes.

    PubMed

    Yin, Xiaotong; Xu, Yanhui

    2016-01-01

    Mammalian DNA methylation mainly occurs at the carbon-C5 position of cytosine (5mC). TET enzymes were discovered to successively oxidize 5mC to 5-hydromethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). TET enzymes and oxidized 5mC derivatives play important roles in various biological and pathological processes, including regulation of DNA demethylation, gene transcription, embryonic development, and oncogenesis. In this chapter, we will discuss the discovery of TET-mediated 5mC oxidation and the structure, function, and regulation of TET enzymes.

  8. N-Acetylglucosamine: Production and Applications

    PubMed Central

    Chen, Jeen-Kuan; Shen, Chia-Rui; Liu, Chao-Lin

    2010-01-01

    N-Acetylglucosamine (GlcNAc) is a monosaccharide that usually polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin, the second most abundant carbohydrate after cellulose. In addition to serving as a component of this homogeneous polysaccharide, GlcNAc is also a basic component of hyaluronic acid and keratin sulfate on the cell surface. In this review, we discuss the industrial production of GlcNAc, using chitin as a substrate, by chemical, enzymatic and biotransformation methods. Also, newly developed methods to obtain GlcNAc using glucose as a substrate in genetically modified microorganisms are introduced. Moreover, GlcNAc has generated interest not only as an underutilized resource but also as a new functional material with high potential in various fields. Here we also take a closer look at the current applications of GlcNAc, and several new and cutting edge approaches in this fascinating area are thoroughly discussed. PMID:20948902

  9. Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes.

    PubMed

    Bhattacharya, Abhishek; Pletschke, Brett I

    2014-01-01

    The enzymatic conversion of lignocellulosic biomass into biofuels has been identified as an excellent strategy to generate clean energy. However, the current process is cost-intensive as an effective immobilization approach to reuse the enzyme(s) has been a major challenge. The present study introduces the concept and application of novel magnetic cross-linked enzyme aggregates (mag-CLEAs). Both mag-CLEAs and calcium-mag-CLEAs (Ca-mag-CLEAs) exhibited a 1.35 fold higher xylanase activity compared to the free enzyme and retained more than 80.0% and 90.0% activity, respectively, after 136h of incubation at 50°C, compared to 50% activity retained by CLEAs. A 7.4 and 9.0 fold higher sugar release from lime-pretreated and NH4OH pre-treated sugar bagasse, respectively, was achieved with Ca-mag-CLEAs compared to the free enzymes. The present study promotes the successful application of mag-CLEAs and Ca-mag-CLEAs as carrier free immobilized enzymes for the effective hydrolysis of lignocellulolytic biomass and associated biofuel feedstocks. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Enzyme and Cancer Cell Selectivity of Nanoparticles: Inhibition of 3D Metastatic Phenotype and Experimental Melanoma by Zinc Oxide.

    PubMed

    DeLong, Robert K; Mitchell, Jennifer A; Morris, R Tyler; Comer, Jeffrey; Hurst, Miranda N; Ghosh, Kartik; Wanekaya, Adam; Mudge, Miranda; Schaeffer, Ashley; Washington, Laurie L; Risor-Marhanka, Azure; Thomas, Spencer; Marroquin, Shanna; Lekey, Amber; Smith, Joshua J; Garrad, Richard; Aryal, Santosh; Abdelhakiem, Mohamed; Glaspell, Garry P

    2017-02-01

    Biomedical applications for metal and metal oxide nanoparticles are rapidly increasing. Here their functional impact on two well-characterized model enzymes, Luciferase (Luc) or β-galactosidase (β-Gal) was quantitatively compared. Nickel oxide nanoparticle (NiO-NP) activated β-Gal (>400% control) and boron carbide nanoparticle (B4C-NP) inhibited Luc(<10% control), whereas zinc oxide (ZnO-NP) and cobalt oxide (Co3O4-NP) activated β-Gal to a lesser extent and magnesium oxide (MgO) moderately inhibited both enzymes. Melanoma specific killing was in the order; ZnO > B4C ≥ Cu > MgO > Co3O4 > Fe2O3 > NiO, ZnO-NP inhibiting B16F10 and A375 cells as well as ERK enzyme (>90%) and several other cancer-associated kinases (AKT, CREB, p70S6K). ZnO-NP or nanobelt (NB) serve as photoluminescence (PL) cell labels and inhibit 3-D multi-cellular tumor spheroid (MCTS) growth and were tested in a mouse melanoma model. These results demonstrate nanoparticle and enzyme specific biochemical activity and suggest their utility as new tools to explore the important model metastatic foci 3-D environment and their chemotherapeutic potential.

  11. Arabidopsis F-box protein containing a Nictaba-related lectin domain interacts with N-acetyllactosamine structures.

    PubMed

    Stefanowicz, Karolina; Lannoo, Nausicaä; Proost, Paul; Van Damme, Els J M

    2012-01-01

    The Arabidopsis thaliana genome contains a small group of bipartite F-box proteins, consisting of an N-terminal F-box domain and a C-terminal domain sharing sequence similarity with Nictaba, the jasmonate-induced glycan-binding protein (lectin) from tobacco. Based on the high sequence similarity between the C-terminal domain of these proteins and Nictaba, the hypothesis was put forward that the so-called F-box-Nictaba proteins possess carbohydrate-binding activity and accordingly can be considered functional homologs of the mammalian sugar-binding F-box or Fbs proteins which are involved in proteasomal degradation of glycoproteins. To obtain experimental evidence for the carbohydrate-binding activity and specificity of the A. thaliana F-box-Nictaba proteins, both the complete F-box-Nictaba sequence of one selected Arabidopsis F-box protein (in casu At2g02360) as well as the Nictaba-like domain only were expressed in Pichia pastoris and analyzed by affinity chromatography, agglutination assays and glycan micro-array binding assays. These results demonstrated that the C-terminal Nictaba-like domain provides the F-box-protein with a carbohydrate-binding activity that is specifically directed against N- and O-glycans containing N-acetyllactosamine (Galβ1-3GlcNAc and Galβ1-4GlcNAc) and poly-N-acetyllactosamine ([Galβ1-4GlcNAc]n) as well as Lewis A (Galβ1-3(Fucα1-4)GlcNAc), Lewis X (Galβ1-4(Fucα1-3)GlcNAc, Lewis Y (Fucα1-2Galβ1-4(Fucα1-3)GlcNAc) and blood type B (Galα1-3(Fucα1-2)Galβ1-3GlcNAc) motifs. Based on these findings one can reasonably conclude that at least the A. thaliana F-box-Nictaba protein encoded by At2g02360 can act as a carbohydrate-binding protein. The results from the glycan array assays revealed differences in sugar-binding specificity between the F-box protein and Nictaba, indicating that the same carbohydrate-binding motif can accommodate unrelated oligosaccharides.

  12. The influence of photoelectron processes in a semiconductor substrate on the adsorption of polycationic and polyanionic molecules

    NASA Astrophysics Data System (ADS)

    Stetsyura, S. V.; Kozlowski, A. V.

    2017-03-01

    White-light illumination during the adsorption of polyanionic molecules of glucose oxidase (GO x ) enzyme on the surface of p-Si/SiO2/polyethylenimine structure leads to a threefold decrease in the surface concentration of GO x molecules. Same illumination during the GO x adsorption on the n-Si/SiO2/PEI structure leads to a sevenfold increase in the surface concentration of enzyme molecules. Changes in the amount of adsorbed GO x molecules depending on the intensity of irradiation are explained by electron transfer processes and recharging of electronic states at the Si/SiO2 interface and within SiO2 layer.

  13. Targeting Protein O-GlcNAc Modifications In Breast Cancer

    DTIC Science & Technology

    2010-09-30

    O-GlcNAcation and elevated expression of O-GlcNAc transferase (OGT), the enzyme catalyzing addition of O-GlcNAc to proteins. Reduction of O...regulatory switch mechanism analogous to phosphorylation (28). Cytosolic and nuclear enzymes dynamically catalyze addition (O-GlcNAc transferase or OGT) and...levels, through pharmacological inhibition or genetic knock-down of enzymes that add or remove O-GlcNAc, can inhibit ErbB2-mediated oncogenic

  14. Process development for Ni-Cr-ThO2 and Ni-Cr-Al-ThO2 sheet

    NASA Technical Reports Server (NTRS)

    Cook, R. C.; Norris, L. F.

    1973-01-01

    A process was developed for the production of thin gauge Ni-Cr-ThO2 sheet. The process was based on the elevated temperature deposition of chromium onto a wrought Ni-2%ThO2 sheet and subsequent high temperature diffusion heat treatments to minimize chromium concentration gradients within the sheet. The mechanical properties of the alloy were found to be critically dependent on those of the Ni-2%ThO2 sheet. A similar process for the production of a Ni-Cr-Al-ThO2 alloy having improved oxidation resistance was investigated but the non-reproducible deposition of aluminum from duplex Cr/Al packs precluded successful scale-up. The mechanical properties of the Ni-Cr-Al-ThO2 alloys were generally equivalent to the best Ni-Cr-ThO2 alloy produced in the programme.

  15. Abiotic stress and phytohormones affect enzymic activity of 1-O-(indole-3-acetyl)-β-d-glucose: myo-inositol indoleacetyl transferase from rice (Oryza sativa).

    PubMed

    Ciarkowska, Anna; Ostrowski, Maciej; Jakubowska, Anna

    2016-10-20

    Indole-3-acetic acid (IAA) conjugation is a part of mechanism regulating free auxin concentration. 1-O-(indole-3-acetyl)-β-d-glucose: myo-inositol indoleacetyl transferase (IAInos synthase) is an enzyme involved in IAA-ester conjugates biosynthesis. Biotic and abiotic stress conditions can modulate auxin conjugates formation in plants. In this study, we investigated effect of plant hormones (IAA, ABA, SA and 2,4-D) and abiotic stress (drought and salt stress: 150mM NaCl and 300mM NaCl) on expression level and catalytic activity of rice IAInos synthase. Enzymic activity assay indicated that all tested phytohormones affected activity of IAInos synthase, but only ABA had inhibiting effect, while IAA, SA and 2,4-D activated the enzyme. Drought and salt stress induced with lower NaCl concentration resulted in decreased activity of IAInos synthase, but 300mM NaCl had no effect on the enzyme. Despite observed differences in enzymic activities, no changes of expression level, tested by semiquantitative RT-PCR and Western blot, were detected. Based on our results it has been supposed that plant hormones and stress conditions affect IAInos synthase activity on posttranslational level. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana.

    PubMed Central

    Rao, M V; Paliyath, G; Ormrod, D P

    1996-01-01

    Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity. PMID:8587977

  17. Oxidation of heparan sulphate by hypochlorite: role of N-chloro derivatives and dichloramine-dependent fragmentation.

    PubMed

    Rees, Martin D; Pattison, David I; Davies, Michael J

    2005-10-01

    Activated phagocytes release the haem enzyme MPO (myeloperoxidase) and produce superoxide radicals and H2O2 via an oxidative burst. MPO uses H2O2 and Cl- to form HOCl, the physiological mixture of hypochlorous acid and its anion present at pH 7.4. As MPO binds to glycosaminoglycans, oxidation of extracellular matrix and cell surfaces by HOCl may be localized to these materials. However, the reactions of HOCl with glycosaminoglycans are poorly characterized. The GlcNAc (N-acetylglucosamine), GlcNSO3 (glucosamine-N-sulphate) and GlcNH2 [(N-unsubstituted) glucosamine] residues of heparan sulphate are potential targets for HOCl. It is shown here that HOCl reacts with each of these residues to generate N-chloro derivatives, and the absolute rate constants for these reactions have been determined. Reaction at GlcNH2 residues yields chloramines and, subsequently, dichloramines with markedly slower rates, k2 approximately 3.1x10(5) and 9 M(-1) x s(-1) (at 37 degrees C) respectively. Reaction at GlcNSO3 and GlcNAc residues yields N-chlorosulphonamides and chloramides with k2 approximately 0.05 and 0.01 M(-1) x s(-1) (at 37 degrees C) respectively. The corresponding monosaccharides display a similar pattern of reactivity. Decay of the polymer-derived chloramines, N-chlorosulphonamides and chloramides is slow at 37 degrees C and does not result in major structural changes. In contrast, dichloramine decay is rapid at 37 degrees C and results in fragmentation of the polymer backbone. Computational modelling of the reaction of HOCl with heparan sulphate proteoglycans (glypican-1 and perlecan) predicts that the GlcNH2 residues of heparan sulphate are major sites of attack. These results suggest that HOCl may be an important mediator of damage to glycosaminoglycans and proteoglycans at inflammatory foci.

  18. Oxidation of heparan sulphate by hypochlorite: role of N-chloro derivatives and dichloramine-dependent fragmentation

    PubMed Central

    Rees, Martin D.; Pattison, David I.; Davies, Michael J.

    2005-01-01

    Activated phagocytes release the haem enzyme MPO (myeloperoxidase) and produce superoxide radicals and H2O2 via an oxidative burst. MPO uses H2O2 and Cl− to form HOCl, the physiological mixture of hypochlorous acid and its anion present at pH 7.4. As MPO binds to glycosaminoglycans, oxidation of extracellular matrix and cell surfaces by HOCl may be localized to these materials. However, the reactions of HOCl with glycosaminoglycans are poorly characterized. The GlcNAc (N-acetylglucosamine), GlcNSO3 (glucosamine-N-sulphate) and GlcNH2 [(N-unsubstituted) glucosamine] residues of heparan sulphate are potential targets for HOCl. It is shown here that HOCl reacts with each of these residues to generate N-chloro derivatives, and the absolute rate constants for these reactions have been determined. Reaction at GlcNH2 residues yields chloramines and, subsequently, dichloramines with markedly slower rates, k2∼3.1×105 and 9 M−1·s−1 (at 37 °C) respectively. Reaction at GlcNSO3 and GlcNAc residues yields N-chlorosulphonamides and chloramides with k2∼0.05 and 0.01 M−1·s−1 (at 37 °C) respectively. The corresponding monosaccharides display a similar pattern of reactivity. Decay of the polymer-derived chloramines, N-chlorosulphonamides and chloramides is slow at 37 °C and does not result in major structural changes. In contrast, dichloramine decay is rapid at 37 °C and results in fragmentation of the polymer backbone. Computational modelling of the reaction of HOCl with heparan sulphate proteoglycans (glypican-1 and perlecan) predicts that the GlcNH2 residues of heparan sulphate are major sites of attack. These results suggest that HOCl may be an important mediator of damage to glycosaminoglycans and proteoglycans at inflammatory foci. PMID:15932347

  19. Serine proteases as candidates for proteolytic processing of angiotensin-I converting enzyme.

    PubMed

    Aragão, Danielle S; de Andrade, Maria Claudina C; Ebihara, Fabiana; Watanabe, Ingrid K M; Magalhães, Dayane C B P; Juliano, Maria Aparecida; Hirata, Izaura Yoshico; Casarini, Dulce Elena

    2015-01-01

    Somatic angiotensin-I converting enzyme (sACE) is a broadly distributed peptidase which plays a role in blood pressure and electrolyte homeostasis by the conversion of angiotensin I into angiotensin II. N-domain isoforms (nACE) with 65 and 90 kDa have been described in body fluids, tissues and mesangial cells (MC), and a 90 kDa nACE has been described only in spontaneously hypertensive rats. The aim of this study was to investigate the existence of proteolytic enzymes that may act in the hydrolysis of sACE generating nACEs in MC. After the confirmation of the presence of ACE sheddases in Immortalized MC (IMC), we purified and characterized these enzymes using fluorogenic substrates specifically designed for ACE sheddases. Purified enzyme identified as a serine protease by N-terminal sequence was able to generate nACE. In the present study, we described for the first time the presence of ACE sheddases in IMC, identified as serine proteases able to hydrolyze sACE in vitro. Further investigations are necessary to elucidate the mechanisms responsible for the expression and regulation of ACE sheddases in MC and their roles in the generation of nACEs, especially the 90 kDa form possibly related to hypertension. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Spliced X-box Binding Protein 1 Couples the Unfolded Protein Response to Hexosamine Biosynthetic Pathway

    PubMed Central

    Wang, Zhao V.; Deng, Yingfeng; Gao, Ningguo; Pedrozo, Zully; Li, Dan L.; Morales, Cyndi R.; Criollo, Alfredo; Luo, Xiang; Tan, Wei; Jiang, Nan; Lehrman, Mark A.; Rothermel, Beverly A.; Lee, Ann-Hwee; Lavandero, Sergio; Mammen, Pradeep P.A.; Ferdous, Anwarul; Gillette, Thomas G.; Scherer, Philipp E.; Hill, Joseph A.

