Sample records for o157 genetic subtypes

  1. Evaluation of Animal Genetic and Physiological Factors That Affect the Prevalence of Escherichia coli O157 in Cattle

    PubMed Central

    Jeon, Soo Jin; Elzo, Mauricio; DiLorenzo, Nicolas; Lamb, G. Cliff; Jeong, Kwang Cheol

    2013-01-01

    Controlling the prevalence of Escherichia coli O157 in cattle at the pre-harvest level is critical to reduce outbreaks of this pathogen in humans. Multilayers of factors including the environmental and bacterial factors modulate the colonization and persistence of E. coli O157 in cattle that serve as a reservoir of this pathogen. Here, we report animal factors contributing to the prevalence of E. coli O157 in cattle. We observe the lowest number of E. coli O157 in Brahman breed when compared with other crosses in an Angus-Brahman multibreed herd, and bulls excrete more E. coli O157 than steers in the pens where cattle were housed together. The presence of super-shedders, cattle excreting >105 CFU/rectal anal swab, increases the concentration of E. coli O157 in the pens; thereby super-shedders enhance transmission of this pathogen among cattle. Molecular subtyping analysis reveal only one subtype of E. coli O157 in the multibreed herd, indicating the variance in the levels of E. coli O157 in cattle is influenced by animal factors. Furthermore, strain tracking after relocation of the cattle to a commercial feedlot reveals farm-to-farm transmission of E. coli O157, likely via super-shedders. Our results reveal high risk factors in the prevalence of E. coli O157 in cattle whereby animal genetic and physiological factors influence whether this pathogen can persist in cattle at high concentration, providing insights to intervene this pathogen at the pre-harvest level. PMID:23405204

  2. Diversity, Frequency, and Persistence of Escherichia coli O157 Strains from Range Cattle Environments†

    PubMed Central

    Renter, David G.; Sargeant, Jan M.; Oberst, Richard D.; Samadpour, Mansour

    2003-01-01

    Genetic diversity, isolation frequency, and persistence were determined for Escherichia coli O157 strains from range cattle production environments. Over the 11-month study, analysis of 9,122 cattle fecal samples, 4,083 water source samples, and 521 wildlife fecal samples resulted in 263 isolates from 107 samples presumptively considered E. coli O157 as determined by culture and latex agglutination. Most isolates (90.1%) were confirmed to be E. coli O157 by PCR detection of intimin and Shiga toxin genes. Pulsed-field gel electrophoresis (PFGE) of XbaI-digested preparations revealed 79 unique patterns (XbaI-PFGE subtypes) from 235 typeable isolates confirmed to be E. coli O157. By analyzing up to three isolates per positive sample, we detected an average of 1.80 XbaI-PFGE subtypes per sample. Most XbaI-PFGE subtypes (54 subtypes) were identified only once, yet the seven most frequently isolated subtypes represented over one-half of the E. coli O157 isolates (124 of 235 isolates). Recurring XbaI-PFGE subtypes were recovered from samples on up to 10 sampling occasions and up to 10 months apart. Seven XbaI-PFGE subtypes were isolated from both cattle feces and water sources, and one of these also was isolated from the feces of a wild opossum (Didelphis sp.). The number of XbaI-PFGE subtypes, the variable frequency and persistence of subtypes, and the presence of identical subtypes in cattle feces, free-flowing water sources, and wildlife feces indicate that the complex molecular epidemiology of E. coli O157 previously described for confined cattle operations is also evident in extensively managed range cattle environments. PMID:12514039

  3. Phylogeny of Shiga toxin-producing Escherichia coli O157 isolated from cattle and clinically ill humans

    USDA-ARS?s Scientific Manuscript database

    Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbor multiple genetic subtypes that do not all associate with human disease. STEC O157 evolved from an E. coli O55:H7 progenitor, however, a lack of genome sequence has hindered investigations on the dive...

  4. Evaluation of Fourier transform infrared (FT-IR) spectroscopy and chemometrics as a rapid approach for sub-typing Escherichia coli O157:H7 isolates.

    PubMed

    Davis, R; Paoli, G; Mauer, L J

    2012-09-01

    The importance of tracking outbreaks of foodborne illness and the emergence of new virulent subtypes of foodborne pathogens have created the need for rapid and reliable sub-typing methods for Escherichia coli O157:H7. Fourier transform infrared (FT-IR) spectroscopy coupled with multivariate statistical analyses was used for sub-typing 30 strains of E. coli O157:H7 that had previously been typed by multilocus variable number tandem repeat analysis (MLVA) and pulsed field gel electrophoresis (PFGE). Hierarchical cluster analysis (HCA) and canonical variate analysis (CVA) of the FT-IR spectra resulted in the clustering of the same or similar MLVA types and separation of different MLVA types of E. coli O157:H7. The developed FT-IR method showed better discriminatory power than PFGE in sub-typing E. coli O157:H7. Results also indicated the spectral relatedness between different outbreak strains. However, the grouping of some strains was not in complete agreement with the clustering based on PFGE and MLVA. Additionally, HCA of the spectra differentiated the strains into 30 sub-clusters, indicating the high specificity and suitability of the method for strain level identification. Strains were also classified (97% correct) based on the type of Shiga toxin present using CVA of the spectra. This study demonstrated that FT-IR spectroscopy is suitable for rapid (≤16 h) and economical sub-typing of E. coli O157:H7 with comparable accuracy to MLVA typing. This is the first report of using an FT-IR-based method for sub-typing E. coli O157:H7. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Second generation subtyping: a proposed PulseNet protocol for multiple-locus variable-number tandem repeat analysis of Shiga toxin-producing Escherichia coli O157 (STEC O157).

    PubMed

    Hyytiä-Trees, Eija; Smole, Sandra C; Fields, Patricia A; Swaminathan, Bala; Ribot, Efrain M

    2006-01-01

    Most bacterial genomes contain tandem duplications of short DNA sequences, termed "variable-number tandem repeats" (VNTR). A subtyping method targeting these repeats, multiple-locus VNTR analysis (MLVA), has emerged as a powerful tool for characterization of clonal organisms such as Shiga toxin-producing Escherichia coli O157 (STEC O157). We modified and optimized a recently published MLVA scheme targeting 29 polymorphic VNTR regions of STEC O157 to render it suitable for routine use by public health laboratories that participate in PulseNet, the national and international molecular subtyping network for foodborne disease surveillance. Nine VNTR loci were included in the final protocol. They were amplified in three PCR reactions, after which the PCR products were sized using capillary electrophoresis. Two hundred geographically diverse, sporadic and outbreak- related STEC O157 isolates were characterized by MLVA and the results were compared with data obtained by pulsed-field gel electrophoresis (PFGE) using XbaI macrorestriction of genomic DNA. A total of 139 unique XbaI PFGE patterns and 162 MLVA types were identified. A subset of 100 isolates characterized by both XbaI and BlnI macrorestriction had 62 unique PFGE and MLVA types. Although the clustering of isolates by the two subtyping systems was generally in agreement, some discrepancies were observed. Importantly, MLVA was able to discriminate among some epidemiologically unrelated isolates which were indistinguishable by PFGE. However, among strains from three of the eight outbreaks included in the study, two single locus MLVA variants and one double locus variant were detected among epidemiologically implicated isolates that were indistinguishable by PFGE. Conversely, in three other outbreaks, isolates that were indistinguishable by MLVA displayed multiple PFGE types. An additional more extensive multi-laboratory validation of the MLVA protocol is in progress in order to address critical issues such as

  6. Evolution of Shiga toxin-producing Escherichia coli O157: eight major lineages of human and cattle origin strain signature genotypes

    USDA-ARS?s Scientific Manuscript database

    Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbor genetic subtypes that do not all associate with human disease. STEC O157 evolved from an E. coli O55:H7 progenitor, however, depauperate nucleotide polymorphism discovery from cattle and human origin...

  7. Use of multiple-locus variable-number tandem repeat analysis to evaluate Escherichia coli O157 subtype distribution and transmission dynamics following natural exposure on a closed beef feedlot facility.

    PubMed

    Williams, Michele L; Pearl, David L; Bishop, Katherine E; Lejeune, Jeffrey T

    2013-10-01

    To better understand the epizootiology of Escherichia coli O157:H7 among cattle, all E. coli O157 isolates recovered on a research feedlot during a single feeding period were characterized by multiple-locus variable-number tandem repeat analysis (MLVA). Three distinct MLVA subtypes (A, B, C), accounting for 24%, 15%, and 64% of total isolates, respectively, were identified. Subtypes A and B were isolated at the initiation of sampling, but their prevalence waned and subtype C, first isolated on the third sampling date, became the predominant subtype on the feedlot. Supershedding events, however, occurred with equal frequency for all three MLVA-types. Using a multilevel logistic regression model, we investigated whether the odds of shedding subtype C relative to subtypes A or B were associated with time, diet, or the presence of a penmate shedding high numbers of subtype C. Only time and exposure to an animal shedding MLVA-type C at 10³ colony-forming units or greater in the pen at the time of sampling were significantly associated with increased shedding of subtype C. High-level shedding of those E. coli O157 subtypes better suited for survival in the environment and/or in the host appear to play a significant role in the development of predominant E. coli O157 subtypes. Supershedding events alone are neither required nor sufficient to drive the epidemiology of specific E. coli O157 subtypes. Additional factors are necessary to direct successful on-farm transmission of E. coli O157.

  8. Multiple-locus variable-nucleotide tandem repeat subtype analysis implicates European starlings as biological vectors for Escherichia coli O157:H7 in Ohio, USA.

    PubMed

    Williams, M L; Pearl, D L; Lejeune, J T

    2011-10-01

    To provide molecular epidemiological evidence of avian transmission of Escherichia coli O157:H7 between dairy farms in Ohio, this study was designed to identify genetic relatedness between isolates originating from bovine faecal samples and intestinal contents of European starlings captured on these farms. During a three-year period (2007-2009), cattle (n = 9000) and starlings (n = 430) on 150 different dairy farms in northern Ohio were sampled for the presence of E. coli O157:H7. Isolates were subjected to multiple-locus variable-nucleotide tandem repeat analysis (MLVA). Distinct allelic groups were identified on most farms; however, isolates clustering into three MLVA groups originated from both cattle and birds on different farms. Sharing of indistinguishable epidemiologically linked E. coli O157 MLVA subtypes between starlings and cattle on different farms supports the hypothesis that these birds contribute to the transmission of E. coli O157:H7 between dairy farms. A continued need exists to identify and to improve preharvest measures for controlling E. coli O157:H7. Controlling wildlife intrusion, particularly European starlings, on livestock operations, may be an important strategy for reducing dissemination of E. coli O157:H7 between farms and thereby potentially decreasing the on-farm prevalence of E. coli O157:H7 and enhancing the safety of the food supply. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  9. Genetic diversity of O157:H7 and non-O157 verocytotoxigenic Escherichia coli from Argentina inferred from multiple-locus variable-number tandem repeat analysis (MLVA).

    PubMed

    Bustamante, Ana V; Sanso, A Mariel; Lucchesi, Paula M A; Parma, Alberto E

    2010-04-01

    Although serotype O157:H7 has been implicated in most cases of haemolytic-uraemic syndrome (HUS), there is growing concern about non-O157 serotypes of verocytotoxigenic Escherichia coli (VTEC). Multiple-locus variable-number tandem repeat analysis (MLVA) has been focused on the specific typing of O157:H7 isolates, but recently, a generic MLVA assay for E. coli and Shigella has been developed. We performed a study of the polymorphism in 7 generic VNTR loci both in VTEC O157:H7 and non-O157 isolates from Argentina, in order to asses the ability of the method to type this group of isolates and to get insight into their genetic diversity. Sixty-four isolates from cattle, patients with diarrhoea, and contaminated food belonging to 8 different serotypes were studied. All of them could be typed by this method and revealed 41 different MLVA genotypes. The MLVA dendrogram showed 2 main clusters which corresponded to O157:H7 and non-O157, respectively. Our results confirm the suitability of this MLVA method for analyzing VTEC isolates belonging to several serotypes, both O157:H7 as well as non-O157, highlight the genetic variability of the O157:H7 serotype and the need of additional research in order to find more VNTR loci that could allow a higher discrimination among non-O157 VTEC. (c) 2009 Elsevier GmbH. All rights reserved.

  10. Comparison of 2 proposed MLVA protocols for subtyping non-O157:H7 verotoxigenic Escherichia coli.

    PubMed

    González, Juliana; Sanso, Andrea Mariel; Lucchesi, Paula María Alejandra; Bustamante, Ana Victoria

    2014-04-01

    Multiple locus variable number tandem repeats (VNTRs) analysis (MLVA) has become a reliable tool, able to establish genetic relationships for epidemiological surveillance and molecular subtyping of pathogens such as verotoxigenic Escherichia coli (VTEC). This emerging pathogen whose primary reservoir is the cattle causes severe disease in humans, such as hemorrhagic colitis and hemolytic uremic syndrome. With the aim of comparing a recently proposed MLVA assay with that used routinely in our laboratory, we analyzed a set of VTEC isolates (n = 72) obtained from meat using both assays. All samples could be typed by the new MLVA assay, and an increase in the number of distinct profiles (31-43) was observed. However, intraserotype resolution was not significantly enhanced; thus, the incorporation of more VNTR loci is still needed to achieve a greater discrimination among non-O157:H7 serotypes. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Characterization of Shiga Toxigenic Escherichia coli O157 and Non-O157 Isolates from Ruminant Feces in Malaysia

    PubMed Central

    Perera, Asanthi; Clarke, Charles M.; Dykes, Gary A.; Fegan, Narelle

    2015-01-01

    Shiga toxigenic Escherichia coli (STEC) O157 and several other serogroups of non-O157 STEC are causative agents of severe disease in humans world-wide. The present study was conducted to characterize STEC O157 and non-O157 serogroups O26, O103, O111, O121, O45, and O145 in ruminants in Malaysia. A total of 136 ruminant feces samples were collected from 6 different farms in Peninsular Malaysia. Immunomagnetic beads were used to isolate E. coli O157 and non-O157 serogroups, while PCR was used for the detection and subtyping of STEC isolates. STEC O157:H7 was isolated from 6 (4%) feces samples and all isolates obtained carried stx 2c,  eaeA-γ1, and ehxA. Non-O157 STEC was isolated from 2 (1.5%) feces samples with one isolate carrying stx 1a, stx 2a, stx 2c, and ehxA and the other carrying stx 1a alone. The presence of STEC O157 and non-O157 in a small percentage of ruminants in this study together with their virulence characteristics suggests that they may have limited impact on public health. PMID:26539484

  12. Subtyping of STEC by MLVA in Argentina

    PubMed Central

    Bustamante, Ana V.; Sanso, Andrea M.; Parma, Alberto E.; Lucchesi, Paula M. A.

    2012-01-01

    Shiga toxin-producing Escherichia coli (STEC) causes serious human illness such as hemolytic uremic syndrome (HUS). Argentina has the world’s highest rate of this syndrome, which is the leading cause of acute renal failure among children. E. coli O157:H7 is the most common cause of HUS, but a substantial and growing proportion of this illness is caused by infection due to non-O157 strains. Multiple-locus variable-number tandem repeat analysis (MLVA) has become an established technique to subtype STEC. This review will address the use of routine STEC subtyping by MLVA in order to type this group of isolates and to get insight into the genetic diversity of native STEC. With regard to these objectives we modified and adapted two MLVA protocols, one exclusive for O157 and the other, a generic E. coli assay. A total of 202 STEC isolates, from different sources and corresponding to 20 serotypes, have been MLVA genotyped in our laboratory. In our experience, MLVA constitutes a very sensitive tool and enables us to perform an efficient STEC subtyping. The diversity found in many serotypes may be useful for future epidemiological studies of STEC clonality, applied to O157 as well as to non-O157 isolates. PMID:22919698

  13. Subtyping of STEC by MLVA in Argentina.

    PubMed

    Bustamante, Ana V; Sanso, Andrea M; Parma, Alberto E; Lucchesi, Paula M A

    2012-01-01

    Shiga toxin-producing Escherichia coli (STEC) causes serious human illness such as hemolytic uremic syndrome (HUS). Argentina has the world's highest rate of this syndrome, which is the leading cause of acute renal failure among children. E. coli O157:H7 is the most common cause of HUS, but a substantial and growing proportion of this illness is caused by infection due to non-O157 strains. Multiple-locus variable-number tandem repeat analysis (MLVA) has become an established technique to subtype STEC. This review will address the use of routine STEC subtyping by MLVA in order to type this group of isolates and to get insight into the genetic diversity of native STEC. With regard to these objectives we modified and adapted two MLVA protocols, one exclusive for O157 and the other, a generic E. coli assay. A total of 202 STEC isolates, from different sources and corresponding to 20 serotypes, have been MLVA genotyped in our laboratory. In our experience, MLVA constitutes a very sensitive tool and enables us to perform an efficient STEC subtyping. The diversity found in many serotypes may be useful for future epidemiological studies of STEC clonality, applied to O157 as well as to non-O157 isolates.

  14. Phylogenetic Clades 6 and 8 of Enterohemorrhagic Escherichia coli O157:H7 With Particular stx Subtypes are More Frequently Found in Isolates From Hemolytic Uremic Syndrome Patients Than From Asymptomatic Carriers

    PubMed Central

    Iyoda, Sunao; Manning, Shannon D.; Seto, Kazuko; Kimata, Keiko; Isobe, Junko; Etoh, Yoshiki; Ichihara, Sachiko; Migita, Yuji; Ogata, Kikuyo; Honda, Mikiko; Kubota, Tsutomu; Kawano, Kimiko; Matsumoto, Kazutoshi; Kudaka, Jun; Asai, Norio; Yabata, Junko; Tominaga, Kiyoshi; Terajima, Jun; Morita-Ishihara, Tomoko; Izumiya, Hidemasa; Ogura, Yoshitoshi; Saitoh, Takehito; Iguchi, Atsushi; Kobayashi, Hideki; Hara-Kudo, Yukiko; Ohnishi, Makoto; Arai, Reiko; Kawase, Masao; Asano, Yukiko; Asoshima, Nanami; Chiba, Kazuki; Furukawa, Ichiro; Kuroki, Toshiro; Hamada, Madoka; Harada, Seiya; Hatakeyama, Takashi; Hirochi, Takashi; Sakamoto, Yumiko; Hiroi, Midori; Takashi, Kanda; Horikawa, Kazumi; Iwabuchi, Kaori; Kameyama, Mitsuhiro; Kasahara, Hitomi; Kawanishi, Shinya; Kikuchi, Koji; Ueno, Hiroyuki; Kitahashi, Tomoko; Kojima, Yuka; Konishi, Noriko; Obata, Hiromi; Kai, Akemi; Kono, Tomomi; Kurazono, Takayuki; Matsumoto, Masakado; Matsumoto, Yuko; Nagai, Yuhki; Naitoh, Hideki; Nakajima, Hiroshi; Nakamura, Hiromi; Nakane, Kunihiko; Nishi, Keiko; Saitoh, Etsuko; Satoh, Hiroaki; Takamura, Mitsuteru; Shiraki, Yutaka; Tanabe, Junichi; Tanaka, Keiko; Tokoi, Yuki; Yatsuyanagi, Jun

    2014-01-01

    Background  Enterohemorrhagic Escherichia coli (EHEC) O157:H7 infection causes severe diseases such as bloody diarrhea and hemolytic uremic syndrome (HUS). Although EHEC O157:H7 strains have exhibited high genetic variability, their abilities to cause human diseases have not been fully examined. Methods  Clade typing and stx subtyping of EHEC O157:H7 strains, which were isolated in Japan during 1999–2011 from 269 HUS patients and 387 asymptomatic carriers (ACs) and showed distinct pulsed-field gel electrophoresis patterns, were performed to determine relationships between specific lineages and clinical presentation. Results  Clades 6 and 8 strains were more frequently found among the isolates from HUS cases than those from ACs (P = .00062 for clade 6, P < .0001 for clade 8). All clade 6 strains isolated from HUS patients harbored stx2a and/or stx2c, whereas all clade 8 strains harbored either stx2a or stx2a/stx2c. However, clade 7 strains were predominantly found among the AC isolates but less frequently found among the HUS isolates, suggesting a significant association between clade 7 and AC (P < .0001). Logistic regression analysis revealed that 0–9 year old age is a significant predictor of the association between clade 8 and HUS. We also found an intact norV gene, which encodes for a nitric oxide reductase that inhibits Shiga toxin activity under anaerobic condition, in all clades 1–3 isolates but not in clades 4–8 isolates. Conclusions  Early detection of EHEC O157:H7 strains that belonged to clades 6/8 and harbored specific stx subtypes may be important for defining the risk of disease progression in EHEC-infected 0- to 9-year-old children. PMID:25734131

  15. Molecular ecology of Listeria spp., Salmonella, Escherichia coli O157:H7 and non-O157 Shiga toxin-producing E. coli in pristine natural environments in Northern Colorado.

    PubMed

    Ahlstrom, C A; Manuel, C S; Den Bakker, H C; Wiedmann, M; Nightingale, K K

    2018-02-01

    Molecular subtyping is commonly used in foodborne disease surveillance and microbial source tracking. There is a knowledge gap regarding the molecular ecology of foodborne pathogens in non-food-associated environments. The objective of this study was to isolate and subtype foodborne pathogens from pristine natural environments with minimal anthropogenic inputs. Five locations (wilderness areas) in Northern Colorado were sampled during the spring, summer and fall over a 2-year period. Soil, water, sediment, surface soil and wildlife faecal samples were microbiologically analysed to detect Listeria, Salmonella and Shiga toxin-producing Escherichia coli (STEC), and resultant isolates were subtyped. Three samples tested positive for Listeria monocytogenes and 19 samples contained other Listeria spp. Salmonella was isolated from two samples, five samples contained non-O157 STEC, and E. coli O157:H7 was not detected. Two L. monocytogenes isolates from faecal samples collected from the same wilderness area over a year apart shared the same PFGE pattern, while all other isolates had a unique type. Our data indicate that (i) there was a rare presence of human foodborne pathogens in pristine natural environments in Northern Colorado, (ii) there was genetic diversity between organisms isolated within a given wilderness area, and (iii) the Northern Colorado climate and topography may contribute to the low occurrence of these organisms. Relatively little is known about the molecular ecology of foodborne pathogens in pristine natural environments. While foodborne pathogens were rarely detected in wildlife faecal and environmental samples from the wilderness areas in this study, some isolates shared DNA fingerprint types with human clinical isolates from same region during the same time frame, highlighting the need for environmental isolate subtype data. The availability of molecular subtyping data for non-food-associated foodborne pathogen isolates can facilitate

  16. Genetically similar strains of Escherichia coli O157:H7 isolated from sheep, cattle and human patients.

    PubMed

    Söderlund, Robert; Hedenström, Ingela; Nilsson, Anna; Eriksson, Erik; Aspán, Anna

    2012-10-24

    Comparatively little is known about the prevalence or the molecular characteristics of the zoonotic pathogen E. coli O157:H7 in the sheep reservoir. To investigate this and determine the host specificity of subclones of the bacterium, we have conducted a slaughterhouse prevalence study in sheep and compared the collected isolates to O157:H7 previously isolated from cattle and human patients. Verotoxin-producing O157:H7 was found in 11/597 (1.8%) of samples from sheep in Swedish slaughterhouses, 9/492 faecal (1.8%) and 2/105 ear samples (1.9%). All positive sheep were < 6 months old. Pulsed field gel electrophoresis typing revealed exact matches between isolates from the sheep prevalence study and human patients as well as between isolates from sheep and cattle. In one case, matching isolates were found in sheep, cattle, and a human patient in the same municipality. Identical PFGE profiles generally corresponded to similar but non-identical multi-locus VNTR profiles. In one sheep sample, SNP-typing found the highly virulent clade 8 variant of O157:H7. The virulence gene profiles of sheep isolates from the prevalence study and three sheep farms linked to cases of human illness were investigated by PCR detection (eaeA, hlyA, cdtV-B, vtx1), and partial sequencing of vtx2. The observed profiles were similar to those of cattle strains investigated previously. The same pathogenic subtypes of VTEC O157:H7, including the highly virulent clade 8, appear to be present in both sheep and cattle in Sweden, suggesting strains can circulate freely between ruminant reservoirs.

  17. Highly diverse variable number tandem repeat loci in the E. coli O157:H7 and O55:H7 genomes for high-resolution molecular typing.

    PubMed

    Keys, C; Kemper, S; Keim, P

    2005-01-01

    Evaluation of the Escherichia coli genome for variable number tandem repeat (VNTR) loci in order to provide a subtyping tool with greater discrimination and more efficient capacity. Twenty-nine putative VNTR loci were identified from the E. coli genomic sequence. Their variability was validated by characterizing the number of repeats at each locus in a set of 56 E. coli O157:H7/HN and O55:H7 isolates. An optimized multiplex assay system was developed to facility high capacity analysis. Locus diversity values ranged from 0.23 to 0.95 while the number of alleles ranged from two to 29. This multiple-locus VNTR analysis (MLVA) data was used to describe genetic relationships among these isolates and was compared with PFGE (pulse field gel electrophoresis) data from a subset of the same strains. Genetic similarity values were highly correlated between the two approaches, through MLVA was capable of discrimination amongst closely related isolates when PFGE similar values were equal to 1.0. Highly variable VNTR loci exist in the E. coli O157:H7 genome and are excellent estimators of genetic relationships, in particular for closely related isolates. Escherichia coli O157:H7 MLVA offers a complimentary analysis to the more traditional PFGE approach. Application of MLVA to an outbreak cluster could generate superior molecular epidemiology and result in a more effective public health response.

  18. Shiga toxin 2 subtypes of enterohemorrhagic E. coli O157:H- E32511 analyzed by RT-qPCR and top-down proteomics using MALDI-TOF-TOF-MS

    USDA-ARS?s Scientific Manuscript database

    We have measured the relative abundance of the B-subunits and mRNA transcripts of two Stx2 subtypes present in Shiga toxin-producing Escherichia coli (STEC) O157:H- strain E32511 using matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-M...

  19. Molecular characterization of enterohemorrhagic Escherichia coli O157:H7 isolates dispersed across Japan by pulsed-field gel electrophoresis and multiple-locus variable-number tandem repeat analysis.

    PubMed

    Pei, Yingxin; Terajima, Jun; Saito, Yasunori; Suzuki, Reiko; Takai, Nobuko; Izumiya, Hidemasa; Morita-Ishihara, Tomoko; Ohnishi, Makoto; Miura, Masashi; Iyoda, Sunao; Mitobe, Jiro; Wang, Binyou; Watanabe, Haruo

    2008-01-01

    We identified seven distinct subtypes of enterohemorrhagic Escherichia coli (EHEC) O157:H7 isolates that were derived from sporadic cases and outbreaks from multiple prefectures in Japan in 2005. A surveillance system utilizing pulsed-field gel electrophoresis (PFGE), PulseNet Japan, was used. Some strains showed indistinguishable PFGE patterns using another restriction enzyme (BlnI or SpeI) in each subtype of EHEC O157:H7 isolates that were routinely subtyped by the XbaI PFGE pattern. In order to examine the genotypic relatedness of these strains, we carried out a multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA). By using the MLVA system, we found that three of seven subtypes of EHEC O157:H7 strains that were isolated from sporadic cases dispersed across multiple prefectures within a few months showed indistinguishable PFGE patterns and identical MLVA types. Strains belonging to the other four subtypes of EHEC O157:H7 in the PFGE analysis were further classified into different clusters of EHEC O157:H7. Therefore, compared to PFGE, MLVA showed greater discriminatory power with respect to analysis of the isolates in this study.

  20. Phylogenetic analysis of enterohemorrhagic Escherichia coli O157, Germany, 1987-2008.

    PubMed

    Jenke, Christian; Harmsen, Dag; Weniger, Thomas; Rothganger, Jorg; Hyytia-Trees, Eija; Bielaszewska, Martina; Karch, Helge; Mellmann, Alexander

    2010-04-01

    Multilocus variable number tandem repeat analysis (MLVA) is a subtyping technique for characterizing human pathogenic bacteria such as enterohemorrhagic Escherichia coli (EHEC) O157. We determined the phylogeny of 202 epidemiologically unrelated EHEC O157:H7/H- clinical isolates through 8 MLVA loci obtained in Germany during 1987-2008. Biodiversity in the loci ranged from 0.66 to 0.90. Four of 8 loci showed null alleles and a frequency < or =44.1%. These loci were distributed among 48.5% of all strains. Overall, 141 MLVA profiles were identified. Phylogenetic analysis assigned 67.3% of the strains to 19 MLVA clusters. Specific MLVA profiles with an evolutionary persistence were identified, particularly within sorbitol-fermenting EHEC O157:H-.These pathogens belonged to the same MLVA cluster. Our findings indicate successful persistence of this clone.

  1. Phylogenetic Analysis of Enterohemorrhagic Escherichia coli O157, Germany, 1987–2008

    PubMed Central

    Jenke, Christian; Harmsen, Dag; Weniger, Thomas; Rothgänger, Jörg; Hyytiä-Trees, Eija; Bielaszewska, Martina; Karch, Helge

    2010-01-01

    Multilocus variable number tandem repeat analysis (MLVA) is a subtyping technique for characterizing human pathogenic bacteria such as enterohemorrhagic Escherichia coli (EHEC) O157. We determined the phylogeny of 202 epidemiologically unrelated EHEC O157:H7/H– clinical isolates through 8 MLVA loci obtained in Germany during 1987–2008. Biodiversity in the loci ranged from 0.66 to 0.90. Four of 8 loci showed null alleles and a frequency <44.1%. These loci were distributed among 48.5% of all strains. Overall, 141 MLVA profiles were identified. Phylogenetic analysis assigned 67.3% of the strains to 19 MLVA clusters. Specific MLVA profiles with an evolutionary persistence were identified, particularly within sorbitol-fermenting EHEC O157:H–.These pathogens belonged to the same MLVA cluster. Our findings indicate successful persistence of this clone. PMID:20350374

  2. Application of a multilocus variable number of tandem repeats analysis to regional outbreak surveillance of Enterohemorrhagic Escherichia coli O157:H7 infections.

    PubMed

    Konno, Takayuki; Yatsuyanagi, Jun; Saito, Shioko

    2011-01-01

    A total of 18 strains of EHEC O157:H7 were isolated from distinct cases in Akita Prefecture, Japan from July to September 2007. The genetic relatedness of these isolates was investigated by performing a multilocus variable number of tandem repeats analysis (MLVA) and a pulsed-field gel electrophoresis (PFGE) analysis using XbaI. The PFGE analyses allowed us to group these 18 isolates into three major clusters. The MLVA results correlated closely with those obtained by PFGE, although some variants were found within the clusters obtained by PFGE, thus highlighting the utility of this technique for determining a precise classification when it is difficult to differentiate between isolates with indistinguishable or very similar PFGE patterns. In addition, MLVA is a much easier and more rapid method than PFGE for analysis of the genetic relatedness of strains. Thus, as a second molecular epidemiological subtyping method, MLVA is useful for the regional outbreak surveillance of EHEC O157:H7 infections.

  3. Escherichia coli O157:H7: Animal Reservoir and Sources of Human Infection

    PubMed Central

    Ferens, Witold A.

    2011-01-01

    Abstract This review surveys the literature on carriage and transmission of enterohemorrhagic Escherichia coli (EHEC) O157:H7 in the context of virulence factors and sampling/culture technique. EHEC of the O157:H7 serotype are worldwide zoonotic pathogens responsible for the majority of severe cases of human EHEC disease. EHEC O157:H7 strains are carried primarily by healthy cattle and other ruminants, but most of the bovine strains are not transmitted to people, and do not exhibit virulence factors associated with human disease. Prevalence of EHEC O157:H7 is probably underestimated. Carriage of EHEC O157:H7 by individual animals is typically short-lived, but pen and farm prevalence of specific isolates may extend for months or years and some carriers, designated as supershedders, may harbor high intestinal numbers of the pathogen for extended periods. The prevalence of EHEC O157:H7 in cattle peaks in the summer and is higher in postweaned calves and heifers than in younger and older animals. Virulent strains of EHEC O157:H7 are rarely harbored by pigs or chickens, but are found in turkeys. The bacteria rarely occur in wildlife with the exception of deer and are only sporadically carried by domestic animals and synanthropic rodents and birds. EHEC O157:H7 occur in amphibian, fish, and invertebrate carriers, and can colonize plant surfaces and tissues via attachment mechanisms different from those mediating intestinal attachment. Strains of EHEC O157:H7 exhibit high genetic variability but typically a small number of genetic types predominate in groups of cattle and a farm environment. Transmission to people occurs primarily via ingestion of inadequately processed contaminated food or water and less frequently through contact with manure, animals, or infected people. PMID:21117940

  4. Genomic anatomy of Escherichia coli O157:H7 outbreaks

    PubMed Central

    Eppinger, Mark; Mammel, Mark K.; Leclerc, Joseph E.; Ravel, Jacques; Cebula, Thomas A.

    2011-01-01

    The rapid emergence of Escherichia coli O157:H7 from an unknown strain in 1982 to the dominant hemorrhagic E. coli serotype in the United States and the cause of widespread outbreaks of human food-borne illness highlights a need to evaluate critically the extent to which genomic plasticity of this important enteric pathogen contributes to its pathogenic potential and its evolution as well as its adaptation in different ecological niches. Aimed at a better understanding of the evolution of the E. coli O157:H7 pathogenome, the present study presents the high-quality sequencing and comparative phylogenomic analysis of a comprehensive panel of 25 E. coli O157:H7 strains associated with three nearly simultaneous food-borne outbreaks of human disease in the United States. Here we present a population genetic analysis of more than 200 related strains recovered from patients, contaminated produce, and zoonotic sources. High-resolution phylogenomic approaches allow the dynamics of pathogenome evolution to be followed at a high level of phylogenetic accuracy and resolution. SNP discovery and study of genome architecture and prophage content identified numerous biomarkers to assess the extent of genetic diversity within a set of clinical and environmental strains. A total of 1,225 SNPs were identified in the present study and are now available for typing of the E. coli O157:H7 lineage. These data should prove useful for the development of a refined phylogenomic framework for forensic, diagnostic, and epidemiological studies to define better risk in response to novel and emerging E. coli O157:H7 resistance and virulence phenotypes. PMID:22135463

  5. Comparative transcriptional profiling reveals differential expression of pathways directly and indirectly influencing biofilm formation in Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Introduction: Escherichia coli O157:H7 (O157) is a frequent cause of foodborne disease outbreaks. O157 encodes virulence factors for colonizing and survival in reservoir animals and the environment. For example, genetic factors promoting biofilm formation are linked to survival of O157 in and outsid...

  6. Inter-laboratory comparison of multi-locus variable-number tandem repeat analysis (MLVA) for verocytotoxin-producing Escherichia coli O157 to facilitate data sharing.

    PubMed

    Holmes, A; Perry, N; Willshaw, G; Hanson, M; Allison, L

    2015-01-01

    Multi-locus variable number tandem repeat analysis (MLVA) is used in clinical and reference laboratories for subtyping verocytotoxin-producing Escherichia coli O157 (VTEC O157). However, as yet there is no common allelic or profile nomenclature to enable laboratories to easily compare data. In this study, we carried out an inter-laboratory comparison of an eight-loci MLVA scheme using a set of 67 isolates of VTEC O157. We found all but two isolates were identical in profile in the two laboratories, and repeat units were homogeneous in size but some were incomplete. A subset of the isolates (n = 17) were sequenced to determine the actual copy number of representative alleles, thereby enabling alleles to be named according to international consensus guidelines. This work has enabled us to realize the potential of MLVA as a portable, highly discriminatory and convenient subtyping method.

  7. Naturally colonized beef cattle populations fed combinations of yeast culture and an ionophore in finishing diets containing dried distiller's grains with solubles had similar fecal shedding of Escherichia coli O157:H7.

    PubMed

    Swyers, K L; Carlson, B A; Nightingale, K K; Belk, K E; Archibeque, S L

    2011-06-01

    Beef steers (n = 252) were used to evaluate the effects of dietary supplement on fecal shedding of Escherichia coli O157:H7. Seven pens of 9 steers (63 steers per treatment) were fed diets supplemented with or without yeast culture (YC) or monensin (MON) and their combination (YC × MON). YC and MON were offered at 2.8 g/kg and 33 mg/kg of dry matter intake, respectively. Environmental sponge samples (from each pen floor, feed bunk, and water trough) were collected on day 0. Rectal fecal grab samples were collected on days 0, 28, 56, 84, 110, and 125. Samples were collected and pooled by pen and analyzed for presumptive E. coli O157:H7 colonies, which were confirmed by a multiplex PCR assay and characterized by pulsed-field gel electrophoresis (PFGE) typing. On day 0, E. coli O157:H7 was detected in 7.0% of feed bunk samples and 14.3% of pen floor samples but in none of the water trough samples. The 71.4% prevalence of E. coli O157:H7 in fecal samples on day 0 decreased significantly (P < 0.05) over time. E. coli O157:H7 fecal shedding was not associated with dietary treatment (P > 0.05); however, in cattle fed YC and YC × MON fecal shedding was 0% by day 28. Eight Xba I PFGE subtypes were identified, and a predominant subtype and three closely related subtypes (differing by three or fewer bands) accounted for 78.7% of environmental and fecal isolates characterized. Results from this study indicate that feeding YC to cattle may numerically decrease but not eliminate fecal shedding of E. coli O157:H7 at the onset of treatment and that certain E. coli O157 subtypes found in the feedlot environment may persist in feedlot cattle.

  8. Herd-level risk factors associated with the presence of Phage type 21/28 E. coli O157 on Scottish cattle farms

    PubMed Central

    Halliday, Jo EB; Chase-Topping, Margo E; Pearce, Michael C; McKendrick, Iain J; Allison, Lesley; Fenlon, Dave; Low, Chris; Mellor, Dominic J; Gunn, George J; Woolhouse, Mark EJ

    2006-01-01

    Background E. coli O157 is a bacterial pathogen that is shed by cattle and can cause severe disease in humans. Phage type (PT) 21/28 is a subtype of E. coli O157 that is found across Scotland and is associated with particularly severe human morbidity. Methods A cross-sectional survey of Scottish cattle farms was conducted in the period Feb 2002-Feb 2004 to determine the prevalence of E. coli O157 in cattle herds. Data from 88 farms on which E. coli O157 was present were analysed using generalised linear mixed models to identify risk factors for the presence of PT 21/28 specifically. Results The analysis identified private water supply, and northerly farm location as risk factors for PT 21/28 presence. There was a significant association between the presence of PT 21/28 and an increased number of E. coli O157 positive pat samples from a farm, and PT 21/28 was significantly associated with larger E. coli O157 counts than non-PT 21/28 E. coli O157. Conclusion PT 21/28 has significant risk factors that distinguish it from other phage types of E. coli O157. This finding has implications for the control of E. coli O157 as a whole and suggests that control could be tailored to target the locally dominant PT. PMID:17140453

  9. Prevalence of O157:H7 and non-O157 E. coli in Iranian domestic sheep.

    PubMed

    Tahamtan, Yahya; Namavari, Mehdi

    2014-01-01

    The aim of the present study was the isolation of both E. coli O157 and non-O157 in sheep. Verotoxins (VT) 1, 2 and eae genes were tested for this propose. Sheep faces are an important source of Shiga toxin-producing Escherichia coli (STEC). Escherichia coli O157:H7 is a highly virulent food-borne pathogen and threat to public health. Rectal swab samples from sheep were collected during 2009-2010. Conventional plating and Polymerase Chain Reaction (PCR) were carried out according to virulence factors (Stx1, Stx2 and eaeA).There significant differences between prevalence of STEC and session were observed. It was at highest in spring and late summer. Six (3.92%) sheep carcasses were contaminated by E. coli O157:H7.Only six samples were positive by PCR specific for the VT2 gene and produced verocytotoxin VT2, whereas all isolates were negative for the presence of VT1 and eae virulence genes considered. Geographical variations and season may be influenced in the prevalence rate. The composition of the gastrointestinal flora may be changed by different diet and, therefore O157 STEC rate in sheep and lamb was different. Iranian sheep indicated as a natural host of E. coli O157 strains therefore, may be potentially pathogenic for humans. This is the first report of E. coli O157 detection from sheep in Iran.

  10. Detection, Isolation, and Molecular Subtyping of Escherichia coli O157:H7 and Campylobacter jejuni Associated with a Large Waterborne Outbreak

    PubMed Central

    Bopp, Dianna J.; Sauders, Brian D.; Waring, Alfred L.; Ackelsberg, Joel; Dumas, Nellie; Braun-Howland, Ellen; Dziewulski, David; Wallace, Barbara J.; Kelly, Molly; Halse, Tanya; Musser, Kimberlee Aruda; Smith, Perry F.; Morse, Dale L.; Limberger, Ronald J.

    2003-01-01

    The largest reported outbreak of waterborne Escherichia coli O157:H7 in the United States occurred in upstate New York following a county fair in August 1999. Culture methods were used to isolate E. coli O157:H7 from specimens from 128 of 775 patients with suspected infections. Campylobacter jejuni was also isolated from stools of 44 persons who developed diarrheal illness after attending this fair. There was one case of a confirmed coinfection with E. coli O157:H7 and C. jejuni. Molecular detection of stx1 and stx2 Shiga toxin genes, immunomagnetic separation (IMS), and selective culture enrichment were utilized to detect and isolate E. coli O157:H7 from an unchlorinated well and its distribution points, a dry well, and a nearby septic tank. PCR for stx1 and stx2 was shown to provide a useful screen for toxin-producing E. coli O157:H7, and IMS subculture improved recovery. Pulsed-field gel electrophoresis (PFGE) was used to compare patient and environmental E. coli O157:H7 isolates. Among patient isolates, 117 of 128 (91.5%) were type 1 or 1a (three or fewer bands different). Among the water distribution system isolates, 13 of 19 (68%) were type 1 or 1a. Additionally, PFGE of C. jejuni isolates revealed that 29 of 35 (83%) had indistinguishable PFGE patterns. The PFGE results implicated the water distribution system as the main source of the E. coli O157:H7 outbreak. This investigation demonstrates the potential for outbreaks involving more than one pathogen and the importance of analyzing isolates from multiple patients and environmental samples to develop a better understanding of bacterial transmission during an outbreak. PMID:12517844

  11. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms.

    PubMed

    Zhang, Wei; Qi, Weihong; Albert, Thomas J; Motiwala, Alifiya S; Alland, David; Hyytia-Trees, Eija K; Ribot, Efrain M; Fields, Patricia I; Whittam, Thomas S; Swaminathan, Bala

    2006-06-01

    Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7x10(-9) per site per year), we estimate that the most recent common ancestor of the contemporary beta-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens.

  12. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms

    PubMed Central

    Zhang, Wei; Qi, Weihong; Albert, Thomas J.; Motiwala, Alifiya S.; Alland, David; Hyytia-Trees, Eija K.; Ribot, Efrain M.; Fields, Patricia I.; Whittam, Thomas S.; Swaminathan, Bala

    2006-01-01

    Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7 × 10−9 per site per year), we estimate that the most recent common ancestor of the contemporary β-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens. PMID:16606700

  13. Molecular Characterization of Human Atypical Sorbitol-Fermenting Enteropathogenic Escherichia coli O157 Reveals High Diversity.

    PubMed

    Kossow, Annelene; Zhang, Wenlan; Bielaszewska, Martina; Rhode, Sophie; Hansen, Kevin; Fruth, Angelika; Rüter, Christian; Karch, Helge; Mellmann, Alexander

    2016-05-01

    Alongside the well-characterized enterohemorrhagic Escherichia coli (EHEC) O157:H7, serogroup O157 comprises sorbitol-fermenting typical and atypical enteropathogenic E. coli (EPEC/aEPEC) strains that carry the intimin-encoding gene eae but not Shiga toxin-encoding genes (stx). Since little is known about these pathogens, we characterized 30 clinical isolates from patients with hemolytic uremic syndrome (HUS) or uncomplicated diarrhea with respect to their flagellin gene (fliC) type and multilocus sequence type (MLST). Moreover, we applied whole-genome sequencing (WGS) to determine the phylogenetic relationship with other eae-positive EHEC serotypes and the composition of the rfbO157 region. fliC typing resulted in five fliC types (H7, H16, H34, H39, and H45). Isolates of each fliC type shared a unique ST. In comparison to the 42 HUS-associated E. coli (HUSEC) strains, only the stx-negative isolates with fliCH7 shared their ST with EHEC O157:H7/H(-) strains. With the exception of one O157:H(-) fliCH16 isolate, HUS was exclusively associated with fliCH7. WGS corroborated the separation of the fliCH7 isolates, which were closely related to the EHEC O157:H7/H(-) isolates, and the diverse group of isolates exhibiting different fliC types, indicating independent evolution of the different serotypes. This was also supported by the heterogeneity within the rfbO157 region that exhibited extensive recombinations. The genotypic subtypes and distribution of clinical symptoms suggested that the stx-negative O157 strains with fliCH7 were originally EHEC strains that lost stx The remaining isolates form a distinct and diverse group of atypical EPEC isolates that do not possess the full spectrum of virulence genes, underlining the importance of identifying the H antigen for clinical risk assessment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Prevalence and Genomic Characterization of Escherichia coli O157:H7 in Cow-Calf Herds throughout California

    PubMed Central

    Worley, Jay N.; Flores, Kristopher A.; Yang, Xun; Chase, Jennifer A.; Cao, Guojie; Tang, Shuai; Meng, Jianghong

    2017-01-01

    ABSTRACT Escherichia coli serotype O157:H7 is a zoonotic food- and waterborne bacterial pathogen that causes a high hospitalization rate and can cause life-threatening complications. Increasingly, E. coli O157:H7 infections appear to originate from fresh produce. Ruminants, such as cattle, are a prominent reservoir of E. coli O157:H7 in the United States. California is one of the most agriculturally productive regions in the world for fresh produce, beef, and milk. The close proximity of fresh produce and cattle presents food safety challenges on a uniquely large scale. We performed a survey of E. coli O157:H7 on 20 farms in California to observe the regional diversity and prevalence of E. coli O157:H7. Isolates were obtained from enrichment cultures of cow feces. Some farms were sampled on two dates. Genomes from isolates were sequenced to determine their relatedness and pathogenic potential. E. coli O157:H7 was isolated from approximately half of the farms. The point prevalence of E. coli O157:H7 on farms was highly variable, ranging from zero to nearly 90%. Within farms, generally one or a few lineages were found, even when the rate of isolation was high. On farms with high isolation rates, a single clonal lineage accounted for most of the isolates. Farms that were visited months after the first visit might have had the same lineages of E. coli O157:H7. Strains of E. coli O157:H7 may be persistent for months on farms. IMPORTANCE This survey of 20 cow-calf operations from different regions of California provides an in depth look at resident Escherichia coli O157:H7 populations at the molecular level. E. coli O157:H7 is found to have a highly variable prevalence, and with whole-genome sequencing, high prevalences in herds were found to be due to a single lineage shed from multiple cows. Few repeat lineages were found between farms in this area; therefore, we predict that E. coli O157:H7 has significant diversity in this area beyond what is detected in this survey

  15. Prevalence and relatedness of Escherichia coli O157:H7 strains in the feces and on the hides and carcasses of U.S. meat goats at slaughter.

    PubMed

    Jacob, M E; Foster, D M; Rogers, A T; Balcomb, C C; Sanderson, M W

    2013-07-01

    We determined the prevalences of Escherichia coli O157:H7 in feces, hide, and carcasses of meat goats at a U.S. processing plant. Prevalences were 11.1%, 2.7%, and 2.7%, respectively. Sixteen pulsed-field gel electrophoresis (PFGE) subtypes were identified among 49 E. coli O157:H7 isolates, some of which were present on multiple sample types or collection days.

  16. Prevalence and Relatedness of Escherichia coli O157:H7 Strains in the Feces and on the Hides and Carcasses of U.S. Meat Goats at Slaughter

    PubMed Central

    Foster, D. M.; Rogers, A. T.; Balcomb, C. C.; Sanderson, M. W.

    2013-01-01

    We determined the prevalences of Escherichia coli O157:H7 in feces, hide, and carcasses of meat goats at a U.S. processing plant. Prevalences were 11.1%, 2.7%, and 2.7%, respectively. Sixteen pulsed-field gel electrophoresis (PFGE) subtypes were identified among 49 E. coli O157:H7 isolates, some of which were present on multiple sample types or collection days. PMID:23584770

  17. Genetic characterization of non-O157 verocytotoxigenic Escherichia coli isolated from raw beef products using multiple-locus variable-number tandem repeat analysis.

    PubMed

    Franci, Tomás; Sanso, A Mariel; Bustamante, Ana V; Lucchesi, Paula M A; Parma, Alberto E

    2011-09-01

    Verocytotoxigenic Escherichia coli (VTEC) can produce serious human illness linked to the consumption of contaminated food, mainly of bovine origin. There is growing concern about non-O157 VTEC serotypes, which in some countries cause severe infections in a proportion similar to O157:H7 strains. As several epidemiological studies indicated the important role of meat as the major vehicle in the transmission of this pathogen to human consumers, our aim was to investigate the genetic diversity among non-O157:H7 VTEC isolated from raw beef products. We performed a multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA), and to our knowledge, this is the first time that VTEC serotypes O8:H19, O112:H2, O113:NM, O171:NM, ONT:H7, ONT:H19, and ONT:H21 were typed by this method. MLVA typing grouped the total number of strains from this study (51) into 21 distinct genotypes, and 11 of them were unique. Several MLVA profiles were found in different serotypes, O178:H19 being the most variable. The isolates could be principally discriminated by alleles of three of seven loci studied (CVN001, CVN004, and CVN014), and on the other hand, CVN003 rendered null alleles in all the isolates. As some VNTR markers might be serotype specific, it is possible that the implementation of new VNTR loci will increase intraserotype discrimination.

  18. Longitudinal Study of Fecal Shedding of Escherichia coli O157:H7 in Feedlot Cattle: Predominance and Persistence of Specific Clonal Types despite Massive Cattle Population Turnover

    PubMed Central

    LeJeune, J. T.; Besser, T. E.; Rice, D. H.; Berg, J. L.; Stilborn, R. P.; Hancock, D. D.

    2004-01-01

    Identification of the sources and methods of transmission of Escherichia coli O157:H7 in feedlot cattle may facilitate the development of on-farm control measures for this important food-borne pathogen. The prevalence of E. coli O157:H7 in fecal samples of commercial feedlot cattle in 20 feedlot pens between April and September 2000 was determined throughout the finishing feeding period prior to slaughter. Using immunomagnetic separation, E. coli O157:H7 was isolated from 636 of 4,790 (13%) fecal samples in this study, with highest prevalence earliest in the feeding period. No differences were observed in the fecal or water trough sediment prevalence values of E. coli O157:H7 in 10 pens supplied with chlorinated drinking water supplies compared with nonchlorinated water pens. Pulsed-field gel electrophoresis of XbaI-digested bacterial DNA of the 230 isolates obtained from eight of the pens revealed 56 unique restriction endonuclease digestion patterns (REDPs), although nearly 60% of the isolates belonged to a group of four closely related genetic subtypes that were present in each of the pens and throughout the sampling period. The other REDPs were typically transiently detected, often in single pens and on single sample dates, and in many cases were also closely related to the four predominant REDPs. The persistence and predominance of a few REDPs observed over the entire feeding period on this livestock operation highlight the importance of the farm environment, and not necessarily the incoming cattle, as a potential source or reservoir of E. coli O157:H7 on farms. PMID:14711666

  19. Lytic bacteriophages reduce Escherichia coli O157

    PubMed Central

    Ferguson, Sean; Roberts, Cheryl; Handy, Eric; Sharma, Manan

    2013-01-01

    The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield™) or a control (phosphate buffered saline, PBS) was applied to lettuce by either; (1) immersion of lettuce in 500 ml of EcoShield™ 8.3 log PFU/ml or 9.8 log PFU/ml for up to 2 min before inoculation with E. coli O157:H7; (2) spray-application of EcoShield™ (9.3 log PFU/ml) to lettuce after inoculation with E. coli O157:H7 (4.10 CFU/cm2) following exposure to 50 μg/ml chlorine for 30 sec. After immersion studies, lettuce was spot-inoculated with E. coli O157:H7 (2.38 CFU/cm2). Phage-treated, inoculated lettuce pieces were stored at 4°C for and analyzed for E. coli O157:H7 populations for up to 7 d. Immersion of lettuce in 9.8 log PFU/ml EcoShield™ for 2 min significantly (p < 0.05) reduced E. coli O157:H7 populations after 24 h when stored at 4°C compared with controls. Immersion of lettuce in suspensions containing high concentrations of EcoShield™ (9.8 log PFU/ml) resulted in the deposition of high concentrations (7.8 log log PFU/cm2) of bacteriophages on the surface of fresh cut lettuce, potentially contributing to the efficacy of the lytic phages on lettuce. Spraying phages on to inoculated fresh cut lettuce after being washed in hypochlorite solution was significantly more effective in reducing E. coli O157:H7 populations (2.22 log CFU/cm2) on day 0 compared with control treatments (4.10 log CFU/cm2). Both immersion and spray treatments provided protection from E. coli O157:H7 contamination on lettuce, but spray application of lytic bacteriophages to lettuce was more effective in immediately reducing E. coli O157:H7 populations fresh cut lettuce. PMID:23819106

  20. Bison and bovine rectoanal junctions exhibit similar cellular architecture and Escherichia coli O157 adherence patterns.

    PubMed

    Kudva, Indira T; Stasko, Judith A

    2013-12-28

    Escherichia coli O157 (E. coli O157) has been isolated from bison retail meat, a fact that is important given that bison meat has been implicated in an E. coli O157-multistate outbreak. In addition, E. coli O157 has also been isolated from bison feces at slaughter and on farms. Cattle are well documented as E. coli O157 reservoirs, and the primary site of E. coli O157 persistence in such reservoirs is the rectoanal junction (RAJ), located at the distal end of the bovine gastrointestinal tract. Since bison and cattle share many genetic similarities manifested as common lineage, susceptibility to infection and the nature of immune responses to infectious agents, we decided to evaluate whether the RAJ of these animals were comparable both in terms of cellular architecture and as sites for adherence of E. coli O157. Specifically, we compared the histo-morphologies of the RAJ and evaluated the E. coli O157 adherence characteristics to the RAJ squamous epithelial (RSE) cells, from these two species. We found that the RAJ of both bison and cattle demonstrated similar distribution of epithelial cell markers villin, vimentin, cytokeratin, E-cadherin and N-cadherin. Interestingly, N-cadherin predominated in the stratified squamous epithelium reflecting its proliferative nature. E. coli O157 strains 86-24 SmR and EDL 933 adhered to RSE cells from both animals with similar diffuse and aggregative patterns, respectively. Our observations further support the fact that bison are likely 'wildlife' reservoirs for E. coli O157, harboring these bacteria in their gastrointestinal tract. Our results also extend the utility of the RSE-cell assay, previously developed to elucidate E. coli O157-cattle RAJ interactions, to studies in bison, which are warranted to determine whether these observations in vitro correlate with those occurring in vivo at the RAJ within the bison gastrointestinal tract.

  1. Escherichia coli O157:H7 in Ecuador: animal reservoirs, yet no human disease.

    PubMed

    Trueba, Gabriel; Garcés, Verónica; V, Verónica Barragan; Colman, Rebecca E; Seymour, Meagan; Vogler, Amy J; Keim, Paul

    2013-05-01

    Escherichia coli O157:H7 is frequently isolated from cases of diarrhea in many industrialized countries; however, it is seldom found in developing countries. The present manuscript reports the presence of E. coli O157:H7 in Ecuadorian livestock, a country where enterohemorrhagic E. coli disease in humans has never been reported. The Ecuadorian isolates were genetically related to some strains linked to clinical cases in the United States as assessed by multiple-locus variable number tandem repeat (VNTR) analysis.

  2. Escherichia coli O157:H7 infections associated with consumption of locally grown strawberries contaminated by deer.

    PubMed

    Laidler, Matthew R; Tourdjman, Mathieu; Buser, Genevieve L; Hostetler, Trevor; Repp, Kimberly K; Leman, Richard; Samadpour, Mansour; Keene, William E

    2013-10-01

    An outbreak of Escherichia coli O157:H7 was identified in Oregon through an increase in Shiga toxin-producing E. coli cases with an indistinguishable, novel pulsed-field gel electrophoresis (PFGE) subtyping pattern. We defined confirmed cases as persons from whom E. coli O157:H7 with the outbreak PFGE pattern was cultured during July-August 2011, and presumptive cases as persons having a household relationship with a case testing positive for E. coli O157:H7 and coincident diarrheal illness. We conducted an investigation that included structured hypothesis-generating interviews, a matched case-control study, and environmental and traceback investigations. We identified 15 cases. Six cases were hospitalized, including 4 with hemolytic uremic syndrome (HUS). Two cases with HUS died. Illness was significantly associated with strawberry consumption from roadside stands or farmers' markets (matched odds ratio, 19.6; 95% confidence interval, 2.9-∞). A single farm was identified as the source of contaminated strawberries. Ten of 111 (9%) initial environmental samples from farm A were positive for E. coli O157:H7. All samples testing positive for E. coli O157:H7 contained deer feces, and 5 tested farm fields had ≥ 1 sample positive with the outbreak PFGE pattern. The investigation identified fresh strawberries as a novel vehicle for E. coli O157:H7 infection, implicated deer feces as the source of contamination, and highlights problems concerning produce contamination by wildlife and regulatory exemptions for locally grown produce. A comprehensive hypothesis-generating questionnaire enabled rapid identification of the implicated product. Good agricultural practices are key barriers to wildlife fecal contamination of produce.

  3. Prevalence and Genomic Characterization of Escherichia coli O157:H7 in Cow-Calf Herds throughout California.

    PubMed

    Worley, Jay N; Flores, Kristopher A; Yang, Xun; Chase, Jennifer A; Cao, Guojie; Tang, Shuai; Meng, Jianghong; Atwill, Edward R

    2017-08-15

    Escherichia coli serotype O157:H7 is a zoonotic food- and waterborne bacterial pathogen that causes a high hospitalization rate and can cause life-threatening complications. Increasingly, E. coli O157:H7 infections appear to originate from fresh produce. Ruminants, such as cattle, are a prominent reservoir of E. coli O157:H7 in the United States. California is one of the most agriculturally productive regions in the world for fresh produce, beef, and milk. The close proximity of fresh produce and cattle presents food safety challenges on a uniquely large scale. We performed a survey of E. coli O157:H7 on 20 farms in California to observe the regional diversity and prevalence of E. coli O157:H7. Isolates were obtained from enrichment cultures of cow feces. Some farms were sampled on two dates. Genomes from isolates were sequenced to determine their relatedness and pathogenic potential. E. coli O157:H7 was isolated from approximately half of the farms. The point prevalence of E. coli O157:H7 on farms was highly variable, ranging from zero to nearly 90%. Within farms, generally one or a few lineages were found, even when the rate of isolation was high. On farms with high isolation rates, a single clonal lineage accounted for most of the isolates. Farms that were visited months after the first visit might have had the same lineages of E. coli O157:H7. Strains of E. coli O157:H7 may be persistent for months on farms. IMPORTANCE This survey of 20 cow-calf operations from different regions of California provides an in depth look at resident Escherichia coli O157:H7 populations at the molecular level. E. coli O157:H7 is found to have a highly variable prevalence, and with whole-genome sequencing, high prevalences in herds were found to be due to a single lineage shed from multiple cows. Few repeat lineages were found between farms in this area; therefore, we predict that E. coli O157:H7 has significant diversity in this area beyond what is detected in this survey. All

  4. Regulation of Biofilm Formation in Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 encodes a variety of genetic factors for adherence to epithelial cells and to abiotic surfaces. While adherence to epithelial cells culminates in the formation of characteristic attaching and effacing (A/E) lesions, adherence to abiotic surfaces represents a prelude to the f...

  5. Detection and Prevalence of Verotoxin-Producing Escherichia coli O157 and Non-O157 Serotypes in a Canadian Watershed

    PubMed Central

    Johnson, R. P.; Holtslander, B.; Mazzocco, A.; Roche, S.; Thomas, J. L.; Pollari, F.

    2014-01-01

    Verotoxin-producing Escherichia coli (VTEC) strains are the cause of food-borne and waterborne illnesses around the world. Traditionally, surveillance of the human population as well as the environment has focused on the detection of E. coli O157:H7. Recently, increasing recognition of non-O157 VTEC strains as human pathogens and the German O104:H4 food-borne outbreak have illustrated the importance of considering the broader group of VTEC organisms from a public health perspective. This study presents the results of a comparison of three methods for the detection of VTEC in surface water, highlighting the efficacy of a direct VT immunoblotting method without broth enrichment for detection and isolation of O157 and non-O157 VTEC strains. The direct immunoblot method eliminates the need for an enrichment step or the use of immunomagnetic separation. This method was developed after 4 years of detecting low frequencies (1%) of E. coli O157:H7 in surface water in a Canadian watershed, situated within one of the FoodNet Canada integrated surveillance sites. By the direct immunoblot method, VTEC prevalence estimates ranged from 11 to 35% for this watershed, and E. coli O157:H7 prevalence increased to 4% (due to improved method sensitivity). This direct testing method provides an efficient means to enhance our understanding of the prevalence and types of VTEC in the environment. This study employed a rapid evidence assessment (REA) approach to frame the watershed findings with watershed E. coli O157:H7 prevalences reported in the literature since 1990 and the knowledge gap with respect to VTEC detection in surface waters. PMID:24487525

  6. Utilization of evolutionary model, bioinformatics and heuristics for development of a multiplex Escherichia coli O157:H7 PCR assay

    USDA-ARS?s Scientific Manuscript database

    Introduction: Escherichia coli O157:H7 is a devastating foodborne pathogen causing many foodborne outbreaks worldwide with significant morbidity and mortality. The plasticity of the E. coli O157:H7 genome, inconsistent expression of surface antigens, and sharing of genetic elements with other non-...

  7. Hha Represses Biofilm Formation in Escherichia coli O157:H7 by Affecting the Expression of Flagella and Curli Fimbriae

    USDA-ARS?s Scientific Manuscript database

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a zoonotic pathogen that produces a broad-spectrum of diarrheal illnesses in infected humans. Although the genetic and molecular mechanisms enabling EHEC O157:H7 to produce characteristic adherence on epithelial cells are well characterized, the g...

  8. Longitudinal Study of Escherichia coli O157:H7 Dissemination on Four Dairy Farms in Wisconsin

    PubMed Central

    Shere, J. A.; Bartlett, K. J.; Kaspar, C. W.

    1998-01-01

    A 14-month longitudinal study was conducted on four dairy farms (C, H, R, and X) in Wisconsin to ascertain the source(s) and dissemination of Escherichia coli O157:H7. A cohort of 15 heifer calves from each farm were sampled weekly by digital rectal retrieval from birth to a minimum of 7 months of age (range, 7 to 13 months). Over the 14 months of the study, the cohort heifers and other randomly selected cattle from farms C and H tested negative. Farm R had two separate periods of E. coli O157:H7 shedding lasting 4 months (November 1995 to February 1996) and 1 month (July to August 1996), while farm X had at least one positive cohort animal for a 5-month period (May to October 1996). Heifers shed O157:H7 strains in feces for 1 to 16 weeks at levels ranging from 2.0 × 102 to 8.7 × 104 CFU per g. E. coli O157:H7 was also isolated from other noncohort cattle, feed, flies, a pigeon, and water associated with the cohort heifers on farms R and/or X. When present in animal drinking water, E. coli O157:H7 disseminated through the cohort cattle and other cattle that used the water source. E. coli O157:H7 was found in water at <1 to 23 CFU/ml. Genomic subtyping by pulsed-field gel electrophoresis demonstrated that a single O157:H7 strain comprised a majority of the isolates from cohort and noncohort cattle, water, and other positive samples (i.e., from feed, flies, and a pigeon, etc.) on a farm. The isolates from farm R displayed two predominant XbaI restriction endonuclease digestion profiles (REDP), REDP 3 and REDP 7, during the first and second periods of shedding, respectively. Six additional REDP that were ≥89% similar to REDP 3 or REDP 7 were identified among the farm R isolates. Additionally, the REDP of an O157:H7 isolate from a heifer on farm R in 1994 was indistinguishable from REDP 3. Farm X had one O157:H7 strain that predominated (96% of positive samples had strains with REDP 9), and the REDP of an isolate from a heifer in 1994 was indistinguishable from

  9. Longitudinal study of Escherichia coli O157:H7 dissemination on four dairy farms in Wisconsin.

    PubMed

    Shere, J A; Bartlett, K J; Kaspar, C W

    1998-04-01

    A 14-month longitudinal study was conducted on four dairy farms (C, H, R, and X) in Wisconsin to ascertain the source(s) and dissemination of Escherichia coli O157:H7. A cohort of 15 heifer calves from each farm were sampled weekly by digital rectal retrieval from birth to a minimum of 7 months of age (range, 7 to 13 months). Over the 14 months of the study, the cohort heifers and other randomly selected cattle from farms C and H tested negative. Farm R had two separate periods of E. coli O157:H7 shedding lasting 4 months (November 1995 to February 1996) and 1 month (July to August 1996), while farm X had at least one positive cohort animal for a 5-month period (May to October 1996). Heifers shed O157:H7 strains in feces for 1 to 16 weeks at levels ranging from 2.0 x 10(2) to 8.7 x 10(4) CFU per g. E. coli O157:H7 was also isolated from other noncohort cattle, feed, flies, a pigeon, and water associated with the cohort heifers on farms R and/or X. When present in animal drinking water, E. coli O157:H7 disseminated through the cohort cattle and other cattle that used the water source. E. coli O157:H7 was found in water at < 1 to 23 CFU/ml. Genomic subtyping by pulsed-field gel electrophoresis demonstrated that a single O157:H7 strain comprised a majority of the isolates from cohort and noncohort cattle, water, and other positive samples (i.e., from feed, flies, and a pigeon, etc.) on a farm. The isolates from farm R displayed two predominant XbaI restriction endonuclease digestion profiles (REDP), REDP 3 and REDP 7, during the first and second periods of shedding, respectively. Six additional REDP that were > or = 89% similar to REDP 3 or REDP 7 were identified among the farm R isolates. Additionally, the REDP of an O157:H7 isolate from a heifer on farm R in 1994 was indistinguishable from REDP 3. Farm X had one O157:H7 strain that predominated (96% of positive samples had strains with REDP 9), and the REDP of an isolate from a heifer in 1994 was indistinguishable

  10. Topological data analysis of Escherichia coli O157:H7 and non-O157 survival in soils

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin-producing E. coli O157:H7 and non-O157 have been implicated in many foodborne illnesses caused by the consumption of contaminated fresh produce. However, data on their persistence in major fresh produce-growing soils are limited due to the complexity in datasets generated from different ...

  11. Bison and bovine rectoanal junctions exhibit similar cellular architecture and Escherichia coli O157 adherence patterns

    PubMed Central

    2013-01-01

    Background Escherichia coli O157 (E. coli O157) has been isolated from bison retail meat, a fact that is important given that bison meat has been implicated in an E. coli O157-multistate outbreak. In addition, E. coli O157 has also been isolated from bison feces at slaughter and on farms. Cattle are well documented as E. coli O157 reservoirs, and the primary site of E. coli O157 persistence in such reservoirs is the rectoanal junction (RAJ), located at the distal end of the bovine gastrointestinal tract. Since bison and cattle share many genetic similarities manifested as common lineage, susceptibility to infection and the nature of immune responses to infectious agents, we decided to evaluate whether the RAJ of these animals were comparable both in terms of cellular architecture and as sites for adherence of E. coli O157. Specifically, we compared the histo-morphologies of the RAJ and evaluated the E. coli O157 adherence characteristics to the RAJ squamous epithelial (RSE) cells, from these two species. Results We found that the RAJ of both bison and cattle demonstrated similar distribution of epithelial cell markers villin, vimentin, cytokeratin, E-cadherin and N-cadherin. Interestingly, N-cadherin predominated in the stratified squamous epithelium reflecting its proliferative nature. E. coli O157 strains 86–24 SmR and EDL 933 adhered to RSE cells from both animals with similar diffuse and aggregative patterns, respectively. Conclusion Our observations further support the fact that bison are likely ‘wildlife’ reservoirs for E. coli O157, harboring these bacteria in their gastrointestinal tract. Our results also extend the utility of the RSE-cell assay, previously developed to elucidate E. coli O157-cattle RAJ interactions, to studies in bison, which are warranted to determine whether these observations in vitro correlate with those occurring in vivo at the RAJ within the bison gastrointestinal tract. PMID:24373611

  12. Escherichia coli O157:H7 and rectoanal junction cell interactome

    USDA-ARS?s Scientific Manuscript database

    Introduction. Cattle are the primary E. coli O157 (O157) reservoir and principal source of human infection. The anatomical site of O157 persistence is the bovine recto-anal (RAJ) junction; hence, an in-depth understanding of O157-RAJ interactions will help develop novel modalities to limit O157 in c...

  13. Transcriptomic analysis for genetic mechanisms of the factors related to biofilm formation in Escherichia coli O157:H7.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Wood, Thomas K; Lee, Jintae

    2011-04-01

    Two lineages of enterohemorrhagic Escherichia coli O157:H7 (EDL933, Stx1(+) and Stx2(+)) and 86-24 (Stx2(+)) were investigated to determine the genetic basis of biofilm formation on abiotic surfaces. Strain EDL933 formed a robust biofilm while strain 86-24 formed almost no biofilm on either polystyrene plates or polyethylene tubes. Whole-transcriptome profiles of EDL933 versus 86-24 revealed that in the strong biofilm-forming strain, genes involved in curli biosynthesis and cellulose production were significantly induced, whereas genes involved in indole signaling were most repressed. Additionally, 49 phage genes were highly induced and repressed between the two strains. Curli assays using Congo red plates and scanning electron microscopy corroborated the microarray data as the EDL933 strain produced a large amount of curli, while strain 86-24 formed much less curli. Moreover, EDL933 produced 19-fold more cellulose than 86-24, and indole production in EDL933 was two times lower than that of the strain 86-24. Therefore, it appears E. coli O157:H7 EDL933 produces more biofilm because of its increased curli and cellulose production and reduced indole production.

  14. Assessing the genetic architecture of epithelial ovarian cancer histological subtypes.

    PubMed

    Cuellar-Partida, Gabriel; Lu, Yi; Dixon, Suzanne C; Fasching, Peter A; Hein, Alexander; Burghaus, Stefanie; Beckmann, Matthias W; Lambrechts, Diether; Van Nieuwenhuysen, Els; Vergote, Ignace; Vanderstichele, Adriaan; Doherty, Jennifer Anne; Rossing, Mary Anne; Chang-Claude, Jenny; Rudolph, Anja; Wang-Gohrke, Shan; Goodman, Marc T; Bogdanova, Natalia; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo B; Antonenkova, Natalia; Butzow, Ralf; Leminen, Arto; Nevanlinna, Heli; Pelttari, Liisa M; Edwards, Robert P; Kelley, Joseph L; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Cannioto, Rikki; Høgdall, Estrid; Høgdall, Claus; Jensen, Allan; Giles, Graham G; Bruinsma, Fiona; Kjaer, Susanne K; Hildebrandt, Michelle A T; Liang, Dong; Lu, Karen H; Wu, Xifeng; Bisogna, Maria; Dao, Fanny; Levine, Douglas A; Cramer, Daniel W; Terry, Kathryn L; Tworoger, Shelley S; Stampfer, Meir; Missmer, Stacey; Bjorge, Line; Salvesen, Helga B; Kopperud, Reidun K; Bischof, Katharina; Aben, Katja K H; Kiemeney, Lambertus A; Massuger, Leon F A G; Brooks-Wilson, Angela; Olson, Sara H; McGuire, Valerie; Rothstein, Joseph H; Sieh, Weiva; Whittemore, Alice S; Cook, Linda S; Le, Nhu D; Blake Gilks, C; Gronwald, Jacek; Jakubowska, Anna; Lubiński, Jan; Kluz, Tomasz; Song, Honglin; Tyrer, Jonathan P; Wentzensen, Nicolas; Brinton, Louise; Trabert, Britton; Lissowska, Jolanta; McLaughlin, John R; Narod, Steven A; Phelan, Catherine; Anton-Culver, Hoda; Ziogas, Argyrios; Eccles, Diana; Campbell, Ian; Gayther, Simon A; Gentry-Maharaj, Aleksandra; Menon, Usha; Ramus, Susan J; Wu, Anna H; Dansonka-Mieszkowska, Agnieszka; Kupryjanczyk, Jolanta; Timorek, Agnieszka; Szafron, Lukasz; Cunningham, Julie M; Fridley, Brooke L; Winham, Stacey J; Bandera, Elisa V; Poole, Elizabeth M; Morgan, Terry K; Goode, Ellen L; Schildkraut, Joellen M; Pearce, Celeste L; Berchuck, Andrew; Pharoah, Paul D P; Webb, Penelope M; Chenevix-Trench, Georgia; Risch, Harvey A; MacGregor, Stuart

    2016-07-01

    Epithelial ovarian cancer (EOC) is one of the deadliest common cancers. The five most common types of disease are high-grade and low-grade serous, endometrioid, mucinous and clear cell carcinoma. Each of these subtypes present distinct molecular pathogeneses and sensitivities to treatments. Recent studies show that certain genetic variants confer susceptibility to all subtypes while other variants are subtype-specific. Here, we perform an extensive analysis of the genetic architecture of EOC subtypes. To this end, we used data of 10,014 invasive EOC patients and 21,233 controls from the Ovarian Cancer Association Consortium genotyped in the iCOGS array (211,155 SNPs). We estimate the array heritability (attributable to variants tagged on arrays) of each subtype and their genetic correlations. We also look for genetic overlaps with factors such as obesity, smoking behaviors, diabetes, age at menarche and height. We estimated the array heritabilities of high-grade serous disease ([Formula: see text] = 8.8 ± 1.1 %), endometrioid ([Formula: see text] = 3.2 ± 1.6 %), clear cell ([Formula: see text] = 6.7 ± 3.3 %) and all EOC ([Formula: see text] = 5.6 ± 0.6 %). Known associated loci contributed approximately 40 % of the total array heritability for each subtype. The contribution of each chromosome to the total heritability was not proportional to chromosome size. Through bivariate and cross-trait LD score regression, we found evidence of shared genetic backgrounds between the three high-grade subtypes: serous, endometrioid and undifferentiated. Finally, we found significant genetic correlations of all EOC with diabetes and obesity using a polygenic prediction approach.

  15. A mixture of Lactobacillus casei, Lactobacillus lactis, and Paenibacillus polymyxa reduces Escherichia coli O157:H7 in finishing feedlot cattle.

    PubMed

    Stanford, Kim; Bach, Susan; Baah, John; McAllister, Tim

    2014-05-01

    A direct-fed microbial (DFM) containing Paenibacillus polymyxa, Lactobacillus casei, and Lactobacillus lactis was fed to cattle (n = 120) to determine impacts on shedding and survival of Escherichia coli O157:H7 in feces. Cattle were individually penned and fed diets containing 0 (control), 4 × 10(7) CFU (DFM-4), 8 × 10(7) CFU (DFM-8), or 1.2 × 10(8) CFU (DFM-12) lactobacilli per kg of dietary dry matter over 84-day fall-winter growing and 140-day spring-summer finishing periods. Fecal grab samples were collected from cattle at 28-day intervals, E. coli O157:H7 was detected by immunomagnetic separation, and isolates were compared by pulsed-field gel electrophoresis. During the growing period, feces negative for E. coli O157 from each dietary treatment were inoculated with 10(5) CFU/g nalidixic acid-resistant E. coli O157:H7 and were incubated at 4 and 22(u) C for 11 weeks. Fecal pH and fecal dry matter were measured on days 0, 1, 3, and 7 and weekly thereafter, with E. coli O157:H7 enumerated through dilution plating. Treatment with DFMs did not affect survival of E. coli O157:H7 in feces or fecal pH (P > 0.05). Only one steer was positive for E. coli O157:H7 during the growing period, but during the finishing period, DFM-8 and DFM-12 reduced the prevalence of E. coli O157:H7 in feces (P < 0.05). Feeding DFMs also reduced the frequency of individual steers shedding E. coli O157:H7 during finishing (P < 0.05), with control steers shedding E. coli O157:H7 up to four times, whereas DFM-12 steers shed E. coli O157:H7 a maximum of twice. Treatment with DFMs influenced pulsed-field gel electrophoresis profiles; steers that were fed DFM-8 and DFM-12 shed more diverse subtypes of E. coli O157:H7 than did control or DFM-4 steers. Because a companion study found linear improvement in performance with increasing dosage of DFMs in the first 28 days of the growing period, targeted use of DFM-12 during this time and for the final 1 or 2 weeks prior to slaughter may optimize

  16. Utility of Whole-Genome Sequencing of Escherichia coli O157 for Outbreak Detection and Epidemiological Surveillance.

    PubMed

    Holmes, Anne; Allison, Lesley; Ward, Melissa; Dallman, Timothy J; Clark, Richard; Fawkes, Angie; Murphy, Lee; Hanson, Mary

    2015-11-01

    Detailed laboratory characterization of Escherichia coli O157 is essential to inform epidemiological investigations. This study assessed the utility of whole-genome sequencing (WGS) for outbreak detection and epidemiological surveillance of E. coli O157, and the data were used to identify discernible associations between genotypes and clinical outcomes. One hundred five E. coli O157 strains isolated over a 5-year period from human fecal samples in Lothian, Scotland, were sequenced with the Ion Torrent Personal Genome Machine. A total of 8,721 variable sites in the core genome were identified among the 105 isolates; 47% of the single nucleotide polymorphisms (SNPs) were attributable to six "atypical" E. coli O157 strains and included recombinant regions. Phylogenetic analyses showed that WGS correlated well with the epidemiological data. Epidemiological links existed between cases whose isolates differed by three or fewer SNPs. WGS also correlated well with multilocus variable-number tandem repeat analysis (MLVA) typing data, with only three discordant results observed, all among isolates from cases not known to be epidemiologically related. WGS produced a better-supported, higher-resolution phylogeny than MLVA, confirming that the method is more suitable for epidemiological surveillance of E. coli O157. A combination of in silico analyses (VirulenceFinder, ResFinder, and local BLAST searches) were used to determine stx subtypes, multilocus sequence types (15 loci), and the presence of virulence and acquired antimicrobial resistance genes. There was a high level of correlation between the WGS data and our routine typing methods, although some discordant results were observed, mostly related to the limitation of short sequence read assembly. The data were used to identify sublineages and clades of E. coli O157, and when they were correlated with the clinical outcome data, they showed that one clade, Ic3, was significantly associated with severe disease. Together, the

  17. Utility of Whole-Genome Sequencing of Escherichia coli O157 for Outbreak Detection and Epidemiological Surveillance

    PubMed Central

    Allison, Lesley; Ward, Melissa; Dallman, Timothy J.; Clark, Richard; Fawkes, Angie; Murphy, Lee; Hanson, Mary

    2015-01-01

    Detailed laboratory characterization of Escherichia coli O157 is essential to inform epidemiological investigations. This study assessed the utility of whole-genome sequencing (WGS) for outbreak detection and epidemiological surveillance of E. coli O157, and the data were used to identify discernible associations between genotypes and clinical outcomes. One hundred five E. coli O157 strains isolated over a 5-year period from human fecal samples in Lothian, Scotland, were sequenced with the Ion Torrent Personal Genome Machine. A total of 8,721 variable sites in the core genome were identified among the 105 isolates; 47% of the single nucleotide polymorphisms (SNPs) were attributable to six “atypical” E. coli O157 strains and included recombinant regions. Phylogenetic analyses showed that WGS correlated well with the epidemiological data. Epidemiological links existed between cases whose isolates differed by three or fewer SNPs. WGS also correlated well with multilocus variable-number tandem repeat analysis (MLVA) typing data, with only three discordant results observed, all among isolates from cases not known to be epidemiologically related. WGS produced a better-supported, higher-resolution phylogeny than MLVA, confirming that the method is more suitable for epidemiological surveillance of E. coli O157. A combination of in silico analyses (VirulenceFinder, ResFinder, and local BLAST searches) were used to determine stx subtypes, multilocus sequence types (15 loci), and the presence of virulence and acquired antimicrobial resistance genes. There was a high level of correlation between the WGS data and our routine typing methods, although some discordant results were observed, mostly related to the limitation of short sequence read assembly. The data were used to identify sublineages and clades of E. coli O157, and when they were correlated with the clinical outcome data, they showed that one clade, Ic3, was significantly associated with severe disease. Together

  18. [Survival of VTEC O157 and non-O157 in water troughs and bovine feces].

    PubMed

    Polifroni, Rosana; Etcheverría, Analía I; Arroyo, Guillermo H; Padola, Nora L

    2014-01-01

    Verotoxin-producing Escherichia coli (VTEC) is the etiologic agent of hemolytic-uremic syndrome (HUS), which typically affects children ranging in age from six months to five years old. Transmission is produced by consumption of contaminated food, by direct contact with animals or the environment and from person to person. In previous studies we determined that the environment of a dairy farm is a non-animal reservoir; thus, we proposed to study the survival of 4 VTEC isolates (O20:H19; O91:H21; O157:H7 and O178:H19) in sterile water troughs and bovine feces by viable bacteria count and detection of virulence genes by PCR. It was demonstrated that the survival of different VTEC isolates (O157 and non-O157) varied in terms of their own characteristics as well as of the environmental conditions where they were found. The main differences between isolates were their survival time and the maximal counts reached. The competitive and adaptive characteristics of some isolates increase the infection risk for people that are visiting or working on a farm, as well as the risk for reinfection of the animals and food contamination. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  19. In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence.

    PubMed

    Laing, Chad R; Buchanan, Cody; Taboada, Eduardo N; Zhang, Yongxiang; Karmali, Mohamed A; Thomas, James E; Gannon, Victor Pj

    2009-06-29

    Many approaches have been used to study the evolution, population structure and genetic diversity of Escherichia coli O157:H7; however, observations made with different genotyping systems are not easily relatable to each other. Three genetic lineages of E. coli O157:H7 designated I, II and I/II have been identified using octamer-based genome scanning and microarray comparative genomic hybridization (mCGH). Each lineage contains significant phenotypic differences, with lineage I strains being the most commonly associated with human infections. Similarly, a clade of hyper-virulent O157:H7 strains implicated in the 2006 spinach and lettuce outbreaks has been defined using single-nucleotide polymorphism (SNP) typing. In this study an in silico comparison of six different genotyping approaches was performed on 19 E. coli genome sequences from 17 O157:H7 strains and single O145:NM and K12 MG1655 strains to provide an overall picture of diversity of the E. coli O157:H7 population, and to compare genotyping methods for O157:H7 strains. In silico determination of lineage, Shiga-toxin bacteriophage integration site, comparative genomic fingerprint, mCGH profile, novel region distribution profile, SNP type and multi-locus variable number tandem repeat analysis type was performed and a supernetwork based on the combination of these methods was produced. This supernetwork showed three distinct clusters of strains that were O157:H7 lineage-specific, with the SNP-based hyper-virulent clade 8 synonymous with O157:H7 lineage I/II. Lineage I/II/clade 8 strains clustered closest on the supernetwork to E. coli K12 and E. coli O55:H7, O145:NM and sorbitol-fermenting O157 strains. The results of this study highlight the similarities in relationships derived from multi-locus genome sampling methods and suggest a "common genotyping language" may be devised for population genetics and epidemiological studies. Future genotyping methods should provide data that can be stored centrally and

  20. Molecular characterization of Verocytotoxigenic Escherichia coli O157:H7 isolates from Argentina by Multiple-Loci VNTR Analysis (MLVA)

    PubMed Central

    Bustamante, Ana V.; Lucchesi, Paula M.A.; Parma, Alberto E.

    2009-01-01

    The aim of this work was to adapt described MLVA protocols to the molecular typing and characterization of VTEC O157:H7 isolates from Argentina. Nine VNTR loci were amplified by PCR showing diversity values from 0.49 to 0.73. Nine MLVA profiles were observed and the cluster analysis indicated both unrelated and closely related VTEC O157:H7 strains. In spite of the limited number of isolates studied, the panel of VNTR used made it possible to perform a first approach of the high genetic diversity of native strains of O157:H7 by MLVA. PMID:24031443

  1. Molecular characterization of Verocytotoxigenic Escherichia coli O157:H7 isolates from Argentina by Multiple-Loci VNTR Analysis (MLVA).

    PubMed

    Bustamante, Ana V; Lucchesi, Paula M A; Parma, Alberto E

    2009-10-01

    The aim of this work was to adapt described MLVA protocols to the molecular typing and characterization of VTEC O157:H7 isolates from Argentina. Nine VNTR loci were amplified by PCR showing diversity values from 0.49 to 0.73. Nine MLVA profiles were observed and the cluster analysis indicated both unrelated and closely related VTEC O157:H7 strains. In spite of the limited number of isolates studied, the panel of VNTR used made it possible to perform a first approach of the high genetic diversity of native strains of O157:H7 by MLVA.

  2. Comparative Genomic Analysis of Escherichia coli O157:H7 Isolated from Super-Shedder and Low-Shedder Cattle

    PubMed Central

    Munns, Krysty D.; Zaheer, Rahat; Xu, Yong; Stanford, Kim; Laing, Chad R.; Gannon, Victor P. J.; Selinger, L. Brent; McAllister, Tim A.

    2016-01-01

    Cattle are the primary reservoir of the foodborne pathogen Escherichia coli O157:H7, with the concentration and frequency of E. coli O157:H7 shedding varying substantially among individual hosts. The term ‘‘super-shedder” has been applied to cattle that shed ≥104 cfu E. coli O157:H7/g of feces. Super-shedders have been reported to be responsible for the majority of E. coli O157:H7 shed into the environment. The objective of this study was to determine if there are phenotypic and/or genotypic differences between E. coli O157:H7 isolates obtained from super-shedder compared to low-shedder cattle. From a total of 784 isolates, four were selected from low-shedder steers and six isolates from super-shedder steers (4.01–8.45 log cfu/g feces) for whole genome sequencing. Isolates were phage and clade typed, screened for substrate utilization, pH sensitivity, virulence gene profiles and Stx bacteriophage insertion (SBI) sites. A range of 89–2473 total single nucleotide polymorphisms (SNPs) were identified when sequenced strains were compared to E. coli O157:H7 strain Sakai. More non-synonymous SNP mutations were observed in low-shedder isolates. Pan-genomic and SNPs comparisons did not identify genetic segregation between super-shedder or low-shedder isolates. All super-shedder isolates and 3 of 4 of low-shedder isolates were typed as phage type 14a, SBI cluster 3 and SNP clade 2. Super-shedder isolates displayed increased utilization of galactitol, thymidine and 3-O-β-D-galactopyranosyl-D-arabinose when compared to low-shedder isolates, but no differences in SNPs were observed in genes encoding for proteins involved in the metabolism of these substrates. While genetic traits specific to super-shedder isolates were not identified in this study, differences in the level of gene expression or genes of unknown function may still contribute to some strains of E. coli O157:H7 reaching high densities within bovine feces. PMID:27018858

  3. Comparative Genomic Analysis of Escherichia coli O157:H7 Isolated from Super-Shedder and Low-Shedder Cattle.

    PubMed

    Munns, Krysty D; Zaheer, Rahat; Xu, Yong; Stanford, Kim; Laing, Chad R; Gannon, Victor P J; Selinger, L Brent; McAllister, Tim A

    2016-01-01

    Cattle are the primary reservoir of the foodborne pathogen Escherichia coli O157:H7, with the concentration and frequency of E. coli O157:H7 shedding varying substantially among individual hosts. The term ''super-shedder" has been applied to cattle that shed ≥10(4) cfu E. coli O157:H7/g of feces. Super-shedders have been reported to be responsible for the majority of E. coli O157:H7 shed into the environment. The objective of this study was to determine if there are phenotypic and/or genotypic differences between E. coli O157:H7 isolates obtained from super-shedder compared to low-shedder cattle. From a total of 784 isolates, four were selected from low-shedder steers and six isolates from super-shedder steers (4.01-8.45 log cfu/g feces) for whole genome sequencing. Isolates were phage and clade typed, screened for substrate utilization, pH sensitivity, virulence gene profiles and Stx bacteriophage insertion (SBI) sites. A range of 89-2473 total single nucleotide polymorphisms (SNPs) were identified when sequenced strains were compared to E. coli O157:H7 strain Sakai. More non-synonymous SNP mutations were observed in low-shedder isolates. Pan-genomic and SNPs comparisons did not identify genetic segregation between super-shedder or low-shedder isolates. All super-shedder isolates and 3 of 4 of low-shedder isolates were typed as phage type 14a, SBI cluster 3 and SNP clade 2. Super-shedder isolates displayed increased utilization of galactitol, thymidine and 3-O-β-D-galactopyranosyl-D-arabinose when compared to low-shedder isolates, but no differences in SNPs were observed in genes encoding for proteins involved in the metabolism of these substrates. While genetic traits specific to super-shedder isolates were not identified in this study, differences in the level of gene expression or genes of unknown function may still contribute to some strains of E. coli O157:H7 reaching high densities within bovine feces.

