Sample records for o2 a-band absorption

  1. Sub-band-gap absorption in Ga2O3

    NASA Astrophysics Data System (ADS)

    Peelaers, Hartwin; Van de Walle, Chris G.

    2017-10-01

    β-Ga2O3 is a transparent conducting oxide that, due to its large bandgap of 4.8 eV, exhibits transparency into the UV. However, the free carriers that enable the conductivity can absorb light. We study the effect of free carriers on the properties of Ga2O3 using hybrid density functional theory. The presence of free carriers leads to sub-band-gap absorption and a Burstein-Moss shift in the onset of absorption. We find that for a concentration of 1020 carriers, the Fermi level is located 0.23 eV above the conduction-band minimum. This leads to an increase in the electron effective mass from 0.27-0.28 me to 0.35-0.37 me and a sub-band-gap absorption band with a peak value of 0.6 × 103 cm-1 at 3.37 eV for light polarized along the x or z direction. Both across-the-gap and free-carrier absorption depend strongly on the polarization of the incoming light. We also provide parametrizations of the conduction-band shape and the effective mass as a function of the Fermi level.

  2. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  3. Band gap of corundumlike α -Ga2O3 determined by absorption and ellipsometry

    NASA Astrophysics Data System (ADS)

    Segura, A.; Artús, L.; Cuscó, R.; Goldhahn, R.; Feneberg, M.

    2017-07-01

    The electronic structure near the band gap of the corundumlike α phase of Ga2O3 has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400-190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which yields an exciton binding energy of 110 meV and direct band gaps of 5.61 and 6.44 eV. The large broadening of the absorption onset is related to the slightly indirect character of the material.

  4. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    NASA Astrophysics Data System (ADS)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  5. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    PubMed

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Band-engineering of TiO2 as a wide-band gap semiconductor using organic chromophore dyes

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Kartini, I.; Ramelan, A. H.; Saputri, L. N. M. Z.; Munawaroh, H.

    2017-07-01

    Bond-engineering as applied to semiconductor materials refers to the manipulation of the energy bands in order to control charge transfer processes in a device. When the device in question is a photoelectrochemical cell, the charges affected by drift become the focus of the study. The ideal band gap of semiconductors for enhancement of photocatalyst activity can be lowered to match with visible light absorption and the location of conduction Band (CB) should be raised to meet the reducing capacity. Otherwise, by the addition of the chromofor organic dyes, the wide-band gab can be influences by interacation resulting between TiO2 surface and the dyes. We have done the impruvisation wide-band gap of TiO2 by the addition of organic chromophore dye, and the addition of transition metal dopand. The TiO2 morphology influence the light absorption as well as the surface modification. The organic chromophore dye was syntesized by formation complexes compound of Co(PAR)(SiPA)(PAR)= 4-(2-piridylazoresorcinol), SiPA = Silyl propil amine). The result showed that the chromophore groups adsorbed onto TiO2 surface can increase the visible light absorption of wide-band gab semiconductor. Initial absorption of a chromophore will affect light penetration into the material surfaces. The use of photonic material as a solar cell shows this phenomenon clearly from the IPCE (incident photon to current conversion efficiency) measurement data. Organic chromophore dyes of Co(PAR)(SiPA) exhibited the long wavelength absorption character compared to the N719 dye (from Dyesol).

  7. Easily Dispersible NiFe2O4/RGO Composite for Microwave Absorption Properties in the X-Band

    NASA Astrophysics Data System (ADS)

    Bateer, Buhe; Zhang, Jianjao; Zhang, Hongchen; Zhang, Xiaochen; Wang, Chunyan; Qi, Haiqun

    2018-01-01

    Composites with good dispersion and excellent microwave absorption properties have important applications. Therefore, an easily dispersible NiFe2O4/reduced graphene oxide (RGO) composite has been prepared conveniently through a simple hydrothermal method. Highly crystalline, small size (about 7 nm) monodispersed NiFe2O4 nanoparticles (NPs) are evenly distributed on the surface of RGO. The microwave absorbability revealed that the NiFe2O4/RGO composite exhibits excellent microwave absorption properties in the X-band (8-12 GHz), and the minimum reflection loss of the NiFe2O4/RGO composite is -27.7 dB at 9.2 GHz. The NiFe2O4/RGO composite has good dispersibility in nonpolar solvent, which facilitates the preparation of stable commercial microwave absorbing coatings. It can be a promising candidate for lightweight microwave absorption materials in many application fields.

  8. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  9. The two-photon absorptivity of rotational transitions in the A2 Sigma hyperon + (v prime = O) - X-2 pion (v prime prime = O) gamma band of nitric oxide

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1982-01-01

    A predominantly single-mode pulsed dye laser system giving a well characterized spatial and temporal output suitable for absolute two-photon absorptivity measurements was used to study the NO gamma(0,0) S11 + R21 (J double prime = 7-1/2) transition. Using a calibrated induced-fluorescence technique, an absorptivity parameter of 2.8 + or - 1.4 x 10 to the minus 51st power cm to the 6th power was obtained. Relative strengths of other rotational transitions in the gamma(0,0) band were also measured and shown to compare well with predicted values in all cases except the O12 (J double prime = 10-1/2) transition.

  10. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.

    1992-01-01

    Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.

  11. Measurements and modeling of absorption by CO2 + H2O mixtures in the spectral region beyond the CO2 ν3-band head

    NASA Astrophysics Data System (ADS)

    Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.

    2018-05-01

    In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.

  12. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands.

    PubMed

    Zhao, Huanqin; Cheng, Yan; Liu, Wei; Yang, Zhihong; Zhang, Baoshan; Ji, Guangbin; Du, Youwei

    2018-07-20

    Special electric and magnetic characteristics make Fe 3 O 4 widely applied in the electromagnetic (EM) wave absorption region. However, for pure Fe 3 O 4 , it is still a challenge to simultaneously obtain high absorption intensity and broadband absorption at a low thickness, owing to its low dielectric property. As we realized, flake configuration and the porous structure have obviously promote the EM wave absorption property. Because the former can lead to multi-reflection between flakes and the latter is conductive to interface polarization, flaky Fe 3 O 4 with a porous and coarse surface was designed to overcome the deficiency of traditional Fe 3 O 4 particles. The experimental results demonstrate that the flaky configuration is conductive to enhancing the dielectric coefficient and optimizing impedance matching. Moreover, the complex permittivity rises with the aspect ratio of the sheet. Under a suitable dimension, the flaky Fe 3 O 4 could acquire targeted EM wave absorption capacity in the X band (8-12 GHz). In detail, the maximum reflection loss (RL) could reach a strong intensity of -49 dB at 2.05 mm. The effective absorption bandwidth (EAB) with RL below -10 dB is 4.32 (7.52-11.84) GHz, which is almost equivalent to the whole X band (8-12 GHz). Even more exciting, when regulating the thickness between 2.05 and 3.05 mm, the EAB could cover the entire C and X bands (4-12 GHz). This study provides a good reference for the future development of other ferromagnetic materials toward specific microwave bands.

  13. Optical absorption spectra and energy band gap in manganese containing sodium zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Sardarpasha, K. R.; Hanumantharaju, N.; Gowda, V. C. Veeranna

    2018-05-01

    Optical band gap energy in the system 25Na2O-(75-x)[0.6P2O5-0.4ZnO]-xMnO2 (where x = 0.5,1,5,10 and 20 mol.%) have been studied. The intensity of the absorption band found to increase with increase of MnO2 content. The decrease in the optical band gap energy with increase in MnO2 content in the investigated glasses is attributed to shifting of absorption edge to a longer wavelength region. The obtained results were discussed in view of the structure of phosphate glass network.

  14. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands

    NASA Astrophysics Data System (ADS)

    Zhao, Huanqin; Cheng, Yan; Liu, Wei; Yang, Zhihong; Zhang, Baoshan; Ji, Guangbin; Du, Youwei

    2018-07-01

    Special electric and magnetic characteristics make Fe3O4 widely applied in the electromagnetic (EM) wave absorption region. However, for pure Fe3O4, it is still a challenge to simultaneously obtain high absorption intensity and broadband absorption at a low thickness, owing to its low dielectric property. As we realized, flake configuration and the porous structure have obviously promote the EM wave absorption property. Because the former can lead to multi-reflection between flakes and the latter is conductive to interface polarization, flaky Fe3O4 with a porous and coarse surface was designed to overcome the deficiency of traditional Fe3O4 particles. The experimental results demonstrate that the flaky configuration is conductive to enhancing the dielectric coefficient and optimizing impedance matching. Moreover, the complex permittivity rises with the aspect ratio of the sheet. Under a suitable dimension, the flaky Fe3O4 could acquire targeted EM wave absorption capacity in the X band (8–12 GHz). In detail, the maximum reflection loss (RL) could reach a strong intensity of ‑49 dB at 2.05 mm. The effective absorption bandwidth (EAB) with RL below ‑10 dB is 4.32 (7.52–11.84) GHz, which is almost equivalent to the whole X band (8–12 GHz). Even more exciting, when regulating the thickness between 2.05 and 3.05 mm, the EAB could cover the entire C and X bands (4–12 GHz). This study provides a good reference for the future development of other ferromagnetic materials toward specific microwave bands.

  15. High resolution absorption cross sections for the A2Pi-X2Pi system of ClO

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Ravishankara, A. R.; Philen, D. L.; Davis, D. D.; Watson, R. T.

    1977-01-01

    High-resolution ultraviolet absorption cross-sections for the ClO molecule are obtained, with the aim of facilitating studies of ozone depletion resulting from the injection of chlorofluorocarbons into the atmosphere. The spectroscopic analysis, which involves a frequency-doubled tunable dye laser with a bandwidth of 0.015 A, is described. Studies of the rotational lines of the ClO A 2Pi 3/2-X2Pi 3/2 9-10 band were conducted. Peak cross-sections for the P and R lines of the 9-0 band are found to be 10.0, 9.6, 8.6, 10.6, 10.3, and 9.2 times ten to the negative seventeenth power cm squared, with estimated accuracy of plus or minus 25%. Problems in distinguishing between Cl-35 and Cl-37 absorption are also considered.

  16. Detection of transient infrared absorption of SO3 and 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH2)O(SO2)O] in the reaction CH2OO+SO2

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Ying; Dash, Manas Ranjan; Chung, Chao-Yu; Lee, Yuan-Pern

    2018-02-01

    We recorded time-resolved infrared absorption spectra of transient species produced on irradiation at 308 nm of a flowing mixture of CH2I2/O2/N2/SO2 at 298 K. Bands of CH2OO were observed initially upon irradiation; their decrease in intensity was accompanied by the appearance of an intense band at 1391.5 cm-1 that is associated with the degenerate SO-stretching mode of SO3, two major bands of HCHO at 1502 and 1745 cm-1, and five new bands near >1340, 1225, 1100, 940, and 880 cm-1. The band near 1340 cm-1 was interfered by absorption of SO2 and SO3, so its band maximum might be greater than 1340 cm-1. SO3 in its internally excited states was produced initially and became thermalized at a later period. The rotational contour of the band of thermalized SO3 agrees satisfactorily with the reported spectrum of SO3. These five new bands are tentatively assigned to an intermediate 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH2)O(SO2)O] according to comparison with anharmonic vibrational wavenumbers and relative IR intensities predicted for this intermediate. Observation of a small amount of cyc-(CH2)O(SO2)O is consistent with the expected reaction according to the potential energy scheme predicted previously. SO3+HCHO are the major products of the title reaction. The other predicted product channel HCOOH+SO2 was unobserved and its branching ratio was estimated to be <5%.

  17. Detection of transient infrared absorption of SO3 and 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH2)O(SO2)O] in the reaction CH2OO+SO2.

    PubMed

    Wang, Yi-Ying; Dash, Manas Ranjan; Chung, Chao-Yu; Lee, Yuan-Pern

    2018-02-14

    We recorded time-resolved infrared absorption spectra of transient species produced on irradiation at 308 nm of a flowing mixture of CH 2 I 2 /O 2 /N 2 /SO 2 at 298 K. Bands of CH 2 OO were observed initially upon irradiation; their decrease in intensity was accompanied by the appearance of an intense band at 1391.5 cm -1 that is associated with the degenerate SO-stretching mode of SO 3 , two major bands of HCHO at 1502 and 1745 cm -1 , and five new bands near >1340, 1225, 1100, 940, and 880 cm -1 . The band near 1340 cm -1 was interfered by absorption of SO 2 and SO 3 , so its band maximum might be greater than 1340 cm -1 . SO 3 in its internally excited states was produced initially and became thermalized at a later period. The rotational contour of the band of thermalized SO 3 agrees satisfactorily with the reported spectrum of SO 3 . These five new bands are tentatively assigned to an intermediate 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH 2 )O(SO 2 )O] according to comparison with anharmonic vibrational wavenumbers and relative IR intensities predicted for this intermediate. Observation of a small amount of cyc-(CH 2 )O(SO 2 )O is consistent with the expected reaction according to the potential energy scheme predicted previously. SO 3 +HCHO are the major products of the title reaction. The other predicted product channel HCOOH+SO 2 was unobserved and its branching ratio was estimated to be <5%.

  18. Polarization of skylight in the O(2)A band: effects of aerosol properties.

    PubMed

    Boesche, Eyk; Stammes, Piet; Preusker, Réne; Bennartz, Ralf; Knap, Wouter; Fischer, Juergen

    2008-07-01

    Motivated by several observations of the degree of linear polarization of skylight in the oxygen A (O(2)A) band that do not yet have a quantitative explanation, we analyze the influence of aerosol altitude, microphysics, and optical thickness on the degree of linear polarization of the zenith skylight in the spectral region of the O(2)A band, between 755 to 775 nm. It is shown that the degree of linear polarization inside the O(2)A band is particularly sensitive to aerosol altitude. The sensitivity is strongest for aerosols within the troposphere and depends also on their microphysical properties and optical thickness. The polarization of the O(2)A band can be larger than the polarization of the continuum, which typically occurs for strongly polarizing aerosols in an elevated layer, or smaller, which typically occurs for depolarizing aerosols or cirrus clouds in an elevated layer. We show that in the case of a single aerosol layer in the atmosphere a determination of the aerosol layer altitude may be obtained. Furthermore, we show limitations of the aerosol layer altitude determination in case of multiple aerosol layers. To perform these simulations we developed a fast method for multiple scattering radiative transfer calculations in gaseous absorption bands including polarization. The method is a combination of doubling-adding and k-binning methods. We present an error estimation of this method by comparing with accurate line-by-line radiative transfer simulations. For the Motivated by several observations of the degree of linear polarization of skylight in the oxygen A (O(2)A) band that do not yet have a quantitative explanation, we analyze the influence of aerosol altitude, microphysics, and optical thickness on the degree of linear polarization of the zenith skylight in the spectral region of the O(2)A band, between 755 to 775 nm. It is shown that the degree of linear polarization inside the O(2)A band is particularly sensitive to aerosol altitude. The

  19. Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure.

    PubMed

    Thalman, Ryan; Volkamer, Rainer

    2013-10-07

    The collisions between two oxygen molecules give rise to O4 absorption in the Earth atmosphere. O4 absorption is relevant to atmospheric transmission and Earth's radiation budget. O4 is further used as a reference gas in Differential Optical Absorption Spectroscopy (DOAS) applications to infer properties of clouds and aerosols. The O4 absorption cross section spectrum of bands centered at 343, 360, 380, 446, 477, 532, 577 and 630 nm is investigated in dry air and oxygen as a function of temperature (203-295 K), and at 820 mbar pressure. We characterize the temperature dependent O4 line shape and provide high precision O4 absorption cross section reference spectra that are suitable for atmospheric O4 measurements. The peak absorption cross-section is found to increase at lower temperatures due to a corresponding narrowing of the spectral band width, while the integrated cross-section remains constant (within <3%, the uncertainty of our measurements). The enthalpy of formation is determined to be ΔH(250) = -0.12 ± 0.12 kJ mol(-1), which is essentially zero, and supports previous assignments of O4 as collision induced absorption (CIA). At 203 K, van der Waals complexes (O(2-dimer)) contribute less than 0.14% to the O4 absorption in air. We conclude that O(2-dimer) is not observable in the Earth atmosphere, and as a consequence the atmospheric O4 distribution is for all practical means and purposes independent of temperature, and can be predicted with an accuracy of better than 10(-3) from knowledge of the oxygen concentration profile.

  20. O2-O2 and O2-N2 collision-induced absorption mechanisms unravelled

    NASA Astrophysics Data System (ADS)

    Karman, Tijs; Koenis, Mark A. J.; Banerjee, Agniva; Parker, David H.; Gordon, Iouli E.; van der Avoird, Ad; van der Zande, Wim J.; Groenenboom, Gerrit C.

    2018-05-01

    Collision-induced absorption is the phenomenon in which interactions between colliding molecules lead to absorption of light, even for transitions that are forbidden for the isolated molecules. Collision-induced absorption contributes to the atmospheric heat balance and is important for the electronic excitations of O2 that are used for remote sensing. Here, we present a theoretical study of five vibronic transitions in O2-O2 and O2-N2, using analytical models and numerical quantum scattering calculations. We unambiguously identify the underlying absorption mechanism, which is shown to depend explicitly on the collision partner—contrary to textbook knowledge. This explains experimentally observed qualitative differences between O2-O2 and O2-N2 collisions in the overall intensity, line shape and vibrational dependence of the absorption spectrum. It is shown that these results can be used to discriminate between conflicting experimental data and even to identify unphysical results, thus impacting future experimental studies and atmospheric applications.

  1. Effect of band gap engineering in anionic-doped TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee

    2017-01-01

    A simple yet promising strategy to modify TiO2 band gap was achieved via dopants incorporation which influences the photo-responsiveness of the photocatalyst. The mesoporous TiO2 was successfully mono-doped and co-doped with nitrogen and fluorine dopants. The results indicate that band gap engineering does not necessarily requires oxygen substitution with nitrogen or/and fluorine, but from the formation of additional mid band and Ti3+ impurities states. The formation of oxygen vacancies as a result of modified color centres and Ti3+ ions facilitates solar light absorption and influences the transfer, migration and trapping of the photo-excited charge carriers. The synergy of dopants in co-doped TiO2 shows better optical properties relative to single N and F doped TiO2 with c.a 0.95 eV band gap reduction. Evidenced from XPS, the synergy between N and F in the co-doped TiO2 uplifts the valence band towards the conduction band. However, the photoluminescence data reveals poorer electrons and holes separation as compared to F-doped TiO2. This observation suggests that efficient solar light harvesting was achievable via N and F co-doping, but excessive defects could act as charge carriers trapping sites.

  2. Intensity measurements for the /2, O/ gamma-band of O2, b 1Sigma-g/+/ - X 3Sigma-g/-/

    NASA Technical Reports Server (NTRS)

    Miller, J. H.; Giver, L. P.; Boese, R. W.

    1976-01-01

    Line intensities for the P sub P and P sub Q branches of the (2-O) vibrational band of the magnetic dipole electronic transition for the oxygen red system at 6280 A were measured, and the sum of the R sub R and R sub Q branch intensities was taken. A large number of repetitive spectral scans were required for accuracy, because of low absorption values even at optical path lengths from 300 to 600 m. A total of 557 individual measurements of P-branch lines yielded an intensity value for the P-branches, and equivalent widths for 24 spectral scans yielded an intensity value for the R-branch. R-branch to P-branch intensity ratios were taken for the A-band, B-band, and gamma-band (respectively, O-O at 7620 A, 1-O at 6880 A, and 2-O at 6280 A). Intensities for some rotational lines are found, and effects of combined rotation-vibration interaction are probed.

  3. First-principles study of direct and narrow band gap semiconducting β -CuGaO 2

    DOE PAGES

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; ...

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point ofmore » Brillouin zone. In conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less

  4. Influence of MnO2 decorated Fe nano cauliflowers on microwave absorption and impedance matching of polyvinylbutyral (PVB) matrix

    NASA Astrophysics Data System (ADS)

    Bora, Pritom J.; Porwal, Mayuri; Vinoy, K. J.; Ramamurthy, Praveen C.; Madras, Giridhar

    2016-09-01

    In this work, a promising, polyvinyl butryl (PVB)-MnO2 decorated Fe composite was synthesised and microwave absorption properties were studied for the most important frequency ranges i.e., X-band (8.2-12.4 GHz) and Ku-band (12.4-18 GHz). The microwave absorption of Fe nano cauliflower structure can be enhanced by MnO2 nanofiber coating. 10 wt% Fe-MnO2 nano cauliflower loaded PVB composite films (2 mm thick) shows an appreciable increase in microwave absorption properties. In X-band, the reflection loss (RL) of this composite decreases almost linearly to -7.5 dB, whereas in the Ku-band the minimum RL was found to be -15.7 dB at 14.7 GHz. Here it was observed that impedance matching is the primarily important factor responsible for enhanced microwave absorption. Further, enhancement of EM attenuation constant (α), dielectrics, scattering attenuation also bolsters the obtained results. This polymer composite can be considered as a novel microwave absorbing coating material.

  5. Infrared absorption band in deformed qtz crystals analyzed by combining different microstructural methods

    NASA Astrophysics Data System (ADS)

    Stunitz, Holger; Thust, Anja; Behrens, Harald; Heilbronner, Renee; Kilian, Ruediger

    2016-04-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FÍs decrepitate. Cracks heal and small neonate FÍs form, increasing the number of FÍs drastically. During subsequent deformation, the size of FÍs is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FÍs. The deformation processes in these crystals represent a recycling of H2O between FÍs, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FÍs during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  6. Nonlinear refraction and two-photon absorption in dense 2Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paramesh, Gadige; Varma, K. B. R.

    2012-06-05

    High density transparent glasses (7.86 g/cc) were fabricated in the 2Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} (BBO) system. Optical band gap of the obtained glasses was found to be 2.6eV. The refractive index measured for these glasses was 2.25{+-}0.05 at {lambda}=543 nm. Nonlinear refraction and absorption studies were carried out on the BBO glasses using z-scan technique at {lambda}=532 nm of 10 ns pulse width. The nonlinear refractive index obtained was n{sub 2}=12.1x10{sup -14} cm{sup 2}/W and nonlinear absorption coefficient was {beta}=15.2 cm/GW. The n{sub 2} and {beta} values of the BBO glasses were large compared to the other reported highmore » index bismuth based oxide glass systems in the literature. These were attributed to the high density, high linear refractive index, low band gap and two photon absorption associated with these glasses. The electronic origin of large nonlinearities was discussed based on bond-orbital theory.« less

  7. Band gap enhancement of glancing angle deposited TiO2 nanowire array

    NASA Astrophysics Data System (ADS)

    Chinnamuthu, P.; Mondal, A.; Singh, N. K.; Dhar, J. C.; Chattopadhyay, K. K.; Bhattacharya, Sekhar

    2012-09-01

    Vertically oriented TiO2 nanowire (NW) arrays were fabricated by glancing angle deposition technique. Field emission-scanning electron microscopy shows the formation of two different diameters ˜80 nm and ˜40 nm TiO2 NW for 120 and 460 rpm azimuthal rotation of the substrate. The x-ray diffraction and Raman scattering depicted the presence of rutile and anatase phase TiO2. The overall Raman scattering intensity decreased with nanowire diameter. The role of phonon confinement in anatase and rutile peaks has been discussed. The red (7.9 cm-1 of anatase Eg) and blue (7.4 cm-1 of rutile Eg, 7.8 cm-1 of rutile A1g) shifts of Raman frequencies were observed. UV-vis absorption measurements show the main band absorption at 3.42 eV, 3.48 eV, and ˜3.51 eV for thin film and NW prepared at 120 and 460 rpm, respectively. Three fold enhance photon absorption and intense light emission were observed for NW assembly. The photoluminescence emission from the NW assembly revealed blue shift in main band transition due to quantum confinement in NW structures.

  8. Polarized electronic absorption spectra of Cr2SiO4 single crystals

    NASA Astrophysics Data System (ADS)

    Furche, A.; Langer, K.

    Polarized electronic absorption spectra, E∥a(∥X), E∥b(∥Y) and E∥c(∥Z), in the energy range 3000-5000 cm-1 were obtained for the orthorhombic thenardite-type phase Cr2SiO4, unique in its Cr2+-allocation suggesting some metal-metal bonding in Cr2+Cr2+ pairs with Cr-Cr distance 2.75 Å along [001]. The spectra were scanned at 273 and 120 K on single crystal platelets ∥(100), containing optical Y and Z, and ∥(010), containing optical X and Z, with thicknesses 12.3 and 15.6 μm, respectively. Microscope-spectrometric techniques with a spatial resolution of 20 μm and 1 nm spectral resolution were used. The orientations were obtained by means of X-ray precession photographs. The xenomorphic, strongly pleochroic crystal fragments (X deeply greenish-blue, Y faint blue almost colourless, Z deeply purple almost opaque) were extracted from polycrystalline Cr2SiO4, synthesized at 35 kbar, above 1440 °C from high purity Cr2O3, Cr (10% excess) and SiO2 in chromium capsules. The Cr2SiO4-phase was identified by X-ray diffraction (XRD). Four strongly polarized bands, at about 13500 (I), 15700 (II), 18700 (III) and 19700 (IV) cm-1, in the absorption spectra of Cr2SiO4 single crystals show properties (temperature behaviour of linear and integral absorption coefficients, polarization behaviour, molar absorptivities) which are compatible with an assignment to localized spin-allowed transitions of Cr2+ in a distorted square planar coordination of point symmetry C2. The crystal field parameter of Cr2+ is estimated to be 10 Dq =10700 cm-1. A relatively intense, sharp band at 18400 cm-1 and three other minor features can, from their small half widths, be assigned to spin-forbidden dd-transitions of Cr2+. The intensity of such bands strongly decreases on decreasing temperature. The large half widths, near 5000 cm-1 of band III are indicative of some Cr-Cr interactions, i.e. δ-δ* transitions of Cr24+, whereas the latter alone would be in conflict with the strong

  9. In situ combustion measurements of H2O and temperature near 2.5 µm using tunable diode laser absorption

    NASA Astrophysics Data System (ADS)

    Farooq, Aamir; Jeffries, Jay B.; Hanson, Ronald K.

    2008-07-01

    In situ combustion measurements of water vapor concentration and gas temperature were carried out with a new tunable diode laser sensor near 2.5 µm. Recent availability of room-temperature semiconductor diode lasers operating at longer wavelengths provides access to fundamental vibrational bands (ν1 and ν3) of H2O. These bands have stronger absorption line strength compared to the overtone (2ν1, 2ν3) and combination (ν1 + ν3) vibrational bands in the near-infrared region probed previously with telecommunication diode lasers. The absorption transitions of H2O vapor in the 2.5-3.0 µm region are systematically analyzed via spectral simulation, and optimal spectral line pairs are selected for combustion measurements in the temperature range of 1000-2500 K. Fundamental spectroscopic parameters (line strength, line position and line-broadening coefficients) of the selected transitions are determined via laboratory measurements in a heated cell. Absorption measurements of H2O concentration and temperature are then made in a laboratory flat-flame burner to illustrate the potential of this sensor for sensitive and accurate measurements in combustion gases with short optical path lengths.

  10. Spectroscopic Properties of B2O3-PbO-Nd2O3 Glasses

    NASA Astrophysics Data System (ADS)

    Simon, V.; Ardelean, I.; Milea, I.; Peteanu, M.; Simon, S.

    Samples belonging to xNd2O3(100-x) [2B2O3·PbO] glass system, with 0≤ x≤ 40 mol%, are investigated by IR and UV-VIS spectroscopies in order to obtain evidence for the influence of Nd2O3 on the local order from 2B2O3·PbO glass matrix. Besides the IR absorption bands characteristic to lead and boron arrangements, typical absorption lines of Nd3+ ions around 4000 cm-1 and 6000 cm-1 are recorded. The 6000 cm-1 band appears only for the samples with x≥25 mol% Nd2O3. The split of some UV-VIS absorption bands arising from transitions of neodymium ions in doublet lines as well as the shift of the absorption bands as the Nd2O3 content increases denote the influence of the lead-borate matrix on the radiative transitions of the lanthanide ion.

  11. Extreme absorption enhancement in ZnTe:O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas.

    PubMed

    Nie, Kui-Ying; Li, Jing; Chen, Xuanhu; Xu, Yang; Tu, Xuecou; Ren, Fang-Fang; Du, Qingguo; Fu, Lan; Kang, Lin; Tang, Kun; Gu, Shulin; Zhang, Rong; Wu, Peiheng; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Ye, Jiandong

    2017-08-08

    Intermediate band solar cells (IBSCs) are conceptual and promising for next generation high efficiency photovoltaic devices, whereas, IB impact on the cell performance is still marginal due to the weak absorption of IB states. Here a rational design of a hybrid structure composed of ZnTe:O/ZnO core-shell nanowires (NWs) with Al bowtie nanoantennas is demonstrated to exhibit strong ability in tuning and enhancing broadband light response. The optimized nanowire dimensions enable absorption enhancement by engineering leaky-mode dielectric resonances. It maximizes the overlap of the absorption spectrum and the optical transitions in ZnTe:O intermediate-band (IB) photovoltaic materials, as verified by the enhanced photoresponse especially for IB states in an individual nanowire device. Furthermore, by integrating Al bowtie antennas, the enhanced exciton-plasmon coupling enables the notable improvement in the absorption of ZnTe:O/ZnO core-shell single NW, which was demonstrated by the profound enhancement of photoluminescence and resonant Raman scattering. The marriage of dielectric and metallic resonance effects in subwavelength-scale nanowires opens up new avenues for overcoming the poor absorption of sub-gap photons by IB states in ZnTe:O to achieve high-efficiency IBSCs.

  12. Microwave absorption properties of polypyrrole-SrFe12O19-TiO2-epoxy resin nanocomposites: Optimization using response surface methodology

    NASA Astrophysics Data System (ADS)

    Seyed Dorraji, M. S.; Rasoulifard, M. H.; Amani-Ghadim, A. R.; Khodabandeloo, M. H.; Felekari, M.; Khoshrou, M. R.; hajimiri, I.

    2016-10-01

    At a few works are discussed about formation of heterogeneous composites with different distribution of particle shape and size that are used for electromagnetic absorption purposes. In this study a novel heterogeneous nanocpmposites is investigated. The nanocomposite has been successfully prepared based on epoxy resin including various nano-metal oxides (TiO2, SrFe12O19) and polypyrrole (PPy) by sol-gel and the solution chemistry method, respectively. The performance of prepared nanocomposite in absorption of microwave in X-band range was investigated and transmission line method by X-band waveguide straight was used to measure EM parameters of nanocomposites. The Response surface methodology (RSM) with central composite design (CCD) was utilized to study the effects of the wt.% TiO2 in SrFe12O19, wt.% Tio2-SrFe12O19 in PPy and wt.% TiO2-SrFe12O19-PPy in epoxy resin, on the microwave absorption properties with the absorber thickness of only 2 mm. The proposed quadratic model was in accordance with the experimental results with correlation coefficient of 96.5%. The optimum condition for maximum microwave absorption efficiency were wt.% TiO2 in SrFe12O19 of 70, wt.% TiO2-SrFe12O19 in PPy of 10 and wt.% TiO2-SrFe12O19-PPy in epoxy of 25. The sample prepared in optimal conditions indicated reflection loss of -15 dB corresponding to 97% absorption, at the range of 9.2-10.8 GHz.

  13. Band structures of TiO2 doped with N, C and B*

    PubMed Central

    Xu, Tian-Hua; Song, Chen-Lu; Liu, Yong; Han, Gao-Rong

    2006-01-01

    This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing. PMID:16532532

  14. Atomic structure, electronic properties, and band offsets of SrRuO3/TiO2 heterojunctions

    NASA Astrophysics Data System (ADS)

    Ferdous, Naheed; Ertekin, Elif

    2015-03-01

    Photocatalytic water splitting by sunlight can in principle be an environmentally green approach to hydrogen fuel production, but at present photocatalytic conversion efficiencies remain too small. In titanium dioxide (TiO2) , the most commonly used photocatalyst, the biggest limitation arises from poor absorption of visible light. One way to increase the visible light absorption is to create a composite heterojunction by integrating TiO2 with a strongly light absorbing material. Inspired by experimental results demonstrating good light absorption in the correlated metal oxide Strontium Ruthenate (SrRuO3) , as well as enhanced photocatalytic activity of SrRuO3/TiO2 heterojunctions, we have carried out electronic structure calculations based on density functional theory to explain and improve on the observed properties of such heterojunctions. Our calculations present that this heterojunction exhibits type-II band alignment which is necessary to transport optically excited electrons from the SrRuO3 to the TiO2, with calculated work functions in good agreement with experimental measurements. Also, DFT calculations help to explain the origin of large light absorption in the correlated metal oxide, which arises from electronic excitations from O 2p levels into the Ru d-orbital quasiparticle states in the material. The use of correlated metal oxide/ TiO2 heterojunctions is a potentially interesting approach to improved photocatalytic activity.

  15. Band gap opening and optical absorption enhancement in graphene using ZnO nanocluster

    NASA Astrophysics Data System (ADS)

    Monshi, M. M.; Aghaei, S. M.; Calizo, I.

    2018-05-01

    Electronic, optical and transport properties of the graphene/ZnO heterostructure have been explored using first-principles density functional theory. The results show that Zn12O12 can open a band gap of 14.5 meV in graphene, increase its optical absorption by 1.67 times covering the visible spectrum which extends to the infra-red (IR) range, and exhibits a slight non-linear I-V characteristic depending on the applied bias. These findings envisage that a graphene/Zn12O12 heterostructure can be appropriate for energy harvesting, photodetection, and photochemical devices.

  16. Photothermal effects from Au-Cu2O core-shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Ju; Yang, Kung-Hsun; Hsu, Shih-Chen; Huang, Michael H.

    2015-12-01

    Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ~1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths.Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars

  17. Temperature dependence of the intensity of the vibration-rotational absorption band ν2 of H2O trapped in an argon matrix

    NASA Astrophysics Data System (ADS)

    Pitsevich, G.; Doroshenko, I.; Malevich, A..; Shalamberidze, E.; Sapeshko, V.; Pogorelov, V.; Pettersson, L. G. M.

    2017-02-01

    Using two sets of effective rotational constants for the ground (000) and the excited bending (010) vibrational states the calculation of frequencies and intensities of vibration-rotational transitions for J″ = 0 - 2; and J‧ = 0 - 3; was carried out in frame of the model of a rigid asymmetric top for temperatures from 0 to 40 K. The calculation of the intensities of vibration-rotational absorption bands of H2O in an Ar matrix was carried out both for thermodynamic equilibrium and for the case of non-equilibrium population of para- and ortho-states. For the analysis of possible interaction of vibration-rotational and translational motions of a water molecule in an Ar matrix by 3D Schrödinger equation solving using discrete variable representation (DVR) method, calculations of translational frequencies of H2O in a cage formed after one argon atom deleting were carried out. The results of theoretical calculations were compared to experimental data taken from literature.

  18. Remarkable optical red shift and extremely high optical absorption coefficient of V-Ga co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Deng, Quanrong; Han, Xiaoping; Gao, Yun; Shao, Guosheng

    2012-07-01

    A first attempt has been made to study the effect of codoping of transition metal and sp metal on the electronic structure and associated optical properties of TiO2, through V-Ga codoped thin films. V-Ga codoped rutile TiO2 films were fabricated on fused quartz substrates using pulsed laser ablation, followed by heat treatment at high temperatures. Gigantic redshift in the optical absorption edge was observed in V-Ga co-doped TiO2 materials, from UV to infrared region with high absorption coefficient. Through combined structural characterization and theoretical modeling, this is attributed to the p-d hybridization between the two metals. This leads to additional energy bands to overlap with the minimum of the conduction band, leading to remarkably narrowed band gap free of mid-gap states. The direct-gap of the co-doped phase is key to the remarkably high optical absorption coefficient of the coped titania.

  19. Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption.

    PubMed

    Wang, Zhijiang; Wu, Lina; Zhou, Jigang; Jiang, Zhaohua; Shen, Baozhong

    2014-11-07

    A chemoselective route to induce Fe3O4@ZnO core-shell nanoparticles decorating carbon nanotubes to form MWCNT/Fe3O4@ZnO heterotrimers has been developed. Charges are redistributed in the heterotrimers through C-O-Zn, C-O-Fe and Fe-O-Zn bondings, giving rise to multiple electronic phases. The generated significant interfacial polarization and synergetic interaction between dielectric and magnetic absorbers result in the MWCNT/Fe3O4@ZnO heterotrimers with high-performance microwave absorption in an entire X band.

  20. Absorption and photoluminescence study of Al 2O 3 single crystal irradiated with fast neutrons

    NASA Astrophysics Data System (ADS)

    Izerrouken, M.; Benyahia, T.