    2014-01-01

    SUMMARY The hexosamine biosynthetic pathway (HBP) generates UDP-GlcNAc (uridine diphosphate N-acetylglucosamine) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in metabolism and multiple diseases, regulation of the HBP remains largely undefined. Here, we show that spliced X-box binding protein 1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers HBP activation via Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We further establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions. Finally, we demonstrate a physiologic role for the UPR-HBP axis, by showing that acute stimulation of Xbp1s in heart by ischemia/reperfusion confers robust cardioprotection in part through induction of the HBP. Collectively, these studies reveal that Xbp1s couples the UPR to the HBP to protect cells under stress. PMID:24630721

  1. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway.

    PubMed

    Wang, Zhao V; Deng, Yingfeng; Gao, Ningguo; Pedrozo, Zully; Li, Dan L; Morales, Cyndi R; Criollo, Alfredo; Luo, Xiang; Tan, Wei; Jiang, Nan; Lehrman, Mark A; Rothermel, Beverly A; Lee, Ann-Hwee; Lavandero, Sergio; Mammen, Pradeep P A; Ferdous, Anwarul; Gillette, Thomas G; Scherer, Philipp E; Hill, Joseph A

    2014-03-13

    The hexosamine biosynthetic pathway (HBP) generates uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in metabolism and multiple diseases, regulation of the HBP remains largely undefined. Here, we show that spliced X-box binding protein 1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers HBP activation via Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We further establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions. Finally, we demonstrate a physiologic role for the UPR-HBP axis by showing that acute stimulation of Xbp1s in heart by ischemia/reperfusion confers robust cardioprotection in part through induction of the HBP. Collectively, these studies reveal that Xbp1s couples the UPR to the HBP to protect cells under stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  3. Nature's inordinate fondness for metabolic enzymes: why metabolic enzyme loci are so frequently targets of selection.

    PubMed

    Marden, James H

    2013-12-01

    Metabolic enzyme loci were some of the first genes accessible for molecular evolution and ecology research. New technologies now make the whole genome, transcriptome or proteome readily accessible, allowing unbiased scans for loci exhibiting significant differences in allele frequency or expression level and associated with phenotypes and/or responses to natural selection. With surprising frequency and in many cases in proportions greater than chance relative to other genes, glycolysis and TCA cycle enzyme loci appear among the genes with significant associations in these studies. Hence, there is an ongoing need to understand the basis for fitness effects of metabolic enzyme polymorphisms. Allele-specific effects on the binding affinity and catalytic rate of individual enzymes are well known, but often of uncertain significance because metabolic control theory and in vivo studies indicate that many individual metabolic enzymes do not affect pathway flux rate. I review research, so far little used in evolutionary biology, showing that metabolic enzyme substrates affect signalling pathways that regulate cell and organismal biology, and that these enzymes have moonlighting functions. To date there is little knowledge of how alleles in natural populations affect these phenotypes. I discuss an example in which alleles of a TCA enzyme locus associate with differences in a signalling pathway and development, organismal performance, and ecological dynamics. Ultimately, understanding how metabolic enzyme polymorphisms map to phenotypes and fitness remains a compelling and ongoing need for gaining robust knowledge of ecological and evolutionary processes. © 2013 John Wiley & Sons Ltd.

  4. Bacterial enzymes involved in lignin degradation.

    PubMed

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-10-20

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the (bio)processing of lignocellulosic feedstocks, more effective degradation methods of lignin are in demand. Nature has found ways to fully degrade lignin through the production of dedicated ligninolytic enzyme systems. While such enzymes have been well thoroughly studied for ligninolytic fungi, only in recent years biochemical studies on bacterial enzymes capable of lignin modification have intensified. This has revealed several types of enzymes available to bacteria that enable them to act on lignin. Two major classes of bacterial lignin-modifying enzymes are DyP-type peroxidases and laccases. Yet, recently also several other bacterial enzymes have been discovered that seem to play a role in lignin modifications. In the present review, we provide an overview of recent advances in the identification and use of bacterial enzymes acting on lignin or lignin-derived products. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Enzyme Catalysis To Power Micro/Nanomachines

    PubMed Central

    2016-01-01

    Enzymes play a crucial role in many biological processes which require harnessing and converting free chemical energy into kinetic forces in order to accomplish tasks. Enzymes are considered to be molecular machines, not only because of their capability of energy conversion in biological systems but also because enzymatic catalysis can result in enhanced diffusion of enzymes at a molecular level. Enlightened by nature’s design of biological machinery, researchers have investigated various types of synthetic micro/nanomachines by using enzymatic reactions to achieve self-propulsion of micro/nanoarchitectures. Yet, the mechanism of motion is still under debate in current literature. Versatile proof-of-concept applications of these enzyme-powered micro/nanodevices have been recently demonstrated. In this review, we focus on discussing enzymes not only as stochastic swimmers but also as nanoengines to power self-propelled synthetic motors. We present an overview on different enzyme-powered micro/nanomachines, the current debate on their motion mechanism, methods to provide motion and speed control, and an outlook of the future potentials of this multidisciplinary field. PMID:27666121

  6. Enzyme Catalysis To Power Micro/Nanomachines.

    PubMed

    Ma, Xing; Hortelão, Ana C; Patiño, Tania; Sánchez, Samuel

    2016-10-25

    Enzymes play a crucial role in many biological processes which require harnessing and converting free chemical energy into kinetic forces in order to accomplish tasks. Enzymes are considered to be molecular machines, not only because of their capability of energy conversion in biological systems but also because enzymatic catalysis can result in enhanced diffusion of enzymes at a molecular level. Enlightened by nature's design of biological machinery, researchers have investigated various types of synthetic micro/nanomachines by using enzymatic reactions to achieve self-propulsion of micro/nanoarchitectures. Yet, the mechanism of motion is still under debate in current literature. Versatile proof-of-concept applications of these enzyme-powered micro/nanodevices have been recently demonstrated. In this review, we focus on discussing enzymes not only as stochastic swimmers but also as nanoengines to power self-propelled synthetic motors. We present an overview on different enzyme-powered micro/nanomachines, the current debate on their motion mechanism, methods to provide motion and speed control, and an outlook of the future potentials of this multidisciplinary field.

  7. High throughput, high resolution enzymatic lithography process: effect of crystallite size, moisture, and enzyme concentration.

    PubMed

    Mao, Zhantong; Ganesh, Manoj; Bucaro, Michael; Smolianski, Igor; Gross, Richard A; Lyons, Alan M

    2014-12-08

    By bringing enzymes into contact with predefined regions of a surface, a polymer film can be selectively degraded to form desired patterns that find a variety of applications in biotechnology and electronics. This so-called "enzymatic lithography" is an environmentally friendly process as it does not require actinic radiation or synthetic chemicals to develop the patterns. A significant challenge to using enzymatic lithography has been the need to restrict the mobility of the enzyme in order to maintain control of feature sizes. Previous approaches have resulted in low throughput and were limited to polymer films only a few nanometers thick. In this paper, we demonstrate an enzymatic lithography system based on Candida antartica lipase B (CALB) and poly(ε-caprolactone) (PCL) that can resolve fine-scale features, (<1 μm across) in thick (0.1-2.0 μm) polymer films. A Polymer Pen Lithography (PPL) tool was developed to deposit an aqueous solution of CALB onto a spin-cast PCL film. Immobilization of the enzyme on the polymer surface was monitored using fluorescence microscopy by labeling CALB with FITC. The crystallite size in the PCL films was systematically varied; small crystallites resulted in significantly faster etch rates (20 nm/min) and the ability to resolve smaller features (as fine as 1 μm). The effect of printing conditions and relative humidity during incubation is also presented. Patterns formed in the PCL film were transferred to an underlying copper foil demonstrating a "Green" approach to the fabrication of printed circuit boards.

  8. Ultrafast infrared spectroscopy reveals water-mediated coherent dynamics in an enzyme active site.

    PubMed

    Adamczyk, Katrin; Simpson, Niall; Greetham, Gregory M; Gumiero, Andrea; Walsh, Martin A; Towrie, Michael; Parker, Anthony W; Hunt, Neil T

    2015-01-01

    Understanding the impact of fast dynamics upon the chemical processes occurring within the active sites of proteins and enzymes is a key challenge that continues to attract significant interest, though direct experimental insight in the solution phase remains sparse. Similar gaps in our knowledge exist in understanding the role played by water, either as a solvent or as a structural/dynamic component of the active site. In order to investigate further the potential biological roles of water, we have employed ultrafast multidimensional infrared spectroscopy experiments that directly probe the structural and vibrational dynamics of NO bound to the ferric haem of the catalase enzyme from Corynebacterium glutamicum in both H 2 O and D 2 O. Despite catalases having what is believed to be a solvent-inaccessible active site, an isotopic dependence of the spectral diffusion and vibrational lifetime parameters of the NO stretching vibration are observed, indicating that water molecules interact directly with the haem ligand. Furthermore, IR pump-probe data feature oscillations originating from the preparation of a coherent superposition of low-frequency vibrational modes in the active site of catalase that are coupled to the haem ligand stretching vibration. Comparisons with an exemplar of the closely-related peroxidase enzyme family shows that they too exhibit solvent-dependent active-site dynamics, supporting the presence of interactions between the haem ligand and water molecules in the active sites of both catalases and peroxidases that may be linked to proton transfer events leading to the formation of the ferryl intermediate Compound I. In addition, a strong, water-mediated, hydrogen bonding structure is suggested to occur in catalase that is not replicated in peroxidase; an observation that may shed light on the origins of the different functions of the two enzymes.

  9. Simple and efficient synthesis of copper(II)-modified uniform magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase

    NASA Astrophysics Data System (ADS)

    Li, Shi-Kuo; Hou, Xiao-Cheng; Huang, Fang-Zhi; Li, Chuan-Hao; Kang, Wen-Juan; Xie, An-Jian; Shen, Yu-Hua

    2013-11-01

    In this paper, we reported a simple and efficient protocol for preparation of Cu2+-modified magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase. The uniform magnetic Fe3O4@SiO2 core/shell microspheres with a thin shell of 20 nm were synthesized through a solvothermal method followed by a sol-gel process. An amino-terminated silane coupling agent of (3-aminopropyl)triethoxysilane (APTS) was then grafted on them for capturing Cu2+ ions. The reaction process is very simple, efficient, and economical. Noticeably, the content of Cu2+ ions on the magnetic core/shell microspheres can reach 4.6 Wt%, endowing them possess as high immobilization capacity as 225.5 mg/g for cellulase. And the immobilized cellulase can be retained over 90 % on the magnetic microspheres after six cycles. Meanwhile, the magnetic microspheres decorated with Cu2+ ions show a superparamagnetic character with a high magnetic saturation of 58.5 emu/g at room temperature, suggesting conveniently and rapidly recycle the enzyme from solution. This facile, recyclable, high immobilization capacity and activity strategy may find potential applications in enzyme catalytic reactions with low cost.

  10. Liposomal Encapsulation Enzymes: From Medical Applications to Kinetic Characteristics.

    PubMed

    Jahadi, M; Khosravi-Darani, K

    2017-01-01

    Liposomes and nanoliposomes as small vesicles composed of phospholipid bilayer (entrapping one or more hydrophilic or lipophilic components) have recently found several potential applications in medicine and food industry. These vesicles may protect the core materials from moisture, heat and other extreme conditions. They may also provide controlled release of various bioactive agents, including food ingredients at the right place and time. Potential applications of enzyme-loaded liposomes are in the medical or biomedical field, particularly for the enzymereplacement therapy, as well as cheese industry for production of functional foods with improved health beneficial impacts on the consumer. Encapsulation process has a recondite impact on enzymes. In fact, liposome preparation techniques may alter the pH and temperature optima, affinity of the enzyme to substrate (Km), and maximum rate of reaction (Vmax). In addition, in this paper, the impact of process variables on the kinetic characteristics of enzymes encapsulated in liposomes was investigated. Also, the effects of enzyme entrapment in liposomes, prepared by different methods, on the catalytic efficiency of enzyme, as well as its kinetic properties and stability compared to native (free) enzymes has been reviewed.

  11. The recognition of three different epitopes for the H-type 2 human blood group determinant by lectins of Ulex europaeus, Galactia tenuiflora and Psophocarpus tetragonolobus (winged bean).

    PubMed

    Du, M H; Spohr, U; Lemieux, R U

    1994-10-01

    The chemical mapping of the regions of H-type 2 human blood group-related trisaccharide (Fuc alpha (1-2)Gal beta (1-4)GlcNAc beta Me) that are recognized by three different lectins, the so-called epitopes, are reviewed together with an account of how and why oligosaccharides form specific complexes with proteins as presently viewed in this laboratory. The occasion is used to report the synthesis of the various mono-O-methyl derivatives of the above trisaccharide that were used in these investigations. Also, Fuc alpha (1-2)Gal beta (1-4)Xyl beta Me was synthesized in order to examine whether or not the hydroxymethyl group of the GlcNAc residue participates in the binding reaction.

  12. A model system for targeted drug release triggered by biomolecular signals logically processed through enzyme logic networks.

    PubMed

    Mailloux, Shay; Halámek, Jan; Katz, Evgeny

    2014-03-07

    A new Sense-and-Act system was realized by the integration of a biocomputing system, performing analytical processes, with a signal-responsive electrode. A drug-mimicking release process was triggered by biomolecular signals processed by different logic networks, including three concatenated AND logic gates or a 3-input OR logic gate. Biocatalytically produced NADH, controlled by various combinations of input signals, was used to activate the electrochemical system. A biocatalytic electrode associated with signal-processing "biocomputing" systems was electrically connected to another electrode coated with a polymer film, which was dissolved upon the formation of negative potential releasing entrapped drug-mimicking species, an enzyme-antibody conjugate, operating as a model for targeted immune-delivery and consequent "prodrug" activation. The system offers great versatility for future applications in controlled drug release and personalized medicine.