  4. Genetic overlap between diagnostic subtypes of ischemic stroke.

    PubMed

    Holliday, Elizabeth G; Traylor, Matthew; Malik, Rainer; Bevan, Steve; Falcone, Guido; Hopewell, Jemma C; Cheng, Yu-Ching; Cotlarciuc, Ioana; Bis, Joshua C; Boerwinkle, Eric; Boncoraglio, Giorgio B; Clarke, Robert; Cole, John W; Fornage, Myriam; Furie, Karen L; Ikram, M Arfan; Jannes, Jim; Kittner, Steven J; Lincz, Lisa F; Maguire, Jane M; Meschia, James F; Mosley, Thomas H; Nalls, Mike A; Oldmeadow, Christopher; Parati, Eugenio A; Psaty, Bruce M; Rothwell, Peter M; Seshadri, Sudha; Scott, Rodney J; Sharma, Pankaj; Sudlow, Cathie; Wiggins, Kerri L; Worrall, Bradford B; Rosand, Jonathan; Mitchell, Braxton D; Dichgans, Martin; Markus, Hugh S; Levi, Christopher; Attia, John; Wray, Naomi R

    2015-03-01

    Despite moderate heritability, the phenotypic heterogeneity of ischemic stroke has hampered gene discovery, motivating analyses of diagnostic subtypes with reduced sample sizes. We assessed evidence for a shared genetic basis among the 3 major subtypes: large artery atherosclerosis (LAA), cardioembolism, and small vessel disease (SVD), to inform potential cross-subtype analyses. Analyses used genome-wide summary data for 12 389 ischemic stroke cases (including 2167 LAA, 2405 cardioembolism, and 1854 SVD) and 62 004 controls from the Metastroke consortium. For 4561 cases and 7094 controls, individual-level genotype data were also available. Genetic correlations between subtypes were estimated using linear mixed models and polygenic profile scores. Meta-analysis of a combined LAA-SVD phenotype (4021 cases and 51 976 controls) was performed to identify shared risk alleles. High genetic correlation was identified between LAA and SVD using linear mixed models (rg=0.96, SE=0.47, P=9×10(-4)) and profile scores (rg=0.72; 95% confidence interval, 0.52-0.93). Between LAA and cardioembolism and SVD and cardioembolism, correlation was moderate using linear mixed models but not significantly different from zero for profile scoring. Joint meta-analysis of LAA and SVD identified strong association (P=1×10(-7)) for single nucleotide polymorphisms near the opioid receptor μ1 (OPRM1) gene. Our results suggest that LAA and SVD, which have been hitherto treated as genetically distinct, may share a substantial genetic component. Combined analyses of LAA and SVD may increase power to identify small-effect alleles influencing shared pathophysiological processes. © 2015 American Heart Association, Inc.

  5. Genetic diversity and antimicrobial resistance among isolates of Escherichia coli O157: H7 from feces and hides of super-shedders and low-shedding pen-mates in two commercial beef feedlots

    PubMed Central

    2012-01-01

    resistant to multiple antimicrobials. Conclusions Super-shedders did not have increased antimicrobial resistance compared to low-shedder pen mates. Our data demonstrated that PFGE profiles of individual super-shedders varied over time and that only 1/162 steers remained a super-shedder at 2 samplings. In these two commercial feedlots, PFGE subtypes of E. coli O157:H7 from fecal isolates of super- and low-shedders were frequently different as were subtypes of fecal and perineal hide isolates from super-shedders. PMID:23014060

  6. Genetic recombination and Cryptosporidium hominis virulent subtype IbA10G2.

    PubMed

    Li, Na; Xiao, Lihua; Cama, Vitaliano A; Ortega, Ynes; Gilman, Robert H; Guo, Meijin; Feng, Yaoyu

    2013-10-01

    Little is known about the emergence and spread of virulent subtypes of Cryptosporidium hominis, the predominant species responsible for human cryptosporidiosis. We conducted sequence analyses of 32 genetic loci of 53 C. hominis specimens isolated from a longitudinally followed cohort of children living in a small community. We identified by linkage disequilibrium and recombination analyses only limited genetic recombination, which occurred exclusively within the 60-kDa glycoprotein gene subtype IbA10G2, a predominant subtype for outbreaks in industrialized nations and a virulent subtype in the study community. Intensive transmission of virulent subtype IbA10G2 in the study area might have resulted in genetic recombination with other subtypes. Moreover, we identified selection for IbA10G2 at a 129-kb region around the 60-kDa glycoprotein gene in chromosome 6. These findings improve our understanding of the origin and evolution of C. hominis subtypes and the spread of virulent subtypes.

  7. Dynamic of mutational events in variable number tandem repeats of Escherichia coli O157:H7.

    PubMed

    Bustamante, A V; Sanso, A M; Segura, D O; Parma, A E; Lucchesi, P M A

    2013-01-01

    VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10(-05) to 1.8 × 10(-03) mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10(-03) mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study.

  8. Characteristics of Clusters of Salmonella and Escherichia coli O157 Detected by Pulsed-Field Gel Electrophoresis that Predict Identification of Outbreaks.

    PubMed

    Jones, Timothy F; Sashti, Nupur; Ingram, Amanda; Phan, Quyen; Booth, Hillary; Rounds, Joshua; Nicholson, Cyndy S; Cosgrove, Shaun; Crocker, Kia; Gould, L Hannah

    2016-12-01

    Molecular subtyping of pathogens is critical for foodborne disease outbreak detection and investigation. Many clusters initially identified by pulsed-field gel electrophoresis (PFGE) are not confirmed as point-source outbreaks. We evaluated characteristics of clusters that can help prioritize investigations to maximize effective use of limited resources. A multiagency collaboration (FoodNet) collected data on Salmonella and Escherichia coli O157 clusters for 3 years. Cluster size, timing, extent, and nature of epidemiologic investigations were analyzed to determine associations with whether the cluster was identified as a confirmed outbreak. During the 3-year study period, 948 PFGE clusters were identified; 849 (90%) were Salmonella and 99 (10%) were E. coli O157. Of those, 192 (20%) were ultimately identified as outbreaks (154 [18%] of Salmonella and 38 [38%] of E. coli O157 clusters). Successful investigation was significantly associated with larger cluster size, more rapid submission of isolates (e.g., for Salmonella, 6 days for outbreaks vs. 8 days for nonoutbreaks) and PFGE result reporting to investigators (16 days vs. 29 days, respectively), and performance of analytic studies (completed in 33% of Salmonella outbreaks vs. 1% of nonoutbreaks) and environmental investigations (40% and 1%, respectively). Intervals between first and second cases in a cluster did not differ significantly between outbreaks and nonoutbreaks. Molecular subtyping of pathogens is a rapidly advancing technology, and successfully identifying outbreaks will vary by pathogen and methods used. Understanding criteria for successfully investigating outbreaks is critical for efficiently using limited resources.

  9. Multistate Outbreak of Escherichia coli O157:H7 Infections Associated with Consumption of Fresh Spinach: United States, 2006.

    PubMed

    Sharapov, Umid M; Wendel, Arthur M; Davis, Jeffrey P; Keene, William E; Farrar, Jeffrey; Sodha, Samir; Hyytia-Trees, Eija; Leeper, Molly; Gerner-Smidt, Peter; Griffin, Patricia M; Braden, Chris

    2016-12-01

    During September to October, 2006, state and local health departments and the Centers for Disease Control and Prevention investigated a large, multistate outbreak of Escherichia coli O157:H7 infections. Case patients were interviewed regarding specific foods consumed and other possible exposures. E. coli O157:H7 strains isolated from human and food specimens were subtyped using pulsed-field gel electrophoresis and multiple-locus variable-number tandem repeat analyses (MLVA). Two hundred twenty-five cases (191 confirmed and 34 probable) were identified in 27 states; 116 (56%) case patients were hospitalized, 39 (19%) developed hemolytic uremic syndrome, and 5 (2%) died. Among 176 case patients from whom E. coli O157:H7 with the outbreak genotype (MLVA outbreak strain) was isolated and who provided details regarding spinach exposure, 161 (91%) reported fresh spinach consumption during the 10 days before illness began. Among 116 patients who provided spinach brand information, 106 (91%) consumed bagged brand A. E. coli O157:H7 strains were isolated from 13 bags of brand A spinach collected from patients' homes; isolates from 12 bags had the same MLVA pattern. Comprehensive epidemiologic and laboratory investigations associated this large multistate outbreak of E. coli O157:H7 infections with consumption of fresh bagged spinach. MLVA, as a supplement to pulsed-field gel electrophoresis genotyping of case patient isolates, was important to discern outbreak-related cases. This outbreak resulted in enhanced federal and industry guidance to improve the safety of leafy green vegetables and launched an independent collaborative approach to produce safety research in 2007.

  10. Isolation and characterization of Shiga toxin-producing Escherichia coli O157:H7 and non-O157 from beef carcasses at a slaughter plant in Mexico.

    PubMed

    Varela-Hernández, J J; Cabrera-Diaz, E; Cardona-López, M A; Ibarra-Velázquez, L M; Rangel-Villalobos, H; Castillo, A; Torres-Vitela, M R; Ramírez-Alvarez, A

    2007-01-25

    The contamination of beef carcasses with Shiga toxin-producing O157:H7 and non-O157 Escherichia coli (STEC) obtained from a slaughter plant in Guadalajara, Mexico was investigated. A total of 258 beef carcasses were sampled during a 12-month period. All samples were assayed for STEC by selective enrichment in modified tryptone soy broth supplemented with cefixime, cefsulodin and vancomycin, followed by plating on Sorbitol MacConkey Agar supplemented with cefixime and tellurite (CT-SMAC). Simultaneously, all samples were assayed by immunomagnetic separation (IMS) and plated on CT-SMAC and CHROMagar. The presence of the stx1, stx2, eaeA and hly933 genes, recognized as major virulence factors of STEC, was tested for O157:H7 and non-O157 E. coli isolates by multiplex polymerase chain reaction (PCR). STEC was detected in two (0.8%) samples. One of these STEC isolates corresponded to the serotype O157:H7 showing stx2, eaeA and hyl933 genes. The other isolate corresponded to non-O157 STEC and only had the stx1 gene. Thirteen carcasses (5%) were positive for nonmotile E. coli O157 and 7 (2.7%) were positive for E. coli O157:H7. The presence of O157:H7 and non-O157 STEC on beef carcasses in this slaughter plant in Guadalajara, Mexico, emphasizes the importance of implementing the Hazard Analysis and Critical Control Point (HACCP) system, as well as the need for implementing, evaluating, and validating antimicrobial interventions to reduce the presence of potential pathogenic microorganisms.

  11. Shiga Toxin 2 Subtypes of Enterohemorrhagic E. coli O157:H- E32511 Analyzed by RT-qPCR and Top-Down Proteomics Using MALDI-TOF-TOF-MS

    NASA Astrophysics Data System (ADS)

    Fagerquist, Clifton K.; Zaragoza, William J.

    2015-05-01

    We have measured the relative abundance of the B-subunits and mRNA transcripts of two Stx2 subtypes present in Shiga toxin-producing Escherichia coli (STEC) O157:H- strain E32511 using matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) with post source decay (PSD) and real time-quantitative polymerase chain reaction (RT-qPCR). Stx2a and Stx2c in STEC strain E32511 were quantified from the integrated peak area of their singly charged disulfide-intact B-subunit ions at m/z ~7819 and m/z ~7774, respectively. We found that the Stx2a subtype was 21-fold more abundant than the Stx2c subtype. The two amino acid substitutions (16D ↔ 16 N and 24D ↔ 24A) that distinguish Stx2a from Stx2c not only result in a mass difference of 45 Da between their respective B-subunits but also result in distinctly different fragmentation channels by MS/MS-PSD because both substitutions involve an aspartic acid (D) residue. Importantly, these two substitutions have also been linked to differences in subtype toxicity. We measured the relative abundances of mRNA transcripts using RT-qPCR and determined that the stx2a transcript is 13-fold more abundant than stx2c transcript. In silico secondary structure analysis of the full mRNA operons of stx2a and stx2c suggest that transcript structural differences may also contribute to a relative increase of Stx2a over Stx2c. In consequence, toxin expression may be under both transcriptional and post-transcriptional control.

  12. REPETITIVE SEQUENCE BASED-PCR PROFILING OF ESCHERICHIA COLI O157 STRAINS FROM BEEF IN SOUTHERN THAILAND.

    PubMed

    Sukhumungoon, Pharanai; Tantadapan, Rujira; Rattanachuay, Pattamarat

    2016-01-01

    Beef and its products are potential vehicles of Escherichia coli O157, the most important serotype implicated in many large outbreaks of diarrheal infection in humans worldwide. There is a need for rapid detection of contaminated food in order to implement appropriate and effective control measures. In this study, repetitive sequence (rep)-PCR, using three different primers, BOXA1R, ERIC2 and (GTG)5, singly and in combinations, were employed to compare the genetic relatedness among E. coli O157 group with other diarrheagenic E. coli strains as controls. Although a combination of BOXA1R + ERIC2 + (GTG)5 primers generated a rep-PCR profile containing the highest number of amplicon bands among the DEC strains tested, dendrogram (at 80% similarity) exhibited the lowest DEC classification of 5 clusters, whereas that from BOXA1R or BOXA1R+ (GTG)5 rep-PCR profiling produced 8 clusters. Nevertheless, focusing E. coli O157 strains were grouped into 4 clusters irrespective of the rep-PCR profiles analyzed, and all 14 but two, PSU60 and PSU132, E. coli O157 strains isolated from beef in southern Thailand during 2012 to 2014 fell into a single cluster. Thus, rep-PCR profiling generated with BOXA1R or BOXA1R + (GTG)5 is sufficient for distinguishing among DEC strains, including E. coli O157 in southern Thailand.

  13. Multiple-locus variable number of tandem repeat analysis (MLVA) of Irish verocytotoxigenic Escherichia coli O157 from feedlot cattle: uncovering strain dissemination routes.

    PubMed

    Murphy, Mary; Minihan, Donal; Buckley, James F; O'Mahony, Micheál; Whyte, Paul; Fanning, Séamus

    2008-01-24

    The identification of the routes of dissemination of Escherichia coli (E. coli) O157 through a cohort of cattle is a critical step to control this pathogen at farm level. The aim of this study was to identify potential routes of dissemination of E. coli O157 using Multiple-Locus Variable number of tandem repeat Analysis (MLVA). Thirty-eight environmental and sixteen cattle faecal isolates, which were detected in four adjacent pens over a four-month period were sub-typed. MLVA could separate these isolates into broadly defined clusters consisting of twelve MLVA types. Strain diversity was observed within pens, individual cattle and the environment. Application of MLVA is a broadly useful and convenient tool when applied to uncover the dissemination of E. coli O157 in the environment and in supporting improved on-farm management of this important pathogen. These data identified diverse strain types based on amplification of VNTR markers in each case.

  14. Dynamic of Mutational Events in Variable Number Tandem Repeats of Escherichia coli O157:H7

    PubMed Central

    Bustamante, A. V.; Sanso, A. M.; Segura, D. O.; Parma, A. E.; Lucchesi, P. M. A.

    2013-01-01

    VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10−05 to 1.8 × 10−03 mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10−03 mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study. PMID:24093095

  15. Inactivation of Salmonella, Escherichia coli O157:H7 and non-O157 STEC by hypochlorite solutions with high organic loads

    USDA-ARS?s Scientific Manuscript database

    Introduction: Salmonella, E. coli O157:H7 and Non-O157 STEC have been recognized as foodborne pathogen concerns for fresh produce. Although chlorinated water (CW) is widely used in fresh produce processing to reduce pathogens and prevent cross-contamination, limited information is available on effic...

  16. Antimicrobial resistance in Escherichia coli O157 and non-O157 isolated from feces of domestic farm animals in Culiacan, Mexico

    USDA-ARS?s Scientific Manuscript database

    Antimicrobial resistance in E. coli O157 and non-O157 strains is a matter of increasing concern, and the association with some virulence traits in the same bacteria remains unclear. Inappropriate antimicrobial use in human and animal therapy has been associated with selective pressure in enteric mi...

  17. Antimicrobial resistance in Escherichia coli O157 and non-O157 recovered from feces of domestic farm animals in Northwestern Mexico

    USDA-ARS?s Scientific Manuscript database

    Antimicrobial resistance in Shiga toxin-producing Escherichia coli (STEC) O157 and non-O157 is a matter of increasing concern. Inappropriate antimicrobial use in human and animal therapy has been associated with an acquired resistance in enteric microorganisms. The aim of the present study was to de...

  18. Shiga Toxin-Producing Escherichia coli O157 Shedding Dynamics in an Australian Beef Herd

    PubMed Central

    Ahlstrom, Christina; Muellner, Petra; Lammers, Geraldine; Jones, Meghan; Octavia, Sophie; Lan, Ruiting; Heller, Jane

    2017-01-01

    Shiga toxin-producing Escherichia coli (STEC) O157 is an important foodborne pathogen that can be transmitted to humans both directly and indirectly from the feces of beef cattle, its primary reservoir. Numerous studies have investigated the shedding dynamics of E. coli O157 by beef cattle; however, the spatiotemporal trends of shedding are still not well understood. Molecular tools can increase the resolution through the use of strain typing to explore transmission dynamics within and between herds and identify strain-specific characteristics that may influence pathogenicity and spread. Previously, the shedding dynamics and molecular diversity, through the use of multilocus variable number of tandem repeat analysis (MLVA) of STEC O157, were separately investigated in an Australian beef herd over a 9-month study period. Variation in shedding was observed over time, and 33 MLVA types were identified. The study presented here combines the two datasets previously published with an aim to clarify the relationship between epidemiological variables and strain types. Three major genetic clusters (GCs) were identified that were significantly associated with the location of the cattle in different paddocks. No significant association between GCs and individual cow was observed. Results from this molecular epidemiological study provide evidence for herd-level clonal replacement over time that may have been triggered by movement to a new paddock. In conclusion, this study has provided further insight into STEC O157 shedding dynamics and pathogen transmission. Knowledge gaps remain regarding the relationship of strain types and the shedding dynamics of STEC O157 by beef cattle that could be further clarified through the use of whole-genome sequencing. PMID:29230401

  19. Wide distribution of O157-antigen biosynthesis gene clusters in Escherichia coli.

    PubMed

    Iguchi, Atsushi; Shirai, Hiroki; Seto, Kazuko; Ooka, Tadasuke; Ogura, Yoshitoshi; Hayashi, Tetsuya; Osawa, Kayo; Osawa, Ro

    2011-01-01

    Most Escherichia coli O157-serogroup strains are classified as enterohemorrhagic E. coli (EHEC), which is known as an important food-borne pathogen for humans. They usually produce Shiga toxin (Stx) 1 and/or Stx2, and express H7-flagella antigen (or nonmotile). However, O157 strains that do not produce Stxs and express H antigens different from H7 are sometimes isolated from clinical and other sources. Multilocus sequence analysis revealed that these 21 O157:non-H7 strains tested in this study belong to multiple evolutionary lineages different from that of EHEC O157:H7 strains, suggesting a wide distribution of the gene set encoding the O157-antigen biosynthesis in multiple lineages. To gain insight into the gene organization and the sequence similarity of the O157-antigen biosynthesis gene clusters, we conducted genomic comparisons of the chromosomal regions (about 59 kb in each strain) covering the O-antigen gene cluster and its flanking regions between six O157:H7/non-H7 strains. Gene organization of the O157-antigen gene cluster was identical among O157:H7/non-H7 strains, but was divided into two distinct types at the nucleotide sequence level. Interestingly, distribution of the two types did not clearly follow the evolutionary lineages of the strains, suggesting that horizontal gene transfer of both types of O157-antigen gene clusters has occurred independently among E. coli strains. Additionally, detailed sequence comparison revealed that some positions of the repetitive extragenic palindromic (REP) sequences in the regions flanking the O-antigen gene clusters were coincident with possible recombination points. From these results, we conclude that the horizontal transfer of the O157-antigen gene clusters induced the emergence of multiple O157 lineages within E. coli and speculate that REP sequences may involve one of the driving forces for exchange and evolution of O-antigen loci.

  20. Detection and isolation of non-O157 STECs

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli containing one or more of the Shiga toxin genes are characterized as Shiga-toxin producing E. coli (STEC). E. coli serogroup O157 remains the most common STEC in the United States, but epidemiological studies suggest that over 60% of STEC infections are caused by non-O157 STECs, acc...

  1. Feline immudeficiency virus subtypes B and A in cats from São Luis, Maranhão, Brazil.

    PubMed

    Martins, Nathálya Dos S; Rodrigues, Ana Paula de S; da Luz, Luciana A; Dos Reis, Luana da L; de Oliveira, Renata M; de Oliveira, Rudson A; Abreu-Silva, Ana Lucia; Dos Reis, Jenner Karlisson P; Melo, Ferdinan A

    2018-02-01

    Feline immunodeficiency virus (FIV) is a retrovirus of the genus Lentivirus that is distributed worldwide, with prevalence rates varying between 2.5% and 44%. FIV causes immunosuppression, with depletion of TCD4 + lymphocytes, with the majority of clinical signs caused by secondary and opportunistic infections. Blood samples were collected from nine domestic cats (Felis catus domesticus) from the city of São Luís, Maranhão State, Brazil. All samples were positive in a rapid immunochromatographic test (SNAP® Combo FeLV Ag/FIV Antibody Test) and in a polymerase chain reaction (PCR) assay. Phylogenetic analysis showed that six samples clustered within subtype B, one within subtype A, and two did not cluster with any known subtype. Five unique haplotypes (Hap-1, Hap-2, Hap-3, Hap-5 and Hap-6) and a shared haplotype (Hap-4) were found, this last one being the most frequent. This is the first report on the genetic diversity of FIV in the city of São Luís and the first report of subtype A in Brazil. New variations of the virus are also reported.

  2. Impact of dry chilling on the genetic diversity of Escherichia coli on beef carcasses and on the survival of E. coli and E. coli O157.

    PubMed

    Visvalingam, Jeyachchandran; Liu, Yang; Yang, Xianqin

    2017-03-06

    The objective of this study was to examine the effect of dry chilling on the genetic diversity of naturally occurring Escherichia coli on beef carcasses, and to examine whether two populations of E. coli recovered from carcasses during chilling and E. coli O157 differed in their response to desiccation. Isolates of E. coli were obtained from beef carcasses during a 67h dry chilling process and were genotyped using multiple-locus variable-number tandem-repeat analysis (MLVA). Ten E. coli genotypes found only at 0h (group A) and found more than once (group B), as well as five strains of E. coli O157 (group C) were inoculated on stainless steel coupons and their survival was examined after exposure to 75 and 100% relative humidity (RH) at 0 or 35°C for 67h. A total of 450 E. coli isolates were obtained, with 254, 49, 49, 51, 23, 20, and 4 from 0, 1, 2, 4, 6, 8 and 24h of chilling, respectively. No E. coli were recovered at 67h. MLVA of the isolates revealed 173 distinct genotypes. Genetic diversity of E. coli isolates, defined as ratio of the number of isolates to the number of genotypes, remained between 2.3 and 1.3 during the 24h of chilling. All strains inoculated on stainless steel coupons and exposed to 75% RH at 35°C were completely inactivated, irrespective of their groups. Inactivation of E. coli of the three groups was not significantly (P>0.05) different by exposure to 75% RH at 0°C. The findings indicate that the genetic diversity of E. coli on beef carcasses was not affected by dry chilling. In addition, inactivation of E. coli genotypes and E. coli O157 by desiccation on stainless steel simulating dry chilling conditions did not differ significantly (P>0.05). Thus, dry chilling may be used as an effective antimicrobial intervention for beef carcasses. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  3. Longitudinal prevalence and molecular typing of Escherichia coli O157:H7 by use of multiple-locus variable-number tandem-repeat analysis and pulsed-field gel electrophoresis in fecal samples collected from a range-based herd of beef cattle in California.

    PubMed

    Kondo, Sonoko; Hoar, Bruce R; Villanueva, Veronica; Mandrell, Robert E; Atwill, Edward R

    2010-11-01

    To evaluate seasonal patterns and risk factors for Escherichia coli O157:H7 in feces in a beef cattle herd and determine strain diversity and transition in E coli over time by use of multiple-locus variable-number tandem-repeat analysis (MLVA) and pulsed-field gel electrophoresis (PFGE). 456 samples of freshly passed feces collected over a 1-year period from cattle in a range-based cow-calf operation located in the foothills of the Sierra Nevada Mountains in California. E coli O157:H7 was recovered from feces by use of immunomagnetic separation and 2 selective media. Virulence factors were detected via reverse transcriptase-PCR assay. Escherichia coli O157:H7 isolates were subtyped with MLVA and PFGE. Prevalence estimates were calculated and significant risk factors determined. A dendrogram was constructed on the basis of results of MLVA typing. Overall prevalence estimate for E coli O157:H7 was 10.5%, with the prevalence lowest during the winter. Mean temperature during the 30 days before collection of samples was significantly associated with prevalence of E coli O157:H7 in feces. Nineteen MLVA and 12 PFGE types were identified. A seasonal pattern was detected for prevalence of E coli O157:H7 in feces collected from beef cattle in California. Subtyping via MLVA and PFGE revealed a diversity of E coli O157:H7 strains in a cow-calf operation and noteworthy turnover of predominant types. Given the importance of accurately determining sources of contamination in investigations of disease outbreaks in humans, MLVA combined with PFGE should be powerful tools for epidemiologists.

  4. Identification of the anti-terminator qO111:H)- gene in Norwegian sorbitol-fermenting Escherichia coli O157:NM.

    PubMed

    Haugum, Kjersti; Lindstedt, Bjørn-Arne; Løbersli, Inger; Kapperud, Georg; Brandal, Lin Thorstensen

    2012-04-01

    Sorbitol-fermenting Escherichia coli O157:NM (SF O157) is an emerging pathogen suggested to be more virulent than nonsorbitol-fermenting Escherichia coli O157:H7 (NSF O157). Important virulence factors are the Shiga toxins (stx), encoded by stx1 and/or stx2 located within prophages integrated in the bacterial genome. The stx genes are expressed from p(R) (') as a late protein, and anti-terminator activity from the Q protein is necessary for read through of the late terminator t(R) (') and activation of p(R) (') . We investigated the regulation of stx2(EDL933) expression at the genomic level in 17 Norwegian SF O157. Sequencing of three selected SF O157 strains revealed that the anti-terminator q gene and genes upstream of stx2(EDL933) were identical or similar to the ones observed in the E. coli O111:H- strain AP010960, but different from the ones observed in the NSF O157 strain EDL933 (AE005174). This suggested divergent stx2(EDL933) -encoding bacteriophages between NSF O157 and the SF O157 strains (FR874039-41). Furthermore, different DNA structures were detected in the SF O157 strains, suggesting diversity among bacteriophages also within the SF O157 group. Further investigations are needed to elucidate whether the q(O111:H) (-) gene observed in all our SF O157 contributes to the increased virulence seen in SF O157 compared to NSF O157. An assay for detecting q(O111:H) (-) was developed. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Thermal tolerance characteristics of non-O157 Shiga toxigenic strains of Escherichia coli (STEC) in a beef broth model system are similar to those of O157:H7 STEC.

    PubMed

    Vasan, Akhila; Leong, Wan Mei; Ingham, Steve C; Ingham, Barbara H

    2013-07-01

    The non-O157 Shiga toxigenic Escherichia coli (STEC) serogroups most commonly associated with illness are O26, O45, O103, O111, O121, and O145. In the United States, these serogroups are considered adulterants in raw nonintact beef. To begin to understand the behavior of these pathogens in meat systems, we compared the thermal tolerance of acid-adapted cells of non-O157 STEC and O157:H7 STEC in a beef-derived broth. D58°C-values were determined for at least three strains per serogroup, and D54.6°C-values and D63.6°C-values were determined for one strain per serogroup. Each strain was grown to stationary phase in brain heart infusion broth (BHIB; pH 7.0) and inoculated into prewarmed BHIB in a shaking water bath for thermotolerance experiments at 54.6, 58.0, or 63.6°C (three trials per strain). Samples were heated for up to 160 min at 54.6°C, 3 min at 58.0°C, or 45 s at 63.6°C, with periodic sampling followed by rapid cooling and plating on modified Levine's eosin methylene blue agar. For each strain and temperature, the log CFU per milliliter was plotted versus time, and D-values were determined. Across all strains, the least and most heat tolerant STEC serogroups at 58°C were O145 and O157, respectively. D58°C-values in BHIB ranged from 0.44 min for an O145 strain to 1.42 min for an O157:H7 strain. D58°C-values for O157 STEC strains were significantly higher than those for at least one strain in each of the non-O157 STEC serogroups (P < 0.05) except for serogroup O103. At 54.6°C, the most heat-resistant STEC strain belonged to serogroup O103 and was significantly more heat tolerant than the O157:H7 strains (P < 0.05). Grouping the strains, there were no significant differences in heat tolerance between O157 and non-O157 STEC at 63.6°C (P ≥ 0.05). The z-values for non-O157 STEC strains were comparable to those for O157:H7 STEC strains (P ≥ 0.05), ranging from 4.10 to 5.21°C. These results suggest that thermal processing interventions that target

  6. Genotypic Analyses of Shiga Toxin-Producing Escherichia coli O157 and Non-O157 Recovered from Feces of Domestic Animals on Rural Farms in Mexico

    PubMed Central

    Amézquita-López, Bianca A.; Quiñones, Beatriz; Cooley, Michael B.; León-Félix, Josefina; Castro-del Campo, Nohelia; Mandrell, Robert E.; Jiménez, Maribel; Chaidez, Cristóbal

    2012-01-01

    Shiga toxin-producing Escherichia coli (STEC) are zoonotic enteric pathogens associated with human gastroenteritis worldwide. Cattle and small ruminants are important animal reservoirs of STEC. The present study investigated animal reservoirs for STEC in small rural farms in the Culiacan Valley, an important agricultural region located in Northwest Mexico. A total of 240 fecal samples from domestic animals were collected from five sampling sites in the Culiacan Valley and were subjected to an enrichment protocol followed by either direct plating or immunomagnetic separation before plating on selective media. Serotype O157:H7 isolates with the virulence genes stx2, eae, and ehxA were identified in 40% (26/65) of the recovered isolates from cattle, sheep and chicken feces. Pulse-field gel electrophoresis (PFGE) analysis grouped most O157:H7 isolates into two clusters with 98.6% homology. The use of multiple-locus variable-number tandem repeat analysis (MLVA) differentiated isolates that were indistinguishable by PFGE. Analysis of the allelic diversity of MLVA loci suggested that the O157:H7 isolates from this region were highly related. In contrast to O157:H7 isolates, a greater genotypic diversity was observed in the non-O157 isolates, resulting in 23 PFGE types and 14 MLVA types. The relevant non-O157 serotypes O8:H19, O75:H8, O111:H8 and O146:H21 represented 35.4% (23/65) of the recovered isolates. In particular, 18.5% (12/65) of all the isolates were serotype O75:H8, which was the most variable serotype by both PFGE and MLVA. The non-O157 isolates were predominantly recovered from sheep and were identified to harbor either one or two stx genes. Most non-O157 isolates were ehxA-positive (86.5%, 32/37) but only 10.8% (4/37) harbored eae. These findings indicate that zoonotic STEC with genotypes associated with human illness are present in animals on small farms within rural communities in the Culiacan Valley and emphasize the need for the development of control

  7. Genotypic analyses of shiga toxin-producing Escherichia coli O157 and non-O157 recovered from feces of domestic animals on rural farms in Mexico.

    PubMed

    Amézquita-López, Bianca A; Quiñones, Beatriz; Cooley, Michael B; León-Félix, Josefina; Castro-del Campo, Nohelia; Mandrell, Robert E; Jiménez, Maribel; Chaidez, Cristóbal

    2012-01-01

    Shiga toxin-producing Escherichia coli (STEC) are zoonotic enteric pathogens associated with human gastroenteritis worldwide. Cattle and small ruminants are important animal reservoirs of STEC. The present study investigated animal reservoirs for STEC in small rural farms in the Culiacan Valley, an important agricultural region located in Northwest Mexico. A total of 240 fecal samples from domestic animals were collected from five sampling sites in the Culiacan Valley and were subjected to an enrichment protocol followed by either direct plating or immunomagnetic separation before plating on selective media. Serotype O157:H7 isolates with the virulence genes stx2, eae, and ehxA were identified in 40% (26/65) of the recovered isolates from cattle, sheep and chicken feces. Pulse-field gel electrophoresis (PFGE) analysis grouped most O157:H7 isolates into two clusters with 98.6% homology. The use of multiple-locus variable-number tandem repeat analysis (MLVA) differentiated isolates that were indistinguishable by PFGE. Analysis of the allelic diversity of MLVA loci suggested that the O157:H7 isolates from this region were highly related. In contrast to O157:H7 isolates, a greater genotypic diversity was observed in the non-O157 isolates, resulting in 23 PFGE types and 14 MLVA types. The relevant non-O157 serotypes O8:H19, O75:H8, O111:H8 and O146:H21 represented 35.4% (23/65) of the recovered isolates. In particular, 18.5% (12/65) of all the isolates were serotype O75:H8, which was the most variable serotype by both PFGE and MLVA. The non-O157 isolates were predominantly recovered from sheep and were identified to harbor either one or two stx genes. Most non-O157 isolates were ehxA-positive (86.5%, 32/37) but only 10.8% (4/37) harbored eae. These findings indicate that zoonotic STEC with genotypes associated with human illness are present in animals on small farms within rural communities in the Culiacan Valley and emphasize the need for the development of control

  8. Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli.

    PubMed

    Li, Baoguang; Liu, Huanli; Wang, Weimin

    2017-11-09

    Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, are responsible for numerous foodborne outbreaks annually worldwide. E. coli O157:H7, as well as pathogenic non-O157:H7 STECs, can cause life-threating complications, such as bloody diarrhea (hemolytic colitis) and hemolytic-uremic syndrome (HUS). Previously, we developed a real-time PCR assay to detect E. coli O157:H7 in foods by targeting a unique putative fimbriae protein Z3276. To extend the detection spectrum of the assay, we report a multiplex real-time PCR assay to specifically detect E. coli O157:H7 and screen for non-O157 STEC by targeting Z3276 and Shiga toxin genes (stx1 and stx2). Also, an internal amplification control (IAC) was incorporated into the assay to monitor the amplification efficiency. The multiplex real-time PCR assay was developed using the Life Technology ABI 7500 System platform and the standard chemistry. The optimal amplification mixture of the assay contains 12.5 μl of 2 × Universal Master Mix (Life Technology), 200 nM forward and reverse primers, appropriate concentrations of four probes [(Z3276 (80 nM), stx1 (80 nM), stx2 (20 nM), and IAC (40 nM)], 2 μl of template DNA, and water (to make up to 25 μl in total volume). The amplification conditions of the assay were set as follows: activation of TaqMan at 95 °C for 10 min, then 40 cycles of denaturation at 95 °C for 10 s and annealing/extension at 60 °C for 60 s. The multiplex assay was optimized for amplification conditions. The limit of detection (LOD) for the multiplex assay was determined to be 200 fg of bacterial DNA, which is equivalent to 40 CFU per reaction which is similar to the LOD generated in single targeted PCRs. Inclusivity and exclusivity determinants were performed with 196 bacterial strains. All E. coli O157:H7 (n = 135) were detected as positive and all STEC strains (n = 33) were positive for stx1, or stx2, or stx1 and stx2 (Table 1). No cross reactivity was detected with Salmonella

  9. Multiple-locus variable-number tandem repeat analysis for strain discrimination of non-O157 Shiga toxin-producing Escherichia coli.

    PubMed

    Timmons, Chris; Trees, Eija; Ribot, Efrain M; Gerner-Smidt, Peter; LaFon, Patti; Im, Sung; Ma, Li Maria

    2016-06-01

    Non-O157 Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens of growing concern worldwide that have been associated with several recent multistate and multinational outbreaks of foodborne illness. Rapid and sensitive molecular-based bacterial strain discrimination methods are critical for timely outbreak identification and contaminated food source traceback. One such method, multiple-locus variable-number tandem repeat analysis (MLVA), is being used with increasing frequency in foodborne illness outbreak investigations to augment the current gold standard bacterial subtyping technique, pulsed-field gel electrophoresis (PFGE). The objective of this study was to develop a MLVA assay for intra- and inter-serogroup discrimination of six major non-O157 STEC serogroups-O26, O111, O103, O121, O45, and O145-and perform a preliminary internal validation of the method on a limited number of clinical isolates. The resultant MLVA scheme consists of ten variable number tandem repeat (VNTR) loci amplified in three multiplex PCR reactions. Sixty-five unique MLVA types were obtained among 84 clinical non-O157 STEC strains comprised of geographically diverse sporadic and outbreak related isolates. Compared to PFGE, the developed MLVA scheme allowed similar discrimination among serogroups O26, O111, O103, and O121 but not among O145 and O45. To more fully compare the discriminatory power of this preliminary MLVA method to PFGE and to determine its epidemiological congruence, a thorough internal and external validation needs to be performed on a carefully selected large panel of strains, including multiple isolates from single outbreaks. Copyright © 2016. Published by Elsevier B.V.

  10. Effect of severe weather events on the shedding of Shiga toxigenic Escherichia coli in slaughter cattle and phenotype of serogroup O157 isolates.

    PubMed

    Stanford, Kim; Reuter, Tim; Bach, Susan J; Chui, Linda; Ma, Angela; Conrad, Cheyenne C; Tostes, Renata; McAllister, Tim A

    2017-09-01

    High-event periods (HEPs) occur sporadically when beef carcasses and meat have episodes of acute contamination with Shiga toxin-producing Escherichia coli (STEC). In this study, severe weather events were investigated as catalysts for HEPs based on PCR and isolate prevalence of seven E. coli serogroups in slaughter cattle feces. Winter ambient temperatures with daily means 10.5oC warmer or 12.3°C colder than seasonal norms (-10.4°C) most altered STEC shedding. Fecal samples yielded increased proportions (P < 0.05) of O26 and O157 isolates during winter warm periods, and reduced (P < 0.05) O45 isolates during cold periods compared to samplings during seasonal norms. Based on changing PCR prevalence and isolates collected, O157 was the serogroup most responsive to severe weather events. Consequently, O157 isolates (n = 219) were evaluated for heat resistance, biofilm-forming potential and virulence gene subtypes. Two isolates had heat-resistant phenotypes with thermal death time at 60°C (D60) > 10 min and one also had strong biofilm-forming potential. However, this isolate lacked eae and stx genes. Severe weather can influence STEC shedding, particularly of O157, and could possibly trigger HEPs. However, our data suggest that it is unlikely for isolates to carry virulence genes and possess phenotypes capable of evading post-harvest microbiological interventions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Biased distribution of IS629 among strains in different lineages of enterohemorrhagic Escherichia coli serovar O157.

    PubMed

    Yokoyama, Eiji; Hashimoto, Ruiko; Etoh, Yoshiki; Ichihara, Sachiko; Horikawa, Kazumi; Uchimura, Masako

    2011-01-01

    The distribution of insertion sequence (IS) 629 among strains of enterohemorrhagic Escherichia coli serovar O157 (O157) was investigated and compared with the strain lineages defined by lineage specific polymorphism assay-6 (LSPA-6) to demonstrate the effectiveness of IS629 analysis for population genetics analysis. Using pulsed-field gel electrophoresis and variable-number tandem repeat typing, 140 strains producing both VT1 and VT2 and 98 strains producing only VT2 were selected from a total of 592 strains isolated from patients and asymptomatic carriers in Chiba Prefecture, Japan, during 2003-2008. By LSPA-6 analysis, six strains had atypical amplicon sizes in their Z5935 loci and five strains had atypical amplicon sizes in their arp-iclR intergenic regions. Sequence analyses of PCR amplified DNAs showed that five of the six loci used for LSPA-6 analysis had tandem repeats and the allele changes were due to changes in the number of tandem repeats. Subculturing and long-term incubation was found to have no detectable effect on the lineages defined by LSPA-6 analysis, demonstrating the robustness of LSPA-6 analysis. Minimum spanning tree analysis reconstruction revealed that strains in lineage I, I/II, and II clustered on separate branches, indicating that the distribution of IS629 was biased among O157 strains in different lineages. Strains with LSPA-6 codes 231111, 211113, and 211114 had atypical amplicon sizes and were clustered in lineage I/II branch, and strains with LSPA-6 codes 212114, 221123, 221223, 222123, 222224, 242123, 252123, and 242222 had atypical amplicon sizes and clustered in lineage II branches. Linkage disequilibrium was observed in strains in every lineage when the standardized index of association was calculated using IS629 distribution data. Therefore, the distribution analysis of IS629 may be effective for population genetics analysis of O157 due to the biased IS629 distribution among strains in the three O157 lineages. Copyright © 2010

  12. Clinical subtypes and genetic heterogeneity: of lumping and splitting in Parkinson disease.

    PubMed

    von Coelln, Rainer; Shulman, Lisa M

    2016-12-01

    Recent studies on clinical, genetic and pathological heterogeneity of Parkinson disease have renewed the old debate whether we should think of Parkinson disease as one disease with variations, or as a group of independent diseases that happen to present with similar phenotypes. Here, we provide an overview of where the debate is coming from, and how recent findings in clinical subtyping, genetics and clinico-pathological correlation have shaped this controversy over the last few years. New and innovative clinical diagnostic criteria for Parkinson disease have been proposed and await validation. Studies using functional imaging or wearable biosensors, as well as biomarker studies, provide new support for the validity of the traditional clinical subtypes of Parkinson disease (tremor-dominant versus akinetic-rigid or postural instability/gait difficulty). A recent cluster analysis (as unbiased data-driven approach to subtyping) included a wide spectrum of nonmotor variables, and showed correlation of the proposed subtypes with disease progression in a longitudinal analysis. New genetic factors contributing to Parkinson disease susceptibility continue to be identified, including rare mutations causing monogenetic disease, common variants with small effect size and risk factors (like mutations in the gene for glucocerebrosidase) that fall in between the two other categories. Recent studies show some limited correlation between genetic factors and clinical heterogeneity. Despite some variations in patterns of pathology, Lewy bodies are still the hallmark of Parkinson disease, including the vast majority of genetic subgroups. Evidence of clinical, genetic and pathological heterogeneity of Parkinson disease continues to emerge, but clearly defined subtypes that hold up in more than one of these domains remain elusive. For research to identify such subtypes, splitting is likely the way forward; until then, for clinical practice, lumping remains the more pragmatic approach.

  13. Characterization of a ViI-like phage specific to Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Phage vB_EcoM_CBA120 (CBA120) isolated against Escherichia coli O157:H7 from a cattle feedlot is morphologically very similar to the classic phage ViI of Salmonella enterica serovar Typhi. Until recently, little was known genetically or physiologically about the ViI-like phages, and non targeting E...

  14. Seasonal prevalence of Shiga toxin-producing Escherichia coli, including O157:H7 and non-O157 serotypes, and Salmonella in commercial beef processing plants.

    PubMed

    Barkocy-Gallagher, Genevieve A; Arthur, Terrance M; Rivera-Betancourt, Mildred; Nou, Xiangwu; Shackelford, Steven D; Wheeler, Tommy L; Koohmaraie, Mohammad

    2003-11-01

    The seasonal prevalence of Escherichia coli O157:H7, Salmonella, non-O157 E. coli (STEC), and stx-harboring cells was monitored at three Midwestern fed-beef processing plants. Overall, E. coli O157:H7 was recovered from 5.9% of fecal samples, 60.6% of hide samples, and 26.7% of carcasses sampled before the preevisceration wash. This pathogen also was recovered from 1.2% (15 of 1,232) of carcasses sampled at chilling (postintervention) at approximate levels of <3.0 cells per 100 cm2. In one case, the E. coli O157:H7 concentration dropped from ca. 1,100 cells per 320 cm2 at the preevisceration stage to a level that was undetectable on ca. 2,500 cm2 at the postintervention stage. The prevalence of E. coli O157:H7 in feces peaked in the summer, whereas its prevalence on hide was high from the spring through the fall. Overall, Salmonella was recovered from 4.4, 71.0, and 12.7% of fecal, hide, and preevisceration carcass samples, respectively. Salmonella was recovered from one postintervention carcass (of 1,016 sampled). Salmonella prevalence peaked in feces in the summer and was highest on hide and preevisceration carcasses in the summer and the fall. Non-O157 STEC prevalence also appeared to vary by season, but the efficiency in the recovery of isolates from stx-positive samples ranged from 37.5 to 83.8% and could have influenced these results. Cells harboring stx genes were detected by PCR in 34.3, 92.0, 96.6, and 16.2% of fecal, hide, preevisceration carcass, and postintervention carcass samples, respectively. The approximate level of non-O157 STEC and stx-harboring cells on postintervention carcasses was > or = 3.0 cells per 100 cm2 for only 8 of 199 carcasses (4.0%). Overall, the prevalence of E. coli O157:H7, Salmonella, and non-O157 STEC varied by season, was higher on hides than in feces, and decreased dramatically, along with pathogen levels, during processing and during the application of antimicrobial interventions. These results demonstrate the effectiveness

  15. Fecal shedding of non-O157 serogroups of Shiga toxin-producing Escherichia coli in feedlot cattle vaccinated with an Escherichia coli O157:H7 SRP vaccine or fed a Lactobacillus-based direct-fed microbial.

    PubMed

    Cernicchiaro, N; Renter, D G; Cull, C A; Paddock, Z D; Shi, X; Nagaraja, T G

    2014-05-01

    The objectives of this study were to determine whether fecal shedding of non-O157 Shiga toxin-producing Escherichia coli (STEC) in feedlot cattle was affected by the use of an E. coli O157:H7 vaccine or a direct-fed microbial (DFM) and whether the shedding of a particular non-O157 STEC serogroup within feces was associated with shedding of O157 or other non-O157 STEC serogroups. A total of 17,148 cattle in 40 pens were randomized to receive one, both, or neither (control) of the two interventions: a vaccine based on the siderophore receptor and porin proteins (E. coli SRP vaccine, two doses) and a DFM product (low-dose Bovamine). Fresh fecal samples (30 samples per pen) were collected weekly from pen floors for four consecutive weeks beginning approximately 56 days after study allocation. DNA extracted from enriched samples was tested for STEC O157 and non-O157 serogroups O26, O45, O103, O111, O121, and O145 and for four major virulence genes (stx1, stx2, eae, and ehxA) using an 11-gene multiplex PCR assay. Generalized linear mixed models were used to analyze the effects of treatments and make within-sample comparisons of the presence of O-serogroup-specific genes. Results of cumulative prevalence measures indicated that O157 (14.6%), O26 (10.5%), and O103 (10.3%) were the most prevalent STEC O serogroups. However, the vaccine, DFM, or both had no significant effect (P > 0.05) on fecal prevalence of the six non-O157 STEC serogroups in feedlot cattle. Within-sample comparisons of the presence of STEC serogroup-specific genes indicated that fecal shedding of E. coli O157 in cattle was associated with an increased probability (P < 0.05) of fecal shedding of STEC O26, O45, O103, and O121. Our study revealed that neither the E. coli O157:H7 vaccine, which reduced STEC O157 fecal shedding, nor the DFM significantly affected fecal shedding of non-O157 STEC serogroups, despite the fact that the most prevalent non-O157 STEC serogroups tended to occur concurrently with O157

  16. [Antagonistic interaction between Clostridium butyricum and enterohemorrhagic Escherichia coli O157:H7].

    PubMed

    Takahashi, M; Taguchi, H; Yamaguchi, H; Osaki, T; Sakazaki, R; Kamiya, S

    1999-01-01

    Antagonistic interaction between Clostridium butyricum strain MIYAIRI 588 and enterohemorrhagic Esherichia coli (EHEC) strain O157:H7 006 was examined using streptomycin-treated SPF mice and germ free mice. All SPF mice pretreated with streptomycin were colonized with EHEC O157:H7. On the other hand, only 20% of the SPF mice pretreated with streptomycin and C. butyricum were colonized with EHEC O157:H7. In addition, germ free mice died within 4-7 days after infection with EHEC O157:H7. In contrast, all gnotobiotic mice mono-associated with C. butyricum survived after the challenge with EHEC O157:H7. Both the number of EHEC and the amounts of shiga-like cytotoxin (SLT, type 1 and type 2) in fecal contents of gnotobiotic mice treated with C. butyricum were less than those of mice infected with only EHEC O157:H7. In conclusion, the probiotic bacterium, C. butyricum strain MIYAIRI 588, has a preventive effect against EHEC O157:H7 infection.

  17. The prevalence of Escherichia coli O157 and O157:H7 in ground beef and raw meatball by immunomagnetic separation and the detection of virulence genes using multiplex PCR.

    PubMed

    Cadirci, Ozgür; Siriken, Belgin; Inat, Gökhan; Kevenk, Tahsin Onur

    2010-03-01

    The present study was conducted to investigate the presence of Escherichia coli O157 and O157:H7 strains and to detect the presence of the stx1, stx2, and eaeA genes in isolates derived from 200 samples (100 samples from fresh ground beef and 100 samples from raw meatball). The samples were purchased from the Samsun Province in Turkey, over a period of 1 year. Enrichment-based immunomagnetic separation and multiplex polymerase chain reaction were applied for these analyses. E. coli O157 was detected in five of the 200 (2.5%) samples tested (one isolated from ground beef and four from meatball samples), whereas E. coli O157: H7 was not detected in any sample. During the analysis, eight strains of E. coli O157 were obtained. The genes stx1, stx2, and eaeA were detected in two E. coli O157 isolates obtained from two meatball samples, whereas only the eaeA and the stx2 genes were detected in four E. coli O157 strains that were isolated from one meatball sample. None of the stx1, stx2, and eaeA was detected in the E. coli O157 isolates obtained from the ground beef and the one meatball samples. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Fingerprints of resistant Escherichia coli O157:H7 from vegetables and environmental samples.

    PubMed

    Abakpa, Grace Onyukwo; Umoh, Veronica J; Kamaruzaman, Sijam; Ibekwe, Mark

    2018-01-01

    Some routes of transmission of Escherichia coli O157:H7 to fresh produce include contaminated irrigation water and manure polluted soils. The aim of the present study was to determine the genetic relationships of E. coli O157:H7 isolated from some produce growing region in Nigeria using enterobacterial repetitive intergenic consensus (ERIC) DNA fingerprinting analysis. A total of 440 samples comprising leafy greens, irrigation water, manure and soil were obtained from vegetable producing regions in Kano and Plateau States, Nigeria. Genes coding for the quinolone resistance-determinant (gyrA) and plasmid (pCT) coding for multidrug resistance (MDR) were determined using polymerase chain reaction (PCR) in 16 isolates that showed MDR. Cluster analysis of the ERIC-PCR profiles based on band sizes revealed six main clusters from the sixteen isolates analysed. The largest cluster (cluster 3) grouped isolates from vegetables and manure at a similarity coefficient of 0.72. The present study provides data that support the potential transmission of resistant strains of E. coli O157:H7 from vegetables and environmental sources to humans with potential public health implications, especially in developing countries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Evaluation of lactic acid as an initial and secondary subprimal intervention for Escherichia coli O157:H7, non-O157 Shiga toxin-producing E. coli, and a nonpathogenic E. coli surrogate for E. coli O157:H7.

    PubMed

    Pittman, C I; Geornaras, I; Woerner, D R; Nightingale, K K; Sofos, J N; Goodridge, L; Belk, K E

    2012-09-01

    Lactic acid can reduce microbial contamination on beef carcass surfaces when used as a food safety intervention, but effectiveness when applied to the surface of chilled beef subprimal sections is not well documented. Studies characterizing bacterial reduction on subprimals after lactic acid treatment would be useful for validations of hazard analysis critical control point (HACCP) systems. The objective of this study was to validate initial use of lactic acid as a subprimal intervention during beef fabrication followed by a secondary application to vacuum-packaged product that was applied at industry operating parameters. Chilled beef subprimal sections (100 cm(2)) were either left uninoculated or were inoculated with 6 log CFU/cm(2) of a 5-strain mixture of Escherichia coli O157:H7, a 12-strain mixture of non-O157 Shiga toxin-producing E. coli (STEC), or a 5-strain mixture of nonpathogenic (biotype I) E. coli that are considered surrogates for E. coli O157:H7. Uninoculated and inoculated subprimal sections received only an initial or an initial and a second "rework" application of lactic acid in a custombuilt spray cabinet at 1 of 16 application parameters. After the initial spray, total inoculum counts were reduced from 6.0 log CFU/cm(2) to 3.6, 4.4, and 4.4 log CFU/cm(2) for the E. coli surrogates, E. coli O157:H7, and non-O157 STEC inoculation groups, respectively. After the second (rework) application, total inoculum counts were 2.6, 3.2, and 3.6 log CFU/cm(2) for the E. coli surrogates, E. coli O157:H7, and non-O157 STEC inoculation groups, respectively. Both the initial and secondary lactic acid treatments effectively reduced counts of pathogenic and nonpathogenic strains of E. coli and natural microflora on beef subprimals. These data will be useful to the meat industry as part of the HACCP validation process.

  20. Houseflies: not simple mechanical vectors of enterohemorrhagic Escherichia coli O157:H7.

    PubMed

    Kobayashi, M; Sasaki, T; Saito, N; Tamura, K; Suzuki, K; Watanabe, H; Agui, N

    1999-10-01

    An epidemic of enterohemorrhagic colitis caused by Escherichia coli O157:H7 (EHEC-O157) occurred in a nursery school in a rural area of Japan in September 1996. The EHEC-O157 were isolated both from patients and houseflies collected at the school. The flies were suspected to be mechanical vectors of the pathogen. Feeding experiments of EHEC-O157 to houseflies showed that the ingested bacteria were harbored in the intestine of flies and continued to be excreted at least for 3 days after feeding. Scanning electron microscopy showed that a large number of EHEC-O157 adhered to the surface of the housefly mouthparts and actively proliferated in the minute spaces of the labellum. Food masses containing EHEC-O157 in the fly intestine were completely surrounded by a peritrophic membrane during digestion and discharged rapidly. The persistence of bacteria in the intestine and feces is mainly a result of proliferation in the mouthparts and accumulation in the crop. Our results strongly suggest that houseflies are not simple mechanical vectors of EHEC. The epidemiologic potential of houseflies to disseminate EHEC-O157 may be greater than initially suspected.

  1. Antibiotic susceptibility-resistance profiles of super-shed Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Introduction: Escherichia coli O157:H7 (O157) can cause diarrhea and serious secondary sequelae including kidney failure and death in humans. With antibiotics like fosfomycin, colistin and azithromycin, that do not stimulate toxin expression by O157, being considered for treatment of early gastroint...

  2. PCR and ELISA (VIDAS ECO O157®) Escherichia coli O157:H7 identification in Minas Frescal cheese commercialized in Goiânia, GO

    PubMed Central

    Carvalho, Rosangela Nunes; de Oliveira, Antonio Nonato; de Mesquita, Albenones José; Minafra e Rezende, Cíntia Silva; de Mesquita, Adriano Queiroz; Romero, Rolando Alfredo Mazzoni

    2014-01-01

    Escherichia coli O157:H7 has been incriminated in food poisoning outbreaks and sporadic cases of hemorrhagic colitis and hemolytic uremic syndrome in many countries. Considering the high susceptibility of Minas Frescal cheese to contamination by E. coli O157:H7, the aim of this study was to determine the occurrence of this pathogen through PCR (Polymerase Chain Reaction) and ELISA (VIDAS ECO O157®, bioMérieux, Lyon, France) test. Thirty cheese samples manufactured by artisan farmhouse producers were collected from open-air markets in Goiânia and thirty from industries under Federal Inspection located in Goiás State which trade their products in supermarkets in Goiânia. E. coli O157:H7 was detected in 6.67% samples collected in open air markets using ELISA, and 23,33% with PCR. The pathogen was not detected in samples from industries under Federal Inspection. PMID:24948907

  3. Antimicrobial Effects of Quillaja saponaria Extract Against Escherichia coli O157:H7 and the Emerging Non-O157 Shiga Toxin-Producing E. coli.

    PubMed

    Sewlikar, Snigdha; D'Souza, Doris H

    2017-05-01

    Natural alternate methods to control the spread of Shiga toxin-producing Escherichia coli (STEC) are important to prevent foodborne outbreaks. Quillaja saponaria aqueous bark extracts (QE), cleared by the U.S. Food and Drug Administration as a natural flavorant, contain bioactive polyphenols, tannins, and tri-terpenoid saponins with anti-inflammatory and antimicrobial activity. The objective of this study was to determine the effects of commercial QE against E. coli O157:H7 and non-O157 strains over 16 h at 37 °C and RT. Overnight cultures of 4 E. coli O157:H7 strains and 6 non-O157 STECs in Tryptic Soy Broth (TSB) were washed and resuspended in phosphate-buffered saline (PBS, pH 7.2), and treated with QE and controls including citric acid (pH 3.75), sodium benzoate (0.1% w/w), acidified sodium benzoate (pH 3.75) or PBS for 6 h or 16 h. Recovered bacteria were enumerated after plating on Tryptic Soy Agar, from duplicate treatments, replicated thrice and the data were statistically analyzed. The 4 QE-treated E. coli O157:H7 strains from initial ∼7.5 log CFU had remaining counts between 6.79 and 3.5 log CFU after 16 h at RT. QE-treated non-O157 STECs showed lower reductions with remaining counts ranging from 6.81 to 4.55 log CFU after 16 h at RT.  Incubation at 37 °C caused reduction to nondetectable levels within 1 h, without any significant reduction in controls. Scanning electron microscopy studies revealed damaged cell membranes of treated bacteria after 1 h at 37 °C. QE shows potential to control the spread of STECs, and further research in model food systems is needed. © 2017 Institute of Food Technologists®.

  4. Effect of Genetic Database Comprehensiveness on Fractional Proteomics of Escherichia coli O157:H7

    DTIC Science & Technology

    2014-01-01

    proteins would be observed in the extracellular fraction. 15. SUBJECT TERMS Escherichia coli O157:H7 Liquid chromatography Mass spectrometry...Preparation ...............1 2.2 Liquid Chromatography /Mass Spectrometry Sample Preparation ....................2 2.3 Liquid Chromatography /Mass... Chromatography /Mass Spectrometry Sample Preparation. Samples were prepared for liquid chromatography tandem mass spectrometry (LC-MS/MS) in a similar

  5. Analysis of whole genome sequencing for the Escherichia coli O157:H7 typing phages.

    PubMed

    Cowley, Lauren A; Beckett, Stephen J; Chase-Topping, Margo; Perry, Neil; Dallman, Tim J; Gally, David L; Jenkins, Claire

    2015-04-08

    Shiga toxin producing Escherichia coli O157 can cause severe bloody diarrhea and haemolytic uraemic syndrome. Phage typing of E. coli O157 facilitates public health surveillance and outbreak investigations, certain phage types are more likely to occupy specific niches and are associated with specific age groups and disease severity. The aim of this study was to analyse the genome sequences of 16 (fourteen T4 and two T7) E. coli O157 typing phages and to determine the genes responsible for the subtle differences in phage type profiles. The typing phages were sequenced using paired-end Illumina sequencing at The Genome Analysis Centre and the Animal Health and Veterinary Laboratories Agency and bioinformatics programs including Velvet, Brig and Easyfig were used to analyse them. A two-way Euclidian cluster analysis highlighted the associations between groups of phage types and typing phages. The analysis showed that the T7 typing phages (9 and 10) differed by only three genes and that the T4 typing phages formed three distinct groups of similar genomic sequences: Group 1 (1, 8, 11, 12 and 15, 16), Group 2 (3, 6, 7 and 13) and Group 3 (2, 4, 5 and 14). The E. coli O157 phage typing scheme exhibited a significantly modular network linked to the genetic similarity of each group showing that these groups are specialised to infect a subset of phage types. Sequencing the typing phage has enabled us to identify the variable genes within each group and to determine how this corresponds to changes in phage type.

  6. Spatial epidemiology of Escherichia coli O157:H7 in dairy cattle in relation to night roosts Of Sturnus vulgaris (European Starling) in Ohio, USA (2007-2009).

    PubMed

    Swirski, A L; Pearl, D L; Williams, M L; Homan, H J; Linz, G M; Cernicchiaro, N; LeJeune, J T

    2014-09-01

    The goal of our study was to use spatial scan statics to determine whether the night roosts of European starlings (Sturnus vulgaris) act as point sources for the dissemination of Escherichia coli O157:H7 among dairy farms. From 2007 to 2009, we collected bovine faecal samples (n = 9000) and starling gastrointestinal contents (n = 430) from 150 dairy farms in northeastern Ohio, USA. Isolates of E. coli O157:H7 recovered from these samples were subtyped using multilocus variable-number tandem repeat analysis (MLVA). Generated MLVA types were used to construct a dendrogram based on a categorical multistate coefficient and unweighted pair-group method with arithmetic mean (UPGMA). Using a focused spatial scan statistic, we identified statistically significant spatial clusters among dairy farms surrounding starling night roosts, with an increased prevalence of E. coli O157:H7-positive bovine faecal pats, increased diversity of distinguishable MLVA types and a greater number of isolates with MLVA types from bovine-starling clades versus bovine-only clades. Thus, our findings are compatible with the hypothesis that starlings have a role in the dissemination of E. coli O157:H7 among dairy farms, and further research into starling management is warranted. © 2013 Blackwell Verlag GmbH.

  7. Prolonged and mixed non-O157 Escherichia coli infection in an Australian household.

    PubMed

    Staples, M; Graham, R M A; Doyle, C J; Smith, H V; Jennison, A V

    2012-05-01

    An Australian family was identified through a Public Health follow up on a Shiga-toxigenic Escherichia coli (STEC) positive bloody diarrhoea case, with three of the four family members experiencing either symptomatic or asymptomatic STEC shedding. Bacterial isolates were submitted to stx sequence sub-typing, multi-locus variable number tandem repeat analysis (MLVA), multi-locus sequence typing (MLST) and binary typing. The analysis revealed that there were multiple strains of STEC being shed by the family members, with similar virulence gene profiles and the same serogroup but differing in their MLVA and MLST profiles. This study illustrates the potentially complicated nature of non-O157 STEC infections and the importance of molecular epidemiology in understanding disease clusters. © 2012 QUEENSLAND HEALTH. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  8. Persistence of Escherichia coli O157:H7 in dairy fermentation systems.

    PubMed

    Dineen, S S; Takeuchi, K; Soudah, J E; Boor, K J

    1998-12-01

    We examined (i) the persistence of Escherichia coli O157:H7 as a postpasteurization contaminant in fermented dairy products; (ii) the ability of E. coli O157:H7 strains with and without the general stress regulatory protein, RpoS, to compete with commercial starter cultures in fermentation systems; and (iii) the survival of E. coli O157:H7 in the yogurt production process. In commercial products inoculated with 10(3) CFU/ml, E. coli O157:H7 was recovered for up to 12 days in yogurt (pH 4.0), 28 days in sour cream (pH 4.3), and at levels > 10(2) CFU/ml at 35 days in buttermilk (pH 4.1). For the starter culture competition trials, the relative inhibition of E. coli O157:H7 in the experimental fermentation systems was, in decreasing order, thermophilic culture mixture, Lactobacillus delbrueckii subsp. bulgaricus R110 alone, Lactococcus lactis subsp. lactis D280 alone, Lactococcus lactis subsp. cremoris D62 alone, and Streptococcus thermophilus C90 alone showing the least inhibition. Recovery of the rpoS mutant was lower than recovery of its wild-type parent by 72 h or earlier in the presence of individual starter cultures. No E. coli O157:H7 were recovered after the curd formation step in yogurt manufactured with milk inoculated with 10(5) CFU/ml. Our results show that (i) postprocessing entry of E. coli O157:H7 into fermented dairy products represents a potential health hazard; (ii) commercial starter cultures differ in their ability to reduce E. coli O157:H7 CFU numbers in fermentation systems; and (iii) the RpoS protein appears to most effectively contribute to bacterial survival in the presence of conditions that are moderately lethal to the cell.

  9. The neuroanatomy of genetic subtype differences in Prader-Willi syndrome.

    PubMed

    Honea, Robyn A; Holsen, Laura M; Lepping, Rebecca J; Perea, Rodrigo; Butler, Merlin G; Brooks, William M; Savage, Cary R

    2012-03-01

    Despite behavioral differences between genetic subtypes of Prader-Willi syndrome (PWS), no studies have been published characterizing brain structure in these subgroups. Our goal was to examine differences in the brain structure phenotype of common subtypes of PWS [chromosome 15q deletions and maternal uniparental disomy 15 (UPD)]. Fifteen individuals with PWS due to a typical deletion [(DEL) type I; n = 5, type II; n = 10], eight with PWS due to UPD, and 25 age-matched healthy-weight individuals (HWC) participated in structural magnetic resonance imaging (MRI) scans. A custom voxel-based morphometry processing stream was used to examine regional differences in gray and white matter volume (WMV) between groups, covarying for age, sex, and body mass index (BMI). Overall, compared to HWC, PWS individuals had lower gray matter volumes (GMV) that encompassed the prefrontal, orbitofrontal and temporal cortices, hippocampus and parahippocampal gyrus, and lower WMVs in the brain stem, cerebellum, medial temporal, and frontal cortex. Compared to UPD, the DEL subtypes had lower GMV primarily in the prefrontal and temporal cortices, and lower white matter in the parietal cortex. The UPD subtype had more extensive lower gray and WMVs in the orbitofrontal and limbic cortices compared to HWC. These preliminary findings are the first structural neuroimaging findings to support potentially separate neural mechanisms mediating the behavioral differences seen in these genetic subtypes. Copyright © 2012 Wiley Periodicals, Inc.

  10. Comparative Effect of Heat Shock on Survival of O157:H7 and Non-O157 Shiga Toxigenic Escherichia coli and Salmonella in Lean Beef with or without Moisture-Enhancing Ingredients.

    PubMed

    Vasan, Akhila; Ingham, Steven C; Ingham, Barbara H

    2017-06-01

    Thermal tolerance of pathogenic bacteria has been shown to increase after exposure to sublethal elevated temperatures, or heat shock. We evaluated the effect of heat shock at 48°C on thermal tolerance (D 55°C ) of cocktails of O157 and non-O157 Shiga toxigenic Escherichia coli (STEC) and Salmonella in lean ground beef with or without moisture-enhancing ingredients. Beef was moisture enhanced to 110% (w) with a 5% NaCl-2.5% sodium tripolyphosphate (w/w) brine. Meat, with or without added brine, was inoculated (∼10 8 CFU/g) and heat shocked at 48°C for 0, 5, or 30 min, followed by isothermal heating at 55°C. Inoculated control samples were unenhanced and were not subject to heat shock. From the linear portion of the log CFU per gram surviving cells over time plots, D 55°C -values (minutes) were calculated. D 55°C was 20.43, 28.78, and 21.15 min for O157, non-O157, and Salmonella controls, respectively. Overall, heat shock significantly increased D 55°C , regardless of pathogen (P < 0.05). After 30 min of heat shock, D 55°C increased 89 and 160% for O157 STEC, 32 and 49% for non-O157 STEC, and 29 and 57% for Salmonella, in unenhanced and enhanced samples, respectively, relative to the pathogen control. D 55°C for Salmonella was the same or significantly less than for O157 and non-O157 STEC, regardless of heat shock, and was significantly less than for O157 and non-O157 STEC in all trials with moisture-enhanced meat (P < 0.05). Moisture-enhancing ingredients significantly increased D 55°C , regardless of pathogen (P < 0.05). We suggest that thermal processes validated against Salmonella may not prove effective against STEC in all cases and that regulators of the beef industry should focus attention on STEC in nonintact moisture-enhanced beef products.

  11. Diversity of Survival Patterns among Escherichia coli O157:H7 Genotypes Subjected to Food-Related Stress Conditions.

    PubMed

    Elhadidy, Mohamed; Álvarez-Ordóñez, Avelino

    2016-01-01

    The purpose of this study was to evaluate the resistance patterns to food-related stresses of Shiga toxin producing Escherichia coli O157:H7 strains belonging to specific genotypes. A total of 33 E. coli O157:H7 strains were exposed to seven different stress conditions acting as potential selective pressures affecting the transmission of E. coli O157:H7 to humans through the food chain. These stress conditions included cold, oxidative, osmotic, acid, heat, freeze-thaw, and starvation stresses. The genotypes used for comparison included lineage-specific polymorphism, Shiga-toxin-encoding bacteriophage insertion sites, clade type, tir (A255T) polymorphism, Shiga toxin 2 subtype, and antiterminator Q gene allele. Bacterial resistance to different stressors was calculated by determining D-values (times required for inactivation of 90% of the bacterial population), which were then subjected to univariate and multivariate analyses. In addition, a relative stress resistance value, integrating resistance values to all tested stressors, was calculated for each bacterial strain and allowed for a ranking-type classification of E. coli O157:H7 strains according to their environmental robustness. Lineage I/II strains were found to be significantly more resistant to acid, cold, and starvation stress than lineage II strains. Similarly, tir (255T) and clade 8 encoding strains were significantly more resistant to acid, heat, cold, and starvation stress than tir (255A) and non-clade 8 strains. Principal component analysis, which allows grouping of strains with similar stress survival characteristics, separated strains of lineage I and I/II from strains of lineage II, which in general showed reduced survival abilities. Results obtained suggest that lineage I/II, tir (255T), and clade 8 strains, which have been previously reported to be more frequently associated with human disease cases, have greater multiple stress resistance than strains of other genotypes. The results from this

  12. Diversity of Survival Patterns among Escherichia coli O157:H7 Genotypes Subjected to Food-Related Stress Conditions

    PubMed Central

    Elhadidy, Mohamed; Álvarez-Ordóñez, Avelino

    2016-01-01

    The purpose of this study was to evaluate the resistance patterns to food-related stresses of Shiga toxin producing Escherichia coli O157:H7 strains belonging to specific genotypes. A total of 33 E. coli O157:H7 strains were exposed to seven different stress conditions acting as potential selective pressures affecting the transmission of E. coli O157:H7 to humans through the food chain. These stress conditions included cold, oxidative, osmotic, acid, heat, freeze-thaw, and starvation stresses. The genotypes used for comparison included lineage-specific polymorphism, Shiga-toxin-encoding bacteriophage insertion sites, clade type, tir (A255T) polymorphism, Shiga toxin 2 subtype, and antiterminator Q gene allele. Bacterial resistance to different stressors was calculated by determining D-values (times required for inactivation of 90% of the bacterial population), which were then subjected to univariate and multivariate analyses. In addition, a relative stress resistance value, integrating resistance values to all tested stressors, was calculated for each bacterial strain and allowed for a ranking-type classification of E. coli O157:H7 strains according to their environmental robustness. Lineage I/II strains were found to be significantly more resistant to acid, cold, and starvation stress than lineage II strains. Similarly, tir (255T) and clade 8 encoding strains were significantly more resistant to acid, heat, cold, and starvation stress than tir (255A) and non-clade 8 strains. Principal component analysis, which allows grouping of strains with similar stress survival characteristics, separated strains of lineage I and I/II from strains of lineage II, which in general showed reduced survival abilities. Results obtained suggest that lineage I/II, tir (255T), and clade 8 strains, which have been previously reported to be more frequently associated with human disease cases, have greater multiple stress resistance than strains of other genotypes. The results from this

  13. Enumeration of Escherichia coli O157:H7 in Outbreak-Associated Beef Patties.

    PubMed

    Gill, Alexander; Huszczynski, George

    2016-07-01

    An outbreak of five cases of Escherichia coli O157 infection that occurred in Canada in 2012 was linked to frozen beef patties seasoned with garlic and peppercorn. Unopened retail packs of beef patties from the implicated production lot were recovered and analyzed to enumerate E. coli O157, other E. coli strains, and total coliforms. E. coli O157 was not recovered by direct enumeration on selective agar media. E. coli O157 in the samples was estimated at 3.1 most probable number per 140 g of beef patty, other E. coli was 11 CFU/g, and coliforms were 120 CFU/g. These results indicate that the presence of E. coli O157 in ground beef at levels below 0.1 CFU/g may cause outbreaks. However, the roles of temperature abuse, undercooking, and crosscontamination in amplifying the risk are unknown.

  14. Risk of Escherichia coli O157:H7, Non-O157 Shiga Toxin-Producing Escherichia coli, and Campylobacter spp. in Food Animals and Their Products in Qatar.

    PubMed

    Mohammed, Hussni O; Stipetic, Korana; Salem, Ahmed; McDonough, Patrick; Chang, Yung Fu; Sultan, Ali

    2015-10-01

    Escherichia coli O157:H7, non-O157 E. coli, and Campylobacter spp. are among the top-ranked pathogens that threaten the safety of food supply systems around the world. The associated risks and predisposing factors were investigated in a dynamic animal population using a repeat-cross-sectional study design. Animal and environmental samples were collected from dairy and camel farms, chicken processing plants, and abattoirs and analyzed for the presence of these pathogens using a combination of bacterial enrichment and real-time PCR tests without culture confirmation. Data on putative risk factors were also collected and analyzed. E. coli O157:H7 was detected by PCR at higher levels in sheep and camel feces than in cattle feces (odds ratios [OR], 6.8 and 21.1, respectively). Although the genes indicating E. coli O157:H7 were detected at a relatively higher rate (4.3%) in fecal samples from dairy cattle, they were less common in milk and udder swabs from the same animals (1 and 2%, respectively). Among the food adulterants, E. coli O103 was more common in cattle fecal samples, whereas O26 was more common in sheep feces and O45 in camel feces compared with cattle (OR, 2.6 and 3.1, respectively). The occurrence of E. coli in the targeted populations differed by the type of sample and season of the year. Campylobacter jejuni and Campylobacter coli were more common in sheep and camel feces than in cattle feces. Most of the survey and surveillance of E. coli focused on serogroup O157 as a potential foodborne hazard; however, based on the PCR results, non-O157 Shiga toxin-producing E. coli serotypes appeared to be more common, and efforts should be made to include them in food safety programs.

  15. Outbreak of escherichia coli O157: H7 infections after Petting Zoo visits, North Carolina State Fair, October-November 2004.

    PubMed

    Goode, Brant; O'Reilly, Ciara; Dunn, John; Fullerton, Kathleen; Smith, Stacey; Ghneim, George; Keen, James; Durso, Lisa; Davies, Megan; Montgomery, Sue

    2009-01-01

    To identify cases, describe the outbreak, implement control measures, and identify factors associated with infection or protection from infection, including contact with animals and hand hygiene practices. Case finding, a case-control study of 45 cases and 188 controls, environmental investigation, and molecular subtyping of clinical and environmental Escherichia coli O157:H7 isolates. The 2004 North Carolina State Fair. Case patients were fair visitors who had laboratory-confirmed E coli O157 infections, hemolytic uremic syndrome (HUS) diagnoses, or bloody diarrheal illnesses. Control subjects were recruited from a randomized list of persons who had purchased fair tickets online. Environmental samples from the fairgrounds were obtained from locations that had held animals during the fair. Main Exposure Visiting a petting zoo. Case finding: Summary descriptive statistics of suspected, probable, or confirmed E coli O157:H7 infections, signs, symptoms, and HUS. Environmental investigation: E coli O157:H7 isolates, pulsed-field gel electrophoresis patterns, and spatial distribution of source locations. Case-control study: Odds ratios (ORs) comparing reported fair-related activities, hygiene practices, and zoonotic disease knowledge with outcome. A total of 108 case patients were ascertained, including 41 with laboratory-confirmed illness and 15 who experienced HUS. Forty-five case patients and 188 controls were enrolled in the case-control study. Visits to a petting zoo having substantial environmental E coli O157:H7 contamination were associated with illness (age-adjusted OR, 8.2; 95% confidence interval [CI], 3.3-20.3). Among children 5 years or younger who had visited the implicated petting zoo, contact with animal manure (OR, 6.9; 95% CI, 2.2-21.9) and hand-to-mouth behaviors (OR, 10.6; 95% CI, 2.0-55.0) were associated with illness. Reported hand hygiene practices did not differ significantly (OR, 1.8; 95% CI, 0.3-9.5). Reported awareness of the risk for zoonotic

  16. Variations of Escherichia coli O157:H7 Survival in Purple Soils

    PubMed Central

    Zhang, Taoxiang; Hu, Suping; Yang, Wenhao

    2017-01-01

    Escherichia coli O157:H7 is a well-recognized cause of human illness. Survival of Escherichia coli O157:H7 in five purple soils from Sichuan Province was investigated. The dynamics of E. coli O157:H7 survival in purple soils were described by the Weibull model. Results showed that this model is suitable to fit survival curves of E. coli O157:H7 in purple soils, with the calculated td value (survival time needed to reach the detection limit of 100 CFU·g−1) ranging from 2.99 days to 26.36 days. The longest survival time of E. coli O157:H7 was observed in neutral purple soils (24.49 days), followed by alkalescent purple soil (18.62 days) and acid purple soil (3.48 days). The redundancy analysis (RDA) revealed that td values were significantly enhanced by soil nutrition (total organic carbon (OC), total nitrogen (TN), available potassium (AK) and the ratio of humic acid to fulvic acid (Ha/Fa)), but were significantly suppressed by iron and aluminum oxide. PMID:29057845

  17. Association of Escherichia coli O157:H7 with Houseflies on a Cattle Farm†

    PubMed Central

    Alam, Muhammad J.; Zurek, Ludek

    2004-01-01

    The ecology of Escherichia coli O157:H7 is not well understood. The aims of this study were to determine the prevalence of and characterize E. coli O157:H7 associated with houseflies (HF). Musca domestica L. HF (n = 3,440) were collected from two sites on a cattle farm over a 4-month period and processed individually for E. coli O157:H7 isolation and quantification. The prevalence of E. coli O157:H7 was 2.9 and 1.4% in HF collected from feed bunks and a cattle feed storage shed, respectively. E. coli O157:H7 counts ranged from 3.0 × 101 to 1.5 × 105 CFU among the positive HF. PCR analysis of the E. coli O157:H7 isolates revealed that 90.4, 99.2, 99.2, and 100% of them (n = 125) possessed the stx1, stx2, eaeA, and fliC genes, respectively. Large populations of HF on cattle farms may play a role in the dissemination of E. coli O157:H7 among animals and to the surrounding environment. PMID:15574966

  18. Association of Escherichia coli O157:H7 with houseflies on a cattle farm.

    PubMed

    Alam, Muhammad J; Zurek, Ludek

    2004-12-01

    The ecology of Escherichia coli O157:H7 is not well understood. The aims of this study were to determine the prevalence of and characterize E. coli O157:H7 associated with houseflies (HF). Musca domestica L. HF (n = 3,440) were collected from two sites on a cattle farm over a 4-month period and processed individually for E. coli O157:H7 isolation and quantification. The prevalence of E. coli O157:H7 was 2.9 and 1.4% in HF collected from feed bunks and a cattle feed storage shed, respectively. E. coli O157:H7 counts ranged from 3.0 x 10(1) to 1.5 x 10(5) CFU among the positive HF. PCR analysis of the E. coli O157:H7 isolates revealed that 90.4, 99.2, 99.2, and 100% of them (n = 125) possessed the stx1, stx2, eaeA, and fliC genes, respectively. Large populations of HF on cattle farms may play a role in the dissemination of E. coli O157:H7 among animals and to the surrounding environment.

  19. Escherichia coli O157:H7 virulence factors differentially impact cattle and bison macrophage killing capacity.

    PubMed

    Schaut, Robert G; Loving, Crystal L; Sharma, Vijay K

    2018-03-26

    Enterohemorrhagic Escherichia coli O157:H7 colonizes the gastrointestinal tract of ruminants, including cattle and bison, which are reservoirs of these zoonotic disease-causing bacteria. Healthy animals colonized by E. coli O157:H7 do not experience clinical symptoms of the disease induced by E. coli O157:H7 infections in humans; however, a variety of host immunological factors may play a role in the amount and frequency of fecal shedding of E. coli O157:H7 by ruminant reservoirs. How gastrointestinal colonization by E. coli O157:H7 impacts these host animal immunological factors is unknown. Here, various isogenic mutant strains of a foodborne isolate of E. coli O157:H7 were used to evaluate bacterial killing capacity of macrophages of cattle and bison, the two ruminant species. Cattle macrophages demonstrated an enhanced ability to phagocytose and kill E. coli O157:H7 compared to bison macrophages, and killing ability was impacted by E. coli O157:H7 virulence gene expression. These findings suggest that the macrophage responses to E. coli O157:H7 might play a role in the variations observed in E. coli O157:H7 fecal shedding by ruminants in nature. Published by Elsevier Ltd.

  20. The Neuroanatomy of Genetic Subtype Differences in Prader-Willi Syndrome

    PubMed Central

    Honea, Robyn A.; Holsen, Laura M.; Lepping, Rebecca J.; Perea, Rodrigo; Butler, Merlin G.; Brooks, William M.; Savage, Cary R.

    2012-01-01

    Objective Despite behavioral differences between genetic subtypes of Prader-Willi syndrome, no studies have been published characterizing brain structure in these subgroups. Our goal was to examine differences in the brain structure phenotype of common subtypes of Prader-Willi syndrome (PWS) [chromosome 15q deletions and maternal uniparental disomy 15 (UPD)]. Methods Fifteen individuals with PWS due to a typical deletion ((DEL) Type I; n=5, Type II; n=10), 8 with PWS due to UPD, and 25 age-matched healthy-weight individuals (HWC) participated in structural magnetic resonance imaging (MRI) scans. A custom voxel-based morphometry processing stream was used to examine regional differences in gray and white matter volume between groups, covarying for age, sex, and body mass index (BMI). Results Overall, compared to HWC, PWS individuals had lower gray matter volumes that encompassed the prefrontal, orbitofrontal and temporal cortices, hippocampus and parahippocampal gyrus, and lower white matter volumes in the brain stem, cerebellum, medial temporal and frontal cortex. Compared to UPD, the DEL subtypes had lower gray matter volume primarily in the prefrontal and temporal cortices, and lower white matter in the parietal cortex. The UPD subtype had more extensive lower gray and white matter volumes in the orbitofrontal and limbic cortices compared to HWC. Conclusions These preliminary findings are the first structural neuroimaging findings to support potentially separate neural mechanisms mediating the behavioral differences seen in these genetic subtypes. PMID:22241551

  1. British Escherichia coli O157 in Cattle Study (BECS): to determine the prevalence of E. coli O157 in herds with cattle destined for the food chain.

    PubMed

    Henry, M K; Tongue, S C; Evans, J; Webster, C; McKENDRICK, I J; Morgan, M; Willett, A; Reeves, A; Humphry, R W; Gally, D L; Gunn, G J; Chase-Topping, M E

    2017-11-01

    Escherichia coli O157 are zoonotic bacteria for which cattle are an important reservoir. Prevalence estimates for E. coli O157 in British cattle for human consumption are over 10 years old. A new baseline is needed to inform current human health risk. The British E. coli O157 in Cattle Study (BECS) ran between September 2014 and November 2015 on 270 farms across Scotland and England & Wales. This is the first study to be conducted contemporaneously across Great Britain, thus enabling comparison between Scotland and England & Wales. Herd-level prevalence estimates for E. coli O157 did not differ significantly for Scotland (0·236, 95% CI 0·166-0·325) and England & Wales (0·213, 95% CI 0·156-0·283) (P = 0·65). The majority of isolates were verocytotoxin positive. A higher proportion of samples from Scotland were in the super-shedder category, though there was no difference between the surveys in the likelihood of a positive farm having at least one super-shedder sample. E. coli O157 continues to be common in British beef cattle, reaffirming public health policy that contact with cattle and their environments is a potential infection source.

  2. Vaccination with killed whole-cells of Escherichia coli O157:H7 hha mutant emulsified with an adjuvant induced vaccine strain-specific serum antibodies and reduced E. coli O157:H7 fecal shedding in cattle

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 (O157) can cause from a mild diarrheal illness to hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are the primary reservoir for O157 and fecal shedding of O157 by these animals is a major risk factor in contamination of cattle hides and carcasses at slaug...

  3. Comparative genomics of two super-shedder isolates of Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin-producing Escherichia coli O157:H7 (O157) are zoonotic foodborne pathogens and of major public health concern that cause considerable intestinal and extra-intestinal illnesses in humans. O157 colonize the recto-anal junction (RAJ) of asymptomatic cattle who shed the bacterium into the en...

  4. National Survey of Shiga Toxin-Producing Escherichia coli Serotypes O26, O45, O103, O111, O121, O145, and O157 in Australian Beef Cattle Feces.

    PubMed

    Mellor, Glen E; Fegan, Narelle; Duffy, Lesley L; McMILLAN, Kate E; Jordan, David; Barlow, Robert S

    2016-11-01

    Escherichia coli O157 and six non-O157 Shiga toxin-producing E. coli (STEC) serotypes (O26, O45, O103, O111, O121, and O145, colloquially referred to as the "big 6") have been classified as adulterants of raw nonintact beef products in the United States. While beef cattle are a known reservoir for the prototype STEC serotype, E. coli O157, less is known about the dissemination of non-O157 STEC serotypes in Australian cattle. In the present study, 1,500 fecal samples were collected at slaughter from adult (n =628) and young (n =286) beef cattle, adult (n =128) and young (n =143) dairy cattle, and veal calves (n = 315) across 31 Australian export-registered processing establishments. Fecal samples were enriched and tested for E. coli O157 and the big 6 STEC serotypes using BAX System PCR and immunomagnetic separation methods. Pathogenic STEC (pSTEC; isolates that possess stx, eae, and an O antigen marker for O157 or a big 6 serotype) were isolated from 115 samples (7.7%), of which 100 (6.7%) contained E. coli O157 and 19 (1.3%) contained a big 6 serotype. Four of the 115 samples contained multiple pSTEC serotypes. Among samples confirmed for big 6 pSTEC, 15 (1%) contained E. coli O26 and 4 (0.3%) contained E. coli O111. pSTEC of serotypes O45, O103, O121, and O145 were not isolated from any sample, even though genes indicative of E. coli belonging to these serotypes were detected by PCR. Analysis of animal classes revealed a higher pSTEC prevalence in younger animals, including veal (12.7%), young beef (9.8%), and young dairy (7.0%), than in adult animals, including adult beef (5.1%) and adult dairy (3.9%). This study is the largest of its kind undertaken in Australia. In contrast to E. coli O157 and consistent with previous findings, this study reports a relatively low prevalence of big 6 pSTEC serotypes in Australian cattle populations.

  5. Adherence of Non-O157 Shiga Toxin–Producing Escherichia coli to Bovine Recto-anal Junction Squamous Epithelial Cells Appears to Be Mediated by Mechanisms Distinct from Those Used by O157

    PubMed Central

    Hovde, Carolyn J.; John, Manohar

    2013-01-01

    Abstract This study presents evidence that the pattern (diffuse or aggregative) of adherence of clinically relevant non-O157 Shiga toxin–producing Escherichia coli (STEC) to bovine recto-anal junction squamous epithelial cells is similar to that of E. coli O157, although the mechanisms of adherence appear to be distinct. Our results further suggest that novel adhesins, and not Intimin, are likely involved in non-O157 STEC adherence to bovine recto-anal junction squamous epithelial cells. These findings have important implications for the development of efficacious modalities for blocking adherence of non-O157 STEC to bovine gastrointestinal epithelial cells. PMID:23510495

  6. Persistence of non-O157 Shiga Toxin-producing Escherichia coli on fresh produce surfaces

    USDA-ARS?s Scientific Manuscript database

    Introduction: The illnesses attributed to non-O157 Shiga toxin-producing Escherichia coli (STEC) have increased in the past decade with 22 foodborne outbreaks associated with non-O157 STEC. Lettuce and salad bars have been implicated in those outbreaks. Prevalence of the six major non-O157 STEC sero...

  7. Shiga toxin-producing Escherichia coli in Central Greece: prevalence and virulence genes of O157:H7 and non-O157 in animal feces, vegetables, and humans.

