Sample records for o-methyl transferase locus

  1. Dishevelled3 is a novel arginine methyl transferase substrate.

    PubMed

    Bikkavilli, Rama Kamesh; Avasarala, Sreedevi; Vanscoyk, Michelle; Sechler, Marybeth; Kelley, Nicole; Malbon, Craig C; Winn, Robert A

    2012-01-01

    Dishevelled, a phosphoprotein scaffold, is a central component in all the Wnt-sensitive signaling pathways. In the present study, we report that Dishevelled is post-translationally modified, both in vitro and in vivo, via arginine methylation. We also show protein arginine methyl transferases 1 and 7 as the key enzymes catalyzing Dishevelled methylation. Interestingly, Wnt3a stimulation of F9 teratocarcinoma cells results in reduced Dishevelled methylation. Similarly, the methylation-deficient mutant of Dishevelled, R271K, displayed spontaneous membrane localization and robust activation of Wnt signaling; suggesting that differential methylation of Dishevelled plays an important role in Wnt signaling. Thus arginine methylation is shown to be an important switch in regulation of Dishevelled function and Wnt signaling.

  2. Global Regulation of Plant Immunity by Histone Lysine Methyl Transferases

    PubMed Central

    Lee, Sanghun; Xu, Siming; Lee, Sang Yeol; Yun, Dae-Jin; Mengiste, Tesfaye

    2016-01-01

    Posttranslational modification of histones modulates gene expression affecting diverse biological functions. We showed that the Arabidopsis thaliana histone methyl transferases SET DOMAIN GROUP8 (SDG8) and SDG25 regulate pep1-, flg22-, and effector-triggered immunity as well as systemic acquired resistance. Genome-wide basal and induced transcriptome changes regulated by SDG8 and/or SDG25 showed that two genes of the SDG-dependent transcriptome, CAROTENOID ISOMERASE2 (CCR2) and ECERIFERUM3 (CER3), were also required for plant immunity, establishing mechanisms in defense functions for SDG8 and SDG25. CCR2 catalyzes the biosynthesis of carotenoids, whereas CER3 is involved in the biosynthesis of cuticular wax. SDG8 and SDG25 affected distinct and overlapping global and locus-specific histone H3 lysine 4 (H3K4) and histone H3 lysine 36 (H3K36) methylations. Loss of immunity in sdg mutants was attributed to altered global and CCR2- and CER3-specific histone lysine methylation (HLM). Loss of immunity in sdg, ccr2, and cer3 mutants was also associated with diminished accumulation of lipids and loss of cuticle integrity. In addition, sdg8 and sdg25 mutants were impaired in H2B ubiquitination (H2Bubn) at CCR2, CER3, and H2Bubn regulated R gene, SNC1, revealing crosstalk between the two types of histone modifications. In summary, SDG8 and SDG25 contribute to plant immunity directly through HLM or indirectly through H2Bubn and by regulating expression of plant immunity genes, accumulation of lipids, biosynthesis of carotenoids, and maintenance of cuticle integrity. PMID:27354553

  3. Global Regulation of Plant Immunity by Histone Lysine Methyl Transferases.

    PubMed

    Lee, Sanghun; Fu, Fuyou; Xu, Siming; Lee, Sang Yeol; Yun, Dae-Jin; Mengiste, Tesfaye

    2016-07-01

    Posttranslational modification of histones modulates gene expression affecting diverse biological functions. We showed that the Arabidopsis thaliana histone methyl transferases SET DOMAIN GROUP8 (SDG8) and SDG25 regulate pep1-, flg22-, and effector-triggered immunity as well as systemic acquired resistance. Genome-wide basal and induced transcriptome changes regulated by SDG8 and/or SDG25 showed that two genes of the SDG-dependent transcriptome, CAROTENOID ISOMERASE2 (CCR2) and ECERIFERUM3 (CER3), were also required for plant immunity, establishing mechanisms in defense functions for SDG8 and SDG25. CCR2 catalyzes the biosynthesis of carotenoids, whereas CER3 is involved in the biosynthesis of cuticular wax. SDG8 and SDG25 affected distinct and overlapping global and locus-specific histone H3 lysine 4 (H3K4) and histone H3 lysine 36 (H3K36) methylations. Loss of immunity in sdg mutants was attributed to altered global and CCR2- and CER3-specific histone lysine methylation (HLM). Loss of immunity in sdg, ccr2, and cer3 mutants was also associated with diminished accumulation of lipids and loss of cuticle integrity. In addition, sdg8 and sdg25 mutants were impaired in H2B ubiquitination (H2Bubn) at CCR2, CER3, and H2Bubn regulated R gene, SNC1, revealing crosstalk between the two types of histone modifications. In summary, SDG8 and SDG25 contribute to plant immunity directly through HLM or indirectly through H2Bubn and by regulating expression of plant immunity genes, accumulation of lipids, biosynthesis of carotenoids, and maintenance of cuticle integrity. © 2016 American Society of Plant Biologists. All rights reserved.

  4. Stressful life events and catechol-O-methyl-transferase (COMT) gene in bipolar disorder.

    PubMed

    Hosang, Georgina M; Fisher, Helen L; Cohen-Woods, Sarah; McGuffin, Peter; Farmer, Anne E

    2017-05-01

    A small body of research suggests that gene-environment interactions play an important role in the development of bipolar disorder. The aim of the present study is to contribute to this work by exploring the relationship between stressful life events and the catechol-O-methyl-transferase (COMT) Val 158 Met polymorphism in bipolar disorder. Four hundred eighty-two bipolar cases and 205 psychiatrically healthy controls completed the List of Threatening Experiences Questionnaire. Bipolar cases reported the events experienced 6 months before their worst depressive and manic episodes; controls reported those events experienced 6 months prior to their interview. The genotypic information for the COMT Val 158 Met variant (rs4680) was extracted from GWAS analysis of the sample. The impact of stressful life events was moderated by the COMT genotype for the worst depressive episode using a Val dominant model (adjusted risk difference = 0.09, 95% confidence intervals = 0.003-0.18, P = .04). For the worst manic episodes no significant interactions between COMT and stressful life events were detected. This is the first study to explore the relationship between stressful life events and the COMT Val 158 Met polymorphism focusing solely on bipolar disorder. The results of this study highlight the importance of the interplay between genetic and environmental factors for bipolar depression. © 2017 Wiley Periodicals, Inc.

  5. Characterization of a Bvg-regulated fatty acid methyl-transferase in Bordetella pertussis.

    PubMed

    Rivera-Millot, Alex; Lesne, Elodie; Solans, Luis; Coutte, Loic; Bertrand-Michel, Justine; Froguel, Philippe; Dhennin, Véronique; Hot, David; Locht, Camille; Antoine, Rudy; Jacob-Dubuisson, Françoise

    2017-01-01

    The whooping cough agent Bordetella pertussis controls the expression of its large virulence regulon in a coordinated manner through the two-component signal transduction system BvgAS. In addition to the genes coding for bona fide virulence factors, the Bvg regulon comprises genes of unknown function. In this work, we characterized a new Bvg-activated gene called BP2936. Homologs of BP2936 are found in other pathogenic Bordetellae and in several other species, including plant pathogens and environmental bacteria. We showed that the gene product of BP2936 is a membrane-associated methyl-transferase of free fatty acids. We thus propose to name it FmtB, for fatty acid methyl-transferase of Bordetella. The role of this protein was tested in cellular and animal models of infection, but the loss of BP2936 did not appear to affect host-pathogen interactions in those assays. The high level of conservation of BP2936 among B. pertussis isolates nevertheless argues that it probably plays a role in the life cycle of this pathogen.

  6. Characterization of a Bvg-regulated fatty acid methyl-transferase in Bordetella pertussis

    PubMed Central

    Rivera-Millot, Alex; Lesne, Elodie; Solans, Luis; Coutte, Loic; Bertrand-Michel, Justine; Froguel, Philippe; Dhennin, Véronique; Hot, David; Locht, Camille; Antoine, Rudy

    2017-01-01

    The whooping cough agent Bordetella pertussis controls the expression of its large virulence regulon in a coordinated manner through the two-component signal transduction system BvgAS. In addition to the genes coding for bona fide virulence factors, the Bvg regulon comprises genes of unknown function. In this work, we characterized a new Bvg-activated gene called BP2936. Homologs of BP2936 are found in other pathogenic Bordetellae and in several other species, including plant pathogens and environmental bacteria. We showed that the gene product of BP2936 is a membrane-associated methyl-transferase of free fatty acids. We thus propose to name it FmtB, for fatty acid methyl-transferase of Bordetella. The role of this protein was tested in cellular and animal models of infection, but the loss of BP2936 did not appear to affect host-pathogen interactions in those assays. The high level of conservation of BP2936 among B. pertussis isolates nevertheless argues that it probably plays a role in the life cycle of this pathogen. PMID:28493897

  7. Glucose-induced expression of MIP-1 genes requires O-GlcNAc transferase in monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikanishi, Toshihiro; ERATO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012; Fujiki, Ryoji

    2010-04-16

    O-glycosylation has emerged as an important modification of nuclear proteins, and it appears to be involved in gene regulation. Recently, we have shown that one of the histone methyl transferases (MLL5) is activated through O-glycosylation by O-GlcNAc transferase (OGT). Addition of this monosaccharide is essential for forming a functional complex. However, in spite of the abundance of OGT in the nucleus, the impact of nuclear O-glycosylation by OGT remains largely unclear. To address this issue, the present study was undertaken to test the impact of nuclear O-glycosylation in a monocytic cell line, THP-1. Using a cytokine array, MIP-1{alpha} and -1{beta}more » genes were found to be regulated by nuclear O-glycosylation. Biochemical purification of the OGT interactants from THP-1 revealed that OGT is an associating partner for distinct co-regulatory complexes. OGT recruitment and protein O-glycosylation were observed at the MIP-1{alpha} gene promoter; however, the known OGT partner (HCF-1) was absent when the MIP-1{alpha} gene promoter was not activated. From these findings, we suggest that OGT could be a co-regulatory subunit shared by functionally distinct complexes supporting epigenetic regulation.« less

  8. Subtle Decreases in DNA Methylation and Gene Expression at the Mouse Igf2 Locus Following Prenatal Alcohol Exposure: Effects of a Methyl-Supplemented Diet

    PubMed Central

    Downing, Chris; Johnson, Thomas E; Larson, Colin; Leakey, Tatiana I; Siegfried, Rachel N; Rafferty, Tonya M; Cooney, Craig A

    2010-01-01

    C57BL/6J (B6) mice are susceptible to in utero growth retardation and a number of morphological malformations following prenatal alcohol exposure, while DBA/2J (D2) mice are relatively resistant. We have previously shown that genomic imprinting may play a role in differential sensitivity between B6 and D2 (Downing and Gilliam 1999). The best characterized mechanism mediating genomic imprinting is differential DNA methylation. In the present study we examined DNA methylation and gene expression, in both embryonic and placental tissue, at the mouse Igf2 locus following in utero ethanol exposure. We also examined the effects of a methyl-supplemented diet on methylation and ethanol teratogenesis. In embryos from susceptible B6 mice, we found small decreases in DNA methylation at four CpG sites in one of the differentially methylated regions of the Igf2 locus; only one of the four sites showed a statistically significant decrease. We observed no significant decreases in methylation in placentae. All Igf2 transcripts showed approximately 1.5 fold decreases following intrauterine alcohol exposure. Placing dams on a methyl-supplemented diet before pregnancy and throughout gestation brought methylation back up to control levels. Methyl-supplementation also resulted in lower prenatal mortality, greater prenatal growth, and decreased digit malformations; it dramatically reduced vertebral malformations. Thus, while prenatal alcohol had only small effects on DNA methylation at the Igf2 locus, placing dams on a methyl-supplemented diet partially ameliorated ethanol teratogenesis. PMID:20705422

  9. Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize

    USDA-ARS?s Scientific Manuscript database

    Benzoxazinoids are important defense compounds in grasses. Here, we investigated the biosynthesis and biological roles of the 8-O-methylated benzoxazinoids, DIM2BOA-Glc and HDM2BOA-Glc. Using quantitative trait locus mapping and heterologous expression, we identified a 2-oxoglutarate-dependent dioxy...

  10. BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing

    PubMed Central

    Lutsik, Pavlo; Feuerbach, Lars; Arand, Julia; Lengauer, Thomas; Walter, Jörn; Bock, Christoph

    2011-01-01

    Bisulfite sequencing is a widely used method for measuring DNA methylation in eukaryotic genomes. The assay provides single-base pair resolution and, given sufficient sequencing depth, its quantitative accuracy is excellent. High-throughput sequencing of bisulfite-converted DNA can be applied either genome wide or targeted to a defined set of genomic loci (e.g. using locus-specific PCR primers or DNA capture probes). Here, we describe BiQ Analyzer HT (http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/), a user-friendly software tool that supports locus-specific analysis and visualization of high-throughput bisulfite sequencing data. The software facilitates the shift from time-consuming clonal bisulfite sequencing to the more quantitative and cost-efficient use of high-throughput sequencing for studying locus-specific DNA methylation patterns. In addition, it is useful for locus-specific visualization of genome-wide bisulfite sequencing data. PMID:21565797

  11. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns.

    PubMed

    Tost, Jörg

    2016-01-01

    DNA methylation is the most studied epigenetic modification, and altered DNA methylation patterns have been identified in cancer and more recently also in many other complex diseases. Furthermore, DNA methylation is influenced by a variety of environmental factors, and the analysis of DNA methylation patterns might allow deciphering previous exposure. Although a large number of techniques to study DNA methylation either genome-wide or at specific loci have been devised, they all are based on a limited number of principles for differentiating the methylation state, viz., methylation-specific/methylation-dependent restriction enzymes, antibodies or methyl-binding proteins, chemical-based enrichment, or bisulfite conversion. Second-generation sequencing has largely replaced microarrays as readout platform and is also becoming more popular for locus-specific DNA methylation analysis. In this chapter, the currently used methods for both genome-wide and locus-specific analysis of 5-methylcytosine and as its oxidative derivatives, such as 5-hydroxymethylcytosine, are reviewed in detail, and the advantages and limitations of each approach are discussed. Furthermore, emerging technologies avoiding PCR amplification and allowing a direct readout of DNA methylation are summarized, together with novel applications, such as the detection of DNA methylation in single cells or in circulating cell-free DNA.

  12. The influence of DNA degradation in formalin-fixed, paraffin-embedded (FFPE) tissue on locus-specific methylation assessment by MS-HRM.

    PubMed

    Daugaard, Iben; Kjeldsen, Tina E; Hager, Henrik; Hansen, Lise Lotte; Wojdacz, Tomasz K

    2015-12-01

    Readily accessible formalin-fixed paraffin embedded (FFPE) tissues are a highly valuable source of genetic material for molecular analyses in both research and in vitro diagnostics but frequently genetic material in those samples is highly degraded. With locus-specific methylation changes being widely investigated for use as biomarkers in various aspects of clinical disease management, we aimed to evaluate to what extent standard laboratory procedures can approximate the quality of the DNA extracted from FFPE samples prior to methylation analyses. DNA quality in 107 FFPE non-small cell lung cancer (NSCLC) samples was evaluated using spectrophotometry and gel electrophoresis. Subsequently, the quality assessment results were correlated with the results of locus specific methylation assessment with methylation sensitive high resolution melting (MS-HRM). The correlation of template quality with PCR amplification performance and HRM based methylation detection indicated a significant influence of DNA quality on PCR amplification but not on methylation assessment. In conclusion, standard laboratory procedures fairly well approximate DNA degradation of FFPE samples and DNA degradation does not seem to considerably affect locus-specific methylation assessment by MS-HRM. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee

    PubMed Central

    Li-Byarlay, Hongmei; Li, Yang; Stroud, Hume; Feng, Suhua; Newman, Thomas C.; Kaneda, Megan; Hou, Kirk K.; Worley, Kim C.; Elsik, Christine G.; Wickline, Samuel A.; Jacobsen, Steven E.; Ma, Jian; Robinson, Gene E.

    2013-01-01

    Studies of DNA methylation from fungi, plants, and animals indicate that gene body methylation is ancient and highly conserved in eukaryotic genomes, but its role has not been clearly defined. It has been postulated that regulation of alternative splicing of transcripts was an original function of DNA methylation, but a direct experimental test of the effect of methylation on alternative slicing at the whole genome level has never been performed. To do this, we developed a unique method to administer RNA interference (RNAi) in a high-throughput and noninvasive manner and then used it to knock down the expression of DNA methyl-transferase 3 (dnmt3), which is required for de novo DNA methylation. We chose the honey bee (Apis mellifera) for this test because it has recently emerged as an important model organism for studying the effects of DNA methylation on development and social behavior, and DNA methylation in honey bees is predominantly on gene bodies. Here we show that dnmt3 RNAi decreased global genomic methylation level as expected and in addition caused widespread and diverse changes in alternative splicing in fat tissue. Four different types of splicing events were affected by dnmt3 gene knockdown, and change in two types, exon skipping and intron retention, was directly related to decreased methylation. These results demonstrate that one function of gene body DNA methylation is to regulate alternative splicing. PMID:23852726

  14. Aedes aegypti juvenile hormone acid methyl transferase, the ultimate enzyme in the biosynthetic pathway of juvenile hormone III, exhibits substrate control

    USDA-ARS?s Scientific Manuscript database

    We report on the cloning, sequencing, characterization, 3D modeling and docking of Aedes aegypti juvenile hormone acid methyl transferase (AeaJHAMT), the enzyme that converts juvenile hormone acid (JHA) into juvenile hormone (JH). Purified recombinant AeaJHAMT was extensively characterized for enzym...

  15. Catalysis by the second class of tRNA(m1G37) methyl transferase requires a conserved proline.

    PubMed

    Christian, Thomas; Evilia, Caryn; Hou, Ya-Ming

    2006-06-20

    The enzyme tRNA(m1G37) methyl transferase catalyzes the transfer of a methyl group from S-adenosyl methionine (AdoMet) to the N1 position of G37, which is 3' to the anticodon sequence and whose modification is important for maintaining the reading frame fidelity. While the enzyme in bacteria is highly conserved and is encoded by the trmD gene, recent studies show that the counterpart of this enzyme in archaea and eukarya, encoded by the trm5 gene, is unrelated to trmD both in sequence and in structure. To further test this prediction, we seek to identify residues in the second class of tRNA(m1G37) methyl transferase that are required for catalysis. Such residues should provide mechanistic insights into the distinct structural origins of the two classes. Using the Trm5 enzyme of the archaeon Methanocaldococcus jannaschii (previously MJ0883) as an example, we have created mutants to test many conserved residues for their catalytic potential and substrate-binding capabilities with respect to both AdoMet and tRNA. We identified that the proline at position 267 (P267) is a critical residue for catalysis, because substitution of this residue severely decreases the kcat of the methylation reaction in steady-state kinetic analysis, and the k(chem) in single turnover kinetic analysis. However, substitution of P267 has milder effect on the Km and little effect on the Kd of either substrate. Because P267 has no functional side chain that can directly participate in the chemistry of methyl transfer, we suggest that its role in catalysis is to stabilize conformations of enzyme and substrates for proper alignment of reactive groups at the enzyme active site. Sequence analysis shows that P267 is embedded in a peptide motif that is conserved among the Trm5 family, but absent from the TrmD family, supporting the notion that the two families are descendants of unrelated protein structures.

  16. SNP rs16906252C>T is an expression and methylation quantitative trait locus associated with an increased risk of developing MGMT-methylated colorectal cancer

    PubMed Central

    Kuroiwa-Trzmielina, Joice; Wang, Fan; Rapkins, Robert W.; Ward, Robyn L.; Buchanan, Daniel D.; Win, Aung Ko; Clendenning, Mark; Rosty, Christophe; Southey, Melissa C.; Winship, Ingrid M.; Hopper, John L.; Jenkins, Mark A.; Olivier, Jake; Hawkins, Nicholas J.; Hitchins, Megan P.

    2016-01-01

    Purpose Methylation of the MGMT promoter is the major cause of O6-methylguanine methyltransferase deficiency in cancer and has been associated with the T variant of the promoter-enhancer SNP rs16906252C>T. We sought evidence for an association between the rs16906252C>T genotype and increased risk of developing a subtype of colorectal cancer (CRC) featuring MGMT methylation, mediated by genotype-dependent epigenetic silencing within normal tissues. Experimental design By applying a molecular pathological epidemiology case-control study design, associations between rs16906252C>T and risk for CRC overall, and CRC stratified by MGMT methylation status, were estimated using multinomial logistic regression in two independent retrospective series of CRC cases and controls. The test sample comprised 1054 CRC cases and 451 controls from Sydney, Australia. The validation sample comprised 612 CRC cases and 245 controls from the Australasian Colon Cancer Family Registry (ACCFR). To determine if rs16906252C>T was linked to a constitutively altered epigenetic state, quantitative allelic expression and methylation analyses were performed in normal tissues. Results An association between rs16906252C>T and increased risk of developing MGMT-methylated CRC in the Sydney sample was observed (OR 3.3; 95%CI=2.0–5.3; P<0.0001), which was replicated in the ACCFR sample (OR 4.0; 95%CI=2.4–6.8; P<0.0001). The T allele demonstrated ~2.5-fold reduced transcription in normal colorectal mucosa from cases and controls, and was selectively methylated in a minority of normal cells, indicating rs16906252C>T represents an expression and methylation quantitative trait locus. Conclusions We provide evidence that rs16906252C>T is associated with elevated risk for MGMT-methylated CRC, likely mediated by constitutive epigenetic repression of the T allele. PMID:27267851

  17. Implication of a chromosome 15q15.2 locus in regulating UBR1 and predisposing smokers to MGMT methylation in lung

    PubMed Central

    Leng, Shuguang; Wu, Guodong; Collins, Leonard B.; Thomas, Cynthia L.; Tellez, Carmen S.; Jauregui, Andrew R.; Picchi, Maria A.; Zhang, Xiequn; Juri, Daniel E.; Desai, Dhimant; Amin, Shantu G.; Crowell, Richard E.; Stidley, Christine A.; Liu, Yushi; Swenberg, James A.; Lin, Yong; Wathelet, Marc G.; Gilliland, Frank D.; Belinsky, Steven A.

    2015-01-01

    O6-methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that protects cells from carcinogenic effects of alkylating agents; however, MGMT is silenced by promoter hypermethylation during carcinogenesis. A single nucleotide polymorphism (SNP) in an enhancer in the MGMT promoter was previously identified to be highly significantly associated with risk for MGMT methylation in lung cancer and sputum from smokers. To further genetic investigations, a genome-wide association and replication study was conducted in two smoker cohorts to identify novel loci for MGMT methylation in sputum that were independent of the MGMT enhancer polymorphism. Two novel trans-acting loci (15q15.2 and 17q24.3) that were identified acted together with the enhancer SNP to empower risk prediction for MGMT methylation. We found that the predisposition to MGMT methylation arising from the 15q15.2 locus involved regulation of the ubiquitin protein ligase E3 component UBR1. UBR1 attenuation reduced turnover of MGMT protein and increased repair of O6-methylguanine in nitrosomethylurea-treated human bronchial epithelial cells (HBEC), while also reducing MGMT promoter activity and abolishing MGMT induction. Overall, our results substantiate reduced gene transcription as a major mechanism for predisposition to MGMT methylation in the lungs of smokers, and support the importance of UBR1 in regulating MGMT homeostasis and DNA repair of alkylated DNA adducts in cells. PMID:26183928

  18. Prenatal Air Pollution Exposures, DNA Methyl Transferase Genotypes, and Associations with Newborn LINE1 and Alu Methylation and Childhood Blood Pressure and Carotid Intima-Media Thickness in the Children's Health Study.

    PubMed

    Breton, Carrie V; Yao, Jin; Millstein, Josh; Gao, Lu; Siegmund, Kimberly D; Mack, Wendy; Whitfield-Maxwell, Lora; Lurmann, Fred; Hodis, Howard; Avol, Ed; Gilliland, Frank D

    2016-12-01

    Although exposure to ambient air pollutants increases cardiovascular disease risk in adults little is known about the effects of prenatal exposure. Genetic variation and epigenetic alterations are two mechanisms that may influence the effects of early-life exposures on cardiovascular phenotypes. We investigated whether genetic and epigenetic variation modify associations between prenatal air pollution on markers of cardiovascular risk in childhood. We used linear regression analysis to investigate the associations between prenatal pollutants (PM2.5, PM10, NO2, O3), long interspersed nuclear elements (LINE1) and AluYb8 DNA methylation levels measured in newborn blood spot tests, and carotid intima-media thickness (CIMT) and blood pressure (BP) in 459 participants as part of the Children's Health Study. Interaction terms were also included to test for effect modification of these associations by genetic variation in methylation reprogramming genes. Prenatal exposure to NO2 in the third trimester of pregnancy was associated with higher systolic BP in 11-year-old children. Prenatal exposure to multiple air pollutants in the first trimester was associated with lower DNA methylation in LINE1, whereas later exposure to O3 was associated with higher LINE1 methylation levels in newborn blood spots. The magnitude of associations with prenatal air pollution varied according to genotype for 11 SNPs within DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3 Beta (DNMT3B), Tet methylcytosine dioxygenase 2 (TET2), and Thymine DNA glycosylase (TDG) genes. Although first-trimester O3 exposure was not associated with CIMT and systolic BP overall, associations within strata of DNMT1 or DNMT3B were observed, and the magnitude and the direction of these associations depended on DNMT1 genotypes. Genetic and epigenetic variation in DNA methylation reprogramming genes and in LINE1 retrotransposons may play important roles in downstream cardiovascular consequences of prenatal air

  19. PRC2 is required to maintain expression of the maternal Gtl2-Rian-Mirg locus by preventing de novo DNA methylation in mouse embryonic stem cells

    PubMed Central

    Das, Partha Pratim; Hendrix, David A.; Apostolou, Effie; Buchner, Alice H.; Canver, Matthew C.; Beyaz, Semir; Ljuboja, Damir; Kuintzle, Rachael; Kim, Woojin; Karnik, Rahul; Shao, Zhen; Xie, Huafeng; Xu, Jian; De Los Angeles, Alejandro; Zhang, Yingying; Choe, Junho; Jun, Don Leong Jia; Shen, Xiaohua; Gregory, Richard I.; Daley, George Q.; Meissner, Alexander; Kellis, Manolis; Hochedlinger, Konrad; Kim, Jonghwan; Orkin, Stuart H.

    2017-01-01

    SUMMARY Polycomb Repressive Complex 2 (PRC2) function and DNA methylation (DNAme) are typically correlated with the gene repression. Here, we show that PRC2 is required to maintain expression of maternal microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) from the Gtl2-Rian-Mirg locus, which is essential for full pluripotency of iPSCs. In the absence of PRC2 the entire locus becomes transcriptionally repressed due to gain of DNA methylation at the intergenic differentially methylated regions (IG-DMR). Furthermore, we demonstrate that the IG-DMR serves as an enhancer of the maternal Gtl2-Rian-Mirg locus. Mechanistic study reveals that PRC2 interacts physically with Dnmt3 methyltransferases and prevents their recruitment and subsequent DNAme at the IG-DMR, thereby allowing for proper expression of the maternal Gtl2-Rian-Mirg locus. Our observations provide a novel mechanism by which PRC2 counteracts the action of Dnmt3 methyltransferases at an imprinted locus required for full pluripotency. PMID:26299972

  20. Integrating Colon Cancer Microarray Data: Associating Locus-Specific Methylation Groups to Gene Expression-Based Classifications.

    PubMed

    Barat, Ana; Ruskin, Heather J; Byrne, Annette T; Prehn, Jochen H M

    2015-11-23

    Recently, considerable attention has been paid to gene expression-based classifications of colorectal cancers (CRC) and their association with patient prognosis. In addition to changes in gene expression, abnormal DNA-methylation is known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Large-scale technologies, such as methylation microarray assays and specific sequencing of methylated DNA, have been used to determine whole genome profiles of CpG island methylation in tissue samples. In this article, publicly available microarray-based gene expression and methylation data sets are used to characterize expression subtypes with respect to locus-specific methylation. A major objective was to determine whether integration of these data types improves previously characterized subtypes, or provides evidence for additional subtypes. We used unsupervised clustering techniques to determine methylation-based subgroups, which are subsequently annotated with three published expression-based classifications, comprising from three to six subtypes. Our results showed that, while methylation profiles provide a further basis for segregation of certain (Inflammatory and Goblet-like) finer-grained expression-based subtypes, they also suggest that other finer-grained subtypes are not distinctive and can be considered as a single subtype.

  1. Polymorphism in the intron 20 of porcine O-linked N-acetylglucosamine transferase

    USDA-ARS?s Scientific Manuscript database

    Objective: O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) catalyzes the addition of O-GlcNAc and GlcNAcylation has extensive crosstalk with phosphorylation to regulate signaling and transcription. Pig OGT is located near the region of chromosome X that affects follicle stimulating hormone...

  2. Integrating Colon Cancer Microarray Data: Associating Locus-Specific Methylation Groups to Gene Expression-Based Classifications

    PubMed Central

    Barat, Ana; Ruskin, Heather J.; Byrne, Annette T.; Prehn, Jochen H. M.

    2015-01-01

    Recently, considerable attention has been paid to gene expression-based classifications of colorectal cancers (CRC) and their association with patient prognosis. In addition to changes in gene expression, abnormal DNA-methylation is known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Large-scale technologies, such as methylation microarray assays and specific sequencing of methylated DNA, have been used to determine whole genome profiles of CpG island methylation in tissue samples. In this article, publicly available microarray-based gene expression and methylation data sets are used to characterize expression subtypes with respect to locus-specific methylation. A major objective was to determine whether integration of these data types improves previously characterized subtypes, or provides evidence for additional subtypes. We used unsupervised clustering techniques to determine methylation-based subgroups, which are subsequently annotated with three published expression-based classifications, comprising from three to six subtypes. Our results showed that, while methylation profiles provide a further basis for segregation of certain (Inflammatory and Goblet-like) finer-grained expression-based subtypes, they also suggest that other finer-grained subtypes are not distinctive and can be considered as a single subtype. PMID:27600244

  3. Evidence for rRNA 2'-O-methylation plasticity: Control of intrinsic translational capabilities of human ribosomes.

    PubMed

    Erales, Jenny; Marchand, Virginie; Panthu, Baptiste; Gillot, Sandra; Belin, Stéphane; Ghayad, Sandra E; Garcia, Maxime; Laforêts, Florian; Marcel, Virginie; Baudin-Baillieu, Agnès; Bertin, Pierre; Couté, Yohann; Adrait, Annie; Meyer, Mélanie; Therizols, Gabriel; Yusupov, Marat; Namy, Olivier; Ohlmann, Théophile; Motorin, Yuri; Catez, Frédéric; Diaz, Jean-Jacques

    2017-12-05

    Ribosomal RNAs (rRNAs) are main effectors of messenger RNA (mRNA) decoding, peptide-bond formation, and ribosome dynamics during translation. Ribose 2'-O-methylation (2'-O-Me) is the most abundant rRNA chemical modification, and displays a complex pattern in rRNA. 2'-O-Me was shown to be essential for accurate and efficient protein synthesis in eukaryotic cells. However, whether rRNA 2'-O-Me is an adjustable feature of the human ribosome and a means of regulating ribosome function remains to be determined. Here we challenged rRNA 2'-O-Me globally by inhibiting the rRNA methyl-transferase fibrillarin in human cells. Using RiboMethSeq, a nonbiased quantitative mapping of 2'-O-Me, we identified a repertoire of 2'-O-Me sites subjected to variation and demonstrate that functional domains of ribosomes are targets of 2'-O-Me plasticity. Using the cricket paralysis virus internal ribosome entry site element, coupled to in vitro translation, we show that the intrinsic capability of ribosomes to translate mRNAs is modulated through a 2'-O-Me pattern and not by nonribosomal actors of the translational machinery. Our data establish rRNA 2'-O-Me plasticity as a mechanism providing functional specificity to human ribosomes.

  4. Volatile Gas Production by Methyl Halide Transferase: An In Situ Reporter Of Microbial Gene Expression In Soil.

    PubMed

    Cheng, Hsiao-Ying; Masiello, Caroline A; Bennett, George N; Silberg, Jonathan J

    2016-08-16

    Traditional visual reporters of gene expression have only very limited use in soils because their outputs are challenging to detect through the soil matrix. This severely restricts our ability to study time-dependent microbial gene expression in one of the Earth's largest, most complex habitats. Here we describe an approach to report on dynamic gene expression within a microbial population in a soil under natural water levels (at and below water holding capacity) via production of methyl halides using a methyl halide transferase. As a proof-of-concept application, we couple the expression of this gas reporter to the conjugative transfer of a bacterial plasmid in a soil matrix and show that gas released from the matrix displays a strong correlation with the number of transconjugant bacteria that formed. Gas reporting of gene expression will make possible dynamic studies of natural and engineered microbes within many hard-to-image environmental matrices (soils, sediments, sludge, and biomass) at sample scales exceeding those used for traditional visual reporting.

  5. Conformational analysis and dipole moments of tetra-O-methyl-(+)-catechin and tetra-O-methyl_(-)-epicatechin

    Treesearch

    W.L. Mattice; F.L. Tobiason; K. Houghlum; A. Shanafelt

    1982-01-01

    A conformational energy analysis has been performed for tetra-0-methyl-(+)-catechin and tetra-O-methyl-(-)-epicatechin. Rotation was permitted about five C-O bonds and about the single bond connecting two rings. Eighteen rotational isomers each were assigned for tetra-0-methyl-(-)-epicatechin. Relative...

  6. Reversal of hypermethylation and reactivation of glutathione S-transferase pi 1 gene by curcumin in breast cancer cell line.

    PubMed

    Kumar, Umesh; Sharma, Ujjawal; Rathi, Garima

    2017-02-01

    One of the mechanisms for epigenetic silencing of tumor suppressor genes is hypermethylation of cytosine residue at CpG islands at their promoter region that contributes to malignant progression of tumor. Therefore, activation of tumor suppressor genes that have been silenced by promoter methylation is considered to be very attractive molecular target for cancer therapy. Epigenetic silencing of glutathione S-transferase pi 1, a tumor suppressor gene, is involved in various types of cancers including breast cancer. Epigenetic silencing of tumor suppressor genes can be reversed by several molecules including natural compounds such as polyphenols that can act as a hypomethylating agent. Curcumin has been found to specifically target various tumor suppressor genes and alter their expression. To check the effect of curcumin on the methylation pattern of glutathione S-transferase pi 1 gene in MCF-7 breast cancer cell line in dose-dependent manner. To check the reversal of methylation pattern of hypermethylated glutathione S-transferase pi 1, MCF-7 breast cancer cell line was treated with different concentrations of curcumin for different time periods. DNA and proteins of treated and untreated cell lines were isolated, and methylation status of the promoter region of glutathione S-transferase pi 1 was analyzed using methylation-specific polymerase chain reaction assay, and expression of this gene was analyzed by immunoblotting using specific antibodies against glutathione S-transferase pi 1. A very low and a nontoxic concentration (10 µM) of curcumin treatment was able to reverse the hypermethylation and led to reactivation of glutathione S-transferase pi 1 protein expression in MCF-7 cells after 72 h of treatment, although the IC 50 value of curcumin was found to be at 20 µM. However, curcumin less than 3 µM of curcumin could not alter the promoter methylation pattern of glutathione S-transferase pi 1. Treatment of breast cancer MCF-7 cells with curcumin

  7. Exclusion of the GNAS locus in PHP-Ib patients with broad GNAS methylation changes: evidence for an autosomal recessive form of PHP-Ib?

    PubMed

    Fernández-Rebollo, Eduardo; Pérez de Nanclares, Guiomar; Lecumberri, Beatriz; Turan, Serap; Anda, Emma; Pérez-Nanclares, Gustavo; Feig, Denice; Nik-Zainal, Serena; Bastepe, Murat; Jüppner, Harald

    2011-08-01

    Most patients with autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP-Ib) carry maternally inherited microdeletions upstream of GNAS that are associated with loss of methylation restricted to GNAS exon A/B. Only few AD-PHP-Ib patients carry microdeletions within GNAS that are associated with loss of all maternal methylation imprints. These epigenetic changes are often indistinguishable from those observed in patients affected by an apparently sporadic PHP-Ib form that has not yet been defined genetically. We have now investigated six female patients affected by PHP-Ib (four unrelated and two sisters) with complete or almost complete loss of GNAS methylation, whose healthy children (11 in total) showed no epigenetic changes at this locus. Analysis of several microsatellite markers throughout the 20q13 region made it unlikely that PHP-Ib is caused in these patients by large deletions involving GNAS or by paternal uniparental isodisomy or heterodisomy of chromosome 20 (patUPD20). Microsatellite and single-nucleotide variation (SNV) data revealed that the two affected sisters share their maternally inherited GNAS alleles with unaffected relatives that lack evidence for abnormal GNAS methylation, thus excluding linkage to this locus. Consistent with these findings, healthy children of two unrelated sporadic PHP-Ib patients had inherited different maternal GNAS alleles, also arguing against linkage to this locus. Based on our data, it appears plausible that some forms of PHP-Ib are caused by homozygous or compound heterozygous mutation(s) in an unknown gene involved in establishing or maintaining GNAS methylation. Copyright © 2011 American Society for Bone and Mineral Research.

  8. Exclusion of the GNAS Locus in PHP-Ib Patients With Broad GNAS Methylation Changes: Evidence for an Autosomal Recessive Form of PHP-Ib?

    PubMed Central

    Fernández-Rebollo, Eduardo; de Nanclares, Guiomar Pérez; Lecumberri, Beatriz; Turan, Serap; Anda, Emma; Pérez-Nanclares, Gustavo; Feig, Denice; Nik-Zainal, Serena; Bastepe, Murat; Jüppner, Harald

    2013-01-01

    Most patients with autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP-Ib) carry maternally inherited microdeletions upstream of GNAS that are associated with loss of methylation restricted to GNAS exon A/B. Only few AD-PHP-Ib patients carry microdeletions within GNAS that are associated with loss of all maternal methylation imprints. These epigenetic changes are often indistinguishable from those observed in patients affected by an apparently sporadic PHP-Ib form that has not yet been defined genetically. We have now investigated six female patients affected by PHP-Ib (four unrelated and two sisters) with complete or almost complete loss of GNAS methylation, whose healthy children (11 in total) showed no epigenetic changes at this locus. Analysis of several microsatellite markers throughout the 20q13 region made it unlikely that PHP-Ib is caused in these patients by large deletions involving GNAS or by paternal uniparental isodisomy or heterodisomy of chromosome 20 (patUPD20). Microsatellite and single-nucleotide variation (SNV) data revealed that the two affected sisters share their maternally inherited GNAS alleles with unaffected relatives that lack evidence for abnormal GNAS methylation, thus excluding linkage to this locus. Consistent with these findings, healthy children of two unrelated sporadic PHP-Ib patients had inherited different maternal GNAS alleles, also arguing against linkage to this locus. Based on our data, it appears plausible that some forms of PHP-Ib are caused by homozygous or compound heterozygous mutation(s) in an unknown gene involved in establishing or maintaining GNAS methylation. PMID:21523828

  9. O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaidani, Yuta; Ichiyanagi, Naoki; Saito, Chika

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer We characterized A130022J15Rik (Eogt1)-a mouse gene homologous to Drosophila Eogt. Black-Right-Pointing-Pointer Eogt1 encodes EGF domain O-GlcNAc transferase. Black-Right-Pointing-Pointer Expression of Eogt1 in Drosophila rescued the cell-adhesion defect in the Eogt mutant. Black-Right-Pointing-Pointer O-GlcNAcylation reaction in the secretory pathway is conserved through evolution. -- Abstract: O-linked-{beta}-N-acetylglucosamine (O-GlcNAc) modification is a unique cytoplasmic and nuclear protein modification that is common in nearly all eukaryotes, including filamentous fungi, plants, and animals. We had recently reported that epidermal growth factor (EGF) repeats of Notch and Dumpy are O-GlcNAcylated by an atypical O-GlcNAc transferase, EOGT, in Drosophila. However, no study has yet shownmore » whether O-GlcNAcylation of extracellular proteins is limited to insects such as Drosophila or whether it occurs in other organisms, including mammals. Here, we report the characterization of A130022J15Rik, a mouse gene homolog of Drosophila Eogt (Eogt 1). Enzymatic analysis revealed that Eogt1 has a substrate specificity similar to that of Drosophila EOGT, wherein the Thr residue located between the fifth and sixth conserved cysteines of the folded EGF-like domains is modified. This observation is supported by the fact that the expression of Eogt1 in Drosophila rescued the cell-adhesion defect caused by Eogt downregulation. In HEK293T cells, Eogt1 expression promoted modification of Notch1 EGF repeats by O-GlcNAc, which was further modified, at least in part, by galactose to generate a novel O-linked-N-acetyllactosamine structure. These results suggest that Eogt1 encodes EGF domain O-GlcNAc transferase and that O-GlcNAcylation reaction in the secretory pathway is a fundamental biochemical process conserved through evolution.« less

  10. Synthesis of methyl 3-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside and methyl 3-O-alpha-D-talopyranosyl-alpha-D-talopyranoside.

    PubMed

    Dubey, R; Jain, R K; Abbas, S A; Matta, K L

    1987-08-01

    Methyl 2-O-benzyl-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha- D-mannopyranoside (4) and methyl 2-O-benzyl-3-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (6) were prepared from a common intermediate, namely, methyl 2-O-benzyl-4,6-O-benzylidene-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D- mannopyranosyl)-alpha-D-mannopyranoside. On treatment with tert-butylchlorodiphenylsilane, in N,N-dimethylformamide in the presence of imidazole, 4 and 6 afforded methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-mannopyranoside (7), and methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(6-O-tert- butyldiphenylsilyl-alpha-D-mannopyranosyl)-alpha-D-mannopyranoside (8), respectively. Compound 8 was converted into its 2,3-O-isopropylidene derivative (9), and oxidation of 7 and 9 with pyridinium chlorochromate, and reduction of the resulting carbonyl intermediates gave methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-talopyranoside and methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(6-O-tert-butyldiphe nylsilyl- 2,3-O-isopropylidene-alpha-D-talopyranosyl)-alpha-D-talopyranoside , respectively. Removal of the protecting groups furnished the title disaccharides.

  11. Synthesis of methyl 2-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside and methyl 2-O-alpha-D-talopyranosyl-alpha-D-talopyranoside.

    PubMed

    Jain, R K; Dubey, R; Abbas, S A; Matta, K L

    1987-03-15

    Treatment of methyl 3-O-benzyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha-D- mannopyranoside (1) with tert-butyldiphenylsilyl chloride in N,N-dimethylformamide afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-mannopyranoside (2). Oxidation of 2 with pyridinium chlorochromate, followed by reduction of the carbonyl group, and subsequent O-deacetylation afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-alpha-D-mannopyranosyl- alpha-D- talopyranoside (5). Cleavage of the tert-butyldiphenylsilyl group of 5 with tetrabutylammonium fluoride in oxolane, followed by hydrogenolysis, gave methyl 2-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside (7). O-Deacetylation of 1 gave methyl 3-O-benzyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (8). Treatment of 8 with tert-butyldiphenylsilyl chloride afforded a 6,6'-disilyl derivative, which was converted into a 2',3'-O-isopropylidene derivative, and then further oxidized with pyridinium chlorochromate. The resulting diketone was reduced and removal of the protecting groups gave methyl 2-O-alpha-D-talopyranosyl-alpha-D-talopyranoside (15). The structures of both 7 and 15 were established by 13C-n.m.r. spectroscopy.

  12. O-GlcNAc transferase inhibitors: current tools and future challenges.

    PubMed

    Trapannone, Riccardo; Rafie, Karim; van Aalten, Daan M F

    2016-02-01

    The O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification (O-GlcNAcylation) is the dynamic and reversible attachment of N-acetylglucosamine to serine and threonine residues of nucleocytoplasmic target proteins. It is abundant in metazoa, involving hundreds of proteins linked to a plethora of biological functions with implications in human diseases. The process is catalysed by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) that add and remove sugar moieties respectively. OGT knockout is embryonic lethal in a range of animal models, hampering the study of the biological role of O-GlcNAc and the dissection of catalytic compared with non-catalytic roles of OGT. Therefore, selective and potent chemical tools are necessary to inhibit OGT activity in the context of biological systems. The present review focuses on the available OGT inhibitors and summarizes advantages, limitations and future challenges. © 2016 Authors; published by Portland Press Limited.

  13. Determination of 3-O- and 4-O-methylated monosaccharide constituents in snail glycans.

    PubMed

    Stepan, Herwig; Bleckmann, Christina; Geyer, Hildegard; Geyer, Rudolf; Staudacher, Erika

    2010-07-02

    The N- and O-glycans of Arianta arbustorum, Achatina fulica, Arion lusitanicus and Planorbarius corneus were analysed for their monosaccharide pattern by reversed-phase HPLC after labelling with 2-aminobenzoic acid or 3-methyl-1-phenyl-2-pyrazolin-5-one and by gas chromatography-mass spectrometry. Glucosamine, galactosamine, mannose, galactose, glucose, fucose and xylose were identified. Furthermore, three different methylated sugars were detected: 3-O-methyl-mannose and 3-O-methyl-galactose were confirmed to be a common snail feature; 4-O-methyl-galactose was detected for the first time in snails. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Synthesis and properties of 2'-O-methyl-4'-thioRNA.

    PubMed

    Takahashi, Mayumi; Inoue, Naonori; Minakawa, Noriaki; Matsuda, Akira

    2005-01-01

    In this presentation, we will discuss the synthesis and properties of 2'-O-methyl-4'-thioRNA, an RNA molecule consisting of 2'-O-methyl-4'-thionucleosides. We first synthesized 2'-O-methyl-4'-thiouridine and -cytidine derivatives via 2,2'-O-anhydro-4'-thiouridine. The RNA consisting of 2'-O-methyl-4'-thiopyrimidine nucleosides and 2'-O-methylpurine nucleosides, 2'-OMe-4'-thioRNA, was synthesized on a DNA synthesizer according to the standard phosphoramidite protocol.

  15. Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Mishra, P. C.; Suhai, S.

    Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the

  16. Synthesis of methyl 2-O- and 3-O-alpha-D-talopyranosyl-alpha-D-mannopyranoside.

    PubMed

    Rana, S S; Matta, K L

    1986-09-01

    Methyl 3,4,6-tri-O-benzyl-2-O-[6-O-(tert-butyldiphenylsilyl)-alpha-D- mannopyranosyl]-alpha-D-mannopyranoside (2) was synthesized by treatment of methyl 3,4,6-tri-O-benzyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside with tert-butylchlorodiphenylsilane in the presence of imidazole. Isopropylidenation, followed by oxidation with pyridinium chlorochromate, and stereoselective reduction with sodium borohydride, converted 2 into methyl 3,4,6-tri-O-benzyl-2-O-[6-O-(tert-butyldiphenylsilyl)-2,3-O-isopro pylidene- alpha-D-talopyranosyl]-alpha-D-mannopyranoside (5). Treatment of 5 with a molar solution of tetrabutylammonium fluoride in dry oxolane produced a diol which, on O-de-isopropylidenation followed by catalytic hydrogenolysis, afforded the disaccharide glycoside methyl 2-O-alpha-D-talopyranosyl-alpha-D-mannopyranoside. Synthesis of methyl 3-O-alpha-D-talopyranosyl-alpha-D-mannopyranoside was accomplished by a similar reaction-sequence. The structures of the final disaccharides, and of various other intermediates, were established by 1H- and 13C-n.m.r. spectroscopy.

  17. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate

    USDA-ARS?s Scientific Manuscript database

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-met...

  18. O-Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2-O-methyl-L-selenofucopyranoside.

    PubMed

    Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Imberty, Anne; Künzler, Markus; Titz, Alexander

    2016-01-01

    Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O -methylated selenoglycoside, specifically methyl 2- O -methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor . The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2- O -methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside.

  19. Prostate cancer molecular detection in plasma samples by glutathione S-transferase P1 (GSTP1) methylation analysis.

    PubMed

    Dumache, Raluca; Puiu, Maria; Motoc, Marilena; Vernic, Corina; Dumitrascu, Victor

    2014-01-01

    Prostate cancer (PCa) represents the most commonly diagnosed type of malignancy among men in Western European countries and the second cause of cancer-related deaths among men worldwide. Methylation of the CpG island has an important role in prostate carcinogenesis and progression. The purpose of the study was to analyse the diagnostic value of aberrant promoter hypermethylation of the gene for glutathione S-transferase P1 (GSTP1) in plasma DNA to discriminate between prostate cancer (PCa) and benign prostatic hyperplasia (BPH) patients by minimally invasive methods. Aberrant promoter hypermethylation was investigated in DNA isolated from plasma samples of 31 patients with diagnostic of PCa and 44 cancer-free males (control subjects). Extracted genomic DNA was bisulfite treated and analyzed using methylation-specific polymerase chain reaction (MS-PCR) technique. Hypermethylation of the GSTP1 gene was detected in plasma samples from 27 of 31 (92.86%) patients with PCa. Genomic DNA from plasma samples from the 44 controls without genitourinary cancer revealed promoter hypermethylation of GSTP1 gene in 3 (10.6%) of the 44 patients. Receiver operating curve (ROC) included clinico-pathological parameters such as: serum PSA levels, pathological stage, Gleason score, hypermethylation status of GSTP1 gene, and it gave a predictive accuracy of 93% with a sensitivity and specificity of 95% and 87%, respectively. In this study, we have evaluated the ability of GSTP1 gene to discriminate between PCa and BPH patients in genomic DNA from plasma samples by non-invasive methods.

  20. Genetic Basis for Rhizobium etli CE3 O-Antigen O-Methylated Residues That Vary According to Growth Conditions▿

    PubMed Central

    Ojeda, Kristylea J.; Box, Jodie M.; Noel, K. Dale

    2010-01-01

    The Rhizobium etli CE3 O antigen is a fixed-length heteropolymer with O methylation being the predominant type of sugar modification. There are two O-methylated residues that occur, on average, once per complete O antigen: a multiply O-methylated terminal fucose and 2-O methylation of a fucose residue within a repeating unit. The amount of the methylated terminal fucose decreases and the amount of 2-O-methylfucose increases when bacteria are grown in the presence of the host plant, Phaseolus vulgaris, or its seed exudates. Insertion mutagenesis was used to identify open reading frames required for the presence of these O-methylated residues. The presence of the methylated terminal fucose required genes wreA, wreB, wreC, wreD, and wreF, whereas 2-O methylation of internal fucoses required the methyltransferase domain of bifunctional gene wreM. Mutants lacking only the methylated terminal fucose, lacking only 2-O methylation, or lacking both the methylated terminal fucose and 2-O methylation exhibited no other lipopolysaccharide structural defects. Thus, neither of these decorations is required for normal O-antigen length, transport, or assembly into the final lipopolysaccharide. This is in contrast to certain enteric bacteria in which the absence of a terminal decoration severely affects O-antigen length and transport. R. etli mutants lacking only the methylated terminal fucose were not altered in symbiosis with host Phaseolus vulgaris, whereas mutants lacking only 2-O-methylfucose exhibited a delay in nodule development during symbiosis. These results support previous conclusions that the methylated terminal fucose is dispensable for symbiosis, whereas 2-O methylation of internal fucoses somehow facilitates early events in symbiosis. PMID:19948805

  1. Comparative analysis of Histone modifications and DNA methylation at OsBZ8 locus under salinity stress in IR64 and Nonabokra rice varieties.

    PubMed

    Paul, Amit; Dasgupta, Pratiti; Roy, Dipan; Chaudhuri, Shubho

    2017-09-01

    Rice being an important cereal crop is highly sensitive to salinity stress causing growth retardation and loss in productivity. However, certain rice genotypes like Nonabokra and Pokkali show a high level of tolerance towards salinity stress compared to IR64 variety. This differential response of tolerant varieties towards salinity stress may be a cumulative effect of genetic and epigenetic factors. In this study, we have compared the salinity-induced changes in chromatin modifications at the OsBZ8 locus in salt-tolerant Nonabokra and salt-sensitive IR64 rice varieties. Expression analysis indicates that the OsBZ8 gene is highly induced in Nonabokra plants even in the absence of salt stress, whereas in IR64, the expression significantly increases only during salt stress. Sequence analysis and nucleosomal arrangement within the region -2000 to +1000 of OsBZ8 gene show no difference between the two rice varieties. However, there was a considerable difference in histone modifications and DNA methylation at the locus between these varieties. In Nonabokra, the upstream region was hyperacetylated at H3K9 and H3K27, and this acetylation did not change during salt stress. However, in IR64, histone acetylation was observed only during salt stress. Moreover, the upstream region of OsBZ8 gene has highly dynamic nucleosome arrangement in Nonabokra, compared to IR64. Furthermore, loss of DNA methylation was observed at OsBZ8 locus in Nonabokra control plants along with low H3K27me3 and high H3K4me3. Control IR64 plants show high DNA methylation and enriched H3K27me3. Collectively these results indicate a significant difference in chromatin modifications between the rice varieties that regulates differential expression of OsBZ8 gene during salt stress.

  2. Allele-specific locus binding and genome editing by CRISPR at the p16INK4a locus.

    PubMed

    Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka

    2016-07-28

    The clustered regularly interspaced short palindromic repeats (CRISPR) system has been adopted for a wide range of biological applications including genome editing. In some cases, dissection of genome functions requires allele-specific genome editing, but the use of CRISPR for this purpose has not been studied in detail. In this study, using the p16INK4a gene in HCT116 as a model locus, we investigated whether chromatin states, such as CpG methylation, or a single-nucleotide gap form in a target site can be exploited for allele-specific locus binding and genome editing by CRISPR in vivo. First, we showed that allele-specific locus binding and genome editing could be achieved by targeting allele-specific CpG-methylated regions, which was successful for one, but not all guide RNAs. In this regard, molecular basis underlying the success remains elusive at this stage. Next, we demonstrated that an allele-specific single-nucleotide gap form could be employed for allele-specific locus binding and genome editing by CRISPR, although it was important to avoid CRISPR tolerance of a single nucleotide mismatch brought about by mismatched base skipping. Our results provide information that might be useful for applications of CRISPR in studies of allele-specific functions in the genomes.

  3. The O-GlcNAc Transferase Intellectual Disability Mutation L254F Distorts the TPR Helix.

    PubMed

    Gundogdu, Mehmet; Llabrés, Salomé; Gorelik, Andrii; Ferenbach, Andrew T; Zachariae, Ulrich; van Aalten, Daan M F

    2018-05-17

    O-linked β-N-acetyl- D -glucosamine (O-GlcNAc) transferase (OGT) regulates protein O-GlcNAcylation, an essential post-translational modification that is abundant in the brain. Recently, OGT mutations have been associated with intellectual disability, although it is not understood how they affect OGT structure and function. Using a multi-disciplinary approach we show that the L254F OGT mutation leads to conformational changes of the tetratricopeptide repeats and reduced activity, revealing the molecular mechanisms contributing to pathogenesis. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Protein arginine (N)-methyl transferase 7 (PRMT7) as a potential target for the sensitization of tumor cells to camptothecins.

    PubMed

    Verbiest, Vincent; Montaudon, Danièle; Tautu, Michel T; Moukarzel, Joyce; Portail, Jean-Pierre; Markovits, Judith; Robert, Jacques; Ichas, François; Pourquier, Philippe

    2008-04-30

    PRMT7 belongs to the protein arginine methyl-transferases family. We show that downregulation of PRMT7alpha and beta isoforms in DC-3F hamster cells was associated with increased sensitivity to the Top1 inhibitor camptothecin (CPT). This effect was not due to a change in Top1 contents or catalytic activity, or to a difference in the reversal of DNA breaks. Overexpression of PRMT7alpha and beta in DC-3F cells had no effect on CPT sensitivity, whereas it conferred a resistance to DC-3F/9-OH-E cells for which both isoforms are reduced by two- to three-fold as compared to DC-3F parental cells. Finally, downregulation of the human PRMT7 could also sensitize HeLa cells to CPT, suggesting that it could be used as a target to potentiate CPT derivatives.

  5. The active site of O-GlcNAc transferase imposes constraints on substrate sequence

    PubMed Central

    Rafie, Karim; Blair, David E.; Borodkin, Vladimir S.; Albarbarawi, Osama; van Aalten, Daan M. F.

    2016-01-01

    O-GlcNAc transferase (OGT) glycosylates a diverse range of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc), an essential and dynamic post-translational modification in metazoa. Although this enzyme modifies hundreds of proteins with O-GlcNAc, it is not understood how OGT achieves substrate specificity. In this study, we describe the application of a high-throughput OGT assay on a library of peptides. The sites of O-GlcNAc modification were mapped by ETD-mass spectrometry, and found to correlate with previously detected O-GlcNAc sites. Crystal structures of four acceptor peptides in complex with human OGT suggest that a combination of size and conformational restriction defines sequence specificity in the −3 to +2 subsites. This work reveals that while the N-terminal TPR repeats of hOGT may play a role in substrate recognition, the sequence restriction imposed by the peptide-binding site makes a significant contribution to O-GlcNAc site specificity. PMID:26237509

  6. Bridging the gap between protein carboxyl methylation and phospholipid methylation to understand glucose-stimulated insulin secretion from the pancreatic beta cell.

    PubMed

    Kowluru, Anjaneyulu

    2008-01-15

    Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also been identified in the beta cell. These enzymes catalyze three successive methylations of phosphatidylethanolamine to yield phosphatidylcholine. The "newly formed" phosphatidylcholine is felt to induce alterations in the membrane fluidity, which might favor vesicular fusion with the plasma membrane for the exocytosis of insulin. The objectives of this commentary are to: (i) review the existing evidence on the regulation, by glucose and other insulin secretagogues, of post-translational carboxylmethylation [CML] of specific proteins in the beta cell; (ii) discuss the experimental evidence, which implicates regulation, by glucose and other insulin secretagogues, of phosphatidylethanolamine methylation in the islet beta cell; (iii) propose a model for potential cross-talk between the protein and lipid methylation pathways in the regulation of GSIS and (iv) highlight potential avenues for future research, including the development of specific pharmacological inhibitors to further decipher regulatory roles for these methylation reactions in islet beta cell function.

  7. Identification and characterization of putative methylation targets in the MAOA locus using bioinformatic approaches.

    PubMed

    Shumay, Elena; Fowler, Joanna S

    2010-05-16

    Monoamine oxidase A (MAO A) is an enzyme that catalyzes the oxidation of neurotransmitter amines. A functional polymorphism in the human MAOA gene (high- and low-MAOA) has been associated with distinct behavioral phenotypes. To investigate directly the biological mechanism whereby this polymorphism influences brain function, we recently measured the activity of the MAO A enzyme in healthy volunteers. When found no relationship between the individual's brain MAO A level and the MAOA genotype, we postulated that there are additional regulatory mechanisms that control the MAOA expression. Given that DNA methylation is linked to the regulation of gene expression, we hypothesized that epigenetic mechanisms factor into the MAOA expression. Our underplaying assumption was that the differences in an individual's genotype play a key role in the epigenetic potential of the MAOA locus and, consequently, determine the individual's level of MAO A activity in the brain. As a first step towards experimental validation of the hypothesis, we performed a comprehensive bioinformatic analysis aiming to interrogate genomic features and attributes of the MAOA locus that might modulate its epigenetic sensitivity. Major findings of our analysis are the following: (1) the extended MAOA regulatory region contains two CpG islands (CGIs), one of which overlaps with the canonical MAOA promoter and the other is located further upstream; both CGIs exhibit sensitivity to differential methylation. (2) The uVNTR's effect on the MAOA's transcriptional activity might have epigenetic nature: this polymorphic region resides within the MAOA's CGI and itself contains CpGs, thus, the number of repeating increments effectively changes the number of methylatable cytosines in the MAOA promoter. An array of in silico analyses (the nucleosome positioning, the physical properties of the local DNA, the clustering of transcription-factor binding sites) together with experimental data on histone modifications and

  8. DNMT1-interacting RNAs block gene specific DNA methylation

    PubMed Central

    Di Ruscio, Annalisa; Ebralidze, Alexander K.; Benoukraf, Touati; Amabile, Giovanni; Goff, Loyal A.; Terragni, Joylon; Figueroa, Maria Eugenia; De Figureido Pontes, Lorena Lobo; Alberich-Jorda, Meritxell; Zhang, Pu; Wu, Mengchu; D’Alò, Francesco; Melnick, Ari; Leone, Giuseppe; Ebralidze, Konstantin K.; Pradhan, Sriharsa; Rinn, John L.; Tenen, Daniel G.

    2013-01-01

    Summary DNA methylation was described almost a century ago. However, the rules governing its establishment and maintenance remain elusive. Here, we present data demonstrating that active transcription regulates levels of genomic methylation. We identified a novel RNA arising from the CEBPA gene locus critical in regulating the local DNA methylation profile. This RNA binds to DNMT1 and prevents CEBPA gene locus methylation. Deep sequencing of transcripts associated with DNMT1 combined with genome-scale methylation and expression profiling extended the generality of this finding to numerous gene loci. Collectively, these results delineate the nature of DNMT1-RNA interactions and suggest strategies for gene selective demethylation of therapeutic targets in disease. PMID:24107992

  9. Thr105Ile (rs11558538) polymorphism in the histamine-1-methyl-transferase (HNMT) gene and risk for restless legs syndrome.

    PubMed

    Jiménez-Jiménez, Félix Javier; García-Martín, Elena; Alonso-Navarro, Hortensia; Martínez, Carmen; Zurdo, Martín; Turpín-Fenoll, Laura; Millán-Pascual, Jorge; Adeva-Bartolomé, Teresa; Cubo, Esther; Navacerrada, Francisco; Rojo-Sebastián, Ana; Rubio, Lluisa; Ortega-Cubero, Sara; Pastor, Pau; Calleja, Marisol; Plaza-Nieto, José Francisco; Pilo-de-la-Fuente, Belén; Arroyo-Solera, Margarita; García-Albea, Esteban; Agúndez, José A G

    2017-03-01

    A recent meta-analysis suggests an association between the rs11558538 single nucleotide polymorphism in the histamine-N-methyl-transferase (HNMT) gene and the risk for Parkinson's disease. Based on the possible relationship between PD and restless legs syndrome (RLS), we tried to establish whether rs11558538 SNP is associated with the risk for RLS. We studied the genotype and allelic variant frequencies of HNMT rs11558538 SNP 205 RLS patients and 410 healthy controls using a TaqMan assay. The frequencies of the HNMT rs11558538 genotypes allelic variants were similar between RLS patients and controls, and were not influenced by gender, family history of RLS, or RLS severity. RLS patients carrying the genotype rs11558538TT had an earlier age at onset, but this finding was based on three subjects only. These results suggest a lack of major association between HNMT rs11558538 SNP and the risk for RLS.

  10. Comparison of (-)-epigallocatechin-3-O-gallate (EGCG) and O-methyl EGCG bioavailability in rats.

    PubMed

    Oritani, Yukihiro; Setoguchi, Yuko; Ito, Ryouichi; Maruki-Uchida, Hiroko; Ichiyanagi, Takashi; Ito, Tatsuhiko

    2013-01-01

    (-)-Epigallocatechin-3-O-(3-O-methyl)gallate (EGCG3″Me) and (-)-epigallocatechin-3-O-(4-O-methyl)gallate (EGCG4″Me) are O-methyl derivatives of (-)-epigallocatechin-3-O-gallate (EGCG) present in tea cultivars such as Benifuuki. Although O-methyl EGCGs have various bioactivities, their bioavailabilities have not been determined. In this study, we compared the bioavailability of EGCG and O-methyl EGCGs in rats, and clarified the pharmacokinetics of O-methyl EGCGs. Following oral administration (100 mg/kg), the areas under the concentration-time curves (AUCs) for EGCG, EGCG3″Me, and EGCG4″Me were 39.6 ± 14.2 µg·h/L, 317.2 ± 43.7 µg·h/L, and 51.9 ± 11.0 µg·h/L, respectively. The AUC after intravenous administration (10 mg/kg) was 2772 ± 480 µg·h/L for EGCG, 8209 ± 549 µg·h/L for EGCG3″Me, and 2465 ± 262 µg·h/L for EGCG4″Me. The bioavailability of EGCG3″Me (0.38%) was the highest (EGCG: 0.14% and EGCG4″Me: 0.21%). The distribution volume of EGCG3″Me (0.26 ± 0.02 L/kg) was the lowest (EGCG: 0.94 ± 0.16 L/kg and EGCG4″Me: 0.93 ± 0.14 L/kg). These results suggested that the higher AUC of EGCG3″Me after oral administration was related to its high bioavailability and low distribution volume. These findings supported the stronger bioactivity of EGCG3″Me in vivo.

  11. 2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase

    PubMed Central

    Dong, Hongping; Chang, David C.; Hua, Maggie Ho Chia; Lim, Siew Pheng; Chionh, Yok Hian; Hia, Fabian; Lee, Yie Hou; Kukkaro, Petra; Lok, Shee-Mei; Dedon, Peter C.; Shi, Pei-Yong

    2012-01-01

    RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of

  12. Thio-Linked UDP–Peptide Conjugates as O-GlcNAc Transferase Inhibitors

    PubMed Central

    2018-01-01

    O-GlcNAc transferase (OGT) is an essential glycosyltransferase that installs the O-GlcNAc post-translational modification on the nucleocytoplasmic proteome. We report the development of S-linked UDP–peptide conjugates as potent bisubstrate OGT inhibitors. These compounds were assembled in a modular fashion by photoinitiated thiol–ene conjugation of allyl-UDP and optimal acceptor peptides in which the acceptor serine was replaced with cysteine. The conjugate VTPVC(S-propyl-UDP)TA (Ki = 1.3 μM) inhibits the OGT activity in HeLa cell lysates. Linear fusions of this conjugate with cell penetrating peptides were explored as prototypes of cell-penetrant OGT inhibitors. A crystal structure of human OGT with the inhibitor revealed mimicry of the interactions seen in the pseudo-Michaelis complex. Furthermore, a fluorophore-tagged derivative of the inhibitor works as a high affinity probe in a fluorescence polarimetry hOGT assay. PMID:29723473

  13. The induction of H3K9 methylation by PIWIL4 at the p16{sup Ink4a} locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Keiki; Kage, Hidenori; Aki, Naomi

    The field of epigenetics has made progress by the identification of the small RNA-mediated epigenetic modification. However, little is known about the key proteins. Here, we report that the human PIWI-like family is a candidate protein that is involved in the pathway responsible for chromatin remodeling. The PIWI-like family proteins, expressed as the Flag-fusion proteins, formed a bulky body and localized to the nuclear periphery. Transient transfection of PIWI-like 4 (PIWIL4), only member of the PIWI-like family that was ubiquitously expressed in human tissues, induced histone H3 lysine 9 methylation at the p16{sup Ink4a} (CDKN2A) locus. The elevated level ofmore » histone methylation resulted in the downregulation of the p16{sup Ink4a} gene. These results suggest PIWIL4 plays important roles in the chromatin-modifying pathway in human somatic cells.« less

  14. Reaction products from N-methyl-N-nitrosourea and deoxyribonucleic acid containing thymidine residues. Synthesis and identification of a new methylation product, O4-methyl-thymidine

    PubMed Central

    Lawley, P. D.; Orr, D. J.; Shah, S. A.; Farmer, P. B.; Jarman, M.

    1973-01-01

    1. DNA was treated with N-methyl-N-nitrosourea at pH7–8, 37°C, degraded to yield 3- and 7-methylpurines and deoxyribonucleosides and the reaction products were separated by chromatography on ion-exchange resins. The following methods for identification and determination of products were used: with unlabelled N-methyl-N-nitrosourea, u.v. absorption; use of methyl-14C-labelled N-methyl-N-nitrosourea and use of [14C]thymine-labelled DNA. 2. The synthesis of O4-methylthymidine and its identification by u.v. and mass spectroscopy are reported. 3. 3-Methylthymidine and O4-methylthymidine were found as methylation products from N-methyl-N-nitrosourea with thymidine and with DNA, in relatively small yields. Unidentified products containing thymine were found in enzymic digests of N-methyl-N-nitrosourea-treated DNA, which may be phosphotriesters. 4. The possible role of formation of methylthymines in mutagenesis by N-methyl-N-nitrosourea is discussed. PMID:4798180

  15. CpG island methylator phenotype-low (CIMP-low) colorectal cancer shows not only few methylated CIMP-high-specific CpG islands, but also low-level methylation at individual loci.

    PubMed

    Kawasaki, Takako; Ohnishi, Mutsuko; Nosho, Katsuhiko; Suemoto, Yuko; Kirkner, Gregory J; Meyerhardt, Jeffrey A; Fuchs, Charles S; Ogino, Shuji

    2008-03-01

    The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct phenotype in colorectal cancer. However, the concept of CIMP-low with less extensive CpG island methylation is still evolving. Our aim is to examine whether density of methylation in individual CpG islands was different between CIMP-low and CIMP-high tumors. Utilizing MethyLight technology and 889 population-based colorectal cancers, we quantified DNA methylation (methylation index, percentage of methylated reference) at 14 CpG islands, including 8 CIMP-high-specific loci (CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1). Methylation positivity in each locus was defined as methylation index>4. Low-level methylation (methylation index>0, <20) in each CIMP-high-specific locus was significantly more common in 340 CIMP-low tumors (1/8-5/8 methylation-positive loci) than 133 CIMP-high tumors (> or =6/8 methylation-positive loci) and 416 CIMP-0 tumors (0/8 methylation-positive loci) (P< or =0.002). In the other six loci (CHFR, HIC1, IGFBP3, MGMT, MINT31 and WRN), which were not highly specific for CIMP-high, low-level methylation, was not persistently more prevalent in CIMP-low tumors. In conclusion, compared to CIMP-high and CIMP-0 tumors, CIMP-low colorectal cancers show not only few methylated CIMP-high-specific CpG islands, but also more frequent low-level methylation at individual loci. Our data may provide supporting evidence for a difference in pathogenesis of DNA methylation between CIMP-low and CIMP-high tumors.

  16. O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat

    PubMed Central

    Ruan, Hai-Bin; Dietrich, Marcelo O.; Liu, Zhong-Wu; Zimmer, Marcelo R.; Li, Min-Dian; Singh, Jay Prakash; Zhang, Kaisi; Yin, Ruonan; Wu, Jing; Horvath, Tamas L.; Yang, Xiaoyong

    2014-01-01

    SUMMARY Induction of beige cells causes the browning of white fat and improves energy metabolism. However, the central mechanism that controls adipose tissue browning and its physiological relevance are largely unknown. Here we demonstrate that fasting and chemical-genetic activation of orexigenic AgRP neurons in the hypothalamus suppress the browning of white fat. O-linked β-N-acetylglucosamine (O-GlcNAc) modification of cytoplasmic and nuclear proteins regulates fundamental cellular processes. The levels of O-GlcNAc transferase (OGT) and O-GlcNAc modification are enriched in AgRP neurons and are elevated by fasting. Genetic ablation of OGT in AgRP neurons inhibits neuronal excitability through the voltage-dependent potassium channel, promotes white adipose tissue browning, and protects mice against diet-induced obesity and insulin resistance. These data reveal adipose tissue browning as a highly dynamic physiological process under central control, in which O-GlcNAc signaling in AgRP neurons is essential for suppressing thermogenesis to conserve energy in response to fasting. PMID:25303527

  17. O-GlcNAc Transferase Is Essential for Sensory Neuron Survival and Maintenance

    PubMed Central

    Su, Cathy

    2017-01-01

    O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo. Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons. SIGNIFICANCE STATEMENT We show the importance of O-GlcNAc transferase (OGT) for sensory neuron health and survival in vivo. This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant O-GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood–brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a

  18. O-GlcNAc site-mapping of liver X receptor-α and O-GlcNAc transferase.

    PubMed

    Fan, Qiong; Moen, Anders; Anonsen, Jan Haug; Bindesbøll, Christian; Sæther, Thomas; Carlson, Cathrine Rein; Grønning-Wang, Line M

    2018-05-05

    The Liver X Receptor α (LXRα) belongs to the nuclear receptor superfamily and plays an essential role in regulating cholesterol, lipid and glucose metabolism and inflammatory responses. We have previously shown that LXRα is post-translationally modified by O-linked β-N-acetyl-glucosamine (O-GlcNAc) with increased transcriptional activity. Moreover, we showed that LXRα associates with O-GlcNAc transferase (OGT) in vitro and in vivo in mouse liver. In this study, we report that human LXRα is O-GlcNAc modified in its N-terminal domain (NTD) by identifying a specific O-GlcNAc site S49 and a novel O-GlcNAc modified peptide 20 LWKPGAQDASSQAQGGSSCILRE 42 . However, O-GlcNAc site-mutations did not modulate LXRα transactivation of selected target gene promoters in vitro. Peptide array and co-immunoprecipitation assays demonstrate that LXRα interacts with OGT in its NTD and ligand-binding domain (LBD) in a ligand-independent fashion. Moreover, we map two new O-GlcNAc sites in the longest OGT isoform (ncOGT): S437 in the tetratricopeptide repeat (TPR) 13 domain and T1043 in the far C-terminus, and a new O-GlcNAc modified peptide (amino acids 826-832) in the intervening region (Int-D) within the catalytic domain. We also map four new O-GlcNAc sites in the short isoform sOGT: S391, T393, S399 and S437 in the TPRs 11-13 domain. Future studies will reveal the biological role of identified O-GlcNAc sites in LXRα and OGT. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Microsphere-Based Multiplex Analysis of DNA Methylation in Acute Myeloid Leukemia

    PubMed Central

    Wertheim, Gerald B.W.; Smith, Catherine; Figueroa, Maria E.; Kalos, Michael; Bagg, Adam; Carroll, Martin; Master, Stephen R.

    2015-01-01

    Aberrant regulation of DNA methylation is characteristic of cancer cells and clearly influences phenotypes of various malignancies. Despite clear correlations between DNA methylation and patient outcome, tests that directly measure multiple-locus DNA methylation are typically expensive and technically challenging. Previous studies have demonstrated that the prognosis of patients with acute myeloid leukemia can be predicted by the DNA methylation pattern of 18 loci. We have developed a novel strategy, termed microsphere HpaII tiny fragment enrichment by ligation-mediated PCR (MELP), to simultaneously analyze the DNA methylation pattern at these loci using methylation-specific DNA digestion, fluorescently labeled microspheres, and branched DNA hybridization. The method uses techniques that are inexpensive and easily performed in a molecular laboratory. MELP accurately reflects the methylation levels at each locus analyzed and segregates patients with acute myeloid leukemia into prognostic subgroups. Our results demonstrate the usefulness of MELP as a platform for simultaneous evaluation of DNA methylation of multiple loci. PMID:24373919

  20. Microinjection of recombinant O-GlcNAc transferase potentiates Xenopus oocytes M-phase entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehennaut, Vanessa; EA 4020, Laboratoire de Regulation des Signaux de Division, USTL, IFR147, Villeneuve d'Ascq; Hanoulle, Xavier

    2008-05-02

    In order to understand the importance of the cytosolic and nuclear-specific O-linked N-acetylglucosaminylation (O-GlcNAc) on cell cycle regulation, we recently reported that inhibition of O-GlcNAc transferase (OGT) delayed or blocked Xenopus laevis oocyte germinal vesicle breakdown (GVBD). Here, we show that increased levels of the long OGT isoform (ncOGT) accelerate X. laevis oocyte GVBD. A N-terminally truncated isoform (sOGT) with a similar in vitro catalytic activity towards a synthetic CKII-derived peptide had no effect, illustrating the important role played by the N-terminal tetratrico-peptide repeats. ncOGT microinjection in the oocytes increases both the speed and extent of O-GlcNAc addition, leads tomore » a quicker activation of the MPF and MAPK pathways and finally results in a faster GVBD. Microinjection of anti-OGT antibodies leads to a delay of the GVBD kinetics. Our results hence demonstrate that OGT is a key molecule for the timely progression of the cell cycle.« less

  1. GSTM1 null polymorphism at the glutathione S-transferase M1 locus: phenotype and genotype studies in patients with primary biliary cirrhosis.

    PubMed Central

    Davies, M H; Elias, E; Acharya, S; Cotton, W; Faulder, G C; Fryer, A A; Strange, R C

    1993-01-01

    Studies were carried out to test the hypothesis that the GSTM1 null phenotype at the mu (mu) class glutathione S-transferase 1 locus is associated with an increased predisposition to primary biliary cirrhosis. Starch gel electrophoresis was used to compare the prevalence of GSTM1 null phenotype 0 in patients with end stage primary biliary cirrhosis and a group of controls without evidence of liver disease. The prevalence of GSTM1 null phenotype in the primary biliary cirrhosis and control groups was similar; 39% and 45% respectively. In the primary biliary cirrhosis group all subjects were of the common GSTM1 0, GSTM1 A, GSTM1 B or GSTM1 A, B phenotypes while in the controls, one subject showed an isoform with an anodal mobility compatible with it being a product of the putative GSTM1*3 allele. As the GSTM1 phenotype might be changed by the disease process, the polymerase chain reaction was used to amplify the exon 4-exon 5 region of GSTM1 and show that in 13 control subjects and 11 patients with primary biliary cirrhosis, GSTM1 positive and negative genotypes were associated with corresponding GSTM1 expressing and non-expressing phenotypes respectively. The control subject with GSTM1 3 phenotype showed a positive genotype. Images Figure 1 Figure 2 PMID:8491405

  2. Modulation of DNA methylation machineries in japanese rice fish (Oryzias latipes) embryogenesis by ethanol and 5-azacytidine

    USDA-ARS?s Scientific Manuscript database

    As a sequel of our investigations on the impact of epigenome in inducing fetal alcohol spectrum disorder (FASD) phenotypes in Japanese rice fish, we investigated on several DNA methylation machinery genes including DNA methyl transferase 3ba (dnmt3ba) and methyl binding proteins (MBPs), namely, mbdl...

  3. Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis

    PubMed Central

    Perera, Varahenage R.; Lapek, John D.; Newton, Gerald L.; Gonzalez, David J.; Pogliano, Kit

    2018-01-01

    Bacillithiol is a low molecular weight thiol found in Firmicutes that is analogous to glutathione, which is absent in these bacteria. Bacillithiol transferases catalyze the transfer of bacillithiol to various substrates. The S-transferase-like (STL) superfamily contains over 30,000 putative members, including bacillithiol transferases. Proteins in this family are extremely divergent and are related by structural rather than sequence similarity, leaving it unclear if all share the same biochemical activity. Bacillus subtilis encodes eight predicted STL superfamily members, only one of which has been shown to be a bacillithiol transferase. Here we find that the seven remaining proteins show varying levels of metal dependent bacillithiol transferase activity. We have renamed the eight enzymes BstA-H. Mass spectrometry and gene expression studies revealed that all of the enzymes are produced to varying levels during growth and sporulation, with BstB and BstE being the most abundant and BstF and BstH being the least abundant. Interestingly, several bacillithiol transferases are induced in the mother cell during sporulation. A strain lacking all eight bacillithiol transferases showed normal growth in the presence of stressors that adversely affect growth of bacillithiol-deficient strains, such as paraquat and CdCl2. Thus, the STL bacillithiol transferases represent a new group of proteins that play currently unknown, but potentially significant roles in bacillithiol-dependent reactions. We conclude that these enzymes are highly divergent, perhaps to cope with an equally diverse array of endogenous or exogenous toxic metabolites and oxidants. PMID:29451913

  4. Formation of O2-methylthymine in poly(dA-dT) on methylation with N-methyl-N-nitrosourea and dimethyl sulphate. Evidence that O2-methylthymine does not miscode during DNA synthesis.

    PubMed Central

    Saffhill, R; Abbott, P J

    1978-01-01

    The alternating co-polymer has been methylated with either N methyl-N-nitrosourea (MNU) or dimethyl sulphate (DMS) and the levels of the various methylated thymidines (O2-methylthymidine, 3-methylthymidine and O4-methylthymidine) measured. MNU produced all three compounds whereas DMS only produced 3-methylthymidine and O2-methylthymidine at detectable levels. These results have been combined with our earlier results concerning the misincorporation of dGMP with E. coli DNA polymerase using MNU-methylated poly(dA-dT). These results indicate that O2-methylthymidine does not miscode during DNA synthesis. PMID:353735

  5. Anti-arthritic activity of 11-O-(4'-O-methyl galloyl)-bergenin and Crassula capitella extract in rats.

    PubMed

    El-Hawary, Seham S; Mohammed, Rabab; Abouzid, Sameh; Ali, Zeinab Y; Elwekeel, Ahlam

    2016-06-01

    Isolation and identification of phytochemicals of Crassula capitella (Thunberg), evaluation of the anti-arthritic potential of the extract and the major isolated compound; 11-O-(4'-O-methyl galloyl)-bergenin and underlying their mechanism on rat model of rheumatoid arthritis (RA). Different fractions were subjected to column chromatography giving fourteen compound identified by mass and NMR spectroscopic techniques. RA was induced by intraplantar injection of complete Freund's adjuvant into the right hind paw of rats. Influence of tested samples in comparable to methotrexate on paw oedema, body weight gain, serum diagnostic markers, cartilage and bone degeneration enzymes, pro-inflammatory mediators and oxidative stress biomarkers in arthritic rats. Fourteen phenolic compounds were isolated and identified for the first time from C. capitella. The major compound identified as 11-O-(4'-O-methyl galloyl)-bergenin. Treatment of arthritic rats with extract or 11-O-(4'-O-methyl galloyl)-bergenin with the tested doses can reduce the progression and severity of RA. Crassula capitella is a new natural and abundant source for 11-O-(4'-O-methyl galloyl)-bergenin for resolving chronic inflammatory diseases as RA through antioxidant, anti-inflammatory and membrane stabilizing mechanism. © 2016 Royal Pharmaceutical Society.