    2010-10-01

    Colour centers formation in Al 2O 3 by reactor neutrons were investigated by optical measurements (absorption and photoluminescence). The irradiation's were performed at 40 °C, up to fast neutron ( E n > 1.2 MeV) fluence of 1.4 × 10 18 n cm -2. After irradiation the coloration of the sample increases with the neutron fluence and absorption band at about 203, 255, 300, 357 and 450 nm appear in the UV-visible spectrum. The evolution of each absorption bands as a function of fluence and annealing temperature is presented and discussed. The results indicate that at higher fluence and above 350 °C the F + center starts to aggregate to F center clusters (F 2, F 2+ and F22+). These aggregates disappear completely above 650 °C whereas the F and F + centers persist even after annealing at 900 °C. It is clear also from the results that the absorption band at 300 nm is due to the contribution of both F 2 center and interstitial Ali+ ions.

  1. The O2 A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets

    NASA Astrophysics Data System (ADS)

    Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.

    2017-06-01

    Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A s, the optical thickness b cloud, the altitude of water clouds, and the mixing ratio of biosignature O2 on the strength of the O2 A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios (η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O2 mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O2 or any other absorbing gas.

  2. Optical absorption and TEM studies of silver nanoparticle embedded BaO-CaF{sub 2}-P{sub 2}O{sub 5} glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, Manoj Kumar, E-mail: manukokkal01@gmail.com; Shashikala, H. D.

    Silver nanoparticle embedded 30BaO-20CaF{sub 2}-50P{sub 2}O{sub 5}-4Ag{sub 2}O-4SnO glasses were prepared by melt-quenching and subsequent heat treatment process. Silver-doped glasses were heat treated at temperatures 500 °C, 525°C and 550 °C for a fixed duration of 10 hours to incorporate metal nanoparticles into the glass matrix. Appearance and shift in peak positions of the surface plasmon resonance (SPR) bands in the optical absorption spectra of heat treated glass samples indicated that both formation and growth of nanoparticle depended on heat treatment temperature. Glass sample heat treated at 525 °C showed a SPR peak around 3 eV, which indicated that sphericalmore » nanoparticles smaller than 20 nm were formed inside the glass matrix. Whereas sample heat treated at 550 °C showed a size dependent red shift in SPR peak due to the presence of silver nanoparticles of size larger than 20 nm. Size of the nanoparticles calculated using full-width at half-maximum (FWHM) of absorption band showed a good agreement with the particle size obtained from transmission electron microscopy (TEM) analysis.« less

  3. Near-Infrared Band Strengths of Molecules Diluted in N2 and H2O Ice Mixtures Relevant to Interstellar and Planetary Ices

    NASA Technical Reports Server (NTRS)

    Richey, Christina Rae; Gerakines, P.A.

    2012-01-01

    The relative abundances of ices in astrophysical environments rely on accurate laboratory measurements of physical parameters, such as band strengths (or absorption intensities), determined for the molecules of interest in relevant mixtures. In an extension of our previous study on pure-ice samples, here we focus on the near-infrared absorption features of molecules in mixtures with the dominant components of interstellar and planetary ices, H2O and N2. We present experimentally measured near-infrared spectral information (peak positions, widths, and band strengths) for both H2O- and N2-dominated mixtures of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), and NH3 (ammonia). Band strengths were determined during sample deposition by correlating the growth of near-infrared features (10,000-4000 per centimeter, 1-2.5 micrometers) with better-known mid-infrared features (4000-400 per centimeter, 2.5-25 micrometers) at longer wavelengths.

  4. Investigation of energy band alignments and interfacial properties of rutile NMO2/TiO2 (NM = Ru, Rh, Os, and Ir) by first-principles calculations.

    PubMed

    Yang, Chen; Zhao, Zong-Yan

    2017-11-08

    In the field of photocatalysis, constructing hetero-structures is an efficient strategy to improve quantum efficiency. However, a lattice mismatch often induces unfavorable interfacial states that can act as recombination centers for photo-generated electron-hole pairs. If the hetero-structure's components have the same crystal structure, this disadvantage can be easily avoided. Conversely, in the process of loading a noble metal co-catalyst onto the TiO 2 surface, a transition layer of noble metal oxides is often formed between the TiO 2 layer and the noble metal layer. In this article, interfacial properties of hetero-structures composed of a noble metal dioxide and TiO 2 with a rutile crystal structure have been systematically investigated using first-principles calculations. In particular, the Schottky barrier height, band bending, and energy band alignments are studied to provide evidence for practical applications. In all cases, no interfacial states exist in the forbidden band of TiO 2 , and the interfacial formation energy is very small. A strong internal electric field generated by interfacial electron transfer leads to an efficient separation of photo-generated carriers and band bending. Because of the differences in the atomic properties of the components, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures demonstrate band dividing, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures have a pseudo-gap near the Fermi energy level. Furthermore, NMO 2 /TiO 2 hetero-structures show upward band bending. Conversely, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures present a relatively strong infrared light absorption, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures show an obvious absorption edge in the visible light region. Overall, considering all aspects of their properties, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures are more suitable than others for improving the photocatalytic performance of TiO 2 . These findings will provide useful information

  5. Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations.

    PubMed

    Zhang, Junying; Dang, Wenqiang; Ao, Zhimin; Cushing, Scott K; Wu, Nianqiang

    2015-04-14

    In order to reveal the origin of enhanced photocatalytic activity of N-doped La2Ti2O7 in both the visible light and ultraviolet light regions, its electronic structure has been studied using spin-polarized conventional density functional theory (DFT) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid approach. The results show that the deep localized states are formed in the forbidden band when nitrogen solely substitutes for oxygen. Introducing the interstitial Ti atom into the N-doped La2Ti2O7 photocatalyst still causes the formation of a localized energy state. Two nitrogen substitutions co-exist stably with one oxygen vacancy, creating a continuum energy band just above the valence band maximum. The formation of a continuum band instead of mid-gap states can extend the light absorption to the visible light region without increasing the charge recombination, explaining the enhanced visible light performance without deteriorating the ultraviolet light photocatalytic activity.

  6. The Rovibrational Intensities of the (40 deg 1) and (00 deg 0) Pentad Absorption Bands of 12C16O2 Between 7284 and 7921 cm(exp-1)

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Chackerian, C., Jr.; Spencer, N.; Brown, L. R.; Wattson, R. B.; Gore, Warren J. (Technical Monitor)

    1995-01-01

    Carbon dioxide is the major constituent of the atmospheres of both Mars and Venus. Correct interpretations of spectra of these atmospheres require accurate knowledge of a substantial number of absorption bands of this gas. This is especially true for Venus; many weak CO2 bands that are insignificant in the earth's atmosphere are prominent absorbers in Venus' hot, dense lower atmosphere. Yet, recent near-infrared spectra of Venus' nightside have discovered emission windows, which occur between CO2 absorption bands, at 4040-4550 cm(exp-1), 5700-5900 cm(exp-1), and several smaller ones between 7500 and 9400 cm(exp-1). This radiation is due to thermal emission from Venus' lower atmosphere, diminished by scattering and absorption within the sulfuric acid clouds on its way to space. Simulations of these data with radiative transfer models can provide improved information on the abundances of a number of constituents of the lower atmosphere (e.g. H2O, CO, HDO, HCl, HF, and OCS) and the optical properties of the clouds, whose spatial variation modulates the brightness of the emissions. However, the accuracy of these retrievals has been limited by insufficient knowledge of the opacity of some of the gas species, including CO2, at the large pathlengths and high temperatures and pressures that exist on Venus. In particular, modeling the emission spectrum did not produce a good fit for the emission window centered at 7830 cm(exp-1). In an ongoing effort to assist analyses of these Venus spectra, we have been making laboratory intensity measurements of several weak bands of CO2 which are significant absorbers in these Venus emission windows. The CO2 bands that are prominent in the 7830 cm(exp-1) region belong to the vibrational sequence 4v1+v3 and associated hot bands. Only 2 of the 5 bands of this sequence have been previously measured. Modeling Venus' emission spectrum in the 7830 cm(exp-1) region had to rely on calculated intensity values for the weak ground state band at

  7. Infrared Spectra and Band Strengths of Amorphous and Crystalline N2O

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Loeffler, M. J.; Gerakines, P. A.

    2017-01-01

    Infrared transmission spectra from 4000 to 400 cm (exp -1), and associated band strengths and absorption coefficients, are presented for the first time for both amorphous and crystalline N2O. Changes in the spectra as a function of ice thickness and ice temperature are shown. New measurements of density, refractive index, and specific refraction are reported for amorphous and crystalline N2O. Comparisons are made to published results, and the most-likely reason for some recent disagreements in the literature is discussed. As with CO2, its isoelectronic congener, the formation of amorphous N2O is found to require greater care than the formation of amorphous solids from more-polar molecules.

  8. A study of the H2O absorption line shifts in the visible spectrum region due to air pressure

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Browell, E. V.; Bykov, A. D.; Kapitanov, V. A.; Korotchenko, E. A.

    1990-01-01

    Results of measured and calculated shift coefficients are presented for 170 absorption lines of H2O in five vibrational-rotational bands. The measurements have been carried out using highly sensitive laser spectrometers with a resolution of at least 0.01/cm; the calculations are based on the Anderson-Tsao-Curnutte-Frost method. Good agreement is obtained between the theoretical and experimental values of the shift coefficients of H2O lines due to N2, O2, and air pressure.

  9. Phonon-assisted optical absorption in BaSnO 3 from first principles

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu; Dreyer, Cyrus E.; Rabe, Karin M.

    2018-03-01

    The perovskite BaSnO3 provides a promising platform for the realization of an earth-abundant n -type transparent conductor. Its optical properties are dominated by a dispersive conduction band of Sn 5 s states and by a flatter valence band of O 2 p states, with an overall indirect gap of about 2.9 eV . Using first-principles methods, we study the optical properties of BaSnO3 and show that both electron-phonon interactions and exact exchange, included using a hybrid functional, are necessary to obtain a qualitatively correct description of optical absorption in this material. In particular, the electron-phonon interaction drives phonon-assisted optical absorption across the minimum indirect gap and therefore determines the absorption onset, and it also leads to the temperature dependence of the absorption spectrum. Electronic correlations beyond semilocal density functional theory are key to determine the dynamical stability of the cubic perovskite structure, as well as the correct energies of the conduction bands that dominate absorption. Our work demonstrates that phonon-mediated absorption processes should be included in the design of novel transparent conductor materials.

  10. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  11. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    NASA Astrophysics Data System (ADS)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  12. Electronic states in oxidized NaxCoO2 as revealed by X-ray absorption spectroscopy coupled with ab initio calculation

    NASA Astrophysics Data System (ADS)

    Niwa, Hideharu; Higashiyama, Kazuyuki; Amaha, Kaoru; Kobayashi, Wataru; Moritomo, Yutaka

    2018-04-01

    Layered cobalt oxides are promising cathode materials for sodium ion secondary batteries (SIBs). By combined study of the X-ray absorption spectroscopy (XAS) around the O K-edge and ab initio calculation, we investigated the electronic state of the NaxCoO2 with different oxidization state, i.e, in O3-Na0.91CoO2 (CoO2-0.91) and P2-Na0.66CoO2 (CoO2-0.66). The O K-edge spectra in the pre-edge (529-536 eV) region shows significant change with oxidization of NaxCoO2. In O3-Na0.91CoO2, the spectra shows an intense band (B band) at 531 eV. In P2-Na0.66CoO2, the spectral weight of the B band increases and a new band (A band) appears at 530 eV. These spectral changes are qualitatively reproduced by the calculated partial density of states (pDOSs) of O3-NaCoO2 and P2-Na1/2CoO2. These results indicate that the electrons are partially removed from the O 2p state with oxidization of NaxCoO2.

  13. ASSIGNMENT OF 5069 A DIFFUSE INTERSTELLAR BAND TO HC{sub 4}H{sup +}: DISAGREEMENT WITH LABORATORY ABSORPTION BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, J. P.; Chakrabarty, S.; Mazzotti, F. J.

    2011-03-10

    Krelowski et al. have reported a weak, diffuse interstellar band (DIB) at 5069 A which appears to match in both mid-wavelength and width the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} gas-phase origin absorption band of HC{sub 4}H{sup +}. Here, we present laboratory rotational profiles at low temperatures which are then compared with the 5069 A DIB using {approx}0.1 and 0.3 A line widths based on a realistic line-of-sight interstellar velocity dispersion. Neither the band shape nor the wavelength of the maximum absorption match, which makes the association of the 5069 A DIB with HC{sub 4}H{sup +} unlikely. The magneticmore » dipole transition X {sup 2}{Pi}{sub g} {Omega} = 1/2{yields}X {sup 2}{Pi}{sub g} {Omega} = 3/2 within the ground electronic state which competes with collisional excitation is also considered. In addition, we present the laboratory gas-phase spectrum of the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} transition of HC{sub 4}H{sup +} measured at 25 K in an ion trap and identify further absorption bands at shorter wavelengths for comparison with future DIB data.« less

  14. First laboratory detection of an absorption line of the first overtone electric quadrupolar band of N2 by CRDS near 2.2 μm

    NASA Astrophysics Data System (ADS)

    Čermák, P.; Vasilchenko, S.; Mondelain, D.; Kassi, S.; Campargue, A.

    2017-01-01

    The extremely weak 2-0 O(14) electric quadrupole transition of N2 has been detected by very high sensitivity Cavity Ring Down spectroscopy near 4518 cm-1. It is the first N2 absorption line in the first overtone band reported so far from laboratory experiments. By combining a feedback narrowed Distributed Feedback laser diode with a passive cell tracking technique, a limit of detection of αmin ∼ 1.2 × 10-11 cm-1 was achieved after one day of spectra averaging. The N2 2-0 O(14) line position and line intensity (about 1.5 × 10-30 cm/molecule) agree with calculated values provided in the HITRAN2012 database.

  15. The O{sub 2} A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.

    Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A {sub s}, the optical thickness b {sub cloud}, the altitude of water clouds, and the mixing ratio of biosignature O{sub 2} on the strength of the O{sub 2} A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios ( ηmore » < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O{sub 2} mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O{sub 2} or any other absorbing gas.« less

  16. Absorption of solar radiation by O2 - Implications for O3 and lifetimes of N2O, CFCl3, and CF2Cl2

    NASA Technical Reports Server (NTRS)

    Minschwaner, K.; Salawitch, R. J.; Mcelroy, M. B.

    1993-01-01

    An accurate line-by-line model is used to evaluate effects of absorption in the Schumann-Runge bands of O2 on transmission of UV radiation. The model is used to evaluate rates of photolysis for N2O, CFCl3, and CF2Cl2, and to infer global loss rates and instantaneous lifetimes appropriate for 1980. A parameterized version of the line-by-line model enabling rapid evaluation of transmission in the Schumann-Runge region is described. Photochemical calculations employing the parameterization and constrained by data from the Atmospheric Trace Molecule Spectroscopy experiment are used to examine the budget of odd oxygen. Consistent with previous studies, it is shown that photochemical loss of odd oxygen exceeds production by photolysis of O2 for altitudes above 40 km. The imbalance between production and loss is shown to be consistent with a source of odd oxygen proportional to the product of the mixing ratio and photolysis rate of ozone, which suggests that processes involving vibrationally excited O2 may play an important role in production of odd oxygen.

  17. TiO2/BiVO4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment

    PubMed Central

    2016-01-01

    Metal oxides that absorb visible light are attractive for use as photoanodes in photoelectrosynthetic cells. However, their performance is often limited by poor charge carrier transport. We show that this problem can be addressed by using separate materials for light absorption and carrier transport. Here, we report a Ta:TiO2|BiVO4 nanowire photoanode, in which BiVO4 acts as a visible light-absorber and Ta:TiO2 acts as a high surface area electron conductor. Electrochemical and spectroscopic measurements provide experimental evidence for the type II band alignment necessary for favorable electron transfer from BiVO4 to TiO2. The host–guest nanowire architecture presented here allows for simultaneously high light absorption and carrier collection efficiency, with an onset of anodic photocurrent near 0.2 V vs RHE, and a photocurrent density of 2.1 mA/cm2 at 1.23 V vs RHE. PMID:27163032

  18. Imaging Breathing Rate in the CO2Absorption Band.

    PubMed

    Fei, Jin; Zhu, Zhen; Pavlidis, Ioannis

    2005-01-01

    Following up on our previous work, we have developed one more non-contact method to measure human breathing rate. We have retrofitted our Mid-Wave Infra-Red (MWIR) imaging system with a narrow band-pass filter in the CO2absorption band (4.3 µm). This improves the contrast between the foreground (i.e., expired air) and background (e.g., wall). Based on the radiation information within the breath flow region, we get the mean dynamic thermal signal. This signal is quasi-periodic due to the interleaving of high and low intensities corresponding to expirations and inspirations respectively. We sample the signal at a constant rate and then determine the breathing frequency through Fourier analysis. We have performed experiments on 9 subjects at distances ranging from 6-8 ft. We compared the breathing rate computed by our novel method with ground-truth measurements obtained via a traditional contact device (PowerLab/4SP from ADInstruments with an abdominal transducer). The results show high correlation between the two modalities. For the first time, we report a Fourier based breathing rate computation method on a MWIR signal in the CO2absorption band. The method opens the way for desktop, unobtrusive monitoring of an important vital sign, that is, breathing rate. It may find widespread applications in preventive medicine as well as sustained physiological monitoring of subjects suffering from chronic ailments.

  19. Band-gap engineering and comparative investigation of Ti2Nb10O29 photocatalysts obtained by Various synthetic routes

    NASA Astrophysics Data System (ADS)

    Xie, Meiling; Zhu, Hekai; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Wu, Xiaowen

    2018-03-01

    Ti2Nb10O29 photocatalysts were successfully synthesized by three different methods. Ti2Nb10O29 fabricated by the solvothermal method (ST-TNO) exhibited unique microspheres compared to the larger irregular particles observed for the samples annealed in air (Air-TNO) and Ar (Ar-TNO). X-ray Photoelectron Spectroscopy (XPS) results revealed that a partial reduction process from Ti4+ into Ti3+ occurs in Ar-TNO, because of the introduction of oxygen defects. Ar-TNO exhibited visible-light absorption with a band gap of 2.85 eV, while the absorption edges of Air-TNO and ST-TNO were approximately 400 nm. Under UV light irradiation (λ < 420 nm), Ar-TNO exhibited a photocatalytic activity 2.1 times greater than that of Air-TNO, corresponding to the highest activity. The results indicated that the preparation method is crucial for determining the band gap and photocatalytic activity of semiconductors. Moreover, the novel semiconductor photocatalyst can be further applied for constructing the heterojunction and designing the band structure.

  20. Electronic structure and optical band gap determination of NiFe2O4.

    PubMed

    Meinert, Markus; Reiss, Günter

    2014-03-19

    In a theoretical study we investigate the electronic structure and band gap of the inverse spinel ferrite NiFe2O4. The experimental optical absorption spectrum is accurately reproduced by fitting the Tran-Blaha parameter in the modified Becke-Johnson potential. The accuracy of the commonly applied Tauc plot to find the optical gap is assessed based on the computed spectra and we find that this approach can lead to a misinterpretation of the experimental data. The minimum gap of NiFe2O4 is found to be a 1.53 eV wide indirect gap, which is located in the minority spin channel.

  1. A measurement of the vibrational band strength for the v3 band of the HO2 radical

    NASA Technical Reports Server (NTRS)

    Zahniser, M. S.; Stanton, A. C.

    1984-01-01

    Laboratory measurements of the v(3) band strength of HO2 using a tunable diode laser to measure the absorption strength of a vibration-rotation line in the P branch near 1080/cm are reported. The HO2 is generated in a discharge-flow system by reaction of fluorine atoms with excess H2O2: F + H2O2 - HO2 + HF. The HO2 concentration is determined from measurements of F-atom concentrations using both chemical titration with Cl2 and tunable diode laser absorption by the F-atom spin-orbit transition near 404/cm. The experimental data are consistent with a value of k(3) = (1.6 + or - 0.3) x 10 to the 12th cu cm/s and a ratio k(4)/k(1) = 1.0 + or - 0.4. The line strength for the 6(15) - 7(16)F(1) transition is 2.9 x 10 to the -21 sq cm/molecule/cm, which corresponds to a v(3) band strength of 35 + or - 9/sq cm/(STP atm). This value is a factor of 1.6 to 6 lower than previous ab initio calculations.

  2. The Rovibrational Intensities of Five Absorption Bands of (12)C(16)O2 Between 5218 and 5349/cm

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Brown, Linda R.; Chackerian, Charles, Jr.; Freedman, Richard S.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Absolute line intensities, band intensities, and Herman-Wallis parameters were measured for the (01(sup 1)2)(sub I) from (00(sup 0)0)(sub I) perpendicular band of (12)C(16)O2 centered at 5315/cm, along with the three nearby associated hot bands: (10(sup 0)2)(sub II) from (01(sup 1)0)(sub I) at 5248/cm, (02(sup 2))(sub I) from (01(sup 1)0)(sub I) at 5291/cm, and (10(sup 0)2)(sub I) from (01(sup 1)0)(sub I) at 5349/cm. The nearby parallel hot band (30(sup 0))(sub I) from (10(sup 0)0)(sub II) at 5218/cm was also included in this study.

  3. DSC and optical studies on BaO-Li{sub 2}O-B{sub 2}O{sub 3}-CuO glass system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhogi, Ashok, E-mail: ashokbhogi@gmail.com; Kumar, R. Vijaya; Ahmmad, Shaik Kareem

    2016-05-06

    Glasses with composition 15BaO-25Li{sub 2}O-(60-x)B{sub 2}O{sub 3} -xCuO (x= 0, 0.2, 0.4, 0.6, 0.8 and 1 mol%) were prepared by the conventional melt quenching technique. These glasses were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and density measurements. Optical absorption studies were carried out as a function of copper ion concentration. The optical absorption spectra of studied glasses containing copper oxide exhibit a single broad band around 761nm which has been assigned to the 2B{sub 1g}→2B{sub 2g} transition. From these studies, the variations in the values of glass transition temperature (T{sub g}) have been observed. The fundamental absorption edgemore » has been determined from the optical absorption spectra. The values of optical band gap and Urbach energy were determined with increase in concentration of CuO. The variations in density, glass transition temperature, optical band gap and Urbach energy with CuO content have been discussed in terms of changes in the glass structure. The analysis of these results indicated that copper ions mostly exist in Cu{sup 2+} state in these glasses when the concentration of CuO ≤ 0.8 mol% and above this concentration copper ions seem to subsist in Cu{sup 1+} state.« less

  4. O2 adsorbed on Ptn clusters: Structure and optical absorption

    NASA Astrophysics Data System (ADS)

    Wang, Ruiying; Zhao, Liang; Jia, Jianfeng; Wu, Hai-Shun

    2018-03-01

    The interaction of O2 with Ptn and the optical absorption properties of PtnO2 were explored under the framework of density functional theory. The Ptn (n= 2, 4, 6, 9, 10, 14, 18, 22, and 27) clusters were selected, which were reported as magnetic number Ptn clusters in reference (V. Kumar and Y. Kawazoe, Phys. Rev. B 77(20), 205418 (2008)). The single Pt atom was also considered. The longest O2 bonds were found for Pt27O2, Pt6O2 and Pt14O2, while PtO2 and Pt2O2 have the shortest O2 bonds. This result showed that the single Pt atom was not preferred for O2 activation. The O2 bond length was closely related to the electron transfer from Ptn to O2. The optical absorptions of PtnO2 were investigated with time-dependent density functional theory method. A new term of charge transfer strength was defined to estimate the further electron transfer from Ptn to O2 caused by the optical absorption in the visible light range. Our calculations showed that with the increasing n, the further electron transfer from Ptn to O2 caused by optical absorption will become very weak.

  5. Optical absorption and emission bands of Tm 3+ ions in calcium niobium gallium garnet crystal

    NASA Astrophysics Data System (ADS)

    Tsuboi, Taiju; Tanigawa, Masayuki; Shimamura, Kiyoshi

    2000-12-01

    Absorption spectra of Tm 3+ ions in Ca 3Nb 1.6875Ga 3.1875O 12 (CNGG) crystal have been investigated at various temperatures between 15 and 296 K. Luminescence spectra in a spectral region of 400-1750 nm are investigated under excitation into various excited states of Tm 3+ and the conduction band of CNGG at room temperature. The absorption and emission bands of Tm 3+ in CNGG are observed to be broader than those observed in other Tm 3+-doped crystals such as LiNbO 3. This is due to the disordered structure of CNGG. From the temperature dependence of absorption spectra, five Stark levels are derived for the 3H 6 ground state. The highest Stark level is found to be 351 cm -1 above the ground level. It is suggested that the low efficiency of the 2.02 μm lasing at room temperature is due to the narrow splitting of the Stark levels.

  6. CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand

    NASA Astrophysics Data System (ADS)

    Srisittipokakun, N.; Ruangtaweep, Y.; Rachniyom, W.; Boonin, K.; Kaewkhao, J.

    In this research, glass productions from rice husk ash (RHA) and the effect of BaO, CuO, MnO2 and Fe2O3 on physical and optical properties were investigated. All properties were compared with glass made from SiO2 using same preparations. The results show that a higher density and refractive index of BaO, CuO, MnO2 and Fe2O3 doped in RHA glasses were obtained, compared with SiO2 glasses. The optical spectra show no significant difference between both glasses. The color of CuO glasses show blue from the absorption band near 800 nm (2B1g → 2B2g) due to Cu2+ ion in octahedral coordination with a strong tetragonal distortion. The color of MnO2 glasses shows brown from broad band absorption at around 500 nm. This absorption band is assigned to a single allowed 5Eg → 5T2g transition which arises from the Mn3+ ions (3d4 configuration) in octahedral symmetry. The yellow color derives from F2O3 glass due to the homogeneous distribution of Fe3+ (460 nm) and Fe2+ (1050 nm) ions in the glass matrices. Glass production from RHA is possible and is a new option for recycling waste from biomass power plant systems and air pollution reduction.

  7. Triple-band metamaterial absorption utilizing single rectangular hole

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  8. Two-photon absorption in SiO{sub 2}- and (SiO{sub 2} + GeO{sub 2})-based fibres at a wavelength of 349 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chunaev, D S; Karasik, A Ya

    2014-06-30

    The nonlinear two-photon light absorption coefficients have been measured in an optical fibre with a quartz glass (SiO{sub 2}) core and in a fibre with a germanosilicate glass (SiO{sub 2} + GeO{sub 2}) core. The two-photon absorption coefficient β measured at a wavelength of 349 nm in the (SiO{sub 2} + GeO{sub 2})-based fibre (13.7 cm TW{sup -1}) multiply exceeds that for the pure quartz glass optical fibre (0.54 cm TW{sup -1}). (nonlinear optical phenomena)

  9. Band offsets in ITO/Ga2O3 heterostructures

    NASA Astrophysics Data System (ADS)

    Carey, Patrick H.; Ren, F.; Hays, David C.; Gila, B. P.; Pearton, S. J.; Jang, Soohwan; Kuramata, Akito

    2017-11-01

    The valence band offsets in rf-sputtered Indium Tin Oxide (ITO)/single crystal β-Ga2O3 (ITO/Ga2O3) heterostructures were measured with X-Ray Photoelectron Spectroscopy using the Kraut method. The bandgaps of the component materials in the heterostructure were determined by Reflection Electron Energy Loss Spectroscopy as 4.6 eV for Ga2O3 and 3.5 eV for ITO. The valence band offset was determined to be -0.78 ± 0.30 eV, while the conduction band offset was determined to be -0.32 ± 0.13 eV. The ITO/Ga2O3 system has a nested gap (type I) alignment. The use of a thin layer of ITO between a metal and the Ga2O3 is an attractive approach for reducing contact resistance on Ga2O3-based power electronic devices and solar-blind photodetectors.

  10. Photoemission study of absorption mechanisms in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Dessau, D. S.; Ellis, W. P.; Borg, A.; Kang, J.-S.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1989-11-01

    Photoemission measurements in the constant-final-state (absorption) mode were performed on three different classes of high-temperature superconductors Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4 using synchrotron radiation from 20 to 200 eV. Absorption signals from all elements but Ce are identified. The results firmly show that the Bi 6s electrons are more delocalized in BaBiO3 than in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, in agreement with the results of band-structure calculations. Differences in the absorption signals due to O and Bi excitations between BaBiO3 and Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ are discussed. Delayed absorption onsets attributed to giant resonances (Ba 4d-->4f, La 4d-->4f, and Nd 4d-->4f transitions) are also reported.

  11. Violet-green excitation for NIR luminescence of Yb3+ ions in Bi2O3-B2O3-SiO2-Ga2O3 glasses.

    PubMed

    Li, Weiwei; Cheng, Jimeng; Zhao, Guoying; Chen, Wei; Hu, Lili; Guzik, Malgorzata; Boulon, Georges

    2014-04-21

    60Bi(2)O(3)-20B(2)O(3)-10SiO(2)-10Ga(2)O(3) glasses doped with 1-9 mol% Yb(2)O(3) were prepared and investigated mainly on their violet-green excitation for the typical NIR emission of Yb(3+), generally excited in the NIR. Two violet excitation bands at 365 nm and 405 nm are related to Yb(2+) and Bi(3+). 465 nm excitation band and 480 nm absorption band in the blue-green are assigned to Bi(0) metal nanoparticles/grains. Yb-content-dependence of the excitation and absorption means that Bi(0) is the reduced product of Bi(3+), but greatly competed by the redox reaction of Yb(2+) ↔ Yb(3+). It is proved that the violet-green excitations result in the NIR emission of Yb(3+). On the energy transfer, the virtual level of Yb(3+)-Yb(3+) as well as Bi(0) dimers probably plays an important role. An effective and controllable way is suggested to achieve nano-optical applications by Bi(0) metal nanoparticles/grains and Yb(3+).

  12. Infrared radiation parameterizations for the minor CO2 bands and for several CFC bands in the window region

    NASA Technical Reports Server (NTRS)

    Kratz, David P.; Chou, Ming-Dah; Yan, Michael M.-H.

    1993-01-01

    Fast and accurate parameterizations have been developed for the transmission functions of the CO2 9.4- and 10.4-micron bands, as well as the CFC-11, CFC-12, and CFC-22 bands located in the 8-12-micron region. The parameterizations are based on line-by-line calculations of transmission functions for the CO2 bands and on high spectral resolution laboratory measurements of the absorption coefficients for the CFC bands. Also developed are the parameterizations for the H2O transmission functions for the corresponding spectral bands. Compared to the high-resolution calculations, fluxes at the tropopause computed with the parameterizations are accurate to within 10 percent when overlapping of gas absorptions within a band is taken into account. For individual gas absorption, the accuracy is of order 0-2 percent. The climatic effects of these trace gases have been studied using a zonally averaged multilayer energy balance model, which includes seasonal cycles and a simplified deep ocean. With the trace gas abundances taken to follow the Intergovernmental Panel on Climate Change Low Emissions 'B' scenario, the transient response of the surface temperature is simulated for the period 1900-2060.

  13. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires

    NASA Astrophysics Data System (ADS)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-04-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy ({V}{{O}}) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of {V}{{O}} defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  14. High resolution absorption spectrum of CO2between 1750 and 2000 Å. 2. Rotational analysis of two parallel-type bands assigned to the lowest electronic transition 13B2

    NASA Astrophysics Data System (ADS)

    Cossart-Magos, Claudina; Launay, Françoise; Parkin, James E.

    The absorption spectrum of CO2 gas between 175 and 200 nm was photographed at high resolution some years ago. This very weak spectral region proved to be extremely rich in bands showing rotational fine structure. In Part 1 [C. Cossart-Magos, F. Launay, J. E. Parkin, Mol. Phys., 75, 835 (1992), nine perpendicular-type bands were assigned to the lowest singlet-singlet transition, 11A2 ← ν'3 (b2) vibration. Here, the parallel-type bands observed at 185.7 and 175.6 nm are assigned to the lowest triplet-singlet transition, 13B2 ← TMPH0629math005 ν'2 (a1) vibration. The assignment and the rotational and spin constant values obtained are discussed in relation to previous experimental data and ab initio calculation results on the lowest excited states of CO2. The actual role of the 13B2 state in CO2 photodissociation, O(3P)+CO(X1Σ+) recombination, and O(1D) emission quenching by CO(X) molecules is reviewed.

  15. Preparation and characterization of Ba0.2Sr0.2La0.6MnO3 nanoparticles and investigation of size & shape effect on microwave absorption

    NASA Astrophysics Data System (ADS)

    Peymanfar, Reza; Javanshir, Shahrzad

    2017-06-01

    In this paper, the design and characterization of a radar absorbing material (RAM) was investigated at microwave frequency. Ba0.2Sr0.2La0.6MnO3 magnetic nanoparticles was synthesized thru a facile hydrothermal method in the presence of polymethyl methacrylate (PMMA) and the possibility of shape and size-controlled synthesis of nanoparticles (NPs) over the range 15-50 Nm was also explored. Afterward, the effect of shape and size of the synthesized Ba0.2Sr0.2La0.6MnO3 NPs on microwave absorption properties was investigated in KU-band. The crystal structures and morphology of as-synthesized nanoparticles were characterized and confirmed by FESEM, XRD, VSM, FTIR analysis. The RAM samples were prepared by dispersion of magnetic NPs in silicone rubber in an ultrasonic bath. The maximum reflection loss (RL) values NPs were 12.04 dB at 14.82 GHz and a broad absorption band (over 1.22 GHz) with RL values <-10 dB are obtained and the maximum reflection loss (RL) values of decrease and shaped NPs were 22.36 dB at 14.78 GHz and a broad absorption band (over 2.67 GHz) with RL values <-10 dB are obtained. The results indicated that the particle size and shape play a major role on the absorption properties of the composites in the 12.4-18 GHz frequency range. It is observed that microwave absorption properties increased with the decrease in average particle size of NPs.

  16. Collision-induced absorption in the region of the ν2 + ν3 band of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Baranov, Yu. I.

    2018-03-01

    The IR absorption spectra of pure carbon dioxide in the region of the forbidden ν2 + ν3 vibrational transition at 3004 cm-1 have been recorded using a Fourier-transform spectrometer. A multipass-optical cell with the path length of 100 m was used in the study. The data were taken at room temperature of 294.8 K with a resolution of 0.02 cm-1 over the spectral region 2500-3500 cm-1. A sample pressures varied from 207 to 463 kPa (2.04-4.57 atm). The measured binary absorption coefficients provide the band integrated intensity value of (2.39 ± 0.04) ∗ 10-4 cm-2 amagat-2. The result is compared with those from previous works. The observed band profile features are discussed.

  17. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Liu Hao; Lau, Lok Yin; Ren, Wei

    2017-03-01

    We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.

  18. Combinatorial Broadening Mechanism of O-H Stretching Bands in H-Bonded Molecular Clusters

    NASA Astrophysics Data System (ADS)

    Pitsevich, G. A.; Doroshenko, I. Yu.; Pogorelov, V. E.; Pettersson, L. G. M.; Sablinskas, V.; Sapeshko, V. V.; Balevicius, V.

    2016-07-01

    A new mechanism for combinatorial broadening of donor-OH stretching-vibration absorption bands in molecular clusters with H-bonds is proposed. It enables the experimentally observed increase of the O-H stretching-vibration bandwidth with increasing number of molecules in H-bonded clusters to be explained. Knowledge of the half-width of the OH stretching-vibration absorption band in the dimer and the number of H-bonds in the analyzed cluster is suffi cient in the zeroth-order approximation to estimate the O-H stretching-absorption bands in clusters containing several molecules. Good agreement between the calculated and published experimental half-widths of the OH stretching-vibration absorption bands in MeOH and PrOH clusters was obtained using this approach.