    PubMed

    Pinaka, O; Pournaras, S; Mouchtouri, V; Plakokefalos, E; Katsiaflaka, A; Kolokythopoulou, F; Barboutsi, E; Bitsolas, N; Hadjichristodoulou, C

    2013-11-01

    In Greece, Shiga toxin-producing Escherichia coli (STEC) have only been sporadically reported. The objective of this study was to estimate the prevalence of STEC and Escherichia coli O157:H7 in farm animals, vegetables, and humans in Greece. A total number of 1,010 fecal samples were collected from farm animals (sheep, goats, cattle, chickens, pigs), 667 diarrheal samples from humans, and 60 from vegetables, which were cultured in specific media for STEC isolates. Enzyme-linked immunosorbent assay (ELISA) was used to detect toxin-producing colonies, which, subsequently, were subjected to a multiplex polymerase chain reaction (PCR) for stx1, stx2, eae, rfbE O157, and fliC h7 genes. Eighty isolates (7.9 %) from animal samples were found to produce Shiga toxin by ELISA, while by PCR, O157 STEC isolates were detected from 8 (0.8 %) samples and non-O157 STEC isolates from 43 (4.2 %) samples. STEC isolates were recovered mainly from sheep and goats, rarely from cattle, and not from pigs and chickens, suggesting that small ruminants constitute a potential risk for human infections. However, only three human specimens (0.4 %) were positive for the detection of Shiga toxins and all were PCR-negative. Similarly, all 60 vegetable samples were negative for toxin production and for toxin genes, but three samples (two roman rockets and one spinach) were positive by PCR for rfbE O157 and fliC h7 genes. These findings indicate that sheep, goats, cattle, and leafy vegetables can be a reservoir of STEC and Escherichia coli O157:H7 isolates in Greece, which are still rarely detected among humans.

  8. Genetic subtype differences in neural circuitry of food motivation in Prader-Willi syndrome.

    PubMed

    Holsen, L M; Zarcone, J R; Chambers, R; Butler, M G; Bittel, D C; Brooks, W M; Thompson, T I; Savage, C R

    2009-02-01

    Differences in behavioral phenotypes between the two most common subtypes of Prader-Willi syndrome (PWS) (chromosome 15q deletions and maternal uniparental disomy 15 (UPD) indicate that distinct neural networks may be affected. Though both subtypes display hyperphagia, the deletion subgroup shows reduced behavioral inhibition around food, whereas those with UPD are generally more able to maintain cognitive control over food intake impulses. To examine the neural basis of phenotypic differences to better understand relationships between genetic subtypes and behavioral outcomes. We predicted greater food motivation circuitry activity in the deletion subtype and greater activity in higher order cognitive regions in the UPD group, especially after eating. Nine individuals with PWS due to UPD and nine individuals with PWS due to (type 2) deletion, matched for age, gender and body mass index, underwent functional magnetic resonance imaging (fMRI) while viewing food images during two food motivation states: one before (pre-meal) and one after (post-meal) eating a standardized 500 kcal meal. Both PWS subgroups showed greater activity in response to food pre- and post-meal compared with the healthy-weight group. Compared with UPD, the deletion subtype showed increased food motivation network activation both pre- and post-meal, especially in the medial prefrontal cortex (mPFC) and amygdala. In contrast, the UPD group showed greater activation than the deletion subtype post-meal in the dorsolateral prefrontal cortex (DLPFC) and parahippocampal gyrus (PHG). These preliminary findings are the first functional neuroimaging findings to support divergent neural mechanisms associated with behavioral phenotypes in genetic subtypes of PWS. Results are discussed within the framework of genetic mechanisms such as haploinsufficiency and gene dosage effects and their differential influence on deletion and UPD subtypes, respectively.

  9. The Escherichia coli O157:H7 bovine rumen fluid proteome reflects adaptive bacterial responses.

    PubMed

    Kudva, Indira T; Stanton, Thaddeus B; Lippolis, John D

    2014-02-21

    To obtain insights into Escherichia coli O157:H7 (O157) survival mechanisms in the bovine rumen, we defined the growth characteristics and proteome of O157 cultured in rumen fluid (RF; pH 6.0-7.2 and low volatile fatty acid content) obtained from rumen-fistulated cattle fed low protein content "maintenance diet" under diverse in vitro conditions. Bottom-up proteomics (LC-MS/MS) of whole cell-lysates of O157 cultured under anaerobic conditions in filter-sterilized RF (fRF; devoid of normal ruminal microbiota) and nutrient-depleted and filtered RF (dRF) resulted in an anaerobic O157 fRF-and dRF-proteome comprising 35 proteins functionally associated with cell structure, motility, transport, metabolism and regulation, but interestingly, not with O157 virulence. Shotgun proteomics-based analysis using isobaric tags for relative and absolute quantitation used to further study differential protein expression in unfiltered RF (uRF; RF containing normal rumen microbial flora) complemented these results. Our results indicate that in the rumen, the first anatomical compartment encountered by this human pathogen within the cattle gastrointestinal tract (GIT), O157 initiates a program of specific gene expression that enables it to adapt to the in vivo environment, and successfully transit to its colonization sites in the bovine GIT. Further experiments in vitro using uRF from animals fed different diets and with additional O157 strains, and in vivo using rumen-fistulated cattle will provide a comprehensive understanding of the adaptive mechanisms involved, and help direct evolution of novel modalities for blocking O157 infection of cattle.

  10. Epidemiology of Escherichia coli O157:H7 Outbreaks, United States, 1982–2002

    PubMed Central

    Sparling, Phyllis H.; Crowe, Collen; Griffin, Patricia M.; Swerdlow, David L.

    2005-01-01

    Escherichia coli O157:H7 causes 73,000 illnesses in the United States annually. We reviewed E. coli O157 outbreaks reported to Centers for Disease Control and Prevention (CDC) to better understand the epidemiology of E. coli O157. E. coli O157 outbreaks (≥2 cases of E. coli O157 infection with a common epidemiologic exposure) reported to CDC from 1982 to 2002 were reviewed. In that period, 49 states reported 350 outbreaks, representing 8,598 cases, 1,493 (17%) hospitalizations, 354 (4%) hemolytic uremic syndrome cases, and 40 (0.5%) deaths. Transmission route for 183 (52%) was foodborne, 74 (21%) unknown, 50 (14%) person-to-person, 31 (9%) waterborne, 11 (3%) animal contact, and 1 (0.3%) laboratory-related. The food vehicle for 75 (41%) foodborne outbreaks was ground beef, and for 38 (21%) outbreaks, produce. PMID:15829201

  11. Recto-anal junction (RAJ) microbiota composition in Escherichia coli O157:H7 shedding cattle

    USDA-ARS?s Scientific Manuscript database

    Introduction: Cattle are the asymptomatic reservoirs of Escherichia coli O157:H7 (O157) that tend to preferentially colonize the bovine recto-anal junction (RAJ). Therefore, understanding the taxonomic profile, microbial diversity, and microbiota-O157 interactions at the RAJ could give insights into...

  12. Use of low dose e-beam irradiation to reduce E. coli O157:H7, non-O157 (VTEC) E. coli and Salmonella viability on meat surfaces.

    PubMed

    Kundu, Devapriya; Gill, Alexander; Lui, Chenyuan; Goswami, Namita; Holley, Richard

    2014-01-01

    This study determined the extent that irradiation of fresh beef surfaces with an absorbed dose of 1 kGy electron (e-) beam irradiation might reduce the viability of mixtures of O157 and non-O157 verotoxigenic Escherichia coli (VTEC) and Salmonella. These were grouped together based on similar resistances to irradiation and inoculated on beef surfaces (outside flat and inside round, top and bottom muscle cuts), and then e-beam irradiated. Salmonella serovars were most resistant to 1 kGy treatment, showing a reduction of ≤1.9 log CFU/g. This treatment reduced the viability of two groups of non-O157 E. coli mixtures by ≤4.5 and ≤3.9 log CFU/g. Log reductions of ≤4.0 log CFU/g were observed for E. coli O157:H7 cocktails. Since under normal processing conditions the levels of these pathogens on beef carcasses would be lower than the lethality caused by the treatment used, irradiation at 1 kGy would be expected to eliminate the hazard represented by VTEC E. coli. © 2013.

  13. Microbiota response to Escherichia coli O157:H7 colonization in cattle

    USDA-ARS?s Scientific Manuscript database

    Cattle are primary reservoir of Shiga toxin-producing Escherichia coli (STEC). Field studies indicate STEC colonization influences gut microbiota composition in beef and dairy cattle. In this pilot study, we evaluated the bovine gut microbiota after STEC O157 (O157) challenge under experimental con...

  14. Design of bactericidal peptides against Escherichia coli O157:H7, Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus.

    PubMed

    Cruz, Jenniffer; Rondon, Paola; Torres, Rodrigo; Urquiza, Mauricio; Guzman, Fanny; Alvarez, Claudio; Abengozar, Maria Angeles; Sierra, Daniel A; Rivas, Luis; Fernandez-Lafuente, Roberto; Ortiz, Claudia

    2018-05-08

    Antimicrobial peptides are on the first line of defense against pathogenic microorganisms of many living beings. These compounds are considered natural antibiotics that can overcome bacterial resistance to conventional antibiotics. Due to this characteristic, new peptides with improved properties are quite appealing for designing new strategies for fighting pathogenic bacteria Methods: Sixteen designed peptides were synthesized using Fmoc chemistry; five of them are new cationic antimicrobial peptides (CAMPs) designed using a genetic algorithm that optimizes the antibacterial activity based on selected physicochemical descriptors and 11 analog peptides derived from these five peptides were designed and constructed by single amino acid substitutions. These 16 peptides were structurally characterized and their biological activity was determined against Escherichia coli O157:H7 (E. coli O157:H7), and methicillin-resistant strains of Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (P. aeruginosa) were determined Results: These 16 peptides were folded into an α-helix structure in membrane-mimicking environment. Among these 16 peptides, GIBIM-P5S9K (ATKKCGLFKILKGVGKI) showed the highest antimicrobial activity against E. coli O157:H7 (MIC=10µM), methicillin resistant Staphylococcus aureus (MRSA) (MIC=25µM) and Pseudomonas aeruginosa (MIC=10 µM). Peptide GIBIM-P5S9K caused permeabilization of the bacterial membrane at 25 µM as determined by the Sytox Green uptake assay and the labelling of these bacteria by using the fluoresceinated peptide. GIBIM-P5S9K seems to be specific for these bacteria because at 50 µM provoked lower than 40% of erythrocyte hemolysis. New CAMPs have been designed using a genetic algorithm based on selected physicochemical descriptors and single amino acid substitution. These CAMPs interacted quite specifically with the bacterial cell membrane, GIBIM-P5S9K exhibiting high antibacterial activity on Escherichia coli O157:H7, methicillin

  15. Perspectives on super-shedding of Escherichia coli O157:H7 by cattle.

    PubMed

    Munns, Krysty D; Selinger, L Brent; Stanford, Kim; Guan, Leluo; Callaway, Todd R; McAllister, Tim A

    2015-02-01

    Escherichia coli O157:H7 is a foodborne pathogen that causes illness in humans worldwide. Cattle are the primary reservoir of this bacterium, with the concentration and frequency of E. coli O157:H7 shedding varying greatly among individuals. The term "super-shedder" has been applied to cattle that shed concentrations of E. coli O157:H7 ≥ 10⁴ colony-forming units/g feces. Super-shedders have been reported to have a substantial impact on the prevalence and transmission of E. coli O157:H7 in the environment. The specific factors responsible for super-shedding are unknown, but are presumably mediated by characteristics of the bacterium, animal host, and environment. Super-shedding is sporadic and inconsistent, suggesting that biofilms of E. coli O157:H7 colonizing the intestinal epithelium in cattle are intermittently released into feces. Phenotypic and genotypic differences have been noted in E. coli O157:H7 recovered from super-shedders as compared to low-shedding cattle, including differences in phage type (PT21/28), carbon utilization, degree of clonal relatedness, tir polymorphisms, and differences in the presence of stx2a and stx2c, as well as antiterminator Q gene alleles. There is also some evidence to support that the native fecal microbiome is distinct between super-shedders and low-shedders and that low-shedders have higher levels of lytic phage within feces. Consequently, conditions within the host may determine whether E. coli O157:H7 can proliferate sufficiently for the host to obtain super-shedding status. Targeting super-shedders for mitigation of E. coli O157:H7 has been proposed as a means of reducing the incidence and spread of this pathogen to the environment. If super-shedders could be easily identified, strategies such as bacteriophage therapy, probiotics, vaccination, or dietary inclusion of plant secondary compounds could be specifically targeted at this subpopulation. Evidence that super-shedder isolates share a commonality with isolates

  16. Biofilm formation by Shiga toxin-producing Escherichia coli O157:H7 and Non-O157 strains and their tolerance to sanitizers commonly used in the food processing environment.

    PubMed

    Wang, Rong; Bono, James L; Kalchayanand, Norasak; Shackelford, Steven; Harhay, Dayna M

    2012-08-01

    Shiga toxin-producing Escherichia coli (STEC) strains are important foodborne pathogens. Among these, E. coli O157:H7 is the most frequently isolated STEC serotype responsible for foodborne diseases. However, the non-O157 serotypes have been associated with serious outbreaks and sporadic diseases as well. It has been shown that various STEC serotypes are capable of forming biofilms on different food or food contact surfaces that, when detached, may lead to cross-contamination. Bacterial cells at biofilm stage also are more tolerant to sanitizers compared with their planktonic counterparts, which makes STEC biofilms a serious food safety concern. In the present study, we evaluated the potency of biofilm formation by a variety of STEC strains from serotypes O157:H7, O26:H11, and O111:H8; we also compared biofilm tolerance with two types of common sanitizers, a quaternary ammonium chloride-based sanitizer and chlorine. Our results demonstrated that biofilm formation by various STEC serotypes on a polystyrene surface was highly strain-dependent, whereas the two non-O157 serotypes showed a higher potency of pellicle formation at air-liquid interfaces on a glass surface compared with serotype O157:H7. Significant reductions of viable biofilm cells were achieved with sanitizer treatments. STEC biofilm tolerance to sanitization was strain-dependent regardless of the serotypes. Curli expression appeared to play a critical role in STEC biofilm formation and tolerance to sanitizers. Our data indicated that multiple factors, including bacterial serotype and strain, surface materials, and other environmental conditions, could significantly affect STEC biofilm formation. The high potential for biofilm formation by various STEC serotypes, especially the strong potency of pellicle formation by the curli-positive non-O157 strains with high sanitization tolerance, might contribute to bacterial colonization on food contact surfaces, which may result in downstream product

  17. Slugs: potential novel vectors of Escherichia coli O157.

    PubMed

    Sproston, Emma L; Macrae, M; Ogden, Iain D; Wilson, Michael J; Strachan, Norval J C

    2006-01-01

    Field and laboratory studies were performed to determine whether slugs could act as novel vectors for pathogen (e.g., Escherichia coli O157) transfer from animal feces to salad vegetables. Escherichia coli O157 was isolated from 0.21% of field slugs from an Aberdeenshire sheep farm. These isolates carried the verocytotoxin genes (vt1 and vt2) and the attaching and effacing gene (eae), suggesting that they are potentially pathogenic to humans. Strain typing using multilocus variable number tandem repeats analysis showed that slug and sheep isolates were indistinguishable. Laboratory experiments using an E. coli mutant resistant to nalidixic acid showed that the ubiquitous slug species Deroceras reticulatum could carry viable E. coli on its external surface for up to 14 days. Slugs that had been fed E. coli shed viable bacteria in their feces with numbers showing a short but statistically significant linear log decline. Further, it was found that E. coli persisted for up to 3 weeks in excreted slug feces, and hence, we conclude that slugs have the potential to act as novel vectors of E. coli O157.

  18. Vaccination with killed whole-cells of Escherichia coli O157:H7 hha mutant emulsified with an adjuvant induced vaccine strain-specific serum antibodies and reduced E. coli O157:H7 fecal shedding in cattle.

    PubMed

    Sharma, Vijay K; Schaut, Robert G; Loving, Crystal L

    2018-06-01

    Escherichia coli O157:H7 (O157) can cause from a mild diarrheal illness to hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are the primary reservoir for O157 and fecal shedding of O157 by these animals is a major risk factor in contamination of cattle hides and carcasses at slaughter. Vaccination is an important strategy to reduce fecal shedding of O157 in cattle. In this study, we evaluated the immunogenicity and efficacy of an inactivated vaccine strain of O157 formulated with an adjuvant. This vaccine strain was deleted of the hha gene enabling high level expression of the locus of enterocyte effacement (LEE) encoded proteins required for O157 colonization in cattle. The inactivated vaccine strain emulsified with the adjuvant or suspended in the phosphate-buffered saline (PBS) was injected in the neck muscles of two groups of weaned calves followed by a booster three weeks later with the corresponding formulation. Animals in groups 3 and 4 were injected similarly with the adjuvant and PBS, respectively. All animals were orally inoculated three weeks post-booster vaccination with a live culture of O157. The animals vaccinated with the adjuvanted vaccine showed higher serum antibody titers to the vaccine strain and shed O157 for a shorter duration and at lower numbers compared to the animals vaccinated with the non-adjuvanted vaccine, adjuvant-only, or PBS. Western blotting of the vaccine strain lysates showed higher immunoreactivity of serum IgG in vaccinated animals to several O157-specific proteins and lipopolysaccharides (LPS). The vaccination induced IgG showed specificity to LEE-encoded proteins and outer membrane LPS as LEE and waaL deletion mutants, unable to produce LEE proteins and synthesize high molecular weight LPS, respectively, yielded significantly lower antibody titers compared to the parent vaccine strain. The positive reactivity of the immune serum was also observed for purified LEE-encoded proteins EspA and EspB. In

  19. Development of a multiplex PCR-based rapid typing method for enterohemorrhagic Escherichia coli O157 strains.

    PubMed

    Ooka, Tadasuke; Terajima, Jun; Kusumoto, Masahiro; Iguchi, Atsushi; Kurokawa, Ken; Ogura, Yoshitoshi; Asadulghani, Md; Nakayama, Keisuke; Murase, Kazunori; Ohnishi, Makoto; Iyoda, Sunao; Watanabe, Haruo; Hayashi, Tetsuya

    2009-09-01

    Enterohemorrhagic Escherichia coli O157 (EHEC O157) is a food-borne pathogen that has raised worldwide public health concern. The development of simple and rapid strain-typing methods is crucial for the rapid detection and surveillance of EHEC O157 outbreaks. In the present study, we developed a multiplex PCR-based strain-typing method for EHEC O157, which is based on the variability in genomic location of IS629 among EHEC O157 strains. This method is very simple, in that the procedures are completed within 2 h, the analysis can be performed without the need for special equipment or techniques (requiring only conventional PCR and agarose gel electrophoresis systems), the results can easily be transformed into digital data, and the genes for the major virulence markers of EHEC O157 (the stx(1), stx(2), and eae genes) can be detected simultaneously. Using this method, 201 EHEC O157 strains showing different XbaI digestion patterns in pulsed-field gel electrophoresis (PFGE) analysis were classified into 127 types, and outbreak-related strains showed identical or highly similar banding patterns. Although this method is less discriminatory than PFGE, it may be useful as a primary screening tool for EHEC O157 outbreaks.

  20. Evaluation of Hha and Hha SepB Mutant Strains of Escherichia coli O157:H7 as Bacterins for Reducing E. coli O157:H7 Shedding in Cattle

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 colonizes cattle intestines by using locus of enterocyte effacement (LEE)-encoded proteins. Induction of systemic immune response against LEE-encoded proteins, therefore, will prove effective in reducing E. coli O157:H7 colonization in cattle. Previous studies have demonstra...

  1. Summer and Winter Prevalence of Shiga Toxin-Producing Escherichia coli (STEC) O26, O45, O103, O111, O121, O145, and O157 in Feces of Feedlot Cattle.

    PubMed

    Dewsbury, Diana M A; Renter, David G; Shridhar, Pragathi B; Noll, Lance W; Shi, Xiaorong; Nagaraja, Tiruvoor G; Cernicchiaro, Natalia

    2015-08-01

    The United States Department of Agriculture Food Safety and Inspection Service has declared seven Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, O145, and O157) as adulterants in raw, nonintact beef products. The objective of this study was to determine the prevalence of these seven serogroups and the associated virulence genes (Shiga toxin [stx1, stx2], and intimin [eae]) in cattle feces during summer (June-August 2013) and winter (January-March 2014) months. Twenty-four pen floor fecal samples were collected from each of 24 cattle pens, in both summer and winter months, at a commercial feedlot in the United States. Samples were subjected to culture-based detection methods that included enrichment, serogroup-specific immunomagnetic separation and plating on selective media, followed by a multiplex polymerase chain reaction for serogroup confirmation and virulence gene detection. A sample was considered STEC positive if a recovered isolate harbored an O gene, stx1, and/or stx2, and eae genes. All O serogroups of interest were detected in summer months, and model-adjusted prevalence estimates are as follows: O26 (17.8%), O45 (14.6%), O103 (59.9%), O111 (0.2%), O121 (2.0%), O145 (2.7%), and O157 (41.6%); however, most non-O157 isolates did not harbor virulence genes. The cumulative model-adjusted sample-level prevalence estimates of STEC O26, O103, O145, and O157 during summer (n=576) were 1.0, 1.6, 0.8, and 41.4%, respectively; STEC O45, O111, and O121 were not detected during summer months. In winter, serogroups O26 (0.9%), O45 (1.5%), O103 (40.2%), and O121 (0.2%) were isolated; however, no virulence genes were detected in isolates from cattle feces collected during winter (n=576). Statistically significant seasonal differences in prevalence were identified for STEC O103 and O157 (p<0.05), but data on other STEC were sparse. The results of this study indicate that although non-O157 serogroups were present, non-O157 STEC were

  2. Evaluation of BBL CHROMagar O157 versus Sorbitol-MacConkey Medium for Routine Detection of Escherichia coli O157 in a Centralized Regional Clinical Microbiology Laboratory▿

    PubMed Central

    Church, D. L.; Emshey, D.; Semeniuk, H.; Lloyd, T.; Pitout, J. D.

    2007-01-01

    The performance of BBL CHROMagar O157 (CHROM) versus that of sorbitol-MacConkey (SMAC) media for detection of Escherichia coli O157 was determined for a 3-month period. Results for 27/3,116 (0.9%) stool cultures were positive. CHROM had a higher sensitivity (96.30%) and negative predictive value (100%) and a better diagnostic efficiency than SMAC. Labor and material costs decreased when CHROM was used. PMID:17634298

  3. Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage.

    PubMed

    Patel, Jitendra; Sharma, Manan; Millner, Patricia; Calaway, Todd; Singh, Manpreet

    2011-04-01

    Outbreaks associated with leafy greens have focused attention on the transfer of human pathogens to these commodities during harvest with commercial equipment. Attachment of Escherichia coli O157:H7 on new or rusty spinach harvester blades immersed in spinach extract or 10% tryptic soy broth (TSB) was investigated. Bacteriophages specific for E. coli O157:H7 were evaluated to kill cells attached to blade. A cocktail of five nalidixic acid-resistant E. coli O157:H7 isolates was transferred to 25 mL of spinach extract or 10% TSB. A piece of sterilized spinach harvester blade (2×1") was placed in above spinach extract or 10% TSB and incubated at room (22 °C) or dynamic (30 °C day, 20 °C night) temperatures. E. coli O157:H7 populations attached to blade during incubation in spinach extract or 10% TSB were determined. When inoculated at 1 log CFU/mL, E. coli O157:H7 attachment to blades after 24 and 48 h incubation at dynamic temperature (6.09 and 6.37 log CFU/mL) was significantly higher than when incubated at 22 °C (4.84 and 5.68 log CFU/mL), respectively. After 48 h incubation, two blades were sprayed on each side with a cocktail of E. coli O157-specific bacteriophages before scraping the blade, and subsequent plating on Sorbitol MacConkey media-nalidixic acid. Application of bacteriophages reduced E. coli O157:H7 populations by 4.5 log CFU on blades after 2 h of phage treatment. Our study demonstrates that E. coli O157:H7 can attach to and proliferate on spinach harvester blades under static and dynamic temperature conditions, and bacteriophages are able to reduce E. coli O157:H7 populations adhered to blades. © Mary Ann Liebert, Inc.

  4. Expressive and receptive language in Prader-Willi syndrome: report on genetic subtype differences.

    PubMed

    Dimitropoulos, Anastasia; Ferranti, Angela; Lemler, Maria

    2013-01-01

    Prader-Willi syndrome (PWS), most recognized for the hallmark hyperphagia and food preoccupations, is caused by the absence of expression of the paternally active genes in the q11-13 region of chromosome 15. Since the recognition of PWS as a genetic disorder, most research has focused primarily on the medical, genetic, and behavioral aspects of the syndrome. Extensive research has not been conducted on the cognitive, speech, and language abilities in PWS. In addition, language differences with regard to genetic mechanism of PWS have not been well investigated. To date, research indicates overall language ability is markedly below chronological age with expressive language more impaired than receptive language in people with PWS. Thus, the aim of the present study was to further characterize expressive and receptive language ability in 35 participants with PWS and compare functioning by genetic subtype using the Clinical Evaluation of Language Fundamentals-4 (CELF-IV). Results indicate that core language ability is significantly impaired in PWS and both expressive and receptive abilities are significantly lower than verbal intelligence. In addition, participants with the maternal uniparental disomy (mUPD) genetic subtype exhibit discrepant language functioning with higher expressive vs. receptive language abilities. Future research is needed to further examine language functioning in larger genetic subtype participant samples using additional descriptive measures. Further work should also delineate findings with respect to size of the paternal deletion (Type 1 and Type 2 deletions) and explore how overexpression of maternally expressed genes in the 15q11-13 region may relate to verbal ability. After reading this article, the reader will be able to: (1) summarize primary characteristics of Prader-Willi syndrome (PWS), (2) describe differentiating characteristics for the PWS genetic subtypes, (3) recall limited research regarding language functioning in PWS to date

  5. Acid tolerance and acid shock response of Escherichia coli O157:H7 and non-O157:H7 isolates provide cross protection to sodium lactate and sodium chloride.

    PubMed

    Garren, D M; Harrison, M A; Russell, S M

    1998-02-01

    The survival of Escherichia coli O157:H7 and non-O157:H7 due to an enhanced acid tolerance response (ATR), and enhanced acid shock response (ASR), or the stationary phase protective system when exposed to lactic acid and the resulting cross protection against increased concentration of sodium chloride and sodium lactate was studied. Escherichia coli O157:H7 isolates (1932 and 009) and a non-O157:H7 strain (ATCC 23716) were grown to stationary phase at 32 degrees C and O157:H7 to one of two treatments in an attempt to either acid shock or acid adapt the survivors. Acid shocked cells were exposed to lactic acid at pH 4.0. Acid-adapted cells were first exposed to a pH of 5.5 and then an acid challenge of pH 4.0. Sodium lactate (10%, 20%, or 30%) or sodium chloride (5%, 10%, or 15%) were added to a minimal glucose medium after the acidification treatment. When acid shocked and acid adapted isolate 932 and strain ATCC 23716 tolerated the elevated levels of sodium lactate, and the strain ATCC 23716 tolerated the elevated levels of sodium chloride. Acid adaption allowed isolate 932 to tolerate higher levels of sodium chloride; however, the acid shocking did not provide the same protection. Neither of the acid treatment provided increased tolerance to sodium chloride for isolate E009. Evidence of cross protection against acid and sodium chloride or acid and sodium lactate in E. coli O157:H7 could point to a need for further evaluation of whether these combinations of preservation means are sufficient to control this pathogen.

  6. Growth of Escherichia coli O157:H7, Non-O157 Shiga Toxin-Producing Escherichia coli , and Salmonella in Water and Hydroponic Fertilizer Solutions.

    PubMed

    Shaw, Angela; Helterbran, Kara; Evans, Michael R; Currey, Christopher

    2016-12-01

    The desire for local, fresh produce year round is driving the growth of hydroponic growing systems in the United States. Many food crops, such as leafy greens and culinary herbs, grown within hydroponics systems have their root systems submerged in recirculating nutrient-dense fertilizer solutions from planting through harvest. If a foodborne pathogen were introduced into this water system, the risk of contamination to the entire crop would be high. Hence, this study was designed to determine whether Escherichia coli O157:H7, non-O157 Shiga toxin-producing E. coli , and Salmonella were able to survive and reproduce in two common hydroponic fertilizer solutions and in water or whether the bacteria would be killed or suppressed by the fertilizer solutions. All the pathogens grew by 1 to 6 log CFU/ml over a 24-h period, depending on the solution. E. coli O157:H7 reached higher levels in the fertilizer solution with plants (3.12 log CFU/ml), whereas non-O157 Shiga toxin-producing E. coli and Salmonella reached higher levels in the fertilizer solution without plants (1.36 to 3.77 log CFU/ml). The foodborne pathogens evaluated here survived for 24 h in the fertilizer solution, and populations grew more rapidly in these solutions than in plain water. Therefore, human pathogens entering the fertilizer solution tanks in hydroponic systems would be expected to rapidly propagate and spread throughout the system and potentially contaminate the entire crop.

  7. A glimpse of Escherichia coli O157:H7 survival in soils from eastern China

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 (E. coli O157:H7) is an important food-borne pathogen, which continues to be a major public health concern worldwide. It is known that E. coli O157:H7 survive in soil environment might result in the contamination of fresh produce or water source. To investigate how the soils...

  8. Temperature-Dependent Fermentation of d-Sorbitol in Escherichia coli O157:H7

    PubMed Central

    Bouvet, O. M. M.; Pernoud, S.; Grimont, P. A. D.

    1999-01-01

    The influence of growth temperature on the ability to ferment d-sorbitol was investigated in Escherichia coli O157:H7. It was found that O157:H7 strains have a temperature-sensitive sorbitol phenotype. d-Sorbitol transport and sorbitol-6-phosphate dehydrogenase activities were expressed in sorbitol-fermenting cells grown at 30°C but only at a low level at 40°C. Sorbitol-positive variants able to transport d-sorbitol were easily selected at 30°C from culture of Sor− E. coli O157:H7 strains. PMID:10473445

  9. Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene.

    PubMed

    Wan, Emily S; Castaldi, Peter J; Cho, Michael H; Hokanson, John E; Regan, Elizabeth A; Make, Barry J; Beaty, Terri H; Han, MeiLan K; Curtis, Jeffrey L; Curran-Everett, Douglas; Lynch, David A; DeMeo, Dawn L; Crapo, James D; Silverman, Edwin K

    2014-08-06

    Preserved Ratio Impaired Spirometry (PRISm), defined as a reduced FEV1 in the setting of a preserved FEV1/FVC ratio, is highly prevalent and is associated with increased respiratory symptoms, systemic inflammation, and mortality. Studies investigating quantitative chest tomographic features, genetic associations, and subtypes in PRISm subjects have not been reported. Data from current and former smokers enrolled in COPDGene (n = 10,192), an observational, cross-sectional study which recruited subjects aged 45-80 with ≥10 pack years of smoking, were analyzed. To identify epidemiological and radiographic predictors of PRISm, we performed univariate and multivariate analyses comparing PRISm subjects both to control subjects with normal spirometry and to subjects with COPD. To investigate common genetic predictors of PRISm, we performed a genome-wide association study (GWAS). To explore potential subgroups within PRISm, we performed unsupervised k-means clustering. The prevalence of PRISm in COPDGene is 12.3%. Increased dyspnea, reduced 6-minute walk distance, increased percent emphysema and decreased total lung capacity, as well as increased segmental bronchial wall area percentage were significant predictors (p-value <0.05) of PRISm status when compared to control subjects in multivariate models. Although no common genetic variants were identified on GWAS testing, a significant association with Klinefelter's syndrome (47XXY) was observed (p-value < 0.001). Subgroups identified through k-means clustering include a putative "COPD-subtype", "Restrictive-subtype", and a highly symptomatic "Metabolic-subtype". PRISm subjects are clinically and genetically heterogeneous. Future investigations into the pathophysiological mechanisms behind and potential treatment options for subgroups within PRISm are warranted. Clinicaltrials.gov Identifier: NCT000608764.

  10. An Escherichia coli O157-specific engineered pyocin prevents and ameliorates infection by E. coli O157:H7 in an animal model of diarrheal disease.

    PubMed

    Ritchie, Jennifer M; Greenwich, Jennifer L; Davis, Brigid M; Bronson, Roderick T; Gebhart, Dana; Williams, Steven R; Martin, David; Scholl, Dean; Waldor, Matthew K

    2011-12-01

    AvR2-V10.3 is an engineered R-type pyocin that specifically kills Escherichia coli O157, an enteric pathogen that is a major cause of food-borne diarrheal disease. New therapeutics to counteract E. coli O157 are needed, as currently available antibiotics can exacerbate the consequences of infection. We show here that orogastric administration of AvR2-V10.3 can prevent or ameliorate E. coli O157:H7-induced diarrhea and intestinal inflammation in an infant rabbit model of infection when the compound is administered either in a postexposure prophylactic regimen or after the onset of symptoms. Notably, administration of AvR2-V10.3 also reduces bacterial carriage and fecal shedding of this pathogen. Our findings support the further development of pathogen-specific R-type pyocins as a way to treat enteric infections.

  11. Overview of Genetically Engineered Mouse Models of Distinct Breast Cancer Subtypes.

    PubMed

    Usary, Jerry; Darr, David Brian; Pfefferle, Adam D; Perou, Charles M

    2016-03-18

    Advances in the screening of new therapeutic options have significantly reduced the breast cancer death rate over the last decade. Despite these advances, breast cancer remains the second leading cause of cancer death among women. This is due in part to the complexity of the disease, which is characterized by multiple subtypes that are driven by different genetic mechanisms and that likely arise from different cell types of origin. Because these differences often drive treatment options and outcomes, it is important to select relevant preclinical model systems to study new therapeutic interventions and tumor biology. Described in this unit are the characteristics and applications of validated genetically engineered mouse models (GEMMs) of basal-like, luminal, and claudin-low human subtypes of breast cancer. These different subtypes have different clinical outcomes and require different treatment strategies. These GEMMs can be considered faithful surrogates of their human disease counterparts. They represent alternative preclinical tumor models to cell line and patient-derived xenografts for preclinical drug discovery and tumor biology studies. Copyright © 2016 John Wiley & Sons, Inc.

  12. Changing plasmid types responsible for extended spectrum cephalosporin resistance in Escherichia coli O157:H7 in the United States, 1996–2009

    PubMed Central

    Folster, J. P.; Pecic, G.; Stroika, S.; Rickert, R.; Whichard, J.

    2015-01-01

    Escherichia coli O157 is a major cause of foodborne illness. Plasmids are genetic elements that mobilize antimicrobial resistance determinants including blaCMY β-lactamases that confer resistance to extended-spectrum cephalosporins (ESC). ESCs are important for treating a variety of infections. IncA/C plasmids are found among diverse sources, including cattle, the principal source of E. coli O157 infections in humans. IncI1 plasmids are common among E. coli and Salmonella from poultry and other avian sources. To broaden our understanding of reservoirs of blaCMY, we determined the types of plasmids carrying blaCMY among E. coli O157. From 1996 to 2009, 3742 E. coli O157 isolates were tested. Eleven (0.29%) were ceftriaxone resistant and had a blaCMY-2-containing plasmid. All four isolates submitted before 2001 and a single 2001 isolate had blaCMY encoded on IncA/C plasmids, while all five isolates submitted after 2001 and a single 2001 isolate had blaCMY carried on IncI1 plasmids. The IncI1 plasmids were ST2, ST20, and ST23. We conclude that cephalosporin resistance among E. coli O157:H7 is due to plasmid-encoded blaCMY genes and that plasmid types appear to have shifted from IncA/C to IncI1. This shift suggests either a change in plasmid type among animal reservoirs or that the organism has expanded into avian reservoirs. More analysis of human, retail meat, and food animal isolates is necessary to broaden our understanding of the antimicrobial resistance determinants of ESC resistance among E. coli O157. PMID:26478858

  13. Functional Metagenomics of Escherichia coli O157:H7 Interactions with Spinach Indigenous Microorganisms during Biofilm Formation

    PubMed Central

    Carter, Michelle Q.; Xue, Kai; Brandl, Maria T.; Liu, Feifei; Wu, Liyou; Louie, Jacqueline W.; Mandrell, Robert E.; Zhou, Jizhong

    2012-01-01

    The increase in foodborne outbreaks worldwide attributed to fresh fruit and vegetables suggests that produce may serve as an ecological niche for enteric pathogens. Here we examined the interaction of E. coli O157:H7 (EcO157) with spinach leaf indigenous microorganisms during co-colonization and establishment of a mixed biofilm on a stainless steel surface. Stainless steel surface was selected to mimic the surface of produce-processing equipment, where retention of foodborne pathogens such as EcO157 could serve as a potential source for transmission. We observed a positive effect of spinach-associated microbes on the initial attachment of EcO157, but an antagonistic effect on the EcO157 population at the later stage of biofilm formation. Metagenomic analyses of the biofilm community with the GeoChip revealed an extremely diverse community (gene richness, 23409; Shannon-Weiner index H, 9.55). Presence of EcO157 in the mixed biofilm resulted in a significant decrease in the community α-diversity (t test, P<0.05), indicating a putative competition between the pathogen and indigenous spinach microbes. The decrease in the β-diversity of the EcO157-inoculated biofilm at 48 h (ANOVA, P<0.05) suggested a convergent shift in functional composition in response to EcO157 invasion. The success of EcO157 in the mixed biofilm is likely associated with its metabolic potential in utilizing spinach nutrients: the generation time of EcO157 in spinach lysates at 28°C is ∼ 38 min, which is comparable to that in rich broth. The significant decrease in the abundance of many genes involved in carbon, nitrogen, and phosphorus cycling in the EcO157-inoculated biofilms (t test, P<0.05) further support our conclusion that competition for essential macronutrients is likely the primary interaction between the EcO157 and indigenous spinach-biofilm species. PMID:22957052

  14. Slugs: Potential Novel Vectors of Escherichia coli O157

    PubMed Central

    Sproston, Emma L.; Macrae, M.; Ogden, Iain D.; Wilson, Michael J.; Strachan, Norval J. C.

    2006-01-01

    Field and laboratory studies were performed to determine whether slugs could act as novel vectors for pathogen (e.g., Escherichia coli O157) transfer from animal feces to salad vegetables. Escherichia coli O157 was isolated from 0.21% of field slugs from an Aberdeenshire sheep farm. These isolates carried the verocytotoxin genes (vt1 and vt2) and the attaching and effacing gene (eae), suggesting that they are potentially pathogenic to humans. Strain typing using multilocus variable number tandem repeats analysis showed that slug and sheep isolates were indistinguishable. Laboratory experiments using an E. coli mutant resistant to nalidixic acid showed that the ubiquitous slug species Deroceras reticulatum could carry viable E. coli on its external surface for up to 14 days. Slugs that had been fed E. coli shed viable bacteria in their feces with numbers showing a short but statistically significant linear log decline. Further, it was found that E. coli persisted for up to 3 weeks in excreted slug feces, and hence, we conclude that slugs have the potential to act as novel vectors of E. coli O157. PMID:16391036

  15. Adherence of non-O157 Shiga-toxin Escherichia coli to bovine recto-anal junction squamous epithelial cells appears to be mediated by mechanisms distinct from those used by O157

    USDA-ARS?s Scientific Manuscript database

    This study presents evidence that the pattern of adherence of clinically relevant non-O157 Shiga-toxin producing Escherichia coli (STEC) to bovine recto-anal junction squamous epithelial cells (RSE) is similar to that of O157, although the mechanisms of adherence appear to be distinct. Our results f...

  16. Comparative genomics of two super-shedder isolates of Escherichia coli O157:H7

    PubMed Central

    Katani, Robab; Cote, Rebecca; Kudva, Indira T.; DebRoy, Chitrita; Arthur, Terrance M.

    2017-01-01

    Shiga toxin-producing Escherichia coli O157:H7 (O157) are zoonotic foodborne pathogens and of major public health concern that cause considerable intestinal and extra-intestinal illnesses in humans. O157 colonize the recto-anal junction (RAJ) of asymptomatic cattle who shed the bacterium into the environment through fecal matter. A small subset of cattle, termed super-shedders (SS), excrete O157 at a rate (≥ 104 CFU/g of feces) that is several orders of magnitude greater than other colonized cattle and play a major role in the prevalence and transmission of O157. To better understand microbial factors contributing to super-shedding we have recently sequenced two SS isolates, SS17 (GenBank accession no. CP008805) and SS52 (GenBank accession no. CP010304) and shown that SS isolates display a distinctive strongly adherent phenotype on bovine rectal squamous epithelial cells. Here we present a detailed comparative genomics analysis of SS17 and SS52 with other previously characterized O157 strains (EC4115, EDL933, Sakai, TW14359). The results highlight specific polymorphisms and genomic features shared amongst SS strains, and reveal several SNPs that are shared amongst SS isolates, including in genes involved in motility, adherence, and metabolism. Finally, our analyses reveal distinctive patterns of distribution of phage-associated genes amongst the two SS and other isolates. Together, the results of our comparative genomics studies suggest that while SS17 and SS52 share genomic features with other lineage I/II isolates, they likely have distinct recent evolutionary histories. Future comparative and functional genomic studies are needed to decipher the precise molecular basis for super shedding in O157. PMID:28797098

  17. Comparative genomics of two super-shedder isolates of Escherichia coli O157:H7.

    PubMed

    Katani, Robab; Cote, Rebecca; Kudva, Indira T; DebRoy, Chitrita; Arthur, Terrance M; Kapur, Vivek

    2017-01-01

    Shiga toxin-producing Escherichia coli O157:H7 (O157) are zoonotic foodborne pathogens and of major public health concern that cause considerable intestinal and extra-intestinal illnesses in humans. O157 colonize the recto-anal junction (RAJ) of asymptomatic cattle who shed the bacterium into the environment through fecal matter. A small subset of cattle, termed super-shedders (SS), excrete O157 at a rate (≥ 104 CFU/g of feces) that is several orders of magnitude greater than other colonized cattle and play a major role in the prevalence and transmission of O157. To better understand microbial factors contributing to super-shedding we have recently sequenced two SS isolates, SS17 (GenBank accession no. CP008805) and SS52 (GenBank accession no. CP010304) and shown that SS isolates display a distinctive strongly adherent phenotype on bovine rectal squamous epithelial cells. Here we present a detailed comparative genomics analysis of SS17 and SS52 with other previously characterized O157 strains (EC4115, EDL933, Sakai, TW14359). The results highlight specific polymorphisms and genomic features shared amongst SS strains, and reveal several SNPs that are shared amongst SS isolates, including in genes involved in motility, adherence, and metabolism. Finally, our analyses reveal distinctive patterns of distribution of phage-associated genes amongst the two SS and other isolates. Together, the results of our comparative genomics studies suggest that while SS17 and SS52 share genomic features with other lineage I/II isolates, they likely have distinct recent evolutionary histories. Future comparative and functional genomic studies are needed to decipher the precise molecular basis for super shedding in O157.

  18. Chronic Sequelae of E. coli O157: Systematic Review and Meta-analysis of the Proportion of E. coli O157 Cases That Develop Chronic Sequelae

    PubMed Central

    Sargeant, Jan; Thomas, M. Kate; Fazil, Aamir

    2014-01-01

    Abstract Objective: This was a systematic review and meta-analysis to determine the proportion of Escherichia coli O157 cases that develop chronic sequelae. Data Sources: We conducted a systematic review of articles published prior to July 2011 in Pubmed, Agricola, CabDirect, or Food Safety and Technology Abstracts. Study Selection: Studies were selected that reported the number of E. coli O157 cases that developed reactive arthritis (ReA), hemolytic uremic syndrome (HUS), irritable bowel syndrome, inflammatory bowel disease, or Guillain Barré syndrome. Methods: Three levels of screening and data extraction of articles were conducted using predefined data fields. Meta-analysis was performed on unique outcome measures using a random-effects model, and heterogeneity was assessed using the I2 value. Meta-regression was used to explore the influence of nine study-level variables on heterogeneity. Results: A total of 82 studies were identified reporting 141 different outcome measures; 81 reported on HUS and one reported on ReA. Depending on the number of cases of E. coli O157, the estimate for the proportion of E. coli O157 cases that develop HUS ranged from 17.2% in extra-small studies (<50 cases) to 4.2% in extra-large studies (>1000 cases). Heterogeneity was significantly associated with group size (p<0.0001); however, the majority of the heterogeneity was unexplained. Conclusions: High unexplained heterogeneity indicated that the study-level factors examined had a minimal influence on the variation of estimates reported. PMID:24404780

  19. Occurrence of Escherichia coli O157, O111 and O26 in raw ewe's milk and performance of two enrichment broths and two plating media used for its assessment.

    PubMed

    Caro, Irma; Mateo, Javier; Rúa, Javier; Del Rosario García-Armesto, María

    2011-03-15

    The occurrence of Escherichia coli O157, O111 and O26 in 159 raw ewe's milk samples was examined. Sample-aliquots were incubated simultaneously in TSB added with yeast extract (YETSB) and mTSB with novobiocin (N-mTSB). Serogroup-specific immunomagnetic separation (IMS) was then used and IMS beads were plated in a cefixime tellurite (CT)-containing media (CT-SMAC, CT-SBMAC and CT-RMAC for E. coli O157, O111 and O26, respectively) and E. coli O157:H7 chromogenic ID agar. A sweep of confluent growth from each medium was examined for the presence of E. coli O157 and O111 using PCR, and for E. coli O26 using a latex agglutination test. Enumeration of E. coli O157 and O111 was performed in the samples tested positive for the correspondent serogroup using the most probable number (MPN) method combined with PCR. Percentage occurrences of E. coli O157, O111 and O26 were 18.2, 8.2 and 5.7, respectively. Mean E. coli O157 and O111 levels were 0.22 and <0.04 MPN/mL, respectively. Enrichment in YETSB resulted in higher detection rates of E. coli O157 and O26 than in N-mTSB. When YETSB was used as enrichment broth and for these last two serogroups, the analysis of the confluent growth from the CT-media gave more positive results than that from E. coli O157:H7-ID medium. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Sensitive detection of Escherichia coli O157:H7 based on cascade signal amplification in ELISA.

    PubMed

    Shan, Shan; Liu, Daofeng; Guo, Qi; Wu, Songsong; Chen, Rui; Luo, Kai; Hu, Liming; Xiong, Yonghua; Lai, Weihua

    2016-09-01

    In this study, cascade signal amplification in ELISA involving double-antibody sandwich ELISA and indirectly competitive ELISA was established to sensitively detect Escherichia coli O157:H7. In the double-antibody sandwich ELISA, a complex was formed comprising anti-E. coli O157:H7 polyclonal antibody, E. coli O157:H7, biotinylated anti-E. coli O157:H7 monoclonal antibody, streptavidin, and biotinylated β-lactamase. Penicillin solution was then added into the ELISA well and hydrolyzed by β-lactamase. Afterward, the penicillin solution was transferred to indirectly competitive ELISA. The concentration of penicillin can be sensitively detected in indirectly competitive ELISA. In the cascade signal amplification system, increasing the amount of added E. coli O157:H7 resulted in more β-lactamase and less penicillin. The detection sensitivity of E. coli O157:H7, which was 20cfu/mL with the cascade signal amplification in ELISA, was 1,000-fold higher than that of traditional ELISA. Furthermore, the novel method can be used to detect E. coli O157:H7 in milk (2cfu/g). Therefore, this new signaling strategy will facilitate analyses of highly sensitive foodborne pathogens. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Evaluation of parameters affecting quantitative detection of Escherichia coli O157 in enriched water samples using immunomagnetic electrochemiluminescence.

    PubMed

    Shelton, Daniel R; Van Kessel, Jo Ann S; Wachtel, Marian R; Belt, Kenneth T; Karns, Jeffrey S

    2003-12-01

    We report here the use of immunomagnetic (IM) electrochemiluminescence (ECL) for quantitative detection of Esherichia coli O157:H7 in water samples following enrichment in minimal lactose broth (MLB). IM beads prepared in-house with four commercial anti-O157 monoclonal antibodies were compared for efficiency of cell capture. IM-ECL responses for E. coli O157:H7 (strain SEA13B88) were similar for all four commercial anti-O157 LPS monoclonal antibodies. The ECL signal was linearly correlated with E. coli O157:H7 cell concentration, indicating a constant ECL response per cell. Twenty-two strains of E. coli O157:H7 or O157:NM gave comparable ECL signals using IM beads prepared in-house. To assess the potential for interference from background bacteria in MLB-enriched water samples, 10(4) cells of E. coli O157:H7 (strain SEA13B88) were added to enriched samples prior to analysis. There was considerable variability in recovery of E. coli O157:H7 cells; net ECL signals ranged from 1% to 100% of expected values (i.e., percent inhibition from 0% to 99%). Cultures of Klebsiella pneumoniae, Klebsiella oxytoca, and Enterobacter cloacae, subsequently isolated from MLB-enriched water samples via IM separation (IMS), were observed to interfere with the binding of E. coli O157:H7 cells to IM beads. Recoveries of 10(4) E. coli O157:H7 cells were O157:H7 cell concentrations. These studies indicate that IM-ECL in conjunction with MLB enrichment is capable of quantitatively detecting as few as 10(3) to 10(5) E. coli O157:H7 cells ml(-1), depending on percent recoveries, in enriched samples that contain ca. 10(9) total lactose-fermenting bacteria ml(-1). Assuming comparable growth rates for E. coli O157:H7 and other lactose

  2. Comparative genomics of enterohemorrhagic Escherichia coli O145:H28 demonstrates a common evolutionary lineage with Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Background Although serotype O157:H7 is the predominant enterohemorrhagic Escherichia coli (EHEC), outbreaks of non-O157 EHEC that cause severe foodborne illness, including hemolytic uremic syndrome have increased worldwide. In fact, non-O157 serotypes are now estimated to cause over half of all the...

  3. Persistence of Escherichia coli O157:H7 and Its Mutants in Soils

    PubMed Central

    Ma, Jincai; Ibekwe, A. Mark; Yi, Xuan; Wang, Haizhen; Yamazaki, Akihiro; Crowley, David E.; Yang, Ching-Hong

    2011-01-01

    The persistence of Shiga toxin-producing E. coli O157:H7 in the environment poses a serious threat to public health. However, the role of Shiga toxins and other virulence factors in the survival of E. coli O157:H7 is poorly defined. The aim of this study was to determine if the virulence factors, stx 1, stx 2, stx 1–2, and eae in E. coli O157:H7 EDL933 play any significant role in the growth of this pathogen in rich media and in soils. Isogenic deletion mutants that were missing one of four virulence factors, stx 1, stx 2, stx 1–2, and eae in E. coli O157:H7 EDL933 were constructed, and their growth in rich media and survival in soils with distinct texture and chemistry were characterized. The survival data were successfully analyzed using Double Weibull model, and the modeling parameters of the mutant strains were not significantly different from those of the wild type. The calculated Td (time needed to reach the detection limit, 100 CFU/g soil) for loamy sand, sandy loam, and silty clay was 32, 80, and 110 days, respectively. It was also found that Td was positively correlated with soil structure (e.g. clay content), and soil chemistry (e.g. total nitrogen, total carbon, and water extractable organic carbon). The results of this study showed that the possession of Shiga toxins and intimin in E. coli O157:H7 might not play any important role in its survival in soils. The double deletion mutant of E. coli O157:H7 (stx 1 − stx 2 −) may be a good substitute to use for the investigation of transport, fate, and survival of E. coli O157:H7 in the environment where the use of pathogenic strains are prohibited by law since the mutants showed the same characteristics in both culture media and environmental samples. PMID:21826238

  4. Prevalence, Antibiotic Susceptibility, and Diversity of Escherichia coli O157:H7 Isolates from a Longitudinal Study of Beef Cattle Feedlots†

    PubMed Central

    Galland, John C.; Hyatt, Doreene R.; Crupper, Scott S.; Acheson, David W.

    2001-01-01

    Prevalence, antibiotic susceptibility, and genetic diversity were determined for Escherichia coli O157:H7 isolated over 11 months from four beef cattle feedlots in southwest Kansas. From the fecal pat (17,050) and environmental (7,134) samples collected, 57 isolates of E. coli O157:H7 were identified by use of bacterial culture and latex agglutination (C/LA). PCR showed that 26 isolates were eaeA gene positive. Escherichia coli O157:H7 was identified in at least one of the four feedlots in 14 of the 16 collections by C/LA and in 9 of 16 collections by PCR, but consecutive positive collections at a single feedlot were rare. Overall prevalence in fecal pat samples was low (0.26% by C/LA, and 0.08% by PCR). No detectable differences in prevalence or antibiotic resistance were found between isolates collected from home pens and those from hospital pens, where antibiotic use is high. Resistant isolates were found for six of the eight antibiotics that could be used to treat E. coli infections in food animals, but few isolates were multidrug resistant. The high diversity of isolates as measured by random amplification of polymorphic DNA and other characteristics indicates that the majority of isolates were unique and did not persist at a feedlot, but probably originated from incoming cattle. The most surprising finding was the low frequency of virulence markers among E. coli isolates identified initially by C/LA as E. coli O157:H7. These results demonstrate that better ways of screening and confirming E. coli O157:H7 isolates are required for accurate determination of prevalence. PMID:11282614

  5. Impact of Vacuum Cooling on Escherichia coli O157:H7 Infiltration into Lettuce Tissue▿

    PubMed Central

    Li, Haiping; Tajkarimi, Mehrdad; Osburn, Bennie I.

    2008-01-01

    Vacuum cooling is a common practice in the California leafy green industry. This study addressed the impact of vacuum cooling on the infiltration of Escherichia coli O157:H7 into lettuce as part of the risk assessment responding to the E. coli O157:H7 outbreaks associated with leafy green produce from California. Vacuum cooling significantly increased the infiltration of E. coli O157:H7 into the lettuce tissue (2.65E+06 CFU/g) compared to the nonvacuumed condition (1.98E+05 CFU/g). A stringent surface sterilization and quadruple washing could not eliminate the internalized bacteria from lettuce. It appeared that vacuuming forcibly changed the structure of lettuce tissue such as the stomata, suggesting a possible mechanism of E. coli O157:H7 internalization. Vacuuming also caused a lower reduction rate of E. coli O157:H7 in stored lettuce leaves than that for the nonvacuumed condition. PMID:18344328

  6. Escherichia coli O157:H7 vaccine field trial in 9 feedlots in Alberta and Saskatchewan

    PubMed Central

    2005-01-01

    Abstract A feedlot trial was conducted to assess the efficacy of an Escherichia coli O157:H7 vaccine in reducing fecal shedding of E. coli O157:H7 in 218 pens of feedlot cattle in 9 feedlots in Alberta and Saskatchewan. Pens of cattle were vaccinated once at arrival processing and again at reimplanting with either the E. coli O157:H7 vaccine or a placebo. The E. coli O157:H7 vaccine included 50 μg of type III secreted proteins. Fecal samples were collected from 30 fresh manure patties within each feedlot pen at arrival processing, revaccination at reimplanting, and within 2 wk of slaughter. The mean pen prevalence of E. coli O157:H7 in feces was 5.0%; ranging in pens from 0% to 90%, and varying signif icantly (P < 0.001) among feedlots. There was no signif icant association (P > 0.20) between vaccination and pen prevalence of fecal E. coli O157:H7 following initial vaccination, at reimplanting, or prior to slaughter. PMID:16187717

  7. Feeding supplemental dried distiller's grains increases faecal shedding of Escherichia coli O157 in experimentally inoculated calves.

    PubMed

    Jacob, M E; Parsons, G L; Shelor, M K; Fox, J T; Drouillard, J S; Thomson, D U; Renter, D G; Nagaraja, T G

    2008-04-01

    Escherichia coli O157 is an important foodborne pathogen and asymptomatic cattle serve as major reservoirs for human infection. We have shown a positive association between feeding distiller's grains and E. coli O157 prevalence in feedlot cattle. The objective of this study was to determine the effect of feeding dried distiller's grain (DDG) on faecal shedding of E. coli O157 in calves experimentally inoculated with E. coli O157. Holstein calves (five per treatment group), fed steam-flaked corn-based high-grain diets supplemented with 0% (control) or 25% DDG, were orally inoculated with a five-strain mixture (6 x 10(9) CFU/calf) of nalidixic acid-resistant (NalR) E. coli O157. Faecal samples were taken three times per week for 6 weeks to determine the prevalence and concentration of Nal E. coli O157. At the end of the study (day 43), calves were euthanized and necropsied. Ruminal, caecum, colon, and rectal contents, and rectoanal mucosal swab (RAMS) samples were collected at necropsy to determine NalR E. coli O157 concentration. There was a trend for an interaction between treatment and faecal sampling day. The concentration of NalR E. coli O157 in the faeces was significantly higher in faecal samples from calves fed DDG compared with control calves on days 35, 37, 39 and 42. At necropsy, the concentration of NalR E. coli O157 was higher in the caecum (P = 0.01), colon (P = 0.03) and rectum (P = 0.01) from calves fed DDG compared with control animals. The number of sites at necropsy positive for NalR E. coli O157 was higher in calves fed DDG compared with calves in the control treatment (P < 0.001). Our results indicate that E. coli O157 gut persistence and faecal prevalence increased in calves fed DDG, which potentially have important implications for food safety.

  8. Sources of Escherichia coli O157 and experiences over the past 15 years in Sheffield, UK.

    PubMed

    Chapman, P A

    2000-01-01

    In the first documented outbreak of HC caused by Escherichia coli O157, which occurred in the North-west USA in 1982, there was a strong association between infection and prior consumption of ground beef from a chain of fast food restaurants. Foods of bovine origin, including beef, milk and dairy products, have since been implicated in many outbreaks of infection world-wide. Investigations during the course of outbreaks, or at random, have shown that cattle are a major reservoir of E. coli O157. E. coli O157 was isolated from cattle at slaughter in Sheffield in 1987, this being the first isolation from cattle in the UK. Following a cluster of cases in May/June 1992, an abattoir study showed the organism to be present in 4% of cattle at slaughter and on up to a third of carcasses from rectal swab-positive animals. E. coli O157 was isolated from a food source (unpasteurized milk), for the first time in the UK, in Sheffield in May 1993. During surveillance in 1995-6, E. coli O157 was isolated from 15.7% of cattle, with a monthly prevalence which varied from 5 to 37%. E. coli O157 was also isolated from 2.2% of sheep. During surveillance in 1996, E. coli O157 was isolated from 5.9% of samples of lamb products and from 1.5% of samples of beef products, despite the prevalence in cattle being much higher than in sheep. Work is in progress to try to explain this higher prevalence in lamb products. During 1997 in Sheffield, the only cases of E. coli O157 for which a confirmed source was established were associated with direct animal contact on farm visits. During on-farm investigations of these cases, E. coli O157 was isolated from faecal samples from adult cattle, calves, three different breeds of sheep, two different breeds of pigs, goats and a pony.

  9. Occurrence of shigatoxinogenic Escherichia coli O157 in Norwegian cattle herds.

    PubMed Central

    Vold, L.; Klungseth Johansen, B.; Kruse, H.; Skjerve, E.; Wasteson, Y.

    1998-01-01

    To investigate if there is a reservoir of Escherichia coli O157 in Norwegian cattle, faecal samples from 197 cattle herds were screened for E. coli O157 by the use of immunomagnetic separation (IMS) and PCR during the 1995 grazing season. Six E. coli O157:H-isolates were detected in two herds, one isolate in one and five in the other. The isolates carried the stx1, stx2, and eae genes, and a 90 MDa virulence plasmid. They were toxinogenic in a Vero cell assay. From 57 other herds, 137 faecal samples were positive for stx1 and/or stx2 genes detected by PCR run directly on IMS-isolated material. Among these samples, stx2 were the most widely distributed toxin encoding genes. No difference was found among milking cows and heifers in the rate of stx1 and/or stx2 in positive samples. PMID:9528814

  10. Comparative Analysis of Super-Shedder Strains of Escherichia coli O157:H7 Reveals Distinctive Genomic Features and a Strongly Aggregative Adherent Phenotype on Bovine Rectoanal Junction Squamous Epithelial Cells

    PubMed Central

    Cote, Rebecca; Katani, Robab; Moreau, Matthew R.; Kudva, Indira T.; Arthur, Terrance M.; DebRoy, Chitrita; Mwangi, Michael M.; Albert, Istvan; Raygoza Garay, Juan Antonio; Li, Lingling; Brandl, Maria T.; Carter, Michelle Q.; Kapur, Vivek

    2015-01-01

    Shiga toxin-producing Escherichia coli O157:H7 (O157) are significant foodborne pathogens and pose a serious threat to public health worldwide. The major reservoirs of O157 are asymptomatic cattle which harbor the organism in the terminal recto-anal junction (RAJ). Some colonized animals, referred to as “super-shedders” (SS), are known to shed O157 in exceptionally large numbers (>104 CFU/g of feces). Recent studies suggest that SS cattle play a major role in the prevalence and transmission of O157, but little is known about the molecular mechanisms associated with super-shedding. Whole genome sequence analysis of an SS O157 strain (SS17) revealed a genome of 5,523,849 bp chromosome with 5,430 open reading frames and two plasmids, pO157 and pSS17, of 94,645 bp and 37,446 bp, respectively. Comparative analyses showed that SS17 is clustered with spinach-associated O157 outbreak strains, and belongs to the lineage I/II, clade 8, D group, and genotype 1, a subgroup of O157 with predicted hyper-virulence. A large number of non-synonymous SNPs and other polymorphisms were identified in SS17 as compared with other O157 strains (EC4115, EDL933, Sakai, TW14359), including in key adherence- and virulence-related loci. Phenotypic analyses revealed a distinctive and strongly adherent aggregative phenotype of SS17 on bovine RAJ stratified squamous epithelial (RSE) cells that was conserved amongst other SS isolates. Molecular genetic and functional analyses of defined mutants of SS17 suggested that the strongly adherent aggregative phenotype amongst SS isolates is LEE-independent, and likely results from a novel mechanism. Taken together, our study provides a rational framework for investigating the molecular mechanisms associated with SS, and strong evidence that SS O157 isolates have distinctive features and use a LEE-independent mechanism for hyper-adherence to bovine rectal epithelial cells. PMID:25664460

  11. Rapid Detection of Escherichia coli O157 and Shiga Toxins by Lateral Flow Immunoassays

    PubMed Central

    Wang, Jinliang; Katani, Robab; Li, Lingling; Hegde, Narasimha; Roberts, Elisabeth L.; Kapur, Vivek; DebRoy, Chitrita

    2016-01-01

    Shiga toxin-producing Escherichia coli O157:H7 (STEC) cause food-borne illness that may be fatal. STEC strains enumerate two types of potent Shiga toxins (Stx1 and Stx2) that are responsible for causing diseases. It is important to detect the E. coli O157 and Shiga toxins in food to prevent outbreak of diseases. We describe the development of two multi-analyte antibody-based lateral flow immunoassays (LFIA); one for the detection of Stx1 and Stx2 and one for the detection of E. coli O157 that may be used simultaneously to detect pathogenic E. coli O157:H7. The LFIA strips were developed by conjugating nano colloidal gold particles with monoclonal antibodies against Stx1 and Stx2 and anti-lipid A antibodies to capture Shiga toxins and O157 antigen, respectively. Our results indicate that the LFIA for Stx is highly specific and detected Stx1 and Stx2 within three hours of induction of STEC with ciprofloxacin at 37 °C. The limit of detection for E. coli O157 LFIA was found to be 105 CFU/mL in ground beef spiked with the pathogen. The LFIAs are rapid, accurate and easy to use and do not require sophisticated equipment or trained personnel. Following the assay, colored bands on the membrane develop for end-point detection. The LFIAs may be used for screening STEC in food and the environment. PMID:27023604

  12. Characterization of biofilms produced by Escherichia coli O157 isolated from cattle hides

    NASA Astrophysics Data System (ADS)

    Milojević, L.; Velebit, B.; Baltić, T.; Nikolić, A.; Mitrović, R.; Đorđević, V.

    2017-09-01

    This study aimed to investigate possibility E. coli O157 from cattle hides to produced biofilms. We had 28 suspect primoisolates and 17 were confirmed to be E. coli O157. Biofilm production test showed that more than 50% of this isolates did not produce biofilm. From the other half of the isolates, 5 of them were weakly adherent, 3 were moderately adherent. Since E. coli O157 are one of the main foodborne hazards in meat processing industry and the discovery that some of them can produce moderately adherent biofilms, request necessity of strict implementation of HACCP procedures to prevent further expansion this pathogen.

  13. Genomic Variability of O Islands Encoding Tellurite Resistance in Enterohemorrhagic Escherichia coli O157:H7 Isolates

    PubMed Central

    Taylor, Diane E.; Rooker, Michelle; Keelan, Monika; Ng, Lai-King; Martin, Irene; Perna, Nicole T.; Burland, N. T. Valerie; Blattner, Fredrick R.

    2002-01-01

    Strains of Escherichia coli causing enterohemorrhagic colitis belonging to the O157:H7 lineage are reported to be highly related. Fifteen strains of E. coli O157:H7 and 1 strain of E. coli O46:H− (nonflagellated) were examined for the presence of potassium tellurite resistance (Ter). Ter genes comprising terABCDEF were shown previously to be part of a pathogenicity island also containing integrase, phage, and urease genes. PCR analysis, both conventional and light cycler based, demonstrated that about one-half of the Ter E. coli O157:H7 strains (6 of 15), including the Sakai strain, which has been sequenced, carried a single copy of the Ter genes. Five of the strains, including EDL933, which has also been sequenced, contained two copies. Three other O157:H7 strains and the O46:H− strain did not contain the Ter genes. In strains containing two copies, the Ter genes were associated with the serW and serX tRNA genes. Five O157:H7 strains resembled the O157 Sakai strain whose sequence contained one copy, close to serX, whereas in one isolate the single copy was associated with serW. There was no correlation between Ter and the ability to produce Shiga toxin ST1 or ST2. The Ter MIC for most strains, containing either one or two copies, was 1,024 μg/ml, although for a few the MIC was intermediate, 64 to 128 μg/ml, which could be increased to 512 μg/ml by pregrowth of strains in subinhibitory concentrations of potassium tellurite. Reverse transcriptase PCR analysis confirmed that in most strains Ter was constitutive but that in the rest it was inducible and involved induction of terB and terC genes. Only the terB, -C, -D, and -E genes are required for Ter. The considerable degree of homology between the ter genes on IncH12 plasmid R478, which originated in Serratia marcescens, and pTE53, from an E. coli clinical isolate, suggests that the pathogenicity island was acquired from a plasmid. This work demonstrates diversity among E. coli O157:H7 isolates, at least as

  14. Association of nucleotide polymorphisms within the O-antigen gene cluster of Escherichia coli O26, O45, O103, O111, O121, and O145 with serogroups and genetic subtypes

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin-producing Escherichia coli (STEC) cause severe disease and hemorrhagic colitis in humans. Of the STECs, E. coli O157:H7 is the most widely recognized and researched serotype, and the majority of cases of hemolytic-uremic syndrome in the United States are associated with this serotype. ...

  15. Comparison of two methods for detection of E. coli O157H7 in unpasteurized milk

    PubMed Central

    Farahmandfar, Maryam; Moori-Bakhtiari, Naghmeh; Gooraninezhad, Saad; Zarei, Mehdi

    2016-01-01

    Background and Objectives: The most common serotype of enterohaemorrhagic Esherichia coli group or Shiga-toxin-producing E. coli is O157:H7. Domestic and wild ruminants are regarded as the main natural reservoirs. O157:H7 serotype is the major cause of gastrointestinal infections in developed countries. In this study was conducted to survey on the toxigenic E. coli O157: H7 strains in milk of industrial dairy farms. Materials and Methods: A total number of 150 milk samples were collected from dairy industry in Khuzestan, over a period of 6 months and were evaluated by cultivation in selective media (CT-SMAC) and multiplex PCR. Results: Two isolates were identified as E. coli using biochemical tests, none of them were toxigenic E. coli O157:H7 as determined by multiplex PCR. Using direct PCR on milk samples, 45 samples contained at least one gene of the studied genes in this investigation (rfb, flic, stx1, stx2). With direct PCR, 2 milk samples were positive for toxigenic O157:H7. Conclusion: E. coli O157:H7 is present in this region and so the necessity for strict compliance of health standards is recommended. This is the first study on O157: H7 E. coli milk contamination in Khuzestan province. Based on these results, direct PCR is more accurate than indirect PCR. PMID:28149486

  16. Comparison of two methods for detection of E. coli O157H7 in unpasteurized milk.

    PubMed

    Farahmandfar, Maryam; Moori-Bakhtiari, Naghmeh; Gooraninezhad, Saad; Zarei, Mehdi

    2016-10-01

    The most common serotype of enterohaemorrhagic Esherichia coli group or Shiga-toxin-producing E. coli is O157:H7. Domestic and wild ruminants are regarded as the main natural reservoirs. O157:H7 serotype is the major cause of gastrointestinal infections in developed countries. In this study was conducted to survey on the toxigenic E. coli O157: H7 strains in milk of industrial dairy farms. A total number of 150 milk samples were collected from dairy industry in Khuzestan, over a period of 6 months and were evaluated by cultivation in selective media (CT-SMAC) and multiplex PCR. Two isolates were identified as E. coli using biochemical tests, none of them were toxigenic E. coli O157:H7 as determined by multiplex PCR. Using direct PCR on milk samples, 45 samples contained at least one gene of the studied genes in this investigation ( rfb, flic, stx1 , stx2 ). With direct PCR, 2 milk samples were positive for toxigenic O157:H7. E. coli O157:H7 is present in this region and so the necessity for strict compliance of health standards is recommended. This is the first study on O157: H7 E. coli milk contamination in Khuzestan province. Based on these results, direct PCR is more accurate than indirect PCR.

  17. Proteins facilitating Escherichia coli O157 persistence at the bovine recto-anal junction (RAJ) squamous epithelial cells

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157 (O157) persist at the recto-anal junction (RAJ) of gastrointestinal tracts (GIT) of cattle, the primary reservoirs of this human pathogen. We recently reported (Kudva et al., BMC Microbiol. 2012, 12: 103) that the previously identified and extensively documented principal O157...

  18. Perspectives on super-shedding of Escherichia coli O157:H7 by cattle

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 is a foodborne pathogen that causes illness in humans worldwide. Cattle are the primary reservoir of this bacterium with the concentration and frequency of E. coli O157:H7 shedding varying greatly among individuals. The term “supershedder” has been applied to cattle that sh...

  19. Loss of cAMP/CRP regulation confers extreme high hydrostatic pressure resistance in Escherichia coli O157:H7.

    PubMed

    Vanlint, Dietrich; Pype, Brecht J Y; Rutten, Nele; Vanoirbeek, Kristof G A; Michiels, Chris W; Aertsen, Abram

    2013-08-16

    Application of high hydrostatic pressure (HHP) constitutes a valuable non-thermal pasteurization process in modern food conservation. Triggered by our interest in the rapid adaptive evolution towards HHP resistance in the food-borne pathogen E. coli O157:H7 (strain ATCC 43888) that was demonstrated earlier, we used genetic screening to identify specific loci in which a loss-of-function mutation would be sufficient to markedly increase HHP survival. As such, individual loss of RssB (anti RpoS-factor), CRP (catabolite response protein) and CyaA (adenylate cyclase) were each found to confer significant HHP resistance in the 300MPa range (i.e. >1,000-fold), and this phenotype invariably coincided with increased resistance against heat as well. In contrast to loss of RssB, however, loss of CRP or CyaA also conferred significantly increased resistance to 600MPa (i.e. >10,000-fold), suggesting cAMP/CRP homeostasis to affect extreme HHP resistance independently of increased RpoS activity. Surprisingly, none of the rapidly emerging HHP-resistant mutants of ATCC 43888 that were isolated previously did incur any mutations in rssB, crp or cyaA, indicating that a number of other loci can guide the rapid emergence of HHP resistance in E. coli O157:H7 as well. The inability of spontaneous rssB, crp or cyaA mutants to emerge during selective enrichment under HHP selection likely stems from their decreased competitive fitness during growth. Overall, this study is the first to shed light on the possible genetic strategies supporting the acquisition of HHP resistance in E. coli O157:H7. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Transcriptome Analysis of Escherichia coli O157:H7 Exposed to Lysates of Lettuce Leaves ▿

    PubMed Central

    Kyle, Jennifer L.; Parker, Craig T.; Goudeau, Danielle; Brandl, Maria T.

    2010-01-01

    Harvesting and processing of leafy greens inherently cause plant tissue damage, creating niches on leaves that human pathogens can exploit. We previously demonstrated that Escherichia coli O157:H7 (EcO157) multiplies more rapidly on shredded leaves than on intact leaves (M. T. Brandl, Appl. Environ. Microbiol. 74:5285-5289, 2008). To investigate how EcO157 cells adapt to physicochemical conditions in injured lettuce tissue, we used microarray-based whole-genome transcriptional profiling to characterize gene expression patterns in EcO157 after 15- and 30-min exposures to romaine lettuce lysates. Multiple carbohydrate transport systems that have a role in the utilization of substrates known to be prevalent in plant cells were activated in EcO157. This indicates the availability to the human pathogen of a variety of carbohydrates released from injured plant cells that may promote its extensive growth in leaf lysates and, thus, in wounded leaf tissue. In addition, microarray analysis revealed the upregulation of numerous genes associated with EcO157 attachment and virulence, with oxidative stress and antimicrobial resistance (including the OxyR and Mar regulons), with detoxification of noxious compounds, and with DNA repair. Upregulation of oxidative stress and antimicrobial resistance genes in EcO157 was confirmed on shredded lettuce by quantitative reverse transcription-PCR. We further demonstrate that this adaptation to stress conditions imparts the pathogen with increased resistance to hydrogen peroxide and calcium hypochlorite. This enhanced resistance to chlorinated sanitizers combined with increased expression of virulence determinants and multiplication at sites of injury on the leaves may help explain the association of processed leafy greens with outbreaks of EcO157. PMID:20061451

  1. Selection of antibiotics in detection procedure of Escherichia coli O157:H7 in vegetables

    NASA Astrophysics Data System (ADS)

    Hoang, Hoang A.; Nhung, Nguyen T. T.

    2017-09-01

    Detection of Escherichia coli O157:H7 in ready-to-eat fresh vegetables is important since this bacteria is considered as one of the most important pathogens in relation to public health. However, it could be a big challenge for detection of initial low concentrations of E. coli O157:H7 in the samples. In this study, selection of antibiotics that suppress growth of background bacteria to enable detection of E. coli O157:H7 in ready-to-eat fresh vegetables was investigated. Firstly, different combinations of two antibiotics, i.e. novobiocin (N) and vancomycin (V), in BHI broth were conducted. The three antibiotic combinations were preliminary examined their effect on the growth of E. coli O157:H7 and Bacillus spp. in broth based on OD600nm measurement. The combination of both the antibiotics was selected to examine their possibility to support detection of E. coli O157:H7 in vegetables. It was successful when two antibiotics showed their support in detection of E. coli O157:H7 at very low concentration of 2 CFU per one gram of lettuce. Usage of these antibiotics is simple and cheap in the detection procedure and could be applied to other types of ready-to-eat fresh vegetables popular in Vietnam.

  2. Spread and change in stress resistance of Shiga toxin-producing Escherichia coli O157 on fungal colonies

    PubMed Central

    Lee, Ken-ichi; Kobayashi, Naoki; Watanabe, Maiko; Sugita-Konishi, Yoshiko; Tsubone, Hirokazu; Kumagai, Susumu; Hara-Kudo, Yukiko

    2014-01-01

    To elucidate the effect of fungal hyphae on the behaviour of Shiga toxin-producing Escherichia coli (STEC) O157, the spread and change in stress resistance of the bacterium were evaluated after coculture with 11 species of food-related fungi including fermentation starters. Spread distances of STEC O157 varied depending on the co-cultured fungal species, and the motile bacterial strain spread for longer distances than the non-motile strain. The population of STEC O157 increased when co-cultured on colonies of nine fungal species but decreased on colonies of Emericella nidulans and Aspergillus ochraceus. Confocal scanning microscopy visualization of green fluorescent protein-tagged STEC O157 on fungal hyphae revealed that the bacterium colonized in the water film that existed on and between hyphae. To investigate the physiological changes in STEC O157 caused by co-culturing with fungi, the bacterium was harvested after 7 days of co-culturing and tested for acid resistance. After co-culture with eight fungal species, STEC O157 showed greater acid resistance compared to those cultured without fungi. Our results indicate that fungal hyphae can spread the contamination of STEC O157 and can also enhance the stress resistance of the bacteria. PMID:23919289

  3. Comparative genomics of enterohemorrhagic Escherichia coli O145:H28 demonstrates a common evolutionary lineage with Escherichia coli O157:H7

    PubMed Central

    2014-01-01

    Background Although serotype O157:H7 is the predominant enterohemorrhagic Escherichia coli (EHEC), outbreaks of non-O157 EHEC that cause severe foodborne illness, including hemolytic uremic syndrome have increased worldwide. In fact, non-O157 serotypes are now estimated to cause over half of all the Shiga toxin-producing Escherichia coli (STEC) cases, and outbreaks of non-O157 EHEC infections are frequently associated with serotypes O26, O45, O103, O111, O121, and O145. Currently, there are no complete genomes for O145 in public databases. Results We determined the complete genome sequences of two O145 strains (EcO145), one linked to a US lettuce-associated outbreak (RM13514) and one to a Belgium ice-cream-associated outbreak (RM13516). Both strains contain one chromosome and two large plasmids, with genome sizes of 5,737,294 bp for RM13514 and 5,559,008 bp for RM13516. Comparative analysis of the two EcO145 genomes revealed a large core (5,173 genes) and a considerable amount of strain-specific genes. Additionally, the two EcO145 genomes display distinct chromosomal architecture, virulence gene profile, phylogenetic origin of Stx2a prophage, and methylation profile (methylome). Comparative analysis of EcO145 genomes to other completely sequenced STEC and other E. coli and Shigella genomes revealed that, unlike any other known non-O157 EHEC strain, EcO145 ascended from a common lineage with EcO157/EcO55. This evolutionary relationship was further supported by the pangenome analysis of the 10 EHEC str ains. Of the 4,192 EHEC core genes, EcO145 shares more genes with EcO157 than with the any other non-O157 EHEC strains. Conclusions Our data provide evidence that EcO145 and EcO157 evolved from a common lineage, but ultimately each serotype evolves via a lineage-independent nature to EHEC by acquisition of the core set of EHEC virulence factors, including the genes encoding Shiga toxin and the large virulence plasmid. The large variation between the two EcO145 genomes

  4. Inhibition of Escherichia coli O157:H7 on stainless steel using Pseudomonas veronii biofilms.

    PubMed

    Kim, Y; Kim, H; Beuchat, L R; Ryu, J-H

    2018-05-01

    We produced a Pseudomonas veronii biofilm on the surface of a stainless steel that is inhibitory to Escherichia coli O157:H7. Pseudomonas veronii strain KACC 81051BP, isolated from lettuce, readily formed biofilm on the surface of stainless steel coupons (SSCs) immersed in tryptic soy broth at 25°C. Cells showed significantly (P ≤ 0·05) enhanced tolerance to desiccation stress (43% relative humidity (RH)) and retained antimicrobial activity against E. coli O157:H7. The number of E. coli O157:H7 (control; 4·1 ± 0·1 log CFU per coupon) on sterile SSCs decreased to 2·7 ± 0·2 log CFU per coupon after exposure to 43% RH at 25°C for 48 h, while the population of E. coli O157:H7 (4·1 ± 0·0 log CFU per coupon) on SSCs containing P. veronii biofilm decreased to below the theoretical detection limit (1·5 log CFU per coupon) within 24 h. The antimicrobial biofilm produced on stainless steel may have application in preventing cross-contamination by E. coli O157:H7 on other abiotic surfaces in food-contact environments. The presence of Escherichia coli O157:H7 on environmental surfaces of food manufacturing, transportation and storage facilities is a significant food safety concern because it can result in cross-contamination of food products. In this study, we developed a Pseudomonas veronii biofilm on the surface of a stainless steel that inhibits the growth of E. coli O157:H7. Since P. veronii in biofilm resists desiccation, it provides persistent antimicrobial activity. Information presented here provides novel and practical insights to developing biological strategies to inactivate E. coli O157:H7 on diverse surfaces in food processing and handling environments. © 2018 The Society for Applied Microbiology.

  5. Cloacael Carriage and Multidrug Resistance Escherichia coli O157:H7 from Poultry Farms, Eastern Ethiopia

    PubMed Central

    Shecho, Mude; Muktar, Yimer

    2017-01-01

    A cross-sectional study was carried out to determine antimicrobial drug resistance patterns of E. coli O157:H7 isolates and estimate the level of the pathogen. A total of 194 cloacae swab samples were collected randomly in two poultry farms. Standard cultural, biochemical, and serological (latex agglutination) methods were used to isolate E. coli O157:H7. The isolates were subjected to antimicrobial susceptibility testing using disc diffusion method. Out of 194 cloacae samples examined, 13.4% (n = 26) were found to be positive for E. coli O157:H7. The finding indicated differences in E. coli O157:H7 infection among the different risk factors. Chicken from Adele Poultry Farm showed higher E. coli O157:H7 infection (OR = 3.89) than Haramaya University poultry farm and young birds had more infection (OR = 4.62) than adult birds. Of the total 14 antimicrobials included in the panel of study, the susceptibility results were varied with 96.15% and 0% E. coli O157:H7 isolates expressing resistance to erythromycin, clindamycin, spectinomycin, and ciprofloxacin, respectively. Multidrug resistance to more than two antimicrobial agents was detected in 24 (92.30%) of the isolates. The study showed high presence of antimicrobial resistant isolates of E. coli O157:H7. Further study is required to better understand the ecology and evolution of bacterial resistance to antimicrobial agents. PMID:28349121

  6. Cloacael Carriage and Multidrug Resistance Escherichia coli O157:H7 from Poultry Farms, Eastern Ethiopia.

    PubMed

    Shecho, Mude; Thomas, Naod; Kemal, Jelalu; Muktar, Yimer

    2017-01-01

    A cross-sectional study was carried out to determine antimicrobial drug resistance patterns of E. coli O157:H7 isolates and estimate the level of the pathogen. A total of 194 cloacae swab samples were collected randomly in two poultry farms. Standard cultural, biochemical, and serological (latex agglutination) methods were used to isolate E. coli O157:H7. The isolates were subjected to antimicrobial susceptibility testing using disc diffusion method. Out of 194 cloacae samples examined, 13.4% ( n = 26) were found to be positive for E. coli O157:H7. The finding indicated differences in E. coli O157:H7 infection among the different risk factors. Chicken from Adele Poultry Farm showed higher E. coli O157:H7 infection (OR = 3.89) than Haramaya University poultry farm and young birds had more infection (OR = 4.62) than adult birds. Of the total 14 antimicrobials included in the panel of study, the susceptibility results were varied with 96.15% and 0% E. coli O157:H7 isolates expressing resistance to erythromycin, clindamycin, spectinomycin, and ciprofloxacin, respectively. Multidrug resistance to more than two antimicrobial agents was detected in 24 (92.30%) of the isolates. The study showed high presence of antimicrobial resistant isolates of E. coli O157:H7. Further study is required to better understand the ecology and evolution of bacterial resistance to antimicrobial agents.

  7. Rapid electrochemical detection of polyaniline-labeled Escherichia coli O157:H7.

    PubMed

    Setterington, Emma B; Alocilja, Evangelyn C

    2011-01-15

    There is a high demand for rapid, sensitive, and field-ready detection methods for Escherichia coli O157:H7, a highly infectious and potentially fatal food and water borne pathogen. In this study, E. coli O157:H7 cells are isolated via immunomagnetic separation (IMS) and labeled with biofunctionalized electroactive polyaniline (immuno-PANI). Labeled cell complexes are deposited onto a disposable screen-printed carbon electrode (SPCE) sensor and pulled to the electrode surface by an external magnetic field, to amplify the electrochemical signal generated by the polyaniline. Cyclic voltammetry is used to detect polyaniline and signal magnitude indicates the presence or absence of E. coli O157:H7. As few as 7CFU of E. coli O157:H7 (corresponding to an original concentration of 70 CFU/ml) were successfully detected on the SPCE sensor. The assay requires 70 min from sampling to detection, giving it a major advantage over standard culture methods in applications requiring high-throughput screening of samples and rapid results. The method can be performed with portable, handheld instrumentation and no biological modification of the sensor surface is required. Potential applications include field-based pathogen detection for food and water safety, environmental monitoring, healthcare, and biodefense. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Plant lesions promote the rapid multiplication of Escherichia coli O157:H7 on post-harvest lettuce

    USDA-ARS?s Scientific Manuscript database

    Several outbreaks of Escherichia coli O157:H7 (EcO157) infections have been associated with minimally processed leafy vegetables in the U.S. Harvesting and processing cause plant tissue damage. In order to assess the role of plant tissue damage in the contamination of leafy greens with EcO157, the e...

  9. Correlation of enterohemorrhagic Escherichia coli O157 prevalence in feces, hides, and carcasses of beef cattle during processing.

    PubMed

    Elder, R O; Keen, J E; Siragusa, G R; Barkocy-Gallagher, G A; Koohmaraie, M; Laegreid, W W

    2000-03-28

    A survey was performed to estimate the frequency of enterohemorrhagic Escherichia coli O157:H7 or O157:nonmotile (EHEC O157) in feces and on hides within groups of fed cattle from single sources (lots) presented for slaughter at meat processing plants in the Midwestern United States, as well as frequency of carcass contamination during processing from cattle within the same lots. Of 29 lots sampled, 72% had at least one EHEC O157-positive fecal sample and 38% had positive hide samples. Overall, EHEC O157 prevalence in feces and on hides was 28% (91 of 327) and 11% (38 of 355), respectively. Carcass samples were taken at three points during processing: preevisceration, postevisceration before antimicrobial intervention, and postprocessing after carcasses entered the cooler. Of 30 lots sampled, 87% had at least one EHEC O157-positive preevisceration sample, 57% of lots were positive postevisceration, and 17% had positive postprocessing samples. Prevalence of EHEC O157 in the three postprocessing samples was 43% (148 of 341), 18% (59 of 332) and 2% (6 of 330), respectively. Reduction in carcass prevalence from preevisceration to postprocessing suggests that sanitary procedures were effective within the processing plants. Fecal and hide prevalence were significantly correlated with carcass contamination (P = 0.001), indicating a role for control of EHEC O157 in live cattle.

  10. TPH2 polymorphisms and expression in Prader-Willi syndrome subjects with differing genetic subtypes.

    PubMed

    Henkhaus, Rebecca S; Bittel, Douglas C; Butler, Merlin G

    2010-09-01

    Prader-Willi syndrome (PWS) is a genetic imprinting disease that causes developmental and behavioral disturbances resulting from loss of expression of genes from the paternal chromosome 15q11-q13 region. In about 70% of subjects, this portion of the paternal chromosome is deleted, while 25% have two copies of the maternal chromosome 15, or uniparental maternal disomy (UPD; the remaining subjects have imprinting center defects. There are several documented physical and behavioral differences between the two major PWS genetic subtypes (deletion and UPD) indicating the genetic subtype plays a role in clinical presentation. Serotonin is known to be disturbed in PWS and affects both eating behavior and compulsion, which are reported to be abnormal in PWS. We investigated the tryptophan hydroxylase gene (TPH2), the rate-limiting enzyme in the production of brain serotonin, by analyzing three different TPH2 gene polymorphisms, transcript expression, and correlation with PWS genetic subtype. DNA and RNA from lymphoblastoid cell lines derived from 12 PWS and 12 comparison subjects were used for the determination of genetic subtype, TPH2 polymorphisms and quantitative RT-PCR analysis. A similar frequency of TPH2 polymorphisms was seen in the PWS and comparison subjects with PWS deletion subjects showing increased expression with one or more TPH2 polymorphism. Both PWS deletion and PWS UPD subjects had significantly lower TPH2 expression than control subjects and PWS deletion subjects had significantly lower TPH2 expression compared with PWS UPD subjects. PWS subjects with 15q11-q13 deletions had lower TPH2 expression compared with PWS UPD or control subjects, requiring replication and further studies to identify the cause including identification of disturbed gene interactions resulting from the deletion process.