  6. O-GlcNAc transferase regulates transcriptional activity of human Oct4.

    PubMed

    Constable, Sandii; Lim, Jae-Min; Vaidyanathan, Krithika; Wells, Lance

    2017-10-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a single sugar modification found on many different classes of nuclear and cytoplasmic proteins. Addition of this modification, by the enzyme O-linked N-acetylglucosamine transferase (OGT), is dynamic and inducible. One major class of proteins modified by O-GlcNAc is transcription factors. O-GlcNAc regulates transcription factor properties through a variety of different mechanisms including localization, stability and transcriptional activation. Maintenance of embryonic stem (ES) cell pluripotency requires tight regulation of several key transcription factors, many of which are modified by O-GlcNAc. Octamer-binding protein 4 (Oct4) is one of the key transcription factors required for pluripotency of ES cells and more recently, the generation of induced pluripotent stem (iPS) cells. The action of Oct4 is modulated by the addition of several post-translational modifications, including O-GlcNAc. Previous studies in mice found a single site of O-GlcNAc addition responsible for transcriptional regulation. This study was designed to determine if this mechanism is conserved in humans. We mapped 10 novel sites of O-GlcNAc attachment on human Oct4, and confirmed a role for OGT in transcriptional activation of Oct4 at a site distinct from that found in mouse that allows distinction between different Oct4 target promoters. Additionally, we uncovered a potential new role for OGT that does not include its catalytic function. These results confirm that human Oct4 activity is being regulated by OGT by a mechanism that is distinct from mouse Oct4. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. The Treacher Collins syndrome (TCOF1) gene product is involved in pre-rRNA methylation.

    PubMed

    Gonzales, Bianca; Henning, Dale; So, Rolando B; Dixon, Jill; Dixon, Michael J; Valdez, Benigno C

    2005-07-15

    Treacher Collins syndrome (TCS) is characterized by defects in craniofacial development, which results from mutations in the TCOF1 gene. TCOF1 encodes the nucleolar phosphoprotein treacle, which interacts with upstream binding factor (UBF) and affects transcription of the ribosomal DNA gene. The present study shows participation of treacle in the 2'-O-methylation of pre-rRNA. Antisense-mediated down-regulation of treacle expression in Xenopus laevis oocytes reduced 2'-O-methylation of pre-rRNA. Analysis of RNA isolated from wild-type and Tcof1+/- heterozygous mice embryos from strains that exhibit a lethal phenotype showed significant reduction in 2'-O-methylation at nucleotide C463 of 18S rRNA. The level of pseudouridylation of U1642 of 18S rRNA from the same RNA samples was not affected suggesting specificity. There is no significant difference in rRNA methylation between wild-type and heterozygous embryos of DBA x BALB/c mice, which have no obvious craniofacial phenotype. The function of treacle in pre-rRNA methylation is most likely mediated by its direct physical interaction with NOP56, a component of the ribonucleoprotein methylation complex. Although treacle co-localizes with UBF throughout mitosis, it co-localizes with NOP56 and fibrillarin, a putative methyl transferase, only during telophase when rDNA gene transcription and pre-rRNA methylation are known to commence. These observations suggest that treacle might link RNA polymerase I-catalyzed transcription and post-transcriptional modification of pre-rRNA. We hypothesize that haploinsufficiency of treacle in TCS patients results in inhibition of production of properly modified mature rRNA in addition to inhibition of rDNA gene transcription, which consequently affects proliferation and proper differentiation of specific embryonic cells during development.

  8. Effect of agmatine on locus coeruleus neuron activity: possible involvement of nitric oxide

    PubMed Central

    Ruiz-Durántez, Eduardo; Ruiz-Ortega, José A; Pineda, Joseba; Ugedo, Luisa

    2002-01-01

    To investigate whether agmatine (the proposed endogenous ligand for imidazoline receptors) controls locus coeruleus neuron activity and to elucidate its mechanism of action, we used single-unit extracellular recording techniques in anaesthetized rats. Agmatine (10, 20 and 40 μg, i.c.v.) increased in a dose-related manner the firing rate of locus coeruleus neurons (maximal increase: 95±13% at 40 μg). I1-imidazoline receptor ligands stimulate locus coeruleus neuron activity through an indirect mechanism originated in the paragigantocellularis nucleus via excitatory amino acids. However, neither electrolytic lesions of the paragigantocellularis nucleus nor pretreatment with the excitatory amino acid antagonist kynurenic acid (1 μmol, i.c.v.) modified agmatine effect (10 μg, i.c.v.). After agmatine administration (20 μg, i.c.v.), dose-response curves for the effect of clonidine (0.625 – 10 μg kg−1 i.v.) or morphine (0.3 – 4.8 mg kg−1 i.v.) on locus coeruleus neurons were not different from those obtained in the control groups. Pretreatment with the nitric oxide synthase inhibitors Nω-nitro-L-arginine (10 μg, i.c.v.) or Nω-nitro-L-arginine methyl ester (100 μg, i.c.v.) but not with the less active stereoisomer Nω-nitro-D-arginine methyl ester (100 μg, i.c.v.) completely blocked agmatine effect (10 and 40 μg, i.c.v.). Similarly, when agmatine (20 pmoles) was applied into the locus coeruleus there was an increase that was blocked by Nω-nitro-L-arginine methyl ester (100 μg, i.c.v.) in the firing rate of the locus coeruleus neurons (maximal increase 53±11% and 14±10% before and after nitric oxide synthase inhibition, respectively). This study demonstrates that agmatine stimulates the firing rate of locus coeruleus neurons via a nitric oxide synthase-dependent mechanism located in this nucleus. PMID:11877321

  9. Methylation alterations are not a major cause of PTTG1 missregulation

    PubMed Central

    Hidalgo, Manuel; Galan, Jose Jorge; Sáez, Carmen; Ferrero, Eduardo; Castilla, Carolina; Ramirez-Lorca, Reposo; Pelaez, Pablo; Ruiz, Agustin; Japón, Miguel A; Royo, Jose Luis

    2008-01-01

    Background On its physiological cellular context, PTTG1 controls sister chromatid segregation during mitosis. Within its crosstalk to the cellular arrest machinery, relies a checkpoint of integrity for which gained the over name of securin. PTTG1 was found to promote malignant transformation in 3T3 fibroblasts, and further found to be overexpressed in different tumor types. More recently, PTTG1 has been also related to different processes such as DNA repair and found to trans-activate different cellular pathways involving c-myc, bax or p53, among others. PTTG1 over-expression has been correlated to a worse prognosis in thyroid, lung, colorectal cancer patients, and it can not be excluded that this effect may also occur in other tumor types. Despite the clinical relevance and the increasing molecular characterization of PTTG1, the reason for its up-regulation remains unclear. Method We analysed PTTG1 differential expression in PC-3, DU-145 and LNCaP tumor cell lines, cultured in the presence of the methyl-transferase inhibitor 5-Aza-2'-deoxycytidine. We also tested whether the CpG island mapping PTTG1 proximal promoter evidenced a differential methylation pattern in differentiated thyroid cancer biopsies concordant to their PTTG1 immunohistochemistry status. Finally, we performed whole-genome LOH studies using Affymetix 50 K microarray technology and FRET analysis to search for allelic imbalances comprising the PTTG1 locus. Conclusion Our data suggest that neither methylation alterations nor LOH are involved in PTTG1 over-expression. These data, together with those previously reported, point towards a post-transcriptional level of missregulation associated to PTTG1 over-expression. PMID:18426563

  10. Methylation alterations are not a major cause of PTTG1 misregulation.

    PubMed

    Hidalgo, Manuel; Galan, Jose Jorge; Sáez, Carmen; Ferrero, Eduardo; Castilla, Carolina; Ramirez-Lorca, Reposo; Pelaez, Pablo; Ruiz, Agustin; Japón, Miguel A; Royo, Jose Luis

    2008-04-21

    On its physiological cellular context, PTTG1 controls sister chromatid segregation during mitosis. Within its crosstalk to the cellular arrest machinery, relies a checkpoint of integrity for which gained the over name of securin. PTTG1 was found to promote malignant transformation in 3T3 fibroblasts, and further found to be overexpressed in different tumor types. More recently, PTTG1 has been also related to different processes such as DNA repair and found to trans-activate different cellular pathways involving c-myc, bax or p53, among others. PTTG1 over-expression has been correlated to a worse prognosis in thyroid, lung, colorectal cancer patients, and it can not be excluded that this effect may also occur in other tumor types. Despite the clinical relevance and the increasing molecular characterization of PTTG1, the reason for its up-regulation remains unclear. We analysed PTTG1 differential expression in PC-3, DU-145 and LNCaP tumor cell lines, cultured in the presence of the methyl-transferase inhibitor 5-Aza-2'-deoxycytidine. We also tested whether the CpG island mapping PTTG1 proximal promoter evidenced a differential methylation pattern in differentiated thyroid cancer biopsies concordant to their PTTG1 immunohistochemistry status. Finally, we performed whole-genome LOH studies using Affymetix 50 K microarray technology and FRET analysis to search for allelic imbalances comprising the PTTG1 locus. Our data suggest that neither methylation alterations nor LOH are involved in PTTG1 over-expression. These data, together with those previously reported, point towards a post-transcriptional level of misregulation associated to PTTG1 over-expression.

  11. The EGF Repeat-Specific O-GlcNAc-Transferase Eogt Interacts with Notch Signaling and Pyrimidine Metabolism Pathways in Drosophila

    PubMed Central

    Müller, Reto; Jenny, Andreas; Stanley, Pamela

    2013-01-01

    The O-GlcNAc transferase Eogt modifies EGF repeats in proteins that transit the secretory pathway, including Dumpy and Notch. In this paper, we show that the Notch ligands Delta and Serrate are also substrates of Eogt, that mutation of a putative UDP-GlcNAc binding DXD motif greatly reduces enzyme activity, and that Eogt and the cytoplasmic O-GlcNAc transferase Ogt have distinct substrates in Drosophila larvae. Loss of Eogt is larval lethal and disrupts Dumpy functions, but does not obviously perturb Notch signaling. To identify novel genetic interactions with eogt, we investigated dominant modification of wing blister formation caused by knock-down of eogt. Unexpectedly, heterozygosity for several members of the canonical Notch signaling pathway suppressed wing blister formation. And importantly, extensive genetic interactions with mutants in pyrimidine metabolism were identified. Removal of pyrimidine synthesis alleles suppressed wing blister formation, while removal of uracil catabolism alleles was synthetic lethal with eogt knock-down. Therefore, Eogt may regulate protein functions by O-GlcNAc modification of their EGF repeats, and cellular metabolism by affecting pyrimidine synthesis and catabolism. We propose that eogt knock-down in the wing leads to metabolic and signaling perturbations that increase cytosolic uracil levels, thereby causing wing blister formation. PMID:23671640

  12. Detecting methylation patterns of p16, MGMT, DAPK and E-cadherin genes in multiple myeloma patients.

    PubMed

    Yuregir, O Ozalp; Yurtcu, E; Kizilkilic, E; Kocer, N E; Ozdogu, H; Sahin, F I

    2010-04-01

    Multiple myeloma (MM) is a B-cell neoplasia characterized by the clonal proliferation of plasma cells. Besides known genetic abnormalities, epigenetic changes are also known to effect MM pathogenesis. DNA methylation is an epigenetic mechanism that silences genes by adding methyl groups to cytosine-guanine dinucleotides at the promoter regions. In this study, the methylation status of four genes; p16, O6-methyl guanine DNA methyl transferase (MGMT), death-associated protein kinase (DAPK) and E-cadherin (ECAD); at the time of diagnosis was investigated using methylation-specific polymerase chain reaction (MS-PCR). In the 20 cases studied; methylation of the promoter regions of p16, MGMT, DAPK and ECAD genes was detected in 10%, 40%, 10% and 45% of the cases, respectively. In 65% (13/20) of cases, at least one of the genes studied had promoter methylation; while 35% of cases (7/20) had methylated promoters of more than one gene. There was a significant correlation between promoter hypermethylation of MGMT and the presence of extramedullary involvement; but for the other genes no correlation was found regarding disease properties like age, disease stage, clinical course and the presence of lytic bone lesions. Determining the methylation profiles of genes in MM, could lead to a new understanding of the disease pathogenesis and guide the assessment of treatment options.

  13. Purification and properties of an O-acetyl-transferase from Escherichia coli that can O-acetylate polysialic acid sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, H.; Varki, A.

    1986-05-01

    Certain strains of bacteria synthesize an outer polysialic acid (K1) capsule. Some strains of K1/sup +/ E.coli are also capable of adding O-acetyl-esters to the exocyclic hydroxyl groups of the sialic acid residues. Both the capsule and the O-acetyl modification have been correlated with differences in antigenicity and pathogenicity. The authors have developed an assay for an O-acetyl-transferase in E.coli that transfers O-(/sup 3/H)acetyl groups from (/sup 3/H)acetyl-Coenzyme A to colominic acid (fragments of the polysialic acid capsule). Using this assay, the enzyme was solubilized, and purified approx. 600-fold using a single affinity chromatography step with Procion Red-A Agarose. Themore » enzyme also binds to Coenzyme A Sepharose, and can be eluted with high salt or Coenzyme A. The partially purified enzyme has a pH optimum of 7.0 - 7.5, is unaffected by divalent cations, is inhibited by high salt concentrations, is inhibited by Coenzyme A (50% inhibition at 100 ..mu..M), and shows an apparent Km for colominic acid of 3.7 mM (sialic acid concentration). This enzyme could be involved in the O-acetyl +/- form variation seen in some strains of K1/sup +/ E.coli.« less

  14. 3-O-methyl sugars as constituents of glycoproteins. Identification of 3-O-methylgalactose and 3-O-methylmannose in pulmonate gastropod haemocyanins.

    PubMed Central

    Hall, R L; Wood, E J; Kamberling, J P; Gerwig, G J; Vliegenthart, F G

    1977-01-01

    In addition to the already knownonosaccharides fucose, xylose, mannose, galactose, glucose, N-acetylgalactosamine and N-acetylglucosamine, the carbohydrate part of the haemocyanin from Helix pomatia (Roman snail) contains 3-O-methylgalactose, and that from Lymnaea stagnalis (a freshwater snail) 3-O-methylgalactose and 3-O-methylmannose. The 3-O-methyl sugars were identified by g.l.c.-mas spectrometry of the corresponding trimethylsilyl methyl glycosides and the alditol acetates, and by co-chromatography with the synthetic reference substances. PMID:889564

  15. DEVELOPMENT OF THE SIGMA-1 RECEPTOR IN C-TERMINALS OF MOTONEURONS AND COLOCALIZATION WITH THE N,N’-DIMETHYLTRYPTAMINE FORMING ENZYME, INDOLE-N-METHYL TRANSFERASE

    PubMed Central

    Mavlyutov, Timur A.; Epstein, Miles L.; Liu, Patricia; Verbny, Yakov I.; Ziskind-Conhaim, Lea; Ruoho, Arnold E.

    2012-01-01

    The function of the sigma-1 receptor (S1R) has been linked to modulating the activities of ion channels and G-protein coupled receptors (GPCR). In the CNS the S1R is expressed ubiquitously but is enriched in mouse motoneurons (MN), where it is localized to subsurface cisternae of cholinergic postsynaptic densities, also known as C-terminals. We found that S1R is enriched in mouse spinal MN at late stages of embryonic development when it is first visualized in the endoplasmic reticulum. S1Rs appear to concentrate at C-terminals of mouse MN only on the second week of postnatal development. We found that Indole-N-methyl transferase (INMT), an enzyme that converts tryptamine into the sigma-1 ligand dimethyltryptamine (DMT), is also localized to postsynaptic sites of C-terminals in close proximity to the S1R. This close association of INMT and SIRs suggest that DMT is synthesized locally to effectively activate S1R in MN. PMID:22265729

  16. Hibiscus cannabinus feruloyl-coa:monolignol transferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, Curtis; Ralph, John; Withers, Saunia

    The invention relates to isolated nucleic acids encoding a feruloyl-CoA:monolignol transferase and feruloyl-CoA:monolignol transferase enzymes. The isolated nucleic acids and/or the enzymes enable incorporation of monolignol ferulates into the lignin of plants, where such monolignol ferulates include, for example, p-coumaryl ferulate, coniferyl ferulate, and/or sinapyl ferulate. The invention also includes methods and plants that include nucleic acids encoding a feruloyl-CoA:monolignol transferase enzyme and/or feruloyl-CoA:monolignol transferase enzymes.

  17. Structural elucidation of polysaccharide containing 3-O-methyl galactose from fruiting bodies of Pleurotus citrinopileatus.

    PubMed

    He, Pengfei; Zhang, Anqiang; Zhou, Saijing; Zhang, Fuming; Linhardt, Robert J; Sun, Peilong

    2016-11-03

    A water-soluble polysaccharide containing 3-O-methyl galactose (PCP60W) was isolated from fruiting bodies of Pleurotus citrinopileatus and purified by anion-exchange and gel column chromatography. This polysaccharide has an average molecular weight of 2.74 × 10 4  Da and its structure was elucidated using monosaccharide composition and methylation analysis combined with one- and two-dimensional (COSY, TOCSY, NOESY, HMQC and HMBC) NMR spectroscopy. PCP60W was shown to be a linear partially 3-O-methylated α-galactopyranan comprised of 6-linked galactose, 6-linked 3-O-methyl galactose and 4-linked glucose in a ratio of 3.0:1.0:0.6. This work provides additional evidence for the view that 3-O-methyl galactose is common to the genus Pleurotus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Enzymatic Glycosylation by Transferases

    NASA Astrophysics Data System (ADS)

    Blixt, Ola; Razi, Nahid

    Glycosyltransferases are important biological catalysts in cellular systems generating complex cell surface glycans involved in adhesion and signaling processes. Recent advances in glycoscience have increased the demands to access significant amount of glycans representing the glycome. Glycosyltransferases are now playing a key role for in vitro synthesis of oligosaccharides and the bacterial genome are increasingly utilized for cloning and over expression of active transferases in glycosylation reactions. This chapter highlights the recent progress towards preparative synthesis of oligosaccharides representing terminal sequences of glycoproteins and glycolipids using recombinant transferases. Transferases are also being explored in the context of solid-phase synthesis, immobilized on resins and over expression in vivo by engineered bacteria.

  19. Distinct Copy Number, Coding Sequence, and Locus Methylation Patterns Underlie Rhg1-Mediated Soybean Resistance to Soybean Cyst Nematode1[W][OPEN

    PubMed Central

    Cook, David E.; Bayless, Adam M.; Wang, Kai; Guo, Xiaoli; Song, Qijian; Jiang, Jiming; Bent, Andrew F.

    2014-01-01

    Copy number variation of kilobase-scale genomic DNA segments, beyond presence/absence polymorphisms, can be an important driver of adaptive traits. Resistance to Heterodera glycines (Rhg1) is a widely utilized quantitative trait locus that makes the strongest known contribution to resistance against soybean cyst nematode (SCN), Heterodera glycines, the most damaging pathogen of soybean (Glycine max). Rhg1 was recently discovered to be a complex locus at which resistance-conferring haplotypes carry up to 10 tandem repeat copies of a 31-kb DNA segment, and three disparate genes present on each repeat contribute to SCN resistance. Here, we use whole-genome sequencing, fiber-FISH (fluorescence in situ hybridization), and other methods to discover the genetic variation at Rhg1 across 41 diverse soybean accessions. Based on copy number variation, transcript abundance, nucleic acid polymorphisms, and differentially methylated DNA regions, we find that SCN resistance is associated with multicopy Rhg1 haplotypes that form two distinct groups. The tested high-copy-number Rhg1 accessions, including plant introduction (PI) 88788, contain a flexible number of copies (seven to 10) of the 31-kb Rhg1 repeat. The identified low-copy-number Rhg1 group, including PI 548402 (Peking) and PI 437654, contains three copies of the Rhg1 repeat and a newly identified allele of Glyma18g02590 (a predicted α-SNAP [α-soluble N-ethylmaleimide–sensitive factor attachment protein]). There is strong evidence for a shared origin of the two resistance-conferring multicopy Rhg1 groups and subsequent independent evolution. Differentially methylated DNA regions also were identified within Rhg1 that correlate with SCN resistance. These data provide insights into copy number variation of multigene segments, using as the example a disease resistance trait of high economic importance. PMID:24733883

  20. Succinyl-CoA:(R)-Benzylsuccinate CoA-Transferase: an Enzyme of the Anaerobic Toluene Catabolic Pathway in Denitrifying Bacteria†

    PubMed Central

    Leutwein, Christina; Heider, Johann

    2001-01-01

    Anaerobic microbial toluene catabolism is initiated by addition of fumarate to the methyl group of toluene, yielding (R)-benzylsuccinate as first intermediate, which is further metabolized via β-oxidation to benzoyl-coenzyme A (CoA) and succinyl-CoA. A specific succinyl-CoA:(R)-benzylsuccinate CoA-transferase activating (R)-benzylsuccinate to the CoA-thioester was purified and characterized from Thauera aromatica. The enzyme is fully reversible and forms exclusively the 2-(R)-benzylsuccinyl-CoA isomer. Only some close chemical analogs of the substrates are accepted by the enzyme: succinate was partially replaced by maleate or methylsuccinate, and (R)-benzylsuccinate was replaced by methylsuccinate, benzylmalonate, or phenylsuccinate. In contrast to all other known CoA-transferases, the enzyme consists of two subunits of similar amino acid sequences and similar sizes (44 and 45 kDa) in an α2β2 conformation. Identity of the subunits with the products of the previously identified toluene-induced bbsEF genes was confirmed by determination of the exact masses via electrospray-mass spectrometry. The deduced amino acid sequences resemble those of only two other characterized CoA-transferases, oxalyl-CoA:formate CoA-transferase and (E)-cinnamoyl-CoA:(R)-phenyllactate CoA-transferase, which represent a new family of CoA-transferases. As suggested by kinetic analysis, the reaction mechanism of enzymes of this family apparently involves formation of a ternary complex between the enzyme and the two substrates. PMID:11418570

  1. Detection and quantification of RNA 2′-O-methylation and pseudouridylation

    PubMed Central

    Karijolich, John

    2016-01-01

    RNA-guided RNA modification is a naturally occurring process that introduces 2′-O-methylation and pseudouridylation into rRNA, spliceosomal snRNA and several other types of RNA. The Box C/D ribonucleoproteins (RNP) and Box H/ACA RNP, each containing one unique guide RNA (Box C/D RNA or Box H/ACA RNA) and a set of core proteins, are responsible for 2′-O-methylation and pseudouridylation respectively. Box C/D RNA and Box H/ACA RNA provide the modification specificity through base pairing with their RNA substrate. These post-transcriptional modifications could profoundly alter the properties and functions of substrate RNAs. Thus it is desirable to establish reliable and standardized modification methods to study biological functions of modified nucleotides in RNAs. Here, we present several sensitive and efficient methods and protocols for detecting and quantifying post-transcriptional 2′-O-methylation and pseudouridylation. PMID:26853326

  2. Identification of Methyl Halide-Utilizing Genes in the Methyl Bromide-Utilizing Bacterial Strain IMB-1 Suggests a High Degree of Conservation of Methyl Halide-Specific Genes in Gram-Negative Bacteria

    USGS Publications Warehouse

    Woodall, C.A.; Warner, K.L.; Oremland, R.S.; Murrell, J.C.; McDonald, I.R.

    2001-01-01

    Strain IMB-1, an aerobic methylotrophic member of the alpha subgroup of the Proteobacteria, can grow with methyl bromide as a sole carbon and energy source. A single cmu gene cluster was identified in IMB-1 that contained six open reading frames: cmuC, cmuA, orf146, paaE, hutI, and partial metF. CmuA from IMB-1 has high sequence homology to the methyltransferase CmuA from Methylobacterium chloromethanicum and Hyphomicrobium chloromethanicum and contains a C-terminal corrinoid-binding motif and an N-terminal methyl-transferase motif. However, cmuB, identified in M. chloromethanicum and H. chloromethanicum, was not detected in IMB-1.

  3. Forensic discrimination of vaginal epithelia by DNA methylation analysis through pyrosequencing.

    PubMed

    Antunes, Joana; Silva, Deborah S B S; Balamurugan, Kuppareddi; Duncan, George; Alho, Clarice S; McCord, Bruce

    2016-10-01

    The accurate identification of body fluids from crime scenes can aid in the discrimination between criminal and innocent intent. This research aimed to determine if the levels of DNA methylation in the locus PFN3A could be used to discriminate vaginal epithelia from other body fluids. In this work we bisulfite-modified and amplified DNA samples from blood, saliva, semen, and vaginal epithelia using primers for PFN3A. Through pyrosequencing we were able to show that vaginal epithelia present distinct methylation levels when compared to other body fluids. Mixtures of different body fluids present methylation values that correlate with single-source body fluid samples and the primers for PFN3A are specific for primates. This report successfully demonstrated that the analysis of methylation in the PFN3A locus can be used for vaginal epithelia discrimination in forensic samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fourier transformation microwave spectroscopy of the methyl glycolate-H2O complex

    NASA Astrophysics Data System (ADS)

    Fujitake, Masaharu; Tanaka, Toshihiro; Ohashi, Nobukimi

    2018-01-01

    The rotational spectrum of one conformer of the methyl glycolate-H2O complex has been measured by means of the pulsed jet Fourier transform microwave spectrometer. The observed a- and b-type transitions exhibit doublet splittings due to the internal rotation of the methyl group. On the other hand, most of the c-type transitions exhibit quartet splittings arising from the methyl internal rotation and the inversion motion between two equivalent conformations. The spectrum was analyzed using parameterized expressions of the Hamiltonian matrix elements derived by applying the tunneling matrix formalism. Based on the results obtained from ab initio calculation, the observed complex of methyl glycolate-H2O was assigned to the most stable conformer of the insertion complex, in which a non-planer seven membered-ring structure is formed by the intermolecular hydrogen bonds between methyl glycolate and H2O subunits. The inversion motion observed in the c-type transitions is therefore a kind of ring-inversion motion between two equivalent conformations. Conformational flexibility, which corresponds to the ring-inversion between two equivalent conformations and to the isomerization between two possible conformers of the insertion complex, was investigated with the help of the ab initio calculation.

  5. On the cleavage of the peroxide O---O bond in methyl hydroperoxide and dimethyl peroxide upon protonation

    NASA Astrophysics Data System (ADS)

    Schalley, Christoph A.; Dieterle, Martin; Schröder, Detlef; Schwarz, Helmut; Uggerud, Einar

    1997-04-01

    The unimolecular decays of protonated methyl hydroperoxide and dimethyl peroxide have been studied by tandem mass spectrometric techniques in combination with isotopic labeling as well as computational methods. The potential-energy surfaces calculated at the BECKE3LYP/6-311++G** level of theory are in good agreement with the experimental findings. The decomposition of the protonated peroxides can be described by a general mechanistic scheme which involves rearrangement to proton-bridged complexes, i.e. [CH2O-H-OH2]+ and [CH2O-H-O(H)CH3]+, respectively. When formed unimolecularly via rearrangement of the protonated peroxides, these complexes are rovibrationally highly excited; consequently, their fragmentations are affected remarkably as compared to proton-bound complexes of lower internal energy which are independently generated from the corresponding alcohol and carbonyl compounds in a chemical ionization plasma. For methyl hydroperoxide, both oxygen atoms can be protonated, giving rise to two isomeric cations with rather similar heats of formation but entirely different fragmentation behaviors. Cleavage of the O---O bond in dimethyl peroxide upon protonation results in proton- as well as methyl-cation-bridged intermediates, e.g. [CH2O-H-O(H)CH3]+ and [CH2O-CH3-OH2]+.

  6. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP).

    PubMed

    Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J

    2014-01-01

    DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic

  7. Differential substrate behaviours of ethylene oxide and propylene oxide towards human glutathione transferase theta hGSTT1-1.

    PubMed

    Thier, R; Wiebel, F A; Bolt, H M

    1999-11-01

    The transformation of ethylene oxide (EO), propylene oxide (PO) and 1-butylene oxide (1-BuO) by human glutathione transferase theta (hGSTT1-1) was studied comparatively using 'conjugator' (GSTT1 + individuals) erythrocyte lysates. The relative sequence of velocity of enzymic transformation was PO > EO > 1-BuO. The faster transformation of PO compared to EO was corroborated in studies with human and rat GSTT1-1 (hGSTT1-1 and rGSTT1-1, respectively) expressed by Salmonella typhimurium TA1535. This sequence of reactivities of homologous epoxides towards GSTT1-1 contrasts to the sequence observed in homologous alkyl halides (methyl bromide, MBr; ethyl bromide, EtBr; n-propyl bromide, PrBr) where the relative sequence MeBr > EtBr > PrBr is observed. The higher reactivity towards GSTT1-1 of propylene oxide compared to ethylene oxide is consistent with a higher chemical reactivity. This is corroborated by experimental data of acid-catalysed hydrolysis of a number of aliphatic epoxides, including ethylene oxide and propylene oxide and consistent with semi-empirical molecular orbital modelings.

  8. A Genetic Locus Necessary for Rhamnose Uptake and Catabolism in Rhizobium leguminosarum bv. trifolii

    PubMed Central

    Richardson, Jason S.; Hynes, Michael F.; Oresnik, Ivan J.

    2004-01-01

    Rhizobium leguminosarum bv. trifolii mutants unable to catabolize the methyl-pentose rhamnose are unable to compete effectively for nodule occupancy. In this work we show that the locus responsible for the transport and catabolism of rhamnose spans 10,959 bp. Mutations in this region were generated by transposon mutagenesis, and representative mutants were characterized. The locus contains genes coding for an ABC-type transporter, a putative dehydrogenase, a probable isomerase, and a sugar kinase necessary for the transport and subsequent catabolism of rhamnose. The regulation of these genes, which are inducible by rhamnose, is carried out in part by a DeoR-type negative regulator (RhaR) that is encoded within the same transcript as the ABC-type transporter but is separated from the structural genes encoding the transporter by a terminator-like sequence. RNA dot blot analysis demonstrated that this terminator-like sequence is correlated with transcript attenuation only under noninducing conditions. Transport assays utilizing tritiated rhamnose demonstrated that uptake of rhamnose was inducible and dependent upon the presence of the ABC transporter at this locus. Phenotypic analyses of representative mutants from this locus provide genetic evidence that the catabolism of rhamnose differs from previously described methyl-pentose catabolic pathways. PMID:15576793

  9. Feruloyl-CoA:monolignol transferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, Curtis; Ralph, John; Withers, Saunia

    The invention relates to nucleic acids encoding a feruloyl-CoA:monolignol transferase and the feruloyl-CoA:monolignol transferase enzyme that enables incorporation of monolignol ferulates, for example, including p-coumaryl ferulate, coniferyl ferulate, and sinapyl ferulate, into the lignin of plants.

  10. Development of the sigma-1 receptor in C-terminals of motoneurons and colocalization with the N,N'-dimethyltryptamine forming enzyme, indole-N-methyl transferase.

    PubMed

    Mavlyutov, T A; Epstein, M L; Liu, P; Verbny, Y I; Ziskind-Conhaim, L; Ruoho, A E

    2012-03-29

    The function of the sigma-1 receptor (S1R) has been linked to modulating the activities of ion channels and G-protein-coupled receptors (GPCR). In the CNS, the S1R is expressed ubiquitously but is enriched in mouse motoneurons (MN), where it is localized to subsurface cisternae of cholinergic postsynaptic densities, also known as C-terminals. We found that S1R is enriched in mouse spinal MN at late stages of embryonic development when it is first visualized in the endoplasmic reticulum. S1Rs appear to concentrate at C-terminals of mouse MN only on the second week of postnatal development. We found that indole-N-methyl transferase (INMT), an enzyme that converts tryptamine into the sigma-1 ligand dimethyltryptamine (DMT), is also localized to postsynaptic sites of C-terminals in close proximity to the S1R. This close association of INMT and S1Rs suggest that DMT is synthesized locally to effectively activate S1R in MN. Published by Elsevier Ltd.

  11. 40 CFR 180.483 - O-[2-(1,1-Dimethylethyl)-5-pyrimidinyl] O-ethyl-O-(1-methyl-ethyl) phosphorothioate; tolerances...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false O-[2-(1,1-Dimethylethyl)-5-pyrimidinyl] O-ethyl-O-(1-methyl-ethyl) phosphorothioate; tolerances for residues. 180.483 Section 180.483... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.483 O-[2-(1,1-Dimethylethyl)-5...

  12. 40 CFR 721.10450 - Oxirane, 2-[[3-(trimethoxysilyl)propoxy]methyl]-, reaction products with wollastonite (Ca(SiO3)).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Oxirane, 2-[[3-(trimethoxysilyl)propoxy]methyl]-, reaction products with wollastonite (Ca(SiO3)). (a...)propoxy]methyl]-, reaction products with wollastonite (Ca(SiO3)). 721.10450 Section 721.10450 Protection... oxirane, 2-[[3-(trimethoxysilyl)propoxy]methyl]-, reaction products with wollastonite (Ca(SiO3)) (PMN P-02...

  13. 40 CFR 721.10450 - Oxirane, 2-[[3-(trimethoxysilyl)propoxy]methyl]-, reaction products with wollastonite (Ca(SiO3)).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Oxirane, 2-[[3-(trimethoxysilyl)propoxy]methyl]-, reaction products with wollastonite (Ca(SiO3)). (a...)propoxy]methyl]-, reaction products with wollastonite (Ca(SiO3)). 721.10450 Section 721.10450 Protection... oxirane, 2-[[3-(trimethoxysilyl)propoxy]methyl]-, reaction products with wollastonite (Ca(SiO3)) (PMN P-02...

  14. Characterization of a lambda-cyhalothrin metabolizing glutathione S-transferase CpGSTd1 from Cydia pomonella (L.).

    PubMed

    Liu, Jiyuan; Yang, Xueqing; Zhang, Yalin

    2014-11-01

    In insects, glutathione S-transferases (GSTs) are enzymes involved in detoxification of insecticides. However, few data are available for the codling moth, Cydia pomonella (L.). In this study, we cloned a delta class GST gene CpGSTd1 from C. pomonella. Real-time quantitative PCR shows that CpGSTd1 was up-regulated with aging, and the mRNA level of CpGSTd1 was higher in the fat body and silk glands than in other tissues. The expression level of CpGSTd1 exposure to insecticide suggests that CpGSTd1 is up-regulated after chlorpyrifos-methyl and lambda-cyhalothrin treatments. Both lambda-cyhalothrin and chlorpyrifos-methyl altered GST activity in vivo. The purified CpGSTd1 protein exhibits a high catalytic efficiency with CDNB and was inhibited by lambda-cyhalothrin and chlorpyrifos-methyl in vitro. Metabolism assays indicate that lambda-cyhalothrin was significantly metabolized while chlorpyrifos-methyl was not metabolized by CpGSTd1. Binding free energy analysis suggests that CpGSTd1 binding is tighter with lambda-cyhalothrin than with chlorpyrifos-methyl. Our study suggests that CpGSTd1 plays a key role in the metabolism of insecticides in C. pomonella.

  15. Effects of Inhibitors of [Delta]24(25)-Sterol Methyl Transferase on the Ultrastructure of Epimastigotes of Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Braga, Marina V.; Magaraci, Filippo; Orenes Lorente, Silvia; Gilbert, Ian; de Souza, Wanderley

    2005-12-01

    Trypanosoma cruzi is the ethiological agent of Chagas disease. New compounds are being developed based on the biosynthesis and function of sterols, because T. cruzi has a requirement for specific endogenous sterols for growth and survival. Sterol biosynthesis inhibitors (SBIs) are drugs commonly used against fungal diseases. These drugs act by depleting essential and specific membrane components and/or inducing the accumulation of toxic intermediary or lateral products of the biosynthetic pathway. In this work we present the effects of WSP488, WSP501, and WSP561, specific inhibitors of [Delta]24(25)-sterol methyl transferase, on the ultrastructure of T. cruzi epimastigotes. All three drugs inhibited parasite multiplication at low concentrations, with IC50 values of 0.48, 0.44, and 0.48 [mu]M, respectively, and induced marked morphological changes including (a) blockage of cell division; (b) swelling of the mitochondrion, with several projections and depressions; (c) swelling of the perinuclear space; (d) presence of autophagosomes and myelin-like figures; (e) enlargement of the flagellar pocket and of a cytoplasmic vacuole located in close association with the flagellar pocket; (f) detachment of the membrane of the cell body; and (g) formation of a vesicle at the surface of the parasite between the flagellar pocket and the cytostome. Our results show that these drugs are potent in vitro inhibitors of growth of T. cruzi.

  16. The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals

    PubMed Central

    Duffié, Rachel; Ajjan, Sophie; Greenberg, Maxim V.; Zamudio, Natasha; Escamilla del Arenal, Martin; Iranzo, Julian; Okamoto, Ikuhiro; Barbaux, Sandrine; Fauque, Patricia; Bourc'his, Déborah

    2014-01-01

    Many loci maintain parent-of-origin DNA methylation only briefly after fertilization during mammalian development: Whether this form of transient genomic imprinting can impact the early embryonic transcriptome or even have life-long consequences on genome regulation and possibly phenotypes is currently unknown. Here, we report a maternal germline differentially methylated region (DMR) at the mouse Gpr1/Zdbf2 (DBF-type zinc finger-containing protein 2) locus, which controls the paternal-specific expression of long isoforms of Zdbf2 (Liz) in the early embryo. This DMR loses parental specificity by gain of DNA methylation at implantation in the embryo but is maintained in extraembryonic tissues. As a consequence of this transient, tissue-specific maternal imprinting, Liz expression is restricted to the pluripotent embryo, extraembryonic tissues, and pluripotent male germ cells. We found that Liz potentially functions as both Zdbf2-coding RNA and cis-regulatory RNA. Importantly, Liz-mediated events allow a switch from maternal to paternal imprinted DNA methylation and from Liz to canonical Zdbf2 promoter use during embryonic differentiation, which are stably maintained through somatic life and conserved in humans. The Gpr1/Zdbf2 locus lacks classical imprinting histone modifications, but analysis of mutant embryonic stem cells reveals fine-tuned regulation of Zdbf2 dosage through DNA and H3K27 methylation interplay. Together, our work underlines the developmental and evolutionary need to ensure proper Liz/Zdbf2 dosage as a driving force for dynamic genomic imprinting at the Gpr1/Zdbf2 locus. PMID:24589776

  17. Functional characterization of O-methyltransferases used to catalyse site-specific methylation in the post-tailoring steps of pradimicin biosynthesis.

    PubMed

    Han, J W; Ng, B G; Sohng, J K; Yoon, Y J; Choi, G J; Kim, B S

    2018-01-01

    To identify the roles of the two O-methyltransferase homologous genes pdmF and pdmT in the pradimicin biosynthetic gene cluster of Actinomadura hibisca P157-2. Pradimicins are pentangular polyphenol antibiotics synthesized by bacterial type II polyketide synthases (PKSs) and tailoring enzymes. Pradimicins are naturally derivatized by combinatorial O-methylation at two positions (i.e., 7-OH and 11-OH) of the benzo[α]naphthacenequinone structure. PdmF and PdmT null mutants (PFKO and PTKO) were generated. PFKO produced the 11-O-demethyl shunt metabolites 11-O-demethylpradimicinone II (1), 11-O-demethyl-7-methoxypradimicinone II (2), 11-O-demethylpradimicinone I (3) and 11-O-demethylpradimicin A (4), while PTKO generated the 7-O-demethyl derivatives pradimicinone II (5) and 7-hydroxypradimicin A (6). Pradimicinones 1, 2, 3, and 5 were fed to a heterologous host Escherichia coli harbouring expression plasmid pET-22b::pdmF or pET-28a::pdmT. PdmF catalysed 11-O-methylation of pradimicinones 1, 2, and 3 regardless of O-methylation at the C-7 position, while PdmT was unable to catalyse 7-O-methylation when the C-11 hydroxyl group was methylated (5). PdmF and PdmT were involved in 11-O- and 7-O-methylations of the benzo[α]naphthacenequinone moiety of pradimicin, respectively. Methylation of the C-7 hydroxyl group precedes methylation of the C-11 hydroxyl group in pradimicin biosynthesis. This is the first reported demonstration of the functions of PdmF and PdmT for regiospecific O-methylation, which contributes to better understanding of the post-PKS modifications in pradimicin biosynthesis as well as to rational engineering of the pradimicin biosynthetic machinery. © 2017 The Society for Applied Microbiology.

  18. Unraveling Additional O-Methylation Steps in Benzylisoquinoline Alkaloid Biosynthesis in California Poppy (Eschscholzia californica).

    PubMed

    Purwanto, Ratmoyo; Hori, Kentaro; Yamada, Yasuyuki; Sato, Fumihiko

    2017-09-01

    California poppy (Eschscholzia californica), a member of the Papaveraceae family, produces many biologically active benzylisoquinoline alkaloids (BIAs), such as sanguinarine, macarpine and chelerythrine. Sanguinarine biosynthesis has been elucidated at the molecular level, and its biosynthetic genes have been isolated and used in synthetic biology approaches to produce BIAs in vitro. However, several genes involved in the biosynthesis of macarpine and chelerythrine have not yet been characterized. In this study, we report the isolation and characterization of a novel O-methyltransferase (OMT) involved in the biosynthesis of partially characterized BIAs, especially chelerythrine. A search of the RNA sequence database from NCBI and PhytoMetaSyn for the conserved OMT domain identified 68 new OMT-like sequences, of which the longest 22 sequences were selected based on sequence similarity. Based on their expression in cell lines with different macarpine/chelerythrine profiles, we selected three OMTs (G2, G3 and G11) for further characterization. G3 expression in Escherichia coli indicated O-methylation activity of the simple benzylisoquinolines, including reticuline and norreticuline, and the protoberberine scoulerine with dual regio-reactivities. G3 produced 7-O-methylated, 3'-O-methylated and dual O-methylated products from reticuline and norreticuline, and 9-O-methylated tetrahydrocolumbamine, 2-O-methylscoulerine and tetrahydropalmatine from scoulerine. Further enzymatic analyses suggested that G3 is a scoulerine-9-O-methyltransferase for the biosynthesis of chelerythrine in California poppy. In the present study, we discuss the physiological role of G3 in BIA biosynthesis. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. The Biochemistry of O-GlcNAc Transferase: Which Functions Make It Essential in Mammalian Cells?

    PubMed

    Levine, Zebulon G; Walker, Suzanne

    2016-06-02

    O-linked N-acetylglucosamine transferase (OGT) is found in all metazoans and plays an important role in development but at the single-cell level is only essential in dividing mammalian cells. Postmitotic mammalian cells and cells of invertebrates such as Caenorhabditis elegans and Drosophila can survive without copies of OGT. Why OGT is required in dividing mammalian cells but not in other cells remains unknown. OGT has multiple biochemical activities. Beyond its well-known role in adding β-O-GlcNAc to serine and threonine residues of nuclear and cytoplasmic proteins, OGT also acts as a protease in the maturation of the cell cycle regulator host cell factor 1 (HCF-1) and serves as an integral member of several protein complexes, many of them linked to gene expression. In this review, we summarize current understanding of the mechanisms underlying OGT's biochemical activities and address whether known functions of OGT could be related to its essential role in dividing mammalian cells.

  20. Cytosine methylation effects on the repair of O6-methylguanines within CG dinucleotides.

    PubMed

    Guza, Rebecca; Ma, Linan; Fang, Qingming; Pegg, Anthony E; Tretyakova, Natalia

    2009-08-21

    O(6)-alkyldeoxyguanine adducts induced by tobacco-specific nitrosamines are repaired by O(6)-alkylguanine DNA alkyltransferase (AGT), which transfers the O(6)-alkyl group from the damaged base to a cysteine residue within the protein. In the present study, a mass spectrometry-based approach was used to analyze the effects of cytosine methylation on the kinetics of AGT repair of O(6)-methyldeoxyguanosine (O(6)-Me-dG) adducts placed within frequently mutated 5'-CG-3' dinucleotides of the p53 tumor suppressor gene. O(6)-Me-dG-containing DNA duplexes were incubated with human recombinant AGT protein, followed by rapid quenching, acid hydrolysis, and isotope dilution high pressure liquid chromatography-electrospray ionization tandem mass spectrometry analysis of unrepaired O(6)-methylguanine. Second-order rate constants were calculated in the absence or presence of the C-5 methyl group at neighboring cytosine residues. We found that the kinetics of AGT-mediated repair of O(6)-Me-dG were affected by neighboring 5-methylcytosine ((Me)C) in a sequence-dependent manner. AGT repair of O(6)-Me-dG adducts placed within 5'-CG-3' dinucleotides of p53 codons 245 and 248 was hindered when (Me)C was present in both DNA strands. In contrast, cytosine methylation within p53 codon 158 slightly increased the rate of O(6)-Me-dG repair by AGT. The effects of (Me)C located immediately 5' and in the base paired position to O(6)-Me-dG were not additive as revealed by experiments with hypomethylated sequences. Furthermore, differences in dealkylation rates did not correlate with AGT protein affinity for cytosine-methylated and unmethylated DNA duplexes or with the rates of AGT-mediated nucleotide flipping, suggesting that (Me)C influences other kinetic steps involved in repair, e.g. the rate of alkyl transfer from DNA to AGT.

  1. Swim-exercised mice show a decreased level of protein O-GlcNAcylation and expression of O-GlcNAc transferase in heart.

    PubMed

    Belke, Darrell D

    2011-07-01

    Swim-training exercise in mice leads to cardiac remodeling associated with an improvement in contractile function. Protein O-linked N-acetylglucosamine (O-GlcNAcylation) is a posttranslational modification of serine and threonine residues capable of altering protein-protein interactions affecting gene transcription, cell signaling pathways, and general cell physiology. Increased levels of protein O-GlcNAcylation in the heart have been associated with pathological conditions such as diabetes, ischemia, and hypertrophic heart failure. In contrast, the impact of physiological exercise on protein O-GlcNAcylation in the heart is currently unknown. Swim-training exercise in mice was associated with the development of a physiological hypertrophy characterized by an improvement in contractile function relative to sedentary mice. General protein O-GlcNAcylation was significantly decreased in swim-exercised mice. This effect was mirrored in the level of O-GlcNAcylation of individual proteins such as SP1. The decrease in protein O-GlcNAcylation was associated with a decrease in the expression of O-GlcNAc transferase (OGT) and glutamine-fructose amidotransferase (GFAT) 2 mRNA. O-GlcNAcase (OGA) activity was actually lower in swim-trained than sedentary hearts, suggesting that it did not contribute to the decreased protein O-GlcNAcylation. Thus it appears that exercise-induced physiological hypertrophy is associated with a decrease in protein O-GlcNAcylation, which could potentially contribute to changes in gene expression and other physiological changes associated with exercise.

  2. Photo degradation of methyl orange by attapulgite-SnO2-TiO2 nanocomposites.

    PubMed

    Zhang, Lili; Lv, Fujian; Zhang, Weiguang; Li, Rongqing; Zhong, Hui; Zhao, Yijiang; Zhang, Yu; Wang, Xin

    2009-11-15

    Photocatalytic removal of methyl orange under ultraviolet radiation has been studied using attapulgite (ATT) composites, which were synthesized by depositing SnO(2)-TiO(2) hybrid oxides on the surface of ATT to form a composite photocatalyst (denoted ATT-SnO(2)-TiO(2)) using an in situ sol-gel technique. Results showed that SnO(2)-TiO(2) nanocomposite particles with average size of about 10nm were loaded successfully on to the surface of ATT fibers and were widely dispersed. Correspondingly, the photocatalytic activity of ATT was improved significantly by loading SnO(2)-TiO(2). The photoactivity of the composite photocatalyst decreased in the sequence ATT-SnO(2)-TiO(2)>ATT-SnO(2)>ATT-TiO(2)>ATT. In order to achieve the best photocatalyst, the molar ratio of SnO(2) and TiO(2) in the ATT-SnO(2)-TiO(2) composites was adjusted to give a series with proportions r=n(Ti)/(n(Ti)+n(Sn))=0.0, 0.25, 0.33, 0.50, 0.67, 0.75, 0.80, 0.82, 0.86, 1.0. Results indicated that the proportion of SnO(2) and TiO(2) had a critical effect on the photocatalytic activity, which increased as the content of TiO(2) increased to r0.82. The highest degradation rate of methyl orange was 99% within 30 min obtained by using ATT-SnO(2)-TiO(2) with r=0.82. The repeated use of the composite photocatalyst was also confirmed.

  3. Minimal methylation classifier (MIMIC): A novel method for derivation and rapid diagnostic detection of disease-associated DNA methylation signatures.

    PubMed

    Schwalbe, E C; Hicks, D; Rafiee, G; Bashton, M; Gohlke, H; Enshaei, A; Potluri, S; Matthiesen, J; Mather, M; Taleongpong, P; Chaston, R; Silmon, A; Curtis, A; Lindsey, J C; Crosier, S; Smith, A J; Goschzik, T; Doz, F; Rutkowski, S; Lannering, B; Pietsch, T; Bailey, S; Williamson, D; Clifford, S C

    2017-10-18

    Rapid and reliable detection of disease-associated DNA methylation patterns has major potential to advance molecular diagnostics and underpin research investigations. We describe the development and validation of minimal methylation classifier (MIMIC), combining CpG signature design from genome-wide datasets, multiplex-PCR and detection by single-base extension and MALDI-TOF mass spectrometry, in a novel method to assess multi-locus DNA methylation profiles within routine clinically-applicable assays. We illustrate the application of MIMIC to successfully identify the methylation-dependent diagnostic molecular subgroups of medulloblastoma (the most common malignant childhood brain tumour), using scant/low-quality samples remaining from the most recently completed pan-European medulloblastoma clinical trial, refractory to analysis by conventional genome-wide DNA methylation analysis. Using this approach, we identify critical DNA methylation patterns from previously inaccessible cohorts, and reveal novel survival differences between the medulloblastoma disease subgroups with significant potential for clinical exploitation.

  4. Biallelic Germline Transcription at the κ Immunoglobulin Locus

    PubMed Central

    Singh, Nandita; Bergman, Yehudit; Cedar, Howard; Chess, Andrew

    2003-01-01

    Rearrangement of antigen receptor genes generates a vast array of antigen receptors on lymphocytes. The establishment of allelic exclusion in immunoglobulin genes requires differential treatment of the two sequence identical alleles. In the case of the κ immunoglobulin locus, changes in chromatin structure, methylation, and replication timing of the two alleles are all potentially involved in regulating rearrangement. Additionally, germline transcription of the κ locus which precedes rearrangement has been proposed to reflect an opening of the chromatin structure rendering it available for rearrangement. As the initial restriction of rearrangement to one allele is critical to the establishment of allelic exclusion, a key question is whether or not germline transcription at the κ locus is monoallelic or biallelic. We have used a sensitive reverse transcription-polymerase chain reaction (RT-PCR) assay and an RNA–fluorescence in situ hybridization (FISH) to show that germline transcription of the κ locus is biallelic in wild-type immature B cells and in recombination activating gene (RAG)−/−, μ+ B cells. Therefore, germline transcription is unlikely to dictate which allele will be rearranged first and rather reflects a general opening on both alleles that must be accompanied by a mechanism allowing one of the two alleles to be rearranged first. PMID:12629064

  5. New ELISA-based method for the detection of O-GlcNAc transferase activity in vitro.

    PubMed

    Qi, Jieqiong; Wang, Ruihong; Zeng, Yazhen; Yu, Wengong; Gu, Yuchao

    2017-08-09

    O-GlcNAcylation is a dynamic, reversible, post-translational modification that regulates many cellular processes. O-GlcNAc transferase (OGT) is the sole enzyme transferring N-acetylglucosamine from uridine diphosphate (UDP)-GlcNAc to selected serine/threonine residues of cytoplasm and nucleus proteins. Aberrant of OGT activity is associated with several diseases, suggesting OGT as a novel therapeutic target. In this study, we created a new enzyme linked immunosorbent assays (ELISA)-based method for detection of OGT activity. First, casein kinase II (CKII), a well-known OGT substrate, was coated onto ELISA plate. Second, the GlcNAc transferred by OGT from UDP-GlcNAc to CKII was detected using an antibody to O-GlcNAc and then the horseradish peroxidase (HRP)-labeled secondary antibody. At last, 3,3',5,5'-tetramethylbenzidine (TMB), the substrate of HRP, was used to detect the O-GlcNAcylation level of CKII which reflected the activity of OGT. Based on a series of optimization experiments, the RL2 antibody was selected for O-GlcNAc detection and the concentrations of CKII, OGT, and UDP-GlcNAc were determined in this study. ST045849, a commercial OGT inhibitor, was used to verify the functionality of the system. Altogether, this study showed a method that could be applied to detect OGT activity and screen OGT inhibitors.

  6. Molecular cloning, heterologous expression and functional characterization of gamma tocopherol methyl transferase (γ-TMT) from Glycine max.

    PubMed

    Tewari, Kalpana; Dahuja, Anil; Sachdev, Archana; Kumar, Vaibhav; Ali, Kishwar; Kumar, Amresh; Kumari, Sweta

    2017-12-01

    γ-Tocopherol methyltransferase (γ-TMT) (EC 2.1.1.95) is the last enzyme in the tocopherol biosynthetic pathway and it catalyzes the conversion of γ-tocopherol into α-tocopherol, the nutritionally significant and most bioactive form of vitamin E. Although the γ-TMT gene has been successfully overexpressed in many crops to enhance their α-tocopherol content but still only few attempts have been made to uncover its structural, functional and regulation aspects at protein level. In this study, we have cloned the complete 909bp coding sequence of Glycine max γ-TMT (Gm γ-TMT) gene that encodes the corresponding protein comprising of 302 amino acid residues. The deduced Gm γ-TMT protein showed 74-87% sequence identity with other characterized plant γ-TMTs. Gm γ-TMT belongs to Class I Methyl Transferases that have a Rossmann-like fold which consists of a seven-stranded β sheet joined by α helices. Heterologous expression of Gm γ-TMT in pET29a expression vector under the control of bacteriophage T7 promoter produced a 37.9 kDa recombinant Gm γ-TMT protein with histidine hexamer tag at its C-terminus. The expression of recombinant Gm γ-TMT protein was confirmed by western blotting using anti-His antibody. The recombinant protein was purified by Ni 2+ -NTA column chromatography. The purified protein showed SAM dependent methyltransferase activity. The α-tocopherol produced in the in-vitro reaction catalyzed by the purified enzyme was detected using reverse phase HPLC. This study has laid the foundation to unveil the biochemical understanding of Gm γ-TMT enzyme which can be further explored by studying its kinetic behaviour, substrate specificity and its interaction with other biomolecules. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. OGT (O-GlcNAc Transferase) Selectively Modifies Multiple Residues Unique to Lamin A.

    PubMed

    Simon, Dan N; Wriston, Amanda; Fan, Qiong; Shabanowitz, Jeffrey; Florwick, Alyssa; Dharmaraj, Tejas; Peterson, Sherket B; Gruenbaum, Yosef; Carlson, Cathrine R; Grønning-Wang, Line M; Hunt, Donald F; Wilson, Katherine L

    2018-05-17

    The LMNA gene encodes lamins A and C with key roles in nuclear structure, signaling, gene regulation, and genome integrity. Mutations in LMNA cause over 12 diseases ('laminopathies'). Lamins A and C are identical for their first 566 residues. However, they form separate filaments in vivo, with apparently distinct roles. We report that lamin A is β- O -linked N -acetylglucosamine- (O -GlcNAc)-modified in human hepatoma (Huh7) cells and in mouse liver. In vitro assays with purified O -GlcNAc transferase (OGT) enzyme showed robust O -GlcNAcylation of recombinant mature lamin A tails (residues 385⁻646), with no detectable modification of lamin B1, lamin C, or 'progerin' (Δ50) tails. Using mass spectrometry, we identified 11 O -GlcNAc sites in a 'sweet spot' unique to lamin A, with up to seven sugars per peptide. Most sites were unpredicted by current algorithms. Double-mutant (S612A/T643A) lamin A tails were still robustly O -GlcNAc-modified at seven sites. By contrast, O -GlcNAcylation was undetectable on tails bearing deletion Δ50, which causes Hutchinson⁻Gilford progeria syndrome, and greatly reduced by deletion Δ35. We conclude that residues deleted in progeria are required for substrate recognition and/or modification by OGT in vitro. Interestingly, deletion Δ35, which does not remove the majority of identified O -GlcNAc sites, does remove potential OGT-association motifs (lamin A residues 622⁻625 and 639⁻645) homologous to that in mouse Tet1. These biochemical results are significant because they identify a novel molecular pathway that may profoundly influence lamin A function. The hypothesis that lamin A is selectively regulated by OGT warrants future testing in vivo, along with two predictions: genetic variants may contribute to disease by perturbing OGT-dependent regulation, and nutrient or other stresses might cause OGT to misregulate wildtype lamin A.

  8. Cytosine Methylation Effects on the Repair of O6-Methylguanines within CG Dinucleotides*

    PubMed Central

    Guza, Rebecca; Ma, Linan; Fang, Qingming; Pegg, Anthony E.; Tretyakova, Natalia

    2009-01-01

    O6-Alkyldeoxyguanine adducts induced by tobacco-specific nitrosamines are repaired by O6-alkylguanine DNA alkyltransferase (AGT), which transfers the O6-alkyl group from the damaged base to a cysteine residue within the protein. In the present study, a mass spectrometry-based approach was used to analyze the effects of cytosine methylation on the kinetics of AGT repair of O6-methyldeoxyguanosine (O6-Me-dG) adducts placed within frequently mutated 5′-CG-3′ dinucleotides of the p53 tumor suppressor gene. O6-Me-dG-containing DNA duplexes were incubated with human recombinant AGT protein, followed by rapid quenching, acid hydrolysis, and isotope dilution high pressure liquid chromatography-electrospray ionization tandem mass spectrometry analysis of unrepaired O6-methylguanine. Second-order rate constants were calculated in the absence or presence of the C-5 methyl group at neighboring cytosine residues. We found that the kinetics of AGT-mediated repair of O6-Me-dG were affected by neighboring 5-methylcytosine (MeC) in a sequence-dependent manner. AGT repair of O6-Me-dG adducts placed within 5′-CG-3′ dinucleotides of p53 codons 245 and 248 was hindered when MeC was present in both DNA strands. In contrast, cytosine methylation within p53 codon 158 slightly increased the rate of O6-Me-dG repair by AGT. The effects of MeC located immediately 5′ and in the base paired position to O6-Me-dG were not additive as revealed by experiments with hypomethylated sequences. Furthermore, differences in dealkylation rates did not correlate with AGT protein affinity for cytosine-methylated and unmethylated DNA duplexes or with the rates of AGT-mediated nucleotide flipping, suggesting that MeC influences other kinetic steps involved in repair, e.g. the rate of alkyl transfer from DNA to AGT. PMID:19531487

  9. Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07.

    PubMed

    Marino, Fabio; Mommen, Geert P M; Jeko, Anita; Meiring, Hugo D; van Gaans-van den Brink, Jacqueline A M; Scheltema, Richard A; van Els, Cécile A C M; Heck, Albert J R

    2017-01-06

    Alterations in protein post-translational modification (PTM) are recognized hallmarks of diseases. These modifications potentially provide a unique source of disease-related human leukocyte antigen (HLA) class I-presented peptides that can elicit specific immune responses. While phosphorylated HLA peptides have already received attention, arginine methylated HLA class I peptide presentation has not been characterized in detail. In a human B-cell line we detected 149 HLA class I peptides harboring mono- and/or dimethylated arginine residues by mass spectrometry. A striking preference was observed in the presentation of arginine (di)methylated peptides for HLA-B*07 molecules, likely because the binding motifs of this allele resemble consensus sequences recognized by arginine methyl-transferases. Moreover, HLA-B*07-bound peptides preferentially harbored dimethylated groups at the P3 position, thus consecutively to the proline anchor residue. Such a proline-arginine sequence has been associated with the arginine methyl-transferases CARM1 and PRMT5. Making use of the specific neutral losses in fragmentation spectra, we found most of the peptides to be asymmetrically dimethylated, most likely by CARM1. These data expand our knowledge of the processing and presentation of arginine (di)methylated HLA class I peptides and demonstrate that these types of modified peptides can be presented for recognition by T-cells. HLA class I peptides with mono- and dimethylated arginine residues may therefore offer a novel target for immunotherapy.

  10. Methylated Glutathione S-transferase 1 (mGSTP1) is a potential plasma free DNA epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer.

    PubMed

    Mahon, K L; Qu, W; Devaney, J; Paul, C; Castillo, L; Wykes, R J; Chatfield, M D; Boyer, M J; Stockler, M R; Marx, G; Gurney, H; Mallesara, G; Molloy, P L; Horvath, L G; Clark, S J

    2014-10-28

    Glutathione S-transferase 1 (GSTP1) inactivation is associated with CpG island promoter hypermethylation in the majority of prostate cancers (PCs). This study assessed whether the level of circulating methylated GSTP1 (mGSTP1) in plasma DNA is associated with chemotherapy response and overall survival (OS). Plasma samples were collected prospectively from a Phase I exploratory cohort of 75 men with castrate-resistant PC (CRPC) and a Phase II independent validation cohort (n=51). mGSTP1 levels in free DNA were measured using a sensitive methylation-specific PCR assay. The Phase I cohort identified that detectable baseline mGSTP1 DNA was associated with poorer OS (HR, 4.2 95% CI 2.1-8.2; P<0.0001). A decrease in mGSTP1 DNA levels after cycle 1 was associated with a PSA response (P=0.008). In the Phase II cohort, baseline mGSTP1 DNA was a stronger predictor of OS than PSA change after 3 months (P=0.02). Undetectable plasma mGSTP1 after one cycle of chemotherapy was associated with PSA response (P=0.007). We identified plasma mGSTP1 DNA as a potential prognostic marker in men with CRPC as well as a potential surrogate therapeutic efficacy marker for chemotherapy and corroborated these findings in an independent Phase II cohort. Prospective Phase III assessment of mGSTP1 levels in plasma DNA is now warranted.

  11. Elicitor-Induced Association of Isoflavone O-Methyltransferase with Endomembranes Prevents the Formation and 7-O-Methylation of Daidzein during Isoflavonoid Phytoalexin Biosynthesis

    PubMed Central

    Liu, Chang-Jun; Dixon, Richard A.

    2001-01-01

    The bioactive isoflavonoids of the Leguminosae often are methylated on the 4′-position of their B-rings. Paradoxically, reverse genetic evidence implicates alfalfa isoflavone O-methyltransferase (IOMT) in the biosynthesis of 4′-O-methylated isoflavonoids such as the phytoalexin medicarpin in vivo, whereas biochemical studies indicate that IOMT has strict specificity for methylation of the A-ring 7-hydroxyl of daidzein, the presumed substrate for O-methylation, in vitro. Radiolabeling and isotope dilution studies now confirm that daidzein is not an intermediate in isoflavonoid phytoalexin biosynthesis in alfalfa. Furthermore, protein gel blot analysis and confocal microscopy of a transiently expressed IOMT–green fluorescent protein fusion in alfalfa leaves show that the operationally soluble IOMT localizes to endomembranes after elicitation of the isoflavonoid pathway. We propose that IOMT colocalizes with the endoplasmic reticulum–associated isoflavone synthase cytochrome P450 to ensure rapid B-ring methylation of the unstable 2,4′,7-trihydroxyisoflavanone product of isoflavone synthase, thereby preventing its dehydration to daidzein and subsequent A-ring methylation by free IOMT. In this way, metabolic channeling at the entry point into isoflavonoid phytoalexin biosynthesis protects an unstable intermediate from an unproductive metabolic conversion. PMID:11752378

  12. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation

    NASA Astrophysics Data System (ADS)

    Lira-Navarrete, Erandi; de Las Rivas, Matilde; Compañón, Ismael; Pallarés, María Carmen; Kong, Yun; Iglesias-Fernández, Javier; Bernardes, Gonçalo J. L.; Peregrina, Jesús M.; Rovira, Carme; Bernadó, Pau; Bruscolini, Pierpaolo; Clausen, Henrik; Lostao, Anabel; Corzana, Francisco; Hurtado-Guerrero, Ramon

    2015-05-01

    Protein O-glycosylation is controlled by polypeptide GalNAc-transferases (GalNAc-Ts) that uniquely feature both a catalytic and lectin domain. The underlying molecular basis of how the lectin domains of GalNAc-Ts contribute to glycopeptide specificity and catalysis remains unclear. Here we present the first crystal structures of complexes of GalNAc-T2 with glycopeptides that together with enhanced sampling molecular dynamics simulations demonstrate a cooperative mechanism by which the lectin domain enables free acceptor sites binding of glycopeptides into the catalytic domain. Atomic force microscopy and small-angle X-ray scattering experiments further reveal a dynamic conformational landscape of GalNAc-T2 and a prominent role of compact structures that are both required for efficient catalysis. Our model indicates that the activity profile of GalNAc-T2 is dictated by conformational heterogeneity and relies on a flexible linker located between the catalytic and the lectin domains. Our results also shed light on how GalNAc-Ts generate dense decoration of proteins with O-glycans.

  13. O-GlcNAc Transferase/Host Cell Factor C1 Complex Regulates Gluconeogenesis by Modulating PGC-1α Stability

    PubMed Central

    Ruan, Hai-Bin; Han, Xuemei; Li, Min-Dian; Singh, Jay Prakash; Qian, Kevin; Azarhoush, Sascha; Zhao, Lin; Bennett, Anton M.; Samuel, Varman T.; Wu, Jing; Yates, John R.; Yang, Xiaoyong

    2012-01-01

    SUMMARY A major cause of hyperglycemia in diabetic patients is inappropriate hepatic gluconeogenesis. PGC-1α is a master regulator of gluconeogenesis, and its activity is controlled by various post-translational modifications. A small portion of glucose metabolizes through the hexosamine biosynthetic pathway, which leads to O-linked β-N-acetylglucosamine (O-GlcNAc) modification of cytoplasmic and nuclear proteins. Using a proteomic approach, we identified a broad variety of proteins associated with O-GlcNAc transferase (OGT), among which host cell factor C1 (HCF-1) is highly abundant. HCF-1 recruits OGT to O-GlcNAcylate PGC-1α and O-GlcNAcylation facilitates the binding of the deubiquitinase BAP1, thus protecting PGC-1α from degradation and promoting gluconeogenesis. Glucose availability modulates gluconeogenesis through the regulation of PGC-1α O-GlcNAcylation and stability by the OGT/HCF1 complex. Hepatic knockdown of OGT and HCF-1 improves glucose homeostasis in diabetic mice. These findings define the OGT/HCF-1 complex as a glucose sensor and key regulator of gluconeogenesis, shedding light on new strategies for treating diabetes. PMID:22883232

  14. CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production.

    PubMed

    Cress, Brady F; Leitz, Quentin D; Kim, Daniel C; Amore, Teresita D; Suzuki, Jon Y; Linhardt, Robert J; Koffas, Mattheos A G

    2017-01-17

    Anthocyanins are a class of brightly colored, glycosylated flavonoid pigments that imbue their flower and fruit host tissues with hues of predominantly red, orange, purple, and blue. Although all anthocyanins exhibit pH-responsive photochemical changes, distinct structural decorations on the core anthocyanin skeleton also cause dramatic color shifts, in addition to improved stabilities and unique pharmacological properties. In this work, we report for the first time the extension of the reconstituted plant anthocyanin pathway from (+)-catechin to O-methylated anthocyanins in a microbial production system, an effort which requires simultaneous co-option of the endogenous metabolites UDP-glucose and S-adenosyl-L-methionine (SAM or AdoMet). Anthocyanin O-methyltransferase (AOMT) orthologs from various plant sources were co-expressed in Escherichia coli with Petunia hybrida anthocyanidin synthase (PhANS) and Arabidopsis thaliana anthocyanidin 3-O-glucosyltransferase (At3GT). Vitis vinifera AOMT (VvAOMT1) and fragrant cyclamen 'Kaori-no-mai' AOMT (CkmOMT2) were found to be the most effective AOMTs for production of the 3'-O-methylated product peonidin 3-O-glucoside (P3G), attaining the highest titers at 2.4 and 2.7 mg/L, respectively. Following modulation of plasmid copy number and optimization of VvAOMT1 and CkmOMT2 expression conditions, production was further improved to 23 mg/L using VvAOMT1. Finally, CRISPRi was utilized to silence the transcriptional repressor MetJ in order to deregulate the methionine biosynthetic pathway and improve SAM availability for O-methylation of cyanidin 3-O-glucoside (C3G), the biosynthetic precursor to P3G. MetJ repression led to a final titer of 51 mg/L (56 mg/L upon scale-up to shake flask), representing a twofold improvement over the non-targeting CRISPRi control strain and 21-fold improvement overall. An E. coli strain was engineered for production of the specialty anthocyanin P3G using the abundant and comparatively

  15. Modification and translocation of Rac/Rop guanosine 5'-triphosphate-binding proteins of Scoparia dulcis in response to stimulation with methyl jasmonate.

    PubMed

    Mitamura, Toshiaki; Yamamura, Yoshimi; Kurosaki, Fumiya

    2011-01-01

    Translocation of two Rac/Rop guanosine 5'-triphosphate-binding proteins from Scoparia dulcis, Sdrac-1 and Sdrac-2, was examined employing transformed belladonna which overproduces these proteins as glutathione-S-transferase-tagged forms. The transferase activities of the fused proteins in microsomal fraction of belladonna markedly increased by the incubation with methyl jasmonate either in Sdrac-1 or Sdrac-2 transformant, while low and constant activities were observed in the untreated control. Recombinant Sdrac-2 protein was found to bind to prenyl chain in the presence of cell extracts prepared from methyl jasmonate-treated S. dulcis, however, Sdrac-1 was palmitoylated by the addition of the cell extracts. These results suggest that both Sdrac-1 and Sdrac-2 translocate to plant membranes by the stimulation with methyl jasmonate, however, targeting of these proteins is triggered by the independent modification mechanisms, palmitoylation for Sdrac-1 and prenylation for Sdrac-2.

  16. Inter-Species Grafting Caused Extensive and Heritable Alterations of DNA Methylation in Solanaceae Plants

    PubMed Central

    Lin, Yan; Ma, Yiqiao; Liu, Gang; Yu, Xiaoming; Zhong, Silin; Liu, Bao

    2013-01-01

    Background Grafting has been extensively used to enhance the performance of horticultural crops. Since Charles Darwin coined the term “graft hybrid” meaning that asexual combination of different plant species may generate products that are genetically distinct, highly discrepant opinions exist supporting or against the concept. Recent studies have documented that grafting enables exchanges of both RNA and DNA molecules between the grafting partners, thus providing a molecular basis for grafting-induced genetic variation. DNA methylation is known as prone to alterations as a result of perturbation of internal and external conditions. Given characteristics of grafting, it is interesting to test whether the process may cause an alteration of this epigenetic marker in the grafted organismal products. Methodology/Principal Findings We analyzed relative global DNA methylation levels and locus-specific methylation patterns by the MSAP marker and locus-specific bisulfite-sequencing in the seed plants (wild-type controls), self- and hetero-grafted scions/rootstocks, selfed progenies of scions and their seed-plant controls, involving three Solanaceae species. We quantified expression of putative genes involved in establishing and/or maintaining DNA methylation by q-(RT)-PCR. We found that (1) hetero-grafting caused extensive alteration of DNA methylation patterns in a locus-specific manner, especially in scions, although relative methylation levels remain largely unaltered; (2) the altered methylation patterns in the hetero-grafting-derived scions could be inherited to sexual progenies with some sites showing further alterations or revisions; (3) hetero-grafting caused dynamic changes in steady-state transcript abundance of genes encoding for a set of enzymes functionally relevant to DNA methylation. Conclusions/Significance Our results demonstrate that inter-species grafting in plants could produce extensive and heritable alterations in DNA methylation. We suggest that

  17. 2'-O-methylation in mRNA disrupts tRNA decoding during translation elongation.

    PubMed

    Choi, Junhong; Indrisiunaite, Gabriele; DeMirci, Hasan; Ieong, Ka-Weng; Wang, Jinfan; Petrov, Alexey; Prabhakar, Arjun; Rechavi, Gideon; Dominissini, Dan; He, Chuan; Ehrenberg, Måns; Puglisi, Joseph D

    2018-03-01

    Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2'-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2'-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2'-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to excessive rejection of cognate aminoacylated tRNAs in initial selection and proofreading. Our current and prior findings highlight how chemical modifications of mRNA tune the dynamics of protein synthesis at different steps of translation elongation.

  18. Exhaustive methylation analysis revealed uneven profiles of methylation at IGF2/ICR1/H19 11p15 loci in Russell Silver syndrome.

    PubMed

    Azzi, Salah; Steunou, Virginie; Tost, Jörg; Rossignol, Sylvie; Thibaud, Nathalie; Das Neves, Cristina; Le Jule, Marilyne; Habib, Walid Abi; Blaise, Annick; Koudou, Yves; Busato, Florence; Le Bouc, Yves; Netchine, Irène

    2015-01-01

    The structural organisation of the human IGF2/ICR1/H19 11p15 domain is very complex, and the mechanisms underlying its regulation are poorly understood. The Imprinted Center Region 1 (ICR1) contains seven binding sites for the zinc-finger protein CTCF (CBS: CTCF Binding Sites); three additional differentially methylated regions (DMR) are located at the H19 promoter (H19DMR) and two in the IGF2 gene (DMR0 and DMR2), respectively. Loss of imprinting at the IGF2/ICR1/H19 domain results in two growth disorders with opposite phenotypes: Beckwith-Wiedemann syndrome and Russell Silver syndrome (RSS). Despite the IGF2/ICR1/H19 locus being widely studied, the extent of hypomethylation across the domain remains not yet addressed in patients with RSS. We assessed a detailed investigation of the methylation status of the 11p15 ICR1 CBS1-7, IGF2DMR0 and H19DMR (H19 promoter) in a population of controls (n=50) and RSS carrying (n=104) or not (n=65) carrying a hypomethylation at the 11p15 ICR1 region. The methylation indexes (MI) were balanced at all regions in the control population and patients with RSS without any as yet identified molecular anomaly. Interestingly, patients with RSS with ICR1 hypomethylation showed uneven profiles of methylation among the CBSs and DMRs. Furthermore, normal MIs at CBS1 and CBS7 were identified in 9% of patients. The hypomethylation does not spread equally throughout the IGF2/ICR1/H19 locus, and some loci could have normal MI, which may lead to underdiagnosis of patients with RSS with ICR1 hypomethylation. The uneven pattern of methylation suggests that some CBSs may play different roles in the tridimensional chromosomal looping regulation of this locus. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework

    PubMed Central

    Richmond, Rebecca C.; Ward, Mary E.; Fraser, Abigail; Lyttleton, Oliver; McArdle, Wendy L.; Ring, Susan M.; Gaunt, Tom R.; Lawlor, Debbie A.; Davey Smith, George; Relton, Caroline L.

    2016-01-01

    Multiple differentially methylated sites and regions associated with adiposity have now been identified in large-scale cross-sectional studies. We tested for replication of associations between previously identified CpG sites at HIF3A and adiposity in ∼1,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC). Availability of methylation and adiposity measures at multiple time points, as well as genetic data, allowed us to assess the temporal associations between adiposity and methylation and to make inferences regarding causality and directionality. Overall, our results were discordant with those expected if HIF3A methylation has a causal effect on BMI and provided more evidence for causality in the reverse direction (i.e., an effect of BMI on HIF3A methylation). These results are based on robust evidence from longitudinal analyses and were also partially supported by Mendelian randomization analysis, although this latter analysis was underpowered to detect a causal effect of BMI on HIF3A methylation. Our results also highlight an apparent long-lasting intergenerational influence of maternal BMI on offspring methylation at this locus, which may confound associations between own adiposity and HIF3A methylation. Further work is required to replicate and uncover the mechanisms underlying the direct and intergenerational effect of adiposity on DNA methylation. PMID:26861784

  20. IDLN-MSP: Idiolocal normalization of real-time methylation-specific PCR for genetic imbalanced DNA specimens.

    PubMed

    Santourlidis, Simeon; Ghanjati, Foued; Beermann, Agnes; Hermanns, Thomas; Poyet, Cédric

    2016-02-01

    Sensitive, accurate, and reliable measurements of tumor cell-specific DNA methylation changes are of fundamental importance in cancer diagnosis, prognosis, and monitoring. Real-time methylation-specific PCR (MSP) using intercalating dyes is an established method of choice for this purpose. Here we present a simple but crucial adaptation of this widely applied method that overcomes a major obstacle: genetic abnormalities in the DNA samples, such as aneuploidy or copy number variations, that could result in inaccurate results due to improper normalization if the copy numbers of the target and reference sequences are not the same. In our idiolocal normalization (IDLN) method, the locus for the normalizing, methylation-independent reference amplification is chosen close to the locus of the methylation-dependent target amplification. This ensures that the copy numbers of both the target and reference sequences will be identical in most cases if they are close enough to each other, resulting in accurate normalization and reliable comparative measurements of DNA methylation in clinical samples when using real-time MSP.

  1. Pseudohypoparathyroidism type Ib associated with novel duplications in the GNAS locus.

    PubMed

    Perez-Nanclares, Gustavo; Velayos, Teresa; Vela, Amaya; Muñoz-Torres, Manuel; Castaño, Luis

    2015-01-01

    Pseudohypoparathyroidism type 1b (PHP-Ib) is characterized by renal resistance to PTH (and, sometimes, a mild resistance to TSH) and absence of any features of Albright's hereditary osteodystrophy. Patients with PHP-Ib suffer of defects in the methylation pattern of the complex GNAS locus. PHP-Ib can be either sporadic or inherited in an autosomal dominant pattern. Whereas familial PHP-Ib is well characterized at the molecular level, the genetic cause of sporadic PHP-Ib cases remains elusive, although some molecular mechanisms have been associated with this subtype. The aim of the study was to investigate the molecular and imprinting defects in the GNAS locus in two unrelated patients with PHP-Ib. We have analyzed the GNAS locus by direct sequencing, Methylation-Specific Multiplex Ligation-dependent Probe Amplification, microsatellites, Quantitative Multiplex PCR of Short Fluorescent fragments and array-Comparative Genomic Hybridization studies in order to characterize two unrelated families with clinical features of PHP-Ib. We identified two duplications in the GNAS region in two patients with PHP-Ib: one of them, comprising ∼ 320 kb, occurred 'de novo' in the patient, whereas the other one, of ∼ 179 kb in length, was inherited from the maternal allele. In both cases, no other known genetic cause was observed. In this article, we describe the to-our-knowledge biggest duplications reported so far in the GNAS region. Both are associated to PHP-Ib, one of them occurring 'de novo' and the other one being maternally inherited.

  2. DNA methyl transferases are differentially expressed in the human anterior eye segment.

    PubMed

    Bonnin, Nicolas; Belville, Corinne; Chiambaretta, Frédéric; Sapin, Vincent; Blanchon, Loïc

    2014-08-01

    DNA methylation is an epigenetic mark involved in the control of genes expression. Abnormal epigenetic events have been reported in human pathologies but weakly documented in eye diseases. The purpose of this study was to establish DNMT mRNA and protein expression levels in the anterior eye segment tissues and their related (primary or immortalized) cell cultures as a first step towards future in vivo and in vitro methylomic studies. Total mRNA was extracted from human cornea, conjunctiva, anterior lens capsule, trabeculum and related cell cultures (cornea epithelial, trabecular meshwork, keratocytes for primary cells; and HCE, Chang, B-3 for immortalized cells). cDNA was quantified by real-time PCR using specific primers for DNMT1, 2, 3A, 3B and 3L. Immunolocalization assays were carried out on human cornea using specific primary antibodies for DNMT1, 2 and 3A, 3B and 3L. All DNMT transcripts were detected in human cornea, conjunctiva, anterior lens capsule, trabeculum and related cells but showed statistically different expression patterns between tissues and cells. DNMT2 protein presented a specific and singular expression pattern in corneal endothelium. This study produced the first inventory of the expression patterns of DNMTs in human adult anterior eye segment. Our research highlights that DNA methylation cannot be ruled out as a way to bring new insights into well-known ocular diseases. In addition, future DNA methylation studies using various cells as experimental models need to be conducted with attention to approach the results analysis from a global tissue perspective. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  3. O-linked β-N-acetylglucosamine transferase directs cell proliferation in idiopathic pulmonary arterial hypertension.