  19. Electromagnetic interference attenuation and shielding effect of quaternary Epoxy-PPy/Fe3O4-ZnO nanocomposite as a broad band microwave-absorber

    NASA Astrophysics Data System (ADS)

    Olad, Ali; Shakoori, Sahar

    2018-07-01

    An increase in the electromagnetic wave pollution generated from wireless telecommunication devices has devoted to a great request for exploiting microwave absorbing materials for themselves. The combination of inherently conducting polymers such as polypyrrole (PPy) with metal oxides has led to design ideal microwave absorbing materials which benefit both advantage effects of ICPs and metal oxide nanoparticles. Herein, the quaternary nanocomposite of Epoxy-PPy/Fe3O4-ZnO was prepared and tested for the absorption of X-band microwaves. Simultaneous application of metal oxides and conducting polypyrrole in the epoxy matrix was evaluated in order to increase the absorption intensity and broadness of microwaves in X-band region. The morphology, microstructure, and phase structure of Fe3O4, ZnO, and PPy, as well as quaternary nanocomposite were characterized and studied using FTIR, XRD, FESEM and TEM techniques. The presence of nanoparticles in the quaternary nanocomposite was confirmed by EDS. The magnetization of iron oxide was studied by VSM. The synergetic effect of iron oxide and zinc oxide nanoparticles in different weight ratios (Fe3O4/ZnO) on the electromagnetic wave absorption was evaluated. The electromagnetic parameters have been evaluated by the vector network analyzer in the frequency range of 8.2-12.4 GHz which is named as X-band region and is adequate for radar applications. The electromagnetic wave absorbing outcomes indicated that Epoxy-PPy/Fe3O4-ZnO quaternary nanocomposite has wide absorption area and high attenuation, which is believed to be due to dielectric loss properties related to the polypyrrole, magnetic loss factor of Fe3O4, and synergetic effects of components. The maximum reflection loss reached to -32.53 dB at 9.96 GHz with a nanocomposite thickness of 2 mm which is dedicated to the Epoxy-PPy/Fe3O4-ZnO with iron oxide to zinc oxide ratio of 2:1. The absorption bandwidth with the reflection loss lower than -10 dB (90% attenuation) was up to

  20. Anisotropy of band gap absorption in TlGaSe2 semiconductor by ferroelectric phase transformation

    NASA Astrophysics Data System (ADS)

    Gulbinas, Karolis; Grivickas, Vytautas; Gavryushin, Vladimir

    2014-12-01

    The depth-resolved free-carrier absorption and the photo-acoustic response are used to examine the band-gap absorption in 2D-TlGaSe2 layered semiconductor after its transformation into the ferroelectric F-phase below 107 K. The absorption exhibits unusual behavior with a biaxial character in respect to the light polarization on the layer plane. A spectral analysis shows that the anisotropy is associated to the lowest Γ-direct optical transition. The Γ-absorption and the localized exciton at 2.11 eV are dipole-prohibited or partially allowed in two nearly perpendicular polarization directions. The shift of anisotropy axis in respect to crystallographic a- and b-directions demonstrates the non-equivalent zigzag rearrangement of the interlayer connecting Tl+ ions, which is responsible for occurrence of the F-phase.

  1. From Ba{sub 3}Ta{sub 5}O{sub 14}N to LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2}: Decreasing the optical band gap of a photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anke, B.; Bredow, T.; Pilarski, M.

    Yellow LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} was successfully synthesized as phase-pure material crystallizing isostructurally to previously reported Ba{sub 3}Ta{sub 5}O{sub 14}N and mixed-valence Ba{sub 3}Ta{sup V}{sub 4}Ta{sup IV}O{sub 15}. The electronic structure of LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} was studied theoretically with the range-separated hybrid method HSE06. The most stable structure was obtained when lanthanum was placed on 2a and nitrogen on 4h sites confirming Pauling's second rule. By incorporating nitrogen, the measured band gap decreases from ∼3.8 eV for the oxide via 2.74 eV for Ba{sub 3}Ta{sub 5}O{sub 14}N to 2.63 eV for the new oxide nitride, giving risemore » to an absorption band well in the visible-light region. Calculated fundamental band gaps confirm the experimental trend. The atom-projected density of states has large contributions from N2p orbitals close to the valence band edge. These are responsible for the observed band gap reduction. Photocatalytic hydrogen formation was investigated and compared with that of Ba{sub 3}Ta{sub 5}O{sub 14}N revealing significantly higher activity for LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} under UV-light. - Graphical abstract: X-ray powder diffraction pattern of LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} with the results of the Rietveld refinements. Inset: Unit cell of LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} and polyhedral representation of the crystal structure. - Highlights: • Synthesis of a new oxide nitride LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2}. • Refinement of the crystal structure. • Quantum chemical calculations provided band gap close to the measured value. • New phase shows a higher photocatalytic H{sub 2} evolution rate compared to prior tested Ba{sub 3}Ta{sub 5}O{sub 14}N.« less

  2. Valence-band states in Bi2(Ca,Sr,La)3Cu2O8

    NASA Astrophysics Data System (ADS)

    Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Spicer, W. E.; Lindau, I.; Mitzi, D. B.; Kapitulnik, A.

    1989-09-01

    We have used photoemission spectroscopy to examine the symmetry of the occupied states of the valence band for the La-doped superconductor Bi2(Ca,Sr,La)3Cu2O8. While the oxygen states near the bottom of the 7-eV wide valence band exhibit predominantly O 2pz symmetry, the states at the top of the valence band extending to the Fermi level are found to have primarily O 2px and O 2py character. We have also examined anomalous intensity enhancements in the valence-band features for photon energies near 18 eV. These enhancements, which occur at photon energies ranging from 15.8 to 18.0 eV for the different valence-band features, are not consistent with either simple final-state effects or direct O 2s transitions to unoccupied O 2p states.

  3. Raman spectroscopy, thermal and optical properties of TeO2-ZnO-Nb2O5-Nd2O3 glasses

    NASA Astrophysics Data System (ADS)

    Kamalaker, V.; Upender, G.; Ramesh, Ch.; Chandra Mouli, V.

    2012-04-01

    The glasses with composition 75TeO2-10ZnO-(15-x)Nb2O5-xNd2O3 (0 ≤ x ≤ 9 mol%) were prepared using melt quenching method and their physical properties such as density (ρ), molar volume (VM), average crosslink density (n¯), oxygen packing density (OPD) and number of bonds per unit volume (nb) were determined. Raman spectroscopic studies showed that the glass network consists of TeO4, TeO3+1, TeO3 and NbO6 units as basic structural units. The glass transition temperature (Tg), crystallization onset (To) and thermal stability (ΔT) were determined from DSC thermograms. The Raman and DSC results were found to be correlated with the physical properties. In the optical absorption spectra six absorption bands were observed with different relative intensities at around 464, 522, 576, 742, 801 and 871 nm which are assigned to the transition of electrons from (ground state) 4I9/2 → G11/2; 4I9/22K3/2, 2G7/2; 4I9/2 → 4G5/2, 4G7/2; 4I9/2 → 4S3/2; 4F7/22H9/2, 4F5/2 and 4I9/22F3/2 respectively. From optical absorption data the energy band gap (Eopt) and Urbach energy (ΔE) were calculated.

  4. Ideal band shape in the potential thermoelectric material CuAlO2: Comparison to NaxCoO2

    NASA Astrophysics Data System (ADS)

    Mori, Kouta; Sakakibara, Hirofumi; Usui, Hidetomo; Kuroki, Kazuhiko

    2013-08-01

    A potential thermoelectric material CuAlO2 is theoretically studied. We first construct a model Hamiltonian of CuAlO2 based on the first principles band calculation, and calculate the Seebeck coefficient. Then, we compare the model with that of a well-known thermoelectric material NaxCoO2, and discuss the similarities and the differences. It is found that the two materials are similar from an electronic structure viewpoint in that they have a peculiar pudding-mold type band shape, which is advantageous for thermoelectric materials. There are, however, some differences, and we analyze the origin of the difference from a microscopic viewpoint. The band shape (a very flat band top but with an overall wide bandwidth) of CuAlO2 is found to be even more ideal than that of NaxCoO2, and we predict that once a significant amount of holes is doped in CuAlO2, thermoelectric properties (especially the power factor) even better than those of NaxCoO2 can be expected.

  5. Influence of valence state of copper ions on structural and spectroscopic properties of multi-component PbO-Al2O3-TeO2-GeO2-SiO2 glass ceramic system- a possible material for memory switching devices

    NASA Astrophysics Data System (ADS)

    Tirupataiah, Ch.; Narendrudu, T.; Suresh, S.; Srinivasa Rao, P.; Vinaya Teja, P. M.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2017-11-01

    Multi-component glass ceramics with composition 29PbO-5Al2O3-1TeO2 -10GeO2- (55-x) SiO2 doped with different concentrations of CuO (0 ≤ x ≤ 1.0 mol %) were synthesized by melt quenching technique and subsequent heat treatment. These glass ceramics were characterized by X-ray diffraction, scanning electron microscope, differential thermal analysis, optical absorption, electron paramagnetic resonance, Fourier transform infrared and Raman studies. The absorption spectra of these glass ceramics exhibited a broad absorption band in the range 650-950 nm which is ascribed to 2B1g → 2B2g octahedral transition of Cu2+ ions. A feeble band around 364 nm is also identified in the samples doped with CuO up to 0.6 mol% as being due to charge transfer between the two oxidation states Cu2+ and Cu+ of copper ions. The EPR spectrum recorded at room temperature exhibited a strong resonance signal at g⊥ = 2.072 and a shallow quadruplet at about gǁ = 2.401. FTIR and Raman spectra of the titled samples provide significant information about various structural units viz., silicate, germanate, PbO4, PbO6, AlO6, TeO4 and TeO3 that are present in these ceramic matrix. Analysis of the spectroscopic investigations reveals that with an increase in the concentration of CuO up to 0.6 mol% copper ions do exist in Cu2+ and Cu+ states and they act as modifiers and net work formers respectively. Therefore, glass ceramic sample contains 0.6 mol% of CuO is favorable for memory switching action.

  6. L(alpha)-induced two-photon absorption of visible light emitted from an O-type star by H2(+) ions located near the surface of the Stromgren sphere surrounding the star: A possible explanation for the diffuse interstellar absorption bands (DIDs)

    NASA Technical Reports Server (NTRS)

    Glownia, James H.; Sorokin, Peter P.

    1994-01-01

    In this paper, a new model is proposed to account for the DIB's (Diffuse Interstellar Bands). In this model, the DIB's result from a non-linear effect: resonantly-enhanced two-photon absorption of H(2+) ions located near the surface of the Stromgren sphere that surrounds an O- or B- type star. The strong light that is required to 'drive' the two-photon transition is provided by L(alpha) light emerging from the Stromgren sphere that bounds the H II region surrounding the star. A value of approximately 100 micro W/sq cm is estimated for the L(alpha) flux at the Stromgren radius, R(s), of a strong (O5) star. It is shown that a c.w. L(alpha) flux of this intensity should be sufficient to induce a few percent absorption for visible light radiated by the same star at a frequency (omega2) that completes an allowed two-photon transition, provided (1) the L(alpha) radiation happens to be nearly resonant with the frequency of a fully-allowed absorber transition that effectively represents the first step in the two-photon transition, and (2) an effective column density approximately 10(sup18)/sq cm of the absorber is present near the Stromgren sphere radius, R(sub s).

  7. Spectral analysis of Cu 2+: B 2O 3-ZnO-PbO glasses

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, G.; Buddhudu, S.

    2005-11-01

    A new series of heavy metal oxide (PbO) based zinc borate glasses in the chemical composition of (95 - x)B 2O 3-5ZnO- xPbO ( x = 10, 15, 20, 25, 30, 35, 40, 45 and 50 mol%) have been prepared to verify their UV filtering performance. Both direct and indirect optical band gaps ( Eopt) have been evaluated for these glasses. For a reference glass of 45B 2O 3-5ZnO-50PbO, refractive indices at different wavelengths are measured and found the results satisfactorily correlated with the theoretical data upon the computation of Cauchy's constants of A = 1.766029949, B = 159531.024 nm 2 and C = -1.078 × 10 10 nm 4. Measurements concerning X-ray diffraction (XRD), FT-IR, differential scanning colorimeter (DSC) profiles have been carried out for this glass. The FT-IR profile has revealed that the glass has both BO 3 and BO 4 units. From DSC thermogram, glass transition temperature ( Tg), crystallization temperature ( Tc) and melting temperature ( Tm) have been located and from them, other related parameters of the glass have also been calculated. Visible absorption spectra of 45B 2O 3-5ZnO-(50 - x)PbO- xCuO ( x = 0. 1, 0.2, 0.5 and 1.0 mol%) have revealed two absorption bands at around 400 nm ( 2B 1g → 2E g) and 780 nm ( 2B 1g → 2B 2g) of Cu 2+ ions, respectively. Emission bands at 422 and 512 nm are found for the 1 mol% CuO doped glass with excitations at 306 and 332 nm.

  8. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In 2 O 3 nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor–liquid–solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy (VO) defects as confirmed using Raman spectroscopy. A combination of highmore » resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of VO defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.« less

  9. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires.

    PubMed

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P; Schaller, Richard D; Gosztola, David J; Stroscio, Michael A; Dutta, Mitra

    2018-04-27

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In 2 O 3 ) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In 2 O 3 nanostructure based device characteristics for potential optoelectronic applications. In 2 O 3 nanowires with cubic crystal structure (c-In 2 O 3 ) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy [Formula: see text] defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of [Formula: see text] defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  10. Glucose Absorption by the Bacillary Band of Trichuris muris

    PubMed Central

    Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M.

    2016-01-01

    Background A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. Methodology We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Principal Findings Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Conclusions/Significance Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development. PMID:27588682

  11. Glucose Absorption by the Bacillary Band of Trichuris muris.

    PubMed

    Hansen, Tina V A; Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M

    2016-09-01

    A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development.

  12. Band structure calculations of CuAlO2, CuGaO2, CuInO2, and CuCrO2 by screened exchange

    NASA Astrophysics Data System (ADS)

    Gillen, Roland; Robertson, John

    2011-07-01

    We report density functional theory band structure calculations on the transparent conducting oxides CuAlO2, CuGaO2, CuInO2, and CuCrO2. The use of the hybrid functional screened-exchange local density approximation (sX-LDA) leads to considerably improved electronic properties compared to standard LDA and generalized gradient approximation (GGA) approaches. We show that the resulting electronic band gaps compare well with experimental values and previous quasiparticle calculations, and show the correct trends with respect to the atomic number of the cation (Al, Ga, In). The resulting energetic depths of Cu d and O p levels and the valence-band widths are considerable improvements compared to LDA and GGA and are in good agreement with available x-ray photoelectron spectroscopy data. Lastly, we show the calculated imaginary part of the dielectric function for all four systems.

  13. Electrical and optical properties of Si-doped Ga2O3

    NASA Astrophysics Data System (ADS)

    Li, Yin; Yang, Chuanghua; Wu, Liyuan; Zhang, Ru

    2017-05-01

    The charge densities, band structure, density of states, dielectric functions of Si-doped β-Ga2O3 have been investigated based on the density functional theory (DFT) within the hybrid functional HSE06. The heavy doping makes conduction band split out more bands and further influences the band structure. It decreases the band gap and changes from a direct gap to an indirect gap. After doping, the top of the valence bands is mainly composed by the O-2p states, Si-3p states and Ga-4p states and the bottom of the conduction bands is almost formed by the Si-3s, Si-3p and Ga-4s orbits. The anisotropic optical properties have been investigated by means of the complex dielectric function. After the heavy Si doping, the position of absorption band edges did not change much. The slope of the absorption curve descends and indicates that the absorption became more slow for Si-doped β-Ga2O3 than undoped one due to the indirect gap of Si-doped β-Ga2O3.

  14. Theoretical and experimental investigation of optical absorption anisotropy in β-Ga2O3.

    PubMed

    Ricci, F; Boschi, F; Baraldi, A; Filippetti, A; Higashiwaki, M; Kuramata, A; Fiorentini, V; Fornari, R

    2016-06-08

    The question of optical bandgap anisotropy in the monoclinic semiconductor β-Ga2O3 was revisited by combining accurate optical absorption measurements with theoretical analysis, performed using different advanced computation methods. As expected, the bandgap edge of bulk β-Ga2O3 was found to be a function of light polarization and crystal orientation, with the lowest onset occurring at polarization in the ac crystal plane around 4.5-4.6 eV; polarization along b unambiguously shifts the onset up by 0.2 eV. The theoretical analysis clearly indicates that the shift in the b onset is due to a suppression of the transition matrix elements of the three top valence bands at Γ point.

  15. Electronic, Optical and Thermoelectric Properties of 2H-CuAlO2: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Bhamu, K. C.; Khenata, R.; Khan, Saleem Ayaz; Singh, Mangej; Priolkar, K. R.

    2016-01-01

    The electronic and optical properties of 2H-CuAlO2, including energy bands, density of states (DOS), optical dielectric behaviour, refractive index, absorption coefficient and optical conductivity, have been investigated within the framework of a full-potential linearized augmented plane wave scheme using different potentials. The direct and indirect band gaps for CuAlO2, computed using the Becke-Johnson potential, are estimated at 3.53 eV and 2.48 eV, respectively, which are in better agreement with the experimentally reported band gaps than those previously computed. The origin of energy bands is elucidated in terms of DOS, while the behaviour of the imaginary part of the dielectric constant is explained in terms of electronic transitions from valence bands to conduction bands. The computed value of the refractive index is 2.25 (1.94) for light perpendicular (parallel) to the c axis, in concordance with the available values. The overall shape of the spectral distribution for absorption coefficient and optical conductivity is also in accord with the reported data. The investigated thermoelectric properties indicate that CuAlO2 is a p-type semiconductor showing high effectiveness at low temperatures.

  16. Raman spectroscopy, thermal and optical properties of TeO2-ZnO-Nb2O5-Nd2O3 glasses.

    PubMed

    Kamalaker, V; Upender, G; Ramesh, Ch; Mouli, V Chandra

    2012-04-01

    The glasses with composition 75TeO2-10ZnO-(15-x)Nb2O5-xNd2O3 (0≤x≤9 mol%) were prepared using melt quenching method and their physical properties such as density (ρ), molar volume (VM), average crosslink density (nc¯), oxygen packing density (OPD) and number of bonds per unit volume (nb) were determined. Raman spectroscopic studies showed that the glass network consists of TeO4, TeO3+1, TeO3 and NbO6 units as basic structural units. The glass transition temperature (Tg), crystallization onset (To) and thermal stability (ΔT) were determined from DSC thermograms. The Raman and DSC results were found to be correlated with the physical properties. In the optical absorption spectra six absorption bands were observed with different relative intensities at around 464, 522, 576, 742, 801 and 871 nm which are assigned to the transition of electrons from (ground state) 4I9/2→G11/2; 4I9/22K3/2, 2G7/2; 4I9/2→4G5/2, 4G7/2; 4I9/2→4S3/2; 4F7/22H9/2, 4F5/2 and 4I9/22F3/2 respectively. From optical absorption data the energy band gap (Eopt) and Urbach energy (ΔE) were calculated. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Spectroscopic properties of Sm3+ and V4+ ions in Na2O-SiO2-ZrO2 glasses

    NASA Astrophysics Data System (ADS)

    Neeraja, K.; Rao, T. G. V. M.; Kumar, A. Rupesh; Uma Lakshmi, V.; Veeraiah, N.; Rami Reddy, M.

    2013-12-01

    Na2O-SiO2-ZrO2 glasses of Sm3+ ions with and without V2O5 are characterized by spectroscopic and optical properties. The XRD and EDS spectra of the glass samples reveal an amorphous nature with different compositions within the glass matrix. The Infrared and Raman spectral studies are carried out and the existence of conventional structural units are analyzed in the glass network. The ESR spectra of the glass samples have indicating that a considerable proportion of vanadium ion exists in V4+ state. The optical absorption spectra of these glasses are recorded at room temperature, from the measured intensities of various absorption bands the Judd-Ofelt parameters Ω2, Ω4 and Ω6 are calculated. The photo-luminescence spectra recorded with excited wavelength 400 nm, five emission bands are observed; in this the energy transfer probability takes place between Sm3+ and V4+ ions.

  18. Band alignment investigations of heterostructure NiO/TiO2 nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production.

    PubMed

    Uddin, Md T; Nicolas, Y; Olivier, C; Jaegermann, W; Rockstroh, N; Junge, H; Toupance, T

    2017-07-26

    Earth-abundant NiO/anatase TiO 2 heteronanostructures were prepared by a straightforward one-pot sol-gel synthetic route followed by a suitable thermal post-treatment. The resulting 0.1-4 wt% NiO-decorated anatase TiO 2 nanoparticles were characterized by X-ray diffraction, electron microscopy, Raman and UV-visible spectroscopy and N 2 sorption analysis, and showed both nanocrystallinity and mesoporosity. The careful determination of the energy band alignment diagram by a suitable combination of XPS/UPS and absorption spectroscopy data revealed significant band bending at the interface of the p-n NiO/anatase TiO 2 heterojunction nanoparticles. Furthermore, these heterojunction photocatalysts exhibited an improved photocatalytic activity in H 2 production by methanol photoreforming compared to pure anatase TiO 2 and commercial P25. Thus, an average H 2 production rate of 2693 μmol h -1 g -1 was obtained for the heterojunction of a 1 wt% NiO/anatase photocatalyst, which is one of the most efficient NiO/anatase TiO 2 systems ever reported. An enhanced dissociation efficiency of the photogenerated electron-hole pairs resulting from an internal electric field developed at the interface of the NiO/anatase TiO 2 p-n heterojunctions is suggested to be the reason of this enhanced photocatalytic activity.

  19. Role of HfO 2/SiO 2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage

    DOE PAGES

    Papernov, Semyon; Kozlov, Alexei A.; Oliver, James B.; ...

    2016-07-15

    Here, the role of thin-film interfaces in the near-ultraviolet (near-UV) absorption and pulsed laser-induced damage was studied for ion-beam-sputtered and electron-beam-evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and anmore » E-field peak and average intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-UV, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. The results are explained through the similarity of interfacial film structure with structure formed during the codeposition of HfO 2 and SiO 2 materials.« less

  20. Effect of neutron-irradiation on optical properties of SiO2-Na2O-MgO-Al2O3 glasses

    NASA Astrophysics Data System (ADS)

    Sandhu, Amanpreet Kaur; Singh, Surinder; Pandey, Om Prakash

    2009-07-01

    Silica based glasses are used as nuclear shielding materials. The effect of radiation on these glasses varies as per the constituents used in these glasses. Glasses of different composition of SiO2-Na2OMgO-Al2O3 were made by melt casting techniques. These glasses were irradiated with neutrons of different fluences. Optical absorption measurements of neutron-irradiated silica based glasses were performed at room temperature (RT) to detect and characterize the induced radiation damage in these materials. The absorption band found for neutron-irradiated glasses are induced by hole type color centers related to non-bridging oxygen ions (NBO) located in different surroundings of glass matrix. Decrease in the transmittance indicates the formation of color-center defects. Values for band gap energy and the width of the energy tail above the mobility gap have been measured before and after irradiation. The band gap energy has been found to decrease with increasing fluence while the Urbach energy shows an increase. The effects of the composition of the glasses on these parameters have been discussed in detail in this paper.

  1. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  2. Band alignment of atomic layer deposited SiO2 and HfSiO4 with (\\bar{2}01) β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Carey, Patrick H., IV; Ren, Fan; Hays, David C.; Gila, Brent P.; Pearton, Stephen J.; Jang, Soohwan; Kuramata, Akito

    2017-07-01

    The valence band offset at both SiO2/β-Ga2O3 and HfSiO4/β-Ga2O3 heterointerfaces was measured using X-ray photoelectron spectroscopy. Both dielectrics were deposited by atomic layer deposition (ALD) onto single-crystal β-Ga2O3. The bandgaps of the materials were determined by reflection electron energy loss spectroscopy as 4.6 eV for Ga2O3, 8.7 eV for Al2O3 and 7.0 eV for HfSiO4. The valence band offset was determined to be 1.23 ± 0.20 eV (straddling gap, type I alignment) for ALD SiO2 on β-Ga2O3 and 0.02 ± 0.003 eV (also type I alignment) for HfSiO4. The respective conduction band offsets were 2.87 ± 0.70 eV for ALD SiO2 and 2.38 ± 0.50 eV for HfSiO4, respectively.

  3. Atmospheric absorption of high frequency noise and application to fractional-octave bands

    NASA Technical Reports Server (NTRS)

    Shields, F. D.; Bass, H. E.

    1977-01-01

    Pure tone sound absorption coefficients were measured at 1/12 octave intervals from 4 to 100 KHz at 5.5K temperature intervals between 255.4 and 310.9 K and at 10 percent relative humidity increments between 0 percent and saturation in a large cylindrical tube (i.d., 25.4 cm; length, 4.8 m). Special solid-dielectric capacitance transducers, one to generate bursts of sound waves and one to terminate the sound path and detect the tone bursts, were constructed to fit inside the tube. The absorption was measured by varying the transmitter receiver separation from 1 to 4 m and observing the decay of multiple reflections or change in amplitude of the first received burst. The resulting absorption was compared with that from a proposed procedure for computing sound absorption in still air. Absorption of bands of noise was numerically computed by using the pure tone results. The results depended on spectrum shape, on filter type, and nonlinearly on propagation distance. For some of the cases considered, comparison with the extrapolation of ARP-866A showed a difference as large as a factor of 2. However, for many cases, the absorption for a finite band was nearly equal to the pure tone absorption at the center frequency of the band. A recommended prediction procedure is described for 1/3 octave band absorption coefficients.

  4. A newly-designed magnetic/dielectric [Fe3O4/BaTiO3@MWCNT] nanocomposite system for modern electromagnetic absorption applications

    NASA Astrophysics Data System (ADS)

    Sardarian, Pouria; Naffakh-Moosavy, Homam; Afghahi, Seyyed Salman Seyyed

    2017-11-01

    Developments in electronic industries for telecommunications and demands for decreasing electromagnetic radiation pollution result in developing researches on microwave absorption materials. The target of the present study is to design materials with high absorption properties for electromagnetic waves in the 12-18 GHz range. Thus, Fe3O4 magnetic nanoparticles were syntheses through chemical co-precipitation reinforced by ultrasonic. Then, BaTiO3 nanocrystalline powder was synthesized by the hydrothermal sol-gel method under atmospheric oxygen. Next, nano-particles of barium titanate were deposited on the multi-walled carbon nanotubes (BaTiO3@CNT). It was concluded that a magnetic-dielectric nanocomposite has superior microwave absorption properties in comparison to individual magnetic or dielectric absorbers. Also, in order to obtain an optimum absorption in a wide frequency band, dielectric-CNT nanocomposites represents higher properties than magnetic-CNT composites. It is concluded that composites with more magnetic percentage showed better absorption in low frequency band (12 GHz), whereas composites with more dielectric percentage exhibited superior absorption for high frequency band (18 GHz). 80-93% absorption was obtained in the frequency range of 16.7-18 GHz by composite 40M.20F.40C (40% paraffin, 20% magnetite, 40% multi-walled carbon nanotubes). Also, composite 40M.20B.40B@C (40% paraffin, 20% barium titanate, 40% barium titanate deposited on multi-walled carbon nanotubes) showed the absorption of 80-90%.

  5. Real-structure effects: Band gaps of Mg_xZn_{1-x}O, Cd_xZn_{1-x}O, and n-type ZnO from ab-initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schleife, A; Bechstedt, F

    2012-02-15

    Many-body perturbation theory is applied to compute the quasiparticle electronic structures and the optical-absorption spectra (including excitonic effects) for several transparent conducting oxides. We discuss HSE+G{sub 0}W{sub 0} results for band structures, fundamental band gaps, and effective electron masses of MgO, ZnO, CdO, SnO{sub 2}, SnO, In{sub 2}O{sub 3}, and SiO{sub 2}. The Bethe-Salpeter equation is solved to account for excitonic effects in the calculation of the frequency-dependent absorption coefficients. We show that the HSE+G{sub 0}W{sub 0} approach and the solution of the Bethe-Salpeter equation are very well-suited to describe the electronic structure and the optical properties of various transparentmore » conducting oxides in good agreement with experiment.« less

  6. Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass

    PubMed Central

    Zaid, Mohd Hafiz Mohd; Matori, Khamirul Amin; Aziz, Sidek Hj. Abdul; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2012-01-01

    This manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS) glass combined with zinc oxide (ZnO) that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible) region were recorded at room temperature. The results show that the densities of the glass samples increased as the ZnO weight percentage increased. The molar volume of the glasses shows the same trend as the density: the molar volume increased as the ZnO content increased. The optical band gaps were calculated from the absorption edge, and it was found that the optical band gap decreased from 3.20 to 2.32 eV as the ZnO concentration increased. PMID:22837711

  7. Possibility of Flat-Band Ferromagnetism in Hole-Doped Pyrochlore Oxides Sn2 Nb2 O7 and Sn2 Ta2 O7

    NASA Astrophysics Data System (ADS)

    Hase, I.; Yanagisawa, T.; Aiura, Y.; Kawashima, K.

    2018-05-01

    Quantum mechanics tells us that the hopping integral between local orbitals makes the energy band dispersive. In a lattice with geometric frustration, however, dispersionless flat bands may appear due to quantum interference. Several models possessing flat bands have been proposed theoretically, and many attracting magnetic and electronic properties are predicted. However, despite many attempts to realize these models experimentally, compounds that are appropriately described by this model have not been found so far. Here we show that pyrochlore oxides Sn2 Nb2 O7 and Sn2Ta2O7 are such examples, by performing first-principles band calculation and several tight-binding analyses. Moreover, spin-polarized band calculation shows that the hole-doped systems Sn2 Nb2 O6 N and Sn2 Ta2 O6 N have complete spin polarization, and their magnetic moments are mostly carried by Sn-s and N-p orbitals, which are usually nonmagnetic. These compounds are not only candidates for ferromagnets without a magnetic element, but also will provide an experimental platform for a flat-band model which shows a wide range of physical properties.

  8. Spectroscopic and optical properties of the VO2+ ion doped TeO2-TiO2-ZnO-Nb2O5 glass system

    NASA Astrophysics Data System (ADS)

    Swapna; Upender, G.; Sreenivasulu, V.; Prasad, M.

    2016-04-01

    Studies such as optical absorption, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Electron paramagnetic resonance (EPR) spectroscopy and Differential scanning calorimetry (DSC) were carried out on VO2+ ion doped TeO2-TiO2-ZnO-Nb2O5 glass system. Raman and FTIR spectra of the glasses revealed the presence of [TeO3], [TeO4] and [NbO6] structural units in the glass network. The Urbach energy (Δ E), cut-off wavelength (λ c ), optical band gap ( E opt ), optical basicity (Λ) and electron polarizability ( α) of the glasses were determined from optical absorption studies. The density ( ρ), molar volume ( V m ), oxygen molar volume ( V o ) and refractive index ( n) were also measured. Spin-Hamiltonian parameters were calculated from the EPR studies. When Nb2O5 was increased at the expense of ZnO, the density, optical band gap and Urbach energy of the glasses increased, and the electronic polarizability and optical basicity decreased. The EPR spectra clearly showed that vanadium was in the glass as VO2+ and occupied octahedral sites with tetrahedral compression. Spin-Hamiltonian parameters g‖ and g⊥ decreased as Nb2O5 content increased in the glass. The glass transition temperature ( T g ) also increased with increasing Nb2O5 content in the glass.

  9. Modified band alignment effect in ZnO/Cu2O heterojunction solar cells via Cs2O buffer insertion

    NASA Astrophysics Data System (ADS)

    Eom, Kiryung; Lee, Dongyoon; Kim, Seunghwan; Seo, Hyungtak

    2018-02-01

    The effects of a complex buffer layer of cesium oxide (Cs2O) on the photocurrent response in oxide heterojunction solar cells (HSCs) were investigated. A p-n junction oxide HSC was fabricated using p-type copper (I) oxide (Cu2O) and n-type zinc oxide (ZnO); the buffer layer was inserted between the Cu2O and fluorine-doped tin oxide (FTO). Ultraviolet-visible (UV-vis) and x-ray and ultraviolet photoelectron spectroscopy analyses were performed to characterize the electronic band structures of cells, both with and without this buffer layer. In conjunction with the measured band electronic structures, the significantly improved visible-range photocurrent spectra of the buffer-inserted HSC were analyzed in-depth. As a result, the 1 sun power conversion efficiency was increased by about three times by the insertion of buffer layer. The physicochemical origin of the photocurrent enhancement was mainly ascribed to the increased photocarrier density in the buffer layer and modified valence band offset to promote the effective hole transfer at the interface to FTO on the band-alignment model.

  10. Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses.

    PubMed

    Chaliha, Reenamoni Saikia; Annapurna, K; Tarafder, Anal; Tiwari, V S; Gupta, P K; Karmakar, Basudeb

    2010-01-01

    Precursor glass of composition 25K(2)O-25Nb(2)O(5)-50SiO(2) (mol%) doped with Er(2)O(3) (0.5 wt% in excess) was isothermally crystallized at 800 degrees C for 0-100 h to obtain transparent KNbO(3) nanostructured glass-ceramics. XRD, FESEM, TEM, FTIRRS, dielectric constant, refractive index, absorption and fluorescence measurements were carried out to analyze the morphology, dielectric, structure and optical properties of the glass-ceramics. The crystallite size of KNbO(3) estimated from XRD and TEM is found to vary in the range 7-23 nm. A steep rise in the dielectric constant of glass-ceramics with heat-treatment time reveals the formation of ferroelectric nanocrystalline KNbO(3) phase. The measured visible photoluminescence spectra have exhibited green emission transitions of (2)H(11/2), (4)S(3/2)-->(4)I(15/2) upon excitation at 377 nm ((4)I(15/2)-->(4)G(11/2)) absorption band of Er(3+) ions. The near infrared (NIR) emission transition (4)I(13/2)-->(4)I(15/2) is detected around 1550 nm on excitation at 980 nm ((4)I(15/2)-->(4)I(11/2)) of absorption bands of Er(3+) ions. It is observed that photoluminescent intensity at 526 nm ((2)H(11/2)-->(4)I(15/2)), 550 nm ((4)S(3/2)-->(4)I(15/2)) and 1550 nm ((4)I(13/2)-->(4)I(15/2)) initially decrease and then gradually increase with increase in heat-treatment time. The measured lifetime (tau(f)) of the (4)I(13/2)-->(4)I(15/2) transition also possesses a similar trend. The measured absorption and fluorescence spectra reveal that the Er(3+) ions gradually enter into the KNbO(3) nanocrystals. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Tunable dual-band nearly perfect absorption based on a compound metallic grating

    NASA Astrophysics Data System (ADS)

    Gao, Hua; Zheng, Zhi-Yuan; Feng, Juan

    2017-02-01

    Traditional metallic gratings and novel metamaterials are two basic kinds of candidates for perfect absorption. Comparatively speaking, metallic grating is the preferred choice for the same absorption effect because it is structurally simpler and more convenient to fabricate. However, to date, most of the perfect absorption effects achieved based on metamaterials are also available using an metallic grating except the tunable dual(multi)-band perfect absorption. To fill this gap, in this paper, by adding subgrooves on the rear surface as well as inside the grating slits to a free-standing metallic grating, tunable dual-band perfect absorption is also obtained for the first time. The grooves inside the slits is to tune the frequency of the Cavity Mode(CM) resonance which enhances the transmission and suppresses the reflectance simultaneously. The grooves on the rear surface give rise to the phase resonance which not only suppresses the transmission but also reinforces the reflectance depression effect. Thus, when the phase resonance and the frequency tunable CM resonance occur together, transmission and reflection can be suppressed simultaneously, dual-band nearly perfect absorption with tunable frequencies is obtained. To our knowledge, this perfect absorption phenomenon is achieved for the first time in a designed metallic grating structure.

  12. Molecular design of TiO2 for gigantic red shift via sublattice substitution.

    PubMed

    Shao, Guosheng; Deng, Quanrong; Wan, Lin; Guo, Meilan; Xia, Xiaohong; Gao, Yun

    2010-11-01

    The effects of 3d transition metal doping in TiO2 phases have been simulated in detail. The results of modelling indicate that Mn has the biggest potential among 3d transition metals, for the reduction of energy gap and the introduction of effective intermediate bands to allow multi-band optical absorption. On the basis of theoretical formulation, we have incorporated considerable amount of Mn in nano-crystalline TiO2 materials. Mn doped samples demonstrate significant red shift in the optical absorption edge, with a secondary absorption edge corresponding to theoretically predicted intermediate bands/states. The gigantic red shift achievable in Mn-doped TiO2 is expected to extend the useful TiO2 functionalities well beyond the UV threshold via the optical absorption of both visible and infrared photon irradiance.

  13. Infrared Absorption of Methanol-Water Clusters Mn(H2O), n = 1-4, Recorded with the Vuv-Ionization Techniques

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Fang; Lee, Yuan-Pern

    2016-06-01

    We investigated IR spectra in the CH- and OH-stretching regions of size-selected methanol-water clusters, Mn(H_2O) with M representing CH_3OH and n = 1-4, in a pulsed supersonic jet by using the VUV (vacuum-ultraviolet)-ionization/IR-depletion technique. The VUV light at 118 nm served as the source of ionization in a time-of-flight mass spectrometer. The tunable IR laser served as a source of dissociation for clusters before ionization. Spectra of methanol-water clusters in the OH region show significant variations as the number of methanol molecules increase, whereas spectra in the CH region are similar. For M(H_2O), absorption of a structure with H_2O as a proton donor was observed at 3570, 3682, and 3722 wn, whereas that of methanol as a proton donor was observed at 3611 and 3753 wn. For M2(H_2O), the OH-stretching band of the dangling OH of H_2O was observed at 3721 wn, whereas overlapped bands near 3425, 3472, and 3536 wn correspond to the OH-stretching modes of three hydrogen-bonded OH in a cyclic structure. For M3(H_2O), the dangling OH shifts to 3715 wn, and the hydrogen-bonded OH-stretching bands become much broader, with a band near 3179 wn having the smallest wavenumber. Scaled harmonic vibrational wavenumbers and relative IR intensities predicted for the methanol-water clusters with the M06-2X/aug-cc-pVTZ method are consistent with our experimental results. For M4(H_2O), observed spectrum agree less with theoretical predictions, indicating the presence of isomers other than the most stable cyclic one. Spectra of Mn(H_2O) and Mn+1 are compared and the cooperative hydrogen-bonding is discussed.