  11. Enterohemorrhagic Escherichia coli O157:H7 present in radish sprouts.

    PubMed

    Itoh, Y; Sugita-Konishi, Y; Kasuga, F; Iwaki, M; Hara-Kudo, Y; Saito, N; Noguchi, Y; Konuma, H; Kumagai, S

    1998-04-01

    Using cultivation, immunofluorescence microscopy, and scanning electron microscopy, we demonstrated the presence of viable enterohemorrhagic Escherichia coli O157:H7 not only on the outer surfaces but also in the inner tissues and stomata of cotyledons of radish sprouts grown from seeds experimentally contaminated with the bacterium. HgCl2 treatment of the outer surface of the hypocotyl did not kill the contaminating bacteria, which emphasized the importance of either using seeds free from E. coli O157:H7 in the production of radish sprouts or heating the sprouts before they are eaten.

  12. Fate of Escherichia coli O157: H7 in agricultural soils amended with different organic fertilizers.

    PubMed

    Yao, Zhiyuan; Yang, Li; Wang, Haizhen; Wu, Jianjun; Xu, Jianming

    2015-10-15

    Five organic fertilizers (vermicompost, pig manure, chicken manure, peat and oil residue) were applied to agricultural soils to study their effects on the survival of Escherichia coli O157:H7 (E. coli O157:H7). Results showed that E. coli O157:H7 survival changed greatly after organic fertilizers application, with shorter td values (survival time needed to reach the detection limit of 100 CFU g(-1)) (12.57±6.57 days) in soils amended with chicken manure and the longest (25.65±7.12 days) in soils amended with pig manure. Soil pH, EC and free Fe/Al (hydro) oxides were significant explanatory factors for E. coli O157:H7 survival in the original soils. Soil constituents (minerals and organic matter) and changes in their surface charges with pH increased the effect of soil pH on E. coli O157:H7 survival. However, electrical conductivity played a more important role in regulating E. coli O157:H7 survival in fertilizer-amended soils. This study highlighted the importance of choosing appropriate organic fertilizers in the preharvest environment to reduce food-borne bacterial contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Quartz crystal microbalance (QCM) as biosensor for the detecting of Escherichia coli O157:H7

    NASA Astrophysics Data System (ADS)

    Thanh Ngo, Vo Ke; Giang Nguyen, Dang; Phuong Uyen Nguyen, Hoang; Tran, Van Man; Nguyen, Thi Khoa My; Phat Huynh, Trong; Lam, Quang Vinh; Dat Huynh, Thanh; Truong, Thi Ngoc Lien

    2014-12-01

    Although Escherichia coli (E. coli) is a commensalism organism in the intestine of humans and warm-blooded animals, it can be toxic at higher density and causes diseases, especially the highly toxic E. coli O157:H7. In this paper a quartz crystal microbalance (QCM) biosensor was developed for the detection of E. coli O157:H7 bacteria. The anti-E. coli O157:H7 antibodies were immobilized on a self-assembly monolayer (SAM) modified 5 MHz AT-cut quartz crystal resonator. The SAMs were activated with 16-mercaptopropanoic acid, in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and ester N-hydroxysuccinimide (NHS). The result of changing frequency due to the adsorption of E. coli O157:H7 was measured by the QCM biosensor system designed and fabricated by ICDREC-VNUHCM. This system gave good results in the range of 102-107 CFU mL-1 E. coli O157:H7. The time of bacteria E. coli O157:H7 detection in the sample was about 50 m. Besides, QCM biosensor from SAM method was comparable to protein A method-based piezoelectric immunosensor in terms of the amount of immobilized antibodies and detection sensitivity.

  14. Spiral Plating Method To Quantify the Six Major Non-O157 Escherichia coli Serogroups in Cattle Feces.

    PubMed

    Shridhar, Pragathi B; Noll, Lance W; Cull, Charley A; Shi, Xiaorong; Cernicchiaro, Natalia; Renter, David G; Bai, Jianfa; Nagaraja, T G

    2017-04-17

    Cattle are a major reservoir of the six major Shiga toxin-producing non-O157 Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) responsible for foodborne illnesses in humans. Besides prevalence in feces, the concentrations of STEC in cattle feces play a major role in their transmission dynamics. A subset of cattle, referred to as super shedders, shed E. coli O157 at high concentrations (≥4 log CFU/g of feces). It is not known whether a similar pattern of fecal shedding exists for non-O157. Our objectives were to initially validate the spiral plating method to quantify the six non-O157 E. coli serogroups with pure cultures and culture-spiked fecal samples and then determine the applicability of the method and compare it with multiplex quantitative PCR (mqPCR) assays for the quantification of the six non-O157 E. coli serogroups in cattle fecal samples collected from commercial feedlots. Quantification limits of the spiral plating method were 3 log, 3 to 4 log, and 3 to 5 log CFU/mL or CFU/g for individual cultures, pooled pure cultures, and cattle fecal samples spiked with pooled pure cultures, respectively. Of the 1,152 cattle fecal samples tested from eight commercial feedlots, 122 (10.6%) and 320 (27.8%) harbored concentrations ≥4 log CFU/g of one or more of the six serogroups of non-O157 by spiral plating and mqPCR methods, respectively. A majority of quantifiable samples, detected by either spiral plating (135 of 137, 98.5%) or mqPCR (239 of 320, 74.7%), were shedding only one serogroup. Only one of the quantifiable samples was positive for a serogroup carrying Shiga toxin (stx 1 ) and intimin (eae) genes; 38 samples were positive for serogroups carrying the intimin gene. In conclusion, the spiral plating method can be used to quantify non-O157 serogroups in cattle feces, and our study identified a subset of cattle that was super shedders of non-O157 E. coli . The method has the advantage of quantifying non-O157 STEC, unlike mqPCR that

  15. Behavior in Prader-Willi syndrome: relationship to genetic subtypes and age.

    PubMed

    Dykens, Elisabeth M; Roof, Elizabeth

    2008-09-01

    Some behavioral features of Prader-Willi syndrome (PWS) are associated with the major genetic subtypes of this disorder. While most agree that those with maternal uniparental disomy (UPD) have a distinctive cognitive and psychiatric profile, findings are more controversial regarding possible differences among persons who vary in paternal deletion size. Caregivers of 88 persons with PWS aged 5 to 51 years (M = 22 years) were administered measures of problem behavior, compulsivity, hyperphagia, and adaptive skills. The sample was well characterized as having relatively large, Type I (n = 26) or smaller, Type II (n = 29) deletions, or UPD (n = 33). No significant behavioral differences were found between the Type I versus Type II deletion groups. Within each genetic subtype, however, differences emerged in how advancing age related to behavior. Although age did not emerge as a significant correlate of behavior in the Type II or UPD groups, in the Type I group age was consistently associated with lower problem behaviors, adaptive skills, and externalizing symptoms. Although differences between deletion subtypes were not found, significant within-subtype differences emerged in relationships between age and behavior. Negative associations between age and behavior in the Type I group only may relate to non-imprinted genes that are deleted in Type I but not Type II cases, including CYFIP1. Altered expression of CYFIP1 is seen in other developmental disabilities, including 15q disorders, and haploinsufficiency of CYFIP1 in Type I PWS cases may be associated with age-related phenotypic effects. Findings underscore the importance of a life-span perspective in phenotypic research.

  16. Multilocus variable-number tandem repeat analysis distinguishes outbreak and sporadic Escherichia coli O157:H7 isolates.

    PubMed

    Noller, Anna C; McEllistrem, M Catherine; Pacheco, Antonio G F; Boxrud, David J; Harrison, Lee H

    2003-12-01

    Escherichia coli O157:H7 is a major cause of food-borne illness in the United States. Outbreak detection involves traditional epidemiological methods and routine molecular subtyping by pulsed-field gel electrophoresis (PFGE). PFGE is labor-intensive, and the results are difficult to analyze and not easily transferable between laboratories. Multilocus variable-number tandem repeat (VNTR) analysis (MLVA) is a fast, portable method that analyzes multiple VNTR loci, which are areas of the bacterial genome that evolve quickly. Eighty isolates, including 21 isolates from five epidemiologically well-characterized outbreaks from Pennsylvania and Minnesota, were analyzed by PFGE and MLVA. Strains in PFGE clusters were defined as strains that differed by less than or equal to one band by using XbaI and the confirmatory enzyme SpeI. MLVA was performed by comparing the number of tandem repeats at seven loci. From 6 to 30 alleles were found at the seven loci, resulting in 64 MLVA types among the 80 isolates. MLVA correctly identified the isolates from all five outbreaks if only a single-locus variant was allowed. MLVA differentiated strains with unique PFGE types. Additionally, MLVA discriminated strains within PFGE-defined clusters that were not known to be part of an outbreak. In addition to being a simple and validated method for E. coli O157:H7 outbreak detection, MLVA appears to have a sensitivity equal to that of PFGE and a specificity superior to that of PFGE.

  17. Rapid detection of Escherichia coli O157:H7 using tunneling magnetoresistance biosensor

    NASA Astrophysics Data System (ADS)

    Wu, Yuanzhao; Liu, Yiwei; Zhan, Qingfeng; Liu, J. Ping; Li, Run-Wei

    2017-05-01

    A rapid method for the sensitive detection of bacteria using magnetic immunoassay, which are measured with a tunneling magnetoresistance (TMR) sensor, is described. For the measurement of Escherichia coli O157:H7 (E. coli O157:H7) bacteria, the target was labeled by magnetic beads through magnetic immunoassay. The magnetic beads produce a weak magnetic fringe field when external field is applied, thus induce the magnetoresistance change of TMR sensor. A detection limit of 100 CFU/mL E. coli O157:H7 bacteria in 5 hours was obtained. With its high sensitive and rapid detection scheme based on the TMR biosensor, the detection system is an excellent candidate suitable and promising for food safety and biomedical detection.

  18. Survival of Escherichia coli O157:H7 in needle-tenderized dry cured Westphalian ham.

    PubMed

    Graumann, Gary H; Holley, Richard A

    2007-09-15

    Westphalian ham is a dry cured, ready-to-eat product that is manufactured without a lethal heat treatment. Hams are preserved by a process that involves curing, fermenting, smoking and drying, which may take 3 months or more to complete. The process can be accelerated by tenderizing the meat with solid needles, to increase the rate of cure-salt diffusion throughout muscle tissues. In this study, intact hams were immersed in a solution containing a five strain cocktail of Escherichia coli O157:H7 at 8 log cfu/mL, to determine whether needle treatment before cure application would internalize organisms from the surface. In two trials, the survival of E. coli O157:H7 on external surfaces and within deep tissues after needle treatment was followed during the ripening of hams. The injured E. coli O157:H7 cells were recovered by plating samples on pre-poured Tryptic Soy Agar plates which were incubated for 3 to 4 h at 35 degrees C, overlaid with Sorbitol MacConkey Agar containing cefixime and tellurite and re-incubated at 35 degrees C for 48 to 72 h. Inoculated-injected hams initially carried E. coli O157:H7 at numbers of 7.3 and 4.6 log cfu/g E. coli O157:H7 on the surface and inside, respectively. After 112 d of ripening, which included 79 d of drying, no E. coli O157:H7 were detected at the surface of hams following enrichment, whereas in deep tissue the organism was recovered at numbers of 3.1 log cfu/g. The Westphalian ham ripening procedure evidently was not adequate to eliminate E. coli O157:H7 internalized by needle tenderization.

  19. Short-term evolution of Shiga toxin-producing Escherichia coli O157:H7 between two food-borne outbreaks

    USDA-ARS?s Scientific Manuscript database

    Background: Shiga toxin-producing Escherichia coli (STEC) O157 is a public health threat and outbreaks occur worldwide. STEC O157 has a mosaic genome with extensive prophage integration, including bacteriophage-encoded Shiga toxins. Here, we investigate genomic differences in a strain of STEC O157 t...

  20. Antibacterial effect of lactoferricin B on Escherichia coli O157:H7 in ground beef.

    PubMed

    Venkitanarayanan, K S; Zhao, T; Doyle, M P

    1999-07-01

    The antibacterial activity of lactoferricin B on enterohemorrhagic Escherichia coli O157:H7 in 1% peptone medium and ground beef was studied at 4 and 10 degrees C. In 1% peptone medium, 50 and 100 microg of lactoferricin B per ml reduced E. coli O157:H7 populations by approximately 0.7 and 2.0 log CFU/ml, respectively. Studies comparing the antibacterial effect of lactoferricin B on E. coli O157:H7 in 1% peptone at pH 5.5 and 7.2 did not reveal any significant difference (P > 0.5) at the two pH values. Lactoferricin B (100 microg/g) reduced E. coli O157:H7 population in ground beef by about 0.8 log CFU/g (P < 0.05). No significant difference (P > 0.5) was observed in the total plate count between treatment and control ground beef samples stored at 4 and 10 degrees C. The antibacterial effect of lactoferricin B on E. coli O157:H7 observed in this study is not of sufficient magnitude to merit its use in ground beef for controlling the pathogen.

  1. Climate, lactation, and treatment factors influence faecal shedding of Escherichia coli O157 pathotypes in dairy cows.

    PubMed

    Stenkamp-Strahm, C; McCONNEL, C; Rao, S; Magnuson, R; Hyatt, D R; Linke, L

    2017-01-01

    Among pathogens shed by cattle, Escherichia coli O157 ranks highest in those causing human illness. To date, prevalence and risk factors for O157 shedding have been assessed in feedlot, but not dairy cattle. The study aimed to determine prevalence levels and risk factors for O157 atypical enteropathogenic E. coli (aEPEC) and enterohaemorrhagic E. coli (EHEC) shedding in dairy cattle. Dairy cattle (n = 899) within the first 21 days of lactation were sampled monthly over the course of 1 year, on three dry lot dairies surrounding Fort Collins, CO. During visits multiple factors were measured (disease history, pharmaceutical use, climate measures, etc.), and cattle faeces were collected and assessed for presence of O157 and virulence genes. Logistic regression analysis was performed using O157 outcomes and measured factors. Prevalence of O157 aEPEC was 3·7%, while EHEC was 3·0%. Many potential risk factors were highly correlated, and used to build separate multivariable models. An increase in humidity was positively associated with aEPEC, while fluid faeces and history of disease showed a negative association. Meanwhile, an increase in temperature and antibiotic treatment was positively associated with EHEC, while more days in milk, higher hygiene score and cow contact were negatively associated. These results may guide mitigation strategies that reduce O157 shedding, and contamination of the human food chain.

  2. Spread and change in stress resistance of Shiga toxin-producing Escherichia coli O157 on fungal colonies.

    PubMed

    Lee, Ken-Ichi; Kobayashi, Naoki; Watanabe, Maiko; Sugita-Konishi, Yoshiko; Tsubone, Hirokazu; Kumagai, Susumu; Hara-Kudo, Yukiko

    2014-11-01

    To elucidate the effect of fungal hyphae on the behaviour of Shiga toxin-producing Escherichia coli (STEC) O157, the spread and change in stress resistance of the bacterium were evaluated after coculture with 11 species of food-related fungi including fermentation starters. Spread distances of STEC O157 varied depending on the co-cultured fungal species, and the motile bacterial strain spread for longer distances than the non-motile strain. The population of STEC O157 increased when co-cultured on colonies of nine fungal species but decreased on colonies of Emericella nidulans and Aspergillus ochraceus. Confocal scanning microscopy visualization of green fluorescent protein-tagged STEC O157 on fungal hyphae revealed that the bacterium colonized in the water film that existed on and between hyphae. To investigate the physiological changes in STEC O157 caused by co-culturing with fungi, the bacterium was harvested after 7 days of co-culturing and tested for acid resistance. After co-culture with eight fungal species, STEC O157 showed greater acid resistance compared to those cultured without fungi. Our results indicate that fungal hyphae can spread the contamination of STEC O157 and can also enhance the stress resistance of the bacteria. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Reduction of Carriage of Enterohemorrhagic Escherichia coli O157:H7 in Cattle by Inoculation with Probiotic Bacteria

    PubMed Central

    Zhao, Tong; Doyle, Michael P.; Harmon, Barry G.; Brown, Cathy A.; Mueller, P. O. Eric; Parks, Andrew H.

    1998-01-01

    Bacteria inhibitory to Escherichia coli O157:H7 were isolated from cattle and evaluated for their potential for reducing carriage of E. coli O157:H7 in calves. Eighteen of 1,200 bacterial isolates from cattle feces and intestinal tissue samples were screened and determined to inhibit the growth of E. coli O157:H7 in vitro. Seventeen of the isolates were E. coli and one was Proteus mirabilis. None produced Shiga toxin. Genomic DNA fingerprinting by pulsed-field gel electrophoresis revealed 13 distinguishable profiles among the 18 isolates. Two calves inoculated perorally with a mixture of all 18 isolates (1010 CFU) appeared to be normal and did not develop signs of clinical disease throughout a 25- to 27-day observation period. These bacteria colonized segments of the gastrointestinal tract and were in feces at the termination of the experiment (25 and 27 days postinoculation) at levels of 50 to 200 CFU/g. Fifteen cannulated calves were studied to determine the efficiency of the probiotic bacteria in reducing or eliminating the carriage of E. coli O157:H7. Nine calves served as controls, with each animal receiving perorally 1010 CFU of E. coli O157:H7. E. coli O157:H7 was detected intermittently in the rumen samples from all control animals throughout 3 weeks postinoculation, whereas E. coli O157:H7 was shed at various levels in feces continuously throughout the experiment (mean, 28 days). E. coli O157:H7 was isolated from the rumens and colons of eight of nine and nine of nine calves, respectively, at the termination of the study. Six calves each received perorally 1010 CFU of probiotic bacteria and then 2 days later received 1010 CFU of E. coli O157:H7. E. coli O157:H7 was detected in the rumen for only 9 days postinoculation in two animals, for 16 days in one animal, for 17 days in two animals, and for 29 days in one animal. E. coli O157:H7 was detected in feces for only 11 days postinoculation in one animal, for 15 days in one animal, for 17 days in one animal

  4. Optical methods for detecting Escherichia coli O157:H7 spiked on cantaloupes

    NASA Astrophysics Data System (ADS)

    Tu, Shu-I.; Uknalis, Joseph; Gehring, Andrew

    2004-11-01

    Outbreaks of E. coli O157:H7 by the consumption of contaminated cantaloupes fruits have been documented. Pathogens harbored in the networked but porous veins in khaki colored skin are difficult to remove. Thus, sensitive and efficient methods are needed to detect the presence of E. coli O157:H7 in cantaloupes. In this work, known quantities of the E. coli were inoculated on cantaloupe skins or flesh at room temperature for 1 h. The contaminated samples were incubated in growth media at 37°C for 3.3h. The bacteria captured by magnetic beads coated with anti E. coli O157 antibodies were further sandwiched by second anti E. coli O157 antibodies containing peroxidase for chemiluminescent measurements of captured bacteria. Alternatively, the captured bacteria were treated with electron-shuttering reagent to detect the cellular level of NAD(P)H via bioluminescence. The detected enzyme activity (peroxidase) and the NAD(P)H were used to measure the presence of the pathogen. The results indicated both the chemiluminescence and the fluorescence methods, in 96 well microplate format, could be applied to detect the E. coli contamination of cantaloupes.

  5. Acid and alcohol tolerance of Escherichia coli O157:H7 in pulque, a typical Mexican beverage.

    PubMed

    Gómez-Aldapa, Carlos A; Díaz-Cruz, Claudio A; Villarruel-López, Angelica; Del Refugio Torres-Vitela, M; Rangel-Vargas, Esmeralda; Castro-Rosas, Javier

    2012-03-01

    Pulque is a traditional Mexican fermented alcoholic beverage produced from the nectar of maguey agave plants. No data exist on the behavior of Escherichia coli O157:H7 in agave nectar and pulque. An initial trial was done of the behavior of E. coli O157:H7 during fermentation of nectar from a single producer, a nectar mixture from different producers and "seed" pulque. A second trial simulating artisanal pulque production was done by contaminating fresh nectar with a cocktail of three E. coli O157:H7 strains, storing at 16 ° and 22 °C for 14 h, adding seed pulque and fermenting until pulque was formed. A third trial used pulque from the second trial stored at 22 °C as seed to ferment fresh nectar at 22 °C for 48 h (fermentation cycle). This procedure was repeated for an additional two fermentation cycles. During incubation at 16 ° or 22 °C in the first trial, the E. coli O157:H7 strains multiplied in both the single producer nectar and nectar mixture, reaching maximum concentration at 12h. E. coli O157:H7 cell concentration then decreased slowly, although it survived at least 72 h in both fermented nectars. E. coli O157:H7 did not multiply in the seed pulque but did survive at least 72 h. In the second trial, the numbers of E. coli O157:H7 increased approximately 1.5 log CFU/ml at 22 °C and 1.2 log CFU/ml at 16 °C after 14 h. After seed pulque was added, E. coli O157:H7 concentration decreased to approximately 2 log CFU/ml, and then remained constant until pulque was produced. In the third trial, the E. coli O157:H7 cells multiplied and survived during at least three nectar fermentation cycles. The results suggest that E. coli O157:H7 can develop acid and alcohol tolerance in pulque, and constitutes a public health risk for pulque consumers. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Inhibiting the Growth of Escherichia coli O157:H7 in Beef, Pork, and Chicken Meat using a Bacteriophage

    PubMed Central

    Seo, Jina; Seo, Dong Joo; Oh, Hyejin; Jeon, Su Been; Oh, Mi-Hwa; Choi, Changsun

    2016-01-01

    This study aimed to inhibit Escherichia coli (E. coli) O157:H7 artificially contaminated in fresh meat using bacteriophage. Among 14 bacteriophages, the highly lytic bacteriophage BPECO19 strain was selected to inhibit E. coli O157:H7 in artificially contaminated meat samples. Bacteriophage BPECO19 significantly reduced E. coli O157:H7 bacterial load in vitro in a multiplicity of infection (MOI)-dependent manner. E. coli O157:H7 was completely inhibited only in 10 min in vitro by the treatment of 10,000 MOI BPECO19. The treatment of BPECO19 at 100,000 MOI completely reduced 5 Log CFU/cm2 E. coli O157:H7 bacterial load in beef and pork at 4 and 8h, respectively. In chicken meat, a 4.65 log reduction of E. coli O157:H7 was observed at 4 h by 100,000 MOI. The treatment of single bacteriophage BPECO19 was an effective method to control E. coli O157:H7 in meat samples. PMID:27194926

  7. Whole-genome sequence of Escherichia coli serotype O157:H7 strain PA20

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli serotype O157:H7 PA20 is a Pennsylvania Department of Health clinical isolate. It has been used to study biofilm formation in O157:H7 clinical isolates where the high incidence of prophage insertions in the mlrA transcription factor disrupts traditional csgD biofilm regulation. Here...

  8. Comparison of the prevalence of shiga toxin-producing Escherichia coli strains O157 and O26 between beef and dairy cattle in Japan.

    PubMed

    Sasaki, Yoshimasa; Murakami, Mariko; Maruyama, Noriko; Yamamoto, Kenshu; Haruna, Mika; Ito, Kazuo; Yamada, Yukiko

    2013-01-01

    With the aim of comparing the prevalence of Shiga toxin-producing Escherichia coli (STEC) O157 and O26 between beef and dairy cattle, we collected rectal content samples from 250 beef cattle on 25 beef farms and 250 dairy cows on 25 dairy farms from July through September 2011. STEC O157 was isolated from 16 beef cattle on 7 beef farms, while no STEC O157 was isolated from any dairy farms. This result suggests that the prevalence of STEC O157 is higher in beef cattle than in dairy cattle. STEC O26 was isolated from 1 animal each from beef and dairy cattle herds, and therefore, it was not possible to compare statistically the prevalence of STEC O26 in beef and dairy cattle.

  9. Effect of Neem (Azadirachta indica) on the Survival of Escherichia coli O157:H7 in Dairy Manure

    PubMed Central

    Ravva, Subbarao V.; Korn, Anna

    2015-01-01

    Escherichia coli O157:H7 (EcO157) shed in cattle manure can survive for extended periods of time and intervention strategies to control this pathogen at the source are critical as produce crops are often grown in proximity to animal raising operations. This study evaluated whether neem (Azadirachta indica), known for its antimicrobial and insecticidal properties, can be used to amend manure to control EcO157. The influence of neem materials (leaf, bark, and oil) on the survival of an apple juice outbreak strain of EcO157 in dairy manure was monitored. Neem leaf and bark supplements eliminated the pathogen in less than 10 d with a D-value (days for 90% elimination) of 1.3 d. In contrast, nearly 4 log CFU EcO157/g remained after 10 d in neem-free manure control. The ethyl acetate extractable fraction of neem leaves was inhibitory to the growth of EcO157 in LB broth. Azadirachtin, a neem product with insect antifeedant properties, failed to inhibit EcO157. Application of inexpensive neem supplements to control pathogens in manure and possibly in produce fields may be an option for controlling the transfer of foodborne pathogens from farm to fork. PMID:26184255

  10. Effect of Neem (Azadirachta indica) on the Survival of Escherichia coli O157:H7 in Dairy Manure.

    PubMed

    Ravva, Subbarao V; Korn, Anna

    2015-07-10

    Escherichia coli O157:H7 (EcO157) shed in cattle manure can survive for extended periods of time and intervention strategies to control this pathogen at the source are critical as produce crops are often grown in proximity to animal raising operations. This study evaluated whether neem (Azadirachta indica), known for its antimicrobial and insecticidal properties, can be used to amend manure to control EcO157. The influence of neem materials (leaf, bark, and oil) on the survival of an apple juice outbreak strain of EcO157 in dairy manure was monitored. Neem leaf and bark supplements eliminated the pathogen in less than 10 d with a D-value (days for 90% elimination) of 1.3 d. In contrast, nearly 4 log CFU EcO157/g remained after 10 d in neem-free manure control. The ethyl acetate extractable fraction of neem leaves was inhibitory to the growth of EcO157 in LB broth. Azadirachtin, a neem product with insect antifeedant properties, failed to inhibit EcO157. Application of inexpensive neem supplements to control pathogens in manure and possibly in produce fields may be an option for controlling the transfer of foodborne pathogens from farm to fork.

  11. Super-Shed Escherichia coli O157:H7 have potential for increased pathogen persistence and antibiotic resistance dissemination

    USDA-ARS?s Scientific Manuscript database

    Cattle are primary reservoirs of Escherichia coli O157:H7 (O157), and super-shedding cattle shed O157 at greater than or equal to 10,000 colony-forming units/g feces. Host, bacteria, and/or the environment reportedly influence the super-shedding phenomenon. We recently demonstrated that a super-she...

  12. The relationship between compulsive behaviour and academic achievement across the three genetic subtypes of Prader-Willi syndrome.

    PubMed

    Zarcone, J; Napolitano, D; Peterson, C; Breidbord, J; Ferraioli, S; Caruso-Anderson, M; Holsen, L; Butler, M G; Thompson, T

    2007-06-01

    Prader-Willi syndrome (PWS) is a genetic syndrome associated with several physical, cognitive and behavioural characteristics. For many individuals with this syndrome, compulsive behaviour is often noted in both food and non-food situations. The focus of this paper is on the non-food-related compulsions in individuals with PWS and comparing differences across the three genetic subtypes of the syndrome. Compulsive behaviours in 73 people with PWS were assessed using the Yale-Brown Obsessive Compulsive Scale and the Compulsive Behavior Checklist. Compulsive behaviour and its relation to IQ and academic achievement also were evaluated. Phenotypic differences were characterized for the three most common genetic subtypes of the disorder: 16 individuals with the long Type I (TI) 15q deletion, 26 individuals with the short Type II (TII) 15q deletion and 31 individuals with maternal disomy 15. There appeared to be important differences between the two deletion subtypes. Specifically, individuals with the TI deletion had more compulsions regarding personal cleanliness (i.e. excessive bathing/grooming), and their compulsions were more difficult to interrupt and interfered with social activities more than the other subtypes. Individuals with the TII deletion were more likely to have compulsions related to specific academic areas (i.e. rereading, erasing answers and counting objects or numbers). These findings may help clinicians and researchers identify possible intervention strategies and supports based on the behavioural phenotype associated with genetic subtype in individuals with PWS.

  13. Survival of Escherichia coli O157:H7 in ground beef jerky assessed on two plating media.

    PubMed

    Harrison, J A; Harrison, M A; Rose, R A

    1998-01-01

    Recent outbreaks of food-borne illness due to Salmonella spp. in beef jerky and Escherichia coli O157:H7 in venison jerky, coupled with the fact that a variety of preparation methods and dying procedures abound, raise concern over the safety of processed meat products made in the home. The potential of injured bacterial cells to regain the ability to cause illness is a particular threat with pathogens such as E. coli O157:H7, which is believed to have a low infectious dose. This study examined the efficacy of various methods of jerky preparation in reducing populations of E, coli O157:H7 in ground beef jerky and compared the recovery rate of E. coli O157:H7 on two selective plating media, modified sorbitol MacConkey agar (MSMA) and modified eosin methylene blue agar (MEMB). Populations of E. coli O157:H7 in both heated and unheated samples exhibited a greater decline during drying when a nitrite and salt cure mix was added during jerky preparation. When recovery of E. coli O157:H7 on MSMA and MEMB was compared, a trend toward slightly higher recovery rates with MEMB was observed. On the basis of these results, MEMB is a suitable alternative to MSMA for the recovery of E. coli O157:H7 from heated and dried meat samples similar to beef jerky.

  14. Improved PCR assay for the specific detection and quantitation of Escherichia coli serotype O157 in water.

    PubMed

    Cho, Min Seok; Joh, Kiseong; Ahn, Tae-Young; Park, Dong Suk

    2014-09-01

    Escherichia coli serotype O157 is still a major global healthcare problem. However, only limited information is now available on the molecular and serological detection of pathogenic bacteria. Therefore, the development of appropriate strategies for their rapid identification and monitoring is still needed. In general, the sequence analysis based on stx, slt, eae, hlyA, rfb, and fliCh7 genes is widely employed for the identification of E. coli serotype O157; but there have been critical defects in the diagnosis and identification of E. coli serotype O157, in that they are also present in other E. coli serogroups. In this study, NCBI-BLAST searches using the nucleotide sequences of the putative regulatory protein gene from E. coli O157:H7 str. Sakai found sequence difference at the serotype level. The specific primers from the putative regulatory protein gene were designed and investigated for their sensitivity and specificity for detecting the pathogen in environment water samples. The specificity of the primer set was evaluated using genomic DNA from 8 isolates of E. coli serotype O157 and 32 other reference strains. In addition, the sensitivity and specificity of this assay were confirmed by successful identification of E. coli serotype O157 in environmental water samples. In conclusion, this study showed that the newly developed quantitative serotype-specific PCR method is a highly specific and efficient tool for the surveillance and rapid detection of high-risk E. coli serotype O157.

  15. Escherichia coli O157:H7 outbreak linked to salami, British Columbia, Canada, 1999.

    PubMed Central

    MacDonald, D. M.; Fyfe, M.; Paccagnella, A.; Trinidad, A.; Louie, K.; Patrick, D.

    2004-01-01

    An outbreak of E. coli O157:H7 infections was identified in November 1999 with a fivefold increase in the occurrence of laboratory-confirmed cases of E. coli O157:H7 infection. A matched case-control study was conducted. Samples of food from cases and from retailers were analysed for the presence of E. coli O157:H7. A total of 143 cases were identified over a 12-week period with the same pulsed-field gel electrophoresis (PFGE) pattern. The case-control study found that Company A salami was significantly associated with illness (Mantel-Haenszel matched odds ratio 10.0%, 95% CI 1.4-434, P=0.01). Company A salami tested positive for E. coli O157:H7 and isolates had the same PFGE pattern as case isolates. An immediate voluntary national recall of Company A dry fermented meat products took place. Findings from the investigation of this outbreak suggest that the hold-and-test option may not be adequate to prevent shiga-toxigenic Escherichia coli (STEC) infection in salami consumers. PMID:15061503

  16. A direct plating method for estimating populations of Escherichia coli O157 in bovine manure and manure-based materials.

    PubMed

    Berry, Elaine D; Wells, James E

    2008-11-01

    Escherichia coli O157:H7 outbreaks associated with produce consumption have brought attention to livestock manures and manure-based soil amendments as potential sources of pathogens for the contamination of these crops. Procedures for enumeration of E. coli O157:H7 are needed to assess the risks of transmission from these manures and their by-products. A direct plating method employing spiral plating onto CHROMagar O157 was investigated for enumeration of E. coli O157:H7 in feedlot surface material, aged bovine manure, bovine manure compost, and manure-amended soil. In studies utilizing samples spiked with a five-strain cocktail of E. coli O157:H7 at levels ranging from 102 to 10(5) CFU/g of sample, there were strong correlations between the observed and predicted levels of this pathogen. Although the addition of 2.5 mg/liter potassium tellurite and 5 mg/liter novobiocin made the medium more restrictive, these amendments enhanced the ability to identify and enumerate E. coli O157:H7 in feedlot surface material, which contained a higher proportion of fresh feces than did the other three sample types and therefore higher levels of interfering bacterial microflora. The spiral plating method was further assessed to determine its ability to enumerate E. coli O157:H7 in naturally contaminated feedlot surface material. Comparison of E. coli O157:H7 counts in feedlot surface material obtained by the spiral plating method and a most probable number technique were well correlated. We conclude that direct spiral plating onto CHROMagar O157 is effective for estimating E. coli O157:H7 levels in a variety of manures and manure-containing sample types to a lower detection limit of 200 CFU/g. The method has application for determining E. coli O157:H7 concentrations in manures and composts before their sale and use as soil amendments and for measuring the effectiveness of manure treatment processes to reduce or inactivate this pathogen.

  17. Behavior in Prader-Willi Syndrome: Relationship to Genetic Subtypes and Age

    ERIC Educational Resources Information Center

    Dykens, Elisabeth M.; Roof, Elizabeth

    2008-01-01

    Background: Some behavioral features of Prader-Willi syndrome (PWS) are associated with the major genetic subtypes of this disorder. While most agree that those with maternal uniparental disomy (UPD) have a distinctive cognitive and psychiatric profile, findings are more controversial regarding possible differences among persons who vary in…

  18. Characterization of enterohemorrhagic Escherichia coli O111 and O157 strains isolated from outbreak patients in Japan.

    PubMed

    Watahiki, Masanori; Isobe, Junko; Kimata, Keiko; Shima, Tomoko; Kanatani, Jun-ichi; Shimizu, Miwako; Nagata, Akihiro; Kawakami, Keiko; Yamada, Mikiko; Izumiya, Hidemasa; Iyoda, Sunao; Morita-Ishihara, Tomoko; Mitobe, Jiro; Terajima, Jun; Ohnishi, Makoto; Sata, Tetsutaro

    2014-08-01

    In April and May 2011, there was a serious food-poisoning outbreak in Japan caused by enterohemorrhagic Escherichia coli (EHEC) strains O111:H8 and O157:H7 from raw beef dishes at branches of a barbecue restaurant. This outbreak involved 181 infected patients, including 34 hemolytic-uremic syndrome (HUS) cases (19%). Among the 34 HUS patients, 21 developed acute encephalopathy (AE) and 5 died. Patient stool specimens yielded E. coli O111 and O157 strains. We also detected both EHEC O111 stx2 and stx-negative E. coli O111 strains in a stock of meat block from the restaurant. Pulsed-field gel electrophoresis (PFGE) and multilocus variable-number tandem-repeat analysis (MLVA) showed that the stx-negative E. coli O111 isolates were closely related to EHEC O111 stx2 isolates. Although the EHEC O157 strains had diverse stx gene profiles (stx1, stx2, and stx1 stx2), the PFGE and MLVA analyses indicated that these isolates originated from a single clone. Deletion of the Stx2-converting prophage from the EHEC O111 stx2 isolates was frequently observed during in vitro growth, suggesting that strain conversion from an EHEC O111 stx2 to an stx-negative strain may have occurred during infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Factors contributing to the emergence of Escherichia coli O157 in Africa.

    PubMed

    Effler, E; Isaäcson, M; Arntzen, L; Heenan, R; Canter, P; Barrett, T; Lee, L; Mambo, C; Levine, W; Zaidi, A; Griffin, P M

    2001-01-01

    In 1992, a large outbreak of bloody diarrhea caused by Escherichia coli O157 infections occurred in southern Africa. In Swaziland, 40,912 physician visits for diarrhea in persons ages >5 years were reported during October through November 1992. This was a sevenfold increase over the same period during 1990-91. The attack rate was 42% among 778 residents we surveyed. Female gender and consuming beef and untreated water were significant risks for illness. E. coli O157:NM was recovered from seven affected foci in Swaziland and South Africa; 27 of 31 patient and environmental isolates had indistinguishable pulsed-field gel electrophoresis patterns. Compared with previous years, a fivefold increase in cattle deaths occurred in October 1992. The first heavy rains fell that same month (36 mm), following 3 months of drought. Drought, carriage of E. coli O157 by cattle, and heavy rains with contamination of surface water appear to be important factors contributing to this outbreak.

  20. Factors contributing to the emergence of Escherichia coli O157 in Africa.

    PubMed Central

    Effler, E.; Isaäcson, M.; Arntzen, L.; Heenan, R.; Canter, P.; Barrett, T.; Lee, L.; Mambo, C.; Levine, W.; Zaidi, A.; Griffin, P. M.

    2001-01-01

    In 1992, a large outbreak of bloody diarrhea caused by Escherichia coli O157 infections occurred in southern Africa. In Swaziland, 40,912 physician visits for diarrhea in persons ages >5 years were reported during October through November 1992. This was a sevenfold increase over the same period during 1990-91. The attack rate was 42% among 778 residents we surveyed. Female gender and consuming beef and untreated water were significant risks for illness. E. coli O157:NM was recovered from seven affected foci in Swaziland and South Africa; 27 of 31 patient and environmental isolates had indistinguishable pulsed-field gel electrophoresis patterns. Compared with previous years, a fivefold increase in cattle deaths occurred in October 1992. The first heavy rains fell that same month (36 mm), following 3 months of drought. Drought, carriage of E. coli O157 by cattle, and heavy rains with contamination of surface water appear to be important factors contributing to this outbreak. PMID:11747693

  1. Genetic characterization of canine parvovirus type 2 subtypes in Maputo, Mozambique.

    PubMed

    Figueiredo, J; Miranda, C; Souto, R; Silva, E; Fafetine, J; Thompson, G

    2017-05-01

    Canine parvovirus type 2 (CPV-2) comprises three antigenic subtypes (2a, 2b and 2c) that have been reported in many countries. These subtypes cause serious disease in dogs with characteristic gastroenteritis signs. Little information has been documented in Africa about the genetic characterization of CPV-2. The aim of this study was to detect and to characterize the CPV-2 subtypes circulating in dogs admitted to Veterinary Clinics from two cities of Mozambique, Maputo and Matola, in 2010. A total of 40 field fecal samples were collected and tested for CPV-2 by polymerase chain reaction assay. The partial length VP2 gene of the positive samples were sequenced and genetically analyzed. Twenty-six (65%) fecal samples were positive for CPV-2. The restriction fragment length polymorphism analysis was also performed from positive samples and did not reveal the presence of CPV-2c subtype. The results of the sequencing revealed the presence of CPV-2a (n = 9) and CPV-2b (n = 17). No CPV-2 and CPV-2c were detected. Sequence analysis comparison showed nucleotide identities of 99.6-100% among our CPV-2 isolates. Amino acid analysis showed predicted amino acid changes. Phylogenetically, all of the CPV-2a strains isolated formed a cluster together with South African and Nigerian isolates. Most of Mozambican CPV-2b isolates also tended to cluster together with South African isolates; however, four were more closely related to French strain and one isolates to the American strain. The present study was the first to characterize the CPV-2 circulating in the Mozambican dog population.

  2. Severe Outbreak of Sorbitol-Fermenting Escherichia coli O157 via Unpasteurized Milk and Farm Visits, Finland 2012.

    PubMed

    Jaakkonen, A; Salmenlinna, S; Rimhanen-Finne, R; Lundström, H; Heinikainen, S; Hakkinen, M; Hallanvuo, S

    2017-09-01

    Shiga toxin-producing, sorbitol-fermenting Escherichia coli O157 (SF O157) has emerged as a cause of severe human illness. Despite frequent human findings, its transmission routes and reservoirs remain largely unknown. Foodborne transmission and reservoir in cattle have been suspected, but with limited supporting evidence. This study describes the outbreak of SF O157 that occurred in Finland in 2012. The outbreak originated from a recreational farm selling unpasteurized milk, as revealed by epidemiologic and microbiological investigations, and involved six hospitalized children and two asymptomatic adults with culture-confirmed infection. An identical strain of SF O157 was isolated from patients, cattle and the farm environment, and epidemiologic analysis suggested unpasteurized milk as the vehicle of transmission. This study reports the first milkborne outbreak of SF O157, provides supporting evidence of cattle as a reservoir and highlights the health risks related to the consumption of unpasteurized milk. © 2017 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  3. Characterization of E. coli O157:H7 strains isolated from super-shedding cattle

    USDA-ARS?s Scientific Manuscript database

    Background: Recent reports have indicated that a small sub-population of cattle shedding high levels of Escherichia coli O157:H7 is the main source for transmission of the pathogen between animals. Cattle achieving a fecal shedding status of 104 CFU of E. coli O157:H7/gram are now referred to as su...

  4. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12.

    PubMed

    Hayashi, T; Makino, K; Ohnishi, M; Kurokawa, K; Ishii, K; Yokoyama, K; Han, C G; Ohtsubo, E; Nakayama, K; Murata, T; Tanaka, M; Tobe, T; Iida, T; Takami, H; Honda, T; Sasakawa, C; Ogasawara, N; Yasunaga, T; Kuhara, S; Shiba, T; Hattori, M; Shinagawa, H

    2001-02-28

    Escherichia coli O157:H7 is a major food-borne infectious pathogen that causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Here we report the complete chromosome sequence of an O157:H7 strain isolated from the Sakai outbreak, and the results of genomic comparison with a benign laboratory strain, K-12 MG1655. The chromosome is 5.5 Mb in size, 859 Kb larger than that of K-12. We identified a 4.1-Mb sequence highly conserved between the two strains, which may represent the fundamental backbone of the E. coli chromosome. The remaining 1.4-Mb sequence comprises of O157:H7-specific sequences, most of which are horizontally transferred foreign DNAs. The predominant roles of bacteriophages in the emergence of O157:H7 is evident by the presence of 24 prophages and prophage-like elements that occupy more than half of the O157:H7-specific sequences. The O157:H7 chromosome encodes 1632 proteins and 20 tRNAs that are not present in K-12. Among these, at least 131 proteins are assumed to have virulence-related functions. Genome-wide codon usage analysis suggested that the O157:H7-specific tRNAs are involved in the efficient expression of the strain-specific genes. A complete set of the genes specific to O157:H7 presented here sheds new insight into the pathogenicity and the physiology of O157:H7, and will open a way to fully understand the molecular mechanisms underlying the O157:H7 infection.

  5. Evaluation of culture- and PCR-based detection methods for Escherichia coli O157:H7 in inoculated ground beeft.

    PubMed

    Arthur, Terrance M; Bosilevac, Joseph M; Nou, Xiangwu; Koohmaraie, Mohammad

    2005-08-01

    Currently, several beef processors employ test-and-hold systems for increased quality control of ground beef. In such programs, each lot of product must be tested and found negative for Escherichia coli O157:H7 prior to release of the product into commerce. Optimization of three testing attributes (detection time, specificity, and sensitivity) is critical to the success of such strategies. Because ground beef is a highly perishable product, the testing methodology used must be as rapid as possible. The test also must have a low false-positive result rate so product is not needlessly discarded. False-negative results cannot be tolerated because they would allow contaminated product to be released and potentially cause disease. In this study, two culture-based and three PCR-based methods for detecting E. coli O157:H7 in ground beef were compared for their abilities to meet the above criteria. Ground beef samples were individually spiked with five genetically distinct strains of E. coli O157: H7 at concentrations of 17 and 1.7 CFU/65 g and then subjected to the various testing methodologies. There was no difference (P > 0.05) in the abilities of the PCR-based methods to detect E. coli O157:H7 inoculated in ground beef at 1.7 CFU/65 g. The culture-based systems detected more positive samples than did the PCR-based systems, but the detection times (21 to 48 h) were at least 9 h longer than those for the PCR-based methods (7.5 to 12 h). Ground beef samples were also spiked with potentially cross-reactive strains. The PCR-based systems that employed an immunomagnetic separation step prior to detection produced fewer false-positive results.

  6. Strain differences in fitness of Escherichia coli O157:H7 to resist protozoan predation and survival in soil.

    PubMed

    Ravva, Subbarao V; Sarreal, Chester Z; Mandrell, Robert E

    2014-01-01

    Escherichia coli O157:H7 (EcO157) associated with the 2006 spinach outbreak appears to have persisted as the organism was isolated, three months after the outbreak, from environmental samples in the produce production areas of the central coast of California. Survival in harsh environments may be linked to the inherent fitness characteristics of EcO157. This study evaluated the comparative fitness of outbreak-related clinical and environmental strains to resist protozoan predation and survive in soil from a spinach field in the general vicinity of isolation of strains genetically indistinguishable from the 2006 outbreak strains. Environmental strains from soil and feral pig feces survived longer (11 to 35 days for 90% decreases, D-value) with Vorticella microstoma and Colpoda aspera, isolated previously from dairy wastewater; these D-values correlated (P<0.05) negatively with protozoan growth. Similarly, strains from cow feces, feral pig feces, and bagged spinach survived significantly longer in soil compared to clinical isolates indistinguishable by 11-loci multi-locus variable-number tandem-repeat analysis. The curli-positive (C+) phenotype, a fitness trait linked with attachment in ruminant and human gut, decreased after exposure to protozoa, and in soils only C- cells remained after 7 days. The C+ phenotype correlated negatively with D-values of EcO157 exposed to soil (rs = -0.683; P = 0.036), Vorticella (rs = -0.465; P = 0.05) or Colpoda (rs = -0.750; P = 0.0001). In contrast, protozoan growth correlated positively with C+ phenotype (Vorticella, rs = 0.730, P = 0.0004; Colpoda, rs = 0.625, P = 0.006) suggesting a preference for consumption of C+ cells, although they grew on C- strains also. We speculate that the C- phenotype is a selective trait for survival and possibly transport of the pathogen in soil and water environments.

  7. A comparative evaluation of the GENE-up assay for the detection of Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Introduction: Shiga-toxigenic Escherichia coli O157:H7 (STEC O157) remains one of the major food-borne public health threats since it was first identified as a pathogen in 1982. In the US, per year, the CDC estimates ca. 95,000 STEC O157 infections, among which ca. 3700 are lab confirmed cases. STE...

  8. The oncocytic subtype is genetically distinct from other pancreatic intraductal papillary mucinous neoplasm subtypes

    PubMed Central

    Basturk, Olca; Tan, Marcus; Bhanot, Umesh; Allen, Peter; Adsay, Volkan; Scott, Sasinya N; Shah, Ronak; Berger, Michael F; Askan, Gokce; Dikoglu, Esra; Jobanputra, Vaidehi; Wrzeszczynski, Kazimierz O; Sigel, Carlie; Iacobuzio-Donahue, Christine; Klimstra, David S

    2017-01-01

    neoplasms but not in the other two atypical ones. In the neoplasm with flat oncocytic epithelium, the only mutated gene was KRAS. All components of the intestinal subtype intraductal papillary mucinous neoplasms with focal oncocytic epithelium manifested TP53, GNAS, and RNF43 mutations. In conclusion, this study elucidates that ‘oncocytic subtype’ of intraductal papillary mucinous neoplasm is not only morphologically distinct but also genetically distinct from other intraductal papillary mucinous neoplasm subtypes. Considering that now its biologic behavior is also being found to be different than other intraductal papillary mucinous neoplasm subtypes, ‘oncocytic subtype’ of intraductal papillary mucinous neoplasm warrants being recognized separately. PMID:27282351

  9. Characterizing the Multidrug Resistance of non-O157 Shiga Toxin-Producing Escherichia coli Isolates from Cattle Farms and Abattoirs.

    PubMed

    Kennedy, Carrie-Ann; Fanning, Séamus; Karczmarczyk, Maria; Byrne, Brian; Monaghan, Áine; Bolton, Declan; Sweeney, Torres

    2017-09-01

    Non-O157 Shiga toxin-producing Escherichia coli (STECs) are not as well characterized as O157 STEC cases, despite their similar prevalence in many countries. Hence, the objective of this study was to investigate the phenotypic and genotypic basis of multidrug resistance (MDR) in non-O157 STEC farm- and abattoir-sourced isolates and assess the potential dissemination of these MDR profiles in vitro. Susceptibility testing to 20 antimicrobials was performed on 146 non-O157 STECs isolated from farm and abattoir environments. Eighty-seven percent of non-O157 STEC isolates were multidrug resistant to antimicrobials used during veterinary and agricultural practice. Antimicrobial resistance was significantly higher in abattoir isolates compared with the farm isolates (p < 0.05). Corresponding resistance determinants and integrons were investigated by polymerase chain reaction, with the predominant resistance determinants detected being floR, ampC, tet(A), bla TEM , and sul1. This is the first report of tet(G) in a non-O157 STEC isolate. Class 1 integrons were detected in 17 isolates. Resistance to ampicillin, cephalothin, chloramphenicol, kanamycin, neomycin, sulfonamides, trimethoprim, and tetracycline was associated with transferable plasmids belonging to incompatibility groups IncP, IncB/O, and IncFIB. Most MDR non-O157 STECs (90%) isolated in this study belong to phylogenetic groups A and B1. These findings suggest that MDR non-O157 STECs are emerging as a result of nonpathogenic E. coli acquiring virulence and resistance genes. This may convey a certain competitive advantage in the colonization of cattle when antimicrobial selective pressures are present, thereby leading to an increase in contamination of food with MDR non-O157 STECs.

  10. Biofilm formation of non-O157 Shiga toxin-producing Escherichia coli (STEC) on equipment surfaces

    USDA-ARS?s Scientific Manuscript database

    Introduction: Shiga toxin-producing Escherichia coli (STEC) serotype O157:H7 has been the most commonly recognized STEC serotype responsible for foodborne outbreaks in the US. Numerous outbreaks associated with non-O157 serotypes have also been reported due to consumption of contaminated food. The ...

  11. Escherichia coli O157: comparing awareness of rural residents and visitors in livestock farming areas.

    PubMed

    Jones, C D R; Hunter, C; Williams, A P; Strachan, N J C; Cross, P

    2011-10-01

    This research compared public opinions about Escherichia coli O157 (an increasing environmental hazard associated with livestock) in two farming areas with contrasting incidence of E. coli O157 disease. A questionnaire was administered in rural Grampian (10·8 cases/100,000 population per year) and North Wales (2·5 cases/100,000 population per year). Awareness was highest among farmers in Grampian (91%) and lowest among visitors to both areas (28%). Respondents were more likely to indicate vomiting (76%) than bloody diarrhoea (48%) as a common symptom. Undercooked meat and contact with farm animal faeces were identified by 60% of all respondents as risk factors who described 'basic hygiene' for risk reduction indoors. Visitors view E. coli O157 as a food hazard, not an environmental hazard that produces vomiting not dysentery. Efforts to reduce human infections in livestock farming areas could be improved with proximate reminders for visitors of the environmental pathway of E. coli O157 infection.

  12. Short-term evolution of Shiga toxin-producing Escherichia coli O157:H7 between two food-borne outbreaks.

    PubMed

    Cowley, Lauren A; Dallman, Timothy J; Fitzgerald, Stephen; Irvine, Neil; Rooney, Paul J; McAteer, Sean P; Day, Martin; Perry, Neil T; Bono, James L; Jenkins, Claire; Gally, David L

    2016-09-01

    Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a public health threat and outbreaks occur worldwide. Here, we investigate genomic differences between related STEC O157:H7 that caused two outbreaks, eight weeks apart, at the same restaurant. Short-read genome sequencing divided the outbreak strains into two sub-clusters separated by only three single-nucleotide polymorphisms in the core genome while traditional typing identified them as separate phage types, PT8 and PT54. Isolates did not cluster with local strains but with those associated with foreign travel to the Middle East/North Africa. Combined long-read sequencing approaches and optical mapping revealed that the two outbreak strains had undergone significant microevolution in the accessory genome with prophage gain, loss and recombination. In addition, the PT54 sub-type had acquired a 240 kbp multi-drug resistance (MDR) IncHI2 plasmid responsible for the phage type switch. A PT54 isolate had a general fitness advantage over a PT8 isolate in rich medium, including an increased capacity to use specific amino acids and dipeptides as a nitrogen source. The second outbreak was considerably larger and there were multiple secondary cases indicative of effective human-to-human transmission. We speculate that MDR plasmid acquisition and prophage changes have adapted the PT54 strain for human infection and transmission. Our study shows the added insights provided by combining whole-genome sequencing approaches for outbreak investigations.

  13. Short-term evolution of Shiga toxin-producing Escherichia coli O157:H7 between two food-borne outbreaks

    PubMed Central

    Dallman, Timothy J.; Fitzgerald, Stephen; Irvine, Neil; Rooney, Paul J.; McAteer, Sean P.; Day, Martin; Perry, Neil T.; Bono, James L.; Jenkins, Claire; Gally, David L.

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a public health threat and outbreaks occur worldwide. Here, we investigate genomic differences between related STEC O157:H7 that caused two outbreaks, eight weeks apart, at the same restaurant. Short-read genome sequencing divided the outbreak strains into two sub-clusters separated by only three single-nucleotide polymorphisms in the core genome while traditional typing identified them as separate phage types, PT8 and PT54. Isolates did not cluster with local strains but with those associated with foreign travel to the Middle East/North Africa. Combined long-read sequencing approaches and optical mapping revealed that the two outbreak strains had undergone significant microevolution in the accessory genome with prophage gain, loss and recombination. In addition, the PT54 sub-type had acquired a 240 kbp multi-drug resistance (MDR) IncHI2 plasmid responsible for the phage type switch. A PT54 isolate had a general fitness advantage over a PT8 isolate in rich medium, including an increased capacity to use specific amino acids and dipeptides as a nitrogen source. The second outbreak was considerably larger and there were multiple secondary cases indicative of effective human-to-human transmission. We speculate that MDR plasmid acquisition and prophage changes have adapted the PT54 strain for human infection and transmission. Our study shows the added insights provided by combining whole-genome sequencing approaches for outbreak investigations. PMID:28348875

  14. Evaluation of a novel antimicrobial solution and its potential for control E. coli O157:H7, non-O157:H7 shiga toxin-producing E. coli, Salmononella spp., and Listeria monocytogenes on beef

    USDA-ARS?s Scientific Manuscript database

    The goal of this study was to evaluate the efficacy of a novel antimicrobial solution made with chitosan, lauric arginate ester, and organic acids on Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and non-O157 shiga toxin-producing E. coli cocktails and to test its potential to b...

  15. Survival of Escherichia coli O157:H7 during manufacture and storage of white brined cheese.

    PubMed

    Osaili, Tareq M; Al-Nabulsi, Anas A; Olaimat, Amin N; Shaker, Reyad R; Taha, Mohammad; Holley, Richard A

    2014-09-01

    Escherichia coli O157:H7 is a major foodborne pathogen that causes severe disease in humans. Survival of E. coli O157:H7 during processing and storage of white brined cheese was investigated. Cheeses were prepared using pasteurized milk inoculated with a 4 strain E. coli O157:H7 cocktail (7 log(10) CFU/g) with or without yogurt starter culture (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus salivarius ssp. thermophilus) and stored in 10% or 15% NaCl brine at 10 and 21 ºC for 28 d. NaCl concentration, water activity (a(w)), pH, and numbers of E. coli O157:H7 and lactic acid bacteria (LAB) were determined in cheese and brine. E. coli O157:H7 was able to survive in cheese stored in both brines at 10 and 21 ºC regardless of the presence of starter LAB, although the latter significantly enhanced E. coli O157:H7 reduction in cheese or its brine at 10 ºC. E. coli O157:H7 numbers were reduced by 2.6 and 3.4 log(10) CFU/g in cheese stored in 10% and 15% NaCl brine, respectively, in the presence of starter LAB and by 1.4 and 2.3 log(10) CFU/g, respectively, in the absence of starter LAB at 10 ºC. The pathogen survived, but at lower numbers in the brines. The salt concentration of cheese stored in 10% brine remained about 5% during ripening, but in 15% brine, the NaCl level increased 1.6% to 8.1% (w/w) by 28 d. Values of pH and a(w) slightly decreased 1 d after exposure to brine and reached 5.5 to 6.6 and 0.88 to 0.94, respectively, in all treatments. © 2014 Institute of Food Technologists®

  16. Detection of Escherichia Coli O157:H7 in Fecal Samples in Meat Goats

    ERIC Educational Resources Information Center

    Mobley, Ray; Madden, Uford; Brooks-Walter, Alexis

    2004-01-01

    Studies have reported the isolation of Escherichia coli (E. coli)O157:H7 from pork, lamb and poultry products, and from other animals including deer, horses, dogs, birds and humans. There is limited or no information on the presence of the organism in goats. The objectives of this study were to determine if E. coli O157:H7 was naturally occurring…

  17. Use of Bacteriophages to Control Escherichia coli O157:H7 in Domestic Ruminants, Meat Products, and Fruits and Vegetables.

    PubMed

    Wang, Lili; Qu, Kunli; Li, Xiaoyu; Cao, Zhenhui; Wang, Xitao; Li, Zhen; Song, Yaxiong; Xu, Yongping

    2017-09-01

    Escherichia coli O157:H7 is an important foodborne pathogen that causes severe bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Ruminant manure is a primary source of E. coli O157:H7 contaminating the environment and food sources. Therefore, effective interventions targeted at reducing the prevalence of fecal excretion of E. coli O157:H7 by cattle and sheep and the elimination of E. coli O157:H7 contamination of meat products as well as fruits and vegetables are required. Bacteriophages offer the prospect of sustainable alternative approaches against bacterial pathogens with the flexibility of being applied therapeutically or for biological control purposes. This article reviews the use of phages administered orally or rectally to ruminants and by spraying or immersion of fruits and vegetables as an antimicrobial strategy for controlling E. coli O157:H7. The few reports available demonstrate the potential of phage therapy to reduce E. coli O157:H7 carriage in cattle and sheep, and preparation of commercial phage products was recently launched into commercial markets. However, a better ecological understanding of the phage E. coli O157:H7 will improve antimicrobial effectiveness of phages for elimination of E. coli O157:H7 in vivo.

  18. Comparison of Diversities of Escherichia coli O157 Shed from a Cohort of Spring-Born Beef Calves at Pasture and in Housing

    PubMed Central

    Vali, Leila; Pearce, Michael C.; Wisely, Karen A.; Hamouda, Ahmed; Knight, Hazel I.; Smith, Alastair W.; Amyes, Sebastian G. B.

    2005-01-01

    A cohort of spring-born beef calves demonstrated limited genetic and phenotypic diversity of Escherichia coli O157 when kept in a state of isolation. Despite this, there was a difference in the pulsed-field gel electrophoresis and phage types of isolates shed by cattle at pasture compared with those shed by the same cattle when weaned and housed. PMID:15746371

  19. Escherichia coli O157:H7 virulence factors differentially impact cattle and bison macrophage killing

    USDA-ARS?s Scientific Manuscript database

    Enterohemorrhagic Escherichia coli O157:H7 frequently colonizes the gastrointestinal tract of ruminants, including cattle and bison, which are a reservoir of the zoonotic bacteria to humans. Healthy animals do not experience the clinical symptoms of disease that is induced by E. coli O157:H7 in huma...

  20. Escherichia coli O157:H7 Outbreak Associated with Restaurant Beef Grinding.

    PubMed

    Torso, Lauren M; Voorhees, Ronald E; Forest, Stephen A; Gordon, Andrew Z; Silvestri, Sharon A; Kissler, Bonnie; Schlackman, Jessica; Sandt, Carol H; Toma, Paul; Bachert, Joel; Mertz, Kristen J; Harrison, Lee H

    2015-07-01

    Escherichia coli O157:H7 is a common cause of foodborne illness in the United States. Beef ground at establishments regulated by the U.S. Department of Agriculture, Food Safety and Inspection Service is routinely tested for E. coli O157:H7. Prior to December 2013, boxed beef product (wholesale cuts of beef, such as beef loin, packaged into bags and boxed for shipping) was not always tested for this pathogen. Downstream processors or retailers may grind the product; and, if the ground beef is not cooked to the recommended temperature, pathogens on the exterior of the beef introduced to the interior through grinding may survive. On 18 October 2013, the Allegheny County Health Department identified two E. coli O157:H7 cases, both of whom were food handlers at restaurant A, a restaurant that ground locally produced boxed beef for hamburgers on site. Case finding was conducted through public messaging, employee surveys, and disease surveillance. All potential cases were interviewed using a standard questionnaire. A confirmed case was defined as laboratory-confirmed E. coli O157:H7 with exposure to restaurant A. A probable case was defined as a patient with compatible symptoms and exposure to restaurant A but without laboratory confirmation. All human and food isolates were characterized by pulsed-field gel electrophoresis and multilocus variable-number tandem repeat analysis. The analysis identified 14 confirmed and 10 probable cases of E. coli; 18 nonintact ground beef samples tested positive for E. coli O157:H7. Nine confirmed cases were restaurant A employees. All confirmed cases recalled eating a restaurant A hamburger in the 10 days before illness onset; most cases reported consuming medium to rare hamburgers. Multiple pulsed-field gel electrophoresis and multilocus variable-number tandem repeat analysis patterns were identified among both the human and ground beef isolates, and the patient isolates matched those found in ground beef samples. Restaurant A

  1. Particular Biochemical Profiles for Enterohemorrhagic Escherichia coli O157:H7 Isolates on the ID 32E System

    PubMed Central

    Leclercq, Alexandre; Lambert, Bernard; Pierard, Denis; Mahillon, Jacques

    2001-01-01

    The ability of the ID 32E system to identify and discriminate 74 Escherichia coli O157 isolates among 106 E. coli non-O157 isolates was evaluated. The results showed atypical biochemical reactions but accurate identification at the species level and no unique biochemical profile numbers for E. coli O157, although these numbers were distinct from those of other serotypes. PMID:11230449

  2. Rapid and selective detection of E. coli O157:H7 combining phagomagnetic separation with enzymatic colorimetry.

    PubMed

    Zhang, Yun; Yan, Chenghui; Yang, Hang; Yu, Junping; Wei, Hongping

    2017-11-01

    Mammal IgG antibodies are normally used in conventional immunoassays for E. coli O157:H7, which could lead to false positive results from the presence of protein A producing S. aureus. In this study, a natural specific bacteriophage was isolated and then conjugated with magnetic beads as a capture element in a sandwich format for the rapid and selective detection of E. coli O157:H7. To the best of our knowledge, it was the first time to utilize a natural bacteriophage to develop a phagomagnetic separation combined with colorimetric assay for E. coli O157:H7. The method has an overall time less than 2h with a detection limit of 4.9×10 4 CFU/mL. No interference from S. aureus was observed. Furthermore, the proposed method was successfully applied to detect E. coli O157:H7 in spiked skim milk. The proposed detection system provided a potential method for E. coli O157:H7 and other pathogenic bacteria in food samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Incidence and Tracking of Escherichia coli O157:H7 in a Major Produce Production Region in California

    PubMed Central

    Cooley, Michael; Carychao, Diana; Crawford-Miksza, Leta; Jay, Michele T.; Myers, Carol; Rose, Christopher; Keys, Christine; Farrar, Jeff; Mandrell, Robert E.

    2007-01-01

    Fresh vegetables have become associated with outbreaks caused by Escherichia coli O157:H7 (EcO157). Between 1995–2006, 22 produce outbreaks were documented in the United States, with nearly half traced to lettuce or spinach grown in California. Outbreaks between 2002 and 2006 induced investigations of possible sources of pre-harvest contamination on implicated farms in the Salinas and San Juan valleys of California, and a survey of the Salinas watershed. EcO157 was isolated at least once from 15 of 22 different watershed sites over a 19 month period. The incidence of EcO157 increased significantly when heavy rain caused an increased flow rate in the rivers. Approximately 1000 EcO157 isolates obtained from cultures of>100 individual samples were typed using Multi-Locus Variable-number-tandem-repeat Analysis (MLVA) to assist in identifying potential fate and transport of EcO157 in this region. A subset of these environmental isolates were typed by Pulse Field Gel Electrophoresis (PFGE) in order to make comparisons with human clinical isolates associated with outbreak and sporadic illness. Recurrence of identical and closely related EcO157 strains from specific locations in the Salinas and San Juan valleys suggests that transport of the pathogen is usually restricted. In a preliminary study, EcO157 was detected in water at multiple locations in a low-flow creek only within 135 meters of a point source. However, possible transport up to 32 km was detected during periods of higher water flow associated with flooding. During the 2006 baby spinach outbreak investigation, transport was also detected where water was unlikely to be involved. These results indicate that contamination of the environment is a dynamic process involving multiple sources and methods of transport. Intensive studies of the sources, incidence, fate and transport of EcO157 near produce production are required to determine the mechanisms of pre-harvest contamination and potential risks for human

  4. Antibacterial activity of cinnamaldehyde and Sporan against Escherichia coli O157:H7 and Salmonella

    USDA-ARS?s Scientific Manuscript database

    The in vitro antimicrobial effect of cinnamaldehyde and Sporan in combination with acetic acid against E. coli O157:H7 and Salmonella was investigated. A five strain cocktail of E. coli O157:H7 and Salmonella were inoculated in Luria-Bertoni broth (LB broth, 7 log CFU ml-1) containing cinnamaldehyde...

  5. Evaluation of an inactivated whole-cell vaccine-adjuvant preparation for reducing fecal shedding of Escherichia coli O157:H7 in cattle

    USDA-ARS?s Scientific Manuscript database

    Cattle are the primary reservoir for Escherichia coli O157:H7 (O157). O157 can cause from a mild diarrheal illness in healthy adults to hemorrhagic colitis and hemolytic uremic syndrome in young children and elderly patients. O157-colonized cattle remain asymptomatic but shed these bacteria in feces...

  6. Evaluation of hha and hha sepB mutant strains of Escherichia coli O157:H7 as bacterins for reducing E. coli O157:H7 shedding in cattle.

    PubMed

    Sharma, Vijay K; Dean-Nystrom, Evelyn A; Casey, Thomas A

    2011-07-12

    Escherichia coli O157:H7 colonizes cattle intestines by using the locus of enterocyte effacement (LEE)-encoded proteins. The induction of systemic immune response against LEE-encoded proteins, therefore, will prove effective in reducing E. coli O157:H7 colonization in cattle. The previous studies have demonstrated that a hha (encodes for a hemolysin expression modulating protein) deletion enhances expression of LEE-encoded proteins and a sepB (encodes an ATPase required for the secretion of LEE-encoded proteins) deletion results in intracellular accumulation of LEE proteins. In this study, we demonstrate the efficacy of the hha and hha sepB deletion mutants as bacterins for reducing fecal shedding of E. coli O157:H7 in experimentally inoculated weaned calves. The weaned calves were injected intramuscularly with the bacterins containing 10(9) heat-killed cells of the hha(+) wild-type or hha or hha sepB isogenic mutants, and boosted with the same doses 2- and 4-weeks later. The evaluation of the immune response two weeks after the last booster immunization revealed that the calves vaccinated with the hha mutant bacterin had higher antibody titers against LEE proteins compared to the titers for these antibodies in the calves vaccinated with the hha sepB mutant or hha(+) wild-type bacterins. Following oral inoculations with 10(10) CFU of the wild-type E. coli O157:H7, the greater numbers of calves in the group vaccinated with the hha or hha sepB mutant bacterins stopped shedding the inoculum strain within a few days after the inoculations compared to the group of calves vaccinated with the hha(+) wild-type bacterin or PBS sham vaccine. Thus, the use of bacterins prepared from the hha and hha sepB mutants for reducing colonization of E. coli O157:H7 in cattle could represent a potentially important pre-harvest strategy to enhance post-harvest safety of bovine food products, water and produce. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Assumptions of acceptance sampling and the implications for lot contamination: Escherichia coli O157 in lots of Australian manufacturing beef.

    PubMed

    Kiermeier, Andreas; Mellor, Glen; Barlow, Robert; Jenson, Ian

    2011-04-01

    The aims of this work were to determine the distribution and concentration of Escherichia coli O157 in lots of beef destined for grinding (manufacturing beef) that failed to meet Australian requirements for export, to use these data to better understand the performance of sampling plans based on the binomial distribution, and to consider alternative approaches for evaluating sampling plans. For each of five lots from which E. coli O157 had been detected, 900 samples from the external carcass surface were tested. E. coli O157 was not detected in three lots, whereas in two lots E. coli O157 was detected in 2 and 74 samples. For lots in which E. coli O157 was not detected in the present study, the E. coli O157 level was estimated to be <12 cells per 27.2-kg carton. For the most contaminated carton, the total number of E. coli O157 cells was estimated to be 813. In the two lots in which E. coli O157 was detected, the pathogen was detected in 1 of 12 and 2 of 12 cartons. The use of acceptance sampling plans based on a binomial distribution can provide a falsely optimistic view of the value of sampling as a control measure when applied to assessment of E. coli O157 contamination in manufacturing beef. Alternative approaches to understanding sampling plans, which do not assume homogeneous contamination throughout the lot, appear more realistic. These results indicate that despite the application of stringent sampling plans, sampling and testing approaches are inefficient for controlling microbiological quality.

  8. The Development of a Portable SPR Bioanalyzer for Sensitive Detection of Escherichia coli O157:H7.

    PubMed

    Wang, Shun; Xie, Jiufeng; Jiang, Min; Chang, Keke; Chen, Ruipeng; Ma, Liuzheng; Zhu, Juanhua; Guo, Qingqian; Sun, Haifeng; Hu, Jiandong

    2016-11-04

    The purpose of this study was to develop a portable surface plasmon resonance (SPR) bioanalyzer for the sensitive detection of Escherichia coli O157:H7 in comparison with an enzyme-linked immunosorbent assay (ELISA). The experimental setup mainly consisted of an integrated biosensor and a homemade microfluidic cell with a three-way solenoid valve. In order to detect Escherichia coli O157:H7 using the SPR immunoassay, 3-mercaptopropionic acid (3-MPA) was chemisorbed onto a gold surface via covalent bond for the immobilization of biological species. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) were used as crosslinker reagents to enable the reaction between 3-MPA and Escherichia coli O157:H7 antibodies by covalent -CO-NH- amide bonding. The experimental results were obtained from the Escherichia coli O157:H7 positive samples prepared by 10-, 20-, 40-, 80-, and 160-fold dilution respectively, which show that a good linear relationship with the correlation coefficient R of 0.982 existed between the response units from the portable SPR bioanalyzer and the concentration of Escherichia coli O157:H7 positive samples. Moreover, the theoretical detection limit of 1.87 × 10³ cfu/mL was calculated from the positive control samples. Compared with the Escherichia coli O157:H7 ELISA kit, the sensitivity of this portable SPR bioanalyzer is four orders of magnitude higher than the ELISA kit. The results demonstrate that the portable SPR bioanalyzer could provide an alternative method for the quantitative and sensitive determination of Escherichia coli O157:H7 in field.

  9. The Development of a Portable SPR Bioanalyzer for Sensitive Detection of Escherichia coli O157:H7

    PubMed Central

    Wang, Shun; Xie, Jiufeng; Jiang, Min; Chang, Keke; Chen, Ruipeng; Ma, Liuzheng; Zhu, Juanhua; Guo, Qingqian; Sun, Haifeng; Hu, Jiandong

    2016-01-01

    The purpose of this study was to develop a portable surface plasmon resonance (SPR) bioanalyzer for the sensitive detection of Escherichia coli O157:H7 in comparison with an enzyme-linked immunosorbent assay (ELISA). The experimental setup mainly consisted of an integrated biosensor and a homemade microfluidic cell with a three-way solenoid valve. In order to detect Escherichia coli O157:H7 using the SPR immunoassay, 3-mercaptopropionic acid (3-MPA) was chemisorbed onto a gold surface via covalent bond for the immobilization of biological species. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) were used as crosslinker reagents to enable the reaction between 3-MPA and Escherichia coli O157:H7 antibodies by covalent –CO–NH– amide bonding. The experimental results were obtained from the Escherichia coli O157:H7 positive samples prepared by 10-, 20-, 40-, 80-, and 160-fold dilution respectively, which show that a good linear relationship with the correlation coefficient R of 0.982 existed between the response units from the portable SPR bioanalyzer and the concentration of Escherichia coli O157:H7 positive samples. Moreover, the theoretical detection limit of 1.87 × 103 cfu/mL was calculated from the positive control samples. Compared with the Escherichia coli O157:H7 ELISA kit, the sensitivity of this portable SPR bioanalyzer is four orders of magnitude higher than the ELISA kit. The results demonstrate that the portable SPR bioanalyzer could provide an alternative method for the quantitative and sensitive determination of Escherichia coli O157:H7 in field. PMID:27827923

  10. Contributions of EspA filaments and curli fimbriae in cellular adherence and biofilm formation of enterohemorrhagic Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    In Escherichia coli O157:H7 (O157), the filamentous structure of the type III secretion system is produced from the polymerization of the EspA protein. EspA filaments are essential for O157 adherence to epithelial cells. In previous studies, we demonstrated that O157 hha deletion mutants showed incr...

  11. Antibacterial Activities of Wasabi against Escherichia coli O157:H7 and Staphylococcus aureus

    PubMed Central

    Lu, Zhongjing; Dockery, Christopher R.; Crosby, Michael; Chavarria, Katherine; Patterson, Brett; Giedd, Matthew

    2016-01-01

    Escherichia coli O157:H7 and Staphylococcus aureus are two of the major pathogens frequently involved in foodborne outbreaks. Control of these pathogens in foods is essential to food safety. It is of great interest in the use of natural antimicrobial compounds present in edible plants to control foodborne pathogens as consumers prefer more natural “green” foods. Allyl isothiocyanate (AITC) is an antimicrobial compound naturally present in wasabi (Japanese horseradish) and several other edible plants. Although the antibacterial effects of pure AITC and wasabi extract (essential oil) against several bacteria have been reported, the antibacterial property of natural wasabi has not been well studied. This study investigated the antibacterial activities of wasabi as well as AITC against E. coli O157:H7 and S. aureus. Chemical analysis showed that AITC is the major isothiocyanate in wasabi. The AITC concentration in the wasabi powder used in this study was 5.91 ± 0.59 mg/g. The minimum inhibitory concentration (MIC) of wasabi against E. coli O157:H7 or S. aureus was 1% (or 10 mg/ml). Wasabi at 4% displayed higher bactericidal activity against S. aureus than against E. coli O157:H7. The MIC of AITC against either pathogen was between 10 and 100 μg/ml. AITC at 500 μg/ml was bactericidal against both pathogens while AITC at 1000 μg/ml eliminated E. coli O157:H7 much faster than S. aureus. The results from this study showed that wasabi has strong antibacterial property and has high potential to effectively control E. coli O157:H7 and S. aureus in foods. The antibacterial property along with its natural green color, unique flavor, and advantage to safeguard foods at the point of ingestion makes wasabi a promising natural edible antibacterial plant. The results from this study may be of significant interest to the food industry as they develop new and safe foods. These results may also stimulate more research to evaluate the antibacterial effect of wasabi against other

  12. Antibacterial Activities of Wasabi against Escherichia coli O157:H7 and Staphylococcus aureus.

    PubMed

    Lu, Zhongjing; Dockery, Christopher R; Crosby, Michael; Chavarria, Katherine; Patterson, Brett; Giedd, Matthew

    2016-01-01

    Escherichia coli O157:H7 and Staphylococcus aureus are two of the major pathogens frequently involved in foodborne outbreaks. Control of these pathogens in foods is essential to food safety. It is of great interest in the use of natural antimicrobial compounds present in edible plants to control foodborne pathogens as consumers prefer more natural "green" foods. Allyl isothiocyanate (AITC) is an antimicrobial compound naturally present in wasabi (Japanese horseradish) and several other edible plants. Although the antibacterial effects of pure AITC and wasabi extract (essential oil) against several bacteria have been reported, the antibacterial property of natural wasabi has not been well studied. This study investigated the antibacterial activities of wasabi as well as AITC against E . coli O157:H7 and S . aureus . Chemical analysis showed that AITC is the major isothiocyanate in wasabi. The AITC concentration in the wasabi powder used in this study was 5.91 ± 0.59 mg/g. The minimum inhibitory concentration (MIC) of wasabi against E. coli O157:H7 or S. aureus was 1% (or 10 mg/ml). Wasabi at 4% displayed higher bactericidal activity against S. aureus than against E. coli O157:H7. The MIC of AITC against either pathogen was between 10 and 100 μg/ml. AITC at 500 μg/ml was bactericidal against both pathogens while AITC at 1000 μg/ml eliminated E. coli O157:H7 much faster than S. aureus . The results from this study showed that wasabi has strong antibacterial property and has high potential to effectively control E. coli O157:H7 and S. aureus in foods. The antibacterial property along with its natural green color, unique flavor, and advantage to safeguard foods at the point of ingestion makes wasabi a promising natural edible antibacterial plant. The results from this study may be of significant interest to the food industry as they develop new and safe foods. These results may also stimulate more research to evaluate the antibacterial effect of wasabi against other

  13. A rapid two dot filter assay for the detection of E. coli O157 in water samples.

    PubMed

    Kamma, Sujatha; Tang, Lily; Leung, Kelvin; Ashton, Edie; Newman, Norman; Suresh, Mavanur R

    2008-07-31

    E. coli O157:H7 is an enterohemorrhagic bacteria that cause deadly water-borne infections implicated in outbreaks of a wide spectrum of human gastrointestinal diseases. It is therefore important to have a rapid convenient, simple and sensitive range of detection of E. coli O157:H7. A new E. coli O157 MAb designated P124 was developed for ultrasensitive detection of E. coli O157 in water, apple juice and beef for routine use. A prototype filter dot assay was designed with anti-E. coli O157 MAb bound to 0.2 microm nitrocellulose filter disk as the capture antibody. A 100 ml water sample spiked with 1-50 CFU of E. coli O157 either in the presence or absence of other non-specific bacteria were filtered for capture of the pathogen on the antibody coated nitrocellulose disk. The detection of the pathogen was successfully accomplished by the same antibody both as a capture and detecting antibody as a homosandwich. In a non-enriched format, detection of E. coli was possible with a sensitivity of 2500 CFU/100 ml. Ultrasensitive detection of ~1 CFU/100 ml sample could be achieved by a prior pathogen enrichment step before the addition of the labeled antibody. The design of this diagnostic test is based on the common architecture of all bacteria, viruses and spores, namely the manifestation of repeat lipopolysaccharide epitopes on the surface. We have developed an easy-to-use two dot visual filter assay for translation into current water testing in public health laboratories to detect E. coli O157:H7. In a 5 h assay approximately 1 CFU and approximately 5 CFU of E. coli O157 could be detected in 100 ml of water or juice and lake samples respectively. This simple homosandwich enrichment strategy can also be used to detect low levels of other water-borne pathogens.

  14. Assessments of Total and Viable Escherichia coli O157:H7 on Field and Laboratory Grown Lettuce

    PubMed Central

    Moyne, Anne-Laure; Harris, Linda J.; Marco, Maria L.

    2013-01-01

    Leafy green produce has been associated with numerous outbreaks of foodborne illness caused by strains of Escherichia coli O157:H7. While the amounts of culturable E. coli O157:H7 rapidly decline after introduction onto lettuce in the field, it remains to be determined whether the reduction in cell numbers is due to losses in cell viability, cell injury and a subsequent inability to be detected by standard laboratory culturing methods, or a lack of adherence and hence rapid removal of the organism from the plants during application. To assess which of these options is most relevant for E. coli O157:H7 on leafy green produce, we developed and applied a propidium monoazide (PMA) real-time PCR assay to quantify viable (with PMA) and total (without PMA) E. coli O157:H7 cells on growth chamber and field-grown lettuce. E. coli O157:H7, suspended in 0.1% peptone, was inoculated onto 4-week-old lettuce plants at a level of approximately 106 CFU/plant. In the growth chamber at low relative humidity (30%), culturable amounts of the nontoxigenic E. coli O157:H7 strain ATCC 700728 and the virulent strain EC4045 declined 100 to 1000-fold in 24 h. Fewer E. coli O157:H7 cells survived when applied onto plants in droplets with a pipette compared with a fine spray inoculation. Total cells for both strains were equivalent to inoculum levels for 7 days after application, and viable cell quantities determined by PMA real-time PCR were approximately 104 greater than found by colony enumeration. Within 2 h after application onto plants in the field, the number of culturable E. coli ATCC 700728 was reduced by up to 1000-fold, whereas PCR-based assessments showed that total cell amounts were equivalent to inoculum levels. These findings show that shortly after inoculation onto plants, the majority of E. coli O157:H7 cells either die or are no longer culturable. PMID:23936235

  15. Thermal inactivation of Salmonella and Escherichia coli O157:H7 on alfalfa seeds.

    PubMed

    Feng, Guoping; Churey, John J; Worobo, Randy W

    2007-07-01

    Alfalfa seeds inoculated with five strains of Salmonella or Escherichia coli O157:H7 were subjected to dry heat at 55 degrees C for up to 8 days. Five-log reductions in Salmonella or E. coli O157:H7 on seeds were observed. No pathogens were detected on the sprouted seeds, which were initially inoculated with ca. 2 log CFU/g of Salmonella or more than 8 log CFU/g of E. coli O157:H7. The percentages of germination of the alfalfa seeds did not significantly decrease after 6 days of heating at 55 degrees C. These results showed that heat treatment of alfalfa seeds at 55 degrees C for up to 6 days was effective in enhancing the safety of alfalfa sprouts without affecting germination significantly.

  16. Epidemiological studies on Escherichia coli O157:H7 in Egyptian sheep.

    PubMed

    Kamel, Mohammed; Abo El-Hassan, Diea G; El-Sayed, Amr

    2015-08-01

    In the present work, the epidemiological role of apparently healthy sheep in transmission of Escherichia coli O157:H7 in different seasons was investigated. Fecal samples (convenience sampling) of apparently healthy farmed sheep (three farms, n = 70) and from 15 wandering flocks fed on city wastes (n = 80) in the Giza governorate were examined. The samples were collected in spring under mild weather conditions and during hot summer to be compared. Out of the 150 animals, 13 (8.7%) were E. coli O157 shedders. The 13 ovine sorbitol-negative E. coli O157 were characterized by different PCR sets. The eae gene was detected in 11 isolate (85%), stx1 in 3 isolates (23%), stx2 in 8 isolates (62%), and finally the hlyA in 11 isolate (85%). Among the 13 isolates, 2 strains (15%) were positive for eae, stx1, stx2, and hlyA as gene combination, one isolate (8%) for eae, stx1, and hlyA, 5 isolates (38%) for eae, stx2, and hlyA, 1 isolate (8%) for eae and stx2, 2 isolates (15%) contained eae and hlyA, 1 isolate (8%) contained hlyA only, and finally, 1 isolate (8%) did not contain any of these genes. None of the isolates showed the gene combination eae stx1, stx1 hlyA, or stx2 hlyA. The results indicated significant association of unfavorable weather and management conditions on O157:H7 shedding while the age or sex did not play any role in this process.

  17. Efficient Photocatalytic Disinfection of Escherichia coli O157:H7 using C70-TiO2 Hybrid under Visible Light Irradiation

    PubMed Central

    Ouyang, Kai; Dai, Ke; Walker, Sharon L.; Huang, Qiaoyun; Yin, Xixiang; Cai, Peng

    2016-01-01

    Efficient photocatalytic disinfection of Escherichia coli O157:H7 was achieved by using a C70 modified TiO2 (C70-TiO2) hybrid as a photocatalyst under visible light (λ > 420 nm) irradiation. Disinfection experiments showed that 73% of E. coli O157:H7 died within 2 h with a disinfection rate constant of k = 0.01 min−1, which is three times that measured for TiO2. The mechanism of cell death was investigated by using several scavengers combined with a partition system. The results revealed that diffusing hydroxyl radicals play an important role in the photocatalytically initiated bacterial death, and direct contact between C70-TiO2 hybrid and bacteria is not indispensable in the photocatalytic disinfection process. Extracellular polymeric substances (EPS) of bacteria have little effect on the disinfection efficiency. Analyses of the inhibitory effect of C70-TiO2 thin films on E. coli O157:H7 showed a decrease of the bacterial concentration from 3 × 108 to 38 cfu mL−1 in the solution with C70-TiO2 thin film in the first 2 h of irradiation and a complete inhibition of the growth of E. coli O157:H7 in the later 24 h irradiation. PMID:27161821

  18. Efficient Photocatalytic Disinfection of Escherichia coli O157:H7 using C70-TiO2 Hybrid under Visible Light Irradiation

    NASA Astrophysics Data System (ADS)

    Ouyang, Kai; Dai, Ke; Walker, Sharon L.; Huang, Qiaoyun; Yin, Xixiang; Cai, Peng

    2016-05-01

    Efficient photocatalytic disinfection of Escherichia coli O157:H7 was achieved by using a C70 modified TiO2 (C70-TiO2) hybrid as a photocatalyst under visible light (λ > 420 nm) irradiation. Disinfection experiments showed that 73% of E. coli O157:H7 died within 2 h with a disinfection rate constant of k = 0.01 min-1, which is three times that measured for TiO2. The mechanism of cell death was investigated by using several scavengers combined with a partition system. The results revealed that diffusing hydroxyl radicals play an important role in the photocatalytically initiated bacterial death, and direct contact between C70-TiO2 hybrid and bacteria is not indispensable in the photocatalytic disinfection process. Extracellular polymeric substances (EPS) of bacteria have little effect on the disinfection efficiency. Analyses of the inhibitory effect of C70-TiO2 thin films on E. coli O157:H7 showed a decrease of the bacterial concentration from 3 × 108 to 38 cfu mL-1 in the solution with C70-TiO2 thin film in the first 2 h of irradiation and a complete inhibition of the growth of E. coli O157:H7 in the later 24 h irradiation.

  19. Survival mechanism of Escherichia coli O157:H7 against combined treatment with acetic acid and sodium chloride.

    PubMed

    Lee, Sun-Young; Kang, Dong-Hyun

    2016-05-01

    The combination of salt and acid is commonly used in the production of many foods, including pickles and fermented foods. However, in our previous studies, the addition of salt significantly reduced the inhibitory effect of acetic acid on Escherichia coli O157:H7 in laboratory media and pickled cucumbers. Therefore, this study was conducted to determine the mechanism by which salt confers resistance against acetic acid in E. coli O157:H7. The addition of high concentrations (up to 9% or 15% [w/v]) of salt increased the resistance of E. coli O157:H7 to acetic acid treatment. Combined treatment with acetic acid and salt showed varying results among different bacterial strains (an antagonistic effect for E. coli O157:H7 and Shigella and a synergistic effect for Listeria monocytogenes and Staphylococcus aureus). The addition of salt increased the cytoplasmic pH of E. coli O157:H7, but decreased the cytoplasmic pH of L. monocytogenes and S. aureus on treatment with acetic acid. Therefore, the addition of salt increases the acid resistance of E. coli O157:H7 possibly by increasing its acid resistance response and consequently preventing the acidification of its cytoplasm by organic acids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Results of a 6-month survey of stool cultures for Escherichia coli O157:H7.

    PubMed

    Marshall, W F; McLimans, C A; Yu, P K; Allerberger, F J; Van Scoy, R E; Anhalt, J P

    1990-06-01

    Escherichia coli O157:H7 is a recently recognized enteric pathogen that causes acute hemorrhagic colitis. Although the infection is usually self-limited, it may be complicated by hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. At our institution, stool specimens are now routinely cultured for this organism. To determine the prevalence of E. coli O157:H7-associated diarrhea in our patient population, we surveyed all submitted stool cultures for 6 months for this organism. Specimens were screened for non-sorbitol fermenting E. coli and confirmed by slide-agglutination and immobilization testing. Of 2,164 specimens, 10 yielded E. coli O157:H7. It was the fourth most common bacterial stool pathogen found. Bloody diarrhea and abdominal pain were the most common symptoms of the infected patients. E. coli O157:H7 causes sporadic infections in our patient population and should be considered in the differential diagnosis of acute hemorrhagic colitis.