    PubMed

    Barnes, Jarrod W; Tian, Liping; Heresi, Gustavo A; Farver, Carol F; Asosingh, Kewal; Comhair, Suzy A A; Aulak, Kulwant S; Dweik, Raed A

    2015-04-07

    Idiopathic pulmonary arterial hypertension (IPAH) is a cardiopulmonary disease characterized by cellular proliferation and vascular remodeling. A more recently recognized characteristic of the disease is the dysregulation of glucose metabolism. The primary link between altered glucose metabolism and cell proliferation in IPAH has not been elucidated. We aimed to determine the relationship between glucose metabolism and smooth muscle cell proliferation in IPAH. Human IPAH and control patient lung tissues and pulmonary artery smooth muscle cells (PASMCs) were used to analyze a specific pathway of glucose metabolism, the hexosamine biosynthetic pathway. We measured the levels of O-linked β-N-acetylglucosamine modification, O-linked β-N-acetylglucosamine transferase (OGT), and O-linked β-N-acetylglucosamine hydrolase in control and IPAH cells and tissues. Our data suggest that the activation of the hexosamine biosynthetic pathway directly increased OGT levels and activity, triggering changes in glycosylation and PASMC proliferation. Partial knockdown of OGT in IPAH PASMCs resulted in reduced global O-linked β-N-acetylglucosamine modification levels and abrogated PASMC proliferation. The increased proliferation observed in IPAH PASMCs was directly impacted by proteolytic activation of the cell cycle regulator, host cell factor-1. Our data demonstrate that hexosamine biosynthetic pathway flux is increased in IPAH and drives OGT-facilitated PASMC proliferation through specific proteolysis and direct activation of host cell factor-1. These findings establish a novel regulatory role for OGT in IPAH, shed a new light on our understanding of the disease pathobiology, and provide opportunities to design novel therapeutic strategies for IPAH. © 2015 American Heart Association, Inc.

  4. Biosynthesis of estragole and methyl-eugenol in sweet basil (Ocimum basilicum L). Developmental and chemotypic association of allylphenol O-methyltransferase activities.

    PubMed

    Lewinsohn, E; Ziv-Raz, I; Dudai, N; Tadmor, Y; Lastochkin, E; Larkov, O; Chaimovitsh, D; Ravid, U; Putievsky, E; Pichersky, E; Shoham, Y

    2000-12-07

    Sweet basil (Ocimum basilicum L., Lamiaceae) is a common herb, used for culinary and medicinal purposes. The essential oils of different sweet basil chemotypes contain various proportions of the allyl phenol derivatives estragole (methyl chavicol), eugenol, and methyl eugenol, as well as the monoterpene alcohol linalool. To monitor the developmental regulation of estragole biosynthesis in sweet basil, an enzymatic assay for S-adenosyl-L-methionine (SAM):chavicol O-methyltransferase activity was developed. Young leaves display high levels of chavicol O-methyltransferase activity, but the activity was negligible in older leaves, indicating that the O-methylation of chavicol primarily occurs early during leaf development. The O-methyltransferase activities detected in different sweet basil genotypes differed in their substrate specificities towards the methyl acceptor substrate. In the high-estragole-containing chemotype R3, the O-methyltransferase activity was highly specific for chavicol, while eugenol was virtually not O-methylated. In contrast, chemotype 147/97, that contains equal levels of estragole and methyl eugenol, displayed O-methyltransferase activities that accepted both chavicol and eugenol as substrates, generating estragole and methyl eugenol, respectively. Chemotype SW that contains high levels of eugenol, but lacks both estragole and methyl eugenol, had apparently no allylphenol dependent O-methyltransferase activities. These results indicate the presence of at least two types of allylphenol-specific O-methyltransferase activities in sweet basil chemotypes, one highly specific for chavicol; and a different one that can accept eugenol as a substrate. The relative availability and substrate specificities of these O-methyltransferase activities biochemically rationalizes the variation in the composition of the essential oils of these chemotypes.

  5. The Role of Catechol-O-Methyl Transferase Val(108/158)Met Polymorphism (rs4680) in the Effect of Green Tea on Resting Energy Expenditure and Fat Oxidation: A Pilot Study

    PubMed Central

    Hursel, Rick; Janssens, Pilou L. H. R.; Bouwman, Freek G.; Mariman, Edwin C.; Westerterp-Plantenga, Margriet S.

    2014-01-01

    Introduction Green tea(GT) is able to increase energy expenditure(EE) and fat oxidation(FATox) via inhibition of catechol-O-methyl transferase(COMT) by catechins. However, this does not always appear unanimously because of large inter-individual variability. This may be explained by different alleles of the functional COMT Val108/158Met polymorphism that are associated with COMT enzyme activity; high-activity enzyme, COMTH(Val/Val genotype), and low-activity COMTL(Met/Met genotype). Methods Fourteen Caucasian subjects (BMI: 22.2±2.3 kg/m2, age: 21.4±2.2 years) of whom 7 with the COMTH-genotype and 7 with the COMTL-genotype were included in a randomized, cross-over study in which EE and substrate oxidation were measured with a ventilated-hood system after decaffeinated GT and placebo(PL) consumption. Results At baseline, EE, RQ, FATox and carbohydrate oxidation(CHOox) did not differ between groups. Significant interactions were observed between COMT genotypes and treatment for RQ, FATox and CHOox (p<0.05). After GT vs. PL, EE(GT: 62.2 vs. PL: 35.4 kJ.3.5 hrs; p<0.01), RQ(GT: 0.80 vs. PL: 0.83; p<0.01), FATox(GT: 18.3 vs. PL: 15.3 g/d; p<0.001) and CHOox(GT: 18.5 vs. PL: 24.3 g/d; p<0.001) were significantly different for subjects carrying the COMTH genotype, but not for subjects carrying the COMTL genotype (EE, GT: 60.3 vs. PL: 51.7 kJ.3.5 hrs; NS), (RQ, GT: 0.81 vs. PL: 0.81; NS), (FATox, GT: 17.3 vs. PL: 17.0 g/d; NS), (CHOox, GT: 22.1 vs. PL: 21.4 g/d; NS). Conclusion Subjects carrying the COMTH genotype increased energy expenditure and fat-oxidation upon ingestion of green tea catechins vs, placebo, whereas COMTL genotype carriers reacted similarly to GT and PL ingestion. The differences in responses were due to the different responses on PL ingestion, but similar responses to GT ingestion, pointing to different mechanisms. The different alleles of the functional COMT Val108/158Met polymorphism appear to play a role in the inter-individual variability for EE

  6. Genome-wide analysis of day/night DNA methylation differences in Populus nigra.

    PubMed

    Ding, Chang-Jun; Liang, Li-Xiong; Diao, Shu; Su, Xiao-Hua; Zhang, Bing-Yu

    2018-01-01

    DNA methylation is an important mechanism of epigenetic modification. Methylation changes during stress responses and developmental processes have been well studied; however, their role in plant adaptation to the day/night cycle is poorly understood. In this study, we detected global methylation patterns in leaves of the black poplar Populus nigra 'N46' at 8:00 and 24:00 by methylated DNA immunoprecipitation sequencing (MeDIP-seq). We found 10,027 and 10,242 genes to be methylated in the 8:00 and 24:00 samples, respectively. The methylated genes appeared to be involved in multiple biological processes, molecular functions, and cellular components, suggesting important roles for DNA methylation in poplar cells. Comparing the 8:00 and 24:00 samples, only 440 differentially methylated regions (DMRs) overlapped with genic regions, including 193 hyper- and 247 hypo-methylated DMRs, and may influence the expression of 137 downstream genes. Most hyper-methylated genes were associated with transferase activity, kinase activity, and phosphotransferase activity, whereas most hypo-methylated genes were associated with protein binding, ATP binding, and adenyl ribonucleotide binding, suggesting that different biological processes were activated during the day and night. Our results indicated that methylated genes were prevalent in the poplar genome, but that only a few of these participated in diurnal gene expression regulation.

  7. Genetic Manipulation of Isoflavone 7-O-Methyltransferase Enhances Biosynthesis of 4′-O-Methylated Isoflavonoid Phytoalexins and Disease Resistance in Alfalfa

    PubMed Central

    He, Xian-Zhi; Dixon, Richard A.

    2000-01-01

    4′-O-Methylation of an isoflavonoid intermediate is a key reaction in the biosynthesis of the phytoalexin medicarpin in legumes. However, isoflavone O-methyltransferase (IOMT) from alfalfa converts the isoflavone daidzein to 7-O-methyl daidzein (isoformononetin) in vitro as well as in vivo in unchallenged leaves of transgenic alfalfa ectopically expressing IOMT. In contrast, elicitation of IOMT-overexpressing plants with CuCl2 or infecting these plants with Phoma medicaginis leads to greater accumulation of formononetin (4′-O-methyl daidzein) and medicarpin in the leaves than does elicitation or infection of control plants, and no isoformononetin is detected. Overexpression of IOMT results in increased induction of phenylpropanoid/isoflavonoid pathway gene transcripts after infection but has little effect on basal expression of these genes. IOMT-overexpressing plants display resistance to P. medicaginis. The apparently different regiospecificities of IOMT in vivo and in vitro are discussed in relation to potential metabolic channeling at the entry point into the isoflavonoid pathway. PMID:11006341

  8. Functional analysis of recombinant human and Yarrowia lipolytica O-GlcNAc transferases expressed in Saccharomyces cerevisiae.

    PubMed

    Oh, Hye Ji; Moon, Hye Yun; Cheon, Seon Ah; Hahn, Yoonsoo; Kang, Hyun Ah

    2016-10-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is an important post-translational modification in many cellular processes. It is mediated by O-GlcNAc transferases (OGTs), which catalyze the addition of O-GlcNAc to serine or threonine residues of the target proteins. In this study, we expressed a putative Yarrowia lipolytica OGT (YlOGT), the only homolog identified in the subphylum Saccharomycotina through bioinformatics analysis, and the human OGT (hOGT) as recombinant proteins in Saccharomyces cerevisiae, and performed their functional characterization. Immunoblotting assays using antibody against O-GlcNAc revealed that recombinant hOGT (rhOGT), but not the recombinant YlOGT (rYlOGT), undergoes auto-O-GlcNAcylation in the heterologous host S. cerevisiae. Moreover, the rhOGT expressed in S. cerevisiae showed a catalytic activity during in vitro assays using casein kinase II substrates, whereas no such activity was obtained in rYlOGT. However, the chimeric human-Y. lipolytica OGT, carrying the human tetratricopeptide repeat (TPR) domain along with the Y. lipolytica catalytic domain (CTD), mediated the transfer of O-GlcNAc moiety during the in vitro assays. Although the overexpression of full-length OGTs inhibited the growth of S. cerevisiae, no such inhibition was obtained upon overexpression of only the CTD fragment, indicating the role of TPR domain in growth inhibition. This is the first report on the functional analysis of the fungal OGT, indicating that the Y. lipolytica OGT retains its catalytic activity, although the physiological role and substrates of YlOGT remain to be elucidated.

  9. Genomewide DNA methylation analysis in combat veterans reveals a novel locus for PTSD.

    PubMed

    Mehta, D; Bruenig, D; Carrillo-Roa, T; Lawford, B; Harvey, W; Morris, C P; Smith, A K; Binder, E B; Young, R McD; Voisey, J

    2017-11-01

    Epigenetic modifications such as DNA methylation may play a key role in the aetiology and serve as biomarkers for post-traumatic stress disorder (PTSD). We performed a genomewide analysis to identify genes whose DNA methylation levels are associated with PTSD. A total of 211 individuals comprising Australian male Vietnam War veterans (n = 96) and males from a general population belonging to the Grady Trauma Project (n = 115) were included. Genomewide DNA methylation was performed from peripheral blood using the Illumina arrays. Data analysis was performed using generalized linear regression models. Differential DNA methylation of 17 previously reported PTSD candidate genes was associated with PTSD symptom severity. Genomewide analyses revealed CpG sites spanning BRSK1, LCN8, NFG and DOCK2 genes were associated with PTSD symptom severity. We replicated the findings of DOCK2 in an independent cohort. Pathway analysis revealed that among the associated genes, genes within actin cytoskeleton and focal adhesion molecular pathways were enriched. These data highlight the role of DNA methylation as biomarkers of PTSD. The results support the role of previous candidates and uncover novel genes associated with PTSD, such as DOCK2. This study contributes to our understanding of the biological underpinnings of PTSD. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Structure of human O-GlcNAc transferase and its complex with a peptide substrate

    PubMed Central

    Lazarus, Michael B.; Nam, Yunsun; Jiang, Jiaoyang; Sliz, Piotr; Walker, Suzanne

    2010-01-01

    O-GlcNAc transferase (OGT) is an essential mammalian enzyme that couples metabolic status to the regulation of a wide variety of cellular signaling pathways by acting as a nutrient sensor1. OGT catalyzes the transfer of N-acetyl-glucosamine from UDP-GlcNAc to serines and threonines of cytoplasmic, nuclear and mitochondrial proteins2,3, including numerous transcription factors4, tumor suppressors, kinases5, phosphatases1, and histone-modifying proteins6. Aberrant O-GlcNAcylation by OGT has been linked to insulin resistance7, diabetic complications8, cancer9 and neurodegenerative diseases including Alzheimer’s10. Despite the importance of OGT, the details of how it recognizes and glycosylates its protein substrates are largely unknown. We report here two crystal structures of human OGT, as a binary complex with UDP (2.8 A) and a ternary complex with UDP and a peptide substrate (1.95 A). The structures provide clues to the enzyme mechanism, show how OGT recognizes target peptide sequences, and reveal the fold of the unique domain between the two halves of the catalytic region. This information will accelerate the rational design of biological experiments to investigate OGT’s functions and the design of inhibitors for use as cellular probes and to assess its potential as a therapeutic target. PMID:21240259

  11. Perfluorooctanoic acid induces gene promoter hypermethylation of glutathione-S-transferase Pi in human liver L02 cells.

    PubMed

    Tian, Meiping; Peng, Siyuan; Martin, Francis L; Zhang, Jie; Liu, Liangpo; Wang, Zhanlin; Dong, Sijun; Shen, Heqing

    2012-06-14

    Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds. Being a persistent environmental pollutant, it can accumulate in human tissues via various exposure routes. PFOA may interfere in a toxic fashion on the immune system, liver, development, and endocrine systems. In utero human exposure had been associated with cord serum global DNA hypomethylation. In light of this, we investigated possible PFOA-induced DNA methylation alterations in L02 cells in order to shed light into its epigenetic-mediated mechanisms of toxicity in human liver. L02 cells were exposed to 5, 10, 25, 50 or 100 mg/L PFOA for 72h. Global DNA methylation levels were determined by LC/ESI-MS, glutathione-S-transferase Pi (GSTP) gene promoter DNA methylation was investigated by methylation-specific polymerase chain reaction (PCR) with bisulfite sequencing, and consequent mRNA expression levels were measured with quantitative real-time reverse transcriptase PCR. A dose-related increase of GSTP promoter methylation at the transcription factor specificity protein 1 (SP1) binding site was observed. However, PFOA did not significantly influence global DNA methylation; nor did it markedly alter the promoter gene methylation of p16 (cyclin-dependent kinase inhibitor 2A), ERα (estrogen receptor α) or PRB (progesterone receptor B). In addition, PFOA significantly elevated mRNA transcript levels of DNMT3A (which mediates de novo DNA methylation), Acox (lipid metabolism) and p16 (cell apoptosis). Considering the role of GSTP in detoxification, aberrant methylation may be pivotal in PFOA-mediated toxicity response via the inhibition of SP1 binding to GSTP promoter. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Genome-wide DNA methylation analysis of pseudohypoparathyroidism patients with GNAS imprinting defects.

    PubMed

    Rochtus, Anne; Martin-Trujillo, Alejandro; Izzi, Benedetta; Elli, Francesca; Garin, Intza; Linglart, Agnes; Mantovani, Giovanna; Perez de Nanclares, Guiomar; Thiele, Suzanne; Decallonne, Brigitte; Van Geet, Chris; Monk, David; Freson, Kathleen

    2016-01-01

    Pseudohypoparathyroidism (PHP) is caused by (epi)genetic defects in the imprinted GNAS cluster. Current classification of PHP patients is hampered by clinical and molecular diagnostic overlaps. The European Consortium for the study of PHP designed a genome-wide methylation study to improve molecular diagnosis. The HumanMethylation 450K BeadChip was used to analyze genome-wide methylation in 24 PHP patients with parathyroid hormone resistance and 20 age- and gender-matched controls. Patients were previously diagnosed with GNAS-specific differentially methylated regions (DMRs) and include 6 patients with known STX16 deletion (PHP(Δstx16)) and 18 without deletion (PHP(neg)). The array demonstrated that PHP patients do not show DNA methylation differences at the whole-genome level. Unsupervised clustering of GNAS-specific DMRs divides PHP(Δstx16) versus PHP(neg) patients. Interestingly, in contrast to the notion that all PHP patients share methylation defects in the A/B DMR while only PHP(Δstx16) patients have normal NESP, GNAS-AS1 and XL methylation, we found a novel DMR (named GNAS-AS2) in the GNAS-AS1 region that is significantly different in both PHP(Δstx16) and PHP(neg), as validated by Sequenom EpiTYPER in a larger PHP cohort. The analysis of 58 DMRs revealed that 8/18 PHP(neg) and 1/6 PHP(Δstx16) patients have multi-locus methylation defects. Validation was performed for FANCC and SVOPL DMRs. This is the first genome-wide methylation study for PHP patients that confirmed that GNAS is the most significant DMR, and the presence of STX16 deletion divides PHP patients in two groups. Moreover, a novel GNAS-AS2 DMR affects all PHP patients, and PHP patients seem sensitive to multi-locus methylation defects.

  13. Increased Expression of a myo-Inositol Methyl Transferase in Mesembryanthemum crystallinum Is Part of a Stress Response Distinct from Crassulacean Acid Metabolism Induction 1

    PubMed Central

    Vernon, Daniel M.; Bohnert, Hans J.

    1992-01-01

    The facultative halophyte Mesembryanthemum crystallinum responds to osmotic stress by switching from C3 photosynthesis to Crassulacean acid metabolism (CAM). This shift to CAM involves the stress-initiated up-regulation of mRNAs encoding CAM enzymes. The capability of the plants to induce a key CAM enzyme, phosphoenolpyruvate carboxylase, is influenced by plant age, and it has been suggested that adaptation to salinity in M. crystallinum may be modulated by a developmental program that controls molecular responses to stress. We have compared the effects of plant age on the expression of two salinity-induced genes: Gpdl, which encodes the photosynthesis-related enzyme glyceraldehyde 3-phosphate dehydrogenase, and Imtl, which encodes a methyl transferase involved in the biosynthesis of a putative osmoprotectant, pinitol. Imtl mRNA accumulation and the accompanying increase in pinitol in stressed Mesembryanthemum exhibit a pattern of induction distinct from that observed for CAM-related genes. We conclude that the molecular mechanisms that trigger Imtl and pinitol accumulation in response to salt stress in M. crystallinum differ in some respects from those that lead to CAM induction. There may be multiple signals or pathways that regulate inducible components of salinity tolerance in this facultative halophyte. ImagesFigure 1Figure 2 PMID:16669095

  14. Synthesis of N-oleyl O-sulfate chitosan from methyl oleate with O-sulfate chitosan as edible film material

    NASA Astrophysics Data System (ADS)

    Daniel; Sihaloho, O.; Saleh, C.; Magdaleni, A. R.

    2018-04-01

    The research on the synthesis of N-oleyl O-sulfate chitosan through sulfonation reaction on chitosan with ammonium sulfate and followed by amidation reaction using methyl oleate has been done. In this study, chitosan was chemically modified into N-oleyl O-sulfatechitosan as an edible film making material. N-oleyl O-sulfate chitosan was synthesized by reaction between methyl oleate and O-sulfate chitosan. Wherein the depleted chitosan of O-sulfate chitosan into O-sulfate chitosan was obtained by reaction of sulfonation between ammonium sulfate and chitosan aldimine. While chitosan aldimine was obtained through reaction between chitosan with acetaldehyde. The structure of N-oleyl O-sulfate chitosan was characterized by FT-IR analysis which showed vibration uptake of C-H sp3 group, S=O group, and carbonyl group C=O of the ester. The resulting of N-oleyl O-sulfate chitosan yielded a percentage of 93.52%. Hydrophilic-Lipophilic Balance (HLB) test results gave a value of 6.68. In the toxicity test results of N-oleyl O-sulfate chitosan obtained LC50 value of 3738.4732 ppm. In WVTR (Water Vapor Transmission Rate) test results for chitosan film was 407.625 gram/m2/24 hours and N-oleylO-sulfate chitosan film was 201.125 gram/m2/24 hours.

  15. Triplet repeat expansion at the FRAXE locus and X-linked mild mental handicap.

    PubMed Central

    Knight, S. J.; Voelckel, M. A.; Hirst, M. C.; Flannery, A. V.; Moncla, A.; Davies, K. E.

    1994-01-01

    We have recently shown that the expression of the FRAXE fragile site in Xq28 is associated with the expansion of a GCC trinucleotide repeat. In the families studied, FRAXE expression is also associated with mild mental handicap. Here we present data on families that previously had been diagnosed as having the fragile X syndrome but that later were found to be negative for trinucleotide repeat expansion at the FRAXA locus. In these families we demonstrate the presence of a GCC trinucleotide repeat expansion at the FRAXE locus. Studies of the FRAXE locus of normal individuals show that they have 6-25 copies of the repeat, whereas affected individuals have > 200 copies. As in the fragile X syndrome, the amplified CpG residues are methylated in affected males. Images Figure 2 Figure 3 Figure 4 PMID:8023854

  16. Triplet repeat expansion at the FRAXE locus and x-linked mild mental handicap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, S.J.L.; Hirst, M.C.; Flannery, A.V.

    1994-07-01

    The authors have recently shown that the expression of the FRAXE fragile site in Xq28 is associated with expansion of a GCC trinucleotide repeat. In the families studied, FRAXE expression is also associated with mild mental handicap. Here they present data on families that previously had been diagnosed as having the fragile X syndrome but that later were found to be negative for trinucleotide repeat expansion at the FRAXA locus. In these families they demonstrate the presence of a GCC trinucleotide repeat expansion at the FRAXE locus. Studies of the FRAXE locus of normal individuals show that they have 6-25more » copies of the repeat, whereas affected individuals have >200 copies. As in the fragile X syndrome, the amplified CpG residues are methylated in affected males. 19 refs., 4 figs., 1 tab.« less

  17. Genetic studies on the ghrelin, growth hormone secretagogue receptor (GHSR) and ghrelin O-acyl transferase (GOAT) genes.

    PubMed

    Liu, Boyang; Garcia, Edwin A; Korbonits, Márta

    2011-11-01

    Ghrelin is a 28 amino acid peptide hormone that is produced both centrally and peripherally. Regulated by the ghrelin O-acyl transferase enzyme, ghrelin exerts its action through the growth hormone secretagogue receptor, and is implicated in a diverse range of physiological processes. These implications have placed the ghrelin signaling pathway at the center of a large number of candidate gene and genome-wide studies which aim to identify the genetic basis of human heterogeneity. In this review we summarize the available data on the genetic variability of ghrelin, its receptor and its regulatory enzyme, and their association with obesity, stature, type 2 diabetes, cardiovascular disease, eating disorders, and reward seeking behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Adsorption Isotherm Studies of Methyl Bromide on MgO

    NASA Astrophysics Data System (ADS)

    Burns, Teresa; Larese, John

    2003-11-01

    The adsorption of methyl bromine onto highly-uniform magnesium oxide powder was studied using a high-precision computer-controlled gas adsorption system. Methyl bromide was condensed onto the MgO substrate at temperatures between 165 K and 180 K. The layering behavior, iosthermal compressibility, and isosteric heat of adsorption were determined. Isotherms will be presented and future work discussed. TEB research sponsored by the Department of Energy EPSCOR Grant No. DE-FG02-01ER45895. JZL research sponsored by start-up funds from the University of Tennessee - Knoxville and by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy, under contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC.

  19. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism.

    PubMed

    Tan, Ming-pu

    2010-01-01

    Water stress is known to alter cytosine methylation, which generally represses transcription. However, little is known about the role of methylation alteration in maize under osmotic stress. Here, methylation-sensitive amplified polymorphism (MSAP) was used to screen PEG- or NaCl-induced methylation alteration in maize seedlings. The sequences of 25 differentially amplified fragments relevant to stress were successfully obtained. Two stress-specific fragments from leaves, LP166 and LPS911, shown to be homologous to retrotransposon Gag-Pol protein genes, suggested that osmotic stress-induced methylation of retrotransposons. Three MSAP fragments, representing drought-induced or salt-induced methylation in leaves, were homologous to a maize aluminum-induced transporter. Besides these, heat shock protein HSP82, Poly [ADP-ribose] polymerase 2, Lipoxygenase, casein kinase (CK2), and dehydration-responsive element-binding (DREB) factor were also homologs of MSAP sequences from salt-treated roots. One MSAP fragment amplified from salt-treated roots, designated RS39, was homologous to the first intron of maize protein phosphatase 2C (zmPP2C), whereas - LS103, absent from salt-treated leaves, was homologous to maize glutathione S-transferases (zmGST). Expression analysis showed that salt-induced intron methylation of root zmPP2C significantly downregulated its expression, while salt-induced demethylation of leaf zmGST weakly upregulated its expression. The results suggested that salinity-induced methylation downregulated zmPP2C expression, a negative regulator of the stress response, while salinity-induced demethylation upregulated zmGST expression, a positive effecter of the stress response. Altered methylation, in response to stress, might also be involved in stress acclimation. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  20. 'Benifuuki' green tea containing o-methylated catechin reduces symptoms of Japanese cedar pollinosis: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Masuda, Sawako; Maeda-Yamamoto, Mari; Usui, Satoko; Fujisawa, Takao

    2014-06-01

    Methylated catechin, one of the active ingredients in green tea, has been reported to ameliorate allergic reactions. We evaluated the efficacy of 'Benifuuki' green tea, which contains O-methylated epigallocatechin-3-O-[3-O-methyl] gallate (O-methylated EGCG), in alleviating Japanese cedar pollinosis (JCP). The study was a double-blind, randomized, placebo-controlled trial. The subjects with JCP were randomly assigned to drink 700ml of 'Benifuuki' green tea containing O-methylated EGCG or 'Yabukita' green tea (not containing O-methylated EGCG) as a placebo every day from December 2007 through March 2008, which includes the pollen season. The primary outcome was the area under the curve (AUC) of symptom scores during the peak pollen season. Fifty-one adults with JCP participated in the study. Twenty-six subjects were assigned to 'Benifuuki' and 25 to 'Yabukita'. The AUC of symptom score during the peak pollen season in the 'Benifuuki' group was significantly smaller than in the 'Yabukita' group for each of runny nose, itchy eyes, tearing, total nasal symptom score, total ocular symptom score, nasal symptom-medication score and ocular symptom-medication score. The total QOL-related questionnaire score for one week in the peak pollen season was significantly better in the 'Benifuuki' group. Increase in the peripheral eosinophil count in response to pollen exposure was suppressed in the 'Benifuuki' group. No adverse events were reported in either group. 'Benifuuki' green tea containing a large amount of O-methylated EGCG reduced the symptoms of JCP and has potential as a complementary/alternative medicine for treating seasonal allergic rhinitis.

  1. Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porterfield, Jessica P.; Bross, David H.; Ruscic, Branko

    2017-06-09

    Two methyl esters have been examined as models for the pyrolysis of biofuels. Dilute samples (0.06 - 0.13%) of methyl acetate (CH 3COOCH 3) and methyl butanoate (CH 3CH 2CH 2COOCH 3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed micro-reactor were roughly 20 Torr and residence times through the reactors were approximately 25 - 150 µs. Reactor temperatures ofmore » 300 – 1600 K were explored. Decomposition of CH 3COOCH 3 commences at 1000 K and the initial products are (CH 2=C=O and CH 3OH). As the micro-reactor is heated to 1300 K, a mixture of (CH 2=C=O and CH 3OH, CH 3, CH 2=O, H, CO, CO 2) appears. The thermal cracking of CH 3CH 2CH 2COOCH 3 begins at 800 K with the formation of (CH 3CH 2CH=C=O, CH 3OH). By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of (CH 3CH 2CH=C=O, CH 3OH, CH 3, CH 2=O, CO, CO 2, CH 3CH=CH 2, CH 2CHCH 2, CH 2=C=CH 2, HCCCH 2, CH 2=C=C=O, CH 2=CH 2, HCΞCH, CH 2=C=O). Based on the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R CH 2-COOCH 3. The lowest energy fragmentation will be a 4-center elimination of methanol to form the ketene, RCH=C=O. At higher temperatures, concerted fragmentation to radicals will ensue to produce a mixture of species: (RCH 2 + CO 2 + CH 3) and (RCH 2 + CO + CH 2=O + H). Thermal cracking of the β C-C bond of the methyl ester will generate the radicals (R and H) as well as CH 2=C=O + CH 2=O. The thermochemistry of methyl acetate and its fragmentation products have been obtained via the Active Thermochemical Tables (ATcT) approach, resulting in

  2. DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework.

    PubMed

    Richmond, Rebecca C; Sharp, Gemma C; Ward, Mary E; Fraser, Abigail; Lyttleton, Oliver; McArdle, Wendy L; Ring, Susan M; Gaunt, Tom R; Lawlor, Debbie A; Davey Smith, George; Relton, Caroline L

    2016-05-01

    Multiple differentially methylated sites and regions associated with adiposity have now been identified in large-scale cross-sectional studies. We tested for replication of associations between previously identified CpG sites at HIF3A and adiposity in ∼1,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC). Availability of methylation and adiposity measures at multiple time points, as well as genetic data, allowed us to assess the temporal associations between adiposity and methylation and to make inferences regarding causality and directionality. Overall, our results were discordant with those expected if HIF3A methylation has a causal effect on BMI and provided more evidence for causality in the reverse direction (i.e., an effect of BMI on HIF3A methylation). These results are based on robust evidence from longitudinal analyses and were also partially supported by Mendelian randomization analysis, although this latter analysis was underpowered to detect a causal effect of BMI on HIF3A methylation. Our results also highlight an apparent long-lasting intergenerational influence of maternal BMI on offspring methylation at this locus, which may confound associations between own adiposity and HIF3A methylation. Further work is required to replicate and uncover the mechanisms underlying the direct and intergenerational effect of adiposity on DNA methylation. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. Infant sex-specific placental cadmium and DNA methylation associations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, April F., E-mail: april.mohanty@va.gov; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA; Farin, Fred M., E-mail: freddy@u.washington.edu

    Background: Recent evidence suggests that maternal cadmium (Cd) burden and fetal growth associations may vary by fetal sex. However, mechanisms contributing to these differences are unknown. Objectives: Among 24 maternal-infant pairs, we investigated infant sex-specific associations between placental Cd and placental genome-wide DNA methylation. Methods: We used ANOVA models to examine sex-stratified associations of placental Cd (dichotomized into high/low Cd using sex-specific Cd median cutoffs) with DNA methylation at each cytosine-phosphate-guanine site or region. Statistical significance was defined using a false discovery rate cutoff (<0.10). Results: Medians of placental Cd among females and males were 5 and 2 ng/g, respectively.more » Among females, three sites (near ADP-ribosylation factor-like 9 (ARL9), siah E3 ubiquitin protein ligase family member 3 (SIAH3), and heparin sulfate (glucosamine) 3-O-sulfotransferase 4 (HS3ST4) and one region on chromosome 7 (including carnitine O-octanoyltransferase (CROT) and TP5S target 1 (TP53TG1)) were hypomethylated in high Cd placentas. Among males, high placental Cd was associated with methylation of three sites, two (hypomethylated) near MDS1 and EVI1 complex locus (MECOM) and one (hypermethylated) near spalt-like transcription factor 1 (SALL1), and two regions (both hypomethylated, one on chromosome 3 including MECOM and another on chromosome 8 including rho guanine nucleotide exchange factor (GEF) 10 (ARHGEF10). Differentially methylated sites were at or close to transcription start sites of genes involved in cell damage response (SIAH3, HS3ST4, TP53TG1) in females and cell differentiation, angiogenesis and organ development (MECOM, SALL1) in males. Conclusions: Our preliminary study supports infant sex-specific placental Cd-DNA methylation associations, possibly accounting for previously reported differences in Cd-fetal growth associations across fetal sex. Larger studies are needed to replicate and extend these

  4. Synthetic mucin fragments: synthesis of O-sulfo and O-methyl derivatives of allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-alpha-D- galactopyranoside as potential compounds for sulfotransferases.

    PubMed

    Jain, R K; Piskorz, C F; Matta, K L

    1995-10-02

    Allyl 2-acetamido-4,6-O-(4-methoxybenzylidene)-2-deoxy-alpha-D-galact opy ranoside (1) was condensed with either 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide (2) or 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-alpha-D-galactopyranosyl bromide (14) in the presence of mercuric cyanide. Selective substitution with methyl, sulfo or both at desired positions, followed by the removal of protecting groups, afforded allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-6-O-methyl-alpha -D- galactopyranoside (5), allyl O-(6-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy-6- O-methyl-alpha-D-galactopyranoside (10), allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-6-O-sulfo-alpha- D- galactopyranoside sodium salt (13), allyl O-(6-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy- alpha-D-galactopyranoside (17) and allyl O-(3-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy- alpha-D-galactopyranoside (22). The structures of compounds 5, 10, 13, 17 and 22 were established by 13C NMR and FAB mass spectroscopy.

  5. Tissue culture-induced transpositional activity of mPing is correlated with cytosine methylation in rice

    PubMed Central

    Ngezahayo, Frédéric; Xu, Chunming; Wang, Hongyan; Jiang, Lily; Pang, Jinsong; Liu, Bao

    2009-01-01

    Background mPing is an endogenous MITE in the rice genome, which is quiescent under normal conditions but can be induced towards mobilization under various stresses. The cellular mechanism responsible for modulating the activity of mPing remains unknown. Cytosine methylation is a major epigenetic modification in most eukaryotes, and the primary function of which is to serve as a genome defense system including taming activity of transposable elements (TEs). Given that tissue-culture is capable of inducing both methylation alteration and mPing transposition in certain rice genotypes, it provides a tractable system to investigate the possible relationship between the two phenomena. Results mPing transposition and cytosine methylation alteration were measured in callus and regenerated plants in three rice (ssp. indica) genotypes, V14, V27 and R09. All three genotypes showed transposition of mPing, though at various frequencies. Cytosine methylation alteration occurred both at the mPing-flanks and at random loci sampled globally in callus and regenerated plants of all three genotypes. However, a sharp difference in the changing patterns was noted between the mPing-flanks and random genomic loci, with a particular type of methylation modification, i.e., CNG hypermethylation, occurred predominantly at the mPing-flanks. Pearson's test on pairwise correlations indicated that mPing activity is positively correlated with specific patterns of methylation alteration at random genomic loci, while the element's immobility is positively correlated with methylation levels of the mPing's 5'-flanks. Bisulfite sequencing of two mPing-containing loci showed that whereas for the immobile locus loss of CG methylation in the 5'-flank was accompanied by an increase in CHG methylation, together with an overall increase in methylation of all three types (CG, CHG and CHH) in the mPing-body region, for the active locus erasure of CG methylation in the 5'-flank was not followed by such a

  6. DNA Methyl Transferase 1 Reduces Expression of SRD5A2 in the Aging Adult Prostate

    PubMed Central

    Ge, Rongbin; Wang, Zongwei; Bechis, Seth K.; Otsetov, Alexander G.; Hua, Shengyu; Wu, Shulin; Wu, Chin-Lee; Tabatabaei, Shahin; Olumi, Aria F.

    2016-01-01

    5-α Reductase type 2 (SRD5A2) is a critical enzyme for prostatic development and growth. Inhibition of SRD5A2 by finasteride is used commonly for the management of urinary obstruction caused by benign prostatic hyperplasia. Contrary to common belief, we have found that expression of SRD5A2 is variable and absent in one third of benign adult prostates. In human samples, absent SRD5A2 expression is associated with hypermethylation of the SRD5A2 promoter, and in vitro SRD5A2 promoter activity is suppressed by methylation. We show that methylation of SRD5A2 is regulated by DNA methyltransferase 1, and inflammatory mediators such as tumor necrosis factor α, NF-κB, and IL-6 regulate DNA methyltransferase 1 expression and thereby affect SRD5A2 promoter methylation and gene expression. Furthermore, we show that increasing age in mice and humans is associated with increased methylation of the SRD5A2 promoter and concomitantly decreased protein expression. Artificial induction of inflammation in prostate primary epithelial cells leads to hypermethylation of the SRD5A2 promoter and silencing of SRD5A2, whereas inhibition with tumor necrosis factor α inhibitor reactivates SRD5A2 expression. Therefore, expression of SRD5A2 is not static and ubiquitous in benign adult prostate tissues. Methylation and expression of SRD5A2 may be used as a gene signature to tailor therapies for more effective treatment of prostatic diseases. PMID:25700986

  7. Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer

    PubMed Central

    Sen, Prakriti; Ganguly, Pooja; Ganguly, Niladri

    2018-01-01

    Human papillomaviruses (HPVs) are double stranded circular DNA viruses that infect cutaneous and mucosal epithelial cells. Almost 99% of cervical cancer has a HPV infection. The early oncoproteins E6 and E7 are important in this cellular transformation process. Epigenetic mechanisms have long been known to result in decisive alterations in DNA, leading to alterations in DNA-protein interactions, alterations in chromatin structure and compaction and significant alterations in gene expression. The enzymes responsible for these epigenetic modifications are DNA methyl transferases (DNMTs), histone acetylases and deacetylases. Epigenetics has an important role in cancer development by modifying the cellular micro environment. In this review, the authors discuss the role of HPV oncoproteins E6 and E7 in modulating the epigenetic mechanisms inside the host cell. The oncoproteins induce the expression of DNMTs which lead to aberrant DNA methylations and disruption of the normal epigenetic processes. The E7 oncoprotein may additionally directly bind and induce methyl transferase activity of the enzyme. These modulations lead to altered gene expression levels, particularly the genes involved in apoptosis, cell cycle and cell adhesion. In addition, the present review discusses how epigenetic mechanisms may be targeted for possible therapeutic interventions for HPV mediated cervical cancer. PMID:29285184

  8. DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk.

    PubMed

    Dayeh, Tasnim; Tuomi, Tiinamaija; Almgren, Peter; Perfilyev, Alexander; Jansson, Per-Anders; de Mello, Vanessa D; Pihlajamäki, Jussi; Vaag, Allan; Groop, Leif; Nilsson, Emma; Ling, Charlotte

    2016-07-02

    Identification of subjects with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention of the disease. Consequently, it is essential to search for new biomarkers that can improve the prediction of T2D. The aim of this study was to examine whether 5 DNA methylation loci in blood DNA (ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP), recently reported to be associated with T2D, might predict future T2D in subjects from the Botnia prospective study. We also tested if these CpG sites exhibit altered DNA methylation in human pancreatic islets, liver, adipose tissue, and skeletal muscle from diabetic vs. non-diabetic subjects. DNA methylation at the ABCG1 locus cg06500161 in blood DNA was associated with an increased risk for future T2D (OR = 1.09, 95% CI = 1.02-1.16, P-value = 0.007, Q-value = 0.018), while DNA methylation at the PHOSPHO1 locus cg02650017 in blood DNA was associated with a decreased risk for future T2D (OR = 0.85, 95% CI = 0.75-0.95, P-value = 0.006, Q-value = 0.018) after adjustment for age, gender, fasting glucose, and family relation. Furthermore, the level of DNA methylation at the ABCG1 locus cg06500161 in blood DNA correlated positively with BMI, HbA1c, fasting insulin, and triglyceride levels, and was increased in adipose tissue and blood from the diabetic twin among monozygotic twin pairs discordant for T2D. DNA methylation at the PHOSPHO1 locus cg02650017 in blood correlated positively with HDL levels, and was decreased in skeletal muscle from diabetic vs. non-diabetic monozygotic twins. DNA methylation of cg18181703 (SOCS3), cg11024682 (SREBF1), and cg19693031 (TXNIP) was not associated with future T2D risk in subjects from the Botnia prospective study.

  9. Methyl 3-O-α-l-fucopyranosyl β-d-glucopyran­oside tetra­hydrate

    PubMed Central

    Eriksson, Lars; Widmalm, Göran

    2012-01-01

    The title compound, C13H24O10·4H2O, is the methyl glycoside of a disaccharide structural element present in the backbone of the capsular polysaccharide from Klebsiella K1, which contains only three sugars and a substituent in the polysaccharide repeating unit. The conformation of the title disaccharide is described by the glycosidic torsion angles ϕH = 51.1 (1)° and ψH = 25.8 (1)°. In the crystal, a number of O—H⋯O hydrogen bonds link the methyl glycoside and water mol­ecules, forming a three-dimensional network. One water mol­ecule is disordered over two positions with occupancies of 0.748 (4) and 0.252 (4). PMID:23284493

  10. Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer.

    PubMed

    Barault, L; Amatu, A; Bleeker, F E; Moutinho, C; Falcomatà, C; Fiano, V; Cassingena, A; Siravegna, G; Milione, M; Cassoni, P; De Braud, F; Rudà, R; Soffietti, R; Venesio, T; Bardelli, A; Wesseling, P; de Witt Hamer, P; Pietrantonio, F; Siena, S; Esteller, M; Sartore-Bianchi, A; Di Nicolantonio, F

    2015-09-01

    O(6)-methyl-guanine-methyl-transferase (MGMT) silencing by promoter methylation may identify cancer patients responding to the alkylating agents dacarbazine or temozolomide. We evaluated the prognostic and predictive value of MGMT methylation testing both in tumor and cell-free circulating DNA (cfDNA) from plasma samples using an ultra-sensitive two-step digital PCR technique (methyl-BEAMing). Results were compared with two established techniques, methylation-specific PCR (MSP) and Bs-pyrosequencing. Thresholds for MGMT methylated status for each technique were established in a training set of 98 glioblastoma (GBM) patients. The prognostic and the predictive value of MGMT methylated status was validated in a second cohort of 66 GBM patients treated with temozolomide in which methyl-BEAMing displayed a better specificity than the other techniques. Cutoff values of MGMT methylation specific for metastatic colorectal cancer (mCRC) tissue samples were established in a cohort of 60 patients treated with dacarbazine. In mCRC, both quantitative assays methyl-BEAMing and Bs-pyrosequencing outperformed MSP, providing better prediction of treatment response and improvement in progression-free survival (PFS) (P < 0.001). Ability of methyl-BEAMing to identify responding patients was validated in a cohort of 23 mCRC patients treated with temozolomide and preselected for MGMT methylated status according to MSP. In mCRC patients treated with dacarbazine, exploratory analysis of cfDNA by methyl-BEAMing showed that MGMT methylation was associated with better response and improved median PFS (P = 0.008). Methyl-BEAMing showed high reproducibility, specificity and sensitivity and was applicable to formalin-fixed paraffin-embedded tissues and cfDNA. This study supports the quantitative assessment of MGMT methylation for clinical purposes since it could refine prediction of response to alkylating agents. © The Author 2015. Published by Oxford University Press on behalf of the European

  11. Next generation tools for high-throughput promoter and expression analysis employing single-copy knock-ins at the Hprt1 locus.

    PubMed

    Yang, G S; Banks, K G; Bonaguro, R J; Wilson, G; Dreolini, L; de Leeuw, C N; Liu, L; Swanson, D J; Goldowitz, D; Holt, R A; Simpson, E M

    2009-03-01

    We have engineered a set of useful tools that facilitate targeted single copy knock-in (KI) at the hypoxanthine guanine phosphoribosyl transferase 1 (Hprt1) locus. We employed fine scale mapping to delineate the precise breakpoint location at the Hprt1(b-m3) locus allowing allele specific PCR assays to be established. Our suite of tools contains four targeting expression vectors and a complementing series of embryonic stem cell lines. Two of these vectors encode enhanced green fluorescent protein (EGFP) driven by the human cytomegalovirus immediate-early enhancer/modified chicken beta-actin (CAG) promoter, whereas the other two permit flexible combinations of a chosen promoter combined with a reporter and/or gene of choice. We have validated our tools as part of the Pleiades Promoter Project (http://www.pleiades.org), with the generation of brain-specific EGFP positive germline mouse strains.

  12. Aberrant methylation of the M-type phospholipase A2 receptor gene in leukemic cells

    PubMed Central

    2012-01-01

    Background The M-type phospholipase A2 receptor (PLA2R1) plays a crucial role in several signaling pathways and may act as tumor-suppressor. This study examined the expression and methylation of the PLA2R1 gene in Jurkat and U937 leukemic cell lines and its methylation in patients with myelodysplastic syndrome (MDS) or acute leukemia. Methods Sites of methylation of the PLA2R1 locus were identified by sequencing bisulfite-modified DNA fragments. Methylation specific-high resolution melting (MS-HRM) analysis was then carried out to quantify PLA2R1 methylation at 5`-CpG sites identified with differences in methylation between healthy control subjects and leukemic patients using sequencing of bisulfite-modified genomic DNA. Results Expression of PLA2R1 was found to be completely down-regulated in Jurkat and U937 cells, accompanied by complete methylation of PLA2R1 promoter and down-stream regions; PLA2R1 was re-expressed after exposure of cells to 5-aza-2´-deoxycytidine. MS-HRM analysis of the PLA2R1 locus in patients with different types of leukemia indicated an average methylation of 28.9% ± 17.8%, compared to less than 9% in control subjects. In MDS patients the extent of PLA2R1 methylation significantly increased with disease risk. Furthermore, measurements of PLA2R1 methylation appeared useful for predicting responsiveness to the methyltransferase inhibitor, azacitidine, as a pre-emptive treatment to avoid hematological relapse in patients with high-risk MDS or acute myeloid leukemia. Conclusions The study shows for the first time that PLA2R1 gene sequences are a target of hypermethylation in leukemia, which may have pathophysiological relevance for disease evolution in MDS and leukemogenesis. PMID:23217014

  13. Analysis of case-parent trios at a locus with a deletion allele: association of GSTM1 with autism.

    PubMed

    Buyske, Steven; Williams, Tanishia A; Mars, Audrey E; Stenroos, Edward S; Ming, Sue X; Wang, Rong; Sreenath, Madhura; Factura, Marivic F; Reddy, Chitra; Lambert, George H; Johnson, William G

    2006-02-10

    Certain loci on the human genome, such as glutathione S-transferase M1 (GSTM1), do not permit heterozygotes to be reliably determined by commonly used methods. Association of such a locus with a disease is therefore generally tested with a case-control design. When subjects have already been ascertained in a case-parent design however, the question arises as to whether the data can still be used to test disease association at such a locus. A likelihood ratio test was constructed that can be used with a case-parents design but has somewhat less power than a Pearson's chi-squared test that uses a case-control design. The test is illustrated on a novel dataset showing a genotype relative risk near 2 for the homozygous GSTM1 deletion genotype and autism. Although the case-control design will remain the mainstay for a locus with a deletion, the likelihood ratio test will be useful for such a locus analyzed as part of a larger case-parent study design. The likelihood ratio test has the advantage that it can incorporate complete and incomplete case-parent trios as well as independent cases and controls. Both analyses support (p = 0.046 for the proposed test, p = 0.028 for the case-control analysis) an association of the homozygous GSTM1 deletion genotype with autism.

  14. Analysis of case-parent trios at a locus with a deletion allele: association of GSTM1 with autism

    PubMed Central

    Buyske, Steven; Williams, Tanishia A; Mars, Audrey E; Stenroos, Edward S; Ming, Sue X; Wang, Rong; Sreenath, Madhura; Factura, Marivic F; Reddy, Chitra; Lambert, George H; Johnson, William G

    2006-01-01

    Background Certain loci on the human genome, such as glutathione S-transferase M1 (GSTM1), do not permit heterozygotes to be reliably determined by commonly used methods. Association of such a locus with a disease is therefore generally tested with a case-control design. When subjects have already been ascertained in a case-parent design however, the question arises as to whether the data can still be used to test disease association at such a locus. Results A likelihood ratio test was constructed that can be used with a case-parents design but has somewhat less power than a Pearson's chi-squared test that uses a case-control design. The test is illustrated on a novel dataset showing a genotype relative risk near 2 for the homozygous GSTM1 deletion genotype and autism. Conclusion Although the case-control design will remain the mainstay for a locus with a deletion, the likelihood ratio test will be useful for such a locus analyzed as part of a larger case-parent study design. The likelihood ratio test has the advantage that it can incorporate complete and incomplete case-parent trios as well as independent cases and controls. Both analyses support (p = 0.046 for the proposed test, p = 0.028 for the case-control analysis) an association of the homozygous GSTM1 deletion genotype with autism. PMID:16472391

  15. Reaction of Methyl Fluoroformyl Peroxycarbonate (FC(O)OOC(O)OCH3) with Cl Atoms: Formation of Hydro-ChloroFluoro-Peroxides.

    PubMed

    Berasategui, Matias; Argüello, Gustavo A; Burgos Paci, Maxi A

    2017-10-12

    The products following Cl atom initiated reactions of FC(O)OOC(O)OCH 3 in 50-760 Torr of N 2 at 296 K were investigated using FTIR. Reaction of Cl atoms with methyl fluoroformyl peroxycarbonate proceeds mainly via attack at the methyl group, forming FC(O)OOC(O)OCH 2 • radicals. Further reaction of this kind of radical with Cl 2 forms three new compounds: FC(O)OOC(O)OCH 2 Cl, FC(O)OOC(O)OCHCl 2 , and FC(O)OOC(O)OCCl 3 , whose existence was characterized experimentally by FTIR spectroscopy assisted by ab initio calculations at the B3LYP/6-31++G(d,p) level. Relative rate techniques were used to measure k (Cl+FC(O)OOC(O)OCH3) = (4.0 ± 0.4) × 10 -14 cm 3 molecule -1 s -1 and k (Cl+FC(O)OOC(O)OCH2Cl) = (3.2 ± 0.3) × 10 -14 cm 3 molecule -1 s -1 . When the reaction is run in the presence of oxygen, the paths giving chlorinated peroxide formation are suppressed, and oxidation to (mainly) CO 2 and HCl takes place through highly oxidized intermediates with lifetimes long enough to be detected by FTIR spectroscopy.

  16. Endogenous 5-methylcytosine protects neighboring guanines from N7 and O6-methylation and O6-pyridyloxobutylation by the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.

    PubMed

    Ziegel, Rebecca; Shallop, Anthony; Upadhyaya, Pramod; Jones, Roger; Tretyakova, Natalia

    2004-01-20

    All CG dinucleotides along exons 5-8 of the p53 tumor suppressor gene contain endogenous 5-methylcytosine (MeC). These same sites (e.g., codons 157, 158, 245, 248, and 273) are mutational hot spots in smoking-induced lung cancer. Several groups used the UvrABC endonuclease incision assay to demonstrate that methylated CG dinucleotides of the p53 gene are the preferred binding sites for the diol epoxides of bay region polycyclic aromatic hydrocarbons (PAH). In contrast, effects of endogenous cytosine methylation on the distribution of DNA lesions induced by tobacco-specific nitrosamines, e.g., 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), have not been elucidated. In the work presented here, a stable isotope labeling HPLC-ESI-MS/MS approach was employed to analyze the reactivity of the N7 and O6 positions of guanines within hemimethylated and fully methylated CG dinucleotides toward NNK-derived methylating and pyridyloxobutylating species. 15N3-labeled guanine bases were placed within synthetic DNA sequences representing endogenously methylated p53 codons 154, 157, and 248, followed by treatment with acetylated precursors to NNK diazohydroxides. HPLC-ESI-MS/MS analysis was used to determine the relative yields of N7- and O6-guanine adducts at the 15N3-labeled position. In all cases, the presence of MeC inhibited the formation of N7-methylguanine, O6-methylguanine, and O6-pyridyloxobutylguanine at a neighboring G, with the greatest decrease observed in fully methylated dinucleotides and at guanines preceded by MeC. Furthermore, the O6-Me-dG/N7-Me-G molar ratios were decreased in the presence of the 5'-neighboring MeC, suggesting that the observed decline in O6-alkylguanine adduct yields is, at least partially, a result of an altered reactivity pattern in methylated CG dinucleotides. These results indicate that, unlike N2-guanine adducts of PAH diol epoxides, NNK-induced N7- and O6-alkylguanine adducts are not preferentially formed at the endogenously

  17. Genome-wide Mapping Reveals Conservation of Promoter DNA Methylation Following Chicken Domestication

    PubMed Central

    Li, Qinghe; Wang, Yuanyuan; Hu, Xiaoxiang; Zhao, Yaofeng; Li, Ning

    2015-01-01

    It is well-known that environment influences DNA methylation, however, the extent of heritable DNA methylation variation following animal domestication remains largely unknown. Using meDIP-chip we mapped the promoter methylomes for 23,316 genes in muscle tissues of ancestral and domestic chickens. We systematically examined the variation of promoter DNA methylation in terms of different breeds, differentially expressed genes, SNPs and genes undergo genetic selection sweeps. While considerable changes in DNA sequence and gene expression programs were prevalent, we found that the inter-strain DNA methylation patterns were highly conserved in promoter region between the wild and domestic chicken breeds. Our data suggests a global preservation of DNA methylation between the wild and domestic chicken breeds in either a genome-wide or locus-specific scale in chick muscle tissues. PMID:25735894

  18. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity.

    PubMed

    Shi, Hao; Munk, Alexander; Nielsen, Thomas S; Daughtry, Morgan R; Larsson, Louise; Li, Shize; Høyer, Kasper F; Geisler, Hannah W; Sulek, Karolina; Kjøbsted, Rasmus; Fisher, Taylor; Andersen, Marianne M; Shen, Zhengxing; Hansen, Ulrik K; England, Eric M; Cheng, Zhiyong; Højlund, Kurt; Wojtaszewski, Jørgen F P; Yang, Xiaoyong; Hulver, Matthew W; Helm, Richard F; Treebak, Jonas T; Gerrard, David E

    2018-05-01

    Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  19. Organization of the capsule biosynthesis gene locus of the oral streptococcus Streptococcus anginosus.

    PubMed

    Tsunashima, Hiroyuki; Miyake, Katsuhide; Motono, Makoto; Iijima, Shinji

    2012-03-01

    The capsular polysaccharide (CPS) of the important oral streptococcus Streptococcus anginosus, which causes endocarditis, and the genes for its synthesis have not been clarified. In this study, we investigated the gene locus required for CPS synthesis in S. anginosus. Southern hybridization using the cpsE gene of the well-characterized bacterium S. agalactiae revealed that there is a similar gene in the genome of S. anginosus. By using the colony hybridization technique and inverse PCR, we isolated the CPS synthesis (cps) genes of S. anginosus. This gene cluster consisted of genes containing typical regulatory genes, cpsA-D, and glycosyltransferase genes coding for glucose, rhamnose, N-acetylgalactosamine, and galactofuranose transferases. Furthermore, we confirmed that the cps locus is required for CPS synthesis using a mutant strain with a defective cpsE gene. The cps cluster was found to be located downstream the nrdG gene, which encodes ribonucleoside triphosphate reductase activator, as is the case in other oral streptococci such as S. gordonii and S. sanguinis. However, the location of the gene cluster was different from those of S. pneumonia and S. agalactiae. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. High-throughput and site-specific identification of 2'-O-methylation sites using ribose oxidation sequencing (RibOxi-seq).

    PubMed

    Zhu, Yinzhou; Pirnie, Stephan P; Carmichael, Gordon G

    2017-08-01

    Ribose methylation (2'- O -methylation, 2'- O Me) occurs at high frequencies in rRNAs and other small RNAs and is carried out using a shared mechanism across eukaryotes and archaea. As RNA modifications are important for ribosome maturation, and alterations in these modifications are associated with cellular defects and diseases, it is important to characterize the landscape of 2'- O -methylation. Here we report the development of a highly sensitive and accurate method for ribose methylation detection using next-generation sequencing. A key feature of this method is the generation of RNA fragments with random 3'-ends, followed by periodate oxidation of all molecules terminating in 2',3'-OH groups. This allows only RNAs harboring 2'-OMe groups at their 3'-ends to be sequenced. Although currently requiring microgram amounts of starting material, this method is robust for the analysis of rRNAs even at low sequencing depth. © 2017 Zhu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. Nucleoside-O-Methyl-(H)-Phosphinates: Novel Monomers for the Synthesis of Methylphosphonate Oligonucleotides Using H-Phosphonate Chemistry.

    PubMed

    Kostov, Ondřej; Páv, Ondřej; Rosenberg, Ivan

    2017-09-18

    This unit comprises the straightforward synthesis of protected 2'-deoxyribonucleoside-O-methyl-(H)-phosphinates in both 3'- and 5'-series. These compounds represent a new class of monomers compatible with the solid-phase synthesis of oligonucleotides using H-phosphonate chemistry and are suitable for the preparation of both 3'- and 5'-O-methylphosphonate oligonucleotides. The synthesis of 4-toluenesulfonyloxymethyl-(H)-phosphinic acid as a new reagent for the preparation of O-methyl-(H)-phosphinic acid derivatives is described. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  2. Metabolism of aspirin and procaine in mice pretreated with O-4-nitrophenyl methyl(phenyl)phosphinate or O-4-nitrophenyl diphenylphosphinate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joly, J.M.; Brown, T.M.

    Concentrations of (carboxyl-/sup 14/C)procaine in blood of mice were increased threefold for 27 min by exposure to O-4-nitrophenyl diphenylphosphinate 2 hr prior to (carboxyl-/sup 14/C)procaine injection ip, while there was no effect of O-4-nitrophenyl methyl(phenyl)phosphinate pretreatment. There was no effect of either organophosphinate on the primary hydrolysis of (acetyl-l-/sup 14/C)aspirin when assessed by the expiration of (/sup 14/C)carbon dioxide; however, O-4-nitrophenyl diphenylphosphinate pretreatment produced transient increases in blood concentrations of both (carboxyl-/sup 14/C)aspirin and (carboxyl-/sup 14/C)salicylic acid following administration of (carboxyl-/sup 14/C)aspirin. Liver carboxylesterase activity in O-4-nitrophenyl diphenylphosphinate pretreated mice was 11% of control activity. These results indicate the potentialmore » for drug interaction with O-4-nitrophenyl diphenylphosphinate but not with O-4-nitrophenyl methyl(phenyl)phosphinate. It appears that liver carboxylesterase activity has a minor role in hydrolysis of aspirin in vivo, but may be more important in procaine metabolism.« less

  3. Silver nanoparticle-induced hemoglobin decrease involves alteration of histone 3 methylation status.

    PubMed

    Qian, Yi; Zhang, Jie; Hu, Qinglin; Xu, Ming; Chen, Yue; Hu, Guoqing; Zhao, Meirong; Liu, Sijin

    2015-11-01

    Silver nanoparticles (nanosilver, AgNPs) have been shown to induce toxicity in vitro and in vivo; however, the molecular bases underlying the detrimental effects have not been thoroughly understood. Although there are numerous studies on its genotoxicity, only a few studies have investigated the epigenetic changes, even less on the changes of histone modifications by AgNPs. In the current study, we probed the AgNP-induced alterations to histone methylation that could be responsible for globin reduction in erythroid cells. AgNP treatment caused a significant reduction of global methylation level for histone 3 (H3) in erythroid MEL cells at sublethal concentrations, devoid of oxidative stress. The ChIP-PCR analyses demonstrated that methylation of H3 at lysine (Lys) 4 (H3K4) and Lys 79 (H3K79) on the β-globin locus was greatly reduced. The reduction in methylation could be attributed to decreased histone methyltransferase DOT-1L and MLL levels as well as the direct binding between AgNPs to H3/H4 that provide steric hindrance to prevent methylation as predicted by the all-atom molecular dynamics simulations. This direct interaction was further proved by AgNP-mediated pull-down assay and immunoprecipitation assay. These changes, together with decreased RNA polymerase II activity and chromatin binding at this locus, resulted in decreased hemoglobin production. By contrast, Ag ion-treated cells showed no alterations in histone methylation level. Taken together, these results showed a novel finding in which AgNPs could alter the methylation status of histone. Our study therefore opens a new avenue to study the biological effects of AgNPs at sublethal concentrations from the perspective of epigenetic mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Emerging technologies for studying DNA methylation for the molecular diagnosis of cancer

    PubMed Central

    Marzese, Diego M.; Hoon, Dave S.B.

    2015-01-01

    DNA methylation is an epigenetic mechanism that plays a key role in regulating gene expression and other functions. Although this modification is seen in different sequence contexts, the most frequently detected DNA methylation in mammals involves cytosine-guanine dinucleotides. Pathological alterations in DNA methylation patterns are described in a variety of human diseases, including cancer. Unlike genetic changes, DNA methylation is heavily influenced by subtle modifications in the cellular microenvironment. In all cancers, aberrant DNA methylation is involved in the alteration of a large number of oncological pathways with relevant theranostic utility. Several technologies for DNA methylation mapping were recently developed and successfully applied in cancer studies. The scope of these technologies varies from assessing a single cytosine-guanine locus to genome-wide distribution of DNA methylation. Here, we review the strengths and weaknesses of these approaches in the context of clinical utility for the molecular diagnosis of human cancers. PMID:25797072

  5. Preparation of ErMnO3 by Sol-gel Method and its Photocatalytic Activity for Removal of Methyl Orange from Water

    NASA Astrophysics Data System (ADS)

    Xie, X. Y.; Yang, J. N.; Yu, L. L.; Min, J. Y.; Sun, D. D.; Tang, P. S.; Chen, H. F.

    2018-05-01

    The single phase perovskite ErMnO3 was synthesized using Er(NO3)3, manganese acetate, citric acid and urea by a facile sol-gel method. The gel of ErMnO3 precursor was kept for 36 hours in 100 °C oven to get the xerogel. Then, the xerogel was calcined at 800 °C for 12 hours in muffle furnace to prepare single phase ErMnO3. The prepared sample was characterized by thermogravimetry differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Under ultraviolet light, the photocatalytic activity of ErMnO3 was studied with methyl orange of 20 mg/L as the simulated sewage. The results show that the ErMnO3 sample particle size distribution is relatively uniform, the average grain size is mainly around 100 nm. The photocatalytic experiment demonstrates that ErMnO3 is highly photocatalytic activity for removal of methyl orange from water. When methyl orange of 20 mg/L is degraded for 120 min in the presence of ErMnO3, the degradation rate of methyl orange can reach about 95%. The degradation of methyl orange accords with first order kinetic model in presence ErMnO3 sample, and the apparent rate constant is 0.022 min-1.

  6. Innate immune restriction and antagonism of viral RNA lacking 2'-O methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, Jennifer L.; Diamond, Michael S., E-mail: diamond@borcim.wustl.edu; Molecular Microbiology, Washington University School of Medicine, St Louis., MO 63110

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m{sup 7}GpppN; cap 1, m{sup 7}GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on theirmore » RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease.« less

  7. Parental DNA Methylation States Are Associated with Heterosis in Epigenetic Hybrids1[OPEN

    PubMed Central

    Lauss, Kathrin; Wardenaar, René; van Hulten, Marieke H. A.; Guryev, Victor; Johannes, Frank

    2018-01-01

    Despite the importance and wide exploitation of heterosis in commercial crop breeding, the molecular mechanisms behind this phenomenon are not completely understood. Recent studies have implicated changes in DNA methylation and small RNAs in hybrid performance; however, it remains unclear whether epigenetic changes are a cause or a consequence of heterosis. Here, we analyze a large panel of over 500 Arabidopsis (Arabidopsis thaliana) epigenetic hybrid plants (epiHybrids), which we derived from near-isogenic but epigenetically divergent parents. This proof-of-principle experimental system allowed us to quantify the contribution of parental methylation differences to heterosis. We measured traits such as leaf area, growth rate, flowering time, main stem branching, rosette branching, and final plant height and observed several strong positive and negative heterotic phenotypes among the epiHybrids. Using an epigenetic quantitative trait locus mapping approach, we were able to identify specific differentially methylated regions in the parental genomes that are associated with hybrid performance. Sequencing of methylomes, transcriptomes, and genomes of selected parent-epiHybrid combinations further showed that these parental differentially methylated regions most likely mediate the remodeling of methylation and transcriptional states at specific loci in the hybrids. Taken together, our data suggest that locus-specific epigenetic divergence between the parental lines can directly or indirectly trigger heterosis in Arabidopsis hybrids independent of genetic changes. These results add to a growing body of evidence that points to epigenetic factors as one of the key determinants of hybrid performance. PMID:29196538

  8. Adsorption Isotherm Studies of Methyl Bromide on MgO

    NASA Astrophysics Data System (ADS)

    Burns, Teresa; Larese, John

    2004-03-01

    The adsorption of methyl bromine onto highly-uniform magnesium oxide powder was studied. Methyl bromide was condensed onto the MgO substrate at temperatures between 164 K and 179 K. The layering behavior of the gas molecules was studied by a series of vapor pressure isotherms, using a high-accuracy, computer-controller system. The isotherms clearly show first layer formation at all temperatures, with second layer formation at higher temperatures; the 2D compressibility and isosteric heat of adsorption were determined. TEB sponsored by the Department of Energy EPSCOR Grant No. DE-FG02-01ER45895. JZL sponsored by start-up funds from the University of Tennessee - Knoxville and by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy, under contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC.

  9. Second generation subtyping: a proposed PulseNet protocol for multiple-locus variable-number tandem repeat analysis of Shiga toxin-producing Escherichia coli O157 (STEC O157).

    PubMed

    Hyytiä-Trees, Eija; Smole, Sandra C; Fields, Patricia A; Swaminathan, Bala; Ribot, Efrain M

    2006-01-01

    Most bacterial genomes contain tandem duplications of short DNA sequences, termed "variable-number tandem repeats" (VNTR). A subtyping method targeting these repeats, multiple-locus VNTR analysis (MLVA), has emerged as a powerful tool for characterization of clonal organisms such as Shiga toxin-producing Escherichia coli O157 (STEC O157). We modified and optimized a recently published MLVA scheme targeting 29 polymorphic VNTR regions of STEC O157 to render it suitable for routine use by public health laboratories that participate in PulseNet, the national and international molecular subtyping network for foodborne disease surveillance. Nine VNTR loci were included in the final protocol. They were amplified in three PCR reactions, after which the PCR products were sized using capillary electrophoresis. Two hundred geographically diverse, sporadic and outbreak- related STEC O157 isolates were characterized by MLVA and the results were compared with data obtained by pulsed-field gel electrophoresis (PFGE) using XbaI macrorestriction of genomic DNA. A total of 139 unique XbaI PFGE patterns and 162 MLVA types were identified. A subset of 100 isolates characterized by both XbaI and BlnI macrorestriction had 62 unique PFGE and MLVA types. Although the clustering of isolates by the two subtyping systems was generally in agreement, some discrepancies were observed. Importantly, MLVA was able to discriminate among some epidemiologically unrelated isolates which were indistinguishable by PFGE. However, among strains from three of the eight outbreaks included in the study, two single locus MLVA variants and one double locus variant were detected among epidemiologically implicated isolates that were indistinguishable by PFGE. Conversely, in three other outbreaks, isolates that were indistinguishable by MLVA displayed multiple PFGE types. An additional more extensive multi-laboratory validation of the MLVA protocol is in progress in order to address critical issues such as

  10. 40 CFR 180.409 - Pirimiphos-methyl; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Pirimiphos-methyl; tolerances for... § 180.409 Pirimiphos-methyl; tolerances for residues. (a) General. Tolerances are established for residues of the insecticide pirimiphos-methyl (O-(2-diethylamino-6-methyl-4-pyrimidinyl) O,O-dimethyl...

  11. A methylation status analysis of the apomixis-specific region in Paspalum spp. suggests an epigenetic control of parthenogenesis.

    PubMed

    Podio, Maricel; Cáceres, Maria E; Samoluk, Sergio S; Seijo, José G; Pessino, Silvina C; Ortiz, Juan Pablo A; Pupilli, Fulvio

    2014-12-01

    Apomixis, a clonal plant reproduction by seeds, is controlled in Paspalum spp. by a single locus which is blocked in terms of recombination. Partial sequence analysis of the apomixis locus revealed structural features of heterochromatin, namely the presence of repetitive elements, gene degeneration, and de-regulation. To test the epigenetic control of apomixis, a study on the distribution of cytosine methylation at the apomixis locus and the effect of artificial DNA demethylation on the mode of reproduction was undertaken in two apomictic Paspalum species. The 5-methylcytosine distribution in the apomixis-controlling genomic region was studied in P. simplex by methylation-sensitive restriction fragment length polymorphism (RFLP) analysis and in P. notatum by fluorescene in situ hybridization (FISH). The effect of DNA demethylation was studied on the mode of reproduction of P. simplex by progeny test analysis of apomictic plants treated with the demethylating agent 5'-azacytidine. A high level of cytosine methylation was detected at the apomixis-controlling genomic region in both species. By analysing a total of 374 open pollination progeny, it was found that artificial demethylation had little or no effect on apospory, whereas it induced a significant depression of parthenogenesis. The results suggested that factors controlling repression of parthenogenesis might be inactivated in apomictic Paspalum by DNA methylation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Aberrant Epigenetic Alterations of Glutathione-S-Transferase P1 in Age-Related Nuclear Cataract.

    PubMed

    Chen, Jia; Zhou, Jing; Wu, Jian; Zhang, Guowei; Kang, Lihua; Ben, Jindong; Wang, Yong; Qin, Bai; Guan, Huaijin

    2017-03-01

    Oxidative damage of lens tissue contributes to the formation of age-related cataract. Pi-class glutathione-S-transferase (GSTP1) plays a role in the removal of oxidative adducts by transferring them to glutathione. To assess epigenetic regulation of GSTP1 and its potential role in age-related nuclear cataract (ARNC) pathogenesis, we evaluated GSTP1 mRNA expression, methylation, and chromatin modifications in lenses from ARNC patients. The mRNA and protein of lens GSTP1 were assayed by relative quantitative real-time polymerase chain reaction (qRT-PCR) and Western blots. Methylation of the GSTP1 promoter was determined by bisulfite genomic sequencing. Chromatin modification was detected by chromatin immunoprecipitation. DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities were also assayed by enzyme-linked immunosorbent assay (ELISA)-like reaction. To assess the effect of DNA methylation on the mRNA expression of GSTP1, human lens epithelium HLE-B3 cells were treated with the demethylation compound 5-aza-dC, followed by qRT-PCR assay. GSTP1 mRNA and protein levels were significantly reduced in lens epithelium and cortex of ARNC cases versus age-matched controls. The changes corresponded to hypermethylation of the GSTP1 promoter CpG islands. The loss of GSTP1 mRNA and protein and the increased DNA promoter methylation might be correlated with the severity of the ARNC. ARNC lenses also had lower acetylation of histone proteins H3, H4, and lower methylation of H3K4, and higher methylation of H3K9. Histone modifications were not correlated with the severity of the ARNCs. DNMT and HDAC were elevated in lenses from ARNCs compared with controls. Demethylation treatment of HLE-B3 cells with 5-aza-dC enhanced the expression of GSTP1. Epigenetic alteration of GSTP1 regulates its expression in lens epithelial and cortical tissues. These changes likely contribute to the pathogenesis of ARNC.

  13. Archaeal fibrillarin-Nop5 heterodimer 2'-O-methylates RNA independently of the C/D guide RNP particle.

    PubMed

    Tomkuvienė, Miglė; Ličytė, Janina; Olendraitė, Ingrida; Liutkevičiūtė, Zita; Clouet-d'Orval, Béatrice; Klimašauskas, Saulius

    2017-09-01

    Archaeal fibrillarin (aFib) is a well-characterized S -adenosyl methionine (SAM)-dependent RNA 2'- O -methyltransferase that is known to act in a large C/D ribonucleoprotein (RNP) complex together with Nop5 and L7Ae proteins and a box C/D guide RNA. In the reaction, the guide RNA serves to direct the methylation reaction to a specific site in tRNA or rRNA by sequence complementarity. Here we show that a Pyrococcus abyssi aFib-Nop5 heterodimer can alone perform SAM-dependent 2'- O -methylation of 16S and 23S ribosomal RNAs in vitro independently of L7Ae and C/D guide RNAs. Using tritium-labeling, mass spectrometry, and reverse transcription analysis, we identified three in vitro 2'- O -methylated positions in the 16S rRNA of P. abyssi , positions lying outside of previously reported pyrococcal C/D RNP methylation sites. This newly discovered stand-alone activity of aFib-Nop5 may provide an example of an ancestral activity retained in enzymes that were recruited to larger complexes during evolution. © 2017 Tomkuvienė et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. Histone lysine methylation: critical regulator of memory and behavior.

    PubMed

    Jarome, Timothy J; Lubin, Farah D

    2013-01-01

    Histone lysine methylation is a well-established transcriptional mechanism for the regulation of gene expression changes in eukaryotic cells and is now believed to function in neurons of the central nervous system to mediate the process of memory formation and behavior. In mature neurons, methylation of histone proteins can serve to both activate and repress gene transcription. This is in stark contrast to other epigenetic modifications, including histone acetylation and DNA methylation, which have largely been associated with one transcriptional state in the brain. In this review, we discuss the evidence for histone methylation mechanisms in the coordination of complex cognitive processes such as long-term memory formation and storage. In addition, we address the current literature highlighting the role of histone methylation in intellectual disability, addiction, schizophrenia, autism, depression, and neurodegeneration. Further, we discuss histone methylation within the context of other epigenetic modifications and the potential advantages of exploring this newly identified mechanism of cognition, emphasizing the possibility that this molecular process may provide an alternative locus for intervention in long-term psychopathologies that cannot be clearly linked to genes or environment alone.

  15. Plasmon-resonance-enhanced visible-light photocatalytic activity of Ag quantum dots/TiO2 microspheres for methyl orange degradation

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Shang, Liwei; Wang, Dongjun; An, Li; Li, Zhonghua; Liu, Jiawen; Shen, Jun

    2018-06-01

    We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.

  16. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells

    PubMed Central

    Bock, Christoph; Beerman, Isabel; Lien, Wen-Hui; Smith, Zachary D.; Gu, Hongcang; Boyle, Patrick; Gnirke, Andreas; Fuchs, Elaine; Rossi, Derrick J.; Meissner, Alexander

    2012-01-01

    DNA methylation is a mechanism of epigenetic regulation that is common to all vertebrates. Functional studies underscore its relevance for tissue homeostasis, but the global dynamics of DNA methylation during in vivo differentiation remain underexplored. Here we report high-resolution DNA methylation maps of adult stem cell differentiation in mouse, focusing on 19 purified cell populations of the blood and skin lineages. DNA methylation changes were locus-specific and relatively modest in magnitude. They frequently overlapped with lineage-associated transcription factors and their binding sites, suggesting that DNA methylation may protect cells from aberrant transcription factor activation. DNA methylation and gene expression provided complementary information, and combining the two enabled us to infer the cellular differentiation hierarchy of the blood lineage directly from genomic data. In summary, these results demonstrate that in vivo differentiation of adult stem cells is associated with small but informative changes in the genomic distribution of DNA methylation. PMID:22841485

  17. Adsorption Isotherm Studies of Methyl Bromide on MgO

    NASA Astrophysics Data System (ADS)

    Harper, Tj; Burns, Te; Larese, Jz

    2003-03-01

    This research involves the adsorption of methyl bromine and methane onto highly-uniform magnesium oxide powder. Methyl bromide was condensed onto the MgO substrate at temperatures between 175 K and 179 K. The layering behavior of the gas molecules was studied by a series of vapor pressure isotherms, using a high-accuracy, computer-controlled system. The isotherms clearly show first layer formation at all temperatures, followed by a continuous layer growth to saturation. Isotherms will be presented and future work discussed. TJH and TEB research sponsored by the Department of Energy EPSCOR Grant No. DE-FG02-01ER45895. JZL research sponsored by start-up funds from the University of Tennessee - Knoxville and by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy, under contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC.

  18. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Test Systems § 862.1535 Ornithine carbamyl transferase test system. (a) Identification. An ornithine carbamyl transferase test system is a device intended to measure the activity of the enzyme ornithine... and treatment of liver diseases, such as infectious hepatitis, acute cholecystitis (inflammation of...

  19. Multiple-Locus Variable-Number Tandem-Repeats Analysis of Escherichia coli O157 using PCR multiplexing and multi-colored capillary electrophoresis.

    PubMed

    Lindstedt, Bjørn-Arne; Vardund, Traute; Kapperud, Georg

    2004-08-01

    The Multiple-Locus Variable-Number Tandem-Repeats Analysis (MLVA) method is currently being used as the primary typing tool for Shiga-toxin-producing Escherichia coli (STEC) O157 isolates in our laboratory. The initial assay was performed using a single fluorescent dye and the different patterns were assigned using a gel image. Here, we present a significantly improved assay using multiple dye colors and enhanced PCR multiplexing to increase speed, and ease the interpretation of the results. The different MLVA patterns are now based on allele sizes entered as character values, thus removing the uncertainties introduced when analyzing band patterns from the gel image. We additionally propose an easy numbering scheme for the identification of separate isolates that will facilitate exchange of typing data. Seventy-two human and animal strains of Shiga-toxin-producing E. coli O157 were used for the development of the improved MLVA assay. The method is based on capillary separation of multiplexed PCR products of VNTR loci in the E. coli O157 genome labeled with multiple fluorescent dyes. The different alleles at each locus were then assigned to allele numbers, which were used for strain comparison.

  20. IGF2 DNA methylation is a modulator of newborn's fetal growth and development.

    PubMed

    St-Pierre, Julie; Hivert, Marie-France; Perron, Patrice; Poirier, Paul; Guay, Simon-Pierre; Brisson, Diane; Bouchard, Luigi

    2012-10-01

    The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn's fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn's weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn's fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity.

  1. Let-7e inhibits TNF-α expression by targeting the methyl transferase EZH2 in DENV2-infected THP-1 cells.

    PubMed

    Zhang, Yingke; Zhang, Qianqian; Gui, Lian; Cai, Yan; Deng, Xiaohong; Li, Cheukfai; Guo, Qi; He, Xiaoshun; Huang, Junqi

    2018-05-16

    Tumor necrosis factor α (TNFα), an important inflammatory cytokine, is associated with dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), a severe pathological manifestation of dengue virus (DENV) infection. However, the regulatory mechanism of microRNA on TNFα is currently unknown. Our study showed that the TNFα expression increased immediately and then later decreased, while a marked increase for the miRNA let-7e was detected in dengue virus type 2 (DENV2)-infected peripheral blood mononuclear cells (PBMCs). From this study, we found that let-7e was able to inhibit TNFα expression, but bioinformatics analysis showed that the enhancer of zeste homolog 2 (EZH2) was the potential direct target of let-7e instead of TNFα. EZH2 methyl transferase can produce H3K27me3 and has a negative regulatory role. Using a dual-luciferase reporter assay and Western blotting, we confirmed that EZH2 was a direct target of let-7e and found that siEZH2 could inhibit TNFα expression. In the further study of the regulatory mechanism of EZH2 on TNFα expression, we showed that siEZH2 promoted EZH1 and H3K4me3 expression and inhibited H3K27me3 expression. More importantly, we revealed that siEZH2 down-regulated NF-κB p65 within the nucleus. These findings indicate that the let-7e/EZH2/H3K27me3/NF-κB p65 pathway is a novel regulatory axis of TNFα expression. In addition, we determined the protein differences between siEZH2 and siEZH2-NC by iTRAQ and found a number of proteins that might be associated with TNFα. © 2018 Wiley Periodicals, Inc.

  2. O-linked N-acetylglucosamine transferase enhances secretory clusterin expression via liver X receptors and sterol response element binding protein regulation in cervical cancer.

    PubMed

    Kim, Min Jun; Choi, Mee Young; Lee, Dong Hoon; Roh, Gu Seob; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Kim, Yoon Sook; Choi, Wan Sung

    2018-01-12

    O-linked N-acetylglucosamine transferase (OGT) expression is increased in various cancer types, indicating the potential importance of O-GlcNAcylation in tumorigenesis. Secretory clusterin (sCLU) is involved in cancer cell proliferation and drug resistance, and recently, liver X receptors (LXRs) and sterol response element binding protein-1 (SREBP-1) were reported to regulate sCLU transcription. Here, we found that sCLU is significantly increased in cervical cancer cell lines, which have higher expression levels of O-GlcNAc and OGT than keratinocytes. OGT knockdown decreased expression of LXRs, SREBP-1 and sCLU through hypo-O-GlcNAcylation of LXRs. Additionally, treatment with Thiamet G, O-GlcNAcase OGA inhibitor, increased expression of O-GlcNAcylation and sCLU, and high glucose increased levels of LXRs, SREBP-1 and sCLU in HeLa cells. Moreover, OGT knockdown induced G 0 /G 1 phase cell cycle arrest and late apoptosis in cisplatin-treated HeLa cells, and decreased viability compared to OGT intact HeLa cells. Taken together, these findings suggest that OGT, O-GlcNAcylated LXRs, and SREBP-1 increase sCLU expression in cervical cancer cells, which contributes to drug resistance.