  13. Isomerization of 1-O-indol-3-ylacetyl-beta-D-glucose. Enzymatic hydrolysis of 1-O, 4-O, and 6-O-indol-3-ylacetyl-beta-D-glucose and the enzymatic synthesis of indole-3-acetyl glycerol by a hormone metabolizing complex

    NASA Technical Reports Server (NTRS)

    Kowalczyk, S.; Bandurski, R. S.

    1990-01-01

    The first compound in the series of reactions leading to the ester conjugates of indole-3-acetic acid (IAA) in kernels of Zea mays sweet corn is the acyl alkyl acetal, 1-O-indol-3-ylacetyl-beta-D-glucose (1-O-IAGlu). The enzyme catalyzing the synthesis of this compound is UDP-glucose:indol-3-ylacetate glucosyl-transferase (IAGlu synthase). The IAA moiety of the high energy compound 1-O-IAGlu may be enzymatically transferred to myo-inositol or to glycerol or the 1-O-IAGlu may be enzymatically hydrolyzed. Alternatively, nonenzymatic acyl migration may occur to yield the 2-O, 4-O, and 6-O esters of IAA and glucose. The 4-O and 6-O esters may then be enzymatically hydrolyzed to yield free IAA and glucose. This work reports new enzymatic activities, the transfer of IAA from 1-O-IAGlu to glycerol, and the enzyme-catalyzed hydrolysis of 4-O and 6-O-IAGlu. Data is also presented on the rate of non-enzymatic acyl migration of IAA from the 1-O to the 4-O and 6-O positions of glucose. We also report that enzymes catalyzing the synthesis of 1-O-IAGlu and the hydrolysis of 1-O, 4-O, and 6-O-IAGlu fractionate as a hormone metabolizing complex. The association of synthetic and hydrolytic capabilities in enzymes which cofractionate may have physiological significance.

  14. N-acetylglucosamine increases symptoms and fungal burden in a murine model of oral candidiasis.

    PubMed

    Ishijima, Sanae A; Hayama, Kazumi; Takahashi, Miki; Holmes, Ann R; Cannon, Richard D; Abe, Shigeru

    2012-04-01

    The amino sugar N-acetylglucosamine (GlcNAc) is an in vitro inducer of the hyphal mode of growth of the opportunistic pathogen Candida albicans. The development of hyphae by C. albicans is considered to contribute to the pathogenesis of mucosal oral candidiasis. GlcNAc is also a commonly used nutritional supplement for the self-treatment of conditions such as arthritis. To date, no study has investigated whether ingestion of GlcNAc has an effect on the in vivo growth of C. albicans or the pathogenesis of a C. albicans infection. Using a murine model of oral candidiasis, we have found that administration of GlcNAc, but not glucose, increased oral symptoms of candidiasis and fungal burden. Groups of mice were given GlcNAc in either water or in a viscous carrier, i.e., 1% methylcellulose. There was a dose-dependent relationship between GlcNAc concentration and the severity of oral symptoms. Mice given the highest dose of GlcNAc, 45.2 mM, also showed a significant increase in fungal burden, and increased histological evidence of infection compared to controls given water alone. We propose that ingestion of GlcNAc, as a nutritional supplement, may have an impact on oral health in people susceptible to oral candidiasis.

  15. Biocatalytic material comprising multilayer enzyme coated fiber

    DOEpatents

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  16. Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron hole-hopping within the enzyme.

    PubMed

    Njuma, Olive J; Davis, Ian; Ndontsa, Elizabeth N; Krewall, Jessica R; Liu, Aimin; Goodwin, Douglas C

    2017-11-10

    KatG is a bifunctional, heme-dependent enzyme in the front-line defense of numerous bacterial and fungal pathogens against H 2 O 2 -induced oxidative damage from host immune responses. Contrary to the expectation that catalase and peroxidase activities should be mutually antagonistic, peroxidatic electron donors (PxEDs) enhance KatG catalase activity. Here, we establish the mechanism of synergistic cooperation between these activities. We show that at low pH values KatG can fully convert H 2 O 2 to O 2 and H 2 O only if a PxED is present in the reaction mixture. Stopped-flow spectroscopy results indicated rapid initial rates of H 2 O 2 disproportionation slowing concomitantly with the accumulation of ferryl-like heme states. These states very slowly returned to resting ( i.e. ferric) enzyme, indicating that they represented catalase-inactive intermediates. We also show that an active-site tryptophan, Trp-321, participates in off-pathway electron transfer. A W321F variant in which the proximal tryptophan was replaced with a non-oxidizable phenylalanine exhibited higher catalase activity and less accumulation of off-pathway heme intermediates. Finally, rapid freeze-quench EPR experiments indicated that both WT and W321F KatG produce the same methionine-tyrosine-tryptophan (MYW) cofactor radical intermediate at the earliest reaction time points and that Trp-321 is the preferred site of off-catalase protein oxidation in the native enzyme. Of note, PxEDs did not affect the formation of the MYW cofactor radical but could reduce non-productive protein-based radical species that accumulate during reaction with H 2 O 2 Our results suggest that catalase-inactive intermediates accumulate because of off-mechanism oxidation, primarily of Trp-321, and PxEDs stimulate KatG catalase activity by preventing the accumulation of inactive intermediates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Dioxygenases Catalyze O-Demethylation and O,O-Demethylenation with Widespread Roles in Benzylisoquinoline Alkaloid Metabolism in Opium Poppy*

    PubMed Central

    Farrow, Scott C.; Facchini, Peter J.

    2013-01-01

    In opium poppy, the antepenultimate and final steps in morphine biosynthesis are catalyzed by the 2-oxoglutarate/Fe(II)-dependent dioxygenases, thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM). Further investigation into the biochemical functions of CODM and T6ODM revealed extensive and unexpected roles for such enzymes in the metabolism of protopine, benzo[c]phenanthridine, and rhoeadine alkaloids. When assayed with a wide range of benzylisoquinoline alkaloids, CODM, T6ODM, and the functionally unassigned paralog DIOX2, renamed protopine O-dealkylase, showed novel and efficient dealkylation activities, including regio- and substrate-specific O-demethylation and O,O-demethylenation. Enzymes catalyzing O,O-demethylenation, which cleave a methylenedioxy bridge leaving two hydroxyl groups, have previously not been reported in plants. Similar cleavage of methylenedioxy bridges on substituted amphetamines is catalyzed by heme-dependent cytochromes P450 in mammals. Preferred substrates for O,O-demethylenation by CODM and protopine O-dealkylase were protopine alkaloids that serve as intermediates in the biosynthesis of benzo[c]phenanthridine and rhoeadine derivatives. Virus-induced gene silencing used to suppress the abundance of CODM and/or T6ODM transcripts indicated a direct physiological role for these enzymes in the metabolism of protopine alkaloids, and they revealed their indirect involvement in the formation of the antimicrobial benzo[c]phenanthridine sanguinarine and certain rhoeadine alkaloids in opium poppy. PMID:23928311

  18. Dioxygenases catalyze O-demethylation and O,O-demethylenation with widespread roles in benzylisoquinoline alkaloid metabolism in opium poppy.

    PubMed

    Farrow, Scott C; Facchini, Peter J

    2013-10-04

    In opium poppy, the antepenultimate and final steps in morphine biosynthesis are catalyzed by the 2-oxoglutarate/Fe(II)-dependent dioxygenases, thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM). Further investigation into the biochemical functions of CODM and T6ODM revealed extensive and unexpected roles for such enzymes in the metabolism of protopine, benzo[c]phenanthridine, and rhoeadine alkaloids. When assayed with a wide range of benzylisoquinoline alkaloids, CODM, T6ODM, and the functionally unassigned paralog DIOX2, renamed protopine O-dealkylase, showed novel and efficient dealkylation activities, including regio- and substrate-specific O-demethylation and O,O-demethylenation. Enzymes catalyzing O,O-demethylenation, which cleave a methylenedioxy bridge leaving two hydroxyl groups, have previously not been reported in plants. Similar cleavage of methylenedioxy bridges on substituted amphetamines is catalyzed by heme-dependent cytochromes P450 in mammals. Preferred substrates for O,O-demethylenation by CODM and protopine O-dealkylase were protopine alkaloids that serve as intermediates in the biosynthesis of benzo[c]phenanthridine and rhoeadine derivatives. Virus-induced gene silencing used to suppress the abundance of CODM and/or T6ODM transcripts indicated a direct physiological role for these enzymes in the metabolism of protopine alkaloids, and they revealed their indirect involvement in the formation of the antimicrobial benzo[c]phenanthridine sanguinarine and certain rhoeadine alkaloids in opium poppy.

  19. A hydrogen-bonding network modulating enzyme function: asparagine-194 and tyrosine-225 of Escherichia coli aspartate aminotransferase.

    PubMed

    Yano, T; Mizuno, T; Kagamiyama, H

    1993-02-23

    The electron distribution within the coenzyme or coenzyme-substrate conjugate needs to be properly regulated during the catalytic process of aspartate aminotransferase (AspAT). Asn194 and Tyr225 may function in regulating the electron distribution through hydrogen-bonding to O(3') of the coenzyme, pyridoxal 5'-phosphate (PLP) or pyridoxamine 5'-phosphate (PMP). The roles of Tyr225 have already been explored by site-directed mutagenesis (Inoue et al., 1991; Goldberg et al., 1991). In the present studies, the mutant enzymes Asn194-->Ala and Asn194-->Ala + Tyr225-->Phe were analyzed kinetically and spectroscopically and were compared with the wild-type and Tyr225-->Phe enzymes. The kinetic studies showed that Asn194 is not essential for AspAT catalysis, although the Kd values for the substrates were increased by 10- to 50-fold upon the replacement of Asn194. The measurements of the absorption and fluorescence excitation spectra revealed that the ratio of an enolimine to a ketoenamine form was considerably increased as a tautomeric form of the protonated PLP in the active site of the double mutant enzyme. The pH-pKd relationship for the binding of maleate to AspAT could be explained by a simple thermodynamic cycle where only one ionizing group (the imine nitrogen of the internal aldimine bond) affects the binding of maleate. The analyses of the pH-pKd curves for the wild-type and mutant enzymes showed that (i) the hydrogen bond between O(3') of PLP and Asn194 is weakened by the binding of maleate to AspAT, while the hydrogen bond between O(3') and Tyr225 is not changed, and that (ii) the replacement of Asn194 causes some effect hampering the binding of maleate.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. NH2Fe3O4@SiO2 supported peroxidase catalyzed H2O2 for degradation of endocrine disrupter from aqueous solution: Roles of active radicals and NOMs.

    PubMed

    Ai, Jing; Zhang, Weijun; Liao, Guiying; Xia, Hua; Wang, Dongsheng

    2017-11-01

    In this work, magnetic Fe 3 O 4 was utilized to immobilize horseradish peroxidase (IM-HRP) in order to improve its stability and reusability by crosslinking method process with glutaraldehyde. The physicochemical properties of NH 2 Fe 3 O 4 @SiO 2 and IM-HRP were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermo-gravimetric Analysis (TGA) and Transmission electron microscopy (TEM). The thermal stability of immobilized-HRP was considerably improved in comparison with free counterpart. The catalytic performance of IM-HRP for estrogens removal from aqueous solution was evaluated, it was found that the presence of natural organic matters (NOM) have no significant effects on E2 removal and the E2 enzyme-degradation reached around 80% when pH = 7.0 with 0.552 × 10 -3 ratio of IM-HRP/H 2 O 2. In addition, the active radicals responsible for estrogens degradation were identified with electro-spin resonance spectra (ESR). It was found that immobilization process on Fe 3 O 4 showed no adverse effects on catalytic performance on HRP, estrogens degradation could be fitted well with pseudo-second kinetic equation. Estrogens degradation efficiency was reduced in the presence of humic substances. Both O 2 - and OH were detected in IM-HRP catalyzed H 2 O 2 system and radicals quenching test indicated O 2 - played a more important role in estrogens removal. IM-HRP exhibited excellent stability and E2 removal efficiency could reach 45.41% after use seven times. Therefore, HRP enzymes immobilized on NH 2 Fe 3 O 4 @SiO 2 by cross-linking method in glutaraldehyde solutions was an effective way to improve stability and reusability of HRP, and which could avoid potential secondary pollution in water environment caused by free HRP after treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Enzyme/non-enzyme discrimination and prediction of enzyme active site location using charge-based methods.

    PubMed

    Bate, Paul; Warwicker, Jim

    2004-07-02

    Calculations of charge interactions complement analysis of a characterised active site, rationalising pH-dependence of activity and transition state stabilisation. Prediction of active site location through large DeltapK(a)s or electrostatic strain is relevant for structural genomics. We report a study of ionisable groups in a set of 20 enzymes, finding that false positives obscure predictive potential. In a larger set of 156 enzymes, peaks in solvent-space electrostatic properties are calculated. Both electric field and potential match well to active site location. The best correlation is found with electrostatic potential calculated from uniform charge density over enzyme volume, rather than from assignment of a standard atom-specific charge set. Studying a shell around each molecule, for 77% of enzymes the potential peak is within that 5% of the shell closest to the active site centre, and 86% within 10%. Active site identification by largest cleft, also with projection onto a shell, gives 58% of enzymes for which the centre of the largest cleft lies within 5% of the active site, and 70% within 10%. Dielectric boundary conditions emphasise clefts in the uniform charge density method, which is suited to recognition of binding pockets embedded within larger clefts. The variation of peak potential with distance from active site, and comparison between enzyme and non-enzyme sets, gives an optimal threshold distinguishing enzyme from non-enzyme. We find that 87% of the enzyme set exceeds the threshold as compared to 29% of the non-enzyme set. Enzyme/non-enzyme homologues, "structural genomics" annotated proteins and catalytic/non-catalytic RNAs are studied in this context.

  2. Microbial urate catabolism: characterization of HpyO, a non-homologous isofunctional isoform of the flavoprotein urate hydroxylase HpxO.

    PubMed

    Michiel, Magalie; Perchat, Nadia; Perret, Alain; Tricot, Sabine; Papeil, Aude; Besnard, Marielle; de Berardinis, Véronique; Salanoubat, Marcel; Fischer, Cécile

    2012-12-01

    In aerobic cells, urate is oxidized to 5-hydroxyisourate by two distinct enzymes: a coenzyme-independent urate oxidase (EC 1.7.3.3) found in eukaryotes and bacteria like Bacillus subtilis and a prokaryotic flavoprotein urate hydroxylase (HpxO) originally found in some Klebsiella species. More cases of analogous or non-homologous isofunctional enzymes (NISE) for urate catabolism have been hypothesized by inspecting bacterial genomes. Here, we used a functional complementation approach in which a candidate gene for urate oxidation is integrated by homologous recombination in the Acinetobacter baylyi ADP1 genome at the locus of its original hpxO gene. Catabolism of urate was restored in A. baylyi ADP1 expressing a FAD-dependent protein from Xanthomonas campestris, representing a new urate hydroxylase family that we called HpyO. This enzyme was kinetically characterized and compared with other HpxO enzymes. In contrast to the latter, HpyO is a typical Michaelian enzyme. This work provides the first experimental evidences for the function of HpyO in bacterial urate catabolism and establishes it as a NISE of HpxO. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Bioinspired construction of multi-enzyme catalytic systems.