  14. X-ray Absorption Spectroscopy Study of the Effect of Rh doping in Sr2IrO4

    PubMed Central

    Sohn, C. H.; Cho, Deok-Yong; Kuo, C.-T.; Sandilands, L. J.; Qi, T. F.; Cao, G.; Noh, T. W.

    2016-01-01

    We investigate the effect of Rh doping in Sr2IrO4 using X-ray absorption spectroscopy (XAS). We observed appearance of new electron-addition states with increasing Rh concentration (x in Sr2Ir1−xRhxO4) in accordance with the concept of hole doping. The intensity of the hole-induced state is however weak, suggesting weakness of charge transfer (CT) effect and Mott insulating ground states. Also, Ir Jeff = 1/2 upper Hubbard band shifts to lower energy as x increases up to x = 0.23. Combined with optical spectroscopy, these results suggest a hybridisation-related mechanism, in which Rh doping can weaken the (Ir Jeff = 1/2)–(O 2p) orbital hybridisation in the in-planar Rh-O-Ir bond networks. PMID:27025538

  15. O2 A Band Studies for Cloud Detection and Algorithm Improvement

    NASA Technical Reports Server (NTRS)

    Chance, K. V.

    1996-01-01

    Detection of cloud parameters from space-based spectrometers can employ the vibrational bands of O2 in the (sup b1)Sigma(sub +)(sub g) yields X(sub 3) Sigma(sup -)(sub g) spin-forbidden electronic transition manifold, particularly the Delta nu = 0 A band. The GOME instrument uses the A band in the Initial Cloud Fitting Algorithm (ICFA). The work reported here consists of making substantial improvements in the line-by-line spectral database for the A band, testing whether an additional correction to the line shape function is necessary in order to correctly model the atmospheric transmission in this band, and calculating prototype cloud and ground template spectra for comparison with satellite measurements.

  16. Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2

    PubMed Central

    Mi, Yang; Weng, Yuxiang

    2015-01-01

    TiO2 is the most promising semiconductor for photocatalytic splitting of water for hydrogen and degradation of pollutants. The highly photocatalytic active form is its mixed phase of two polymorphs anatase and rutile rather than their pristine compositions. Such a synergetic effect is understood by the staggered band alignment favorable to spatial charge separation. However, electron migration in either direction between the two phases has been reported, the reason of which is still unknown. We determined the band alignment by a novel method, i.e., transient infrared absorption-excitation energy scanning spectra, showing their conduction bands being aligned, thus the electron migration direction is controlled by dynamical factors, such as varying the particle size of anatase, putting electron or hole scavengers on either the surface of anatase or rutile phases, or both. A quantitative criterion capable of predicting the migration direction under various conditions including particle size and surface chemical reactions is proposed, the predictions have been verified experimentally in several typical cases. This would give rise to a great potential in designing more effective titania photocatalysts. PMID:26169699

  17. Observation of shift in band gap with annealing in hydrothermally synthesized TiO2-thin films

    NASA Astrophysics Data System (ADS)

    Pawar, Vani; Jha, Pardeep K.; Singh, Prabhakar

    2018-05-01

    Anatase TiO2 thin films were synthesized by hydrothermal method. The films were fabricated on a glass substrate by spin coating unit and annealed at 500 °C for 2 hours in ambient atmosphere. The effect of annealing on microstructure and optical properties of TiO2 thin films namely, just deposited and annealed thin film were investigated. The XRD data confirms the tetragonal crystalline structure of the films with space group I41/amd. The surface morphology suggests that TiO2 particles are almost homogeneous in size and annealing of the film affect the grain growth of the particles. The band gap energy increases from 2.81 to 3.34 eV. On the basis of our observation, it can be concluded that the annealing of TiO2 thin films enhances the absorption range and it may find potential application in the field of solar cells.

  18. Electronic band structure study of colossal magnetoresistance in Tl 2Mn 2O 7

    NASA Astrophysics Data System (ADS)

    Seo, D.-K.; Whangbo, M.-H.; Subramanian, M. A.

    1997-02-01

    The electronic structure of Tl 2Mn 2O 7 was examined by performing tight binding band calculations. The overlap between the Mn t 2g- and Tl 6 s-block bands results in a partial filling of the Tl 6 s-block bands. The associated Fermi surface consists of 12 cigar-shape electron pockets with each electron pocket about {1}/{1000} of the first Brillouin zone in size. The Tl 6 s-block bands have orbital contributions from the Mn atoms, and the carrier density is very low. These are important for the occurrence of a colossal magnetoresistance in Tl 2Mn 2O 7.

  19. Structural, optical, physical and electrical properties of V2O5.SrO.B2O3 glasses.

    PubMed

    Sindhu, S; Sanghi, S; Agarwal, A; Seth, V P; Kishore, N

    2006-05-01

    The present work aims to study the structure and variation of optical band gap, density and dc electrical conductivity in vanadium strontium borate glasses. The glass systems xV2O5.(40-x)SrO.60B2O3 and xV2O5.(60-x)B2O3.40SrO with x varying from 0 to 20 mol% were prepared by normal melt quench technique. Structural studies were made by recording IR transmission spectra. The fundamental absorption edge for all the glasses was analyzed in terms of the theory proposed by Davis and Mott. The position of absorption edge and hence the value of the optical band gap was found to depend on the semiconducting glass composition. The absorption in these glasses is believed to be associated with indirect transitions. The origin of Urbach energy is associated with the phonon-assisted indirect transitions. The change in both density and molar volume was discussed in terms of the structural modifications that take place in the glass matrix on addition of V2O5. dc conductivity of the glass systems is also reported. The change of conductivity and activation energy with composition indicates that the conduction process varies from ionic to polaronic one.

  20. Ultraviolet and infrared absorption spectra of Cr2O3 doped-sodium metaphosphate, lead metaphosphate and zinc metaphosphate glasses and effects of gamma irradiation: a comparative study.

    PubMed

    Marzouk, M A; ElBatal, F H; Abdelghany, A M

    2013-10-01

    The effects of gamma irradiation on spectral properties of Cr2O3-doped phosphate glasses of three varieties, namely sodium metaphosphate, lead metaphosphate and zinc metaphosphate have been investigated. Optical spectra of the undoped samples reveal strong UV absorption bands which are attributed to the presence of trace iron impurities in both the sodium and zinc phosphate glasses while the lead phosphate glass exhibits broad UV near visible bands due to combined absorption of both trace iron impurities and divalent lead ions. The effect of chromium oxide content has been investigated. The three different Cr2O3-doped phosphate glasses reveal spectral visible bands varying in their position and intensity and splitting due to the different field strengths of the Na(+), Pb(2+), Zn(2+) cations, together with the way they are housed in the network and their effects on the polarisability of neighboring oxygens ligands. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. The different effects for lead and zinc phosphate are related to the ability of Pb(2+), and Zn(2+) to form additional structural units causing stability of the network towards gamma irradiation. Also, the introduction of the transition metal chromium ions reveals some shielding behavior towards irradiation. Infrared absorption spectra of the three different base phosphate glasses show characteristic vibrations due to various phosphate groups depending on the type of glass and Cr2O3 is observed to slightly affect the IR spectra. Gamma irradiation causes minor variations in some of the intensities of the IR spectra but the main characteristic bands due to phosphate groups remain in their number and position. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Carbon-coated CoFe–CoFe2O4 composite particles with high and dual-band electromagnetic wave absorbing properties

    NASA Astrophysics Data System (ADS)

    Guan, Zhen-Jie; Jiang, Jian-Tang; Chen, Na; Gong, Yuan-Xun; Zhen, Liang

    2018-07-01

    SiO2 and TiO2, as conventional dielectric shells of ferromagnetic/dielectric composite particles, can protect ferromagnetic particles from aggregation and oxidation, but contribute little to electromagnetic loss. In this work, we designed nano-assembled CoFe–CoFe2O4@C composite particles, in which ferrites with high permeability were dielectric elements and carbon was introduced as protective layers, aiming for high-efficiency microwave absorption. These assembled particles with different CoFe contents were prepared through solvothermal methods and subsequent hydrogen-thermal reduction. CoFe nanoparticles were dispersed on a CoFe2O4 matrix via an in situ reduction transformation from CoFe2O4 to CoFe. The microstructure evolution of composite particles and corresponding electromagnetic properties tailoring were investigated. The content and size of CoFe as well as the porosity of composite particles increase gradually as the annealing temperature increases. A maximum reflection loss (RL max) of –71.73 dB is observed at 4.78 GHz in 3.4 mm thick coating using particles annealed at 500 °C as fillers. The coating presents double-band absorbing characteristics, as broad effective absorption bandwidth with RL > 5 (ERL 5) and high RL max are observed in both S-C and X-Ku bands. The tunability as well as the assembled characteristic of the electromagnetic property that endued from the composite structure contributes to the excellent electromagnetic wave absorbing performances.

  2. Carbon-coated CoFe-CoFe2O4 composite particles with high and dual-band electromagnetic wave absorbing properties.

    PubMed

    Guan, Zhen-Jie; Jiang, Jian-Tang; Chen, Na; Gong, Yuan-Xun; Zhen, Liang

    2018-07-27

    SiO 2 and TiO 2 , as conventional dielectric shells of ferromagnetic/dielectric composite particles, can protect ferromagnetic particles from aggregation and oxidation, but contribute little to electromagnetic loss. In this work, we designed nano-assembled CoFe-CoFe 2 O 4 @C composite particles, in which ferrites with high permeability were dielectric elements and carbon was introduced as protective layers, aiming for high-efficiency microwave absorption. These assembled particles with different CoFe contents were prepared through solvothermal methods and subsequent hydrogen-thermal reduction. CoFe nanoparticles were dispersed on a CoFe 2 O 4 matrix via an in situ reduction transformation from CoFe 2 O 4 to CoFe. The microstructure evolution of composite particles and corresponding electromagnetic properties tailoring were investigated. The content and size of CoFe as well as the porosity of composite particles increase gradually as the annealing temperature increases. A maximum reflection loss (RL max ) of -71.73 dB is observed at 4.78 GHz in 3.4 mm thick coating using particles annealed at 500 °C as fillers. The coating presents double-band absorbing characteristics, as broad effective absorption bandwidth with RL > 5 (ERL 5 ) and high RL max are observed in both S-C and X-K u bands. The tunability as well as the assembled characteristic of the electromagnetic property that endued from the composite structure contributes to the excellent electromagnetic wave absorbing performances.

  3. Optical absorption and photoluminescence study of nanocrystalline Zn0.92M0.08O (M: Li & Gd)

    NASA Astrophysics Data System (ADS)

    Punia, Khushboo; Lal, Ganesh; Kumar, Sudhish

    2018-05-01

    Nanocrystalline samples of Zn0.92Li0.08O and Zn0.92Gd0.08O have been synthesized using citrate sol-gel route without post synthesis annealing and characterized using powder X-ray diffraction (XRD), UV-Vis-NIR and Photoluminescence spectroscopic measurements. Analysis of XRD pattern and PL spectra revealed single phase formation of the nanocrystalline Zn0.92Li0.08O and Zn0.92Gd0.08O in the wurtzite type hexagonal structure with intrinsic crystal and surface defects. UV-Vis-NIR optical absorption measurements show that the maximum photo absorption occurs below 600nm in the UV& visible band. The estimated values of band gap energy were found to be 2.53eV and 2.73eV for Zn0.92Li0.08O and Zn0.92Gd0.08O respectively. The photoluminescence spectra excited at the wavelength 325nm displays two broad peaks in the UV and visible bands centered at ˜416 nm & ˜602 nm for Zn0.92Gd0.08O and ˜406nm & ˜598nm for Zn0.92Li0.08O. Both Gd and Li doping in ZnO leads to considerable decrease in the optical band gap energy and red shifting of the UV emission band towards the visible band.

  4. Interfacial band-edge engineered TiO2 protection layer on Cu2O photocathodes for efficient water reduction reaction

    NASA Astrophysics Data System (ADS)

    Choi, Jaesuk; Song, Jun Tae; Jang, Ho Seong; Choi, Min-Jae; Sim, Dong Min; Yim, Soonmin; Lim, Hunhee; Jung, Yeon Sik; Oh, Jihun

    2017-01-01

    Photoelectrochemical (PEC) water splitting has emerged as a potential pathway to produce sustainable and renewable chemical fuels. Here, we present a highly active Cu2O/TiO2 photocathode for H2 production by enhancing the interfacial band-edge energetics of the TiO2 layer, which is realized by controlling the fixed charge density of the TiO2 protection layer. The band-edge engineered Cu2O/TiO2 (where TiO2 was grown at 80 °C via atomic layer deposition) enhances the photocurrent density up to -2.04 mA/cm2 at 0 V vs. RHE under 1 sun illumination, corresponding to about a 1,200% enhancement compared to the photocurrent density of the photocathode protected with TiO2 grown at 150 °C. Moreover, band-edge engineering of the TiO2 protection layer prevents electron accumulation at the TiO2 layer and enhances both the Faraday efficiency and the stability for hydrogen production during the PEC water reduction reaction. This facile control over the TiO2/electrolyte interface will also provide new insight for designing highly efficient and stable protection layers for various other photoelectrodes such as Si, InP, and GaAs. [Figure not available: see fulltext.

  5. Assessment of role of iron ions on the physical and spectroscopic properties of multi-component Na2O-PbO-Bi2O3-SiO2 glass ceramics

    NASA Astrophysics Data System (ADS)

    Rao, M. V. Sambasiva; Kumar, A. Suneel; Ram, G. Chinna; Tirupataiah, Ch.; Rao, D. Krishna

    2018-01-01

    Multi-component glass ceramics composition Na2O-PbO-Bi2O3-SiO2 doped with different concentrations of Fe2O3 as nucleating agent were characterised by XRD, SEM (scanning electron microscope) and DTA (differential thermal analysis) techniques. Optical absorption, EPR, FTIR and Raman studies are also carried out on these glass ceramics. Absorption bands observed at about 457, 489, 678 and 820 nm are the characteristics of Fe3+ ions whereas the band observed at about 964 nm is due to Fe2+ ions. EPR studies suggested that Fe3+ ions entered in the lattice as tetragonally distorted octahedral symmetry or rhombic sites at low concentration of Fe2O3, whereas at higher concentration of Fe2O3 (beyond 1 mol%), the super exchange type of interactions between multivalency iron ions begin to dominate. FTIR and Raman spectra have revealed the behaviour of various structural units in the glass ceramic matrix. The analysis of these spectroscopic studies indicates that iron ions do exist in Fe3+ and Fe2+ state.

  6. Depolarization currents in Al 2O 3 and MgAl 2O 4 oxides

    NASA Astrophysics Data System (ADS)

    Carvalhaes, R. P. M.; Rocha, M. S.; de Souza, S. S.; Blak, A. R.

    2004-06-01

    In the present work, dipole defects in γ-irradiated and thermally treated samples of Al 2O 3 and MgAl 2O 4 oxides are investigated, applying the thermally stimulated depolarisation currents technique (TSDC). The TSDC spectra of MgAl 2O 4 doped with Fe 2+, Fe 3+, Co 2+, Cr 3+ and Mn 2+ show four bands at 130 K, 160 K, 250 K and 320 K, and the spectra of Al 2O 3 doped with Mg 2+, Cr 3+ and Fe 3+ show bands between 230 K and 260 K. It has been observed that the bands at 130 K, 160 K and 250 K in MgAl 2O 4 spinel and that the 230 K and 240 K bands in Al 2O 3 are related to dipole defects. The other bands are possibly related to different types of charge storage mechanisms (space-charge and interfacial polarisation) or deal with distributions in activation energies and/or in relaxation times. A thermal decrease of the TSDC bands for heat treatments above 1000 K has been observed. In MgAl 2O 4 spinel, the 250 K band could be recovered after γ-irradiation and the two dipole peaks in Al 2O 3 were partially recovered. Thermal treatments affect the dipole aggregation processes in both oxides. Optical absorption (AO) results indicate that the presence of bands of water molecules in the infrared region obstructs the appearance of the TSDC bands in both Al 2O 3 and MgAl 2O 4. The 250 K peak in MgAl 2O 4 was correlated to V-type centres and the 250 K peak in Al 2O 3 to a substitutional Mg 2+ ion near a trapped hole localised on an adjacent oxygen ion.

  7. Near-band-edge optical responses of solution-processed organic-inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Nakamura, Toru; Endo, Masaru; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2014-03-01

    We studied the near-band-edge optical responses of solution-processed CH3NH3PbI3 on mesoporous TiO2 electrodes, which is utilized in mesoscopic heterojunction solar cells. Photoluminescence (PL) and PL excitation spectra peaks appear at 1.60 and 1.64 eV, respectively. The transient absorption spectrum shows a negative peak at 1.61 eV owing to photobleaching at the band-gap energy, indicating a direct band-gap semiconductor. On the basis of the temperature-dependent PL and diffuse reflectance spectra, we clarified that the absorption tail at room temperature is explained in terms of an Urbach tail and consistently determined the band-gap energy to be ˜1.61 eV at room temperature.

  8. A laboratory study of the UV Absorption Spectrum of the ClO Dimer (Cl2O2) and the Implications for Polar Stratospheric Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Papanastasiou, D. K.; Papadimitriou, V. C.; Fahey, D. W.; Burkholder, J. B.

    2009-12-01

    Chlorine containing species play an important role in catalytic ozone depleting cycles in the Antarctic and Arctic stratosphere. The ClO dimer (Cl2O2) catalytic ozone destruction cycle accounts for the majority of the observed polar ozone loss. A key step in this catalytic cycle is the UV photolysis of Cl2O2. The determination of the Cl2O2 UV absorption spectrum has been the subject of several studies since the late 1980’s. Recently, Pope et al. (J. Phys. Chem. A, 111, 4322, 2007) reported significantly lower absorption cross sections for Cl2O2 for the atmospherically relevant wavelength region, >300 nm, than currently recommended for use in atmospheric models. If correct, the Pope et al. results would alter our understanding of the chemistry of polar ozone depletion significantly. In this study, the UV absorption spectrum and absolute cross sections of gas-phase Cl2O2 are reported for the wavelength range 200 - 420 nm at ~200 K. Sequential pulsed laser photolysis of various precursors were used to produce the ClO radical and Cl2O2 via the subsequent ClO + ClO + M reaction under static conditions. UV absorption spectra of the reaction mixture were measured using a diode array spectrometer after completion of the gas-phase radical chemistry. The spectral analysis utilized the observed isosbestic points, reaction stoichiometry, and chlorine mass balance to determine the UV spectrum and absolute cross section of Cl2O2. A complementary experimental technique similar to that used by Pope et al. was also used in this study. We obtained consistent Cl2O2 UV absorption spectra using the two different techniques. The Cl2O2 absorption cross sections for wavelengths in the 300 - 420 nm range were found to be in very good agreement with the values reported previously by Burkholder et al. (J. Phys. Chem. A, 94, 687, 1990) and significantly greater than the Pope et al. values in this atmospherically important wavelength region. A possible explanation for the disagreement with

  9. First-principles energy band calculation of Ruddlesden–Popper compound Sr{sub 3}Sn{sub 2}O{sub 7} using modified Becke–Johnson exchange potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamimura, Sunao, E-mail: kamimura-sunao@che.kyutech.ac.jp; National Institute of Advanced Industrial Science and Technology; Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1 Kasuga Kouen, Kasuga, Fukuoka 816-8580 Japan

    The electronic structure of Sr{sub 3}Sn{sub 2}O{sub 7} is evaluated by the scalar-relativistic full potential linearized augmented plane wave (FLAPW+lo) method using the modified Becke–Johnson potential (Tran–Blaha potential) combined with the local density approximation correlation (MBJ–LDA). The fundamental gap between the valence band (VB) and conduction band (CB) is estimated to be 3.96 eV, which is close to the experimental value. Sn 5s states and Sr 4d states are predominant in the lower and upper CB, respectively. On the other hand, the lower VB is mainly composed of Sn 5s, 5p, and O 2p states, while the upper VB mainlymore » consists of O 2p states. These features of the DOS are well reflected by the optical transition between the upper VB and lower CB, as seen in the energy dependence of the dielectric function. Furthermore, the absorption coefficient estimated from the MBJ–LDA is similar to the experimental result. - Graphical abstract: Calculated energy band structure along the symmetry lines of the first BZ of Sr{sub 3}Sn{sub 2}O{sub 7} crystal obtained using the MBJ potential. - Highlights: • Electronic structure of Sr{sub 3}Sn{sub 2}O{sub 7} is calculated on the basis of MBJ–LDA method for the first time. • Band gap of Sr{sub 3}Sn{sub 2}O{sub 7} is determined accurately on the basis of MBJ–LDA method. • The experimental absorption spectrum of Sr{sub 3}Sn{sub 2}O{sub 7} produced by MBJ–LDA is more accurate than that obtained by GGA method.« less

  10. Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO(2) nanoparticles prepared by thermal decomposition.

    PubMed

    Dong, Fan; Zhao, Weirong; Wu, Zhongbiao; Guo, Sen

    2009-03-15

    Multi-type nitrogen doped TiO(2) nanoparticles were prepared by thermal decomposition of the mixture of titanium hydroxide and urea at 400 degrees C for 2h. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL). The results showed that the as-prepared samples exhibited strong visible light absorption due to multi-type nitrogen doped in the form of substitutional (N-Ti-O and Ti-O-N) and interstitial (pi* character NO) states, which were 0.14 and 0.73 eV above the top of the valence band, respectively. A physical model of band structure was established to clarify the visible light photocatalytic process over the as-prepared samples. The photocatalytic activity was evaluated for the photodegradation of gaseous toluene under visible light irradiation. The activity of the sample prepared from wet titanium hydroxide and urea (TiO(2)-Nw, apparent reaction rate constant k = 0.045 min(-1)) was much higher than other samples including P25 (k = 0.0013 min(-1)). The high activity can be attributed to the results of the synergetic effects of strong visible light absorption, good crystallization, large surface hydroxyl groups, and enhanced separation of photoinduced carriers.

  11. Multijunction solar cell design revisited: disruption of current matching by atmospheric absorption bands: Disruption of current matching by atmospheric absorption bands

    DOE PAGES

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    2017-05-23

    This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less

  12. Multijunction solar cell design revisited: disruption of current matching by atmospheric absorption bands: Disruption of current matching by atmospheric absorption bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less

  13. Development of a Low-Cost Spectrophotometric Sensor for ClO2 Gas

    NASA Astrophysics Data System (ADS)

    Conry, Jessica; Scott, Dane; Apblett, Allen; Materer, Nicholas

    2006-04-01

    ClO2 is of interest because of it's capability to kill biological hazards such as E. coli and mold. However, ClO2 is a toxic, reactive gas that must be generated at the point-of-use. Gas storage is not possible due to the possibility of an explosion. The need to detect the amount of ClO2 at the point-of-use necessitates a low cost sensor. A low-cost spectrophotometric sensor based on a broad-band light source, a photodiode detector and a band-pass filter is proposed. To verify the design, precise determinations of the gas-phase cross-section and characterization of the optical components are necessary. Known concentrations of ClO2(g) are prepared using the equilibrium relationship between an aqueous solution and the gas phase. The aqueous solutions are obtained by generating the gas via a chemical reaction and passing it through water. The concentrations of the aqueous solutions are then determined by chemical titration and UV-visible absorption measurements. For the solutions, a maximum absorption is observed at 359 nm, and the cross section at this wavelength is determined to be 4.79x10-18cm^2, in agreement with previous observations. Using a broad-band source, the absorption of ClO2 gas is successfully analyzed and concentrations are determined as low as 100 ppm. A more recent prototype based on an UV LED can measure down to concentrations as low as one ppm.

  14. Point-Defect Nature of the Ultraviolet Absorption Band in AlN

    NASA Astrophysics Data System (ADS)

    Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.

    2018-05-01

    We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.

  15. Band gap bowing in NixMg1−xO

    PubMed Central

    Niedermeier, Christian A.; Råsander, Mikael; Rhode, Sneha; Kachkanov, Vyacheslav; Zou, Bin; Alford, Neil; Moram, Michelle A.

    2016-01-01

    Epitaxial transparent oxide NixMg1−xO (0 ≤ x ≤ 1) thin films were grown on MgO(100) substrates by pulsed laser deposition. High-resolution synchrotron X-ray diffraction and high-resolution transmission electron microscopy analysis indicate that the thin films are compositionally and structurally homogeneous, forming a completely miscible solid solution. Nevertheless, the composition dependence of the NixMg1−xO optical band gap shows a strong non-parabolic bowing with a discontinuity at dilute NiO concentrations of x < 0.037. Density functional calculations of the NixMg1−xO band structure and the density of states demonstrate that deep Ni 3d levels are introduced into the MgO band gap, which significantly reduce the fundamental gap as confirmed by optical absorption spectra. These states broaden into a Ni 3d-derived conduction band for x > 0.074 and account for the anomalously large band gap narrowing in the NixMg1−xO solid solution system. PMID:27503808

  16. Nano-engineering of p-n CuFeO2-ZnO heterojunction photoanode with improved light absorption and charge collection for photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Karmakar, Keshab; Sarkar, Ayan; Mandal, Kalyan; Gopal Khan, Gobinda

    2017-08-01

    The effective utilization of abundant visible solar light for photoelectrochemical water splitting is a green approach for energy harvesting, to reduce the enormous rise of carbon content in the atmosphere. Here, a novel efficient design strategy for p-n type nano-heterojunction photoanodes is demonstrated, with the goal of improving water splitting efficiency by growing low band gap p-CuFeO2 nanolayers on n-ZnO nanorods by an easy and scalable electrochemical route. The photoconversion efficiency of p-n CuFeO2/ZnO photoanodes is found to be ˜450% higher than that of pristine ZnO nanorod electrodes under visible solar light illumination (λ > 420 nm, intensity 10 mW cm-2). The p-n CuFeO2/ZnO nano-engineering not only boosts the visible light absorption but also resolves limitations regarding effective charge carrier separation and transportation due to interfacial band alignment. This photoanode also shows remarkably enhanced stability, where the formation of p-n nano-heterojunction enhances the easy migration of holes to the electrode/electrolyte interface, and of electrons to the counter electrode (Pt) for hydrogen generation. Therefore, this work demonstrates that p-n nano-engineering is a potential strategy to design light-harvesting electrodes for water splitting and clean energy generation.

  17. Nature of the valence band states in Bi2(Ca, Sr, La)3Cu2O8

    NASA Astrophysics Data System (ADS)

    Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Spicer, W. E.; Lindau, I.; Mitzi, D. B.; Kapitulnik, A.

    1990-01-01

    We have used photoemission spectroscopy to examine the symmetry of the occupied states of the valence band for the La doped superconductor Bi2(Ca, Sr, La)3Cu2O8. While the oxygen states near the bottom of the 7 eV wide valence band exhibit predominantly O 2pz symmetry, the states at the top of the valence band extending to the Fermi level are found to have primarily O 2px and O 2py character. We have also examined anomalous intensity enhancements in the valence band feature for photon energies near 18 eV. These enhancements, which occur at photon energies ranging from 15.8 to 18.0 eV for the different valence band features, are not consistent with either simple final state effects or direct O2s transitions to unoccupied O2p states.

  18. UV absorption spectrum of the ClO dimer (Cl2O2) between 200 and 420 nm.

    PubMed

    Papanastasiou, Dimitrios K; Papadimitriou, Vassileios C; Fahey, David W; Burkholder, James B

    2009-12-10

    The UV photolysis of Cl(2)O(2) (dichlorine peroxide) is a key step in the catalytic destruction of polar stratospheric ozone. In this study, the gas-phase UV absorption spectrum of Cl(2)O(2) was measured using diode array spectroscopy and absolute cross sections, sigma, are reported for the wavelength range 200-420 nm. Pulsed laser photolysis of Cl(2)O at 248 nm or Cl(2)/Cl(2)O mixtures at 351 nm at low temperature (200-228 K) and high pressure (approximately 700 Torr, He) was used to produce ClO radicals and subsequently Cl(2)O(2) via the termolecular ClO self-reaction. The Cl(2)O(2) spectrum was obtained from spectra recorded following the completion of the gas-phase ClO radical chemistry. The spectral analysis used observed isosbestic points at 271, 312.9, and 408.5 nm combined with reaction stoichiometry and chlorine mass balance to determine the Cl(2)O(2) spectrum. The Cl(2)O(2) UV absorption spectrum peaks at 244.5 nm with a cross section of 7.6(-0.5)(+0.8) x 10(-18) cm(2) molecule(-1) where the quoted error limits are 2sigma and include estimated systematic errors. The Cl(2)O(2) absorption cross sections obtained for wavelengths in the range 300-420 nm are in good agreement with the Cl(2)O(2) spectrum reported previously by Burkholder et al. (J. Phys. Chem. A 1990, 94, 687) and significantly higher than the values reported by Pope et al. (J. Phys. Chem. A 2007, 111, 4322). A possible explanation for the discrepancy in the Cl(2)O(2) cross section values with the Pope et al. study is discussed. Representative, atmospheric photolysis rate coefficients are calculated and a range of uncertainty estimated based on the determination of sigma(Cl(2)O(2))(lambda) in this work. Although improvements in our fundamental understanding of the photochemistry of Cl(2)O(2) are still desired, this work indicates that major revisions in current atmospheric chemical mechanisms are not required to simulate observed polar ozone depletion.

  19. UV Absorption Spectrum of the ClO Dimer (Cl2O2) between 200 and 420 nm

    NASA Astrophysics Data System (ADS)

    Papanastasiou, Dimitrios K.; Papadimitriou, Vassileios C.; Fahey, David W.; Burkholder, James B.

    2009-11-01

    The UV photolysis of Cl2O2 (dichlorine peroxide) is a key step in the catalytic destruction of polar stratospheric ozone. In this study, the gas-phase UV absorption spectrum of Cl2O2 was measured using diode array spectroscopy and absolute cross sections, σ, are reported for the wavelength range 200-420 nm. Pulsed laser photolysis of Cl2O at 248 nm or Cl2/Cl2O mixtures at 351 nm at low temperature (200-228 K) and high pressure (˜700 Torr, He) was used to produce ClO radicals and subsequently Cl2O2 via the termolecular ClO self-reaction. The Cl2O2 spectrum was obtained from spectra recorded following the completion of the gas-phase ClO radical chemistry. The spectral analysis used observed isosbestic points at 271, 312.9, and 408.5 nm combined with reaction stoichiometry and chlorine mass balance to determine the Cl2O2 spectrum. The Cl2O2 UV absorption spectrum peaks at 244.5 nm with a cross section of 7.6-0.5+0.8 × 10-18 cm2 molecule-1 where the quoted error limits are 2σ and include estimated systematic errors. The Cl2O2 absorption cross sections obtained for wavelengths in the range 300-420 nm are in good agreement with the Cl2O2 spectrum reported previously by Burkholder et al. (J. Phys. Chem. A 1990, 94, 687) and significantly higher than the values reported by Pope et al. (J. Phys. Chem. A 2007, 111, 4322). A possible explanation for the discrepancy in the Cl2O2 cross section values with the Pope et al. study is discussed. Representative, atmospheric photolysis rate coefficients are calculated and a range of uncertainty estimated based on the determination of σCl2O2(λ) in this work. Although improvements in our fundamental understanding of the photochemistry of Cl2O2 are still desired, this work indicates that major revisions in current atmospheric chemical mechanisms are not required to simulate observed polar ozone depletion.

  20. Electronic structures of C u 2 O , C u 4 O 3 , and CuO: A joint experimental and theoretical study

    DOE PAGES

    Wang, Y.; Lany, S.; Ghanbaja, J.; ...

    2016-12-14

    We present a joint experimental and theoretical study for the electronic structures of copper oxides including Cu 2O, CuO, and the metastable mixed-valence oxide Cu 4O 3. The optical band gap is determined by experimental optical absorption coefficient, and the electronic structure in valence and conduction bands is probed by photoemission and electron energy loss spectroscopies, respectively. Furthermore, we compare our experimental results with many-body GW calculations utilizing an additional on-site potential for d-orbital energies that facilitates tractable and predictive computations. The side-by-side comparison between the three oxides, including a band insulator (Cu2O) and two Mott/charge-transfer insulators (CuO, Cu 4Omore » 3) leads to a consistent picture for the optical and band-structure properties of the Cu oxides, strongly supporting indirect band gaps of about 1.2 and 0.8 eV in CuO and Cu 4O 3, respectively. This comparison also points towards surface oxidation and reduction effects that can complicate the interpretation of the photoemission spectra.« less

  1. Optical properties of BaO added bioactive Na2O-CaO-P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Edathazhe, Akhila B.; Shashikala, H. D.

    2018-04-01

    This paper deals with the effect of BaO addition on the optical properties of bioactive Na2O-CaO-P2O5 glasses for biomedical optics applications. The phosphate glasses with composition (26-x)Na2O-xBaO-29CaO-45P2O5 (x = 0, 5, 10, 15 mol%) have been prepared by melt-quenching technique at 1100°C. The refractive index of glasses increased with BaO content. The optical band gap and Urbach energy of synthesized glasses were derived from the optical absorption spectra by using UV-Visible spectrometer. The addition of 5 mol% of BaO increased the band gap energy of glasses due to the formation of ionic cross-links in the glass structure. The defect and interstitial bonds formation in theglasses decreased with BaO additions as indicated by reductions in the Urbach energy values. No such variations in the band gap and Urbach energy values of glasses were observed with BaO content from 5 to 15 mol%. The molar and oxide ion polarizability values were calculated from the band gap and molar volume of glasses. The increase in the calculated optical basicity and metallization criteria of glasses supported the rise in band gap energy values with BaO additions. As the melting temperature of glasses decreased from 1200 to 1100°C, the refractive index increased as supported by the measured density values. The band gap energy is not changed with melting temperature. The Urbach energy decreased with decrease in melting temperature in case of BaO-free Na2O-CaO-P2O5 glasses, whereas it increased in case of BaO added glasses due to the role of BaO as modifying oxide.

  2. Concentration measurement of NO using self-absorption spectroscopy of the γ band system in a pulsed corona discharge.

    PubMed

    Zhai, Xiaodong; Ding, Yanjun; Peng, Zhimin; Luo, Rui

    2012-07-10

    Nitric oxide (NO) concentrations were measured using the γ band system spectrum based on the strong self-absorption effect of NO in pulsed corona discharges. The radiative transitional intensities of the NO γ band were simulated based on the theory of molecular spectroscopy. The intensities of some bands, especially γ(0,0) and γ(1,0), are weakened by the self-absorption. The correlations between the spectral self-absorption intensities and NO concentration were validated using a modified Beer-Lambert law with a combined factor K relating the branching ratio and the NO concentration, and a nonlinear index α that is applicable to the broadband system. Optical emissive spectra in pulsed corona discharges in NO and N2/He mixtures were used to evaluate the two parameters for various conditions. Good agreement between the experimental and theoretical results verifies the self-absorption behavior seen in the UV spectra of the NO γ bands.

  3. The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perevalov, T. V., E-mail: timson@isp.nsc.ru; Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk; Aliev, V. Sh.

    2014-02-17

    The origin of a blue luminescence band at 2.7 eV and a luminescence excitation band at 5.2 eV of hafnia has been studied in stoichiometric and non-stoichiometric hafnium oxide films. Experimental and calculated results from the first principles valence band spectra showed that the stoichiometry violation leads to the formation of the peak density of states in the band gap caused by oxygen vacancies. Cathodoluminescence in the non-stoichiometric film exhibits a band at 2.65 eV that is excited at the energy of 5.2 eV. The optical absorption spectrum calculated for the cubic phase of HfO{sub 2} with oxygen vacancies showsmore » a peak at 5.3 eV. Thus, it could be concluded that the blue luminescence band at 2.7 eV and HfO{sub x} excitation peak at 5.2 eV are due to oxygen vacancies. The thermal trap energy in hafnia was estimated.« less

  4. The Effect of High N-DOPED Anatase TiO2 on the Band Gap Narrowing and Redshift by First-Principles

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Jin, Yongjun; Ying, Chun; Zhao, Erjun; Zhang, Yue; Dong, Hongying

    2012-10-01

    Anatase TiO2 supercells were studied by first-principles, in which one was undoped and another three were high N-doping. Partial densities of states, band structure, population and absorption spectrum were calculated. The calculated results indicated that in the condition of TiO2-xNx (x = 0.0625, 0.125, 0.25), the higher the doping concentration is, the shorter will be the lattice parameters parallel to the direction of c-axis. The strength of covalent bond significantly varied. The formation energy increases at first, and then decreases. The doping models become less stable as N-doping concentration increases. Meanwhile, the narrower the band gap is, the more significant will be the redshift, which is in agreement with the experimental results.