  3. A model to environmental monitoring based on glutathione-S-transferase activity and branchial lesions in catfish

    NASA Astrophysics Data System (ADS)

    Neta, Raimunda Nonata Fortes Carvalho; Torres, Audalio Rebelo

    2017-11-01

    In this work, we validate the glutathione-S-transferase and branchial lesions as biomarkers in catfish Sciades herzbergii to obtain a predictive model of the environmental impact effects in a harbor of Brazil. The catfish were sampled from a port known to be contaminated with heavy metals and organic compounds and from a natural reserve in São Marcos Bay, Maranhão. Two biomarkers, hepatic glutathione S-transferase (GST) activity and branchial lesions were analyzed. The values for GST activity were modeled with the occurrence of branchial lesions by fitting a third order polynomial. Results from the mathematical model indicate that GST activity has a strong polynomial relationship with the occurrence of branchial lesions in both the wet and the dry seasons, but only at the polluted port site. Our mathematic model indicates that when the GST ceases to act, serious branchial lesions are observed in the catfish of the contaminated port area.

  4. Mechanisms of global diversification in the marine species Madeiran Storm-petrel Oceanodroma castro and Monteiro's Storm-petrel O. monteiroi: Insights from a multi-locus approach.

    PubMed

    Silva, Mauro F; Smith, Andrea L; Friesen, Vicki L; Bried, Joël; Hasegawa, Osamu; Coelho, M Manuela; Silva, Mónica C

    2016-05-01

    The evolutionary mechanisms underlying the geographic distribution of gene lineages in the marine environment are not as well understood as those affecting terrestrial groups. The continuous nature of the pelagic marine environment may limit opportunities for divergence to occur and lineages to spatially segregate, particularly in highly mobile species. Here, we studied the phylogeography and historical demography of two tropically distributed, pelagic seabirds, the Madeiran Storm-petrel Oceanodroma castro, sampled in the Azores, Madeira, Galapagos and Japan, and its sister species Monteiro's Storm-petrel O. monteiroi (endemic to the Azores), using a multi-locus dataset consisting of 12 anonymous nuclear loci and the mitochondrial locus control region. Both marker types support the existence of four significantly differentiated genetic clusters, including the sampled O. monteiroi population and three populations within O. castro, although only the mitochondrial locus suggests complete lineage sorting. Multi-locus coalescent analyses suggest that most divergence events occurred within the last 200,000years. The proximity in divergence times precluded robust inferences of the species tree, in particular of the evolutionary relationships of the Pacific populations. Despite the great potential for dispersal, divergence among populations apparently proceeded in the absence of gene flow, emphasizing the effect of non-physical barriers, such as those driven by the paleo-oceanographical environments, philopatry and local adaptation, as important mechanisms of population divergence and speciation in highly mobile marine species. In view of the predicted climate change impacts, future changes in the demography and evolutionary dynamics of marine populations might be expected. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos

    PubMed Central

    Auclair, Ghislain; Borgel, Julie; Sanz, Lionel A.; Vallet, Judith; Guibert, Sylvain; Dumas, Michael; Cavelier, Patricia; Girardot, Michael; Forné, Thierry; Feil, Robert; Weber, Michael

    2016-01-01

    The extent to which histone modifying enzymes contribute to DNA methylation in mammals remains unclear. Previous studies suggested a link between the lysine methyltransferase EHMT2 (also known as G9A and KMT1C) and DNA methylation in the mouse. Here, we used a model of knockout mice to explore the role of EHMT2 in DNA methylation during mouse embryogenesis. The Ehmt2 gene is expressed in epiblast cells but is dispensable for global DNA methylation in embryogenesis. In contrast, EHMT2 regulates DNA methylation at specific sequences that include CpG-rich promoters of germline-specific genes. These loci are bound by EHMT2 in embryonic cells, are marked by H3K9 dimethylation, and have strongly reduced DNA methylation in Ehmt2−/− embryos. EHMT2 also plays a role in the maintenance of germline-derived DNA methylation at one imprinted locus, the Slc38a4 gene. Finally, we show that DNA methylation is instrumental for EHMT2-mediated gene silencing in embryogenesis. Our findings identify EHMT2 as a critical factor that facilitates repressive DNA methylation at specific genomic loci during mammalian development. PMID:26576615

  6. Methylation at CPT1A locus is associated with lipoprotein subfraction profiles

    USDA-ARS?s Scientific Manuscript database

    Lipoprotein subfractions help discriminate cardiometabolic disease risk. Genetic loci validated as associating with lipoprotein measures do not account for a large proportion of the individual variation in lipoprotein measures. We hypothesized that DNA methylation levels across the genome contribute...

  7. NiFe(C2O4)x as a heterogeneous Fenton catalyst for removal of methyl orange.

    PubMed

    Liu, Yucan; Zhang, Guangming; Chong, Shan; Zhang, Nan; Chang, Huazhen; Huang, Ting; Fang, Shunyan

    2017-05-01

    This paper studies a heterogeneous Fenton catalyst NiFe(C 2 O 4 ) x , which showed better catalytic activity than Ni(C 2 O 4 ) x and better re-usability than Fe(C 2 O 4 ) x . The methyl orange removal efficiency was 98% in heterogeneous Fenton system using NiFe(C 2 O 4 ) x . The prepared NiFe(C 2 O 4 ) x had a laminated shape and the size was in the range of 2-4 μm, and Ni was doped into catalyst's structure successfully. The NiFe(C 2 O 4 ) x had a synergistic effect of catalyst of 24.7 for methyl orange removal, and the dope of Ni significantly reduced the leaching of Fe by 77%. The reaction factors and kinetics were investigated. Under the optimal conditions, 0.4 g/L of catalyst dose and 10 mmol/L of hydrogen peroxide concentration, 98% of methyl orange was removed within 20 min. Analysis showed that hydroxyl radicals and superoxide radicals participated in the reaction. With NiFe(C 2 O 4 ) x catalyst, the suitable pH range for heterogeneous Fenton system was wide from 3 to 10. The catalyst showed good efficiency after five times re-use. NiFe(C 2 O 4 ) x provided great potential in treatment of refractory wastewater with excellent property. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Aorta-Gonad-Mesonephros Organ Culture Recapitulates 5hmC Reorganization and Replication-Dependent and Independent Loss of DNA Methylation in the Germline.

    PubMed

    Calvopina, Joseph Hargan; Cook, Helene; Vincent, John J; Nee, Kevin; Clark, Amander T

    2015-07-01

    Removal of cytosine methylation from the genome is critical for reprogramming and transdifferentiation and plays a central role in our understanding of the fundamental principles of embryo lineage development. One of the major models for studying cytosine demethylation is the mammalian germ line during the primordial germ cell (PGC) stage of embryo development. It is now understood that oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is required to remove cytosine methylation in a locus-specific manner in PGCs; however, the mechanisms downstream of 5hmC are controversial and hypothesized to involve either active demethylation or replication-coupled loss. In the current study, we used the aorta-gonad-mesonephros (AGM) organ culture model to show that this model recapitulates germ line reprogramming, including 5hmC reorganization and loss of cytosine methylation from Snrpn and H19 imprinting control centers (ICCs). To directly address the hypothesis that cell proliferation is required for cytosine demethylation, we blocked PI3-kinase-dependent PGC proliferation and show that this leads to a G1 and G2/M cell cycle arrest in PGCs, together with retained levels of cytosine methylation at the Snrpn ICC, but not at the H19 ICC. Taken together, the AGM organ culture model is an important tool to evaluate mechanisms of locus-specific demethylation and the role of PI3-kinase-dependent PGC proliferation in the locus-specific removal of cytosine methylation from the genome.

  9. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ornithine carbamyl transferase test system. 862.1535 Section 862.1535 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Test Systems § 862.1535 Ornithine carbamyl transferase test system. (a) Identification. An ornithine...

  10. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ornithine carbamyl transferase test system. 862.1535 Section 862.1535 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Test Systems § 862.1535 Ornithine carbamyl transferase test system. (a) Identification. An ornithine...

  11. Polymorphisms of glutathione S-transferase Mu 1, glutathione S-transferase theta 1 and glutathione S-transferase Pi 1 genes in Hodgkin's lymphoma susceptibility and progression.

    PubMed

    Lourenço, Gustavo J; Néri, Iramaia A; Sforni, Vitor C S; Kameo, Rodolfo; Lorand-Metze, Irene; Lima, Carmen S P

    2009-06-01

    We tested in this study whether the polymorphisms of the glutathione S-transferase Mu1 (GSTM1), glutathione S-transferase Theta 1 (GSTT1) and glutathione S-transferase Pi 1 (GSTP1), involved in metabolism of chemical agents, cell proliferation and cell survival, alter the risk for Hodgkin lymphoma (HL). Genomic DNA from 110 consecutive patients with HL and 226 controls was analysed by polymerase chain reaction and restriction digestion for the polymorphism analyses. Similar frequencies of the GSTM1 and GSTT1 genotypes were seen in patients and controls. In contrast, the frequency of the GSTP1 wild genotype (59.1%versus 36.3%, P = 0.004) was higher in patients than in controls. Individuals with the wild genotype had a 2.68 (95%CI: 1.38-5.21)-fold increased risk for the disease than others. An excess of the GSTP1 wild genotype was also observed in patients with tumors of stages III + IV when compared with those with tumors of stages I + II (39.1%versus 20.0%, P = 0.03). These results suggest that the wild allele of the GSTP1 gene is linked to an increased risk and high aggressiveness of the HL in our cases but they should be confirmed by further studies with larger cohorts of patients and controls.

  12. N.m.r. studies of the conformation of analogues of methyl beta-lactoside in methyl sulfoxide-d6.

    PubMed

    Rivera-Sagredo, A; Jiménez-Barbero, J; Martín-Lomas, M

    1991-12-16

    The 1H- and 13C-n.m.r. spectra of solutions of methyl beta-lactoside (1), all of its monodeoxy derivatives (2, 3, 6-10), the 3-O-methyl derivative (4), and methyl 4-O-beta-D-galactopyranosyl-D-xylopyranoside (5) in methyl sulfoxide-d6 have been analysed. The n.O.e.'s and specific desheildings indicate similar distributions of low-energy conformers, comparable to those in aqueous solution. The major conformer has torsion angles phi H and psi H of 49 degrees and 5 degrees, respectively, with contributions of conformers with phi/psi 24 degrees/-59 degrees, 22 degrees/32 degrees, and 6 degrees/44 degrees.

  13. DNA methylation aberrancies as a guide for surveillance and treatment of human cancers

    PubMed Central

    Liang, Gangning; Weisenberger, Daniel J.

    2017-01-01

    ABSTRACT DNA methylation aberrancies are hallmarks of human cancers and are characterized by global DNA hypomethylation of repetitive elements and non-CpG rich regions concomitant with locus-specific DNA hypermethylation. DNA methylation changes may result in altered gene expression profiles, most notably the silencing of tumor suppressors, microRNAs, endogenous retorviruses and tumor antigens due to promoter DNA hypermethylation, as well as oncogene upregulation due to gene-body DNA hypermethylation. Here, we review DNA methylation aberrancies in human cancers, their use in cancer surveillance and the interplay between DNA methylation and histone modifications in gene regulation. We also summarize DNA methylation inhibitors and their therapeutic effects in cancer treatment. In this context, we describe the integration of DNA methylation inhibitors with conventional chemotherapies, DNA repair inhibitors and immune-based therapies, to bring the epigenome closer to its normal state and increase sensitivity to other therapeutic agents to improve patient outcome and survival. PMID:28358281

  14. CpG-island methylation study of liver fluke-related cholangiocarcinoma

    PubMed Central

    Sriraksa, R; Zeller, C; El-Bahrawy, M A; Dai, W; Daduang, J; Jearanaikoon, P; Chau-in, S; Brown, R; Limpaiboon, T

    2011-01-01

    Background: Genetic changes have been widely reported in association with cholangiocarcinoma (CCA), while epigenetic changes are poorly characterised. We aimed to further evaluate CpG-island hypermethylation in CCA at candidate loci, which may have potential as diagnostic or prognostic biomarkers. Methods: We analysed methylation of 26 CpG-islands in 102 liver fluke related-CCA and 29 adjacent normal samples using methylation-specific PCR (MSP). Methylation of interest loci was confirmed using pyrosequencing and/or combined bisulfite restriction analysis, and protein expression by immunohistochemistry. Results: A number of CpG-islands (OPCML, SFRP1, HIC1, PTEN and DcR1) showed frequency of hypermethylation in >28% of CCA, but not adjacent normal tissues. The results showed that 91% of CCA were methylated in at least one CpG-island. The OPCML was the most frequently methylated locus (72.5%) and was more frequently methylated in less differentiated CCA. Patients with methylated DcR1 had significantly longer overall survival (Median; 41.7 vs 21.7 weeks, P=0.027). Low-protein expression was found in >70% of CCA with methylation of OPCML or DcR1. Conclusion: Aberrant hypermethylation of certain loci is a common event in liver fluke-related CCA and may potentially contribute to cholangiocarcinogenesis. The OPCML and DcR1 might serve as methylation biomarkers in CCA that can be readily examined by MSP. PMID:21448164

  15. IGF2 DNA methylation is a modulator of newborn’s fetal growth and development

    PubMed Central

    St-Pierre, Julie; Hivert, Marie-France; Perron, Patrice; Poirier, Paul; Guay, Simon-Pierre; Brisson, Diane; Bouchard, Luigi

    2012-01-01

    The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn’s fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn’s weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn’s fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity. PMID:22907587

  16. Locus-specific mutational events in a multilocus variable-number tandem repeat analysis of Escherichia coli O157:H7.

    PubMed

    Noller, Anna C; McEllistrem, M Catherine; Shutt, Kathleen A; Harrison, Lee H

    2006-02-01

    Multilocus variable-number tandem repeat analysis (MLVA) is a validated molecular subtyping method for detecting and evaluating Escherichia coli O157:H7 outbreaks. In a previous study, five outbreaks with a total of 21 isolates were examined by MLVA. Nearly 20% of the epidemiologically linked strains were single-locus variants (SLV) of their respective predominant outbreak clone. This result prompted an investigation into the mutation rates of the seven MLVA loci (TR1 to TR7). With an outbreak strain that was an SLV at the TR1 locus of the predominant clone, parallel and serial batch culture experiments were performed. In a parallel experiment, none (0/384) of the strains analyzed had mutations at the seven MLVA loci. In contrast, in the two 5-day serial experiments, 4.3% (41/960) of the strains analyzed had a significant variation in at least one of these loci (P < 0.001). The TR2 locus accounted for 85.3% (35/41) of the mutations, with an average mutation rate of 3.5 x 10(-3); the mutations rates for TR1 and TR5 were 10-fold lower. Single additions accounted for 77.1% (27/35) of the mutation events in TR2 and all (6/6) of the additions in TR1 and TR5. The remaining four loci had no slippage events detected. The mutation rates were locus specific and may impact the interpretation of MLVA data for epidemiologic investigations.

  17. Magnetically separable core–shell ZnFe{sub 2}O{sub 4}@ZnO nanoparticles for visible light photodegradation of methyl orange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Suresh D., E-mail: suresh.dk@manipal.edu; Kumbar, Sagar; Menon, Samvit G.

    Highlights: • Phase pure, magnetic ZnFe{sub 2}O{sub 4}@ZnO nanoparticles synthesized with excellent yield. • ZnFe{sub 2}O{sub 4}@ZnO displayed higher UV photocatalytic efficiency than ZnO nanoparticles. • First report on visible light photodegradation of methyl orange by ZnFe{sub 2}O{sub 4}@ZnO. • Excellent reusability of ZnFe{sub 2}O{sub 4}@ZnO nanoparticles observed for azo dye removal. - Abstract: Visible light photodegradation of aqueous methyl orange using magnetically separable core–shell ZnFe{sub 2}O{sub 4}@ZnO nanoparticles is reported. A combination of low temperature (190 °C) microwave synthesis and hydrothermal method were used to prepare phase pure material with excellent yield (95%). The magnetic separability, surface area ofmore » 41 m{sup 2}/g and visible light absorption make ZnFe{sub 2}O{sub 4}@ZnO nanoparticles a good solar photocatalyst. ZnFe{sub 2}O{sub 4}@ZnO displayed greater UV photocatalytic efficiency than ZnO owing to the generation of large number of electron-hole pairs. Visible light photodegradation of MO using ZnFe{sub 2}O{sub 4}@ZnO nanoparticles is reported for the first time. Higher first order rate constants under both UV and visible light for core-shell nanoparticles suggested their superiority over its individual oxides. The ZnFe{sub 2}O{sub 4}@ZnO showed excellent reusability with high photocatalytic efficiencies suggesting its suitability for solar photocatalytic applications.« less

  18. Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent O-GlcNAc transferase:UDP-GlcNAc complexes

    PubMed Central

    Kapuria, Vaibhav; Röhrig, Ute F.; Bhuiyan, Tanja; Borodkin, Vladimir S.; van Aalten, Daan M.F.; Zoete, Vincent; Herr, Winship

    2016-01-01

    In complex with the cosubstrate UDP-N-acetylglucosamine (UDP-GlcNAc), O-linked-GlcNAc transferase (OGT) catalyzes Ser/Thr O-GlcNAcylation of many cellular proteins and proteolysis of the transcriptional coregulator HCF-1. Such a dual glycosyltransferase–protease activity, which occurs in the same active site, is unprecedented and integrates both reversible and irreversible forms of protein post-translational modification within one enzyme. Although occurring within the same active site, we show here that glycosylation and proteolysis occur through separable mechanisms. OGT consists of tetratricopeptide repeat (TPR) and catalytic domains, which, together with UDP-GlcNAc, are required for both glycosylation and proteolysis. Nevertheless, a specific TPR domain contact with the HCF-1 substrate is critical for proteolysis but not Ser/Thr glycosylation. In contrast, key catalytic domain residues and even a UDP-GlcNAc oxygen important for Ser/Thr glycosylation are irrelevant for proteolysis. Thus, from a dual glycosyltransferase–protease, essentially single-activity enzymes can be engineered both in vitro and in vivo. Curiously, whereas OGT-mediated HCF-1 proteolysis is limited to vertebrate species, invertebrate OGTs can cleave human HCF-1. We present a model for the evolution of HCF-1 proteolysis by OGT. PMID:27056667

  19. Predicting heterocyclic ring coupling constants through a conformational search of tetra-O-methyl-(+)-catechin

    Treesearch

    Fred L. Tobiason; Richard W. Hemingway

    1994-01-01

    A GMMX conformational search routine gives a family of conformations that reflects the Boltzmann-averaged heterocyclic ring conformation as evidenced by accurate prediction of all three coupling constants observed for tetra-O-methyl-(+)-catechin.

  20. Predicting heterocyclic ring coupling constants through a conformational search of tetra-o-methyl-(+)-catechin

    Treesearch

    Fred L. Tobiason; Richard w. Hemingway

    1994-01-01

    A GMMXe conformational search routine gives a family a conformations that reflects the boltzmann-averaged heterocyclic ring conformation as evidence by accurate prediction of all three coupling constants observed for tetra-O-methyl-(+)-catechin.

  1. The stability of locus equation slopes across stop consonant voicing/aspiration

    NASA Astrophysics Data System (ADS)

    Sussman, Harvey M.; Modarresi, Golnaz

    2004-05-01

    The consistency of locus equation slopes as phonetic descriptors of stop place in CV sequences across voiced and voiceless aspirated stops was explored in the speech of five male speakers of American English and two male speakers of Persian. Using traditional locus equation measurement sites for F2 onsets, voiceless labial and coronal stops had significantly lower locus equation slopes relative to their voiced counterparts, whereas velars failed to show voicing differences. When locus equations were derived using F2 onsets for voiced stops that were measured closer to the stop release burst, comparable to the protocol for measuring voiceless aspirated stops, no significant effects of voicing/aspiration on locus equation slopes were observed. This methodological factor, rather than an underlying phonetic-based explanation, provides a reasonable account for the observed flatter locus equation slopes of voiceless labial and coronal stops relative to voiced cognates reported in previous studies [Molis et al., J. Acoust. Soc. Am. 95, 2925 (1994); O. Engstrand and B. Lindblom, PHONUM 4, 101-104]. [Work supported by NIH.

  2. Checkpoint kinase 1-induced phosphorylation of O-linked β-N-acetylglucosamine transferase regulates the intermediate filament network during cytokinesis.

    PubMed

    Li, Zhe; Li, Xueyan; Nai, Shanshan; Geng, Qizhi; Liao, Ji; Xu, Xingzhi; Li, Jing

    2017-12-01

    Checkpoint kinase 1 (Chk1) is a kinase instrumental for orchestrating DNA replication, DNA damage checkpoints, the spindle assembly checkpoint, and cytokinesis. Despite Chk1's pivotal role in multiple cellular processes, many of its substrates remain elusive. Here, we identified O- linked β- N -acetylglucosamine ( O -GlcNAc)-transferase (OGT) as one of Chk1's substrates. We found that Chk1 interacts with and phosphorylates OGT at Ser-20, which not only stabilizes OGT, but also is required for cytokinesis. Phospho-specific antibodies of OGT-pSer-20 exhibited specific signals at the midbody of the cell, consistent with midbody localization of OGT as reported previously. Moreover, phospho-deficient OGT (S20A) cells attenuated cellular O -GlcNAcylation levels and also reduced phosphorylation of Ser-71 in the cytoskeletal protein vimentin, a modification critical for severing vimentin filament during cytokinesis. Consequently, elongated vimentin bridges were observed in cells depleted of OGT via an si OGT- based approach. Lastly, expression of plasmids resistant to si OGT efficiently rescued the vimentin bridge phenotype, but the OGT-S20A rescue plasmids did not. Our results suggest a Chk1-OGT-vimentin pathway that regulates the intermediate filament network during cytokinesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. 40 CFR 180.419 - Chlorpyrifos-methyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Chlorpyrifos-methyl; tolerances for... § 180.419 Chlorpyrifos-methyl; tolerances for residues. (a) General. (1) Tolerances are established for the combined residues of the insecticide chlorpyrifos-methyl [O,-O,-dimethyl O-(3,5,6-trichloro-2...

  4. 40 CFR 180.419 - Chlorpyrifos-methyl; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Chlorpyrifos-methyl; tolerances for... § 180.419 Chlorpyrifos-methyl; tolerances for residues. (a) General. (1) Tolerances are established for the combined residues of the insecticide chlorpyrifos-methyl [O,-O,-dimethyl O-(3,5,6-trichloro-2...

  5. 40 CFR 180.419 - Chlorpyrifos-methyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Chlorpyrifos-methyl; tolerances for... § 180.419 Chlorpyrifos-methyl; tolerances for residues. (a) General. (1) Tolerances are established for the combined residues of the insecticide chlorpyrifos-methyl [O,-O,-dimethyl O-(3,5,6-trichloro-2...

  6. 40 CFR 180.419 - Chlorpyrifos-methyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Chlorpyrifos-methyl; tolerances for... § 180.419 Chlorpyrifos-methyl; tolerances for residues. (a) General. (1) Tolerances are established for the combined residues of the insecticide chlorpyrifos-methyl [O,-O,-dimethyl O-(3,5,6-trichloro-2...

  7. DNA methylation analysis of the gene CDKN2B in Gallus gallus (chicken).

    PubMed

    Gryzińska, Magdalena; Andraszek, Katarzyna; Jocek, Grzegorz

    2013-01-01

    Methylation is an epigenetic modification of DNA affecting gene expression without changing the structure of nucleotides. It plays a crucial role in the embryonic and post-embryonic development of living organisms. Methylation level is tissue and species-specific and changes with age. The study was aimed at identifying the methylation of the CDKN2B gene situated at locus bar in Polbar chickens on the 6th and 18th day of embryonic development using the MSP (methylation-specific PCR) method. Methylation was not detected in the promoter region of gene CDKN2B on the 6th and 18th day of embryonic development. As one of the five genes responsible for melanine activity in melanocytes and highly active, it can contribute to the production of this pigment. The present research broadens the current knowledge of the chicken epigenome and the mechanism of autosexing in birds.

  8. Methylation-Sensitive Expression of a DNA Demethylase Gene Serves As an Epigenetic Rheostat

    PubMed Central

    Williams, Ben P.; Pignatta, Daniela; Henikoff, Steven; Gehring, Mary

    2015-01-01

    Genomes must balance active suppression of transposable elements (TEs) with the need to maintain gene expression. In Arabidopsis, euchromatic TEs are targeted by RNA-directed DNA methylation (RdDM). Conversely, active DNA demethylation prevents accumulation of methylation at genes proximal to these TEs. It is unknown how a cellular balance between methylation and demethylation activities is achieved. Here we show that both RdDM and DNA demethylation are highly active at a TE proximal to the major DNA demethylase gene ROS1. Unexpectedly, and in contrast to most other genomic targets, expression of ROS1 is promoted by DNA methylation and antagonized by DNA demethylation. We demonstrate that inducing methylation in the ROS1 proximal region is sufficient to restore ROS1 expression in an RdDM mutant. Additionally, methylation-sensitive expression of ROS1 is conserved in other species, suggesting it is adaptive. We propose that the ROS1 locus functions as an epigenetic rheostat, tuning the level of demethylase activity in response to methylation alterations, thus ensuring epigenomic stability. PMID:25826366

  9. Metabolic Interfaces of Mercury Methylation Proteins in Desulfovibrio sp. ND132

    NASA Astrophysics Data System (ADS)

    Wall, J. D.; Bridou, R.; Smith, S. D.; Mok, K.; Widner, F.; Johs, A.; Parks, J.; Pierce, E. M.; Elias, D. A.; Gilmour, C. C.; Taga, M.

    2015-12-01

    Two genes necessary for microbial production of the neurotoxin methylmercury have been identified; hgcA encoding a corrinoid methyltransferase and hgcB, a ferredoxin-like protein. To date, all microbes possessing orthologs of these genes that have been tested are capable of methylating mercury; whereas, organisms lacking hgcA and hgcB are not. Also of interest is the observation that confirmed mercury-methylating microbes are all considered anaerobes although not members of a specific phylogenetic group. They are found scattered in the genomes of methanogens, Firmicutes, and Deltaproteobacteria. Methylation has not been demonstrated to provide protection of the microbes to mercury exposure. To determine the source of evolutionary pressure for acquisition and maintenance of these genes, we are seeking to understand whether there is a second function of the proteins. We are seeking evidence for the metabolic source(s) of the methyl group and for competing reactions. We have found that deletion of the metH gene encoding a tetrahydrofolate methyltransferase in Desulfovibrio sp. ND132 decreases the mercury methylation capacity by ca. 95%, consistent with an interpretation that this enzyme is involved in the pathway for the methyl group for HgcA. In addition, the corrinoid present in HgcA and the MetH of ND132 is strictly dependent on nicotinate nucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase encoded by the cobT gene, linking methionine biosynthesis with mercury methylation at a second level. Additional methyl transferases have not been found to be necessary for this function. While earlier evidence was provided for an involvement of the CO dehydrogenase/acetylCoA synthase, this enzyme is not universally present in methylating strains unlike the pathway for methionine synthesis.

  10. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    PubMed Central

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem. PMID:9144260

  11. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine.

    PubMed

    Li, L; Popko, J L; Zhang, X H; Osakabe, K; Tsai, C J; Joshi, C P; Chiang, V L

    1997-05-13

    S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem.

  12. A novel methylation derivatization method for δ(18)O analysis of individual carbohydrates by gas chromatography/pyrolysis-isotope ratio mass spectrometry.

    PubMed

    Lehmann, Marco M; Fischer, Maria; Blees, Jan; Zech, Michael; Siegwolf, Rolf T W; Saurer, Matthias

    2016-01-15

    The oxygen isotope ratio (δ(18)O) of carbohydrates derived from animals, plants, sediments, and soils provides important information about biochemical and physiological processes, past environmental conditions, and geographical origins, which are otherwise not available. Nowadays, δ(18)O analyses are often performed on carbohydrate bulk material, while compound-specific δ(18)O analyses remain challenging and methods for a wide range of individual carbohydrates are rare. To improve the δ(18)O analysis of individual carbohydrates by gas chromatography/pyrolysis-isotope ratio mass spectrometry (GC/Pyr-IRMS) we developed a new methylation derivatization method. Carbohydrates were fully methylated within 24 h in an easy-to-handle one-pot reaction in acetonitrile, using silver oxide as proton acceptor, methyl iodide as methyl group carrier, and dimethyl sulfide as catalyst. The precision of the method ranged between 0.12 and 1.09‰ for the δ(18)O values of various individual carbohydrates of different classes (mono-, di-, and trisaccharides, alditols), with an accuracy of a similar order of magnitude, despite high variation in peak areas. Based on the δ(18)O values of the main isomers, important monosaccharides such as glucose and fructose could also be precisely analyzed for the first time. We tested the method on standard mixtures, honey samples, and leaf carbohydrates extracted from Pinus sylvestris, showing that the method is also applicable to different carbohydrate mixtures. The new methylation method shows unrivalled accuracy and precision for δ(18)O analysis of various individual carbohydrates; it is fast and easy-to-handle, and may therefore find wide-spread application. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Disruption of the gene Euchromatin Histone Methyl Transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome

    PubMed Central

    Kleefstra, T; Smidt, M; Banning, M; Oudakker, A; Van Esch, H; de Brouwer, A P M; Nillesen, W; Sistermans, E; Hamel, B; de Bruijn, D; Fryns, J; Yntema, H; Brunner, H; de Vries, B B A; van Bokhoven, H

    2005-01-01

    Background: A new syndrome has been recognised following thorough analysis of patients with a terminal submicroscopic subtelomeric deletion of chromosome 9q. These have in common severe mental retardation, hypotonia, brachycephaly, flat face with hypertelorism, synophrys, anteverted nares, thickened lower lip, carp mouth with macroglossia, and conotruncal heart defects. The minimum critical region responsible for this 9q subtelomeric deletion syndrome (9q–) is approximately 1.2 Mb and encompasses at least 14 genes. Objective: To characterise the breakpoints of a de novo balanced translocation t(X;9)(p11.23;q34.3) in a mentally retarded female patient with clinical features similar to the 9q– syndrome. Results: Sequence analysis of the break points showed that the translocation was fully balanced and only one gene on chromosome 9 was disrupted—Euchromatin Histone Methyl Transferase1 (Eu-HMTase1)—encoding a histone H3 lysine 9 methyltransferase (H3-K9 HMTase). This indicates that haploinsufficiency of Eu-HMTase1 is responsible for the 9q submicroscopic subtelomeric deletion syndrome. This observation was further supported by the spatio-temporal expression of the gene. Using tissue in situ hybridisation studies in mouse embryos and adult brain, Eu-HMTase1 was shown to be expressed in the developing nervous system and in specific peripheral tissues. While expression is selectively downregulated in adult brain, substantial expression is retained in the olfactory bulb, anterior/ventral lateral ventricular wall, and hippocampus and weakly in the piriform cortex. Conclusions: The expression pattern of this gene suggests a role in the CNS development and function, which is in line with the severe mental retardation and behaviour problems in patients who lack one copy of the gene. PMID:15805155

  14. Methylation-sensitive high-resolution melting-curve analysis of the SNRPN gene as a diagnostic screen for Prader-Willi and Angelman syndromes.

    PubMed

    White, Helen E; Hall, Victoria J; Cross, Nicholas C P

    2007-11-01

    Angelman syndrome (AS) and Prader-Willi syndrome (PWS) are 2 distinct neurodevelopmental disorders caused primarily by deficiency of specific parental contributions at an imprinted domain within the chromosomal region 15q11.2-13. Lack of paternal contribution results in PWS either by paternal deletion (approximately 70%) or maternal uniparental disomy (UPD) (approximately 25%). Most cases of AS result from the lack of a maternal contribution from this same region, by maternal deletion (70%) or paternal UPD (approximately 5%). Analysis of allelic methylation differences at the small nuclear ribonucleoprotein polypeptide N (SNRPN) locus differentiates the maternally and paternally inherited chromosome 15 and can be used as a diagnostic test for AS and PWS. Methylation-sensitive high-resolution melting-curve analysis (MS-HRM) using the DNA binding dye EvaGreen was used to analyze methylation differences at the SNRPN locus in anonymized DNA samples from individuals with PWS (n = 39) or AS (n = 31) and from healthy control individuals (n = 95). Results from the MS-HRM assay were compared to those obtained by use of a methylation-specific PCR (MSP) protocol that is used commonly in diagnostic practice. With the MS-HRM assay 97.6% of samples were unambiguously assigned to the 3 diagnostic categories (AS, PWS, normal) by use of automated calling with an 80% confidence percentage threshold, and the failure rate was 0.6%. One PWS sample showed a discordant result for the MS-HRM assay compared to MSP data. MS-HRM is a simple, rapid, and robust method for screening methylation differences at the SNRPN locus and could be used as a diagnostic screen for PWS and AS.

  15. The O-methyltransferase PMT2 mediates methylation of pinosylvin in Scots pine.

    PubMed

    Paasela, Tanja; Lim, Kean-Jin; Pietiäinen, Milla; Teeri, Teemu H

    2017-06-01

    Heartwood extractives are important determinants of the natural durability of pine heartwood. The most important phenolic compounds affecting durability are the stilbenes pinosylvin and its monomethylether, which in addition have important functions as phytoalexins in active defense. A substantial portion of the synthesized pinosylvin is 3-methoxylated but the O-methyltransferase responsible for this modification has not been correctly identified. We studied the expression of the stilbene pathway during heartwood development as well as in response to wounding of xylem and UV-C treatment of needles. We isolated and enzymatically characterized a novel O-methyltransferase, PMT2. The methylated product was verified as pinosylvin monomethylether using ultra performance liquid chromatography-tandem mass spectrometry and high performance liquid chromatography analyses. The PMT2 enzyme was highly specific for stilbenes as substrate, in contrast to caffeoyl-CoA O-methyltransferase (CCoAOMT) and PMT1 that were multifunctional. Expression profile and multifunctional activity of CCoAOMT suggest that it might have additional roles outside lignin biosynthesis. PMT1 is not involved in the stilbene pathway and its biological function remains an open question. We isolated a new specific O-methyltransferase responsible for 3-methoxylation of pinosylvin. Expression of PMT2 closely follows stilbene biosynthesis during developmental and stress induction. We propose that PMT2 is responsible for pinosylvin methylation in Scots pine (Pinus sylvestris), instead of the previously characterized methyltransferase, PMT1. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Quantitative trait locus mapping and functional genomics of an organophosphate resistance trait in the western corn rootworm, Diabrotica virgifera virgifera.

    PubMed

    Coates, B S; Alves, A P; Wang, H; Zhou, X; Nowatzki, T; Chen, H; Rangasamy, M; Robertson, H M; Whitfield, C W; Walden, K K; Kachman, S D; French, B W; Meinke, L J; Hawthorne, D; Abel, C A; Sappington, T W; Siegfried, B D; Miller, N J

    2016-02-01

    The western corn rootworm, Diabrotica virgifera virgifera, is an insect pest of corn and population suppression with chemical insecticides is an important management tool. Traits conferring organophosphate insecticide resistance have increased in frequency amongst D. v. virgifera populations, resulting in the reduced efficacy in many corn-growing regions of the USA. We used comparative functional genomic and quantitative trait locus (QTL) mapping approaches to investigate the genetic basis of D. v. virgifera resistance to the organophosphate methyl-parathion. RNA from adult methyl-parathion resistant and susceptible adults was hybridized to 8331 microarray probes. The results predicted that 11 transcripts were significantly up-regulated in resistant phenotypes, with the most significant (fold increases ≥ 2.43) being an α-esterase-like transcript. Differential expression was validated only for the α-esterase (ST020027A20C03), with 11- to 13-fold greater expression in methyl-parathion resistant adults (P < 0.05). Progeny with a segregating methyl-parathion resistance trait were obtained from a reciprocal backcross design. QTL analyses of high-throughput single nucleotide polymorphism genotype data predicted involvement of a single genome interval. These data suggest that a specific carboyxesterase may function in field-evolved corn rootworm resistance to organophosphates, even though direct linkage between the QTL and this locus could not be established. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  17. Regulatory Mutants at the his1 Locus of Yeast

    PubMed Central

    Lax, Carol; Fogel, Seymour; Cramer, Carole

    1979-01-01

    The his1 gene in Saccharomyces cerevisiae codes for phosphoribosyl transferase, an allosteric enzyme that catalyzes the initial step in histidine biosynthesis. Mutants that specifically alter the feedback regulatory function were isolated by selecting his1 prototrophic revertants that overproduce and excrete histidine. The prototrophs were obtained from diploids homoallelic for his1–7 and heterozygous for the flanking markers thr3 and arg6. Among six independently derived mutant isolates, three distinct levels of histidine excretion were detected. The mutants were shown to be second-site alterations mapping at the his1 locus by recovery of the original auoxtrophic parental alleles. The double mutants, HIS1–7e, are dominant with respect to catalytic function but recessive in regulatory function. When removed from this his1–7 background, the mutant regulatory site (HIS1–e) still confers prototrophy but not histidine excretion. To yield the excretion phenotype, the primary and altered secondary sites are required in cis array. Differences in histidine excretion levels correlate with resistance to the histidine analogue, triazoalanine. PMID:385447

  18. Comparative Analyses of DNA Methylation and Sequence Evolution Using Nasonia Genomes

    PubMed Central

    Park, Jungsun; Peng, Zuogang; Zeng, Jia; Elango, Navin; Park, Taesung; Wheeler, Dave; Werren, John H.; Yi, Soojin V.

    2011-01-01

    The functional and evolutionary significance of DNA methylation in insect genomes remains to be resolved. Nasonia is well situated for comparative analyses of DNA methylation and genome evolution, since the genomes of a moderately distant outgroup species as well as closely related sibling species are available. Using direct sequencing of bisulfite-converted DNA, we uncovered a substantial level of DNA methylation in 17 of 18 Nasonia vitripennis genes and a strong correlation between methylation level and CpG depletion. Notably, in the sex-determining locus transformer, the exon that is alternatively spliced between the sexes is heavily methylated in both males and females, whereas other exons are only sparsely methylated. Orthologous genes of the honeybee and Nasonia show highly similar relative levels of CpG depletion, despite ∼190 My divergence. Densely and sparsely methylated genes in these species also exhibit similar functional enrichments. We found that the degree of CpG depletion is negatively correlated with substitution rates between closely related Nasonia species for synonymous, nonsynonymous, and intron sites. This suggests that mutation rates increase with decreasing levels of germ line methylation. Thus, DNA methylation is prevalent in the Nasonia genome, may participate in regulatory processes such as sex determination and alternative splicing, and is correlated with several aspects of genome and sequence evolution. PMID:21693438

  19. Functional analysis and localisation of a delta-class glutathione S-transferase from Sarcoptes scabiei.

    PubMed

    Pettersson, Eva U; Ljunggren, Erland L; Morrison, David A; Mattsson, Jens G

    2005-01-01

    The mite Sarcoptes scabiei causes sarcoptic mange, or scabies, a disease that affects both animals and humans worldwide. Our interest in S. scabiei led us to further characterise a glutathione S-transferase. This multifunctional enzyme is a target for vaccine and drug development in several parasitic diseases. The S. scabiei glutathione S-transferase open reading frame reported here is 684 nucleotides long and yields a protein with a predicted molecular mass of 26 kDa. Through phylogenetic analysis the enzyme was classified as a delta-class glutathione S-transferase, and our paper is the first to report that delta-class glutathione S-transferases occur in organisms other than insects. The recombinant S. scabiei glutathione S-transferase was expressed in Escherichia coli via three different constructs and purified for biochemical analysis. The S. scabiei glutathione S-transferase was active towards the substrate 1-chloro-2,4-dinitrobenzene, though the positioning of fusion partners influenced the kinetic activity of the enzyme. Polyclonal antibodies raised against S. scabiei glutathione S-transferase specifically localised the enzyme to the integument of the epidermis and cavities surrounding internal organs in adult parasites. However, some minor staining of parasite intestines was observed. No staining was seen in host tissues, nor could we detect any antibody response against S. scabiei glutathione S-transferase in sera from naturally S. scabiei infected dogs or pigs. Additionally, the polyclonal sera raised against recombinant S. scabiei glutathione S-transferase readily detected a protein from mites, corresponding to the predicted size of native glutathione S-transferase.

  20. Structure-activity relationships of 4-hydroxyalkenals in the conjugation catalysed by mammalian glutathione transferases.

    PubMed Central

    Danielson, U H; Esterbauer, H; Mannervik, B

    1987-01-01

    The substrate specificities of 15 cytosolic glutathione transferases from rat, mouse and man have been explored by use of a homologous series of 4-hydroxyalkenals, extending from 4-hydroxypentenal to 4-hydroxypentadecenal. Rat glutathione transferase 8-8 is exceptionally active with the whole range of 4-hydroxyalkenals, from C5 to C15. Rat transferase 1-1, although more than 10-fold less efficient than transferase 8-8, is the second most active transferase with the longest chain length substrates. Other enzyme forms showing high activities with these substrates are rat transferase 4-4 and human transferase mu. The specificity constants, kcat./Km, for the various enzymes have been determined with the 4-hydroxyalkenals. From these constants the incremental Gibbs free energy of binding to the enzyme has been calculated for the homologous substrates. The enzymes responded differently to changes in the length of the hydrocarbon side chain and could be divided into three groups. All glutathione transferases displayed increased binding energy in response to increased hydrophobicity of the substrate. For some of the enzymes, steric limitations of the active site appear to counteract the increase in binding strength afforded by increased chain length of the substrate. Comparison of the activities with 4-hydroxyalkenals and other activated alkenes provides information about the active-site properties of certain glutathione transferases. The results show that the ensemble of glutathione transferases in a given species may serve an important physiological role in the conjugation of the whole range of 4-hydroxyalkenals. In view of its high catalytic efficiency with all the homologues, rat glutathione transferase 8-8 appears to have evolved specifically to serve in the detoxication of these reactive compounds of oxidative metabolism. PMID:3426557

  1. Delayed O-methylation of l-DOPA in MB-COMT-deficient mice after oral administration of l-DOPA and carbidopa.

    PubMed

    Tammimäki, Anne; Aonurm-Helm, Anu; Männistö, Pekka T

    2018-04-01

    1. Catechol-O-methyltransferase (COMT) is involved in the O-methylation of l-DOPA, dopamine, and other catechols. The enzyme is expressed in two isoforms: soluble (S-COMT), which resides in the cytoplasm, and membrane-bound (MB-COMT), which is anchored to intracellular membranes. 2. To obtain specific information on the functions of COMT isoforms, we studied how a complete MB-COMT deficiency affects the total COMT activity in the body, peripheral l-DOPA levels, and metabolism after l-DOPA (10 mg kg -1 ) plus carbidopa (30 mg kg -1 ) administration by gastric tube in wild-type (WT) and MB-COMT-deficient mice. l-DOPA and 3-O-methyl-l-DOPA (3-OMD) levels were assayed in plasma, duodenum, and liver. 3. We showed that the selective lack of MB-COMT did not alter the total COMT activity, COMT enzyme kinetics, l-DOPA levels, or the total O-methylation of l-DOPA but delayed production of 3-OMD in plasma and peripheral tissues.

  2. Two O-linked N-acetylglucosamine transferase genes of Arabidopsis thaliana L. Heynh. have overlapping functions necessary for gamete and seed development.

    PubMed Central

    Hartweck, Lynn M; Scott, Cheryl L; Olszewski, Neil E

    2002-01-01

    The Arabidopsis SECRET AGENT (SEC) and SPINDLY (SPY) proteins are similar to animal O-linked N-acetylglucosamine transferases (OGTs). OGTs catalyze the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to Ser/Thr residues of proteins. In animals, O-GlcNAcylation has been shown to affect protein activity, stability, and/or localization. SEC protein expressed in Escherichia coli had autocatalytic OGT activity. To determine the function of SEC in plants, two tDNA insertional mutants were identified and analyzed. Although sec mutant plants did not exhibit obvious phenotypes, sec and spy mutations had a synthetic lethal interaction. This lethality was incompletely penetrant in gametes and completely penetrant postfertilization. The rate of both female and male sec spy gamete transmission was higher in plants heterozygous for both mutations than in plants heterozygous for sec and homozygous for spy. Double-mutant embryos aborted at various stages of development and no double-mutant seedlings were obtained. These results indicate that OGT activity is required during gametogenesis and embryogenesis with lethality occurring when parentally derived SEC, SPY, and/or O-GlcNAcylated proteins become limiting. PMID:12136030

  3. Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci.

    PubMed

    Azzi, Salah; Rossignol, Sylvie; Steunou, Virginie; Sas, Theo; Thibaud, Nathalie; Danton, Fabienne; Le Jule, Maryline; Heinrichs, Claudine; Cabrol, Sylvie; Gicquel, Christine; Le Bouc, Yves; Netchine, Irene

    2009-12-15

    Genomic imprinting plays an important role in mammalian development. Loss of imprinting (LOI) through loss (LOM) or gain (GOM) of methylation is involved in many human disorders and cancers. The imprinted 11p15 region is crucial for the control of foetal growth and LOI at this locus is implicated in two clinically opposite disorders: Beckwith Wiedemann syndrome (BWS) with foetal overgrowth associated with an enhanced tumour risk and Russell-Silver syndrome (RSS) with intrauterine and postnatal growth restriction. So far, only a few studies have assessed multilocus LOM in human imprinting diseases. To investigate multilocus LOI syndrome, we studied the methylation status of five maternally and two paternally methylated loci in a large series (n = 167) of patients with 11p15-related foetal growth disorders. We found that 9.5% of RSS and 24% of BWS patients showed multilocus LOM at regions other than ICR1 and ICR2 11p15, respectively. Moreover, over two third of multilocus LOM RSS patients also had LOM at a second paternally methylated locus, DLK1/GTL2 IG-DMR. No additional clinical features due to LOM of other loci were found suggesting an (epi)dominant effect of the 11p15 LOM on the clinical phenotype for this series of patients. Surprisingly, four patients displayed LOM at both ICR1 and ICR2 11p15. Three of them had a RSS and one a BWS phenotype. Our results show for the first time that multilocus LOM can also concern RSS patients. Moreover, LOM can involve both paternally and maternally methylated loci in the same patient.

  4. Self-reported smoking, serum cotinine, and blood DNA methylation.

    PubMed

    Zhang, Yan; Florath, Ines; Saum, Kai-Uwe; Brenner, Hermann

    2016-04-01

    Epigenome-wide profiling of DNA methylation pattern with respect to tobacco smoking has given rise to a new measure of smoking exposure. We investigated the relationships of methylation markers with both cotinine, an established marker of internal smoking exposure, and self-reported smoking. Blood DNA methylation levels across the genome and serum cotinine were measured in 1000 older adults aged 50-75 years. Epigenome-wide scans were performed to identify methylation markers associated with cotinine. The inter-dose-response relationships between the number of cigarettes smoked per day, cotinine concentration, and DNA methylation were modeled by restricted cubic spline regression. Of 61 CpGs that passed the genome-wide significance threshold (p<1.13×10(-7)), 40 CpGs in 25 chromosomal regions were successfully replicated, showing 0.2-3% demethylation per 10ng/ml increases in cotinine. The strongest associations were observed for several loci at AHRR, F2RL3, 2q37.1, 6p21.33, and GFI1 that were previously identified to be related to self-reported smoking. One locus at RAB34 was newly discovered. Both cotinine and methylation markers exhibited non-linear relationships with the number of cigarettes smoked per day, where the highest rates of increase in cotinine and decreases in methylation were observed at low smoking intensity (1-15 cigarettes/day) and plateaued at high smoking intensity (>15-20 cigarettes/day). A clear linear relationship was observed between cotinine concentration and methylation level. Both cotinine and methylation markers showed similar accuracy in distinguishing current from never smoker, but only methylation markers distinguished former from never smoker with high accuracy. Our study corroborates and expands the list of smoking-associated DNA methylation markers. Methylation levels were linearly related to cotinine concentration and provided accurate measures for both current and past smoking exposure. Copyright © 2016 Elsevier Inc. All rights

  5. Methylation of avpr1a in the cortex of wild prairie voles: effects of CpG position and polymorphism

    PubMed Central

    Maguire, S. M.; Phelps, S. M.

    2017-01-01

    DNA methylation can cause stable changes in neuronal gene expression, but we know little about its role in individual differences in the wild. In this study, we focus on the vasopressin 1a receptor (avpr1a), a gene extensively implicated in vertebrate social behaviour, and explore natural variation in DNA methylation, genetic polymorphism and neuronal gene expression among 30 wild prairie voles (Microtus ochrogaster). Examination of CpG density across 8 kb of the locus revealed two distinct CpG islands overlapping promoter and first exon, characterized by few CpG polymorphisms. We used a targeted bisulfite sequencing approach to measure DNA methylation across approximately 3 kb of avpr1a in the retrosplenial cortex, a brain region implicated in male space use and sexual fidelity. We find dramatic variation in methylation across the avrp1a locus, with pronounced diversity near the exon–intron boundary and in a genetically variable putative enhancer within the intron. Among our wild voles, differences in cortical avpr1a expression correlate with DNA methylation in this putative enhancer, but not with the methylation status of the promoter. We also find an unusually high number of polymorphic CpG sites (polyCpGs) in this focal enhancer. One polyCpG within this enhancer (polyCpG 2170) may drive variation in expression either by disrupting transcription factor binding motifs or by changing local DNA methylation and chromatin silencing. Our results contradict some assumptions made within behavioural epigenetics, but are remarkably concordant with genome-wide studies of gene regulation. PMID:28280564

  6. Semisynthesis, cytotoxicity, antiviral activity, and drug interaction liability of 7-O-methylated analogues of flavonolignans from milk thistle.

    PubMed

    Althagafy, Hanan S; Graf, Tyler N; Sy-Cordero, Arlene A; Gufford, Brandon T; Paine, Mary F; Wagoner, Jessica; Polyak, Stephen J; Croatt, Mitchell P; Oberlies, Nicholas H

    2013-07-01

    Silymarin, an extract of the seeds of milk thistle (Silybum marianum), is used as an herbal remedy, particularly for hepatoprotection. The main chemical constituents in silymarin are seven flavonolignans. Recent studies explored the non-selective methylation of one flavonolignan, silybin B, and then tested those analogues for cytotoxicity and inhibition of both cytochrome P450 (CYP) 2C9 activity in human liver microsomes and hepatitis C virus infection in a human hepatoma (Huh7.5.1) cell line. In general, enhanced bioactivity was observed with the analogues. To further probe the biological consequences of methylation of the seven major flavonolignans, a series of 7-O-methylflavonolignans were generated. Optimization of the reaction conditions permitted selective methylation at the phenol in the 7-position in the presence of each metabolite's 4-5 other phenolic and/or alcoholic positions without the use of protecting groups. These 7-O-methylated analogues, in parallel with the corresponding parent compounds, were evaluated for cytotoxicity against Huh7.5.1 cells; in all cases the monomethylated analogues were more cytotoxic than the parent compounds. Moreover, parent compounds that were relatively non-toxic and inactive or weak inhibitors of hepatitis C virus infection had enhanced cytotoxicity and anti-HCV activity upon 7-O-methylation. Also, the compounds were tested for inhibition of major drug metabolizing enzymes (CYP2C9, CYP3A4/5, UDP-glucuronsyltransferases) in pooled human liver or intestinal microsomes. Methylation of flavonolignans differentially modified inhibitory potency, with compounds demonstrating both increased and decreased potency depending upon the compound tested and the enzyme system investigated. In total, these data indicated that monomethylation modulates the cytotoxic, antiviral, and drug interaction potential of silymarin flavonolignans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Schizophrenia and chromosomal deletions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, E.A.; Baldini, A.; Morris, M. A.

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized.more » These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.« less

  8. Adsorption of methyl orange on mesoporous γ-Fe2O3/SiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Deligeer, W.; Gao, Y. W.; Asuha, S.

    2011-02-01

    Mesoporous γ-Fe2O3/SiO2 nanocomposite containing 30 mol% of γ-Fe2O3 was prepared by a template-free sol-gel method, and its removal ability for methyl orange (MO) was investigated. The nanocomposite was characterized using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), Fourier transform infrared (FTIR) absorption measurements, nitrogen adsorption-desorption measurements, and magnetic measurements. The synthesized γ-Fe2O3/SiO2 nanocomposite has a mesoporous structure with an average pore size of 3.5 nm and a specific surface area of 245 m2/g, and it exhibits ferrimagnetic characteristics with the maximum saturation magnetization of 20.9 emu/g. The adsorption of MO on the nanocomposite reaches the maximum adsorbed percentage of ca. 80% within a few minutes, showing that most of MO can be removed in a short time. The MO adsorption data fit well with both Langmuir and Freundlich adsorption isotherms. The maximum adsorption capacity of MO is estimated to be 476 mg/g.

  9. Partial purification and characterization of a mannosyl transferase involved in O -linked mannosylation of glycoproteins in Candida albicans.

    PubMed

    Arroyo-Flores, Blanca L; Calvo-Méndez, Carlos; Flores-Carreón, Arturo; López-Romero, Everardo

    2004-04-01

    Incubation of a mixed membrane fraction of C. albicans with the nonionic detergents Nonidet P-40 or Lubrol solubilized a fraction that catalyzed the transfer of mannose either from endogenously generated or exogenously added dolichol-P-[14C]Man onto endogenous protein acceptors. The protein mannosyl transferase solubilized with Nonidet P-40 was partially purified by a single step of preparative nondenaturing electrophoresis and some of its properties were investigated. Although transfer activity occurred in the absence of exogenous mannose acceptors and thus depended on acceptor proteins isolated along with the enzyme, addition of the protein fraction obtained after chemical de-mannosylation of glycoproteins synthesized in vitro stimulated mannoprotein labeling in a concentration-dependent manner. Other de-mannosylated glycoproteins, such as yeast invertase or glycoproteins extracted from C. albicans, failed to increase the amount of labeled mannoproteins. Mannosyl transfer activity was not influenced by common metal ions such as Mg(2+), Mn(2+) and Ca(2+), but it was stimulated up to 3-fold by EDTA. Common phosphoglycerides such as phosphatidylglycerol and, to a lower extent, phosphatidylinositol and phosphatidylcholine enhanced transfer activity. Interestingly, coupled transfer activity between dolichol phosphate mannose synthase, i.e., the enzyme responsible for Dol-P-Man synthesis, and protein mannosyl transferase could be reconstituted in vitro from the partially purified transferases, indicating that this process can occur in the absence of cell membranes.

  10. Methylenetetrahydrofolate Reductase Modulates Methyl Metabolism and Lignin Monomer Methylation in Maize.

    PubMed

    Wu, Zhenying; Ren, Hao; Xiong, Wangdan; Roje, Sanja; Liu, Yuchen; Su, Kunlong; Fu, Chunxiang

    2018-05-30

    The brown midrib2 (bm2) mutant of maize, with a modified lignin composition, contains a mutation in the methylenetetrahydrofolate reductase (MTHFR) gene. We here show that a MITE transposon insertion caused downregulation of MTHFR with accompanying decrease in 5-methyl-THF and increase in 5, 10-methylene-THF and THF in the bm2 mutant. Furthermore, MTHFR mutation did not change the content of SAM, the methyl group donor involved in the biosynthesis of guaiacyl (G) and syringyl (S) lignins, but increased the level of S-adenosyl homocysteine (SAH), the de-methylation product of SAM. Moreover, competitive inhibition of the maize caffeoyl CoA O-methyltransferase (CCoAOMT) and caffeic acid O-methyltransferase (COMT) enzyme activities by SAH was found, suggesting that SAH/SAM ratio rather than SAM concentration regulates the transmethylation reactions of lignin intermediates. Phenolic profiling revealed that caffeoyl alcohol glucose derivatives accumulated in the mutant, indicating impaired 3-O-methylation of monolignols. A remarkable increase in the unusual catechyl (C) lignin determined in the mutant demonstrates that MTHFR downregulation mainly affects G lignin biosynthesis, consistent with the observation that CCoAOMT is more sensitive to SAH inhibition than COMT. This study which uncovered a novel regulatory mechanism in lignin biosynthesis and may offer an effective approach to utilize lignocellulosic feedstocks in future.

  11. Structure of a Novel O-Linked N-Acetyl-d-glucosamine (O-GlcNAc) Transferase, GtfA, Reveals Insights into the Glycosylation of Pneumococcal Serine-rich Repeat Adhesins*

    PubMed Central

    Shi, Wei-Wei; Jiang, Yong-Liang; Zhu, Fan; Yang, Yi-Hu; Shao, Qiu-Yan; Yang, Hong-Bo; Ren, Yan-Min; Wu, Hui; Chen, Yuxing; Zhou, Cong-Zhao

    2014-01-01

    Protein glycosylation catalyzed by the O-GlcNAc transferase (OGT) plays a critical role in various biological processes. In Streptococcus pneumoniae, the core enzyme GtfA and co-activator GtfB form an OGT complex to glycosylate the serine-rich repeat (SRR) of adhesin PsrP (pneumococcal serine-rich repeat protein), which is involved in the infection and pathogenesis. Here we report the 2.0 Å crystal structure of GtfA, revealing a β-meander add-on domain beyond the catalytic domain. It represents a novel add-on domain, which is distinct from the all-α-tetratricopeptide repeats in the only two structure-known OGTs. Structural analyses combined with binding assays indicate that this add-on domain contributes to forming an active GtfA-GtfB complex and recognizing the acceptor protein. In addition, the in vitro glycosylation system enables us to map the O-linkages to the serine residues within the first SRR of PsrP. These findings suggest that fusion with an add-on domain might be a universal mechanism for diverse OGTs that recognize varying acceptor proteins/peptides. PMID:24936067

  12. Glutathione S-transferase PI (GST-PI) mRNA expression and DNA methylation is involved in the pathogenesis and prognosis of NSCLC.

    PubMed

    Grimminger, Peter P; Maus, Martin K H; Schneider, Paul M; Metzger, Ralf; Hölscher, Arnulf H; Sugita, Hirofumi; Danenberg, Peter V; Alakus, Hakan; Brabender, Jan

    2012-10-01

    The aim of this study was to investigate the relevance of mRNA expression and DNA methylation of GST-PI in tumor and non-tumor lung tissue from NSCLC patients in terms of prognostic and pathogenetic value of this biomarker. Quantitative real-time PCR was used to measure mRNA expression and DNA methylation of GST-PI in paired tumor (T) and non-tumor (N) lung tissue of 91 NSCLC patients. Of all 91 patients 49% were stage I, 21% stage II and 30% stage IIIA. Forty-seven percent of the patients had squamous cell carcinoma, 36% adenocarcinoma and 17% large cell carcinoma. All patients were R0 resected. GST-PI mRNA expression could be measured in 100% in both (T and N) tissues; GST-PI DNA methylation was detected in 14% (N) and 14% (T). The median GST-PI mRNA expression in N was 7.83 (range: 0.01-19.43) and in T 13.15 (range: 0.01-116.8; p≤0.001). The median GST-PI methylation was not significantly different between T and N. No associations were seen between the mRNA expression or DNA methylation levels and clinical or histopathologic parameters such as gender, age, TNM stage, tumor histology and grading. The median survival of the investigated patients was 59.7 years (the median follow-up was 85.9 months). High GST-PI DNA methylation was significantly associated with a worse prognosis (p=0.041, log rank test). No correlation was found between the GST-PI DNA methylation levels and the correlating mRNA expression levels. GST-PI mRNA expression seems to be involved in the pathogenesis of NSCLC. High levels of GST-PI DNA methylation in tumor tissue of NSCLC patients have a potential as a biomarker identifying subpopulations with a more aggressive tumor biology. Quantitation of GST-PI DNA methylation may be a useful method to identify patients with a poor prognosis after curative resection and who will benefit from intensive adjuvant therapy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Exercise-induced changes in enzymatic O-methylation of catecholestrogens by erythrocytes of eumenorrheic women.

    PubMed

    De Crée, C; Van Kranenburg, G; Geurten, P; Fujimura, Y; Keizer, H A

    1997-12-01

    The present study was designed to assess the effects of acute exercise and short-term intensive training on catechol-O-methyltransferase (COMT) activity. COMT inactivates catecholamines and converts primary catecholestrogens (CE) into their O-methylated form yielding the 2- (2-MeOE) and 4-methoxyestrogens (4-MeOE). Blood samples were obtained from 15 previously untrained eumenorrheic women (mean +/- SE, VO2max: 43.8 mL x kg-1 x min-1 +/- 0.6) before and after a 5-d intensive training period, at rest and during incremental exercise. COMT activity was determined in the erythrocytes (RBC-COMT) after incubation of blood lysate with primary CE. The formation of both 2- and 4-MeOE was significantly higher (P < 0.05) during the luteal (LPh) than during the follicular phase (FPh). The amount of 2-MeOE formed (FPh: 4.2 +/- 0.2%; LPh: 4.9 +/- 0.2%) was significantly greater than the produced amount of 4-MeOE (FPh: 1.4 +/- 0.1%; LPh: 1.5 +/- 0.1%) (P < 0.05). Both before and after training, incremental exercise did not significantly alter RBC-COMT activity although we observed a trend for RBC-COMT activity increasing proportionally with the exercise intensity. After a brief period of exhaustive training, during rest the formation of 2-MeOE (FPh: +16.7%, LPh: +15.7%) and 4-MeOE (FPh: +28.6%; LPh: +40%) was significantly (P < 0.05) increased. The results of the present study are consistent with earlier findings reporting increased plasma concentrations of O-methylated CE following training. It is concluded that RBC-COMT activity is increased by brief intensive training, but not by acute exercise. We speculate that an increase in COMT-catalyzed O-methylation of CE may indicate that less COMT is available to deactivate norepinephrine.

  14. The impact of methylation quantitative trait loci (mQTLs) on active smoking-related DNA methylation changes.

    PubMed

    Gao, Xu; Thomsen, Hauke; Zhang, Yan; Breitling, Lutz Philipp; Brenner, Hermann

    2017-01-01

    Methylation quantitative trait loci (mQTLs) are the genetic variants that may affect the DNA methylation patterns of CpG sites. However, their roles in influencing the disturbances of smoking-related epigenetic changes have not been well established. This study was conducted to address whether mQTLs exist in the vicinity of smoking-related CpG sites (± 50 kb) and to examine their associations with smoking exposure and all-cause mortality in older adults. We obtained DNA methylation profiles in whole blood samples by Illumina Infinium Human Methylation 450 BeadChip array of two independent subsamples of the ESTHER study (discovery set, n  = 581; validation set, n  = 368) and their corresponding genotyping data using the Illumina Infinium OncoArray BeadChip. After correction for multiple testing (FDR), we successfully identified that 70 out of 151 previously reported smoking-related CpG sites were significantly associated with 192 SNPs within the 50 kb search window of each locus. The 192 mQTLs significantly influenced the active smoking-related DNA methylation changes, with percentage changes ranging from 0.01 to 18.96%, especially for the weakly/moderately smoking-related CpG sites. However, these identified mQTLs were not directly associated with active smoking exposure or all-cause mortality. Our findings clearly demonstrated that if not dealt with properly, the mQTLs might impair the power of epigenetic-based models of smoking exposure to a certain extent. In addition, such genetic variants could be the key factor to distinguish between the heritable and smoking-induced impact on epigenome disparities. These mQTLs are of special importance when DNA methylation markers measured by Illumina Infinium assay are used for any comparative population studies related to smoking-related cancers and chronic diseases.

  15. Targeting Protein O-GlcNAc Modifications In Breast Cancer

    DTIC Science & Technology

    2010-09-30

    O-GlcNAcation and elevated expression of O-GlcNAc transferase (OGT), the enzyme catalyzing addition of O-GlcNAc to proteins. Reduction of O...regulatory switch mechanism analogous to phosphorylation (28). Cytosolic and nuclear enzymes dynamically catalyze addition (O-GlcNAc transferase or OGT) and...levels, through pharmacological inhibition or genetic knock-down of enzymes that add or remove O-GlcNAc, can inhibit ErbB2-mediated oncogenic

  16. Spectrofluorimetric assay method for glutathione and glutathione transferase using monobromobimane.

    PubMed

    Yakubu, S I; Yakasai, I A; Musa, A

    2011-06-01

    The primary role of glutathione transferase is to defend an organism from toxicities through catalyzing the reaction of glutathione (GSH) with potentially toxic compounds or metabolites to their chemically and biologically inert conjugates. The objective of the study was to develop a simple and sensitive spectrofluorimetric assay method for glutathione transferase using monobromobimane (MBB), a non fluorescent compound with electrophilic site. MBB slowly reacted with glutathione to form fluorescent glutathione conjugate and that the reaction was catalysed by glutathione transferase. Both non-enzymatic and enzymatic reaction products of MBB, in presence of GSH in phosphate buffer (pH 6.5), were measured by following increase of fluorescence at wavelength of 475nm. For validation of the assay method, the kinetic parameters such as the apparent Michaelis-Mente constants and maximum rates of conjugate formation as well as the specific activity of rat hepatic glutathione transferase were determined. The method was found to be sensitive, thus, applied to measure glutathione contents of crude preparation of rat hepatic cytosol fraction.

  17. Rat lung glutathione S-transferases. Evidence for two distinct types of 22000-Mr subunits.

    PubMed Central

    Singh, S V; Partridge, C A; Awasthi, Y C

    1984-01-01

    Two immunologically distinct types of 22000-Mr subunits are present in rat lung glutathione S-transferases. One of these subunits is probably similar to Ya subunits of rat liver glutathione S-transferases, whereas the other subunit Ya' is immunologically distinct. Glutathione S-transferase II (pI7.2) of rat lung is a heterodimer (YaYa') of these subunits, and glutathione S-transferase VI (pI4.8) of rat lung is a homodimer of Ya' subunits. On hybridization in vitro of the subunits of glutathione S-transferase II of rat lung three active dimers having pI values 9.4, 7.2 and 4.8 are obtained. Immunological properties and substrate specificities indicate that the hybridized enzymes having pI7.2 and 4.8 correspond to glutathione S-transferases II and VI of rat lung respectively. Images Fig. 1. Fig. 5. PMID:6433888

  18. Why Do Enolate Anions Favor O-Alkylation over C-Alkylation in the Gas Phase? The Roles of Resonance and Inductive Effects in the Gas-Phase SN2 Reaction between the Acetaldehyde Enolate Anion and Methyl Fluoride.

    PubMed

    Seitz, Christian G; Zhang, Huaiyu; Mo, Yirong; Karty, Joel M

    2016-05-06

    Contributions by resonance and inductive effects toward the net activation barrier were determined computationally for the gas-phase SN2 reaction between the acetaldehyde enolate anion and methyl fluoride, for both O-methylation and C-methylation, in order to understand why this reaction favors O-methylation. With the use of the vinylogue extrapolation methodology, resonance effects were determined to contribute toward increasing the size of the barrier by about 9.5 kcal/mol for O-methylation and by about 21.2 kcal/mol for C-methylation. Inductive effects were determined to contribute toward increasing the size of the barrier by about 1.7 kcal/mol for O-methylation and 4.2 kcal/mol for C-methylation. Employing our block-localized wave function methodology, we determined the contributions by resonance to be 12.8 kcal/mol for O-methylation and 22.3 kcal/mol for C-methylation. Thus, whereas inductive effects have significant contributions, resonance is the dominant factor that leads to O-methylation being favored. More specifically, resonance serves to increase the size the barrier for C-methylation significantly more than it does for O-methylation.

  19. Characterization of the differentially methylated region of the Impact gene that exhibits Glires-specific imprinting.

    PubMed

    Okamura, Kohji; Wintle, Richard F; Scherer, Stephen W

    2008-01-01

    Imprinted genes are exclusively expressed from one of the two parental alleles in a parent-of-origin-specific manner. In mammals, nearly 100 genes are documented to be imprinted. To understand the mechanism behind this gene regulation and to identify novel imprinted genes, common features of DNA sequences have been analyzed; however, the general features required for genomic imprinting have not yet been identified, possibly due to variability in underlying molecular mechanisms from locus to locus. We performed a thorough comparative genomic analysis of a single locus, Impact, which is imprinted only in Glires (rodents and lagomorphs). The fact that Glires and primates diverged from each other as recent as 70 million years ago makes comparisons between imprinted and non-imprinted orthologues relatively reliable. In species from the Glires clade, Impact bears a differentially methylated region, whereby the maternal allele is hypermethylated. Analysis of this region demonstrated that imprinting was not associated with the presence of direct tandem repeats nor with CpG dinucleotide density. In contrast, a CpG periodicity of 8 bp was observed in this region in species of the Glires clade compared to those of carnivores, artiodactyls, and primates. We show that tandem repeats are dispensable, establishment of the differentially methylated region does not rely on G+C content and CpG density, and the CpG periodicity of 8 bp is meaningful to the imprinting. This interval has recently been reported to be optimal for de novo methylation by the Dnmt3a-Dnmt3L complex, suggesting its importance in the establishment of imprinting in Impact and other genes.

  20. The role of glutathione S-transferases in the detoxification of some organophosphorus insecticides in larvae and pupae of the yellow mealworm, Tenebrio molitor (Coleoptera: Tenebrionidae).

    PubMed

    Kostaropoulos, I; Papadopoulos, A I; Metaxakis, A; Boukouvala, E; Papadopoulou-Mourkidou, E

    2001-06-01

    The correlation between the natural levels of glutathione S-transferase (GST) and the tolerance to the organophosphorus insecticides parathion-methyl and paraoxon-methyl, as well as the interaction of affinity-purified enzyme and the insecticides were investigated in order to collect further information on the role of the glutathione S-transferase system as a mechanism of defence against insecticides in insects. The studies were carried out on the larvae and pupae of the coleopteran Tenebrio molitor L, which exhibit varying natural levels of GST activity. Stage-dependent susceptibility of the insect against insecticides was observed during the first 24 h. However, 48 h after treatment, the KD50 value increased significantly due to the recovery of some individuals. Simultaneous injection of insecticide with compounds which inhibit GST activity in vitro caused an alteration in susceptibility of insects 24 or 48 h post-treatment, depending on stage and insecticide used. Inhibition studies combined with competitive fluorescence spectroscopy revealed that the insecticides probably bind to the active site of the enzyme, thus inhibiting its activity towards 1-chloro-2,4-dinitrobenzene in a competitive manner. High-performance liquid chromatography and gas chromatography revealed that T molitor GST catalyses the conjugation of the insecticides studied to a reduced form of glutathione (GSH). From the above experimental results, it is considered that GST offers a protection against the organophosphorus insecticides studied by active site binding and subsequent conjugation with GSH.

  1. Pharmacological profile of opicapone, a third-generation nitrocatechol catechol-O-methyl transferase inhibitor, in the rat.

    PubMed

    Bonifácio, M J; Torrão, L; Loureiro, A I; Palma, P N; Wright, L C; Soares-da-Silva, P

    2015-04-01

    Catechol-O-methyltransferase (COMT) is an important target in the levodopa treatment of Parkinson's disease; however, the inhibitors available have problems, and not all patients benefit from their efficacy. Opicapone was developed to overcome those limitations. In this study, opicapone's pharmacological properties were evaluated as well as its potential cytotoxic effects. The pharmacodynamic effects of opicapone were explored by evaluating rat COMT activity and levodopa pharmacokinetics, in the periphery through microdialysis and in whole brain. The potential cytotoxicity risk of opicapone was explored in human hepatocytes by assessing cellular ATP content and mitochondrial membrane potential. Opicapone inhibited rat peripheral COMT with ED50 values below 1.4 mg⋅kg(-1) up to 6 h post-administration. The effect was sustained over the first 8 h and by 24 h COMT had not returned to control values. A single administration of opicapone resulted in increased and sustained plasma levodopa levels with a concomitant reduction in 3-O-methyldopa from 2 h up to 24 h post-administration, while tolcapone produced significant effects only at 2 h post-administration. The effects of opicapone on brain catecholamines after levodopa administration were sustained up to 24 h post-administration. Opicapone was also the least potent compound in decreasing both the mitochondrial membrane potential and the ATP content in human primary hepatocytes after a 24 h incubation period. Opicapone has a prolonged inhibitory effect on peripheral COMT, which extends the bioavailability of levodopa, without inducing toxicity. Thus, it exhibits some improved properties compared to the currently available COMT inhibitors. © 2014 The British Pharmacological Society.

  2. Rosa hybrida orcinol O-methyl transferase-mediated production of pterostilbene in metabolically engineered grapevine cell cultures.

    PubMed

    Martínez-Márquez, Ascensión; Morante-Carriel, Jaime A; Palazon, Javier; Bru-Martínez, Roque

    2018-05-25

    Stilbenes are naturally scarce high-added-value plant compounds with chemopreventive, pharmacological and cosmetic properties. Bioproduction strategies include engineering the metabolisms of bacterial, fungal and plant cell systems. Strikingly, one of the most effective strategies consists in the elicitation of wild grapevine cell cultures, which leads to vast stilbene resveratrol accumulation in the extracellular medium. The combination of both cell culture elicitation and metabolic engineering strategies to produce resveratrol analogs proved more efficient for the hydroxylated derivative piceatannol than for the dimethylated derivative pterostilbene, for which human hydroxylase HsCYP1B1- and grapevine O-methyltransferase VvROMT-transformed cell cultures were respectively used. Rose orcinol O-methyltransferase (OOMT) displays enzymatic properties, which makes it an appealing candidate to substitute VvROMT in the combined strategy to enhance the pterostilbene production level by engineered grapevine cells upon elicitation. Here we cloned a Rosa hybrida OOMT gene, and created a genetic construction suitable for Agrobacterium-mediated plant transformation. OOMT's ability to catalyze the conversion of resveratrol into pterostilbene was first assessed in vitro using protein extracts of agroinfiltrated N. benthamiana leaves and transformed grapevine callus. The grapevine cell cultures transformed with RhOOMT produced about 16 mg/L culture of pterostilbene and reached an extracellular distribution of up to 34% of total production at the best, which is by far the highest production reported to date in a plant system. A bonus large resveratrol production of ca. 1500-3000 mg/L was simultaneously obtained. Our results demonstrate a viable successful metabolic engineering strategy to produce pterostilbene, a resveratrol analog with enhanced pharmacological properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Association of the CpG Methylation Pattern of the Proximal Insulin Gene Promoter with Type 1 Diabetes

    PubMed Central

    Fradin, Delphine; Le Fur, Sophie; Mille, Clémence; Naoui, Nadia; Groves, Chris; Zelenika, Diana; McCarthy, Mark I.; Lathrop, Mark; Bougnères, Pierre

    2012-01-01

    The insulin (INS) region is the second most important locus associated with Type 1 Diabetes (T1D). The study of the DNA methylation pattern of the 7 CpGs proximal to the TSS in the INS gene promoter revealed that T1D patients have a lower level of methylation of CpG -19, -135 and -234 (p = 2.10−16) and a higher methylation of CpG -180 than controls, while methylation was comparable for CpG -69, -102, -206. The magnitude of the hypomethylation relative to a control population was 8–15% of the corresponding levels in controls and was correlated in CpGs -19 and -135 (r = 0.77) and CpG -135 and -234 (r = 0.65). 70/485 (14%) of T1D patients had a simultaneous decrease in methylation of CpG -19, -135, -234 versus none in 317 controls. CpG methylation did not correlate with glycated hemoglobin or with T1D duration. The methylation of CpG -69, -102, -180, -206, but not CpG -19, -135, -234 was strongly influenced by the cis-genotype at rs689, a SNP known to show a strong association with T1D. We hypothesize that part of this genetic association could in fact be mediated at the statistical and functional level by the underlying changes in neighboring CpG methylation. Our observation of a CpG-specific, locus-specific methylation pattern, although it can provide an epigenetic biomarker of a multifactorial disease, does not indicate whether the reported epigenetic pattern preexists or follows the establishment of T1D. To explore the effect of chronic hyperglycemia on CpG methylation, we studied non obese patients with type 2 diabetes (T2D) who were found to have decreased CpG-19 methylation versus age-matched controls, similar to T1D (p = 2.10−6) but increased CpG-234 methylation (p = 5.10−8), the opposite of T1D. The causality and natural history of the different epigenetic changes associated with T1D or T2D remain to be determined. PMID:22567146

  4. iRNA-2methyl: Identify RNA 2'-O-methylation Sites by Incorporating Sequence-Coupled Effects into General PseKNC and Ensemble Classifier.

    PubMed

    Qiu, Wang-Ren; Jiang, Shi-Yu; Sun, Bi-Qian; Xiao, Xuan; Cheng, Xiang; Chou, Kuo-Chen

    2017-01-01

    Being a kind of post-transcriptional modification (PTCM) in RNA, the 2'-Omethylation modification occurs in the processes of life development and disease formation as well. Accordingly, from the angles of both basic research and drug development, we are facing a challenging problem: given an uncharacterized RNA sequence formed by many nucleotides of A (adenine), C (cytosine), G (guanine), and U (uracil), which one can be of 2-O'-methylation modification, and which one cannot? Unfortunately, so far no computational method whatsoever has been developed to address such a problem. To fill this empty area, we propose a predictor called iRNA-2methyl. It is formed by incorporating a series of sequence-coupled factors into the general PseKNC (pseudo nucleotide composition), followed by fusing 12 basic random forest classifier into four ensemble predictors, with each aimed to identify the cases of A, C, G, and U along the RNA sequence concerned, respectively. Rigorous jackknife cross-validations have indicated that the success rates are very high (>93%). For the convenience of most experimental scientists, a user-friendly web-server for iRNA-2methyl has been established at http://www.jci-bioinfo.cn/iRNA-2methyl, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved. The proposed predictor iRNA-2methyl will become a very useful bioinformatics tool for medicinal chemistry, helping to design effective drugs against the diseases related to the 2'-Omethylation modification. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Zebrafish as a model to study the role of DNA methylation in environmental toxicology.

    PubMed

    Kamstra, Jorke H; Aleström, Peter; Kooter, Jan M; Legler, Juliette

    2015-11-01

    Environmental epigenetics is a rapidly growing field which studies the effects of environmental factors such as nutrition, stress, and exposure to compounds on epigenetic gene regulation. Recent studies have shown that exposure to toxicants in vertebrates is associated with changes in DNA methylation, a major epigenetic mechanism affecting gene transcription. Zebra fish, a well-known model in toxicology and developmental biology, are emerging as a model species in environmental epigenetics despite their evolutionary distance to rodents and humans. In this review, recent insights in DNA methylation during zebra fish development are discussed and compared to mammalian models in order to evaluate zebra fish as a model to study the role of DNA methylation in environmental toxicology. Differences exist in DNA methylation reprogramming during early development, whereas in later developmental stages, tissue distribution of both 5-methylcytosine and 5-hydroxymethylcytosine seems more conserved between species, as well as basic DNA (de)methylation mechanisms. All DNA methyl transferases identified so far in mammals are present in zebra fish, as well as a number of major demethylation pathways. However, zebra fish appear to lack some methylation pathways present in mammals, such as parental imprinting. Several studies report effects on DNA methylation in zebra fish following exposure to environmental contaminants, such as arsenic, benzo[a]pyrene, and tris(1,3-dichloro-2-propyl)phosphate. Though more research is needed to examine heritable effects of contaminant exposure on DNA methylation, recent data suggests the usefulness of the zebra fish as a model in environmental epigenetics.

  6. TiO2 Nanowires/Poly(Methyl Methacrylate) Based Hybrid Photodetector: Improved Light Detection.

    PubMed

    Saha, S; Mondal, A; Choudhur, B; Goswami, T; Sarkar, M B; Chattopadhyay, K K

    2016-03-01

    Hybrid photodetector with a maximum external quantum efficiency of ~3.08% in the UV region at 370 nm, was fabricated by spin-coated poly(methyl methacrylate) (PMMA) polymer onto glancing angle deposited (GLAD) vertically aligned TiO2 nanowire (NW) arrays. The TiO2 NWs/PMMA detector shows excellent rectification and constant 1.3 times photo-responsivity in the reverse bias condition from -1 V to -10 V. The photodiode possesses a low ideality factor of 5.1 as compared to bared TiO2 NWs device of 7.1. The hybrid device produces sharp turn-on of -0.8 s and turn-off transient of -0.9 s respectively.