    PubMed

    Shi, Jiafu; Wu, Yizhou; Zhang, Shaohua; Tian, Yu; Yang, Dong; Jiang, Zhongyi

    2018-06-18

    Enzyme catalysis, as a green, efficient process, displays exceptional functionality, adaptivity and sustainability. Multi-enzyme catalysis, which can accomplish the tandem synthesis of valuable materials/chemicals from renewable feedstocks, establishes a bridge between single-enzyme catalysis and whole-cell catalysis. Multi-enzyme catalysis occupies a unique and indispensable position in the realm of biological reactions for energy and environmental applications. Two complementary strategies, i.e., compartmentalization and substrate channeling, have been evolved by living organisms for implementing the complex in vivo multi-enzyme reactions (MERs), which have been applied to construct multi-enzyme catalytic systems (MECSs) with superior catalytic activity and stabilities in practical biocatalysis. This tutorial review aims to present the recent advances and future prospects in this burgeoning research area, stressing the features and applications of the two strategies for constructing MECSs and implementing in vitro MERs. The concluding remarks are presented with a perspective on the construction of MECSs through rational combination of compartmentalization and substrate channeling.

  4. Characterization of a beta 1----3-N-acetylglucosaminyltransferase associated with synthesis of type 1 and type 2 lacto-series tumor-associated antigens from the human colonic adenocarcinoma cell line SW403.

    PubMed

    Holmes, E H

    1988-01-01

    Previous studies have indicated that activation of a normally unexpressed beta 1----3-N-acetylglucosaminyltransferase is responsible for the accumulation of a wide diversity of both type 1 and 2 lacto-series antigens in human colonic adenocarcinomas. A beta 1----3-N-acetylglucosaminyltransferase has been solubilized from the human colonic adenocarcinoma cell line SW403 by 0.2% Triton X-100 and some of its properties have been studied. The enzyme was active over a broad pH range from 5.8 to 7.5 and had a strict requirement for Mn2+ as a divalent metal ion. Transfer of N-acetylglucosamine (GlcNAc) to lactosylceramide was optimal when assayed in the presence of a final concentration of Triton CF-54 of 0.3%. Inclusion of CDPcholine in the reaction mixture stimulated the activity by protecting the UDP[14C]GlcNAc from hydrolysis by endogenous enzymes. The kinetic parameters of the enzyme were studied. Km values for acceptors nLc4 and nLc6 were determined to be 0.19 mM for each. However, the Vmax values calculated for these acceptors were 150 and 110 pmol/h/mg protein for nLc4 and nLc6, respectively, suggesting reduced potential for further elongation as the chain length increases. The Km for UDPGlcNAc was determined to be 0.17 mM. Studies of the acceptor specificity have indicated transfer of GlcNAc occurs mainly to type 2 chain nonfucosylated structures. However, elongation of the type 1 chain structure Lc4 was also detected.

  5. Microbial extracellular enzymes in biogeochemical cycling of ecosystems.

    PubMed

    Luo, Ling; Meng, Han; Gu, Ji-Dong

    2017-07-15

    Extracellular enzymes, primarily produced by microorganisms, affect ecosystem processes because of their essential roles in degradation, transformation and mineralization of organic matter. Extracellular enzymes involved in the cycling of carbon (C), nitrogen (N) and phosphorus (P) have been widely investigated in many different ecosystems, and several enzymes have been recognized as key components in regulating C storage and nutrient cycling. In this review, it was the first time to summarize the specific extracellular enzymes related to C storage and nutrient cycling for better understanding the important role of microbial extracellular enzymes in biogeochemical cycling of ecosystems. Subsequently, ecoenzymatic stoichiometry - the relative ratio of extracellular enzyme, has been reviewed and further provided a new perspective for understanding biogeochemical cycling of ecosystems. Finally, the new insights of using microbial extracellular enzyme in indicating biogeochemical cycling and then protecting ecosystems have been suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Isolation, characterization, and structure analysis of a vacuolar processing enzyme gene (MhVPEγ) from Malus hupehensis (Pamp) Rehd.

    PubMed

    Ran, Kun; Yang, Hongqiang; Sun, Xiaoli; Li, Qiang; Jiang, Qianqian; Zhang, Weiwei; Shen, Wei

    2014-05-01

    Vacuolar processing enzymes (VPEs) have received considerable attention recently, as they exhibit caspase-1-like cleavage activity and regulate the process of PCD. However, knowledge about their detailed characteristics and structures is relatively limited. In this study, a gamma vacuolar processing enzyme gene, MhVPEγ, has been isolated from the leaves of Malus hupehensis (Ramp) Rehd. var pinyiensis Jiang. MhVPEγ coded-translated protein sequence comprised of 494 amino acids with a signal peptide and a transmembrane helix structure at N-terminal, peptidase_C13 domain, and vacuolar sorting signal at C-terminal. Consequently, genomic walking approach was performed for the isolation of its upstream sequence. Computational analysis demonstrated several motifs of the promoter exhibiting hypothetic MeJA, ABA, and light-induced characteristics, as well as some typical domains universally discovered in promoter, such as TATA-box and CAAT-box. MhVPEγ transcript level was enhanced during wounding treatment, and WUN-motif, as one of the cis-acting regulatory elements existing in the upstream sequence perhaps regulates its expression. In silico-constructed 3D models revealed that MhCPYL successively interacts with MhVPEγ like that of "Induced Fit-Lock and Key" model, providing molecular conformation evidence that CPY is a direct substrate of VPEγ. This study is the first stride to understand the molecular mechanism of VPEγ and CPYL interactions.

  7. A new amperometric enzyme electrode for alcohol determination.

    PubMed

    Gülce, H; Gülce, A; Kavanoz, M; Coşkun, H; Yildiz, A

    2002-06-01

    A new enzyme electrode for the determination of alcohols was developed by immobilizing alcohol oxidase in polvinylferrocenium matrix coated on a Pt electrode surface. The amperometric response due to the electrooxidation of enzymatically generated H(2)O(2) was measured at a constant potential of +0.70 V versus SCE. The effects of substrate, buffer and enzyme concentrations, pH and temperature on the response of the electrode were investigated. The optimum pH was found to be pH 8.0 at 30 degrees C. The steady-state current of this enzyme electrode was reproducible within +/-5.0% of the relative error. The sensitivity of the enzyme electrode decreased in the following order: methanol>ethanol>n-butanol>benzyl alcohol. The linear response was observed up to 3.7 mM for methanol, 3.0 mM for ethanol, 6.2 mM for n-butanol, and 5.2 mM for benzyl alcohol. The apparent Michaelis-Menten constant (K(Mapp)) value and the activation energy, E(a), of this immobilized enzyme system were found to be 5.78 mM and 38.07 kJ/mol for methanol, respectively.

  8. Reconstruction of cysteine biosynthesis using engineered cysteine-free enzymes.

    PubMed

    Fujishima, Kosuke; Wang, Kendrick M; Palmer, Jesse A; Abe, Nozomi; Nakahigashi, Kenji; Endy, Drew; Rothschild, Lynn J

    2018-01-29

    Amino acid biosynthesis pathways observed in nature typically require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine: serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase (CysK/CysM). To solve this chicken-and-egg problem, we substituted alternate amino acids in CysE, CysK and CysM for cysteine and methionine, which are the only two sulfur-containing proteinogenic amino acids. Using a cysteine-dependent auxotrophic E. coli strain, CysE function was rescued by cysteine-free and methionine-deficient enzymes, and CysM function was rescued by cysteine-free enzymes. CysK function, however, was not rescued in either case. Enzymatic assays showed that the enzymes responsible for rescuing the function in CysE and CysM also retained their activities in vitro. Additionally, substitution of the two highly conserved methionines in CysM decreased but did not eliminate overall activity. Engineering amino acid biosynthetic enzymes to lack the so-produced amino acids can provide insights into, and perhaps eventually fully recapitulate via a synthetic approach, the biogenesis of biotic amino acids.

  9. Effect of Zn2+ binding and enzyme active site on the transition state for RNA 2'-O-transphosphorylation interpreted through kinetic isotope effects.

    PubMed

    Chen, Haoyuan; Piccirilli, Joseph A; Harris, Michael E; York, Darrin M

    2015-11-01

    Divalent metal ions, due to their ability to stabilize high concentrations of negative charge, are important for RNA folding and catalysis. Detailed models derived from the structures and kinetics of enzymes and from computational simulations have been developed. However, in most cases the specific catalytic modes involving metal ions and their mechanistic roles and effects on transition state structures remain controversial. Valuable information about the nature of the transition state is provided by measurement of kinetic isotope effects (KIEs). However, KIEs reflect changes in all bond vibrational modes that differ between the ground state and transition state. QM calculations are therefore essential for developing structural models of the transition state and evaluating mechanistic alternatives. Herein, we present computational models for Zn2+ binding to RNA 2'O-transphosphorylation reaction models that aid in the interpretation of KIE experiments. Different Zn2+ binding modes produce distinct KIE signatures, and one binding mode involving two zinc ions is in close agreement with KIEs measured for non-enzymatic catalysis by Zn2+ aquo ions alone. Interestingly, the KIE signatures in this specific model are also very close to those in RNase A catalysis. These results allow a quantitative connection to be made between experimental KIE measurements and transition state structure and bonding, and provide insight into RNA 2'O-ransphosphorylation reactions catalyzed by metal ions and enzymes. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment. Copyright © 2015. Published by Elsevier B.V.

  10. Development of Activity-based Cost Functions for Cellulase, Invertase, and Other Enzymes

    NASA Astrophysics Data System (ADS)

    Stowers, Chris C.; Ferguson, Elizabeth M.; Tanner, Robert D.

    As enzyme chemistry plays an increasingly important role in the chemical industry, cost analysis of these enzymes becomes a necessity. In this paper, we examine the aspects that affect the cost of enzymes based upon enzyme activity. The basis for this study stems from a previously developed objective function that quantifies the tradeoffs in enzyme purification via the foam fractionation process (Cherry et al., Braz J Chem Eng 17:233-238, 2000). A generalized cost function is developed from our results that could be used to aid in both industrial and lab scale chemical processing. The generalized cost function shows several nonobvious results that could lead to significant savings. Additionally, the parameters involved in the operation and scaling up of enzyme processing could be optimized to minimize costs. We show that there are typically three regimes in the enzyme cost analysis function: the low activity prelinear region, the moderate activity linear region, and high activity power-law region. The overall form of the cost analysis function appears to robustly fit the power law form.

  11. Bioprocessing Data for the Production of Marine Enzymes

    PubMed Central

    Sarkar, Sreyashi; Pramanik, Arnab; Mitra, Anindita; Mukherjee, Joydeep

    2010-01-01

    This review is a synopsis of different bioprocess engineering approaches adopted for the production of marine enzymes. Three major modes of operation: batch, fed-batch and continuous have been used for production of enzymes (such as protease, chitinase, agarase, peroxidase) mainly from marine bacteria and fungi on a laboratory bioreactor and pilot plant scales. Submerged, immobilized and solid-state processes in batch mode were widely employed. The fed-batch process was also applied in several bioprocesses. Continuous processes with suspended cells as well as with immobilized cells have been used. Investigations in shake flasks were conducted with the prospect of large-scale processing in reactors. PMID:20479981

  12. Primary enzyme quantitation

    DOEpatents

    Saunders, G.C.

    1982-03-04

    The disclosure relates to the quantitation of a primary enzyme concentration by utilizing a substrate for the primary enzyme labeled with a second enzyme which is an indicator enzyme. Enzyme catalysis of the substrate occurs and results in release of the indicator enzyme in an amount directly proportional to the amount of primary enzyme present. By quantifying the free indicator enzyme one determines the amount of primary enzyme present.

  13. Converting Enzymes into Tools of Industrial Importance.

    PubMed

    Prasad, Shivcharan; Roy, Ipsita

    2018-01-01

    Enzymes have applications in numerous biotechnological products and processes that are commonly used in the production of food and beverages, cleaning supplies, clothing, paper products, transportation fuels, pharmaceuticals, and monitoring devices. Enzymes, however, are optimized to function under physiological conditions. Any change in reaction conditions results in their activity as well as stability being compromised. Hence, most of the natural biomolecules are not suitable for industrial applications. Modifications are required to develop efficient and successful reagents as per demand. Protein engineering can be applied to cope up with these situations. This review describes some of the novel uses/unusual properties of enzymes as biological catalysts. It explains the different ways in which enzymes can be and have been used under non-native conditions. Different strategies have been discussed regarding stabilization of enzyme as well optimum conditions of its uses in different industries. The following patents databases were consulted: European Patent Office (EPO), the United States Patent and Trademark Office (USPTO), Patent scope Search International and National Patent Collections (WIPO) and Google Patents. The review illustrates the width of the umbrella of applications covered by biocatalysts. Employing the tools of solvent and protein engineering, viz. non-aqueous media, additives, immobilization, mutagenesis, to name a few; biotechnology has been able to make enzyme catalyzed processes an essential components of the industrialist's armoury. The article lists a number of successful examples, both of patented technology as well as biocatalysts which are currently being used in the industry, to highlight the accomplishments of technologies which have been adopted till now for making enzyme technology industrially viable. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. A global characterization and identification of multifunctional enzymes.

    PubMed

    Cheng, Xian-Ying; Huang, Wei-Juan; Hu, Shi-Chang; Zhang, Hai-Lei; Wang, Hao; Zhang, Jing-Xian; Lin, Hong-Huang; Chen, Yu-Zong; Zou, Quan; Ji, Zhi-Liang

    2012-01-01

    Multi-functional enzymes are enzymes that perform multiple physiological functions. Characterization and identification of multi-functional enzymes are critical for communication and cooperation between different functions and pathways within a complex cellular system or between cells. In present study, we collected literature-reported 6,799 multi-functional enzymes and systematically characterized them in structural, functional, and evolutionary aspects. It was found that four physiochemical properties, that is, charge, polarizability, hydrophobicity, and solvent accessibility, are important for characterization of multi-functional enzymes. Accordingly, a combinational model of support vector machine and random forest model was constructed, based on which 6,956 potential novel multi-functional enzymes were successfully identified from the ENZYME database. Moreover, it was observed that multi-functional enzymes are non-evenly distributed in species, and that Bacteria have relatively more multi-functional enzymes than Archaebacteria and Eukaryota. Comparative analysis indicated that the multi-functional enzymes experienced a fluctuation of gene gain and loss during the evolution from S. cerevisiae to H. sapiens. Further pathway analyses indicated that a majority of multi-functional enzymes were well preserved in catalyzing several essential cellular processes, for example, metabolisms of carbohydrates, nucleotides, and amino acids. What's more, a database of known multi-functional enzymes and a server for novel multi-functional enzyme prediction were also constructed for free access at http://bioinf.xmu.edu.cn/databases/MFEs/index.htm.