  5. Probability of Two-Step Photoexcitation of Electron from Valence Band to Conduction Band through Doping Level in TiO2.

    PubMed

    Nishikawa, Masami; Shiroishi, Wataru; Honghao, Hou; Suizu, Hiroshi; Nagai, Hideyuki; Saito, Nobuo

    2017-08-17

    For an Ir-doped TiO 2 (Ir:TiO 2 ) photocatalyst, we examined the most dominant electron-transfer path for the visible-light-driven photocatalytic performance. The Ir:TiO 2 photocatalyst showed a much higher photocatalytic activity under visible-light irradiation than nondoped TiO 2 after grafting with the cocatalyst of Fe 3+ . For the Ir:TiO 2 photocatalyst, the two-step photoexcitation of an electron from the valence band to the conduction band through the Ir doping level occurred upon visible-light irradiation, as observed by electron spin resonance spectroscopy. The two-step photoexcitation through the doping level was found to be a more stable process with a lower recombination rate of hole-electron pairs than the two-step photoexcitation process through an oxygen vacancy. Once electrons are photoexcited to the conduction band by the two-step excitation, the electrons can easily transfer to the surface because the conduction band is a continuous electron path, whereas the electrons photoexcited at only the doping level could not easily transfer to the surface because of the discontinuity of this path. The observed two-step photoexcitation from the valence band to the conduction band through the doping level significantly contributes to the enhancement of the photocatalytic performance.

  6. Blue shift in optical absorption, magnetism and light-induced superparamagnetism in γ-Fe2O3 nanoparticles formed in dendrimer

    NASA Astrophysics Data System (ADS)

    Domracheva, Natalia E.; Vorobeva, Valerya E.; Gruzdev, Matvey S.; Pyataev, Andrew V.

    2015-02-01

    We are presenting the investigation of the optical, magnetic, and photoinduced superparamagnetic properties of single-domain γ-Fe2O3 nanoparticles (NPs) with diameters of about 2.5 nm formed in second-generation poly(propylene imine) dendrimer. The optical absorption studies indicated direct allowed transition with the band gap (4.5 eV), which is blue shift with respect to the value of the bulk material. Low-temperature blocking of the NPs magnetic moments at 18 K is determined by SQUID measurements. The influence of pulsed laser irradiation on the superparamagnetic properties of γ-Fe2O3 NPs was studied by EPR spectroscopy. It has been shown that irradiation of the sample held in vacuo and cooled in zero magnetic field to 6.9 K leads to the appearance of a new EPR signal, which decays immediately after the irradiation is stopped. The appearance and disappearance of this new signal can be repeated many times at 6.9 K when we turn on/turn off the laser. We suppose that the generation of conduction band electrons by irradiation into the band gap of the γ-Fe2O3 changes the superparamagnetic properties of NPs.

  7. Energy-band alignment of (HfO2)x(Al2O3)1-x gate dielectrics deposited by atomic layer deposition on β-Ga2O3 (-201)

    NASA Astrophysics Data System (ADS)

    Yuan, Lei; Zhang, Hongpeng; Jia, Renxu; Guo, Lixin; Zhang, Yimen; Zhang, Yuming

    2018-03-01

    Energy band alignments between series band of Al-rich high-k materials (HfO2)x(Al2O3)1-x and β-Ga2O3 are investigated using X-Ray Photoelectron Spectroscopy (XPS). The results exhibit sufficient conduction band offsets (1.42-1.53 eV) in (HfO2)x(Al2O3)1-x/β-Ga2O3. In addition, it is also obtained that the value of Eg, △Ec, and △Ev for (HfO2)x(Al2O3)1-x/β-Ga2O3 change linearly with x, which can be expressed by 6.98-1.27x, 1.65-0.56x, and 0.48-0.70x, respectively. The higher dielectric constant and higher effective breakdown electric field of (HfO2)x(Al2O3)1-x compared with Al2O3, coupled with sufficient barrier height and lower gate leakage makes it a potential dielectric for high voltage β-Ga2O3 power MOSFET, and also provokes interest in further investigation of HfAlO/β-Ga2O3 interface properties.

  8. Band alignment of rutile and anatase TiO2

    NASA Astrophysics Data System (ADS)

    Scanlon, David O.; Dunnill, Charles W.; Buckeridge, John; Shevlin, Stephen A.; Logsdail, Andrew J.; Woodley, Scott M.; Catlow, C. Richard A.; Powell, Michael. J.; Palgrave, Robert G.; Parkin, Ivan P.; Watson, Graeme W.; Keal, Thomas W.; Sherwood, Paul; Walsh, Aron; Sokol, Alexey A.

    2013-09-01

    The most widely used oxide for photocatalytic applications owing to its low cost and high activity is TiO2. The discovery of the photolysis of water on the surface of TiO2 in 1972 launched four decades of intensive research into the underlying chemical and physical processes involved. Despite much collected evidence, a thoroughly convincing explanation of why mixed-phase samples of anatase and rutile outperform the individual polymorphs has remained elusive. One long-standing controversy is the energetic alignment of the band edges of the rutile and anatase polymorphs of TiO2 (ref. ). We demonstrate, through a combination of state-of-the-art materials simulation techniques and X-ray photoemission experiments, that a type-II, staggered, band alignment of ~ 0.4 eV exists between anatase and rutile with anatase possessing the higher electron affinity, or work function. Our results help to explain the robust separation of photoexcited charge carriers between the two phases and highlight a route to improved photocatalysts.

  9. Strain-induced optical band gap variation of SnO 2 films

    DOE PAGES

    Rus, Stefania Florina; Ward, Thomas Zac; Herklotz, Andreas

    2016-06-29

    In this paper, thickness dependent strain relaxation effects are utilized to study the impact of crystal anisotropy on the optical band gap of epitaxial SnO 2 films grown by pulsed laser deposition on (0001)-oriented sapphire substrates. An X-ray diffraction analysis reveals that all films are under tensile biaxial in-plane strain and that strain relaxation occurs with increasing thickness. Variable angle spectroscopic ellipsometry shows that the optical band gap of the SnO 2 films continuously increases with increasing film thickness. This increase in the band gap is linearly related to the strain state of the films, which indicates that the mainmore » origin of the band gap change is strain relaxation. The experimental observation is in excellent agreement with results from density functional theory for biaxial in-plane strain. Our research demonstrates that strain is an effective way to tune the band gap of SnO 2 films and suggests that strain engineering is an appealing route to tailor the optical properties of oxide semiconductors.« less

  10. Physical and optical studies of BaO-TeO2-TiO2-B2O3 glasses containing Cu2+ transition metal ion

    NASA Astrophysics Data System (ADS)

    Srinivas, B.; Kumar, R. Vijaya; Hameed, Abdul; Sagar, D. Karuna; Chary, M. Narasimha; Shareefuddin, Md.

    2018-05-01

    Glasses with the composition xBaO-(30-x) TeO2-10TiO2-59B2O3-1CuO (where x = 10, 15, 20 and 25 mole %) were prepared by melt quenching technique. The XRD studies were made on these glass samples at room temperature. The amorphous nature of the glass samples was confirmed from the XRD patterns. The physical parameters such as density (ρ), molar volume (Vm), average boron-boron separation (dB-B) and oxygen packing density (OPD) were calculated. The change in density and molar volume has been investigated in terms of the variation of BaO in the glass composition. The optical absorption spectra have been recorded at room temperature. The values of optical band gap have been estimated from the ASF and Tauc's methods. Both Tauc's and ASF methods have been showing progressively increasing indirect optical band gap values with the increase of BaO concentrations.

  11. Achieving omnidirectional photonic band gap in sputter deposited TiO{sub 2}/SiO{sub 2} one dimensional photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jena, S., E-mail: shuvendujena9@gmail.com; Tokas, R. B.; Sarkar, P.

    2015-06-24

    The multilayer structure of TiO{sub 2}/SiO{sub 2} (11 layers) as one dimensional photonic crystal (1D PC) has been designed and then fabricated by using asymmetric bipolar pulse DC magnetron sputtering technique for omnidirectional photonic band gap. The experimentally measured photonic band gap (PBG) in the visible region is well matched with the theoretically calculated band structure (ω vs. k) diagram. The experimentally measured omnidirectional reflection band of 44 nm over the incident angle range of 0°-70° is found almost matching within the theoretically calculated band.

  12. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  13. Intermediate Band Material of Titanium-Doped Tin Disulfide for Wide Spectrum Solar Absorption.

    PubMed

    Hu, Keyan; Wang, Dong; Zhao, Wei; Gu, Yuhao; Bu, Kejun; Pan, Jie; Qin, Peng; Zhang, Xian; Huang, Fuqiang

    2018-04-02

    Intermediate band (IB) materials are of great significance due to their superior solar absorption properties. Here, two IBs peaking at 0.88 and 1.33 eV are reported to be present in the forbidden gap of semiconducting SnS 2 ( E g = 2.21 eV) by doping titanium up to 6 atom % into the Sn site via a solid-state reaction at 923 K. The solid solution of Sn 1- x Ti x S 2 is able to be formed, which is attributed to the isostructural structure of SnS 2 and TiS 2 . These two IBs were detected in the UV-vis-NIR absorption spectra with the appearance of two additional absorption responses at the respective regions, which in good agreement with the conclusion of first-principles calculations. The valence band maximum (VBM) consists mostly of the S 3p state, and the conduction band minimum (CBM) is the hybrid state composing of Ti 3d (e g ), S 3p, and Sn 5s, and the IBs are mainly the nondegenerate t 2g states of Ti 3d orbitals. The electronic states of Ti 3d reveal a good ability to transfer electrons between metal and S atoms. These wide-spectrum absorption IBs bring about more solar energy utilization to enhance solar thermal collection and photocatalytic degradation of methyl orange.

  14. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-01-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  15. Photodissociation of water. II. Wave packet calculations for the photofragmentation of H2O and D2O in the B˜ band

    NASA Astrophysics Data System (ADS)

    van Harrevelt, Rob; van Hemert, Marc C.

    2000-04-01

    A complete three-dimensional quantum mechanical description of the photodissociation of water in the B˜ band, starting from its rotational ground state, is presented. In order to include B˜-X˜ vibronic coupling and the B˜-Ã Renner-Teller coupling, diabatic electronic states have been constructed from adiabatic electronic states and matrix elements of the electronic angular momentum operators, following the procedure developed by A. J. Dobbyn and P. J. Knowles [Mol. Phys. 91, 1107 (1997)], using the ab initio results discussed in the preceding paper. The dynamics is studied using wave packet methods, and the evolution of the time-dependent wave function is discussed in detail. Results for the H2O and D2O absorption spectra, OH(A)/OH(X) and OD(A)/OD(X) branching ratios, and rovibrational distributions of the OH and OD fragments are presented and compared with available experimental data. The present theoretical results agree at least qualitatively with the experiments. The calculations show that the absorption spectrum and the product state distributions are strongly influenced by long-lived resonances on the adiabatic B˜ state. It is also shown that molecular rotation plays an important role in the photofragmentation process, due to both the Renner-Teller B˜-X˜ mixing, and the strong effect of out-of-plane molecular rotations (K>0) on the dynamics at near linear HOH and HHO geometries.

  16. ZnO/Sn:In2O3 and ZnO/CdTe band offsets for extremely thin absorber photovoltaics

    NASA Astrophysics Data System (ADS)

    Kaspar, T. C.; Droubay, T.; Jaffe, J. E.

    2011-12-01

    Band alignments were measured by x-ray photoelectron spectroscopy for thin films of ZnO on polycrystalline Sn:In2O3 (ITO) and single crystal CdTe. Hybrid density functional theory calculations of epitaxial zinc blende ZnO(001) on CdTe(001) were performed to compare with experiment. A conduction band (CB) offset of -0.6 eV was measured for ZnO/ITO, which is larger than desired for efficient electron injection. For ZnO/CdTe, the experimental conduction band offset of 0.25 eV is smaller than the calculated value of 0.67 eV, possibly due to the TeOx layer at the ZnO/CdTe interface. The measured conduction band offset for ZnO/CdTe is favorable for photovoltaic devices.

  17. Novel ZrO2 based ceramics stabilized by Fe2O3, SiO2 and Y2O3

    NASA Astrophysics Data System (ADS)

    Rada, S.; Culea, E.; Rada, M.

    2018-03-01

    Samples in the 5Fe2O3·10SiO2·xY2O3·(85-x)ZrO2 composition where x = 5, 10 and 15 mol% Y2O3 were synthesized and investigated by XRD, SEM, density measurements, FTIR, UV-Vis, EPR and PL spectroscopies. X-ray diffraction patterns confirm the presence of the tetragonal and cubic ZrO2 crystalline phases in all samples. The IR data show the overlaps of absorption bands assigned to Zrsbnd Osbnd Zr and Sisbnd Osbnd linkages in samples. UV-Vis and PL data indicate higher concentrations of intrinsic defects by doping with Y2O3 concentrations. The EPR spectra are characterized by two resonance lines situated at about g ∼ 4.3 and g ∼ 2 for lower Y2O3 contents.

  18. Electrical, Magnetic and Microwave Absorption Properties of M-type Barium Hexaferrites (BaFe12-2x CoxNixO19)

    NASA Astrophysics Data System (ADS)

    Susilawati; Doyan, A.; Khair, H.; Taufik, M.; Wahyudi

    2018-04-01

    M-type barium hexaferrites synthesis with Co-Ni doping ion (BaFe12-2x CoxNixO19) based on natural iron sand of Loang Balok beach, Lombok, Indonesia, to be applied as a microwave absorbent material using co-precipitation method. The materials used in the synthesis process are magnetite minerals (Fe2O3 and Fe3O4), 12M HCl, NH4OH 37%, CoCl2.6H2O and NiCl2.6H2O. This research to investigate the effect of doping ion concentration variation (x = 0.0, 0.6 and 1.0) and calcination temperature (T = 80, 600, and 800°C) on electrical and magnetic properties and microwave absorption as well. The samples were characterized using Vibrating Sample Magnetometer (VSM) and Network Vector Analyzer (VNA). The result from VSM showed that the coercivity value decreased when doping ion concentration and calcination temperature increased (0.151 Tesla at 600°C for x = 0.0 and 0.044 Tesla at 800°C for x = 1.0. The value of magnetic saturation and the magnetic remanence increased with increasing ion concentration (Ms = 0.327 emu/g at x = 0.0 increased to 35.4 emu/g at x = 1.0) and Mr = 0.148 emu/g for x = 0.0 increased to 15.6 emu/g at x=1.0, this indicates that the sample has been soft magnetic. The result from VNA showed that the electrical conductivity values measured in the range 8.0-15.0 GHz indicate that the sample is a semiconductor (6.149 x 10-6 -5.975 x 10-4 S/cm). It also showed that the microwave absorption properties increased at higher concentration of doping ions and the calcination temperature would increase the value of Reflection Loss (RL). The maximum RL value of the sample is -14.47 dB at 12.38 GHz, and the absorption coefficient of 96.43%. These results indicate that the BaFe12-2x CoxNixO19 sample can be applied as a microwave absorbent material on X-band to Ku-band frequency.

  19. Hybrid density functional study of band alignment in ZnO-GaN and ZnO-(Ga(1-x)Zn(x))(N(1-x)O(x))-GaN heterostructures.

    PubMed

    Wang, Zhenhai; Zhao, Mingwen; Wang, Xiaopeng; Xi, Yan; He, Xiujie; Liu, Xiangdong; Yan, Shishen

    2012-12-05

    The band alignment in ZnO-GaN and related heterostructures is crucial for uses in solar harvesting technology. Here, we report our density functional calculations of the band alignment and optical properties of ZnO-GaN and ZnO-(Ga(1-x)Zn(x))(N(1-x)O(x))-GaN heterostructures using a Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. We found that the conventional GGA functionals underestimate not only the band gap but also the band offset of these heterostructures. Using the hybrid functional calculations, we show that the (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution has a direct band gap of about 2.608 eV, in good agreement with the experimental data. More importantly, this solid solution forms type-II band alignment with the host materials. A GaN-(Ga(1-x)Zn(x))(N(1-x)O(x))-ZnO core-shell solar cell model is presented to improve the visible light absorption ability and carrier collection efficiency.

  20. Production of Cl2O2 from the self-reaction of the ClO radical

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Molina, M. J.

    1987-01-01

    The species Cl2O2 has been generated in a gaseous flow system at 220-240 K by reacting Cl atoms with one of three different ClO precursors: O3, Cl2O, or OClO. The infrared spectra of the reactive mixture indicate that at least two different dimers are produced: a predominant form with bands centered at 1225 and 1057/cm attributed to ClOOCl, and a second form with a band at 650/cm attributed to ClOClO. The UV spectrum of the predominant form shows a maximum absorption cross section of about 6.5 x 10 to the -18th sq cm/molecule around 270 nm, with a wing extending beyond 300 nm. The implications of these results for the chemistry of the stratosphere are discussed.

  1. Simple and Low-Cost Dual-Band Printed Microwave Absorber for 2.4- and 5-GHz-Band Applications

    NASA Astrophysics Data System (ADS)

    Khoomwong, Ekajit; Phongcharoenpanich, Chuwong

    2017-10-01

    In this research, a dual-band thin printed-circuit-board (PCB) microwave absorber has been proposed for applications in 2.4 and 5 GHz frequency bands. Each unit cell of the absorber consists of a square ring and a thick cross-dipole, augmented with the tuning elements. In the design process, numerical simulations were performed for the optimal characteristics of the absorber and an absorber prototype was fabricated using the simple print-transferring and etching process. The measured absorption bandwidths (50 %) of 170 MHz (2.36-2.53 GHz) and 830 MHz (5.09-5.92 GHz) were achieved for the first and second bands, respectively, with the wideband characteristic at the second operating band. The absorption rates near the center frequencies (2.45 and 5.5 GHz) were respectively 97.85 % and 97.76 %. The simulation and measured results are in good agreement. Furthermore, the incidence-angle dependencies of the absorber were of moderately wide angles with the absorption capacity of at least 50 % for both operating bands. The proposed absorber is suitable for a variety of applications requiring absorption in the 2.4/5 GHz bands.

  2. Broad band and enhanced photocatalytic behaviour of Ho3+-doped Bi2O3 micro-rods

    NASA Astrophysics Data System (ADS)

    Prasad, Neena; Karthikeyan, Balasubramanian

    2018-06-01

    Band-gap-tuned Bi2O3 micro-rods were synthesized using simple co-precipitation method by doping 5 wt% Ho3+ to mitigate the concentration of toxic dye from the polluted water using it as a photocatalyst. Structure and morphology of the prepared samples were identified using powder X-ray diffraction technique and scanning electron microscopy (SEM). Elemental composition and chemical state of the prepared samples were analyzed from the X-ray photoelectron spectroscopy (XPS). Considerable absorption in IR region was observed for Ho3+ doped Bi2O3 due to the electronic transitions of 5I8→5F4, 5I8→5F5, and 5I8→5I5, 5I6. The excellent ultra-violet (UV), white and infrared light (IR)-driven photocatalytic activity were suggested for pure and doped Bi2O3 samples. Ho3+-doped Bi2O3 micro-rods exhibits a better photocatalytic activity under white light irradiation. The consequence of the bandgap and the synergetic effect of Ho3+ and Bi2O3 on the photocatalytic degradation of MB were investigated.

  3. Ku-band electromagnetic wave absorbing properties of polysiloxane derived Si-O-C bulk ceramics

    NASA Astrophysics Data System (ADS)

    Ding, Donghai; Li, Zipei; Xiao, Guoqing; Yang, Shaoyu

    2018-02-01

    The bulk Si-O-C ceramics were prepared by polymer derived ceramics (PDCs) route using polysiloxane as precursor and their properties were investigated for electromagnetic wave absorbing in the frequency range of 12.4-18 GHz (Ku-band). It was found that the catalytic pyrolysis can enhance substantially the absorbing properties by in situ formation of turbostratic carbon network, ordered carbon, and multi-wall carbon nanotubes. The matching thickness of sample containing 1.5 wt% FeCl3 (FPSO-1.5) is 2.2 mm, and its reflection loss exceeds -10 dB in the whole Ku-band with an absorption peak of -35.48 dB at 14.16 GHz. For sample containing 1.5 wt% FeCl3, its absorption peak increases to -15.78 dB, but its matching thickness decreases significantly to 2.2 mm. The polymer derived Si-O-C ceramics could be used as excellent electromagnetic functional devices working in harsh environments.

  4. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  5. Band alignment of SiO2/(AlxGa1-x)2O3 (0 ≤ x ≤ 0.49) determined by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Zhaoqing; Feng, Qian; Zhang, Jincheng; Li, Xiang; Li, Fuguo; Huang, Lu; Chen, Hong-Yan; Lu, Hong-Liang; Hao, Yue

    2018-03-01

    In this work, we report the investigation of the band alignment of SiO2/(AlxGa1-x)2O3 (0 ≤ x ≤ 0.49) utilizing the high resolution X-ray photoelectron spectroscopy (XPS) measurements. The single crystallinity and orientation of β-(AlxGa1-x)2O3 films grown on sapphire by pulsed laser deposition were studied with the high resolution X-ray diffraction. The Ga 2p3/2 and Si 2p core-level spectra as well as valence band spectra were used in the analysis of band alignment. As the mole fraction x of Al increases from 0 to 0.49, the bandgap and conduction band offset values of SiO2/(AlxGa1-x)2O3 increases from 4.9 to 5.6 eV and from 1.5 to 2.1 eV, respectively, while that of valence band offset decreases from 2.2 to 0.9 eV. From the results obtained, the energy band diagram of the studied SiO2/(AlxGa1-x)2O3 (0 ≤ x ≤ 0.49) interfaces is found to be of type I. Energy band lineups of SiO2/(AlxGa1-x)2O3 were thus determined which can be used as for Ga2O3 based power device technology.

  6. Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2

    NASA Astrophysics Data System (ADS)

    Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.

    2013-10-01

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.

  7. Epitaxial growth of MgO/Ga2O3 heterostructure and its band alignment studied by X-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsuo, Norihiro; Doko, Naoki; Yasukawa, Yukiko; Saito, Hidekazu; Yuasa, Shinji

    2018-07-01

    We have grown an epitaxial MgO/Ga2O3 heterostructure on a MgO(001) substrate by molecular beam epitaxy. Crystallographic studies revealed the out-of-plane and in-plane crystal orientations between the MgO overlayer and the Ga2O3 layer, which were MgO(001) ∥ β-Ga2O3(001) and MgO[100] ∥ β-Ga2O3 [02\\bar{1}], respectively. The valence band offset at the MgO/β-Ga2O3 interface was determined to be 0.19 eV (type-II band alignment) by X-ray photoelectron spectroscopy, resulting in a large conduction band offset of 2.7–3.2 eV. These results indicate that MgO is a promising potential barrier for electrons in an epitaxial MgO/Ga2O3 multilayered structure.

  8. Analysis and theoretical modeling of 18O enriched carbon dioxide spectrum by CRDS near 1.35 μm: (II) 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O

    NASA Astrophysics Data System (ADS)

    Karlovets, E. V.; Campargue, A.; Kassi, S.; Tashkun, S. A.; Perevalov, V. I.

    2017-04-01

    This contribution is the second part of the analysis of the room temperature absorption spectrum of 18O enriched carbon dioxide by very high sensitivity Cavity Ring Down spectroscopy between 6977 and 7918 cm-1 (1.43-1.26 μm). Overall, more than 8600 lines belonging to 166 bands of eleven carbon dioxide isotopologues were rovibrationnally assigned. In a first part (Kassi et al. J Quant Spectrosc Radiat Transfer 187 (2017) 414-425, http://dx.doi.org/10.1016/j.jqsrt.2016.09.002), the results relative to mono-substituted isotopologues, 16O12C18O, 16O12C17O, 12C16O2 and 13C16O2, were presented. This second contribution is devoted to the multiply-substituted isotopologues or clumped isotopologues of particular importance in geochemistry: 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O. On the basis of the predictions of effective Hamiltonian models, a total of 3195 transitions belonging to 73 bands were rovibrationnally assigned for these seven species. Among the 73 observed bands, 55 are newly reported. All the identified bands correspond to ΔP=10 and 11 series of transitions, where P= 2V1+V2+3V3 is the polyad number (Vi are vibrational quantum numbers). The accurate spectroscopic parameters of 70 bands have been determined from the standard band-by-band analysis. Global fits of the measured line intensities of the ΔP=10 series of transitions of 17O12C18O and 16O13C18O and of the ΔP=11 series of transitions of 12C18O2, 17O12C18O, 16O13C18O and 13C18O2 were performed to determine the corresponding sets of the effective dipole moment parameters.

  9. Thermodynamic derivatives of infrared absorptance

    NASA Technical Reports Server (NTRS)

    Broersma, S.; Walls, W. L.

    1974-01-01

    Calculation of the concentration, pressure, and temperature dependence of the spectral absorptance of a vibrational absorption band. A smooth thermodynamic dependence was found for wavelength intervals where the average absorptance is less than 0.65. Individual rotational lines, whose parameters are often well known, were used as bases in the calculation of medium resolution spectra. Two modes of calculation were combined: well-separated rotational lines plus interaction terms, or strongly overlapping lines that were represented by a compound line of similar shape plus corrections. The 1.9- and 6.3-micron bands of H2O and the 4.3-micron band of CO2 were examined in detail and compared with experiment.

  10. Spectroscopic features of Ni(2+) ion in PbO-Bi2O3-SiO2 glass system.

    PubMed

    Suresh, B; Srinivasa Reddy, M; Siva Sesha Reddy, A; Gandhi, Y; Ravi Kumar, V; Veeraiah, N

    2015-04-15

    Glasses of the composition (30-x)PbO-5Bi2O3-65SiO2: xNiO (with x ranging from 0 to 1.0 mol%) were synthesized. A variety of spectroscopic studies, viz., IR, Raman optical absorption and luminescence properties of these glasses have been carried out as a function of NiO concentration. The analysis of results of all these studies has indicated that the nickel ions occupy both octahedral and tetrahedral positions. However, with the increase of NiO concentration the octahedral occupancy of Ni(2+) ions prevailed over the tetrahedral ions. The luminescence spectra of these glasses have exhibited a broad NIR emission band in region 1100-1500 nm. This band is identified as being due to (3)T2(3F)→(3)A2(3F) octahedral transition of Ni(2+) ions. The luminescence efficiency and cross section have been found to be the highest for the glass containing the highest concentration of NiO. The reasons for such high luminescence efficiency have been discussed in the light of structural variations taking place in the host glass network. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2

    PubMed Central

    Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.

    2013-01-01

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability. PMID:24108361

  12. Exchange coupling and microwave absorption in core/shell-structured hard/soft ferrite-based CoFe2O4/NiFe2O4 nanocapsules

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Liu, Xianguo; Or, Siu Wing; Ho, S. L.

    2017-05-01

    Core/shell-structured, hard/soft spinel-ferrite-based CoFe2O4/NiFe2O4 (CFO/NFO) nanocapsules with an average diameter of 17 nm are synthesized by a facile two-step hydrothermal process using CFO cores of ˜15 nm diameter as the hard magnetic phase and NFO shells of ˜1 nm thickness as the soft magnetic phase. The single-phase-like hysteresis loop with a high remnant-to-saturation magnetization ratio of 0.7, together with a small grain size of ˜16 nm, confirms the existence of exchange-coupling interaction between the CFO cores and the NFO shells. The effect of hard/soft exchange coupling on the microwave absorption properties is studied. Comparing to CFO and NFO nanoparticles, the finite-size NFO shells and the core/shell structure enable a significant reduction in electric resistivity and an enhancement in dipole and interfacial polarizations in the CFO/NFO nanocapsules, resulting in an obvious increase in dielectric permittivity and loss in the whole S-Ku bands of microwaves of 2-18 GHz, respectively. The exchange-coupling interaction empowers a more favorable response of magnetic moment to microwaves, leading to enhanced exchange resonances in magnetic permeability and loss above 10 GHz. As a result, strong absorption, as characterized by a large reflection loss (RL) of -20.1 dB at 9.7 GHz for an absorber thickness of 4.5 mm as well as a broad effective absorption bandwidth (for RL<-10 dB) of 8.4 GHz (7.8-16.2 GHz) at an absorber thickness range of 3.0-4.5 mm, is obtained.

  13. Mid-infrared laser absorption spectroscopy of NO2 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Peng, Wen Yu; Strand, Christopher; Mitchell Spearrin, R.; Jeffries, Jay B.; Hanson, Ronald K.; Bekal, Anish; Halder, Purbasha; Poonacha, Samhitha P.; Vartak, Sameer; Sridharan, Arun K.

    2017-01-01

    A mid-infrared quantum cascade laser absorption sensor was developed for in-situ detection of NO2 in high-temperature gas environments. A cluster of spin-split transitions near 1599.9 cm-1 from the ν3 absorption band of NO2 was selected due to the strength of these transitions and the low spectral interference from water vapor within this region. Temperature- and species-dependent collisional broadening parameters of ten neighboring NO2 transitions with Ar, O2, N2, CO2 and H2O were measured and reported. The spectral model was validated through comparisons with direct absorption spectroscopy measurements of NO2 seeded in various bath gases. The performance of the scanned wavelength modulation spectroscopy (WMS)-based sensor was demonstrated in a combustion exhaust stream seeded with varying flow rates of NO2, achieving reliable detection of 1.45 and 1.6 ppm NO2 by mole at 600 K and 800 K, respectively, with a measurement uncertainty of ±11%. 2σ noise levels of 360 ppb and 760 ppb were observed at 600 K and 800 K, respectively, in an absorption path length of 1.79 m.

  14. D2O self-broadening study in 2.5 μ

    NASA Astrophysics Data System (ADS)

    Lavrentieva, N.; Lugovskoi, A.; Sinitsa, L.; Sherbakov, A.; Svetlichny, O.

    2014-11-01

    The absorption spectra of the D2O monomer in 3600…4200 cm-1 were recorded using Fourier Transform spectrometer FS-125M at room temperature and pressure of 15 and 33 mbar with spectral resolution of 0.03 cm-1 using 2.5 cm long absorption cell. Strong unblended D2O lines lying on the wing of the H2O stretching band were used to determine the line broadening parameters. They were determined from the line profile by Program VxpProfile. The differences between fitted line profiles and experimental ones do not exceed 2%. Registered D2O lines belong to (011) - (000) and (110) - (000) bands of the second triad. Self-broadening coefficients vary from 0.27 cm-1/atm to 0.445 cm-1/atm and they exceed 3 times the D2O-N2 line broadening coefficients in the v3. Calculations of self-broadening coefficients of the D2O lines were performed using semiempirical method based on the impact theory of broadening and included the correction factors. The calculated results well agree with experimental data.

  15. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  16. Femtosecond time-resolved X-ray absorption spectroscopy of anatase TiO2 nanoparticles using XFEL

    PubMed Central

    Obara, Yuki; Ito, Hironori; Ito, Terumasa; Kurahashi, Naoya; Thürmer, Stephan; Tanaka, Hiroki; Katayama, Tetsuo; Togashi, Tadashi; Owada, Shigeki; Yamamoto, Yo-ichi; Karashima, Shutaro; Nishitani, Junichi; Yabashi, Makina; Suzuki, Toshinori; Misawa, Kazuhiko

    2017-01-01

    The charge-carrier dynamics of anatase TiO2 nanoparticles in an aqueous solution were studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser in combination with a synchronized ultraviolet femtosecond laser (268 nm). Using an arrival time monitor for the X-ray pulses, we obtained a temporal resolution of 170 fs. The transient X-ray absorption spectra revealed an ultrafast Ti K-edge shift and a subsequent growth of a pre-edge structure. The edge shift occurred in ca. 100 fs and is ascribed to reduction of Ti by localization of generated conduction band electrons into shallow traps of self-trapped polarons or deep traps at penta-coordinate Ti sites. Growth of the pre-edge feature and reduction of the above-edge peak intensity occur with similar time constants of 300–400 fs, which we assign to the structural distortion dynamics near the surface. PMID:28713842

  17. Conduction-band valley spin splitting in single-layer H-T l2O

    NASA Astrophysics Data System (ADS)

    Ma, Yandong; Kou, Liangzhi; Du, Aijun; Huang, Baibiao; Dai, Ying; Heine, Thomas

    2018-02-01

    Despite numerous studies, coupled spin and valley physics is currently limited to two-dimensional (2D) transition-metal dichalcogenides (TMDCs). Here, we predict an exceptional 2D valleytronic material associated with the spin-valley coupling phenomena beyond 2D TMDCs—single-layer (SL) H-T l2O . It displays large valley spin splitting (VSS), significantly larger than that of 2D TMDCs, and a finite band gap, which are both critically attractive for the integration of valleytronics and spintronics. More importantly, in sharp contrast to all the experimentally confirmed 2D valleytronic materials, where the strong valence-band VSS (0.15-0.46 eV) supports the spin-valley coupling, the VSS in SL H-T l2O is pronounced in its conduction band (0.61 eV), but negligibly small in its valence band (21 meV), thus opening a way for manipulating the coupled spin and valley physics. Moreover, SL H-T l2O possesses extremely high carrier mobility, as large as 9.8 ×103c m2V-1s-1 .

  18. Density-functional theory molecular dynamics simulations of a-HfO2/a-SiO2/SiGe and a-HfO2/a-SiO2/Ge with a-SiO2 and a-SiO suboxide interfacial layers

    NASA Astrophysics Data System (ADS)

    Chagarov, Evgueni A.; Kavrik, Mahmut S.; Fang, Ziwei; Tsai, Wilman; Kummel, Andrew C.

    2018-06-01

    Comprehensive Density-Functional Theory (DFT) Molecular Dynamics (MD) simulations were performed to investigate interfaces between a-HfO2 and SiGe or Ge semiconductors with fully-stoichiometric a-SiO2 or sub-oxide SiO interlayers. The electronic structure of the selected stacks was calculated with a HSE06 hybrid functional. Simulations were performed before and after hydrogen passivation of residual interlayer defects. For the SiGe substrate with Ge termination prior to H passivation, the stacks with a-SiO suboxide interlayer (a-HfO2/a-SiO/SiGe) demonstrate superior electronic properties and wider band-gaps than the stacks with fully coordinated a-SiO2 interlayers (a-HfO2/a-SiO2/SiGe). After H passivation, most of the a-HfO2/a-SiO2/SiGe defects are passivated. To investigate effect of random placement of Si and Ge atoms additional simulations with a randomized SiGe slab were performed demonstrating improvement of electronic structure. For Ge substrates, before H passivation, the stacks with a SiO suboxide interlayer (a-HfO2/a-SiO/Ge) also demonstrate wider band-gaps than the stacks with fully coordinated a-SiO2 interlayers (a-HfO2/a-SiO2/Ge). However, even for a-HfO2/a-SiO/Ge, the Fermi level is shifted close to the conduction band edge (CBM) consistent with Fermi level pinning. Again, after H passivation, most of the a-HfO2/a-SiO2/Ge defects are passivated. The stacks with fully coordinated a-SiO2 interlayers have much stronger deformation and irregularity in the semiconductor (SiGe or Ge) upper layers leading to multiple under-coordinated atoms which create band-edge states and decrease the band-gap prior to H passivation.

  19. MERIS albedo climatology and its effect on the FRESCO+ O2 A-band cloud retrieval from SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Popp, Christoph; Wang, Ping; Brunner, Dominik; Stammes, Piet; Zhou, Yipin

    2010-05-01

    Accurate cloud information is an important prerequisite for the retrieval of atmospheric trace gases from spaceborne UV/VIS sensors. Errors in the estimated cloud fraction and cloud height (pressure) result in an erroneous air mass factor and thus can lead to inaccuracies in the vertical column densities of the retrieved trace gas. In ESA's TEMIS (Tropospheric Emission Monitoring Internet Service) project, the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band) cloud retrieval is applied to, amongst others, SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY) data to determine these quantities. Effective cloud fraction and pressure are inverted by (i) radiative transfer simulations of top-of-atmosphere reflectance based on O2 absorption, single Rayleigh scattering, surface and cloud albedo in three spectral windows covering the O2 A-band and (ii) a subsequent fitting of the simulated to the measured spectrum. However, FRESCO+ relies on a relatively coarse resolution surface albedo climatology (1° x 1°) compiled from GOME (Global Ozone Monitoring Experiment) measurements in the 1990's which introduces several artifacts, e.g. an overestimation of cloud fraction at coastlines or over some mountainous regions. Therefore, we test the substitution of the GOME climatology with a new land surface albedo climatology compiled for every month from MEdium Resolution Imaging Spectrometer (MERIS) Albedomap data (0.05° x 0.05°) covering the period January 2003 to October 2006. The MERIS channels at 754nm and 775nm are located spectrally close to the corresponding GOME channels (758nm and 772nm) on both sides of the O2 A-band. Further, the increased spatial resolution of the MERIS product allows to better account for SCIAMACHY's pixel size of approximately 30x60km. The aim of this study is to describe and assess (i) the compilation and quality of the MERIS climatology (ii) the differences to the GOME climatology, and (iii) possible

  20. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picconi, David; Grebenshchikov, Sergy Yu., E-mail: Sergy.Grebenshchikov@ch.tum.de

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadeningmore » of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.« less

  1. H2O incorporation in the phosphorene/a-SiO2 interface: a first-principles study

    NASA Astrophysics Data System (ADS)

    Scopel, Wanderlã L.; Souza, Everson S.; Miwa, R. H.