  7. The human mitochondrial NADH: Ubiquinone oxidoreductase 51-kDa subunit oxidoreductase 51-kDa subunit maps adjacent to the glutathione S-transferase P1-1 gene on chromosome 11q13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, S.R.; Taylor, J.B.; Cowell, I.G.

    The soluble glutathione transferases (GSTs) are a family of dimeric isoenymes catalyzing the conjugation of glutathione to hydrophobic electropiles. Their subunits can be grouped into four families, alpha, mu, pi, and theta, on the basis of their primary structures. In man, the pi class is represented by a single gene, GSTP1-1 (GST[pi]) localized to human chromosome 11, band q13. The oncogenes INT2, HSTF1, and PRAD1 are also localized at 11q13, and together with the GSTP1 locus and other gene loci mapped to 11q13, i.e., BCL1 and EMS1, they form a unit of DNA approximately 2000-2500 kb, known as the 11q13more » amplicon, which is often amplified in a range of solid tumors. Any gene locus at 11q13 is of interest because it may influence tumorigenesis. 14 refs., 1 fig.« less

  8. Insight into the theoretical and experimental studies of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone N(4)-methyl-N(4)- phenylthiosemicarbazone - A potential NLO material

    NASA Astrophysics Data System (ADS)

    Sangeetha, K. G.; Aravindakshan, K. K.; Safna Hussan, K. P.

    2017-12-01

    The synthesis, geometrical parameters, spectroscopic studies, optimised molecular structure, vibrational analysis, Mullikan population analysis, MEP, NBO, frontier molecular orbitals and NLO effects of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone N-(4)-methyl-N-(4)-phenylthiosemicarbazone, C25H23N5OS (L1) have been communicated in this paper. A combined experimental and theoretical approach was used to explore the structure and properties of the compound. For computational studies, Gaussian 09 program was used. Starting geometry of molecule was taken from X-ray refinement data and has been optimized by using DFT (B3LYP) method with the 6-31+G (d, p) basis sets. NBO analysis gave insight into the strongly delocalized structure, responsible for the nonlinearity and hence the stability of the molecule. Frontier molecular orbitals have been defined to forecast the global reactivity descriptors of L1. The computed first-order hyperpolarizability (β) of the compound is 2 times higher than that of urea and this account for its nonlinear optical property. Simultaneously, a molecular docking study of the compound was performed using GLIDE Program. For this, three biological enzymes, histone deacetylase, ribonucleotide reductase and DNA methyl transferase, were selected as receptor molecules.

  9. Genome-wide DNA methylation sequencing reveals miR-663a is a novel epimutation candidate in CIMP-high endometrial cancer

    PubMed Central

    Yanokura, Megumi; Banno, Kouji; Adachi, Masataka; Aoki, Daisuke; Abe, Kuniya

    2017-01-01

    Aberrant DNA methylation is widely observed in many cancers. Concurrent DNA methylation of multiple genes occurs in endometrial cancer and is referred to as the CpG island methylator phenotype (CIMP). However, the features and causes of CIMP-positive endometrial cancer are not well understood. To investigate DNA methylation features characteristic to CIMP-positive endometrial cancer, we first classified samples from 25 patients with endometrial cancer based on the methylation status of three genes, i.e. MLH1, CDH1 (E-cadherin) and APC: CIMP-high (CIMP-H, 2/25, 8.0%), CIMP-low (CIMP-L, 7/25, 28.0%) and CIMP-negative (CIMP(-), 16/25, 64.0%). We then selected two samples each from CIMP-H and CIMP(-) classes, and analyzed DNA methylation status of both normal (peripheral blood cells: PBCs) and cancer tissues by genome-wide, targeted bisulfite sequencing. Genomes of the CIMP-H cancer tissues were significantly hypermethylated compared to those of the CIMP(-). Surprisingly, in normal tissues of the CIMP-H patients, promoter region of the miR-663a locus is hypermethylated relative to CIMP(-) samples. Consistent with this finding, miR-663a expression was lower in the CIMP-H PBCs than in the CIMP(-) PBCs. The same region of the miR663a locus is found to be highly methylated in cancer tissues of both CIMP-H and CIMP(-) cases. This is the first report showing that aberrant DNA methylation of the miR-663a promoter can occur in normal tissue of the cancer patients, suggesting a possible link between this epigenetic abnormality and endometrial cancer. This raises the possibility that the hypermethylation of the miR-663a promoter represents an epimutation associated with the CIMP-H endometrial cancers. Based on these findings, relationship of the aberrant DNA methylation and CIMP-H phenotype is discussed. PMID:28440489

  10. Genome-wide DNA methylation sequencing reveals miR-663a is a novel epimutation candidate in CIMP-high endometrial cancer.

    PubMed

    Yanokura, Megumi; Banno, Kouji; Adachi, Masataka; Aoki, Daisuke; Abe, Kuniya

    2017-06-01

    Aberrant DNA methylation is widely observed in many cancers. Concurrent DNA methylation of multiple genes occurs in endometrial cancer and is referred to as the CpG island methylator phenotype (CIMP). However, the features and causes of CIMP-positive endometrial cancer are not well understood. To investigate DNA methylation features characteristic to CIMP-positive endometrial cancer, we first classified samples from 25 patients with endometrial cancer based on the methylation status of three genes, i.e. MLH1, CDH1 (E-cadherin) and APC: CIMP-high (CIMP-H, 2/25, 8.0%), CIMP-low (CIMP-L, 7/25, 28.0%) and CIMP-negative (CIMP(-), 16/25, 64.0%). We then selected two samples each from CIMP-H and CIMP(-) classes, and analyzed DNA methylation status of both normal (peripheral blood cells: PBCs) and cancer tissues by genome-wide, targeted bisulfite sequencing. Genomes of the CIMP-H cancer tissues were significantly hypermethylated compared to those of the CIMP(-). Surprisingly, in normal tissues of the CIMP-H patients, promoter region of the miR-663a locus is hypermethylated relative to CIMP(-) samples. Consistent with this finding, miR-663a expression was lower in the CIMP-H PBCs than in the CIMP(-) PBCs. The same region of the miR663a locus is found to be highly methylated in cancer tissues of both CIMP-H and CIMP(-) cases. This is the first report showing that aberrant DNA methylation of the miR-663a promoter can occur in normal tissue of the cancer patients, suggesting a possible link between this epigenetic abnormality and endometrial cancer. This raises the possibility that the hypermethylation of the miR-663a promoter represents an epimutation associated with the CIMP-H endometrial cancers. Based on these findings, relationship of the aberrant DNA methylation and CIMP-H phenotype is discussed.

  11. Conserved Role of Intragenic DNA Methylation in Regulating Alternative Promoters

    PubMed Central

    Maunakea, Alika K.; Nagarajan, Raman P.; Bilenky, Mikhail; Ballinger, Tracy J.; D’Souza, Cletus; Fouse, Shaun D.; Johnson, Brett E.; Hong, Chibo; Nielsen, Cydney; Zhao, Yongjun; Turecki, Gustavo; Delaney, Allen; Varhol, Richard; Thiessen, Nina; Shchors, Ksenya; Heine, Vivi M.; Rowitch, David H.; Xing, Xiaoyun; Fiore, Chris; Schillebeeckx, Maximiliaan; Jones, Steven J.M.; Haussler, David; Marra, Marco A.; Hirst, Martin; Wang, Ting; Costello, Joseph F.

    2014-01-01

    While the methylation of DNA in 5′ promoters suppresses gene expression, the role of DNA methylation in gene bodies is unclear1–5. In mammals, tissue- and cell type-specific methylation is present in a small percentage of 5′ CpG island (CGI) promoters, while a far greater proportion occurs across gene bodies, coinciding with highly conserved sequences5–10. Tissue-specific intragenic methylation might reduce,3 or, paradoxically, enhance transcription elongation efficiency1,2,4,5. Capped analysis of gene expression (CAGE) experiments also indicate that transcription commonly initiates within and between genes11–15. To investigate the role of intragenic methylation, we generated a map of DNA methylation from human brain encompassing 24.7 million of the 28 million CpG sites. From the dense, high-resolution coverage of CpG islands, the majority of methylated CpG islands were revealed to be in intragenic and intergenic regions, while less than 3% of CpG islands in 5′ promoters were methylated. The CpG islands in all three locations overlapped with RNA markers of transcription initiation, and unmethylated CpG islands also overlapped significantly with trimethylation of H3K4, a histone modification enriched at promoters16. The general and CpG-island-specific patterns of methylation are conserved in mouse tissues. An in-depth investigation of the human SHANK3 locus17,18 and its mouse homologue demonstrated that this tissue-specific DNA methylation regulates intragenic promoter activity in vitro and in vivo. These methylation-regulated, alternative transcripts are expressed in a tissue and cell type-specific manner, and are expressed differentially within a single cell type from distinct brain regions. These results support a major role for intragenic methylation in regulating cell context-specific alternative promoters in gene bodies. PMID:20613842

  12. Preliminary individualized chemotherapy for malignant astrocytomas based on O6-methylguanine-deoxyribonucleic acid methyltransferase methylation analysis.

    PubMed

    Watanabe, Takao; Katayama, Yoichi; Ogino, Akiyoshi; Ohta, Takashi; Yoshino, Atsuo; Fukushima, Takao

    2006-08-01

    O(6)-methylguanine-deoxyribonucleic acid methyltransferase gene (MGMT) methylation is apparently correlated with responsiveness to nitrosourea chemotherapy, suggesting this alkylating agent should be effective against MGMT-methylated tumors. MGMT appears not to be linked to platinum resistance, so platinum chemotherapy should be used for MGMT-unmethylated tumors. This study was a preliminary trial of individualized chemotherapy based on MGMT methylation status in a total of 20 patients with newly diagnosed malignant astrocytomas (9 anaplastic astrocytomas and 11 glioblastomas multiforme). The procarbazine, 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-2(2-chloroethyl)-3-nitrosourea, and vincristine (PAV) regimen was administered to seven patients with MGMT-methylated tumors, and the carboplatin and etoposide (CE) regimen was administered to 13 patients with MGMT-unmethylated tumors. Objective response to the PAV therapy was noted in all three patients with measurable residual tumor (2 complete responses and 1 partial response). Five of the seven patients continued to be disease-free after initiation of the PAV therapy. Objective response to the CE therapy was seen in only one of seven patients with measurable residual tumor (1 partial response). Three of the 13 patients were free from progression, whereas the remaining 10 patients showed early progression. The PAV regimen is effective against MGMT-methylated malignant astrocytomas, but the CE regimen is not useful at the given dose and schedule in MGMT-unmethylated tumors.

  13. Epigenome-wide cross-tissue predictive modeling and comparison of cord blood and placental methylation in a birth cohort

    PubMed Central

    De Carli, Margherita M; Baccarelli, Andrea A; Trevisi, Letizia; Pantic, Ivan; Brennan, Kasey JM; Hacker, Michele R; Loudon, Holly; Brunst, Kelly J; Wright, Robert O; Wright, Rosalind J; Just, Allan C

    2017-01-01

    Aim: We compared predictive modeling approaches to estimate placental methylation using cord blood methylation. Materials & methods: We performed locus-specific methylation prediction using both linear regression and support vector machine models with 174 matched pairs of 450k arrays. Results: At most CpG sites, both approaches gave poor predictions in spite of a misleading improvement in array-wide correlation. CpG islands and gene promoters, but not enhancers, were the genomic contexts where the correlation between measured and predicted placental methylation levels achieved higher values. We provide a list of 714 sites where both models achieved an R2 ≥0.75. Conclusion: The present study indicates the need for caution in interpreting cross-tissue predictions. Few methylation sites can be predicted between cord blood and placenta. PMID:28234020

  14. The Importance of Sulfate Adenylyl Transferase in S and O Fractionation by Sulfate Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Johnston, D. T.; Bradley, A. S.

    2016-12-01

    Microbial sulfate reduction (MSR) is critical to the oxidation of organic matter in modern and ancient oceans, and plays an important role in regulating the redox state of the Earth's surface. The sulfur and oxygen isotopic composition of seawater sulfate and of sulfate minerals reflect the biogeochemical processes that cycle sulfur, of which MSR is among the most important. MSR is a multi-enzymatic reaction network that partitions the isotopes of sulfur and oxygen as a consequence of both the flux of sulfate through this biochemical network and the fractionation imposed by each individual enzyme. MSR affects the δ18O of residual, extracellular sulfate mainly by the equilibration of the MSR intermediate sulfite with extracellular water (Antler et al., 2013 GCA, Wankel et al., 2013 Geobiol). A series of oxidative and exchange reactions catalyzed by APS reductase (APSr), sulfate adenylyl transferase (Sat), and sulfate transporters promote the conversion of water-equilibrated intracellular sulfite to extracellular sulfate. The flux of sulfoxy anions via these proteins will be, at least in part, dependent on the activity of these enzymes. To test this, we examined sulfur and oxygen isotope fractionation in genetically engineered mutants of the sulfate reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH). In these mutants, the activity of Sat has been artificially increased by perturbing the (i) transcriptional repressor Rex and (ii) its binding site upstream of the gene encoding Sat (Christensen et al., 2015 J. Bacteriol). It was predicted that this would minimize the back reaction of Sat, enhance the intracellular pool of APS, and minimize the equilibration between sulfite and adenosine monophosphate (AMP). Both mutants, along with the wild type DvH were grown in batch culture made with water enriched in 18O. Samples were collected throughout batch growth, and we report the evolution of the S and O isotopic composition of sulfate, and of the S isotopic

  15. Role of N-methyl-2-pyrrolidone for preparation of Fe3O4@SiO2 controlled the shell thickness

    NASA Astrophysics Data System (ADS)

    Wee, Sung-Bok; Oh, Hyeon-Cheol; Kim, Tae-Gyun; An, Gye-Seok; Choi, Sung-Churl

    2017-04-01

    We developed a simple and novel approach for the synthesis of Fe3O4@SiO2 nanoparticles with controlled shell thickness, and studied the mechanism. The introduction of N-methyl-2-pyrrolidone (NMP) led to trapping of monomer nuclei in single shell and controlled the shell thickness. Fe3O4@SiO2 controlled the shell thickness, showing a high magnetization value (64.47 emu/g). Our results reveal the role and change in the chemical structure of NMP during the core-shell synthesis process. NMP decomposed to 4-aminobutanoic acid in alkaline condition and decreased the hydrolysis rate of the silica coating process.

  16. Epigenetic alterations are involved in the overexpression of glutathione S-transferase π-1 in human colorectal cancers.

    PubMed

    Zhang, Rui; Kang, Kyoung Ah; Piao, Mei Jing; Kim, Ki Cheon; Zheng, Jian; Yao, Cheng Wen; Cha, Ji Won; Maeng, Young Hee; Chang, Weon Young; Moon, Pyong-Gon; Baek, Moon-Chang; Hyun, Jin Won

    2014-09-01

    Glutathione S-transferase π-1 (GSTP-1) is a member of the glutathione S-transferase enzyme superfamily, which catalyzes the conjugation of electrophiles to glutathione during the process of detoxification. In this study, the epigenetic alterations of GSTP-1 expression in human colorectal cancers and the underlying mechanisms were investigated. In 10 colon cancer patients, proteomic analysis revealed that expression of GSTP-1 protein was higher in tumor tissues than in paired adjacent normal tissues. Likewise, in 7 of 10 colon cancer patients, GSTP-1 protein expression was more than 1.5-fold higher in tumor tissues than in adjacent normal tissues, as determined by western blotting. Immunohistochemical data confirmed that GSTP-1 protein was expressed at higher levels in colon cancer tissues compared to normal mucosa. GSTP-1 enzyme activity was closely correlated with GSTP-1 protein expression in colon cancer patients. Consistent with this, GSTP-1 mRNA, protein and activity levels were higher in the colorectal cancer cell lines Caco-2, HCT-116, HT-29, SNU-407 and SNU-1033 compared to the normal colon cell line FHC. Methylation-specific PCR results indicated that the high levels of GSTP-1 in human colorectal cancer cell lines were likely due to the lower degree of promoter methylation in colon cancer cell lines compared to the normal colon cell line, consistent with findings in colon cancer patients. Moreover, the levels of specific activator-protein complexes and histone marks were higher in human colorectal cancer cells compared to the normal human colon cell line, whereas the repressor protein complexes exhibited the opposite pattern. Furthermore, chromatin immunoprecipitation assays demonstrated that expression levels of the transcription factors AP-1 and SP-1 were correlated with the upregulation of GSTP-1 expression in colorectal cancer cells. Finally, knockdown of GSTP-1 promoted the sensitivity of SNU-407 cells to the anticancer agent 5-fluorouracil. These

  17. DNA methylation profiling reveals the presence of population-specific signatures correlating with phenotypic characteristics.

    PubMed

    Giri, Anil K; Bharadwaj, Soham; Banerjee, Priyanka; Chakraborty, Shraddha; Parekatt, Vaisak; Rajashekar, Donaka; Tomar, Abhishek; Ravindran, Aarthi; Basu, Analabha; Tandon, Nikhil; Bharadwaj, Dwaipayan

    2017-06-01

    Phenotypic characteristics are known to vary substantially among different ethnicities around the globe. These variations are mediated by number of stochastic events and cannot be attributed to genetic architecture alone. DNA methylation is a well-established mechanism that sculpts our epigenome influencing phenotypic variation including disease manifestation. Since DNA methylation is an important determinant for health issues of a population, it demands a thorough investigation of the natural differences in genome wide DNA methylation patterns across different ethnic groups. This study is based on comparative analyses of methylome from five different ethnicities with major focus on Indian subjects. The current study uses hierarchical clustering approaches, principal component analysis and locus specific differential methylation analysis on Illumina 450K methylation data to compare methylome of different ethnic subjects. Our data indicates that the variations in DNA methylation patterns of Indians are less among themselves compared to other global population. It empirically correlated with dietary, cultural and demographical divergences across different ethnic groups. Our work further suggests that Indians included in this study, despite their genetic similarity with the Caucasian population, are in close proximity with Japanese in terms of their methylation signatures.

  18. Molecular and biochemical characterization of tomato farnesyl-protein transferase.

    PubMed

    Schmitt, D; Callan, K; Gruissem, W

    1996-10-01

    The prenylation of membrane-associated proteins involved in the regulation of eukaryotic cell growth and signal transduction is critically important for their subcellular localization and biological activity. In contrast to mammalian cells and yeast, however, the function of protein prenylation in plants is not well understood and only a few prenylated proteins have been identified. We partially purified and characterized farnesyl-protein transferase from tomato (Lycopersicon esculentum, LeFTase) to analyze its biochemical and molecular properties. Using Ras- and G gamma-specific peptide substrates and competition assays we showed that tomato protein extracts have both farnesyl-protein transferase and geranylgeranyl-protein transferase 1 activities. Compared with the heterologous synthetic peptide substrates, the plant-specific CaaX sequence of the ANJ1 protein is a less efficient substrate for LeFTase in vitro. LeFTase activity profiles and LeFTase beta-subunit protein (LeFTB) levels differ significantly in various tissues and are regulated during fruit development. Partially purified LeFTase requires Zn2+ and Mg2+ for enzymatic activity and has an apparent molecular mass of 100 kD Immunoprecipitation experiments using anti-alpha LeFTB antibodies confirmed that LeFTB is a component of LeFTase but not of tomato geranylgeranyl-protein transferase 1. Based on their conserved bio-chemical activities, we expect that prenyltransferases are likely integrated with the sterol biosynthesis pathway in the control of plant cell growth.

  19. Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity.

    PubMed

    Ursini, Gianluca; Bollati, Valentina; Fazio, Leonardo; Porcelli, Annamaria; Iacovelli, Luisa; Catalani, Assia; Sinibaldi, Lorenzo; Gelao, Barbara; Romano, Raffaella; Rampino, Antonio; Taurisano, Paolo; Mancini, Marina; Di Giorgio, Annabella; Popolizio, Teresa; Baccarelli, Andrea; De Blasi, Antonio; Blasi, Giuseppe; Bertolino, Alessandro

    2011-05-04

    DNA methylation at CpG dinucleotides is associated with gene silencing, stress, and memory. The catechol-O-methyltransferase (COMT) Val(158) allele in rs4680 is associated with differential enzyme activity, stress responsivity, and prefrontal activity during working memory (WM), and it creates a CpG dinucleotide. We report that methylation of the Val(158) allele measured from peripheral blood mononuclear cells (PBMCs) of Val/Val humans is associated negatively with lifetime stress and positively with WM performance; it interacts with stress to modulate prefrontal activity during WM, such that greater stress and lower methylation are related to reduced cortical efficiency; and it is inversely related to mRNA expression and protein levels, potentially explaining the in vivo effects. Finally, methylation of COMT in prefrontal cortex and that in PBMCs of rats are correlated. The relationship of methylation of the COMT Val(158) allele with stress, gene expression, WM performance, and related brain activity suggests that stress-related methylation is associated with silencing of the gene, which partially compensates the physiological role of the high-activity Val allele in prefrontal cognition and activity. Moreover, these results demonstrate how stress-related DNA methylation of specific functional alleles impacts directly on human brain physiology beyond sequence variation.

  20. Multi-branched Cu2O nanowires for photocatalytic degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Yu, Chunxin; Shu, Yun; Zhou, Xiaowei; Ren, Yang; Liu, Zhu

    2018-03-01

    Multi-branched cuprous oxide nanowires (Cu2O NWs) were prepared by one-step hydrothermal method of a facile process. The architecture of these Cu2O NWs was examined by scanning electron microscopy, and the resulting crystal nanowire consists of the trunk growing along [100] plane and the branch growing along [110] plane. Photocatalytic degradation of methyl orange (MO) in the experiment indicates that pure Cu2O NWs prepared at 150 °C have a higher photocatalytic activity (90% MO were degraded within 20 min without the presence of H2O2) compared with the samples obtained at other temperatures. In the photoelectrochemical test, pure Cu2O NWs had outstanding photoelectric response, which corresponds to the catalytic performance. The superior photocatalytic performance can be attributed to the absence of grain boundaries between the small branches and the nanowire trunk, which is conducive to the transport of photo-generated carriers, and the reduction of Cu impurities to reduce the number of recombination centers.

  1. Photocatalytic activity of attapulgite–BiOCl–TiO{sub 2} toward degradation of methyl orange under UV and visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lili, E-mail: zll@hytc.edu.cn; Zhang, Jiahui; Zhang, Weiguang

    2015-06-15

    Highlights: • Excellent photocatalyst was obtained by introducing BiOCl–TiO{sub 2} onto attapulgite. • 100 mg L{sup −1} methyl orange (MO) was totally decomposed under UV light within 70 min. • 92.6% of 10 mg L{sup −1} MO was decomposed within 120 min under visible light. • ATT–BiOCl–TiO{sub 2} show better activity than P{sub 25} especially under visible light. • Mechanism of photocatalytic activity enhancement was identified. - Abstract: An environmental friendly composite photocatalyst with efficient UV and visible light activity has been synthesized by introducing BiOCl–TiO{sub 2} hybrid oxide onto the surface of attapulgite (ATT) (denoted as ATT–BiOCl–TiO{sub 2}), usingmore » a simple in situ depositing technique. The obtained products were characterized by XRD, TEM, BET and UV–vis diffuse reflectance spectra measurements. Results showed that BiOCl–TiO{sub 2} composite particles were successfully loaded onto attapulgite fibers' surface without obvious aggregation. The photocatalytic activity of ATT–BiOCl–TiO{sub 2} was investigated by degradation of methyl orange under UV and visible light irradiation. It was found that 100 mg L{sup −1} methyl orange was totally decomposed under UV light within 70 min and 92.57% of 10 mg L{sup −1} methyl orange was decomposed under visible light within 120 min using ATT–BiOCl–TiO{sub 2} as photocatalyst. These results were quite better than that of P{sub 25}, especially under visible light irradiation. Possible mechanism for the enhancement was proposed.« less

  2. Cathecol-O-methyl transferase Val158Met genotype is not a risk factor for conversion disorder.

    PubMed

    Armagan, E; Almacıoglu, M L; Yakut, T; Köse, A; Karkucak, M; Köksal, O; Görükmez, O

    2013-03-19

    Alterations in catechol-O-methyltransferase (COMT) activity are involved in various types of neurological disorders. We examined a possible association between the COMT Val158Met polymorphism and conversion disorder in a study of 48 patients with conversion disorder and 48 control patients. In the conversion disorder group, 31 patients were Val/Met heterozygotes, 15 patients were Val/Val homozygotes and 2 patients were Met/Met homozygotes. In the control group, 32 patients were Val/Met heterozygotes and 16 patients were Val/Val homozygotes. There was no significant difference between the groups. We conclude that the COMT Val158Met genotype is quite common in Turkey and that it is not a risk factor for conversion disorder in the Turkish population.

  3. Study of the Role of siRNA Mediated Promoter Methylation in DNMT3B Knockdown and Alteration of Promoter Methylation of CDH1, GSTP1 Genes in MDA-MB -453 Cell Line.

    PubMed

    Naghitorabi, Mojgan; Mir Mohammad Sadeghi, Hamid; Mohammadi Asl, Javad; Rabbani, Mohammad; Jafarian-Dehkordi, Abbas

    2017-01-01

    Promoter methylation is one of the main epigenetic mechanisms that leads to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifically knock down the DNMTs at mRNA level. Also many studies have focused on transcriptional gene silencing in mammalian cells via siRNA mediated promoter methylation. The present study was designed to assess the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of Cadherin-1 (CDH1), Glutathione S-Transferase Pi 1(GSTP1), and DNMT3B genes in MDA-MB-453 cell line. MDA-MB-453 cells were transfected with siDNMT targeting DNMT3B promoter and harvested at 24 and 48 h post transfection to monitor gene silencing and promoter methylation respectively. DNMT3B expression was monitored by quantitative RT-PCR method. Promoter methylation was quantitatively evaluated using differential high resolution melting analysis. A non-significant 20% reduction in DNMT3B mRNA level was shown only after first transfection with siDNMT, which was not reproducible. Promoter methylation levels of DNMT3B, CDH1, and GSTP1 were detected at about 15%, 70% and 10% respectively, in the MDA-MB-453 cell line, with no significant change after transfection. Our results indicated that siDNMT sequence were not able to affect promoter methylation and silencing of DNMT3B in MDA-MB-453 cells. However, quantitation of methylation confirmed a hypermethylated phenotype at CDH1 and GSTP1 promoters as well as a differential methylation pattern at DNMT3B promoter in breast cancer.

  4. Hybrid molecule from O2-(2,4-dinitrophenyl)diazeniumdiolate and oleanolic acid: a glutathione S-transferase π-activated nitric oxide prodrug with selective anti-human hepatocellular carcinoma activity and improved stability.

    PubMed

    Fu, Junjie; Liu, Ling; Huang, Zhangjian; Lai, Yisheng; Ji, Hui; Peng, Sixun; Tian, Jide; Zhang, Yihua

    2013-06-13

    A series of hybrids from O(2)-(2,4-dinitrophenyl)diazeniumdiolate and oleanolic acid (OA) were designed, synthesized, and biologically evaluated as novel nitric oxide (NO)-releasing prodrugs that could be activated by glutathione S-transferase π (GSTπ) overexpressed in a number of cancer cells. It was discovered that the most active compound, 21, released high levels of NO selectively in HCC cells but not in the normal cells and exhibited potent antiproliferative activity in vitro as well as remarkable tumor-retarding effects in vivo. Compared with the reported GSTπ-activated prodrugs JS-K and PABA/NO, 21 exhibited remarkably improved stability in the absence of GSTπ. Importantly, the decomposition of 21 occurred in the presence of GSTπ and was much more effective than in glutathione S-transferase α. Additionally, 21 induced apoptosis in HepG2 cells by arresting the cell cycle at the G2/M phase, activating both the mitochondrion-mediated pathway and the MAPK pathway and enhancing the intracellular production of ROS.

  5. Methylation of class I translation termination factors: structural and functional aspects.

    PubMed

    Graille, Marc; Figaro, Sabine; Kervestin, Stéphanie; Buckingham, Richard H; Liger, Dominique; Heurgué-Hamard, Valérie

    2012-07-01

    During protein synthesis, release of polypeptide from the ribosome occurs when an in frame termination codon is encountered. Contrary to sense codons, which are decoded by tRNAs, stop codons present in the A-site are recognized by proteins named class I release factors, leading to the release of newly synthesized proteins. Structures of these factors bound to termination ribosomal complexes have recently been obtained, and lead to a better understanding of stop codon recognition and its coordination with peptidyl-tRNA hydrolysis in bacteria. Release factors contain a universally conserved GGQ motif which interacts with the peptidyl-transferase centre to allow peptide release. The Gln side chain from this motif is methylated, a feature conserved from bacteria to man, suggesting an important biological role. However, methylation is catalysed by completely unrelated enzymes. The function of this motif and its post-translational modification will be discussed in the context of recent structural and functional studies. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. The Enzymatic Release of O6-methylguanine and 3-methyladenine from DNA Reacted with the Carcinogen N-methyl-N-nitrosourea

    PubMed Central

    Kirtikar, D. M.; Goldthwait, D. A.

    1974-01-01

    Endonuclease II (deoxyribonucleate oligonucleotidohydrolase, EC 3.1.4.30) of Escherichia coli has been shown to break phosphodiester bonds in alkylated DNA and depurinated DNA. The hypothesis that depurination is a step in the mechanism of the reaction with alkylated DNA is supported by in vitro experiments with DNA reacted with N-methyl-N-nitrosourea. Endonuclease II releases O6-methylguanine and 3-methyladenine, but not 7-methylguanine, from DNA that has been methylated by the carcinogen N-methyl-N-nitrosourea. PMID:4600266

  7. Differential DNA methylation at conserved non-genic elements and evidence for transgenerational inheritance following developmental exposure to mono(2-ethylhexyl) phthalate and 5-azacytidine in zebrafish.

    PubMed

    Kamstra, Jorke H; Sales, Liana Bastos; Aleström, Peter; Legler, Juliette

    2017-01-01

    Exposure to environmental stressors during development may lead to latent and transgenerational adverse health effects. To understand the role of DNA methylation in these effects, we used zebrafish as a vertebrate model to investigate heritable changes in DNA methylation following chemical-induced stress during early development. We exposed zebrafish embryos to non-embryotoxic concentrations of the biologically active phthalate metabolite mono(2-ethylhexyl) phthalate (MEHP, 30 µM) and the DNA methyltransferase 1 inhibitor 5-azacytidine (5AC, 10 µM). Direct, latent and transgenerational effects on DNA methylation were assessed using global, genome-wide and locus-specific DNA methylation analyses. Following direct exposure in zebrafish embryos from 0 to 6 days post-fertilization, genome-wide analysis revealed a multitude of differentially methylated regions, strongly enriched at conserved non-genic elements for both compounds. Pathways involved in adipogenesis were enriched with the putative obesogenic compound MEHP. Exposure to 5AC resulted in enrichment of pathways involved in embryonic development and transgenerational effects on larval body length. Locus-specific methylation analysis of 10 differentially methylated sites revealed six of these loci differentially methylated in sperm sampled from adult zebrafish exposed during development to 5AC, and in first and second generation larvae. With MEHP, consistent changes were found at 2 specific loci in first and second generation larvae. Our results suggest a functional role for DNA methylation on cis-regulatory conserved elements following developmental exposure to compounds. Effects on these regions are potentially transferred to subsequent generations.

  8. New strategy to address DNA-methyl transferase activity in ovarian cancer cell cultures by monitoring the formation of 5-methylcytosine using HPLC-UV.

    PubMed

    Iglesias González, T; Blanco-González, E; Montes-Bayón, M

    2016-08-15

    Methylation of mammalian genomic DNA is catalyzed by DNA methyltransferases (DNMTs). Aberrant expression and activity of these enzymes has been reported to play an important role in the initiation and progression of tumors and its response to chemotherapy. Therefore, there is a great interest in developing strategies to detect human DNMTs activity. We propose a simple, antibody-free, label-free and non-radioactive analytical strategy in which methyltransferase activity is measured trough the determination of the 5-methylcytosine (5mC) content in DNA by a chromatographic method (HPLC-UV) previously developed. For this aim, a correlation between the enzyme activity and the concentration of 5mC obtained by HPLC-UV is previously obtained under optimized conditions using both, un-methylated and hemi-methylated DNA substrates and the prokaryotic methyltransferase M.SssI as model enzyme. The evaluation of the methylation yield in un-methylated known sequences (a 623bp PCR-amplicon) turned to be quantitative (110%) in experiments conducted in-vitro. Methylation of hemi-methylated and low-methylated sequences could be also detected with the proposed approach. The application of the methodology to the determination of the DNMTs activity in nuclear extracts from human ovarian cancer cells has revealed the presence of matrix effects (also confirmed by standard additions) that hampered quantitative enzyme recovery. The obtained results showed the high importance of adequate sample clean-up steps. Copyright © 2016. Published by Elsevier B.V.

  9. Inhibition of O-linked N-acetylglucosamine transferase activity in PC12 cells - A molecular mechanism of organophosphate flame retardants developmental neurotoxicity.

    PubMed

    Gu, Yuxin; Yang, Yu; Wan, Bin; Li, Minjie; Guo, Liang-Hong

    2018-06-01

    Organophosphate flame retardants (OPFRs), as alternatives of brominated flame retardants, can cause neurodevelopmental effects similar to organophosphate pesticides. However, the molecular mechanisms underlying the toxicity remain elusive. O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) regulates numerous neural processes through the O-GlcNAcylation modification of nuclear and cytoplasmic proteins. In this study, we aimed to investigate the molecular mechanisms accounting for the developmental neurotoxicity of OPFRs by identifying potential targets of OPFRs and the attendant effects. Twelve OPFRs were evaluated for inhibition of OGT activity using an electrochemical biosensor. Their potency differed with substituent groups. The alkyl group substituted OPFRs had no inhibitory effect. Instead, the six OPFRs substituted with aromatic or chlorinated alkyl groups inhibited OGT activity significantly, with tri-m-cresyl phosphate (TCrP) being the strongest. The six OPFRs (0-100 μM exposure) also inhibited OGT activity in PC12 cells and decreased protein O-GlcNAcylation level. Inhibition of OGT by OPFRs might be involved in the subsequent toxic effects, including intracellular reactive oxygen species (ROS), calcium level, as well as cell proliferation and autophagy. Molecular docking of the OGT/OPFR complexes provided rationales for the difference in their structure-dependent inhibition potency. Our findings may provide a new biological target of OPFRs in their neurotoxicological actions, which might be a major molecular mechanism of OPFRs developmental neurotoxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Transgenerational, Dynamic Methylation of Stomata Genes in Response to Low Relative Humidity

    PubMed Central

    Tricker, Penny J.; Rodríguez López, Carlos M.; Gibbings, George; Hadley, Paul; Wilkinson, Mike J.

    2013-01-01

    Transgenerational inheritance of abiotic stress-induced epigenetic modifications in plants has potential adaptive significance and might condition the offspring to improve the response to the same stress, but this is at least partly dependent on the potency, penetrance and persistence of the transmitted epigenetic marks. We examined transgenerational inheritance of low Relative Humidity-induced DNA methylation for two gene loci in the stomatal developmental pathway in Arabidopsis thaliana and the abundance of associated short-interfering RNAs (siRNAs). Heritability of low humidity-induced methylation was more predictable and penetrative at one locus (SPEECHLESS, entropy ≤ 0.02; χ2 < 0.001) than the other (FAMA, entropy ≤ 0.17; χ2 ns). Methylation at SPEECHLESS correlated positively with the continued presence of local siRNAs (r2 = 0.87; p = 0.013) which, however, could be disrupted globally in the progeny under repeated stress. Transgenerational methylation and a parental low humidity-induced stomatal phenotype were heritable, but this was reversed in the progeny under repeated treatment in a previously unsuspected manner. PMID:23531533

  11. Biomarkers of Fatigue: Metabolomics Profiles Predictive of Cognitive Performance

    DTIC Science & Technology

    2013-05-01

    metabolites. The latest version of the Human Metabolome Database (v. 2.5; released August , 2009) includes approximately 8,000 identified mammalian...monoamine oxidase; COMT , catechol-O-methyl transferase. (Modiefied from Rubí and Maechler, 2010). Ovals indicate metabolites found to be significantly

  12. Dielectric and optical study of poly (methyl methacrylate) (PMMA) / Fe2O3 films

    NASA Astrophysics Data System (ADS)

    Anita, Chimankar, O. P.; Bansod, A. R.; Sannakki, Basavaraja

    2013-06-01

    Organic/inorganic polymer composite films containing poly (methyl-methacrylate) (PMMA)/ ferric oxide Fe2O3 were prepared following solution casting technique. Dielectric Properties of films has been studied using LCR meter at room temperature 26°C. Also optical properties have been studied using digital abbey refractometer. The dielectric behavior of films have been studied as a function of concentration, and at lower frequencies over the range 100 Hz-25 KHz, The results elucidate that 70:30 and 50:50 wt% of PMMA/Fe2O3 composite films posses optimal conducting properties due to observed electronic polarisability dip at 40Wt% of Fe2O3.

  13. Catalytic Activity of Nanosized CuO-ZnO Supported on Titanium Chips in Hydrogenation of Carbon Dioxide to Methyl Alcohol.

    PubMed

    Ahn, Ho-Geun; Lee, Hwan-Gyu; Chung, Min-Chul; Park, Kwon-Pil; Kim, Ki-Joong; Kang, Byeong-Mo; Jeong, Woon-Jo; Jung, Sang-Chul; Lee, Do-Jin

    2016-02-01

    In this study, titanium chips (TC) generated from industrial facilities was utilized as TiO2 support for hydrogenation of carbon dioxide (CO2) to methyl alcohol (CH3OH) over Cu-based catalysts. Nano-sized CuO and ZnO catalysts were deposited on TiO2 support using a co-precipitation (CP) method (CuO-ZnO/TiO2), where the thermal treatment of TC and the particle size of TiC2 are optimized on CO2 conversion under different reaction temperature and contact time. Direct hydrogenation of CO2 to CH3OH over CuO-ZnO/TiO2 catalysts was achieved and the maximum selectivity (22%) and yield (18.2%) of CH3OH were obtained in the range of reaction temperature 210-240 degrees C under the 30 bar. The selectivity was readily increased by increasing the flow rate, which does not affect much to the CO2 conversion and CH3OH yield.

  14. 40 CFR 721.10356 - Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-. 721.10356 Section 721.10356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  15. 40 CFR 721.10356 - Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-. 721.10356 Section 721.10356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  16. 40 CFR 721.10356 - Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-. 721.10356 Section 721.10356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  17. Functional Characterization of Lpt3 and Lpt6, the Inner-Core Lipooligosaccharide Phosphoethanolamine Transferases from Neisseria meningitidis▿

    PubMed Central

    Wenzel, Cory Q.; St. Michael, Frank; Stupak, Jacek; Li, Jianjun; Cox, Andrew D.; Richards, James C.

    2010-01-01

    The lipooligosaccharide (LOS) of Neisseria meningitidis contains heptose (Hep) residues that are modified with phosphoethanolamine (PEtn) at the 3 (3-PEtn) and/or 6 (6-PEtn) position. The lpt3 (NMB2010) and lpt6 (NMA0408) genes of N. meningitidis, which are proposed to encode the required HepII 3- and 6-PEtn transferases, respectively, were cloned and overexpressed as C-terminally polyhistidine-tagged fusion proteins in Escherichia coli and found to localize to the inner membrane, based on sucrose density gradient centrifugation. Lpt3-His6 and Lpt6-His6 were purified from Triton X-100-solubilized membranes by nickel chelation chromatography, and dot blot analysis of enzymatic reactions with 3-PEtn- and 6-PEtn-specific monoclonal antibodies demonstrated conclusively that Lpt3 and Lpt6 are phosphatidylethanolamine-dependent LOS HepII 3- and 6-PEtn transferases, respectively, and that both enzymes are capable of transferring PEtn to both fully acylated LOS and de-O-acylated (de-O-Ac) LOS. Further enzymatic studies using capillary electrophoresis-mass spectrometry (MS) demonstrated that both Lpt3 and Lpt6 are capable of transferring PEtn to de-O-Ac LOS molecules already containing PEtn at the 6 and 3 positions of HepII, respectively, demonstrating that there is no obligate order of PEtn addition in the generation of 3,6-di-PEtn LOS moieties in vitro. PMID:19854897

  18. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.

    PubMed

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat

    2017-03-15

    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH 2 O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Detection and evaluation of DNA methylation markers found at SCGN and KLF14 loci to estimate human age.

    PubMed

    Alghanim, Hussain; Antunes, Joana; Silva, Deborah Soares Bispo Santos; Alho, Clarice Sampaio; Balamurugan, Kuppareddi; McCord, Bruce

    2017-11-01

    Recent developments in the analysis of epigenetic DNA methylation patterns have demonstrated that certain genetic loci show a linear correlation with chronological age. It is the goal of this study to identify a new set of epigenetic methylation markers for the forensic estimation of human age. A total number of 27 CpG sites at three genetic loci, SCGN, DLX5 and KLF14, were examined to evaluate the correlation of their methylation status with age. These sites were evaluated using 72 blood samples and 91 saliva samples collected from volunteers with ages ranging from 5 to 73 years. DNA was bisulfite modified followed by PCR amplification and pyrosequencing to determine the level of DNA methylation at each CpG site. In this study, certain CpG sites in SCGN and KLF14 loci showed methylation levels that were correlated with chronological age, however, the tested CpG sites in DLX5 did not show a correlation with age. Using a 52-saliva sample training set, two age-predictor models were developed by means of a multivariate linear regression analysis for age prediction. The two models performed similarly with a single-locus model explaining 85% of the age variance at a mean absolute deviation of 5.8 years and a dual-locus model explaining 84% of the age variance with a mean absolute deviation of 6.2 years. In the validation set, the mean absolute deviation was measured to be 8.0 years and 7.1 years for the single- and dual-locus model, respectively. Another age predictor model was also developed using a 40-blood sample training set that accounted for 71% of the age variance. This model gave a mean absolute deviation of 6.6 years for the training set and 10.3years for the validation set. The results indicate that specific CpGs in SCGN and KLF14 can be used as potential epigenetic markers to estimate age using saliva and blood specimens. These epigenetic markers could provide important information in cases where the determination of a suspect's age is critical in developing

  20. Methyl Transfer by Substrate Signaling from a Knotted Protein Fold

    PubMed Central

    Christian, Thomas; Sakaguchi, Reiko; Perlinska, Agata P.; Lahoud, Georges; Ito, Takuhiro; Taylor, Erika A.; Yokoyama, Shigeyuki; Sulkowska, Joanna I.; Hou, Ya-Ming

    2017-01-01

    Proteins with knotted configurations are restricted in conformational space relative to unknotted proteins. Little is known if knotted proteins have sufficient dynamics to communicate between spatially separated substrate-binding sites. In bacteria, TrmD is a methyl transferase that uses a knotted protein fold to catalyze methyl transfer from S-adenosyl methionine (AdoMet) to G37-tRNA. The product m1G37-tRNA is essential for life as a determinant to maintain protein synthesis reading-frame. Using an integrated approach of structure, kinetic, and computational analysis, we show here that the structurally constrained TrmD knot is required for its catalytic activity. Unexpectedly, the TrmD knot has complex internal movements that respond to AdoMet binding and signaling. Most of the signaling propagates the free energy of AdoMet binding to stabilize tRNA binding and to assemble the active site. This work demonstrates new principles of knots as an organized structure that captures the free energies of substrate binding to facilitate catalysis. PMID:27571175

  1. Genome-wide DNA methylation analysis of transient neonatal diabetes type 1 patients with mutations in ZFP57.

    PubMed

    Bak, Mads; Boonen, Susanne E; Dahl, Christina; Hahnemann, Johanne M D; Mackay, Deborah J D G; Tümer, Zeynep; Grønskov, Karen; Temple, I Karen; Guldberg, Per; Tommerup, Niels

    2016-04-14

    Transient neonatal diabetes mellitus 1 (TNDM1) is a rare imprinting disorder characterized by intrautering growth retardation and diabetes mellitus usually presenting within the first six weeks of life and resolves by the age of 18 months. However, patients have an increased risk of developing diabetes mellitus type 2 later in life. Transient neonatal diabetes mellitus 1 is caused by overexpression of the maternally imprinted genes PLAGL1 and HYMAI on chromosome 6q24. One of the mechanisms leading to overexpression of the locus is hypomethylation of the maternal allele of PLAGL1 and HYMAI. A subset of patients with maternal hypomethylation at PLAGL1 have hypomethylation at additional imprinted loci throughout the genome, including GRB10, ZIM2 (PEG3), MEST (PEG1), KCNQ1OT1 and NESPAS (GNAS-AS1). About half of the TNDM1 patients carry mutations in ZFP57, a transcription factor involved in establishment and maintenance of methylation of imprinted loci. Our objective was to investigate whether additional regions are aberrantly methylated in ZFP57 mutation carriers. Genome-wide DNA methylation analysis was performed on four individuals with homozygous or compound heterozygous ZFP57 mutations, three relatives with heterozygous ZFP57 mutations and five controls. Methylation status of selected regions showing aberrant methylation in the patients was verified using bisulfite-sequencing. We found large variability among the patients concerning the number and identity of the differentially methylated regions, but more than 60 regions were aberrantly methylated in two or more patients and a novel region within PPP1R13L was found to be hypomethylated in all the patients. The hypomethylated regions in common between the patients are enriched for the ZFP57 DNA binding motif. We have expanded the epimutational spectrum of TNDM1 associated with ZFP57 mutations and found one novel region within PPP1R13L which is hypomethylated in all TNDM1 patients included in this study. Functional

  2. Speaking rate effects on locus equation slope.

    PubMed

    Berry, Jeff; Weismer, Gary

    2013-11-01

    A locus equation describes a 1st order regression fit to a scatter of vowel steady-state frequency values predicting vowel onset frequency values. Locus equation coefficients are often interpreted as indices of coarticulation. Speaking rate variations with a constant consonant-vowel form are thought to induce changes in the degree of coarticulation. In the current work, the hypothesis that locus slope is a transparent index of coarticulation is examined through the analysis of acoustic samples of large-scale, nearly continuous variations in speaking rate. Following the methodological conventions for locus equation derivation, data pooled across ten vowels yield locus equation slopes that are mostly consistent with the hypothesis that locus equations vary systematically with coarticulation. Comparable analyses between different four-vowel pools reveal variations in the locus slope range and changes in locus slope sensitivity to rate change. Analyses across rate but within vowels are substantially less consistent with the locus hypothesis. Taken together, these findings suggest that the practice of vowel pooling exerts a non-negligible influence on locus outcomes. Results are discussed within the context of articulatory accounts of locus equations and the effects of speaking rate change.

  3. Epigenetic DNA Methylation Profiling with MSRE: A Quantitative NGS Approach Using a Parkinson's Disease Test Case

    PubMed Central

    Marsh, Adam G.; Cottrell, Matthew T.; Goldman, Morton F.

    2016-01-01

    Epigenetics is a rapidly developing field focused on deciphering chemical fingerprints that accumulate on human genomes over time. As the nascent idea of precision medicine expands to encompass epigenetic signatures of diagnostic and prognostic relevance, there is a need for methodologies that provide high-throughput DNA methylation profiling measurements. Here we report a novel quantification methodology for computationally reconstructing site-specific CpG methylation status from next generation sequencing (NGS) data using methyl-sensitive restriction endonucleases (MSRE). An integrated pipeline efficiently incorporates raw NGS metrics into a statistical discrimination platform to identify functional linkages between shifts in epigenetic DNA methylation and disease phenotypes in samples being analyzed. In this pilot proof-of-concept study we quantify and compare DNA methylation in blood serum of individuals with Parkinson's Disease relative to matched healthy blood profiles. Even with a small study of only six samples, a high degree of statistical discrimination was achieved based on CpG methylation profiles between groups, with 1008 statistically different CpG sites (p < 0.0025, after false discovery rate correction). A methylation load calculation was used to assess higher order impacts of methylation shifts on genes and pathways and most notably identified FGF3, FGF8, HTT, KMTA5, MIR8073, and YWHAG as differentially methylated genes with high relevance to Parkinson's Disease and neurodegeneration (based on PubMed literature citations). Of these, KMTA5 is a histone methyl-transferase gene and HTT is Huntington Disease Protein or Huntingtin, for which there are well established neurodegenerative impacts. The future need for precision diagnostics now requires more tools for exploring epigenetic processes that may be linked to cellular dysfunction and subsequent disease progression. PMID:27853465

  4. The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome.

    PubMed

    Stelzer, Yonatan; Sagi, Ido; Yanuka, Ofra; Eiges, Rachel; Benvenisty, Nissim

    2014-06-01

    Parental imprinting is a form of epigenetic regulation that results in parent-of-origin differential gene expression. To study Prader-Willi syndrome (PWS), a developmental imprinting disorder, we generated case-derived induced pluripotent stem cells (iPSCs) harboring distinct aberrations in the affected region on chromosome 15. In studying PWS-iPSCs and human parthenogenetic iPSCs, we unexpectedly found substantial upregulation of virtually all maternally expressed genes (MEGs) in the imprinted DLK1-DIO3 locus on chromosome 14. Subsequently, we determined that IPW, a long noncoding RNA in the critical region of the PWS locus, is a regulator of the DLK1-DIO3 region, as its overexpression in PWS and parthenogenetic iPSCs resulted in downregulation of MEGs in this locus. We further show that gene expression changes in the DLK1-DIO3 region coincide with chromatin modifications rather than DNA methylation levels. Our results suggest that a subset of PWS phenotypes may arise from dysregulation of an imprinted locus distinct from the PWS region.

  5. Epigenome confrontation triggers immediate reprogramming of DNA methylation and transposon silencing in Arabidopsis thaliana F1 epihybrids

    PubMed Central

    Rigal, Mélanie; Becker, Claude; Pélissier, Thierry; Pogorelcnik, Romain; Devos, Jane; Ikeda, Yoko; Weigel, Detlef; Mathieu, Olivier

    2016-01-01

    Genes and transposons can exist in variable DNA methylation states, with potentially differential transcription. How these epialleles emerge is poorly understood. Here, we show that crossing an Arabidopsis thaliana plant with a hypomethylated genome and a normally methylated WT individual results, already in the F1 generation, in widespread changes in DNA methylation and transcription patterns. Novel nonparental and heritable epialleles arise at many genic loci, including a locus that itself controls DNA methylation patterns, but with most of the changes affecting pericentromeric transposons. Although a subset of transposons show immediate resilencing, a large number display decreased DNA methylation, which is associated with de novo or enhanced transcriptional activation and can translate into transposon mobilization in the progeny. Our findings reveal that the combination of distinct epigenomes can be viewed as an epigenomic shock, which is characterized by a round of epigenetic variation creating novel patterns of gene and TE regulation. PMID:27001853

  6. Methylation of ribonucleic acid by the carcinogens dimethyl sulphate, N-methyl-N-nitrosourea and N-methyl-N′-nitro-N-nitrosoguanidine. Comparisons of chemical analyses at the nucleoside and base levels

    PubMed Central

    Lawley, P. D.; Shah, S. A.

    1972-01-01

    1. The following methods for hydrolysis of methyl-14C-labelled RNA, and for chromatographic isolation and determination of the products, were investigated: enzymic digestion to nucleosides at pH6 or 8; alkaline hydrolysis and conversion into nucleosides; hydrolysis by acid to pyrimidine nucleotides and purine bases, or completely to bases; chromatography on Dowex 50 (NH4+ form) at pH6 or 8.9, or on Dowex 50 (H+ form), or on Sephadex G-10. 2. The suitability of the various methods for determination of methylation products was assessed. The principal product, 7-methylguanosine, was unstable under the conditions used for determinations of nucleosides. 3- and 7-Methyladenine and 3- and 7-methylguanine are best determined as bases; 1-methyladenine and 3-methylcytosine can be isolated as either nucleosides or bases; O6-methylguanine is unstable under the acid hydrolysis conditions used and can be determined as the nucleoside; 3-methyluracil was detected, but may be derived from methylation of the ionized form of uracil. 3. Differences between the patterns of methylation of RNA and homopolyribonucleotides by the N-methyl-N-nitroso compounds and dimethyl sulphate were found: the nitroso compounds were able to methylate O-6 of guanine, were relatively more reactive at N-7 of adenine and probably at N-3 of guanine, but less reactive at N-1 of adenine, N-3 of cytosine and probably at N-3 of uridine. They probably reacted more with the ribose–phosphate chain, but no products from this were identified. 4. The possible influences of these differences on biological action of the methylating agents is discussed. Nitroso compounds may differ principally in their ability to induce miscoding in the Watson–Crick sense by reaction at O-6 of guanine. Both types of agent may induce miscoding to a lesser extent through methylation at N-3 of guanine; both can methylate N atoms, presumably preventing Watson–Crick hydrogen-bonding. N-Methyl-N-nitrosourea can degrade RNA, possibly

  7. Electrochemical detection of methylated DNA on a microfluidic chip with nanoelectrokinetic pre-concentration.

    PubMed

    Hong, Sung A; Kim, Yong-June; Kim, Sung Jae; Yang, Sung

    2018-06-01

    DNA methylation is considered to be a promising marker for the early diagnosis and prognosis of cancer. However, direct detection of the methylated DNAs in clinically relevant samples is still challenging because of its extremely low concentration (~fM). Here, an integrated microfluidic chip is reported, which is capable of pre-concentrating the methylated DNAs using ion concentration polarization (ICP) and electrochemically detecting the pre-concentrated DNAs on a single chip. The proposed chip is the first demonstration of an electrochemical detection of both level and concentration of the methylated DNAs by integrating a DNA pre-concentration unit without gene amplification. Using the proposed chip, 500 fM to 500 nM of methylated DNAs is pre-concentrated by almost 100-fold in 10 min, resulting in a drastic improvement of the electrochemical detection threshold down to the fM level. The proposed chip is able to measure not only the DNA concentration, but also the level of methylation using human urine sample by performing a consecutive electrochemical sensing on a chip. For clinical application, the level as well as the concentration of methylation of glutathione-S transferase-P1 (GSTP1) and EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1), which are known to be closely associated with prostate cancer diagnosis, are electrochemically detected in human urine spiked with these genes. The developed chip shows a limit of detection (LoD) of 7.9 pM for GSTP1 and 11.8 pM for EFEMP1 and is able to detect the level of methylation in a wide range from 10% to 100% with the concentration variation from 50 pM to 500 nM. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Interfacial hydrothermal synthesis of SnO{sub 2} nanorods towards photocatalytic degradation of methyl orange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, L.R., E-mail: houlr629@163.com; Lian, L.; Zhou, L.

    2014-12-15

    Highlights: • Efficient interfacial hydrothermal strategy was developed. • 1D SnO{sub 2} nanorods as an advanced photocatalyst. • SnO{sub 2} nanorods exhibit photocatalytic degradation of the MO. - Abstract: One-dimensional (1D) SnO{sub 2} nanorods (NRs) have been successfully synthesized by means of an efficient interfacial hydrothermal strategy. The resulting product was physically characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscope, etc. The as-fabricated SnO{sub 2} NRs exhibited excellent photocatalytic degradation of the methyl orange with high degradation efficiency of 99.3% with only 60 min ultra violet light irradiation. Meanwhile, the 1D SnO{sub 2} NRs exhibited intriguing photostabilitymore » after four recycles.« less

  9. Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters.

    PubMed

    Grunseich, Christopher; Wang, Isabel X; Watts, Jason A; Burdick, Joshua T; Guber, Robert D; Zhu, Zhengwei; Bruzel, Alan; Lanman, Tyler; Chen, Kelian; Schindler, Alice B; Edwards, Nancy; Ray-Chaudhury, Abhik; Yao, Jianhua; Lehky, Tanya; Piszczek, Grzegorz; Crain, Barbara; Fischbeck, Kenneth H; Cheung, Vivian G

    2018-02-01

    R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor β (TGF-β), is reduced; that then leads to the activation of the TGF-β pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans

    PubMed Central

    Houtepen, Lotte C.; Vinkers, Christiaan H.; Carrillo-Roa, Tania; Hiemstra, Marieke; van Lier, Pol A.; Meeus, Wim; Branje, Susan; Heim, Christine M.; Nemeroff, Charles B.; Mill, Jonathan; Schalkwyk, Leonard C.; Creyghton, Menno P.; Kahn, René S.; Joëls, Marian; Binder, Elisabeth B.; Boks, Marco P. M.

    2016-01-01

    DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8 × 10−6). Replication was obtained in two independent samples using either blood (N=45, P=0.001) or buccal cells (N=255, P=0.004). KITLG methylation strongly mediates the relationship between childhood trauma and cortisol stress reactivity in the discovery sample (32% mediation). Its genomic location, a CpG island shore within an H3K27ac enhancer mark, and the correlation between methylation in the blood and prefrontal cortex provide further evidence that KITLG methylation is functionally relevant for the programming of stress reactivity in the human brain. Our results extend preclinical evidence for epigenetic regulation of stress reactivity to humans and provide leads to enhance our understanding of the neurobiological pathways underlying stress vulnerability. PMID:26997371

  11. GLUTATHIONE S-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE

    EPA Science Inventory

    GLUTATHIONE s-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE. M K Ross1 and R A Pegram2. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill; 2Experimental Toxicology Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangl...

  12. The Arabidopsis O-Linked N-Acetylglucosamine Transferase SPINDLY Interacts with Class I TCPs to Facilitate Cytokinin Responses in Leaves and Flowers[C][W

    PubMed Central

    Steiner, Evyatar; Efroni, Idan; Gopalraj, Manjula; Saathoff, Katie; Tseng, Tong-Seung; Kieffer, Martin; Eshed, Yuval; Olszewski, Neil; Weiss, David

    2012-01-01

    O-linked N-acetylglucosamine (O-GlcNAc) modifications regulate the posttranslational fate of target proteins. The Arabidopsis thaliana O-GlcNAc transferase (OGT) SPINDLY (SPY) suppresses gibberellin signaling and promotes cytokinin (CK) responses by unknown mechanisms. Here, we present evidence that two closely related class I TCP transcription factors, TCP14 and TCP15, act with SPY to promote CK responses. TCP14 and TCP15 interacted with SPY in yeast two-hybrid and in vitro pull-down assays and were O-GlcNAc modified in Escherichia coli by the Arabidopsis OGT, SECRET AGENT. Overexpression of TCP14 severely affected plant development in a SPY-dependent manner and stimulated typical CK morphological responses, as well as the expression of the CK-regulated gene RESPONSE REGULATOR5. TCP14 also promoted the transcriptional activity of the CK-induced mitotic factor CYCLIN B1;2. Whereas TCP14-overexpressing plants were hypersensitive to CK, spy and tcp14 tcp15 double mutant leaves and flowers were hyposensitive to the hormone. Reducing CK levels by overexpressing CK OXIDASE/DEHYDROGENASE3 suppressed the TCP14 overexpression phenotypes, and this suppression was reversed when the plants were treated with exogenous CK. Taken together, we suggest that responses of leaves and flowers to CK are mediated by SPY-dependent TCP14 and TCP15 activities. PMID:22267487

  13. Fluorescent techniques for discovery and characterization of phosphopantetheinyl transferase inhibitors

    PubMed Central

    Kosa, Nicolas M.; Foley, Timothy L.; Burkart, Michael D.

    2016-01-01

    Phosphopantetheinyl transferase (E.C. 2.7.8.-) activates biosynthetic pathways that synthesize both primary and secondary metabolites in bacteria. Inhibitors of these enzymes have the potential to serve as antibiotic compounds that function through a unique mode of action and possess clinical utility. Here we report a direct and continuous assay for this enzyme class based upon monitoring polarization of a fluorescent phosphopantetheine analog as it is transferred from a low molecular weight coenzyme A substrate to higher molecular weight protein acceptor. We demonstrate the utility of this method for the biochemical characterization of phosphopantetheinyl transferase Sfp, a canonical representative from this class. We also establish the portability of this technique to other homologs by adapting the assay to function with the human phosphopantetheinyl transferase, a target for which a microplate detection method does not currently exist. Comparison of these targets provides a basis to predict therapeutic index of inhibitor candidates and offers a valuable characterization of enzyme activity. PMID:24192555

  14. LBH Gene Transcription Regulation by the Interplay of an Enhancer Risk Allele and DNA Methylation in Rheumatoid Arthritis.

    PubMed

    Hammaker, Deepa; Whitaker, John W; Maeshima, Keisuke; Boyle, David L; Ekwall, Anna-Karin H; Wang, Wei; Firestein, Gary S

    2016-11-01

    To identify nonobvious therapeutic targets for rheumatoid arthritis (RA), we performed an integrative analysis incorporating multiple "omics" data and the Encyclopedia of DNA Elements (ENCODE) database for potential regulatory regions. This analysis identified the limb bud and heart development (LBH) gene, which has risk alleles associated with RA/celiac disease and lupus, and can regulate cell proliferation in RA. We identified a novel LBH transcription enhancer with an RA risk allele (rs906868 G [Ref]/T) 6 kb upstream of the LBH gene with a differentially methylated locus. The confluence of 3 regulatory elements, rs906868, an RA differentially methylated locus, and a putative enhancer, led us to investigate their effects on LBH regulation in fibroblast-like synoviocytes (FLS). We cloned the 1.4-kb putative enhancer with either the rs906868 Ref allele or single-nucleotide polymorphism (SNP) variant into reporter constructs. The constructs were methylated in vitro and transfected into cultured FLS by nucleofection. We found that both variants increased transcription, thereby confirming the region's enhancer function. Unexpectedly, the transcriptional activity of the Ref risk allele was significantly lower than that of the SNP variant and is consistent with low LBH levels as a risk factor for aggressive FLS behavior. Using RA FLS lines with a homozygous Ref or SNP allele, we confirmed that homozygous Ref lines expressed lower LBH messenger RNA levels than did the SNP lines. Methylation significantly reduced enhancer activity for both alleles, indicating that enhancer function is dependent on its methylation status. This study shows how the interplay between genetics and epigenetics can affect expression of LBH in RA. © 2016, American College of Rheumatology.

  15. Bioavailability of methyl parathion adsorbed on clay minerals and iron oxide.

    PubMed

    Cai, Peng; He, Xiaomin; Xue, Aifang; Chen, Hao; Huang, Qiaoyun; Yu, Jun; Rong, Xinming; Liang, Wei

    2011-01-30

    Adsorption, desorption and degradation by Pseudomonas putida of methyl parathion (O,O-dimethyl O-p-nitrophenyl phosphorothioate) on montmorillonite, kaolinite and goethite were studied. Metabolic activities of methyl parathion-degrading bacteria P. putida in the presence of minerals were also monitored by microcalorimetry to determine the degradation mechanism of methyl parathion. Montmorillonite presented higher adsorption capacity and affinity for methyl parathion than kaolinite and goethite. The percentage of degradation of methyl parathion adsorbed on minerals by P. putida was in the order of montmorillonite>kaolinite>goethite. The presence of minerals inhibited the exponential growth and the metabolic activity of P. putida. Among the examined minerals, goethite exhibited the greatest inhibitory effect on bacterial activity, while montmorillonite was the least depressing. The biodegradation of adsorbed methyl parathion by P. putida is apparently not controlled by the adsorption affinity of methyl parathion on minerals and may be mainly governed by the activity of the methyl parathion-degrading bacteria. The information obtained in this study is of fundamental significance for the understanding of the behavior of methyl parathion in soil environments. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Vapor Pressure of Methyl Salicylate and n-Hexadecane

    DTIC Science & Technology

    2014-01-01

    VAPOR PRESSURE OF METHYL SALICYLATE AND N-HEXADECANE ECBC-TR-1184 David E. Tevault Leonard C. Buettner...REPORT TYPE Final 3. DATES COVERED (From - To) Mar 2000-Dec 2001 4. TITLE AND SUBTITLE Vapor Pressure of Methyl Salicylate and n-Hexadecane 5a...ABSTRACT Vapor pressure data are reported for O-hydroxybenzoic acid, methyl ester, more commonly known as methyl salicylate (MeS), and n-hexadecane in

  17. Methylation of yeast ribosomal protein Rpl3 promotes translational elongation fidelity.

    PubMed

    Al-Hadid, Qais; Roy, Kevin; Chanfreau, Guillaume; Clarke, Steven G

    2016-04-01

    Rpl3, a highly conserved ribosomal protein, is methylated at histidine 243 by the Hpm1 methyltransferase in Saccharomyces cerevisiae. Histidine 243 lies close to the peptidyl transferase center in a functionally important region of Rpl3 designated as the basic thumb that coordinates the decoding, peptidyl transfer, and translocation steps of translation elongation. Hpm1 was recently implicated in ribosome biogenesis and translation. However, the biological role of methylation of its Rpl3 substrate has not been identified. Here we interrogate the role of Rpl3 methylation at H243 by investigating the functional impact of mutating this histidine residue to alanine (rpl3-H243A). Akin to Hpm1-deficient cells, rpl3-H243A cells accumulate 35S and 23S pre-rRNA precursors to a similar extent, confirming an important role for histidine methylation in pre-rRNA processing. In contrast, Hpm1-deficient cells but not rpl3-H243A mutants show perturbed levels of ribosomal subunits. We show that Hpm1 has multiple substrates in different subcellular fractions, suggesting that methylation of proteins other than Rpl3 may be important for controlling ribosomal subunit levels. Finally, translational fidelity assays demonstrate that like Hpm1-deficient cells, rpl3-H243A mutants have defects in translation elongation resulting in decreased translational accuracy. These data suggest that Rpl3 methylation at H243 is playing a significant role in translation elongation, likely via the basic thumb, but has little impact on ribosomal subunit levels. Hpm1 is therefore a multifunctional methyltransferase with independent roles in ribosome biogenesis and translation. © 2016 Al-Hadid et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. Impact of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and MGMT expression on dacarbazine resistance of Hodgkin's lymphoma cells.

    PubMed

    Kewitz, Stefanie; Stiefel, Martina; Kramm, Christof M; Staege, Martin S

    2014-01-01

    We analyzed the methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter and mRNA expression in HL cells and assessed the response of these cells to dacarbazine. Expression of MGMT correlated with the presence of non-methylated promoters and cell lines with non-methylated promoters showed increased resistance against dacarbazine. KM-H2 cells expressed fusion transcripts between MGMT and proline-rich coiled-coil 2B (PRRC2B) but no wild type MGMT transcripts. Dacarbazine sensitivity suggested that fusion transcripts are translated into a protein with reduced functionality. MGMT promoter methylation predicts dacarbazine sensitivity of HL cells and it might be interesting to analyze this factor in HL patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A Putative O-Linked β-N-Acetylglucosamine Transferase Is Essential for Hormogonium Development and Motility in the Filamentous Cyanobacterium Nostoc punctiforme.

    PubMed

    Khayatan, Behzad; Bains, Divleen K; Cheng, Monica H; Cho, Ye Won; Huynh, Jessica; Kim, Rachelle; Omoruyi, Osagie H; Pantoja, Adriana P; Park, Jun Sang; Peng, Julia K; Splitt, Samantha D; Tian, Mason Y; Risser, Douglas D

    2017-05-01

    Most species of filamentous cyanobacteria are capable of gliding motility, likely via a conserved type IV pilus-like system that may also secrete a motility-associated polysaccharide. In a subset of these organisms, motility is achieved only after the transient differentiation of hormogonia, which are specialized filaments that enter a nongrowth state dedicated to motility. Despite the fundamental importance of hormogonia to the life cycles of many filamentous cyanobacteria, the molecular regulation of hormogonium development is largely undefined. To systematically identify genes essential for hormogonium development and motility in the model heterocyst-forming filamentous cyanobacterium Nostoc punctiforme , a forward genetic screen was employed. The first gene identified using this screen, designated ogtA , encodes a putative O-linked β- N -acetylglucosamine transferase (OGT). The deletion of ogtA abolished motility, while ectopic expression of ogtA induced hormogonium development even under hormogonium-repressing conditions. Transcription of ogtA is rapidly upregulated (1 h) following hormogonium induction, and an OgtA-GFPuv fusion protein localized to the cytoplasm. In developing hormogonia, accumulation of PilA but not HmpD is dependent on ogtA Reverse transcription-quantitative PCR (RT-qPCR) analysis indicated equivalent levels of pilA transcript in the wild-type and Δ ogtA mutant strains, while a reporter construct consisting of the intergenic region in the 5' direction of pilA fused to gfp produced lower levels of fluorescence in the Δ ogtA mutant strain than in the wild type. The production of hormogonium polysaccharide in the Δ ogtA mutant strain is reduced compared to that in the wild type but comparable to that in a pilA deletion strain. Collectively, these results imply that O -GlcNAc protein modification regulates the accumulation of PilA via a posttranscriptional mechanism in developing hormogonia. IMPORTANCE Filamentous cyanobacteria are among

  20. Combinatorial Therapy with Acetylation and Methylation Modifiers Attenuates Lung Vascular Hyperpermeability in Endotoxemia-Induced Mouse Inflammatory Lung Injury

    PubMed Central

    Thangavel, Jayakumar; Malik, Asrar B.; Elias, Harold K.; Rajasingh, Sheeja; Simpson, Andrew D.; Sundivakkam, Premanand K.; Vogel, Stephen M.; Xuan, Yu-Ting; Dawn, Buddhadeb; Rajasingh, Johnson

    2015-01-01

    Impairment of tissue fluid homeostasis and migration of inflammatory cells across the vascular endothelial barrier are crucial factors in the pathogenesis of acute lung injury (ALI). The goal for treatment of ALI is to target pathways that lead to profound dysregulation of the lung endothelial barrier. Although studies have shown that chemical epigenetic modifiers can limit lung inflammation in experimental ALI models, studies to date have not examined efficacy of a combination of DNA methyl transferase inhibitor 5-Aza 2-deoxycytidine and histone deacetylase inhibitor trichostatin A (herein referred to as Aza+TSA) after endotoxemia-induced mouse lung injury. We tested the hypothesis that treatment with Aza+TSA after lipopolysaccharide induction of ALI through epigenetic modification of lung endothelial cells prevents inflammatory lung injury. Combinatorial treatment with Aza+TSA mitigated the increased endothelial permeability response after lipopolysaccharide challenge. In addition, we observed reduced lung inflammation and lung injury. Aza+TSA also significantly reduced mortality in the ALI model. The protection was ascribed to inhibition of the eNOS-Cav1-MLC2 signaling pathway and enhanced acetylation of histone markers on the vascular endothelial-cadherin promoter. In summary, these data show for the first time the efficacy of combinatorial Aza+TSA therapy in preventing ALI in lipopolysaccharide-induced endotoxemia and raise the possibility of an essential role of DNA methyl transferase and histone deacetylase in the mechanism of ALI. PMID:24929240

  1. Methylation mediated by an anthocyanin, O-methyltransferase, is involved in purple flower coloration in Paeonia

    PubMed Central

    Du, Hui; Wu, Jie; Ji, Kui-Xian; Zeng, Qing-Yin; Bhuiya, Mohammad-Wadud; Su, Shang; Shu, Qing-Yan; Ren, Hong-Xu; Liu, Zheng-An; Wang, Liang-Sheng

    2015-01-01

    Anthocyanins are major pigments in plants. Methylation plays a role in the diversity and stability of anthocyanins. However, the contribution of anthocyanin methylation to flower coloration is still unclear. We identified two homologous anthocyanin O-methyltransferase (AOMT) genes from purple-flowered (PsAOMT) and red-flowered (PtAOMT) Paeonia plants, and we performed functional analyses of the two genes in vitro and in vivo. The critical amino acids for AOMT catalytic activity were studied by site-directed mutagenesis. We showed that the recombinant proteins, PsAOMT and PtAOMT, had identical substrate preferences towards anthocyanins. The methylation activity of PsAOMT was 60 times higher than that of PtAOMT in vitro. Interestingly, this vast difference in catalytic activity appeared to result from a single amino acid residue substitution at position 87 (arginine to leucine). There were significant differences between the 35S::PsAOMT transgenic tobacco and control flowers in relation to their chromatic parameters, which further confirmed the function of PsAOMT in vivo. The expression levels of the two homologous AOMT genes were consistent with anthocyanin accumulation in petals. We conclude that AOMTs are responsible for the methylation of cyanidin glycosides in Paeonia plants and play an important role in purple coloration in Paeonia spp. PMID:26208646

  2. LuxGLM: a probabilistic covariate model for quantification of DNA methylation modifications with complex experimental designs

    PubMed Central

    Äijö, Tarmo; Yue, Xiaojing; Rao, Anjana; Lähdesmäki, Harri

    2016-01-01

    Motivation: 5-methylcytosine (5mC) is a widely studied epigenetic modification of DNA. The ten-eleven translocation (TET) dioxygenases oxidize 5mC into oxidized methylcytosines (oxi-mCs): 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). DNA methylation modifications have multiple functions. For example, 5mC is shown to be associated with diseases and oxi-mC species are reported to have a role in active DNA demethylation through 5mC oxidation and DNA repair, among others, but the detailed mechanisms are poorly understood. Bisulphite sequencing and its various derivatives can be used to gain information about all methylation modifications at single nucleotide resolution. Analysis of bisulphite based sequencing data is complicated due to the convoluted read-outs and experiment-specific variation in biochemistry. Moreover, statistical analysis is often complicated by various confounding effects. How to analyse 5mC and oxi-mC data sets with arbitrary and complex experimental designs is an open and important problem. Results: We propose the first method to quantify oxi-mC species with arbitrary covariate structures from bisulphite based sequencing data. Our probabilistic modeling framework combines a previously proposed hierarchical generative model for oxi-mC-seq data and a general linear model component to account for confounding effects. We show that our method provides accurate methylation level estimates and accurate detection of differential methylation when compared with existing methods. Analysis of novel and published data gave insights into to the demethylation of the forkhead box P3 (Foxp3) locus during the induced T regulatory cell differentiation. We also demonstrate how our covariate model accurately predicts methylation levels of the Foxp3 locus. Collectively, LuxGLM method improves the analysis of DNA methylation modifications, particularly for oxi-mC species. Availability and Implementation: An implementation of the

  3. Computational Investigation of the Interplay of Substrate Positioning and Reactivity in Catechol O-Methyltransferase

    PubMed Central

    Patra, Niladri; Ioannidis, Efthymios I.

    2016-01-01

    Catechol O-methyltransferase (COMT) is a SAM- and Mg2+-dependent methyltransferase that regulates neurotransmitters through methylation. Simulations and experiments have identified divergent catecholamine substrate orientations in the COMT active site: molecular dynamics simulations have favored a monodentate coordination of catecholate substrates to the active site Mg2+, and crystal structures instead preserve bidentate coordination along with short (2.65 Å) methyl donor-acceptor distances. We carry out longer dynamics (up to 350 ns) to quantify interconversion between bidentate and monodentate binding poses. We provide a systematic determination of the relative free energy of the monodentate and bidentate structures in order to identify whether structural differences alter the nature of the methyl transfer mechanism and source of enzymatic rate enhancement. We demonstrate that the bidentate and monodentate binding modes are close in energy but separated by a 7 kcal/mol free energy barrier. Analysis of interactions in the two binding modes reveals that the driving force for monodentate catecholate orientations in classical molecular dynamics simulations is derived from stronger electrostatic stabilization afforded by alternate Mg2+ coordination with strongly charged active site carboxylates. Mixed semi-empirical-classical (SQM/MM) substrate C-O distances (2.7 Å) for the bidentate case are in excellent agreement with COMT X-ray crystal structures, as long as charge transfer between the substrates, Mg2+, and surrounding ligands is permitted. SQM/MM free energy barriers for methyl transfer from bidentate and monodentate catecholate configurations are comparable at around 21–22 kcal/mol, in good agreement with experiment (18–19 kcal/mol). Overall, the work suggests that both binding poses are viable for methyl transfer, and accurate descriptions of charge transfer and electrostatics are needed to provide balanced relative barriers when multiple binding poses are

  4. Skin score correlates with global DNA methylation and GSTO1 A140D polymorphism in arsenic-affected population of Eastern India.

    PubMed

    Majumder, Moumita; Dasgupta, Uma B; Guha Mazumder, D N; Das, Nilansu

    2017-07-01

    Arsenic is a potent environmental toxicant causing serious public health concerns in India, Bangladesh and other parts of the world. Gene- and promoter-specific hypermethylation has been reported in different arsenic-exposed cell lines, whereas whole genome DNA methylation study suggested genomic hypo- and hypermethylation after arsenic exposure in in vitro and in vivo studies. Along with other characteristic biomarkers, arsenic toxicity leads to typical skin lesions. The present study demonstrates significant correlation between severities of skin manifestations with their whole genome DNA methylation status as well as with a particular polymorphism (Ala 140 Asp) status in arsenic metabolizing enzyme Glutathione S-transferase Omega-1 (GSTO1) in arsenic-exposed population of the district of Nadia, West Bengal, India.

  5. Content of methylated inositols in familiar edible plants.

    PubMed

    Negishi, Osamu; Mun'im, Abdul; Negishi, Yukiko

    2015-03-18

    Familiar plants contain large amounts of inositols; soybean, white clover, red clover, bush clover, locust tree, wisteria, and kudzu of the legume family contain pinitol (3-O-methyl-chiro-inositol) at approximately 200-600 mg/100 g fresh weight (FW). The contents of pinitol in other plants were 260 mg/100 g FW for sticky mouse-ear, 275 mg/100 g FW for chickweed, and 332 mg/100 g FW for ginkgo. chiro-Inositol of 191 and 156 mg/100 g FW was also found in dandelion and Japanese mallotus, respectively. Ononitol (4-O-methyl-myo-inositol) of 166 mg/100 g FW was found in sticky mouse-ear. Furthermore, young leaves of ginkgo contained sequoyitol (5-O-methyl-myo-inositol) of 287 mg/100 g FW. Hydroxyl radical scavenging activities of the methylated inositols were higher than those of the original inositols. Effective uses of these familiar edible plants are expected to promote good health.

  6. The Prognostic Roles of Gender and O6-Methylguanine-DNA Methyltransferase Methylation Status in Glioblastoma Patients: The Female Power.

    PubMed

    Franceschi, Enrico; Tosoni, Alicia; Minichillo, Santino; Depenni, Roberta; Paccapelo, Alexandro; Bartolini, Stefania; Michiara, Maria; Pavesi, Giacomo; Urbini, Benedetta; Crisi, Girolamo; Cavallo, Michele A; Tosatto, Luigino; Dazzi, Claudio; Biasini, Claudia; Pasini, Giuseppe; Balestrini, Damiano; Zanelli, Francesca; Ramponi, Vania; Fioravanti, Antonio; Giombelli, Ermanno; De Biase, Dario; Baruzzi, Agostino; Brandes, Alba A

    2018-04-01

    Clinical and molecular factors are essential to define the prognosis in patients with glioblastoma (GBM). O6-methylguanine-DNA methyltransferase (MGMT) methylation status, age, Karnofsky Performance Status (KPS), and extent of surgical resection are the most relevant prognostic factors. Our investigation of the role of gender in predicting prognosis shows a slight survival advantage for female patients. We performed a prospective evaluation of the Project of Emilia Romagna on Neuro-Oncology (PERNO) registry to identify prognostic factors in patients with GBM who received standard treatment. A total of 169 patients (99 males [58.6%] and 70 females [41.4%]) were evaluated prospectively. MGMT methylation was evaluable in 140 patients. Among the male patients, 36 were MGMT methylated (25.7%) and 47 were unmethylated (33.6%); among the female patients, 32 were methylated (22.9%) and 25 were unmethylated (17.9%). Survival was longer in the methylated females compared with the methylated males (P = 0.028) but was not significantly different between the unmethylated females and the unmethylated males (P = 0.395). In multivariate analysis, gender and MGMT methylation status considered together (methylated females vs. methylated males; hazard ratio [HR], 0.459; 95% confidence interval [CI], 0.242-0.827; P = 0.017), age (HR, 1.025; 95% CI, 1.002-1.049; P = 0.032), and KPS (HR, 0.965; 95% CI, 0.948-0.982; P < 0.001) were significantly correlated with survival. Survival was consistently longer among MGMT methylated females compared with males. Gender can be considered as a further prognostic factor. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Molecular Cloning of Adenosinediphosphoribosyl Transferase.

    DTIC Science & Technology

    1987-09-08

    nature of the blocking group is unknown, except its identity with pyroglutamic acid was ruled out by its insensitivity to pyroglutaminase (not shown...AdenosinediphosphoribOSyl Transferase (ADPRT) is: 1) the complete amino acid sequence of this large protein is best determined -from the DNA !equence of the gene, 2...enzyme (I), determination of its peptide structure (II) and application of synthetic DNA probes (III) derived from amino acid sequences, resulting in the

  8. Manufacture of TATB and TNT from Biosynthesized Phloroglucinols

    DTIC Science & Technology

    2010-07-01

    the microbial synthesis of mono-O-methylphloroglucinols, phloroglucinol O-methyl transferase (POMT) from Rosa chinensis var. spontanea has been...successfully de novo synthesized in codon-optimized form for expression in E. coli, which is the host currently used for microbial synthesis of...efforts had been made in both strain development and optimizing fermentation conditions for microbial phloroglucinol synthesis . Under optimized resin

  9. Characterization of Escherichia coli O157:H7 in New Zealand using multiple-locus variable-number tandem-repeat analysis.