  15. Enzyme-catalyzed cationic epoxide rearrangements in quinolone alkaloid biosynthesis.

    PubMed

    Zou, Yi; Garcia-Borràs, Marc; Tang, Mancheng C; Hirayama, Yuichiro; Li, Dehai H; Li, Li; Watanabe, Kenji; Houk, K N; Tang, Yi

    2017-03-01

    Epoxides are highly useful synthons and biosynthons for the construction of complex natural products during total synthesis and biosynthesis, respectively. Among enzyme-catalyzed epoxide transformations, a reaction that is notably missing, in regard to the synthetic toolbox, is cationic rearrangement that takes place under strong acid. This is a challenging transformation for enzyme catalysis, as stabilization of the carbocation intermediate upon epoxide cleavage is required. Here, we discovered two Brønsted acid enzymes that can catalyze two unprecedented epoxide transformations in biology. PenF from the penigequinolone pathway catalyzes a cationic epoxide rearrangement under physiological conditions to generate a quaternary carbon center, while AsqO from the aspoquinolone pathway catalyzes a 3-exo-tet cyclization to forge a cyclopropane-tetrahydrofuran ring system. The discovery of these new epoxide-modifying enzymes further highlights the versatility of epoxides in complexity generation during natural product biosynthesis.

  16. Production and purification of amylolytic enzymes for saccharification of microalgal biomass.

    PubMed

    Rodrigues, Éllen Francine; Ficanha, Aline Matuella Moreira; Dallago, Rogério Marcos; Treichel, Helen; Reinehr, Christian Oliveira; Machado, Tainara Paula; Nunes, Greice Borges; Colla, Luciane Maria

    2017-02-01

    The aim of this study was the production of amylolytic enzymes by solid state or submerged fermentations (SSF or SF, respectively), followed by purification using chemical process or microfiltration and immobilization of purified enzymes in a polyurethane support. The free and immobilized enzymes obtained were used to evaluate enzymatic hydrolysis of the polysaccharides of Spirulina. Microfiltration of the crude extracts resulted in an increase in their specific activity and thermal stability at 40°C and 50°C for 24h, as compared to extracts obtained by SSF and SF. Immobilization of polyurethane purified enzyme produced yields of 332% and 205% for the enzymes obtained by SF and SSF, respectively. Free or immobilized enzymes favor the generation of fermentable sugar, being the application of the purified and immobilized enzymes in the hydrolysis of microalgal polysaccharides considered a promising alternative towards development of the bioethanol production process from microalgal biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Molecular characterization of genes encoding trypsin-like enzymes from Aedes aegypti larvae and identification of digestive enzymes.

    PubMed

    Soares, Tatiane S; Watanabe, Renata M O; Lemos, Francisco J A; Tanaka, Aparecida S

    2011-12-10

    Trypsin-like enzymes play an important role in the Aedes aegypti digestive process. The trypsin-like enzymes present in adults were characterized previously, but little is known about trypsins in larvae. In the present work, we identified one of the trypsin enzymes from Ae. aegypti larval midgut using a library of trypsin gene fragments, which was the sequence known as AAEL005607 from the Ae. aegypti genome. Quantitative PCR analysis showed that AAEL005607 was transcribed in all larval instars, but it was not present in adult midgut. In order to confirm transcription data, the trypsin-like enzymes from 4th instar larvae of Ae. aegypti midgut were purified and sequenced. Purified trypsin showed identity with the amino-terminal sequence of AAEL005607, AAEL005609 and AAEL005614. These three trypsins have high amino acids identity, and could all be used as a template for the design of inhibitors. In conclusion, for the first time, digestive enzymes of 4th larval instar of Ae. aegypti were purified and characterized. The knowledge of digestive enzymes present in Ae. aegypti larvae may be helpful in the development of a larvicide. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Fabrication of assembled ZnO/TiO2 heterojunction thin film transistors using solution processing technique

    NASA Astrophysics Data System (ADS)

    Liau, Leo Chau-Kuang; Lin, Yun-Guo

    2015-01-01

    Ceramic-based metal-oxide-semiconductor (MOS) field-effect thin film transistors (TFTs), which were assembled by ZnO and TiO2 heterojunction films coated using solution processing technique, were fabricated and characterized. The fabrication of the device began with the preparation of ZnO and TiO2 films by spin coating. The ZnO and TiO2 films that were stacked together and annealed at 450 °C were characterized as a p-n junction diode. Two types of the devices, p-channel and n-channel TFTs, were produced using different assemblies of ZnO and TiO2 films. Results show that the p-channel TFTs (p-TFTs) and n-channel TFTs (n-TFTs) using the assemblies of ZnO and TiO2 films were demonstrated by source-drain current vs. drain voltage (IDS-VDS) measurements. Several electronic properties of the p- and n- TFTs, such as threshold voltage (Vth), on-off ratio, channel mobility, and subthreshold swing (SS), were determined by current-voltage (I-V) data analysis. The ZnO/TiO2-based TFTs can be produced using solution processing technique and an assembly approach.

  19. Microbial enzymes: industrial progress in 21st century.

    PubMed

    Singh, Rajendra; Kumar, Manoj; Mittal, Anshumali; Mehta, Praveen Kumar

    2016-12-01

    Biocatalytic potential of microorganisms have been employed for centuries to produce bread, wine, vinegar and other common products without understanding the biochemical basis of their ingredients. Microbial enzymes have gained interest for their widespread uses in industries and medicine owing to their stability, catalytic activity, and ease of production and optimization than plant and animal enzymes. The use of enzymes in various industries (e.g., food, agriculture, chemicals, and pharmaceuticals) is increasing rapidly due to reduced processing time, low energy input, cost effectiveness, nontoxic and eco-friendly characteristics. Microbial enzymes are capable of degrading toxic chemical compounds of industrial and domestic wastes (phenolic compounds, nitriles, amines etc.) either via degradation or conversion. Here in this review, we highlight and discuss current technical and scientific involvement of microorganisms in enzyme production and their present status in worldwide enzyme market.

  20. Enzyme Informatics

    PubMed Central

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  1. Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin.

    PubMed

    Delporte, Annelies; De Zaeytijd, Jeroen; De Storme, Nico; Azmi, Abdelkrim; Geelen, Danny; Smagghe, Guy; Guisez, Yves; Van Damme, Els J M

    2014-10-01

    The Nicotiana tabacum agglutinin or Nictaba is a nucleocytoplasmic lectin that is expressed in tobacco after the plants have been exposed to jasmonate treatment or insect herbivory. Nictaba specifically recognizes GlcNAc residues. Recently, it was shown that Nictaba is interacting in vitro with the core histone proteins from calf thymus. Assuming that plant histones - similar to their animal counterparts - undergo O-GlcNAcylation, this interaction presumably occurs through binding of the lectin to the O-GlcNAc modification present on the histones. Hereupon, the question was raised whether this modification also occurs in plants and if it is cell cycle dependent. To this end, histones were purified from tobacco BY-2 suspension cells and the presence of O-GlcNAc modifications was checked. Concomitantly, O-GlcNAcylation of histone proteins was studied. Our data show that similar to animal histones plant histones are modified by O-GlcNAc in a cell cycle-dependent fashion. In addition, the interaction between Nictaba and tobacco histones was confirmed using lectin chromatography and far Western blot analysis. Collectively these findings suggest that Nictaba can act as a modulator of gene transcription through its interaction with core histones. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Remarkable Transglycosylation Activity of Glycosynthase Mutants of Endo-D, an Endo-β-N-acetylglucosaminidase from Streptococcus pneumoniae*

    PubMed Central

    Fan, Shu-Quan; Huang, Wei; Wang, Lai-Xi

    2012-01-01

    Endo-β-N-acetylglucosaminidase from Streptococcus pneumoniae (Endo-D) is an endoglycosidase capable of hydrolyzing the Fc N-glycan of intact IgG antibodies after sequential removal of the sialic acid, galactose, and internal GlcNAc residues in the N-glycan. Endo-D also possesses transglycosylation activity with sugar oxazoline as the donor substrate, but the transglycosylation yield is low due to enzymatic hydrolysis of the donor substrate and the product. We report here our study on the hydrolytic and transglycosylation activity of recombinant Endo-D and its selected mutants. We found that Endo-D preferred core-fucosylated N-glycan for hydrolysis but favored nonfucosylated GlcNAc acceptor for transglycosylation. Several mutants showed significantly enhanced transglycosylation efficiency over the wild type enzyme. Two mutants (N322Q and N322A) were identified as typical glycosynthases that demonstrated remarkable transglycosylation activity with only marginal or no product hydrolysis activity. Kinetic studies revealed that the N332Q and N322A glycosynthases had much higher catalytic efficiency for glycosylating the nonfucosylated GlcNAc acceptor. In comparison, the N322Q was much more efficient than N322A for transglycosylation. However, N332Q and N332A could not take more complex N-glycan oxazoline as substrate for transglycosylation, indicating their strict substrate specificity. The usefulness of the N332Q glycosynthase was exemplified by its application for efficient glycosylation remodeling of IgG-Fc domain. PMID:22318728

  3. Solution-processed flexible NiO resistive random access memory device

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Jung; Lee, Heon; Hong, Sung-Hoon

    2018-04-01

    Non-volatile memories (NVMs) using nanocrystals (NCs) as active materials can be applied to soft electronic devices requiring a low-temperature process because NCs do not require a heat treatment process for crystallization. In addition, memory devices can be implemented simply by using a patterning technique using a solution process. In this study, a flexible NiO ReRAM device was fabricated using a simple NC patterning method that controls the capillary force and dewetting of a NiO NC solution at low temperature. The switching behavior of a NiO NC based memory was clearly observed by conductive atomic force microscopy (c-AFM).

  4. Microbial Enzyme Production Using Lignocellulosic Food Industry Wastes as Feedstock: A Review

    PubMed Central

    Ravindran, Rajeev; Jaiswal, Amit K.

    2016-01-01

    Enzymes are of great importance in the industry due to their substrate and product specificity, moderate reaction conditions, minimal by-product formation and high yield. They are important ingredients in several products and production processes. Up to 30% of the total production cost of enzymes is attributed to the raw materials costs. The food industry expels copious amounts of processing waste annually, which is mostly lignocellulosic in nature. Upon proper treatment, lignocellulose can replace conventional carbon sources in media preparations for industrial microbial processes, such as enzyme production. However, wild strains of microorganisms that produce industrially important enzymes show low yield and cannot thrive on artificial substrates. The application of recombinant DNA technology and metabolic engineering has enabled researchers to develop superior strains that can not only withstand harsh environmental conditions within a bioreactor but also ensure timely delivery of optimal results. This article gives an overview of the current complications encountered in enzyme production and how accumulating food processing waste can emerge as an environment-friendly and economically feasible solution for a choice of raw material. It also substantiates the latest techniques that have emerged in enzyme purification and recovery over the past four years. PMID:28952592

  5. Copper stressed anaerobic fermentation: biogas properties, process stability, biodegradation and enzyme responses.

    PubMed

    Hao, He; Tian, Yonglan; Zhang, Huayong; Chai, Yang

    2017-12-01

    The effect of copper (added as CuCl 2 ) on the anaerobic co-digestion of Phragmites straw and cow dung was studied in pilot experiments by investigating the biogas properties, process stability, substrate degradation and enzyme activities at different stages of mesophilic fermentation. The results showed that 30 and 100 mg/L Cu 2+ addition increased the cumulative biogas yields by up to 43.62 and 20.77% respectively, and brought forward the daily biogas yield peak, while 500 mg/L Cu 2+ addition inhibited biogas production. Meanwhile, the CH 4 content in the 30 and 100 mg/L Cu 2+ -added groups was higher than that in the control group. Higher pH values (close to pH 7) and lower oxidation-reduction potential (ORP) values in the Cu 2+ -added groups after the 8th day indicated better process stability compared to the control group. In the presence of Cu 2+ , the degradation of volatile fatty acids (VFAs) and other organic molecules (represented by chemical oxygen demand, COD) generated from hydrolysis was enhanced, and the ammonia nitrogen (NH 4 + -N) concentrations were more stable than in the control group. The contents of lignin and hemicellulose in the substrate declined in the Cu 2+ -added groups while the cellulose contents did not. Neither the cellulase nor the coenzyme F 420 activities could determine the biogas producing efficiency. Taking the whole fermentation process into account, the promoting effect of Cu 2+ addition on biogas yields was mainly attributable to better process stability, the enhanced degradation of lignin and hemicellulose, the transformation of intermediates into VFA, and the generation of CH 4 from VFA.

  6. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    PubMed

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  7. Modulation-Doped In2 O3 /ZnO Heterojunction Transistors Processed from Solution.

    PubMed

    Khim, Dongyoon; Lin, Yen-Hung; Nam, Sungho; Faber, Hendrik; Tetzner, Kornelius; Li, Ruipeng; Zhang, Qiang; Li, Jun; Zhang, Xixiang; Anthopoulos, Thomas D

    2017-05-01

    This paper reports the controlled growth of atomically sharp In 2 O 3 /ZnO and In 2 O 3 /Li-doped ZnO (In 2 O 3 /Li-ZnO) heterojunctions via spin-coating at 200 °C and assesses their application in n-channel thin-film transistors (TFTs). It is shown that addition of Li in ZnO leads to n-type doping and allows for the accurate tuning of its Fermi energy. In the case of In 2 O 3 /ZnO heterojunctions, presence of the n-doped ZnO layer results in an increased amount of electrons being transferred from its conduction band minimum to that of In 2 O 3 over the interface, in a process similar to modulation doping. Electrical characterization reveals the profound impact of the presence of the n-doped ZnO layer on the charge transport properties of the isotype In 2 O 3 /Li-ZnO heterojunctions as well as on the operating characteristics of the resulting TFTs. By judicious optimization of the In 2 O 3 /Li-ZnO interface microstructure, and Li concentration, significant enhancement in both the electron mobility and TFT bias stability is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Treatment of amoxicillin by O3/Fenton process in a rotating packed bed.

    PubMed

    Li, Mo; Zeng, Zequan; Li, Yingwen; Arowo, Moses; Chen, Jianfeng; Meng, Hong; Shao, Lei

    2015-03-01

    In this study, simulated amoxicillin wastewater was treated by the O3/Fenton process in a rotating packed bed (RPB) and the results were compared with the Fenton process and the O3 followed by Fenton (O3 + Fenton) process. The chemical oxygen demand (COD) removal rate and the ratio of 5-day biological oxygen demand to chemical oxygen demand (BOD5/COD) in the O3/Fenton process were approximately 17% and 26%, respectively, higher than those in the O3 + Fenton process with an initial pH of 3. The COD removal rate of the amoxicillin solution reached maximum at the Fe(II) concentration of 0.6 mM, temperature of 25 °C, rotation speed of 800 rpm and initial pH of 3. The BOD5/COD of the amoxicillin solution increased from 0 to 0.38 after the solution was treated by the O3/Fenton process. Analysis of the intermediates indicated that the pathway of amoxicillin degradation in the O3/Fenton process was similar to that in the O3 + Fenton process. Contrast experiment results showed that amoxicillin degradation was significantly intensified in the RPB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass.