  1. Assessment of Shiga Toxin-Producing Escherichia coli O157 Illnesses Prevented by Recalls of Beef Products.

    PubMed

    Seys, Scott A; Sampedro, Fernando; Hedberg, Craig W

    2015-09-01

    Beef product recall data from 2005 through 2012 associated with Shiga toxin-producing Escherichia coli (STEC) O157 contamination were used to develop quantitative models to estimate the number of illnesses prevented by recalls. The number of illnesses prevented was based on the number of illnesses that occurred relative to the number of pounds consumed, then extrapolated to the number of pounds of recalled product recovered. A simulation using a Program Evaluation and Review Technique (PERT) probability distribution with illness-related recalls estimated 204 (95% credible interval, 117-333) prevented STEC O157 illnesses from 2005 through 2012. Recalls not associated with illnesses had more recalled product recovered and prevented an estimated 83 additional STEC O157 illnesses. Accounting for underdiagnosis resulted in an estimated total of 7500 STEC O157 illnesses prevented over 8 years. This study demonstrates that recalls, although reactive in nature, are an important tool for averting further exposure and illnesses.

  2. Draft Genome Sequences of Three European Laboratory Derivatives from Enterohemorrhagic Escherichia coli O157:H7 Strain EDL933, Including Two Plasmids

    PubMed Central

    Fellner, Lea; Huptas, Christopher; Simon, Svenja; Mühlig, Anna; Neuhaus, Klaus

    2016-01-01

    Escherichia coli O157:H7 EDL933, isolated in 1982 in the United States, was the first enterohemorrhagic E. coli (EHEC) strain sequenced. Unfortunately, European labs can no longer receive the original strain. We checked three European EDL933 derivatives and found major genetic deviations (deletions, inversions) in two strains. All EDL933 strains contain the cryptic EHEC-plasmid, not reported before. PMID:27056239

  3. Comparison of the fate of the top six non-O157 shiga-toxin producing Escherichia coli (STEC) and E. coli O157:H7 during the manufacture of dry fermented sausages.

    PubMed

    Balamurugan, S; Ahmed, Rafath; Gao, Anli; Strange, Phil

    2017-10-16

    The study examined the relative fate of the top six non-O157 shiga-toxin producing Escherichia coli (STEC) and E. coli O157:H7 during the manufacture of dry fermented sausages (DFS). Three separate batches of sausages containing a five-strain cocktail for each serogroup and uninoculated control were manufactured and subjected to identical fermentation, maturation and dry curing conditions. Changes in physicochemical properties and inoculated STEC numbers were enumerated during the DFS production stages and log reduction and log reduction rates were calculated. Inoculation of very high concentrations (8logCFUg -1 ) of STEC in the sausage batter did not significantly (P>0.05) affect the changes in the pH, a w , moisture, protein, fat content compared to the uninoculated DFS. There was a significant (P<0.05) reduction in counts within the 48h fermentation for all STEC serogroups inoculated by about 0.97- to 1.42-log units. However, during the sausage maturation stage, all serogroups except O121 and O45 showed a significant reduction in numbers. During the extended 34day drying stage, all STEC serogroups showed a significant reduction in counts reaching a 5-log reduction within 20 to 27days of drying. ANOVA of the log reduction rates revealed significant differences in the reduction rates among the STEC serogroups examined. During the fermentation stage, serogroup O45 had the highest reduction rate at 0.98-logCFUg -1 day -1 which was significantly higher compared to all other STEC serogroups (P<0.05), while O26 was the most tolerant to the conditions encountered during the fermentation stage with a reduction rate of 0.49-logCFUg -1 day -1 . However, during the extended 34days drying stage all STEC serogroups showed a steady reduction in population with a reduction rate ranging from 0.11- to 0.18-logCFUg -1 day -1 . The log reduction rate of E. coli O157:H7 was similar to that of serogroups O111 and O103, but was significantly lower (P<0.05) than all other STEC

  4. Penetration of Escherichia coli O157:H7 into lettuce as influenced by modified atmosphere and temperature.

    PubMed

    Takeuchi, K; Hassan, A N; Frank, J F

    2001-11-01

    The effects of temperature and atmospheric oxygen concentration on the respiration rate of iceberg lettuce and Escherichia coli O157:H7 cells attachment to and penetration into damaged lettuce tissues were evaluated. Respiration rate of lettuce decreased as the temperature was reduced from 37 to 10 degrees C. Reducing the temperature further to 4 degrees C did not affect the respiration rate of lettuce. Respiration rate was also reduced by lowering the atmospheric oxygen concentration. Lettuce was submerged in E. coli O157:H7 inoculum at 4, 10, 22, or 37 degrees C under 21 or 2.7% oxygen. Attachment and penetration of E. coli O157:H7 were not related to the respiration rate. The greatest numbers of E. coli O157:H7 cells attached to damaged lettuce tissues at 22 degrees C at both oxygen concentrations. More cells were attached under 21% oxygen than under 2.7% oxygen at each temperature, but this difference was small. Penetration of E. coli O157:H7 into lettuce tissue was determined by immunostaining with a fluorescein isothiocyanate-labeled antibody. Under 21% oxygen, E. coli O157:H7 cells showed greatest penetration when lettuce was held at 4 degrees C, compared to 10, 22. or 37 degrees C, and were detected at an average of 101 microm below the surfaces of cut tissues. However, under 2.7% oxygen, there were no differences in degree of penetration among four incubation temperatures. The degree of E. coli O157:H7 penetration into lettuce tissue at 4 or 22 degrees C was greater under 21% oxygen than under 2.7% oxygen; however, no difference was observed at 37 degrees C. Conditions that promote pathogen penetration into tissue could decrease the effectiveness of decontamination treatments.

  5. Inactivation of Escherichia coli O157:H7 on stainless steel upon exposure to Paenibacillus polymyxa biofilms.

    PubMed

    Kim, Seonhwa; Bang, Jihyun; Kim, Hoikyung; Beuchat, Larry R; Ryu, Jee-Hoon

    2013-11-01

    We investigated the potential use of biofilm formed by a competitive-exclusion (CE) microorganism to inactivate Escherichia coli O157:H7 on a stainless steel surface. Five microorganisms showing inhibitory activities against E. coli O157:H7 were isolated from vegetable seeds and sprouts. The microorganism with the greatest antimicrobial activity was identified as Paenibacillus polymyxa (strain T5). In tryptic soy broth (TSB), strain T5 reached a higher population at 25 °C than at 12 or 37 °C without losing inhibitory activity against E. coli O157:H7. When P. polymyxa (6 log CFU/mL) was co-cultured with E. coli O157:H7 (2, 3, 4, or 5 log CFU/mL) in TSB at 25 °C, the number of E. coli O157:H7 decreased significantly within 24h. P. polymyxa formed a biofilm on stainless steel coupons (SSCs) in TSB at 25 °C within 24h, and cells in biofilms, compared to attached cells without biofilm formation, showed significantly increased resistance to a dry environment (43% relative humidity [RH]). With the exception of an inoculum of 4 log CFU/coupon at 100% RH, upon exposure to biofilm formed by P. polymyxa on SSCs, populations of E. coli O157:H7 (2, 4, or 6 log CFU/coupon) were significantly reduced within 48 h. Most notably, when E. coli O157:H7 at 2 log CFU/coupon was applied to SSCs on which P. polymyxa biofilm had formed, it was inactivated within 1h, regardless of RH. These results will be useful when developing strategies using biofilms produced by competitive exclusion microorganisms to inactivate foodborne pathogens in food processing environments. © 2013.

  6. Effect of diet on the shedding of Escherichia coli O157:H7 in a sheep model.

    PubMed Central

    Kudva, I T; Hatfield, P G; Hovde, C J

    1995-01-01

    The purpose of this study was to develop a sheep model to investigate reproduction, transmission, and shedding of Escherichia coli O157:H7 in ruminants. In addition, we investigated the effect of diet change on these parameters. Six groups of twin lambs given oral inoculations of 10(5) or 10(9) CFU of E. coli O157:H7 and their nondosed mothers were monitored for colonization by culture of fecal samples. A modified selective-enrichment protocol that detected E. coli O157:H7 at levels as low as 0.06 CFU per g of ovine feces was developed. Horizontal transmission of infection occurred between the lambs and most of the nondosed mothers. When animals were kept in confinement and given alfalfa pellet feed, lambs receiving the higher dose shed the bacteria sooner and longer than all other animals. However, when the animals were released onto a sagebrush-bunchgrass range, every animal, regardless of its previous status (dosed at one of the inoculum levels tested or nondosed) shed E. coli O157:H7 uniformly. Shedding persisted for 15 days, after which all animals tested negative. E. coli O157:H7 reproduction and transmission and the combined effect of diet change and feed withholding were also investigated in a pilot study with experimentally inoculated rams. Withholding feed induced animals to shed the bacteria either by triggering growth of E. coli O157:H7 present in the intestines or by increasing susceptibility to infection. Introduction of a dietary change with brief starvation caused uniform shedding and clearance of E. coli O157:H7, and all animals then tested negative for the bacteria.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7747956

  7. Internalization of E. coli O157:H7 in spinach cultivated in soil and hydroponic media

    USDA-ARS?s Scientific Manuscript database

    Introduction: Internalization of E. coli O157:H7 into spinach plants through root uptake is a potential route of contamination. Previous studies that have investigated uptake of E. coli O157:H7 into leafy greens have expressed green fluorescent protein (gfp) from a plasmid, possibly limiting detecti...

  8. An electrochemical immunoassay for Escherichia coli O157:H7 using double functionalized Au@Pt/SiO2 nanocomposites and immune magnetic nanoparticles.

    PubMed

    Ye, Lingxian; Zhao, Guangying; Dou, Wenchao

    2018-05-15

    A sensitive Point-of-Care Testing (POCT) with Au-Pt bimetallic nanoparticles (Au@Pt) functionalized silica nanoparticle (SiO 2 NPs) and Fe 3 O 4 magnetic nanoparticles (Fe 3 O 4 NPs) was designed for the quantitative detection of Escherichia coli O157:H7 (E. coli O157:H7). The poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as a negatively charged polyelectrolyte can be easily coated on surface of the amino group modified SiO 2 NPs via electrostatic force. PSSMA is also a good stabilizer for water-soluble bimetallic nanostructures. The PSSMA is first time used as a "bridge" to connect the negative charge Au@Pt NPs to the SiO 2 NPs, forming Au@Pt/SiO 2 NPs. Antibody and invertase conjugated Au@Pt/SiO 2 NPs (denoted as Ab/invertase-Au@Pt/SiO 2 NPs) were used as signal labels. Monoclonal antibody against E. coli O157:H7 (Ab) functionalized magnetic nanoparticles (denoted as Ab-Fe 3 O 4 @SiO 2 NPs) were used to enrich and capture the E. coli O157:H7 in positive sample. The immunosensing platform also composed of a personal glucometer (PGM) using for signal readout. Based on this sandwich-type immunoassay, the invertase in the final formed sandwich immunocomplex catalyzed the hydrolysis of sucrose to produce a large amount of glucose for quantitative readout by the PGM. Under optimal conditions, a linear relationship between the glucose concentration and the logarithm of E. coli O157:H7 concentration was obtained in the concentration range from 3.5 × 10 2 to 3.5 × 10 8 CFU mL -1 with a detection limit of 1.83 × 10 2 CFU mL -1 (3σ). This method was used to detect E. coli O157:H7 in spiked milk samples, indicating its potential practical application. This protocol can be applied in various fields of study. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Longitudinal Study of Two Irish Dairy Herds: Low Numbers of Shiga Toxin-Producing Escherichia coli O157 and O26 Super-Shedders Identified.

    PubMed

    Murphy, Brenda P; McCabe, Evonne; Murphy, Mary; Buckley, James F; Crowley, Dan; Fanning, Séamus; Duffy, Geraldine

    2016-01-01

    A 12-month longitudinal study was undertaken on two dairy herds to ascertain the Shiga-toxin producing Escherichia coli (STEC) O157 and O26 shedding status of the animals and its impact (if any) on raw milk. Cattle are a recognized reservoir for these organisms with associated public health and environmental implications. Animals shedding E. coli O157 at >10,000 CFU/g of feces have been deemed super-shedders. There is a gap in the knowledge regarding super-shedding of other STEC serogroups. A cohort of 40 lactating cows from herds previously identified as positive for STEC in a national surveillance project were sampled every second month between August, 2013 and July, 2014. Metadata on any potential super-shedders was documented including, e.g., age of the animal, number of lactations and days in lactation, nutritional condition, somatic cell count and content of protein in milk to assess if any were associated with risk factors for super-shedding. Recto-anal mucosal swabs (RAMS), raw milk, milk filters, and water samples were procured for each herd. The swabs were examined for E. coli O157 and O26 using a quantitative real time PCR method. Counts (CFU swab -1 ) were obtained from a standard calibration curve that related real-time PCR cycle threshold ( C t ) values against the initial concentration of O157 or O26 in the samples. Results from Farm A: 305 animals were analyzed; 15 E. coli O157 (5%) were recovered, 13 were denoted STEC encoding either stx1 and/or stx2 virulence genes and 5 (2%) STEC O26 were recovered. One super-shedder was identified shedding STEC O26 ( stx1 &2). Farm B: 224 animals were analyzed; eight E. coli O157 (3.5%) were recovered (seven were STEC) and 9 (4%) STEC O26 were recovered. Three super-shedders were identified, one was shedding STEC O157 ( stx2 ) and two STEC O26 ( stx2 ). Three encoded the adhering and effacement gene ( eae) and one isolate additionally encoded the haemolysin gene ( hlyA ). All four super-shedders were only super

  10. Longitudinal Study of Two Irish Dairy Herds: Low Numbers of Shiga Toxin-Producing Escherichia coli O157 and O26 Super-Shedders Identified

    PubMed Central

    Murphy, Brenda P.; McCabe, Evonne; Murphy, Mary; Buckley, James F.; Crowley, Dan; Fanning, Séamus; Duffy, Geraldine

    2016-01-01

    A 12-month longitudinal study was undertaken on two dairy herds to ascertain the Shiga-toxin producing Escherichia coli (STEC) O157 and O26 shedding status of the animals and its impact (if any) on raw milk. Cattle are a recognized reservoir for these organisms with associated public health and environmental implications. Animals shedding E. coli O157 at >10,000 CFU/g of feces have been deemed super-shedders. There is a gap in the knowledge regarding super-shedding of other STEC serogroups. A cohort of 40 lactating cows from herds previously identified as positive for STEC in a national surveillance project were sampled every second month between August, 2013 and July, 2014. Metadata on any potential super-shedders was documented including, e.g., age of the animal, number of lactations and days in lactation, nutritional condition, somatic cell count and content of protein in milk to assess if any were associated with risk factors for super-shedding. Recto-anal mucosal swabs (RAMS), raw milk, milk filters, and water samples were procured for each herd. The swabs were examined for E. coli O157 and O26 using a quantitative real time PCR method. Counts (CFU swab-1) were obtained from a standard calibration curve that related real-time PCR cycle threshold (Ct) values against the initial concentration of O157 or O26 in the samples. Results from Farm A: 305 animals were analyzed; 15 E. coli O157 (5%) were recovered, 13 were denoted STEC encoding either stx1 and/or stx2 virulence genes and 5 (2%) STEC O26 were recovered. One super-shedder was identified shedding STEC O26 (stx1&2). Farm B: 224 animals were analyzed; eight E. coli O157 (3.5%) were recovered (seven were STEC) and 9 (4%) STEC O26 were recovered. Three super-shedders were identified, one was shedding STEC O157 (stx2) and two STEC O26 (stx2). Three encoded the adhering and effacement gene (eae) and one isolate additionally encoded the haemolysin gene (hlyA). All four super-shedders were only super-shedding once

  11. Evidence of non-O157 Shiga toxin-producing Escherichia coli in the feces of meat goats at a U.S. slaughter plant.

    PubMed

    Jacob, M E; Foster, D M; Rogers, A T; Balcomb, C C; Shi, X; Nagaraja, T G

    2013-09-01

    Shiga toxin-producing Escherichia coli (STEC) are important human pathogens, and attention to non-O157 serogroups has increased in recent years. Although cattle are normally considered the primary reservoir for STEC, recent illnesses associated with goat contact have indicated that these animals are important potential reservoirs for the organisms. The prevalence of STEC, particularly non-O157 serogroups, in U.S. goats has not been well described. Our objective was to determine the prevalence of six major non-O157 STEC serogroups in the feces of meat goats. Rectal contents from 296 goats were collected postevisceration at a slaughter plant in the southeastern United States over 9 days during a 12-week period from August through October 2012. Samples were enriched in E. coli broth, and DNA was extracted and used as template in an 11-gene multiplex PCR that detected six non-O157 serogroups (O26, O45, O103, O121, O111, and O145) and virulence genes. Samples were considered positive when at least one non-O157 STEC serotype was present with either stx₁ or stx₂. All six non-O157 serogroups were detected by PCR in our samples, and 14.5% of samples were positive for at least one serogroup. Prevalence of O26 was highest, with 6.4% of goat fecal samples positive. The prevalence of O45 was 3.4%, O103 was 4.4%, O111 was 4.1%, O121 was 1.4%, and O145 was 3.0%. Twenty-two (7.4%) of 296 fecal samples had more than one non-O157 serogroup detected in the feces. Two samples had evidence of three non-O157 STEC serogroups. Goats appear to be an important reservoir for non-O157 STEC, and further work to understand the characteristics, epidemiology, and ecology of STEC in these animals is warranted.

  12. Curli modulates adherence of Escherichia coli O157 to bovine recto-anal junction squamous epithelial cells

    USDA-ARS?s Scientific Manuscript database

    Our recent studies have shown that Intimin and the Locus of Enterocyte Effacement-encoded proteins do not play a role in Escherichia coli O157 (O157) adherence to the bovine recto-anal junction squamous epithelial cells (RSE) cells. Hence, to define factors that play a contributory role, we investi...

  13. Whole-genome sequence of Escherichia coli serotype O157:H7 strain EDL932 (ATCC 43894)

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli serotype O157:H7 EDL 933 is a ground beef isolate associated with a 1983 hemorrhagic colitis outbreak. Considered the prototype O157:H7 strain, its derived genome sequence is a standard reference strain for comparative genomic studies of Shiga toxin-producing E. coli (STEC). Here we...

  14. Occurrence and survival of verocytotoxin-producing Escherichia coli O157 in meats obtained from retail outlets in The Netherlands.

    PubMed

    Heuvelink, A E; Zwartkruis-Nahuis, J T; Beumer, R R; de Boer, E

    1999-10-01

    In 1996 and 1997, 2,941 fresh and processed meat products obtained from supermarkets and butcher shops in The Netherlands were examined for the presence of verocytotoxin-producing Escherichia coli of serogroup O157 (O157 VTEC). Additionally, the fate of O157 VTEC in raw meat products stored at low temperatures and the effect of different additives were evaluated. O157 VTEC strains were isolated from 6 (1.1%) of 571 samples of raw minced beef, 2 (0.5%) of 402 samples of raw minced mixed beef and pork, 1 (1.3%) of 76 samples of raw minced pork, 1 (0.3%) of 393 samples of other raw pork products, and 1 (0.3%) of 328 samples of cooked or fermented ready-to-eat meats. Other raw beef products (n = 223) and meat samples originating from poultry (n = 819), sheep or lamb (n = 46), or wild animals (n = 83) were all found to be negative for O157 VTEC. For the survival experiments we used tartaar (minced beef with a fat content of less than 10%) and filet americain (tartaar mixed with a mayonnaise-based sauce [80 to 20%]). The O157 VTEC strain tested was able to survive in tartaar and filet americain stored at -20, 0, 5, or 7 degrees C for 3 days. At both 7 and at 15 degrees C, O157 VTEC counts in tartaar and filet americain remained virtually unchanged throughout a storage period of 5 days. Addition of acetic acid (to pH 4.0), sodium lactate (1 and 2% [wt/wt]), or components of the lactoperoxidase-thiocyanate-hydrogen peroxide system to filet americain did not result in a reduction of viable O157 VTEC cells during storage at 7 or 15 degrees C. It was concluded that raw meat contaminated with O157 VTEC will remain a hazard even if the meat is held at low or freezing temperatures.

  15. Curli Temper Adherence of Escherichia coli O157:H7 to Squamous Epithelial Cells from the Bovine Recto-Anal Junction in a Strain-Dependent Manner

    PubMed Central

    Carter, Michelle Q.; Sharma, Vijay K.; Stasko, Judith A.; Giron, Jorge A.

    2016-01-01

    ABSTRACT Our recent studies have shown that intimin and the locus of enterocyte effacement-encoded proteins do not play a role in Escherichia coli O157:H7 (O157) adherence to the bovine recto-anal junction squamous epithelial (RSE) cells. To define factors that play a contributory role, we investigated the role of curli, fimbrial adhesins commonly implicated in adherence to various fomites and plant and human epithelial cells, in O157 adherence to RSE cells. Specifically, we examined (i) wild-type strains of O157; (ii) curli variants of O157 strains; (iii) isogenic curli deletion mutants of O157; and (iv) adherence inhibition of O157 using anti-curlin sera. Results of these experiments conducted under stringent conditions suggest that curli do not solely contribute to O157 adherence to RSE cells and in fact demonstrate a modulating effect on O157 adherence to RSE cells in contrast to HEp-2 cells (human epidermoid carcinoma of the larynx cells with HeLa contamination). The absence of curli and presence of blocking anti-curli antibodies enhanced O157-RSE cell interactions among some strains, thus alluding to a spatial, tempering effect of curli on O157 adherence to RSE cells when present. At the same time, the presence or absence of curli did not alter RSE cell adherence patterns of another O157 strain. These observations are at variance with the reported role of curli in O157 adherence to human cell lines such as HEp-2 and need to be factored in when developing anti-adherence modalities for preharvest control of O157 in cattle. IMPORTANCE This study demonstrated that O157 strains interact with epithelial cells in a host-specific manner. The fimbriae/adhesins that are significant for adherence to human cell lines may not have a role or may have a modulating role in O157 adherence to bovine cells. Targeting such adhesins may not prevent O157 attachment to bovine cells but instead may result in improved adherence. Hence, conducting host-specific evaluations is critical

  16. Restriction-Site-Specific PCR as a Rapid Test To Detect Enterohemorrhagic Escherichia coli O157:H7 Strains in Environmental Samples

    PubMed Central

    Kimura, Richard; Mandrell, Robert E.; Galland, John C.; Hyatt, Doreene; Riley, Lee W.

    2000-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important food-borne pathogen in industrialized countries. We developed a rapid and simple test for detecting E. coli O157:H7 using a method based on restriction site polymorphisms. Restriction-site-specific PCR (RSS-PCR) involves the amplification of DNA fragments using primers based on specific restriction enzyme recognition sequences, without the use of endonucleases, to generate a set of amplicons that yield “fingerprint” patterns when resolved electrophoretically on an agarose gel. The method was evaluated in a blinded study of E. coli isolates obtained from environmental samples collected at beef cattle feedyards. The 54 isolates were all initially identified by a commonly used polyclonal antibody test as belonging to O157:H7 serotype. They were retested by anti-O157 and anti-H7 monoclonal antibody enzyme-linked immunosorbent assay (ELISA). The RSS-PCR method identified all 28 isolates that were shown to be E. coli O157:H7 by the monoclonal antibody ELISA as belonging to the O157:H7 serotype. Of the remaining 26 ELISA-confirmed non-O157:H7 strains, the method classified 25 strains as non-O157:H7. The specificity of the RSS-PCR results correlated better with the monoclonal antibody ELISA than with the polyclonal antibody latex agglutination tests. The RSS-PCR method may be a useful test to distinguish E. coli O157:H7 from a large number of E. coli isolates from environmental samples. PMID:10831431

  17. Effect of chemical sanitizer combined with modified atmosphere packaging on inhibiting Escherichia coli O157:H7 in commercial spinach.

    PubMed

    Lee, Sun-Young; Baek, Seung-Youb

    2008-06-01

    Escherichia coli O157:H7 contaminated spinach has recently caused several outbreaks of human illness in the USA and Canada. However, to date, there has been no study demonstrating an effective way to eliminate E. coli O157:H7 in spinach. Therefore, this study was conducted to investigate the effect of chemical sanitizers alone or in combination with packaging methods such as vacuum and modified atmosphere packaging (MAP) on inactivating E. coli O157:H7 in spinach during storage time. Spinach inoculated with E. coli O157:H7 was packaged in four different methods (air, vacuum, N(2) gas, and CO(2) gas packaging) following treatment with water, 100 ppm chlorine dioxide, or 100 ppm sodium hypochlorite for 5 min at room temperature and stored at 7+/-2 degrees C. Treatment with water did not significantly reduce levels of E. coli O157:H7 in spinach. However, treatment with chlorine dioxide and sodium hypochlorite significantly decreased levels of E. coli O157:H7 by 2.6 and 1.1 log(10)CFU/g, respectively. Levels of E. coli O157:H7 in samples packaged in air following treatments grew during storage time, whereas levels were maintained in samples packaged in other packaging methods (vacuum, N(2) gas, and CO(2) gas packaging). Therefore there were significant differences (about 3-4 log) of E. coli O157:H7 populations between samples packed in air and other packaging methods following treatment with chemical sanitizers after 7 days storage. These results suggest that the combination of treatment with chlorine dioxide and packaging methods such as vacuum and MAP may be useful for improving the microbial safety of spinach against E. coli O157:H7 during storage.

  18. Identification of Escherichia coli O157 by Using a Novel Colorimetric Detection Method with DNA Microarrays

    PubMed Central

    Swimley, Michelle S.; Taylor, Amber W.; Dawson, Erica D.

    2011-01-01

    Abstract Shiga toxin–producing Escherichia coli O157 is a leading cause of foodborne illness worldwide. To evaluate better methods to rapidly detect and genotype E. coli O157 strains, the present study evaluated the use of ampliPHOX, a novel colorimetric detection method based on photopolymerization, for pathogen identification with DNA microarrays. A low-density DNA oligonucleotide microarray was designed to target stx1 and stx2 genes encoding Shiga toxin production, the eae gene coding for adherence membrane protein, and the per gene encoding the O157-antigen perosamine synthetase. Results from the validation experiments demonstrated that the use of ampliPHOX allowed the accurate genotyping of the tested E. coli strains, and positive hybridization signals were observed for only probes targeting virulence genes present in the reference strains. Quantification showed that the average signal-to-noise ratio values ranged from 47.73 ± 7.12 to 76.71 ± 8.33, whereas average signal-to-noise ratio values below 2.5 were determined for probes where no polymer was formed due to lack of specific hybridization. Sensitivity tests demonstrated that the sensitivity threshold for E. coli O157 detection was 100–1000 CFU/mL. Thus, the use of DNA microarrays in combination with photopolymerization allowed the rapid and accurate genotyping of E. coli O157 strains. PMID:21288130

  19. Fluorescent dye technique as an alternative to gfp-labeled plasmid for visualization of Escherichia coli O157:H7 cells on romaine lettuce leaves following sanitizer treatment

    USDA-ARS?s Scientific Manuscript database

    The task of imaging Escherichia coli O157:H7 cells on artificially inoculated produce often requires genetic modification of the cells through the introduction of gfp-labeled plasmid. However, these modified cells do not behave as the parent cells and the auto fluorescence of lettuce leaves interfe...

  20. [22q11.2DS Syndrome as a Genetic Subtype of Schizophrenia].

    PubMed

    Huertas-Rodríguez, Cindy Katherin; Payán-Gómez, César; Forero-Castro, Ruth Maribel

    2015-01-01

    The 22q11.2 deletion syndrome (22q11.2DS) is associated with the microdeletion of this chromosomal region, and represents the second most common genetic syndrome after Down's syndrome. In patients with schizophrenia, 22q11.2DS has a prevalence of 2%, and in selected groups can be increased to between 32-53%. To describe the generalities of 22q11.2DS syndrome as a genetic subtype of schizophrenia, its clinical characteristics, molecular genetic aspects, and frequency in different populations. A review was performed from 1967 to 2013 in scientific databases, compiling articles about 22q11.2DS syndrome and its association with schizophrenia. The 22q11.2 DS syndrome has a variable phenotype associated with other genetic syndromes, birth defects in many tissues and organs, and a high rate of psychiatric disorders, particularly schizophrenia. Likewise, it has been identified in clinical populations with schizophrenia selected by the presence of common syndromic characteristics. FISH, qPCR and MLPA techniques, and recently, aCGH and NGS technologies, are being used to diagnose this microdeletion. It is important in clinical practice to remember that people suffering the 22q11.2DS have a high genetic risk for developing schizophrenia, and it is considered that the simultaneous presence of this disease and 22q11.2DS represents a genetic subtype of schizophrenia. There are clear phenotypic criteria, molecular and cytogenetic methods to diagnose this group of patients, and to optimize a multidisciplinary approach in their monitoring. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  1. Bovine milk fat globule membrane affects virulence expression in Escherichia coli O157:H7.

    PubMed

    Tellez, A; Corredig, M; Guri, A; Zanabria, R; Griffiths, M W; Delcenserie, V

    2012-11-01

    The aim of this study was to examine the effect of the bovine milk fat globule membrane (MFGM) on the virulence of Escherichia coli O157:H7. The MFGM was extracted from raw or heat-treated milk, resulting in 2 preparations differing in protein composition. Both heated and raw MFGM exerted an inhibitory effect on Shiga toxin gene expression by E. coli O157:H7 (ratios of -7.69 and -5.96, respectively). Interestingly, the effect was stronger with heated MFGM, with a larger decrease in expression of the virulence gene fliC (ratio of -9.43). The difference in effect observed between heated and raw MFGM could be explained by the difference in protein composition between the 2 preparations. These results show, for the first time, a specific effect of MFGM on expressionof Shiga toxin genes as well as genes involved in the motility of E. coli O157:H7. This may offer a new approach to mitigate the adverse health effects caused by E. coli O157:H7 infections. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Strain Differences in Fitness of Escherichia coli O157:H7 to Resist Protozoan Predation and Survival in Soil

    PubMed Central

    Ravva, Subbarao V.; Sarreal, Chester Z.; Mandrell, Robert E.

    2014-01-01

    Escherichia coli O157:H7 (EcO157) associated with the 2006 spinach outbreak appears to have persisted as the organism was isolated, three months after the outbreak, from environmental samples in the produce production areas of the central coast of California. Survival in harsh environments may be linked to the inherent fitness characteristics of EcO157. This study evaluated the comparative fitness of outbreak-related clinical and environmental strains to resist protozoan predation and survive in soil from a spinach field in the general vicinity of isolation of strains genetically indistinguishable from the 2006 outbreak strains. Environmental strains from soil and feral pig feces survived longer (11 to 35 days for 90% decreases, D-value) with Vorticella microstoma and Colpoda aspera, isolated previously from dairy wastewater; these D-values correlated (P<0.05) negatively with protozoan growth. Similarly, strains from cow feces, feral pig feces, and bagged spinach survived significantly longer in soil compared to clinical isolates indistinguishable by 11-loci multi-locus variable-number tandem-repeat analysis. The curli-positive (C+) phenotype, a fitness trait linked with attachment in ruminant and human gut, decreased after exposure to protozoa, and in soils only C− cells remained after 7 days. The C+ phenotype correlated negatively with D-values of EcO157 exposed to soil (r s = −0.683; P = 0.036), Vorticella (r s = −0.465; P = 0.05) or Colpoda (r s = −0.750; P = 0.0001). In contrast, protozoan growth correlated positively with C+ phenotype (Vorticella, r s = 0.730, P = 0.0004; Colpoda, r s = 0.625, P = 0.006) suggesting a preference for consumption of C+ cells, although they grew on C− strains also. We speculate that the C− phenotype is a selective trait for survival and possibly transport of the pathogen in soil and water environments. PMID:25019377

  3. Prevalence and characterization of non-O157 Shiga toxin-producing Escherichia coli on carcasses in commercial beef cattle processing plants.

    PubMed

    Arthur, Terrance M; Barkocy-Gallagher, Genevieve A; Rivera-Betancourt, Mildred; Koohmaraie, Mohammad

    2002-10-01

    Beef carcass sponge samples collected from July to August 1999 at four large processing plants in the United States were surveyed for the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC). Twenty-eight (93%) of 30 single-source lots surveyed included at least one sample containing non-O157 STEC. Of 334 carcasses sampled prior to evisceration, 180 (54%) were found to harbor non-O157 STEC. Non-O157 STEC isolates were also recovered from 27 (8%) of 326 carcasses sampled after the application of antimicrobial interventions. Altogether, 361 non-O157 STEC isolates, comprising 41 different O serogroups, were recovered. O serogroups that previously have been associated with human disease accounted for 178 (49%) of 361 isolates. Although 40 isolates (11%) carried a combination of virulence factor genes (enterohemorrhagic E. coli hlyA, eae, and at least one stx gene) frequently associated with STEC strains causing severe human disease, only 12 of these isolates also belonged to an O serogroup previously associated with human disease. Combining previously reported data on O157-positive samples (R. O. Elder, J. E. Keen, G. R. Siragusa, G. A. Barkocy-Gallagher, M. Koohmaraie, and W. W. Laegreid, Proc. Natl. Acad. Sci. USA 97:2999-3003, 2000) with these data regarding non-O157-positive samples indicated total STEC prevalences of 72 and 10% in preevisceration and postprocessing beef carcass samples, respectively, showing that the interventions used by the beef-processing industry effected a sevenfold reduction in carcass contamination by STEC.

  4. Diarrheal outbreak caused by atypical enteropathogenic Escherichia coli O157:H45 in South Korea.

    PubMed

    Park, Ji-Hyuk; Oh, Sung-Suk; Oh, Kyung-Hwan; Shin, Jaeseung; Jang, Eun Jung; Jun, Byung-Yool; Youn, Seung-Ki; Cho, Seung-Hak

    2014-10-01

    Background: In May 2013, an outbreak of gastroenteritis occurred in a high school in Incheon, South Korea. We investigated the outbreak in order to identify the pathogen and mode of transmission. A case-control study was performed using standardized questionnaires with a case definition of illness with diarrhea. Stool samples, environmental samples, and samples from preserved food items were collected to test pathogens. Pulsed-field gel electrophoresis (PFGE) was performed on the outbreak-related Escherichia coli strains. Thirty-three people (attack rate: 2.5%) met the case definition, and the pattern of the epidemic curve suggested a point-source outbreak. The common symptoms of cases were diarrhea (100.0%), abdominal pain (75.8%), chills (45.5%), and nausea (39.4%). Cases were found to be 8.26 times more likely to have eaten spicy fish soup with cod (95% confidence interval: 1.05-65.01). Consumption of egg soup with spring onions or braised eggs with razor clam flesh was significantly associated with illness. Atypical enteropathogenic E. coli O157:H45 was isolated from samples of 9 cases (27.3%) and tuna bibimbap. PFGE patterns of all tested isolates of O157 serotype were indistinguishable. This outbreak was caused by atypical enteropathogenic E. coli O157:H45 and the food vehicle was suspected to be tuna bibimbap. The statistical analysis was not in concordance with the microbiologic tests, probably owing to low pathogenicity of atypical enteropathogenic E. coli O157. This is the first report of an outbreak caused by atypical enteropathogenic E. coli O157.

  5. Electrical DNA biosensor using aluminium interdigitated electrode for E.Coli O157:H7 detection

    NASA Astrophysics Data System (ADS)

    Natasha, N. Z.; Rajapaksha, R. D. A. A.; Uda, M. N. A.; Hashim, U.

    2017-09-01

    Escherichia Coli (E.Coli) O157:H7 is the one of the most dangerous foodborne pathogens based diseases that presence in our daily life that causes illness and death increase every year. Aluminum Interdigitated Electrode (Al IDE) biosensor was introduced to detect E.Coli O157:H7 in earlier stage. In this paper we investigated ssDNA of E.Coli O157:H7 bacteria detection through electrical behavior of Al IDE sensor. The physical properties of Al IDE biosensor has been characterized using Low Power Microscope (LPM), High Power Microscope (HPM), Scanning Electron Microscope (SEM) and 3D Nano Profiler. The bare Al IDE was electrical characterized by using I-V measurement. The surface modification was accomplished by salinization using APTES and immobilization using Carboxylic Probe E.Coli which was the first step in preparing Al IDE biosensor. Geared up prepared biosensor was hybridized with complementary, non-complementary and single based mismatch ssDNA to confirmed specificity detection of E Coli O157:H7 ssDNA target. The Current - Voltage was performed for each step such as bare Al IDE, surface modification, immobilization and hybridization. Sensitivity measurement was accomplished using different concentration of complementary ssDNA target from 1 fM - 10 µM. Selectivity measurements was achieved using same concentration which was 10 µM concentration for complement, non-complement and mismatch E.Coli O157:H7 ssDNA target. It's totally proved that the Al IDE able to detect specific and small current down to Femtomolar concentration.

  6. Survival of Escherichia coli O157:H7 during the manufacture and ripening of Cacioricotta goat cheese.

    PubMed

    Ioanna, F; Quaglia, N C; Storelli, M M; Castiglia, D; Goffredo, E; Storelli, A; De Rosa, M; Normanno, G; Jambrenghi, A Caputi; Dambrosio, A

    2018-04-01

    The aim of this study was to assess the growth and survival of Escherichia coli O157:H7 during the manufacturing and ripening of Cacioricotta goat cheese. Goat milk was artificially contaminated with E. coli O157:H7 and the bacterial load was monitored from production up to 90 days of ripening. Goat milk was inoculated with 10 2  cfu ml -1 of E. coli O157:H7 and the bacterial count of the curd at time zero was 2.31 log 10  cfu g -1 . During the first day of ripening, the bacterial load has increased to 5.73 log 10  cfu g -1 to more than 6.20 log 10  cfu g -1 during the first week. The bacterial load remained constant up to 28 days and then slightly decreased until the end of ripening, with values of a w and pH of 0.88 and 5.41 respectively. The results of this study highlighted that E. coli O157:H7 is able to survive the manufacturing process and they suggest that the 90-day period of ripening alone is insufficient to remove E. coli O157:H7 in contaminated Cacioricotta goat cheese. Moreover, these results support the assumption that the presence of a low contamination of milk with E. coli O157:H7 could represent a potential source of infection and a threat to consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The effect of different grain diets on fecal shedding of Escherichia coli O157:H7 by steers.

    PubMed

    Buchko, S J; Holley, R A; Olson, W O; Gannon, V P; Veira, D M

    2000-11-01

    Three groups of six yearling steers (three rumen fistulated plus three nonfistulated) fed one of three different grain diets (85% cracked corn, 15% whole cottonseed and 70% barley, or 85% barley) were inoculated with 10(10) CFU of Escherichia coli O157:H7 strain 3081, and the presence of the inoculated strain was followed in the rumen fluid and feces for a 10-week period. E. coli O157:H7 was rapidly eliminated from the rumen of the animals on all three diets but persisted in the feces of some animals up to 67 days after inoculation, suggesting that the bovine hindgut is the site of E. coli O157:H7 persistence. A significant difference existed in the levels of E. coli O157:H7 shed by the animals among diets on days 5, 7, 49, and 63 after inoculation (P < 0.05). No significant difference was found between the levels shed among diets on days 9 through 42 and on day 67 (P > 0.05). The number of animals that were culture positive for E. coli O157:H7 strain 3081 during the 10-week period was significantly higher for the barley fed group (72 of 114 samplings) as opposed to the corn fed group (44 of 114 samplings) (P < 0.005) and the cottonseed and barley fed group (57 of 114 samplings) (P < 0.05). The fecal pH of the animals fed the corn diet was significantly lower (P < 0.05) than the fecal pH of the animals fed the cottonseed and barley and barley diets, likely resulting in a less suitable environment for E. coli O157:H7 in the hindgut of the corn fed animals. E. coli O157:H7 strain 3081 was present in 3 of 30 (corn, 1 of 10; cottonseed, 1 of 10; barley, 1 of 10) animal drinking water samples, 3 of 30 (corn, 1 of 10; cottonseed, 0 of 10; barley, 2 of 10) water trough biofilm swabs, 5 of 30 (corn, 0 of 10; cottonseed, 2 of 10; barley, 3 of 10) feed samples, and 30 of 30 manure samples taken from the pens during the entire experimental period. Mouth swabs of the steers were also culture positive for E. coli O157:H7 strain 3081 in 30 of 180 samples (corn, 7 of 60

  8. Incidental memory for faces in children with different genetic subtypes of Prader-Willi syndrome.

    PubMed

    Key, Alexandra P; Dykens, Elisabeth M

    2017-06-01

    The present study examined the effects of genetic subtype on social memory in children (7-16 years) with Prader-Willi syndrome (PWS). Visual event-related potentials (ERPs) during a passive viewing task were used to compare incidental memory traces for repeated vs single presentations of previously unfamiliar social (faces) and nonsocial (houses) images in 15 children with the deletion subtype and 13 children with maternal uniparental disomy (mUPD). While all participants perceived faces as different from houses (N170 responses), repeated faces elicited more positive ERP amplitudes ('old/new' effect, 250-500ms) only in children with the deletion subtype. Conversely, the mUPD group demonstrated reduced amplitudes suggestive of habituation to the repeated faces. ERP responses to repeated vs single house images did not differ in either group. The results suggest that faces hold different motivational value for individuals with the deletion vs mUPD subtype of PWS and could contribute to the explanation of subtype differences in the psychiatric symptoms, including autism symptomatology. © The Author (2017). Published by Oxford University Press.

  9. Draft Genome Sequences of Three European Laboratory Derivatives from Enterohemorrhagic Escherichia coli O157:H7 Strain EDL933, Including Two Plasmids.

    PubMed

    Fellner, Lea; Huptas, Christopher; Simon, Svenja; Mühlig, Anna; Scherer, Siegfried; Neuhaus, Klaus

    2016-04-07

    Escherichia coliO157:H7 EDL933, isolated in 1982 in the United States, was the first enterohemorrhagicE. coli(EHEC) strain sequenced. Unfortunately, European labs can no longer receive the original strain. We checked three European EDL933 derivatives and found major genetic deviations (deletions, inversions) in two strains. All EDL933 strains contain the cryptic EHEC-plasmid, not reported before. Copyright © 2016 Fellner et al.

  10. A fifteen month study of Escherichia coli O157:H7 in a dairy herd.

    PubMed Central

    Mechie, S. C.; Chapman, P. A.; Siddons, C. A.

    1997-01-01

    A dairy herd associated with Escherichia coli O157 infection in humans was studied for the 15 months following the outbreak to examine seasonal, age and management factors affecting faecal excretion of the organism and to determine the mode and frequency of milk contamination with the organism. Between May 1993 and July 1994, 28 visits were made to the farm to collect a total of 3593 rectal swabs from cows, heifers and calves and 329 milk samples. E. coli O157:H7 was isolated from 153 (4.3%) of 3593 bovine rectal swabs. The maximum prevalence at any one visit was 14% in lactating cows, 40% in non-lactating cows, 56% in calves and 68% in heifers. The prevalence in lactating cows, which was significantly lower than in the other groups, peaked during May-July 1993 and again briefly after the cattle were housed during November 1993 and then again during May 1994. Excretion rates of E. coli O157:H7 in lactating cows were highest during the first month after calving, falling during lactation and rising to another peak at 7 months postpartum. Between November 1993 and May 1994 there was no evidence of excretion in any group. Eighty-seven (74%) of the animals which excreted E. coli O157:H7 did so on only one occasion but 23 (32%) of 73 cows and heifers and 7 (16%) of 44 calves which excreted the organism did so on more than one occasion. E. coli O157:H7 was not isolated from milk taken from the bulk tank but it was isolated from individual milk samples (one milk jar and one fore-milk) from two animals previously shown to be faecal excretors of the organism. All isolates of E. coli O157:H7 obtained were of the same phage type, toxin genotype and plasmid profile. PMID:9042031

  11. Escherichia coli O26 in feedlot cattle: fecal prevalence, isolation, characterization, and effects of an E. coli O157 vaccine and a direct-fed microbial.

    PubMed

    Paddock, Zac D; Renter, David G; Cull, Charley A; Shi, Xiarong; Bai, Jianfa; Nagaraja, Tiruvoor G

    2014-03-01

    Escherichia coli O26 is second only to O157 in causing foodborne, Shiga toxin-producing E. coli (STEC) infections. Our objectives were to determine fecal prevalence and characteristics of E. coli O26 in commercial feedlot cattle (17,148) that were enrolled in a study to evaluate an E. coli O157:H7 siderophore receptor and porin (SRP(®)) vaccine (VAC) and a direct-fed microbial (DFM; 10(6) colony-forming units [CFU]/animal/day of Lactobacillus acidophilus and 10(9) CFU/animal/day of Propionibacterium freudenreichii). Cattle were randomly allocated to 40 pens within 10 complete blocks; pens were randomly assigned to control, VAC, DFM, or VAC+DFM treatments. Vaccine was administered on days 0 and 21, and DFM was fed throughout the study. Pen-floor fecal samples (30/pen) were collected weekly for the last 4 study weeks. Samples were enriched in E. coli broth and subjected to a multiplex polymerase chain reaction (PCR) designed to detect O26-specific wzx gene and four major virulence genes (stx1, stx2, eae, and ehxA) and to a culture-based procedure that involved immunomagnetic separation and plating on MacConkey agar. Ten presumptive E. coli colonies were randomly picked, pooled, and tested by the multiplex PCR. Pooled colonies positive for O26 serogroup were streaked on sorbose MacConkey agar, and 10 randomly picked colonies per sample were tested individually by the multiplex PCR. The overall prevalence of E. coli O26 was higher (p<0.001) by the culture-based method compared to the PCR assay (22.7 versus 10.5%). The interventions (VAC and or DFM) had no impact on fecal shedding of O26. Serogroup O26 was recovered in pure culture from 23.9% (260 of 1089) of O26 PCR-positive pooled colonies. Only 7 of the 260 isolates were positive for the stx gene and 90.1% of the isolates possessed an eaeβ gene that codes for intimin subtype β, but not the bfpA gene, which codes for bundle-forming pilus. Therefore, the majority of the O26 recovered from feedlot cattle feces was

  12. Further development of sample preparation and detection methods for O157 and the top 6 non-O157 STEC serogroups in cattle feces.

    PubMed

    Conrad, Cheyenne C; Stanford, Kim; McAllister, Tim A; Thomas, James; Reuter, Tim

    2014-10-01

    Shiga toxin-producing Escherichia coli (STEC) are food-borne pathogens responsible for outbreaks of human infections worldwide. Ruminant livestock harbor STEC in their intestinal tract, and through fecal contamination possess the potential to compromise the safety of food and water. As a human health safety risk, STEC detection methods on beef carcasses and trim are needed as mandated by the USDA-FSIS. In order to monitor STEC prior to harvest and human consumption, our goal was to evaluate and/or improve detection of seven STEC serogroups in cattle feces. In comparison to traditional approaches, sample processing methods in bovine feces were evaluated using a multi-factorial Latin square design which involved freezing or freeze drying feces. Autoclaved versus non-autoclaved feces were spiked with O26:H11 or O157:H7 serotypes in various dilutions and enriched for up to 6h. Each hour, enriched aliquots were compared using traditional culture methods and quantitative polymerase chain reaction (qPCR). Furthermore, a 7-serogroup multiplex PCR (mPCR) was developed to detect O26, O45, O103, O111, O121, O145 and O157 serogroups simultaneously. The diagnostic sensitivity of our mPCR assay following 6h enrichment was superior (10CFU/g across all serogroups) compared to a previously established PCR assay (10CFU/g for O26, and O103; ≥10(4)CFU/g for all other serogroups). Obtaining viable isolates appeared to be limited by the efficiency of current immunomagnetic separation (IMS) methods, which ranged from 20 to 100% effectiveness at retrieving colonies depending on serogroup. After IMS, 70 putative STEC isolates were screened for Shiga toxin and attachment genes by mPCR. Sixty-five isolates contained one or both Shiga toxin genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Dietary choice affects Shiga toxin-producing Escherichia coli (STEC) O157:H7 colonization and disease

    PubMed Central

    Zumbrun, Steven D.; Melton-Celsa, Angela R.; Smith, Mark A.; Gilbreath, Jeremy J.; Merrell, D. Scott; O’Brien, Alison D.

    2013-01-01

    The likelihood that a single individual infected with the Shiga toxin (Stx)-producing, food-borne pathogen Escherichia coli O157:H7 will develop a life-threatening sequela called the hemolytic uremic syndrome is unpredictable. We reasoned that conditions that enhance Stx binding and uptake within the gut after E. coli O157:H7 infection should result in greater disease severity. Because the receptor for Stx, globotriaosylceramide, is up-regulated in the presence of butyrate in vitro, we asked whether a high fiber diet (HFD) that reportedly enhances butyrate production by normal gut flora can influence the outcome of an E. coli O157 infection in mice. To address that question, groups of BALB/c mice were fed high (10%) or low (2%) fiber diets and infected with E. coli O157:H7 strain 86-24 (Stx2+). Mice fed an HFD exhibited a 10- to 100-fold increase in colonization, lost 15% more body weight, exhibited signs of morbidity, and had 25% greater mortality relative to the low fiber diet (LFD)-fed group. Additionally, sections of intestinal tissue from HFD-fed mice bound more Stx1 and expressed more globotriaosylceramide than did such sections from LFD-fed mice. Furthermore, the gut microbiota of HFD-fed mice compared with LFD-fed mice contained reduced levels of native Escherichia species, organisms that might protect the gut from colonization by incoming E. coli O157:H7. Taken together, these results suggest that susceptibility to infection and subsequent disease after ingestion of E. coli O157:H7 may depend, at least in part, on individual diet and/or the capacity of the commensal flora to produce butyrate. PMID:23690602

  14. Different CHEK2 germline mutations are associated with distinct immunophenotypic molecular subtypes of breast cancer.

    PubMed

    Domagala, Pawel; Wokolorczyk, Dominika; Cybulski, Cezary; Huzarski, Tomasz; Lubinski, Jan; Domagala, Wenancjusz

    2012-04-01

    Germline mutations in BRCA1 were already linked to basal-like subtype of immunophenotypic molecular classification of breast cancer (BC). However, it is not known whether mutations in other BC susceptibility genes are associated with molecular subtypes of this cancer. We tested the hypothesis that distinct mutations in another BC susceptibility gene involved in DNA repair, i.e., CHEK2 may be associated with particular immunophenotypic molecular subtypes of this cancer. Two groups of patients: 1255 with BCs and 5496 healthy controls were genotyped for four CHEK2 mutations (I157T and three truncating mutations: 1100delC, IVS2 + 1G > A, del5395). BCs were tested by immunohistochemistry on tissue microarrays for ER, PR, HER-2, EGFR, and CK5/6 and were assigned to appropriate subtypes of immunophenotypic molecular classification. There was a significant association between CHEK2 mutations and the immunophenotypic molecular classification (P = 0.004). CHEK2-associated cancers were predominantly luminal (108/117 = 92.3%). CHEK2-I157T variant was associated with the luminal A subtype (P = 0.01), whereas CHEK2-truncating mutations were associated with the luminal B subtype (P = 0.005). Comparing the prevalence of CHEK2 mutations in BC with controls revealed that carriers of an I157T variant had OR of 1.80 for luminal A subtype and carriers of truncating mutations had OR of 6.26 for luminal B subtype of BC. To our knowledge, this is the first study showing that specific mutations in the same susceptibility gene are associated with different immunophenotypic molecular subtypes of BC. This association represents independent evidence supporting the biological significance of immunophenotypic molecular classification of BC.

  15. Endemic Esherichia coil O157:H7 infections and hemolytic-uremic syndrome in Oklahoma, 2002-2005.

    PubMed

    Karpac, Charity A; Lee, Anthony; Kunnel, Binitha S; Bamgbola, Oluwatoyin F; Vesely, Sara K; George, James N

    2007-11-01

    Hemorrhagic enterocolitis caused by Escherichia coli O157:H7 and its complication of hemolytic-uremic syndrome (HUS) are well known from large outbreaks caused by contaminated meats and vegetables. However most cases may be endemic, not related to an outbreak. We identified cases of HUS in Oklahoma, 2002-2005, from the Inpatient Hospital Discharge Database of the Oklahoma State Department of Health (OSDH) and also the cases of HUS and E. coli O157:H7 reported to the OSDH. 110 cases of HUS were identified from the hospital discharge database; only 14 (12.7%) were reported to the OSDH; 122 cases of E. coli O157:H7 infections were reported to the OSDH. Of the 110 cases of HUS, only six (5.5%) patients in two separate clusters may have had a common source of infection. Although interpretation is limited by the few reports to OSDH, our data suggest that E. coli O157:H7 infections and HUS, presumably related to contaminated food, are endemic throughout Oklahoma.

  16. Evolutionary Silence of the Acid Chaperone Protein HdeB in Enterohemorrhagic Escherichia coli O157:H7

    PubMed Central

    Louie, Jacqueline W.; Fagerquist, Clifton K.; Sultan, Omar; Miller, William G.; Mandrell, Robert E.

    2012-01-01

    The periplasmic chaperones HdeA and HdeB are known to be important for cell survival at low pH (pH < 3) in Escherichia coli and Shigella spp. Here we investigated the roles of HdeA and HdeB in the survival of various enterohemorrhagic E. coli (EHEC) following exposure to pH 2.0. Similar to K-12 strains, the acid protections conferred by HdeA and HdeB in EHEC O145 were significant: loss of HdeA and HdeB led to over 100- to 1,000-fold reductions in acid survival, depending on the growth condition of prechallenge cells. However, this protection was much less in E. coli O157:H7 strains. Deletion of hdeB did not affect the acid survival of cells, and deletion of hdeA led to less than a 5-fold decrease in survival. Sequence analysis of the hdeAB operon revealed a point mutation at the putative start codon of the hdeB gene in all 26 E. coli O157:H7 strains analyzed, which shifted the ATG start codon to ATA. This mutation correlated with the lack of HdeB in E. coli O157:H7; however, the plasmid-borne O157-hdeB was able to restore partially the acid resistance in an E. coli O145ΔhdeAB mutant, suggesting the potential function of O157-HdeB as an acid chaperone. We conclude that E. coli O157:H7 strains have evolved acid survival strategies independent of the HdeA/B chaperones and are more acid resistant than nonpathogenic K-12 for cells grown under nonfavorable culturing conditions such as in Luria-Bertani no-salt broth at 28°C. These results suggest a divergent evolution of acid resistance mechanisms within E. coli. PMID:22179243

  17. Most probable number methodology for quantifying dilute concentrations and fluxes of Escherichia coli O157:H7 in surface waters.

    PubMed

    Jenkins, M B; Endale, D M; Fisher, D S; Gay, P A

    2009-02-01

    To better understand the transport and enumeration of dilute densities of Escherichia coli O157:H7 in agricultural watersheds, we developed a culture-based, five tube-multiple dilution most probable number (MPN) method. The MPN method combined a filtration technique for large volumes of surface water with standard selective media, biochemical and immunological tests, and a TaqMan confirmation step. This method determined E. coli O157:H7 concentrations as low as 0.1 MPN per litre, with a 95% confidence level of 0.01-0.7 MPN per litre. Escherichia coli O157:H7 densities ranged from not detectable to 9 MPN per litre for pond inflow, from not detectable to 0.9 MPN per litre for pond outflow and from not detectable to 8.3 MPN per litre for within pond. The MPN methodology was extended to mass flux determinations. Fluxes of E. coli O157:H7 ranged from <27 to >10(4) MPN per hour. This culture-based method can detect small numbers of viable/culturable E. coli O157:H7 in surface waters of watersheds containing animal agriculture and wildlife. This MPN method will improve our understanding of the transport and fate of E. coli O157:H7 in agricultural watersheds, and can be the basis of collections of environmental E. coli O157:H7.

  18. Shiga toxin-producing Escherichia coli (STEC) O22:H8 isolated from cattle reduces E. coli O157:H7 adherence in vitro and in vivo.

    PubMed

    Martorelli, L; Albanese, A; Vilte, D; Cantet, R; Bentancor, A; Zolezzi, G; Chinen, I; Ibarra, C; Rivas, M; Mercado, E C; Cataldi, A

    2017-09-01

    Shiga toxin-producing Escherichia coli (STEC) are a group of bacteria responsible for food-associated diseases. Clinical features include a wide range of symptoms such as diarrhea, hemorrhagic colitis and the hemolytic uremic syndrome (HUS), a life-threatening condition. Our group has observed that animals naturally colonized with STEC strains of unknown serotype were not efficiently colonized with E. coli O157:H7 after experimental infection. In order to assess the basis of the interference, three STEC strains were isolated from STEC persistently-colonized healthy cattle from a dairy farm in Buenos Aires, Argentina. The three isolated strains are E. coli O22:H8 and carry the stx1 and stx2d genes. The activatable activity of Stx2d was demonstrated in vitro. The three strains carry the adhesins iha, ehaA and lpf O113 . E. coli O22:H8 formed stronger biofilms in abiotic surface than E. coli O157:H7 (eae+, stx2+) and displayed a more adherent phenotype in vitro towards HeLa cells. Furthermore, when both serotypes were cultured together O22:H8 could reduce O157:H7 adherence in vitro. When calves were intragastrically pre-challenged with 10 8 CFU of a mixture of the three STEC strains and two days later challenged with the same dose of the strain E. coli O157:H7 438/99, the shedding of the pathogen was significantly reduced. These results suggest that E. coli O22:H8, a serotype rarely associated with human illness, might compete with O157:H7 at the bovine recto-anal junction, making non-O157 carrying-calves less susceptible to O157:H7 colonization and shedding of the bacteria to the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Detection of Shiga toxin-producing Escherichia coli (STEC) O157:H7, O26, O45, O103, O111, O121, and O145, and Salmonella in retail raw ground beef using the DuPont™ BAX® system.

    PubMed

    Wasilenko, Jamie L; Fratamico, Pina M; Sommers, Christopher; DeMarco, Daniel R; Varkey, Stephen; Rhoden, Kyle; Tice, George

    2014-01-01

    Shiga toxin-producing Escherichia coli (STEC) and Salmonella are food-borne pathogens commonly associated with beef, and reliable methods are needed to determine their prevalence in beef and to ensure food safety. Retail ground beef was tested for the presence of E. coli O157:H7, STEC serogroups O26, O45, O103, O111, O121, and O145, and Salmonella using the DuPont™ BAX® system method. Ground beef (325 g) samples were enriched in 1.5 L of TSB with 2 mg/L novobiocin at 42°C for 18 h, and then evaluated using the BAX® System real-time PCR assays for E. coli O157:H7 and STEC suite, and the BAX® System standard PCR assays for E. coli O157:H7 MP and Salmonella. Samples positive for STEC target genes by the BAX® System assays were subjected to immunomagnetic separation (IMS) and plating onto modified Rainbow Agar O157. Enrichments that were PCR positive for Salmonella were inoculated into RV broth, incubated for 18 h at 42°C, and then plated onto XLT-4 agar. Presumptive positive STEC and Salmonella colonies were confirmed using the BAX® System assays. Results of the BAX® System STEC assays showed 20/308 (6.5%) of samples positive for both the Shiga toxin (stx) and intimin (eae) genes; 4 (1.3%) for stx, eae, and O26; 1 (0.3%) for stx, eae, and O45; 3 (1%) for stx, eae, and O103; and 1 (0.3%) for stx, eae, and O145. There were also 3 samples positive for stx, eae, and more than one STEC serogroup. Three (1.0%) of the samples were positive using the BAX® System real-time E. coli O157:H7 assay, and 28 (9.1%) were positive using the BAX® System Salmonella assay. STEC O103 and E. coli O157:H7 were isolated from 2/6 and 2/3 PCR positive samples, respectively. Salmonella isolates were recovered and confirmed from 27 of the 28 Salmonella PCR positive samples, and a portion of the isolates were serotyped and antibiotic resistance profiles determined. Results demonstrate that the BAX® System assays are effective for detecting STEC and Salmonella in beef.

  20. Longitudinal observational study over 38 months of verotoxigenic Escherichia coli O157:H7 status in 126 cattle herds.

    PubMed

    Widgren, Stefan; Söderlund, Robert; Eriksson, Erik; Fasth, Charlotta; Aspan, Anna; Emanuelson, Ulf; Alenius, Stefan; Lindberg, Ann

    2015-10-01

    Verotoxigenic Escherichia coli O157:H7 (VTEC O157:H7) is an important zoonotic pathogen capable of causing infections in humans, sometimes with severe symptoms such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). It has been reported that a subgroup of VTEC O157:H7, referred to as clade 8, is overrepresented among HUS cases. Cattle are considered to be the main reservoir of VTEC O157:H7 and infected animals shed the bacteria in feces without showing clinical signs of disease. The aims of the present study were: (1) to better understand how the presence of VTEC O157:H7 in the farm environment changes over an extended period of time, (2) to investigate potential risk factors for the presence of the bacteria, and (3) describe the distribution of MLVA types and specifically the occurrence of the hypervirulent strains (clade 8 strains) of VTEC O157:H7. The farm environment of 126 cattle herds in Sweden were sampled from October 2009 to December 2012 (38 months) using pooled pat and overshoe sampling. Each herd was sampled, on average, on 17 occasions (range=1-20; median=19), at intervals of 64 days (range=7-205; median=58). Verotoxigenic E. coli O157:H7 were detected on one or more occasions in 53% of the herds (n=67). In these herds, the percentage of positive sampling occasions ranged from 6% to 72% (mean=19%; median=17%). Multi-locus variable number tandem repeat analysis (MLVA) typing was performed on isolates from infected herds to identify hypervirulent strains (clade 8). Clustering of MLVA profiles yielded 35 clusters and hypervirulent strains were found in 18 herds; the same cluster was often identified on consecutive samplings and in nearby farms. Using generalized estimating equations, an association was found between the probability of detecting VTEC O157:H7 and status at the preceding sampling, season, herd size, infected neighboring farms and recent introduction of animals. This study showed that the bacteria VTEC O157:H7 were spontaneously

  1. Synergistic interaction in dual-species biofilms formation by Escherichia coli O157:H7 and Ralstonia spp

    USDA-ARS?s Scientific Manuscript database

    Introduction: Ralstonia spp., a heterotrophic bacterium that are isolated from produce processing environments as part of the native microflora, have strong potentials for formaing biofilms on various surfaces. When co-cultured, Escherichia coli O157:H7 (EcO157) and Ralstonia spp. displayed a synerg...

  2. Early selection of resistance-associated mutations in HIV-1 RT C-terminal domains across different subtypes: role of the genetic barrier to resistance.

    PubMed

    Muniz, Cláudia P; Soares, Marcelo A; Santos, André F

    2014-10-01

    Interpretation of drug resistance mutation (DRM) has been based solely on HIV-1 subtype B. Reverse transcriptase (RT) C-terminal domains have been disregarded in resistance interpretation, as their clinical relevance is still controversial. We determined the emergence of DRM in RT C-terminal domains of different HIV-1 subtypes, the genetic barrier for the acquisition of these DRM and their temporal appearance with 'classical' RT inhibitor (RTI) mutations. HIV-1 RT sequences were obtained from information from 6087 treatment-naive and 3795 RTI-treated patients deposited in the Stanford HIV Resistance Database, including all major subtypes. DRM emergence was evaluated for subtype B, and was correlated with the number of DRM in the polymerase domain. Genetic barrier was calculated for each DRM studied and in each subtype. N348I, T369I and A360V were found at low prevalence in treatment-naive isolates of all subtypes. A371V was common to treatment-naive isolates. N348I was observed in all subtypes, while T369I was only selected in subtype C. A360V and T369V were selected by RTI treatment in several subtypes. A371V was selected in subtypes B and C, but is a signature in subtype A. RT C-terminal mutations were correlated with early drug resistance in subtype B. All subtypes have a low calculated genetic barrier towards C-terminal DRM acquisition, despite a few disparities having been observed. C-terminal mutations were selected in all HIV-1 subtypes, while some represent subtype-specific signatures. The selection of C-terminal DRMs occurs early in RTI resistance failure in subtype B. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Curli fimbriae are conditionally required in Escherichia coli O157:H7 for initial attachment and biofilm formation.

    PubMed

    Carter, Michelle Qiu; Louie, Jacqueline W; Feng, Doris; Zhong, Wayne; Brandl, Maria T

    2016-08-01

    Several species of enteric pathogens produce curli fimbriae, which may affect their interaction with surfaces and other microbes in nonhost environments. Here we used two Escherichia coli O157:H7 outbreak strains with distinct genotypes to understand the role of curli in surface attachment and biofilm formation in several systems relevant to fresh produce production and processing. Curli significantly enhanced the initial attachment of E. coli O157:H7 to spinach leaves and stainless steel surfaces by 5-fold. Curli was also required for E. coli O157:H7 biofilm formation on stainless steel and enhanced biofilm production on glass by 19-27 fold in LB no-salt broth. However, this contribution was not observed when cells were grown in sterile spinach lysates. Furthermore, both strains of E. coli O157:H7 produced minimal biofilms on polypropylene in LB no-salt broth but considerable amounts in spinach lysates. Under the latter conditions, curli appeared to slightly increase biofilm production. Importantly, curli played an essential role in the formation of mixed biofilm by E. coli O157:H7 and plant-associated microorganisms in spinach leaf washes, as revealed by confocal microscopy. Little or no E. coli O157:H7 biofilms were detected at 4 °C, supporting the importance of temperature control in postharvest and produce processing environments. Published by Elsevier Ltd.

  4. Proliferation of Escherichia coli O157:H7 in Soil-Substitute and Hydroponic Microgreen Production Systems.

    PubMed

    Xiao, Zhenlei; Bauchan, Gary; Nichols-Russell, Lydia; Luo, Yaguang; Wang, Qin; Nou, Xiangwu

    2015-10-01

    Radish (Raphanus sativus var. longipinnatus) microgreens were produced from seeds inoculated with Escherichia coli O157:H7 by using peat moss-based soil-substitute and hydroponic production systems. E. coli populations on the edible and inedible parts of harvested microgreen plants (7 days postseeding) and in growth medium were examined. E. coli O157:H7 was shown to survive and proliferate significantly during microgreen growth in both production systems, with a higher level in the hydroponic production system. At the initial seed inoculation level of 3.7 log CFU/g, E. coli O157:H7 populations on the edible part of microgreen plants reached 2.3 and 2.1 log CFU/g (overhead irrigation and bottom irrigation, respectively) for microgreens from the soil-substitute production system and reached 5.7 log CFU/g for those hydroponically grown. At a higher initial inoculation of 5.6 log CFU/g seeds, the corresponding E. coli O157:H7 populations on the edible parts of microgreens grown in these production systems were 3.4, 3.6, and 5.3 log CFU/g, respectively. Examination of the spatial distribution of bacterial cells on different parts of microgreen plants showed that contaminated seeds led to systematic contamination of whole plants, including both edible and inedible parts, and seed coats remained the focal point of E. coli O157:H7 survival and growth throughout the period of microgreen production.

  5. Synergistic effect of enterocin AS-48 in combination with outer membrane permeabilizing treatments against Escherichia coli O157:H7.

    PubMed

    Ananou, S; Gálvez, A; Martínez-Bueno, M; Maqueda, M; Valdivia, E

    2005-01-01

    To determine the effects of outer membrane (OM) permeabilizing agents on the antimicrobial activity of enterocin AS-48 against Escherichia coli O157:H7 CECT 4783 strain in buffer and apple juice. We determined the influence of pH, EDTA, sodium tripolyphosphate (STPP) and heat on E. coli O157:H7 CECT 4783 sensitivity to enterocin AS-48 in buffer and in apple juice. Enterocin AS-48 was not active against intact cells of E. coli O157:H7 CECT 4783 at neutral pH. However, cells sublethally injured by OM permeabilizing agents (EDTA, STPP, pH 5, pH 8.6 and heat) became sensitive to AS-48, decreasing the amount of bacteriocin required for inhibition of E. coli O157:H7 CECT 4783. The results presented indicate that enterocin AS-48 could potentially be applied with a considerably wider range of protective agents, such as OM permeabilizing agents, with increased efficacy in inhibiting E. coli O157:H7. Results from this study support the potential use of enterocin AS-48 to control E. coli O157:H7 in combination with other hurdles.

  6. [Construction and characterization of enterohemorrhagic Escherichia coli O157:H7 ppk- deleted strain].

    PubMed

    Han, Peng; Sun, Qi; Zhao, Suhui; Zhang, Qiwei; Wan, Chengsong

    2014-06-01

    To construct enterohemorrhagic Escherichia coli (EHEC) O157: H7 ppk gene deletion strains and study its biological characteristics. The gene fragment of kanamycin resistance was amplified using a pair of homologous arm primers whose 5' and 3' ends were homologous with ppk gene and kanamycin resistance gene, respectively. EHEC O157: H7 EDL933w competent strains were prepared and transformed via electroporation with the amplification products. The ppk gene was replaced by kanamycin resistance gene using pKD46-mediated Red recombination system. The recombinant strain was confirmed by PCR and sequencing, and its morphology, growth ability and adhesion were assessed using Gram staining, OD600 value and Giemsa staining. We established a ppk-deleted EHEC O157:H7 EDL933w strain with kanamycin resistance and compared the biological characteristics of the wild-type and mutant strains, which may facilitate further study of the regulatory mechanism of ppk gene.

  7. Mouse Models of Escherichia coli O157:H7 Infection and Shiga Toxin Injection

    PubMed Central

    Mohawk, Krystle L.; O'Brien, Alison D.

    2011-01-01

    Escherichia coli O157:H7 has been responsible for multiple food- and waterborne outbreaks of diarrhea and/or hemorrhagic colitis (HC) worldwide. More importantly, a portion of E. coli O157:H7-infected individuals, particularly young children, develop a life-threatening sequela of infection called hemolytic uremic syndrome (HUS). Shiga toxin (Stx), a potent cytotoxin, is the major virulence factor linked to the presentation of both HC and HUS. Currently, treatment of E. coli O157:H7 and other Stx-producing E. coli (STEC) infections is limited to supportive care. To facilitate development of therapeutic strategies and vaccines for humans against these agents, animal models that mimic one or more aspect of STEC infection and disease are needed. In this paper, we focus on the characteristics of various mouse models that have been developed and that can be used to monitor STEC colonization, disease, pathology, or combinations of these features as well as the impact of Stx alone. PMID:21274267

  8. Multiplex Fluorogenic Real-Time PCR for Detection and Quantification of Escherichia coli O157:H7 in Dairy Wastewater Wetlands

    PubMed Central

    Ibekwe, A. Mark; Watt, Pamela M.; Grieve, Catherine M.; Sharma, Vijay K.; Lyons, Steven R.

    2002-01-01

    Surface water and groundwater are continuously used as sources of drinking water in many metropolitan areas of the United States. The quality of water from these sources may be reduced due to increases in contaminants such as Escherichia coli from urban and agricultural runoffs. In this study, a multiplex fluorogenic PCR assay was used to quantify E. coli O157:H7 in soil, manure, cow and calf feces, and dairy wastewater in an artificial wetland. Primers and probes were designed to amplify and quantify the Shiga-like toxin 1 (stx1) and 2 (stx2) genes and the intimin (eae) gene of E. coli O157:H7 in a single reaction. Primer specificity was confirmed with DNA from 33 E. coli O157:H7 and related strains with and without the three genes. A direct correlation was determined between the fluorescence threshold cycle (CT) and the starting quantity of E. coli O157:H7 DNA. A similar correlation was observed between the CT and number of CFU per milliliter used in the PCR assay. A detection limit of 7.9 × 10−5 pg of E. coli O157:H7 DNA ml−1 equivalent to approximately 6.4 × 103 CFU of E. coli O157:H7 ml−1 based on plate counts was determined. Quantification of E. coli O157:H7 in soil, manure, feces, and wastewater was possible when cell numbers were ≥3.5 × 104 CFU g−1. E. coli O157:H7 levels detected in wetland samples decreased by about 2 logs between wetland influents and effluents. The detection limit of the assay in soil was improved to less than 10 CFU g−1 with a 16-h enrichment. These results indicate that the developed PCR assay is suitable for quantitative determination of E. coli O157:H7 in environmental samples and represents a considerable advancement in pathogen quantification in different ecosystems. PMID:12324331

  9. High pressure treatments combined with sodium lactate to inactivate Escherichia coli O157:H7 and spoilage microbiota in cured beef carpaccio.

    PubMed

    Masana, Marcelo Oscar; Barrio, Yanina Ximena; Palladino, Pablo Martín; Sancho, Ana Maria; Vaudagna, Sergio Ramón

    2015-04-01

    High-pressure treatments (400 and 600 MPa) combined with the addition of sodium lactate (1 and 3%) were tested to reduce Escherichia coli O157:H7 (STEC O157) and spoilage microbiota contamination in a manufactured cured beef carpaccio in fresh or frozen conditions. Counts of spoilage microorganisms and STEC O157 were also examined during the curing step to prepare the carpaccio. STEC O157 counts remained almost unchanged through the curing process performed at 1 ± 1 °C for 12 days, with a small decrease in samples with 3% of sodium lactate. High-pressure treatments at 600 MPa for 5 min achieved an immediate reduction of up to 2 logarithmic units of STEC O157 in frozen carpaccio, and up to 1.19 log in fresh condition. Counts of spoilage bacteria diminished below detection limits in fresh or frozen carpaccio added with sodium lactate by the application of 400 and 600 MPa. Maximum injury on STEC O157 cells was observed at 600 MPa in carpaccio in fresh condition without added sodium lactate. Lethality of high-pressure treatments on STEC O157 was enhanced in frozen carpaccio, while the addition of sodium lactate at 3% reduced the lethality on STEC O157 in frozen samples, and the degree of injury in fresh carpaccio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Bacteriophage-based rapid and sensitive detection of Escherichia coli O157:H7 isolates from ground beef

    USDA-ARS?s Scientific Manuscript database

    We investigated efficacy of bacteriophage-based detection technology to detect Escherichia coli O157:H7 from ground beef. The assay involved 8 h enrichment of cold stressed beef samples in presence of antimicrobials followed by capture of the pathogen on O157:H7-specific immunomagnetic beads and sp...

  11. Mathematical modeling and numerical analysis of the growth of Non-O157 shiga toxin-producing Escherichia coli in spinach leaves

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to investigate the growth of non-O157 Shiga toxin-producing Escherichia coli (STEC) in spinach leaves and to develop kinetic models to describe the bacterial growth. Six serogroups of non-O157 STEC, including O26, O45, O103, O111, O121, and O145, were used in the growth stu...

  12. Regional variation in the prevalence of E. coli O157 in cattle: a meta-analysis and meta-regression.

    PubMed

    Islam, Md Zohorul; Musekiwa, Alfred; Islam, Kamrul; Ahmed, Shahana; Chowdhury, Sharmin; Ahad, Abdul; Biswas, Paritosh Kumar

    2014-01-01

    Escherichia coli O157 (EcO157) infection has been recognized as an important global public health concern. But information on the prevalence of EcO157 in cattle at the global and at the wider geographical levels is limited, if not absent. This is the first meta-analysis to investigate the point prevalence of EcO157 in cattle at the global level and to explore the factors contributing to variation in prevalence estimates. Seven electronic databases- CAB Abstracts, PubMed, Biosis Citation Index, Medline, Web of Knowledge, Scirus and Scopus were searched for relevant publications from 1980 to 2012. A random effect meta-analysis model was used to produce the pooled estimates. The potential sources of between study heterogeneity were identified using meta-regression. A total of 140 studies consisting 220,427 cattle were included in the meta-analysis. The prevalence estimate of EcO157 in cattle at the global level was 5.68% (95% CI, 5.16-6.20). The random effects pooled prevalence estimates in Africa, Northern America, Oceania, Europe, Asia and Latin America-Caribbean were 31.20% (95% CI, 12.35-50.04), 7.35% (95% CI, 6.44-8.26), 6.85% (95% CI, 2.41-11.29), 5.15% (95% CI, 4.21-6.09), 4.69% (95% CI, 3.05-6.33) and 1.65% (95% CI, 0.77-2.53), respectively. Between studies heterogeneity was evidenced in most regions. World region (p<0.001), type of cattle (p<0.001) and to some extent, specimens (p = 0.074) as well as method of pre-enrichment (p = 0.110), were identified as factors for variation in the prevalence estimates of EcO157 in cattle. The prevalence of the organism seems to be higher in the African and Northern American regions. The important factors that might have influence in the estimates of EcO157 are type of cattle and kind of screening specimen. Their roles need to be determined and they should be properly handled in any survey to estimate the true prevalence of EcO157.

  13. Regional Variation in the Prevalence of E. coli O157 in Cattle: A Meta-Analysis and Meta-Regression

    PubMed Central

    Islam, Md. Zohorul; Musekiwa, Alfred; Islam, Kamrul; Ahmed, Shahana; Chowdhury, Sharmin; Ahad, Abdul; Biswas, Paritosh Kumar

    2014-01-01

    Background Escherichia coli O157 (EcO157) infection has been recognized as an important global public health concern. But information on the prevalence of EcO157 in cattle at the global and at the wider geographical levels is limited, if not absent. This is the first meta-analysis to investigate the point prevalence of EcO157 in cattle at the global level and to explore the factors contributing to variation in prevalence estimates. Methods Seven electronic databases- CAB Abstracts, PubMed, Biosis Citation Index, Medline, Web of Knowledge, Scirus and Scopus were searched for relevant publications from 1980 to 2012. A random effect meta-analysis model was used to produce the pooled estimates. The potential sources of between study heterogeneity were identified using meta-regression. Principal findings A total of 140 studies consisting 220,427 cattle were included in the meta-analysis. The prevalence estimate of EcO157 in cattle at the global level was 5.68% (95% CI, 5.16–6.20). The random effects pooled prevalence estimates in Africa, Northern America, Oceania, Europe, Asia and Latin America-Caribbean were 31.20% (95% CI, 12.35–50.04), 7.35% (95% CI, 6.44–8.26), 6.85% (95% CI, 2.41–11.29), 5.15% (95% CI, 4.21–6.09), 4.69% (95% CI, 3.05–6.33) and 1.65% (95% CI, 0.77–2.53), respectively. Between studies heterogeneity was evidenced in most regions. World region (p<0.001), type of cattle (p<0.001) and to some extent, specimens (p = 0.074) as well as method of pre-enrichment (p = 0.110), were identified as factors for variation in the prevalence estimates of EcO157 in cattle. Conclusion The prevalence of the organism seems to be higher in the African and Northern American regions. The important factors that might have influence in the estimates of EcO157 are type of cattle and kind of screening specimen. Their roles need to be determined and they should be properly handled in any survey to estimate the true prevalence of EcO157. PMID:24691253

  14. Protozoan Predation of Escherichia coli O157:H7 Is Unaffected by the Carriage of Shiga Toxin-Encoding Bacteriophages.

    PubMed

    Schmidt, Carrie E; Shringi, Smriti; Besser, Thomas E

    2016-01-01

    Escherichia coli O157:H7 is a food-borne bacterium that causes hemorrhagic diarrhea and hemolytic uremic syndrome in humans. While cattle are a known source of E. coli O157:H7 exposure resulting in human infection, environmental reservoirs may also be important sources of infection for both cattle and humans. Bacteriophage-encoded Shiga toxins (Stx) carried by E. coli O157:H7 may provide a selective advantage for survival of these bacteria in the environment, possibly through their toxic effects on grazing protozoa. To determine Stx effects on protozoan grazing, we co-cultured Paramecium caudatum, a common ciliate protozoon in cattle water sources, with multiple strains of Shiga-toxigenic E. coli O157:H7 and non-Shiga toxigenic cattle commensal E. coli. Over three days at ambient laboratory temperature, P. caudatum consistently reduced both E. coli O157:H7 and non-Shiga toxigenic E. coli populations by 1-3 log cfu. Furthermore, a wild-type strain of Shiga-toxigenic E. coli O157:H7 (EDL933) and isogenic mutants lacking the A subunit of Stx 2a, the entire Stx 2a-encoding bacteriophage, and/or the entire Stx 1-encoding bacteriophage were grazed with similar efficacy by both P. caudatum and Tetrahymena pyriformis (another ciliate protozoon). Therefore, our data provided no evidence of a protective effect of either Stx or the products of other bacteriophage genes on protozoan predation of E. coli. Further research is necessary to determine if the grazing activity of naturally-occurring protozoa in cattle water troughs can serve to decrease cattle exposure to E. coli O157:H7 and other Shiga-toxigenic E. coli.

  15. Stroke subtyping for genetic association studies? A comparison of the CCS and TOAST classifications.

    PubMed

    Lanfranconi, Silvia; Markus, Hugh S

    2013-12-01

    A reliable and reproducible classification system of stroke subtype is essential for epidemiological and genetic studies. The Causative Classification of Stroke system is an evidence-based computerized algorithm with excellent inter-rater reliability. It has been suggested that, compared to the Trial of ORG 10172 in Acute Stroke Treatment classification, it increases the proportion of cases with defined subtype that may increase power in genetic association studies. We compared Trial of ORG 10172 in Acute Stroke Treatment and Causative Classification of Stroke system classifications in a large cohort of well-phenotyped stroke patients. Six hundred ninety consecutively recruited patients with first-ever ischemic stroke were classified, using review of clinical data and original imaging, according to the Trial of ORG 10172 in Acute Stroke Treatment and Causative Classification of Stroke system classifications. There was excellent agreement subtype assigned by between Trial of ORG 10172 in Acute Stroke Treatment and Causative Classification of Stroke system (kappa = 0·85). The agreement was excellent for the major individual subtypes: large artery atherosclerosis kappa = 0·888, small-artery occlusion kappa = 0·869, cardiac embolism kappa = 0·89, and undetermined category kappa = 0·884. There was only moderate agreement (kappa = 0·41) for the subjects with at least two competing underlying mechanism. Thirty-five (5·8%) patients classified as undetermined by Trial of ORG 10172 in Acute Stroke Treatment were assigned to a definite subtype by Causative Classification of Stroke system. Thirty-two subjects assigned to a definite subtype by Trial of ORG 10172 in Acute Stroke Treatment were classified as undetermined by Causative Classification of Stroke system. There is excellent agreement between classification using Trial of ORG 10172 in Acute Stroke Treatment and Causative Classification of Stroke systems but no evidence that Causative

  16. Efficacy of an Escherichia coli O157:H7 SRP Vaccine in Orally Challenged Goats and Strain Persistence Over Time.

    PubMed

    Swift, Jacob M; Foster, Derek M; Rogers, Anna T; Sylvester, Hannah J; Griffith, Emily H; Jacob, Megan E

    2017-03-01

    Small ruminants have been implicated in outbreaks of Escherichia coli O157:H7 at livestock exhibitions throughout the United States. Additionally, goat meat or milk may serve as a reservoir for foodborne transmission of the organism. These associations highlight the public health importance of an effective strategy to reduce E. coli O157:H7 shedding in goats. We examined the efficacy of the SRP ® vaccine in goats orally challenged with E. coli O157:H7. Mixed-breed goats (n = 14) were randomly allocated into vaccinated and unvaccinated treatments (n = 7 per treatment). Goats were housed with a vaccinated and unvaccinated animal in each pen. Feces were collected for 3 weeks, then at necropsy, gastrointestinal contents were collected to determine the concentration of E. coli O157:H7. Three isolates per positive sample were saved and evaluated by pulsed-field gel electrophoresis (PFGE) to assess strain persistence over time. The mean concentration of E. coli O157:H7 in the feces of goats was numerically reduced in the vaccinated treatment; however, it was not statistically significant. In addition, the total number of days goats were fecal positive for E. coli O157:H7 were not different between vaccinated and unvaccinated treatments. Pulsotypes of isolates revealed that goats initially shed two of the four challenge strains of E. coli O157:H7, after which there was a distinct shift to two different strains. Further work is needed to evaluate cost-effective intervention strategies that reliably reduce E. coli O157:H7 shedding in goats, particularly those that may reduce the risk of transmission at public events, including petting zoos and fairs.

  17. Stroke Genetics Network (SiGN) Study: Design and rationale for a genome-wide association study of ischemic stroke subtypes

    PubMed Central

    Meschia, James F.; Arnett, Donna K.; Ay, Hakan; Brown, Robert D.; Benavente, Oscar; Cole, John W.; de Bakker, Paul I.W.; Dichgans, Martin; Doheny, Kimberly F.; Fornage, Myriam; Grewal, Raji; Gwinn, Katrina; Jern, Christina; Conde, Jordi Jimenez; Johnson, Julie A.; Jood, Katarina; Laurie, Cathy C.; Lee, Jin-Moo; Lindgren, Arne; Markus, Hugh S.; McArdle, Patrick F.; McClure, Leslie A.; Mitchell, Braxton D.; Schmidt, Reinhold; Rexrode, Kathryn M.; Rich, Stephen S.; Rosand, Jonathan; Rothwell, Peter M.; Rundek, Tatjana; Sacco, Ralph L.; Sharma, Pankaj; Shuldiner, Alan R.; Slowik, Agnieszka; Wassertheil-Smoller, Sylvia; Sudlow, Cathie; Thijs, Vincent; Woo, Daniel; Worrall, Bradford B.; Wu, Ona; Kittner, Steven J.

    2014-01-01

    Background and Purpose Meta-analyses of extant genome-wide data illustrate the need to focus on subtypes of ischemic stroke for gene discovery. The NINDS Stroke Genetics Network (SiGN) contributes substantially to meta-analyses that focus on specific subtypes of stroke. Methods The NINDS Stroke Genetics Network (SiGN) includes ischemic stroke cases from 24 Genetic Research Centers (GRCs), 13 from the US and 11 from Europe. Investigators harmonize ischemic stroke phenotyping using the web-based Causative Classification of Stroke (CCS) system, with data entered by trained and certified adjudicators at participating GRCs. Through the Center for Inherited Diseases Research (CIDR), SiGN plans to genotype 10,296 carefully phenotyped stroke cases using genome-wide SNP arrays, and add to these another 4,253 previously genotyped cases for a total of 14,549 cases. To maximize power for subtype analyses, the study allocates genotyping resources almost exclusively to cases. Publicly available studies provide most of the control genotypes. CIDR-generated genotypes and corresponding phenotypic data will be shared with the scientific community through dbGaP, and brain MRI studies will be centrally archived. Conclusions The SiGN consortium, with its emphasis on careful and standardized phenotyping of ischemic stroke and stroke subtypes, provides an unprecedented opportunity to uncover genetic determinants of ischemic stroke. PMID:24021684

  18. A novel vehicle for transmission of Escherichia coli O157:H7 to humans: multistate outbreak of E. coli O157:H7 infections associated with consumption of ready-to-bake commercial prepackaged cookie dough--United States, 2009.

    PubMed

    Neil, Karen P; Biggerstaff, Gwen; MacDonald, J Kathryn; Trees, Eija; Medus, Carlota; Musser, Kimberlee A; Stroika, Steven G; Zink, Don; Sotir, Mark J

    2012-02-15

     Escherichia coli O157:H7 is a Shiga toxin-producing E. coli (STEC) associated with numerous foodborne outbreaks in the United States and is an important cause of bacterial gastrointestinal illness. In May 2009, we investigated a multistate outbreak of E. coli O157:H7 infections.  Outbreak-associated cases were identified using serotyping and molecular subtyping procedures. Traceback investigation and product testing were performed. A matched case-control study was conducted to identify exposures associated with illness using age-, sex-, and state-matched controls.  Seventy-seven patients with illnesses during the period 16 March-8 July 2009 were identified from 30 states; 35 were hospitalized, 10 developed hemolytic-uremic syndrome, and none died. Sixty-six percent of patients were <19 years; 71% were female. In the case-control study, 33 of 35 case patients (94%) consumed ready-to-bake commercial prepackaged cookie dough, compared with 4 of 36 controls (11%) (matched odds ratio = 41.3; P < .001); no other reported exposures were significantly associated with illness. Among case patients consuming cookie dough, 94% reported brand A. Three nonoutbreak STEC strains were isolated from brand A cookie dough. The investigation led to a recall of 3.6 million packages of brand A cookie dough and a product reformulation.  This is the first reported STEC outbreak associated with consuming ready-to-bake commercial prepackaged cookie dough. Despite instructions to bake brand A cookie dough before eating, case patients consumed the product uncooked. Manufacturers should consider formulating ready-to-bake commercial prepackaged cookie dough to be as safe as a ready-to-eat product. More effective consumer education about the risks of eating unbaked cookie dough is needed.

  19. A Novel Approach to Investigate Internalization of Escherichia coli O157:H7 in Lettuce and Spinach

    USDA-ARS?s Scientific Manuscript database

    The chromosomal integration of the green fluorescent protein (gfp) gene was successfully accomplished into four nalidixic acid resistant E. coli strains: two O157:H7 strains from produce outbreaks, 4407 and 5279, one O157:H7 strain from a beef-associated outbreak, 86-24h11, and a non-pathogenic comm...