    2017-02-01

    Based on first-principles calculations, we investigate (i) the energetic stability and electronic properties of single-layer phosphorene (SLP) adsorbed on an amorphous SiO2 surface (SLP/a-SiO2), and (ii) the further incorporation of water molecules at the phosphorene/a-SiO2 interface. In (i), we find that the phosphorene sheet binds to a-SiO2 through van der Waals interactions, even in the presence of oxygen vacancies on the surface. The SLP/a-SiO2 system presents a type-I band alignment, with the valence (conduction) band maximum (minimum) of the phosphorene lying within the energy gap of the a-SiO2 substrate. The structure and the surface-potential corrugations promote the formation of electron-rich and electron-poor regions on the phosphorene sheet and at the SLP/a-SiO2 interface. Such charge density puddles are strengthened by the presence of oxygen vacancies in a-SiO2. In (ii), because of the amorphous structure of the surface, we consider a number of plausible geometries for H2O embedded in the SLP/a-SiO2 interface. There is an energetic preference for the formation of hydroxyl (OH) groups on the a-SiO2 surface. Meanwhile, in the presence of oxygenated water or interstitial oxygen in the phosphorene sheet, we observe the formation of metastable OH bonded to the phosphorene, and the formation of energetically stable P-O-Si chemical bonds at the SLP/a-SiO2 interface. Further x-ray absorption spectra simulations are performed, which aim to provide additional structural/electronic information on the oxygen atoms forming hydroxyl groups or P-O-Si chemical bonds at the interface region.

  2. H2O incorporation in the phosphorene/a-SiO2 interface: a first-principles study.

    PubMed

    Scopel, Wanderlã L; Souza, Everson S; Miwa, R H

    2017-02-22

    Based on first-principles calculations, we investigate (i) the energetic stability and electronic properties of single-layer phosphorene (SLP) adsorbed on an amorphous SiO 2 surface (SLP/a-SiO 2 ), and (ii) the further incorporation of water molecules at the phosphorene/a-SiO 2 interface. In (i), we find that the phosphorene sheet binds to a-SiO 2 through van der Waals interactions, even in the presence of oxygen vacancies on the surface. The SLP/a-SiO 2 system presents a type-I band alignment, with the valence (conduction) band maximum (minimum) of the phosphorene lying within the energy gap of the a-SiO 2 substrate. The structure and the surface-potential corrugations promote the formation of electron-rich and electron-poor regions on the phosphorene sheet and at the SLP/a-SiO 2 interface. Such charge density puddles are strengthened by the presence of oxygen vacancies in a-SiO 2 . In (ii), because of the amorphous structure of the surface, we consider a number of plausible geometries for H 2 O embedded in the SLP/a-SiO 2 interface. There is an energetic preference for the formation of hydroxyl (OH) groups on the a-SiO 2 surface. Meanwhile, in the presence of oxygenated water or interstitial oxygen in the phosphorene sheet, we observe the formation of metastable OH bonded to the phosphorene, and the formation of energetically stable P-O-Si chemical bonds at the SLP/a-SiO 2 interface. Further x-ray absorption spectra simulations are performed, which aim to provide additional structural/electronic information on the oxygen atoms forming hydroxyl groups or P-O-Si chemical bonds at the interface region.

  3. CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm

    NASA Astrophysics Data System (ADS)

    Farooq, A.; Jeffries, J. B.; Hanson, R. K.

    2008-03-01

    A new tunable diode-laser sensor based on CO2 absorption near 2.7 μm is developed for high-resolution absorption measurements of CO2 concentration and temperature. The sensor probes the R(28) and P(70) transitions of the ν1+ν3 combination band of CO2 that has stronger absorption line-strengths than the bands near 1.5 μm and 2.0 μm used previously to sense CO2 in combustion gases. The increased absorption strength of transitions in this new wavelength range provides greatly enhanced sensitivity and the potential for accurate measurements in combustion gases with short optical path lengths. Simulated high-temperature spectra are surveyed to find candidate CO2 transitions isolated from water vapor interference. Measurements of line-strength, line position, and collisional broadening parameters are carried out for candidate CO2 transitions in a heated static cell as a function of temperature and compared to literature values. The accuracy of a fixed-wavelength CO2 absorption sensor is determined via measurement of known temperature and CO2 mole fraction in a static cell and shock-tube. Absorption measurements of CO2 are then made in a laboratory flat-flame burner and in ignition experiments of shock-heated n-heptane/O2/argon mixtures to illustrate the potential of this sensor for combustion and reacting-flow applications.

  4. O2 absorption cross sections /187-225 nm/ from stratospheric solar flux measurements

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Mentall, J. E.

    1982-01-01

    The absorption cross sections of molecular oxygen are calculated in the wavelength range from 187 to 230 nm from solar flux measurements obtained within the stratosphere. Within the Herzberg continuum wavelength region the molecular oxygen cross sections are found to be about 30% smaller than the laboratory results of Shardanand and Rao (1977) from 200 to 210 nm and about 50% smaller than those of Hasson and Nicholls (1971). At wavelengths longer than 210 nm the cross sections agree with those of Shardanand and Rao. The effective absorption cross sections of O2 in the Schumann-Runge band region from 187 to 200 nm are calculated and compared to the empirical fit given by Allen and Frederick (1982). The calculated cross sections indicate that the transmissivity of the atmosphere may be underestimated by the use of the Allen and Frederic cross sections between 195 and 200 nm. The ozone column content between 30 and 40 km and the relative ozone cross sections are determined from the same solar flux data set.

  5. Optical properties of rhodamine 6G-doped TiO2 sol-gel films

    NASA Astrophysics Data System (ADS)

    Tomás, S. A.; Stolik, S.; Palomino, R.; Lozada, R.; Persson, C.; Ahuja, R.; Pepe, I.; Ferreira da Silva, A.

    2005-06-01

    The optical properties of titania (TiO2) thin films prepared by the sol-gel process and doped with rhodamine 6G were studied by Photoacoustic Spectroscopy. Rhodamine 6G-doping was achieved by adding 0.01%, 0.02%, 0.05% y 0.1% mol rhodamine to a solution that contained titanium isopropoxide as precursor. Two absorption regions were distinguished in the absorption spectrum of a typical rhodamine 6G-doped TiO2 film. A shift of these bands occured as a function of rhodamine 6G-doping concentration. In addition, the optical absorption and band gap energy for rutile-phase TiO2 films were calculated employing the full-potential linearized augmented plane wave method. A comparison of these calculations with experimental data of TiO2 films prepared by sol-gel at room temperature was performed.

  6. Co-adsorption of oxygen and formic acid on rutile TiO2 (110) studied by infrared reflection-absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Mattsson, Andreas; Österlund, Lars

    2017-09-01

    Adsorption of formic acid and co-adsorption with oxygen have been investigated on the rutile TiO2(110) surface using p- and s-polarized infrared reflection-absorption spectroscopy (IRRAS) at O2 exposures between 45 L to 8100 L and at temperatures between 273 K and 343 K. On the clean surface formic acid dissociates into a formate ion (formate) and a proton. Formate binds to two five-fold coordinated Ti atoms in the troughs along the [001] direction, and the proton binds to neighboring bridging O atoms. Exposure of adsorbed formate to O2 leads to a decrease in the asymmetric νas(OCO) band at 1532 cm-1 and to the concomitant formation of a new vibration band at 1516 cm-1. From the s-and p-polarized IRRAS measurements performed at different O2 exposures, surface pre-treatments and substrate temperatures, and by comparisons with previous reports, we conclude that the new species is a bidentate surface hydrogen carbonate, which is formed by reaction between formate and oxygen adatoms on the surface. The σv reflection plane of the surface hydrogen carbonate molecule is oriented along the [001] direction, i.e. the same direction as the adsorbed formate molecule. On the clean TiO2(110) surface exposed to O2 prior to formic acid adsorption, similar results are obtained. The reaction rate to form surface hydrogen carbonate from formate is found to follow first-order kinetics, with an apparent activation energy of Er=0.25 eV.

  7. Absorption band oscillator strengths of N2 transitions between 95.8 and 99.4 nm

    NASA Technical Reports Server (NTRS)

    Stark, G.; Smith, Peter L.; Huber, K. P.; Yoshino, K.; Stevens, M. H.; Ito, K.

    1992-01-01

    Molecular nitrogen plays a central role in the energetics of the earth's upper atmosphere and is the major constituent of the atmospheres of the planetary satellites Titan and Triton. This paper reports a new set of absorption oscillator strengths measured at higher resolution for seven bands in the 95.8-99.4 nm region. The results are compared with earlier, lower resolution absorption measurements, electron scattering measurements, and calculations based on a deperturbation analysis of the excited states.

  8. OPTICAL AND SPECTROSCOPIC STUDIES OF Fe2O3-Bi2O3-B2O3:V2O5 GLASSES

    NASA Astrophysics Data System (ADS)

    Sanjay; Kishore, N.; Agarwal, A.; Dahiya, S.; Pal, Inder; Kumar, Navin

    2013-11-01

    The glasses of compositions xFe2O3ṡ (40 - x)Bi2O3ṡ60B2O3ṡ2V2O5 have been prepared by the standard melt-quenching technique. Amorphous nature of these samples is ascertained by XRD patterns. The presence of BO3 and BO4 units is identified by IR spectra of glass samples. The absorption edge (λcut-off) shifts toward longer wavelengths with an increase in Fe2O3 content in the glass matrix. The values of optical band gap energy for indirect allowed and forbidden transitions have been determined and it is found to decrease with increase in transition metal ions. The Urbach's energy is used to characterize the degree of disorder in amorphous solids.

  9. A sextuple-band ultra-thin metamaterial absorber with perfect absorption

    NASA Astrophysics Data System (ADS)

    Yu, Dingwang; Liu, Peiguo; Dong, Yanfei; Zhou, Dongming; Zhou, Qihui

    2017-08-01

    This paper presents the design, simulation and measurement of a sextuple-band ultra-thin metamaterial absorber (MA). The unit cell of this proposed structure is composed of triangular spiral-shaped complementary structures imprinted on the dielectric substrate backed by a metal ground. The measured results are in good agreement with simulations with high absorptivities of more than 90% at all six absorption frequencies. In addition, this proposed absorber has good performances of ultra-thin, polarization insensitivity and a wide-angle oblique incidence, which can easily be used in many potential applications such as detection, imaging and sensing.

  10. CaFe2O4 as a self-sufficient solar energy converter

    NASA Astrophysics Data System (ADS)

    Tablero, C.

    2017-10-01

    An ideal solar energy to electricity or fuel converter should work without the use of any external bias potential. An analysis of self-sufficiency when CaFe2O4 is used to absorb the sunlight is carried out based on the CaFe2O4 absorption coefficient. We started to obtain this coefficient theoretically within the experimental bandgap range in order to fix the interval of possible values of photocurrents, maximum absorption efficiencies, and photovoltages and thus that of self-sufficiency considering only the radiative processes. Also for single-gap CaFe2O4, we evaluate an alternative for increasing the photocurrent and maximum absorption efficiency based on inserting an intermediate band using high doping or alloying.

  11. Predissociation linewidths of the (3,0)-(11,0) Schumann-Runge absorption bands of (O-18)2 and O-16O-18 in the wavelength region 180-196 nm

    NASA Technical Reports Server (NTRS)

    Chiu, S. S.-L.; Cheung, A. S.-C.; Yoshino, K.; Esmond, J. R.; Freeman, D. E.

    1990-01-01

    The Yoshino et al. (1988) measurements of absolute cross sections and those of Cheung et al. (1988) for spectroscopic constants are presently used to derive the predissociation linewidths of the (3,0)-(11,0) Schumman-Runge bands of (O-18)2 and O-16O-18, in the 180-196 nm wavelength region. Linewidths are determined as parameters in the nonlinear, least-squares fitting of calculated cross-sections to measured ones. The predissociation linewidths obtained are noted to often be greater than previously obtained experimental values for both isotopic molecules.

  12. Band gap engineering of NaTaO3 using density functional theory: a charge compensated codoping strategy.

    PubMed

    Modak, Brindaban; Srinivasu, K; Ghosh, Swapan K

    2014-08-28

    In this theoretical study, we employ a codoping strategy to reduce the band gap of NaTaO3 aimed at improving the photocatalytic activity under visible light. The systematic study includes the effects of metal (W) and nonmetal (N) codoping on the electronic structure of NaTaO3 in comparison to the effect of individual dopants. The feasibility of the introduction of N into the NaTaO3 crystal structure is found to be enhanced in the presence of W, as indicated by the calculated formation energy. This codoping leads to formation of a charge compensated system, beneficial for the minimization of vacancy related defect formation. The electronic structure calculations have been carried out using a hybrid density functional for an accurate description of the proposed system. The introduction of W in place of Ta leads to the appearance of donor states below the conduction band, while N doping in place of oxygen introduces isolated acceptor states above the valence band. The codoping of N and W also passivates undesirable discrete midgap states. This feature is not observed in the case of (Cr, N) codoped NaTaO3 in spite of its charge compensated nature. We have also studied charge non-compensated codoping using several dopant pairs, including anion-anion and cation-anion pairs. However, this non-compensated codoping introduces localized states in between the valence band and the conduction band, and hence may not be effective in enhancing the photocatalytic properties of NaTaO3. The optical spectrum shows that the absorption curve for the (W, N)-codoped NaTaO3 is extended to the visible region due to narrowing of the band gap to 2.67 eV. Moreover, its activity for the photo decomposition of water to produce both H2 and O2 remains intact. Hence, based on the present investigation we can propose (W, N) codoped NaTaO3 as a promising photocatalyst for visible light driven water splitting.

  13. Improved photovoltaic properties of ZnTeO-based intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Tanaka, Tooru; Saito, Katsuhiko; Guo, Qixin; Yu, Kin Man; Walukiewicz, Wladek

    2018-02-01

    Highly mismatched ZnTe1-xOx (ZnTeO) alloy is one of the potential candidates for an absorber material in a bulk intermediate band solar cell (IBSC) because a narrow, O-derived intermediate band IB (E-) is formed well below the conduction band CB (E+) edge of the ZnTe. We have previously demonstrated the generation of photocurrent induced by two-step photon absorption (TSPA) in ZnTeO IBSCs using n-ZnO window layer. However, because of the large conduction band offset (CBO) between ZnTe and ZnO, only a small open circuit voltage (Voc) was observed in this structure. Here, we report our recent progress on the development of ZnTeO IBSCs with n-ZnS window layer. ZnS has a large direct band gap of 3.7 eV with an electron affinity of 3.9 eV that can realize a smaller CBO with ZnTe. We have grown n-type ZnS thin films on ZnTe substrates by molecular beam epitaxy (MBE), and demonstrated ZnTe solar cells and ZnTeO IBSCs using n-ZnS window layer with an improved VOC. Especially, a n-ZnS/i-ZnTe/p-ZnTe solar cell showed an improved Voc of 0.77 V, a large short-circuit current density of 6.7 mA/cm2 with a fill factor of 0.60, yielding the power conversion efficiency of 3.1 %, under 1 sun illumination.

  14. Atmospheric dayglow diagnostics involving the O2(b-X) Atmospheric band emission: Global Oxygen and Temperature (GOAT) mapping

    NASA Astrophysics Data System (ADS)

    Slanger, T. G.; Pejaković, D. A.; Kostko, O.; Matsiev, D.; Kalogerakis, K. S.

    2017-03-01

    The terrestrial dayglow displays prominent emission features from the 0-0 and 1-1 bands of the O2 Atmospheric band system in the 760-780 nm region. We present an analysis of observations in this wavelength region recorded by the Space Shuttle during the Arizona Airglow Experiment. A major conclusion is that the dominant product of O(1D) + O2 energy transfer is O2(b, v = 1), a result that corroborates our previous laboratory studies. Moreover, critical to the interpretation of dayglow is the possible interference by N2 and N2+ bands in the 760-780 nm region, where the single-most important component is the N2 1PG 3-1 band that overlaps with the O2(b-X) 0-0 band. When present, this background must be accounted for to reveal the O2(b-X) 0-0 and 1-1 bands for altitudes at which the O2 and N2/N2+ emissions coincide. Finally, we exploit the very different collisional behavior of the two lowest O2(b) vibrational levels to outline a remote sensing technique that provides information on Atmospheric composition and temperature from space-based observations of the 0-0 and 1-1 O2 atmospheric bands.

  15. Enhanced photoemission from glancing angle deposited SiOx-TiO2 axial heterostructure nanowire arrays

    NASA Astrophysics Data System (ADS)

    Dhar, J. C.; Mondal, A.; Singh, N. K.; Chattopadhyay, K. K.

    2013-05-01

    The glancing angle deposition technique has been employed to synthesize SiOx-TiO2 heterostructure nanowire (NW) arrays on indium tin oxide (ITO) coated glass substrate. A field emission gun scanning electron microscopic image shows that the average diameter of the NWs is ˜50 nm. Transmission electron microscopy images show the formation of heterostructure NWs, which consist of ˜180 nm SiOx and ˜210 nm long TiO2. The selected-area electron diffraction shows the amorphous nature of the synthesized NWs, which was also confirmed by X-ray diffraction method. The main band absorption edges at 3.5 eV were found for both the SiOx-TiO2 and TiO2 NW arrays on ITO coated glass plate from optical absorption measurement. Ti3+ defect related sub-band gap transition at 2.5 eV was observed for TiO2 NWs, whereas heterostructure NWs revealed the SiOx optical band gap related transition at ˜2.2 eV. Two fold improved photon absorption as well as five times photoluminescence emission enhancement were observed for the SiOx-TiO2 multilayer NWs compared to TiO2 NWs.

  16. Band alignments at Ga2O3 heterojunction interfaces with Si and Ge

    NASA Astrophysics Data System (ADS)

    Gibbon, J. T.; Jones, L.; Roberts, J. W.; Althobaiti, M.; Chalker, P. R.; Mitrovic, Ivona Z.; Dhanak, V. R.

    2018-06-01

    Amorphous Ga2O3 thin films were deposited on p-type (111) and (100) surfaces of silicon and (100) germanium by atomic layer deposition (ALD). X-ray photoelectron spectroscopy (XPS) was used to investigate the band alignments at the interfaces using the Kraut Method. The valence band offsets were determined to be 3.49± 0.08 eV and 3.47± 0.08 eV with Si(111) and Si(100) respectively and 3.51eV± 0.08 eV with Ge(100). Inverse photoemission spectroscopy (IPES) was used to investigate the conduction band of a thick Ga2O3 film and the band gap of the film was determined to be 4.63±0.14 eV. The conduction band offsets were found to be 0.03 eV and 0.05eV with Si(111) and Si(100) respectively, and 0.45eV with Ge(100). The results indicate that the heterojunctions of Ga2O3 with Si(100), Si(111) and Ge(100) are all type I heterojunctions.

  17. Theoretical prediction of the band offsets at the ZnO/anatase TiO2 and GaN/ZnO heterojunctions using the self-consistent ab initio DFT/GGA-1/2 method.

    PubMed

    Fang, D Q; Zhang, S L

    2016-01-07

    The band offsets of the ZnO/anatase TiO2 and GaN/ZnO heterojunctions are calculated using the density functional theory/generalized gradient approximation (DFT/GGA)-1/2 method, which takes into account the self-energy corrections and can give an approximate description to the quasiparticle characteristics of the electronic structure of semiconductors. We present the results of the ionization potential (IP)-based and interfacial offset-based band alignments. In the interfacial offset-based band alignment, to get the natural band offset, we use the surface calculations to estimate the change of reference level due to the interfacial strain. Based on the interface models and GGA-1/2 calculations, we find that the valence band maximum and conduction band minimum of ZnO, respectively, lie 0.64 eV and 0.57 eV above those of anatase TiO2, while lie 0.84 eV and 1.09 eV below those of GaN, which agree well with the experimental data. However, a large discrepancy exists between the IP-based band offset and the calculated natural band offset, the mechanism of which is discussed. Our results clarify band alignment of the ZnO/anatase TiO2 heterojunction and show good agreement with the GW calculations for the GaN/ZnO heterojunction.

  18. Tunable band gap in Bi(Fe1-xMnx)O3 films

    NASA Astrophysics Data System (ADS)

    Xu, X. S.; Ihlefeld, J. F.; Lee, J. H.; Ezekoye, O. K.; Vlahos, E.; Ramesh, R.; Gopalan, V.; Pan, X. Q.; Schlom, D. G.; Musfeldt, J. L.

    2010-05-01

    In order to investigate band gap tunability in polar oxides, we measured the optical properties of a series of Bi(Fe1-xMnx)O3 thin films. The absorption response of the mixed metal solid solutions is approximately a linear combination of the characteristics of the two end members, a result that demonstrates straightforward band gap tunability in this system.

  19. Band alignment at β-(AlxGa1-x)2O3/β-Ga2O3 (100) interface fabricated by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Ryo; Hattori, Mai; Yoshimatsu, Kohei; Horiba, Koji; Kumigashira, Hiroshi; Ohtomo, Akira

    2018-06-01

    High-quality β-(AlxGa1-x)2O3 (x = 0-0.37) films were epitaxially grown on β-Ga2O3 (100) substrates by oxygen-radical-assisted pulsed-laser deposition with repeating alternate ablation of single crystals of β-Ga2O3 and α-Al2O3. The bandgap was tuned from 4.55 ± 0.01 eV (x = 0) to 5.20 ± 0.02 eV (x = 0.37), where bowing behavior was observed. The band alignment at the β-(AlxGa1-x)2O3/β-Ga2O3 interfaces was found to be type-I with conduction- and valence-band offsets of 0.52 ± 0.08 eV (0.37 ± 0.08 eV) and 0.13 ± 0.07 eV (0.02 ± 0.07 eV) for x = 0.37 (0.27), respectively. The large conduction-band offsets are ascribed to the dominant contribution of the cation-site substitution to the conduction band.

  20. A study of optical, mechanical and electrical properties of poly(methacrylic acid)/TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    AL-Baradi, Ateyyah M.; Al-Shehri, Samar F.; Badawi, Ali; Merazga, Amar; Atta, A. A.

    2018-06-01

    This work is concerned with the study of the effect of titanium dioxide (TiO2) nanofillers on the optical, mechanical and electrical properties of poly(methacrylic acid) (PMAA) networks as a function of TiO2 concentration and crosslink density. The structure of the prepared samples was investigated by X-ray diffractometry (XRD) and Transmittance Electron Microscope (TEM). XRD results showed a single phase for the nanocomposites indicating that no large TiO2 aggregates in the polymer matrix. The optical properties of the prepared samples including the absorption, transmittance, energy band gap and refractive index were explored using Spectrophotometer. These measurements showed that there is a red-shift in the absorption caused by the increase of TiO2 concentration. However, the crosslink density in the polymer plays no role in changing the absorption. The energy band gap (Eg) decreases with increasing the concentration of TiO2 in the polymer matrix; whereas Eg increases with increasing the crosslink density. Moreover, the mechanical properties of PMAA/TiO2 nanocomposites by Dynamic Mechanical Analysis (DMA) showed that the viscoelasticity of PMAA decreases with adding TiO2 nanoparticles and the glass transition temperature (Tg) was also found to drop from 130 °C to 114 °C. Finally, the DC conductivity of the obtained systems was found to increase with increasing TiO2 nanoparticles in the matrix.

  1. Air- and N2-Broadening Coefficients and Pressure-Shift Coefficients in the C-12(O2-16) Laser Bands

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, Mary Ann H.; Rinsland, Curtis P.

    1998-01-01

    In this paper we report the pressure broadening and the pressure-induced line shift coefficients for 46 individual rovibrational lines in both the (12)C(16)O2, 00(sup 0)1-(10(sup 0)0-02(sup 0)0)I, and 00(sup 0)1-(10(sup 0)0-02(sup 0)0)II, laser bands (laser band I centered at 960.959/cm and laser band II centered at 1063.735/cm) determined from spectra recorded with the McMath-Pierce Fourier transform spectrometer. The results were obtained from analysis of 10 long-path laboratory absorption spectra recorded at room temperature using a multispectrum nonlinear least-squares technique. Pressure effects caused by both air and nitrogen have been investigated. The air-broadening coefficients determined in this study agree well with the values in the 1996 HITRAN database; ratios and standard deviations of the ratios of the present air-broadening measurements to the 1996 HITRAN values for the two laser bands are: 1.005(15) for laser band I and 1.005(14) for laser band II. Broadening by nitrogen is 3 to 4% larger than that of air. The pressure-induced line shift coefficients are found to be transition dependent and different for the P- and R-branch lines with same J" value. No noticeable differences in the shift coefficients caused by air and nitrogen were found. The results obtained are compared with available values previously reported in the literature.

  2. Transmission characteristic of graphene/TiO2 paper measured at Ka-band

    NASA Astrophysics Data System (ADS)

    Agusu, La; Mitsudo, Seitaro; Ahmad, La Ode; Herdianto, Fujii, Yutaka; Ishikawa, Yuya; Furuya, Takahashi; Ramadhan, La Ode Ahmad Nur

    2017-01-01

    The commercial telecommunication system in future would explore the electromagnetic spectrum with higher frequency than used now, because it requires higher speed of transmission data. Using the millimeter waves (mmW) with frequency ranging from 30 to 300 GHz, such requirement could be fulfilled. The upcoming 5G cellular technology is expected to use frequency 30 GHz or higher. Then materials with a specific characteristic at the mmW range are interesting to be explored and investigated. Here, we report the synthesis process of graphene/TiO2 deposited on paper and their transmission characteristics to the electromagnetic energy at frequency 27-40 GHz (Ka-Band). The reduced graphene oxide (rGO) was synthesized by a modified Hummers method with introduction of microwave irradiation in the process. rGO and TiO2 were mixed in ethanol solution and deposited on the paper by a spraying technique. Transmission coefficient of electromagnetic wave energy at Ka-Band was measured by using the millimeter vector network analyzer. Conductivity of rGO is 1.89 Scm-1 and for the graphene/TiO2 with TiO2 content is up to 50%, conductivity is down to Scm-1 Graphene/TiO2 layer with thickness of 60).lm and TiO2 loading up to 25% can has the transmission coefficient of -4 dB at the middle frequency of 31 GHz and bandwidth of 2.2 GHz. This can be useful as the electromagnetic interference shielding material at Ka-band.

  3. Band Offset Measurements in Atomic-Layer-Deposited Al2O3/Zn0.8Al0.2O Heterojunction Studied by X-ray Photoelectron Spectroscopy.

    PubMed

    Yan, Baojun; Liu, Shulin; Heng, Yuekun; Yang, Yuzhen; Yu, Yang; Wen, Kaile

    2017-12-01

    Pure aluminum oxide (Al 2 O 3 ) and zinc aluminum oxide (Zn x Al 1-x O) thin films were deposited by atomic layer deposition (ALD). The microstructure and optical band gaps (E g ) of the Zn x Al 1-x O (0.2 ≤ x ≤ 1) films were studied by X-ray diffractometer and Tauc method. The band offsets and alignment of atomic-layer-deposited Al 2 O 3 /Zn 0.8 Al 0.2 O heterojunction were investigated in detail using charge-corrected X-ray photoelectron spectroscopy. In this work, different methodologies were adopted to recover the actual position of the core levels in insulator materials which were easily affected by differential charging phenomena. Valence band offset (ΔE V ) and conduction band offset (ΔE C ) for the interface of the Al 2 O 3 /Zn 0.8 Al 0.2 O heterojunction have been constructed. An accurate value of ΔE V  = 0.82 ± 0.12 eV was obtained from various combinations of core levels of heterojunction with varied Al 2 O 3 thickness. Given the experimental E g of 6.8 eV for Al 2 O 3 and 5.29 eV for Zn 0.8 Al 0.2 O, a type-I heterojunction with a ΔE C of 0.69 ± 0.12 eV was found. The precise determination of the band alignment of Al 2 O 3 /Zn 0.8 Al 0.2 O heterojunction is of particular importance for gaining insight to the design of various electronic devices based on such heterointerface.

  4. Optical properties of La{sub 2}CuO{sub 4} and La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites in UV-vis-NIR region synthesized by sol-gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yifeng; Huang Jianfeng, E-mail: hjfnpu@163.com; Cao Liyun

    2012-02-15

    La{sub 2}CuO{sub 4} and La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites were prepared via a simple sol-gel process. The as-prepared La{sub 2}CuO{sub 4} and La{sub 2} {sub -x}Ca{sub x}CuO{sub 4} crystallites were characterized by X-ray diffraction, transmission electron microscope and UV-vis-NIR spectra. Results show that the grain size of La{sub 2}CuO{sub 4} crystallites increases with the increase of heat treatment temperature from 600 Degree-Sign C to 800 Degree-Sign C. Optical properties show that La{sub 2}CuO{sub 4} crystallites have broad absorption both in the UV-vis region and in the NIR region. The band gap of the as-prepared crystallites decreases from 1.367 eV tomore » 1.284 eV with the increase of calcination temperature from 600 Degree-Sign C to 800 Degree-Sign C. In the series of La{sub 2-x}Ca{sub x}CuO{sub 4} compounds (x = 0.05, 0.08, 0.10, 0.12, 0.15 and 0.20), all of the samples exhibit an orthogonal crystal structure and the solubility limit of Ca{sup 2+} in La{sub 2}CuO{sub 4} is within the range of x = 0.12-0.15. In the whole UV-vis-NIR region, La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites exhibit a broad absorption and the corresponding band gap first increases and then decreases with increasing of Ca{sup 2+} content. - Highlights: Black-Right-Pointing-Pointer The optical band gap can be tuned by adjusting the grain size and Ca{sup 2+} content. Black-Right-Pointing-Pointer La{sub 2}CuO{sub 4} crystallites exhibit a broad absorption band both in the UV-vis region and in the NIR region. Black-Right-Pointing-Pointer The band gap increases from 1.284 eV to 1.319 eV with the decrease of heat treatment temperature. Black-Right-Pointing-Pointer In the whole UV-vis-NIR region, the La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites displayed a broad absorption. Black-Right-Pointing-Pointer The band gap of La{sub 2-x}Ca{sub x}CuO{sub 4} increases linearly with doping level when 0 {<=} x {<=} 0.12.« less

  5. Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide.

    PubMed

    Singh, Neetesh; Casas-Bedoya, Alvaro; Hudson, Darren D; Read, Andrew; Mägi, Eric; Eggleton, Benjamin J

    2016-12-15

    We demonstrate a compact silicon-on-sapphire (SOS) strip waveguide sensor for mid-IR absorption spectroscopy. This device can be used for gas and liquid sensing, especially to detect chemically similar molecules and precisely characterize extremely absorptive liquids that are difficult to detect by conventional infrared transmission techniques. We reliably measure concentrations up to 0.25% of heavy water (D2O) in a D2O-H2O mixture at its maximum absorption band at around 4 μm. This complementary metal-oxide-semiconductor (CMOS) compatible SOS D2O sensor is promising for applications such as measuring body fat content or detection of coolant leakage in nuclear reactors.

  6. Band structure engineering of TiO2 nanowires by n-p codoping for enhanced visible-light photoelectrochemical water-splitting.

    PubMed

    Zhang, Daoyu; Yang, Minnan

    2013-11-14

    The advantages of one-dimensional nanostructures, such as excellent charge separation and charge transport, low charge carrier recombination losses and so on, render them the photocatalysts of choice for many applications that exploit solar energy. In this work, based on very recently synthesized ultrathin anatase TiO2 nanowires, we explore the possibility of these wires as photocatalysts for photoelectrochemical water-splitting via the mono-doping (C, N, V, and Cr) and n-p codoping (C&V, C&Cr, N&V, and N&Cr) schemes. Our first-principles calculations predict that the C&Cr and C&V codoped ANWs may be strong candidates for photoelectrochemical water-splitting, because they have a substantially reduced band gap of 2.49 eV, appropriate band edge positions, no carrier recombination centers, and enhanced optical absorption in the visible light region.

  7. The mid-IR Absorption Cross Sections of α- and β-NAT (HNO3 · 3H2O) in the range 170 to 185 K and of metastable NAD (HNO3 · 2H2O) in the range 172 to 182 K

    NASA Astrophysics Data System (ADS)

    Iannarelli, R.; Rossi, M. J.

    2015-11-01

    Growth and Fourier transform infrared (FTIR) absorption in transmission of the title nitric acid hydrates have been performed in a stirred flow reactor (SFR) under tight control of the H2O and HNO3 deposition conditions affording a closed mass balance of the binary mixture. The gas and condensed phases have been simultaneously monitored using residual gas mass spectrometry and FTIR absorption spectroscopy, respectively. Barrierless nucleation of the metastable phases of both α-NAT (nitric acid trihydrate) and NAD (nitric acid dihydrate) has been observed when HNO3 was admitted to the SFR in the presence of a macroscopic thin film of pure H2O ice of typically 1 µm thickness. The stable β-NAT phase was spontaneously formed from the precursor α-NAT phase through irreversible thermal rearrangement beginning at 185 K. This facile growth scheme of nitric acid hydrates requires the presence of H2O ice at thicknesses in excess of approximately hundred nanometers. Absolute absorption cross sections in the mid-IR spectral range (700-4000 cm-1) of all three title compounds have been obtained after spectral subtraction of excess pure ice at temperatures characteristic of the upper troposphere/lower stratosphere. Prominent IR absorption frequencies correspond to the antisymmetric nitrate stretch vibration (ν3(NO3-)) in the range 1300 to 1420 cm-1 and the bands of hydrated protons in the range 1670 to 1850 cm-1 in addition to the antisymmetric O-H stretch vibration of bound H2O in the range 3380 to 3430 cm-1 for NAT.

  8. Photodissociation dynamics of bromoiodomethane from the first and second absorption bands. A combined velocity map and slice imaging study.

    PubMed

    Marggi Poullain, Sonia; Chicharro, David V; Navarro, Eduardo; Rubio-Lago, Luis; González-Vázquez, Jesús; Bañares, Luis

    2018-01-31

    The photodissociation dynamics of bromoiodomethane (CH 2 BrI) have been investigated at the maximum of the first A and second A' absorption bands, at 266 and 210 nm excitation wavelengths, respectively, using velocity map and slice imaging techniques in combination with a probe detection of both iodine and bromine fragments, I( 2 P 3/2 ), I*( 2 P 1/2 ), Br( 2 P 3/2 ) and Br*( 2 P 1/2 ) via (2 + 1) resonance enhanced multiphoton ionization. Experimental results, i.e. translational energy and angular distributions, are reported and discussed in conjunction with high level ab initio calculations of potential energy curves and absorption spectra. The results indicate that in the A-band, direct dissociation through the 5A' excited state leads to the I( 2 P 3/2 ) channel while I*( 2 P 1/2 ) atoms are produced via the 5A' → 4A'/4A'' nonadiabatic crossing. The presence of Br and Br* fragments upon excitation to the A-band is attributed to indirect dissociation via a curve crossing between the 5A' with upper excited states such as the 9A'. The A'-band is characterized by a strong photoselectivity leading exclusively to the Br( 2 P 3/2 ) and Br*( 2 P 1/2 ) channels, which are likely produced by dissociation through the 9A' excited state. Avoided crossings between several excited states from both the A and A' bands entangle however the possible reaction pathways.