    PubMed

    Manisha; Yadav, Sudesh Kumar

    2017-12-01

    Hydrolytic enzymes are indispensable tools in the production of various foodstuffs, drugs, and consumables owing to their applications in almost every industrial process nowadays. One of the foremost areas of interest involving the use of hydrolytic enzymes is in the transformation of lignocellulosic biomass into value added products. However, limitations of the processes due to inadequate enzyme activity and stability with a narrow range of pH and temperature optima often limit their effective usage. The innovative technologies, involving manipulation of enzyme activity and stability through mutagenesis, genetic engineering and metagenomics lead to a major leap in all the fields using hydrolytic enzymes. This article provides recent advancement towards the isolation and use of microbes for lignocellulosic biomass utilisation, microbes producing the hydrolytic enzymes, the modern age technologies used to manipulate and enhance the hydrolytic enzyme activity and the applications of such enzymes in value added products development from lignocellulosic biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Structures of ribonucleoprotein particle modification enzymes

    PubMed Central

    Liang, Bo; Li, Hong

    2016-01-01

    Small nucleolar and Cajal body ribonucleoprotein particles (RNPs) are required for the maturation of ribosomes and spliceosomes. They consist of small nucleolar RNA or Cajal body RNA combined with partner proteins and represent the most complex RNA modification enzymes. Recent advances in structure and function studies have revealed detailed information regarding ribonucleoprotein assembly and substrate binding. These enzymes form intertwined RNA–protein assemblies that facilitate reversible binding of the large ribosomal RNA or small nuclear RNA. These revelations explain the specificity among the components in enzyme assembly and substrate modification. The multiple conformations of individual components and those of complete RNPs suggest a dynamic assembly process and justify the requirement of many assembly factors in vivo. PMID:21108865

  11. The N-glycan processing enzymes α-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum

    PubMed Central

    Ghosh, Sumit; Meli, Vijaykumar S.; Kumar, Anil; Thakur, Archana; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2011-01-01

    Excessive softening of fruits during the ripening process leads to deterioration. This is of significant global importance as softening-mediated deterioration leads to huge postharvest losses. N-glycan processing enzymes are reported to play an important role during climacteric fruit softening: however, to date these enzymes have not been characterized in non-climacteric fruit. Two ripening-specific N-glycan processing enzymes, α-mannosidase (α-Man) and β-D-N-acetylhexosaminidase (β-Hex), have been identified and targeted to enhance the shelf life in non-climacteric fruits such as capsicum (Capsicum annuum). The purification, cloning, and functional characterization of α-Man and β-Hex from capsicum, which belong to glycosyl hydrolase (GH) families 38 and 20, respectively, are described here. α-Man and β-Hex are cell wall glycoproteins that are able to cleave terminal α-mannose and β-D-N-acetylglucosamine residues of N-glycans, respectively. α-Man and β-Hex transcripts as well as enzyme activity increase with the ripening and/or softening of capsicum. The function of α-Man and β-Hex in capsicum softening is investigated through RNA interference (RNAi) in fruits. α-Man and β-Hex RNAi fruits were approximately two times firmer compared with the control and fruit deterioration was delayed by approximately 7 d. It is shown that silencing of α-Man and β-Hex enhances fruit shelf life due to the reduced degradation of N-glycoproteins which resulted in delayed softening. Altogether, the results provide evidence for the involvement of N-glycan processing in non-climacteric fruit softening. In conclusion, genetic engineering of N-glycan processing can be a common strategy in both climacteric and non-climacteric species to reduce the post-harvest crop losses. PMID:21030387

  12. Effects of frying oil and Houttuynia cordata thunb on xenobiotic-metabolizing enzyme system of rodents

    PubMed Central

    Chen, Ya-Yen; Chen, Chiao-Ming; Chao, Pi-Yu; Chang, Tsan-Ju; Liu, Jen-Fang

    2005-01-01

    AIM: To evaluate the effects of frying oil and Houttuynia cordata Thunb (H. cordata), a vegetable traditionally consumed in Taiwan, on the xenobiotic-metabolizing enzyme system of rodents. METHODS: Forty-eight Sprague-Dawley rats were fed with a diet containing 0%, 2% or 5% H. cordata powder and 15% fresh soybean oil or 24-h oxidized frying oil (OFO) for 28 d respectively. The level of microsomal protein, total cytochrome 450 content (CYP450) and enzyme activities including NADPH reductase, ethoxyresorufin O-deethylase (EROD), pentoxyresorufin O-dealkylase (PROD), aniline hydroxylase (ANH), aminopyrine demethylase (AMD), and quinone reductase (QR) were determined. QR represented phase II enzymes, the rest of the enzymes tested represented phase I enzymes. RESULTS: The oxidized frying oil feeding produced a significant increase in phase I and II enzyme systems, including the content of CYP450 and microsomal protein, and the activities of NADPH reductase, EROD, PROD, ANH, AMD and QR in rats (P<0.05). In addition, the activities of EROD, ANH and AMD decreased and QR increased after feeding with H. cordata in OFO-fed group (P<0.05). The feeding with 2% H. cordata diet showed the most significant effect. CONCLUSION: The OFO diet induces phases I and II enzyme activity, and the 2% H. cordata diet resulted in a better regulation of the xenobiotic-metabolizing enzyme system. PMID:15637750

  13. Kinetics of leather dyeing pretreated with enzymes: role of acid protease.

    PubMed

    Kanth, Swarna Vinodh; Venba, Rajangam; Jayakumar, Gladstone Christopher; Chandrababu, Narasimhan Kannan

    2009-04-01

    In the present investigation, kinetics of dyeing involving pretreatment with acid protease has been presented. Application of acid protease in dyeing process resulted in increased absorption and diffusion of dye into the leather matrix. Enzyme treatment at 1% concentration, 60 min duration and 50 degrees C resulted in maximum of 98% dye exhaustion and increased absorption rate constants. The final exhaustion (C(infinity)) for the best fit of CI Acid Black 194 dye has been 98.5% with K and r2 values from the modified Cegarra-Puente isotherm as 0.1033 and 0.0631. CI Acid Black 194 being a 2:1 metal complex acid dye exhibited higher absorption rate than the acid dye CI Acid Black 210. A reduction in 50% activation energy calculated from Arrhenius equation has been observed in enzyme assisted dyeing process of both the dyes that substantiates enhanced dye absorption. The absorption rate constant calculated with modified Cegarra-Puente equation confirm higher rate constants and faster kinetics for enzyme assisted dyeing process. Enzyme treated leather exhibited richness of color and shade when compared with control. The present study substantiates the essential role of enzyme pretreatment as an eco-friendly leather dyeing process.

  14. Comparison of photo-Fenton, O3/H2O2/UV and photocatalytic processes for the treatment of gray water.

    PubMed

    Hassanshahi, Nahid; Karimi-Jashni, Ayoub

    2018-06-21

    This research was carried out to compare and optimize the gray water treatment performance by the photo-Fenton, photocatalysis and ozone/H 2 O 2 /UV processes. Experimental design and optimization were carried out using Central Composite Design of Response Surface Methodology. The results of experiments showed that the most effective and influencing factors in photo-Fenton process were H 2 O 2 /Fe 2+ ratio, in ozone/H 2 O 2 /UV experiment were O 3 concentration, H 2 O 2 concentration, reaction time and pH and in photocatalytic process were TiO 2 concentration, pH and reaction time. The highest COD removal in photo-Fenton, ozone/H 2 O 2 /UV and photocatalytic process were 90%, 92% and 55%, respectively. The results were analyzed by design expert software and for all three processes second-order models were proposed to simulate the COD removal efficiency. In conclusion the ozone/H 2 O 2 /UV process is recommended for the treatment of gray water, since it was able to remove both COD and turbidity by 92% and 93%, respectively. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. De Novo Enzyme Design Using Rosetta3

    PubMed Central

    Richter, Florian; Leaver-Fay, Andrew; Khare, Sagar D.; Bjelic, Sinisa; Baker, David

    2011-01-01

    The Rosetta de novo enzyme design protocol has been used to design enzyme catalysts for a variety of chemical reactions, and in principle can be applied to any arbitrary chemical reaction of interest, The process has four stages: 1) choice of a catalytic mechanism and corresponding minimal model active site, 2) identification of sites in a set of scaffold proteins where this minimal active site can be realized, 3) optimization of the identities of the surrounding residues for stabilizing interactions with the transition state and primary catalytic residues, and 4) evaluation and ranking the resulting designed sequences. Stages two through four of this process can be carried out with the Rosetta package, while stage one needs to be done externally. Here, we demonstrate how to carry out the Rosetta enzyme design protocol from start to end in detail using for illustration the triosephosphate isomerase reaction. PMID:21603656

  16. Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase.

    PubMed

    Muruganandam, Gopinath; Raasakka, Arne; Myllykoski, Matti; Kursula, Inari; Kursula, Petri

    2017-05-16

    Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5'-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). We employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering. We provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain.

  17. Characterisation of a starch-hydrolysing enzyme of Aspergillus niger.

    PubMed

    Suresh, C; Dubey, A K; Srikanta, S; Kumar, S U; Karanth, N G

    1999-05-01

    A UV-induced mutant strain of Aspergillus niger (CFTRI-1105-U9) overproduced a starch-hydrolysing enzyme with properties characteristically different from the known amylases of the fungus. The purified enzyme of 4.0 pI had an apparent molecular mass of 125 kDa and it dextrinised starch and then saccharified the dextrins. Patterns of the enzyme activity on starch, resulting in glucose at 60 degrees C and glucose, maltose and maltodextrins at 70 degrees C as primary products, suggested significant applications for the enzyme in starch-processing industries.

  18. The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective

    PubMed Central

    Ducluzeau, Anne-Lise; Schoepp-Cothenet, Barbara; van Lis, Robert; Baymann, Frauke; Russell, Michael J.; Nitschke, Wolfgang

    2014-01-01

    Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes. PMID:24968694

  19. The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective.

    PubMed

    Ducluzeau, Anne-Lise; Schoepp-Cothenet, Barbara; van Lis, Robert; Baymann, Frauke; Russell, Michael J; Nitschke, Wolfgang

    2014-09-06

    Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Structure, function, and engineering of enzymes in isoflavonoid biosynthesis.

    PubMed

    Wang, Xiaoqiang

    2011-03-01

    Isoflavonoids are a large group of plant natural products and play important roles in plant defense. They also possess valuable health-promoting activities with significant health benefits for animals and humans. The isoflavonoids are identified primarily in leguminous plants and are synthesized through the central phenylpropanoid pathway and the specific isoflavonoid branch pathways in legumes. Structural studies of some key enzymes in the central phenylpropanoid pathway shed light on the early stages of the (iso)flavonoid biosynthetic process. Significant impact has also been made on structural studies of enzymes in the isoflavonoid branch pathways. Structures of isoflavonoid-specific NADPH-dependent reductases revealed how the (iso)flavonoid backbones are modified by reduction reactions and how enzymes specifically recognize isoflavonoids and catalyze stereo-specific reductions. Structural studies of isoflavonoid methyltransferases and glycosyltransferases revealed how isoflavonoids are further decorated with methyl group and sugars in different methylation and glycosylation patterns that determine their bioactivities and functions. In combination with mutagenesis and biochemical studies, the detailed structural information of these enzymes provides a basis for understanding the complex biosynthetic process, enzyme catalytic mechanisms, and substrate specificities. Structure-based homology modeling facilitates the functional characterization of these large groups of biosynthetic enzymes and their homologs. Structure-based enzyme engineering is becoming a new strategy for synthesis of bioactive isoflavonoids and also facilitates plant metabolic engineering towards improvement of quality and production of crop plants.

  1. Enhancement of proteolytic enzyme activity excreted from Bacillus stearothermophilus for a thermophilic aerobic digestion process.

    PubMed

    Kim, Young-Kee; Bae, Jin-Hye; Oh, Byung-Keun; Lee, Won Hong; Choi, Jeong-Woo

    2002-04-01

    Proteolysis is one of the main enzymatic reactions involved in waste activated sludge (WAS) digestion. In this study, proteases excreted from Bacillus stearothermophilus (ATCC 31197) were classified, and an enhancement of protease activity was achieved using economical chemical additives for WAS digestion. Proteases excreted from B. stearothermophilus were classified into two families: serine and metallo-proteases. Various metal ions were investigated as additives which could potentially enhance protease activity. It was observed that Ca2+ and Fe2+ could markedly activate these enzymes. These results were applied to thermophilic aerobic digestion (TAD) of industrial WAS using B. stearothermophilus. The addition of these divalent ions enhanced the degradation performance of the TAD process in terms of reducing the total suspended solids (TSSs), the dissolved organic carbon (DOC) content, and the intracellular and extracellular protein concentrations. The best result, with respect to protein reduction in a digestion experiment, was obtained by the addition of 2 mM Ca2+. Therefore, a proposed TAD process activated by calcium addition can be successfully used for industrial and municipal WAS digestion to the upgrading of TAD process performance.

  2. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    NASA Astrophysics Data System (ADS)

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-11-01

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 °C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  3. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area.

    PubMed

    Ciarkowska, Krystyna; Sołek-Podwika, Katarzyna; Wieczorek, Jerzy

    2014-01-01

    The activities of soil enzymes in relation to the changes occurring in the soil on a degraded area in southern Poland after zinc and lead mining were analyzed. An evaluation of the usefulness of urease and invertase activities for estimating the progress of the rehabilitation processes in degraded soil was performed. The data show that the soil samples differed significantly in organic carbon (0.68-104.0 g kg(-1)) and total nitrogen (0.03-8.64 g kg(-1)) content in their surface horizons. All of the soil samples (apart from one covered with forest) had very high total concentrations of zinc (4050-10,884 mg kg(-1)), lead (959-6661 mg kg(-1)) and cadmium (24.4-174.3 mg kg(-1)) in their surface horizons, and similar concentrations in their deeper horizons. Nevertheless, the amounts of the soluble forms of the above-mentioned heavy metals were quite low and they accounted for only a small percentage of the total concentrations: 1.4% for Zn, 0.01% for Pb and 2.6% for Cd. Urease activities were ranked as follows: soil from flotation settler (0.88-1.78 μg N-NH4(+) 2h(-1) g(-1))enzyme reactions occurring in slightly acidic or alkaline soil conditions. Under such conditions, heavy metals occur mainly in insoluble forms. The activities of these enzymes are strongly dependent on the content and decomposition of organic matter in the soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Mucin-Type O-Glycosylation in Invertebrates.

    PubMed

    Staudacher, Erika

    2015-06-09

    O-Glycosylation is one of the most important posttranslational modifications of proteins. It takes part in protein conformation, protein sorting, developmental processes and the modulation of enzymatic activities. In vertebrates, the basics of the biosynthetic pathway of O-glycans are already well understood. However, the regulation of the processes and the molecular aspects of defects, especially in correlation with cancer or developmental abnormalities, are still under investigation. The knowledge of the correlating invertebrate systems and evolutionary aspects of these highly conserved biosynthetic events may help improve the understanding of the regulatory factors of this pathway. Invertebrates display a broad spectrum of glycosylation varieties, providing an enormous potential for glycan modifications which may be used for the design of new pharmaceutically active substances. Here, overviews of the present knowledge of invertebrate mucin-type O-glycan structures and the currently identified enzymes responsible for the biosynthesis of these oligosaccharides are presented, and the few data dealing with functional aspects of O-glycans are summarised.

  5. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-03-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  6. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study.

    PubMed

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-12-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  7. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process.