    PubMed

    Dyet, K H; Robertson, I; Turbitt, E; Carter, P E

    2011-03-01

    Recently, multiple-locus variable-number tandem-repeat analysis (MLVA) has been proposed as an alternative to pulsed-field gel electrophoresis (PFGE) for characterization of Escherichia coli O157:H7. In this study we characterized 118 E. coli O157:H7 isolates from cases of gastrointestinal disease in New Zealand using XbaI PFGE profiles and a MLVA scheme that assessed variability in eight polymorphic loci. The 118 isolates characterized included all 80 E. coli O157:H7 referred to New Zealand's Enteric Reference Laboratory in 2006 and 29 phage-type 2 isolates from 2005. When applied to these isolates the discriminatory power of PFGE and MLVA was not significantly different. However, MLVA data may be more epidemiologically relevant as isolates from family clusters of disease had identical MLVA profiles, even when the XbaI PFGE profiles differed slightly. Furthermore, most isolates with indistinguishable XbaI PFGE profiles that did not appear to be epidemiologically related had distinct MLVA profiles.

  10. O-(Triazolyl)methyl carbamates as a novel and potent class of FAAH inhibitors

    PubMed Central

    Colombano, Giampiero; Albani, Clara; Ottonello, Giuliana; Ribeiro, Alison; Scarpelli, Rita; Tarozzo, Glauco; Daglian, Jennifer; Jung, Kwang-Mook; Piomelli, Daniele; Bandiera, Tiziano

    2015-01-01

    Inhibition of fatty acid amide hydrolase (FAAH) activity is under investigation as a valuable strategy for the treatment of several disorders, including pain and drug addiction. A number of potent FAAH inhibitors belonging to different chemical classes have been disclosed. O-aryl carbamates are one of the most representative families. In the search for novel FAAH inhibitors, we synthesized a series of O-(1,2,3-triazol-4-yl)methyl carbamate derivatives exploiting the copper-catalyzed [3 + 2] cycloaddition reaction between azides and alkynes (click chemistry). We explored structure-activity relationships within this new class of compounds and identified potent inhibitors of both rat and human FAAH with IC50 values in the single-digit nanomolar range. PMID:25338703

  11. Specific Detection of Enteroaggregative Hemorrhagic Escherichia coli O104:H4 Strains by Use of the CRISPR Locus as a Target for a Diagnostic Real-Time PCR

    PubMed Central

    Delannoy, Sabine; Beutin, Lothar; Burgos, Ylanna

    2012-01-01

    In 2011, a large outbreak of an unusual bacterial strain occurred in Europe. This strain was characterized as a hybrid of an enteroaggregative Escherichia coli (EAEC) and a Shiga toxin-producing E. coli (STEC) strain of the serotype O104:H4. Here, we present a single PCR targeting the clustered regularly interspaced short palindromic repeats locus of E. coli O104:H4 (CRISPRO104:H4) for specific detection of EAEC STEC O104:H4 strains from different geographical locations and time periods. The specificity of the CRISPRO104:H4 PCR was investigated using 1,321 E. coli strains, including reference strains for E. coli O serogroups O1 to O186 and flagellar (H) types H1 to H56. The assay was compared for specificity using PCR assays targeting different O104 antigen-encoding genes (wbwCO104, wzxO104, and wzyO104). The PCR assays reacted with all types of E. coli O104 strains (O104:H2, O104:H4, O104:H7, and O104:H21) and with E. coli O8 and O9 strains carrying the K9 capsular antigen and were therefore not specific for detection of the EAEC STEC O104:H4 type. A single PCR developed for the CRISPRO104:H4 target was sufficient for specific identification and detection of the 48 tested EAEC STEC O104:H4 strains. The 35 E. coli O104 strains expressing H types other than H4 as well as 8 E. coli strains carrying a K9 capsular antigen tested all negative for the CRISPRO104:H4 locus. Only 12 (0.94%) of the 1,273 non-O104:H4 E. coli strains (serotypes Ont:H2, O43:H2, O141:H2, and O174:H2) reacted positive in the CRISPRO104:H4 PCR (99.06% specificity). PMID:22895033

  12. Two-stage Genome-wide Methylation Profiling in Childhood-onset Crohn's Disease Implicates Epigenetic Alterations at the VMP1/MIR21 and HLA Loci

    PubMed Central

    Adams, Alex T.; Kennedy, Nicholas A.; Hansen, Richard; Ventham, Nicholas T.; O'Leary, Kate R.; Drummond, Hazel E.; Noble, Colin L.; El-Omar, Emad; Russell, Richard K.; Wilson, David C.; Nimmo, Elaine R.; Hold, Georgina L.

    2014-01-01

    Background: As a result of technological and analytical advances, genome-wide characterization of key epigenetic alterations is now feasible in complex diseases. We hypothesized that this may provide important insights into gene-environmental interactions in Crohn's disease (CD) and is especially pertinent to early onset disease. Methods: The Illumina 450K platform was applied to assess epigenome-wide methylation profiles in circulating leukocyte DNA in discovery and replication pediatric CD cohorts and controls. Data were corrected for differential leukocyte proportions. Targeted replication was performed in adults using pyrosequencing. Methylation changes were correlated with gene expression in blood and intestinal mucosa. Results: We identified 65 individual CpG sites with methylation alterations achieving epigenome-wide significance after Bonferroni correction (P < 1.1 × 10−7), and 19 differently methylated regions displaying unidirectional methylation change. There was a highly significant enrichment of methylation changes around GWAS single nucleotide polymorphisms (P = 3.7 × 10−7), notably the HLA region and MIR21. Two-locus discriminant analysis in the discovery cohort predicted disease in the pediatric replication cohort with high accuracy (area under the curve, 0.98). The findings strongly implicate the transcriptional start site of MIR21 as a region of extended epigenetic alteration, containing the most significant individual probes (P = 1.97 × 10−15) within a GWAS risk locus. In extension studies, we confirmed hypomethylation of MIR21 in adults (P = 6.6 × 10−5, n = 172) and show increased mRNA expression in leukocytes (P < 0.005, n = 66) and in the inflamed intestine (P = 1.4 × 10−6, n = 99). Conclusions: We demonstrate highly significant and replicable differences in DNA methylation in CD, defining the disease-associated epigenome. The data strongly implicate known GWAS loci, with compelling evidence implicating MIR21 and the HLA region

  13. Molecular insights into the association of obesity with breast cancer risk: relevance to xenobiotic metabolism and CpG island methylation of tumor suppressor genes.

    PubMed

    Naushad, Shaik Mohammad; Hussain, Tajamul; Al-Attas, Omar S; Prayaga, Aruna; Digumarti, Raghunadha Rao; Gottumukkala, Suryanarayana Raju; Kutala, Vijay Kumar

    2014-07-01

    Obesity, genetic polymorphisms of xenobiotic metabolic pathway, hypermethylation of tumor suppressor genes, and hypomethylation of proapoptotic genes are known to be independent risk factors for breast cancer. The objective of this study is to evaluate the combined effect of these environmental, genetic, and epigenetic risk factors on the susceptibility to breast cancer. PCR-RFLP and multiplex PCR were used for the genetic analysis of six variants of xenobiotic metabolic pathway. Methylation-specific PCR was used for the epigenetic analysis of four genetic loci. Multifactor dimensionality reduction analysis revealed a significant interaction between the body mass index (BMI) and catechol-O-methyl transferase H108L variant alone or in combination with cytochrome P450 (CYP) 1A1m1 variant. Women with "Luminal A" breast cancer phenotype had higher BMI compared to other phenotypes and healthy controls. There was no association between the BMI and tumor grade. The post-menopausal obese women exhibited lower glutathione levels. BMI showed a positive association with the methylation of extracellular superoxide dismutase (r = 0.21, p < 0.05), Ras-association (RalGDS/AF-6) domain family member 1 (RASSF1A) (r = 0.31, p < 0.001), and breast cancer type 1 susceptibility protein (r = 0.19, p < 0.05); and inverse association with methylation of BNIP3 (r = -0.48, p < 0.0001). To conclude based on these results, obesity increases the breast cancer susceptibility by two possible mechanisms: (i) by interacting with xenobiotic genetic polymorphisms in inducing increased oxidative DNA damage and (ii) by altering the methylome of several tumor suppressor genes.

  14. Genetic diversity of O157:H7 and non-O157 verocytotoxigenic Escherichia coli from Argentina inferred from multiple-locus variable-number tandem repeat analysis (MLVA).

    PubMed

    Bustamante, Ana V; Sanso, A Mariel; Lucchesi, Paula M A; Parma, Alberto E

    2010-04-01

    Although serotype O157:H7 has been implicated in most cases of haemolytic-uraemic syndrome (HUS), there is growing concern about non-O157 serotypes of verocytotoxigenic Escherichia coli (VTEC). Multiple-locus variable-number tandem repeat analysis (MLVA) has been focused on the specific typing of O157:H7 isolates, but recently, a generic MLVA assay for E. coli and Shigella has been developed. We performed a study of the polymorphism in 7 generic VNTR loci both in VTEC O157:H7 and non-O157 isolates from Argentina, in order to asses the ability of the method to type this group of isolates and to get insight into their genetic diversity. Sixty-four isolates from cattle, patients with diarrhoea, and contaminated food belonging to 8 different serotypes were studied. All of them could be typed by this method and revealed 41 different MLVA genotypes. The MLVA dendrogram showed 2 main clusters which corresponded to O157:H7 and non-O157, respectively. Our results confirm the suitability of this MLVA method for analyzing VTEC isolates belonging to several serotypes, both O157:H7 as well as non-O157, highlight the genetic variability of the O157:H7 serotype and the need of additional research in order to find more VNTR loci that could allow a higher discrimination among non-O157 VTEC. (c) 2009 Elsevier GmbH. All rights reserved.

  15. Biosynthesis of 2-Hydroxyacid-Containing Polyhydroxyalkanoates by Employing butyryl-CoA Transferases in Metabolically Engineered Escherichia coli.

    PubMed

    David, Yokimiko; Joo, Jeong Chan; Yang, Jung Eun; Oh, Young Hoon; Lee, Sang Yup; Park, Si Jae

    2017-11-01

    The authors previously reported the production of polyhydroxyalkanoates (PHAs) containing 2-hydroxyacid monomers by expressing evolved Pseudomonas sp. 6-19 PHA synthase and Clostridium propionicum propionyl-CoA transferase in engineered microorganisms. Here, the authors examined four butyryl-CoA transferases from Roseburia sp., Eubacterium hallii, Faecalibacterium prausnitzii, and Anaerostipes caccae as potential CoA-transferases to support synthesis of polymers having 2HA monomer. In vitro activity analyses of the four butyryl-CoA transferases suggested that each butyryl-CoA transferase has different activities towards 2-hydroxybutyrate (2HB), 3-hydroxybutyrate (3HB), and lactate (LA). When Escherichia coli XL1-Blue expressing Pseudomonas sp. 6-19 PhaC1437 along with one butyryl-CoA transferase is cultured in chemically defined MR medium containing 20 g L -1 of glucose, 2 g L -1 of sodium 3-hydroxybutyrate, and various concentrations of sodium 2-hydroxybutyrate, PHAs consisting of 3HB, 2HB, and LA are produced. The monomer composition of PHAs agreed well with the substrate specificities of butyryl-CoA transferases from E. hallii, F. prausnitzii, and A. caccae, but not Roseburia sp. When E. coli XL1-Blue expressing PhaC1437 and E. hallii butyryl-CoA transferase is cultured in MR medium containing 20 g L -1 of glucose and 2 g L -1 of sodium 2-hydroxybutyrate, P(65.7 mol% 2HB-co-34.3 mol% LA) is produced with the highest PHA content of 30 wt%. Butyryl-CoA transferases also supported the production of P(3HB-co-2HB-co-LA) from glucose as the sole carbon source in E. coli XL1-Blue strains when one of these bct genes is expressed with phaC1437, cimA3.7, leuBCD, panE, and phaAB genes. Butyryl-CoA transferases characterized in this study can be used for engineering of microorganisms that produce PHAs containing novel 2-hydroxyacid monomers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Imprinting defects at human 14q32 locus alters gene expression and is associated with the pathobiology of osteosarcoma

    PubMed Central

    Shu, Jingmin; Li, Lihua; Sarver, Anne E.; Pope, Emily A.; Varshney, Jyotika; Thayanithy, Venugopal; Spector, Logan; Largaespada, David A.; Steer, Clifford J.; Subramanian, Subbaya

    2016-01-01

    Osteosarcoma is the most common primary bone malignancy affecting children and adolescents. Although several genetic predisposing conditions have been associated with osteosarcoma, our understanding of its pathobiology is rather limited. Here we show that, first, an imprinting defect at human 14q32-locus is highly prevalent (87%) and specifically associated with osteosarcoma patients < 30 years of age. Second, the average demethylation at differentially methylated regions (DMRs) in the 14q32-locus varied significantly compared to genome-wide demethylation. Third, the 14q32-locus was enriched in both H3K4-me3 and H3K27-me3 histone modifications that affected expression of all imprinted genes and miRNAs in this region. Fourth, imprinting defects at 14q32 - DMRs are present in triad DNA samples from affected children and their biological parents. Finally, imprinting defects at 14q32-DMRs were also observed at higher frequencies in an Rb1/Trp53 mutation-induced osteosarcoma mouse model. Further analysis of normal and tumor tissues from a Sleeping Beauty mouse model of spontaneous osteosarcoma supported the notion that these imprinting defects may be a key factor in osteosarcoma pathobiology. In conclusion, we demonstrate that imprinting defects at the 14q32 locus significantly alter gene expression, may contribute to the pathogenesis of osteosarcoma, and could be predictive of survival outcomes. PMID:26802029

  17. Identifying DNA Methylation Biomarkers for Non-Endoscopic Detection of Barrett’s Esophagus

    PubMed Central

    Moinova, Helen R.; LaFramboise, Thomas; Lutterbaugh, James D.; Chandar, Apoorva Krishna; Dumot, John; Faulx, Ashley; Brock, Wendy; De la Cruz Cabrera, Omar; Guda, Kishore; Barnholtz-Sloan, Jill S.; Iyer, Prasad G.; Canto, Marcia I.; Wang, Jean S.; Shaheen, Nicholas J.; Thota, Prashanti N.; Willis, Joseph E.; Chak, Amitabh; Markowitz, Sanford D.

    2018-01-01

    We report a biomarker-based non-endoscopic method for detecting Barrett’s esophagus (BE), based on detecting methylated DNAs retrieved via a swallowable balloon-based esophageal sampling device. BE is the precursor of, and a major recognized risk factor for, developing esophageal adenocarcinoma (EAC). Endoscopy, the current standard for BE detection, is not cost-effective for population screening. We performed genome-wide screening to ascertain regions targeted for recurrent aberrant cytosine methylation in BE, identifying high-frequency methylation within the CCNA1 locus. We tested CCNA1 DNA methylation as a BE biomarker in cytology brushings of the distal esophagus from 173 individuals with or without BE. CCNA1 DNA methylation demonstrated an area under the curve (AUC)=0.95 for discriminating BE-related metaplasia and neoplasia cases versus normal individuals, performing identically to methylation of VIM DNA, an established BE biomarker. When combined, the resulting two biomarker panel was 95% sensitive and 91% specific. These results were replicated in an independent validation cohort of 149 individuals, who were assayed using the same cutoff values for test positivity established in the training population. To progress toward non-endoscopic esophageal screening, we engineered a well-tolerated, swallowable, encapsulated balloon device able to selectively sample the distal esophagus within 5 minutes. In balloon samples from 86 individuals, tests of CCNA1 plus VIM DNA methylation detected BE metaplasia with 90.3% sensitivity and 91.7% specificity. Combining the balloon sampling device with molecular assays of CCNA1 plus VIM DNA methylation enables an efficient, well-tolerated, sensitive, and specific method of screening at-risk populations for BE. PMID:29343623

  18. Quality assessment of DNA derived from up to 30 years old formalin fixed paraffin embedded (FFPE) tissue for PCR-based methylation analysis using SMART-MSP and MS-HRM.

    PubMed

    Kristensen, Lasse S; Wojdacz, Tomasz K; Thestrup, Britta B; Wiuf, Carsten; Hager, Henrik; Hansen, Lise Lotte

    2009-12-21

    The High Resolution Melting (HRM) technology has recently been introduced as a rapid and robust analysis tool for the detection of DNA methylation. The methylation status of multiple tumor suppressor genes may serve as biomarkers for early cancer diagnostics, for prediction of prognosis and for prediction of response to treatment. Therefore, it is important that methodologies for detection of DNA methylation continue to evolve. Sensitive Melting Analysis after Real Time - Methylation Specific PCR (SMART-MSP) and Methylation Sensitive - High Resolution Melting (MS-HRM) are two methods for single locus DNA methylation detection based on HRM. Here, we have assessed the quality of DNA extracted from up to 30 years old Formalin Fixed Paraffin Embedded (FFPE) tissue for DNA methylation analysis using SMART-MSP and MS-HRM. The quality assessment was performed on DNA extracted from 54 Non-Small Cell Lung Cancer (NSCLC) samples derived from FFPE tissue, collected over 30 years and grouped into five years intervals. For each sample, the methylation levels of the CDKN2A (p16) and RARB promoters were estimated using SMART-MSP and MS-HRM assays designed to assess the methylation status of the same CpG positions. This allowed for a direct comparison of the methylation levels estimated by the two methods for each sample. CDKN2A promoter methylation levels were successfully determined by SMART-MSP and MS-HRM in all 54 samples. Identical methylation estimates were obtained by the two methods in 46 of the samples. The methylation levels of the RARB promoter were successfully determined by SMART-MSP in all samples. When using MS-HRM to assess RARB methylation five samples failed to amplify and 15 samples showed a melting profile characteristic for heterogeneous methylation. Twenty-seven of the remaining 34 samples, for which the methylation level could be estimated, gave the same result as observed when using SMART-MSP. MS-HRM and SMART-MSP can be successfully used for single locus

  19. Pseudosymmetric fac-di-aqua-trichlorido[(di-methyl-phosphor-yl)methanaminium-κO]manganese(II).

    PubMed

    Reiss, Guido J

    2013-05-01

    In the title compound, [Mn(C3H11NOP)Cl3(H2O)2], the Mn(II) metal center has a distorted o-cta-hedral geometry, coordinated by the three chloride ligands showing a facial arrangement. Two water mol-ecules and the O-coordinated dpmaH cation [dpmaH = (di-methyl-phosphor-yl)methanaminium] complete the coordination sphere. Each complex mol-ecule is connected to its neighbours by O-H⋯Cl and N-H⋯Cl hydrogen bonds. Two of the chloride ligands and the two water ligands form a hydrogen-bonded polymeric sheet in the ab plane. Furthermore, these planes are connected to adjacent planes by hydrogen bonds from the aminium function of cationic dpmaH ligand. A pseudo-mirror plane perpendicular to the b axis in the chiral space group P21 is observed together with inversion twinning [ratio = 0.864 (5):0.136 (5)].

  20. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation.

    PubMed

    Zhou, Jia; Sears, Renee L; Xing, Xiaoyun; Zhang, Bo; Li, Daofeng; Rockweiler, Nicole B; Jang, Hyo Sik; Choudhary, Mayank N K; Lee, Hyung Joo; Lowdon, Rebecca F; Arand, Jason; Tabers, Brianne; Gu, C Charles; Cicero, Theodore J; Wang, Ting

    2017-09-12

    Uncovering mechanisms of epigenome evolution is an essential step towards understanding the evolution of different cellular phenotypes. While studies have confirmed DNA methylation as a conserved epigenetic mechanism in mammalian development, little is known about the conservation of tissue-specific genome-wide DNA methylation patterns. Using a comparative epigenomics approach, we identified and compared the tissue-specific DNA methylation patterns of rat against those of mouse and human across three shared tissue types. We confirmed that tissue-specific differentially methylated regions are strongly associated with tissue-specific regulatory elements. Comparisons between species revealed that at a minimum 11-37% of tissue-specific DNA methylation patterns are conserved, a phenomenon that we define as epigenetic conservation. Conserved DNA methylation is accompanied by conservation of other epigenetic marks including histone modifications. Although a significant amount of locus-specific methylation is epigenetically conserved, the majority of tissue-specific DNA methylation is not conserved across the species and tissue types that we investigated. Examination of the genetic underpinning of epigenetic conservation suggests that primary sequence conservation is a driving force behind epigenetic conservation. In contrast, evolutionary dynamics of tissue-specific DNA methylation are best explained by the maintenance or turnover of binding sites for important transcription factors. Our study extends the limited literature of comparative epigenomics and suggests a new paradigm for epigenetic conservation without genetic conservation through analysis of transcription factor binding sites.

  1. Effect of pressure on bilayer phase behavior of N-methylated di-O-hexadecylphosphatidylethanolamines: relevance of head-group modification on the bilayer interdigitation.

    PubMed

    Goto, Masaki; Aoki, Yuya; Tamai, Nobutake; Matsuki, Hitoshi

    2017-12-01

    The phase transitions of N-methylated di-O-hexadecylphosphatidylethanolamines (DHPE, DH-N-methyl-PE (DHMePE) and DH-N,N-dimethyl-PE (DHMe 2 PE)) were observed by differential scanning calorimetry (DSC) and fluorometry under atmospheric pressure and by light-transmittance measurements under high pressure. The DSC thermograms showed that the N-methylated DHPE bilayers underwent the phase transition from the gel phase to the liquid crystalline (L α ) phase under atmospheric pressure. The gel phase was identified by fluorometry as the lamellar gel (L β ) phase, and not interdigitated gel (L β I) phase. The gel/L α transition temperature increased with pressure while decreased stepwise with increasing polar head-group size. This stepwise depression of the transition temperature may be caused by the inverse-proportional hydrogen-bonding capabilities of the head-group to the head-group size. The thermodynamic quantities of the gel/L α transition were comparable for the N-methylated DHPE bilayers. The pressure-induced L β I phase was not found in these bilayers although the bilayer of di-O-hexadecylphosphatidylcholine (DHPC), which is a kind of N-methylated DHPEs, forms the L β I phase only by hydration under atmospheric pressure. Taking into account that the bilayers of diacyl-homologs of N-methylated DHPEs, N-methylated dipalmitoyl-PEs except for dipalmitoylphosphatidylcholine (DPPC), do not form the L β I phase in the whole pressure range investigated but the DPPC bilayer forms the L β I phase under high pressure, we can say that the interdigitation requires weaker interaction between large-sized head groups like the bulky choline group. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. You are what you eat: O-linked N-acetylglucosamine in disease, development and epigenetics.

    PubMed

    Olivier-Van Stichelen, Stéphanie; Hanover, John A

    2015-07-01

    The O-linked N-acetylglucosamine (O-GlcNAc) modification is both responsive to nutrient availability and capable of altering intracellular cellular signalling. We summarize data defining a role for O-GlcNAcylation in metabolic homeostasis and epigenetic regulation of development in the intrauterine environment. O-GlcNAc transferase (OGT) catalyzes nutrient-driven O-GlcNAc addition and is subject to random X-inactivation. OGT plays key roles in growth factor signalling, stem cell biology, epigenetics and possibly imprinting. The O-GlcNAcase, which removes O-GlcNAc, is subject to tight regulation by higher order chromatin structure. O-GlcNAc cycling plays an important role in the intrauterine environment wherein OGT expression is an important biomarker of placental stress. Regulation of O-GlcNAc cycling by X-inactivation, epigenetic regulation and nutrient-driven processes makes it an ideal candidate for a nutrient-dependent epigenetic regulator of human disease. In addition, O-GlcNAc cycling influences chromatin modifiers critical to the regulation and timing of normal development including the polycomb repression complex and the ten-eleven translocation proteins mediating DNA methyl cytosine demethylation. The pathway also impacts the hypothalamic-pituitary-adrenal axis critical to intrauterine programming influencing disease susceptibility in later life.

  3. Crystal structure of 1,2,3,4-di-O-methyl­ene-α-d-galacto­pyran­ose

    PubMed Central

    Tiritiris, Ioannis; Tussetschläger, Stefan; Kantlehner, Willi

    2015-01-01

    The title compound, C8H12O6, was synthesized by de­acetyl­ation of 6-acetyl-1,2,3,4-di-O-methyl­ene-α-d-galactose with sodium methoxide. The central part of the mol­ecule consists of a six-membered C5O pyran­ose ring with a twist-boat conformation. Both fused dioxolane rings adopt an envelope conformation with C and O atoms as the flap. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds are present between adjacent mol­ecules, generating a three-dimensional network. PMID:26870551

  4. Epigenetic control of alternative mRNA processing at the imprinted Herc3/Nap1l5 locus

    PubMed Central

    Cowley, Michael; Wood, Andrew J.; Böhm, Sabrina; Schulz, Reiner; Oakey, Rebecca J.

    2012-01-01

    Alternative polyadenylation increases transcriptome diversity by generating multiple transcript isoforms from a single gene. It is thought that this process can be subject to epigenetic regulation, but few specific examples of this have been reported. We previously showed that the Mcts2/H13 locus is subject to genomic imprinting and that alternative polyadenylation of H13 transcripts occurs in an allele-specific manner, regulated by epigenetic mechanisms. Here, we demonstrate that allele-specific polyadenylation occurs at another imprinted locus with similar features. Nap1l5 is a retrogene expressed from the paternally inherited allele, is situated within an intron of a ‘host’ gene Herc3, and overlaps a CpG island that is differentially methylated between the parental alleles. In mouse brain, internal Herc3 polyadenylation sites upstream of Nap1l5 are used on the paternally derived chromosome, from which Nap1l5 is expressed, whereas a downstream site is used more frequently on the maternally derived chromosome. Ablating DNA methylation on the maternal allele at the Nap1l5 promoter increases the use of an internal Herc3 polyadenylation site and alters exon splicing. These changes demonstrate the influence of epigenetic mechanisms in regulating Herc3 alternative mRNA processing. Internal Herc3 polyadenylation correlates with expression levels of Nap1l5, suggesting a possible role for transcriptional interference. Similar mechanisms may regulate alternative polyadenylation elsewhere in the genome. PMID:22790983

  5. Low Cost Upper Atmosphere Sounder (LOCUS)

    NASA Astrophysics Data System (ADS)

    Gerber, Daniel; Swinyard, Bruce M.; Ellison, Brian N.; Aylward, Alan D.; Aruliah, Anasuya; Plane, John M. C.; Feng, Wuhu; Saunders, Christopher; Friend, Jonathan; Bird, Rachel; Linfield, Edmund H.; Davies, A. Giles; Parkes, Steve

    2014-05-01

    near future. We describe the current instrument configuration of LOCUS, and give a first preview of the expected science return such a mission would yield. The LOCUS instrument concept calls for four spectral bands, a first band at 4.7 THz to target atomic oxygen (O), a second band at 3.5 THz to target hydroxyl (OH), a third band at 1.1 THz to cover several diatomic species (NO, CO, O3, H2O) and finally a fourth band at 0.8 THz to retrieve pointing information from molecular oxygen (O2). LOCUS would be the first satellite instrument to measure atomic oxygen on a global scale with a precision that will allow the retrieval of the global O distribution. It would also be the first time that annual and diurnal changes in O are measured. This will be a significant step forward in understanding the chemistry and dynamics of the MLT. Current indications (derived from CRISTA measurement) lead us to believe that current models only give a poor representation of upper atmospheric O. The secondary target species can help us to address additional scientific questions related to both Climate (distribution of climate relevant gases, highly geared cooling of the MLT in response to Climate change, increased occurrence of Polar Mesospheric Clouds (PMC), etc) and Space Weather (precipitation of electrically charged particles and impact on NOx chemistry, fluctuations of solar Lyman-alpha flux through shown in the the distribution of photochemically active species, etc).

  6. Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devarkar, Swapnil C.; Wang, Chen; Miller, Matthew T.

    The cytosolic innate immune receptor Retinoic Acid Inducible Gene-I (RIG-I) is the principal detector of pathogenic RNAs carrying a 5'-triphosphate (5'ppp). Self RNAs like mRNAs evade recognition by RIG-I due to posttranscriptional modifications like 5'-end capping with 7-methyl guanosine (m7G) and 2'-O-methylation of 5'-end nucleotides. Viruses have also evolved mechanisms to mimic these modifications, which in part is believed to aid in immune evasion. Currently, it is unclear how these modifications modulate RIG-I recognition. This paper provides structural and mechanistic insights into the roles of the m7G cap and 2'-O-methylation in RIG-I evasion. We show that RIG-I accommodates the m7Gmore » base while maintaining the 5'ppp contacts and can recognize Cap-0 RNAs but not Cap-1.« less

  7. Intramolecular Oxidative O-Demethylation of an Oxoferryl Porphyrin Complexed with a Per-O-methylated β-Cyclodextrin Dimer.

    PubMed

    Kitagishi, Hiroaki; Kurosawa, Shun; Kano, Koji

    2016-11-22

    The intramolecular oxidation of ROCH 3 to ROCH 2 OH, where the latter compound spontaneously decomposed to ROH and HCHO, was observed during the reaction of the supramolecular complex (met-hemoCD3) with cumene hydroperoxide in aqueous solution. Met-hemoCD3 is composed of meso-tetrakis(4-sulfonatophenyl)porphinatoiron(III) (Fe III TPPS) and a per-O-methylated β-cyclodextrin dimer having an -OCH 2 PyCH 2 O- linker (Py=pyridine-3,5-diyl). The O=Fe IV TPPS complex was formed by the reaction of met-hemoCD3 with cumene hydroperoxide, and isolated by gel-filtration chromatography. Although the isolated O=Fe IV TPPS complex in the cyclodextrin cage was stable in aqueous solution at 25 °C, it was gradually converted to Fe II TPPS (t 1/2 =7.6 h). This conversion was accompanied by oxidative O-demethylation of an OCH 3 group in the cyclodextrin dimer. The results indicated that hydrogen abstraction by O=Fe IV TPPS from ROCH 3 yields HO-Fe III TPPS and ROCH 2 . . This was followed by radical coupling to afford Fe II TPPS and ROCH 2 OH. The hemiacetal (ROCH 2 OH) immediately decomposed to ROH and HCHO. This study revealed the ability of oxoferryl porphyrin to induce two-electron oxidation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. T cells are influenced by a long non-coding RNA in the autoimmune associated PTPN2 locus.

    PubMed

    Houtman, Miranda; Shchetynsky, Klementy; Chemin, Karine; Hensvold, Aase Haj; Ramsköld, Daniel; Tandre, Karolina; Eloranta, Maija-Leena; Rönnblom, Lars; Uebe, Steffen; Catrina, Anca Irinel; Malmström, Vivianne; Padyukov, Leonid

    2018-06-01

    Non-coding SNPs in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) locus have been linked with several autoimmune diseases, including rheumatoid arthritis, type I diabetes, and inflammatory bowel disease. However, the functional consequences of these SNPs are poorly characterized. Herein, we show in blood cells that SNPs in the PTPN2 locus are highly correlated with DNA methylation levels at four CpG sites downstream of PTPN2 and expression levels of the long non-coding RNA (lncRNA) LINC01882 downstream of these CpG sites. We observed that LINC01882 is mainly expressed in T cells and that anti-CD3/CD28 activated naïve CD4 + T cells downregulate the expression of LINC01882. RNA sequencing analysis of LINC01882 knockdown in Jurkat T cells, using a combination of antisense oligonucleotides and RNA interference, revealed the upregulation of the transcription factor ZEB1 and kinase MAP2K4, both involved in IL-2 regulation. Overall, our data suggests the involvement of LINC01882 in T cell activation and hints towards an auxiliary role of these non-coding SNPs in autoimmunity associated with the PTPN2 locus. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications.

    PubMed

    2016-07-01

    DNA methylation patterns are altered in numerous diseases and often correlate with clinically relevant information such as disease subtypes, prognosis and drug response. With suitable assays and after validation in large cohorts, such associations can be exploited for clinical diagnostics and personalized treatment decisions. Here we describe the results of a community-wide benchmarking study comparing the performance of all widely used methods for DNA methylation analysis that are compatible with routine clinical use. We shipped 32 reference samples to 18 laboratories in seven different countries. Researchers in those laboratories collectively contributed 21 locus-specific assays for an average of 27 predefined genomic regions, as well as six global assays. We evaluated assay sensitivity on low-input samples and assessed the assays' ability to discriminate between cell types. Good agreement was observed across all tested methods, with amplicon bisulfite sequencing and bisulfite pyrosequencing showing the best all-round performance. Our technology comparison can inform the selection, optimization and use of DNA methylation assays in large-scale validation studies, biomarker development and clinical diagnostics.

  10. Chemical carcinogenesis in the nervous system. Preferential accumulation of O6-methylguanine in rat brain deoxyribonucleic acid during repetitive administration of N-methyl-N-nitrosourea.

    PubMed Central

    Margison, G P; Kleihues, P

    1975-01-01

    The alkylation of purine bases in DNA of several rat tissues was determined during weekly injections (10 mg/kg) of N-[3H]methyl-N-nitrosourea, a dose schedule known to selectively induce tumours of the nervous system. Each group of animals was killed 1 week after the final injection, and the DNA hydrolysates were analysed by chromatography on Sephadex G-10. After five weekly applications, O6-methylguanine had accumulated in brain DNA to an extent which greatly exceeded that in kidney, spleen and intestine. In the liver, the final O6-methylguanine concentration was less than 1% of that in brain. Between the first and the fifth injection, the O6-methylguanine/7-methylguanine ratio in cerebral DNA increased from 0.28 to 0.68. In addition, 3-methylguanine was found to accumulate in brain DNA whereas in the other organs no significant quantities of this base were detectable. The results are compatible with the hypothesis that O6-alkylation of guanine in DNA plays a major role in the induction of tumours by N-methyl-N-nitrosourea and related carcinogens. The kinetics of the increase of O6-methylguanine in cerebral DNA suggest that there is no major cell fraction in the brain which is capable of excising chemically methylated bases from DNA. This repair deficiency could be a determining factor in the selective induction of nervous-system tumours by N-methyl-N-nitrosourea and other neuro-oncogenic compounds. PMID:1200992

  11. Mitochondrial O-GlcNAc Transferase (mOGT) Regulates Mitochondrial Structure, Function, and Survival in HeLa Cells*

    PubMed Central

    Sacoman, Juliana L.; Dagda, Raul Y.; Burnham-Marusich, Amanda R.; Dagda, Ruben K.; Berninsone, Patricia M.

    2017-01-01

    O-Linked N-acetylglucosamine transferase (OGT) catalyzes O-GlcNAcylation of target proteins and regulates numerous biological processes. OGT is encoded by a single gene that yields nucleocytosolic and mitochondrial isoforms. To date, the role of the mitochondrial isoform of OGT (mOGT) remains largely unknown. Using high throughput proteomics, we identified 84 candidate mitochondrial glycoproteins, of which 44 are novel. Notably, two of the candidate glycoproteins identified (cytochrome oxidase 2 (COX2) and NADH:ubiquinone oxidoreductase core subunit 4 (MT-ND4)) are encoded by mitochondrial DNA. Using siRNA in HeLa cells, we found that reducing endogenous mOGT expression leads to alterations in mitochondrial structure and function, including Drp1-dependent mitochondrial fragmentation, reduction in mitochondrial membrane potential, and a significant loss of mitochondrial content in the absence of mitochondrial ROS. These defects are associated with a compensatory increase in oxidative phosphorylation per mitochondrion. mOGT is also critical for cell survival; siRNA-mediated knockdown of endogenous mOGT protected cells against toxicity mediated by rotenone, a complex I inhibitor. Conversely, reduced expression of both nucleocytoplasmic (ncOGT) and mitochondrial (mOGT) OGT isoforms is associated with increased mitochondrial respiration and elevated glycolysis, suggesting that ncOGT is a negative regulator of cellular bioenergetics. Last, we determined that mOGT is probably involved in the glycosylation of a restricted set of mitochondrial targets. We identified four proteins implicated in mitochondrial biogenesis and metabolism regulation as candidate substrates of mOGT, including leucine-rich PPR-containing protein and mitochondrial aconitate hydratase. Our findings suggest that mOGT is catalytically active in vivo and supports mitochondrial structure, health, and survival, whereas ncOGT predominantly regulates cellular bioenergetics. PMID:28100784

  12. Influence of glutathione S-transferase polymorphisms (GSTT1, GSTM1, GSTP1) on type-2 diabetes mellitus (T2D) risk in an endogamous population from north India.

    PubMed

    Mastana, Sarabjit S; Kaur, Antarpreet; Hale, Rachel; Lindley, Martin R

    2013-12-01

    Glutathione S-transferases (GSTs) belong to a group of multigene and multifunctional detoxification enzymes, which defend cells against a wide variety of toxic insults and oxidative stress. Oxidative stress leads to cellular dysfunction which contributes to the pathophysiology of diseases such as cancer, atherosclerosis, and diabetes mellitus. It is important to assess whether the glutathione S-Transferase (GSTT1, GSTM1 and GSTP1) genotypes are associated with type 2 diabetes mellitus as deletion polymorphisms have an impaired capability to counteract the oxidative stress which is a feature of diabetes. GSTT1, GSTM1 and GSTP1 gene polymorphisms were analysed in 321 patients and 309 healthy controls from an endogamous population from north India. An association analysis was carried out at two levels (a) individual genes and (b) their double and triple combinations. The proportion of GSTT1 and GSTM1 null genotypes was higher in diabetics compared to controls (GSTT1 30.8 vs. 21.0 %; GSTM1 49.5 vs. 27.2 %). The frequency of the null genotype at both loci was higher in diabetics (19.6 vs. 7.8 %) leading to an odds ratio of 2.90 (CI 1.76-4.78, P < 0.0001). At GSTP1locus, patients had a higher frequency of the V/V genotype (15.6 vs. 7.5 %) and significant susceptible odds ratio (2.56, CI 1.47-4.48, P < 0.001). A combination of null genotypes at GSTT1 and GSTM1 loci and V/V genotype of GSTP1 locus showed highest odds ratio (9.64, CI 1.53-60.63, P < 0.01). Overall this study highlights that GST genes may play an important role in the pathogenesis of type 2 diabetes. The risk is higher in individuals carrying more than one susceptible genotype at these loci. The potential role of GST polymorphisms as markers of susceptibility to type 2 diabetes needs further investigations in a larger number of patients and populations.

  13. Causes and Consequences of Flavivirus RNA Methylation.

    PubMed

    Bradrick, Shelton S

    2017-01-01

    Mosquito-borne flaviviruses are important human pathogens that represent global threats to human health. The genomes of these positive-strand RNA viruses have been shown to be substrates of both viral and cellular methyltransferases. N 7 -methylation of the 5' cap structure is essential for infection whereas 2'- O -methylation of the penultimate nucleotide is required for evasion of host innate immunity. N 6 -methylation of internal adenosine nucleotides has also been shown to impact flavivirus infection. Here, I summarize recent progress made in understanding roles for methylation in the flavivirus life-cycle and discuss relevant emerging hypotheses.

  14. Multiple-locus variable-number tandem repeat analysis for strain discrimination of non-O157 Shiga toxin-producing Escherichia coli.

    PubMed

    Timmons, Chris; Trees, Eija; Ribot, Efrain M; Gerner-Smidt, Peter; LaFon, Patti; Im, Sung; Ma, Li Maria

    2016-06-01

    Non-O157 Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens of growing concern worldwide that have been associated with several recent multistate and multinational outbreaks of foodborne illness. Rapid and sensitive molecular-based bacterial strain discrimination methods are critical for timely outbreak identification and contaminated food source traceback. One such method, multiple-locus variable-number tandem repeat analysis (MLVA), is being used with increasing frequency in foodborne illness outbreak investigations to augment the current gold standard bacterial subtyping technique, pulsed-field gel electrophoresis (PFGE). The objective of this study was to develop a MLVA assay for intra- and inter-serogroup discrimination of six major non-O157 STEC serogroups-O26, O111, O103, O121, O45, and O145-and perform a preliminary internal validation of the method on a limited number of clinical isolates. The resultant MLVA scheme consists of ten variable number tandem repeat (VNTR) loci amplified in three multiplex PCR reactions. Sixty-five unique MLVA types were obtained among 84 clinical non-O157 STEC strains comprised of geographically diverse sporadic and outbreak related isolates. Compared to PFGE, the developed MLVA scheme allowed similar discrimination among serogroups O26, O111, O103, and O121 but not among O145 and O45. To more fully compare the discriminatory power of this preliminary MLVA method to PFGE and to determine its epidemiological congruence, a thorough internal and external validation needs to be performed on a carefully selected large panel of strains, including multiple isolates from single outbreaks. Copyright © 2016. Published by Elsevier B.V.

  15. Conformations and Barriers to Methyl Group Internal Rotation in Two Asymmetric Ethers: Propyl Methyl Ether and Butyl Methyl Ether

    NASA Astrophysics Data System (ADS)

    Long, B. E.; Dechirico, F.; Cooke, S. A.

    2012-06-01

    The conformational preferences of the O-C-C-C unit are important in many biological systems with the unit generally preferring a gauche configuration compared to an anti configuration. Butyl methyl ether and propyl methyl ether provide very simple systems for this phenomenom to manifest. Pure rotational spectra of the title molecules have been recorded using chirped pulse Fourier transform microwave spectroscopy (CP-FTMW). In the case of butyl methyl ether, only one conformer has been observed. This conformer has torsional angles of COCC = 180°, OCCC = 62° and CCCC = 180° (anti-gauche-anti) and rotational constants of A = 10259.4591(33) MHz, B = 1445.6470(13) MHz, and C = 1356.2944(14) MHz. The rotational spectrum was doubled and has been analyzed to produce an effective barrier to methyl group internal rotation of 780(35) cm-1. A prior rotational spectroscopic study on propyl methyl ether had focused only on the high energy anti-anti conformer. We have analyzed spectra from the lowest energy anti-gauche conformer and the spectroscopic constants will be presented. A summary of the differences in conformational energies and methyl group internal rotation barriers for the class of aliphatic asymmetric ethers will be presented. K. N. Houk, J. E. Eksterowicz, Y.-D. Wu, C. D. Fuglesang, D. B. Mitchell. J. Am. Chem. Soc. 115 (4170), 1993. Hiroshi Kato, Jun Nakagawa, Michiro Hayashi. J. Mol. Spectrosc. 80 (272), 1980.

  16. Methyl 4-amino-3-methyl­benzoate

    PubMed Central

    Li, Xiang; Yuan, Lian-Shan; Wang, Dan; Liu, Shan; Yao, Cheng

    2008-01-01

    In the mol­ecule of the title compound, C9H11NO2, the methyl C and amino N atoms bonded to the benzene ring lie in the ring plane. Intra­molecular C—H⋯O hydrogen bonding results in the formation of a five-membered planar ring, which is oriented at a dihedral angle of 2.73 (3)° with respect to the benzene ring, so they are nearly coplanar. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains elongated along the c axis and stacked along the b axis. PMID:21202370

  17. Biosynthetic pathways of glycinebetaine in Thalassiosira pseudonana; functional characterization of enzyme catalyzing three-step methylation of glycine.

    PubMed

    Kageyama, Hakuto; Tanaka, Yoshito; Takabe, Teruhiro

    2018-06-01

    Betaine (trimethylglycine) is an important compatible solute that accumulates in response to abiotic stresses such as drought and salinity. Biosynthetic pathways of betaine have been extensively studied, but it remains to be clarified on algae. A diatom Thalassiosira pseudonana CCMP1335 is an important component of marine ecosystems. Here we show that the genome sequence of Thalassiosira suggests the presence of two biosynthetic pathways for betaine, via three step methylation of glycine and via two step oxidation of choline. The choline oxidation via choline dehydrogenase was suggested and its sequential characteristics were analyzed. A candidate gene TpORF1 for glycine methylation encodes a protein consisted of 574 amino acids with two putative tandem repeat methyltransferase domains. The TpORF1 was expressed in E. coli, and the purified protein was shown to synthesize betaine via three step methylation of glycine and designated as TpGSDMT. The proteins containing C-terminal half or N-terminal half were expressed in E. coli and exhibited the methyl transferase activities with different substrate specificity for glycine, sarcosine and dimethylglycine. Upregulation of TpGSDMT transcription and betaine levels were observed at high salinity, suggesting the importance of TpGSDMT for salt tolerance in T. pseudonana cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. DNA methylation of the BRD2 promoter is associated with juvenile myoclonic epilepsy in Caucasians.

    PubMed

    Pathak, Shilpa; Miller, James; Morris, Emily C; Stewart, William C L; Greenberg, David A

    2018-05-01

    Juvenile myoclonic epilepsy (JME) is a common adolescent-onset genetic generalized epilepsy (GGE) syndrome. Multiple linkage and association studies have found that BRD2 influences the expression of JME. The BRD2-JME connection is further corroborated by our murine model; Brd2 haploinsufficiency produces characteristics that typify the clinical hallmarks of JME. Neither we, nor several large-scale studies of JME, found JME-related BRD2 coding mutations. Therefore, we investigated noncoding BRD2 regions, seeking the origin of BRD2's JME influence. BRD2's promoter harbors a JME-associated single nucleotide polymorphism (rs3918149) and a CpG (C-phosphate-G dinucleotides) island (CpG76), making it a potential "hotspot" for JME-associated epigenetic variants. Methylating promoter CpG sites causes gene silencing, often resulting in reduced gene expression. We tested for differences in DNA methylation at CpG76 in 3 different subgroups: (1) JME patients versus their unaffected family members, (2) JME versus patients with other forms of GGE, and (3) Caucasian versus non-Caucasian JME patients. We used DNA pyrosequencing to analyze the methylation status of 10 BRD2 promoter CpG sites in lymphoblastoid cells from JME patients of Caucasian and non-Caucasian origin, unaffected family members, and also non-JME GGE patients. We also measured global methylation levels and DNA methyl transferase 1 (DNMT1) transcript expression in JME families by standard methods. CpG76 is highly methylated in JME patients compared to unaffected family members. In families with non-JME GGE, we found no relationship between promoter methylation and epilepsy. In non-Caucasian JME families, promoter methylation was mostly not associated with epilepsy. This makes the BRD2 promoter a JME-specific, ethnicity-specific, differentially methylated region. Global methylation was constant across groups. BRD2 promoter methylation in JME, and the lack of methylation in unaffected relatives, in non-JME GGE

  19. Reactions of methyl groups on a non-reducible metal oxide: The reaction of iodomethane on stoichiometric α-Cr 2O 3(0001)

    DOE PAGES

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; ...

    2015-06-10

    The reaction of iodomethane on the nearly stoichiometric α-Cr 2O 3(0001) surface produces gas phase ethylene, methane, and surface iodine adatoms. The reaction is first initiated by the dissociation of iodomethane into surface methyl fragments, -CH 3, and iodine adatoms. Methyl fragments bound at surface Cr cation sites undergo a rate-limiting dehydrogenation reaction to methylene, =CH 2. The methylene intermediates formed from methyl dehydrogenation can then undergo coupling reactions to produce ethylene via two principle reaction pathways: (1) direct coupling of methylene and (2) methylene insertion into the methyl surface bond to form surface ethyl groups which undergo β-H eliminationmore » to produce ethylene. The liberated hydrogen also combines with methyl groups to form methane. Iodine adatoms from the dissociation of iodomethane deactivate the surface by simple site blocking of the surface Cr 3+ cations.« less

  20. Resistance of Salmonella typhimurium TA 1535 to O6-guanine methylation and mutagenesis induced by low doses of N-methyl-N'-nitro-N-nitrosoguanidine: an apparent constitutive repair activity.

    PubMed

    Guttenplan, J B; Milstein, S

    1982-01-01

    Salmonella tester strains which are reverted by base-pair substitution mutagens are relatively insensitive to the mutagenic effects of N-methyl-N-nitroso compounds. One reason for this insensitivity is the ability of these strains to withstand low doses of these compounds before they become sensitive to their mutagenic effects. In this report it is shown that mutagenesis induced by treatment of Salmonella typhimurium TA 1535 with N-methyl-N'-nitro-N-nitroso-guanidine (MNNG) in buffer is biphasic with a low sensitivity range at low doses where little mutagenesis occurs, followed by a high sensitivity range whose onset begins after an apparent threshold dose has been exceeded. levels of O6-methylguanine (O6-MeG) in the DNA extracted from the bacteria follow a similar dose-response curve suggesting a dependency of mutagenesis on O6-MeG. In contrast, levels of 7-methylguanine (7-MeG) in the DNA increase linearly with dose. O6-MeG was undetectable at the lowest dose of MNNG whereas 7-MeG was readily detectable. Although such resistance to O6-alkylation has been demonstrated in MNNG- pretreated (adapted) E. coli, it has not been reported in unpretreated cells. Then isolated DNA was treated with MNNG a linear dose-response in the generation of O6-MeG was observed. The lack of O6-MeG in DNA isolated from MNNG treated cells after low doses is attributed to a saturable, constitutive repair activity in the bacteria. An attempt to observe the removal of O6-MeG from the bacteria after exposure to a short challenge dose of N-nitroso-N-methylurea (NMU) followed by a subsequent incubation in buffer was unsuccessful, probably because all the repair occurred within the time necessary to treat and lyse the cells.

  1. The impact of polyunsaturated fatty acids on DNA methylation and expression of DNMTs in human colorectal cancer cells.

    PubMed

    Sarabi, Mostafa Moradi; Naghibalhossaini, Fakhraddin

    2018-05-01

    Growing evidence suggests a role of polyunsaturated fatty acids (PUFA) in the prevention of various types of malignancy, including colorectal cancer (CRC). No published studies have yet examined the direct effect of PUFA treatment on DNA methylation in CRC cells. In this study, 5 human CRC cells were treated with 100 μM DHA, EPA, and LA for 6 days and changes in their global- and gene-specific DNA methylation status as well as expression of DNA methyl transferases (DNMT) were investigated. Cell-type specific differences in DNA methylation and expression of DNMTs were observed in PUFA-treated cells. DHA and EPA treatment induced global hypermethylation in HT29/219 and HCT116 cells, but reduced methylation in Caco2 cells (p < 0.05). Among 10 tumor related genes tested in 5 CRC cell lines, DHA and EPA induced promoter demethylation of Cox2 in HT29/219, p14 and PPARγ in HCT116, and ECAD in SW742 cells. Cell-type specific differences in expression of DNMT1, DNMT3a, and 3b genes were also observed between PUFA-treated and control cells (p < 0.05). Overall, treatment of PUFAs coordinately induced the expression of DNMTs in HT29/219, but suppressed in other 4 cell lines investigated in this study. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Site-specific O-Glycosylation by Polypeptide N-Acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) Co-regulates β1-Adrenergic Receptor N-terminal Cleavage.

    PubMed

    Goth, Christoffer K; Tuhkanen, Hanna E; Khan, Hamayun; Lackman, Jarkko J; Wang, Shengjun; Narimatsu, Yoshiki; Hansen, Lasse H; Overall, Christopher M; Clausen, Henrik; Schjoldager, Katrine T; Petäjä-Repo, Ulla E

    2017-03-17

    The β 1 -adrenergic receptor (β 1 AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as β-blockers, relatively little is yet known about its regulation. We have shown previously that β 1 AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O -glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O -glycosylates β 1 AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O -glycosylation and proteolytic cleavage assays, a cell line deficient in O -glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β 1 AR. Furthermore, we demonstrate that impaired O -glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the βAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O -glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β 1 AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Site-specific O-Glycosylation by Polypeptide N-Acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) Co-regulates β1-Adrenergic Receptor N-terminal Cleavage*

    PubMed Central

    Goth, Christoffer K.; Tuhkanen, Hanna E.; Khan, Hamayun; Lackman, Jarkko J.; Wang, Shengjun; Narimatsu, Yoshiki; Hansen, Lasse H.; Overall, Christopher M.; Clausen, Henrik; Schjoldager, Katrine T.; Petäjä-Repo, Ulla E.

    2017-01-01

    The β1-adrenergic receptor (β1AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as β-blockers, relatively little is yet known about its regulation. We have shown previously that β1AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O-glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O-glycosylates β1AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O-glycosylation and proteolytic cleavage assays, a cell line deficient in O-glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β1AR. Furthermore, we demonstrate that impaired O-glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the βAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O-glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β1AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases. PMID:28167537

  4. Fluorescein diacetate (FDA) and its analogue as substrates for Pi-class glutathione S-transferase (GSTP1) and their biological application.

    PubMed

    Fujikawa, Yuuta; Nampo, Taiki; Mori, Masaya; Kikkawa, Manami; Inoue, Hideshi

    2018-03-01

    Pi class glutathione S-transferase (GSTP1) is highly expressed in various cancerous cells and pre-neoplastic legions, where it is involved in apoptotic resistance or metabolism of several anti-tumour chemotherapeutics. Therefore, GSTP1 is a marker of malignant and pre-malignant cells and is a promising target for visualization and drug development. Here we demonstrate that fluorescein diacetate (FDA), a fluorescent probe used for vital staining, is a fluorescently activated by esterolytic activity of human GSTP1 (hGSTP1) selectively among various cytosolic GSTs. Fluorescence activation of FDA susceptible to GST inhibitors was observed in MCF7 cells exogenously overexpressing hGSTP1, but not in cells overexpressing hGSTA1 or hGSTM1. Inhibitor-sensitive fluorescence activation was also observed in several cancer cell lines endogenously expressing GSTP1, suggesting that GSTP1 is involved in FDA esterolysis in these cells. Among the FDA derivatives examined, FOMe-Ac, the acetyl ester of fluorescein O-methyl ether, was found to be a potential reporter for GSH-dependent GSTP1 activity as well as for carboxylesterase activity. Since GSTP1 is highly expressed in various types of cancer cells compared to their normal counterparts, improving the fluorogenic substrates to be more selective to the esterolysis activity of GSTP1 rather than carboxylesterases should lead to development of tools for detecting GSTP1-overexpressing cancer cells and investigating the biological functions of GSTP1. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [Human drug metabolizing enzymes. II. Conjugation enzymes].

    PubMed

    Vereczkey, L; Jemnitz, K; Gregus, Z

    1998-09-01

    In this review we focus on human conjugation enzymes (UDP-glucuronyltransferases, methyl-trasferases, N-acetyl-transferases, O-acetyl-transferases, Amidases/carboxyesterases, sulfotransferases, Glutation-S-transferases and the enzymes involved in the conjugation with amino acids) that participate in the metabolism of xenobiotics. Although conjugation reactions in most of the cases result in detoxication, more and more publications prove that the reactions catalysed by these enzymes very often lead to activated molecules that may attack macromolecules (proteins, RNAs, DNAs), resulting in toxicity (liver, neuro-, embryotoxicity, allergy, carcinogenecity). We have summarised the data available on these enzymes concerning their catalytic profile and specificity, inhibition, induction properties, their possible role in the generation of toxic compounds, their importance in clinical practice and drug development.

  6. Cloning and expression of clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, J.W.; Petersen, D.J.; Bennett, G.N.

    1990-06-01

    Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase (butyrate-acetoacetate CoA-transferase) (EC 2.8.3.9)) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The genes encoding the two subunits of this enzyme have been cloned and subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defectmore » in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of M{sub r} of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E.coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli. In the plasmid, however, transcription appears to be primarily from the lac promoter of the vector.« less

  7. Synthesis and photocatalytic activity of anatase TiO2 nanoparticles for degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Singh, Manmeet; Duklan, Neha; Singh, Pritpal; Sharma, Jeewan

    2018-05-01

    In present study, TiO2 nanoparticles, in anatase form, were successfully synthesized using TiCl4 as precursor. These nanoparticles were synthesized by sol-gel method at room temperature (298 K). As prepared samples were characterized for phase structure, optical absorption and surface properties using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Visible spectroscopy. The synthesized TiO2 nanoparticles sample was compared with one of the most efficient commercial photocatalyst Degussa TiO2 also known as P(25). The effect of phase composition of anatase TiO2 nanoparticles, as compared to P(25), on photocatalytic decomposition of organic dye, methyl orange (MO) was studies under UV light illumination. An enhanced degradation of hazardous dye was observed in the presence of anatase TiO2 nanoparticles as compared to P(25) due to slow recombination rate. Other possible reasons for this enhancement have also been discussed.

  8. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites

    NASA Astrophysics Data System (ADS)

    Rashed, M. Nageeb; Eltaher, M. A.; Abdou, A. N. A.

    2017-12-01

    Nanocomposite TiO2/ASS (TiO2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO2/ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO2/ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO2 : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd2+ from bi-pollutant solution was achieved with TiO2/ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO2/ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO2/ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO2/ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction.

  9. Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells.

    PubMed

    Neves, Rui; Scheel, Christina; Weinhold, Sandra; Honisch, Ellen; Iwaniuk, Katharina M; Trompeter, Hans-Ingo; Niederacher, Dieter; Wernet, Peter; Santourlidis, Simeon; Uhrberg, Markus

    2010-08-03

    The miR-200c/141 cluster has recently been implicated in the epithelial to mesenchymal transition (EMT) process. The expression of these two miRNAs is inversely correlated with tumorigenicity and invasiveness in several human cancers. The role of these miRNAs in cancer progression is based in part on their capacity to target the EMT activators ZEB1 and ZEB2, two transcription factors, which in turn repress expression of E-cadherin. Little is known about the regulation of the mir200c/141 cluster, whose targeting has been proposed as a promising new therapy for the most aggressive tumors. We show that the miR-200c/141 cluster is repressed by DNA methylation of a CpG island located in the promoter region of these miRNAs. Whereas in vitro methylation of the miR-200c/141 promoter led to shutdown of promoter activity, treatment with a demethylating agent caused transcriptional reactivation in breast cancer cells formerly lacking expression of miR-200c and miR-141. More importantly, we observed that DNA methylation of the identified miR-200c/141 promoter was tightly correlated with phenotype and the invasive capacity in a panel of 8 human breast cancer cell lines. In line with this, in vitro induction of EMT by ectopic expression of the EMT transcription factor Twist in human immortalized mammary epithelial cells (HMLE) was accompanied by increased DNA methylation and concomitant repression of the miR-200c/141 locus. The present study demonstrates that expression of the miR-200c/141 cluster is regulated by DNA methylation, suggesting epigenetic regulation of this miRNA locus in aggressive breast cancer cell lines as well as untransformed mammary epithelial cells. This epigenetic silencing mechanism might represent a novel component of the regulatory circuit for the maintenance of EMT programs in cancer and normal cells.

  10. Crystal structure of 1-methyl-3-([2,2-dimethyl-4,6-dioxo-1,3-dioxane-5-ylidene]methyl)urea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, A., E-mail: habibi@khu.ac.ir; Ghorbani, H. S.; Bruno, G.

    2013-12-15

    The crystal structure of 1-Methyl-3-([2,2-dimethyl-4,6-dioxo-1,3-dioxane-5-ylidene]methyl)urea (C{sub 9}H{sub 12}N{sub 2}O{sub 5}) has been determined by single crystal X-ray diffraction analysis. The crystals are monoclinic, a = 5.3179(2), b = 18.6394(6), c =10.8124(3) Å, β = 100.015(2)°, Z = 4, sp. gr. P2{sub 1}/c, R = 0.0381 for 2537 reflections with I > 2σ(I). Except for C(CH{sub 3}){sub 2} group, the molecule is planar. The structure is stabilized by inter- and intramolecular N-H...O hydrogen bonds and weak C-H...O interactions.

  11. Methylation of p15INK4b and Expression of ANRIL on Chromosome 9p21 Are Associated with Coronary Artery Disease

    PubMed Central

    Zhuang, Jianhui; Peng, Wenhui; Li, Hailing; Wang, Wei; Wei, Yidong; Li, Weiming; Xu, Yawei

    2012-01-01

    Background Genome-wide association studies have identified that multiple single nucleiotide polymorphisms on chromosome 9p21 are tightly associated with coronary artery disease (CAD). However, the mechanism linking this risk locus to CAD remains unclear. Methodology/Principal Findings The methylation status of six candidate genes (BAX, BCL-2, TIMP3, p14ARF, p15INK4b and p16INK4a) in 205 patients and controls who underwent coronary angiography were analyzed by quantitative MethyLight assay. Rs10757274 was genotyped and expression of INK4/ARF and antisense non-coding RNA in the INK4 locus (ANRIL) was determined by real-time RT-PCR. Compared with controls, DNA methylation levels at p15INK4b significantly increased in CAD patients (p = 0.006). To validate and dissect the methylation percentage of each target CpG site at p15INK4b, pyrosequencing was performed, finding CpG +314 and +332 remarkably hypermethylated in CAD patients. Further investigation determined that p15INK4b hypermethylation prevalently emerged in lymphocytes of CAD patients (p = 0.013). The rs10757274 genotype was significantly associated with CAD (p = 0.003) and GG genotype carriers had a higher level of ANRIL exon 1–5 expression compared among three genotypes (p = 0.009). There was a stepwise increase in p15INK4b and p16INK4a methylation as ANRIL exon 1–5 expression elevated (r = 0.23, p = 0.001 and r = 0.24, p = 0.001, respectively), although neither of two loci methylation was directly linked to rs10757274 genotype. Conclusions/Significance p15INK4b methylation is associated with CAD and ANRIL expression. The epigenetic changes in p15INK4b methylation and ANRIL expression may involve in the mechanisms of chromosome 9p21 on CAD development. PMID:23091611

  12. Genome-wide methylation and gene expression changes in newborn rats following maternal protein restriction and reversal by folic acid.

    PubMed

    Altobelli, Gioia; Bogdarina, Irina G; Stupka, Elia; Clark, Adrian J L; Langley-Evans, Simon

    2013-01-01

    A large body of evidence from human and animal studies demonstrates that the maternal diet during pregnancy can programme physiological and metabolic functions in the developing fetus, effectively determining susceptibility to later disease. The mechanistic basis of such programming is unclear but may involve resetting of epigenetic marks and fetal gene expression. The aim of this study was to evaluate genome-wide DNA methylation and gene expression in the livers of newborn rats exposed to maternal protein restriction. On day one postnatally, there were 618 differentially expressed genes and 1183 differentially methylated regions (FDR 5%). The functional analysis of differentially expressed genes indicated a significant effect on DNA repair/cycle/maintenance functions and of lipid, amino acid metabolism and circadian functions. Enrichment for known biological functions was found to be associated with differentially methylated regions. Moreover, these epigenetically altered regions overlapped genetic loci associated with metabolic and cardiovascular diseases. Both expression changes and DNA methylation changes were largely reversed by supplementing the protein restricted diet with folic acid. Although the epigenetic and gene expression signatures appeared to underpin largely different biological processes, the gene expression profile of DNA methyl transferases was altered, providing a potential link between the two molecular signatures. The data showed that maternal protein restriction is associated with widespread differential gene expression and DNA methylation across the genome, and that folic acid is able to reset both molecular signatures.

  13. Protonated sugars: vibrational spectroscopy and conformational structure of protonated O-methyl α-D-galactopyranoside

    NASA Astrophysics Data System (ADS)

    Rudić, Svemir; Xie, Hong-bin; Gerber, R. Benny; Simons, John P.

    2012-08-01

    'Bridging' protons provide a common structural motif in biological assemblies such as proton wires and proton-bound dimers. Here we present a 'proof-of-principle' computational and vibrational spectroscopic investigation of an 'intra-molecular proton-bound dimer,' O-methyl α-D-galactopyranoside (αMeGal-H+), generated in the gas phase through photo-ionisation of its complex with phenol in a molecular beam. Its vibrational spectrum corresponds well with a classical molecular dynamics simulation conducted 'on-the-fly' and also with the lowest-energy structures predicted by DFT and ab initio calculations. They reveal proton-bound structures that bridge neighbouring pairs of oxygen atoms, preferentially O6 and O4, linked together within the carbohydrate scaffold. Motivated by the possibility of an entry into the microscopic mechanism of its acid (or enzyme)-catalysed hydrolysis, we also report the corresponding predictions for its singly hydrated complex.

  14. Theoretical aspects of methyl acetate and methanol activation on MgO(100) and (501) catalyst surfaces with application in FAME production

    NASA Astrophysics Data System (ADS)

    Man, Isabela-Costinela; Soriga, Stefan Gabriel; Parvulescu, Vasile

    2017-01-01

    Density functional theory (DFT) calculations were carried out to study the activation of methyl acetate and methanol on MgO(100) and MgO(501) surfaces and integrated in the context of transesterification, interesterification and glycerolysis reactions used in biodiesel industry. First results indicate the importance of including of dispersion forces in the calculations. On MgO(100) the reverse reactions steps of Csbnd O and Csbnd H dissociations and on MgO(501) the same reverse reaction step of Csbnd H dissociations of methyl acetate are energetically favorable, while the dissociation of Csbnd O bond into methoxide and acetate fragments on the edge of MgO(501) was found to be exothermic with a low activation energy. For methanol, the dissociation of Osbnd H bond on MgO(100) surface in the presence of the second coadsorbed methanol molecule becomes more energetically favoured compared to the isolated molecule, due to the fact that the methoxide fragment is stabilized by intermolecular hydrogen bonding. This is reflected by the decrease of the activation energy of the forward reaction step and the increase of the activation energy of the backward reaction step, increasing the probability to have dissociated molecules among the undissociated ones. These results represent a step forward for better understanding from atomistic point of view the paths of these reactions on these surfaces for the corresponding catalytic processes.

  15. The mitochondrial O-linked N-acetylglucosamine transferase (mOGT) in the diabetic patient could be the initial trigger to develop Alzheimer disease.

    PubMed

    Lozano, Liliana; Lara-Lemus, Roberto; Zenteno, Edgar; Alvarado-Vásquez, Noé

    2014-10-01

    Diabetes mellitus (DM) is considered a risk factor for the development of Alzheimer disease (AD); however, how DM favors evolution of AD is still insufficiently understood. Hyperglycemia in DM is associated to an increase in mitochondrial reactive oxygen species (ROS) generation, as well as damage of hippocampal cells, reflected by changes in morphological and mitochondrial functionality. Similar mitochondrial damage has been observed when amyloid beta (Aβ) accumulates in the brain of AD patients. In DM, the excess of glucose in the brain induces higher activity of the hexosamine biosynthesis pathway (HBP), it synthesizes UDP-N-acetylglucosamine (UDP-GlcNAc), which is used by O-linked N-acetylglucosamine transferase (OGT) to catalyze O-GlcNAcylation of numerous proteins. Although O-GlcNAcylation plays an important role in maintaining structure and cellular functionality, chronic activity of this pathway has been associated with insulin resistance and hyperglycemia-induced glucose toxicity. Three different forms of OGT are known: nucleocytoplasmic (ncOGT), short (sOGT), and mitochondrial (mOGT). Previous reports showed that overexpression of ncOGT is not toxic to the cell; in contrast, overexpression of mOGT is associated with cellular apoptosis. In this work, we suggest that hyperglycemia in the diabetic patient could induce greater expression and activity of mOGT, modifying the structure and functionality of mitochondria in hippocampal cells, accelerating neuronal damage, and favoring the start of AD. In consequence, mOGT activity could be a key point for AD development in patients with DM. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effects of As2O3 on DNA methylation, genomic instability, and LTR retrotransposon polymorphism in Zea mays.

    PubMed

    Erturk, Filiz Aygun; Aydin, Murat; Sigmaz, Burcu; Taspinar, M Sinan; Arslan, Esra; Agar, Guleray; Yagci, Semra

    2015-12-01

    Arsenic is a well-known toxic substance on the living organisms. However, limited efforts have been made to study its DNA methylation, genomic instability, and long terminal repeat (LTR) retrotransposon polymorphism causing properties in different crops. In the present study, effects of As2O3 (arsenic trioxide) on LTR retrotransposon polymorphism and DNA methylation as well as DNA damage in Zea mays seedlings were investigated. The results showed that all of arsenic doses caused a decreasing genomic template stability (GTS) and an increasing Random Amplified Polymorphic DNAs (RAPDs) profile changes (DNA damage). In addition, increasing DNA methylation and LTR retrotransposon polymorphism characterized a model to explain the epigenetically changes in the gene expression were also found. The results of this experiment have clearly shown that arsenic has epigenetic effect as well as its genotoxic effect. Especially, the increasing of polymorphism of some LTR retrotransposon under arsenic stress may be a part of the defense system against the stress.

  17. Efficient removal of methyl orange using Cu2O as a dual function catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Dong, Guohui; Wang, Mian; Zeng, Yubin; Wang, Chuanyi

    2018-06-01

    In this study, we synthesized Cu2O particles with rough surfaces by a facile solvothermal method as a dual-function material that can degrade contaminants not only under light irradiation but also in dark circumstance. Both the as-prepared Cu2O and commercial Cu2O exhibited excellent performance for the removal of methyl orange under visible light irradiation through a photocatalysis-based strategy. However, the former was found to show remarkable capability under dark circumstances by means of molecular oxygen activation, while the latter performed poor efficiently under the same condition. This significant difference of performances under dark circumstances was related to rich oxygen vacancies existed on the as-prepared Cu2O surfaces that are associated with the single-electron reduction of O2 to generate radO2-, which play a dominant role in the generation of Cu+. In addition, Cu+ was identified to play key roles in the broken of azo bond. Then, the generated intermediates were mineralized by radOH generated through molecular oxygen activation process. This study could not only deep the understanding of the MO removal mechanism by Cu2O but also show a novel direction of amphibious application for photocatalytic materials.

  18. Methylated glycans as conserved targets of animal and fungal innate defense

    PubMed Central

    Wohlschlager, Therese; Butschi, Alex; Grassi, Paola; Sutov, Grigorij; Gauss, Robert; Hauck, Dirk; Schmieder, Stefanie S.; Knobel, Martin; Titz, Alexander; Dell, Anne; Haslam, Stuart M.; Hengartner, Michael O.; Aebi, Markus; Künzler, Markus

    2014-01-01

    Effector proteins of innate immune systems recognize specific non-self epitopes. Tectonins are a family of β-propeller lectins conserved from bacteria to mammals that have been shown to bind bacterial lipopolysaccharide (LPS). We present experimental evidence that two Tectonins of fungal and animal origin have a specificity for O-methylated glycans. We show that Tectonin 2 of the mushroom Laccaria bicolor (Lb-Tec2) agglutinates Gram-negative bacteria and exerts toxicity toward the model nematode Caenorhabditis elegans, suggesting a role in fungal defense against bacteria and nematodes. Biochemical and genetic analysis of these interactions revealed that both bacterial agglutination and nematotoxicity of Lb-Tec2 depend on the recognition of methylated glycans, namely O-methylated mannose and fucose residues, as part of bacterial LPS and nematode cell-surface glycans. In addition, a C. elegans gene, termed samt-1, coding for a candidate membrane transport protein for the presumptive donor substrate of glycan methylation, S-adenosyl-methionine, from the cytoplasm to the Golgi was identified. Intriguingly, limulus lectin L6, a structurally related antibacterial protein of the Japanese horseshoe crab Tachypleus tridentatus, showed properties identical to the mushroom lectin. These results suggest that O-methylated glycans constitute a conserved target of the fungal and animal innate immune system. The broad phylogenetic distribution of O-methylated glycans increases the spectrum of potential antagonists recognized by Tectonins, rendering this conserved protein family a universal defense armor. PMID:24879441

  19. O6-Methylguanine-DNA Methyltransferase (MGMT) mRNA Expression Predicts Outcome in Malignant Glioma Independent of MGMT Promoter Methylation

    PubMed Central

    Kreth, Simone; Thon, Niklas; Eigenbrod, Sabina; Lutz, Juergen; Ledderose, Carola; Egensperger, Rupert; Tonn, Joerg C.; Kretzschmar, Hans A.; Hinske, Ludwig C.; Kreth, Friedrich W.

    2011-01-01

    Background We analyzed prospectively whether MGMT (O6-methylguanine-DNA methyltransferase) mRNA expression gains prognostic/predictive impact independent of MGMT promoter methylation in malignant glioma patients undergoing radiotherapy with concomitant and adjuvant temozolomide or temozolomide alone. As DNA-methyltransferases (DNMTs) are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells, we analyzed further, whether MGMT promoter methylation is associated with upregulation of DNMT expression. Methodology/Principal Findings Adult patients with a histologically proven malignant astrocytoma (glioblastoma: N = 53, anaplastic astrocytoma: N = 10) were included. MGMT promoter methylation was determined by methylation-specific PCR (MSP) and sequencing analysis. Expression of MGMT and DNMTs mRNA were analysed by real-time qPCR. Prognostic factors were obtained from proportional hazards models. Correlation between MGMT mRNA expression and MGMT methylation status was validated using data from the Cancer Genome Atlas (TCGA) database (N = 229 glioblastomas). Low MGMT mRNA expression was strongly predictive for prolonged time to progression, treatment response, and length of survival in univariate and multivariate models (p<0.0001); the degree of MGMT mRNA expression was highly correlated with the MGMT promoter methylation status (p<0.0001); however, discordant findings were seen in 12 glioblastoma patients: Patients with methylated tumors with high MGMT mRNA expression (N = 6) did significantly worse than those with low transcriptional activity (p<0.01). Conversely, unmethylated tumors with low MGMT mRNA expression (N = 6) did better than their counterparts. A nearly identical frequency of concordant and discordant findings was obtained by analyzing the TCGA database (p<0.0001). Expression of DNMT1 and DNMT3b was strongly upregulated in tumor tissue, but not correlated with MGMT promoter methylation and MGMT

  20. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors.

    PubMed

    Heller, Elizabeth A; Cates, Hannah M; Peña, Catherine J; Sun, Haosheng; Shao, Ningyi; Feng, Jian; Golden, Sam A; Herman, James P; Walsh, Jessica J; Mazei-Robison, Michelle; Ferguson, Deveroux; Knight, Scott; Gerber, Mark A; Nievera, Christian; Han, Ming-Hu; Russo, Scott J; Tamminga, Carol S; Neve, Rachael L; Shen, Li; Zhang, H Steve; Zhang, Feng; Nestler, Eric J

    2014-12-01

    Chronic exposure to drugs of abuse or stress regulates transcription factors, chromatin-modifying enzymes and histone post-translational modifications in discrete brain regions. Given the promiscuity of the enzymes involved, it has not yet been possible to obtain direct causal evidence to implicate the regulation of transcription and consequent behavioral plasticity by chromatin remodeling that occurs at a single gene. We investigated the mechanism linking chromatin dynamics to neurobiological phenomena by applying engineered transcription factors to selectively modify chromatin at a specific mouse gene in vivo. We found that histone methylation or acetylation at the Fosb locus in nucleus accumbens, a brain reward region, was sufficient to control drug- and stress-evoked transcriptional and behavioral responses via interactions with the endogenous transcriptional machinery. This approach allowed us to relate the epigenetic landscape at a given gene directly to regulation of its expression and to its subsequent effects on reward behavior.

  1. Saccharomyces Cerevisiae Cho2 Mutants Are Deficient in Phospholipid Methylation and Cross-Pathway Regulation of Inositol Synthesis

    PubMed Central

    Summers, E. F.; Letts, V. A.; McGraw, P.; Henry, S. A.

    1988-01-01

    Five allelic Saccharomyces cerevisiae mutants deficient in the methylation of phosphatidylethanolamine (PE) have been isolated, using two different screening techniques. Biochemical analysis suggested that these mutants define a locus, designated CHO2, that may encode a methyltransferase. Membranes of cho2 mutant cells grown in defined medium contain approximately 10% phosphatidylcholine (PC) and 40-50% PE as compared to wild-type levels of 40-45% PC and 15-20% PE. In spite of this greatly altered phospholipid composition, cho2 mutant cells are viable in defined medium and are not auxotrophic for choline or other phospholipid precursors such as monomethylethanolamine (MME). However, analysis of yeast strains carrying more than one mutation affecting phospholipid biosynthesis indicated that some level of methylated phospholipid is essential for viability. The cho2 locus was shown by tetrad analysis to be unlinked to other loci affecting phospholipid synthesis. Interestingly, cho2 mutants and other mutant strains that produce reduced levels of methylated phospholipids are unable to properly repress synthesis of the cytoplasmic enzyme inositol-1-phosphate synthase. This enzyme was previously shown to be regulated at the level of mRNA abundance in response to inositol and choline in the growth medium. We cloned the CHO2 gene on a 3.6-kb genomic DNA fragment and created a null allele of cho2 by disrupting the CHO2 gene in vivo. The cho2 disruptant, like all other cho2 mutants, is viable, exhibits altered regulation of inositol biosynthesis and is not auxotrophic for choline or MME. PMID:3066687

  2. Cytosine Methylation Dysregulation in Neonates Following Intrauterine Growth Restriction

    PubMed Central

    Bhagat, Tushar D.; Fazzari, Melissa J.; Verma, Amit; Barzilai, Nir; Greally, John M.

    2010-01-01

    Background Perturbations of the intrauterine environment can affect fetal development during critical periods of plasticity, and can increase susceptibility to a number of age-related diseases (e.g., type 2 diabetes mellitus; T2DM), manifesting as late as decades later. We hypothesized that this biological memory is mediated by permanent alterations of the epigenome in stem cell populations, and focused our studies specifically on DNA methylation in CD34+ hematopoietic stem and progenitor cells from cord blood from neonates with intrauterine growth restriction (IUGR) and control subjects. Methods and Findings Our epigenomic assays utilized a two-stage design involving genome-wide discovery followed by quantitative, single-locus validation. We found that changes in cytosine methylation occur in response to IUGR of moderate degree and involving a restricted number of loci. We also identify specific loci that are targeted for dysregulation of DNA methylation, in particular the hepatocyte nuclear factor 4α (HNF4A) gene, a well-known diabetes candidate gene not previously associated with growth restriction in utero, and other loci encoding HNF4A-interacting proteins. Conclusions Our results give insights into the potential contribution of epigenomic dysregulation in mediating the long-term consequences of IUGR, and demonstrate the value of this approach to studies of the fetal origin of adult disease. PMID:20126273

  3. Identification of epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG3''Me) and amino acid profiles in various tea (Camellia sinensis L.) cultivars.

    PubMed

    Ji, Hyang-Gi; Lee, Yeong-Ran; Lee, Min-Seuk; Hwang, Kyeng Hwan; Kim, Eun-Hee; Park, Jun Seong; Hong, Young-Shick

    2017-10-01

    This article includes experimental data on the identification of epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG3''Me) by 2-dimensional (2D) proton ( 1 H) NMR analysis and on the information of amino acid and catechin compound profiles by HPLC analysis in leaf extracts of various tea cultivars. These data are related to the research article " Metabolic phenotyping of various tea (Camellia sinensis L.) cultivars and understanding of their intrinsic metabolism " (Ji et al., 2017) [1]. The assignment for EGCG3x''Me by 1 H NMR analysis was also confirmed with spiking experiment of its pure chemical.

  4. High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya.

    PubMed Central

    Ma, Hao; Moore, Paul H; Liu, Zhiyong; Kim, Minna S; Yu, Qingyi; Fitch, Maureen M M; Sekioka, Terry; Paterson, Andrew H; Ming, Ray

    2004-01-01

    A high-density genetic map of papaya (Carica papaya L.) was constructed using 54 F(2) plants derived from cultivars Kapoho and SunUp with 1501 markers, including 1498 amplified fragment length polymorphism (AFLP) markers, the papaya ringspot virus coat protein marker, morphological sex type, and fruit flesh color. These markers were mapped into 12 linkage groups at a LOD score of 5.0 and recombination frequency of 0.25. The 12 major linkage groups covered a total length of 3294.2 cM, with an average distance of 2.2 cM between adjacent markers. This map revealed severe suppression of recombination around the sex determination locus with a total of 225 markers cosegregating with sex types. The cytosine bases were highly methylated in this region on the basis of the distribution of methylation-sensitive and -insensitive markers. This high-density genetic map is essential for cloning of specific genes of interest such as the sex determination gene and for the integration of genetic and physical maps of papaya. PMID:15020433

  5. Genetic markers predictive of chemosensitivity and outcome in gliomatosis cerebri.

    PubMed

    Kaloshi, G; Everhard, S; Laigle-Donadey, F; Marie, Y; Navarro, S; Mokhtari, K; Idbaih, A; Ducray, F; Thillet, J; Hoang-Xuan, K; Delattre, J-Y; Sanson, M

    2008-02-19

    Up-front temozolomide (TMZ) has been recently proposed as a treatment for gliomatosis cerebri (GC), but no predictive or prognostic markers have been identified so far. Because 1p19q codeletion and methylguanine methyl transferase promoter (MGMTP) methylation have been correlated with chemosensitivity of gliomas, their value was investigated in a cohort of patients with GC treated with TMZ. A cohort of 25 GC patients who were treated with TMZ was investigated for 1p19q codeletion and O6-methylguanine DNA. Patients with a 1p/19q codeletion had a higher response rate (88% [8/9] vs 25% [4/16], p = 0.002), higher progression-free survival (24.5 vs 13.7 months, p = 0.017), and higher overall survival (66.8 vs 15.2 months, p = 0.011) than patients without 1p/19q codeletion. Fourteen of 19 evaluable tumors for MGMTP status were methylated. MGMTP methylation was associated with 1p/19q codeletion (p = 0.045). Patients with unmethylated MGMTP tended to have a shorter progression-free survival and a higher rate of progressive disease. Response rate to temozolomide and prognosis seem tightly correlated to 1p19q loss. The impact of methylguanine methyl transferase promoter methylation status on gliomatosis cerebri is still unsettled in this population.