  9. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-19

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  10. Nd3+-doped TeO2-Bi2O3-ZnO transparent glass ceramics for laser application at 1.06 μm

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Luo, Zhiwei; Liu, Taoyong; Lu, Anxian

    2017-04-01

    The high crystallinity transparent glass ceramics based on Nd3+-doped 70TeO2-15Bi2O3-15ZnO (TBZ) compositions were successfully prepared by two-step heat treatment process. The effects of Nd2O3 content on the thermal, structural, mechanical, and optical properties of TBZ glass ceramics were studied. The incorporation of Nd2O3 enhanced the crystallization tendency in the matrix glass composition. The crystal phase and morphology of Bi2Te4O11 in the glass ceramics were confirmed by X-ray diffraction and field emission scanning electron microscopy. Due to precipitate more crystal phase, the hardness values increased from 3.21 to 3.66 GPa. Eight absorption peaks were observed from 400 to 900 nm and three emission bands appeared in the range of 850-1400 nm. With the increasing of Nd2O3 content from 0.5 to 2.5 wt%, the intensity of absorption peaks enhanced and the emission intensity increased up to 1.0 wt% and then fell down for further dopant concentration. The fluorescence decay lifetime decreased rapidly starting from 1.5 wt% Nd2O3 content due to the obvious energy migration among Nd3+. According to the extreme strong emission band around 1062 nm and the optimum Nd2O3 content (1.0 wt%), N10 glass ceramic was considered as a potential material for 1.06 μm laser applications.

  11. Evaluation of band alignment of α-Ga2O3/α-(Al x Ga1‑ x )2O3 heterostructures by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Uchida, Takayuki; Jinno, Riena; Takemoto, Shu; Kaneko, Kentaro; Fujita, Shizuo

    2018-04-01

    The band alignment at an α-Ga2O3/α-(Al x Ga1‑ x )2O3 heterointerface, with different Al compositions (x), grown on a c-plane sapphire substrate was evaluated by X-ray photoelectron spectroscopy. The experimental results show that the heterointerface has the type-I band discontinuity with the valence band offsets of 0.090, 0.12, and 0.14 eV, and the conduction band offsets of 0.34, 0.79, and 1.87 eV, for x values of 0.1, 0.4, and 0.8, respectively. The small band offset for the valence band is attributed to the fact that the valence band of oxides is constituted by the localized O 2p level, which is dominated by the nature of oxygen atoms. The type-I band discontinuity is desirable for a variety of heterostructure devices.

  12. Luminescence and photoinduced absorption in ytterbium-doped optical fibres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybaltovsky, A A; Aleshkina, S S; Likhachev, M E

    2011-12-31

    Photochemical reactions induced in the glass network of an ytterbium-doped fibre core by IR laser pumping and UV irradiation have been investigated by analysing absorption and luminescence spectra. We have performed comparative studies of the photoinduced absorption and luminescence spectra of fibre preforms differing in core glass composition: Al{sub 2}O{sub 3} : SiO{sub 2}, Al{sub 2}O{sub 3} : Yb{sub 2}O{sub 3} : SiO{sub 2}, and P{sub 2}O{sub 5} : Yb{sub 2}O{sub 3} : SiO{sub 2}. The UV absorption spectra of unirradiated preform core samples show strong bands peaking at 5.1 and 6.5 eV, whose excitation plays a key role inmore » photoinduced colour centre generation in the glass network. 'Direct' UV excitation of the 5.1- and 6.5-eV absorption bands at 244 and 193 nm leads to the reduction of some of the Yb{sup 3+} ions to Yb{sup 2+}. The photodarkening of ytterbium-doped fibres by IR pumping is shown to result from oxygen hole centre generation. A phenomenological model is proposed for the IR-pumping-induced photodarkening of ytterbium-doped fibres. The model predicts that colour centre generation in the core glass network and the associated absorption in the visible range result from a cooperative effect involving simultaneous excitation of a cluster composed of several closely spaced Yb{sup 3+} ions.« less

  13. Precise ro-vibrational analysis of molecular bands forbidden in absorption: The ν8 +ν10 band of the 12C2H4 molecule

    NASA Astrophysics Data System (ADS)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Kashirina, N. V.; Bauerecker, S.; Horneman, V.-M.

    2015-07-01

    The highly accurate (experimental accuracy in line positions ∼ (1 - 2) ×10-4 cm-1) ro-vibrational spectrum of the ν8 +ν10 band of the 12C2H4 molecule was recorded for the first time with high resolution Fourier transform spectrometry and analyzed in the region of 1650-1950 cm-1 using the Hamiltonian model which takes into account Coriolis resonance interactions between the studied ν8 +ν10 band, which is forbidden in absorption, and the bands ν4 +ν8 and ν7 +ν8 . About 1570 transitions belonging to the ν8 +ν10 band were assigned in the experimental spectra with the maximum values of quantum numbers Jmax. = 35 and Kamax . = 18 . On that basis, a set of 38 vibrational, rotational, centrifugal distortion, and resonance interaction parameters was obtained from the fit. They reproduce values of 598 initial "experimental" ro-vibrational energy levels (positions of about 1570 experimentally recorded and assigned transitions) with the rms error drms = 0.00045 cm-1 (drms = 0.00028 cm-1 when upper ro-vibrational energies obtained from blended and very weak transitions were deleted from the fit).

  14. Optical, physical and structural studies of vanadium doped P2O5-BaO-Li2O glasses

    NASA Astrophysics Data System (ADS)

    Lakshmikantha, R.; Ayachit, N. H.; Anavekar, R. V.

    2014-02-01

    Glasses in the compositions (Li2O)25-(BaO)25-(P2O5)50-x-(V2O5)x (with x=0.5,1.0,1.5,2.0,2.5, and 3.0 mol%) have been prepared by the conventional melt quenching technique. X-ray powder diffractrogram show broad peaks which conforms glassy nature of the sample. Differential scanning calorimetry (DSC) thermograms show characteristic glass transition temperature (Tg) and it increases with increasing substitution of V2O5 for P2O5. The measured physical parameters like density, refractive index, ionic concentration and electronic polarizability are found to vary linearly with increasing x. Infrared spectra exhibits few bands, which are attributed to (P=O)AS, (P=O)S, (V=O), (P-O-P)AS,P-O-V, (P-O-P)AS and O-P-O vibrations. The optical absorption spectra of VO2+ ions in these glasses show three bands and are assigned to the 2B22E,2B22B1 and 2B22A1 transitions. Electron paramagnetic resonance spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of Spin-Hamiltonian parameters indicate that the VO2+ ions are present in octahedral sites with tetragonal compression and belong to C4V symmetry.

  15. Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption.

    PubMed

    Li, X D; Chen, T P; Liu, Y; Leong, K C

    2014-09-22

    Evolution of dielectric function of Al-doped ZnO (AZO) thin films with annealing temperature is observed. It is shown that the evolution is due to the changes in both the band gap and the free-electron absorption as a result of the change of free-electron concentration of the AZO thin films. The change of the electron concentration could be attributed to the activation of Al dopant and the creation/annihilation of the donor-like defects like oxygen vacancy in the thin films caused by annealing.

  16. Improved line parameters for the Chi 2Pi-Chi 2Pi (1-0) bands of (35)ClO and (37)ClO

    NASA Technical Reports Server (NTRS)

    Goldman, Aaron; Gillis, James R.; Rinsland, Curtis P.; Burkholder, James B.

    1994-01-01

    Improved line parameters at 296 K for the Chi 2Pi-Chi 2Pi (1-0) bands of (35)ClO and (37)ClO have been calculated with J up to 43.5. The integrated intensity for the 2048 lines in the main and satellite bands has been normalized to 9.68-sq cm/atm at 296K.

  17. Effects of the c-Si/a-SiO2 interfacial atomic structure on its band alignment: an ab initio study.

    PubMed

    Zheng, Fan; Pham, Hieu H; Wang, Lin-Wang

    2017-12-13

    The crystalline-Si/amorphous-SiO 2 (c-Si/a-SiO 2 ) interface is an important system used in many applications, ranging from transistors to solar cells. The transition region of the c-Si/a-SiO 2 interface plays a critical role in determining the band alignment between the two regions. However, the question of how this interface band offset is affected by the transition region thickness and its local atomic arrangement is yet to be fully investigated. Here, by controlling the parameters of the classical Monte Carlo bond switching algorithm, we have generated the atomic structures of the interfaces with various thicknesses, as well as containing Si at different oxidation states. A hybrid functional method, as shown by our calculations to reproduce the GW and experimental results for bulk Si and SiO 2 , was used to calculate the electronic structure of the heterojunction. This allowed us to study the correlation between the interface band characterization and its atomic structures. We found that although the systems with different thicknesses showed quite different atomic structures near the transition region, the calculated band offset tended to be the same, unaffected by the details of the interfacial structure. Our band offset calculation agrees well with the experimental measurements. This robustness of the interfacial electronic structure to its interfacial atomic details could be another reason for the success of the c-Si/a-SiO 2 interface in Si-based electronic applications. Nevertheless, when a reactive force field is used to generate the a-SiO 2 and c-Si/a-SiO 2 interfaces, the band offset significantly deviates from the experimental values by about 1 eV.

  18. Energy band engineering and controlled p-type conductivity of CuAlO2 thin films by nonisovalent Cu-O alloying

    NASA Astrophysics Data System (ADS)

    Yao, Z. Q.; He, B.; Zhang, L.; Zhuang, C. Q.; Ng, T. W.; Liu, S. L.; Vogel, M.; Kumar, A.; Zhang, W. J.; Lee, C. S.; Lee, S. T.; Jiang, X.

    2012-02-01

    The electronic band structure and p-type conductivity of CuAlO2 films were modified via synergistic effects of energy band offset and partial substitution of less-dispersive Cu+ 3d10 with Cu2+ 3d9 orbitals in the valence band maximum by alloying nonisovalent Cu-O with CuAlO2 host. The Cu-O/CuAlO2 alloying films show excellent electronic properties with tunable wide direct bandgaps (˜3.46-3.87 eV); Hall measurements verify the highest hole mobilities (˜11.3-39.5 cm2/Vs) achieved thus far for CuAlO2 thin films and crystals. Top-gate thin film transistors constructed on p-CuAlO2 films were presented, and the devices showed pronounced performance with Ion/Ioff of ˜8.0 × 102 and field effect mobility of 0.97 cm2/Vs.

  19. Photocatalytic hydrogen generation enhanced by band gap narrowing and improved charge carrier mobility in AgTaO3 by compensated co-doping.

    PubMed

    Li, Min; Zhang, Junying; Dang, Wenqiang; Cushing, Scott K; Guo, Dong; Wu, Nianqiang; Yin, Penggang

    2013-10-14

    The correlation of the electronic band structure with the photocatalytic activity of AgTaO3 has been studied by simulation and experiments. Doping wide band gap oxide semiconductors usually introduces discrete mid-gap states, which extends the light absorption but has limited benefit for photocatalytic activity. Density functional theory (DFT) calculations show that compensated co-doping in AgTaO3 can overcome this problem by increasing the light absorption and simultaneously improving the charge carrier mobility. N/H and N/F co-doping can delocalize the discrete mid-gap states created by sole N doping in AgTaO3, which increases the band curvature and the electron-to-hole effective mass ratio. In particular, N/F co-doping creates a continuum of states that extend the valence band of AgTaO3. N/F co-doping thus improves the light absorption without creating the mid-gap states, maintaining the necessary redox potentials for water splitting and preventing from charge carrier trapping. The experimental results have confirmed that the N/F-codoped AgTaO3 exhibits a red-shift of the absorption edge in comparison with the undoped AgTaO3, leading to remarkable enhancement of photocatalytic activity toward hydrogen generation from water.

  20. Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite

    NASA Astrophysics Data System (ADS)

    Ismail, Mukhils M.; Rafeeq, Sewench N.; Sulaiman, Jameel M. A.; Mandal, Avinandan

    2018-05-01

    Improvement of microwave-absorbing materials (MAMs) is the most important research area in various applications, such as in communication, radiation medical exposure, electronic warfare, air defense, and different civilian applications. Conducting polymer, polyaniline doped with para toluene sulphonic acid (PANI-PTSA) as well as cobalt ferrite (CoFe2O4) is synthesized by sol-gel method and intensely blends in different ratios. The characterization of the composite materials, CoFe2O4/PANI-PTSA (CFP1, CFP2, CFP3 and CFP4), was performed by X-ray diffraction (XRD), atomic force microscopy (AFM) and vibrating sample magnetometry (VSM). The microwave-absorbing properties' reflection loss (dB) and important parameters, such as complex relative permittivity ( ɛ r '- jɛ r ″) and complex relative permeability ( µ r '- jµ r ″) were measured in different microwave frequencies in the X-band (8.2-12.4 GHz) region. The composite material CFP3 showed a wider absorption frequency range and maximum reflection loss of - 28.4 dB (99.8% power absorption) at 8.1 GHz and - 9.6 dB (> 90% power absorption) at 11.2 GHz, and so the composite can be used as a microwave absorber; however, it can be more suitable for application in daily life for making cell phones above 9 GHz. Also the results showed that the thicker composites like CFP3 (4 mm) exhibit obviously better EMI SE as compared with the thinner ones (0.19, 0.19, 0.3 mm); this may be related to the low transmission of the EM wave from the composites.

  1. Photoeletrocatalytic activity of an n-ZnO/p-Cu2O/n-TNA ternary heterojunction electrode for tetracycline degradation.

    PubMed

    Li, Jinhua; Lv, Shubin; Liu, Yanbiao; Bai, Jing; Zhou, Baoxue; Hu, Xiaofang

    2013-11-15

    In this study, a novel ternary heterojunction n-ZnO/p-Cu2O/n-TiO2 nanotube arrays (n-ZnO/p-Cu2O/n-TNA) nanophotocatalyst with a sandwich-like nanostructure was constructed and applied for the photoelectrocatalytic (PEC) degradation of typical PPCPs, tetracycline (TC). The ternary heterojunction n-ZnO/p-Cu2O/n-TNA was obtained by depositing Cu2O on the surface of TNA via sonoelectrochemical deposition (SED) and subsequently building a layer of ZnO onto the p-Cu2O/n-TNA surface through hydrothermal synthesis. After being deposited by the Cu2O, the absorption-band edge of the p-Cu2O/n-TNA was obviously red-shifted to the visible region (to 505 nm), and the band gap was reduced from its original 3.20 eV to 2.46 eV. The band gap absorption edge of the ternary n-ZnO/p-Cu2O/n-TNA is similar to that of p-Cu2O/n-TN and extends the visible spectrum absorption to 510 nm, corresponding to an Eg value of about 2.43 eV. Under illumination of visible light, the photocurrent density of the ternary heterojunction n-ZnO/p-Cu2O/n-TNA electrode at 0.5 V (vs. Ag/AgCl) was more than 106 times as high as that of the pure TNAs electrode, 3.6 times as high as that of the binary heterojunction p-Cu2O/n-TNA electrode. The degradation of TC indicated that the ternary heterojunction n-ZnO/p-Cu2O/n-TNA electrode maintained a very high photoelectrocatalytic activity and excellent stability and reliability. Such kind of ternary heterojunction electrode material has a broad application prospect not only in pollution control but also in many other fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Measurements of Lorentz air-broadening coefficients and relative intensities in the H2O-16 pure rotational and nu2 bands from long horizontal path atmospheric spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Goldman, Aaron; Malathy Devi, V.

    1991-01-01

    Lorentz air-broadening coefficients and relative intensities have been measured for forty-three lines in the pure rotational band and twenty lines in the nu2 band of H2O-16 between 800 and 1150/cm. The results were derived from analysis of nine 0.017/cm-resolution atmospheric absorption spectra recorded over horizontal paths of 0.5-1.5 km with the McMath Fourier transform spectrometer and main solar telescope operated on Kitt Peak by the National Solar Observatory. A nonlinear least-squares spectral fitting technique was used in the spectral analysis. The results are compared with previous measurements and calculations. In most cases, the measured pressure-broadening coefficients and intensities are significantly different from the values in the 1986 HITRAN line parameters compilation.

  3. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgonos, Alex; Mason, Thomas O.; Poeppelmeier, Kenneth R., E-mail: krp@northwestern.edu

    2016-08-15

    The direct optical band gap of semiconductors is traditionally measured by extrapolating the linear region of the square of the absorption curve to the x-axis, and a variation of this method, developed by Tauc, has also been widely used. The application of the Tauc method to crystalline materials is rooted in misconception–and traditional linear extrapolation methods are inappropriate for use on degenerate semiconductors, where the occupation of conduction band energy states cannot be ignored. A new method is proposed for extracting a direct optical band gap from absorption spectra of degenerately-doped bulk semiconductors. This method was applied to pseudo-absorption spectramore » of Sn-doped In{sub 2}O{sub 3} (ITO)—converted from diffuse-reflectance measurements on bulk specimens. The results of this analysis were corroborated by room-temperature photoluminescence excitation measurements, which yielded values of optical band gap and Burstein–Moss shift that are consistent with previous studies on In{sub 2}O{sub 3} single crystals and thin films. - Highlights: • The Tauc method of band gap measurement is re-evaluated for crystalline materials. • Graphical method proposed for extracting optical band gaps from absorption spectra. • The proposed method incorporates an energy broadening term for energy transitions. • Values for ITO were self-consistent between two different measurement methods.« less

  4. Optical and structural investigation on sodium borosilicate glasses doped with Cr2O3

    NASA Astrophysics Data System (ADS)

    Ebrahimi, E.; Rezvani, M.

    2018-02-01

    In this work, Sodium borosilicate glasses with chemical composition of 60% SiO2-20% B2O3-20%Na2O doped with different contents of Cr2O3 were prepared by melting-quenching method. Physical, structural and optical properties of glasses were investigated by studying density and molar volume, Fourier Transform Infrared (FT-IR) Spectra and UV-visible absorption spectroscopy. The results showed an increase in density of glasses with the increase of Cr2O3 that can be due to addition of oxide with high molar mass. The optical absorption spectra of un-doped glass reveals UV absorption due to trace iron impurities with no visible band however Cr2O3 doped glasses shows absorption in visible range that are characteristic. Increasing of Cr3 + ions in the glassy microstructure of samples provides a semiconducting character to Sodium borosilicate glass by reducing the direct and indirect optical band gaps of glass samples from 3.79 to 2.59 (ev) and 3.36 to 2.09 (ev), respectively. These changes could be attributed to the role of Cr3 + ions as the network former which asserts improvement of semiconducting behavior in presence of Cr2O3.

  5. Optical and structural investigation on sodium borosilicate glasses doped with Cr2O3.

    PubMed

    Ebrahimi, E; Rezvani, M

    2018-02-05

    In this work, Sodium borosilicate glasses with chemical composition of 60% SiO 2 -20% B 2 O 3 -20%Na 2 O doped with different contents of Cr 2 O 3 were prepared by melting-quenching method. Physical, structural and optical properties of glasses were investigated by studying density and molar volume, Fourier Transform Infrared (FT-IR) Spectra and UV-visible absorption spectroscopy. The results showed an increase in density of glasses with the increase of Cr 2 O 3 that can be due to addition of oxide with high molar mass. The optical absorption spectra of un-doped glass reveals UV absorption due to trace iron impurities with no visible band however Cr 2 O 3 doped glasses shows absorption in visible range that are characteristic. Increasing of Cr 3+ ions in the glassy microstructure of samples provides a semiconducting character to Sodium borosilicate glass by reducing the direct and indirect optical band gaps of glass samples from 3.79 to 2.59 (ev) and 3.36 to 2.09 (ev), respectively. These changes could be attributed to the role of Cr 3+ ions as the network former which asserts improvement of semiconducting behavior in presence of Cr 2 O 3 . Copyright © 2017. Published by Elsevier B.V.

  6. The 2140 cm(exp -1) (4.673 Microns) Solid CO Band: The Case for Interstellar O2 and N2 and the Photochemistry of Non-Polar Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie; Allamandola, Louis J.; Sandford, Scott A.; Witteborn, Fred C. (Technical Monitor)

    1996-01-01

    The infrared spectra of CO frozen in non-polar ices containing N2, CO2, O2, and H2O, and the ultraviolet photochemistry of these interstellar/precometary ice analogs are reported. The spectra are used to test the hypothesis that the narrow 2140/cm (4.673 micrometer) interstellar absorption feature attributed to solid CO might be produced by CO frozen in ices containing non-polar species such as N2 and O2. It is shown that mixed molecular ices containing CO, N2, O2, and CO2 provide a very good match to the interstellar band at all temperatures between 12 and 30 K both before and after photolysis. The optical constants (real and imaginary parts of the index of refraction) in the region of the solid CO feature are reported for several of these ices.

  7. Hydrothermal growth of TiO2 nanowire membranes sensitized with CdS quantum dots for the enhancement of photocatalytic performance

    PubMed Central

    2014-01-01

    In this paper, TiO2 nanowires (NWs) on Ti foils were prepared using a simple hydrothermal approach and annealing treatment. CdS quantum dots (QDs) were assembled onto the crystallized TiO2 NWs by sequential chemical bath deposition. Ultraviolet-visible absorption spectra showed that CdS adds bands in the visible to the TiO2 absorption and exhibited a broad absorption band in the visible region, which extended the scope of absorption spectrum and helped improve the photocatalytic degradation efficiency. The results of photocatalytic experiment revealed that CdS-TiO2 NWs possessed higher photocatalytic activities toward methyl orange than pure TiO2 nanowires. The degradation efficiency of 96.32% after ten cycles indicated that the as-prepared CdS-TiO2 composite exhibited excellent long-time recyclable ability and can be reused for the degradation of contaminants. PMID:24936164

  8. Structural, morphological and optical investigations on electron-beam irradiated PbF2-TeO2-B2O3-Eu2O3 glasses

    NASA Astrophysics Data System (ADS)

    Wagh, Akshatha; Petwal, Vikash; Dwivedi, Jishnu; Upadhyaya, V.; Raviprakash, Y.; Kamath, Sudha D.

    2016-09-01

    Combined structural, optical and morphological studies were carried out on Eu2O3 doped PbF2-TeO2-B2O3 glass samples, before and after being subjected to electron beam of energy 7.5 MeV. XRD confirmed the amorphous nature of the glasses even after 150 kGy electron beam irradiation. Densities of the irradiated samples showed slightly greater values when compared to their respective values before irradiation, which proved the increase in the compaction of the network. The intensities of the three prominent bands; B-O-B linkages, BO4 units and BO3 units of FT-IR spectra, of the titled glasses, showed slight decrease after electron beam irradiation. The decrement in the values of energy band gap and shift in cut-off wavelength towards red edge, proved the formation of color centers in the glass network after irradiation. The change in Hunter L values, through color measurement was a proof for the Farbe/color/absorption centers created in the glass sites after irradiation.

  9. A best-case probe, light source, and database for H2O absorption thermometry to 2100 K and 50 bar

    NASA Astrophysics Data System (ADS)

    Brittelle, Mack S.

    This work aspired to improve the ability of forthcoming researchers to utilize near IR H2O absorption spectroscopy for thermometry with development of three best-case techniques: the design of novel high temperature sapphire optical access probes, the construction of a fixed-wavelength H 2O absorption spectroscopy system enhanced by an on-board external-cavity diode laser, and the creation of an architecture for a high-temperature and -pressure H2O absorption cross-section database. Each area's main goal was to realize the best-case for direct absorption spectroscopy H2O vapor thermometry at combustion conditions. Optical access to combustion devices is explored through the design and implementation of two versions of novel high-temperature (2000 K) sapphire immersion probes (HTSIPs) for use in ambient flames and gas turbine combustors. The development and evaluation of a fixed wavelength H2O absorption spectroscopy (FWAS) system that is demonstrates how the ECDL allows the system to operate in multiple modes that enhance FWAS measurement accuracy by improving wavelength position monitoring, and reducing non-absorption based contamination in spectral scans. The architecture of a high temperature (21000 K) and pressure (50 bar) database (HTPD) is developed that can enhance absorption spectroscopy based thermometry. The HTPD formation is developed by the evaluation of two approaches, a line-by-line (LBL) approach, where transition lineshape parameters are extracted from spectra and used along with a physics based model to allow the simulation of spectra over a wide range of temperatures and pressures, or an absorption cross-section (sigmaabs) approach, where spectra generated from a high temperature and pressure furnace are catalog spectra at various conditions forming a database of absorption cross-sections that is then interpolated to provide a simulated absorbance spectra based on measured reference grade spectra. Utilizing near future reference grade H2O

  10. Thin film nano-photocatalyts with low band gap energy for gas phase degradation of p-xylene: TiO2 doped Cr, UiO66-NH2 and LaBO3 (B  =  Fe, Mn, and Co)

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Thuy Van Nguyen, Thi; Nguyen, Tri; Nguyen, Phung Anh; Hoang, Tien Cuong; Ha, Cam Anh

    2018-03-01

    By dip-coating technique the thin films of nano-photocatalysts TiO2, Cr-doped TiO2, LaBO3 perovskites (B  =  Fe, Mn, and Co) prepared by sol-gel method, and UiO66-NH2 prepared by a solvothermal were obtained and employed for gas phase degradation of p-xylene. Physicochemical characteristics of the catalysts were examined by the methods of BET, SEM, TEM, XRD, FT-IR, TGA, Raman and UV-vis spectroscopies. The thickness of film was determined by a Veeco-American Dektek 6M instrument. The activity of catalysts was evaluated in deep photooxidation of p-xylene in a microflow reactor at room temperature with the radiation sources of a UV (λ  =  365 nm) and LED lamps (λ  =  400-510 nm). The obtained results showed that TiO2 and TiO2 doped Cr thin films was featured by an anatase phase with nanoparticles of 10-100 nm. Doping TiO2 with 0.1%mol Cr2O3 led to reduce band gap energy from 3.01 down to 1.99 eV and extend the spectrum of photon absorption to the visible region (λ  =  622 nm). LaBO3 perovkite thin films were also featured by a crystal phase with average particle nanosize of 8-40 nm, a BET surface area of 17.6-32.7 m2 g-1 and band gap energy of 1.87-2.20 eV. UiO66-NH2 was obtained in the ball shape of 100-200 nm, a BET surface area of 576 m2 g-1 and a band gap energy of 2.83 eV. The low band gap energy nano-photocatalysts based on Cr-doped TiO2 and LaBO3 perovskites exhibited highly stable and active for photo-degradation of p-xylene in the gas phase under radiation of UV-vis light. Perovskite LaFeO3 and Cr-TiO2 thin films were the best photocatalysts with a decomposition yield being reached up to 1.70 g p-xylene/g cat.

  11. Effect of antimony on the optical and physical properties of Sb-V2O5-TeO2 glasses

    NASA Astrophysics Data System (ADS)

    Souri, Dariush; Mohammadi, Mousa; Zaliani, Hamideh

    2014-11-01

    Ternary glass systems of the form xSb-(60- x) V2O5-40TeO2 (Sx glasses) with 0 ≤ x ≤ 15 (in mol. %) have been prepared by using the normal melt quenching technique. The optical absorption spectra of these glasses have been recorded within wavelength range of 190 — 1100 nm. The absorption spectrum fitting method was employed to obtain the energy band gap. In this method, only the measurement of absorbance spectrum of the glass is needed. The position of the absorption edge and therefore the optical band gap values were found to be depend on glass composition. Results show that the optical band gap is in the range 1.57 — 2.14 eV. For each sample, the width of the band tail was determined. The densities of present glasses were measured and the molar volumes were calculated. Also, some thermal properties such as glass transition temperature ( T g) and crystallization temperature (TCr) were obtained by using differential scanning calorimetry (DSC) technique, and from which the glass thermal stability S and glass forming tendency K gl were calculated. Results show that these glasses (specially for x ≥ 10 mol. %) have good stability and therefore good resistance against thermal shocks for technological applications in fiber devices. Also, T g values indicate the rigidity and packing of the samples increase with increasing the Sb concentration as a network modifier. [Figure not available: see fulltext.

  12. Doping of Czochralski-grown bulk β-Ga2O3 single crystals with Cr, Ce and Al

    NASA Astrophysics Data System (ADS)

    Galazka, Zbigniew; Ganschow, Steffen; Fiedler, Andreas; Bertram, Rainer; Klimm, Detlef; Irmscher, Klaus; Schewski, Robert; Pietsch, Mike; Albrecht, Martin; Bickermann, Matthias

    2018-03-01

    We experimentally evaluated segregation of Cr, Ce and Al in bulk β-Ga2O3 single crystals grown by the Czochralski method, as well as the impact of these dopants on optical properties. The segregation of Cr and Ce and their incorporation into the β-Ga2O3 crystal structure strongly depends on O2 concentration in the growth atmosphere which has a noticeable impact on decomposition of Ga2O3 and Cr2O3, as well as on the charge state of Cr and Ce. Effective segregation coefficients for Cr are in the range of 3.1-1.5 at 7-24 vol% O2, while for Ce they are roughly below 0.01 at 1.5-34 vol% O2. The effective segregation coefficient for Al is 1.1 at 1.5-21 vol% O2. Both dopants Ce and Al have a thermodynamically stabilizing effect on β-Ga2O3 crystal growth by supressing decomposition. While Ce has no impact on the optical transmittance in the ultraviolet and visible regions, in Cr doped crystals we observe three absorption bands due to Cr3+ on octahedral Ga sites, one in the ultraviolet merging with the band edge absorption of β-Ga2O3 and two in the visible spectrum, for which we estimate the absorption cross sections. Al doping also does not induce dopant related absorption bands but clearly shifts the absorption edge as one expects for a solid-solution crystal Ga2(1-x)Al2xO3 still in the monoclinic phase. For the highest doping concentration (Ga1.9Al0.1O3) we estimate an increase of the energy gap by 0.11 eV.

  13. Band-Bending of Ga-Polar GaN Interfaced with Al2O3 through Ultraviolet/Ozone Treatment.

    PubMed

    Kim, Kwangeun; Ryu, Jae Ha; Kim, Jisoo; Cho, Sang June; Liu, Dong; Park, Jeongpil; Lee, In-Kyu; Moody, Baxter; Zhou, Weidong; Albrecht, John; Ma, Zhenqiang

    2017-05-24

    Understanding the band bending at the interface of GaN/dielectric under different surface treatment conditions is critically important for device design, device performance, and device reliability. The effects of ultraviolet/ozone (UV/O 3 ) treatment of the GaN surface on the energy band bending of atomic-layer-deposition (ALD) Al 2 O 3 coated Ga-polar GaN were studied. The UV/O 3 treatment and post-ALD anneal can be used to effectively vary the band bending, the valence band offset, conduction band offset, and the interface dipole at the Al 2 O 3 /GaN interfaces. The UV/O 3 treatment increases the surface energy of the Ga-polar GaN, improves the uniformity of Al 2 O 3 deposition, and changes the amount of trapped charges in the ALD layer. The positively charged surface states formed by the UV/O 3 treatment-induced surface factors externally screen the effect of polarization charges in the GaN, in effect, determining the eventual energy band bending at the Al 2 O 3 /GaN interfaces. An optimal UV/O 3 treatment condition also exists for realizing the "best" interface conditions. The study of UV/O 3 treatment effect on the band alignments at the dielectric/III-nitride interfaces will be valuable for applications of transistors, light-emitting diodes, and photovoltaics.

  14. Influence of Nb-doped TiO2 blocking layers as a cascading band structure for enhanced photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Ryul; Oh, Dong-Hyeun; Ahn, Hyo-Jin

    2018-03-01

    Nb-doped TiO2 (Nb-TiO2) blocking layers (BLs) were developed using horizontal ultrasonic spray pyrolysis deposition (HUSPD). In order to improve the photovoltaic properties of the dye-sensitized solar cells (DSSCs), we optimized the Nb doping level of the Nb-TiO2 BLs by controlling the Nb/Ti molar ratio (0, 5, 6, and 7) of the precursor solution for HUSPD. Compared to bare TiO2 BLs, the Nb-TiO2 BLs formed a cascading band structure using the positive shift of the conduction band minimum of the Nb-TiO2 positioned between fluorine-doped tin oxide (FTO) and TiO2. This results in the increase of the potential current and the suppression of the electron recombination. Hence, it led to the improvement of the electrical conductivity, due to the increased electron concentration by the Nb doping into TiO2. Therefore, the DSSC fabricated with the Nb-TiO2 BLs at a Nb/Ti molar ratio of 6 showed superior photoconversion efficiency (∼7.50 ± 0.20%) as a result of the improved short-circuit current density. This is higher than those with the other Nb-TiO2 BLs and without BL. This improvement of the photovoltaic properties for the DSSCs can be attributed to the synergistic effects of uniform and compact BL relative to the prevention of the backward electron transport at the FTO/electrolyte interface, efficient electron transport at interfaces relative to a cascading band structure of FTO/Nb-TiO2/TiO2 multilayers and the facilitated electron transport at the BLs relative to the increased electrical conductivity of the optimized Nb-TiO2 BLs.

  15. Structuring β-Ga2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants.

    PubMed

    Li, Xiaofang; Zhen, Xiuzheng; Meng, Sugang; Xian, Jiangjun; Shao, Yu; Fu, Xianzhi; Li, Danzhen

    2013-09-03

    Coupling photocatalysts with photonic crystals structure is based on the unique property of photonic crystals in confining, controlling, and manipulating the incident photons. This combination enhances the light absorption in photocatalysts and thus greatly improves their photocatalytic performance. In this study, Ga2O3 photonic crystals with well-arranged skeleton structures were prepared via a dip-coating infiltration method. The positions of the electronic band absorption for Ga2O3 photonic crystals could be made to locate on the red edge, on the blue edge, and away from the edge of their photonic band gaps by changing the pore sizes of the samples, respectively. Particularly, the electronic band absorption of the Ga2O3 photonic crystal with a pore size of 135 nm was enhanced more than other samples by making it locate on the red edge of its photonic band gap, which was confirmed by the higher instantaneous photocurrent and photocatalytic activity for the degradation of various organic pollutants under ultraviolet light irradiation. Furthermore, the degradation mechanism over Ga2O3 photonic crystals was discussed. The design of Ga2O3 photonic crystals presents a prospective application of photonic crystals in photocatalysis to address light harvesting and quantum efficiency problems through manipulating photons or constructing photonic crystal structure as groundwork.

  16. Effects of the c-Si/a-SiO 2 interfacial atomic structure on its band alignment: an ab initio study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Fan; Pham, Hieu H.; Wang, Lin-Wang

    The crystalline-Si/amorphous-SiO 2 (c-Si/a-SiO 2) interface is an important system used in many applications, ranging from transistors to solar cells. The transition region of the c-Si/a-SiO 2 interface plays a critical role in determining the band alignment between the two regions. However, the question of how this interface band offset is affected by the transition region thickness and its local atomic arrangement is yet to be fully investigated. Here in this study, by controlling the parameters of the classical Monte Carlo bond switching algorithm, we have generated the atomic structures of the interfaces with various thicknesses, as well as containingmore » Si at different oxidation states. A hybrid functional method, as shown by our calculations to reproduce the GW and experimental results for bulk Si and SiO 2, was used to calculate the electronic structure of the heterojunction. This allowed us to study the correlation between the interface band characterization and its atomic structures. We found that although the systems with different thicknesses showed quite different atomic structures near the transition region, the calculated band offset tended to be the same, unaffected by the details of the interfacial structure. Our band offset calculation agrees well with the experimental measurements. This robustness of the interfacial electronic structure to its interfacial atomic details could be another reason for the success of the c-Si/a-SiO 2 interface in Si-based electronic applications. Nevertheless, when a reactive force field is used to generate the a-SiO 2 and c-Si/a-SiO 2 interfaces, the band offset significantly deviates from the experimental values by about 1 eV« less

  17. Effects of the c-Si/a-SiO 2 interfacial atomic structure on its band alignment: an ab initio study

    DOE PAGES

    Zheng, Fan; Pham, Hieu H.; Wang, Lin-Wang

    2017-11-13

    The crystalline-Si/amorphous-SiO 2 (c-Si/a-SiO 2) interface is an important system used in many applications, ranging from transistors to solar cells. The transition region of the c-Si/a-SiO 2 interface plays a critical role in determining the band alignment between the two regions. However, the question of how this interface band offset is affected by the transition region thickness and its local atomic arrangement is yet to be fully investigated. Here in this study, by controlling the parameters of the classical Monte Carlo bond switching algorithm, we have generated the atomic structures of the interfaces with various thicknesses, as well as containingmore » Si at different oxidation states. A hybrid functional method, as shown by our calculations to reproduce the GW and experimental results for bulk Si and SiO 2, was used to calculate the electronic structure of the heterojunction. This allowed us to study the correlation between the interface band characterization and its atomic structures. We found that although the systems with different thicknesses showed quite different atomic structures near the transition region, the calculated band offset tended to be the same, unaffected by the details of the interfacial structure. Our band offset calculation agrees well with the experimental measurements. This robustness of the interfacial electronic structure to its interfacial atomic details could be another reason for the success of the c-Si/a-SiO 2 interface in Si-based electronic applications. Nevertheless, when a reactive force field is used to generate the a-SiO 2 and c-Si/a-SiO 2 interfaces, the band offset significantly deviates from the experimental values by about 1 eV« less

  18. Large-scale synthesis and microwave absorption enhancement of actinomorphic tubular ZnO/CoFe2O4 nanocomposites.

    PubMed

    Cao, Jing; Fu, Wuyou; Yang, Haibin; Yu, Qingjiang; Zhang, Yanyan; Liu, Shikai; Sun, Peng; Zhou, Xiaoming; Leng, Yan; Wang, Shuangming; Liu, Bingbing; Zou, Guangtian

    2009-04-09

    Actinomorphic tubular ZnO/CoFe(2)O(4) nanocomposites were fabricated in large scale via a simple solution method at low temperature. The phase structures, morphologies, particle size, shell thickness, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The as-synthesized nanocomposites were uniformly dispersed into the phenolic resin then the mixture was pasted on metal plate with the area of 200 mm x 200 mm as the microwave absorption test plate. The test of microwave absorption was carried out by the radar-absorbing materials (RAM) reflectivity far field radar cross-section (RCS) method. The range of microwave absorption is from 2 to 18 Hz and the best microwave absorption reach to 28.2 dB at 8.5 Hz. The results indicate that the composites are of excellence with respect to microwave absorption.