    PubMed

    Madhuvilakku, Rajesh; Piraman, Shakkthivel

    2013-12-01

    Biodiesel is a promising alternating environmentally benign fuel to mineral diesel. For the development of easier transesterification process, stable and active heterogeneous mixed metal oxide of TiO2-ZnO and ZnO nanocatalysts were synthesized and exploited for the palm oil transesterification process. The synthesized catalysts were characterized by XRD, FT-IR, and FE-SEM studies for their structural and morphological characteristics. It was found that TiO2-ZnO nanocatalyst exhibits good catalytic activity and the catalytic performance was greatly depends on (i) catalyst concentration (ii) methanol to oil molar ratio (iii) reaction temperature and (iv) reaction time. A highest 98% of conversion was obtained at the optimum reaction parameters with 200 mg of catalyst loading and the biodiesel was analyzed by TLC and (1)H NMR techniques. The TiO2-ZnO nanocatalyst shows good catalytic performance over the ZnO catalyst, which could be a potential candidate for the large-scale biodiesel production from palm oil at the reduced temperature and time. Copyright © 2013. Published by Elsevier Ltd.

  8. Fe3O4/SiO2-g-PSStNa polymer nanocomposite microspheres (PNCMs) from a surface-initiated atom transfer radical polymerization (SI-ATRP) approach for pectinase immobilization.

    PubMed

    Lei, Zhongli; Ren, Na; Li, Yanli; Li, Na; Mu, Bo

    2009-02-25

    Polymer nanocomposite microspheres (PNCMs) as solid supports can improve the efficiency of immobilized enzymes by reducing diffusional limitation as well as by increasing the surface area per mass unit. In this work, pectinase was immobilized on Fe(3)O(4)/SiO2-g-poly(PSStNa) nanocomposite microspheres by covalent attachment. Biochemical studies showed an improved storage stability of the immobilized pectinase as well as enhanced performance at higher temperatures and over a wider pH range. The immobilized enzyme retained >50% of its initial activity over 30 days, and the optimum temperature and pH also increased to the ranges of 50-60 degrees C and 3.0-4.7, respectively. The kinetics of a model reaction catalyzed by the immobilized pectinase was finally investigated by the Michaelis-Menten equation. The PSStNa support presents a very simple, mild, and time-saving process for enzyme immobilization, and this strategy of immobilizing pectinase also makes use of expensive enzymes economically viable, strengthening repeated use of them as catalysts following their rapid and easy separation with a magnet.

  9. Mycoplasma bovis NADH oxidase functions as both a NADH oxidizing and O2 reducing enzyme and an adhesin.

    PubMed

    Zhao, Gang; Zhang, Hui; Chen, Xi; Zhu, Xifang; Guo, Yusi; He, Chenfei; Anwar Khan, Farhan; Chen, Yingyu; Hu, Changmin; Chen, Huanchun; Guo, Aizhen

    2017-03-03

    Mycoplasma bovis causes considerable economic losses in the cattle industry worldwide. In mycoplasmal infections, adhesion to the host cell is of the utmost importance. In this study, the amino acid sequence of NOX was predicted to have enzymatic domains. The nox gene was then cloned and expressed in Escherichia coli. The enzymatic activity of recombinant NOX (rNOX) was confirmed based on its capacity to oxidize NADH to NAD + and reduce O 2 to H 2 O 2 . The adherence of rNOX to embryonic bovine lung (EBL) cells was confirmed with confocal laser scanning microscopy, enzyme-linked immunosorbent assay, and flow cytometry. Both preblocking EBL cells with purified rNOX and preneutralizing M. bovis with polyclonal antiserum to rNOX significantly reduced the adherence of M. bovis to EBL cells. Mycoplasma bovis NOX- expressed a truncated NOX protein at a level 10-fold less than that of the wild type. The capacities of M. bovis NOX- for cell adhesion and H 2 O 2 production were also significantly reduced. The rNOX was further used to pan phage displaying lung cDNA library and fibronectin was determined to be potential ligand. In conclusion, M. bovis NOX functions as both an active NADH oxidase and adhesin, and is therefore a potential virulence factor.

  10. Enzyme-assisted extraction of bioactives from plants.

    PubMed

    Puri, Munish; Sharma, Deepika; Barrow, Colin J

    2012-01-01

    Demand for new and novel natural compounds has intensified the development of plant-derived compounds known as bioactives that either promote health or are toxic when ingested. Enhanced release of these bioactives from plant cells by cell disruption and extraction through the cell wall can be optimized using enzyme preparations either alone or in mixtures. However, the biotechnological application of enzymes is not currently exploited to its maximum potential within the food industry. Here, we discuss the use of environmentally friendly enzyme-assisted extraction of bioactive compounds from plant sources, particularly for food and nutraceutical purposes. In particular, we discuss an enzyme-assisted extraction of stevioside from Stevia rebaudiana, as an example of a process of potential value to the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Archaeal Enzymes and Applications in Industrial Biocatalysts

    PubMed Central

    Littlechild, Jennifer A.

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches. PMID:26494981

  12. A class III chitinase without disulfide bonds from the fern, Pteris ryukyuensis: crystal structure and ligand-binding studies.

    PubMed

    Kitaoku, Yoshihito; Umemoto, Naoyuki; Ohnuma, Takayuki; Numata, Tomoyuki; Taira, Toki; Sakuda, Shohei; Fukamizo, Tamo

    2015-10-01

    We first solved the crystal structure of class III catalytic domain of a chitinase from fern (PrChiA-cat), and found a structural difference between PrChiA-cat and hevamine. PrChiA-cat was found to have reduced affinities to chitin oligosaccharides and allosamidin. Plant class III chitinases are subdivided into enzymes with three disulfide bonds and those without disulfide bonds. We here referred to the former enzymes as class IIIa chitinases and the latter as class IIIb chitinases. In this study, we solved the crystal structure of the class IIIb catalytic domain of a chitinase from the fern Pteris ryukyuensis (PrChiA-cat), and compared it with that of hevamine, a class IIIa chitinase from Hevea brasiliensis. PrChiA-cat was found to adopt an (α/β)8 fold typical of GH18 chitinases in a similar manner to that of hevamine. However, PrChiA-cat also had two large loops that extruded from the catalytic site, and the corresponding loops in hevamine were markedly smaller than those of PrChiA-cat. An HPLC analysis of the enzymatic products revealed that the mode of action of PrChiA-cat toward chitin oligosaccharides, (GlcNAc) n (n = 4-6), differed from those of hevamine and the other class IIIa chitinases. The binding affinities of (GlcNAc)3 and (GlcNAc)4 toward the inactive mutant of PrChiA-cat were determined by isothermal titration calorimetry, and were markedly lower than those toward other members of the GH18 family. The affinity and the inhibitory activity of allosamidin toward PrChiA-cat were also lower than those toward the GH18 chitinases investigated to date. Several hydrogen bonds found in the crystal structure of hevamine-allosamidin complex were missing in the modeled structure of PrChiA-cat-allosamidin complex. The structural findings for PrChiA-cat successfully interpreted the functional data presented.

  13. Evidence for core 2 to core 1 O-glycan remodeling during the recycling of MUC1

    PubMed Central

    Razawi, Hanieh; Kinlough, Carol L; Staubach, Simon; Poland, Paul A; Rbaibi, Youssef; Weisz, Ora A; Hughey, Rebecca P; Hanisch, Franz-Georg

    2013-01-01

    The apical transmembrane glycoprotein MUC1 is endocytosed to recycle through the trans-Golgi network (TGN) or Golgi complex to the plasma membrane. We followed the hypothesis that not only the known follow-up sialylation of MUC1 in the TGN is associated with this process, but also a remodeling of O-glycan core structures, which would explain the previously described differential core 2- vs core 1-based O-glycosylation of secreted, single Golgi passage and recycling membrane MUC1 isoforms (Engelmann K, Kinlough CL, Müller S, Razawi H, Baldus SE, Hughey RP, Hanisch F-G. 2005. Glycobiology. 15:1111–1124). Transmembrane and secreted MUC1 probes show trafficking-dependent changes in O-glycan core profiles. To address this novel observation, we used recombinant epitope-tagged MUC1 (MUC1-M) and mutant forms with abrogated clathrin-mediated endocytosis (MUC1-M-Y20,60N) or blocked recycling (palmitoylation-defective MUC1-M-CQC/AQA). We show that the CQC/AQA mutant transits the TGN at significantly lower levels, concomitant with a strongly reduced shedding from the plasma membrane and its accumulation in endosomal compartments. Intriguingly, the O-glycosylation of the shed MUC1 ectodomain subunit changes from preponderant sialylated core 1 (MUC1-M) to core 2 glycans on the non-recycling CQC/AQA mutant. The O-glycoprofile of the non-recycling CQC/AQA mutant resembles the core 2 glycoprofile on a secretory MUC1 probe that transits the Golgi complex only once. In contrast, the MUC1-M-Y20,60N mutant recycles via flotillin-dependent pathways and shows the wild-type phenotype with dominant core 1 expression. Differential radiolabeling of protein with [35S]Met/Cys or glycans with [3H]GlcNH2 in pulse-chase experiments of surface biotinylated MUC1 revealed a significantly shorter half-life of [3H]MUC1 when compared with [35S]MUC1, whereas the same ratio for the CQC/AQA mutant was close to one. This finding further supports the novel possibility of a recycling-associated O

  14. MicroRNA-200a/200b Modulate High Glucose-Induced Endothelial Inflammation by Targeting O-linked N-Acetylglucosamine Transferase Expression.

    PubMed

    Lo, Wan-Yu; Yang, Wen-Kai; Peng, Ching-Tien; Pai, Wan-Yu; Wang, Huang-Joe

    2018-01-01

    Background and Aims: Increased O -linked N -acetylglucosamine ( O -GlcNAc) modification of proteins by O -GlcNAc transferase (OGT) is associated with diabetic complications. Furthermore, oxidative stress promotes endothelial inflammation during diabetes. A previous study reported that microRNA-200 (miR-200) family members are sensitive to oxidative stress. In this study, we examined whether miR-200a and miR-200b regulate high-glucose (HG)-induced OGT expression in human aortic endothelial cells (HAECs) and whether miRNA-200a/200b downregulate OGT expression to control HG-induced endothelial inflammation. Methods: HAECs were stimulated with high glucose (25 mM) for 12 and 24 h. Real-time polymerase chain reaction (PCR), western blotting, THP-1 adhesion assay, bioinformatics predication, transfection of miR-200a/200b mimic or inhibitor, luciferase reporter assay, and transfection of siRNA OGT were performed. The aortic endothelium of db/db diabetic mice was evaluated by immunohistochemistry staining. Results: HG upregulated OGT mRNA and protein expression and protein O -GlcNAcylation levels (RL2 antibody) in HAECs, and showed increased intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion. Bioinformatics analysis revealed homologous sequences between members of the miR-200 family and the 3'-untranslated region (3'-UTR) of OGT mRNA, and real-time PCR analysis confirmed that members of miR-200 family were significantly decreased in HG-stimulated HAECs. This suggests the presence of an impaired feedback restraint on HG-induced endothelial protein O -GlcNAcylation levels because of OGT upregulation. A luciferase reporter assay demonstrated that miR-200a/200b mimics bind to the 3'-UTR of OGT mRNA. Transfection with miR-200a/200b mimics significantly inhibited HG-induced OGT mRNA expression, OGT protein expression; protein O -GlcNAcylation levels; ICAM-1, VCAM-1, and E

  15. The enzymes associated with denitrification

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1988-01-01

    The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.

  16. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    PubMed

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  17. Energetic aspects of the light activation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase.

    PubMed

    Miginiac-Maslow, M; Jacquot, J P; Droux, M

    1985-09-01

    The light energy requirements for photoactivation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase were studied in a reconstituted chloroplast system. This system comprised isolated pea thylakoids, ferredoxin (Fd), ferredoxin-thioredoxin reductase (FTR) thioredoxinm and f (Tdm, Tdf) and the photoactivatable enzyme. Light-saturation curves of the photoactivation process were established with once washed thylakoids which did not require the addition of Td for light activation. They exhibited a plateau at 10 W·m(-2) under nitrogen and 50 W·m(-2) under air, while NADP photoreduction was saturated at 240 W·m(-2). Cyclic and pseudocyclic phosphorylations saturated at identical levels as enzyme photoactivations. All these observations suggested that the shift of the light saturation plateau towards higher values under air was due to competing oxygen-dependent reactions. With twice washed thylakoids, which required Td for enzyme light-activation, photophosphorylation was stimulated under N2 by the addition of the components of the photoactivation system. Its rate increased with increasing Td concentrations, just as did the enzyme photoactivation rate, while varying the target enzyme concentration had only a weak effect. Considering that Td concentrations were in a large excess over target enzyme concentrations, it may be assumed that the observed ATP synthesis was essentially dependent on the rate of Td reduction.Under air, Fd-dependent pseudo-cyclic photophosphorylation was not stimulated by the addition of the other enzyme photoactivation components, suggesting that an important site of action of O2 was located at the level of Fd.

  18. EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step

    PubMed Central

    Ninagawa, Satoshi; Okada, Tetsuya; Sumitomo, Yoshiki; Kamiya, Yukiko; Kato, Koichi; Horimoto, Satoshi; Ishikawa, Tokiro; Takeda, Shunichi; Sakuma, Tetsushi; Yamamoto, Takashi

    2014-01-01

    Glycoproteins misfolded in the endoplasmic reticulum (ER) are subjected to ER-associated glycoprotein degradation (gpERAD) in which Htm1-mediated mannose trimming from the oligosaccharide Man8GlcNAc2 to Man7GlcNAc2 is the rate-limiting step in yeast. In contrast, the roles of the three Htm1 homologues (EDEM1/2/3) in mammalian gpERAD have remained elusive, with a key controversy being whether EDEMs function as mannosidases or as lectins. We therefore conducted transcription activator-like effector nuclease–mediated gene knockout analysis in human cell line and found that all endogenous EDEMs possess mannosidase activity. Mannose trimming from Man8GlcNAc2 to Man7GlcNAc2 is performed mainly by EDEM3 and to a lesser extent by EDEM1. Most surprisingly, the upstream mannose trimming from Man9GlcNAc2 to Man8GlcNAc2 is conducted mainly by EDEM2, which was previously considered to lack enzymatic activity. Based on the presence of two rate-limiting steps in mammalian gpERAD, we propose that mammalian cells double check gpERAD substrates before destruction by evolving EDEM2, a novel-type Htm1 homologue that catalyzes the first mannose trimming step from Man9GlcNAc2. PMID:25092655

  19. Characterization of the human cytochrome P450 enzymes involved in the metabolism of dihydrocodeine

    PubMed Central

    Kirkwood, L. C.; Nation, R. L.; Somogyi, A. A.