  6. Effective gene silencing activity of prodrug-type 2'-O-methyldithiomethyl siRNA compared with non-prodrug-type 2'-O-methyl siRNA.

    PubMed

    Hayashi, Junsuke; Nishigaki, Misa; Ochi, Yosuke; Wada, Shun-Ichi; Wada, Fumito; Nakagawa, Osamu; Obika, Satoshi; Harada-Shiba, Mariko; Urata, Hidehito

    2018-07-01

    Small interfering RNAs (siRNAs) are an active agent to induce gene silencing and they have been studied for becoming a biological and therapeutic tool. Various 2'-O-modified RNAs have been extensively studied to improve the nuclease resistance. However, the 2'-O-modified siRNA activities were often decreased by modification, since the bulky 2'-O-modifications inhibit to form a RNA-induced silencing complex (RISC). We developed novel prodrug-type 2'-O-methyldithiomethyl (MDTM) siRNA, which is converted into natural siRNA in an intracellular reducing environment. Prodrug-type 2'-O-MDTM siRNAs modified at the 5'-end side including 5'-end nucleotide and the seed region of the antisense strand exhibited much stronger gene silencing effect than non-prodrug-type 2'-O-methyl (2'-O-Me) siRNAs. Furthermore, the resistances for nuclease digestion of siRNAs were actually enhanced by 2'-O-MDTM modifications. Our results indicate that 2'-O-MDTM modifications improve the stability of siRNA in serum and they are able to be introduced at any positions of siRNA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Mobile contingency locus controlling Escherichia coli K1 polysialic acid capsule acetylation.

    PubMed

    Vimr, Eric R; Steenbergen, Susan M

    2006-05-01

    Escherichia coli K1 is part of a reservoir of adherent, invasive facultative pathogens responsible for a wide range of human and animal disease including sepsis, meningitis, urinary tract infection and inflammatory bowel syndrome. A prominent virulence factor in these diseases is the polysialic acid capsular polysaccharide (K1 antigen), which is encoded by the kps/neu accretion domain inserted near pheV at 67 map units. Some E. coli K1 strains undergo form (phase) variation involving loss or gain of O-acetyl esters at carbon positions 7 or 9 of the individual sialic acid residues of the polysialic acid chains. Acetylation is catalysed by the receptor-modifying acetyl coenzyme-A-dependent O-acetyltransferase encoded by neuO, a phase variable locus mapping near the integrase gene of the K1-specific prophage, CUS-3, which is inserted in argW at 53.1 map units. As the first E. coli contingency locus shown to operate by a translational switch, further investigation of neuO should provide a better understanding of the invasive K1 pathotype. Minimal estimates of morbidity and economic costs associated with human infections caused by extraintestinal pathogenic E. coli strains such as K1 indicate at least 6.5 million cases with attendant medical costs exceeding 2.5 billion US dollars annually in the United States alone.

  8. A new polymorphic pepsinogen locus (Pg-2) in the rat (Rattus norvegicus).

    PubMed

    Hamada, S; Yamada, J; Bender, K; Adams, M

    1987-07-01

    Only two types of pepsinogens, which are products of the Pg-1 locus, are present in rat urine. In gastric mucosa, however, additional pepsinogen isozymes are expressed. We have found a polymorphism for rat gastric mucosa pepsinogen using agarose gel electrophoresis. Some inbred rat strains expressed a pepsinogen band, while others did not. The trait was found to be controlled by a single autosomal locus. We tentatively designated the locus as Pg-2 with two alleles, Pg-2a for the one controlling presence of the band and Pg-2o for the one controlling absence. Linkage analysis using BN and TM strains revealed that Pg-2 was closely linked to Pg-1 (3.7 +/- 1.8 cM), and that it did not belong to LG I (Hbb and p), LG II (Acon-1 and Mup-1), LG IV (Hao-1 and Svp-1), LG V (Es-1 and Es-3), LG VI (Gc and h), LG IX (RT1), LG X (Fh and Pep-3), nor a LG containing Ahd-2 (as yet undetermined).

  9. X chromosome dosage and presence of SRY shape sex-specific differences in DNA methylation at an autosomal region in human cells.

    PubMed

    Ho, Bianca; Greenlaw, Keelin; Al Tuwaijri, Abeer; Moussette, Sanny; Martínez, Francisco; Giorgio, Elisa; Brusco, Alfredo; Ferrero, Giovanni Battista; Linhares, Natália D; Valadares, Eugênia R; Svartman, Marta; Kalscheuer, Vera M; Rodríguez Criado, Germán; Laprise, Catherine; Greenwood, Celia M T; Naumova, Anna K

    2018-02-20

    Sexual dimorphism in DNA methylation levels is a recurrent epigenetic feature in different human cell types and has been implicated in predisposition to disease, such as psychiatric and autoimmune disorders. To elucidate the genetic origins of sex-specific DNA methylation, we examined DNA methylation levels in fibroblast cell lines and blood cells from individuals with different combinations of sex chromosome complements and sex phenotypes focusing on a single autosomal region--the differentially methylated region (DMR) in the promoter of the zona pellucida binding protein 2 (ZPBP2) as a reporter. Our data show that the presence of the sex determining region Y (SRY) was associated with lower methylation levels, whereas higher X chromosome dosage in the absence of SRY led to an increase in DNA methylation levels at the ZPBP2 DMR. We mapped the X-linked modifier of DNA methylation to the long arm of chromosome X (Xq13-q21) and tested the impact of mutations in the ATRX and RLIM genes, located in this region, on methylation levels. Neither ATRX nor RLIM mutations influenced ZPBP2 methylation in female carriers. We conclude that sex-specific methylation differences at the autosomal locus result from interaction between a Y-linked factor SRY and at least one X-linked factor that acts in a dose-dependent manner.

  10. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites

    PubMed Central

    Eltaher, M. A.; Abdou, A. N. A.

    2017-01-01

    Nanocomposite TiO2/ASS (TiO2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO2/ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO2/ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO2 : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd2+ from bi-pollutant solution was achieved with TiO2/ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO2/ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO2/ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO2/ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction. PMID:29308227

  11. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites.

    PubMed

    Rashed, M Nageeb; Eltaher, M A; Abdou, A N A

    2017-12-01

    Nanocomposite TiO 2 /ASS (TiO 2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO 2 /ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO 2 /ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd 2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO 2  : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd 2+ from bi-pollutant solution was achieved with TiO 2 /ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO 2 /ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO 2 /ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO 2 /ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd 2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction.

  12. MGMT promoter methylation in Peruvian patients with glioblastoma

    PubMed Central

    Belmar-Lopez, Carolina; Castaneda, Carlos A; Castillo, Miluska; García-Corrochano, Pamela; Orrego, Enrique; Meléndez, Barbara; Casavilca, Sandro; Flores, Claudio; Orrego, Enrique

    2018-01-01

    Purpose O6-methylguanine–DNA methyltransferase (MGMT) promoter methylation predicts the outcome and response to alkylating chemotherapy in glioblastoma. The aim of this study is to evaluate the prevalence of MGMT methylation in Peruvian glioblastoma cases. Patients and methods We evaluated retrospectively 50 cases of resected glioblastoma during the period 2008–2013 at Instituto Nacional de Enfermedades Neoplasicas in Peru. Samples consisted of paraffin embedded and frozen tumour tissue. MGMT-promoter methylation status and the expression level of MGMT gene were evaluated by methylation-specific PCR and real-time PCR, respectively. Results Unmethylated, methylated and partially methylated statuses were found in 54%, 20% and 26% of paraffin-embedded samples, respectively. Methylation status was confirmed in the Virgen de la Salud Hospital and frozen samples. There was an association between the status of MGMT-promoter methylation and the level of gene expression (p = 0.001). Methylation was associated with increased progression-free survival (p = 0.002) and overall survival (OS) (p < 0.001). Conclusion MGMT-promoter methylation frequency in Peruvian glioblastoma is similar to that reported in other populations and the detection test has been standardised. PMID:29515653

  13. Detection of Glutathione by Glutathione-S-Transferase-Nanoconjugate Ensemble Electrochemical Device.

    PubMed

    Barman, Ujjwol; Mukhopadhyay, Gargi; Goswami, Namami; Ghosh, Siddhartha Sankar; Paily, Roy P

    2017-06-01

    This paper reports a novel electrochemical method for detection of Glutathione (GSH) using Glutathione-S-Transferase (GST) - ZnO composite nanoparticles to investigate the prospects of the method for detection of cancer at an early stage. The purified GST enzyme was bound with ZnO nanoparticles by electrostatic interactions and the nanocomposite was dropcast on a silicon dioxide wafer. The GST functionalized deposited layer was then used as a chemiresistive channel to detect conjugation reaction between GSH and 1-Chloro-2, 4-Dinitrobenzene (CDNB). The zeta potential values of the ZnO nanoparticles and the GST were found to be 13.4 mV and-6.21 mV, respectively. Around 73.8% binding was observed between the enzyme and ZnO nanoparticles. I - V analysis of the chemiresistive channel showed an increase in conductivity of the channel due to conjugation reaction between GSH and CDNB as compared with that of GSH or CDNB alone. I - V characterization of the GST functionalized layer was performed at various concentrations of GSH and a sensitivity and limit of detection of 5.68 nA/ [Formula: see text] and 41.9 nM were obtained, respectively. Thus from I - V analysis of the chemiresistivechannel, the detectionand quantification of GSH could be obtained. The kinetic parameters of both GST and nanoconjugate of ZnO nanoparticles andGSTwere determinedwith respect to its substrates, GSH and CDNB, using Michaelis-Mentenmodel. This novel approach of detection of GSH bymeans of ZnO nanoparticle and GST enzyme composite can be further analyzed for in vitro experiments, which will lead us to a new and efficient way of detecting certain types of cancers at an early stage.

  14. Reaction of rat liver glutathione S-transferases and bacterial dichloromethane dehalogenase with dihalomethanes.

    PubMed

    Blocki, F A; Logan, M S; Baoli, C; Wackett, L P

    1994-03-25

    Dichloromethane dehalogenase from Methylophilus sp. DM11 is a glutathione S-transferase homolog that is specifically active with dihalomethane substrates. This bacterial enzyme and rat liver glutathione S-transferases were purified to investigate their relative reactivity with CH2Cl2 and related substrates. Rat liver alpha class glutathione transferases were inactive and mu class enzymes showed low activity (7-23 nmol/min/mg of protein) with CH2Cl2. theta class glutathione transferase 5-5 from rat liver and Methylophilus sp. dichloromethane dehalogenase showed specific activities of > or = 1 mumol/min/mg of protein. Apparent Kcat/Km were determined to be 3.3 x 10(4) and 6.0 x 10(4) L M-1 S-1 for the two enzymes, respectively. Dideutero-dichloromethane was processed to dideutereo-formaldehyde, consistent with a nucleophilic halide displacement mechanism. The possibility of a GSCH2X reaction intermediate (GS, glutathione; X, halide) was probed using CH2ClF to generate a more stable halomethylglutathione species (GSCH2F). The reaction of CH2ClF with dichloromethane dehalogenase produced a kinetically identifiable intermediate that decomposed to formaldehyde at a similar rate to synthetic HOCH2CH2SCH2F. 19F-NMR revealed the transient formation of an intermediate identified as GSCH2F by its chemical shift, its triplet resonance, and H-F coupling constant consistent with a fluoromethylthioether. Its decomposition was matched by a stoichiometric formation of fluoride. These studies indicated that the bacterial dichloromethane dehalogenase directs a nucleophilic attack of glutathione on CH2Cl2 to produce a halomethylthioether intermediate. This focuses attention on the mechanism used by theta class glutathione transferases to generate a halomethylthioeter from relatively unreactive dihalomethanes.

  15. Zebrafish embryos as a screen for DNA methylation modifications after compound exposure.

    PubMed

    Bouwmeester, Manon C; Ruiter, Sander; Lommelaars, Tobias; Sippel, Josefine; Hodemaekers, Hennie M; van den Brandhof, Evert-Jan; Pennings, Jeroen L A; Kamstra, Jorke H; Jelinek, Jaroslav; Issa, Jean-Pierre J; Legler, Juliette; van der Ven, Leo T M

    2016-01-15

    Modified epigenetic programming early in life is proposed to underlie the development of an adverse adult phenotype, known as the Developmental Origins of Health and Disease (DOHaD) concept. Several environmental contaminants have been implicated as modifying factors of the developing epigenome. This underlines the need to investigate this newly recognized toxicological risk and systematically screen for the epigenome modifying potential of compounds. In this study, we examined the applicability of the zebrafish embryo as a screening model for DNA methylation modifications. Embryos were exposed from 0 to 72 h post fertilization (hpf) to bisphenol-A (BPA), diethylstilbestrol, 17α-ethynylestradiol, nickel, cadmium, tributyltin, arsenite, perfluoroctanoic acid, valproic acid, flusilazole, 5-azacytidine (5AC) in subtoxic concentrations. Both global and site-specific methylation was examined. Global methylation was only affected by 5AC. Genome wide locus-specific analysis was performed for BPA exposed embryos using Digital Restriction Enzyme Analysis of Methylation (DREAM), which showed minimal wide scale effects on the genome, whereas potential informative markers were not confirmed by pyrosequencing. Site-specific methylation was examined in the promoter regions of three selected genes vasa, vtg1 and cyp19a2, of which vasa (ddx4) was the most responsive. This analysis distinguished estrogenic compounds from metals by direction and sensitivity of the effect compared to embryotoxicity. In conclusion, the zebrafish embryo is a potential screening tool to examine DNA methylation modifications after xenobiotic exposure. The next step is to examine the adult phenotype of exposed embryos and to analyze molecular mechanisms that potentially link epigenetic effects and altered phenotypes, to support the DOHaD hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. (2-{[2-(1H-Benzimidazol-2-yl-κN 3)phen­yl]imino­methyl-κN}-5-methyl­phenolato-κO)chloridozinc(II)

    PubMed Central

    Eltayeb, Naser Eltaher; Teoh, Siang Guan; Chantrapromma, Suchada; Fun, Hoong-Kun

    2011-01-01

    In the title mononuclear complex, [Zn(C21H16N3O)Cl], the ZnII ion is coordinated in a distorted tetra­hedral geometry by two benzimidazole N atoms and one phenolate O atom from the tridentate Schiff base ligand and a chloride ligand. The benzimidazole ring system forms dihedral angles of 26.68 (9) and 56.16 (9)° with the adjacent benzene ring and the methyl­phenolate group benzene ring, respectively. In the crystal, mol­ecules are linked by N—H⋯Cl hydrogen bonds into chains along [100]. Furthermore, weak C—H⋯O and C—H⋯π inter­actions, in addition to π–π inter­actions with centroid–centroid distances in the range 3.5826 (13)–3.9681 (13) Å, are also observed. PMID:22065469

  17. Loss of heterozygosity and methylation of multiple tumor suppressor genes on chromosome 3 in hepatocellular carcinoma.

    PubMed

    Zhang, Xiaoying; Li, Hiu Ming; Liu, Zhiyan; Zhou, Gengyin; Zhang, Qinghui; Zhang, Tingguo; Zhang, Jianping; Zhang, Cuijuan

    2013-01-01

    Genetic and epigenetic alterations are the two key mechanisms in the development of hepatocellular carcinoma (HCC). However, how they contribute to hepatocarcinogenesis and the correlation between them has not been fully elucidated. A total of 48 paired HCCs and noncancerous tissues were used to detect loss of heterozygosity (LOH) and the methylation profiles of five tumor suppressor genes (RASSF1A, BLU, FHIT, CRBP1, and HLTF) on chromosome 3 by using polymerase chain reaction (PCR) and methylation-specific PCR. Gene expression was analyzed by immunohistochemistry and reverse transcription (RT)-PCR. Sixteen of 48 (33.3 %) HCCs had LOH on at least one locus on chromosome 3, and two smallest common deleted regions (3p22.3-24.3 and 3p12.3-14.2) were identified. RASSF1A, BLU, and FHIT showed very high frequencies of methylation in HCCs (100, 81.3, and 64.6 %, respectively) and noncancerous tissues, but not in liver tissues from control patients. Well-differentiated HCCs showed high methylation frequencies of these genes but very low frequencies of LOH. Furthermore, BLU methylation was associated with an increased level of alpha-fetoprotein, and FHIT methylation was inversely correlated with HCC recurrence. In comparison, CRBP1 showed moderate frequencies of methylation, while HLTF showed low frequencies of methylation, and CRBP1 methylation occurred mainly in elderly patients. Treatment with 5-aza-2'-deoxycytidine demethylated at least one of these genes and restored their expression in a DNA methylation-dependent or -independent manner. Hypermethylation of RASSF1A, BLU, and FHIT is a common and very early event in hepatocarcinogenesis; CRBP1 methylation may also be involved in the later stage. Although LOH was not too frequent on chromosome 3, it may play a role as another mechanism in hepatocarcinogenesis.

  18. The locus control region is required for association of the murine β-globin locus with engaged transcription factories during erythroid maturation

    PubMed Central

    Ragoczy, Tobias; Bender, M.A.; Telling, Agnes; Byron, Rachel; Groudine, Mark

    2006-01-01

    We have examined the relationship between nuclear localization and transcriptional activity of the endogenous murine β-globin locus during erythroid differentiation. Murine fetal liver cells were separated into distinct erythroid maturation stages by fluorescence-activated cell sorting, and the nuclear position of the locus was determined at each stage. We find that the β-globin locus progressively moves away from the nuclear periphery with increasing maturation. Contrary to the prevailing notion that the nuclear periphery is a repressive compartment in mammalian cells, βmajor-globin expression begins at the nuclear periphery prior to relocalization. However, relocation of the locus to the nuclear interior with maturation is accompanied by an increase in βmajor-globin transcription. The distribution of nuclear polymerase II (Pol II) foci also changes with erythroid differentiation: Transcription factories decrease in number and contract toward the nuclear interior. Moreover, both efficient relocalization of the β-globin locus from the periphery and its association with hyperphosphorylated Pol II transcription factories require the locus control region (LCR). These results suggest that the LCR-dependent association of the β-globin locus with transcriptionally engaged Pol II foci provides the driving force for relocalization of the locus toward the nuclear interior during erythroid maturation. PMID:16705039

  19. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    PubMed Central

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  20. Glutathione S - transferases class Pi and Mi and their significance in oncology.

    PubMed

    Marchewka, Zofia; Piwowar, Agnieszka; Ruzik, Sylwia; Długosz, Anna

    2017-06-19

    In this article the current data, which shows that glutathione S-transferases (GST) class Pi and Mi are interesting and promising biomarkers in acute and chronic inflammatory processes as well as in the oncology, were presented based on the review of the latest experimental and clinical studies. The article shows their characteristics, functions and participation (direct - GST Pi, indirect - GST Mi) in the regulation of signaling pathways of JNK kinases, which are involved in cell differentiation. Overexpression of glutathione S-transferases class Pi and Mi in many cancer cells plays a key role in cancer treatment, making them resistant to chemotherapy. GST isoenzymes are involved in the metabolism of various types of xenobiotics and endogenous substrates, so their altered expression in cancer tissues as well as in serum and urine could be an important potential marker of the cancer and an indicator of oxidative stress. The study shows the role of glutathione S-transferases in redox homeostasis of tumor cells and in the mechanism of resistance to anticancer drugs.

  1. The Ties that Bind (the Igh Locus).

    PubMed

    Krangel, Michael S

    2016-05-01

    Immunoglobulin heavy-chain locus V(D)J recombination requires a 3D chromatin organization which permits widely distributed variable (V) gene segments to contact distant diversity (D) and joining (J) gene segments. A recent study has identified key nodes in the locus interactome, paving the way for new molecular insights into how the locus is configured for recombination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. KSHV encoded ORF59 modulates histone arginine methylation of the viral genome to promote viral reactivation

    PubMed Central

    McDowell-Sargent, Maria; Uppal, Timsy; Purushothaman, Pravinkumar

    2017-01-01

    Kaposi’s sarcoma associated herpesvirus (KSHV) persists in a highly-ordered chromatin structure inside latently infected cells with the majority of the viral genome having repressive marks. However, upon reactivation the viral chromatin landscape changes into ‘open’ chromatin through the involvement of lysine demethylases and methyltransferases. Besides methylation of lysine residues of histone H3, arginine methylation of histone H4 plays an important role in controlling the compactness of the chromatin. Symmetric methylation of histone H4 at arginine 3 (H4R3me2s) negatively affects the methylation of histone H3 at lysine 4 (H3K4me3), an active epigenetic mark deposited on the viral chromatin during reactivation. We identified a novel binding partner to KSHV viral DNA processivity factor, ORF59-a protein arginine methyl transferase 5 (PRMT5). PRMT5 is an arginine methyltransferase that dimethylates arginine 3 (R3) of histone H4 in a symmetric manner, one hallmark of condensed chromatin. Our ChIP-seq data of symmetrically methylated H4 arginine 3 showed a significant decrease in H4R3me2s on the viral genome of reactivated cells as compared to the latent cells. Reduction in arginine methylation correlated with the binding of ORF59 on the viral chromatin and disruption of PRMT5 from its adapter protein, COPR5 (cooperator of PRMT5). Binding of PRMT5 through COPR5 is important for symmetric methylation of H4R3 and the expression of ORF59 competitively reduces the association of PRMT5 with COPR5, leading to a reduction in PRMT5 mediated arginine methylation. This ultimately resulted in a reduced level of symmetrically methylated H4R3 and increased levels of H3K4me3 marks, contributing to the formation of an open chromatin for transcription and DNA replication. Depletion of PRMT5 levels led to a decrease in symmetric methylation and increase in viral gene transcription confirming the role of PRMT5 in viral reactivation. In conclusion, ORF59 modulates histone

  3. KSHV encoded ORF59 modulates histone arginine methylation of the viral genome to promote viral reactivation.

    PubMed

    Strahan, Roxanne C; McDowell-Sargent, Maria; Uppal, Timsy; Purushothaman, Pravinkumar; Verma, Subhash C

    2017-07-01

    Kaposi's sarcoma associated herpesvirus (KSHV) persists in a highly-ordered chromatin structure inside latently infected cells with the majority of the viral genome having repressive marks. However, upon reactivation the viral chromatin landscape changes into 'open' chromatin through the involvement of lysine demethylases and methyltransferases. Besides methylation of lysine residues of histone H3, arginine methylation of histone H4 plays an important role in controlling the compactness of the chromatin. Symmetric methylation of histone H4 at arginine 3 (H4R3me2s) negatively affects the methylation of histone H3 at lysine 4 (H3K4me3), an active epigenetic mark deposited on the viral chromatin during reactivation. We identified a novel binding partner to KSHV viral DNA processivity factor, ORF59-a protein arginine methyl transferase 5 (PRMT5). PRMT5 is an arginine methyltransferase that dimethylates arginine 3 (R3) of histone H4 in a symmetric manner, one hallmark of condensed chromatin. Our ChIP-seq data of symmetrically methylated H4 arginine 3 showed a significant decrease in H4R3me2s on the viral genome of reactivated cells as compared to the latent cells. Reduction in arginine methylation correlated with the binding of ORF59 on the viral chromatin and disruption of PRMT5 from its adapter protein, COPR5 (cooperator of PRMT5). Binding of PRMT5 through COPR5 is important for symmetric methylation of H4R3 and the expression of ORF59 competitively reduces the association of PRMT5 with COPR5, leading to a reduction in PRMT5 mediated arginine methylation. This ultimately resulted in a reduced level of symmetrically methylated H4R3 and increased levels of H3K4me3 marks, contributing to the formation of an open chromatin for transcription and DNA replication. Depletion of PRMT5 levels led to a decrease in symmetric methylation and increase in viral gene transcription confirming the role of PRMT5 in viral reactivation. In conclusion, ORF59 modulates histone

  4. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification

    NASA Astrophysics Data System (ADS)

    Tessarz, Peter; Santos-Rosa, Helena; Robson, Sam C.; Sylvestersen, Kathrine B.; Nelson, Christopher J.; Nielsen, Michael L.; Kouzarides, Tony

    2014-01-01

    Nucleosomes are decorated with numerous post-translational modifications capable of influencing many DNA processes. Here we describe a new class of histone modification, methylation of glutamine, occurring on yeast histone H2A at position 105 (Q105) and human H2A at Q104. We identify Nop1 as the methyltransferase in yeast and demonstrate that fibrillarin is the orthologue enzyme in human cells. Glutamine methylation of H2A is restricted to the nucleolus. Global analysis in yeast, using an H2AQ105me-specific antibody, shows that this modification is exclusively enriched over the 35S ribosomal DNA transcriptional unit. We show that the Q105 residue is part of the binding site for the histone chaperone FACT (facilitator of chromatin transcription) complex. Methylation of Q105 or its substitution to alanine disrupts binding to FACT in vitro. A yeast strain mutated at Q105 shows reduced histone incorporation and increased transcription at the ribosomal DNA locus. These features are phenocopied by mutations in FACT complex components. Together these data identify glutamine methylation of H2A as the first histone epigenetic mark dedicated to a specific RNA polymerase and define its function as a regulator of FACT interaction with nucleosomes.

  5. Inter-laboratory comparison of multi-locus variable-number tandem repeat analysis (MLVA) for verocytotoxin-producing Escherichia coli O157 to facilitate data sharing.

    PubMed

    Holmes, A; Perry, N; Willshaw, G; Hanson, M; Allison, L

    2015-01-01

    Multi-locus variable number tandem repeat analysis (MLVA) is used in clinical and reference laboratories for subtyping verocytotoxin-producing Escherichia coli O157 (VTEC O157). However, as yet there is no common allelic or profile nomenclature to enable laboratories to easily compare data. In this study, we carried out an inter-laboratory comparison of an eight-loci MLVA scheme using a set of 67 isolates of VTEC O157. We found all but two isolates were identical in profile in the two laboratories, and repeat units were homogeneous in size but some were incomplete. A subset of the isolates (n = 17) were sequenced to determine the actual copy number of representative alleles, thereby enabling alleles to be named according to international consensus guidelines. This work has enabled us to realize the potential of MLVA as a portable, highly discriminatory and convenient subtyping method.

  6. ASC Methylation and Interleukin-1β Are Associated with Aerobic Capacity in Heart Failure.

    PubMed

    Butts, Brittany; Butler, Javed; Dunbar, Sandra B; Corwin, Elizabeth J; Gary, Rebecca A

    2017-06-01

    Aerobic capacity, as measured by peak oxygen uptake (V˙O2), is one of the most powerful predictors of prognosis in heart failure (HF). Inflammation is a key factor contributing to alterations in aerobic capacity, and interleukin (IL)-1 cytokines are implicated in this process. The adaptor protein ASC is necessary for inflammasome activation of IL-1β and IL-18. ASC expression is controlled through epigenetic modification; lower ASC methylation is associated with worse outcomes in HF. The purpose of this study is to examine the relationships between ASC methylation, IL-1β, and IL-18 with V˙O2peak in persons with HF. This study examined the relationship between ASC methylation, IL-1β, and IL-18 with V˙O2peak in 54 stable outpatients with HF. All participants were NYHA class II or III, not engaged in an exercise program, and physically able to complete an exercise treadmill test. Mean V˙O2peak was 16.68 ± 4.7 mL·kg·min. V˙O2peak was positively associated with mean percent ASC methylation (r = 0.47, P = 0.001) and negatively associated with IL-1β (r = -0.38, P = 0.007). Multiple linear regression models demonstrated that V˙O2peak increased by 2.30 mL·kg·min for every 1% increase in ASC methylation and decreased by 1.91 mL·kg·min for every 1 pg·mL increase in plasma IL-1β. Mean percent ASC methylation and plasma IL-1β levels are associated with clinically meaningful differences in V˙O2peak in persons with HF. Inflammasome activation may play a mechanistic role in determining aerobic capacity. ASC methylation is a potentially modifiable mechanism for reducing the inflammatory response, thereby improving aerobic capacity in HF.

  7. PRKCZ methylation is associated with sunlight exposure in a North American but not a Mediterranean population.

    PubMed

    Aslibekyan, Stella; Dashti, Hassan S; Tanaka, Toshiko; Sha, Jin; Ferrucci, Luigi; Zhi, Degui; Bandinelli, Stefania; Borecki, Ingrid B; Absher, Devin M; Arnett, Donna K; Ordovas, Jose M

    2014-11-01

    Sunlight exposure has been shown to alter DNA methylation patterns across several human cell-types, including T-lymphocytes. Since epigenetic changes establish gene expression profiles, changes in DNA methylation induced by sunlight exposure warrant investigation. The purpose of this study was to assess the effects of sunlight exposure on CD4+ T-cell methylation patterns on an epigenome-wide scale in a North American population of European origin (n=991). In addition, we investigated the genetic contribution to epigenetic variation (methylQTL). We used linear regression to test the associations between methylation scores at 461,281 cytosine-phosphate-guanine (CpG) sites and sunlight exposure, followed by a genome-wide association analysis (methylQTL) to test for associations between methylation at the top CpG locus and common genetic variants, assuming an additive genetic model. We observed an epigenome-wide significant association between sunlight exposure and methylation status at cg26930596 (p=9.2×10(-8)), a CpG site located in protein kinase C zeta (PRKCZ), a gene previously shown to be entrained by light. MethylQTL analysis resulted in significant associations between cg26930596 and two intergenic single nucleotide polymorphisms on chromosome 3, rs4574216 (p=1.5×10(-10)) and rs4405858 (p=1.9×10(-9)). These common genetic variants reside downstream of WWTR1, a transcriptional co-activator of PRKCZ. Associations observed in the North American population, however, did not replicate in an independent Mediterranean cohort. Our preliminary results support the role of sunlight exposure in epigenetic processes, and lay the groundwork for future studies of the molecular link between sunlight and physiologic processes such as tumorigenesis and metabolism.

  8. Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation.

    PubMed

    Saksouk, Nehmé; Barth, Teresa K; Ziegler-Birling, Celine; Olova, Nelly; Nowak, Agnieszka; Rey, Elodie; Mateos-Langerak, Julio; Urbach, Serge; Reik, Wolf; Torres-Padilla, Maria-Elena; Imhof, Axel; Déjardin, Jérome; Simboeck, Elisabeth

    2014-11-20

    Constitutive heterochromatin is typically defined by high levels of DNA methylation and H3 lysine 9 trimethylation (H3K9Me3), whereas facultative heterochromatin displays DNA hypomethylation and high H3 lysine 27 trimethylation (H3K27Me3). The two chromatin types generally do not coexist at the same loci, suggesting mutual exclusivity. During development or in cancer, pericentromeric regions can adopt either epigenetic state, but the switching mechanism is unknown. We used a quantitative locus purification method to characterize changes in pericentromeric chromatin-associated proteins in mouse embryonic stem cells deficient for either the methyltransferases required for DNA methylation or H3K9Me3. DNA methylation controls heterochromatin architecture and inhibits Polycomb recruitment. BEND3, a protein enriched on pericentromeric chromatin in the absence of DNA methylation or H3K9Me3, allows Polycomb recruitment and H3K27Me3, resulting in a redundant pathway to generate repressive chromatin. This suggests that BEND3 is a key factor in mediating a switch from constitutive to facultative heterochromatin. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. SKA2 Methylation is associated with Decreased Prefrontal Cortical Thickness and Greater PTSD Severity among Trauma-Exposed Veterans

    PubMed Central

    Sadeh, Naomi; Spielberg, Jeffrey M.; Logue, Mark W.; Wolf, Erika J.; Smith, Alicia K.; Lusk, Joanna; Hayes, Jasmeet P.; Sperbeck, Emily; Milberg, William P.; McGlinchey, Regina E.; Salat, David H.; Carter, Weleetka C.; Stone, Annjanette; Schichman, Steven A.; Humphries, Donald E.; Miller, Mark W.

    2015-01-01

    Methylation of the SKA2 gene has recently been identified as a promising biomarker of suicide risk. Based on this finding, we examined associations between SKA2 methylation, cortical thickness, and psychiatric phenotypes linked to suicide in trauma-exposed veterans. 200 trauma-exposed white non-Hispanic veterans of the recent conflicts in Iraq and Afghanistan (91% male) underwent clinical assessment and had blood drawn for genotyping and methylation analysis. 145 participants also had neuroimaging data available. Based on previous research, we examined DNA methylation at the CpG locus cg13989295 as well as DNA methylation adjusted for genotype at the methylation-associated SNP (rs7208505) in relationship to whole-brain cortical thickness, posttraumatic stress disorder symptoms (PTSD), and depression symptoms. Whole-brain vertex-wise analyses identified three clusters in prefrontal cortex that were associated with genotype-adjusted SKA2 DNA methylation (methylationadj). Specifically, DNA methylationadj was associated with bilateral reductions of cortical thickness in frontal pole and superior frontal gyrus, and similar effects were found in the right orbitofrontal cortex and right inferior frontal gyrus. PTSD symptom severity was positively correlated with SKA2 DNA methylationadj and negatively correlated with cortical thickness in these regions. Mediation analyses showed a significant indirect effect of PTSD on cortical thickness via SKA2 methylation status. Results suggest that DNA methylationadj of SKA2 in blood indexes stress-related psychiatric phenotypes and neurobiology, pointing to its potential value as a biomarker of stress exposure and susceptibility. PMID:26324104

  10. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of the enzyme galactose-1-phosphate uridyl transferase in erythrocytes (red blood cells... hereditary disease galactosemia (disorder of galactose metabolism) in infants. (b) Classification. Class II. ...

  11. Examining the relationship between health locus of control and God Locus of Health Control: Is God an internal or external source?

    PubMed

    Boyd, Joni M; Wilcox, Sara

    2017-11-01

    For many people, the influence of believing in a higher power can elicit powerful effects. This study examined the relationship between God control, health locus of control, and frequency of religious attendance within 838 college students through online surveys. Regression analysis showed that chance and external locus of control and frequency of religious attendance were significant and positive predictors of God Locus of Health Control. The association of powerful others external locus of control and God Locus of Health Control differed by race (stronger in non-Whites than Whites) and somewhat by gender (stronger in women than men). For some people, the role of a supreme being, or God, should be considered when designing programs for improving health behaviors.

  12. O-GlcNAc cycling: Emerging Roles in Development and Epigenetics

    PubMed Central

    Love, Dona C.; Krause, Michael W.; Hanover, John A.

    2010-01-01

    The nutrient-sensing hexosamine signaling pathway modulates the levels of O-linked N-acetylglucosamine (O-GlcNAc) on key targets impacting cellular signaling, protein turnover and gene expression. O-GlcNAc cycling may be deregulated in neurodegenerative disease, cancer, and diabetes. Studies in model organisms demonstrate that the O-GlcNAc transferase (OGT/Sxc) is essential for Polycomb group (PcG) repression of the homeotic genes, clusters of genes responsible for the adult body plan. Surprisingly, from flies to man, the O-GlcNAcase (OGA, MGEA5) gene is embedded within the NK cluster, the most evolutionarily ancient of three homeobox gene clusters regulated by PcG repression. PcG repression also plays a key role in maintaining stem cell identity, recruiting the DNA methyltransferase machinery for imprinting, and in X-chromosome inactivation. Intriguingly, the Ogt gene resides near the Xist locus in vertebrates and is subject to regulation by PcG-dependent X-inactivation. OGT is also an enzymatic component of the human dosage compensation complex. These ‘evo-devo’ relationships linking O-GlcNAc cycling to higher order chromatin structure provide insights into how nutrient availability may influence the epigenetic regulation of gene expression. O-GlcNAc cycling at promoters and PcG repression represent concrete mechanisms by which nutritional information may be transmitted across generations in the intra-uterine environment. Thus, the nutrient-sensing hexosamine signaling pathway may be a key contributor to the metabolic deregulation resulting from prenatal exposure to famine, or the ‘vicious cycle’ observed in children of mothers with type-2 diabetes and metabolic disease. PMID:20488252

  13. Methylation, Glucuronidation, and Sulfonation of Daphnetin in Human Hepatic Preparations In Vitro: Metabolic Profiling, Pathway Comparison, and Bioactivity Analysis.

    PubMed

    Liang, Si-Cheng; Xia, Yang-Liu; Hou, Jie; Ge, Guang-Bo; Zhang, Jiang-Wei; He, Yu-Qi; Wang, Jia-Yue; Qi, Xiao-Yi; Yang, Ling

    2016-02-01

    Our previous study demonstrated that daphnetin is subject to glucuronidation in vitro. However, daphnetin metabolism is still poorly documented. This study aimed to investigate daphnetin metabolism and its consequent effect on the bioactivity. Metabolic profiles obtained by human liver S9 fractions and human hepatocytes showed that daphnetin was metabolized by glucuronidation, sulfonation, and methylation to form 6 conjugates which were synthesized and identified as 7-O-glucuronide, 8-O-glucuronide, 7-O-sulfate and 8-O-sulfate, 8-O-methylate, and 7-O-suflo-8-O-methylate. Regioselective 8-O-methylation of daphnetin was investigated using in silico docking calculations, and the results suggested that a close proximity (2.03 Å) of 8-OH to the critical residue Lysine 144 might be the responsible mechanism. Compared with glucuronidation and sulfonation pathways, the methylation of daphnetin had a high clearance rate (470 μL/min/mg) in human liver S9 fractions and contributed to a large amount (37.3%) of the methyl-derived metabolites in human hepatocyte. Reaction phenotyping studies showed the major role of SULT1A1, -1A2, and -1A3 in daphnetin sulfonation, and soluble COMT in daphnetin 8-O-methylation. Of the metabolites, only 8-O-methyldaphnetin exhibited an inhibitory activity on lymphocyte proliferation comparable to that of daphnetin. In conclusion, methylation is a crucial pathway for daphnetin clearance and might be involved in pharmacologic actions of daphnetin in humans. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Aberrant GSTP1 promoter methylation predicts short-term prognosis in acute-on-chronic hepatitis B liver failure.

    PubMed

    Gao, S; Sun, F-K; Fan, Y-C; Shi, C-H; Zhang, Z-H; Wang, L-Y; Wang, K

    2015-08-01

    Glutathione-S-transferase P1 (GSTP1) methylation has been demonstrated to be associated with oxidative stress induced liver damage in acute-on-chronic hepatitis B liver failure (ACHBLF). To evaluate the methylation level of GSTP1 promoter in acute-on-chronic hepatitis B liver failure and determine its predictive value for prognosis. One hundred and five patients with acute-on-chronic hepatitis B liver failure, 86 with chronic hepatitis B (CHB) and 30 healthy controls (HC) were retrospectively enrolled. GSTP1 methylation level in peripheral mononuclear cells (PBMC) was detected by MethyLight. Clinical and laboratory parameters were obtained. GSTP1 methylation levels were significantly higher in patients with acute-on-chronic hepatitis B liver failure (median 16.84%, interquartile range 1.83-59.05%) than those with CHB (median 1.25%, interquartile range 0.48-2.47%; P < 0.01) and HC (median 0.80%, interquartile range 0.67-1.27%; P < 0.01). In acute-on-chronic hepatitis B liver failure group, nonsurvivors showed significantly higher GSTP1 methylation levels (P < 0.05) than survivors. GSTP1 methylation level was significantly correlated with total bilirubin (r = 0.29, P < 0.01), prothrombin time activity (r = -0.24, P = 0.01) and model for end-stage liver disease (MELD) score (r = 0.26, P = 0.01). When used to predict 1- or 2-month mortality of acute-on-chronic hepatitis B liver failure, GSTP1 methylation showed significantly better predictive value than MELD score [area under the receiver operating characteristic curve (AUC) 0.89 vs. 0.72, P < 0.01; AUC 0.83 vs. 0.70, P < 0.05 respectively]. Meanwhile, patients with GSTP1 methylation levels above the cut-off points showed significantly poorer survival than those below (P < 0.05). Aberrant GSTP1 promoter methylation exists in acute-on-chronic hepatitis B liver failure and shows high predictive value for short-term mortality. It might serve as a potential prognostic marker for acute-on-chronic hepatitis B liver failure

  15. Structural insights into the methyl donor recognition model of a novel membrane-binding protein UbiG.

    PubMed

    Zhu, Yuwei; Jiang, Xuguang; Wang, Chongyuan; Liu, Yang; Fan, Xiaojiao; Zhang, Linjuan; Niu, Liwen; Teng, Maikun; Li, Xu

    2016-03-15

    UbiG is a SAM-dependent O-methyltransferase, catalyzing two O-methyl transfer steps for ubiquinone biosynthesis in Escherichia coli. UbiG possesses a unique sequence insertion between β4 and α10, which is used for membrane lipid interaction. Interestingly, this sequence insertion also covers the methyl donor binding pocket. Thus, the relationship between membrane binding and entrance of the methyl donor of UbiG during the O-methyl transfer process is a question that deserves further exploration. In this study, we reveal that the membrane-binding region of UbiG gates the entrance of methyl donor. When bound with liposome, UbiG displays an enhanced binding ability toward the methyl donor product S-adenosylhomocysteine. We further employ protein engineering strategies to design UbiG mutants by truncating the membrane interacting region or making it more flexible. The ITC results show that the binding affinity of these mutants to SAH increases significantly compared with that of the wild-type UbiG. Moreover, we determine the structure of UbiG∆(165-187) in complex with SAH. Collectively, our results provide a new angle to cognize the relationship between membrane binding and entrance of the methyl donor of UbiG, which is of benefit for better understanding the O-methyl transfer process for ubiquinone biosynthesis.

  16. DNA methylation in a Scottish family multiply affected by bipolar disorder and major depressive disorder.

    PubMed

    Walker, Rosie May; Christoforou, Andrea Nikie; McCartney, Daniel L; Morris, Stewart W; Kennedy, Nicholas A; Morten, Peter; Anderson, Susan Maguire; Torrance, Helen Scott; Macdonald, Alix; Sussmann, Jessika Elizabeth; Whalley, Heather Clare; Blackwood, Douglas H R; McIntosh, Andrew Mark; Porteous, David John; Evans, Kathryn Louise

    2016-01-01

    Bipolar disorder (BD) is a severe, familial psychiatric condition. Progress in understanding the aetiology of BD has been hampered by substantial phenotypic and genetic heterogeneity. We sought to mitigate these confounders by studying a multi-generational family multiply affected by BD and major depressive disorder (MDD), who carry an illness-linked haplotype on chromosome 4p. Within a family, aetiological heterogeneity is likely to be reduced, thus conferring greater power to detect illness-related changes. As accumulating evidence suggests that altered DNA methylation confers risk for BD and MDD, we compared genome-wide methylation between (i) affected carriers of the linked haplotype (ALH) and married-in controls (MIs), (ii) well unaffected haplotype carriers (ULH) and MI, (iii) ALH and ULH and (iv) all haplotype carriers (LH) and MI. Nominally significant differences in DNA methylation were observed in all comparisons, with differences withstanding correction for multiple testing when the ALH or LH group was compared to the MIs. In both comparisons, we observed increased methylation at a locus in FANCI, which was accompanied by increased FANCI expression in the ALH group. FANCI is part of the Fanconi anaemia complementation (FANC) gene family, which are mutated in Fanconi anaemia and participate in DNA repair. Interestingly, several FANC genes have been implicated in psychiatric disorders. Regional analyses of methylation differences identified loci implicated in psychiatric illness by genome-wide association studies, including CACNB2 and the major histocompatibility complex. Gene ontology analysis revealed enrichment for methylation differences in neurologically relevant genes. Our results highlight altered DNA methylation as a potential mechanism by which the linked haplotype might confer risk for mood disorders. Differences in the phenotypic outcome of haplotype carriers might, in part, arise from additional changes in DNA methylation that converge on

  17. Application of Microreactor to the Preparation of C-11-Labeled Compounds via O-[11C]Methylation with [11C]CH3I: Rapid Synthesis of [11C]Raclopride.

    PubMed

    Kawashima, Hidekazu; Kimura, Hiroyuki; Nakaya, Yuta; Tomatsu, Kenji; Arimitsu, Kenji; Nakanishi, Hiroaki; Ozeki, Eiichi; Kuge, Yuji; Saji, Hideo

    2015-01-01

    A new radiolabeling method using a microreactor was developed for the rapid synthesis of [(11)C]raclopride. A chip bearing a Y-shaped mixing junction with a 200 µm (width)×20 µm (depth)×250 mm (length) flow channel was designed, and the efficiency of O-[11C]methylation was evaluated. Dimethyl sulfoxide solutions containing the O-desmethyl precursor or [11C]CH3I were introduced into separate injection ports by infusion syringes, and the radiochemical yields were measured under various conditions. The decay-corrected radiochemical yield of microreactor-derived [11C]raclopride reached 12% in 20 s at 25 °C, which was observed to increase with increasing temperature. In contrast, batch synthesis at 25 °C produced a yield of 5%: this indicates that this device could effectively achieve O-[11C]methylation in a shorter period of time. The microreactor technique may facilitate simple and efficient routine production of 11C-labeled compounds via O-[11C]methylation with [11C]CH3I.

  18. Glucuronoyl esterases are active on polymeric substrate, methyl esterified glucuronoxylan

    USDA-ARS?s Scientific Manuscript database

    Alkali extracted beechwood glucuronoxylan methyl ester prepared by esterification of 4-O-methyl-D-glucuronic acid side residues by methanol was found to serve as substrate of microbial glucuronoyl esterases from Ruminococcus flavefaciens, Schizophyllum commune and Trichoderma reesei. The enzymatic d...

  19. Genome-wide methylation analysis in Silver-Russell syndrome patients

    PubMed Central

    Böhm, S; Frost, JM; Puszyk, W; Abu-Amero, S; Stanier, P; Schulz, R; Moore, GE; Oakey, RJ

    2015-01-01

    Silver-Russell Syndrome (SRS) is a clinically heterogeneous disorder characterised by severe in utero growth restriction and poor postnatal growth, body asymmetry, irregular craniofacial features and several additional minor malformations. The aetiology of SRS is complex and current evidence strongly implicates imprinted genes. Approximately half of all patients exhibit DNA hypomethylation at the H19/IGF2 imprinted domain, and around 10% have maternal uniparental disomy of chromosome 7. We measured DNA methylation in 18 SRS patients at >485,000 CpG sites using DNA methylation microarrays. Using a novel bioinformatics methodology specifically designed to identify subsets of patients with a shared epimutation, we analysed methylation changes genome-wide as well as at known imprinted regions to identify SRS-associated epimutations. Our analysis identifies epimutations at the previously characterised domains of H19/IGF2 and at imprinted regions on chromosome 7, providing proof of principle that our methodology can detect DNA methylation changes at imprinted loci. In addition we discovered two novel epimutations associated with SRS and located at imprinted loci previously linked to relevant mouse and human phenotypes. We identify RB1 as an additional imprinted locus associated with SRS, with a region near the RB1 DMR hypermethylated in 13/18 (~70 %) patients. We also report 6/18 (~33 %) patients were hypermethylated at a CpG island near the ANKRD11 gene. We do not observe consistent cooccurrence of epimutations at multiple imprinted loci in single SRS individuals. SRS is clinically heterogeneous and the absence of multiple imprinted loci epimutations reflects the heterogeneity at the molecular level. Further stratification of SRS patients by molecular phenotypes might aid the identification of disease causes. PMID:25563730

  20. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification...

  1. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification...

  2. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ornithine carbamyl transferase test system. 862.1535 Section 862.1535 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  3. Alterations in Glutathione S-transferase pi expression following exposure to MPP+-induced oxidative stress in blood of Parkinson’s disease patients

    PubMed Central

    Korff, Ane; Pfeiffer, Brenda; Smeyne, Michelle; Kocak, Mehmet; Pfeiffer, Ronald F.

    2012-01-01

    The major motor symptoms of Parkinson’s disease do not occur until a majority of the dopaminergic neurons in the midbrain SNpc have already died. For this reason, it is critical to identify biomarkers that will allow for the identification of presymptomatic individuals. In this study, we examine the baseline expression of the antioxidant protein Glutathione S-transferase pi (GSTpi) in blood of PD and environmental and age-matched controls and compare it to GSTpi levels following exposure to 1-methyl-4-phenylpyridinium (MPP+), an agent that has been shown to induce oxidative stress. We find that 4 hours of exposure to MPP+, significant increases in GSTpi levels can be observed in the leukocytes of PD patients. No changes were seen in other blood components. This suggests that GSTpi and potentially other members of this and other anti-oxidant families may be viable biomarkers for PD. PMID:21840241

  4. Syntheses, structures and characterization of isomorphous CoII and NiII coordination polymers based on 2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole and benzene-1,4-dicarboxylate.

    PubMed

    Huang, Qiu Ying; Zhao, Yang; Meng, Xiang Ru

    2017-08-01

    Careful choice of the organic ligands is one of the most important parameters in the rational design and synthesis of coordination polymers. Aromatic polycarboxylates have been widely used in the preparation of metal-organic polymers since they can utilize various coordination modes to form diverse structures and can act as hydrogen-bond acceptors and donors in the assembly of supramolecular structures. Nitrogen-heterocyclic organic compounds have also been used extensively as ligands for the construction of polymers with interesting structures. In the polymers catena-poly[[[diaquabis{2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole-κN 3 }cobalt(II)]-μ 2 -benzene-1,4-dicarboxylato-κ 2 O 1 :O 4 ] dihydrate], {[Co(C 8 H 4 O 4 )(C 12 H 11 N 4 ) 2 (H 2 O) 2 ]·2H 2 O} n , (I), and catena-poly[[[diaquabis{2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole-κN 3 }nickel(II)]-μ 2 -benzene-1,4-dicarboxylato-κ 2 O 1 :O 4 ] dihydrate], {[Ni(C 8 H 4 O 4 )(C 12 H 11 N 4 ) 2 (H 2 O) 2 ]·2H 2 O} n , (II), the Co II or Ni II ion lies on an inversion centre and exhibits a slightly distorted octahedral coordination geometry, coordinated by two N atoms from two imidazole rings and four O atoms from two monodentate carboxylate groups and two water molecules. The dicarboxylate ligands bridge metal ions forming a polymeric chain. The 2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole ligands coordinate to the Co II or Ni II centres in monodentate modes through an imidazole N atom and are pendant on opposite sides of the main chain. The two structures are isomorphous. In the crystal, the one-dimensional chains are further connected through O-H...O, O-H...N and N-H...O hydrogen bonds, leading to a three-dimensional supramolecular architecture. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviours and fluorescence properties of both polymers have been investigated.

  5. Zebrafish embryos as a screen for DNA methylation modifications after compound exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouwmeester, Manon C.; Ruiter, Sander; Lommelaars, Tobias

    Modified epigenetic programming early in life is proposed to underlie the development of an adverse adult phenotype, known as the Developmental Origins of Health and Disease (DOHaD) concept. Several environmental contaminants have been implicated as modifying factors of the developing epigenome. This underlines the need to investigate this newly recognized toxicological risk and systematically screen for the epigenome modifying potential of compounds. In this study, we examined the applicability of the zebrafish embryo as a screening model for DNA methylation modifications. Embryos were exposed from 0 to 72 h post fertilization (hpf) to bisphenol-A (BPA), diethylstilbestrol, 17α-ethynylestradiol, nickel, cadmium, tributyltin,more » arsenite, perfluoroctanoic acid, valproic acid, flusilazole, 5-azacytidine (5AC) in subtoxic concentrations. Both global and site-specific methylation was examined. Global methylation was only affected by 5AC. Genome wide locus-specific analysis was performed for BPA exposed embryos using Digital Restriction Enzyme Analysis of Methylation (DREAM), which showed minimal wide scale effects on the genome, whereas potential informative markers were not confirmed by pyrosequencing. Site-specific methylation was examined in the promoter regions of three selected genes vasa, vtg1 and cyp19a2, of which vasa (ddx4) was the most responsive. This analysis distinguished estrogenic compounds from metals by direction and sensitivity of the effect compared to embryotoxicity. In conclusion, the zebrafish embryo is a potential screening tool to examine DNA methylation modifications after xenobiotic exposure. The next step is to examine the adult phenotype of exposed embryos and to analyze molecular mechanisms that potentially link epigenetic effects and altered phenotypes, to support the DOHaD hypothesis. - Highlights: • Compound induced effects on DNA methylation in zebrafish embryos • Global methylation not an informative biomarker • Minimal

  6. Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species.

    PubMed

    Luo, Zhuanxi; Wang, Zhenhong; Yan, Yameng; Li, Jinli; Yan, Changzhou; Xing, Baoshan

    2018-07-01

    The effect of titanium dioxide nanoparticles (nano-TiO 2 ) on the bioaccumulation and biotransformation of arsenic (As) remains largely unknown. In this study, we exposed two freshwater algae (Microcystis aeruginosa and Scenedesmus obliquus) to inorganic As (arsenite and arsenate) with the aim of increasing our understanding on As bioaccumulation and methylation in the presence of nano-TiO 2 . Direct evidence from transmission electron microscope (TEM) images show that nano-TiO 2 (anatase) entered exposed algae. Thus, nano-TiO 2 as carriers boosted As accumulation and methylation in these two algae species, which varied between inorganic As speciation and algae species. Specifically, nano-TiO 2 could markedly enhance arsenate (As(V)) accumulation in M. aeruginosa and arsenite (As(III)) accumulation in S. obliquus. Similarly, we found evidence of higher As methylation activity in the M. aeruginosa of As(III) 2 mg L -1 nano-TiO 2 treatment. Although this was also true for the S. obliquus (As(V)) treatment, this species exhibited higher As methylation compared to M. aeruginosa, being more sensitive to As associated with nano-TiO 2 compared to M. aeruginosa. Due to changes in pH levels inside these exposed algae, As dissociation from nano-TiO 2 inside algal cells enhanced As methylation. Accordingly, the potential influence of nanoparticles on the bioaccumulation and biotransformation of their co-contaminants deserves more attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Site-specific O-glycosylation of N-terminal serine residues by polypeptide GalNAc-transferase 2 modulates human δ-opioid receptor turnover at the plasma membrane.

    PubMed

    Lackman, Jarkko J; Goth, Christoffer K; Halim, Adnan; Vakhrushev, Sergey Y; Clausen, Henrik; Petäjä-Repo, Ulla E

    2018-01-01

    G protein-coupled receptors (GPCRs) are an important protein family of signalling receptors that govern a wide variety of physiological functions. The capacity to transmit extracellular signals and the extent of cellular response are largely determined by the amount of functional receptors at the cell surface that is subject to complex and fine-tuned regulation. Here, we demonstrate that the cell surface expression level of an inhibitory GPCR, the human δ-opioid receptor (hδOR) involved in pain and mood regulation, is modulated by site-specific N-acetylgalactosamine (GalNAc) -type O-glycosylation. Importantly, we identified one out of the 20 polypeptide GalNAc-transferase isoforms, GalNAc-T2, as the specific regulator of O-glycosylation of Ser6, Ser25 and Ser29 in the N-terminal ectodomain of the receptor. This was demonstrated by in vitro glycosylation assays using peptides corresponding to the hδOR N-terminus, Vicia villosa lectin affinity purification of receptors expressed in HEK293 SimpleCells capable of synthesizing only truncated O-glycans, GalNAc-T edited cell line model systems, and site-directed mutagenesis of the putative O-glycosylation sites. Interestingly, a single-nucleotide polymorphism, at residue 27 (F27C), was found to alter O-glycosylation of the receptor in efficiency as well as in glycosite usage. Furthermore, flow cytometry and cell surface biotinylation assays using O-glycan deficient CHO-ldlD cells revealed that the absence of O-glycans results in decreased receptor levels at the plasma membrane due to enhanced turnover. In addition, mutation of the identified O-glycosylation sites led to a decrease in the number of ligand-binding competent receptors and impaired agonist-mediated inhibition of cyclic AMP accumulation in HEK293 cells. Thus, site-specific O-glycosylation by a selected GalNAc-T isoform can increase the stability of a GPCR, in a process that modulates the constitutive turnover and steady-state levels of functional receptors

  8. Template free synthesis of ZnO/Ag2O nanocomposites as a highly efficient visible active photocatalyst for detoxification of methyl orange.

    PubMed

    Kadam, Abhijit; Dhabbe, Rohant; Gophane, Anna; Sathe, Tukaram; Garadkar, Kalyanrao

    2016-01-01

    A simple and effective route for the synthesis of ZnO/Ag2O nanocomposites with different weight ratios (4:1 to 4:4) have been successfully obtained by combination of thermal decomposition and precipitation technique. The structure, composition, morphology and optical properties of the as-prepared ZnO/Ag2O composites were characterized by XRD, FT-IR, EDS, SEM, TEM, UV-Vis DRS and PL, respectively. The photocatalytic performance of the photocatalysts was evaluated towards the degradation of a methyl orange (MO) under UV and visible light. More specifically, the results showed that the photocatalytic activity with highest rate constant of MO degradation over ZnO/Ag2O (4:2) nanocomposites is more than 22 and 4 times than those of pure ZnO and Ag2O under visible light irradiation, respectively. An improved photocatalytic activity was attributed to the formation of heterostructure between Ag2O and ZnO, the strong visible light absorption and more separation efficiency of photoinduced electron-hole pairs. Moreover, the ZnO/Ag2O (4:2) nanocomposite showed excellent stability towards the photodegradation of MO under visible light. Finally, a possible mechanism for enhanced charge separation and photodegrdation is proposed. Genotoxicity of MO before and after photodegradation was also evaluated by simple comet assay technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. 4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl-benzene-sulfonamide moiety. In the crystal, mol-ecules are -connected through N-H⋯N hydrogen bonds and weak C-H⋯O contacts, forming a two-dimensional network parallel to (001).

  10. Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and Methyl orange dye degradation studies

    NASA Astrophysics Data System (ADS)

    Prasad, Cheera; Yuvaraja, Gutha; Venkateswarlu, Ponneri

    2017-02-01

    We have been developed facile and ecofriendly method for the synthesis of Fe3O4 magnetic nanoparticles (MNPs) using an aqueous extract of Pisum sativum peels (PS) is used as reducing and capping agent. The as synthesized PS-Fe3O4 MNPs are characterized by diverse techniques such as FTIR, powder XRD, TEM, BET and Raman spectroscopy measurements. The results show that the obtained Fe3O4 nanoparticles exhibits high specific surface area (∼17.6 m2/g) and agglomerated spherical in shape with the size range of 20-30 nm. The magnetic properties of PS-Fe3O4 MNPs sample clearly exhibits ferromagnetic nature with a saturation magnetization of 64.2 emu/g. Further, the catalytic properties of PS-Fe3O4 MNPs for degradation of Methyl orange (MO) dye in aqueous solution have been investigated by UV-visible spectroscopy. The results show that PS-Fe3O4 MNPs is an efficient catalyst for degradation of Methyl orange dye than previously reported ones.

  11. O-GlcNAcylation: A New Cancer Hallmark?

    PubMed

    Fardini, Yann; Dehennaut, Vanessa; Lefebvre, Tony; Issad, Tarik

    2013-01-01

    O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification consisting in the addition of a sugar moiety to serine/threonine residues of cytosolic or nuclear proteins. Catalyzed by O-GlcNAc-transferase (OGT) and removed by O-GlcNAcase, this dynamic modification is dependent on environmental glucose concentration. O-GlcNAcylation regulates the activities of a wide panel of proteins involved in almost all aspects of cell biology. As a nutrient sensor, O-GlcNAcylation can relay the effects of excessive nutritional intake, an important cancer risk factor, on protein activities and cellular functions. Indeed, O-GlcNAcylation has been shown to play a significant role in cancer development through different mechanisms. O-GlcNAcylation and OGT levels are increased in different cancers (breast, prostate, colon…) and vary during cell cycle progression. Modulating their expression or activity can alter cancer cell proliferation and/or invasion. Interestingly, major oncogenic factors have been shown to be directly O-GlcNAcylated (p53, MYC, NFκB, β-catenin…). Furthermore, chromatin dynamics is modulated by O-GlcNAc. DNA methylation enzymes of the Tet family, involved epigenetic alterations associated with cancer, were recently found to interact with and target OGT to multi-molecular chromatin-remodeling complexes. Consistently, histones are subjected to O-GlcNAc modifications which regulate their function. Increasing number of evidences point out the central involvement of O-GlcNAcylation in tumorigenesis, justifying the attention received as a potential new approach for cancer treatment. However, comprehension of the underlying mechanism remains at its beginnings. Future challenge will be to address directly the role of O-GlcNAc-modified residues in oncogenic-related proteins to eventually propose novel strategies to alter cancer development and/or progression.

  12. O-GlcNAcylation: A New Cancer Hallmark?

    PubMed Central

    Fardini, Yann; Dehennaut, Vanessa; Lefebvre, Tony; Issad, Tarik

    2013-01-01

    O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification consisting in the addition of a sugar moiety to serine/threonine residues of cytosolic or nuclear proteins. Catalyzed by O-GlcNAc-transferase (OGT) and removed by O-GlcNAcase, this dynamic modification is dependent on environmental glucose concentration. O-GlcNAcylation regulates the activities of a wide panel of proteins involved in almost all aspects of cell biology. As a nutrient sensor, O-GlcNAcylation can relay the effects of excessive nutritional intake, an important cancer risk factor, on protein activities and cellular functions. Indeed, O-GlcNAcylation has been shown to play a significant role in cancer development through different mechanisms. O-GlcNAcylation and OGT levels are increased in different cancers (breast, prostate, colon…) and vary during cell cycle progression. Modulating their expression or activity can alter cancer cell proliferation and/or invasion. Interestingly, major oncogenic factors have been shown to be directly O-GlcNAcylated (p53, MYC, NFκB, β-catenin…). Furthermore, chromatin dynamics is modulated by O-GlcNAc. DNA methylation enzymes of the Tet family, involved epigenetic alterations associated with cancer, were recently found to interact with and target OGT to multi-molecular chromatin-remodeling complexes. Consistently, histones are subjected to O-GlcNAc modifications which regulate their function. Increasing number of evidences point out the central involvement of O-GlcNAcylation in tumorigenesis, justifying the attention received as a potential new approach for cancer treatment. However, comprehension of the underlying mechanism remains at its beginnings. Future challenge will be to address directly the role of O-GlcNAc-modified residues in oncogenic-related proteins to eventually propose novel strategies to alter cancer development and/or progression. PMID:23964270

  13. MicroRNA-200a/200b Modulate High Glucose-Induced Endothelial Inflammation by Targeting O-linked N-Acetylglucosamine Transferase Expression.

    PubMed

    Lo, Wan-Yu; Yang, Wen-Kai; Peng, Ching-Tien; Pai, Wan-Yu; Wang, Huang-Joe

    2018-01-01

    Background and Aims: Increased O -linked N -acetylglucosamine ( O -GlcNAc) modification of proteins by O -GlcNAc transferase (OGT) is associated with diabetic complications. Furthermore, oxidative stress promotes endothelial inflammation during diabetes. A previous study reported that microRNA-200 (miR-200) family members are sensitive to oxidative stress. In this study, we examined whether miR-200a and miR-200b regulate high-glucose (HG)-induced OGT expression in human aortic endothelial cells (HAECs) and whether miRNA-200a/200b downregulate OGT expression to control HG-induced endothelial inflammation. Methods: HAECs were stimulated with high glucose (25 mM) for 12 and 24 h. Real-time polymerase chain reaction (PCR), western blotting, THP-1 adhesion assay, bioinformatics predication, transfection of miR-200a/200b mimic or inhibitor, luciferase reporter assay, and transfection of siRNA OGT were performed. The aortic endothelium of db/db diabetic mice was evaluated by immunohistochemistry staining. Results: HG upregulated OGT mRNA and protein expression and protein O -GlcNAcylation levels (RL2 antibody) in HAECs, and showed increased intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion. Bioinformatics analysis revealed homologous sequences between members of the miR-200 family and the 3'-untranslated region (3'-UTR) of OGT mRNA, and real-time PCR analysis confirmed that members of miR-200 family were significantly decreased in HG-stimulated HAECs. This suggests the presence of an impaired feedback restraint on HG-induced endothelial protein O -GlcNAcylation levels because of OGT upregulation. A luciferase reporter assay demonstrated that miR-200a/200b mimics bind to the 3'-UTR of OGT mRNA. Transfection with miR-200a/200b mimics significantly inhibited HG-induced OGT mRNA expression, OGT protein expression; protein O -GlcNAcylation levels; ICAM-1, VCAM-1, and E

  14. Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk

    PubMed Central

    Painter, Jodie N.; O'Mara, Tracy A.; Batra, Jyotsna; Cheng, Timothy; Lose, Felicity A.; Dennis, Joe; Michailidou, Kyriaki; Tyrer, Jonathan P.; Ahmed, Shahana; Ferguson, Kaltin; Healey, Catherine S.; Kaufmann, Susanne; Hillman, Kristine M.; Walpole, Carina; Moya, Leire; Pollock, Pamela; Jones, Angela; Howarth, Kimberley; Martin, Lynn; Gorman, Maggie; Hodgson, Shirley; De Polanco, Ma. Magdalena Echeverry; Sans, Monica; Carracedo, Angel; Castellvi-Bel, Sergi; Rojas-Martinez, Augusto; Santos, Erika; Teixeira, Manuel R.; Carvajal-Carmona, Luis; Shu, Xiao-Ou; Long, Jirong; Zheng, Wei; Xiang, Yong-Bing; Montgomery, Grant W.; Webb, Penelope M.; Scott, Rodney J.; McEvoy, Mark; Attia, John; Holliday, Elizabeth; Martin, Nicholas G.; Nyholt, Dale R.; Henders, Anjali K.; Fasching, Peter A.; Hein, Alexander; Beckmann, Matthias W.; Renner, Stefan P.; Dörk, Thilo; Hillemanns, Peter; Dürst, Matthias; Runnebaum, Ingo; Lambrechts, Diether; Coenegrachts, Lieve; Schrauwen, Stefanie; Amant, Frederic; Winterhoff, Boris; Dowdy, Sean C.; Goode, Ellen L.; Teoman, Attila; Salvesen, Helga B.; Trovik, Jone; Njolstad, Tormund S.; Werner, Henrica M.J.; Ashton, Katie; Proietto, Tony; Otton, Geoffrey; Tzortzatos, Gerasimos; Mints, Miriam; Tham, Emma; Hall, Per; Czene, Kamila; Liu, Jianjun; Li, Jingmei; Hopper, John L.; Southey, Melissa C.; Ekici, Arif B.; Ruebner, Matthias; Johnson, Nicola; Peto, Julian; Burwinkel, Barbara; Marme, Frederik; Brenner, Hermann; Dieffenbach, Aida K.; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Depreeuw, Jeroen; Moisse, Matthieu; Chang-Claude, Jenny; Rudolph, Anja; Couch, Fergus J.; Olson, Janet E.; Giles, Graham G.; Bruinsma, Fiona; Cunningham, Julie M.; Fridley, Brooke L.; Børresen-Dale, Anne-Lise; Kristensen, Vessela N.; Cox, Angela; Swerdlow, Anthony J.; Orr, Nicholas; Bolla, Manjeet K.; Wang, Qin; Weber, Rachel Palmieri; Chen, Zhihua; Shah, Mitul; French, Juliet D.; Pharoah, Paul D.P.; Dunning, Alison M.; Tomlinson, Ian; Easton, Douglas F.; Edwards, Stacey L.; Thompson, Deborah J.; Spurdle, Amanda B.

    2015-01-01

    Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10−14, odds ratio = 0.86, 95% confidence interval = 0.82–0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression. PMID:25378557

  15. Self-Esteem, Locus of Control, and Student Achievement.

    ERIC Educational Resources Information Center

    Sterbin, Allan; Rakow, Ernest

    The direct effects of locus of control and self-esteem on standardized test scores were studied. The relationships among the standardized test scores and measures of locus of control and self-esteem for 12,260 students from the National Education Longitudinal Study 1994 database were examined, using the same definition of locus of control and…

  16. Multiple-locus variable number of tandem repeat analysis (MLVA) of Irish verocytotoxigenic Escherichia coli O157 from feedlot cattle: uncovering strain dissemination routes.

    PubMed

    Murphy, Mary; Minihan, Donal; Buckley, James F; O'Mahony, Micheál; Whyte, Paul; Fanning, Séamus

    2008-01-24

    The identification of the routes of dissemination of Escherichia coli (E. coli) O157 through a cohort of cattle is a critical step to control this pathogen at farm level. The aim of this study was to identify potential routes of dissemination of E. coli O157 using Multiple-Locus Variable number of tandem repeat Analysis (MLVA). Thirty-eight environmental and sixteen cattle faecal isolates, which were detected in four adjacent pens over a four-month period were sub-typed. MLVA could separate these isolates into broadly defined clusters consisting of twelve MLVA types. Strain diversity was observed within pens, individual cattle and the environment. Application of MLVA is a broadly useful and convenient tool when applied to uncover the dissemination of E. coli O157 in the environment and in supporting improved on-farm management of this important pathogen. These data identified diverse strain types based on amplification of VNTR markers in each case.

  17. Enhanced degradation and mineralization of 4-chloro-3-methyl phenol by Zn-CNTs/O3 system.

    PubMed

    Liu, Yong; Zhou, Anlan; Liu, Yanlan; Wang, Jianlong

    2018-01-01

    A novel zinc-carbon nanotubes (Zn-CNTs) composite was prepared, characterized and used in O 3 system for the enhanced degradation and mineralization of chlorinated phenol. The Zn-CNTs was characterized by SEM, BET and XRD, and the degradation of 4-chloro-3-methyl phenol (CMP) in aqueous solution was investigated using Zn-CNTs/O 3 system. The experimental results showed that the rate constant of total organic carbon (TOC) removal was 0.29 min -1 , much higher than that of only O 3 system (0.059 min -1 ) because Zn-CNTs/O 2 system could generate H 2 O 2 in situ, the concentration of H 2 O 2 could reach 156.14 mg/L within 60 min at pH 6.0. The high mineralization ratio of CMP by Zn-CNTs/O 3 occurred at wide pH range (3.0-9.0). The increase of Zn-CNTs dosage or gas flow rate contributed to the enhancement of CMP mineralization. The intermediates of CMP degradation were identified and the possible degradation pathway was tentatively proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Homogentisate solanesyl transferase (HST) cDNA’s in maize

    USDA-ARS?s Scientific Manuscript database

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This reaction ...

  19. Locus coeruleus activation accelerates perceptual learning.

    PubMed

    Glennon, Erin; Carcea, Ioana; Martins, Ana Raquel O; Multani, Jasmin; Shehu, Ina; Svirsky, Mario A; Froemke, Robert C

    2018-05-31

    Neural representations of the external world are constructed and updated in a manner that depends on behavioral context. For neocortical networks, this contextual information is relayed by a diverse range of neuromodulatory systems, which govern attention and signal the value of internal state variables such as arousal, motivation, and stress. Neuromodulators enable cortical circuits to differentially process specific stimuli and modify synaptic strengths in order to maintain short- or long-term memory traces of significant perceptual events and behavioral episodes. One of the most important subcortical neuromodulatory systems for attention and arousal is the noradrenergic locus coeruleus. Here we report that the noradrenergic system can enhance behavior in rats performing a self-initiated auditory recognition task, and optogenetic stimulation of noradrenergic locus coeruleus neurons accelerated the rate at which trained rats began correctly responding to a change in reward contingency. Animals successively progressed through distinct behavioral epochs, including periods of perseverance and exploration that occurred much more rapidly when animals received locus coeruleus stimulation. In parallel, we made recordings from primary auditory cortex and found that pairing tones with locus coeruleus stimulation led to a similar set of changes to cortical tuning profiles. Thus both behavioral and neural responses go through phases of adjustment for exploring and exploiting environmental reward contingencies. Furthermore, behavioral engagement does not necessarily recruit optimal locus coeruleus activity. Copyright © 2018. Published by Elsevier B.V.

  20. Relationships between locus of control and paranormal beliefs.

    PubMed

    Newby, Robert W; Davis, Jessica Boyette

    2004-06-01

    The present study investigated the associations between scores on paranormal beliefs, locus of control, and certain psychological processes such as affect and cognitions as measured by the Linguistic Inquiry and Word Count. Analysis yielded significant correlations between scores on Locus of Control and two subscales of Tobacyk's (1988) Revised Paranormal Beliefs Scale, New Age Philosophy and Traditional Paranormal Beliefs. A step-wise multiple regression analysis indicated that Locus of Control was significantly related to New Age Philosophy. Other correlations were found between Tobacyk's subscales, Locus of Control, and three processes measured by the Linguistic Inquiry and Word Count.

  1. PRKCZ methylation is associated with sunlight exposure in a North American but not a Mediterranean population

    PubMed Central

    Aslibekyan, Stella; Dashti, Hassan S.; Tanaka, Toshiko; Sha, Jin; Ferrucci, Luigi; Zhi, Degui; Bandinelli, Stefania; Borecki, Ingrid B.; Absher, Devin M.; Arnett, Donna K.; Ordovas, Jose M.

    2015-01-01

    Sunlight exposure has been shown to alter DNA methylation patterns across several human cell-types, including T-lymphocytes. Since epigenetic changes establish gene expression profiles, changes in DNA methylation induced by sunlight exposure warrant investigation. The purpose of this study was to assess the effects of sunlight exposure on CD4+ T-cell methylation patterns on an epigenome-wide scale in a North American population of European origin (n = 991). In addition, we investigated the genetic contribution to epigenetic variation (methylQTL). We used linear regression to test the associations between methylation scores at 461 281 cytosine-phosphate-guanine (CpG) sites and sunlight exposure, followed by a genome-wide association analysis (methylQTL) to test for associations between methylation at the top CpG locus and common genetic variants, assuming an additive genetic model. We observed an epigenome-wide significant association between sunlight exposure and methylation status at cg26930596 (p = 9.2 × 10−8), a CpG site located in protein kinase C zeta (PRKCZ), a gene previously shown to be entrained by light. MethylQTL analysis resulted in significant associations between cg26930596 and two intergenic single nucleotide polymorphisms on chromosome 3, rs4574216 (p = 1.5 × 10−10) and rs4405858 (p = 1.9 × 10−9). These common genetic variants reside downstream of WWTR1, a transcriptional co-activator of PRKCZ. Associations observed in the North American population, however, did not replicate in an independent Mediterranean cohort. Our preliminary results support the role of sunlight exposure in epigenetic processes, and lay the groundwork for future studies of the molecular link between sunlight and physiologic processes such as tumorigenesis and metabolism. PMID:25075435

  2. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities.

    PubMed

    Sen, Dilara; Keung, Albert J

    2018-01-01

    The advent of locus-specific protein recruitment technologies has enabled a new class of studies in chromatin biology. Epigenome editors enable biochemical modifications of chromatin at almost any specific endogenous locus. Their locus specificity unlocks unique information including the functional roles of distinct modifications at specific genomic loci. Given the growing interest in using these tools for biological and translational studies, there are many specific design considerations depending on the scientific question or clinical need. Here we present and discuss important design considerations and challenges regarding the biochemical and locus specificities of epigenome editors. These include how to account for the complex biochemical diversity of chromatin; control for potential interdependency of epigenome editors and their resultant modifications; avoid sequestration effects; quantify the locus specificity of epigenome editors; and improve locus specificity by considering concentration, affinity, avidity, and sequestration effects.

  3. Design of Potent and Druglike Nonphenolic Inhibitors for Catechol O-Methyltransferase Derived from a Fragment Screening Approach Targeting the S-Adenosyl-l-methionine Pocket.

    PubMed

    Lerner, Christian; Jakob-Roetne, Roland; Buettelmann, Bernd; Ehler, Andreas; Rudolph, Markus; Rodríguez Sarmiento, Rosa María

    2016-11-23

    A fragment screening approach designed to target specifically the S-adenosyl-l-methionine pocket of catechol O-methyl transferase allowed the identification of structurally related fragments of high ligand efficiency and with activity on the described orthogonal assays. By use of a reliable enzymatic assay together with X-ray crystallography as guidance, a series of fragment modifications revealed an SAR and, after several expansions, potent lead compounds could be obtained. For the first time nonphenolic and small low nanomolar potent, SAM competitive COMT inhibitors are reported. These compounds represent a novel series of potent COMT inhibitors that might be further optimized to new drugs useful for the treatment of Parkinson's disease, as adjuncts in levodopa based therapy, or for the treatment of schizophrenia.

  4. Association of in vitro fertilization with global and IGF2/H19 methylation variation in newborn twins.

    PubMed

    Loke, Y J; Galati, J C; Saffery, R; Craig, J M

    2015-04-01

    In vitro fertilization (IVF) and its subset intracytoplasmic sperm injection (ICSI), are widely used medical treatments for conception. There has been controversy over whether IVF is associated with adverse short- and long-term health outcomes of offspring. As with other prenatal factors, epigenetic change is thought to be a molecular mediator of any in utero programming effects. Most studies focused on DNA methylation at gene-specific and genomic level, with only a few on associations between DNA methylation and IVF. Using buccal epithelium from 208 twin pairs from the Peri/Postnatal Epigenetic Twin Study (PETS), we investigated associations between IVF and DNA methylation on a global level, using the proxies of Alu and LINE-1 interspersed repeats in addition to two locus-specific regulatory regions within IGF2/H19, controlling for 13 potentially confounding factors. Using multiple correction testing, we found strong evidence that IVF-conceived twins have lower DNA methylation in Alu, and weak evidence of lower methylation in one of the two IGF2/H19 regulatory regions and LINE-1, compared with naturally conceived twins. Weak evidence of a relationship between ICSI and DNA methylation within IGF2/H19 regulatory region was found, suggesting that one or more of the processes associated with IVF/ICSI may contribute to these methylation differences. Lower within- and between-pair DNA methylation variation was also found in IVF-conceived twins for LINE-1, Alu and one IGF2/H19 regulatory region. Although larger sample sizes are needed, our results provide additional insight to the possible influence of IVF and ICSI on DNA methylation. To our knowledge, this is the largest study to date investigating the association of IVF and DNA methylation.

  5. Production of 7-O-Methyl Aromadendrin, a Medicinally Valuable Flavonoid, in Escherichia coli

    PubMed Central

    Malla, Sailesh; Koffas, Mattheos A. G.; Kazlauskas, Romas J.

    2012-01-01

    7-O-Methyl aromadendrin (7-OMA) is an aglycone moiety of one of the important flavonoid-glycosides found in several plants, such as Populus alba and Eucalyptus maculata, with various medicinal applications. To produce such valuable natural flavonoids in large quantity, an Escherichia coli cell factory has been developed to employ various plant biosynthetic pathways. Here, we report the generation of 7-OMA from its precursor, p-coumaric acid, in E. coli for the first time. Primarily, naringenin (NRN) (flavanone) synthesis was achieved by feeding p-coumaric acid and reconstructing the plant biosynthetic pathway by introducing the following structural genes: 4-coumarate–coenzyme A (CoA) ligase from Petroselinum crispum, chalcone synthase from Petunia hybrida, and chalcone isomerase from Medicago sativa. In order to increase the availability of malonyl-CoA, a critical precursor of 7-OMA, genes for the acyl-CoA carboxylase α and β subunits (nfa9890 and nfa9940), biotin ligase (nfa9950), and acetyl-CoA synthetase (nfa3550) from Nocardia farcinica were also introduced. Thus, produced NRN was hydroxylated at position 3 by flavanone-3-hydroxylase from Arabidopsis thaliana, which was further methylated at position 7 to produce 7-OMA in the presence of 7-O-methyltransferase from Streptomyces avermitilis. Dihydrokaempferol (DHK) (aromadendrin) and sakuranetin (SKN) were produced as intermediate products. Overexpression of the genes for flavanone biosynthesis and modification pathways, along with malonyl-CoA overproduction in E. coli, produced 2.7 mg/liter (8.9 μM) 7-OMA upon supplementation with 500 μM p-coumaric acid in 24 h, whereas the strain expressing only the flavanone modification enzymes yielded 30 mg/liter (99.2 μM) 7-OMA from 500 μM NRN in 24 h. PMID:22101053

  6. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be...) Bromoacetone, methyl bromide, chloropicrin and methyl bromide mixtures, chloropicrin and methyl chloride...

  7. Production of a unique pneumococcal capsule serotype belonging to serogroup 6

    PubMed Central

    Bratcher, Preston E.; Park, In H.; Hollingshead, Susan K.; Nahm, Moon H.