  20. Novel Type of Fimbriae Encoded by the Large Plasmid of Sorbitol-Fermenting Enterohemorrhagic Escherichia coli O157:H−

    PubMed Central

    Brunder, Werner; Khan, A. Salam; Hacker, Jörg; Karch, Helge

    2001-01-01

    Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H− have emerged as important causes of diarrheal diseases and the hemolytic-uremic syndrome in Germany. In this study, we characterized a 32-kb fragment of the plasmid of SF EHEC O157:H−, pSFO157, which differs markedly from plasmid pO157 of classical non-sorbitol-fermenting EHEC O157:H7. We found a cluster of six genes, termed sfpA, sfpH, sfpC, sfpD, sfpJ, and sfpG, which mediate mannose-resistant hemagglutination and the expression of fimbriae. sfp genes are similar to the pap genes, encoding P-fimbriae of uropathogenic E. coli, but the sfp cluster lacks homologues of genes encoding subunits of a tip fibrillum as well as regulatory genes. The major pilin, SfpA, despite its similarity to PapA, does not cluster together with known PapA alleles in a phylogenetic tree but is structurally related to the PmpA pilin of Proteus mirabilis. The putative adhesin gene sfpG, responsible for the hemagglutination phenotype, shows significant homology neither to papG nor to other known sequences. Sfp fimbriae are 3 to 5 nm in diameter, in contrast to P-fimbriae, which are 7 nm in diameter. PCR analyses showed that the sfp gene cluster is a characteristic of SF EHEC O157:H− strains and is not present in other EHEC isolates, diarrheagenic E. coli, or other Enterobacteriaceae. The sfp gene cluster is flanked by two blocks of insertion sequences and an origin of plasmid replication, indicating that horizontal gene transfer may have contributed to the presence of Sfp fimbriae in SF EHEC O157:H−. PMID:11401985

  1. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats.

    PubMed

    Lee, Jin-Hyung; Regmi, Sushil Chandra; Kim, Jung-Ae; Cho, Moo Hwan; Yun, Hyungdon; Lee, Chang-Soo; Lee, Jintae

    2011-12-01

    Pathogenic biofilms have been associated with persistent infections due to their high resistance to antimicrobial agents, while commensal biofilms often fortify the host's immune system. Hence, controlling biofilm formation of both pathogenic bacteria and commensal bacteria is important in bacterium-related diseases. We investigated the effect of plant flavonoids on biofilm formation of enterohemorrhagic Escherichia coli O157:H7. The antioxidant phloretin, which is abundant in apples, markedly reduced E. coli O157:H7 biofilm formation without affecting the growth of planktonic cells, while phloretin did not harm commensal E. coli K-12 biofilms. Also, phloretin reduced E. coli O157:H7 attachment to human colon epithelial cells. Global transcriptome analyses revealed that phloretin repressed toxin genes (hlyE and stx(2)), autoinducer-2 importer genes (lsrACDBF), curli genes (csgA and csgB), and dozens of prophage genes in E. coli O157:H7 biofilm cells. Electron microscopy confirmed that phloretin reduced fimbria production in E. coli O157:H7. Also, phloretin suppressed the tumor necrosis factor alpha-induced inflammatory response in vitro using human colonic epithelial cells. Moreover, in the rat model of colitis induced by trinitrobenzene sulfonic acid (TNBS), phloretin significantly ameliorated colon inflammation and body weight loss. Taken together, our results suggest that the antioxidant phloretin also acts as an inhibitor of E. coli O157:H7 biofilm formation as well as an anti-inflammatory agent in inflammatory bowel diseases without harming beneficial commensal E. coli biofilms.

  2. SAS molecular tests Escherichia coli O157 detection kit. Performance tested method 031203.

    PubMed

    Bapanpally, Chandra; Montier, Laura; Khan, Shah; Kasra, Akif; Brunelle, Sharon L

    2014-01-01

    The SAS Molecular tests Escherichia coli O157 Detection method, a loop-mediated isothermal amplification method, performed as well as or better than the U.S. Department of Agriculture, Food Safety Inspection Service Microbiology Laboratory Guidebook and the U.S. Food and Drug Administration Bacteriological Analytical Manual reference methods for ground beef, beef trim, bagged mixed lettuce, and fresh spinach. Ground beef (30% fat, 25 g test portion) was validated for 7-8 h enrichment, leafy greens were validated in a 6-7 h enrichment, and ground beef (30% fat, 375 g composite test portion) and beef trim (375 g composite test portion) were validated in a 16-20 h enrichment. The method performance for meat and leafy green matrixes was also shown to be acceptable under conditions of co-enrichment with Salmonella. Thus, after a short co-enrichment step, ground beef, beef trim, lettuce, and spinach can be tested for both Salmonella and E. coli O157. The SAS Molecular tests Salmonella Detection Kit was validated using the same test portions as for the SAS Molecular tests E. coli O157 Detection Kit and those results are presented in a separate report. Inclusivity and exclusivity testing revealed no false negatives and no false positives among the 50 E. coli 0157 strains, including H7 and non-motile strains, and 30 non-E. coli O157 strains examined. Finally, the method was shown to be robust when variations to DNA extract hold time and DNA volume were varied. The method comparison and robustness data suggest a full 7 h enrichment time should be used for 25 g ground beef test portions.

  3. 75 FR 10460 - Improving Tracing Procedures for E. coli O157:H7 Positive Raw Beef Product

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... Tracing Procedures for E. coli O157:H7 Positive Raw Beef Product AGENCY: Food Safety and Inspection... Agency procedures for identifying suppliers of source material used to produce raw beef product that FSIS... that raw beef is positive for E. coli O157:H7, and whether the Agency takes the appropriate steps to...

  4. Toward Development of an Oral, Plant-Based Vaccine Against Escherichia coli O157:H7

    DTIC Science & Technology

    2004-01-01

    Mason, H. S., Haq, T. A., Clements, J. D., and Arntzen, C. J. (1998). Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT...based Vaccine Against Escherichia coli O157:H7.” beyond brief excerpts is with the permission of the copyright owner, and will save and hold...4. TITLE AND SUBTITLE Toward Development of an Oral, Plant-based Vaccine Against Escherichia coli O157:H7 5a. CONTRACT NUMBER 5b. GRANT

  5. Occurrence and characterization of Shiga toxin-producing Escherichia coli O157:H7 and other non-sorbitol-fermenting E. coli in cattle and humans in urban areas of Morogoro, Tanzania.

    PubMed

    Lupindu, Athumani M; Olsen, John E; Ngowi, Helena A; Msoffe, Peter L M; Mtambo, Madundo M; Scheutz, Flemming; Dalsgaard, Anders

    2014-07-01

    Escherichia coli strains such as Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli, enterotoxigenic, attaching, and effacing E. coli, and enteroinvasive E. coli cause diarrhea in humans. Although other serotypes exist, the most commonly reported STEC in outbreaks is O157:H7. A cross-sectional study was conducted to isolate and characterize non-sorbitol-fermenting (NSF) E. coli O157:H7 from urban and periurban livestock settings of Morogoro, Tanzania. Human stool, cattle feces, and soil and water samples were collected. Observations and questionnaire interview studies were used to gather information about cattle and manure management practices in the study area. E. coli were isolated on sorbitol MacConkey agar and characterized by conventional biochemical tests. Out of 1049 samples, 143 (13.7%) yielded NSF E. coli. Serological and antimicrobial tests and molecular typing were performed to NSF E. coli isolates. These procedures detected 10 (7%) pathogenic E. coli including STEC (n=7), enteropathogenic E. coli (EPEC) (n=2), and attaching and effacing E. coli (A/EEC) (n=1) strains. The STEC strains had the ability to produce VT1 and different VT2 toxin subtypes that caused cytopathic effects on Vero cells. The prevalence of STEC in cattle was 1.6%, out of which 0.9% was serotype O157:H7 and the overall prevalence of diarrheagenic E. coli in cattle was 2.2%. The serotypes O157:H7, O142:H34, O113:H21, O+:H-, O+:H16, and O25:H4 were identified. One ESBL-producing isolate showed the MLST type ST131. To our knowledge, this is the first finding in Tanzania of this recently emerged worldwide pandemic clonal group, causing widespread antimicrobial-resistant infections, and adds knowledge of the geographical distribution of ST131. Cattle manure was indiscriminately deposited within residential areas, and there was direct contact between humans and cattle feces during manure handling. Cattle and manure management practices expose humans, animals, and the environment

  6. Whole Genome Sequencing demonstrates that Geographic Variation of Escherichia coli O157 Genotypes Dominates Host Association.

    PubMed

    Strachan, Norval J C; Rotariu, Ovidiu; Lopes, Bruno; MacRae, Marion; Fairley, Susan; Laing, Chad; Gannon, Victor; Allison, Lesley J; Hanson, Mary F; Dallman, Tim; Ashton, Philip; Franz, Eelco; van Hoek, Angela H A M; French, Nigel P; George, Tessy; Biggs, Patrick J; Forbes, Ken J

    2015-10-07

    Genetic variation in an infectious disease pathogen can be driven by ecological niche dissimilarities arising from different host species and different geographical locations. Whole genome sequencing was used to compare E. coli O157 isolates from host reservoirs (cattle and sheep) from Scotland and to compare genetic variation of isolates (human, animal, environmental/food) obtained from Scotland, New Zealand, Netherlands, Canada and the USA. Nei's genetic distance calculated from core genome single nucleotide polymorphisms (SNPs) demonstrated that the animal isolates were from the same population. Investigation of the Shiga toxin bacteriophage and their insertion sites (SBI typing) revealed that cattle and sheep isolates had statistically indistinguishable rarefaction profiles, diversity and genotypes. In contrast, isolates from different countries exhibited significant differences in Nei's genetic distance and SBI typing. Hence, after successful international transmission, which has occurred on multiple occasions, local genetic variation occurs, resulting in a global patchwork of continental and trans-continental phylogeographic clades. These findings are important for three reasons: first, understanding transmission and evolution of infectious diseases associated with multiple host reservoirs and multi-geographic locations; second, highlighting the relevance of the sheep reservoir when considering farm based interventions; and third, improving our understanding of why human disease incidence varies across the world.

  7. Proteins other than the locus of enterocyte effacement-encoded proteins contribute to Escherichia coli O157:H7 adherence to bovine rectoanal junction stratified squamous epithelial cells

    PubMed Central

    2012-01-01

    Background In this study, we present evidence that proteins encoded by the Locus of Enterocyte Effacement (LEE), considered critical for Escherichia coli O157 (O157) adherence to follicle-associated epithelial (FAE) cells at the bovine recto-anal junction (RAJ), do not appear to contribute to O157 adherence to squamous epithelial (RSE) cells also constituting this primary site of O157 colonization in cattle. Results Antisera targeting intimin-γ, the primary O157 adhesin, and other essential LEE proteins failed to block O157 adherence to RSE cells, when this pathogen was grown in DMEM, a culture medium that enhances expression of LEE proteins. In addition, RSE adherence of a DMEM-grown-O157 mutant lacking the intimin protein was comparable to that seen with its wild-type parent O157 strain grown in the same media. These adherence patterns were in complete contrast to that observed with HEp-2 cells (the adherence to which is mediated by intimin-γ), assayed under same conditions. This suggested that proteins other than intimin-γ that contribute to adherence to RSE cells are expressed by this pathogen during growth in DMEM. To identify such proteins, we defined the proteome of DMEM-grown-O157 (DMEM-proteome). GeLC-MS/MS revealed that the O157 DMEM-proteome comprised 684 proteins including several components of the cattle and human O157 immunome, orthologs of adhesins, hypothetical secreted and outer membrane proteins, in addition to the known virulence and LEE proteins. Bioinformatics-based analysis of the components of the O157 DMEM proteome revealed several new O157-specific proteins with adhesin potential. Conclusion Proteins other than LEE and intimin-γ proteins are involved in O157 adherence to RSE cells at the bovine RAJ. Such proteins, with adhesin potential, are expressed by this human pathogen during growth in DMEM. Ongoing experiments to evaluate their role in RSE adherence should provide both valuable insights into the O157-RSE interactions and new

  8. Evolution of a zoonotic pathogen: investigating prophage diversity in enterohaemorrhagic E. coli O157 by long-read sequencing

    USDA-ARS?s Scientific Manuscript database

    Enterohaemorrhagic Escherichia Coli (EHEC) is a zoonotic pathogen known to be potentially lethal in humans. Its main animal reservoir is ruminants, specifically cattle, and yearly outbreaks occur worldwide with the most prevalent serotype being EHEC O157:H7. Most virulence factors of EHEC O157, incl...

  9. Food safety and inspection service regulatory testing program for Escherichia coli O157:H7 in raw ground beef.

    PubMed

    Naugle, Alecia Larew; Holt, Kristin G; Levine, Priscilla; Eckel, Ron

    2005-03-01

    We analyzed raw ground beef testing data to determine whether a decrease in the rate of Escherichia coli O157:H7-positive raw ground beef samples has occurred since the inception of Food Safety and Inspection Service (U.S. Department of Agriculture) regulatory actions and microbiological testing concerning this commodity and pathogen. A main effects log-linear Poisson regression model was constructed to evaluate the association between fiscal year and the rate of E. coli O157:H7-positive raw ground beef samples while controlling for the effect of season for the subset of test results obtained from fiscal year (FY)2000 through FY2003. Rate ratios were used to compare the rate of E. coli O157:H7-positive raw ground beef samples between sequential years to identify year-to-year differences. Of the 26,521 raw ground beef samples tested from FY2000 through FY2003, 189 (0.71%) tested positive for E. coli O157:H7. Year-to-year comparisons identified a 50% reduction in the rate of positive ground beef samples from FY2002 to FY2003 when controlling for season (95% CI, 10 to 72% decrease; P = 0.02). This decrease was the only significant year-to-year change in the rate of E. coli O157:H7-positive raw ground beef samples but was consistent in samples obtained from both federally inspected establishments and retail outlets. We believe this decrease is attributed to specific regulatory actions by Food Safety and Inspection Service and subsequent actions implemented by the industry, with the goal of reducing E. coli O157:H7 adulteration of raw ground beef. Continued monitoring is necessary to confirm that the decrease in the rate of E. coli O157:H7 in raw ground beef samples we observed here represents the beginning of a sustained trend.

  10. Meat Science and Muscle Biology Symposium: Escherichia coli O157:H7, diet, and fecal microbiome in beef cattle.

    PubMed

    Wells, J E; Kim, M; Bono, J L; Kuehn, L A; Benson, A K

    2014-04-01

    Shiga-toxigenic Escherichia coli, such as E. coli O157:H7, are foodborne zoonotic pathogens that can cause severe illness and death in humans. The gastrointestinal tract of ruminant animals has been identified as a primary habitat for E. coli O157:H7 and, in cattle, the hindgut tract appears to be a primary site for colonization. This pathogen has been found in cattle feces, on cattle hides, and in the production environment, and transmission to humans has occurred as a result of consumption of contaminated ground beef, water, and produce. Interventions to reduce the pathogen at beef harvest have significantly reduced the occurrence of the pathogen, but outbreaks and recalls due to the pathogen still occur for beef products. Interventions in the feedyard before harvest have had little success, but critical control points for implementing interventions are limited compared with the beef abattoir. The percentage of animals shedding E. coli O157:H7 in the feces can be highly variable from pen to pen, and the levels in the feces can vary from animal to animal. Animals colonized and shedding E. coli O157:H7 at high levels are a small fraction of animals in a pen but are important source for transferring the pathogen amongst the penmates. Recent research has indicated that diet may greatly influence the shedding of E. coli O157:H7. In addition, diet can influence the microbiota composition of the feces. However, little is known about the interaction between the indigenous microbiota and fecal shedding of E. coli O157:H7. Understanding the influence of indigenous microbiota on the colonization and shedding of E. coli O157:H7 will provide a potential avenue for intervention in the preharvest production environment not yet exploited.

  11. Evaluation of a Real-Time PCR Kit for Detecting Escherichia coli O157 in Bovine Fecal Samples

    PubMed Central

    Bono, James L.; Keen, James E.; Miller, Laura C.; Fox, James M.; Chitko-McKown, Carol G.; Heaton, Michael P.; Laegreid, William W.

    2004-01-01

    A commercially available real-time, rapid PCR test was evaluated for its ability to detect Escherichia coli O157. Both the sensitivity and specificity of the assay were 99% for isolates in pure culture. The assay detected 1 CFU of E. coli O157:H7 g−1 in artificially inoculated bovine feces following enrichment. PMID:15006817

  12. Sequential effect of phages and cold nitrogen plasma against Escherichia coli O157:H7 biofilms on different vegetables.

    PubMed

    Cui, Haiying; Bai, Mei; Yuan, Lu; Surendhiran, Duraiarasan; Lin, Lin

    2018-03-02

    Escherichia coli O157:H7 (E. coli O157:H7) is one of the most common pathogens in fresh vegetables and fruits, and most of the diseases produced by E. coli O157:H7 are associated with biofilms. Cold nitrogen plasma (CNP) is a cold sterilization technique which has no residue. However to completely eliminate the biofilm on the surface of vegetables the processing power and time of CNP have to be enhanced, which will impact on the quality of fruits and vegetables. Thus the sequential treatment of CNP and phage techniques was engineered in this study. Compared to treatment performed separately, sequential treatment not only had more mild treatment conditions as 400W CNP treatment for 2min and 5% phage treatment for 30min, but also exhibited more remarkable effect on eradicating E. coli O157:H7 biofilms in vitro and on vegetables. The population of E. coli O157:H7 was approximately reduced by 2logCFU/cm 2 after individual treatment of 5% phages for 30min or 500W CNP for 3min. While the sequential treatment of CNP (400W, 2min) and phages (5%, 30min) reduced the E. coli O157:H7 viable count in biofilm by 5.71logCFU/cm 2 . Therefore, the sequential treatment holds a great promise to improve the current treatment systems of bacterial contamination on different vegetable surfaces. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Prevalence and antimicrobial susceptibility of Escherichia coli O157 in beef at butcher shops and restaurants in central Ethiopia.

    PubMed

    Beyi, Ashenafi Feyisa; Fite, Akafete Teklu; Tora, Ephrem; Tafese, Asdesach; Genu, Tadele; Kaba, Tamirat; Beyene, Tariku Jibat; Beyene, Takele; Korsa, Mesula Geloye; Tadesse, Fanos; De Zutter, Lieven; Goddeeris, Bruno Maria; Cox, Eric

    2017-03-03

    Ethiopia bears the largest burden of foodborne diseases in Africa, and diarrheal diseases are the second leading causes of premature deaths. Enterohemorrhagic Escherichia coli O157 causes an asymptomatic infection to severe diarrhea and/or hemolytic-uremic syndrome in humans. A total of 440 beef carcass and in-contact surface swabs from 55 butcher shops and 85 minced beef samples from 40 restaurants in central Ethiopia were collected and examined for the presence of E. coli O157. Standard microbiological methods were used to isolate and identify E. coli O157 and to characterize the antimicrobial resistance of the isolates. E. coli O157 was detected in 4.5% carcass swabs (n = 5) and 3.6% cutting board swabs (n = 4) samples from butcher shops. E. coli O157 was not detected in any of the minced beef samples obtained from restaurants. All isolates (n = 9) were 100% susceptible to five drugs, but five isolates were resistant to amoxicillin, two isolates to streptomycin and three isolates to chloramphenicol. One isolate was resistant to two drugs and another to three drugs. The present study shows a low prevalence of E. coli O157 in beef sold at butcher shops. Nevertheless, given the low infective dose of this pathogen and the deep-rooted tradition of consuming raw or undercooked beef, the current prevalence should not be considered lightly from a public health perspective.

  14. The seaweed fly (Coelopidae) can facilitate environmental survival and transmission of E. coli O157 at sandy beaches.

    PubMed

    Swinscoe, Isobel; Oliver, David M; Gilburn, Andre S; Quilliam, Richard S

    2018-06-19

    The sustainable management of recreational beaches is essential for minimising risk of human exposure to microbial pathogens whilst simultaneously maintaining valuable ecosystem services. Decaying seaweed on public beaches is gaining recognition as a substrate for microbial contamination, and is a potentially significant reservoir for human pathogens in close proximity to beach users. Closely associated with beds of decaying seaweed are dense populations of the seaweed fly (Coelopidae), which could influence the spatio-temporal fate of seaweed-associated human pathogens within beach environments. Replicated mesocosms containing seaweed inoculated with a bioluminescent strain of the zoonotic pathogen E. coli O157:H7, were used to determine the effects of two seaweed flies, Coelopa frigida and C. pilipes, on E. coli O157:H7 survival dynamics. Multiple generations of seaweed flies and their larvae significantly enhanced persistence of E. coli O157:H7 in simulated wrack habitats, demonstrating that both female and male C. frigida flies are capable of transferring E. coli O157:H7 between individual wrack beds and into the sand. Adult fly faeces can contain significant concentrations of E. coli O157:H7, which suggests they are capable of acting as biological vectors and bridge hosts between wrack habitats and other seaweed fly populations, and facilitate the persistence and dispersal of E. coli O157:H7 in sandy beach environments. This study provides the first evidence that seaweed fly populations inhabiting natural wrack beds contaminated with the human pathogen E. coli O157:H7 have the capacity to amplify the hazard source, and therefore potential transmission risk, to beach users exposed to seaweed and sand in the intertidal zone. The risk to public health from seaweed flies and decaying wrack beds is usually limited by human avoidance behaviour; however, seaweed fly migration and nuisance inland plagues in urban areas could increase human exposure routes beyond the

  15. Altered Protozoan and Bacterial Communities and Survival of Escherichia coli O157:H7 in Monensin-Treated Wastewater from a Dairy Lagoon

    PubMed Central

    Ravva, Subbarao V.; Sarreal, Chester Z.; Mandrell, Robert E.

    2013-01-01

    Surviving predation is a fitness trait of Escherichia coli O157:H7 (EcO157) that provides ample time for the pathogen to be transported from reservoirs (e.g. dairies and feedlots) to farm produce grown in proximity. Ionophore dietary supplements that inhibit rumen protozoa may provide such a selective advantage for EcO157 to proliferate in lagoons as the pathogen is released along with the undigested supplement as manure washings. This study evaluated the fate of an outbreak strain of EcO157, protozoan and bacterial communities in wastewater treated with monensin. Although total protozoa and native bacteria were unaffected by monensin, the time for 90% decrease in EcO157 increased from 0.8 to 5.1 days. 18S and 16S rRNA gene sequencing of wastewater samples revealed that monensin eliminated almost all colpodean and oligohymenophorean ciliates, probably facilitating the extended survival of EcO157. Total protozoan numbers remained high in treated wastewater as monensin enriched 94% of protozoan sequences undetected with untreated wastewater. Monensin stimulated 30-fold increases in Cyrtohymena citrina, a spirotrichean ciliate, and also biflagellate bicosoecids and cercozoans. Sequences of gram-negative Proteobacteria increased from 1% to 46% with monensin, but gram-positive Firmicutes decreased from 93% to 46%. It is noteworthy that EcO157 numbers increased significantly (P<0.01) in Sonneborn medium containing monensin, probably due to monensin-inhibited growth of Vorticella microstoma (P<0.05), a ciliate isolated from wastewater. We conclude that dietary monensin inhibits ciliate protozoa that feed on EcO157. Feed supplements or other methods that enrich these protozoa in cattle manure could be a novel strategy to control the environmental dissemination of EcO157 from dairies to produce production environments. PMID:23349969

  16. House Flies in the Confined Cattle Environment Carry Non-O157 Shiga Toxin-Producing Escherichia coli.

    PubMed

    Puri-Giri, R; Ghosh, A; Thomson, J L; Zurek, L

    2017-05-01

    Cattle manure is one of the primary larval developmental habitats of house flies, Musca domestica (L.). Cattle serve as asymptomatic reservoirs of Shiga toxin-producing Escherichia coli (STEC), and bacteria are released into the environment in cattle feces. The USDA-FSIS declared seven STEC serogroups (O157, O26, O45, O103, O145, O121, and O111) as adulterants in beef products. In addition, the serogroup O104 was a culprit of a large outbreak in Germany in 2011. Our study aimed to assess the prevalence of seven non-O157 STEC (O26, O45, O145, O103, O121, O111, and O104) serogroups in adult house flies. Flies (n = 463) were collected from nine feedlots and three dairy farms in six states in the United States and individually processed. This involved a culturing approach with immunomagnetic separation followed by multiplex polymerase chain reactions for detection of individual serogroups and virulence traits. The concentration of bacteria on modified Possé agar ranged between 1.0 × 101 and 7.0 × 107 (mean: 1.5 ± 0.3 × 106) CFU/fly. Out of 463 house flies, 159 (34.3%) carried one or more of six E. coli serogroups of interest. However, STEC was found in 1.5% of house flies from feedlots only. These were E. coli O103 and O104 harboring stx1 and ehxA and E. coli O45 with stx1, eae, and ehxA. This is the first study reporting the isolation of non-O157 STEC in house flies from the confined cattle environment and indicating a potential role of this insect as a vector and reservoir of non-O157 STEC in confined beef cattle. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Weak sharing of genetic association signals in three lung cancer subtypes: evidence at the SNP, gene, regulation, and pathway levels.

    PubMed

    O'Brien, Timothy D; Jia, Peilin; Caporaso, Neil E; Landi, Maria Teresa; Zhao, Zhongming

    2018-02-27

    There are two main types of lung cancer: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC has many subtypes, but the two most common are lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). These subtypes are mainly classified by physiological and pathological characteristics, although there is increasing evidence of genetic and molecular differences as well. Although some work has been done at the somatic level to explore the genetic and biological differences among subtypes, little work has been done that interrogates these differences at the germline level to characterize the unique and shared susceptibility genes for each subtype. We used single-nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) of European samples to interrogate the similarity of the subtypes at the SNP, gene, pathway, and regulatory levels. We expanded these genotyped SNPs to include all SNPs in linkage disequilibrium (LD) using data from the 1000 Genomes Project. We mapped these SNPs to several lung tissue expression quantitative trait loci (eQTL) and enhancer datasets to identify regulatory SNPs and their target genes. We used these genes to perform a biological pathway analysis for each subtype. We identified 8295, 8734, and 8361 SNPs with moderate association signals for LUAD, LUSC, and SCLC, respectively. Those SNPs had p < 1 × 10 - 3 in the original GWAS or were within LD (r 2 > 0.8, Europeans) to the genotyped SNPs. We identified 215, 320, and 172 disease-associated genes for LUAD, LUSC, and SCLC, respectively. Only five genes (CHRNA5, IDH3A, PSMA4, RP11-650 L12.2, and TBC1D2B) overlapped all subtypes. Furthermore, we observed only two pathways from the Kyoto Encyclopedia of Genes and Genomes shared by all subtypes. At the regulatory level, only three eQTL target genes and two enhancer target genes overlapped between all subtypes. Our results suggest that the three lung cancer subtypes do not share much genetic signal

  18. Detecting and Genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Call, Douglas R.; Brockman, Fred J.; Chandler, Darrell P.

    2000-12-01

    Rapid detection and characterization of food borne pathogens such as Escherichia coli O157:H7 is crucial for epidemiological investigations and food safety surveillance. As an alternative to conventional technologies, we examined the sensitivity and specificity of nucleic acid microarrays for detecting and genotyping E. coli O157:H7. The array was composed of oligonucleotide probes (25-30 mer) complementary to four virulence loci (intimin, Shiga-like toxins I and II, and hemolysin A). Target DNA was amplified from whole cells or from purified DNA via single or multiplexed polymerase chain reaction (PCR), and PCR products were hybridized to the array without further modification or purification.more » The array was 32-fold more sensitive than gel electrophoresis and capable of detecting amplification products from < 1 cell equivalent of genomic DNA (1 fg). Immunomagnetic capture, PCR and a microarray were subsequently used to detect 55 CFU ml-1 (E. coli O157:H7) from chicken rinsate without the aid of pre-enrichment. Four isolates of E. coli O157:H7 and one isolate of O91:H2, for which genotypic data were available, were unambiguously genotyped with this array. Glass based microarrays are relatively simple to construct and provide a rapid and sensitive means to detect multiplexed PCR products and the system is amenable to automation.« less

  19. Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Call, Douglas R.; Brockman, Fred J.; Chandler, Darrell P.

    2001-07-05

    Rapid detection and characterization of food borne pathogens such as Escherichia coli O157:H7 is crucial for epidemiological investigations and food safety surveillance. As an alternative to conventional technologies, we examined the sensitivity and specificity of nucleic acid microarrays for detecting and genotyping E. coli O157:H7. The array was composed of oligonucleotide probes (25-30 mer) complementary to four virulence loci (intimin, Shiga-like toxins I and II, and hemolysin A). Target DNA was amplified from whole cells or from purified DNA via single or multiplexed polymerase chain reaction (PCR), and PCR products were hybridized to the array without further modification or purification.more » The array was 32-fold more sensitive than gel electrophoresis and capable of detecting amplification products from < 1 cell equivalent of genomic DNA (1 fg). Immunomagnetic capture, PCR and a microarray were subsequently used to detect 55 CFUs ml-1 (E. coli O157:H7) from chicken rinsate without the aid of pre-enrichment. Four isolates of E. coli O157:H7 and one isolate of O91:H2, for which genotypic data were available, were unambiguously genotyped with this array. Glass based microarrays are relatively simple to construct and provide a rapid and sensitive means to detect multiplexed PCR products and the system is amenable to automation.« less

  20. USDA FSIS, FDA BAM, and ISO culture methods BD BBL CHROMagar O157 media.

    PubMed

    Ritter, Vicki; Kircher, Susan; Dick, Nancy

    2009-01-01

    BBL CHROMagar O157 media (CO) was evaluated for detection of Escherichia coli O157:H7 in raw ground beef and unpasteurized apple cider. The recovery of E. coli O157:H7 on CO was compared to the U.S. Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM), U.S. Department of Agriculture (USDA) Food Safety and Inspection Service (FSIS), and International Organization for Standardization (ISO) reference-plated media using the recommended enrichment broths. Of the 180 food samples tested, 45 were tested using BAM, 45 using the USDA method, and 90 using the ISO method. CO produced comparable results with the reference methods on all matrixes with a sensitivity of 100% and a specificity of 100%. No false negatives were found in testing the food matrixes. There was no statistical difference in recovery based on Chi-square analysis. Method agreement for raw ground beef was 85% for the USDAFSIS method and 95% for the ISO method. Method agreement for unpasteurized apple cider was 100% for the ISO and FDA BAM methods. In all cases where method agreement was <100%, CO detected more positives than the reference method media. Evaluation of known isolates on CO in inclusivity and exclusivity testing had a sensitivity and specificity of 100%. The results of this study demonstrate that CO is an effective medium for the recovery and detection of E. coli O157:H7 in raw ground beef and unpasteurized apple cider using FDA BAM, USDA FSIS, and ISO methods.

  1. Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves.

    PubMed

    Fink, Ryan C; Black, Elaine P; Hou, Zhe; Sugawara, Masayuki; Sadowsky, Michael J; Diez-Gonzalez, Francisco

    2012-03-01

    An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.

  2. Transcriptional Responses of Escherichia coli K-12 and O157:H7 Associated with Lettuce Leaves

    PubMed Central

    Fink, Ryan C.; Black, Elaine P.; Hou, Zhe; Sugawara, Masayuki; Sadowsky, Michael J.

    2012-01-01

    An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation. PMID:22247152

  3. KatP contributes to OxyR-regulated hydrogen peroxide resistance in Escherichia coli serotype O157:H7

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli K12 defends against peroxide mediated oxidative damage using two catalases, hydroperoxidase I (katG) and hydroperoxidase II (katE) and the peroxiredoxin, alkyl hydroperoxide reductase (ahpC). In E. coli O157:H7 strain ATCC 43895 (EDL933), plasmid pO157 encodes for an additional cata...

  4. Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344.

    PubMed

    Roy, Debanjana; Panchal, Shweta; Rosa, Bruce A; Melotto, Maeli

    2013-04-01

    Consumption of fresh produce contaminated with bacterial human pathogens has resulted in various, sometimes deadly, disease outbreaks. In this study, we assessed plant defense responses induced by the fully pathogenic bacteria Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium SL1344 in both Arabidopsis thaliana and lettuce (Lactuca sativa). Unlike SL1344, O157:H7 induced strong plant immunity at both pre-invasion and post-invasion steps of infection. For instance, O157:H7 triggered stomatal closure even under high relative humidity, an environmental condition that generally weakens plant defenses against bacteria in the field and laboratory conditions. SL1344 instead induced a transient stomatal immunity. We also observed that PR1 gene expression was significantly higher in Arabidopsis leaves infected with O157:H7 compared with SL1344. These results suggest that plants may recognize and respond to some human pathogens more effectively than others. Furthermore, stomatal immunity can diminish the penetration of human pathogens through the leaf epidermis, resulting in low bacterial titers in the plant apoplast and suggesting that additional control measures can be employed to prevent food contamination. The understanding of how plant responses can diminish bacterial contamination is paramount in preventing outbreaks and improving the safety of food supplies.

  5. Escherichia coli O157:H7--Discerning Facts from Fiction: An Integrated Research and Extension Project for Multiple Audiences.

    PubMed

    Moore, D A; Smith, D R; Sischo, W M; Heaton, K; Besser, T E

    2016-02-01

    The O157:H7 (EcO157) epidemiology of Shiga-toxin-producing Escherichia coli (STEC) in cattle is complex, and myths about pre-harvest control are perpetuated. The objectives of this project were to identify perpetuated misinformation and inform four audiences about evidence-based risks and pre-harvest control of EcO157 by addressing: (i) EcO157 epidemiology and pre-harvest control; (ii) how food safety policy is created; and (iii) how to present accurate information about EcO157. An environmental scan using a daily Internet search helped identify themes for education. A literature review of pre-harvest control measures contributed to the development of educational materials (fact sheets, website, web presentations and conferences). Conference 1 was a webinar with 315 registrants, 10 countries including 41 US states and four Canadian provinces. Most participants felt confident in using their new knowledge, more than half felt confident enough to answer EcO157 questions from the public and many would recommend the recorded version of the webinar to colleagues. Conference 2 was live in the Washington, DC, area with most participants employed by the US government. All agreed that they better understood pre-harvest control, how food safety policy was made, and were confident they could create an effective message about STEC pre-harvest control. Videos were posted and received 348 Internet visitors within 2 months. Conference 3 was a webinar with a live audience and Twitter feeds, targeting people who give nutrition advice. Almost all ranked the programme good to excellent and relevant to their work. About 25% indicated that they would share: 'grass-fed beef is not safer than grain-fed', 25% would share information on effectiveness of cattle vaccines, and 14% would share information on message mapping. Across all conferences, major changes in knowledge included the following: there is no additional risk of EcO157 shedding from grain-fed versus grass-fed cattle, pre

  6. E. coli O157 on Scottish cattle farms: Evidence of local spread and persistence using repeat cross-sectional data

    PubMed Central

    2014-01-01

    Background Escherichia coli (E. coli) O157 is a virulent zoonotic strain of enterohaemorrhagic E. coli. In Scotland (1998-2008) the annual reported rate of human infection is 4.4 per 100,000 population which is consistently higher than other regions of the UK and abroad. Cattle are the primary reservoir. Thus understanding infection dynamics in cattle is paramount to reducing human infections. A large database was created for farms sampled in two cross-sectional surveys carried out in Scotland (1998 - 2004). A statistical model was generated to identify risk factors for the presence of E. coli O157 on farms. Specific hypotheses were tested regarding the presence of E. coli O157 on local farms and the farms previous status. Pulsed-field gel electrophoresis (PFGE) profiles were further examined to ascertain whether local spread or persistence of strains could be inferred. Results The presence of an E. coli O157 positive local farm (average distance: 5.96km) in the Highlands, North East and South West, farm size and the number of cattle moved onto the farm 8 weeks prior to sampling were significant risk factors for the presence of E. coli O157 on farms. Previous status of a farm was not a significant predictor of current status (p = 0.398). Farms within the same sampling cluster were significantly more likely to be the same PFGE type (p < 0.001), implicating spread of strains between local farms. Isolates with identical PFGE types were observed to persist across the two surveys, including 3 that were identified on the same farm, suggesting an environmental reservoir. PFGE types that were persistent were more likely to have been observed in human clinical infections in Scotland (p < 0.001) from the same time frame. Conclusions The results of this study demonstrate the spread of E. coli O157 between local farms and highlight the potential link between persistent cattle strains and human clinical infections in Scotland. This novel insight into the epidemiology of

  7. Prevalence and pathogen load of Campylobacter spp., Salmonella enterica and Escherichia coli O157/O145 serogroup in sheep faeces collected at sale yards and in abattoir effluent in Western Australia.

    PubMed

    Yang, R; Abraham, S; Gardner, G E; Ryan, U; Jacobson, C

    2017-05-01

    Develop a multiplex quantitative PCR assay to investigate the prevalence and shedding of Escherichia coli O157/O145, Salmonella spp. and Campylobacter spp. in sheep at sale yards and abattoirs. A qPCR for E. coli O157/O145 was developed, validated and multiplexed with an existing qPCR for Campylobacter and Salmonella enterica. The absolute numbers of E. coli O157/O145, Campylobacter and Salmonella in control samples was determined using droplet digital PCR. These were then used as the controls in the multiplex qPCR on a total of 474 sheep faecal samples collected from two saleyards over a 4-month period (April-July 2014) and 96 effluent samples from an abattoir. The mutiplex qPCR was specific with a sensitivity of 5 organisms/μL faecal DNA extract for Campylobacter, S. enterica and E. coli O157/O145. The overall prevalence of Campylobacter, S. enterica and E. coli O157/O145 in faecal samples was 5.7%, 3.6% and 8.4% and in effluent samples was 18.8%, 6.3% and 5.2%, respectively. The pathogen loads of Campylobacter, S. enterica and E. coli O157/O145 in faecal and effluent samples was also determined via mutiplex qPCR. The overall prevalences of Campylobacter, S. enterica and E. coli O157/O145 were generally low (<6%), but point prevalences ranged considerably in healthy sheep (up to 26% for E. coli O157/O145). Further work to determine risk factors for shedding of bacterial organisms in meat sheep in the pre-slaughter period (on-farm, sale yards and lairage at abattoirs) could further reduce the risk of contamination of meat products. © 2017 Australian Veterinary Association.

  8. iTRAQ-based quantitative proteomic analysis of the earthworm Eisenia fetida response to Escherichia coli O157:H7.

    PubMed

    Wang, Xing; Li, Xiaoqin; Sun, Zhenjun

    2018-05-21

    Soil environment contaminated by Escherichia coli O157:H7 which come from the waste of infected animals. Earthworms can live in the pathogens-polluted soil by their innate immunity. How the proteins of earthworms E. fetida will response to E. coli O157:H7-contaminated-soil still unclear? To identify the defense proteins under E. coli O157:H7 stress, we performed a proteomic analysis of earthworm under E. coli O157:H7 exposure through an iTRAQ technology. In total, we found 283 non-redundant proteins, including fibrinolytic protease 1, lombricine kinase, lysozyme, gelsolin, coelomic cytolytic factor-1, antimicrobial peptide lumbricin-l, lysenin, and et al. The proteins participate in metabolic processes, transcription, defense response to bacterium, translation, response to stress, and transport. The study will contribute to understand why earthworm can live in the pathogens-polluted environment. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Repetitive Immunosensor with a Fiber-Optic Device and Antibody-Coated Magnetic Beads for Semi-Continuous Monitoring of Escherichia coli O157:H7

    PubMed Central

    Taniguchi, Midori; Saito, Hirokazu; Mitsubayashi, Kohji

    2017-01-01

    A rapid and reproducible fiber-optic immunosensor for Escherichia coli O157:H7 (E. coli O157:H7) was described. The biosensor consisted of a flow cell, an optical fiber with a thin Ni layer, and a PC linked fluorometer. First, the samples with E. coli O157:H7 were incubated with magnetic beads coated with anti-E. coli O157:H7 antibodies and anti-E. coli O157:H7 antibodies labeled cyanine 5 (Cy5) to make sandwich complexes. Then the Cy5-(E. coli O157:H7)-beads were injected into a flow cell and pulled to the magnetized Ni layer on the optical fiber set in the flow cell. An excitation light (λ = 635 nm) was used to illuminate the optical fiber, and the Cy5 florescent molecules facing the optical fiber were exposed to an evanescent wave from the optical fiber. The 670 nm fluorescent light was measured using a photodiode. Finally, the magnetic intensity of the Ni layer was removed and the Cy5-E. coli O157:H7-beads were washed out for the next immunoassay. E. coli O157:H7, diluted with phosphate buffer (PB), was measured from 1 × 105 to 1 × 107 cells/mL. The total time required for an assay was less than 15 min (except for the pretreatment process) and repeating immunoassay on one optical fiber was made possible. PMID:28925937

  10. Repetitive Immunosensor with a Fiber-Optic Device and Antibody-Coated Magnetic Beads for Semi-Continuous Monitoring of Escherichia coli O157:H7.

    PubMed

    Taniguchi, Midori; Saito, Hirokazu; Mitsubayashi, Kohji

    2017-09-19

    A rapid and reproducible fiber-optic immunosensor for Escherichia coli O157:H7 ( E. coli O157:H7) was described. The biosensor consisted of a flow cell, an optical fiber with a thin Ni layer, and a PC linked fluorometer. First, the samples with E. coli O157:H7 were incubated with magnetic beads coated with anti- E. coli O157:H7 antibodies and anti- E. coli O157:H7 antibodies labeled cyanine 5 (Cy5) to make sandwich complexes. Then the Cy5-( E. coli O157:H7)-beads were injected into a flow cell and pulled to the magnetized Ni layer on the optical fiber set in the flow cell. An excitation light (λ = 635 nm) was used to illuminate the optical fiber, and the Cy5 florescent molecules facing the optical fiber were exposed to an evanescent wave from the optical fiber. The 670 nm fluorescent light was measured using a photodiode. Finally, the magnetic intensity of the Ni layer was removed and the Cy5- E. coli O157:H7-beads were washed out for the next immunoassay. E. coli O157:H7, diluted with phosphate buffer (PB), was measured from 1 × 10⁵ to 1 × 10⁷ cells/mL. The total time required for an assay was less than 15 min (except for the pretreatment process) and repeating immunoassay on one optical fiber was made possible.

  11. Modeling the fate of Escherichia coli O157:H7 and Salmonella enterica in the agricultural environment: current perspective.

    PubMed

    Ongeng, Duncan; Haberbeck, Leticia U; Mauriello, Gianluigi; Ryckeboer, Jaak; Springael, Dirk; Geeraerd, Annemie H

    2014-04-01

    The significance of fresh vegetable consumption on human nutrition and health is well recognized. Human infections with Escherichia coli O157:H7 and Salmonella enterica linked to fresh vegetable consumption have become a serious public health problem inflicting a heavy economic burden. The use of contaminated livestock wastes such as manure and manure slurry in crop production is believed to be one of the principal routes of fresh vegetable contamination with E. coli O157:H7 and S. enterica at preharvest stage because both ruminant and nonruminant livestock are known carriers of E. coli O157:H7 and S. enterica in the environment. A number of challenge-testing studies have examined the fate of E. coli O157:H7 and S. enterica in the agricultural environment with the view of designing strategies for controlling vegetable contamination preharvest. In this review, we examined the mathematical modeling approaches that have been used to study the behavior of E. coli O157:H7 and S. enterica in the manure, manure-amended soil, and in manure-amended soil-plant ecosystem during cultivation of fresh vegetable crops. We focused on how the models have been applied to fit survivor curves, predict survival, and assess the risk of vegetable contamination preharvest. The inadequacies of the current modeling approaches are discussed and suggestions for improvements to enhance the applicability of the models as decision tools to control E. coli O157:H7 and S. enterica contamination of fresh vegetables during primary production are presented. © 2014 Institute of Food Technologists®

  12. Characterization of a 3.3-kb plasmid of Escherichia coli O157:H7 and evaluation of stability of genetically engineered derivatives of this plasmid expressing green fluorescence.

    PubMed

    Sharma, Vijay K; Stanton, Thaddeus B

    2008-12-10

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 (strain 86-24) harbors a 3.3-kb plasmid (pSP70) that does not encode a selectable phenotype. A 1.1-kb fragment of DNA encoding kanamycin resistance (Kan(r)) was inserted by in vitro transposon mutagenesis at a random location on pSP70 to construct pSP70-Kan(r) that conferred Kan(r) to the host E. coli strain. Oligonucleotides complementary to 5' and 3' ends of the fragment encoding Kan(r) were used for initiating nucleotide sequencing from the plus and minus strands of pSP70, and thereafter primer walking was used to determine nucleotide sequence of pSP70. Analysis of nucleotide sequence revealed that pSP70 contained 3306 base pairs in its genome and that the genome was almost 100% identical to nucleotide sequences of small plasmids identified in EHEC O157:H7 isolates from Germany and Japan. A DNA cassette encoding a green fluorescent protein (GFP), ampicillin resistance (Amp(r)), and a double transcriptional terminator (DT) was cloned in pSP70 either at the BamHI site (created by deletion of mobA by PCR) or at the NsiI site located downstream of mobA to generate pSP70 DeltamobA-GFP/Amp(r)/DT (pSM431) and pSP70-GFP/Amp(r)/DT (pSM433), respectively. Introduction of pSM431 or pSM433 into EHEC O157:H7 yielded ampicillin-resistant colonies that glowed green under UV illumination. Consecutive subcultures of EHEC O157:H7, carrying pSM431 or pSM433 under conditions simulating the environment of bovine intestine (no selective antibiotic, incubation temperature of 39 degrees C, with or without oxygen), demonstrated that these plasmids were highly stable as greater than 95% of the isolates recovered from these subcultures were positive for green fluorescence. These findings indicate that EHEC O157:H7 carrying pSM431 or pSM433 would be useful for studying persistence and shedding of this important food-borne pathogen in cattle.

  13. Sorbitol-Fermenting Enterohemorrhagic Escherichia coli O157:H- Isolates from Czech Patients with Novel Plasmid Composition Not Previously Seen in German Isolates.

    PubMed

    Bauwens, Andreas; Marejková, Monika; Middendorf-Bauchart, Barbara; Prager, Rita; Kossow, Annelene; Zhang, Wenlan; Karch, Helge; Mellmann, Alexander; Bielaszewska, Martina

    2017-12-01

    Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H - strains, first identified in Germany, have emerged as important pathogens throughout Europe. Besides chromosomally encoded Shiga toxin 2a (the major virulence factor), several putative virulence loci, including the hly , etp , and sfp operons, encoding EHEC hemolysin, type II secretion system proteins, and Sfp fimbriae, respectively, are located on the 121-kb plasmid pSFO157 in German strains. Here we report novel SF EHEC O157:H - strains isolated from patients in the Czech Republic. These strains share the core genomes and chromosomal virulence loci encoding toxins ( stx 2a and the cdtV -ABC operon) and adhesins ( eae -γ, efa1 , lpfA O157OI-141 , and lpfA O157OI-154 ) with German strains but differ essentially in their plasmids. In contrast to all previously detected SF EHEC O157:H - strains, the Czech strains carry two plasmids, of 79 kb and 86 kb. The 79-kb plasmid harbors the sfp operon, but neither of the plasmids contains the hly and etp operons. Sequence analyses demonstrated that the 79-kb plasmid (pSFO157 258/98-1) evolved from pSFO157 of German strains by deletion of a 41,534-bp region via homologous recombination, resulting in loss of the hly and etp operons. The 86-kb plasmid (pSFO157 258/98-2) displays 98% sequence similarity to a 92.7-kb plasmid of an extraintestinal pathogenic E. coli bloodstream isolate. Our finding of this novel plasmid composition in SF EHEC O157:H - strains extends the evolutionary history of EHEC O157 plasmids. Moreover, the unique molecular plasmid characteristics permit the identification of such strains, thereby facilitating further investigations of their geographic distribution, clinical significance, and epidemiology. IMPORTANCE Since their first identification in Germany in 1989, sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H - (nonmotile) strains have emerged as important causes of the life-threatening disease hemolytic

  14. Copy number abnormality of acute lymphoblastic leukemia cell lines based on their genetic subtypes.

    PubMed

    Tomoyasu, Chihiro; Imamura, Toshihiko; Tomii, Toshihiro; Yano, Mio; Asai, Daisuke; Goto, Hiroaki; Shimada, Akira; Sanada, Masashi; Iwamoto, Shotaro; Takita, Junko; Minegishi, Masayoshi; Inukai, Takeshi; Sugita, Kanji; Hosoi, Hajime

    2018-05-21

    In this study, we performed genetic analysis of 83 B cell precursor acute lymphoblastic leukemia (B-ALL) cell lines. First, we performed multiplex ligation-dependent probe amplification analysis to identify copy number abnormalities (CNAs) in eight genes associated with B-ALL according to genetic subtype. In Ph + B-ALL cell lines, the frequencies of IKZF1, CDKN2A/2B, BTG1, and PAX5 deletion were significantly higher than those in Ph - B-ALL cell lines. The frequency of CDKN2A/2B deletion in KMT2A rearranged cell lines was significantly lower than that in non-KMT2A rearranged cell lines. These findings suggest that CNAs are correlated with genetic subtype in B-ALL cell lines. In addition, we determined that three B-other ALL cell lines had IKZF1 deletions (YCUB-5, KOPN49, and KOPN75); we therefore performed comprehensive genetic analysis of these cell lines. YCUB-5, KOPN49, and KOPN75 had P2RY8-CRLF2, IgH-CRLF2, and PAX5-ETV6 fusions, respectively. Moreover, targeted capture sequencing revealed that YCUB-5 had JAK2 R683I and KRAS G12D, and KOPN49 had JAK2 R683G and KRAS G13D mutations. These data may contribute to progress in the field of leukemia research.

  15. The fate of Salmonella Typhimurium and Escherichia coli O157 on hot boned versus conventionally chilled beef.

    PubMed

    Reid, Rachael; Fanning, Séamus; Whyte, Paul; Kerry, Joe; Bolton, Declan

    2017-04-01

    This study investigated the fate of Salmonella Typhimurium and Escherichia coli O157 on hot boned versus conventionally chilled beef. Beef samples were individually inoculated with S. Typhimurium ATCC 14028, S. Typhimurium 844, E. coli O157 EDL 933 or E. coli T13. Half the samples were subject to the same time-temperature chilling profile used for conventionally chilling beef carcasses while the other half was subject to hot boned conditions. The surface pH (5.5) and a w (0.95 to 0.97) were stable. S. Typhimurium and E. coli O157 counts, which decreased by up to 1.0 and 1.5log 10 cfucm -2 , respectively, were statistically similar (P>0.05), regardless of the chilling regime applied, with the exception of E. coli O157 EDL 933, where the counts on hot boned beef were significantly (P<0.05) higher. It was concluded that any decrease in pathogenic bacteria during beef chilling may be significantly (P<0.05) less for hot boned beef depending on the bacterial strain. Hot boning may therefore result in an increased risk to the consumer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. New system for multilocus variable-number tandem-repeat analysis of the enterohemorrhagic Escherichia coli strains belonging to three major serogroups: O157, O26, and O111.

    PubMed

    Izumiya, Hidemasa; Pei, Yingxin; Terajima, Jun; Ohnishi, Makoto; Hayashi, Tetsuya; Iyoda, Sunao; Watanabe, Haruo

    2010-10-01

    Enterohemorrhagic Escherichia coli (EHEC), a food- and waterborne pathogen, causes diarrhea, hemorrhagic colitis, and life-threatening HUS. MLVA is a newly developed and widely accepted genotyping tool. An MLVA system for EHEC O157 involving nine genomic loci has already been established. However, the present study revealed that the above-mentioned MLVA system cannot analyze EHEC O26 and O111 isolates-the second and third most dominant EHEC serogroups in Japan, respectively. Therefore, with several modifications to the O157 system and the use of nine additional loci, we developed an expanded MLVA system applicable to EHEC O26, O111, and O157. Our MLVA system had a relatively high resolution power for each of the three serogroups: Simpson's index of diversity was 0.991 (95% CI = 0.989-0.993), 0.988 (95% CI, 0.986-0.990), and 0.986 (95% CI, 0.979-0.993) for O26, O111, and O157, respectively. This system also detected outbreak-related isolates; the isolates collected during each of the 12 O26 and O111 outbreaks formed unique clusters, and most of the repeat copy numbers among the isolates collected during the same outbreak exhibited no or single-locus variations. These results were comparable to those of cluster analyses based on PFGE profiles. Therefore, our system can complement PFGE analysis-the current golden method. Because EHEC strains of three major serogroups can be rapidly analyzed on a single platform with our expanded MLVA system, this system could be widely used in molecular epidemiological studies of EHEC infections. © 2010 The Societies and Blackwell Publishing Asia Pty Ltd.

  17. Selection, Identification, and Binding Mechanism Studies of an ssDNA Aptamer Targeted to Different Stages of E. coli O157:H7.

    PubMed

    Zou, Ying; Duan, Nuo; Wu, Shijia; Shen, Mofei; Wang, Zhouping

    2018-06-06

    Enterohemorrhagic Escherichia coli O157:H7 ( E. coli O157:H7) is known as an important food-borne pathogen related to public health. In this study, aptamers which could bind to different stages of E. coli O157:H7 (adjustment phase, log phase, and stationary phase) with high affinity and specificity were obtained by the whole cell-SELEX method through 14 selection rounds including three counter-selection rounds. Altogether, 32 sequences were obtained, and nine families were classified to select the optimal aptamer. To analyze affinity and specificity by flow cytometer, an ssDNA aptamer named Apt-5 was picked out as the optimal aptamer that recognizes different stages of E. coli O157:H7 specifically with the K d value of 9.04 ± 2.80 nM. In addition, in order to study the binding mechanism, target bacteria were treated by proteinase K and trypsin, indicating that the specific binding site is not protein on the cell membrane. Furthermore, when we treated E. coli O157:H7 with EDTA, the result showed that the binding site might be lipopolysaccharide (LPS) on the outer membrane of E. coli O157:H7.

  18. Inactivation of E. coli O157:H7 on blueberries by electrolyzed water, ultraviolet light, and ozone.

    PubMed

    Kim, Chyer; Hung, Yen-Con

    2012-04-01

    Increased interest in blueberries due to their nutritional and health benefits has led to an increase in consumption. However, blueberries are consumed mostly raw or minimally processed and are susceptible to microbial contamination like other type of fresh produce. This study was, therefore, undertaken to evaluate the efficacy of electrostatic spray of electrolyzed oxidizing (EO) water, UV light, ozone, and a combination of ozone and UV light in killing Escherichia coli O157:H7 on blueberries. A 5-strain mixture of E. coli O157:H7 were inoculated on the calyx and skin of blueberries and then subjected to the treatments. Electrostatic EO water spray reduced initial populations of E. coli O157:H7 by only 0.13 to 0.24 log CFU/g and 0.88 to 1.10 log CFU/g on calyx and skin of blueberries, respectively. Ozone treatment with 4000 mg/L reduced E. coli O157:H7 by only 0.66 and 0.72 log CFU/g on calyx and skin of blueberries, respectively. UV light at 20 mW/cm² for 10 min was the most promising single technology and achieved 2.14 and greater than 4.05 log reductions of E. coli O157:H7 on the calyx and skin of blueberries, respectively. The combination treatment of 1 min ozone and followed by a 2 min UV achieved more than 1 and 2 log additional reductions on blueberry calyx than UV or ozone alone, respectively. Outbreaks of foodborne illnesses have been associated with consumption of fresh produce. Many methods for removing pathogens as well as minimizing their effect on quality of treated produce have been investigated. UV technology and its combination with ozone used in this study to inactive E. coli O157:H7 on blueberries was found effective. Results from this study may help producers and processors in developing hurdle technologies for the delivery of safer blueberries to consumers. © 2012 Institute of Food Technologists®

  19. Evaluation of mericon E. coli O157 Screen Plus and mericon E. coli STEC O-Type Pathogen Detection Assays in Select Foods: Collaborative Study, First Action 2017.05.

    PubMed

    Bird, Patrick; Benzinger, M Joseph; Bastin, Benjamin; Crowley, Erin; Agin, James; Goins, David; Armstrong, Marcia

    2018-05-01

    QIAGEN mericon Escherichia coli O157 Screen Plus and mericon E. coli Shiga toxin-producing E. coli (STEC) O-Type Pathogen Detection Assays use Real-Time PCR technology for the rapid, accurate detection of E. coli O157 and the "big six" (O26, O45, O103, O111, O121, O145) (non-O157 STEC) in select food types. Using a paired study design, the assays were compared with the U.S. Department of Agriculture, Food Safety Inspection Service Microbiology Laboratory Guidebook Chapter 5.09 reference method for the detection of E. coli O157:H7 in raw ground beef. Both mericon assays were evaluated using the manual and an automated DNA extraction method. Thirteen technicians from five laboratories located within the continental United States participated in the collaborative study. Three levels of contamination were evaluated. Statistical analysis was conducted according to the probability of detection (POD) statistical model. Results obtained for the low-inoculum level test portions produced a difference between laboratories POD (dLPOD) value with a 95% confidence interval of 0.00 (-0.12, 0.12) for the mericon E. coli O157 Screen Plus with manual and automated extraction and mericon E. coli STEC O-Type with manual extraction and -0.01 (-0.13, 0.10) for the mericon E. coli STEC O-Type with automated extraction. The dLPOD results indicate equivalence between the candidate methods and the reference method.

  20. Salt at concentrations relevant to meat processing enhances Shiga toxin 2 production in Escherichia coli O157:H7.

    PubMed

    Harris, Shaun M; Yue, Wan-Fu; Olsen, Sarena A; Hu, Jia; Means, Warrie J; McCormick, Richard J; Du, Min; Zhu, Mei-Jun

    2012-10-15

    Escherichia coli (E. coli) O157:H7 remains a major food safety concern associated with meat, especially beef products. Shiga toxins (Stx) are key virulence factors produced by E. coli O157:H7 that are responsible for hemorrhagic colitis and Hemolytic Uremic Syndrome. Stx are heat stable and can be absorbed after oral ingestion. Despite the extensive study of E. coli O157:H7 survival during meat processing, little attention is paid to the production of Stx during meat processing. The objective of this study was to elucidate the effect of salt, an essential additive to processed meat, at concentrations relevant to meat processing (0%, 1%, 2%, 3%, W/V) on Stx2 production and Stx2 prophage induction by E. coli O157:H7 strains. For both E. coli O157:H7 86-24 and EDL933 strains, including 2% salt in LB broth decreased (P<0.05) E. coli O157:H7 population, but increased (P<0.05) Stx2 production (as measured relative to Log(10)CFU) compared to that of the control (1% salt). Supplementing 3% salt decreased (P<0.05) both E. coli O157:H7 number and Stx2 production. Quantitative RT-PCR indicated that stx2 mRNA expression in culture media containing 2% salt was greatly increased (P<0.05) compared to other salt concentrations. Consistent with enhanced Stx2 production and stx2 expression, the 2% salt group had highest lambdoid phage titer and stx2 prophage induction among all salt treatments. RecA is a key mediator of bacterial response to stress, which mediates prophage activation. Quantitative RT-PCR further indicated that recA mRNA expression was higher in both 2% and 3% salt than that of 0% and 1% salt treatments, indicating that stress was involved in enhanced Stx2 production. In conclusion, salt at the concentration used for meat processing enhances Stx production, a process linked to bacterial stress response and lambdoid prophage induction. Published by Elsevier B.V.

  1. Prevalence of Escherichia coli O157:H7 and performance by beef feedlot cattle given Lactobacillus direct-fed microbials.

    PubMed

    Brashears, M M; Galyean, M L; Loneragan, G H; Mann, J E; Killinger-Mann, K

    2003-05-01

    Fecal shedding of Escherichia coli O157:H7, the prevalence of Escherichia coli O157:H7 in pens and on carcasses and hides, and cattle performance as a result of daily dietary supplementation with Lactobacillus-based direct-fed microbials (DFMs) were evaluated in a feeding trial involving 180 beef steers. Steers were evaluated for shedding of E. coli O157:H7 by an immunomagnetic separation technique on arrival at the feedlot, just before treatment with the DFMs, and every 14 days thereafter until slaughter. Composite pen fecal samples were collected every 14 days (alternating weeks with animal testing), and prevalence on hides and carcasses at slaughter was also evaluated. Feedlot performance (body weight gain and feed intake) was measured for the period during which the DFMs were fed. Gain efficiency was calculated as the ratio of weight gain to feed intake. Lactobacillus acidophilus NPC 747 decreased (P < 0.01) the shedding of E. coli O157:H7 in the feces of individual cattle during the feeding period. E. coli O157:H7 was approximately twice as likely to be detected in control animal samples as in samples from animals receiving L. acidophilus NPC 747. In addition, DFM supplementation decreased (P < 0.05) the number of E. coli O157:H7-positive hide samples at harvest and the number of pens testing positive for the pathogen. Body weight gains (on a live or carcass basis) and feed intakes during the DFM supplementation period did not differ among treatments. Gain efficiencies on a live-weight basis did not differ among treatments, but carcass-based gain/feed ratios tended (P < 0.06) to be better for animals receiving the two DFM treatments than for control animals. The results of this study suggest that the feeding of a Lactobacillus-based DFM to cattle will decrease, but not eliminate, fecal shedding of E. coli O157:H7, as well as contamination on hides, without detrimental effects on performance.

  2. Escherichia coli O157:H7 super-shedder and non-shedder feedlot steers harbour distinct fecal bacterial communities.

    PubMed

    Xu, Yong; Dugat-Bony, Eric; Zaheer, Rahat; Selinger, Lorna; Barbieri, Ruth; Munns, Krysty; McAllister, Tim A; Selinger, L Brent

    2014-01-01

    Escherichia coli O157:H7 is a major foodborne human pathogen causing disease worldwide. Cattle are a major reservoir for this pathogen and those that shed E. coli O157:H7 at >104 CFU/g feces have been termed "super-shedders". A rich microbial community inhabits the mammalian intestinal tract, but it is not known if the structure of this community differs between super-shedder cattle and their non-shedding pen mates. We hypothesized that the super-shedder state is a result of an intestinal dysbiosis of the microbial community and that a "normal" microbiota prevents E. coli O157:H7 from reaching super-shedding levels. To address this question, we applied 454 pyrosequencing of bacterial 16S rRNA genes to characterize fecal bacterial communities from 11 super-shedders and 11 contemporary pen mates negative for E. coli O157:H7. The dataset was analyzed by using five independent clustering methods to minimize potential biases and to increase confidence in the results. Our analyses collectively indicated significant variations in microbiome composition between super-shedding and non-shedding cattle. Super-shedders exhibited higher bacterial richness and diversity than non-shedders. Furthermore, seventy-two operational taxonomic units, mostly belonging to Firmicutes and Bacteroidetes phyla, were identified showing differential abundance between these two groups of cattle. The operational taxonomic unit affiliation provides new insight into bacterial populations that are present in feces arising from super-shedders of E. coli O157:H7.

  3. Effect of salt addition on acid resistance response of Escherichia coli O157:H7 against acetic acid.

    PubMed

    Bae, Young-Min; Lee, Sun-Young

    2017-08-01

    A combination of salt and acid is commonly used in the production of many foods, such as pickles and fermented foods. However, in our previous studies, addition of salt significantly reduced the inhibitory effect of acetic acid against E. coli O157:H7 in laboratory media and pickled cucumbers. Therefore, this study was conducted to determine the effect of salt addition on the acid resistance (AR) response of E. coli O157:H7 after treatment with acetic acid. The combined effect of acetic acid and salt showed different results depending on media tested. Organic compounds such as yeast extract and tryptone were required to observe the antagonistic effect of salt and acetic acid in combination. However, use of an rpoS mutant or addition of chloramphenicol resulted in no changes in the antagonistic effect of acetic acid and salt. The addition of glutamate to phosphate buffer significantly increased the survival levels of E. coli O157:H7 after the acetic acid treatment; however, the survival levels were lower than those after the treatment with acetic acid alone. Thus, the addition of salt may increase the AR response of E. coli O157:H7; however, these survival mechanisms were not proven clearly. Therefore, further studies need to be performed to better understand the antagonism of acetic acid salt against E. coli O157:H7. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cross contamination of Escherichia coli O157:H7 between lettuce and wash water during home-scale washing.

    PubMed

    Jensen, Dane A; Friedrich, Loretta M; Harris, Linda J; Danyluk, Michelle D; Schaffner, Donald W

    2015-04-01

    Lettuce and leafy greens have been implicated in multiple foodborne disease outbreaks. This study quantifies cross contamination between lettuce pieces in a small-scale home environment. A five-strain cocktail of relevant Escherichia coli O157:H7 strains was used. Bacterial transfer between single inoculated lettuce leaf pieces to 10 non-inoculated lettuce leaf pieces that were washed in a stainless steel bowl of water for 30 s, 1 min, 2 min, and 5 min was quantified. Regardless of washing time, the wash water became contaminated with 90-99% of bacteria originally present on the inoculated lettuce leaf piece. The E. coli O157:H7 concentration on initially inoculated leaf pieces was reduced ∼ 2 log CFU. Each initially uncontaminated lettuce leaf piece had ∼ 1% of the E. coli O157:H7 from the inoculated lettuce piece transferred to it after washing, with more transfer occurring during the shortest (30 s) and longest (5 min) wash times. In all cases the log percent transfer rates were essentially normally distributed. In all scenarios, most of the E. coli O157:H7 (90-99%) transferred from the inoculated lettuce pieces to the wash water. Washing with plain tap water reduces levels of E. coli O157:H7 on the inoculated lettuce leaf pieces, but also spreads contamination to previously uncontaminated leaf pieces. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Evaluation of consumer-style cooking methods for reduction of Escherichia coli O157:H7 in ground beef.

    PubMed

    Rhee, Min-Suk; Lee, Sun-Young; Hillers, Virginia N; McCurdy, Sandra M; Kang, Dong-Hyun

    2003-06-01

    The objective of this study was to evaluate the thermal inactivation of Escherichia coli O157:H7 in ground beef cooked to an internal temperature of 71.1 degrees C (160 degrees F) under conditions simulating consumer-style cooking methods. To compare a double-sided grill (DSG) with a single-sided grill (SSG), two different cooking methods were used for the SSG: for the one-turnover (OT-SSG) method, a patty was turned once when the internal temperature reached 40 degrees C, and for the multiturnover (MT-SSG) method, a patty was turned every 30 s. Patties (100 g, n = 9) inoculated with a five-strain mixture of E. coli O157: H7 at a concentration of 10(7) CFU/g were cooked until all three temperature readings (for two sides and the center) for a patty were 71.1 degrees C. The surviving E. coli O157:H7 cells were enumerated on sorbitol MacConkey (SMAC) agar and on phenol red agar base with 1% sorbitol (SPRAB). The order of the cooking methods with regard to the cooking time required for the patty to reach 71.1 degrees C was as follows: DSG (2.7 min) < MT-SSG (6.6 min) < OT-SSG (10.9 min). The more rapid, higher-temperature cooking method was more effective (P < 0.01) in destroying E. coli O157:H7 in ground beef. E. coli O157:H7 reduction levels were clearly differentiated among treatments as follows: OT-SSG (4.7 log10 CFU/g) < MT-SSG (5.6 log10 CFU/g) < DSG (6.9 log10 CFU/g). Significantly larger numbers of E. coil O157:H7 were observed on SPRAB than on SMAC agar. To confirm the safety of ground beef cooked to 71.1 degrees C, additional patties (100 g, n = 9) inoculated with lower concentrations of E. coli O157:H7 (10(3) to 10(4) CFU/g) were tested. The ground beef cooked by the OT-SSG method resulted in two (22%) of nine samples testing positive after enrichment, whereas no E. coli O157:H7 was found for samples cooked by the MT-SSG and DSG methods. Our findings suggest that consumers should be advised to either cook ground beef patties in a grill that cooks the top

  6. Effectiveness of Active Packaging on Control of Escherichia Coli O157:H7 and Total Aerobic Bacteria on Iceberg Lettuce.

    PubMed

    Lu, Haixia; Zhu, Junli; Li, Jianrong; Chen, Jinru

    2015-06-01

    Contaminated leafy green vegetables have been linked to several outbreaks of human gastrointestinal infections. Antimicrobial interventions that are adoptable by the fresh produce industry for control of pathogen contamination are in great demand. This study was undertaken to evaluate the efficacy of sustained active packaging on control of Escherichia coli O157:H7 and total aerobic bacteria on lettuce. Commercial Iceberg lettuce was inoculated with a 3-strain mixture of E. coli O157:H7 at 10(2) or 10(4) CFU/g. The contaminated lettuce and un-inoculated controls were placed respectively in 5 different active packaging structures. Traditional, nonactive packaging structure was included as controls. Packaged lettuce was stored at 4, 10, or 22 °C for 3 wk and sampled weekly for the population of E. coli O157:H7 and total aerobic bacteria. Results showed that packaging structures with ClO2 generator, CO2 generator, or one of the O2 scavengers effectively controlled the growth of E. coli O157:H7 and total aerobic bacteria under all storage conditions. Packaging structure with the ClO2 generator was most effective and no E. coli O157:H7 was detected in samples packaged in this structure except for those that were inoculated with 4 log CFU/g of E. coli O157:H7 and stored at 22 °C. Packaging structures with an oxygen scavenger and the allyl isothiocyanate generator were mostly ineffective in control of the growth of the bacteria on Iceberg lettuce. The research suggests that some of the packaging structures evaluated in the study can be used to control the presence of foodborne pathogens on leafy green vegetables. © 2015 Institute of Food Technologists®

  7. Spatio-temporal scan statistics for the detection of outbreaks involving common molecular subtypes: using human cases of Escherichia coli O157:H7 provincial PFGE pattern 8 (National Designation ECXAI.0001) in Alberta as an example.

    PubMed

    So, H C; Pearl, D L; von Königslöw, T; Louie, M; Chui, L; Svenson, L W

    2013-08-01

    Molecular typing methods have become a common part of the surveillance of foodborne pathogens. In particular, pulsed-field gel electrophoresis (PFGE) has been used successfully to identify outbreaks of Escherichia coli O157:H7 in humans from a variety of food and environmental sources. However, some PFGE patterns appear commonly in surveillance systems, making it more difficult to distinguish between outbreak and sporadic cases based on molecular data alone. In addition, it is unknown whether these common patterns might have unique epidemiological characteristics reflected in their spatial and temporal distributions. Using E. coli O157:H7 surveillance data from Alberta, collected from 2000 to 2002, we investigated whether E. coli O157:H7 with provincial PFGE pattern 8 (national designation ECXAI.0001) clustered in space, time and space-time relative to other PFGE patterns using the spatial scan statistic. Based on our purely spatial and temporal scans using a Bernoulli model, there did not appear to be strong evidence that isolates of E. coli O157:H7 with provincial PFGE pattern 8 are distributed differently from other PFGE patterns. However, we did identify space-time clusters of isolates with PFGE pattern 8, using a Bernoulli model and a space-time permutation model, which included known outbreaks and potentially unrecognized outbreaks or additional outbreak cases. There were differences between the two models in the space-time clusters identified, which suggests that the use of both models could increase the sensitivity of a quantitative surveillance system for identifying outbreaks involving isolates sharing a common PFGE pattern. © 2012 Blackwell Verlag GmbH.

  8. Escherichia coli O157:H7 infections associated with ground beef from a U.S. military installation--Okinawa, Japan, February 2004.

    PubMed

    2005-01-21

    In February 2004, the Okinawa Prefectural Chubu Health Center (OCHC) and the Okinawa Prefectural Institute of Health and Environment (OIHE), Japan, investigated three cases of Escherichia coli O157:H7 infection in a Japanese family associated with eating ground beef. Public health officials from multiple agencies in Japan and the United States collaborated on this investigation, which resulted in a voluntary recall of approximately 90,000 pounds of frozen ground beef in the United States and at U.S. military bases in the Far East. This was the first reported instance in which Japanese public health officials identified contaminated, commercially distributed ground beef that was produced in the United States. This report summarizes epidemiologic and laboratory investigations conducted by OCHC and OIHE. The results underscore the importance of using standardized molecular subtyping methods throughout the world to facilitate international public health communication and intervention.

  9. Evaluation of Escherichia coli O157:H7 growth media for use in test-and-hold procedures for ground beef processing.

    PubMed

    Guerini, Michael N; Arthur, Terrance M; Shackelford, Steven D; Koohmaraie, Mohammad

    2006-05-01

    Since the mid-1990s, the beef industry has used a process called test and hold, wherein beef trim and ground beef are tested to keep products contaminated with Escherichia coli O157:H7 out of commerce. Current O157:H7 detection methods rely on a threshold level of bacterial growth for detection, which is dependent on the growth medium used. Twelve media were examined for growth and doubling time: buffered peptone water (BPW), SOC (which contains tryptone, yeast extract, KCl, MgCl2, and glucose), buffered peptone water plus SOC (BPW-SOC), Bacto-NZYM, RapidChek E. coli O157:H7 medium, BioControl EHEC8 culture medium, Neogen Reveal for E. coli O157:H7--Eight Hour medium (Neogen Reveal 8), BAX System medium for E. coli O157:H7 (BAX) BAX System medium for E. coli O157:H7 MP (BAX-MP), modified E. coli broth, nutrient medium, and tryptic soy broth (TSB). All media were tested at 37 or 42 degrees C under static or shaking conditions. The eight media with the highest total CFU per milliliter and most rapid doubling times were BPW-SOC, NZYM, RapidChek, EHEC8, Neogen Reveal 8, BAX, BAX-MP, and TSB. The ability of these eight media to enrich E. coli O157:H7 in ground beef was further evaluated through time-course experiments using immunomagnetic separation. Of these media, TSB was the easiest to prepare, had a wide application base, and was the least expensive. In the test-and-hold process, the normal ratio of medium to product is 1:10. In this study, a 1:3 ratio worked as well as a 1:10 ratio. Processors using test-and-hold procedures could use 1 liter of TSB to enrich for E. coli O157:H7 in a 375-g sample instead of the usual 3.375 liters, thus saving reagents, time, and labor while maintaining accuracy.

  10. Overexpressed Proteins in Hypervirulent Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 Compared to E. coli O157:H7 EDL933 Clade 3 Strain.

    PubMed

    Amigo, Natalia; Zhang, Qi; Amadio, Ariel; Zhang, Qunjie; Silva, Wanderson M; Cui, Baiyuan; Chen, Zhongjian; Larzabal, Mariano; Bei, Jinlong; Cataldi, Angel

    2016-01-01

    Escherichia coli O157:H7 is responsible for severe diarrhea and hemolytic uremic syndrome (HUS), and predominantly affects children under 5 years. The major virulence traits are Shiga toxins, necessary to develop HUS and the Type III Secretion System (T3SS) through which bacteria translocate effector proteins directly into the host cell. By SNPs typing, E. coli O157:H7 was separated into nine different clades. Clade 8 and clade 6 strains were more frequently associated with severe disease and HUS. In this study, we aimed to identify differentially expressed proteins in two strains of E. coli O157:H7 (clade 8 and clade 6), obtained from cattle and compared them with the well characterized reference EDL933 strain (clade 3). Clade 8 and clade 6 strains show enhanced pathogenicity in a mouse model and virulence-related properties. Proteins were extracted and analyzed using the TMT-6plex labeling strategy associated with two dimensional liquid chromatography and mass spectrometry in tandem. We detected 2241 proteins in the cell extract and 1787 proteins in the culture supernatants. Attention was focused on the proteins related to virulence, overexpressed in clade 6 and 8 strains compared to EDL933 strain. The proteins relevant overexpressed in clade 8 strain were the curli protein CsgC, a transcriptional activator (PchE), phage proteins, Stx2, FlgM and FlgD, a dienelactone hydrolase, CheW and CheY, and the SPATE protease EspP. For clade 6 strain, a high overexpression of phage proteins was detected, mostly from Stx2 encoding phage, including Stx2, flagellin and the protease TagA, EDL933_p0016, dienelactone hydrolase, and Haemolysin A, amongst others with unknown function. Some of these proteins were analyzed by RT-qPCR to corroborate the proteomic data. Clade 6 and clade 8 strains showed enhanced transcription of 10 out of 12 genes compared to EDL933. These results may provide new insights in E. coli O157:H7 mechanisms of pathogenesis.

  11. Thermal inactivation of Escherichia coli O157:H7 in strawberry puree and its effect on anthocyanins and color

    USDA-ARS?s Scientific Manuscript database

    Raw whole strawberries, if contaminated with pathogens such as E. coli O157:H7, must be pasteurized prior to consumption. Therefore, the objective of this research was to investigate the thermal inactivation kinetics of E. coli O157:H7 in strawberry puree (SP), and evaluate the changes in anthocyan...

  12. The prevalence of verotoxins, Escherichia coli O157:H7, and Salmonella in the feces and rumen of cattle at processing.

    PubMed

    Van Donkersgoed, J; Graham, T; Gannon, V

    1999-05-01

    Fecal samples collected from cattle at processing during a 1-year period were tested for verotoxins (VT1, VT2), Escherichia coli O157:H7, and Salmonella. Verotoxins were detected in 42.6% (95% CI, 39.8% to 45.4%), E. coli O157:H7 in 7.5% (95% CI, 6.1% to 9.1%), and Salmonella in 0.08% (95% CI, 0.004% to 0.5%) of the fecal samples. In yearling cattle, the median within-lot prevalence (percentage of positive samples within a lot) was 40% (range, 0% to 100%) for verotoxins and 0% for E. coli O157:H7 (range, 0% to 100%) and Salmonella (range, 0% to 17%). One or more fecal samples were positive for verotoxins in 80.4% (95% CI, 72.8% to 86.4%) of the lots of yearling cattle, whereas E. coli O157:H7 were detected in 33.6% (95% CI, 26.0% to 42.0%) of the lots. In cull cows, the median within-lot prevalence was 50% (range, 0% to 100%) for verotoxins and 0% (range, 0% to 100%) for E. coli O157:H7 and Salmonella (range, 0% to 0%). Verotoxins were detected in one or more fecal samples from 78.0% (95% CI, 70.4% to 84.2%) of the lots of cull cows, whereas E. coli O157:H7 were detected in only 6.0% (95% CI, 3.0% to 11.4%) of the lots of cull cows. The prevalence of verotoxins in fecal samples was lower in yearling cattle than in cull cows, whereas the prevalence of E. coli O157:H7 in fecal samples was higher in yearling cattle than in cull cows. The prevalence of E. coli O157:H7 in fecal samples was highest in the summer months. Rumen fill, body condition score, sex, type of cattle (dairy, beef), and distance travelled to the plant were not associated with the fecal prevalence of verotoxins or E. coli O157:H7. The prevalence of verotoxins in fecal samples of cull cows was associated with the source of the cattle. It was highest in cows from the auction market (52%) and farm/ranch (47%) and lowest in cows from the feedlot (31%). In rumen samples, the prevalence of verotoxins was 6.4% (95% CI, 4.2% to 9.4%), and it was 0.8% (95% CI, 0.2% to 2.3%) for E. coli O157:H7, and 0.3% (95

  13. Physical Covering to control Escherichia coli O157:H7 and Salmonella in Static and Windrow Composting Process

    USDA-ARS?s Scientific Manuscript database

    This study investigated the effect of 30-cm covering of finished compost on survival of E. coli O157:H7 and Salmonella in active static and windrow composting systems. Feedstock inoculated with E. coli O157:H7 (7.41 log CFU/g) and Salmonella (6.46 log CFU/g) were placed in biosentry tubes (7.5 cm di...

  14. Population and evolutionary dynamics of Shiga-toxin producing Escherichia coli O157 in a beef herd: A longitudinal study.

    PubMed

    Jones, Meghan; Octavia, Sophie; Lammers, Geraldine; Heller, Jane; Lan, Ruiting

    2017-05-01

    Shiga toxin producing Escherichia coli O157:H7 (STEC O157) is naturally found in the gastrointestinal tract of cattle and can cause severe disease in humans. There is limited understanding of the population dynamics and microevolution of STEC O157 at herd level. In this study, isolates from a closed beef herd of 23 cows were used to examine the population turnover in the herd. Of the nine STEC O157 clades previously described, clade 7 was found in 162 of the 169 isolates typed. Multiple locus variable number tandem repeat analysis (MLVA) differentiated 169 isolates into 33 unique MLVA types. Five predominant MLVA types were evident with most of the remaining types containing only a single isolate. MLVA data suggest that over time clonal replacement occurred within the herd. Genome sequencing of 18 selected isolates found that the isolates were divided into four lineages, representing four different 'clones' in the herd. Genome data confirmed clonal replacement over time and provided evidence of cross transmission of strains between cows. The findings enhanced our understanding of the population dynamics of STEC O157 in its natural host that will help developing effective control measures to prevent the spread of the pathogen to the human population. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Factors Involved in the Persistence of a Shiga Toxin-Producing Escherichia coli O157:H7 Strain in Bovine Feces and Gastro-Intestinal Content

    PubMed Central

    Segura, Audrey; Auffret, Pauline; Bibbal, Delphine; Bertoni, Marine; Durand, Alexandra; Jubelin, Grégory; Kérourédan, Monique; Brugère, Hubert; Bertin, Yolande; Forano, Evelyne

    2018-01-01

    Healthy cattle are the primary reservoir for O157:H7 Shiga toxin-producing E. coli responsible for human food-borne infections. Because farm environment acts as a source of cattle contamination, it is important to better understand the factors controlling the persistence of E. coli O157:H7 outside the bovine gut. The E. coli O157:H7 strain MC2, identified as a persistent strain in French farms, possessed the characteristics required to cause human infections and genetic markers associated with clinical O157:H7 isolates. Therefore, the capacity of E. coli MC2 to survive during its transit through the bovine gastro-intestinal tract (GIT) and to respond to stresses potentially encountered in extra-intestinal environments was analyzed. E. coli MC2 survived in rumen fluids, grew in the content of posterior digestive compartments and survived in bovine feces at 15°C predicting a successful transit of the bacteria along the bovine GIT and its persistence outside the bovine intestine. E. coli MC2 possessed the genetic information encoding 14 adherence systems including adhesins with properties related to colonization of the bovine intestine (F9 fimbriae, EhaA and EspP autotransporters, HCP pilus, FdeC adhesin) reflecting the capacity of the bacteria to colonize different segments of the bovine GIT. E. coli MC2 was also a strong biofilm producer when incubated in fecal samples at low temperature and had a greater ability to form biofilms than the bovine commensal E. coli strain BG1. Furthermore, in contrast to BG1, E. coli MC2 responded to temperature stresses by inducing the genes cspA and htrA during its survival in bovine feces at 15°C. E. coli MC2 also activated genes that are part of the GhoT/GhoS, HicA/HicB and EcnB/EcnA toxin/antitoxin systems involved in the response of E. coli to nutrient starvation and chemical stresses. In summary, the large number of colonization factors known to bind to intestinal epithelium and to biotic or abiotic surfaces, the capacity to

  16. Hazard analysis of Escherichia coli O157:H7 contamination during beef slaughtering in Calvados, France.

    PubMed

    Guyon, R; Dorey, F; Malas, J P; Leclercq, A

    2001-09-01

    To identify hazard points and critical points during beef slaughtering, which is a necessary first step toward developing a hazard analysis and critical control point system to control meat contamination by Escherichia coli O157:H7, samples (n = 192) from surfaces, work tops, worker's hands, and beef carcasses were collected from a slaughterhouse in Calvados, France. Five strains of E. coli O157:H7 were isolated from a footbridge and a worker's apron at the preevisceration post and from a worker's hand at the defatting post. Three isolates carried stx2c, eae, and EHEC-hlyA genes and showed similar molecular types by random amplified polymorphic DNA, polymerase chain reaction IS3, and XbaI pulsed-field gel electrophoresis. Thus, this study has shown that preevisceration and defatting post and associated worker's materials are critical points for carcasses contamination by E. coli O157:H7 during beef slaughtering.

  17. Sorbitol-Fermenting Enterohemorrhagic Escherichia coli O157:H− Isolates from Czech Patients with Novel Plasmid Composition Not Previously Seen in German Isolates

    PubMed Central

    Bauwens, Andreas; Marejková, Monika; Middendorf-Bauchart, Barbara; Prager, Rita; Kossow, Annelene; Zhang, Wenlan; Karch, Helge

    2017-01-01

    ABSTRACT Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H− strains, first identified in Germany, have emerged as important pathogens throughout Europe. Besides chromosomally encoded Shiga toxin 2a (the major virulence factor), several putative virulence loci, including the hly, etp, and sfp operons, encoding EHEC hemolysin, type II secretion system proteins, and Sfp fimbriae, respectively, are located on the 121-kb plasmid pSFO157 in German strains. Here we report novel SF EHEC O157:H− strains isolated from patients in the Czech Republic. These strains share the core genomes and chromosomal virulence loci encoding toxins (stx2a and the cdtV-ABC operon) and adhesins (eae-γ, efa1, lpfAO157OI-141, and lpfAO157OI-154) with German strains but differ essentially in their plasmids. In contrast to all previously detected SF EHEC O157:H− strains, the Czech strains carry two plasmids, of 79 kb and 86 kb. The 79-kb plasmid harbors the sfp operon, but neither of the plasmids contains the hly and etp operons. Sequence analyses demonstrated that the 79-kb plasmid (pSFO157 258/98-1) evolved from pSFO157 of German strains by deletion of a 41,534-bp region via homologous recombination, resulting in loss of the hly and etp operons. The 86-kb plasmid (pSFO157 258/98-2) displays 98% sequence similarity to a 92.7-kb plasmid of an extraintestinal pathogenic E. coli bloodstream isolate. Our finding of this novel plasmid composition in SF EHEC O157:H− strains extends the evolutionary history of EHEC O157 plasmids. Moreover, the unique molecular plasmid characteristics permit the identification of such strains, thereby facilitating further investigations of their geographic distribution, clinical significance, and epidemiology. IMPORTANCE Since their first identification in Germany in 1989, sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H− (nonmotile) strains have emerged as important causes of the life-threatening disease hemolytic

  18. Isolation and characterization of non-O157 Shiga toxin-producing Escherichia coli from beef carcasses, cuts and trimmings of abattoirs in Argentina

    PubMed Central

    Brusa, Victoria; Restovich, Viviana; Galli, Lucía; Teitelbaum, David; Signorini, Marcelo; Brasesco, Hebe; Londero, Alejandra; García, Diego; Padola, Nora Lía; Superno, Valeria; Sanz, Marcelo; Petroli, Sandra; Costa, Magdalena; Bruzzone, Mariana; Sucari, Adriana; Ferreghini, Marcela; Linares, Luciano; Suberbie, Germán; Rodríguez, Ricardo

    2017-01-01

    Several foods contaminated with Shiga toxin-producing Escherichia coli (STEC) are associated with human diseases. Some countries have established microbiological criteria for non-O157 STEC, thus, the absence of serogroups O26, O45, O103, O104, O111, O121, and O145 in sprouts from the European Union or ground beef and beef trimmings from the United States is mandatory. While in Argentina screening for O26, O103, O111, O145 and O121 in ground beef, ready-to-eat food, sausages and vegetables is mandatory, other countries have zero-tolerance for all STEC in chilled beef. The aim of this study was to provide data on the prevalence of non-O157 STEC isolated from beef processed in eight Argentinean cattle slaughterhouses producing beef for export and local markets, and to know the non-O157 STEC profiles through strain characterization and genotypic analysis. Samples (n = 15,965) from 3,205 beef carcasses, 9,570 cuts and 3,190 trimmings collected between March and September 2014 were processed in pools of five samples each. Pools of samples (n = 3,193) from 641 carcasses, 1,914 cuts and 638 trimming were analyzed for non-O157 STEC isolation according to ISO/CEN 13136:2012. Of these, 37 pools of carcasses (5.8%), 111 pools of cuts (5.8%) and 45 pools of trimmings (7.0%) were positive for non-O157 STEC. STEC strains (n = 200) were isolated from 193 pools of samples. The most prevalent serotypes were O174:H21, O185:H7, O8:H19, O178:H19 and O130:H11, and the most prevalent genotypes were stx2c(vh-b) and stx2a/saa/ehxA. O103:H21 strain was eae-positive and one O178:H19 strain was aggR/aaiC-positive. The prevalence of non-O157 STEC in beef carcasses reported here was low. None of the non-O157 STEC strains isolated corresponded to the non-O157 STEC serotypes and virulence profiles isolated from human cases in Argentina in the same study period. The application of microbiological criteria for each foodstuff should be determined by risk analysis in order to have a stringent

  19. Apple Flavonoid Phloretin Inhibits Escherichia coli O157:H7 Biofilm Formation and Ameliorates Colon Inflammation in Rats ▿ †

    PubMed Central

    Lee, Jin-Hyung; Regmi, Sushil Chandra; Kim, Jung-Ae; Cho, Moo Hwan; Yun, Hyungdon; Lee, Chang-Soo; Lee, Jintae

    2011-01-01

    Pathogenic biofilms have been associated with persistent infections due to their high resistance to antimicrobial agents, while commensal biofilms often fortify the host's immune system. Hence, controlling biofilm formation of both pathogenic bacteria and commensal bacteria is important in bacterium-related diseases. We investigated the effect of plant flavonoids on biofilm formation of enterohemorrhagic Escherichia coli O157:H7. The antioxidant phloretin, which is abundant in apples, markedly reduced E. coli O157:H7 biofilm formation without affecting the growth of planktonic cells, while phloretin did not harm commensal E. coli K-12 biofilms. Also, phloretin reduced E. coli O157:H7 attachment to human colon epithelial cells. Global transcriptome analyses revealed that phloretin repressed toxin genes (hlyE and stx2), autoinducer-2 importer genes (lsrACDBF), curli genes (csgA and csgB), and dozens of prophage genes in E. coli O157:H7 biofilm cells. Electron microscopy confirmed that phloretin reduced fimbria production in E. coli O157:H7. Also, phloretin suppressed the tumor necrosis factor alpha-induced inflammatory response in vitro using human colonic epithelial cells. Moreover, in the rat model of colitis induced by trinitrobenzene sulfonic acid (TNBS), phloretin significantly ameliorated colon inflammation and body weight loss. Taken together, our results suggest that the antioxidant phloretin also acts as an inhibitor of E. coli O157:H7 biofilm formation as well as an anti-inflammatory agent in inflammatory bowel diseases without harming beneficial commensal E. coli biofilms. PMID:21930760

  20. Applications of immunomagnetic capture and time-resolved fluorescence to detect outbreak Escherichia coli O157 and Salmonella in alfalfa sprouts

    NASA Astrophysics Data System (ADS)

    Tu, Shu-I.; Gordon, Marsha; Fett, William F.; Gehring, Andrew G.; Irwin, Peter L.