    1997-01-01

    Aims Using human liver microsomes from donors of the CYP2D6 poor and extensive metabolizer genotypes, the role of individual cytochromes P-450 in the oxidative metabolism of dihydrocodeine was investigated. Methods The kinetics of formation of N- and O-demethylated metabolites, nordihydrocodeine and dihydromorphine, were determined using microsomes from six extensive and one poor metabolizer and the effects of chemical inhibitors selective for individual P-450 enzymes of the 1A, 2A, 2C, 2D, 2E and 3A families and of LKM1 (anti-CYP2D6) antibodies were studied. Results Nordihydrocodeine was the major metabolite in both poor and extensive metabolizers. Kinetic constants for N-demethylation derived from the single enzyme Michaelis-Menten model did not differ between the two groups. Troleandomycin and erythromycin selectively inhibited N-demethylation in both extensive and poor metabolizers. The CYP3A inducer, α-naphthoflavone, increased N-demethylation rates. The kinetics of formation of dihydromorphine in both groups were best described by a single enzyme Michaelis-Menten model although inhibition studies in extensive metabolizers suggested involvement of two enzymes with similar Km values. The kinetic constants for O-demethylation were significantly different in extensive and poor metabolizers. The extensive metabolizers had a mean intrinsic clearance to dihydromorphine more than ten times greater than the poor metabolizer. The CYP2D6 chemical inhibitors, quinidine and quinine, and LKM1 antibodies inhibited O-demethylation in extensive metabolizers; no effect was observed in microsomes from a poor metabolizer. Conclusions CYP2D6 is the major enzyme mediating O-demethylation of dihydrocodeine to dihydromorphine. In contrast, nordihydrocodeine formation is predominantly catalysed by CYP3A. PMID:9431830

  20. Expression of lignocellulolytic enzymes in Pichia pastoris

    PubMed Central

    2012-01-01

    Background Sustainable utilization of plant biomass as renewable source for fuels and chemical building blocks requires a complex mixture of diverse enzymes, including hydrolases which comprise the largest class of lignocellulolytic enzymes. These enzymes need to be available in large amounts at a low price to allow sustainable and economic biotechnological processes. Over the past years Pichia pastoris has become an attractive host for the cost-efficient production and engineering of heterologous (eukaryotic) proteins due to several advantages. Results In this paper codon optimized genes and synthetic alcohol oxidase 1 promoter variants were used to generate Pichia pastoris strains which individually expressed cellobiohydrolase 1, cellobiohydrolase 2 and beta-mannanase from Trichoderma reesei and xylanase A from Thermomyces lanuginosus. For three of these enzymes we could develop strains capable of secreting gram quantities of enzyme per liter in fed-batch cultivations. Additionally, we compared our achieved yields of secreted enzymes and the corresponding activities to literature data. Conclusion In our experiments we could clearly show the importance of gene optimization and strain characterization for successfully improving secretion levels. We also present a basic guideline how to correctly interpret the interplay of promoter strength and gene dosage for a successful improvement of the secretory production of lignocellulolytic enzymes in Pichia pastoris. PMID:22583625

  1. O'Connell's process as a vicious Brownian motion.

    PubMed

    Katori, Makoto

    2011-12-01

    Vicious Brownian motion is a diffusion scaling limit of Fisher's vicious walk model, which is a system of Brownian particles in one dimension such that if two motions meet they kill each other. We consider the vicious Brownian motions conditioned never to collide with each other and call it noncolliding Brownian motion. This conditional diffusion process is equivalent to the eigenvalue process of the Hermitian-matrix-valued Brownian motion studied by Dyson [J. Math. Phys. 3, 1191 (1962)]. Recently, O'Connell [Ann. Probab. (to be published)] introduced a generalization of the noncolliding Brownian motion by using the eigenfunctions (the Whittaker functions) of the quantum Toda lattice in order to analyze a directed polymer model in 1 + 1 dimensions. We consider a system of one-dimensional Brownian motions with a long-ranged killing term as a generalization of the vicious Brownian motion and construct the O'Connell process as a conditional process of the killing Brownian motions to survive forever.

  2. O'Connell's process as a vicious Brownian motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katori, Makoto

    Vicious Brownian motion is a diffusion scaling limit of Fisher's vicious walk model, which is a system of Brownian particles in one dimension such that if two motions meet they kill each other. We consider the vicious Brownian motions conditioned never to collide with each other and call it noncolliding Brownian motion. This conditional diffusion process is equivalent to the eigenvalue process of the Hermitian-matrix-valued Brownian motion studied by Dyson [J. Math. Phys. 3, 1191 (1962)]. Recently, O'Connell [Ann. Probab. (to be published)] introduced a generalization of the noncolliding Brownian motion by using the eigenfunctions (the Whittaker functions) of themore » quantum Toda lattice in order to analyze a directed polymer model in 1 + 1 dimensions. We consider a system of one-dimensional Brownian motions with a long-ranged killing term as a generalization of the vicious Brownian motion and construct the O'Connell process as a conditional process of the killing Brownian motions to survive forever.« less

  3. Effects of Elevated CO2 on Levels of Primary Metabolites and Transcripts of Genes Encoding Respiratory Enzymes and Their Diurnal Patterns in Arabidopsis thaliana: Possible Relationships with Respiratory Rates

    PubMed Central

    Watanabe, Chihiro K.; Sato, Shigeru; Yanagisawa, Shuichi; Uesono, Yukifumi; Terashima, Ichiro; Noguchi, Ko

    2014-01-01

    Elevated CO2 affects plant growth and photosynthesis, which results in changes in plant respiration. However, the mechanisms underlying the responses of plant respiration to elevated CO2 are poorly understood. In this study, we measured diurnal changes in the transcript levels of genes encoding respiratory enzymes, the maximal activities of the enzymes and primary metabolite levels in shoots of Arabidopsis thaliana grown under moderate or elevated CO2 conditions (390 or 780 parts per million by volume CO2, respectively). We examined the relationships between these changes and respiratory rates. Under elevated CO2, the transcript levels of several genes encoding respiratory enzymes increased at the end of the light period, but these increases did not result in changes in the maximal activities of the corresponding enzymes. The levels of some primary metabolites such as starch and sugar phosphates increased under elevated CO2, particularly at the end of the light period. The O2 uptake rate at the end of the dark period was higher under elevated CO2 than under moderate CO2, but higher under moderate CO2 than under elevated CO2 at the end of the light period. These results indicate that the changes in O2 uptake rates are not directly related to changes in maximal enzyme activities and primary metabolite levels. Instead, elevated CO2 may affect anabolic processes that consume respiratory ATP, thereby affecting O2 uptake rates. PMID:24319073

  4. Chitin: a cell-surface component of Phytomonas françai.

    PubMed

    Nakamura, C V; Esteves, M J; Andrade, A F; Alviano, C S; de Souza, W; Angluster, J

    1993-01-01

    The occurrence of chitin as a structural component of the surface of the phytopathogenic protozoan Phytomonas françai was demonstrated by paper and gas-liquid chromatographic analysis of the products of enzymatic and chemical hydrolysis of alkali-resistant polysaccharides, lectin binding, glycosidase digestion, and infrared spectra. Chitin was characterized by its insolubility in hot alkali and chromatographic immobility as well as by the release of glucosamine on hydrolysis with strong acid and of N-acetylglucosamine (GlcNAc) on hydrolysis with chitinase. The presence of chitin was also shown directly by binding of wheat-germ agglutinin (WGA), which recognizes GlcNAc units, to the parasite surface. Fluorescein-labeled WGA binding was completely abolished by treatment with chitinase. This effect was specific since it could be prevented by incubating the enzyme with chitin before treatment of the phytomonads. These findings indicate that chitin is an exposed cell-surface polysaccharide in Phytomonas françai. The data were confirmed by the infrared spectrum of an alkali-insoluble residue, which showed a pattern typical of chitin.

  5. 21 CFR 173.150 - Milk-clotting enzymes, microbial.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Milk-clotting enzyme produced by pure-culture fermentation process may be safely used in the production... from one of the following organisms by a pure-culture fermentation process: (1) Endothia parasitica...

  6. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  7. Fe2+ Substrate Transport through Ferritin Protein Cage Ion Channels Influences Enzyme Activity and Biomineralization

    PubMed Central

    Behera, Rabindra K.; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M.; Goulding, Celia W.; Theil, Elizabeth C.

    2015-01-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3.H2O), by moving cytoplasmic Fe2+ through intracage ion channels to cage-embedded enzyme (2Fe2+/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe2+ movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one – CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650nm (DFP λmax). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe3+-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: 1. narrower interior ion channel openings/pores, 2. increased numbers of ion channel protein-metal binding sites, and 3. a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells. PMID:26202907

  8. Fabrication of solution-processed InSnZnO/ZrO2 thin film transistors.

    PubMed

    Hwang, Soo Min; Lee, Seung Muk; Choi, Jun Hyuk; Lim, Jun Hyung; Joo, Jinho

    2013-11-01

    We fabricated InSnZnO (ITZO) thin-film transistors (TFTs) with a high-permittivity (K) ZrO2 gate insulator using a solution process and explored the microstructure and electrical properties. ZrO2 and ITZO (In:Sn:Zn = 2:1:1) precursor solutions were deposited using consecutive spin-coating and drying steps on highly doped p-type Si substrate, followed by annealing at 700 degrees C in ambient air. The ITZO/ZrO2 TFT device showed n-channel depletion mode characteristics, and it possessed a high saturation mobility of approximately 9.8 cm2/V x s, a small subthreshold voltage swing of approximately 2.3 V/decade, and a negative V(TH) of approximately 1.5 V, but a relatively low on/off current ratio of approximately 10(-3). These results were thought to be due to the use of the high-kappa crystallized ZrO2 dielectric (kappa approximately 21.8) as the gate insulator, which could permit low-voltage operation of the solution-processed ITZO TFT devices for applications to high-throughput, low-cost, flexible and transparent electronics.

  9. Marine Sponges and Bacteria as Challenging Sources of Enzyme Inhibitors for Pharmacological Applications

    PubMed Central

    Ruocco, Nadia; Costantini, Susan; Palumbo, Flora; Costantini, Maria

    2017-01-01

    Enzymes play key roles in different cellular processes, for example, in signal transduction, cell differentiation and proliferation, metabolic processes, DNA damage repair, apoptosis, and response to stress. A deregulation of enzymes has been considered one of the first causes of several diseases, including cancers. In the last several years, enzyme inhibitors, being good candidates as drugs in the pathogenic processes, have received an increasing amount of attention for their potential application in pharmacology. The marine environment is considered a challenging source of enzyme inhibitors for pharmacological applications. In this review, we report on secondary metabolites with enzyme inhibitory activity, focusing our attention on marine sponges and bacteria as promising sources. In the case of sponges, we only reported the kinase inhibitors, because this class was the most representative isolated so far from these marine organisms. PMID:28604647

  10. 2-acylamido analogues of N-acetylglucosamine prime formation of chitin oligosaccharides by yeast chitin synthase 2

    USDA-ARS?s Scientific Manuscript database

    Chitin, a polymer of beta-1,4-linked N-acetylglucosamine (GlcNAc), is a key component of the cell walls of fungi and the exoskeletons of arthropods. Chitin synthases (CSs) transfer GlcNAc from UDP-GlcNAc to pre-existing chitin chains in reactions that are typically stimulated by free GlcNAc. The eff...

  11. Metrological aspects of enzyme production

    NASA Astrophysics Data System (ADS)

    Kerber, T. M.; Dellamora-Ortiz, G. M.; Pereira-Meirelles, F. V.

    2010-05-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies.

  12. N-acetylglucosamine sensing by a GCN5-related N-acetyltransferase induces transcription via chromatin histone acetylation in fungi.

    PubMed

    Su, Chang; Lu, Yang; Liu, Haoping

    2016-10-03

    N-acetylglucosamine (GlcNAc) exists ubiquitously as a component of the surface on a wide range of cells, from bacteria to humans. Many fungi are able to utilize environmental GlcNAc to support growth and induce cellular development, a property important for their survival in various host niches. However, how the GlcNAc signal is sensed and subsequently transduced is largely unknown. Here, we identify a gene that is essential for GlcNAc signalling (NGS1) in Candida albicans, a commensal and pathogenic yeast of humans. Ngs1 can bind GlcNAc through the N-terminal β-N-acetylglucosaminidase homology domain. This binding activates N-acetyltransferase activity in the C-terminal GCN5-related N-acetyltransferase domain, which is required for GlcNAc-induced promoter histone acetylation and transcription. Ngs1 is targeted to the promoters of GlcNAc-inducible genes constitutively by the transcription factor Rep1. Ngs1 is conserved in diverse fungi that have GlcNAc catabolic genes. Thus, fungi use Ngs1 as a GlcNAc-sensor and transducer for GlcNAc-induced transcription.

  13. N-acetylglucosamine sensing by a GCN5-related N-acetyltransferase induces transcription via chromatin histone acetylation in fungi

    PubMed Central

    Su, Chang; Lu, Yang; Liu, Haoping

    2016-01-01

    N-acetylglucosamine (GlcNAc) exists ubiquitously as a component of the surface on a wide range of cells, from bacteria to humans. Many fungi are able to utilize environmental GlcNAc to support growth and induce cellular development, a property important for their survival in various host niches. However, how the GlcNAc signal is sensed and subsequently transduced is largely unknown. Here, we identify a gene that is essential for GlcNAc signalling (NGS1) in Candida albicans, a commensal and pathogenic yeast of humans. Ngs1 can bind GlcNAc through the N-terminal β-N-acetylglucosaminidase homology domain. This binding activates N-acetyltransferase activity in the C-terminal GCN5-related N-acetyltransferase domain, which is required for GlcNAc-induced promoter histone acetylation and transcription. Ngs1 is targeted to the promoters of GlcNAc-inducible genes constitutively by the transcription factor Rep1. Ngs1 is conserved in diverse fungi that have GlcNAc catabolic genes. Thus, fungi use Ngs1 as a GlcNAc-sensor and transducer for GlcNAc-induced transcription. PMID:27694804

  14. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis.

    PubMed

    Meng, Qinglong; Zhang, Yanfei; Ju, Xiaozhi; Ma, Chunling; Ma, Hongwu; Chen, Jiuzhou; Zheng, Ping; Sun, Jibin; Zhu, Jun; Ma, Yanhe; Zhao, Xueming; Chen, Tao

    2016-05-20

    5-Aminolevulinic acid (ALA) is the precursor for the biosynthesis of tetrapyrroles and has broad agricultural and medical applications. Currently ALA is mainly produced by chemical synthesis and microbial fermentation. Cell free multi-enzyme catalysis is a promising method for producing high value chemicals. Here we reported our work on developing a cell free process for ALA production using thermostable enzymes. Cheap substrates (succinate and glycine) were used for ALA synthesis by two enzymes: 5-aminolevulinic acid synthase (ALAS) from Laceyella sacchari (LS-ALAS) and succinyl-CoA synthase (Suc) from Escherichia coli. ATP was regenerated by polyphosphate kinase (Ppk) using polyphosphate as the substrate. Succinate was added into the reaction system in a fed-batch mode to avoid its inhibition effect on Suc. After reaction for 160min, ALA concentration was increased to 5.4mM. This is the first reported work on developing the cell free process for ALA production. Through further process and enzyme optimization the cell free process could be an effective and economic way for ALA production. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs)

    PubMed Central

    Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong

    2016-01-01

    Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the ‘Vitis vinifera cv. Pinot Noir’ and ‘Vitis vinifera cv. Thompson Seedless’ varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs. PMID:27551866

  16. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs).

    PubMed

    Tang, Yujin; Wang, Ruipu; Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong

    2016-01-01

    Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the 'Vitis vinifera cv. Pinot Noir' and 'Vitis vinifera cv. Thompson Seedless' varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs.

  17. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.

    2008-06-01

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.

  18. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT

    PubMed Central

    Rempel, Brian P.; Price, Eric W.

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents. PMID:28927325

  19. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT.

    PubMed

    Rempel, Brian P; Price, Eric W; Phenix, Christopher P

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.

  20. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition modelsmore » form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO 2, Na 2O, and Cs 2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO 2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO 2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and