    2013-01-01

    Serogroup 6 of Streptococcus pneumoniae contains three serotypes named 6A, 6B and 6C with highly homologous capsule gene loci. The 6A and 6B capsule gene loci consistently differ from each other by only one nucleotide in the wciP gene. The 6A capsule gene locus has a galactosyl transferase, which has been replaced with a glucosyl transferase in the 6C capsule gene locus. We considered that a new serotype named “6X1” would be possible if the galactosyl transferase of the 6B capsule gene locus is replaced with the glucosyl transferase of 6C. We demonstrate that this gene transfer yields a viable pneumococcal strain and the capsular polysaccharide from this strain has the predicted chemical structure and serologic similarity to the capsular polysaccharide of the 6B serotype. The new strain (i.e., serotype 6X1) is typed as 6B by the quellung reaction but it can be distinguished from 6B strains with monoclonal antibodies to 6B polysaccharide. Reexamination of 264 pneumococcal isolates that were previously typed as 6B with classical typing methods revealed no isolates expressing serotype 6X1. Nevertheless, this study shows this capsular polysaccharide is biochemically possible and could exist/emerge in nature. PMID:19202106

  8. Subcultural Determinants of Locus of Control (IE) Development. A Locus of Control (IE) Measure for Preschool-Age Children: Model, Method, and Validity.

    ERIC Educational Resources Information Center

    Stephens, Mark; Delys, Pamela

    Both papers are concerned with locus of control (of reinforcement) expectancies among young children, especially preschoolers. The first reviews a number of studies which examined the relationship between locus of control, socioeconomic status, and ethnicity. The results indicate that (1) economic status is consistently related to locus of…

  9. Activation of methyl acetate on Pd(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Lijun; Xu, Ye

    2010-01-01

    The absorption and activation of methyl acetate (CH{sub 3}COOCH{sub 3}), one of the simplest carboxylic esters, on Pd(111) have been studied using self-consistent periodic density functional theory calculations. Methyl acetate adsorbs weakly through the carbonyl oxygen. Its activation occurs via dehydrogenation, instead of direct C-O bond dissociation, on clean Pd(111): It is much more difficult to dissociate the C--O bonds ({epsilon}{sub a} ? 2.0 eV for the carbonyl and acetate-methyl bonds; {epsilon}{sub a} = 1.0 eV for the acetyl-methoxy bond) than to dissociate the C-H bonds to produce enolate (CH{sub 2}COOCH{sub 3}; {epsilon}{sub a} = 0.74 eV) or methylene acetatemore » (CH{sub 3}COOCH{sub 2}; {epsilon}{sub a} = 0.82 eV). The barriers for C-H and C-O bond dissociation are directly calculated for enolate and methylene acetate, and estimated for further dehydrogenated derivatives (CH{sub 3}COOCH, CH{sub 2}COOCH{sub 2}, and CHCOOCH{sub 3}) based on the Bronsted-Evans-Polanyi linear energy relations formed by the calculated steps. The enolate pathway leads to successive dehydrogenation to CCOOCH{sub 3}, whereas methylene acetate readily dissociates to yield acetyl. The selectivity for dissociating the acyl-alkoxy C-O bond, which is desired for alcohol formation, is therefore fundamentally limited by the facility of dehydrogenation under vacuum/low-pressure conditions on Pd(111).« less

  10. Multi-locus variable number tandem repeat analysis for Escherichia coli causing extraintestinal infections.

    PubMed

    Manges, Amee R; Tellis, Patricia A; Vincent, Caroline; Lifeso, Kimberley; Geneau, Geneviève; Reid-Smith, Richard J; Boerlin, Patrick

    2009-11-01

    Discriminatory genotyping methods for the analysis of Escherichia coli other than O157:H7 are necessary for public health-related activities. A new multi-locus variable number tandem repeat analysis protocol is presented; this method achieves an index of discrimination of 99.5% and is reproducible and valid when tested on a collection of 836 diverse E. coli.

  11. Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing.

    PubMed

    Eggermann, Thomas; Heilsberg, Ann-Kathrin; Bens, Susanne; Siebert, Reiner; Beygo, Jasmin; Buiting, Karin; Begemann, Matthias; Soellner, Lukas

    2014-07-01

    The chromosomal region 11p15 contains two imprinting control regions (ICRs) and is a key player in molecular processes regulated by genomic imprinting. Genomic as well as epigenetic changes affecting 11p15 are associated either with Silver-Russell syndrome (SRS) or Beckwith-Wiedemann syndrome (BWS). In the last years, a growing number of patients affected by imprinting disorders (IDs) have reported carrying the disease-specific 11p15 hypomethylation patterns as well as methylation changes at imprinted loci at other chromosomal sites (multi-locus methylation defects, MLMD). Furthermore, in several patients, molecular alterations (e.g., uniparental disomies, UPDs) additional to the primary epimutations have been reported. To determine the frequency and distribution of mutations and epimutations in patients referred as SRS or BWS for genetic testing, we retrospectively ascertained our routine patient cohort consisting of 711 patients (SRS, n = 571; BWS, n = 140). As this cohort represents the typical cohort in a routine diagnostic lab without clinical preselection, the detection rates were much lower than those reported from clinically characterized cohorts in the literature (SRS, 19.9%; BWS, 28.6%). Among the molecular subgroups known to be predisposed to MLMD, the frequencies corresponded to that in the literature (SRS, 7.1% in ICR1 hypomethylation carriers; BWS, 20.8% in ICR2 hypomethylation patients). In several patients, more than one epigenetic or genetic disturbance could be identified. Our study illustrates that the complex molecular alterations as well as the overlapping and sometimes unusual clinical findings in patients with imprinting disorders (IDs) often make the decision for a specific imprinting disorder test difficult. We therefore suggest to implement molecular assays in routine ID diagnostics which allow the detection of a broad range of (epi)mutation types (epimutations, UPDs, chromosomal imbalances) and cover the clinically most relevant known ID

  12. Resolution of 1-n-butyl-3-methyl-3-phospholene 1-oxide with TADDOL derivatives and calcium salts of O,O'-Dibenzoyl-(2R,3R)- or O,O'-di-p-toluoyl-(2R,3R)-tartaric acid.

    PubMed

    Bagi, Péter; Fekete, András; Kállay, Mihály; Hessz, Dóra; Kubinyi, Miklós; Holczbauer, Tamás; Czugler, Mátyás; Fogassy, Elemér; Keglevich, György

    2014-03-01

    The resolution methods applying (-)-(4R,5R)-4,5-bis(diphenylhydroxymethyl)-2,2-dimethyldioxolane ("TADDOL"), (-)-(2R,3R)-α,α,α',α'-tetraphenyl-1,4-dioxaspiro[4.5]decan-2,3-dimethanol ("spiro-TADDOL"), as well as the acidic and neutral Ca(2+) salts of (-)-O,O'-dibenzoyl- and (-)-O,O'-di-p-toluoyl-(2R,3R)-tartaric acid were extended for the preparation of 1-n-butyl-3-methyl-3-phospholene 1-oxide in optically active form. In one case, the intermediate diastereomeric complex could be identified by single-crystal X-ray analysis. The absolute P-configuration of the enantiomers of the phospholene oxide was also determined by comparing the experimentally obtained and calculated CD spectra. © 2014 Wiley Periodicals, Inc.

  13. Genetic characterization of non-O157 verocytotoxigenic Escherichia coli isolated from raw beef products using multiple-locus variable-number tandem repeat analysis.

    PubMed

    Franci, Tomás; Sanso, A Mariel; Bustamante, Ana V; Lucchesi, Paula M A; Parma, Alberto E

    2011-09-01

    Verocytotoxigenic Escherichia coli (VTEC) can produce serious human illness linked to the consumption of contaminated food, mainly of bovine origin. There is growing concern about non-O157 VTEC serotypes, which in some countries cause severe infections in a proportion similar to O157:H7 strains. As several epidemiological studies indicated the important role of meat as the major vehicle in the transmission of this pathogen to human consumers, our aim was to investigate the genetic diversity among non-O157:H7 VTEC isolated from raw beef products. We performed a multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA), and to our knowledge, this is the first time that VTEC serotypes O8:H19, O112:H2, O113:NM, O171:NM, ONT:H7, ONT:H19, and ONT:H21 were typed by this method. MLVA typing grouped the total number of strains from this study (51) into 21 distinct genotypes, and 11 of them were unique. Several MLVA profiles were found in different serotypes, O178:H19 being the most variable. The isolates could be principally discriminated by alleles of three of seven loci studied (CVN001, CVN004, and CVN014), and on the other hand, CVN003 rendered null alleles in all the isolates. As some VNTR markers might be serotype specific, it is possible that the implementation of new VNTR loci will increase intraserotype discrimination.

  14. Prenatal stress-induced programming of genome-wide promoter DNA methylation in 5-HTT-deficient mice.

    PubMed

    Schraut, K G; Jakob, S B; Weidner, M T; Schmitt, A G; Scholz, C J; Strekalova, T; El Hajj, N; Eijssen, L M T; Domschke, K; Reif, A; Haaf, T; Ortega, G; Steinbusch, H W M; Lesch, K P; Van den Hove, D L

    2014-10-21

    The serotonin transporter gene (5-HTT/SLC6A4)-linked polymorphic region has been suggested to have a modulatory role in mediating effects of early-life stress exposure on psychopathology rendering carriers of the low-expression short (s)-variant more vulnerable to environmental adversity in later life. The underlying molecular mechanisms of this gene-by-environment interaction are not well understood, but epigenetic regulation including differential DNA methylation has been postulated to have a critical role. Recently, we used a maternal restraint stress paradigm of prenatal stress (PS) in 5-HTT-deficient mice and showed that the effects on behavior and gene expression were particularly marked in the hippocampus of female 5-Htt+/- offspring. Here, we examined to which extent these effects are mediated by differential methylation of DNA. For this purpose, we performed a genome-wide hippocampal DNA methylation screening using methylated-DNA immunoprecipitation (MeDIP) on Affymetrix GeneChip Mouse Promoter 1.0 R arrays. Using hippocampal DNA from the same mice as assessed before enabled us to correlate gene-specific DNA methylation, mRNA expression and behavior. We found that 5-Htt genotype, PS and their interaction differentially affected the DNA methylation signature of numerous genes, a subset of which showed overlap with the expression profiles of the corresponding transcripts. For example, a differentially methylated region in the gene encoding myelin basic protein (Mbp) was associated with its expression in a 5-Htt-, PS- and 5-Htt × PS-dependent manner. Subsequent fine-mapping of this Mbp locus linked the methylation status of two specific CpG sites to Mbp expression and anxiety-related behavior. In conclusion, hippocampal DNA methylation patterns and expression profiles of female prenatally stressed 5-Htt+/- mice suggest that distinct molecular mechanisms, some of which are promoter methylation-dependent, contribute to the behavioral effects of the 5-Htt

  15. Preservation of urine free catecholamines and their free O-methylated metabolites with citric acid as an alternative to hydrochloric acid for LC-MS/MS-based analyses.

    PubMed

    Peitzsch, Mirko; Pelzel, Daniela; Lattke, Peter; Siegert, Gabriele; Eisenhofer, Graeme

    2016-01-01

    Measurements of urinary fractionated metadrenalines provide a useful screening test to diagnose phaeochromocytoma. Stability of these compounds and their parent catecholamines during and after urine collection is crucial to ensure accuracy of the measurements. Stabilisation with hydrochloric acid (HCl) can promote deconjugation of sulphate-conjugated metadrenalines, indicating a need for alternative preservatives. Urine samples with an intrinsically acidic or alkaline pH (5.5-6.9 or 7.1-8.7, respectively) were used to assess stability of free catecholamines and their free O-methylated metabolites over 7 days of room temperature storage. Stabilisation with HCl was compared with ethylenediaminetetraacetic acid/metabisulphite and monobasic citric acid. Catecholamines and metabolites were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Free catecholamines and their O-methylated metabolites were stable in acidic urine samples over 7 days of room temperature storage, independent of the presence or absence of any stabilisation method. In contrast, free catecholamines, but not the free O-methylated metabolites, showed rapid degradation within 24 h and continuing degradation over 7 days in urine samples with an alkaline pH. Adjustment of alkaline urine samples to a pH of 3-5 with HCl or 4.8-5.4 with citric acid completely blocked degradation of catecholamines. Ethylenediaminetetraacetic acid/metabisulphite, although reducing the extent of degradation of catecholamines in alkaline urine, was largely ineffectual as a stabiliser. Citric acid is equally effective as HCl for stabilisation of urinary free catecholamines and minimises hazards associated with use of strong inorganic acids while avoiding deconjugation of sulphate-conjugated metabolites during simultaneous LC-MS/MS measurements of free catecholamines and their free O-methylated metabolites.

  16. A unique polysaccharide containing 3-O-methylarabinose and 3-O-methylgalactose from Tinospora sinensis.

    PubMed

    Nagar, Shipra; Hensel, Andreas; Mischnick, Petra; Kumar, Vineet

    2018-08-01

    Tinospora sinensis (Lour.) Merrill is of great therapeutic significance in Indian traditional medicine. Crude polysaccharides were isolated from methanol pre-extracted stems of dried material by successive extractions with cold water, hot water and NaOH (0.25 mol/L) in 0.98, 0.55 and 0.70 % yields respectively. Cold water soluble polysaccharides (CWSP) were purified and fractionated by ion exchange chromatography on DEAE-Sephacel. Neutral polysaccharides were further fractionated on Sepharose CL6B to yield three fractions TW1, TW2, TW3. The study further focuses on structural elucidation of TW1. TW1 was obtained in 0.8 % yield relative to CWSP, with MW of 1.6 × 10 5  Da. It was composed of 3-O-methyl-arabinose, 3-O-methyl-galactose and galactose in molar ratio of 1.0:6.3:0.9 respectively. Based on per-deuteromethylation, NMR and ESI-MS analyses, TW1 was composed of 1,4-linked 3-O-methyl-β-d-galactopyranose and β-d-galactopyranose backbone with branching at O-6 of 3-O-methyl-β-d-galactosyl residues by 1,5-linked 3-O-methyl-α-l-arabinofuranoside chains. 3-O-methyl-arabinose and 3-O-methyl-galactose have first ever been reported in any polysaccharide and Tinospora genus, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Inferring Demographic History Using Two-Locus Statistics.

    PubMed

    Ragsdale, Aaron P; Gutenkunst, Ryan N

    2017-06-01

    Population demographic history may be learned from contemporary genetic variation data. Methods based on aggregating the statistics of many single loci into an allele frequency spectrum (AFS) have proven powerful, but such methods ignore potentially informative patterns of linkage disequilibrium (LD) between neighboring loci. To leverage such patterns, we developed a composite-likelihood framework for inferring demographic history from aggregated statistics of pairs of loci. Using this framework, we show that two-locus statistics are more sensitive to demographic history than single-locus statistics such as the AFS. In particular, two-locus statistics escape the notorious confounding of depth and duration of a bottleneck, and they provide a means to estimate effective population size based on the recombination rather than mutation rate. We applied our approach to a Zambian population of Drosophila melanogaster Notably, using both single- and two-locus statistics, we inferred a substantially lower ancestral effective population size than previous works and did not infer a bottleneck history. Together, our results demonstrate the broad potential for two-locus statistics to enable powerful population genetic inference. Copyright © 2017 by the Genetics Society of America.

  18. Molecular Identification of the Schwannomatosis Locus

    DTIC Science & Technology

    2007-07-01

    Schwannomatosis Locus PRINCIPAL INVESTIGATOR: Mia MacCollin, M.D. CONTRACTING ORGANIZATION: Massachusetts General Hospital...Identification of the Schwannomatosis Locus 5b. GRANT NUMBER DAMD17-03-1-0445 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Mia...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Schwannomatosis is a recently recognized third major type of neurofibromatosis. Our

  19. Alterations in glutathione S-transferase pi expression following exposure to MPP+ -induced oxidative stress in the blood of Parkinson's disease patients.

    PubMed

    Korff, Ane; Pfeiffer, Brenda; Smeyne, Michelle; Kocak, Mehmet; Pfeiffer, Ronald F; Smeyne, Richard Jay

    2011-12-01

    The major motor symptoms of Parkinson's disease do not occur until a majority of the dopaminergic neurons in the midbrain SNpc have already died. For this reason, it is critical to identify biomarkers that will allow for the identification of presymptomatic individuals. In this study, we examine the baseline expression of the anti-oxidant protein glutathione S-transferase pi (GSTpi) in the blood of PD patients and environmentally- and age-matched controls and compare it to GSTpi levels following exposure to 1-methyl-4-phenylpyridinium (MPP(+)), an agent that has been shown to induce oxidative stress. We find that after 4 h of exposure to MPP(+), significant increases in GSTpi levels can be observed in the leukocytes of PD patients. No changes were seen in other blood components. This suggests that GSTpi and potentially other members of this and other anti-oxidant families may be viable biomarkers for PD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Multiple correlation analyses revealed complex relationship between DNA methylation and mRNA expression in human peripheral blood mononuclear cells.

    PubMed

    Xie, Fang-Fei; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Hong; Wu, Jian; Guo, Yu-Fan; Zeng, Ke-Qin; Wang, Ming-Jun; Zhu, Xiao-Wei; Xia, Wei; Wang, Lan; He, Pei; Bing, Peng-Fei; Lu, Xin; Zhang, Yong-Hong; Lei, Shu-Feng

    2018-01-01

    DNA methylation is an important regulator on the mRNA expression. However, a genome-wide correlation pattern between DNA methylation and mRNA expression in human peripheral blood mononuclear cells (PBMCs) is largely unknown. The comprehensive relationship between mRNA and DNA methylation was explored by using four types of correlation analyses and a genome-wide methylation-mRNA expression quantitative trait locus (eQTL) analysis in PBMCs in 46 unrelated female subjects. An enrichment analysis was performed to detect biological function for the detected genes. Single pair correlation coefficient (r T1 ) between methylation level and mRNA is moderate (-0.63-0.62) in intensity, and the negative and positive correlations are nearly equal in quantity. Correlation analysis on each gene (T4) found 60.1% genes showed correlations between mRNA and gene-based methylation at P < 0.05 and more than 5.96% genes presented very strong correlation (R T4  > 0.8). Methylation sites have regulation effects on mRNA expression in eQTL analysis, with more often observations in region of transcription start site (TSS). The genes under significant methylation regulation both in correlation analysis and eQTL analysis tend to cluster to the categories (e.g., transcription, translation, regulation of transcription) that are essential for maintaining the basic life activities of cells. Our findings indicated that DNA methylation has predictive regulation effect on mRNA with a very complex pattern in PBMCs. The results increased our understanding on correlation of methylation and mRNA and also provided useful clues for future epigenetic studies in exploring biological and disease-related regulatory mechanisms in PBMC.

  1. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-08-22

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing hasmore » progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI

  2. Facile Fabrication of Cu2O Nanobelts in Ethanol on Nanoporous Cu and Their Photodegradation of Methyl Orange

    PubMed Central

    Yang, Yulin; Qin, Fengxiang; Wang, Hao; Chang, Hui

    2018-01-01

    Thin cupric oxide (Cu2O) nanobelts with width of few tens of nanometers to few hundreds of nanometers were fabricated in anhydrous ethanol on nanoporous copper templates that was prepared via dealloying amorphous Ti40Cu60 ribbons in hydrofluoric acid solutions at 348 K. The Cu2O octahedral particles preferentially form in the water, and nanobelts readily undergo the growth along the lengthwise and widthwise in the anhydrous ethanol. The ethanol molecules serve as stabilizing or capping reagents, and play a key role of the formation of two-dimensional Cu2O nanobelts. Cu atoms at weak sites (i.e., twin boundary) on the nanoporous Cu ligaments are ionized to form Cu2+ cations, and then react with OH− to form Cu2O and H2O. The two-dimensional growth of Cu2O nanostructure is preferred in anhydrous ethanol due to the suppression of random growth of Cu2O nanoarchitectures by ethanol. Cu2O nanobelts have superior photodegradation performance of methyl orange, three times higher than nanoporous Cu. PMID:29562692

  3. Solubility and diffusivity of N{sub 2}O and CO{sub 2} in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-1-propanol + water)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M.H.; Lai, M.D.

    1995-03-01

    Solutions of amines are frequently used in gas-treating processes to remove acid gases, such as CO{sub 2} and H{sub 2}S, from gas streams in the natural gas and synthetic ammonia industries and petroleum chemical plants. The solubility and diffusivity of N{sub 2}O in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-l-propanol + water) were measured at 30, 35, and 40 C and at atmospheric pressure. Six (monoethanolamine + N-methyldiethanolamine + water) and five (monoethanolamine + 2-amino-2-methyl-l-propanol + water) systems were studied. The total amine mass percent in all cases was 30. The solubilities were measured by a solubilitymore » apparatus similar to that of Haimour and Sandall (1984). A wetted wall column absorber was used to obtain the diffusivity of N{sub 2}O in amines. The N{sub 2}O solubilities in amine solutions have been correlated on the basis of the excess Henry constant correlation of Wang et al. (1992). The N{sub 2}O analogy was used to estimate the solubility and diffusivity of CO{sub 2} in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-l-propanol + water).« less

  4. Dietary betaine supplementation to gestational sows enhances hippocampal IGF2 expression in newborn piglets with modified DNA methylation of the differentially methylated regions.

    PubMed

    Li, Xi; Sun, Qinwei; Li, Xian; Cai, Demin; Sui, Shiyan; Jia, Yimin; Song, Haogang; Zhao, Ruqian

    2015-10-01

    The adequate supply of methyl donors is critical for the normal development of brain. The purpose of the present study was to investigate the effects of maternal betaine supplementation on hippocampal gene expression in neonatal piglets and to explore the possible mechanisms. Gestational sows were fed control or betaine-supplemented (3 g/kg) diets throughout the pregnancy. Immediately after birth, male piglets were killed, and the hippocampus was dissected for analyses. The mRNA abundance was determined by reverse transcription real-time polymerase chain reaction. Protein content was measured by Western blot, and DNA methylation was detected by methylated DNA immunoprecipitation assay. Prenatal betaine supplementation did not alter the body weight or the hippocampus weight, but increased the hippocampal DNA content as well as the mRNA expression of proliferation-related genes. Prenatal betaine supplementation increased serum level of methionine (P < 0.05) and up-regulated (P < 0.05) the mRNA and protein expression of betaine-homocysteine methyltransferase, glycine N-methyltransferase and DNA methyltransferase 1 in the neonatal hippocampus. Hippocampal expression of insulin growth factor II (IGF2) and its receptors IGF1R and IGF2R were all significantly up-regulated (P < 0.05) in betaine-treated group, together with a significant activation (P < 0.01) of the downstream extracellular signal-regulated kinase 1/2. Moreover, the differentially methylated region (DMR) 1 and 2 on IGF2 locus was found to be hypermethylated (P < 0.05) in the hippocampus of betaine-treated piglets. These results indicate that maternal betaine supplementation enhances betaine/methionine metabolism and DNA methyltransferase expression, causes hypermethylation of DMR on IGF2 gene, which was associated with augmented expression of IGF2 and cell proliferation/anti-apoptotic markers in the hippocampus of neonatal piglets.

  5. Functional Dissection of the Bipartite Active Site of the Class I Coenzyme A (CoA)-Transferase Succinyl-CoA:Acetate CoA-Transferase.

    PubMed

    Murphy, Jesse R; Mullins, Elwood A; Kappock, T Joseph

    2016-01-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  6. Functional Dissection of the Bipartite Active Site of the Class I Coenzyme A (CoA)-Transferase Succinyl-CoA:Acetate CoA-Transferase

    PubMed Central

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-01-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA. PMID:27242998

  7. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    DOE PAGES

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-05-23

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. Here in this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes andmore » orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. Finally, the ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.« less

  8. Heptyl vicianoside and methyl caramboside from sour star fruit.

    PubMed

    Yang, Dan; Jia, Xuchao; Xie, Haihui

    2018-04-23

    Two new alkyl glycosides, heptyl vicianoside (1) and methyl 2-O-β-d-fucopyranosyl-α-l-arabinofuranoside (methyl caramboside, 4), were isolated from the sour fruit of Averrhoa carambola L. (Oxalidaceae), along with octyl vicianoside (2), cis-3-hexenyl rutinoside (3), and methyl α-d-fructofuranoside (5). Their structures were determined by spectroscopic and chemical methods. Compounds 2, 3, and 5 were obtained from the genus Averrhoa for the first time. All the compounds were evaluated for in vitro α-glucosidase, pancreatic lipase, and acetylcholinesterase inhibitory activities, but none of them were potent.

  9. Genetic Control and Evolution of Anthocyanin Methylation.

    PubMed

    Provenzano, Sofia; Spelt, Cornelis; Hosokawa, Satoko; Nakamura, Noriko; Brugliera, Filippa; Demelis, Linda; Geerke, Daan P; Schubert, Andrea; Tanaka, Yoshikazu; Quattrocchio, Francesca; Koes, Ronald

    2014-07-01

    Anthocyanins are a chemically diverse class of secondary metabolites that color most flowers and fruits. They consist of three aromatic rings that can be substituted with hydroxyl, sugar, acyl, and methyl groups in a variety of patterns depending on the plant species. To understand how such chemical diversity evolved, we isolated and characterized METHYLATION AT THREE2 (MT2) and the two METHYLATION AT FIVE (MF) loci from Petunia spp., which direct anthocyanin methylation in petals. The proteins encoded by MT2 and the duplicated MF1 and MF2 genes and a putative grape (Vitis vinifera) homolog Anthocyanin O-Methyltransferase1 (VvAOMT1) are highly similar to and apparently evolved from caffeoyl-Coenzyme A O-methyltransferases by relatively small alterations in the active site. Transgenic experiments showed that the Petunia spp. and grape enzymes have remarkably different substrate specificities, which explains part of the structural anthocyanin diversity in both species. Most strikingly, VvAOMT1 expression resulted in the accumulation of novel anthocyanins that are normally not found in Petunia spp., revealing how alterations in the last reaction can reshuffle the pathway and affect (normally) preceding decoration steps in an unanticipated way. Our data show how variations in gene expression patterns, loss-of-function mutations, and alterations in substrate specificities all contributed to the anthocyanins' structural diversity. © 2014 American Society of Plant Biologists. All Rights Reserved.

  10. Structural and functional analysis of an enhancer GPEI having a phorbol 12-O-tetradecanoate 13-acetate responsive element-like sequence found in the rat glutathione transferase P gene.

    PubMed

    Okuda, A; Imagawa, M; Maeda, Y; Sakai, M; Muramatsu, M

    1989-10-05

    We have recently identified a typical enhancer, termed GPEI, located about 2.5 kilobases upstream from the transcription initiation site of the rat glutathione transferase P gene. Analyses of 5' and 3' deletion mutants revealed that the cis-acting sequence of GPEI contained the phorbol 12-O-tetradecanoate 13-acetate responsive element (TRE)-like sequence in it. For the maximal activity, however, GPEI required an adjacent upstream sequence of about 19 base pairs in addition to the TRE-like sequence. With the DNA binding gel-shift assay, we could detect protein(s) that specifically binds to the TRE-like sequence of GPEI fragment, which was possibly c-jun.c-fos complex or a similar protein complex. The sequence immediately upstream of the TRE-like sequence did not have any activity by itself, but augmented the latter activity by about 5-fold.

  11. Molecular Identification of the Schwannomatosis Locus

    DTIC Science & Technology

    2006-07-01

    DAMD17-03-1-0445 TITLE: Molecular Identification of the Schwannomatosis Locus PRINCIPAL INVESTIGATOR: Mia MacCollin, M.D...COVERED (From - To) 1 Jul 2005 – 30 Jun 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Molecular Identification of the Schwannomatosis Locus 5b...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Background: Schwannomatosis is a recently recognized third major type of

  12. A new C-methylated flavonoid glycoside from Pinus densiflora.

    PubMed

    Jung, M J; Choi, J H; Chung, H Y; Jung, J H; Choi, J S

    2001-12-01

    A new C-methyl flavonol glycoside, 5,7,8,4'-tetrahydroxy-3-methoxy-6-methylflavone 8-O-beta-D-glucopyranoside (1), has been isolated from the needles of Pinus densiflora, together with kaempferol 3-O-beta-(6"-acetyl)-galactopyranoside.

  13. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The food additive aminoglycoside 3′-phosphotransferase II may be safely used in the development of...

  14. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The food additive aminoglycoside 3′-phosphotransferase II may be safely used in the development of...

  15. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The food additive aminoglycoside 3′-phosphotransferase II may be safely used in the development of...

  16. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The food additive aminoglycoside 3′-phosphotransferase II may be safely used in the development of...

  17. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The food additive aminoglycoside 3′-phosphotransferase II may be safely used in the development of...

  18. X-ray investigations of sulfur-containing fungicides. IV. 4'-[[Benzoyl(4-chlorophenylhydrazono)methyl]sulfonyl]acetanilide and 4'-[[benzoyl(4-methoxyphenylhydrazono)methyl]sulfonyl]acetanilide.

    PubMed

    Wolf, W M

    2001-09-01

    The conformations of the two approximately isomorphous structures 4'-[[benzoyl(4-chlorophenylhydrazono)methyl]sulfonyl]acetanilide, C(22)H(18)ClN(3)O(4)S, and 4'-[[benzoyl(4-methoxyphenylhydrazono)methyl]sulfonyl]acetanilide, C(23)H(21)N(3)O(5)S, are stabilized by resonance-assisted intramolecular hydrogen bonds linking the hydrazone moieties and sulfonyl groups. The stronger bond is observed in the former compound. The difference in electronic properties between the Cl atom and the methoxy group is too small to significantly alter the non-bonding interactions of the sulfonyl and beta-carbonyl groups.

  19. Locus-specific view of flax domestication history

    PubMed Central

    Fu, Yong-Bi; Diederichsen, Axel; Allaby, Robin G

    2012-01-01

    Crop domestication has been inferred genetically from neutral markers and increasingly from specific domestication-associated loci. However, some crops are utilized for multiple purposes that may or may not be reflected in a single domestication-associated locus. One such example is cultivated flax (Linum usitatissimum L.), the earliest oil and fiber crop, for which domestication history remains poorly understood. Oil composition of cultivated flax and pale flax (L. bienne Mill.) indicates that the sad2 locus is a candidate domestication locus associated with increased unsaturated fatty acid production in cultivated flax. A phylogenetic analysis of the sad2 locus in 43 pale and 70 cultivated flax accessions established a complex domestication history for flax that has not been observed previously. The analysis supports an early, independent domestication of a primitive flax lineage, in which the loss of seed dispersal through capsular indehiscence was not established, but increased oil content was likely occurred. A subsequent flax domestication process occurred that probably involved multiple domestications and includes lineages that contain oil, fiber, and winter varieties. In agreement with previous studies, oil rather than fiber varieties occupy basal phylogenetic positions. The data support multiple paths of flax domestication for oil-associated traits before selection of the other domestication-associated traits of seed dispersal loss and fiber production. The sad2 locus is less revealing about the origin of winter tolerance. In this case, a single domestication-associated locus is informative about the history of domesticated forms with the associated trait while partially informative on forms less associated with the trait. PMID:22408732

  20. 4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl­benzene­sulfonamide moiety. In the crystal, mol­ecules are ­connected through N—H⋯N hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network parallel to (001). PMID:24427093

  1. Femtomolar level detection of RASSF1A tumor suppressor gene methylation by electrochemical nano-genosensor based on Fe3O4/TMC/Au nanocomposite and PT-modified electrode.

    PubMed

    Daneshpour, Maryam; Moradi, Leila Syed; Izadi, Pantea; Omidfar, Kobra

    2016-03-15

    The alterations in DNA methylation pattern have been identified as one of the most frequent molecular phenomenon in human cancers. The RASSF1A tumor suppressor gene was shown to be often inactivated by hypermethylation of its promoter region. In the present study, a novel chip format sandwich electrochemical genosensor has been developed for the analysis of gene-specific methylation using Fe3O4/N-trimethyl chitosan/gold (Fe3O4/TMC/Au) nanocomposite as tracing tag to label DNA probe and polythiophene (PT) as immobilization platform of sensing element. However, no attempt has yet been made to conjugate DNA probe to Fe3O4/TMC/Au nanocomposite as electrochemical label for strip-based genosensing. Cyclic voltammetric (CV) analysis indicated that modification procedure was well performed. Differential pulse voltammetry (DPV) was employed for quantitative assessment of RASSF1A DNA promoter methylation. The electrochemical measurements accomplished using non-specific DNA fragments mixed with samples, revealed the high specificity and selectivity in methylation analysis by means of this DNA nanobiosensor. With the linear range of concentration from 1 × 10(-14)M to 5 × 10(-9)M and the detection limit of 2 × 10(-15)M, this new strategy has shown such a promising application to be used for universal analysis of any DNA sequence. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Ras regulation of DNA-methylation and cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Samir Kumar

    2008-04-01

    Genome wide hypomethylation and regional hypermethylation of cancer cells and tissues remain a paradox, though it has received a convincing confirmation that epigenetic switching systems, including DNA-methylation represent a fundamental regulatory mechanism that has an impact on genome maintenance and gene transcription. Methylated cytosine residues of vertebrate DNA are transmitted by clonal inheritance through the strong preference of DNA methyltransferase, DNMT1, for hemimethylated-DNA. Maintenance of methylation patterns is necessary for normal development of mice, and aberrant methylation patterns are associated with many human tumours. DNMT1 interacts with many proteins during cell cycle progression, including PCNA, p53, EZH2 and HP1. Rasmore » family of GTPases promotes cell proliferation by its oncogenic nature, which transmits signals by multiple pathways in both lipid raft dependent and independent fashion. DNA-methylation-mediated repression of DNA-repair protein O6-methylguanine DNA methyltransferase (MGMT) gene and increased rate of K-Ras mutation at codon for amino acids 12 and 13 have been correlated with a secondary role for Ras-effector homologues (RASSFs) in tumourigenesis. Lines of evidence suggest that DNA-methylation associated repression of tumour suppressors and apoptotic genes and ceaseless proliferation of tumour cells are regulated in part by Ras-signaling. Control of Ras GTPase signaling might reduce the aberrant methylation and accordingly may reduce the risk of cancer development.« less

  3. The effect of ingested lactulose on absorption of L-rhamnose, D-xylose, and 3-O-methyl-D-glucose in subjects with ileostomies.

    PubMed

    Jenkins, A P; Menzies, I S; Nukajam, W S; Creamer, B

    1994-09-01

    We have previously shown that small oral doses of poorly absorbed solute can significantly reduce absorption of test sugars in normal volunteers. To confirm these results and investigate the underlying mechanism, the effects of lactulose on absorption of three test sugars in subjects with ileostomies were studied. Ten fasted subjects with ileostomies ingested an isosmolar test solution containing 2.5 g 3-O-methyl-D-glucose, 5.0 g D-xylose, 1.0 g L-rhamnose, and 50 microCi 51Cr-labelled ethylenediaminetetraacetic acid together with a blue dye transit marker. Urine was collected for time periods of 0-5 h and 5-24 h, to measure excretion of absorbed sugars, and ileostomy effluent was saved from 0-5 h and from 5 h until blue dye transit marker was no longer present, to measure small-bowel output of unabsorbed sugars. After 1 week the test was repeated, including 5 g lactulose in the test solution. Inclusion of lactulose in the test solution significantly reduced the 5 h and 24 h urine excretion of L-rhamnose and D-xylose but not that of 3-O-methyl-D-glucose and increased 0- to 5-h and total ileostomy output of L-rhamnose and D-xylose but not of 3-O-methyl-D-glucose. The presence of lactulose also reduced the time for first appearance of the blue dye transit marker in the effluent and increased effluent volume together with output of electrolyte. Poorly absorbed solute reduces intestinal absorption by retention of fluid and electrolyte, with subsequent intraluminal dilution and acceleration of transit.

  4. Effect of Al2O3 in poly(methyl methacrylate) composite polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Sun, C. C.; You, A. H.; Teo, L. L.; Thong, L. W.

    2018-05-01

    In this work, the effect of inert fillers on poly(methyl methacrylate) (PMMA) composite polymer electrolytes (CPEs) are investigated. The PMMA-LiCF3SO3-EC-Al2O3 composite polymer electrolytes were prepared using solution casting method at room temperature. Lithium trifluoromethanesulfonate (LiCF3SO3) is used as the electrolyte salt which plays an important role in Li ion transfer. In order to soften the polymer matrix, ethylene carbonate (EC) is introduced into the CPEs to help in the disassociation of lithium salt ion pairs. Nano sized aluminium oxide (Al2O3) is then incorporated to enhance mechanical strength and ionic conductivity of the polymer electrolyte. The optimum of 2 wt.% 50 nm Al2O3 was added into the PMMA polymer electrolyte sample. Through Electrochemical Impedance Spectroscopy (EIS) measurements, the highest ionic conductivity at room temperature is determined as 1.52×10-4 S/cm. FTIR spectra analysis showed CH2 twisting mode at 1383.43 cm-1, C=O stretching mode at 1721.56 cm-1 which proven the interaction between host polymer and lithium salt and CH3 stretching mode at 2981.34 cm-1. XRD analysis had also been performed to study the structural behaviour of the PMMA polymer electrolyte. The intense peak at position 2θ angle of 15.04°, 30.92° and 45.58° occur upon interaction with Al2O3. Lastly, the surface morphology is studied through SEM+EDX analysis.

  5. The relative contribution of DNA methylation and genetic variants on protein biomarkers for human diseases

    PubMed Central

    Ahsan, Muhammad; Ek, Weronica E.; Karlsson, Torgny; Gyllensten, Ulf

    2017-01-01

    Associations between epigenetic alterations and disease status have been identified for many diseases. However, there is no strong evidence that epigenetic alterations are directly causal for disease pathogenesis. In this study, we combined SNP and DNA methylation data with measurements of protein biomarkers for cancer, inflammation or cardiovascular disease, to investigate the relative contribution of genetic and epigenetic variation on biomarker levels. A total of 121 protein biomarkers were measured and analyzed in relation to DNA methylation at 470,000 genomic positions and to over 10 million SNPs. We performed epigenome-wide association study (EWAS) and genome-wide association study (GWAS) analyses, and integrated biomarker, DNA methylation and SNP data using between 698 and 1033 samples depending on data availability for the different analyses. We identified 124 and 45 loci (Bonferroni adjusted P < 0.05) with effect sizes up to 0.22 standard units’ change per 1% change in DNA methylation levels and up to four standard units’ change per copy of the effective allele in the EWAS and GWAS respectively. Most GWAS loci were cis-regulatory whereas most EWAS loci were located in trans. Eleven EWAS loci were associated with multiple biomarkers, including one in NLRC5 associated with CXCL11, CXCL9, IL-12, and IL-18 levels. All EWAS signals that overlapped with a GWAS locus were driven by underlying genetic variants and three EWAS signals were confounded by smoking. While some cis-regulatory SNPs for biomarkers appeared to have an effect also on DNA methylation levels, cis-regulatory SNPs for DNA methylation were not observed to affect biomarker levels. We present associations between protein biomarker and DNA methylation levels at numerous loci in the genome. The associations are likely to reflect the underlying pattern of genetic variants, specific environmental exposures, or represent secondary effects to the pathogenesis of disease. PMID:28915241

  6. Theoretical study of the regioselectivity of the interaction of 3-methyl-4-pyrimidone and 1-methyl-2-pyrimidone with Lewis acids.

    PubMed

    Kasende, Okuma Emile; Muya, Jules Tshishimbi; Broeckaert, Lies; Maes, Guido; Geerlings, Paul

    2012-08-23

    A density functional theory (DFT) study is performed to determine the stability of the complexes formed between either the N or O site of 3-methyl-4-pyrimidone and 1-methyl-2-pyrimidone molecules and different ligands. The studied ligands are boron and alkali Lewis acids, namely, B(CH(3))(3), HB(CH(3))(2), H(2)B(CH(3)), BH(3), H(2)BF, HBF(2), BF(3), Li(+), Na(+), and K(+). The acids are divided into two groups according to their hardness. The reactivity predictions, according to the molecular electrostatic potential (MEP) map and the natural bond orbital (NBO) analysis, are in agreement with the calculated relative stabilities. Our findings reveal a strong regioselectivity with borane and its derivatives preferring the nitrogen site in both pyrimidone isomers, while a preference for oxygen is observed for the alkali acids in the 3-methyl-4-pyrimidone molecule. The complexation of 1-methyl-2-pyrimidone with these hard alkali acids does not show any discrimination between the two sites due to the presence of a continuous delocalized density region between the nitrogen and the oxygen atoms. The preference of boron Lewis acids toward the N site is due to the stronger B-N bond as compared to the B-O bond. The influence of fluorine or methyl substitution on the boron atom is discussed through natural orbital analysis (NBO) concentrating on the overlap of the boron empty p-orbital with the F lone pairs and methyl hyperconjugation, respectively. The electrophilicity of the boron acids gives a good overall picture of the interaction capabilities with the Lewis base.

  7. Molecular Identification of the Schwannomatosis Locus

    DTIC Science & Technology

    2008-07-01

    Schwannomatosis Locus PRINCIPAL INVESTIGATOR: Mia MacCollin Scott R. Plotkin, M.D., Ph.D...DATES COVERED 1 July 2003 – 30 June 2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Molecular Identification of the Schwannomatosis Locus 5b...In 2007, mutations in the SMARCB1 tumor suppressor (also known as INI1 and hSNF5), which lies in the familial schwannomatosis candidate region, were

  8. Locus of control and decision to abort.

    PubMed

    Dixon, P N; Strano, D A; Willingham, W

    1984-04-01

    The relationship of locus of control to deciding on an abortion was investigated by administering Rotter's Locus of Control Scale to 118 women immediately prior to abortion and 2 weeks and 3 months following abortion. Subjects' scores were compared across the 3 time periods, and the abortion group's pretest scores were compared with those of a nonpregnant control, group. As hypothesized, the aborting group scored significantly more internal than the general population but no differences in locus of control were found across the 3 time period. The length of delay in deciding to abort an unwanted pregnancy following confirmation was also assessed. Women seeking 1st trimester abortions were divided into internal and external groups on the Rotter Scale and the lengths of delay were compared. The hypothesis that external scores would delay the decision longer than internal ones was confirmed. The results confirm characteristics of the locus of control construct and add information about personality characteristics of women undergoing abortion.

  9. ZrO2/MoS2 heterojunction photocatalysts for efficient photocatalytic degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Prabhakar Vattikuti, Surya Veerendra; Byon, Chan; Reddy, Chandragiri Venkata

    2016-10-01

    We report a simple solution-chemistry approach for the synthesis of ZrO2/MoS2 hybrid photocatalysts, which contain MoS2 as a cocatalyst. The material is usually obtained by a wet chemical method using ZrO(NO3)2 or (NH4)6Mo7O24·4H2O and C8H6S as precursors. The structural features of obtained materials were characterized by X-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), thermal analysis (TG-DTA), N2 adsorption-desorption, and photoluminescence (PL). The influence on the photocatalytic activity of the MoS2 cocatalyst concentration with ZrO2 nanoparticles was studied. The MZr-2 hybrid sample had the highest photocatalytic activity for the degradation of methyl orange (MO), which was 8.45 times higher than that of pristine ZrO2 ascribed to high specific surface area and absorbance efficiency. Recycling experiments revealed that the reusability of the MZr-2 hybrid was due to the low photocorrosive effect and good catalytic stability. PL spectra confirmed the electronic interaction between ZrO2 and MoS2. The photoinduced electrons could be easily transferred from CB of ZrO2 to the MoS2 cocatalyst, which facilitate effective charge separation and enhanced the photocatalytic degradation in the UV region. A photocatalytic mechanism is proposed. It is believed that the ZrO2/MoS2 hybrid structure has promise as a photocatalyst with low cost and high efficiency for photoreactions.

  10. Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A

    PubMed Central

    Kelly, Richard D. W.; Mahmud, Arsalan; McKenzie, Matthew; Trounce, Ian A.; St John, Justin C.

    2012-01-01

    DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase γ catalytic subunit (PolgA) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low methylation levels (<10%) within exon 2 of mouse oocytes, blastocysts and embryonic stem cells (ESCs), while somatic tissues contained significantly higher levels (>40%). In contrast, induced pluripotent stem (iPS) cells and somatic nuclear transfer ESCs were hypermethylated (>20%), indicating abnormal epigenetic reprogramming. Real time PCR analysis of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) immunoprecipitated DNA suggests active DNA methylation and demethylation within exon 2 of PolgA. Moreover, neural differentiation of ESCs promoted de novo methylation and demethylation at the exon 2 locus. Regression analysis demonstrates that cell-specific PolgA expression levels were negatively correlated with DNA methylation within exon 2 and mtDNA copy number. Finally, using chromatin immunoprecipitation (ChIP) against RNA polymerase II (RNApII) phosphorylated on serine 2, we show increased DNA methylation levels are associated with reduced RNApII transcriptional elongation. This is the first study linking nuclear DNA epigenetic regulation with mtDNA regulation during differentiation and cell specialization. PMID:22941637

  11. Nanosized CuO and ZnO Catalyst Supported on Honeycomb-Typed Monolith for Hydrogenation of Carbon Dioxide to Methyl Alcohol.

    PubMed

    Park, Chul-Min; Ahn, Won-Ju; Jo, Woong-Kyu; Song, Jin-Hun; Oh, Chang-Yeop; Jeong, Young-Shin; Chung, Min-Chul; Park, Kwon-Pil; Kim, Ki-Joong; Jeong, Woon-Jo; Sohn, Bo-Kyun; Jung, Sang-Chul; Lee, Do-Jin; Ahn, Byeong-Kwon; Ahn, Ho-Geun

    2015-01-01

    The greenhouse effect of carbon dioxide (CO2) has been recognized as one of the most serious problems in the world. Conversion of CO2 to methyl alcohol (CH3OH) was studied using catalytic chemical methods. Honeycomb-typed monolith used as catalyst support was 400 cell/inch2. Pretreatment of the monolith surface was carried out by thermal treatment and acid treatment. Monolith-supported nanosized CuO-ZnO catalysts were prepared by wash-coat method. The prepared catalysts were characterized by using SEM, TEM, and XRD. The catalytic activity for CO2 hydrogenation to CH3OH was investigated using a flow-type reactor with varying reaction temperature, reaction pressure and contact time. Conversion of CO2 was increased with increasing reaction temperature, but selectivity to CH3OH was decreased. Optimum reaction temperature was about 250 degrees C under 20 atm. Because of the reverse water gas shift reaction.

  12. The Impact of Locus of Control on Language Achievement

    ERIC Educational Resources Information Center

    Nodoushan, Mohammad Ali Salmani

    2012-01-01

    This study hypothesized that students' loci of control affected their language achievement. 198 (N = 198) EFL students took the Rotter's (1966) locus of control test and were classified as locus-internal (ni = 78), and locus-external (ne = 120). They then took their ordinary courses and at the end of the semester, they were given their exams.…

  13. Locus coeruleus and dopaminergic consolidation of everyday memory.

    PubMed

    Takeuchi, Tomonori; Duszkiewicz, Adrian J; Sonneborn, Alex; Spooner, Patrick A; Yamasaki, Miwako; Watanabe, Masahiko; Smith, Caroline C; Fernández, Guillén; Deisseroth, Karl; Greene, Robert W; Morris, Richard G M

    2016-09-15

    The retention of episodic-like memory is enhanced, in humans and animals, when something novel happens shortly before or after encoding. Using an everyday memory task in mice, we sought the neurons mediating this dopamine-dependent novelty effect, previously thought to originate exclusively from the tyrosine-hydroxylase-expressing (TH + ) neurons in the ventral tegmental area. Here we report that neuronal firing in the locus coeruleus is especially sensitive to environmental novelty, locus coeruleus TH + neurons project more profusely than ventral tegmental area TH + neurons to the hippocampus, optogenetic activation of locus coeruleus TH + neurons mimics the novelty effect, and this novelty-associated memory enhancement is unaffected by ventral tegmental area inactivation. Surprisingly, two effects of locus coeruleus TH + photoactivation are sensitive to hippocampal D 1 /D 5 receptor blockade and resistant to adrenoceptor blockade: memory enhancement and long-lasting potentiation of synaptic transmission in CA1 ex vivo. Thus, locus coeruleus TH + neurons can mediate post-encoding memory enhancement in a manner consistent with possible co-release of dopamine in the hippocampus.

  14. Solubility and diffusivity of N{sub 2}O and CO{sub 2} in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M.H.; Lee, W.C.

    1996-05-01

    Acid gases such as CO{sub 2} and H{sub 2}S are frequently removed from natural gas, synthetic natural gas, and other process gas streams by means of absorption into aqueous alkanol-amine solutions. The solubility and diffusivity of N{sub 2}O in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water) were measured at (30, 35, and 40)C and at atmospheric pressure. Five (diethanolamine + N-methyldiethanolamine + water) and four (diethanolamine + 2-amino-2-methyl-1-propanol + water) systems were studied. The total amine mass percent in all cases was 30. A solubility apparatus was used to measure the solubility of N{sub 2}Omore » in amine solutions. The diffusivity was measured by a wetted wall column absorber. The N{sub 2}O analogy was used to estimate the solubility and diffusivity of CO{sub 2} in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water).« less

  15. O6-methylguanine-DNA methyltransferase activity is associated with response to alkylating agent therapy and with MGMT promoter methylation in glioblastoma and anaplastic glioma

    PubMed Central

    Bobola, Michael S.; Alnoor, Mohammad; Chen, John Y.-S.; Kolstoe, Douglas D.; Silbergeld, Daniel L.; Rostomily, Robert C.; Blank, A.; Chamberlain, Marc C.; Silber, John R.

    2014-01-01

    Background CpG methylation in the O6-methylguanine-DNA methyltransferase (MGMT) promoter is associated with better outcome following alkylating agent chemotherapy in glioblastoma (GBM) and anaplastic glioma (AG). To what extent improved response reflects low or absent MGMT activity in glioma tissue has not been unequivocally assessed. This information is central to developing anti-resistance therapies. Methods We examined the relationship of MGMT activity in 91 GBMs and 84 AGs with progression-free survival (PFS) following alkylator therapy and with promoter methylation status determined by methylation-specific PCR (MSP). Results Cox regression analysis revealed that GBMs with high activity had a significantly greater risk for progression in dichotomous (P ≤ 0.001) and continuous (P ≤ 0.003) models, an association observed for different alkylator regimens, including concurrent chemo-radiation with temozolomide. Analysis of MGMT promoter methylation status in 47 of the GBMs revealed that methylated tumors had significantly lower activity (P ≤ 0.005) and longer PFS (P ≤ 0.036) compared to unmethylated tumors, despite overlapping activities. PFS was also significantly greater in methylated vs. unmethylated GBMs with comparable activity (P ≤ 0.005), and among unmethylated tumors with less than median activity (P ≤ 0.026), suggesting that mechanisms in addition to MGMT promote alkylator resistance. Similar associations of MGMT activity with PFS and promoter methylation status were observed for AGs. Conclusions Our results provide strong support for the hypotheses that MGMT activity promotes alkylator resistance and reflects promoter methylation status in malignant gliomas. General significance MGMT activity is an attractive target for anti-resistance therapy regardless of methylation status. PMID:25558448

  16. Probing the active site of alpha-class rat liver glutathione S-transferases using affinity labeling by monobromobimane.

    PubMed Central

    Hu, L.; Borleske, B. L.; Colman, R. F.

    1997-01-01

    Monobromobimane (mBBr) is a substrate of both mu- and alpha-class rat liver glutathione S-transferases, with Km values of 0.63 microM and 4.9 microM for the mu-class isozymes 3-3 and 4-4, respectively, and 26 microM for the alpha-class isozymes 1-1 and 2-2. In the absence of substrate glutathione, mBBr acts as an affinity label of the 1-1 as well as mu-class isozymes, but not of the alpha-class 2-2 isozyme. Incubation of rat liver isozyme 1-1 with mBBr at pH 7.5 and 25 degrees C results in a time-dependent inactivation of the enzyme but at a slower (threefold) rate than for reactions with the mu-class isozyme 3-3 and 4-4. The rate of inactivation of 1-1 isozyme by mBBr is not decreased but, rather, is slightly enhanced by S-methyl glutathione. In contrast, 17 beta-estradiol-3,17-disulfate (500 microM) gives a 12.5-fold decrease in the observed rate constant of inactivation by 4 mM mBBr. When incubated for 60 min with 4 mM mBBr, the 1-1 isozyme loses 60% of its activity and incorporates 1.7 mol reagent/mol subunit. Peptide analysis after thermolysin digestion indicates that mBBr modification is equally distributed between two cysteine residues at positions 17 and 111. Modification at these two sites is reduced equally in the presence of the added protectant, 17 beta-estradiol-3,17-disulfate, suggesting that Cys 17 and Cys 111 reside within or near the enzyme's steroid binding sites. In contrast to the 1-1 isozyme, the other alpha-class isozyme (2-2) is not inactivated by mBBr at concentrations as high as 15 mM. The different reaction kinetics and modification sites by mBBr suggest that distinct binding site structures are responsible for the characteristic substrate specificities of glutathione S-transferase isozymes. PMID:9007975

  17. Probing the active site of alpha-class rat liver glutathione S-transferases using affinity labeling by monobromobimane.

    PubMed

    Hu, L; Borleske, B L; Colman, R F

    1997-01-01

    Monobromobimane (mBBr) is a substrate of both mu- and alpha-class rat liver glutathione S-transferases, with Km values of 0.63 microM and 4.9 microM for the mu-class isozymes 3-3 and 4-4, respectively, and 26 microM for the alpha-class isozymes 1-1 and 2-2. In the absence of substrate glutathione, mBBr acts as an affinity label of the 1-1 as well as mu-class isozymes, but not of the alpha-class 2-2 isozyme. Incubation of rat liver isozyme 1-1 with mBBr at pH 7.5 and 25 degrees C results in a time-dependent inactivation of the enzyme but at a slower (threefold) rate than for reactions with the mu-class isozyme 3-3 and 4-4. The rate of inactivation of 1-1 isozyme by mBBr is not decreased but, rather, is slightly enhanced by S-methyl glutathione. In contrast, 17 beta-estradiol-3,17-disulfate (500 microM) gives a 12.5-fold decrease in the observed rate constant of inactivation by 4 mM mBBr. When incubated for 60 min with 4 mM mBBr, the 1-1 isozyme loses 60% of its activity and incorporates 1.7 mol reagent/mol subunit. Peptide analysis after thermolysin digestion indicates that mBBr modification is equally distributed between two cysteine residues at positions 17 and 111. Modification at these two sites is reduced equally in the presence of the added protectant, 17 beta-estradiol-3,17-disulfate, suggesting that Cys 17 and Cys 111 reside within or near the enzyme's steroid binding sites. In contrast to the 1-1 isozyme, the other alpha-class isozyme (2-2) is not inactivated by mBBr at concentrations as high as 15 mM. The different reaction kinetics and modification sites by mBBr suggest that distinct binding site structures are responsible for the characteristic substrate specificities of glutathione S-transferase isozymes.

  18. Transmutation of human glutathione transferase A2-2 with peroxidase activity into an efficient steroid isomerase.

    PubMed

    Pettersson, Par L; Johansson, Ann-Sofie; Mannervik, Bengt

    2002-08-16

    A major goal in protein engineering is the tailor-making of enzymes for specified chemical reactions. Successful attempts have frequently been based on directed molecular evolution involving libraries of random mutants in which variants with desired properties were identified. For the engineering of enzymes with novel functions, it would be of great value if the necessary changes of the active site could be predicted and implemented. Such attempts based on the comparison of similar structures with different substrate selectivities have previously met with limited success. However, the present work shows that the knowledge-based redesign restricted to substrate-binding residues in human glutathione transferase A2-2 can introduce high steroid double-bond isomerase activity into the enzyme originally characterized by glutathione peroxidase activity. Both the catalytic center activity (k(cat)) and catalytic efficiency (k(cat)/K(m)) match the values of the naturally evolved glutathione transferase A3-3, the most active steroid isomerase known in human tissues. The substrate selectivity of the mutated glutathione transferase was changed 7000-fold by five point mutations. This example demonstrates the functional plasticity of the glutathione transferase scaffold as well as the potential of rational active-site directed mutagenesis as a complement to DNA shuffling and other stochastic methods for the redesign of proteins with novel functions.

  19. Case-Control Study of Candidate Gene Methylation and Adenomatous Polyp Formation

    PubMed Central

    M, Alexander; JB, Burch; SE, Steck; C-F, Chen; TG, Hurley; P, Cavicchia; N, Shivappa; J, Guess; H, Zhang; SD, Youngstedt; KE, Creek; S, Lloyd; K, Jones; JR, Hébert

    2016-01-01

    Purpose Colorectal cancer (CRC) is one of the most common and preventable forms of cancer, but remains the second leading cause of cancer-related death. Colorectal adenomas are precursor lesions that develop in 70–90% of CRC cases. Identification of peripheral biomarkers for adenomas would help to enhance screening efforts. This exploratory study examined the methylation status of 20 candidate markers in peripheral blood leukocytes and their association with adenoma formation. Methods Patients recruited from a local endoscopy clinic provided informed consent, and completed an interview to ascertain demographic, lifestyle, and adenoma risk factors. Cases were individuals with a histopathologically confirmed adenoma, and controls included patients with a normal colonoscopy, or those with histopathological findings not requiring heightened surveillance (normal biopsy, hyperplastic polyp). Methylation-specific polymerase chain reaction was used to characterize candidate gene promoter methylation. Odds ratios and 95% confidence intervals (OR, 95% CI) were calculated using unconditional multivariable logistic regression to test the hypothesis that candidate gene methylation differed between cases and controls, after adjustment for confounders. Results Complete data were available for 107 participants; 36% had adenomas (men: 40%, women: 31%). Hypomethylation of the MINT1 locus (OR: 5.3, 95% CI: 1.0–28.2), and the PER1 (OR: 2.9, 95% CI: 1.1–7.7) and PER3 (OR: 11.6, 95% CI: 1.6–78.5) clock gene promoters was more common among adenoma cases. While specificity was moderate to high for the three markers (71–97%), sensitivity was relatively low (18–45%). Conclusion Follow-up of these epigenetic markers is suggested to further evaluate their utility for adenoma screening or surveillance. PMID:27771773

  20. Purification and Biochemical Characterization of Glutathione S-Transferase from Down Syndrome and Normal Children Erythrocytes: A Comparative Study

    ERIC Educational Resources Information Center

    Hamed, Ragaa R.; Maharem, Tahany M.; Abdel-Meguid, Nagwa; Sabry, Gilane M.; Abdalla, Abdel-Monem; Guneidy, Rasha A.

    2011-01-01

    Down syndrome (DS) is the phenotypic manifestation of trisomy 21. Our study was concerned with the characterization and purification of glutathione S-transferase enzyme (GST) from normal and Down syndrome (DS) erythrocytes to illustrate the difference in the role of this enzyme in the cell. Glutathione S-transferase and glutathione (GSH) was…

  1. Human papillomavirus dysregulates the cellular apparatus controlling the methylation status of H3K27 in different human cancers to consistently alter gene expression regardless of tissue of origin

    PubMed Central

    Zhang, Ali; Barrett, John W.; Nichols, Anthony C.; Torchia, Joe; Mymryk, Joe S.

    2017-01-01

    High-risk human papillomaviruses (HPV) cause cancer at multiple distinct anatomical locations. Regardless of the tissue of origin, most HPV positive (HPV+) cancers show highly upregulated expression of the p16 product of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene. Paradoxically, HPV+ tumor cells require continuous expression of this tumor suppressor for survival. Thus, restoration of normal p16 regulation has potential therapeutic value against HPV induced cancers. Normally, p16 transcription is tightly controlled at the epigenetic level via polycomb repressive complex-mediated tri-methylation of histone 3 lysine 27 (H3K27me3). Although a mechanism by which HPV induces p16 has been proposed based on tissue culture models, it has not been extensively validated in human tumors. In this study, we used data from over 800 human cervical and head and neck tumors from The Cancer Genome Atlas (TCGA) to test this model. We determined the impact of HPV status on expression from the CDKN2A locus, the adjacent CDKN2B locus, and transcript levels of key epigenetic regulators of these loci. As expected, HPV+ tumors from both anatomical sites exhibited high levels of p16. Furthermore, HPV+ tumors expressed higher levels of KDM6A, which demethylates H3K27me3. CpG methylation of the CDKN2A locus was also consistently altered in HPV+ tumors. This data validates previous tissue culture studies and identifies remarkable similarities between the effects of HPV on gene expression and DNA methylation in both cervical and oral tumors in large human cohorts. Furthermore, these results support a model whereby HPV-mediated dysregulation of CDKN2A transcription requires KDM6A, a potentially druggable target. PMID:29069809

  2. Methyl Farnesoate Plays a Dual Role in Regulating Drosophila Metamorphosis

    PubMed Central

    Wen, Di; Rivera-Perez, Crisalejandra; Abdou, Mohamed; Jia, Qiangqiang; He, Qianyu; Liu, Xi; Zyaan, Ola; Xu, Jingjing; Bendena, William G.; Tobe, Stephen S.; Noriega, Fernando G.; Palli, Subba R.; Wang, Jian; Li, Sheng

    2015-01-01

    Corpus allatum (CA) ablation results in juvenile hormone (JH) deficiency and pupal lethality in Drosophila. The fly CA produces and releases three sesquiterpenoid hormones: JH III bisepoxide (JHB3), JH III, and methyl farnesoate (MF). In the whole body extracts, MF is the most abundant sesquiterpenoid, followed by JHB3 and JH III. Knockout of JH acid methyl transferase (jhamt) did not result in lethality; it decreased biosynthesis of JHB3, but MF biosynthesis was not affected. RNAi-mediated reduction of 3-hydroxy-3-methylglutaryl CoA reductase (hmgcr) expression in the CA decreased biosynthesis and titers of the three sesquiterpenoids, resulting in partial lethality. Reducing hmgcr expression in the CA of the jhamt mutant further decreased MF titer to a very low level, and caused complete lethality. JH III, JHB3, and MF function through Met and Gce, the two JH receptors, and induce expression of Kr-h1, a JH primary-response gene. As well, a portion of MF is converted to JHB3 in the hemolymph or peripheral tissues. Topical application of JHB3, JH III, or MF precluded lethality in JH-deficient animals, but not in the Met gce double mutant. Taken together, these experiments show that MF is produced by the larval CA and released into the hemolymph, from where it exerts its anti-metamorphic effects indirectly after conversion to JHB3, as well as acting as a hormone itself through the two JH receptors, Met and Gce. PMID:25774983

  3. Identification of Differentially Methylated Sites with Weak Methylation Effects

    PubMed Central

    Tran, Hong; Zhu, Hongxiao; Wu, Xiaowei; Kim, Gunjune; Clarke, Christopher R.; Larose, Hailey; Haak, David C.; Westwood, James H.; Zhang, Liqing

    2018-01-01

    Deoxyribonucleic acid (DNA) methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect differentially methylated cytosines (DMCs) among treatments. Most statistical methods for DMC detection do not consider the dependency of methylation patterns across the genome, thus possibly inflating type I error. Furthermore, small sample sizes and weak methylation effects among different phenotype categories make it difficult for these statistical methods to accurately detect DMCs. To address these issues, the wavelet-based functional mixed model (WFMM) was introduced to detect DMCs. To further examine the performance of WFMM in detecting weak differential methylation events, we used both simulated and empirical data and compare WFMM performance to a popular DMC detection tool methylKit. Analyses of simulated data that replicated the effects of the herbicide glyphosate on DNA methylation in Arabidopsis thaliana show that WFMM results in higher sensitivity and specificity in detecting DMCs compared to methylKit, especially when the methylation differences among phenotype groups are small. Moreover, the performance of WFMM is robust with respect to small sample sizes, making it particularly attractive considering the current high costs of bisulfite sequencing. Analysis of empirical Arabidopsis thaliana data under varying glyphosate dosages, and the analysis of monozygotic (MZ) twins who have different pain sensitivities—both datasets have weak methylation effects of <1%—show that WFMM can identify more relevant DMCs related to the phenotype of interest than methylKit. Differentially methylated regions (DMRs) are genomic regions with different DNA methylation status across biological samples. DMRs and DMCs are essentially the same concepts, with

  4. The Produce of Methyl Ester from Crude Palm Oil (CPO) Using Heterogene Catalyst Ash of Chicken Bone (CaO) using Ethanol as Solvent

    NASA Astrophysics Data System (ADS)

    Sinaga, M. S.; Fauzi, R.; Turnip, J. R.

    2017-03-01

    Methyl Ester (methyl ester) is generally made by trans esterification using heterogeneous base catalyst. To simplify the separation, the heterogeneous catalyst is used, such as CaO, which in this case was isolated from chicken bones made by softening chicken bones and do calcination process. Some other important variables other than the selection of the catalyst is the catalyst dosage, molar ratio of ethanol to the CPO and the reaction temperature. The best result from this observe is at the molar ratio of ethanol to the CPO is 17: 1, the reaction temperature is 70 ° C and 7% catalyst (w.t) with reaction time for 7 hours at 500 rpm as a constant variable, got 90,052 % purity, so that this result does not get the standard requirements of biodiesel, because of the purity of the biodiesel standard temporary must be achieve > 96.5 %. This study aims to produce methyl ester yield with the influence of the reaction temperature, percent of catalyst and molar ratio of ethanol and CPO. The most influential variable is the temperature of the reaction that gives a significant yield difference of methyl ester produced. It’s been proven by the increasing temperature used will also significantly increase the yield of methyl ester.

  5. Neurolinguistic programming training, trait anxiety, and locus of control.

    PubMed

    Konefal, J; Duncan, R C; Reese, M A

    1992-06-01

    Training in the neurolinguistic programming techniques of shifting perceptual position, visual-kinesthetic dissociation, timelines, and change-history, all based on experiential cognitive processing of remembered events, leads to an increased awareness of behavioral contingencies and a more sensitive recognition of environmental cues which could serve to lower trait anxiety and increase the sense of internal control. This study reports on within-person and between-group changes in trait anxiety and locus of control as measured on the Spielberger State-Trait Anxiety Inventory and Wallston, Wallston, and DeVallis' Multiple Health Locus of Control immediately following a 21-day residential training in neurolinguistic programming. Significant with-in-person decreases in trait-anxiety scores and increases in internal locus of control scores were observed as predicted. Chance and powerful other locus of control scores were unchanged. Significant differences were noted on trait anxiety and locus of control scores between European and U.S. participants, although change scores were similar for the two groups. These findings are consistent with the hypothesis that this training may lower trait-anxiety scores and increase internal locus of control scores. A matched control group was not available, and follow-up was unfortunately not possible.

  6. The NEXT-A (N-terminal EXtension with Transferase and ARS) reaction.

    PubMed

    Taki, Masumi; Kuroiwa, Hiroyuki; Sisido, Masahiko

    2009-01-01

    L/F-transferase is known to catalyze transfer of hydrophobic amino acids from aminoacyl tRNA to the N-terminus of a protein possessing lysine or arginine as the N-terminus. Combining L/F-transferase with E. coli phenylalanyl-tRNA synthetase (ARS), we achieved non-ribosomal N-terminal-specific introduction of various kinds of nonnatural amino acids to a protein. A nonnatural amino acid is once charged onto an E. coli tRNA(Phe) by a mutant ARS in situ, and successively transferred from the tRNA to a target protein, namely the NEXT-A reaction. Besides alphaA294G mutation on the ARS, alphaT251A, betaG318W, or betaA356W double-mutation were effective to increase the introduction efficiency through the NEXT-A reaction. Protein specific fluorescence labelling via the NEXT-A reaction followed by Huisgen cycloaddition was also demonstrated.

  7. SEPT9 and SHOX2 DNA methylation status and its utility in the diagnosis of colonic adenomas and colorectal adenocarcinomas.

    PubMed

    Semaan, Alexander; van Ellen, Anne; Meller, Sebastian; Bergheim, Dominik; Branchi, Vittorio; Lingohr, Philipp; Goltz, Diane; Kalff, Jörg C; Kristiansen, Glen; Matthaei, Hanno; Pantelis, Dimitrios; Dietrich, Dimo

    2016-01-01

    Colorectal cancer (CRC) appear to arise from precursor lesions in a well-characterized adenoma-carcinoma sequence. Significant efforts have been invested to develop biomarkers that identify early adenocarcinomas and adenomas with high-grade dysplasia, since these are believed to harbor a particularly high risk for malignant transition and thus require resection. Promoter methylation of SEPT9 and SHOX2 has been suggested as a biomarker for various solid malignant tumors. Hence, the present study aimed to test their biomarker potential in CRC and precursor lesions. Assessment of promoter methylation of SEPT9 distinguished adenomas and CRC from controls as well as advanced from non-advanced adenomas (all p  < 0.001). Correspondingly, SHOX2 methylation levels in adenomas and colorectal carcinomas were significantly higher compared to those in normal control tissues ( p  < 0.001). Histologic transition from adenomas to CRC was paralleled by amplification of the SEPT9 gene locus. SEPT9 / SHOX2 methylation assays may help to distinguish colorectal cancer and adenomas from normal and inflammatory colonic tissue, as well as advanced from non-advanced adenomas. Further studies need to validate these findings before introduction in clinical routine.

  8. (Z)-3-Methyl-4-[1-(4-methyl­anilino)propyl­idene]-1-phenyl-1H-pyrazol-5(4H)-one

    PubMed Central

    Sharma, Naresh; Vyas, Komal M.; Jadeja, R. N.; Kant, Rajni; Gupta, Vivek K.

    2013-01-01

    In the title mol­ecule, C20H21N3O, the central pyrazole ring forms dihedral angles of 4.75 (9) and 49.11 (9)°, respectively, with the phenyl and methyl-substituted benzene rings. The dihedral angle between the phenyl and benzene rings is 51.76 (8)°. The amino group and carbonyl O atom are involved in an intra­molecular N—H⋯O hydrogen bond. In the crystal, π–π inter­actions are observed between benzene rings [centroid–centroid seperation = 3.892 (2) Å] and pyrazole rings [centroid–centroid seperation = 3.626 (2) Å], forming chains along [111]. The H atoms of the methyl group on the p-tolyl substituent were refined as disordered over two sets of sites in a 0.60 (4):0.40 (4) ratio. PMID:24109353

  9. Molecular Identification of the Schwannomatosis Locus

    DTIC Science & Technology

    2005-07-01

    AD Award Number: DAMD17-03-1-0445 TITLE: Molecular Identification of the Schwannomatosis Locus PRINCIPAL INVESTIGATOR: Mia M. MacCollin, M.D...NUMBER Molecular Identification of the Schwannomatosis Locus 5b. GRANT NUMBER DAMD17-03-1-0445 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...can be found on next page. 15. SUBJECT TERMS schwannomatosis , tumor suppressor gene, NF2, molecular genetics 16. SECURITY CLASSIFICATION OF: 17

  10. The Vital Function of Fe3O4@Au nanocomposites for Hydrolase Biosensor Design and Its Application in Detection of Methyl Parathion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yuting; Zhang, Weiying; Lin, Yuehe

    A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SH–NH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike inhibition-based enzyme biosensors, the hydrolase is not poisoned bymore » OPs and thus is reusable for continuous measurement. AuNPs not only provide a large surface area, high loading efficiency and fast electron transfer, but also stabilize the enzyme through electrostatic interactions. The MPH biosensor shows rapid response and high selectivity for detection of methyl parathion, with a linear range from 0.5 to 1000 ng/mL and a detection limit of 0.1 ng/mL. It also shows acceptable reproducibility and stability. The simplicity and ease of operation of the proposed method has great potential for on-site detection of P–S containing pesticides and provides a promising strategy to construct a robust biosensor.« less

  11. The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation.

    PubMed

    Jelinic, Petar; Stehle, Jean-Christophe; Shaw, Phillip

    2006-10-01

    Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation-DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation.

  12. The Testis-Specific Factor CTCFL Cooperates with the Protein Methyltransferase PRMT7 in H19 Imprinting Control Region Methylation

    PubMed Central

    Jelinic, Petar; Stehle, Jean-Christophe; Shaw, Phillip

    2006-01-01

    Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation—DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation. PMID:17048991

  13. A glycosyl transferase family 43 protein involved in xylan biosynthesis is associated with straw digestibility in Brachypodium distachyon.

    PubMed

    Whitehead, Caragh; Ostos Garrido, Francisco J; Reymond, Matthieu; Simister, Rachael; Distelfeld, Assaf; Atienza, Sergio G; Piston, Fernando; Gomez, Leonardo D; McQueen-Mason, Simon J

    2018-05-01

    The recalcitrance of secondary plant cell walls to digestion constrains biomass use for the production of sustainable bioproducts and for animal feed. We screened a population of Brachypodium recombinant inbred lines (RILs) for cell wall digestibility using commercial cellulases and detected a quantitative trait locus (QTL) associated with this trait. Examination of the chromosomal region associated with this QTL revealed a candidate gene that encodes a putative glycosyl transferase family (GT) 43 protein, orthologue of IRX14 in Arabidopsis, and hence predicted to be involved in the biosynthesis of xylan. Arabinoxylans form the major matrix polysaccharides in cell walls of grasses, such as Brachypodium. The parental lines of the RIL population carry alternative nonsynonymous polymorphisms in the BdGT43A gene, which were inherited in the RIL progeny in a manner compatible with a causative role in the variation in straw digestibility. In order to validate the implied role of our candidate gene in affecting straw digestibility, we used RNA interference to lower the expression levels of the BdGT43A gene in Brachypodium. The biomass of the silenced lines showed higher digestibility supporting a causative role of the BdGT43A gene, suggesting that it might form a good target for improving straw digestibility in crops. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  14. Brain Immune Interactions as the Basis of Gulf War Illness: Gulf War Illness Consortium (GWIC)

    DTIC Science & Technology

    2015-10-01

    August to train all clinical staff and to ensure proper quality control measures are in place for the clinical studies. This has been followed up by...clinical and preclinical studies Training for researchers and clinical staff was completed at in-person meeting in Boston in August 2014 and continued to...Catechol-O- methyl transferase ( COMT ). COMT is associated with synaptic catecholamine neurotransmitters. COMT helps regulate cortical dopamine in the

  15. Molecular correlates with MGMT promoter methylation and silencing support CpG island methylator phenotype-low (CIMP-low) in colorectal cancer.

    PubMed

    Ogino, Shuji; Kawasaki, Takako; Kirkner, Gregory J; Suemoto, Yuko; Meyerhardt, Jeffrey A; Fuchs, Charles S

    2007-11-01

    The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer. In contrast, a phenotype with less widespread promoter methylation (CIMP-low) has not been well characterised. O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and silencing have been associated with G>A mutations and microsatellite instability-low (MSI-low). To examine molecular correlates with MGMT methylation/silencing in colorectal cancer. Utilising MethyLight technology, we quantified DNA methylation in MGMT and eight other markers (a CIMP-diagnostic panel; CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1) in 920 population-based colorectal cancers. Tumours with both MGMT methylation and loss were correlated positively with MSI-low (p = 0.02), CIMP-high (>or=6/8 methylated CIMP markers, p = 0.005), CIMP-low (1/8-5/8 methylated CIMP markers, p = 0.002, compared to CIMP-0 with 0/8 methylated markers), KRAS G>A mutation (p = 0.02), and inversely with 18q loss of heterozygosity (p = 0.0002). Tumours were classified into nine MSI/CIMP subtypes. Among the CIMP-low group, tumours with both MGMT methylation and loss were far more frequent in MSI-low tumours (67%, 12/18) than MSI-high tumours (5.6%, 1/18; p = 0.0003) and microsatellite stable (MSS) tumours (33%, 52/160; p = 0.008). However, no such relationship was observed among the CIMP-high or CIMP-0 groups. The relationship between MGMT methylation/silencing and MSI-low is limited to only CIMP-low tumours, supporting the suggestion that CIMP-low in colorectal cancer may be a different molecular phenotype from CIMP-high and CIMP-0. Our data support a molecular difference between MSI-low and MSS in colorectal cancer, and a possible link between CIMP-low, MSI-low, MGMT methylation/loss and KRAS mutation.

  16. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation.

    PubMed

    Duncan, Christopher G; Barwick, Benjamin G; Jin, Genglin; Rago, Carlo; Kapoor-Vazirani, Priya; Powell, Doris R; Chi, Jen-Tsan; Bigner, Darell D; Vertino, Paula M; Yan, Hai

    2012-12-01

    Monoallelic point mutations of the NADP(+)-dependent isocitrate dehydrogenases IDH1 and IDH2 occur frequently in gliomas, acute myeloid leukemias, and chondromas, and display robust association with specific DNA hypermethylation signatures. Here we show that heterozygous expression of the IDH1(R132H) allele is sufficient to induce the genome-wide alterations in DNA methylation characteristic of these tumors. Using a gene-targeting approach, we knocked-in a single copy of the most frequently observed IDH1 mutation, R132H, into a human cancer cell line and profiled changes in DNA methylation at over 27,000 CpG dinucleotides relative to wild-type parental cells. We find that IDH1(R132H/WT) mutation induces widespread alterations in DNA methylation, including hypermethylation of 2010 and hypomethylation of 842 CpG loci. We demonstrate that many of these alterations are consistent with those observed in IDH1-mutant and G-CIMP+ primary gliomas and can segregate IDH wild-type and mutated tumors as well as those exhibiting the G-CIMP phenotype in unsupervised analysis of two primary glioma cohorts. Further, we show that the direction of IDH1(R132H/WT)-mediated DNA methylation change is largely dependent upon preexisting DNA methylation levels, resulting in depletion of moderately methylated loci. Additionally, whereas the levels of multiple histone H3 and H4 methylation modifications were globally increased, consistent with broad inhibition of histone demethylation, hypermethylation at H3K9 in particular accompanied locus-specific DNA hypermethylation at several genes down-regulated in IDH1(R132H/WT) knock-in cells. These data provide insight on epigenetic alterations induced by IDH1 mutations and support a causal role for IDH1(R132H/WT) mutants in driving epigenetic instability in human cancer cells.

  17. Methylation analysis of p16, SLIT2, SCARA5, and Runx3 genes in hepatocellular carcinoma

    PubMed Central

    Sun, Gaofeng; Zhang, Chen; Feng, Min; Liu, Wensheng; Xie, Huifang; Qin, Qin; Zhao, E.; Wan, Li

    2017-01-01

    Abstract This study is to investigate the methylation status of multiple tumor suppressor 1 (p16), secreted glycoprotein 2 (SLIT2), scavenger receptor class A, member 5 putative (SCARA5), and human runt-related transcription factor 3 (Runx3) genes in the peripheral blood of hepatocellular carcinoma (HCC). This is a case–control study. The peripheral blood samples were collected from 25 HCC patients, 25 patients with high risk of HCC (defined as “internal control group”), and 25 healthy individuals (defined as “external control group”), respectively. Then the methylation status of p16, SLIT2, SCARA5, and Runx3 genes in the blood samples were analyzed by pyrosequencing. The relationship between the methylation and the clinical features of HCC patients were evaluated. The methylation levels in the 7 CpG loci of p16 gene in HCC patients were low and without statistically significant difference (P > .05) compared to the control groups. Although the methylation levels of CpG3 and CpG4 in SLIT2 gene loci were higher than those of the control groups, there was no statistically significant difference (P > .05). However, the methylation rate of CpG2 locus in SCARA5 gene in HCC patients was significantly higher (P < .05). And the methylation rates of CpG1, CpG2, CpG3, CpG4, CpG5, and CpG8 in Runx3 gene in HCC patients were significantly different to that of control groups (P < .05). We also have analyzed the correlations between the CpG islands methylation of Runx3 or SCARA5 genes and the age, gender, hepatitis B, liver cirrhosis, alpha fetal protein, or hepatitis B surface antigen (HBsAg) of the HCC patients, which all showed no significant correlations (P > .05). The methylation status of SCARA5 and Runx3 genes are abnormal in HCC patients, which may further be used as molecular markers for early auxiliary diagnosis of liver cancer. PMID:29019900

  18. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer.

    PubMed

    Son, Dong-Ick; Park, Dong-Hee; Choi, Won Kook; Cho, Sung-Hwan; Kim, Won-Tae; Kim, Tae Whan

    2009-05-13

    The bistable effects of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) (PMMA) polymer single layer by using flexible polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that ZnO nanoparticles were formed inside the PMMA polymer layer. Current-voltage (I-V) measurement on the Al/ZnO nanoparticles embedded in an insulating PMMA polymer layer/ITO/PET structures at 300 K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the ZnO nanoparticles, indicative of trapping, storing, and emission of charges in the electronic states of the ZnO nanoparticles. The carrier transport mechanism of the bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results by analyzing the effect of space charge.

  19. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus.

    PubMed

    Tran, Phu V; Kennedy, Bruce C; Lien, Yu-Chin; Simmons, Rebecca A; Georgieff, Michael K

    2015-02-15

    Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency. Copyright © 2015 the American Physiological Society.

  20. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus

    PubMed Central

    Kennedy, Bruce C.; Lien, Yu-Chin; Simmons, Rebecca A.; Georgieff, Michael K.

    2014-01-01

    Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency. PMID:25519736