    2004-03-01

    Commercially available alfalfa seeds were inoculated with low levels (~ 4 CFU/g) of pathogenic bacteria. The inoculated seeds were then allowed to sprout in sterile tap water at 22°C. After 48 hours, the irrigation water and sprouts were separately transferred to bovine heart infusion (BHI) media. The microbes in the BHI samples were allowed to grow for 4 hours at 37°C and 160 rpm. Specific immunomagnetic beads (IMB) were then applied to capture the E.coli O157 and/or Salmonella in the growth media. Separation and concentration of IMB-captured pathogens were achieved using magnetic separators. The captured E. coli O157:H7 and Salmonella spp were further tagged with europium (Eu) labeled anti-E. coli O157 antibodies and samarium (Sm) labeled anti-Salmonella antibodies, respectively. After washing, the lanthanide labels were extracted out from the complexes by specific chelators to form strongly fluorescent chelates. The specific time-resolved fluorescence (TRF) associated with Eu or Sm was measured to estimate the extent of capture of the E. coli O157 and Salmonella, respectively. The results indicated that the approach could detect E. coli O157 and Salmonella enterica from the seeds inoculated with ~ 4 CFU/g of the pathogens. Non-targeted bacteria, e.g., Aeromonas and Citrobacter exhibited essentially no cross reactivity. Since the pathogen detection from the sprouts was achieved within 6 hours, the developed methodology could be use as a rapid, sensitive and specific screening process for E. coli O157 and Salmonella enterica in this popular salad food.

  1. Farm-to-fork investigation of an outbreak of Shiga toxin-producing Escherichia coli O157

    PubMed Central

    Wilson, Deborah; Dolan, Gayle; Aird, Heather; Sorrell, Shirley; Dallman, Timothy J.; Jenkins, Claire; Robertson, Lucy; Gorton, Russell

    2018-01-01

    Fifteen cases of Shiga toxin-producing Escherichia coli (STEC) O157 infection were associated with the consumption of contaminated food from two related butchers’ premises in the north-east of England. Ten cases were admitted to hospital and seven cases developed haemolytic uraemic syndrome. A case control study found a statistically significant association with the purchase of raw and/or ready-to-eat (RTE) food supplied by the implicated butchers’ shops. Isolates of STEC O157 were detected in two raw lamb burgers taken from one of the butchers’ premises. Subsequent environmental sampling identified STEC O157 in bovine faecal samples on the farm supplying cattle to the implicated butchers for slaughter. Whole genome sequencing (WGS) was performed on the Illumina HiSeq 2500 platform on all cultures isolated from humans, food and cattle during the investigation. Quality trimmed Illumina reads were mapped to the STEC O157 reference genome Sakai using bwa-mem, and single nucleotide polymorphisms (SNPs) were identified using gatk2. Analysis of the core genome SNP positions (>90 % consensus, minimum depth 10×, mapping quality (MQ)≥30) revealed that all isolates from humans, food and cattle differed by two SNPs. WGS analysis provided forensic-level microbiological evidence to support the epidemiological links between the farm, the butchers’ premises and the clinical cases. Cross-contamination from raw meat to RTE foods at the butchers’ premises was the most plausible transmission route. The evidence presented here highlights the importance of taking measures to mitigate the risks of cross-contamination in this setting. PMID:29488865

  2. Saltelli Global Sensitivity Analysis and Simulation Modelling to Identify Intervention Strategies to Reduce the Prevalence of Escherichia coli O157 Contaminated Beef Carcasses

    PubMed Central

    Brookes, Victoria J.; Jordan, David; Davis, Stephen; Ward, Michael P.; Heller, Jane

    2015-01-01

    Introduction Strains of Shiga-toxin producing Escherichia coli O157 (STEC O157) are important foodborne pathogens in humans, and outbreaks of illness have been associated with consumption of undercooked beef. Here, we determine the most effective intervention strategies to reduce the prevalence of STEC O157 contaminated beef carcasses using a modelling approach. Method A computational model simulated events and processes in the beef harvest chain. Information from empirical studies was used to parameterise the model. Variance-based global sensitivity analysis (GSA) using the Saltelli method identified variables with the greatest influence on the prevalence of STEC O157 contaminated carcasses. Following a baseline scenario (no interventions), a series of simulations systematically introduced and tested interventions based on influential variables identified by repeated Saltelli GSA, to determine the most effective intervention strategy. Results Transfer of STEC O157 from hide or gastro-intestinal tract to carcass (improved abattoir hygiene) had the greatest influence on the prevalence of contaminated carcases. Due to interactions between inputs (identified by Saltelli GSA), combinations of interventions based on improved abattoir hygiene achieved a greater reduction in maximum prevalence than would be expected from an additive effect of single interventions. The most effective combination was improved abattoir hygiene with vaccination, which achieved a greater than ten-fold decrease in maximum prevalence compared to the baseline scenario. Conclusion Study results suggest that effective interventions to reduce the prevalence of STEC O157 contaminated carcasses should initially be based on improved abattoir hygiene. However, the effect of improved abattoir hygiene on the distribution of STEC O157 concentration on carcasses is an important information gap—further empirical research is required to determine whether reduced prevalence of contaminated carcasses is

  3. Inactivation of Escherichia coli O157:H7 in biofilm on food-contact surfaces by sequential treatments of aqueous chlorine dioxide and drying.

    PubMed

    Bang, Jihyun; Hong, Ayoung; Kim, Hoikyung; Beuchat, Larry R; Rhee, Min Suk; Kim, Younghoon; Ryu, Jee-Hoon

    2014-11-17

    We investigated the efficacy of sequential treatments of aqueous chlorine and chlorine dioxide and drying in killing Escherichia coli O157:H7 in biofilms formed on stainless steel, glass, plastic, and wooden surfaces. Cells attached to and formed a biofilm on wooden surfaces at significantly (P ≤ 0.05) higher levels compared with other surface types. The lethal activities of sodium hypochlorite (NaOCl) and aqueous chlorine dioxide (ClO₂) against E. coli O157:H7 in a biofilm on various food-contact surfaces were compared. Chlorine dioxide generally showed greater lethal activity than NaOCl against E. coli O157:H7 in a biofilm on the same type of surface. The resistance of E. coli O157:H7 to both sanitizers increased in the order of wood>plastic>glass>stainless steel. The synergistic lethal effects of sequential ClO₂ and drying treatments on E. coli O157:H7 in a biofilm on wooden surfaces were evaluated. When wooden surfaces harboring E. coli O157:H7 biofilm were treated with ClO₂ (200 μg/ml, 10 min), rinsed with water, and subsequently dried at 43% relative humidity and 22 °C, the number of E. coli O157:H7 on the surface decreased by an additional 6.4 CFU/coupon within 6 h of drying. However, when the wooden surface was treated with water or NaOCl and dried under the same conditions, the pathogen decreased by only 0.4 or 1.0 log CFU/coupon, respectively, after 12 h of drying. This indicates that ClO₂ treatment of food-contact surfaces results in residual lethality to E. coli O157:H7 during the drying process. These observations will be useful when selecting an appropriate type of food-contact surfaces, determining a proper sanitizer for decontamination, and designing an effective sanitization program to eliminate E. coli O157:H7 on food-contact surfaces in food processing, distribution, and preparation environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Outbreak of Shiga-toxigenic Escherichia coli O157:H7 infections associated with rodeo attendance, Utah and Idaho, 2009.

    PubMed

    Lanier, William A; Hall, Julia M; Herlihy, Rachel K; Rolfs, Robert T; Wagner, Jennifer M; Smith, Lori H; Hyytia-Trees, Eija K

    2011-10-01

    In summer 2009, the Utah Department of Health investigated an outbreak of Shiga-toxigenic Escherichia coli (STEC) O157:H7 (O157) illness associated with attendance at multiple rodeos. Patients were interviewed regarding exposures during the week before illness onset. A ground beef traceback investigation was performed. Ground beef samples from patient homes and a grocery store were tested for STEC O157. Rodeo managers were interviewed regarding food vendors present and cattle used at the rodeos. Environmental samples were collected from rodeo grounds. Two-enzyme pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem repeat analysis (MLVA) were performed on isolates. Fourteen patients with primary STEC O157 illness were reported in this outbreak. Isolates from all patients were indistinguishable by PFGE. Isolates from nine patients had identical MLVA patterns (main outbreak strain), and five had minor differences. Thirteen (93%) patients reported ground beef consumption during the week before illness onset. Results of the ground beef traceback investigation and ground beef sampling were negative. Of 12 primary patients asked specifically about rodeo attendance, all reported having attended a rodeo during the week before illness onset; four rodeos were mentioned. All four rodeos had used bulls from the same cattle supplier. An isolate of STEC O157 identified from a dirt sample collected from the bullpens of one of the attended rodeos was indistinguishable by PFGE and MLVA from the main outbreak strain. Recommendations were provided to rodeo management to keep livestock and manure separate from rodeo attendees. This is the first reported STEC O157 outbreak associated with attendance at multiple rodeos. Public health officials should be aware of the potential for rodeo-associated STEC illness.

  5. Sensitive detection of viable Escherichia coli O157:H7 from foods using a luciferase-reporter phage phiV10lux.

    PubMed

    Kim, Jinwoo; Kim, Minsik; Kim, Seongmi; Ryu, Sangryeol

    2017-08-02

    Escherichia coli O157:H7, a major foodborne pathogen, is a major public health concern associated with life-threatening diseases such as hemolytic uremic syndrome. To alleviate this burden, a sensitive and rapid system is required to detect this pathogen in various kinds of foods. Herein, we propose a phage-based pathogen detection method to replace laborious and time-consuming conventional methods. We engineered an E. coli O157:H7-specific phage phiV10 to rapidly and sensitively detect this notorious pathogen. The luxCDABE operon was introduced into the phiV10 genome and allowed the engineered phage phiV10lux to generate bioluminescence proportional to the number of viable E. coli O157:H7 cells without any substrate addition. The phage phiV10lux was able to detect at least 1CFU/ml of E. coli O157:H7 in a pure culture within 40min after 5h of pre-incubation. In artificially contaminated romaine lettuce, apple juice (pH3.51), and ground beef, the reporter phage could detect approximately 10CFU/cm 2 , 13CFU/ml, and 17CFU/g of E. coli O157:H7, respectively. Taken together, the constructed reporter phage phiV10lux could be applied as a powerful tool for rapid and sensitive detection of live E. coli O157:H7 in foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Differing populations of endemic bacteriophages in cattle shedding high and low numbers of Escherichia coli O157:H7 bacteria in feces.

    PubMed

    Hallewell, J; Niu, Y D; Munns, K; McAllister, T A; Johnson, R P; Ackermann, H-W; Thomas, J E; Stanford, K

    2014-07-01

    The objectives of this study were to identify endemic bacteriophages (phages) in the feedlot environment and determine relationships of these phages to Escherichia coli O157:H7 from cattle shedding high and low numbers of naturally occurring E. coli O157:H7. Angus crossbred steers were purchased from a southern Alberta (Canada) feedlot where cattle excreting ≥ 10(4) CFU · g(-1) of E. coli O157:H7 in feces at a single time point were identified as supershedders (SS; n = 6), and cattle excreting <10(4) CFU · g(-1) of feces were identified as low shedders (LS; n = 5). Fecal pats or fecal grabs were collected daily from individual cattle for 5 weeks. E. coli O157:H7 in feces was detected by immunomagnetic separation and enumerated by direct plating, and phages were isolated using short- and overnight-enrichment methods. The total prevalence of E. coli O157:H7 isolated from feces was 14.4% and did not differ between LS and SS (P = 0.972). The total prevalence of phages was higher in the LS group (20.9%) than in the SS group (8.3%; P = 0.01). Based on genome size estimated by pulsed-field gel electrophoresis and morphology determined by transmission electron microscopy, T4- and O1-like phages of Myoviridae and T1-like phage of Siphoviridae were isolated. Compared to T1- and O1-like phages, T4-like phages exhibited a broad host range and strong lytic capability when targeting E. coli O157:H7. Moreover, the T4-like phages were more frequently isolated from feces of LS than SS, suggesting that endemic phages may impact the shedding dynamics of E. coli O157:H7 in cattle. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Escherichia coli O157:H7 Super-Shedder and Non-Shedder Feedlot Steers Harbour Distinct Fecal Bacterial Communities

    PubMed Central

    Zaheer, Rahat; Selinger, Lorna; Barbieri, Ruth; Munns, Krysty; McAllister, Tim A.; Selinger, L. Brent

    2014-01-01

    Escherichia coli O157:H7 is a major foodborne human pathogen causing disease worldwide. Cattle are a major reservoir for this pathogen and those that shed E. coli O157:H7 at >104 CFU/g feces have been termed “super-shedders”. A rich microbial community inhabits the mammalian intestinal tract, but it is not known if the structure of this community differs between super-shedder cattle and their non-shedding pen mates. We hypothesized that the super-shedder state is a result of an intestinal dysbiosis of the microbial community and that a “normal” microbiota prevents E. coli O157:H7 from reaching super-shedding levels. To address this question, we applied 454 pyrosequencing of bacterial 16S rRNA genes to characterize fecal bacterial communities from 11 super-shedders and 11 contemporary pen mates negative for E. coli O157:H7. The dataset was analyzed by using five independent clustering methods to minimize potential biases and to increase confidence in the results. Our analyses collectively indicated significant variations in microbiome composition between super-shedding and non-shedding cattle. Super-shedders exhibited higher bacterial richness and diversity than non-shedders. Furthermore, seventy-two operational taxonomic units, mostly belonging to Firmicutes and Bacteroidetes phyla, were identified showing differential abundance between these two groups of cattle. The operational taxonomic unit affiliation provides new insight into bacterial populations that are present in feces arising from super-shedders of E. coli O157:H7. PMID:24858731

  8. Impedance based detection of pathogenic E. coli O157:H7 using a ferrocene-antimicrobial peptide modified biosensor.

    PubMed

    Li, Yongxin; Afrasiabi, Rouzbeh; Fathi, Farkhondeh; Wang, Nan; Xiang, Cuili; Love, Ryan; She, Zhe; Kraatz, Heinz-Bernhard

    2014-08-15

    Escherichia coli O157:H7 can cause life-threatening gastrointestinal diseases and has been a severe public health problem worldwide in recent years. A novel biosensor for the detection of E. coli O157:H7 is described here using a film composed of ferrocene-peptide conjugates, in which the antimicrobial peptide magainin I has been incorporated as the biorecognition element. Electrochemical impedance spectroscopy was employed to investigate the surface characteristics of the newly developed biosensor and to monitor the interactions between the peptide film and the pathogenic bacteria. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to confirm the immobilization of ferrocene-conjugate onto the gold surface. Non-pathogenic E. coli K12, Staphylococcus epidermidis and Bacillus subtilis were used in this study to evaluate the selectivity of the proposed biosensor. The results have shown the order of the preferential selectivity of the method is E. coli O157:H7>non-pathogenic E. coli>gram positive species. The detection of E. coli O157:H7 with a sensitivity of 10(3)cfu/mL is enabled by the biosensor. The experimental conditions have been optimized and the plot of changes of charge transfer resistance (ΔRCT) and the logarithm of the cell concentration of E. coli O157:H7 shows a linear correlation in the range of 10(3)-10(7)cfu/mL with a correlation coefficient of 0.983. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Detection of virulent Escherichia coli O157 strains using multiplex PCR and single base sequencing for SNP characterization.

    PubMed

    Haugum, K; Brandal, L T; Løbersli, I; Kapperud, G; Lindstedt, B-A

    2011-06-01

    To compare 167 Norwegian human and nonhuman Escherichia coli O157:H7/NM (nonmotile) isolates with respect to an A/T single nucleotide polymorphism (SNP) in the tir gene and to detect specific SNPs that differentiate STEC O157 into distinct virulence clades (1-3 and 8). We developed a multiplex PCR followed by single base sequencing for detection of the SNPs, and examined the association among SNP genotype, virulence profile (stx and eae status), multilocus variable number of tandem repeats analysis (MLVA) profile and clinical outcome. We found an over-representation of the T allele among human strains compared to nonhuman strains, including 5/6 haemolytic-uraemic syndrome cases. Fourteen strains belonged to clade 8, followed by two clade 2 strains. No clade 1 nor 3 isolates were observed. stx1 in combination with either stx2(EDL933) or stx2c were frequently observed among human strains, whereas stx2c was dominating in nonhuman strains. MLVA indicated that only single cases or small outbreaks with E. coli O157 have been observed in Norway through the years 1993-2008. We observed that the tir-255 A/T SNP and the stx status were different between human and nonhuman O157 strains. No major outbreaks were observed, and only a few strains were differentiated into the virulence clades 2 and 8. The detection of virulence clade-specific SNPs enables the rapid designation of virulent E. coli O157 strains, especially in outbreak situations. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  10. Effect of Sand and Sawdust Bedding Materials on the Fecal Prevalence of Escherichia coli O157:H7 in Dairy Cows

    PubMed Central

    LeJeune, Jeffrey T.; Kauffman, Michael D.

    2005-01-01

    Farm management practices that reduce the prevalence of food-borne pathogens in live animals are predicted to enhance food safety. To ascertain the potential role of livestock bedding in the ecology and epidemiology of Escherichia coli O157:H7 on farms, the survival of this pathogen in used-sand and used-sawdust dairy cow bedding was determined. Additionally, a longitudinal study of mature dairy cattle housed on 20 commercial dairy farms was conducted to compare the prevalence of E. coli O157:H7 in cattle bedded on sand to that in cattle bedded on sawdust. E. coli O157:H7 persisted at higher concentrations in used-sawdust bedding than in used-sand bedding. The overall average herd level prevalence (3.1 versus 1.4%) and the number of sample days yielding any tests of feces positive for E. coli O157:H7 (22 of 60 days versus 13 of 60 days) were higher in sawdust-bedded herds. The choice of bedding material used to house mature dairy cows may impact the prevalence of E. coli O157:H7 on dairy farms. PMID:15640205

  11. Short communication: Behavior of different Shiga toxin-producing Escherichia coli serotypes (O26:H11, O103:H2, O145:H28, O157:H7) during the manufacture, ripening, and storage of a white mold cheese.

    PubMed

    Miszczycha, S D; Bel, N; Gay-Perret, P; Michel, V; Montel, M C; Sergentet-Thevenot, D

    2016-07-01

    Ruminants are healthy carriers of Shiga toxin-producing Escherichia coli (STEC). If good hygienic and agricultural practices at the farm level, especially during the milking process, are not adequately followed, milk and dairy products made with raw milk could become contaminated. Sporadic cases and rare food outbreaks have been linked with dairy products. Consequently, understanding STEC behavior in cheeses would help to evaluate risks for human health. The behavior of 4 different STEC strains belonging to the serotypes O26:H11, O103:H2, O145:H28, and O157:H7 were monitored during the manufacture, ripening, and storage of a white mold soft cheese. These strains, originating from dairy products, were inoculated individually in raw milk from cow at 10(2) cfu/mL. During the first 24 to 36h of the manufacturing stage, the STEC level increased by 2 to 3 log10 cfu/g. Over the course of the ripening stage, the concentration of the non-O157 STEC remained relatively constant, whereas a decrease of the E. coli O157:H7 concentration was observed. During the storage stage, the level of the different non-O157 STEC strains decreased slowly in the core and in the rind of cheeses. The non-O157 STEC level reached between 3.1 and 4.1 log10 cfu/g at d 56. Interestingly, the concentration of the E. coli O157:H7 strain decreased dramatically: the strains remained detectable only after enrichment. During ripening and storage, STEC levels were generally higher in rinds than in cheese cores. In contrast to what was seen in cheese cores, the E. coli O157:H7 strain remained enumerable in rinds during these steps. These results highlight that STEC can grow during the manufacture and survive during the ripening and storage of a white mold soft cheese. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. DNA fingerprinting of Shiga-toxin producing Escherichia coli O157 based on Multiple-Locus Variable-Number Tandem-Repeats Analysis (MLVA)

    PubMed Central

    Lindstedt, Bjørn-Arne; Heir, Even; Gjernes, Elisabet; Vardund, Traute; Kapperud, Georg

    2003-01-01

    Background The ability to react early to possible outbreaks of Escherichia coli O157:H7 and to trace possible sources relies on the availability of highly discriminatory and reliable techniques. The development of methods that are fast and has the potential for complete automation is needed for this important pathogen. Methods In all 73 isolates of shiga-toxin producing E. coli O157 (STEC) were used in this study. The two available fully sequenced STEC genomes were scanned for tandem repeated stretches of DNA, which were evaluated as polymorphic markers for isolate identification. Results The 73 E. coli isolates displayed 47 distinct patterns and the MLVA assay was capable of high discrimination between the E. coli O157 strains. The assay was fast and all the steps can be automated. Conclusion The findings demonstrate a novel high discriminatory molecular typing method for the important pathogen E. coli O157 that is fast, robust and offers many advantages compared to current methods. PMID:14664722

  13. Advances in Molecular Serotyping and Subtyping of Escherichia coli.

    PubMed

    Fratamico, Pina M; DebRoy, Chitrita; Liu, Yanhong; Needleman, David S; Baranzoni, Gian Marco; Feng, Peter

    2016-01-01

    Escherichia coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and H- serotyping for differentiating and characterizing E. coli have been used for many years; however, these methods are generally time consuming and not always accurate. Advances in next generation sequencing technologies have made it possible to develop genetic-based subtyping and molecular serotyping methods for E. coli, which are more discriminatory compared to phenotypic typing methods. Furthermore, whole genome sequencing (WGS) of E. coli is replacing established subtyping methods such as pulsed-field gel electrophoresis, providing a major advancement in the ability to investigate food-borne disease outbreaks and for trace-back to sources. A variety of sequence analysis tools and bioinformatic pipelines are being developed to analyze the vast amount of data generated by WGS and to obtain specific information such as O- and H-group determination and the presence of virulence genes and other genetic markers.

  14. Feces of feedlot cattle contain a diversity of bacteriophages that lyse non-O157 Shiga toxin-producing Escherichia coli.

    PubMed

    Wang, Jiaying; Niu, Yan D; Chen, Jinding; Anany, Hany; Ackermann, Hans-W; Johnson, Roger P; Ateba, Collins N; Stanford, Kim; McAllister, Tim A

    2015-07-01

    This study aimed to isolate and characterize bacteriophages that lyse non-O157 Shiga toxin-producing Escherichia coli (STEC) from cattle feces. Of 37 non-O157 STEC-infecting phages isolated, those targeting O26 (AXO26A, AYO26A, AYO26B), O103 (AXO103A, AYO103A), O111 (AXO111A, AYO111A), O121 (AXO121A, AXO121B), and O145 (AYO145A, AYO145B) were further characterized. Transmission electron microscopy showed that the 11 isolates belonged to 3 families and 6 genera: the families Myoviridae (types rV5, T4, ViI, O1), Siphoviridae (type T5), and Podoviridae (type T7). Genome size of the phages as determined by pulsed-field gel electrophoresis ranged from 38 to 177 kb. Excluding phages AXO26A, AYO103A, AYO145A, and AYO145B, all other phages were capable of lysing more than 1 clinically important strain from serogroups of O26, O91, O103, O111, O113, O121, and O128, but none exhibited infectivity across all serogroups. Moreover, phages AYO26A, AXO121A, and AXO121B were also able to lyse 4 common phage types of STEC O157:H7. Our findings show that a diversity of non-O157 STEC-infecting phages are harbored in bovine feces. Phages AYO26A, AYO26B, AXO103A, AXO111A, AYO111A, AXO121A, and AXO121B exhibited a broad host range against a number of serogroups of STEC and have potential for the biocontrol of STEC in the environment.

  15. Transmission of Escherichia coli O157:H7 to internal tissues and its survival on flowering heads of wheat.

    PubMed

    Martinez, Bismarck; Stratton, Jayne; Bianchini, Andréia; Wegulo, Stephen; Weaver, Glen

    2015-03-01

    Escherichia coli O157:H7 is a human pathogen that can cause bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. E. coli O157:H7 illnesses are mainly associated with undercooked beef; however, in recent years, outbreaks have been linked to fresh produce, such as spinach, lettuce, and sprouts. In 2009, flour was implicated as the contamination source in an outbreak involving consumption of raw cookie dough that resulted in 77 illnesses. The objectives of this research were to determine (i) whether E. coli O157:H7 could be translocated into the internal tissues of wheat (Triticum aestivum) seedlings from contaminated seed, soil, or irrigation water and (ii) whether the bacterium could survive on flowering wheat heads. The levels of contamination of kanamycin-resistant E. coli O157:H7 strains in seed, soil, and irrigation water were 6.88 log CFU/g, 6.60 log CFU/g, and 6.76 log CFU/ml, respectively. One hundred plants per treatment were sown in pot trays with 50 g of autoclaved soil or purposely contaminated soil, watered every day with 5 ml of water, and harvested 9 days postinoculation. In a fourth experiment, flowering wheat heads were spray inoculated with water containing 4.19 log CFU/ml E. coli O157:H7 and analyzed for survival after 15 days, near the harvest period. To detect low levels of internalization, enrichment procedures were performed and Biotecon real-time PCR detection assays were used to determine the presence of E. coli O157:H7 in the wheat, using a Roche Applied Science LightCycler 2.0 instrument. The results showed that internalization was possible using contaminated seed, soil, and irrigation water in wheat seedlings, with internalization rates of 2, 5, and 10%, respectively. Even though the rates were low, to our knowledge this is the first study to demonstrate the ability of this strain to reach the phylloplane in wheat. In the head contamination experiment, all samples tested positive, showing the ability of E. coli O157:H7 to

  16. Inactivation of stressed Escherichia coli O157:H7 cells on the surfaces of rocket salad leaves by chlorine and peroxyacetic acid.

    PubMed

    Al-Nabulsi, Anas A; Osaili, Tareq M; Obaidat, Heba M; Shaker, Reyad R; Awaisheh, Saddam S; Holley, Richard A

    2014-01-01

    Because Escherichia coli O157:H7 has been frequently associated with many foodborne outbreaks caused by consumption of leafy greens (lettuce, spinach, and celery), this study investigated the ability of deionized water, chlorine, and peroxyacetic acid to detach or inactivate stressed and unstressed cells of E. coli O157:H7 contaminating the surfaces of rocket salad leaves. E. coli O157:H7 cells stressed by acid, cold, starvation, or NaCl exposure, as well as unstressed cells, were inoculated on the surfaces of rocket salad leaves at 4°C. The effectiveness of two sanitizers (200 ppm of chlorine and 80 ppm of peroxyacetic acid) and deionized water for decontaminating the leaves treated with stressed and unstressed E. coli O157:H7 were evaluated during storage at 10 or 25°C for 0.5, 1, 3, and 7 days. It was found that washing with 80 ppm of peroxyacetic acid was more effective and reduced unstressed and stressed cells of E. coli O157:H7 by about 1 log CFU per leaf on the leaves. There was no apparent difference in the ability of stressed and unstressed cells to survive surface disinfection with the tested agents. Treatments to reduce viable E. coli O157:H7 cells on rocket leaves stored at 25°C were more effective than when used on those stored at 10°C. Washing with peroxyacetic acid or chlorine solution did not ensure the safety of rocket leaves, but such treatments could reduce the likelihood of water-mediated transfer of E. coli O157:H7 during washing and subsequent processing.

  17. Variable efficacy of a vaccine and direct-fed microbial for controlling Escherichia coli O157:H7 in feces and on hides of feedlot cattle.

    PubMed

    Stanford, Kim; Hannon, Sherry; Booker, Calvin W; Jim, G Kee

    2014-05-01

    To evaluate the efficacy of a type-III secreted proteins vaccine and a Lactobacillus-acidophilus-based direct-fed microbial (DFM) for controlling Escherichia coli O157:H7, cattle (n=864) were allocated to the following groups: DFM, finishing diets containing 10(9) colony-forming units (CFU)/animal/day L. acidophilus and Propionibacterium freudenreichii; VAC, finishing diets and 2 mL intramuscular injection of vaccine at allocation and 28 days later; or CON, finishing diets only. Cattle within replicates were stratified by initial levels of E. coli O157:H7 and randomized to experimental groups, with 30 pens allocated on June 15, 2011 (AS1), 18 pens allocated on June 28, 2011 (AS2), and 18 cattle per pen. Rectal fecal samples and perineal swabs were collected at 28-day intervals until shipment to slaughter (103-145 days on trial). Numbers of cattle with enumerable E. coli O157:H7 (≥1.6 CFU/g feces) were reduced in AS1 and AS2 by VAC (p=0.008), although interventions had no impact on numbers of E. coli O157:H7 shed. For AS1, VAC reduced prevalence of E. coli O157:H7 in feces (p=0.03) and perineal swabs (p=0.04) in the feeding period but not at shipment to slaughter. For AS2, prevalence of E. coli O157:H7 was not reduced in either feces or perineal swabs by VAC at any time. For AS1, DFM reduced prevalence of E. coli O157:H7 in perineal swabs (p=0.01) during the feeding period. For AS2, DFM increased E. coli O157:H7 detection in feces (p=0.03) and perineal swabs (p=0.01) at shipment to slaughter. Seventy-five percent of AS1 E. coli O157:H7 isolates had only stx1, while 87% of AS2 isolates had stx1 and stx2 genes. Of the two interventions, VAC shows the most potential for pre-harvest control of E. coli O157:H7, but due to variable efficacy of both DFM and VAC, additional product development is necessary to ensure more consistent pre-harvest control of E. coli O157:H7.

  18. Effect of rumen protozoa on Escherichia coli O157:H7 in the rumen and feces of specifically faunated sheep.

    PubMed

    Stanford, K; Bach, S J; Stephens, T P; McAllister, T A

    2010-12-01

    The effects of rumen protozoal populations on ruminal populations and fecal shedding of Escherichia coli O157:H7 were evaluated by using specifically faunated sheep. Nine fauna-free sheep (three animals per treatment) were inoculated with Dasytricha spp. (DAS sheep); with mixed population A (PopA) comprising Entodinium spp., Isotricha spp., Diplodinium spp., and Polyplastron spp.; or with mixed population B (PopB) comprising Entodinium spp., Isotricha spp., Dasytricha spp., and Epidinium spp.; six sheep were maintained fauna-free (FF sheep) to serve as controls. Sheep were fed barley silage-based diets, and treatment groups were housed in isolated rooms. Sheep were inoculated orally with 10(10) CFU of a four-strain mixture of nalidixic acid-resistant E. coli O157:H7. Samples of ruminal fluid and feces were collected over 77 days. Polyplastron spp. were detected in only one sheep in PopA, and Dasytricha spp. were detected only once within the PopB cohort. Sheep in the DAS group were 2.03 times more likely (P < 0.001) to shed E. coli O157:H7 than were those in the other three treatments, whereas the PopB sheep were less likely (0.65; P < 0.05) to shed this bacterium. The likelihood of harboring ruminal E. coli O157:H7 also tended (P = 0.06) to be higher in DAS and was lower (P < 0.01) in FF than in other cohorts. Possibly, Dasytricha spp. had a hosting effect, and Epidinium spp. had a predatory relationship, with E. coli O157:H7. Additional study into predator-prey and hosting relationships among rumen protozoa and E. coli O157:H7 is warranted.

  19. Effect of spinach cultivar and bacterial adherence factors on survival of Escherichia coli O157:H7 on spinach leaves.

    PubMed

    Macarisin, Dumitru; Patel, Jitendra; Bauchan, Gary; Giron, Jorge A; Ravishankar, Sadhana

    2013-11-01

    Similar to phytopathogens, human bacterial pathogens have been shown to colonize the plant phylloplane. In addition to environmental factors, such as temperature, UV, relative humidity, etc., the plant cultivar and, specifically, the leaf blade morphological characteristics may affect the persistence of enteropathogens on leafy greens. This study was conducted to evaluate the effect of cultivar-dependent leaf topography and the role of strain phenotypic characteristics on Escherichia coli O157:H7 persistence on organic spinach. Spinach cultivars Emilia, Lazio, Space, and Waitiki were experimentally inoculated with the foodborne E. coli O157:H7 isolate EDL933 and its isogenic mutants deficient in cellulose, curli, or both curli and cellulose production. Leaves of 6-week-old plants were inoculated with 6.5 log CFU per leaf in a biosafety level 2 growth chamber. At 0, 1, 7, and 14 days, E. coli O157:H7 populations were determined by plating on selective medium and verified by laser scanning confocal microscopy. Leaf morphology (blade roughness and stoma density) was evaluated by low-temperature and variable-pressure scanning electron microscopy. E. coli O157:H7 persistence on spinach was significantly affected by cultivar and strain phenotypic characteristics, specifically, the expression of curli. Leaf blade roughness and stoma density influenced the persistence of E. coli O157:H7 on spinach. Cultivar Waitiki, which had the greatest leaf roughness, supported significantly higher E. coli O157:H7 populations than the other cultivars. These two morphological characteristics of spinach cultivars should be taken into consideration in developing intervention strategies to enhance the microbial safety of leafy greens.

  20. Classification of non-O157 shiga toxin-producing escherichia coli(STEC) serotypes with hyperspectral microscope imaging

    USDA-ARS?s Scientific Manuscript database

    Non-O157 Shiga toxin-producing Escherichia coli (STEC) strains such as O26, O45, O103, O111, O121 and O145 are recognized as serious outbreak to cause human illness due to their toxicity. A conventional microbiological method for cell counting is laborious and needs long time for the results. Since ...

  1. Naturally resident and exogenously applied T4-like and T5-like bacteriophages can reduce Escherichia coli O157:H7 levels in sheep guts

    PubMed Central

    Raya, Raul R; Oot, Rebecca A; Moore-Maley, Ben; Wieland, Serena; Callaway, Todd R; Kutter, Elizabeth M

    2011-01-01

    In preparing sheep for an in vivo Escherichia coli O157:H7 eradication trial, we found that 20/39 members of a single flock were naturally colonized by O157:H7-infecting phages. Characterization showed these were all one phage type (subsequently named CEV2) infecting 15/16 O157:H7, 7/72 ECOR and common lab strains. Further characterization by PFGE (genome∼120 kb), restriction enzyme digest (DNA appears unmodified), receptor studies (FhuA but not TonB is required for infection) and sequencing (>95% nucleotide identity) showed it is a close relative of the classically studied coliphage T5. Unlike T5, CEV2 infects O157:H7 in vitro, both aerobically and anaerobically, rapidly adsorbing and killing, but resistant mutants regrew within 24 h. When used together with T4-like CEV1 (MOI ∼2 per phage), bacterial killing was longer lasting. CEV2 did not reproduce when co-infecting the same cell as CEV1, presumably succumbing to CEV1's ability to shut off transcription of cytosine-containing DNA. In vivo sheep trials to remove resident O157:H7 showed that a cocktail of CEV2 and CEV1 (∼1011 total PFU) applied once orally was more effective (>99.9% reduction) than CEV1 alone (∼99%) compared to the untreated phage-free control. Those sheep naturally carrying CEV2, receiving no additional phage treatment, had the lowest O157:H7 levels (∼99.99% reduction). These data suggest that phage cocktails are more effective than individual phage in removing O157:H7 that have taken residence if the phage work in concert with one another and that naturally resident O157:H7-infecting phages may prevent O157:H7 gut colonization and be one explanation for the transient O157:H7 colonization in ruminants. PMID:21687531

  2. Stochastic simulation model comparing distributions of STEC O157 faecal shedding prevalence between cattle vaccinated with type III secreted protein vaccines and non-vaccinated cattle.

    PubMed

    Vogstad, A R; Moxley, R A; Erickson, G E; Klopfenstein, T J; Smith, D R

    2014-06-01

    Pens of cattle with high Escherichia coli O157:H7 (STEC O157) prevalence at harvest may present a greater risk to food safety than pens of lower prevalence. Vaccination of live cattle against STEC O157 has been proposed as an approach to reduce STEC O157 prevalence in live cattle. Our objective was to create a stochastic simulation model to evaluate the effectiveness of pre-harvest interventions. We used the model to compare STEC O157 prevalence distributions for summer- and winter-fed cattle to summer-fed cattle immunized with a type III secreted protein (TTSP) vaccine. Model inputs were an estimate of vaccine efficacy, observed frequency distributions for number of animals within a pen, and pen-level faecal shedding prevalence for summer and winter. Uncertainty about vaccine efficacy was simulated using a log-normal distribution (mean = 58%, SE = 0.14). Model outputs were distributions of STEC O157 faecal pen prevalence of summer-fed cattle unvaccinated and vaccinated, and winter-fed cattle unvaccinated. The simulation was performed 5000 times. Summer faecal prevalence ranged from 0% to 80% (average = 30%). Thirty-six per cent of summer-fed pens had STEC O157 prevalence >40%. Winter faecal prevalence ranged from 0% to 60% (average = 10%). Seven per cent of winter-fed pens had STEC O157 prevalence >40%. Faecal prevalence for summer-fed pens vaccinated with a 58% efficacious vaccine product ranged from 0% to 52% (average = 13%). Less than one per cent of vaccinated pens had STEC O157 prevalence >40%. In this simulation, vaccination mitigated the risk of STEC O157 faecal shedding to levels comparable to winter, with the major effects being reduced average shedding prevalence, reduced variability in prevalence distribution, and a reduction in the occurrence of the highest prevalence pens. Food safety decision-makers may find this modelling approach useful for evaluating the value of pre-harvest interventions. © 2013 Blackwell Verlag GmbH.

  3. The impact of the bovine faecal microbiome on Escherichia coli O157:H7 prevalence and enumeration in naturally infected cattle.

    PubMed

    Kim, M; Kuehn, L A; Bono, J L; Berry, E D; Kalchayanand, N; Freetly, H C; Benson, A K; Wells, J E

    2017-10-01

    The objective of this study was to determine if the faecal microbiome has an association with Escherichia coli O157:H7 prevalence and enumeration. Pyrosequencing analysis of faecal microbiome was performed from feedlot cattle fed one of three diets: (i) 94 heifers fed low concentrate (LC) diet, (ii) 142 steers fed moderate concentrate (MC) diet, and (iii) 132 steers fed high concentrate (HC) diet. A total of 322 585 OTUs were calculated from 2,411,122 high-quality sequences obtained from 368 faecal samples. In the LC diet group, OTUs assigned to the orders Clostridiales and RF39 (placed within the class Mollicutes) were positively correlated with both E. coli O157:H7 prevalence and enumeration. In the MC diet group, OTUs assigned to Prevotella copri were positively correlated with both E. coli O157:H7 prevalence and enumeration, whereas OTUs assigned to Prevotella stercorea were negatively correlated with both E. coli O157:H7 prevalence and enumeration. In both the MC diet group and the HC diet group, OTUs assigned to taxa placed within Clostridiales were both positively and negatively correlated with both E. coli O157:H7 prevalence and enumeration. However, all correlations were weak. In both the MC diet group and the HC diet group, stepwise linear regression through backward elimination analyses indicated that these OTUs were significantly correlated (P < 0·001) with prevalence or enumeration, explaining as much as 50% of variability in E. coli O157:H7 prevalence or enumeration. Individual colonic bacterial species have little impact on E. coli O157:H7 shedding but collectively groups of bacteria were strongly associated with pathogen shedding. Bacterial groups in the bovine colon may impact faecal shedding of the zoonotic pathogen E. coli O157:H7, and manipulation of the intestinal microbiota to alter these bacteria may reduce shedding of this pathogen and foodborne illnesses. Published 2017. This article is a U.S. Government work and is in the public

  4. The Escherichia coli O157:H7 cattle immuno-proteome includes outer membrane protein A (OmpA), a modulator of adherence to bovine recto-anal junction squamous epithelial (RSE) cells

    PubMed Central

    Kudva, Indira T.; Krastins, Bryan; Torres, Alfredo G.; Griffin, Robert W.; Sheng, Haiqing; Sarracino, David A.; Hovde, Carolyn J.; Calderwood, Stephen B.; John, Manohar

    2015-01-01

    SUMMARY Building on previous studies, we defined the repertoire of proteins comprising the immuno-proteome of E. coli O157:H7 (O157) cultured in DMEM supplemented with norepinephrine (NE; O157 immuno-proteome), a β-adrenergic hormone that regulates E. coli O157 gene expression in the gastrointestinal tract, using a variation of a novel proteomics-based platform proteome mining tool for antigen discovery, called Proteomics-based Expression Library Screening (PELS; Kudva et al., 2006). The E. coli O157 immuno-proteome (O157-IP) comprised 91 proteins, and included those identified previously using PELS, and also proteins comprising DMEM- and bovine rumen fluid- proteomes. Outer membrane protein A (OmpA), a common component of the above proteomes, and reportedly a contributor to E. coli O157 adherence to cultured Hep-2 epithelial cells, was interestingly found to be a modulator rather than a contributor to E. coli O157 adherence to bovine recto-anal junction squamous epithelial (RSE) cells. Our results point to a role for yet to be identified members of the O157-IP in E. coli O157 adherence to RSE-cells, and additionally implicate a possible role for the OmpA regulator, TdcA, in the expression of such adhesins. Our observations have implications for development of efficacious vaccines for preventing E. coli O157 colonization of the bovine gastrointestinal tract. PMID:25643951

  5. An outbreak of Vero cytotoxin producing Escherichia coli O157 infection associated with takeaway sandwiches.

    PubMed

    McDonnell, R J; Rampling, A; Crook, S; Cockcroft, P M; Wilshaw, G A; Cheasty, T; Stuart, J

    1997-12-12

    An outbreak of food poisoning due to Escherichia coli O157 phage type 2 Vero cytotoxin 2 affected 26 people in southern counties of England in May and June 1995. The organism was isolated from faecal specimens from 23 patients, 16 of whom lived in Dorset and seven in Hampshire. Isolates were indistinguishable by phage typing, Vero cytotoxin gene typing, restriction fragment length polymorphism, and pulsed field gel electrophoresis. Three associated cases, linked epidemiologically to the outbreak, were confirmed serologically by detection of antibodies to E. coli O157 lipopolysaccharide. Twenty-two of the 26 patients were adults: four were admitted to hospital with haemorrhagic colitis. Four cases were children: two were admitted to hospital with haemolytic uraemic syndrome (HUS). There were no deaths. Although E. coli O157 was not isolated from any food samples, illness was associated with having eaten cold meats in sandwiches bought from two sandwich producers, in Weymouth and in Portsmouth. Both shops were supplied by the same wholesaler, who kept no records and obtained cooked meats from several sources in packs that did not carry adequate identification marks. It was, therefore, impossible to trace back to the original producer or to investigate further to determine the origin of contamination with E. coli O157. To protect the public health it is essential that all wholesale packs of ready-to-eat food carry date codes and the producer's identification mark. Detailed record keeping should be part of hazard analysis critical control point (HACCP) systems and should be maintained throughout the chain of distribution from the producer to retail outlets.

  6. Evaluation of the Effects of SDIA, a LUXR Homologue, on Adherence and Motility of Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Quorum-sensing (QS) signaling pathways are important regulatory networks for controlling the expression of genes promoting adherence of Enterohemorrhagic Escherichia coli (EHEC) O157:H7 to epithelial cells. A recent study has shown that EHEC O157:H7 encodes a luxR homologue, called sdiA¸ which upon...

  7. Prevalence and antimicrobial susceptibility of Escherichia coli O157:H7 in vegetables sold in the Amathole District, Eastern Cape Province of South Africa.

    PubMed

    Abong'o, B O; Momba, M N B; Mwambakana, J N

    2008-04-01

    Fresh vegetables have been implicated in outbreaks of Escherichia coli O157:H7 in most parts of the world. Microbiological quality of vegetables used as recipes for salads is very crucial. Residents of the Amathole District in the Eastern Cape Province of South Africa consume salads frequently, although the microbial quality of recipe vegetables is questionable. The present study investigated the prevalence and antimicrobial susceptibility of E. coli O157:H7 isolated from selected vegetables sold within the Amathole District. One hundred eighty samples of the vegetables were analyzed. Strains of E. coli O157:H7 were isolated by enrichment culture and by immunomagnetic separation and identified by conventional and molecular techniques. In three settlements in this district, the mean counts of presumptive E. coli O157 for the vegetables ranged between 9 x 10(3) and 1.6 x 10(6) CFU/g for Fort Beaufort, 1.6 x 10(3) and 1.6 x 10(5) CFU/g for Mdantsane, and 1.3 x 10(3) and 4.1 x 10(4) CFU/g for Alice. Four (10.3%) of 39 vegetable samples were confirmed to carry E. coli O157:H7. Four representative E. coli O157:H7 isolates from these vegetables were susceptible to at least one of the eight antimicrobial agents tested against them. Even though the prevalence of E. coli O157:H7 was low and those isolated were susceptible to most of the antimicrobials, there remains a need for E. coli O157:H7 surveillance in vegetables used in salad recipes in urban and rural areas of South Africa.

  8. Effect of soil composition, temperature, indigenous microflora, and environmental conditions on the survival of Escherichia coli O157:H7.

    PubMed

    Vidovic, Sinisa; Block, Hushton C; Korber, Darren R

    2007-07-01

    The survival of Escherichia coli O157:H7 in replicate soil microcosms was quantified in 2 types of silty clay loam soil (high carbon and low carbon) under either sterile or nonsterile conditions. Microcosms were held at -21, 4, and 22 degrees C under constant soil moisture content. Differences existed (P < 0.05) in survival of E. coli O157:H7 in low- and high-carbon soil at all temperatures, indicating an important role of soil composition on the survival of this pathogen. The highest death rate of E. coli O157:H7 in sterile soil occurred in the low-carbon soil at 4 degrees C, whereas in nonsterile soil the highest death rate was observed in the low-carbon soil at 22 degrees C. These results suggest that the most lethal effects on E. coli O157:H7 in the sterile system occurred via the synergy of nutrient limitation and cold stress, whereas in the nonsterile system lethality was owing to inhibition by indigenous soil microorganisms and starvation. Results obtained from an in situ field survival experiment demonstrated the apparent sensitivity of E. coli O157:H7 cells to dehydration, information that may be used to reduce environmental spread of this pathogen as well as formulate appropriate waste management strategies.

  9. Foodborne transmission of sorbitol-fermenting Escherichia coli O157:[H7] via ground beef: an outbreak in northern France, 2011.

    PubMed

    King, L A; Loukiadis, E; Mariani-Kurkdjian, P; Haeghebaert, S; Weill, F-X; Baliere, C; Ganet, S; Gouali, M; Vaillant, V; Pihier, N; Callon, H; Novo, R; Gaillot, O; Thevenot-Sergentet, D; Bingen, E; Chaud, P; de Valk, H

    2014-12-01

    Sorbitol-fermenting Escherichia coli O157:[H7] is a particularly virulent clone of E. coli O157:H7 associated with a higher incidence of haemolytic uraemic syndrome and a higher case fatality rate. Many fundamental aspects of its epidemiology remain to be elucidated, including its reservoir and transmission routes and vehicles. We describe an outbreak of sorbitol-fermenting E. coli O157:[H7] that occurred in France in 2011. Eighteen cases of paediatric haemolytic uraemic syndrome with symptom onset between 6 June and 15 July 2011 were identified among children aged 6 months to 10 years residing in northern France. A strain of sorbitol-fermenting E. coli O157:[H7] stx2a eae was isolated from ten cases. Epidemiological, microbiological and trace-back investigations identified multiply-contaminated frozen ground beef products bought in a supermarket chain as the outbreak vehicle. Strains with three distinct pulsotypes that were isolated from patients, ground beef preparations recovered from patients' freezers and from stored production samples taken at the production plant were indistinguishable upon molecular comparison. This investigation documents microbiologically confirmed foodborne transmission of sorbitol-fermenting of E. coli O157 via beef and could additionally provide evidence of a reservoir in cattle for this pathogen. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  10. Esherichia coli serotype O157:H7 retention on solid surfaces and peroxide resistance is enhanced by dual-strain biofilm formation

    USDA-ARS?s Scientific Manuscript database

    In a previous study we showed that an Escherichia coli O157:H7 strain that was unable to form biofilm could persist in large numbers in dual-strain biofilms formed with an E. coli O-:H4 companion strain. In this study we tested additional companion strains for their ability to retain serotype O157:H...

  11. Genotypic characterization of Escherichia coli O157:H7 isolates from different sources in the North-West Province, South Africa, using enterobacterial repetitive intergenic consensus PCR analysis.

    PubMed

    Ateba, Collins Njie; Mbewe, Moses

    2014-05-30

    In many developing countries, proper hygiene is not strictly implemented when animals are slaughtered and meat products become contaminated. Contaminated meat may contain Escherichia coli (E. coli) O157:H7 that could cause diseases in humans if these food products are consumed undercooked. In the present study, a total of 94 confirmed E. coli O157:H7 isolates were subjected to the enterobacterial repetitive intergenic consensus (ERIC) polymerase chain reaction (PCR) typing to generate genetic fingerprints. The ERIC fragments were resolved by electrophoresis on 2% (w/v) agarose gels. The presence, absence and intensity of band data were obtained, exported to Microsoft Excel (Microsoft Office 2003) and used to generate a data matrix. The unweighted pair group method with arithmetic mean (UPGMA) and complete linkage algorithms were used to analyze the percentage of similarity and matrix data. Relationships between the various profiles and/or lanes were expressed as dendrograms. Data from groups of related lanes were compiled and reported on cluster tables. ERIC fragments ranged from one to 15 per isolate, and their sizes varied from 0.25 to 0.771 kb. A large proportion of the isolates produced an ERIC banding pattern with three duplets ranging in sizes from 0.408 to 0.628 kb. Eight major clusters (I-VIII) were identified. Overall, the remarkable similarities (72% to 91%) between the ERIC profiles for the isolate from animal species and their corresponding food products indicated some form of contamination, which may not exclude those at the level of the abattoirs. These results reveal that ERIC PCR analysis can be reliable in comparing the genetic profiles of E. coli O157:H7 from different sources in the North-West Province of South Africa.

  12. Occurrence, virulence genes and antibiotic resistance of Escherichia coli O157 isolated from raw bovine, caprine and ovine milk in Greece.

    PubMed

    Solomakos, Nikolaos; Govaris, Alexandros; Angelidis, Apostolos S; Pournaras, Spyros; Burriel, Angeliki Rothi; Kritas, Spyridon K; Papageorgiou, Demetrios K

    2009-12-01

    The examination of 2005 raw bovine (n = 950), caprine (n = 460) and ovine (n = 595) bulk milk samples collected throughout several regions in Greece for the presence of Escherichia coli serogroup O157 resulted in the isolation of 29 strains (1.4%) of which 21 were isolated from bovine (2.2%), 3 from caprine (0.7%) and 5 from ovine (0.8%) milk. Out of the 29 E. coli O157 isolates, only 12 (41.4%) could be classified as Shiga-toxigenic based on immunoassay and PCR results. All 12 Shiga-toxigenic E. coli serogroup O157 isolates belonged to the E. coli O157:H7 serotype. All except one of the 12 Shiga-toxin positive isolates were stx(2)-positive, five of which were also stx(1)-positive. The remaining isolate was positive only for the stx(1) gene. All stx-positive isolates (whether positive for stx(1), stx(2) or stx(1) and stx(2)) were also PCR-positive for the eae and ehxA genes. The remaining 17 E. coli O157 isolates (58.6%) were negative for the presence of the H7 flagellar gene by PCR, tested negative for Shiga-toxin production both by immunoassay and PCR, and among these, only four and three strains were PCR-positive for the eae and ehxA genes, respectively. All 29 E. coli O157 isolates displayed resistance to a wide range of antimicrobials, with the stx-positive isolates being, on average, resistant to a higher number of antibiotics than those which were stx-negative.

  13. Roles of individual radicals generated by a submerged dielectric barrier discharge plasma reactor during Escherichia coli O157:H7 inactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Muhammad Saiful Islam; Lee, Eun-Jung; Kim, Yun-Ji, E-mail: yunji@kfri.re.kr

    A submerged dielectric barrier discharge plasma reactor (underwater DBD) has been used on Escherichia coli O157:H7 (ATCC 35150). Plasma treatment was carried out using clean dry air gas to investigate the individual effects of the radicals produced by underwater DBD on an E. coli O157:H7 suspension (8.0 log CFU/ml). E. coli O157:H7 was reduced by 6.0 log CFU/ml for 2 min of underwater DBD plasma treatment. Optical Emission Spectra (OES) shows that OH and NO (α, β) radicals, generated by underwater DBD along with ozone gas. E. coli O157:H7 were reduced by 2.3 log CFU/ml for 10 min of underwatermore » DBD plasma treatment with the terephthalic acid (TA) OH radical scavenger solution, which is significantly lower (3.7 log CFU/ml) than the result obtained without using the OH radical scavenger. A maximum of 1.5 ppm of ozone gas was produced during the discharge of underwater DBD, and the obtained reduction difference in E.coli O157:H7 in presence and in absence of ozone gas was 1.68 log CFU/ml. The remainder of the 0.62 log CFU/ml reduction might be due to the effect of the NO (α, β) radicals or due to the combined effect of all the radicals produced by underwater DBD. A small amount of hydrogen peroxide was also generated but does not play any role in E. coli O157:H7 inactivation.« less

  14. Roles of individual radicals generated by a submerged dielectric barrier discharge plasma reactor during Escherichia coli O157:H7 inactivation

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Saiful Islam; Lee, Eun-Jung; Kim, Yun-Ji

    2015-10-01

    A submerged dielectric barrier discharge plasma reactor (underwater DBD) has been used on Escherichia coli O157:H7 (ATCC 35150). Plasma treatment was carried out using clean dry air gas to investigate the individual effects of the radicals produced by underwater DBD on an E. coli O157:H7 suspension (8.0 log CFU/ml). E. coli O157:H7 was reduced by 6.0 log CFU/ml for 2 min of underwater DBD plasma treatment. Optical Emission Spectra (OES) shows that OH and NO (α, β) radicals, generated by underwater DBD along with ozone gas. E. coli O157:H7 were reduced by 2.3 log CFU/ml for 10 min of underwater DBD plasma treatment with the terephthalic acid (TA) OH radical scavenger solution, which is significantly lower (3.7 log CFU/ml) than the result obtained without using the OH radical scavenger. A maximum of 1.5 ppm of ozone gas was produced during the discharge of underwater DBD, and the obtained reduction difference in E.coli O157:H7 in presence and in absence of ozone gas was 1.68 log CFU/ml. The remainder of the 0.62 log CFU/ml reduction might be due to the effect of the NO (α, β) radicals or due to the combined effect of all the radicals produced by underwater DBD. A small amount of hydrogen peroxide was also generated but does not play any role in E. coli O157:H7 inactivation.

  15. Draft Genome Sequence of Enterohemorrhagic Escherichia coli O157:H7 Strain MC2 Isolated from Cattle in France

    PubMed Central

    Auffret, Pauline; Segura, Audrey; Klopp, Christophe; Bouchez, Olivier; Kérourédan, Monique; Bibbal, Delphine; Brugère, Hubert; Forano, Evelyne

    2017-01-01

    ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) with serotype O157:H7 is a major foodborne pathogen. Here, we report the draft genome sequence of EHEC O157:H7 strain MC2 isolated from cattle in France. The assembly contains 5,400,376 bp that encoded 5,914 predicted genes (5,805 protein-encoding genes and 109 RNA genes). PMID:28983004

  16. Detection and determinants of Escherichia coli O157:H7 in Alberta feedlot pens immediately prior to slaughter

    PubMed Central

    Renter, David G.; Smith, David R.; King, Robin; Stilborn, Robert; Berg, Janice; Berezowski, John; McFall, Margaret

    2008-01-01

    Food safety risks due to Escherichia coli O157:H7 may be affected by variability in prevalence in or on live cattle at slaughter. Our objectives were to assess the prevalence and risk factors associated with E. coli O157:H7 in feedlot pens immediately prior to slaughter, and assess relationships among methods of monitoring the E. coli O157:H7 status of pre-harvest pens. We studied 84 pens containing a total of nearly 27 000 head of cattle in commercial feedlots in Alberta during 2003 and 2004. Sampling devices (ROPES) prepared from manila ropes were used to detect high prevalence pens. Forty of 84 pens (48%) were classified ROPES-positive. Within pens, fecal prevalence ranged between 0% to 80% (median = 20%) and the hide prevalence ranged between 0% and 30% (median = 0%). Pens that were ROPES-positive had a higher median prevalence for feces (40%) and for hides (3.8%) than those that were ROPES-negative (13.3% and 0%, respectively). The prevalence of E. coli O157:H7 in pens immediately prior to slaughter was found to be quite high or very low even within feedlots and seasons. Factors such as sampling month, temperature, precipitation, pen floor conditions, and water tank cleanliness were associated with E. coli O157:H7 outcome measures, although associated factors were not completely consistent among years and outcome measures. Fecal and hide prevalence are considered primary pre-harvest indicators of potential carcass contamination, but other methods such as ROPES that are associated with these outcomes may provide logistic advantages to efficiently classify pens of cattle as high or low risk to food safety. PMID:18505184

  17. Evaluation of Bacteriophage Application to Cattle in Lairage at Beef Processing Plants to Reduce Escherichia coli O157:H7 Prevalence on Hides and Carcasses.

    PubMed

    Arthur, Terrance M; Kalchayanand, Norasak; Agga, Getahun E; Wheeler, Tommy L; Koohmaraie, Mohammad

    2017-01-01

    Escherichia coli O157:H7 is a major food safety concern for the beef industry. Several studies have provided evidence that cattle hides are the main source of beef carcass contamination during processing and that reductions in the E. coli O157:H7 load on the hides of cattle entering processing facilities will lead to reductions in carcass contamination. Bacteriophages have been proposed as a novel preharvest antimicrobial intervention to reduce the levels of E. coli O157:H7 on cattle hides. The objective of this study was to evaluate a commercialized phage application administered in the lairage area of commercial beef processing plants for the ability to reduce E. coli O157:H7 contamination of cattle hides and carcasses. Cattle lots either received phage spray treatment (n = 289) or did not (n = 301), as they entered the lairage environments in two separate experiments at two different commercial beef processing plants. Hide and carcass samples were collected and analyzed for E. coli O157:H7 prevalence and concentration. Cattle hides receiving phage treatment had an E. coli O157:H7 prevalence of 51.8%, whereas untreated hides had a prevalence of 57.6%. For carcass samples, the E. coli O157 prevalence in treated and untreated samples was 17.1% and 17.6%, respectively. The results obtained from these experiments demonstrated that the treatment of cattle hides with bacteriophages before processing did not produce a significant reduction of E. coli O157:H7 on cattle hides or beef carcasses during processing.

  18. Escherichia coli serotype O157:H7 retention on solid surfaces and peroxide resistance is enhanced by dual-strain biofilm formation.

    PubMed

    Uhlich, Gaylen A; Rogers, Donna P; Mosier, Derek A

    2010-08-01

    In a previous study we showed that an Escherichia coli O157:H7 strain that was unable to form biofilm was retained in large numbers in dual-strain biofilms formed with an E. coli O-:H4 companion strain. In this study we tested additional companion strains for their ability to retain E. coli O157:H7 strain 0475s. Companion strains producing biofilm that withstood aggressive washes were able to significantly increase serotype O157:H7 retention. Dual-strain biofilms with certain companion strains retained higher percentages of strain 0475s, and that ability was independent of biofilm total cell numbers. Tests with additional non-biofilm-forming E. coli O157:H7 strains showed that enhancement by companion strains was not unique to strain 0475s. Experiments using an E. coli companion strain with deletions of various curli and cellulose genes indicated that dual-strain biofilm formation was dependent on companion strain properties. Strain 0475s was not able to generate biofilm or persist on plastic when grown in broth with a biofilm-forming companion and separated by a 0.2 microm porous membrane, indicating a requirement for intimate contact with the companion strain. When dual-strain biofilms and planktonic cells were challenged with 5% H(2)O(2), strain 0475 showed greater survival in biofilms with certain companion strains compared to the corresponding planktonic cells. The results of this study indicate that non-biofilm-forming E. coli O157:H7 strains are retained on solid surfaces associated with biofilms generated by companion strains. However, properties other than biofilm mass enable certain companion strains to retain greater numbers of E. coli O157:H7.

  19. FimH has a strain and host-cell type dependent role in adherence of E. coli O157:H7 super-shedder strains to host cells

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 (O157) are Shiga toxin-producing food-borne pathogens that are a significant threat to human health, causing severe illnesses including hemorrhagic uremic syndrome and kidney failure. Cattle are the major reservoirs of O157, with asymptomatic animals harboring the organism i...

  20. Intranasal immunization with novel EspA-Tir-M fusion protein induces protective immunity against enterohemorrhagic Escherichia coli O157:H7 challenge in mice.

    PubMed

    Lin, Ruqin; Zhu, Bo; Zhang, Yiduo; Bai, Yang; Zhi, Fachao; Long, Beiguo; Li, Yawen; Wu, Yuhua; Wu, Xianbo; Fan, Hongying

    2017-04-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and hemolytic uremic syndrome in humans. Due to the risks associated with antibiotic treatment against EHEC O157:H7 infection, vaccines represent a promising method for prevention of EHEC O157:H7 infection. Therefore, we constructed the novel bivalent antigen EspA-Tir-M as a candidate EHEC O157:H7 subunit vaccine. We then evaluated the immunogenicity of this novel EHEC O157:H7 subunit vaccine. Immune responses to the fusion protein administered by intranasal and subcutaneous routes were compared in mice. Results showed higher levels of specific mucosal and systemic antibody responses induced by intranasal as compared to subcutaneous immunization. Intranasal immunization enhanced the concentration of interleukin-4, interleukin-10, and interferon-γ, while subcutaneous immunization enhanced only the latter two. In addition, intranasal immunization protected against EHEC O157:H7 colonization and infection in mice at a rate of 90%.Histopathological analysis revealed that vaccination reduced colon damage, especially when administered intranasally. In contrast, subcutaneous immunization elicited a weak immune response and exhibited a low protection rate. These findings demonstrate that intranasal immunization with the fusion protein induces both humoral and cellular immune (Th1/Th2) responses in mice. The novel EspA-Tir-M novel fusion protein therefore represents a promising subunit vaccine against EHEC O157:H7 infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Use of acetic and citric acids to inhibit Escherichia coli O157:H7, Salmonella Typhimurium and Staphylococcus aureus in tabbouleh salad.

    PubMed

    Al-Rousan, Walid M; Olaimat, Amin N; Osaili, Tareq M; Al-Nabulsi, Anas A; Ajo, Radwan Y; Holley, Richard A

    2018-08-01

    The objective of the current study was to evaluate the antimicrobial action of different concentrations of acetic (0.3% and 0.4%) or citric (1% and 1.4%) acids and their combinations (1% citric acid plus 0.4% acetic acid and 1.4% citric acid plus 0.3% acetic acid) against Salmonella Typhimurium, Escherichia coli O157:H7 and Staphylococcus aureus in tabbouleh salad stored at 21, 10 and 4 °C. Acetic acid was more inhibitory toward S. Typhimurium and E. coli O157:H7 than citric acid at 21 °C; S. Typhimurium and E. coli O157:H7 cells were not detected in tabbouleh treated with 0.4% acetic acid after 5 and 7 days, respectively. The combined effect of acetic and citric acid was synergistic against S. Typhimurium, and E. coli O157:H7, but not against S. aureus. The combinations of acetic and citric acids reduced S. Typhimurium, and E. coli O157:H7 to below the detection levels after 2 and 3 days at 21 °C, respectively. However, these treatments significantly reduced S. aureus numbers compared to the control at tested temperatures by the end of storage. Acetic and citric acids have the potential to be used in tabbouleh salad to reduce the risk from S. Typhimurium, E. coli O157:H7 and S. aureus. Copyright © 2018. Published by Elsevier Ltd.

  2. Competition of Escherichia coli O157 with a drinking water bacterial community at low nutrient concentrations.

    PubMed

    Vital, Marius; Hammes, Frederik; Egli, Thomas

    2012-12-01

    In contrast to studies on (long-term) survival of enteric pathogens in the environment, investigations on the principles of their growth and competition with autochthonous aquatic bacteria are rare and unexplored. Hence, improved basic knowledge is crucial for an adequate risk assessment and for understanding (and avoiding) the spreading of waterborne diseases. Therefore, the pathogen Escherichia coli O157 was grown in competition with a drinking water bacterial community on natural assimilable organic carbon (AOC) originating from diluted wastewater, in both batch and continuous culture. Growth was monitored by flow cytometry enabling enumeration of total cell concentration as well as specific E. coli O157 detection using fluorescently-labelled antibodies. An enhanced competitive fitness of E. coli O157 with higher AOC concentrations, higher temperatures and increased dilution rates (continuous culture) was observed. A classical "opportunist" versus "gleaner" relationship, where E. coli O157 is the "opportunist", specialised for growth at high nutrient concentrations (μ(max): 0.87 h(-1) and K(s): 489 μg consumed DOC L(-1)), and the bacterial community is the "gleaner" adapted to nutrient-poor environments (μ(max): 0.33 h(-1) and K(s): 7.4 μg consumed DOC L(-1)) was found. The obtained competition results can be explained by the growth properties of the two competitors determined in pure cultures and it was possible to model many of the observed dynamics based on Monod kinetics. The study provides new insights into the principles governing competition of an enteric pathogen with autochthonous aquatic bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Relative nephroprotection during Escherichia coli O157:H7 infections: association with intravenous volume expansion.

    PubMed

    Ake, Julie A; Jelacic, Srdjan; Ciol, Marcia A; Watkins, Sandra L; Murray, Karen F; Christie, Dennis L; Klein, Eileen J; Tarr, Phillip I

    2005-06-01

    The hemolytic uremic syndrome (HUS) consists of hemolytic anemia, thrombocytopenia, and renal failure. HUS is often precipitated by gastrointestinal infection with Shiga toxin-producing Escherichia coli and is characterized by a variety of prothrombotic host abnormalities. In much of the world, E coli O157:H7 is the major cause of HUS. HUS can be categorized as either oligoanuric (which probably signifies acute tubular necrosis) or nonoligoanuric. Children with oligoanuric renal failure during HUS generally require dialysis, have more complicated courses, and are probably at increased risk for chronic sequelae than are children who experience nonoligoanuric HUS. Oligoanuric HUS should be avoided, if possible. The presentation to medical care of a child with definite or possible E coli O157:H7 infections but before HUS ensues affords a potential opportunity to ameliorate the course of the subsequent renal failure. However, it is not known whether events that occur early in E coli O157:H7 infections, particularly measures to expand circulating volume, affect the likelihood of experiencing oligoanuric HUS if renal failure develops. We attempted to assess whether pre-HUS interventions and events, especially the volume and sodium content of intravenous fluids administered early in illness, affect the risk for developing oligoanuric HUS after E coli O157:H7 infections. We performed a prospective cohort study of 29 children with HUS that was confirmed microbiologically to be caused by E coli O157:H7. Infected children were enrolled when they presented with acute bloody diarrhea or as contacts of patients who were known to be infected with E coli O157:H7, or if they had culture-confirmed infection, or if they presented with HUS. HUS was defined as hemolytic anemia (hematocrit <30%, with fragmented erythrocytes on peripheral-blood smear), thrombocytopenia (platelet count of <150000/mm3), and renal insufficiency (serum creatinine concentration that exceeded the upper limit

  4. Detection of E. coli O157:H7 from ground beef using Fourier transform infrared (FT-IR) spectroscopy and chemometrics.

    PubMed

    Davis, Reeta; Irudayaraj, Joseph; Reuhs, Bradley L; Mauer, Lisa J

    2010-08-01

    FT-IR spectroscopy methods for detection, differentiation, and quantification of E. coli O157:H7 strains separated from ground beef were developed. Filtration and immunomagnetic separation (IMS) were used to extract live and dead E. coli O157:H7 cells from contaminated ground beef prior to spectral acquisition. Spectra were analyzed using chemometric techniques in OPUS, TQ Analyst, and WinDAS software programs. Standard plate counts were used for development and validation of spectral analyses. The detection limit based on a selectivity value using the OPUS ident test was 10(5) CFU/g for both Filtration-FT-IR and IMS-FT-IR methods. Experiments using ground beef inoculated with fewer cells (10(1) to 10(2) CFU/g) reached the detection limit at 6 h incubation. Partial least squares (PLS) models with cross validation were used to establish relationships between plate counts and FT-IR spectra. Better PLS predictions were obtained for quantifying live E. coli O157:H7 strains (R(2)> or = 0.9955, RMSEE < or = 0.17, RPD > or = 14) and different ratios of live and dead E. coli O157:H7 cells (R(2)= 0.9945, RMSEE = 2.75, RPD = 13.43) from ground beef using Filtration-FT-IR than IMS-FT-IR methods. Discriminant analysis and canonical variate analysis (CVA) of the spectra differentiated various strains of E. coli O157:H7 from an apathogenic control strain. CVA also separated spectra of 100% dead cells separated from ground beef from spectra of 0.5% live cells in the presence of 99.5% dead cells of E. coli O157:H7. These combined separation and FT-IR methods could be useful for rapid detection and differentiation of pathogens in complex foods.

  5. New genetic lineage within the Siberian subtype of tick-borne encephalitis virus found in Western Siberia, Russia.

    PubMed

    Tkachev, Sergey E; Chicherina, Galina S; Golovljova, Irina; Belokopytova, Polina S; Tikunov, Artem Yu; Zadora, Oksana V; Glupov, Victor V; Tikunova, Nina V

    2017-12-01

    Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, is a causative agent of a severe neurological disease. There are three main TBEV subtypes: the European (TBEV-Eu), Far Eastern (TBEV-FE), and Siberian (TBEV-Sib). Currently, three lineages within TBEV-Sib have been recorded. In this study, the genetic and biological characteristics of a new original strain, TBEV-2871, isolated in the Novosibirsk province of Western Siberia, Russia were investigated. The strain has low neuroinvasiveness in mice. Phylogenetic analysis demonstrated that TBEV-2871 belongs to TBEV-Sib, but does not cluster with any of the TBEV-Sib lineages. The TBEV-2871 strain has 88-89% nucleotide sequence identity with the other TBEV-Sib strains, 84-86% nucleotide sequence identity with the TBEV-FE and TBEV-Eu subtypes and is genetically close to the subtype division border. The TBEV-2871 polyprotein sequence includes 43 unique amino acid substitutions, 30 of which are recorded at positions that are conserved among all TBEV subtypes. Strain TBEV-2871 and two similar but not identical isolates found in Kemerovo province, Western Siberia are separated into a new lineage tentatively named Obskaya after the name of Ob riber, in the vicinity of which the TBEV-2871 was first found. A molecular evolution investigation demonstrated that within TBEV-Sib, the Obskaya lineage likely separated 1535years ago, which is even earlier than the Baltic lineage. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Foodborne general outbreaks of Shiga toxin-producing Escherichia coli O157 in England and Wales 1992-2002: where are the risks?

    PubMed

    Gillespie, I A; O'Brien, S J; Adak, G K; Cheasty, T; Willshaw, G

    2005-10-01

    Between 1 January 1992 and 31 December 2002, Shiga toxin-producing Escherichia coli O157 (STEC O157) accounted for 44 of the 1645 foodborne general outbreaks of infectious intestinal disease reported to the Health Protection Agency Communicable Disease Surveillance Centre. These outbreaks, although rare, were characterized by severe infection, with 169 hospital admissions and five deaths reported. STEC O157 outbreaks were compared with other pathogens to identify factors associated with this pathogen. Single risk variable analysis and logistic regression were employed. Two distinct aetiologies were identified. Foodborne outbreaks of STEC O157 infection in England and Wales were independently associated with farms, which related to milk and milk products, and with red meats/meat products, which highlighted butchers' shops as a cause for concern. The introduction and adherence to effective control measures, based on the principles of hazard analysis, provide the best means of minimizing the risk of foodborne infection with this pathogen.

  7. Large outbreak of verocytotoxin-producing Escherichia coli O157 infection in visitors to a petting farm in South East England, 2009

    PubMed Central

    IHEKWEAZU, C.; CARROLL, K.; ADAK, B.; SMITH, G.; PRITCHARD, G. C.; GILLESPIE, I. A.; VERLANDER, N. Q.; HARVEY-VINCE, L.; REACHER, M.; EDEGHERE, O.; SULTAN, B.; COOPER, R.; MORGAN, G.; KINROSS, P. T. N.; BOXALL, N. S.; IVERSEN, A.; BICKLER, G.

    2012-01-01

    SUMMARY In the summer of 2009, an outbreak of verocytotoxigenic Escherichia coli O157 (VTEC O157) was identified in visitors to a large petting farm in South East England. The peak attack rate was 6/1000 visitors, and highest in those aged <2 years (16/1000). We conducted a case-control study with associated microbiological investigations, on human, animal and environmental samples. We identified 93 cases; 65 primary, 13 secondary and 15 asymptomatic. Cases were more likely to have visited a specific barn, stayed for prolonged periods and be infrequent farm visitors. The causative organism was identified as VTEC O157 PT21/28 with the same VNTR profile as that isolated in faecal specimens from farm animals and the physical environment, mostly in the same barn. Contact with farm livestock, especially ruminants, should be urgently reviewed at the earliest suspicion of a farm-related VTEC O157 outbreak and appropriate risk management procedures implemented without delay. PMID:22093751

  8. Large outbreak of verocytotoxin-producing Escherichia coli O157 infection in visitors to a petting farm in South East England, 2009.

    PubMed

    Ihekweazu, C; Carroll, K; Adak, B; Smith, G; Pritchard, G C; Gillespie, I A; Verlander, N Q; Harvey-Vince, L; Reacher, M; Edeghere, O; Sultan, B; Cooper, R; Morgan, G; Kinross, P T N; Boxall, N S; Iversen, A; Bickler, G

    2012-08-01

    In the summer of 2009, an outbreak of verocytotoxigenic Escherichia coli O157 (VTEC O157) was identified in visitors to a large petting farm in South East England. The peak attack rate was 6/1000 visitors, and highest in those aged <2 years (16/1000). We conducted a case-control study with associated microbiological investigations, on human, animal and environmental samples. We identified 93 cases; 65 primary, 13 secondary and 15 asymptomatic. Cases were more likely to have visited a specific barn, stayed for prolonged periods and be infrequent farm visitors. The causative organism was identified as VTEC O157 PT21/28 with the same VNTR profile as that isolated in faecal specimens from farm animals and the physical environment, mostly in the same barn. Contact with farm livestock, especially ruminants, should be urgently reviewed at the earliest suspicion of a farm-related VTEC O157 outbreak and appropriate risk management procedures implemented without delay.

  9. Growth and survival of uninjured and sublethally heat-injured Escherichia coli O157:H7 on beef extract medium as influenced by package atmosphere and storage temperature.

    PubMed

    Semanchek, J J; Golden, D A; Williams, R C

    1999-03-01

    The effect of atmospheric composition and storage temperature on growth and survival of uninjured and sublethally heat-injured Escherichia coli O157:H7, inoculated onto brain heart infusion agar containing 0.3% beef extract (BEM), was determined. BEM plates were packaged in barrier bags in air, 100% CO2, 100% N2, 20% CO2: 80% N2, and vacuum and were stored at 4, 10, and 37 degrees C for up to 20 days. Package atmosphere and inoculum status (i.e., uninjured or heat-injured) influenced (P < 0.01) growth and survival of E. coli O157:H7 stored at all test temperatures. Growth of heat-injured E. coli O157:H7 was slower (P < 0.01) than uninjured E. coli O157:H7 stored at 37 degrees C. At 37 degrees C, uninjured E. coli O157:H7 reached stationary phase growth earlier than heat-injured populations. Uninjured E. coli O157:H7 grew during 10 days of storage at 10 degrees C, while heat-injured populations declined during 20 days of storage at 10 degrees C. Uninjured E. coli O157:H7 stored at 10 degrees C reached stationary phase growth within approximately 10 days in all packaging atmospheres except CO2. Populations of uninjured and heat-injured E. coli O157:H7 declined throughout storage for 20 days at 4 degrees C. Survival of uninjured populations stored at 4 degrees C, as well as heat-injured populations stored at 4 and 10 degrees C, was enhanced in CO2 atmosphere. Survival of heat-injured E. coli O157:H7 at 4 and 10 degrees C was not different (P > 0.05). Uninjured and heat-injured E. coli O157:H7 are able to survive at low temperatures in the modified atmospheres used in this study.

  10. Interactions of the Hindgut Mucosa-Associated Microbiome with Its Host Regulate Shedding of Escherichia coli O157:H7 by Cattle.

    PubMed

    Wang, Ou; McAllister, Tim A; Plastow, Graham; Stanford, Kim; Selinger, Brent; Guan, Le Luo

    2018-01-01

    Cattle are the primary carrier of Escherichia coli O157:H7, a foodborne human pathogen, and those shedding >10 4 CFU/gram of feces of E. coli O157:H7 are defined as supershedders (SS). This study investigated the rectoanal junction (RAJ) mucosa-associated microbiota and its relationship with host gene expression in SS and in cattle from which E. coli O157:H7 was not detected (nonshedders [NS]), aiming to elucidate the mechanisms involved in supershedding. In total, 14 phyla, 66 families, and 101 genera of RAJ mucosa-associated bacteria were identified and Firmicutes (61.5 ± 7.5%), Bacteroidetes (27.9 ± 6.4%), and Proteobacteria (5.5 ± 2.1%) were the predominant phyla. Differential abundance analysis of operational taxonomic units (OTUs) identified 2 OTUs unique to SS which were members of Bacteroides and Clostridium and 7 OTUs unique to NS which were members of Coprococcus , Prevotella , Clostridium , and Paludibacter Differential abundance analysis of predicted microbial functions (using PICRUSt [phylogenetic investigation of communities by reconstruction of unobserved states]) revealed that 3 pathways had higher abundance (log 2 fold change, 0.10 to 0.23) whereas 12 pathways had lower abundance (log 2 fold change, -0.36 to -0.20) in SS. In addition, we identified significant correlations between expression of 19 differentially expressed genes and the relative abundance of predicted microbial functions, including nucleic acid polymerization and carbohydrate and amino acid metabolism. Our findings suggest that differences in RAJ microbiota at both the compositional and functional levels may be associated with E. coli O157:H7 supershedding and that certain microbial groups and microbial functions may influence RAJ physiology of SS by affecting host gene expression. IMPORTANCE Cattle with fecal E. coli O157:H7 at >10 4 CFU per gram of feces have been defined as the supershedders, and they are responsible for the most of the E. coli O157:H7 spread into farm

  11. Recovery of low-temperature stressed E. coli O157:H7 and its susceptibility to crystal violet, bile salt, sodium chloride and ethanol.

    PubMed

    Chou, C C; Cheng, S J

    2000-11-01

    This study was conducted to investigate the alteration of some characteristics of E. coli O157:H7 subjected to various periods of storage at -5, -18 and -28 degrees C. Results revealed that the low-temperature treatments increased the susceptibility of E. coli O157:H7 to crystal violet, bile salt, sodium chloride and ethanol. In general, the susceptibility of E. coli O157:H7 subjected to storage at -18 degrees C increased most significantly. The susceptibility of E. coli O157:H7 to the tested agents increased as the period of low-temperature storage extended, regardless of storage temperature. Among the various nitrogen and carbon sources tested, tryptone and soytone were the most effective nitrogen sources, while glucose and maltose were the most effective carbon sources for the growth of the low-temperature stressed cells. When growing the stressed E. coli O157:H7 in media containing the same nitrogen source or carbon source, their lag period increased as the time of frozen storage increased. It was also noted that in general, the recovery of the low-temperature stressed E. coli O157:H7 was highest on tryptic soy agar followed by Modified eosin methylene blue agar, while recovery on MaConkey sorbitol agar and Modified MaConkey sorbitol agar was lowest.

  12. Evaluation of a direct-fed microbial product effect on the prevalence and load of Escherichia coli O157:H7 in feedlot cattle.

    PubMed

    Arthur, Terrance M; Bosilevac, Joseph M; Kalchayanand, Norasak; Wells, James E; Shackelford, Steven D; Wheeler, Tommy L; Koohmaraie, Mohammad

    2010-02-01

    Direct-fed microbials (DFM) have been identified as potential preharvest interventions for the reduction of foodborne bacterial pathogens such as Escherichia coli O157:H7. This study evaluated the efficacy of a DFM consisting of Bacillus subtilis strain 166 as an antimicrobial intervention strategy for the reduction of prevalence and load of E. coli O157:H7 in feces and on hides of feedlot cattle. Cattle (n = 526) were divided among 16 feedlot pens. Half of the pens received the DFM, and the other half did not. Hide and fecal samples were collected from each animal on days 28, 63, and 84 of the feeding trial. Over the course of the 84-day feeding period, there were no significant differences observed between treatments for either hide or fecal prevalence of E. coli O157:H7, or for the percentage of animals that were shedding E. coli O157:H7 at high levels (> or =200 CFU/g) in their feces or harboring E. coli O157:H7 at high levels (> or =40 CFU/cm(2)) on their hides. In addition, there was no significant difference between the average daily gains for the treated and control groups, with both groups averaging 1.3 kg/day. We concluded that the DFM tested would not be an effective preharvest intervention against E. coli O157:H7.

  13. On the Transport of Viable but Non-Culturable (VBNC) E.coli O157:H7 in Soil and Groundwater

    NASA Astrophysics Data System (ADS)

    Kartz, C. R.; Kachanoski, G.; Dyck, M. F.

    2010-12-01

    The influence of the viable but non-culturable (VBNC) state on the expression of specific phenotypic traits of Enterohemorrhagic Escherichia coli O157:H7 as well as its transport behaviour in porous media has been examined in this study. E.coli O157:H7 is a human pathogen capable of entering a viable but non-culturable (VBNC) state following exposure to sublethal stress. In the VBNC state, E.coli O157:H7 is not detectable by standard culture techniques, yet is able to retain its virulence and ability to cause illness in humans. To date there is no in-depth information regarding the transport of VBNC E.coli species in soil or groundwater. Due to the public health risk, it becomes important to examine whether discrepancies exist between the transport behaviors of culturable and VBNC E.coli O157:H7 to help decide if current protocols for detecting this pathogen are accurate. This study identifies and contrasts transport-related properties of the two cell stages including hydrophobicity, extracellular polymeric substance (EPS) composition, and cell widths/lengths. Transport behaviors of the two cellular states are quantified and compared using column transport assays. Our results show that when E.coli O157:H7 cells enter into the VBNC state, there is an accompanied decrease in the hydrophobicity of the cells, shrinking of the cell profile from rod-shaped to coccoid, as well as a significant increase in tightly-bound surface proteins and sugars. Transport assays revealed a notable increase in mass flux when cells were in the VBNC state versus the culturable state. This research will contribute to the current knowledge-base describing E.coli O157:H7 cells in the VBNC state, spark dialogue concerning the accuracy of currently-used identification protocols, as well as add further evidence to the notion that bacteria transport in the subsurface is a truly dynamic process.

  14. Comparative effect of direct-fed microbials on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle.

    PubMed

    Tabe, Ebot S; Oloya, James; Doetkott, Dawn K; Bauer, Marc L; Gibbs, Penelope S; Khaitsa, Margaret L

    2008-03-01

    The effect of direct-fed microbials (DFM) on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle was evaluated in a clinical trial involving 138 feedlot steers. Following standard laboratory methods, fecal samples collected from steers were evaluated for change in the detectable levels of E. coli O157:H7 and Salmonella shed in feces after DFM treatment. Sampling of steers was carried out every 3 weeks for 84 days. A significant reduction (32%) in fecal shedding of E. coli O157:H7 (P < 0.001), but not Salmonella (P = 0.24), was observed among the treatment steers compared with the control group during finishing. The probability of recovery of E. coli O157:H7 from the feces of treated and control steers was 34.0 and 66.0%, respectively. Steers placed on DFM supplement were almost three times less likely to shed E. coli O157:H7 (odds ratio, 0.36; 95% confidence interval, 0.25 to 0.53; P < 0.001) in their feces as opposed to their control counterparts. The probability of recovery of Salmonella from the feces of the control (14.0%) and the treated (11.3%) steers was similar. However, the DFM significantly reduced probability of new infections with Salmonella among DFM-treated cattle compared with controls (nontreated ones). It appears that DFM as applied in our study are capable of significantly reducing fecal shedding of E. coli O157:H7 in naturally infected cattle but not Salmonella. The factors responsible for the observed difference in the effects of DFM on E. coli O157:H7 and Salmonella warrants further investigation.

  15. Isolation and evaluation of cocktail phages for the control of multidrug-resistant Escherichia coli serotype O104: H4 and E. coli O157: H7 isolates causing diarrhea.

    PubMed

    Safwat Mohamed, Doaa; Farouk Ahmed, Eman; Mohamed Mahmoud, Abobakr; Abd El-Baky, Rehab Mahmoud; John, James

    2018-02-01

    Escherichia coli serotype O157: H7 and E. coli O104: H4 are well known foodborne pathogens causing sever enteric illness. Using bacteriophages as biocontrol agents of some foodborne pathogens and multidrug-resistant (MDR) bacteria has a great attention nowadays. This study aims to test the effect of cocktail phages on the growth of some foodborne pathogens and MDR E. coli. Routine conventional PCR was used to confirm the identification of E. coli isolates. Double-layered culture technique was used to isolate phages from sewage water. Morphology of bacteriophage was described using transmission electron microscopy, and spot test was performed to determine host range of the phage cocktail. Phage cocktail of Siphoviridae and Podoviridae family infecting E. coli O157: H7, E. coli O104: H4 and untypeable E. coli (neither O157 nor O104) has been isolated from sewage water. Phage cocktail showed both lytic and lysogenic activity. Lytic activity was observed against E. coli O157: H7, E. coli O104: H4 isolates, Staphylococcus. aureus ATCC6538 and Pseudomonas aeruginosa ATCC 10145, while the lysogenic activity was observed against the untypeable strain. The tested phage cocktail showed a promising inhibitory action on E. coli O157: H7 and O104: H4, S. aureus ATCC6538 and P. aeruginosa ATCC 10145, suggesting the possibility of its use as a biocontrol tool or as natural food preservatives for many food products. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Behavior of Escherichia coli O157:H7 and Listeria monocytogenes during fermentation and storage of camel yogurt.

    PubMed

    Al-Nabulsi, Anas A; Olaimat, Amin N; Osaili, Tareq M; Ayyash, Mutamed M; Abushelaibi, Aisha; Jaradat, Ziad W; Shaker, Reyad; Al-Taani, Mahmoud; Holley, Richard A

    2016-03-01

    In addition to its nutritional and therapeutic properties, camel milk has the ability to suppress the growth of a wide range of foodborne pathogens, but there is a lack of information regarding the behavior of these pathogens in products such as yogurt produced from camel milk. The objective of the current study was to investigate the behavior of Listeria monocytogenes and Escherichia coli O157:H7 during manufacture and storage of camel yogurt. Camel milk inoculated with L. monocytogenes and E. coli O157:H7 was fermented at 43° C for 5h using freeze-dried lactic acid bacteria (LAB) starter cultures (Streptococcus thermophilus and Lactobacillus bulgaricus) and stored at 4 or 10 °C for 14 d. Camel milk inoculated with L. monocytogenes and E. coli O157:H7 without starter culture was also prepared. During fermentation, the numbers of L. monocytogenes and E. coli O157:H7 increased 0.3 and 1.6 log cfu/mL, respectively, in the presence of LAB, and by 0.3 and 2.7 log cfu/mL in the absence of LAB. During storage at 4 or 10 °C, L. monocytogenes increased 0.8 to 1.2 log cfu/mL by 14 d in camel milk without LAB, but in the presence of LAB, the numbers of L. monocytogenes were reduced by 1.2 to 1.7 log cfu/mL by 14 d. Further, E. coli O157:H7 numbers in camel milk were reduced by 3.4 to 3.5 log cfu/mL in the absence of LAB, but E. coli O157:H7 was not detected (6.3 log cfu/mL reduction) by 7d in camel yogurt made with LAB and stored at either temperature. Although camel milk contains high concentrations of natural antimicrobials, L. monocytogenes was able to tolerate these compounds in camel yogurt stored at refrigerator temperatures. Therefore, appropriate care should be taken during production of yogurt from camel milk to minimize the potential for postprocess contamination by this and other foodborne pathogens. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Prevalence of Escherichia coli O157:H7 and Salmonella in camels, cattle, goats, and sheep harvested for meat in Riyadh.

    PubMed

    Bosilevac, Joseph M; Gassem, Mustafa A; Al Sheddy, Ibraheem A; Almaiman, Salah A; Al-Mohizea, Ibrahim S; Alowaimer, Abdullah; Koohmaraie, Mohammad

    2015-01-01

    Escherichia coli O157:H7 and Salmonella are significant foodborne pathogens that can be found in the feces and on the hides of meat animals. When hides are removed during the harvest process, the carcass and subsequent meat products can become contaminated. Camels, cattle, sheep, and goats are harvested for meat in Riyadh, Saudi Arabia. The prevalence of E. coli O157:H7 and Salmonella are unknown in these animals, and it is assumed that if the animals carry the pathogens in their feces or on their hides, meat products are likely to become contaminated. To this end, a minimum of 206 samples each from hides and feces of camels, cattle, goats, and sheep were collected over the course of 8 months and tested for E. coli O157:H7 and Salmonella. It was found that E. coli O157:H7 was present in feces (10.7, 1.4, 2.4, and 2.4%) and on hides (17.9, 8.2, 2.9, and 9.2%) of cattle, goats, camels, and sheep, respectively. The prevalence of Salmonella was 11.2, 13.5, 23.2, and 18.8% in feces and 80.2, 51.2 67.6, and 60.2% on hides of cattle, goats, camels, and sheep, respectively. The prevalence of E coli O157:H7 was nearly zero in all samples collected in June and July, while Salmonella did not exhibit any seasonal variation. These results constitute the first comprehensive study of E. coli O157:H7 and Salmonella prevalence in Saudi Arabian meat animals at harvest.

  18. A replicated molecular genetic basis for subtyping antisocial behavior in children with attention-deficit/hyperactivity disorder.

    PubMed

    Caspi, Avshalom; Langley, Kate; Milne, Barry; Moffitt, Terrie E; O'Donovan, Michael; Owen, Michael J; Polo Tomas, Monica; Poulton, Richie; Rutter, Michael; Taylor, Alan; Williams, Benjamin; Thapar, Anita

    2008-02-01

    Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous neurodevelopmental disorder that in some cases is accompanied by antisocial behavior. To test if variations in the catechol O-methyltransferase gene (COMT) would prove useful in identifying the subset of children with ADHD who exhibit antisocial behavior. Three independent samples composed of 1 clinical sample of ADHD cases and 2 birth cohort studies. Participants in the clinical sample were drawn from child psychiatry and child health clinics in England and Wales. The 2 birth cohort studies included 1 sample of 2232 British children born in 1994-1995 and a second sample of 1037 New Zealander children born in 1972-1973. Diagnosis of ADHD and measures of antisocial behavior. We present replicated evidence that the COMT valine/methionine polymorphism at codon 158 (COMT Val158Met) was associated with phenotypic variation among children with ADHD. Across the 3 samples, valine/valine homozygotes had more symptoms of conduct disorder, were more aggressive, and were more likely to be convicted of criminal offenses compared with methionine carriers. The findings confirm the presence of genetic heterogeneity in ADHD and illustrate how genetic information may provide biological evidence pointing to clinical subtypes.

  19. Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestine.

    PubMed

    Zaheer, Rahat; Dugat-Bony, Eric; Holman, Devon; Cousteix, Elodie; Xu, Yong; Munns, Krysty; Selinger, Lorna J; Barbieri, Rutn; Alexander, Trevor; McAllister, Tim A; Selinger, L Brent

    2017-01-01

    Escherichia coli O157:H7 is a foodborne pathogen that colonizes ruminants. Cattle are considered the primary reservoir of E. coli O157:H7 with super-shedders, defined as individuals excreting > 104 E. coli O157:H7 CFU g-1 feces. The mechanisms leading to the super-shedding condition are largely unknown. Here, we used 16S rRNA gene pyrosequencing to examine the composition of the fecal bacterial community in order to investigate changes in the bacterial microbiota at several locations along the digestive tract (from the duodenum to the rectal-anal junction) in 5 steers previously identified as super-shedders and 5 non-shedders. The overall bacterial community structure did not differ by E. coli O157:H7 shedding status; but several differences in the relative abundance of taxa and OTUs were noted between the two groups. The genus Prevotella was most enriched in the non-shedders while the genus Ruminococcus and the Bacteroidetes phylum were notably enriched in the super-shedders. There was greater bacterial diversity and richness in samples collected from the lower- as compared to the upper gastrointestinal tract (GI). The spiral colon was the only GI location that differed in terms of bacterial diversity between super-shedders and non-shedders. These findings reinforced linkages between E. coli O157:H7 colonization in cattle and the nature of the microbial community inhabiting the digestive tract of super-shedders.

  20. Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestine

    PubMed Central

    Cousteix, Elodie; Xu, Yong; Munns, Krysty; Selinger, Lorna J.; Barbieri, Rutn; Alexander, Trevor; McAllister, Tim A.; Selinger, L. Brent

    2017-01-01

    Escherichia coli O157:H7 is a foodborne pathogen that colonizes ruminants. Cattle are considered the primary reservoir of E. coli O157:H7 with super-shedders, defined as individuals excreting > 104 E. coli O157:H7 CFU g-1 feces. The mechanisms leading to the super-shedding condition are largely unknown. Here, we used 16S rRNA gene pyrosequencing to examine the composition of the fecal bacterial community in order to investigate changes in the bacterial microbiota at several locations along the digestive tract (from the duodenum to the rectal-anal junction) in 5 steers previously identified as super-shedders and 5 non-shedders. The overall bacterial community structure did not differ by E. coli O157:H7 shedding status; but several differences in the relative abundance of taxa and OTUs were noted between the two groups. The genus Prevotella was most enriched in the non-shedders while the genus Ruminococcus and the Bacteroidetes phylum were notably enriched in the super-shedders. There was greater bacterial diversity and richness in samples collected from the lower- as compared to the upper gastrointestinal tract (GI). The spiral colon was the only GI location that differed in terms of bacterial diversity between super-shedders and non-shedders. These findings reinforced linkages between E. coli O157:H7 colonization in cattle and the nature of the microbial community inhabiting the digestive tract of super-shedders. PMID:28141846

  1. Growth and survival of Escherichia coli O157:H7 and Listeria monocytogenes in egg products held at different temperatures.

    PubMed

    Yang, S E; Chou, C C

    2000-07-01

    Growth and survival of Escherichia coli O157:H7 and Listeria monocytogenes in steamed eggs and scrambled eggs held at different temperatures (5, 18, 22, 37, 55, and 60 degrees C) were investigated in the present study. Among the holding temperatures tested, both pathogens multiplied best at 37 degrees C followed by 22, 18, and 5 degrees C. In general, E. coli O157:H7 grew better in the egg products than L. monocytogenes did at all the storage temperatures tested except at 5 degrees C. E. coli O157:H7 did not grow in steamed eggs and scrambled eggs held at 5 degrees C. L. monocytogenes showed a slight population increase of approximately 0.6 to 0.9 log CFU/g in these egg products at the end of the 36-h storage period at 5 degrees C. The population of both pathogens detected in the egg products was affected by the initial population, holding temperature, and length of the holding period. It was also noted that L. monocytogenes was more susceptible than E. coli O157:H7 in steamed eggs held at 60 degrees C. After holding at 60 degrees C for 1 h, no detectable viable cells of L. monocytogenes with a population reduction of 5.4 log CFU/g was observed in steamed eggs, whereas a lower population reduction of only approximately 0.5 log CFU/ml was noted for E. coli O157:H7.

  2. Predictors and risk factors for the intestinal shedding of Escherichia coli O157 among working donkeys (Equus asinus) in Nigeria

    PubMed Central

    Jedial, Jesse T.; Shittu, Aminu; Tambuwal, Faruk M.; Abubakar, Mikail B.; Garba, Muhammed K.; Kwaga, Jacob P.; Fasina, Folorunso O.

    2015-01-01

    Objectives Escherichia coli are an important group of bacteria in the normal gastrointestinal system but can sometimes cause infections in domestic animals and man. Donkeys are routinely used as multipurpose animal but details of burdens of potentially infectious bacteria associated with it are limited. The prevalence and associations between intestinal shedding of E. coli O157 and animal characteristics and management factors were studied among 240 randomly selected working donkeys in north-western Nigeria. Design Four local government areas, of Sokoto State in north-western Nigeria were recruited in this study. A multistage randomised cluster design was used to select subjects and donkey owners within selected zones. Confirmation of infection was based on bacterial culture, isolation and biochemical test for E. coli O157 from faecal samples. Results Of the total bacteria isolated, 203 of the 329 (61.70 per cent) were E. coli, 76 of which was E. coli serotype O157. A multivariable logistic regression model was used to examine the relation between intestinal shedding of E. coli O157 and selected variables. The analysis yielded five potential predictors of shedding: soft faeces in donkeys, Akaza and Fari ecotypes of donkey were positive predictors while maize straw as feed and sampling during the cold dry period were negative predictors. Conclusions This study concludes that controlling intestinal shedding of E. coli O157 among working donkeys in Nigeria is possible using the identified predictors in planning appropriate interventions to reduced human risk of infection. PMID:26392892

  3. Potential application of high hydrostatic pressure to eliminate Escherichia coli O157:H7 on alfalfa sprouted seeds.

    PubMed

    Neetoo, Hudaa; Ye, Mu; Chen, Haiqiang

    2008-12-10

    Sprouts eaten raw are increasingly being perceived as hazardous foods as they have been implicated in Escherichia coli O157:H7 outbreaks where the seeds were found to be the likely source of contamination. The objective of our study was to evaluate the potential of using high hydrostatic pressure (HHP) technology for alfalfa seed decontamination. Alfalfa seeds inoculated with a cocktail of five strains of E. coli O157:H7 were subjected to pressures of 500 and 600 MPa for 2 min at 20 degrees C in a dry or wet (immersed in water) state. Immersing seeds in water during pressurization considerably enhanced inactivation of E. coli O157:H7 achieving reductions of 3.5 log and 5.7 log at 500 and 600 MPa, respectively. When dry seeds were pressurized, both pressure levels reduced the counts by <0.7 log. To test the efficacy of HHP to completely decontaminate seeds whilst meeting the FDA requirement of 5 log reductions, seeds inoculated with a ~5 log CFU/g of E. coli O157:H7 were pressure-treated at 600 and 650 MPa at 20 degrees C for holding times of 2 to 20 min. A >5 log reduction in the population was achieved when 600 MPa was applied for durations of > or =6 min although survivors were still detected by enrichment. When the pressure was stepped up to 650 MPa, the threshold time required to achieve complete elimination was 15 min. Un-inoculated seeds pressure-treated at 650 MPa for 15 min at 20 degrees C successfully sprouted achieving a germination rate identical to untreated seeds after eight days of sprouting. These results therefore demonstrate the promising application of HHP on alfalfa seeds to eliminate the risk of E. coli O157:H7 infections associated with consumption of raw alfalfa sprouts.

  4. Prevalence of Escherichia coli O157:H7 in beef cattle at slaughter and beef carcasses at retail shops in Ethiopia

    USDA-ARS?s Scientific Manuscript database

    Background: There is paucity of information regarding the epidemiology of Escherichia coli O157: H7 in developing countries. In this study, we investigated the occurrence of E. coli O157: H7 associated with beef cattle at processing plants and at retail shops in Ethiopia. Methods: Various samples we...

  5. Evaluation of two immunomagnetic separation techniques for the detection and recovery of E. coli O157:H7 from finished composts

    USDA-ARS?s Scientific Manuscript database

    Two rapid immunomagnetic separation (IMS) protocols were evaluated to recover 1-2 log CFU/g inoculated E. coli O157:H7 from 30 different commercial, finished compost samples. Both protocols detected E. coli O157:H7 in compost samples; PCR techniques required the removal of inhibitors to reduce poss...

  6. Effect of plant essential oils against foodborne pathogens Escherichia coli O157:H7 and Salmonella enterica in raw cookie dough

    USDA-ARS?s Scientific Manuscript database

    Cookie dough can be contaminated by raw ingredients, mishandling, package contamination, etc. Considering the recent outbreak of E. coli O157:H7 with commercial raw cookie dough, the ability of E. coli O157:H7 to survive in the raw cookie dough production and processing environments, it raised conce...

  7. Escherichia coli O157:H7: Recent Advances in Research on Occurrence, Transmission, and Control in Cattle and the Production Environment

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 is a zoonotic pathogen that is an important cause of human food- and waterborne disease, with a spectrum of illnesses ranging from asymptomatic carriage and diarrhea to the sometimes fatal hemolytic uremic syndrome. Outbreaks of E. coli O157:H7 disease are frequently associ...

  8. Shotgun Optical Maps of the Whole Escherichia coli O157:H7 Genome

    PubMed Central

    Lim, Alex; Dimalanta, Eileen T.; Potamousis, Konstantinos D.; Yen, Galex; Apodoca, Jennifer; Tao, Chunhong; Lin, Jieyi; Qi, Rong; Skiadas, John; Ramanathan, Arvind; Perna, Nicole T.; Plunkett, Guy; Burland, Valerie; Mau, Bob; Hackett, Jeremiah; Blattner, Frederick R.; Anantharaman, Thomas S.; Mishra, Bhubaneswar; Schwartz, David C.

    2001-01-01

    We have constructed NheI and XhoI optical maps of Escherichia coli O157:H7 solely from genomic DNA molecules to provide a uniquely valuable scaffold for contig closure and sequence validation. E. coli O157:H7 is a common pathogen found in contaminated food and water. Our approach obviated the need for the analysis of clones, PCR products, and hybridizations, because maps were constructed from ensembles of single DNA molecules. Shotgun sequencing of bacterial genomes remains labor-intensive, despite advances in sequencing technology. This is partly due to manual intervention required during the last stages of finishing. The applicability of optical mapping to this problem was enhanced by advances in machine vision techniques that improved mapping throughput and created a path to full automation of mapping. Comparisons were made between maps and sequence data that characterized sequence gaps and guided nascent assemblies. PMID:11544203

  9. Survival of bioluminescent Listeria monocytogenes and Escherichia coli O157:H7 in soft cheeses.

    PubMed

    Ramsaran, H; Chen, J; Brunke, B; Hill, A; Griffiths, M W

    1998-07-01

    Pasteurized and raw milks that had been inoculated at 10(4) cfu/ml with bioluminescent strains of Listeria monocytogenes and Escherichia coli O157:H7 were used in the manufacture of Camembert and Feta cheeses with or without nisin-producing starter culture. Survival of both organisms was determined during the manufacture and storage of Camembert and Feta cheeses at 2 +/- 1 degree C for 65 and 75 d, respectively. Bacterial bioluminescence was used as an indicator to enumerate the colonies plated on selective Listeria agar and on MacConkey agar. Escherichia coli O157:H7 survived the manufacturing process of both cheeses and was present at the end of the storage period in greater numbers than in the initial inoculum. At the end of 75 d of storage, E. coli O157:H7 was found in the brine of Feta cheese. The counts of L. monocytogenes increased as the pH of the Camembert cheese increased, and there were significant differences between the counts from samples taken from the inside and the counts from samples obtained near the surface of the cheese. The Feta cheese that contained nisin was the only cheese in which L. monocytogenes was at the level of the initial inoculum after 75 d of storage.

  10. Investigation into Formation of Lipid Hydroperoxides from Membrane Lipids in Escherichia coli O157:H7 following Exposure to Hot Water.

    PubMed

    Cálix-Lara, Thelma F; Kirsch, Katie R; Hardin, Margaret D; Castillo, Alejandro; Smith, Stephen B; Taylor, Thomas M

    2015-06-01

    Although studies have shown antimicrobial treatments consisting of hot water sprays alone or paired with lactic acid rinses are effective for reducing Escherichia coli O157:H7 loads on beef carcass surfaces, the mechanisms by which these interventions inactivate bacterial pathogens are still poorly understood. It was hypothesized that E. coli O157:H7 exposure to hot water in vitro at rising temperatures for longer time periods would result in increasing deterioration of bacterial outer membrane lipids, sensitizing the pathogen to subsequent lactic acid application. Cocktails of E. coli O157:H7 strains were subjected to hot water at 25 (control) 65, 75, or 85 °C incrementally up to 60 s, after which surviving cells were enumerated by plating. Formation of lipid hydroperoxides from bacterial membranes and cytoplasmic accumulation of L-lactic acid was quantified spectrophotometrically. Inactivation of E. coli O157:H7 proceeded in a hot water exposure duration- and temperature-dependent manner, with populations being reduced to nondetectable numbers following heating of cells in 85 °C water for 30 and 60 s (P < 0.05). Lipid hydroperoxide formation was not observed to be dependent upon increasing water temperature or exposure period. The data suggest that hot water application prior to organic acid application may function to increase the sensitivity of E. coli O157:H7 cells by degrading membrane lipids.

  11. Influence of Detection Methods in Characterizing Escherichia coli O157:H7 in Raw Goat Meat Using Conventional and Molecular Methods.

    PubMed

    Tabashsum, Zajeba; Nazneen, Mafruha; Ahsan, C R; Bari, M L; Yasmin, M

    2016-01-01

     Presence of Escherichia coli O157:H7 on fresh goat meat samples (n= 40) of Dhaka city was analyzed using conventional and molecular methods. A total of 86 presumptive E. coli O157:H7 colonies were isolated from 60% of the samples using selective agar plating method. After conventional biochemical assay followed by API 20E assay, only 11 isolates were found to be E. coli O157:H7. Further serological test identified only four isolates that has strong agglutination reaction against anti-H7 sensitized latex. The biochemically and serologically confirmed isolates were then screened for major virulence factors include eaeA, rfbE, fliC, stx1 and stx2 genes by PCR. PCR analysis of positive isolates showed, 10 isolates were eaeA and rfbE genes positive but fliC gene was only in six, indicating that these isolates were H7 positive with flagellum antigens which might not expressed or detected in serotyping tests. Multiplex PCR against eaeA, stx1 and stx2 genes of the isolates showed similar results as when done individually. These results revealed that only 7% of the primary presumptive E. coli O157:H7 was found to be stx producing E. coli O157:H7 and thus greatly influenced the detection of the pathogen in meat samples.

  12. Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum.

    PubMed

    Guo, Yaqiong; Tang, Kevin; Rowe, Lori A; Li, Na; Roellig, Dawn M; Knipe, Kristine; Frace, Michael; Yang, Chunfu; Feng, Yaoyu; Xiao, Lihua

    2015-04-18

    Cryptosporidium hominis is a dominant species for human cryptosporidiosis. Within the species, IbA10G2 is the most virulent subtype responsible for all C. hominis-associated outbreaks in Europe and Australia, and is a dominant outbreak subtype in the United States. In recent yearsIaA28R4 is becoming a major new subtype in the United States. In this study, we sequenced the genomes of two field specimens from each of the two subtypes and conducted a comparative genomic analysis of the obtained sequences with those from the only fully sequenced Cryptosporidium parvum genome. Altogether, 8.59-9.05 Mb of Cryptosporidium sequences in 45-767 assembled contigs were obtained from the four specimens, representing 94.36-99.47% coverage of the expected genome. These genomes had complete synteny in gene organization and 96.86-97.0% and 99.72-99.83% nucleotide sequence similarities to the published genomes of C. parvum and C. hominis, respectively. Several major insertions and deletions were seen between C. hominis and C. parvum genomes, involving mostly members of multicopy gene families near telomeres. The four C. hominis genomes were highly similar to each other and divergent from the reference IaA25R3 genome in some highly polymorphic regions. Major sequence differences among the four specimens sequenced in this study were in the 5' and 3' ends of chromosome 6 and the gp60 region, largely the result of genetic recombination. The sequence similarity among specimens of the two dominant outbreak subtypes and genetic recombination in chromosome 6, especially around the putative virulence determinant gp60 region, suggest that genetic recombination plays a potential role in the emergence of hyper-transmissible C. hominis subtypes. The high sequence conservation between C. parvum and C. hominis genomes and significant differences in copy numbers of MEDLE family secreted proteins and insulinase-like proteases indicate that telomeric gene duplications could potentially contribute to

  13. Characterization of Escherichia coli O157:H7 strains from contaminated raw beef trim during "high event periods".

    PubMed

    Arthur, Terrance M; Bono, James L; Kalchayanand, Norasak

    2014-01-01

    The development and implementation of effective antimicrobial interventions by the beef processing industry in the United States have dramatically reduced the incidence of beef trim contamination by Escherichia coli O157:H7. However, individual processing plants still experience sporadic peaks in contamination rates where multiple E. coli O157:H7-positive lots are clustered in a short time frame. These peaks have been referred to as "high event periods" (HEP) of contamination. The results reported here detail the characterization of E. coli O157:H7 isolates from 21 HEP across multiple companies and processing plants to gain insight regarding the mechanisms causing these incidents. Strain genotypes were determined by pulsed-field gel electrophoresis, and isolates were investigated for characteristics linking them to human illness. Through these analyses, it was determined that individual HEP show little to no diversity in strain genotypes. Hence, each HEP has one strain type that makes up most, if not all, of the contamination. This is shown to differ from the genotypic diversity of E. coli O157:H7 found on the hides of cattle entering processing plants. In addition, it was found that a large proportion (81%) of HEP are caused by strain types associated with human illness. These results pose a potential challenge to the current model for finished product contamination during beef processing.

  14. Effect of modified atmosphere packaging on the persistence and expression of virulence factors of Escherichia coli O157:H7 on shredded iceberg lettuce.

    PubMed

    Sharma, Manan; Lakshman, Sudesna; Ferguson, Sean; Ingram, David T; Luo, Yaguang; Patel, Jitu

    2011-05-01

    Fresh-cut leafy greens contaminated with Escherichia coli O157:H7 have caused foodborne outbreaks. Packaging conditions, coupled with abusive storage temperatures of contaminated lettuce, were evaluated for their effect on the potential virulence of E. coli O157:H7. Shredded lettuce was inoculated with 5.58 and 3.98 log CFU E. coli O157:H7 per g and stored at 4 and 15°C, respectively, for up to 10 days. Lettuce was packaged under treatment A (modified atmosphere packaging conditions used for commercial fresh-cut produce, in gas-permeable film with N(2)), treatment B (near-ambient air atmospheric conditions in a gas-permeable film with microperforations), and treatment C (high-CO(2) and low-O(2) conditions in a gas-impermeable film). E. coli O157:H7 populations from each treatment were determined by enumeration of numbers on MacConkey agar containing nalidixic acid. RNA was extracted from packaged lettuce for analysis of expression of virulence factor genes stx(2), eae, ehxA, iha, and rfbE. E. coli O157:H7 populations on lettuce at 4°C under all treatments decreased, but most considerably so under treatment B over 10 days. At 15°C, E. coli O157:H7 populations increased by at least 2.76 log CFU/g under all treatments. At 15°C, expression of eae and iha was significantly greater under treatment B than it was under treatments A and C on day 3. Similarly, treatment B promoted significantly higher expression of stx(2), eae, ehxA, and rfbE genes on day 10, compared with treatments A and C at 15°C. Results indicate that storage under near-ambient air atmospheric conditions can promote higher expression levels of O157 virulence factors on lettuce, and could affect the severity of E. coli O157:H7 infections associated with leafy greens.

  15. Hha controls Escherichia coli O157:H7 biofilm formation by differential regulation of global transcriptional regulators FlhDC and CsgD

    USDA-ARS?s Scientific Manuscript database

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a zoonotic pathogen that produces a broad-spectrum of diarrheal illnesses in infected humans. Although molecular mechanisms enabling EHEC O157:H7 to produce characteristic adherence on epithelial cells are well characterized, regulatory mechanisms...

  16. Comparative analysis of Escherichia coli O157 growth and protein-expression, in vitro and in vivo, in rumen fluid of cattle

    USDA-ARS?s Scientific Manuscript database

    Cattle are the primary reservoirs for Escherichia coli O157 (O157), a Shiga toxin-producing E. coli, with potential for serious extraintestinal sequelae in humans. In a recent study (Kudva IT et al. BMC Microbiol. 2014; 14:48), we reported that when cultured in rumen fluid from dairy cattle on the ...

  17. Effect of slightly acidic electrolyzed water for inactivating Escherichia coli O157:H7 and Staphylococcus aureus analyzed by transmission electron microscopy.

    PubMed

    Nan, Songjian; Yongyu, L I; Baoming, L I; Wang, Chaoyuan; Cui, Xiaodong; Cao, Wei

    2010-12-01

    The use of different available chlorine concentrations (ACCs) of slightly acidic electrolyzed water (SAEW; 0.5 to 30 mg/liter), different treatment times, and different temperatures for inactivating Escherichia coli O157:H7 and Staphylococcus aureus was evaluated. The morphology of both pathogens also was analyzed with transmission electron microscopy. A 3-min treatment with SAEW (pH 6.0 to 6.5) at ACCs of 2 mg/liter for E. coli O157:H7 and 8 mg/liter for S. aureus resulted in 100% inactivation of two cultures (7.92- to 8.75-log reduction) at 25°C. The bactericidal activity of SAEW was independent of the treatment time and temperature at a higher ACC (P > 0.05). E. coli O157:H7 was much more sensitive than S. aureus to SAEW. The morphological damage to E. coli O157:H7 cells by SAEW was significantly greater than that to S. aureus cells. At an ACC as high as 30 mg/liter, E. coli O157:H7 cells were damaged, but S. aureus cells retained their structure and no cell wall damage or shrinkage was observed. SAEW with a near neutral pH may be a promising disinfectant for inactivation of foodborne pathogens.

  18. Dual Functional Core-Shell Fluorescent Ag2S@Carbon Nanostructure for Selective Assay of E. coli O157:H7 and Bactericidal Treatment.

    PubMed

    Wang, Ning; Wei, Xing; Zheng, An-Qi; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua

    2017-03-24

    A dual functional fluorescent core-shell Ag 2 S@Carbon nanostructure is prepared by a hydrothermally assisted multi-amino synthesis approach with folic acid (FA), polyethylenimine (PEI), and mannoses (Mans) as carbon and nitrogen sources (FA-PEI-Mans-Ag 2 S nanocomposite shortly as Ag 2 S@C). The nanostructure exhibits strong fluorescent emission at λ ex /λ em = 340/450 nm with a quantum yield of 12.57 ± 0.52%. Ag 2 S@C is bound to E. coli O157:H7 via strong interaction with the Mans moiety in Ag 2 S@C with FimH proteins on the fimbriae tip in E. coli O157:H7. Fluorescence emission from Ag 2 S@C/E. coli conjugate is closely related to the content of E. coli O157:H7. Thus, a novel procedure for fluorescence assay of E. coli O157:H7 is developed, offering a detection limit of 330 cfu mL -1 . Meanwhile, the Ag 2 S@C nanostructure exhibits excellent antibacterial performance against E. coli O157:H7. A 99.9% sterilization rate can be readily achieved for E. coli O157:H7 at a concentration of 10 6 -10 7 cfu mL -1 with 3.3 or 10 μg mL -1 of Ag 2 S@C with an interaction time of 5 or 0.5 min, respectively.

  19. Risk factors for Escherichia coli O157 shedding and super-shedding by dairy heifers at pasture.

    PubMed

    Williams, K J; Ward, M P; Dhungyel, O P; Hall, E J S

    2015-04-01

    We undertook a longitudinal study within a cohort of 52 dairy heifers maintained under constant management systems and sampled weekly to investigate a comprehensive range of risk factors which may influence shedding or super-shedding of E. coli O157 (detected by direct faecal culture and immunomagnetic separation). E. coli O157 was detected from 416/933 (44.6%) samples (faeces and recto-anal mucosal swabs) and 32 (3.4%) samples enumerated at >10000 c.f.u./g. Weekly point prevalence ranged from 9.4% to 94.3%. Higher temperature (P < 0.001), rainfall (P = 0.02), relative humidity (P < 0.001), pasture growth (P = 0.013) and body score (P = 0.029) were positively associated with increased shedding. Higher rainfall (P < 0.001), hide contamination (P = 0.002) and increased faecal consistency (P = 0.023) were positively associated with super-shedding. Increased solar exposure had a negative effect on both shedding and super-shedding within bivariate analyses but in the final multivariate model for shedding demonstrated a positive effect (P = 0.017). Results suggest that environmental factors are important in E. coli O157 shedding in cattle.

  20. 29 CFR 4.157-4.158 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true [Reserved] 4.157-4.158 Section 4.157-4.158 Labor Office of the Secretary of Labor LABOR STANDARDS FOR FEDERAL SERVICE CONTRACTS Application of the McNamara-O'Hara Service Contract Act Employees Covered by the Act §§ 4.157-4.158 [Reserved] ...

  1. Comparison of the growth of Escherichia coli O157: H7 and O104: H4 during sprouting and microgreen production from contaminated radish seeds.

    PubMed

    Xiao, Zhenlei; Nou, Xiangwu; Luo, Yanguang; Wang, Qin

    2014-12-01

    Both sprouts and microgreens are popular tender produce items, typically grown and harvested in indoor facilities which allow a higher degree of control compared to open field production. While sprouts, which have frequently been implicated in foodborne illness outbreaks, are the subject of numerous national and international standards for their production and distribution, there is a lack of data pertaining to the microbiological safety of microgreens. In this study, sprouts and microgreens were produced from radish seeds inoculated with Escherichia coli O157: H7 or O104: H4 and E. coli populations on the harvested products compared to assess the potentials of product contamination from contaminated seeds during sprouting and microgreen production. Both E. coli O157:H7 and O104:H4 grew rapidly during sprouting, reaching levels of 5.8-8.1 log cfu/g and 5.2-7.3 log cfu/g, respectively, depending on the initial inoculation levels of the seeds (1.5-4.6 log cfu/g and 0.8-4.3 log cfu/g on radish seeds, respectively). In comparison, E. coli O157:H7 and O104:H4 populations on harvested microgreens ranged from 0.8 to 4.5 log cfu/g and from 0.6 to 4.0 log cfu/g, respectively. Although harvested microgreens carried significantly less (P < 0.001) E. coli than sprouts germinated from seeds inoculated at the same levels, proliferation of E. coli O157:H7 and O104:H4 occurred during both sprouting and microgreen growth. Published by Elsevier Ltd.

  2. The Escherichia coli O157:H7 cattle immunoproteome includes outer membrane protein A (OmpA), a modulator of adherence to bovine rectoanal junction squamous epithelial (RSE) cells

    USDA-ARS?s Scientific Manuscript database

    Building on previous studies, we defined the repertoire of proteins comprising the antigenome of Escherichia coli (E. coli) O157 cultured in Dulbecco's Modified Eagles Medium (DMEM) supplemented with norepinephrine (NE; O157 protein-antigenome), a beta-adrenergic hormone that regulates E. coli O157 ...

  3. Comparison of Six Chromogenic Agar Media for the Isolation of a Broad Variety of Non-O157 Shigatoxin-Producing Escherichia coli (STEC) Serogroups

    PubMed Central

    Verhaegen, Bavo; De Reu, Koen; Heyndrickx, Marc; De Zutter, Lieven

    2015-01-01

    The isolation of non-O157 STEC from food samples has proved to be challenging. The selection of a suitable selective isolation agar remains problematic. The purpose of this study was to qualitatively and quantitatively evaluate six chromogenic agar media for the isolation of STEC: Tryptone Bile X-glucuronide agar (TBX), Rainbow® Agar O157 (RB), Rapid E. coli O157:H7 (RE), Modified MacConkey Agar (mMac), CHROMagarTM STEC (Chr ST) and chromIDTM EHEC (Chr ID). During this study, 45 E. coli strains were used, including 39 STEC strains belonging to 16 different O serogroups and 6 non-STEC E. coli. All E. coli strains were able to grow on TBX and RB, whereas one STEC strain was unable to grow on Chr ID and a number of other STEC strains did not grow on mMac, CHROMagar STEC and Rapid E. coli O157:H7. However, only the latter three agars were selective enough to completely inhibit the growth of the non-STEC E. coli. Our conclusion was that paired use of a more selective agar such as CHROMagar STEC together with a less selective agar like TBX or Chr ID might be the best solution for isolating non-O157 STEC from food. PMID:26090610

  4. Comparison of Six Chromogenic Agar Media for the Isolation of a Broad Variety of Non-O157 Shigatoxin-Producing Escherichia coli (STEC) Serogroups.

    PubMed

    Verhaegen, Bavo; De Reu, Koen; Heyndrickx, Marc; De Zutter, Lieven

    2015-06-17

    The isolation of non-O157 STEC from food samples has proved to be challenging. The selection of a suitable selective isolation agar remains problematic. The purpose of this study was to qualitatively and quantitatively evaluate six chromogenic agar media for the isolation of STEC: Tryptone Bile X-glucuronide agar (TBX), Rainbow® Agar O157 (RB), Rapid E. coli O157:H7 (RE), Modified MacConkey Agar (mMac), CHROMagarTM STEC (Chr ST) and chromIDTM EHEC (Chr ID). During this study, 45 E. coli strains were used, including 39 STEC strains belonging to 16 different O serogroups and 6 non-STEC E. coli. All E. coli strains were able to grow on TBX and RB, whereas one STEC strain was unable to grow on Chr ID and a number of other STEC strains did not grow on mMac, CHROMagar STEC and Rapid E. coli O157:H7. However, only the latter three agars were selective enough to completely inhibit the growth of the non-STEC E. coli. Our conclusion was that paired use of a more selective agar such as CHROMagar STEC together with a less selective agar like TBX or Chr ID might be the best solution for isolating non-O157 STEC from food.

  5. Visual endpoint detection of Escherichia coli O157:H7 using isothermal Genome Exponential Amplification Reaction (GEAR) assay and malachite green.

    PubMed

    Jothikumar, Prithiviraj; Narayanan, Jothikumar; Hill, Vincent R

    2014-03-01

    Rapid and specific detection methods for bacterial agents in drinking water are important for disease prevention and responding to suspected contamination events. In this study, an isothermal Genome Exponential Amplification Reaction (GEAR) assay for Escherichia coli O157:H7 was designed specifically to recognize a 199-bp fragment of the lipopolysaccharide gene (rfbE) for rapid testing of water samples. The GEAR assay was found to be specific for E. coli O157:H7 using 10 isolates of E. coli O157:H7 and a panel of 86 bacterial controls. The GEAR assay was performed at a constant temperature of 65°C using SYTO 9 intercalating dye. Detection limits were determined to be 20 CFU for the GEAR assay. When SYTO 9 fluorescence was measured using a real-time PCR instrument, the assay had the same detection limit as when malachite green was added to the reaction mix and a characteristic blue color was visually observed in positive reactions. The study also found that 50 and 20 CFU of E. coli O157:H7 seeded into 100-liter of tap water could be detected by the GEAR assays after the sample was concentrated by hollow-fiber ultrafiltration (HFUF) and approximately 10% of HFUF concentrate was cultured using trypticase soy broth-novobiocin. When applied to 19 surface water samples collected from Tennessee and Kentucky, the GEAR assay and a published real-time PCR assay both detected E. coli O157:H7 in two of the samples. The results of this study indicate that the GEAR assay can be sensitive for rapid detection of E. coli O157:H7 in water samples using fluorometric instruments and visual endpoint determination. Published by Elsevier B.V.

  6. E. coli O157 from sheep in northeast Scotland: prevalence, concentration shed, and molecular characterization by multilocus variable tandem repeat analysis.

    PubMed

    Solecki, Olivia; MacRae, Marion; Strachan, Norval; Lindstedt, Bjørn-Arne; Ogden, Iain

    2009-09-01

    We report the prevalence, concentrations, and strain diversity of Escherichia coli O157 shed by sheep fed on root crops during a winter period in northeast Scotland. E. coli O157 was isolated on 6 farms from 14 studied during January to March 2005. The individual sheep prevalence was 5.8% and concentration excreted was <10(2) colony-forming units/g for all but one fecal sample. Verocytotoxigenic E. coli O157, determined by polymerase chain reaction and verocell assay, was recovered from 27% of samples. Four farms had sheep shedding the same strain as determined by multiple-locus variable analysis and no within-farm diversity was observed. The low numbers shed and the high levels of atoxigenic strains indicate a lower risk to human health from these animals compared to many ruminants grazing pasture during summer months. These data will be valuable for quantitative risk assessments and provide preliminary information that feeding sheep on root crops may be a practical intervention to reduce E. coli O157 infection in animals and ultimately humans.

  7. Preparation of immunomagnetic iron-dextran nanoparticles and application in rapid isolation of E.coli O157:H7 from foods

    PubMed Central

    Duan, Hui-Li; Shen, Zhi-Qiang; Wang, Xin-Wei; Chao, Fu-Huan; Li, Jun-Wen

    2005-01-01

    AIM: To prepare a kind of magnetic iron-dextran nanoparticles that was coated with anti-E.coli O157:H7 IgG, analyze its application conditions, and try to use it to isolate E.coli O157:H7 from foods. METHODS: Magnetic iron-dextran nanoparticles were prepared by the reaction of a mixture of ferric and ferrous ions with dextran polymers under alkaline conditions. The particles were coated with antiserum against E.coli O157:H7 by the periodate oxidation-borohydride reduction procedure. The oxidation time, amount of antibody coating the particles, amount of nanoparticles, incubation time and isolation time were varied to determine their effects on recovery of the organisms. Finally, the optimum conditions for isolating E.coli O157:H7 from food samples were established. RESULTS: E.coli O157:H7 can be isolated from samples within 15 min with the sensitivity of 101 CFU/mL or even less. In the presence of 108 CFU/mL of other organisms, the sensitivity is 101-102 CFU/mL. Nonspecific binding of other bacteria to the particles was not observed. Two and a half hours of enrichment is enough for the particles to detect the target from the food samples inoculated with 1 CFU/g. CONCLUSION: Isolation of target bacteria by immuno-magnetic nanoparticles is an efficient method with high sensitivity and specificity. The technique is so simple that it can be operated in lab and field even by untrained personnel. PMID:15968716

  8. Genetic diversity analysis of Blastocystis subtypes from both symptomatic and asymptomatic subjects using a barcoding region from the 18S rRNA gene.

    PubMed

    Rezaei Riabi, Tahereh; Mirjalali, Hamed; Haghighi, Ali; Rostami Nejad, Mohammad; Pourhoseingholi, Mohammad Amin; Poirier, Philippe; Delbac, Frederic; Wawrzyniak, Ivan; Zali, Mohammad Reza

    2018-07-01

    Blastocystis is the most prevalent protozoa found in human stool samples. This study aimed to evaluate genetic diversity among Blastocystis subtypes isolated from both symptomatic and asymptomatic subjects as well as the potential correlation between subtypes and symptoms. A total of 55 Blastocystis-positive isolates were included in this study. A barcoding region of the small subunit rDNA was amplified and genetically assessed using MEGA6 and DnaSP regarding the presence of symptoms. BLAST analyses revealed the presence of 5 different subtypes (ST1, ST2, ST3, ST6 and ST7) among the samples. ST3 was the most prevalent subtype (25/55, 45%) while only one ST7 isolate was detected. Moreover, alleles 4 and 86 for ST1; alleles 9, 11 and 12 for ST2; alleles 31, 34, 36, 37 and 52 for ST3; allele 122 for ST6 and allele 137 for ST7 were detected. No statistically significant association was found between gender and symptoms with certain subtypes. Analysis of the intra-subtype variability in both symptomatic and asymptomatic subjects revealed highest similarity among ST1 isolates while lowest similarity was seen among ST3 isolates. Neutrality indices, Tajima's D and Fu's Fs, were negative but only statistically significant for ST3. Furthermore, highest values of Hd, π and S were observed among ST1, ST2 and ST3 isolated from symptomatic patients indicating high level of diversity among isolates obtained from these subjects. In addition, inter-subtype analysis showed the highest similarity between ST1 and ST2 isolates and the lowest similarity between ST2 and ST7 isolates. This is the first study revealing the presence of both ST6 and ST7 isolates in human from Iran. Phylogenetic analysis did not suggest any significant correlation between clinical manifestations and certain subtypes although genetic analysis showed highest value of diversity and significant neutrality indices among ST3 isolates obtained from symptomatic patients. Copyright © 2018 Elsevier B.V. All rights

  9. Fitness of Enterohemorrhagic Escherichia coli (EHEC)/Enteroaggregative E. coli O104:H4 in Comparison to That of EHEC O157: Survival Studies in Food and In Vitro

    PubMed Central

    Kabisch, Jan; Meske, Diana; Franz, Charles M. A. P.; Pichner, Rohtraud

    2016-01-01

    ABSTRACT In 2011, one of the world's largest outbreaks of hemolytic-uremic syndrome (HUS) occurred, caused by a rare Escherichia coli serotype, O104:H4, that shared the virulence profiles of Shiga toxin-producing E. coli (STEC)/enterohemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC). The persistence and fitness factors of the highly virulent EHEC/EAEC O104:H4 strain, grown either in food or in vitro, were compared with those of E. coli O157 outbreak-associated strains. The log reduction rates of the different EHEC strains during the maturation of fermented sausages were not significantly different. Both the O157:NM and O104:H4 serotypes could be shown by qualitative enrichment to be present after 60 days of sausage storage. Moreover, the EHEC/EAEC O104:H4 strain appeared to be more viable than E. coli O157:H7 under conditions of decreased pH and in the presence of sodium nitrite. Analysis of specific EHEC strains in experiments with an EHEC inoculation cocktail showed a dominance of EHEC/EAEC O104:H4, which could be isolated from fermented sausages for 60 days. Inhibitory activities of EHEC/EAEC O104:H4 toward several E. coli strains, including serotype O157 strains, could be determined. Our study suggests that EHEC/EAEC O104:H4 is well adapted to the multiple adverse conditions occurring in fermented raw sausages. Therefore, it is strongly recommended that STEC strain cocktails composed of several serotypes, instead of E. coli O157:H7 alone, be used in food risk assessments. The enhanced persistence of EHEC/EAEC O104:H4 as a result of its robustness, as well as the production of bacteriocins, may account for its extraordinary virulence potential. IMPORTANCE In 2011, a severe outbreak caused by an EHEC/EAEC serovar O104:H4 strain led to many HUS sequelae. In this study, the persistence of the O104:H4 strain was compared with those of other outbreak-relevant STEC strains under conditions of fermented raw sausage production. Both O157:NM and O104:H4

  10. Fitness of Enterohemorrhagic Escherichia coli (EHEC)/Enteroaggregative E. coli O104:H4 in Comparison to That of EHEC O157: Survival Studies in Food and In Vitro.

    PubMed

    Böhnlein, Christina; Kabisch, Jan; Meske, Diana; Franz, Charles M A P; Pichner, Rohtraud

    2016-11-01

    In 2011, one of the world's largest outbreaks of hemolytic-uremic syndrome (HUS) occurred, caused by a rare Escherichia coli serotype, O104:H4, that shared the virulence profiles of Shiga toxin-producing E. coli (STEC)/enterohemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC). The persistence and fitness factors of the highly virulent EHEC/EAEC O104:H4 strain, grown either in food or in vitro, were compared with those of E. coli O157 outbreak-associated strains. The log reduction rates of the different EHEC strains during the maturation of fermented sausages were not significantly different. Both the O157:NM and O104:H4 serotypes could be shown by qualitative enrichment to be present after 60 days of sausage storage. Moreover, the EHEC/EAEC O104:H4 strain appeared to be more viable than E. coli O157:H7 under conditions of decreased pH and in the presence of sodium nitrite. Analysis of specific EHEC strains in experiments with an EHEC inoculation cocktail showed a dominance of EHEC/EAEC O104:H4, which could be isolated from fermented sausages for 60 days. Inhibitory activities of EHEC/EAEC O104:H4 toward several E. coli strains, including serotype O157 strains, could be determined. Our study suggests that EHEC/EAEC O104:H4 is well adapted to the multiple adverse conditions occurring in fermented raw sausages. Therefore, it is strongly recommended that STEC strain cocktails composed of several serotypes, instead of E. coli O157:H7 alone, be used in food risk assessments. The enhanced persistence of EHEC/EAEC O104:H4 as a result of its robustness, as well as the production of bacteriocins, may account for its extraordinary virulence potential. In 2011, a severe outbreak caused by an EHEC/EAEC serovar O104:H4 strain led to many HUS sequelae. In this study, the persistence of the O104:H4 strain was compared with those of other outbreak-relevant STEC strains under conditions of fermented raw sausage production. Both O157:NM and O104:H4 strains could survive

  11. Application of multilocus variable number tandem repeat analysis to monitor Verocytotoxin-producing Escherichia coli O157 phage type 8 in England and Wales: emergence of a profile associated with a national outbreak.

    PubMed

    Perry, N; Cheasty, T; Dallman, T; Launders, N; Willshaw, G

    2013-10-01

    Evaluation of multilocus variable number tandem repeat analysis (MLVA) to subtype all isolates of Vero cytotoxin-producing Escherichia coli O157 phage type 8 in England and Wales. Over a 13 month period from December 2010, 483 isolates of VTEC O157 PT8 were tested by MLVA; 39% were received in the first 4 months of 2011, when infections are generally low. One profile, or single locus variants of it, was present in 249 (52%) isolates but was not common previously. These cases represented a national increase in PT8, associated epidemiologically with soil-contaminated vegetables. Most of the 177 other MLVA profiles were unique to a single isolate. Profiles shared by >1 isolate included cases from two small community, food-borne outbreaks and 11 households. Several shared profiles were found among 23 isolates without known links. Apart from one group, isolates linked to travel abroad had very diverse profiles. Multilocus variable number tandem repeat analysis discriminated apparent sporadic isolates of the same PT and assisted in detection of cases in an emerging national outbreak. Multilocus variable number tandem repeat analysis is an epidemiologically valid complement to surveillance and applicable as a rapid, practical test for large numbers of isolates. © 2013 The Society for Applied Microbiology.

  12. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7.

    PubMed

    Burt, S A; Reinders, R D

    2003-01-01

    To quantify the antibacterial properties of five essential oils (EO) on a non-toxigenic strain of Escherichia coli O157:H7 in the presence and absence of a stabilizer and an emulsifier and at three different temperatures. Five EOs known to exhibit antibacterial properties were screened by disc diffusion assay and the most active were selected for further study in microdilution colorimetric assays. Oregano (Origanum vulgare) and thyme (Thymus vulgaris; light and red varieties) EO had the strongest bacteriostatic and bactericidal properties, followed by bay (Pimenta racemosa) and clove bud (Eugenia caryophyllata synonym: Syzygium aromaticum) EO. Oregano oil was colicidal at 625 microl l(-1) at 10, 20 and 37 degrees C. The addition of 0.05% (w/v) agar as stabilizer reinforced the antibacterial properties, particularly at 10 degrees C, whereas 0.25% (w/v) lecithin reduced antibacterial activity. Scanning electron micrographs showed extensive morphological changes to treated cells. Oregano and thyme EO possess significant in vitro colicidal and colistatic properties, which are exhibited in a broad temperature range and substantially improved by the addition of agar as stabilizer. Bay and clove bud EO are less active. Lecithin diminished antibacterial properties. The bactericidal concentration of oregano EO irreversibly damaged E. coli O157:H7 cells within 1 min. Oregano and light thyme EO, particularly when enhanced by agar stabilizer, may be effective in reducing the number or preventing the growth of E. coli O157:H7 in foods.

  13. Reduction of Escherichia coli O157:H7 in Biofilms Using Bacteriophage BPECO 19.

    PubMed

    Sadekuzzaman, Mohammad; Yang, Sungdae; Mizan, Md Furkanur Rahaman; Ha, Sang-Do

    2017-06-01

    Biofilm formation is a growing concern in the food industry. Escherichia coli O157:H7 is one of the most important foodborne pathogens that can persists in food and food-related environments and subsequently produce biofilms. The efficacy of bacteriophage BPECO 19 was evaluated against three E. coli O157:H7 strains in biofilms. Biofilms of the three E. coli O157:H7 strains were grown on abiotic (stainless steel, rubber, and minimum biofilm eradication concentration [MBEC TM ] device) and biotic (lettuce) surfaces at different temperatures. The effectiveness of bacteriophage BPECO 19 in reducing preformed biofilms on these surfaces was further evaluated by treating the surfaces with a phage suspension (10 8 PFU/mL) for 2 h. The results indicated that the phage treatment significantly reduced (P  < 0.05) the number of adhered cells in all the surfaces. Following phage treatment, the viability of adhered cells was reduced by ≥3 log CFU/cm 2 , 2.4 log CFU/cm 2 , and 3.1 log CFU/peg in biofilms grown on stainless steel, rubber, and the MBEC TM device, respectively. Likewise, the phage treatment reduced cell viability by ≥2 log CFU/cm 2 in biofilms grown on lettuce. Overall, these results suggested that bacteriophages such as BPECO 19 could be effective in reducing the viability of biofilm-adhered cells. © 2017 Institute of Food Technologists®.

  14. Shiga Toxin–Producing Escherichia coli O157, England and Wales, 1983–2012

    PubMed Central

    Byrne, Lisa; Smith, Geraldine A.; Elson, Richard; Harris, John P.; Salmon, Roland; Smith, Robert; O’Brien, Sarah J.; Adak, Goutam K.; Jenkins, Claire

    2016-01-01

    We evaluated clinical Shiga toxin–producing Escherichia coli O157 infections in England and Wales during 1983–2012 to describe changes in microbiological and surveillance methods. A strain replacement event was captured; phage type (PT) 2 decreased to account for just 3% of cases by 2012, whereas PT8 and PT21/28 strains concurrently emerged, constituting almost two thirds of cases by 2012. Despite interventions to control and reduce transmission, incidence remained constant. However, sources of infection changed over time; outbreaks caused by contaminated meat and milk declined, suggesting that interventions aimed at reducing meat cross-contamination were effective. Petting farm and school and nursery outbreaks increased, suggesting the emergence of other modes of transmission and potentially contributing to the sustained incidence over time. Studies assessing interventions and consideration of policies and guidance should be undertaken to reduce Shiga toxin–producing E. coli O157 infections in England and Wales in line with the latest epidemiologic findings. PMID:26982243

  15. Aptamer immobilization on amino-functionalized metal-organic frameworks: an ultrasensitive platform for the electrochemical diagnostic of Escherichia coli O157:H7.

    PubMed

    Shahrokhian, Saeed; Ranjbar, Saba

    2018-07-07

    Herein, we report the development of an electrochemical biosensor for Escherichia coli O157:H7 diagnostic based on amino-functionalized metal-organic frameworks (MOFs) as a new generation of organic-inorganic hybrid nanocomposites. The electrical and morphological properties of MOFs were enhanced by interweaving each isolated MOF crystal with polyaniline (PANI). Subsequent attachment of the amine-modified aptamer to the polyanilinated MOFs was accomplished using glutaraldehyde (GA) as a cross-linking agent. The prepared biocompatible platform was carefully characterized by means of field-emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and X-ray powder diffraction (XRD) techniques. The biosensor fabrication and its electrochemical characterizations were monitored by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Differential pulse voltammetry (DPV) was applied to monitoring and quantitation of the interaction between the aptamer and E. coli O157:H7 using methylene blue (MB) as an electrochemical indicator. Changes in the reduction peak current of MB in the presence of E. coli O157:H7 was recorded as an analytical signal and indicated a relationship with the logarithm of the E. coli O157:H7 concentration in the range of 2.1 × 10 1 to 2.1 × 10 7 CFU mL -1 with a LOQ of 21 CFU mL -1 and LOD of 2 CFU mL -1 . The electrochemical aptasensor displayed good recovery values for the detection of E. coli O157:H7 in environmental real samples and also could act as a smart device to investigate the effects of antibacterial agents against E. coli O157:H7.

  16. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves.

    PubMed

    Keskinen, Lindsey A; Burke, Angela; Annous, Bassam A

    2009-06-30

    This study compared the efficacy of chlorine (20-200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20-200 ppm chlorite ion concentration, Sanova), and aqueous chlorine dioxide (20-200 ppm chlorite ion concentration, TriNova) washes in reducing populations of Escherichia coli O157:H7 on artificially inoculated lettuce. Fresh-cut leaves of Romaine or Iceberg lettuce were inoculated by immersion in water containing E. coli O157:H7 (8 log CFU/ml) for 5 min and dried in a salad spinner. Leaves (25 g) were then washed for 2 min, immediately or following 24 h of storage at 4 degrees C. The washing treatments containing chlorite ion concentrations of 100 and 200 ppm were the most effective against E. coli O157:H7 populations on Iceberg lettuce, with log reductions as high as 1.25 log CFU/g and 1.05 log CFU/g for TriNova and Sanova wash treatments, respectively. All other wash treatments resulted in population reductions of less than 1 log CFU/g. Chlorine (200 ppm), TriNova, Sanova, and acidic electrolyzed water were all equally effective against E. coli O157:H7 on Romaine, with log reductions of approximately 1 log CFU/g. The 20 ppm chlorine wash was as effective as the deionized water wash in reducing populations of E. coli O157:H7 on Romaine and Iceberg lettuce. Scanning electron microscopy indicated that E. coli O157:H7 that was incorporated into biofilms or located in damage lettuce tissue remained on the lettuce leaf, while individual cells on undamaged leaf surfaces were more likely to be washed away.

  17. Quantitative transfer of Escherichia coli O157:H7 to equipment during small-scale production of fresh-cut leafy greens.

    PubMed

    Buchholz, Annemarie L; Davidson, Gordon R; Marks, Bradley P; Todd, Ewen C D; Ryser, Elliot T

    2012-07-01

    Postharvest contamination and subsequent spread of Escherichia coli O157:H7 can occur during shredding, conveying, fluming, and dewatering of fresh-cut leafy greens. This study quantified E. coli O157:H7 transfer from leafy greens to equipment surfaces during simulated small-scale commercial processing. Three to five batches (22.7 kg) of baby spinach, iceberg lettuce, and romaine lettuce were dip inoculated with a four-strain cocktail of avirulent, green fluorescent protein-labeled, ampicillinresistant E. coli O157:H7 to contain ∼10(6), 10(4), and 10(2) CFU/g, and then were processed after 1 h of draining at ∼23°C or 24 h of storage at 4°C. Lettuce was shredded using an Urschel TransSlicer at two different blade and belt speeds to obtain normal (5 by 5 cm) and more finely shredded (0.5 by 5 cm) lettuce. Thereafter, the lettuce was step conveyed to a flume tank and was washed and then dried using a shaker table and centrifugal dryer. Product (25-g) and water (40-ml) samples were collected at various points during processing. After processing, product contact surfaces (100 cm(2)) on the shredder (n = 14), conveyer (n = 8), flume tank (n = 11), shaker table (n = 9), and centrifugal dryer (n = 8) were sampled using one-ply composite tissues. Sample homogenates diluted in phosphate or neutralizing buffer were plated, with or without prior 0.45- m m membrane filtration, on Trypticase soy agar containing 0.6% yeast extract supplemented with 100 ppm of ampicillin to quantify green fluorescent protein-labeled E. coli O157:H7 under UV light. During leafy green processing, ∼90% of the E. coli O157:H7 inoculum transferred to the wash water. After processing, E. coli O157:H7 populations were highest on the conveyor and shredder (P<0.05), followed by the centrifugal dryer, flume tank, and shaker table, with ∼29% of the remaining product inoculum lost during centrifugal drying. Overall, less (P<0.05) of the inoculum remained on the product after centrifugally drying

  18. Role of curli and plant cultivation conditions on Escherichia coli O157:H7 internalization into spinach grown on hydroponics and in soil.

    PubMed

    Macarisin, Dumitru; Patel, Jitendra; Sharma, Vijay K

    2014-03-03

    Contamination of fresh produce could represent a public health concern because no terminal kill step is applied during harvest or at the processing facility to kill pathogens. In addition, once contaminated, pathogens may internalize into produce and be protected from disinfectants during the postharvest processing step. The objective of the current study was to determine the potential internalization of Escherichia coli O157:H7 into spinach roots and subsequent transfer to the edible parts. Because curli are involved in biofilm formation, we investigated whether their presence influence the internalization of E. coli O157:H7 into spinach. Further, the effect of the spinach cultivar on E. coli O157:H7 internalization was evaluated. Spinach plants were grown in contaminated soil as well as hydroponically to prevent mechanical wounding of the roots and inadvertent transfer of pathogens from the contamination source to the non-exposed plant surfaces. Results showed that E. coli O157:H7 could internalize into hydroponically grown intact spinach plants through the root system and move to the stem and leaf level. The incidence of internalization was significantly higher in hydroponically grown plants when roots were exposed to 7 log CFU/mL compared to those exposed to 5 log CFU/mL. The effect of cultivar on E. coli O157:H7 internalization was not significant (P>0.05) for the analyzed spinach varieties, internalization incidences showing almost equal distribution between Space and Waitiki, 49.06% and 50.94% respectively. Wounding of the root system in hydroponically grown spinach increased the incidence of E. coli O157:H7 internalization and translocation to the edible portions of the plant. Experimental contamination of the plants grown in soil resulted in a greater number of internalization events then in those grown hydroponically, suggesting that E. coli O157:H7 internalization is dependent on root damage, which is more likely to occur when plants are grown in soil

  19. Combined effects of mustard flour, acetic acid, and salt against Esherichia coil O157:H7 stored at 5 and 22 degrees C.

    PubMed

    Rhee, Min-Suk; Dougherty, Richard H; Kang, Dong-Hyun

    2002-10-01

    The combined effects of acetic acid and mustard flour were investigated to ascertain their impact on Escherichia coli O157:H7 stored at 5 and 22 degrees C. Samples were prepared with various concentrations of acetic acid (0, 0.25, 0.5, 0.75, and 1% [vol/vol]) combined with 10% (wt/vol) Baltimore or Coleman mustard flour and 2% (fixed; wt/vol) sodium chloride. An acid-adapted mixture of three E. coli O157:H7 strains (10(6) to 10(7) CFU/ml) was inoculated into prepared mustard samples that were stored at 5 and 22 degrees C, and samples were assayed periodically for the survival of E. coli O157:H7. The numbers of E. coli O157:H7 were reduced much more rapidly at 22 degrees C than at 5 degrees C. E. coli O157:H7 was rapidly reduced to below the detection limit (<0.3 log10, CFU/ml) after 1 day at 22 degrees C, whereas it survived for up to 5 days at 5 degrees C. There was no synergistic or additive effect with regard to the killing of E. coli O157:H7 with the addition of small amounts of acetic acid to the mustard flour. When stored at 5 degrees C, mustard in combination with 0.25 (M-0.25), 0.5 (M-0.5), and 0.75% (M-0.75) acetic acid exerted less antimicrobial activity than the control (M-0). The order of lethality at 5 degrees C was generally M-0.25 = M-0.5 < M-0.75 = M-0 < M-1. The addition of small amounts of acetic acid (<0.75%) to mustard retards the reduction of E coli O157:H7. Statistical reduction in populations of E. coli O157:H7 (P < 0.05) was enhanced relative to that of the control (mustard alone) only with the addition of 1% acetic acid. This information may help mustard manufacturers to understand the antimicrobial activity associated with use of mustard flour in combination with acetic acid.

  20. Influence of Vacuum Cooling on Escherichia coli O157:H7 Infiltration in Fresh Leafy Greens via a Multiphoton-Imaging Approach

    PubMed Central

    Vonasek, Erica

    2015-01-01

    Microbial pathogen infiltration in fresh leafy greens is a significant food safety risk factor. In various postharvest operations, vacuum cooling is a critical process for maintaining the quality of fresh produce. The overall goal of this study was to evaluate the risk of vacuum cooling-induced infiltration of Escherichia coli O157:H7 into lettuce using multiphoton microscopy. Multiphoton imaging was chosen as the method to locate E. coli O157:H7 within an intact lettuce leaf due to its high spatial resolution, low background fluorescence, and near-infrared (NIR) excitation source compared to those of conventional confocal microscopy. The variables vacuum cooling, surface moisture, and leaf side were evaluated in a three-way factorial study with E. coli O157:H7 on lettuce. A total of 188 image stacks were collected. The images were analyzed for E. coli O157:H7 association with stomata and E. coli O157:H7 infiltration. The quantitative imaging data were statistically analyzed using analysis of variance (ANOVA). The results indicate that the low-moisture condition led to an increased risk of microbial association with stomata (P < 0.05). Additionally, the interaction between vacuum cooling levels and moisture levels led to an increased risk of infiltration (P < 0.05). This study also demonstrates the potential of multiphoton imaging for improving sensitivity and resolution of imaging-based measurements of microbial interactions with intact leaf structures, including infiltration. PMID:26475109

  1. A portable smart-phone device for rapid and sensitive detection of E. coli O157:H7 in Yoghurt and Egg.

    PubMed

    Zeinhom, Mohamed Maarouf Ali; Wang, Yijia; Song, Yang; Zhu, Mei-Jun; Lin, Yuehe; Du, Dan

    2018-01-15

    The detection of E. coli O157:H7 in foods has held the attention of many researchers because of the seriousness attributed to this pathogen. In this study, we present a simple, sensitive, rapid and portable smartphone based fluorescence device for E. coli O157:H7 detection. This field-portable fluorescent imager on the smartphone involves a compact laser-diode-based photosource, a long-pass (LP) thin-film interference filter and a high-quality insert lenses. The design of the device provided a low noise to background imaging system. Based on a sandwich ELISA and the specific recognition of antibody to E. coli O157:H7, the sensitive detection of E. coli O157:H7 were realized both in standard samples and real matrix in yoghurt and egg on our device. The detection limit are 1 CFU/mL and 10 CFU/mL correspondingly. Recovery percentages of spiked yogurt and egg samples with 10 3 , 10 4 and 10 5 CFU/mL E. coli O157:H7 were 106.98, 96.52 and 102.65 (in yogurt) and 107.37, 105.64 and 93.84 (in egg) samples using our device, respectively. Most importantly, the entire process could be quickly completed within two hours. This smartphone based device provides a simple, rapid, sensitive detection platform for fluorescent imaging which applied in pathogen detection for food safety monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Genetic Relatedness and Novel Sequence Types of Non-O157 Shiga Toxin-Producing Escherichia coli Strains Isolated in Argentina.

    PubMed

    Cadona, Jimena S; Bustamante, Ana V; González, Juliana; Sanso, A Mariel

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen responsible for severe disease in humans such as hemolytic uremic syndrome (HUS) and cattle, the principal reservoir. Identification of the clones/lineages is important as several characteristics, among them propensity to cause disease varies with STEC phylogenetic origin. At present, we do not know what STEC clones, especially of non-O157:H7, are circulating in Argentina. To fill this knowledge gap we assessed the genetic diversity of STEC strains isolated in Argentina from various sources, mostly cattle and food, using multilocus sequence typing (MLST). Our objectives were to determine the phylogenetic relationships among strains and to compare them with strains from different geographic origins, especially with those from clinical human cases, in order to evaluate their potential health risk. A total of 59 STEC isolates from 41 serotypes were characterized by MLST. Analysis using EcMLST database identified 38 sequence types (ST), 17 (45%) of which were new STs detected in 18 serotypes. Fifteen out of 38 STs identified were grouped into 11 clonal groups (CGs) and, 23 not grouped in any of the defined CGs. Different STs were found in the same serotype. Results highlighted a high degree of phylogenetic heterogeneity among Argentinean strains and they showed that several cattle and food isolates belonged to the same STs that are commonly associated with clinical human cases in several geographical areas. STEC is a significant public health concern. Argentina has the highest incidence of HUS in the world and this study provides the first data about which STEC clones are circulating. Data showed that most of them might pose a serious zoonotic risk and this information is important for developing public health initiatives. However, the actual potential risk will be defined by the virulence profiles, which may differ among isolates belonging to the same ST.

  3. Fate of naturally occurring Escherichia coli O157:H7 and other zoonotic pathogens during minimally managed bovine feedlot manure composting processes

    USDA-ARS?s Scientific Manuscript database

    Reducing Escherichia coli O157:H7 in livestock manures before application to cropland is critical for reducing the risk of foodborne illness associated with produce. Our objective was to determine the fate of naturally occurring E. coli O157:H7 and other pathogens during minimally managed on-farm bo...

  4. Development of a Quantitative Competitive PCR Assay for Detection and Quantification of Escherichia coli O157:H7 Cells

    PubMed Central

    Li, Wenli; Drake, Mary Anne

    2001-01-01

    A quantitative competitive PCR (QC-PCR) assay was developed to detect and quantify Escherichia coli O157:H7 cells. From 103 to 108 CFU of E. coli O157:H7 cells/ml was quantified in broth or skim milk, and cell densities predicted by QC-PCR were highly related to viable cell counts (r2 = 0.99 and 0.93, respectively). QC-PCR has potential for quantitative detection of pathogenic bacteria in foods. PMID:11425755

  5. Verocytotoxigenic Escherichia coli O157 in animals on public amenity premises in England and Wales, 1997 to 2007.

    PubMed

    Pritchard, G C; Smith, R; Ellis-Iversen, J; Cheasty, T; Willshaw, G A

    2009-05-02

    At the request of the public health authorities, 31 public amenity premises in England and Wales containing animals of various species were investigated for the presence of verocytotoxigenic Escherichia coli (VTEC) O157 between 1997 and 2007, because of putative associations with human cases. VTEC O157 was confirmed in one or more species on 19 (61.3 per cent) of the premises. There were significant associations between the presence of VTEC O157 and the number of species sampled, the size of the enterprise, the presence of young cattle and the presence of adult pigs. E coli O157 was isolated from 305 (17.8 per cent) of 1715 samples taken from all the premises, and verocytotoxin genes were detected by PCR in 184 (98.4 per cent) of 187 representative isolates. On positive premises, the highest mean proportion of positive samples (29.0 per cent) was in cattle, followed by sheep (24.4 per cent), donkeys (14.6 per cent), pigs (14.3 per cent), horses (12.3 per cent) and goats (9.9 per cent). A high proportion of positive samples was obtained from camelid species sampled on three of the premises. The main phage types (PT) were 2 and 21/28, which were those most commonly isolated from human cases during the same period. A single PT was detected on 14 of the 19 positive premises, with up to six different species having the same PT.

  6. Metabolite profiling of foodborne disease significance – case study Escherichia coli O157

    USDA-ARS?s Scientific Manuscript database

    In the United States, Escherichia coli (E. coli) O157 infection, associated with the consumption of contaminated ground beef, has resulted in an unnecessary burden for both the meat industry and the health care system, with meat recalls and often fatal human disease. Cattle, the primary reservoirs f...

  7. Soil Conditions That Can Alter Natural Suppression of Escherichia coli O157:H7 in Ohio Specialty Crop Soils

    PubMed Central

    Williams, Michele L.; LeJeune, Jeffrey T.

    2015-01-01

    Food-borne pathogen persistence in soil fundamentally affects the production of safe vegetables and small fruits. Interventions that reduce pathogen survival in soil would have positive impacts on food safety by minimizing preharvest contamination entering the food chain. Laboratory-controlled studies determined the effects of soil pH, moisture content, and soil organic matter (SOM) on the survivability of this pathogen through the creation of single-parameter gradients. Longitudinal field-based studies were conducted in Ohio to quantify the extent to which field soils suppressed Escherichia coli O157:H7 survival. In all experiments, heat-sensitive microorganisms were responsible for the suppression of E. coli O157 in soil regardless of the chemical composition of the soil. In laboratory-based studies, soil pH and moisture content were primary drivers of E. coli O157 survival, with increases in pH after 48 h (P = 0.02) and decreases in moisture content after 48 h (P = 0.007) significantly increasing the log reduction of E. coli O157 numbers. In field-based experiments, E. coli O157 counts from both heated and unheated samples were sensitive to both season (P = 0.004 for heated samples and P = 0.001 for unheated samples) and region (P = 0.002 for heated samples and P = 0.001 for unheated samples). SOM was observed to be a more significant driver of pathogen suppression than the other two factors after 48 h at both planting and harvest (P = 0.002 at planting and P = 0.058 at harvest). This research reinforces the need for both laboratory-controlled experiments and longitudinal field-based experiments to unravel the complex relationships controlling the survival of introduced organisms in soil. PMID:25934621

  8. T4-Like Genome Organization of the Escherichia coli O157:H7 Lytic Phage AR1▿†

    PubMed Central

    Liao, Wei-Chao; Ng, Wailap Victor; Lin, I-Hsuan; Syu, Wan-Jr; Liu, Tze-Tze; Chang, Chuan-Hsiung

    2011-01-01

    We report the genome organization and analysis of the first completely sequenced T4-like phage, AR1, of Escherichia coli O157:H7. Unlike most of the other sequenced phages of O157:H7, which belong to the temperate Podoviridae and Siphoviridae families, AR1 is a T4-like phage known to efficiently infect this pathogenic bacterial strain. The 167,435-bp AR1 genome is currently the largest among all the sequenced E. coli O157:H7 phages. It carries a total of 281 potential open reading frames (ORFs) and 10 putative tRNA genes. Of these, 126 predicted proteins could be classified into six viral orthologous group categories, with at least 18 proteins of the structural protein category having been detected by tandem mass spectrometry. Comparative genomic analysis of AR1 and four other completely sequenced T4-like genomes (RB32, RB69, T4, and JS98) indicated that they share a well-organized and highly conserved core genome, particularly in the regions encoding DNA replication and virion structural proteins. The major diverse features between these phages include the modules of distal tail fibers and the types and numbers of internal proteins, tRNA genes, and mobile elements. Codon usage analysis suggested that the presence of AR1-encoded tRNAs may be relevant to the codon usage of structural proteins. Furthermore, protein sequence analysis of AR1 gp37, a potential receptor binding protein, indicated that eight residues in the C terminus are unique to O157:H7 T4-like phages AR1 and PP01. These residues are known to be located in the T4 receptor recognition domain, and they may contribute to specificity for adsorption to the O157:H7 strain. PMID:21507986

  9. Effect of caliber size and fat level on the inactivation of E. coli O157:H7 in dry fermented sausages.

    PubMed

    De Souza, James; Ahmed, Rafath; Strange, Philip; Barbut, Shai; Balamurugan, S

    2018-02-02

    Dry fermented sausages (DFS) have been subject to numerous validation studies, as pathogen reduction heavily relies on both ingredients and processing. In this study the effect of product caliber size (32, 55, 80mm), and fat level (low, 9.67%; high, 18.46% wt/wt) on the inactivation of E. coli O157:H7 during DFS production was examined. Sausages containing a five-strain cocktail of E. coli O157:H7 at 10 7 CFU/g were manufactured and monitored for changes in physicochemical properties and inoculated E. coli O157:H7 numbers were enumerated during the DFS production stages and log reduction rates were calculated. Significant (P<0.01) reduction in pH from 5.9 to 4.9 was observed in all sausages within 72h of fermentation; however, the observed pH reduction was not significantly (P>0.05) different among sausages of different caliber size or fat levels. No significant (P>0.05) reduction in a w was observed during fermentation of the sausages. However, during the drying phase, sausages with larger caliber sizes required a significantly longer duration of drying to achieve the same a w of smaller caliber size sausages. For instance, to achieve an a w of ≤0.9, following 5days of fermentation/curing, 80mm caliber sausages required up to 27days of drying compared with 13 and 6days for 55 and 32mm caliber size sausages, respectively. Fat levels on the other hand did not significantly (P>0.05) effect the reduction of a w during drying of the sausages. During the fermentation stage there was a significant and rapid reduction in E. coli O157:H7 counts by about 1.1- to 1.4-log units, but was not significantly different among sausages of different caliber size and fat levels. Considering the whole process, only caliber size had a significant effect on log reduction of E. coli O157:H7. ANOVA of log reduction rates of E. coli O157:H7 among sausages of different caliber size and fat levels revealed no significant differences during the fermentation, however, during the drying of the

  10. Design and activity of novel lactoferrampin analogues against O157:H7 enterohemorrhagic Escherichia coli.

    PubMed

    Cruz, Jenniffer; Ortiz, Claudia; Guzmán, Fanny; Cárdenas, Constanza; Fernandez-Lafuente, Roberto; Torres, Rodrigo

    2014-04-01

    Lactoferrampin 265-284 (LFampin 265-284) is a peptide consisting of residues 265-284 of N1-domain of bovine Lactoferrin (LF). This peptide has several cationic groups in the C-terminal lobe, exhibiting an antibacterial activity against a wide range of microorganisms. However, LFampin 265-284 exhibits low antimicrobial activity against the O157:H7 enterohaemorrhagic Escherichia coli (EHEC O157:H7) when compared with Lactoferrin chimera and Lactoferricin. Here, we have designed three analogues of LFampin 265-284 based on the distribution of cationic groups, hydrophobicity, size, and sequence. Analogues were synthesized by solid phase chemistry using Fmoc methodology obtaining peptides with 95% purity. All peptides maintain the ability to adopt helical conformations (checked by circular dichroism spectra and molecular simulations). Some of these analogues exhibited a significant increase in antimicrobial activity by counting colony forming units against EHEC O157:H7 compared to native LFampin 265-284, with MIC of 10 and 40 µM for 264G-D265K and 264G-D265K/S272R, respectively. The incorporation of a GKLI sequence in the N-terminal lobe increased dramatically its antibacterial activity, an effect which has been attributed to the addition of cationic groups in the N-terminal side that may stabilize the helical conformation of the new designed peptides. Copyright © 2013 Wiley Periodicals, Inc.

  11. Differences in inactivation of Escherichia coli O157:H7 strains in ground beef following repeated high pressure processing treatments and cold storage.

    PubMed

    Zhou, Yijing; Karwe, Mukund V; Matthews, Karl R

    2016-09-01

    High pressure processing (HPP) is a safe non-thermal processing method to effectively improve food safety. In this study, HPP treatment followed by cold storage was investigated to reduce Escherichia coli O157:H7 in ground beef. Experiments were conducted using ground beef contaminated with six E. coli O157:H7 strains one at a time or as a cocktail. Control and inoculated ground beef samples were HPP at 25 °C, 35 °C, and 45 °C, at 400 MPa and pre-determined number of pressure cycles totaling a holding time of 15 min. Optimum HPP parameters were 25 °C, 400 MPa at five pressure cycles of 3 min each which achieved a 5-log reduction of E. coli O157:H7 in ground beef. Storing HPP processed ground beef at 4 °C or -20 °C further decreased (P < 0.05) the E. coli O157:H7 population. An effective HPP treatment (5-log reduction) was developed that could be used post-processing to reduce the risk associated with E. coli O157:H7 contamination in ground beef. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform.

    PubMed

    Güner, Ahmet; Çevik, Emre; Şenel, Mehmet; Alpsoy, Lokman

    2017-08-15

    An electrochemical immunosensor for the common food pathogen Escherichia coli O157:H7 was developed. This novel immunosensor based on the PPy/AuNP/MWCNT/Chi hybrid bionanocomposite modified pencil graphite electrode (PGE). This hybrid bionanocomposite platform was modified with anti-E. coli O157:H7 monoclonal antibody. The prepared bionanocomposite platform and immunosensor was characterized by using cyclic voltammetry (CV). Under the optimum conditions, the results have shown the order of the preferential selectivity of the method is gram negative pathogenic species E. coli O157:H7. Concentrations of E. coli O157:H7 from 3×10 1 to 3×10 7 cfu/mL could be detected. The detection limit was ∼30cfu/mL in PBS buffer. Briefly, we developed a high sensitive electrochemical immunosensor for specific detection of E. coli O157:H7 contamination with the use of sandwich assay evaluated in this study offered a reliable means of quantification of the bacteria. For the applications in food quality and safety control, our immunosensor showed reproducibility and stability. Copyright © 2017. Published by Elsevier Ltd.

  13. Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157.

    PubMed

    Chase-Topping, Margo; Gally, David; Low, Chris; Matthews, Louise; Woolhouse, Mark

    2008-12-01

    Cattle that excrete more Escherichia coli O157 than others are known as super-shedders. Super-shedding has important consequences for the epidemiology of E. coli O157 in cattle--its main reservoir--and for the risk of human infection, particularly owing to environmental exposure. Ultimately, control measures targeted at super-shedders may prove to be highly effective. We currently have only a limited understanding of both the nature and the determinants of super-shedding. However, super-shedding has been observed to be associated with colonization at the terminal rectum and might also occur more often with certain pathogen phage types. More generally, epidemiological evidence suggests that super-shedding might be important in other bacterial and viral infections.

  14. Using fluorescence measurement of zinc ions liberated from ZnS nanoparticle labels in bioassay for Escherichia coli O157:H7

    NASA Astrophysics Data System (ADS)

    Cowles, Chad L.; Zhu, Xiaoshan; Pai, Chi-Yun

    2011-10-01

    In this study, an alternative approach using ZnS nanoparticle biolabels as fluorescence signal transducers is reported for the immunoassay of E. coli O157:H7 in tap water samples. Instead of measuring the fluorescence of ZnS nanoparticles in the assay, the fluorescence signal is generated through the binding of zinc ions released from nanoparticle labels with zinc-ion sensitive fluorescence indicator Fluozin-3. In the assay, ZnS nanoparticles around 50 nm in diameter were synthesized, bioconjugated, and applied for the detection of E. coli O157:H7. The assay shows a detection range over two orders of magnitude and a detection limit around 1000 colony-forming units (cfu) of E. coli O157:H7.

  15. Assessment of the Contamination of Some Foodstuffs by Escherichia coli O157 in Benin, West Africa

    PubMed Central

    Bankole, Honoré Sourou; Dougnon, Victorien Tamègnon; Johnson, Roch Christian; Dougnon, T. J.; Yehouenou, Boniface; Kougblenou, Sylvain; Agonsa, Maxime; Legonou, Magloire; Dadie, Thomas

    2014-01-01

    Escherichia coli O157 is a pathogenic bacterium causing haemorrhagic colitis. It represents a serious public health problem in Northern America and Europe, which can plague Africa. Most cases of mentioned poisoning were related to contaminated meat products and vegetables. The present work aimed to estimate the prevalence of E. coli O157 in meat and vegetables in Benin. For this purpose, 6 lots of faeces samples from pigs and 8 from cattle were collected at the farms on the outskirts of Cotonou. Similarly, 20 samples of carcasses, 20 samples of intestines and stomach, and 20 surfaces samples of slaughtering equipment were taken. Vegetables and environment materials in gardens have also been sampled for 84 samples. Bacteriological analyses revealed a percentage of contamination of 50% for pig faeces and 25% for cattle ones. All the meats from stalling parks have been contaminated by this bacterium. For vegetables, 14.6% of samples were contaminated by E. coli O157. The presence of this pathovar in animal breeding and slaughtering environment and in the gardens shows that Benin is not aware of the risks of foodborne illness associated with the consumption of contaminated products. Therefore, it urges including that germ in a systematic search during safety control of food products in Benin. PMID:25506362

  16. Contributions of EspA Filaments and Curli Fimbriae in Cellular Adherence and Biofilm Formation of Enterohemorrhagic Escherichia coli O157:H7

    PubMed Central

    Sharma, Vijay K.; Kudva, Indira T.; Bearson, Bradley L.; Stasko, Judith A.

    2016-01-01

    In Escherichia coli O157:H7 (O157), the filamentous structure of the type III secretion system is produced from the polymerization of the EspA protein. EspA filaments are essential for O157 adherence to epithelial cells. In previous studies, we demonstrated that O157 hha deletion mutants showed increased adherence to HEp-2 cells and produced abundant biofilms. Transcriptional analysis revealed increased expression of espA as well as the csgA gene, which encodes curli fimbriae that are essential for biofilm formation. In the present study, we constructed hha espA, hha csgA, and hha csgA espA deletion mutants to determine the relative importance of EspA and CsgA in O157 adherence to HEp-2 cells and biofilm formation. In vitro adherence assays, conducted at 37°C in a tissue culture medium containing 0.1% glucose, showed that HEp-2 cell adherence required EspA because hha espA and hha csgA espA mutants adhered to HEp-2 cells at higher levels only when complemented with an espA-expressing plasmid. Biofilm assays performed at 28°C in a medium lacking glucose showed dependency of biofilm formation on CsgA; however EspA was not produced under these conditions. Despite production of detectable levels of EspA at 37°C in media supplemented with 0.1% glucose, the biofilm formation occurred independent of EspA. These results indicate dependency of O157 adherence to epithelial cells on EspA filaments, while CsgA promoted biofilm formation under conditions mimicking those found in the environment (low temperature with nutrient limitations) and in the digestive tract of an host animal (higher temperature and low levels of glucose). PMID:26900701

  17. Intestinal parasite infections in a rural community of Rio de Janeiro (Brazil): Prevalence and genetic diversity of Blastocystis subtypes.

    PubMed

    Barbosa, Carolina Valença; Barreto, Magali Muniz; Andrade, Rosemary de Jesus; Sodré, Fernando; d'Avila-Levy, Claudia Masini; Peralta, José Mauro; Igreja, Ricardo Pereira; de Macedo, Heloisa Werneck; Santos, Helena Lucia Carneiro

    2018-01-01

    Intestinal parasitic infections are considered a serious public health problem and widely distributed worldwide, mainly in urban and rural environments of tropical and subtropical countries. Globally, soil-transmitted helminths and protozoa are the most common intestinal parasites. Blastocystis sp. is a highly prevalent suspected pathogenic protozoan, and considered an unusual protist due to its significant genetic diversity and host plasticity. A total of 294 stool samples were collected from inhabitants of three rural valleys in Rio de Janeiro, Brazil. The stool samples were evaluated by parasitological methods, fecal culture, nested PCR and PCR/Sequencing. Overall prevalence by parasitological analyses was 64.3% (189 out of 294 cases). Blastocystis sp. (55.8%) was the most prevalent, followed by Endolimax nana (18.7%), Entamoeba histolytica complex (7.1%), hookworm infection (7.1%), Entomoeba coli (5.8%), Giardia intestinalis (4.1%), Iodamoeba butchilii (1.0%), Trichuris trichiura (1.0%), Pentatrichomonas hominis (0.7%), Enterobius vermicularis (0.7%), Ascaris lumbricoides (0.7%) and Strongyloides stercoralis (0.7%). Prevalence of IPIs was significantly different by gender. Phylogenetic analysis of Blastocystis sp. and BLAST search revealed five different subtypes: ST3 (34.0%), ST1 (27.0%), ST2 (27.0%), ST4 (3.5%), ST8 (7.0%) and a non-identified subtype. Our findings demonstrate that intestinal parasite infection rates in rural areas of the Sumidouro municipality of Rio de Janeiro, Brazil are still high and remain a challenge to public health. Moreover, our data reveals significant genetic heterogeneity of Blastocystis sp. subtypes and a possible novel subtype, whose confirmation will require additional data. Our study contributes to the understanding of potential routes of transmission, epidemiology, and genetic diversity of Blastocystis sp. in rural areas both at a regional and global scale.

  18. Intestinal parasite infections in a rural community of Rio de Janeiro (Brazil): Prevalence and genetic diversity of Blastocystis subtypes

    PubMed Central

    Barbosa, Carolina Valença; Barreto, Magali Muniz; Andrade, Rosemary de Jesus; Sodré, Fernando; d’Avila-Levy, Claudia Masini; Peralta, José Mauro; Igreja, Ricardo Pereira; de Macedo, Heloisa Werneck

    2018-01-01

    Background Intestinal parasitic infections are considered a serious public health problem and widely distributed worldwide, mainly in urban and rural environments of tropical and subtropical countries. Globally, soil-transmitted helminths and protozoa are the most common intestinal parasites. Blastocystis sp. is a highly prevalent suspected pathogenic protozoan, and considered an unusual protist due to its significant genetic diversity and host plasticity. Methodology/main findings A total of 294 stool samples were collected from inhabitants of three rural valleys in Rio de Janeiro, Brazil. The stool samples were evaluated by parasitological methods, fecal culture, nested PCR and PCR/Sequencing. Overall prevalence by parasitological analyses was 64.3% (189 out of 294 cases). Blastocystis sp. (55.8%) was the most prevalent, followed by Endolimax nana (18.7%), Entamoeba histolytica complex (7.1%), hookworm infection (7.1%), Entomoeba coli (5.8%), Giardia intestinalis (4.1%), Iodamoeba butchilii (1.0%), Trichuris trichiura (1.0%), Pentatrichomonas hominis (0.7%), Enterobius vermicularis (0.7%), Ascaris lumbricoides (0.7%) and Strongyloides stercoralis (0.7%). Prevalence of IPIs was significantly different by gender. Phylogenetic analysis of Blastocystis sp. and BLAST search revealed five different subtypes: ST3 (34.0%), ST1 (27.0%), ST2 (27.0%), ST4 (3.5%), ST8 (7.0%) and a non-identified subtype. Conclusions/significance Our findings demonstrate that intestinal parasite infection rates in rural areas of the Sumidouro municipality of Rio de Janeiro, Brazil are still high and remain a challenge to public health. Moreover, our data reveals significant genetic heterogeneity of Blastocystis sp. subtypes and a possible novel subtype, whose confirmation will require additional data. Our study contributes to the understanding of potential routes of transmission, epidemiology, and genetic diversity of Blastocystis sp. in rural areas both at a regional and global scale. PMID

  19. Escherichia coli O157:H7 in beef cattle: on farm contamination and pre-slaughter control methods.

    PubMed

    Soon, J M; Chadd, S A; Baines, R N

    2011-12-01

    This paper addresses food safety in beef cattle production, with particular emphasis on factors that affect the prevalence of Escherichia coli O157:H7 in beef cattle and on control methods that have been investigated. Product recalls and foodborne diseases due to this organism continue to occur even though control measures have been under investigation for over 20 years. Most meatborne outbreaks are due to improper food handling practices and consumption of undercooked meat. However, the majority of pathogenic bacteria that can spread at slaughter by cross-contamination can be traced back to the farm rather than originating from the slaughter plant. This would ideally require the adoption of rigorous on-farm intervention strategies to mitigate risks at the farm level. On-farm strategies to control and reduce E. coli O157:H7 at the farm level will reduce the risk of carcass contamination at slaughter and processing facilities although they will not eliminate E. coli O157:H7. The most successful strategy for reducing the risk of contamination of beef and beef products will involve the implementation of both pre- and post-harvest measures.

  20. [Construction of enterohemorrhagic Escherichia coli O157:H7 strains with espF gene deletion and complementation].

    PubMed

    Hua, Ying; Sun, Qi; Wang, Xiangyu; DU, Yanli; Shao, Na; Zhang, Qiwei; Zhao, Wei; Wan, Chengsong

    2015-11-01

    To construct enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains with delection espF gene and its nucleotide fragment and with espF gene complementation. A pair of homologous arm primers was designed to amplify the gene fragment of kanamycin resistance, which was transformed into EHEC O157:H7 EDL933w strain via the PKD46 plasmid by electroporation. The replacement of the espF gene by kanamycin resistance gene through the PKD46-mediated red recombination system was confirmed by PCR and sequencing. The entire coding region of espF along with its nucleotide fragment was amplified by PCR and cloned into pBAD33 plasmid, which was transformed into a mutant strain to construct the strain with espF complementation. RT-PCR was used to verify the transcription of espF and its nucleotide fragment in the complemented mutant strain. We established EHEC O157:H7 EDL933w strains with espF gene deletion and with espF gene complementation. Both espF and its nucleotide fragment were transcribed in the complemented mutant strain. The two strains provide a basis for further study of the regulatory mechanism of espF.