  19. Spectroscopic properties of (PVA+ZnO):Mn{sup 2+} polymer films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Ch.; Raju, D. Siva; Bindu, S. Hima

    2015-05-15

    Electron Paramagnetic Resonance (EPR), optical absorption and infrared spectral studies have been carried out on Mn{sup 2+} ions doped in poly(vinyl alcohol) complexed with zinc oxide polymer films prepared by solution cast technique. The EPR spectra of 1 mol% Mn{sup 2+} ions doped polymer complex (PVA+ZnO) at room temperature exhibit sextet hyperfine structure (hfs), centered at 2.01. The spin-Hamiltonian parameter values indicate that the ground state of Mn{sup 2+} ion in d{sup 5} and the site symmetry around Mn{sup 2+} ions in tetragonally distorted octa hedral site. The optical absorption spectra exhibits two bands centered at 275nm at 437nm. Themore » FTIR spectrum exhibits bands characteristic of stretching and banding vibrations of O-H, C-H and C=C groups.« less

  20. Band alignment of ZnO/multilayer MoS{sub 2} interface determined by x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xinke, E-mail: xkliu@szu.edu.cn, E-mail: liuwj@szu.edu.cn; He, Jiazhu; Chen, Le

    2016-08-15

    The energy band alignment between ZnO and multilayer (ML)-MoS{sub 2} was characterized using high-resolution x-ray photoelectron spectroscopy. The ZnO film was deposited using an atomic layer deposition tool, and ML-MoS{sub 2} was grown by chemical vapor deposition. A valence band offset (VBO) of 3.32 eV and a conduction band offset (CBO) of 1.12 eV were obtained for the ZnO/ML-MoS{sub 2} interface without any treatment. With CHF{sub 3} plasma treatment, a VBO and a CBO across the ZnO/ML-MoS{sub 2} interface were found to be 3.54 eV and 1.34 eV, respectively. With the CHF{sub 3} plasma treatment, the band alignment of the ZnO/ML-MoS{sub 2} interface hasmore » been changed from type II or staggered band alignment to type III or misaligned one, which favors the electron-hole pair separation. The band alignment difference is believed to be dominated by the down-shift in the core level of Zn 2p or the interface dipoles, which is caused by the interfacial layer rich in F.« less

  1. Valence and conduction band offsets of β-Ga2O3/AlN heterojunction

    NASA Astrophysics Data System (ADS)

    Sun, Haiding; Torres Castanedo, C. G.; Liu, Kaikai; Li, Kuang-Hui; Guo, Wenzhe; Lin, Ronghui; Liu, Xinwei; Li, Jingtao; Li, Xiaohang

    2017-10-01

    Both β-Ga2O3 and wurtzite AlN have wide bandgaps of 4.5-4.9 and 6.1 eV, respectively. We calculated the in-plane lattice mismatch between the (-201) plane of β-Ga2O3 and the (0002) plane of AlN, which was found to be 2.4%. This is the smallest mismatch between β-Ga2O3 and binary III-nitrides which is beneficial for the formation of a high quality β-Ga2O3/AlN heterojunction. However, the valence and conduction band offsets (VBO and CBO) at the β-Ga2O3/AlN heterojunction have not yet been identified. In this study, a very thin (less than 2 nm) β-Ga2O3 layer was deposited on an AlN/sapphire template to form the heterojunction by pulsed laser deposition. High-resolution X-ray photoelectron spectroscopy revealed the core-level (CL) binding energies of Ga 3d and Al 2p with respect to the valence band maximum in individual β-Ga2O3 and AlN layers, respectively. The separation between Ga 3d and Al 2p CLs at the β-Ga2O3/AlN interface was also measured. Eventually, the VBO was found to be -0.55 ± 0.05 eV. Consequently, a staggered-gap (type II) heterojunction with a CBO of -1.75 ± 0.05 eV was determined. The identification of the band alignment of the β-Ga2O3/AlN heterojunction could facilitate the design of optical and electronic devices based on these and related alloys.

  2. Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals.

    PubMed

    Manzi, Aurora; Tong, Yu; Feucht, Julius; Yao, En-Ping; Polavarapu, Lakshminarayana; Urban, Alexander S; Feldmann, Jochen

    2018-04-17

    Multi-photon absorption and multiple exciton generation represent two separate strategies for enhancing the conversion efficiency of light into usable electric power. Targeting below-band-gap and above-band-gap energies, respectively, to date these processes have only been demonstrated independently. Here we report the combined interaction of both nonlinear processes in CsPbBr 3 perovskite nanocrystals. We demonstrate nonlinear absorption over a wide range of below-band-gap excitation energies (0.5-0.8 E g ). Interestingly, we discover high-order absorption processes, deviating from the typical two-photon absorption, at specific energetic positions. These energies are associated with a strong enhancement of the photoluminescence intensity by up to 10 5 . The analysis of the corresponding energy levels reveals that the observed phenomena can be ascribed to the resonant creation of multiple excitons via the absorption of multiple below-band-gap photons. This effect may open new pathways for the efficient conversion of optical energy, potentially also in other semiconducting materials.

  3. Electronic structure of p-type transparent conducting oxide CuAlO2

    NASA Astrophysics Data System (ADS)

    Mo, Sung-Kwan; Yoon, Joonseok; Liu, Xiaosong; Yang, Wanli; Mun, Bongjin; Ju, Honglyoul

    2014-03-01

    CuAlO2 is a prototypical p-type transparent conducting oxide. Despite its importance for potential applications and number of studies on its band structure and gap characteristics, experimental study on the momentum-resolved electronic structure has been lacking. We present angle-resolved photoemission data on single crystalline CuAlO2 using synchrotron light source to reveal complete band structure. Complemented by the x-ray absorption and emission spectra, we also study band gap characteristics and compare them with theory.

  4. The natural greenhouse effect of atmospheric oxygen (O2) and nitrogen (N2)

    NASA Astrophysics Data System (ADS)

    Höpfner, M.; Milz, M.; Buehler, S.; Orphal, J.; Stiller, G.

    2012-05-01

    The effect of collision-induced absorption by molecular oxygen (O2) and nitrogen (N2) on the outgoing longwave radiation (OLR) of the Earth's atmosphere has been quantified. We have found that on global average under clear-sky conditions the OLR is reduced due to O2 by 0.11 Wm-2 and due to N2 by 0.17 Wm-2. Together this amounts to 15% of the OLR-reduction caused by CH4 at present atmospheric concentrations. Over Antarctica the combined effect of O2 and N2 increases on average to about 38% of CH4 with single values reaching up to 80%. This is explained by less interference of H2O spectral bands on the absorption features of O2 and N2 for dry atmospheric conditions.

  5. a Reexamination of the Red Band of CuO: Analysis of the [16.5] ^{2}Σ^{-} - X ^{2}Π_{i} Transition of ^{63}CuO and ^{65}CuO

    NASA Astrophysics Data System (ADS)

    Harms, Jack C.; Grames, Ethan M.; Yun, Sirkhoo; Ahmed, Bushra; O'Brien, Leah C.; O'Brien, James J.

    2017-06-01

    The red band of CuO has been observed at high resolution using Intracavity Laser Spectroscopy (ILS). The red band was rotationally analyzed in 1974 by Appelblad and Lagerqvist and a portion of the band structure was assigned as the spectrum of the [16.5] A ^{2}Σ^{+} - X ^{2}Π_{i} transition. Subsequent analyses of CuO showed that the character of the A state was ^{2}Σ^{-} in character, and thus the Λ-doubling parameter, p, was inverted, and the e/f parity assignments were reversed. In this study, the spectrum of CuO was recorded in the in the regions 16,150 \\wn - 16,270 \\wn and 16,405 \\wn - 16,545 \\wn. The CuO molecules were produced in the plasma discharge of a copper hollow cathode within the cavity of a tunable dye laser, using 0.6 torr of argon as the sputter gas and a trace amount of O_2 as the source of oxygen. The plasma spectra were recorded intermittently with spectra from an external I_2 cell, and line positions from the widely used Iodine Atlas were used for calibration. In uncongested regions of the spectrum, both ^{63}CuO and ^{65}CuO were observed with appreciable intensity. The resulting spectra were rotationally analyzed for both isotopologues, fitting the data as a ^{2}Σ^{-} - ^{2}Π_{i} transition using PGOPHER. Line positions from the millimeter wave and FTIR studies of ^{63}CuO performed in the late 1990s were included in the fit to overcome potential complications due to the ambiguous parity assignments prevalent in the CuO literature. Previously unreported molecular constants were obtained from the fit for ^{65}CuO, and the constants of ^{63}CuO are determined to at least an order of magnitude greater than the results of Appelblad and Lagerqvist. Results of this analysis will be presented.

  6. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  7. Water redistribution in experimentally deformed natural milky quartz single crystals—Implications for H2O-weakening processes

    NASA Astrophysics Data System (ADS)

    Stünitz, H.; Thust, A.; Heilbronner, R.; Behrens, H.; Kilian, R.; Tarantola, A.; Fitz Gerald, J. D.

    2017-02-01

    Natural quartz single crystals were experimentally deformed in two orientations: (1) ⊥ to one prism plane and (2) in O+ orientation at 900 and 1000°C, 1.0 and 1.5 GPa, and strain rates of 1 × 10-6 s-1. In addition, hydrostatic and annealing experiments were performed. The starting material was milky quartz, which consisted of dry quartz with a large number of fluid inclusions of variable size up to several 100 µm. During pressurization fluid inclusions decrepitated producing much smaller fluid inclusions. Deformation on the sample scale is anisotropic due to dislocation glide on selected slip systems and inhomogeneous due to an inhomogeneous distribution of fluid inclusions. Dislocation glide is accompanied by minor dynamic recovery. Strongly deformed regions show a pointed broad absorption band in the 3400 cm-1 region consisting of a superposition of bands of molecular H2O and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions and reduces or disappears after annealing, so that this band appears to be associated with dislocations. H2O weakening in inclusion-bearing natural quartz crystals is assigned to the H2O-assisted dislocation generation and multiplication. Processes in these crystals represent recycling of H2O between fluid inclusions, cracking and crack healing, incorporation of structurally bound H in dislocations, release of H2O from dislocations during recovery, and dislocation generation at very small fluid inclusions. The H2O weakening by this process is of disequilibrium nature because it depends on the amount of H2O available.

  8. Novel chromium doped perovskites A2ZnTiO6 (A = Pr, Gd): Synthesis, crystal structure and photocatalytic activity under simulated solar light irradiation

    NASA Astrophysics Data System (ADS)

    Zhu, Hekai; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Chen, Kai; Guan, Ming; Tang, Chao; Zhang, Lina; Wang, Meng

    2017-01-01

    Double perovskite related oxides A2ZnTiO6 (A = Pr, Gd) have been successfully synthesized by solid state reaction and investigated as photocatalysts for the first time. The two layered titanates mainly demonstrate absorbances under UV irradiation, except for several sharp absorption bands above 400 nm for Pr2ZnTiO6. Therefore, a series of photocatalysts by doping A2ZnTiO6 (A = Pr, Gd) with Cr have been developed in the hope to improve their absorption in the visible light region. The successful incorporation of Cr was detected by XRD and XPS, and the prepared samples have also been characteriazed by SEM, UV-vis DRS and PL. The characterization results suggested that Cr was present mainly in the form of Cr3+, with only a small amount of Cr6+ species. It served as an efficient dopant for the extension of visible light absorbance and improved photocatalytic activities under solar light irradiation. For both Pr2ZnTiO6 and Gd2ZnTiO6, the valence band (VB) was composed of hybridized states of the Zn 3d, O 2p and the conduction band (CB) has major contribution from Zn 4s, Ti 3d orbitals. For Cr doped samples, the newly formed spin-polarized valence band in the middle of the band gap that primarily arises from Cr 3d orbitals was responsible for the improved optical and photocatalytic properties.

  9. The origin of 2.7 eV blue luminescence band in zirconium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perevalov, T. V., E-mail: timson@isp.nsc.ru; Zhuravlev, K. S.; Gritsenko, V. A.

    2014-12-28

    The luminescence spectra of non-stoichiometric zirconium oxide film series with different oxygen vacancies' concentrations show the blue photoluminescence band centered near a 2.7 eV peak. There is a broad band at 5.2 eV in the luminescence excitation spectrum for blue emission. The ab-initio quantum-chemical calculation gives a peak in the optical absorption at 5.1 eV for the oxygen vacancy in cubic ZrO{sub 2}. It was concluded that the 2.7 eV blue luminescence excited near 5.2 eV in a zirconium oxide film is associated with the oxygen vacancy.

  10. In-situ growth of HfO2 on clean 2H-MoS2 surface: Growth mode, interface reactions and energy band alignment

    NASA Astrophysics Data System (ADS)

    Chen, Chang Pang; Ong, Bin Leong; Ong, Sheau Wei; Ong, Weijie; Tan, Hui Ru; Chai, Jian Wei; Zhang, Zheng; Wang, Shi Jie; Pan, Ji Sheng; Harrison, Leslie John; Kang, Hway Chuan; Tok, Eng Soon

    2017-10-01

    Room temperature growth of HfO2 thin film on clean 2H-MoS2 via plasma-sputtering of Hf-metal target in an argon/oxygen environment was studied in-situ using x-ray photoelectron spectroscopy (XPS). The deposited film was observed to grow akin to a layer-by-layer growth mode. At the onset of growth, a mixture of sulfate- and sulfite-like species (SOx2- where x = 3, 4), and molybdenum trioxide (MoO3), are formed at the HfO2/MoS2 interface. An initial decrease in binding energies for both Mo 3d and S 2p core-levels of the MoS2 substrate by 0.4 eV was also observed. Their binding energies, however, did not change further with increasing HfO2 thickness. There was no observable change in the Hf4f core-level binding energy throughout the deposition process. With increasing HfO2 deposition, MoO3 becomes buried at the interface while SOx2- was observed to be present in the film. The shift of 0.4 eV for both Mo 3d and S 2p core-levels of the MoS2 substrate can be attributed to a charge transfer from the substrate to the MoO3/SOx2--like interface layer. Consequently, the Type I heterojunction valence band offset (conduction band offset) becomes 1.7 eV (2.9 eV) instead of 1.3 eV (3.3 eV) expected from considering the bulk HfO2 and MoS2 valence band offset (conduction band offset). The formation of these states and its influence on band offsets will need to be considered in their device applications.

  11. Electronic structure modifications and band gap narrowing in Zn0.95V0.05O

    NASA Astrophysics Data System (ADS)

    Ahad, Abdul; Majid, S. S.; Rahman, F.; Shukla, D. K.; Phase, D. M.

    2018-04-01

    We present here, structural, optical and electronic structure studies on Zn0.95V0.05O, synthesized using solid state method. Rietveld refinement of x-ray diffraction pattern indicates no considerable change in the lattice of doped ZnO. The band gap of doped sample, as calculated by Kubelka-Munk transformed reflectance spectra, has been found reduced compared to pure ZnO. Considerable changes in absorbance in UV-Vis range is observed in doped sample. V doping induced decrease in band gap is supported by x-ray absorption spectroscopy measurements. It is experimentally confirmed that conduction band edge in Zn0.95V0.05O has shifted towards Fermi level than in pure ZnO.

  12. Bi2MoxW1-xO6 solid solutions with tunable band structure and enhanced visible-light photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Li, Wenqi; Ding, Xingeng; Wu, Huating; Yang, Hui

    2018-07-01

    Semiconductor photocatalysis is an effective green way to combat water pollution. For the first time, this study reports a novel method to develop Bi2MoxW1-xO6 solid solution with microsphere structure through anion-exchange method. All Bi2MoxW1-xO6 samples exhibit an Aurivillius-type crystal structure without any secondary phase, confirming that in complete solid solutions as the value of x increases, the band gap energy of Bi2MoxW1-xO6 solid solutions decreases, while the optical absorption edge moves to longer wavelength. The Raman spectra research shows an increase in orthorhombic distortion with progressive replacement of W sites in Bi2WO6 with Mo6+ ions. Compared to Bi2MoO6 and Bi2WO6 samples, Bi2Mo0.4W0.6O6 sample displayed best photocatalytic activity and cycling stability for degradation of RhB dye. The enhanced photocatalytic activity of Bi2Mo0.4W0.6O6 sample can be synergetically linked to hierarchical hollow structure, enhanced light absorbance, and high carrier-separation efficiency. Additionally, the hollow Bi2MoxW1-xO6 microspheres formation can be attributed to the Kirkendall effect.

  13. Absorption band Q model for the Earth

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Given, J. W.

    1981-01-01

    Attenuation in solids and liquids, as measured by the quality factor Q, is typically frequency dependent. In seismology, however, Q is usually assumed to be independent of frequency. Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. Specific features of the absorption band model are: low-Q in the seismic band at both the top and the base of the mantle, low-Q for long-period body waves in the outer core, an inner core Q sub s that increases with period, and low Q sub p/Q sub s at short periods in the middle mantle.

  14. New observations of stratospheric N2O5

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Toon, G. C.; Farmer, C. B.; Norton, R. H.; Namkung, J. S.

    1989-01-01

    The unequivocal detection of N2O5 in the stratosphere was reported by Toon et al. based on measurements of the absorption by the N2O5 bands at 1246 and 1720/cm in solar occulation spectra recorded at sunrise near 47 S latitude by the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment during the Spacelab 3 (SL3) shuttle mission. Additional measurements and analysis of stratospheric N2O5 derived from the ATMOS/SL3 spectra are reported. The primary results are the detection and measurement of N2O5 absorption at sunset in the lower stratosphere, the inversion of a precise (approximately 10 percent) N2O5 sunrise vertical distribution between 25.5 and 37.5 km altitude, and the identification and measurement of absorption by the N2O5 743/cm band at sunrise. Assuming 4.32 x 10(sup -17) and 4.36 x 10(sup -17)/cm/molecule/sq cm respectively for the integrated intensities of the 1246 and 743/cm bands at stratospheric temperatures, retrieved volume mixing ratios in parts per billion by volume (ppbv) at sunrise (47 S latitude) are 1.32 + or - 0.34 at 37.5 km, 1.53 + or - 0.35 at 35.5 km, 1.63 + or - 0.36 at 33.5 km, 1.60 + or - 0.34 at 31.5 km, 1.43 + or - 0.30 at 29.5 km, 1.15 + or - 0.24 at 27.5 km, and 0.73 + or - 0.15 at 25.5 km. Retrieved VMRs in ppbv at sunset (30 N latitude) are 0.13 + or - 0.05 at 29.5 km, 0.14 + or - 0.05 at 27.5 km, and 0.10 + or - 0.04 at 25.5 km. Quoted error limits (1 sigma) include the error in the assumed band intensities (approximately 20 percent). Within the error limits of the measurements, the inferred mixing ratios at sunrise agree with diurnal photochemical model predictions obtained by two groups using current photochemical data. The measured mixing ratios at sunset are lower than the model predictions with differences of about a factor of 2 at 25 km altitude.

  15. k - dependent Jeff=1/2 band splitting and the electron-hole asymmetry in SrIrO3

    NASA Astrophysics Data System (ADS)

    Singh, Vijeta; Pulikkotil, J. J.

    2017-02-01

    The Ir ion in Srn+1 IrnO 3 n + 1 series of compounds is octahedrally coordinated. However, unlike Sr2IrO4 (n=1) and Sr3Ir2O7 (n=2) which are insulating due to spin-orbit induced Jeff splitting of the t2g bands, SrIrO3 (n= ∞) is conducting. To explore whether such a splitting is relevant in SrIrO3, and if so to what extent, we investigate the electronic structure of orthorhombic SrIrO3 using density functional theory. Calculations reveal that the crystal field split Ir t2 g bands in SrIrO3 are indeed split into Jeff=3/2 and and Jeff=1/2 states. However, the splitting is found to be strongly k - dependent with its magnitude determined by the Ir - O orbital hybridization. Besides, we find that the spin-orbit induced pseudo-gap, into which the Fermi energy is positioned, is composed of both light electron-like and heavy hole-like bands. These features in the band structure of SrIrO3 suggest that variations in the carrier concentration control the electronic transport properties in SrIrO3, which is consistent with the experiments.

  16. Enhanced 1.32 μm fluorescence and broadband amplifying for O-band optical amplifier in Nd3+-doped tellurite glass

    NASA Astrophysics Data System (ADS)

    Zhou, Zi-zhong; Zhou, Ming-han; Su, Xiu-e.; Cheng, Pan; Zhou, Ya-xun

    2017-01-01

    WO3 oxides with relatively high phonon energy and different concentrations were introduced into the Nd3+-doped tellurite-based glasses of TeO2-ZnO-Na2O to improve the 1.32 μm band fluorescence emission. The absorption spectra, Raman spectra, 1.32 μm band fluorescence spectra and differential scanning calorimeter (DSC) curves were measured, together with the Judd-Ofelt intensity parameters, stimulated emission and gain parameters were calculated to evaluate the effects of WO3 amount on the glass structure and spectroscopic properties of 1.32 μm band fluorescence. It is shown that the introduction of an appropriate amount of WO3 oxide can effectively improve the 1.32 μm band fluorescence intensity through the enhanced multi-phonon relaxation (MPR) processes between the excited levels of Nd3+. The results indicate that the prepared Nd3+-doped tellurite glass with an appropriate amount of WO3 oxide is a potential gain medium applied for the O-band broad and high-gain fiber amplifier.

  17. Thermal, structural and optical properties of new TeO2sbnd Sb2O3sbnd GeO2 ternary glasses

    NASA Astrophysics Data System (ADS)

    Pereira, C.; Barbosa, J.; Cassanjes, F. C.; Gonçalves, R. R.; Ribeiro, S. J. L.; Poirier, G.

    2016-12-01

    In this work the novel glass system TeO2sbnd Sb2O3sbnd GeO2 was investigated and promising glass compositions were selected for further specific studies. Glass samples in the (80-0.8x)TeO2-(20-0.2x)Sb2O3-xGeO2 molar composition were prepared by the melt-quenching method with a glass-forming domain from x = 10 to x = 90. Samples were investigated by XRD, DSC, FTIR, Raman spectroscopy and UV-visible absorption. The XRD and DSC results bring informations about the non-crystalline state and thermal properties of these materials. It has been observed that higher GeO2 contents lead to higher glass transition temperatures and thermal stabilities against crystallization. FTIR and Raman spectroscopies suggest a progressive incorporation of GeO2 in the covalent network of TeO2 with conversion of structural units TeO4 to TeO3. Absorption spectra revealed the high visible transparency of these samples and an increase of the optical band gap with GeO2 addition, in agreement with a decreasing polarizability of the glass network. Er3+ doped and Er3+/Yb3+ codoped samples were also studied with respect to their infrared emission properties and higher GeO2 contents lead to an increase in IR emission intensity at 1,5 μm as well as longer radiative lifetimes. Finally, upconversion emission in the visible were also recorded and were shown to be strongly dependent of the composition.

  18. Analysis of cloud top height and cloud coverage from satellites using the O2 A and B bands

    NASA Technical Reports Server (NTRS)

    Kuze, Akihiko; Chance, Kelly V.

    1994-01-01

    Cloud height and cloud coverage detection are important for total ozone retrieval using ultraviolet and visible scattered light. Use of the O2 A and B bands, around 761 and 687 nm, by a satellite-borne instrument of moderately high spectral resolution viewing in the nadir makes it possible to detect cloud top height and related parameters, including fractional coverage. The measured values of a satellite-borne spectrometer are convolutions of the instrument slit function and the atmospheric transmittance between cloud top and satellite. Studies here determine the optical depth between a satellite orbit and the Earth or cloud top height to high accuracy using FASCODE 3. Cloud top height and a cloud coverage parameter are determined by least squares fitting to calculated radiance ratios in the oxygen bands. A grid search method is used to search the parameter space of cloud top height and the coverage parameter to minimize an appropriate sum of squares of deviations. For this search, nonlinearity of the atmospheric transmittance (i.e., leverage based on varying amounts of saturation in the absorption spectrum) is important for distinguishing between cloud top height and fractional coverage. Using the above-mentioned method, an operational cloud detection algorithm which uses minimal computation time can be implemented.

  19. The role of film interfaces in near-ultraviolet absorption and pulsed-laser damage in ion-beam-sputtered coatings based on HfO 2/SiO 2 thin-film pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ristau, Detlev; Papernov, S.; Kozlov, A. A.

    2015-11-23

    The role of thin-film interfaces in the near-ultraviolet absorption and pulsed-laser–induced damage was studied for ion-beam–sputtered and electron-beam–evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage-threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and an E-field peak and averagemore » intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces, as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-ultraviolet, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. Here, the results are explained through the similarity of interfacial film structure with structure formed during the co-deposition of HfO 2 and SiO 2 materials.« less

  20. Growth and Characteristic of Amorphous Nano-Granular TeO2-V2O5-NiO Thin Films

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Sh.; Rahmati, A.; Bidadi, H.

    2016-12-01

    TeO2-V2O5-NiO thin films were deposited using thermal evaporation from 40TeO2-(60-y)V2O5-yNiO (y=0-30mol%) target. Structural analysis of the films was identified by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The amorphous TeO2-V2O5-NiO films have nanosized clear grain structure and sharp grain boundaries. DC conductivity and current-voltage (I-V) characteristic of TeO2-V2O5-NiO thin films were measured in the temperature range of 300-423K. As nickel oxide (NiO) content increases, the DC conductivity decreases up to two orders in value (10-9-10-11Sṡcm-1). Temperature dependence of conductivity is described using the small polaron hopping (SPH) model as well. Poole-Frenkel effect is observed at high external electric field. The optical absorption spectra of the TeO2-V2O5-NiO thin films were recorded in the wavelength range of 380-1100nm. The absorption coefficient revealed bandgap shrinkage (3.01-2.3eV) and band tail widening, due to an increase in NiO content. Energy dispersive X-ray spectroscopy (EDX) was used to determine elemental composition. In TeO2-V2O5-NiO thin films, the NiO content is around fifth of the initial target.

  1. Quantitative Evidence for Lanthanide-Oxygen Orbital Mixing in CeO2, PrO2, and TbO2.

    PubMed

    Minasian, Stefan G; Batista, Enrique R; Booth, Corwin H; Clark, David L; Keith, Jason M; Kozimor, Stosh A; Lukens, Wayne W; Martin, Richard L; Shuh, David K; Stieber, S Chantal E; Tylisczcak, Tolek; Wen, Xiao-Dong

    2017-12-13

    Understanding the nature of covalent (band-like) vs ionic (atomic-like) electrons in metal oxides continues to be at the forefront of research in the physical sciences. In particular, the development of a coherent and quantitative model of bonding and electronic structure for the lanthanide dioxides, LnO 2 (Ln = Ce, Pr, and Tb), has remained a considerable challenge for both experiment and theory. Herein, relative changes in mixing between the O 2p orbitals and the Ln 4f and 5d orbitals in LnO 2 are evaluated quantitatively using O K-edge X-ray absorption spectroscopy (XAS) obtained with a scanning transmission X-ray microscope and density functional theory (DFT) calculations. For each LnO 2 , the results reveal significant amounts of Ln 5d and O 2p mixing in the orbitals of t 2g (σ-bonding) and e g (π-bonding) symmetry. The remarkable agreement between experiment and theory also shows that significant mixing with the O 2p orbitals occurs in a band derived from the 4f orbitals of a 2u symmetry (σ-bonding) for each compound. However, a large increase in orbital mixing is observed for PrO 2 that is ascribed to a unique interaction derived from the 4f orbitals of t 1u symmetry (σ- and π-bonding). O K-edge XAS and DFT results are compared with complementary L 3 -edge and M 5,4 -edge XAS measurements and configuration interaction calculations, which shows that each spectroscopic approach provides evidence for ground state O 2p and Ln 4f orbital mixing despite inducing very different core-hole potentials in the final state.

  2. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jianping; Kawa, Stephen R.; Weaver, Clark J.

    2010-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  3. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.

    2011-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  4. Absorption into fluorescence. A method to sense biologically relevant gas molecules

    NASA Astrophysics Data System (ADS)

    Strianese, Maria; Varriale, Antonio; Staiano, Maria; Pellecchia, Claudio; D'Auria, Sabato

    2011-01-01

    In this work we present an innovative optical sensing methodology based on the use of biomolecules as molecular gating nano-systems. Here, as an example, we report on the detection ofanalytes related to climate change. In particular, we focused our attention on the detection ofnitric oxide (NO) and oxygen (O2). Our methodology builds on the possibility of modulating the excitation intensity of a fluorescent probe used as a transducer and a sensor molecule whose absorption is strongly affected by the binding of an analyte of interest used as a filter. The two simple conditions that have to be fulfilled for the method to work are: (a) the absorption spectrum of the sensor placed inside the cuvette, and acting as the recognition element for the analyte of interest, should strongly change upon the binding of the analyte and (b) the fluorescence dye transducer should exhibit an excitation band which overlaps with one or more absorption bands of the sensor. The absorption band of the sensor affected by the binding of the specific analyte should overlap with the excitation band of the transducer. The high sensitivity of fluorescence detection combined with the use of proteins as highly selective sensors makes this method a powerful basis for the development of a new generation of analytical assays. Proof-of-principle results showing that cytochrome c peroxidase (CcP) for NO detection and myoglobin (Mb) for O2 detection can be successfully used by exploiting our new methodology are reported. The proposed technology can be easily expanded to the determination of different target analytes.

  5. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; hide

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  6. High temperature kinetic study of the reactions H + O2 = OH + O and O + H2 = OH + H in H2/O2 system by shock tube-laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Hwang, Soon Muk; Dewitt, Kenneth J.

    1995-01-01

    The reactions: (1) H + O2 = OH + O; and (2) O + H2 = OH + H are the most important elementary reactions in gas phase combustion. They are the main chain-branching reaction in the oxidation of H2 and hydrocarbon fuels. In this study, rate coefficients of the reactions and have been measured over a wide range of composition, pressure, density and temperature behind the reflected shock waves. The experiments were performed using the shock tube - laser absorption spectroscopic technique to monitor OH radicals formed in the shock-heated H2/O2/Ar mixtures. The OH radicals were detected using the P(1)(5) line of (0,0) band of the A(exp 2) Sigma(+) from X(exp 2) Pi transition of OH at 310.023 nm (air). The data were analyzed with the aid of computer modeling. In the experiments great care was exercised to obtain high time resolution, linearity and signal-to-noise. The results are well represented by the Arrhenius expressions. The rate coefficient expression for reaction (1) obtained in this study is k(1) = (7.13 +/- 0.31) x 10(exp 13) exp(-6957+/- 30 K/T) cu cm/mol/s (1050 K less than or equal to T less than or equal to 2500 K) and a consensus expression for k(1) from a critical review of the most recent evaluations of k(1) (including our own) is k(1) = 7.82 x 10(exp 13) exp(-7105 K/T) cu cm/mol/s (960 K less than or equal to T less than or equal to 5300 K). The rate coefficient expression of k(2) is given by k(2) = (1.88 +/- 0.07) x 10(exp 14) exp(-6897 +/- 53 K/T) cu cm/mol/s (1424 K less than or equal to T less than or equal to 2427 K). For k(1), the temperature dependent A-factor and the correlation between the values of k(1) and the inverse reactant densities were not found. In the temperature range of this study, non-Arrhenius expression of k(2) which shows the upward curvature was not supported.

  7. The O-(Al2) centre in topaz and its relation to the blue colour

    NASA Astrophysics Data System (ADS)

    da Silva, D. N.; Guedes, K. J.; Pinheiro, M. V. B.; Schweizer, S.; Spaeth, J.-M.; Krambrock, K.

    2005-01-01

    Colour-enhanced blue topaz is one of the most traded gemstones. Naturally very rare, mostly topaz is irradiated by neutrons, electrons, gamma radiation and combinations of them. The colour centre is still not identified. It was speculated that it is related to a Si dangling bond defect occupied by two electrons with spin S = 0. We investigated natural blue as well as colourless topaz from different regions in Brazil by electron paramagnetic resonance (EPR), optical absorption and Raman spectroscopy. The results are compared with neutron and gamma-irradiated blue topaz. By EPR two paramagnetic defects are identified in all samples: (i) the peroxy radical (O2-) measured at room temperature and (ii) an (O-) hole centre interacting with two equivalent Al neighbours measured at low temperature. Blue samples show an absorption band centred at 620 nm which is responsible for the blue colour. From our investigation we find that the O-(Al2) hole centre has nearly the same thermal stability as the optical absorption band. However, we cannot say whether it is responsible for the absorption band and the blue colour. We suggest that at least it plays a dominant role in the stabilization of the blue colour.

  8. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  9. The Mid-Infrared Absorption Spectra of Neutral PAHs in Dense Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common throughout the universe and are expected to be present in dense interstellar clouds. In these environments, some P.4Hs may be present in the gas phase, but most should be frozen into ice mantles or adsorbed onto dust grains and their spectral features are expected to be seen in absorption. Here we extend our previous work on the infrared spectral properties of the small PAH naphthalene (C10H8) in several media to include the full mid-infrared laboratory spectra of 11 other PAHs and related aromatic species frozen in H2O ices. These include the molecules 1,2-dihydronaphthalene, anthracene, 9,1O-dihydroanthracene, phenanthrene, pyrene, benzo[e]pyrene, perylene, benzo(k)fluoranthene, pentacene, benzo[ghi]perylene, and coronene. These results demonstrate that PAHs and related molecules, as a class, show the same spectral behaviors as naphthalene when incorporated into H2O-rich matrices. When compared to the spectra of these same molecules isolated in inert matrices (e.g., Ar or N2), the absorption bands produced when they are frozen in H2O matrices are broader (factors of 3-10), show small position shifts in either direction (usually < 4/cm, always < 10/cm), and show variable changes in relative band strengths (typically factors of 1-3). There is no evidence of systematic increases or decreases in the absolute strengths of the bands of these molecules when they are incorporated in H2O matrices. In H2O-rich ices, their absorption bands are relatively insensitive to concentration over the range of 10 < H2O/PAH < 200): The absorption bands of these molecules are also insensitive to temperature over the 10 K < T < 125 K range, although the spectra can show dramatic changes as the ices are warmed through the temperature range in which amorphous H2O ice converts to its cubic and hexagonal crystalline forms (T > 125 Kj. Given the small observed band shifts cause by H2O, the current database of spectra from Ar matrix

  10. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  11. Tunable Spectrum Selectivity for Multiphoton Absorption with Enhanced Visible Light Trapping in ZnO Nanorods.

    PubMed

    Tan, Kok Hong; Lim, Fang Sheng; Toh, Alfred Zhen Yang; Zheng, Xia-Xi; Dee, Chang Fu; Majlis, Burhanuddin Yeop; Chai, Siang-Piao; Chang, Wei Sea

    2018-04-17

    Observation of visible light trapping in zinc oxide (ZnO) nanorods (NRs) correlated to the optical and photoelectrochemical properties is reported. In this study, ZnO NR diameter and c-axis length respond primarily at two different regions, UV and visible light, respectively. ZnO NR diameter exhibits UV absorption where large ZnO NR diameter area increases light absorption ability leading to high efficient electron-hole pair separation. On the other hand, ZnO NR c-axis length has a dominant effect in visible light resulting from a multiphoton absorption mechanism due to light reflection and trapping behavior in the free space between adjacent ZnO NRs. Furthermore, oxygen vacancies and defects in ZnO NRs are associated with the broad visible emission band of different energy levels also highlighting the possibility of the multiphoton absorption mechanism. It is demonstrated that the minimum average of ZnO NR c-axis length must satisfy the linear regression model of Z p,min = 6.31d to initiate the multiphoton absorption mechanism under visible light. This work indicates the broadening of absorption spectrum from UV to visible light region by incorporating a controllable diameter and c-axis length on vertically aligned ZnO NRs, which is important in optimizing the design and functionality of electronic devices based on light absorption mechanism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. SnO2 epitaxial films with varying thickness on c-sapphire: Structure evolution and optical band gap modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Xu, Maji; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Li, Ming; Dai, Jiangnan; Chen, Changqing; He, Yunbin

    2017-11-01

    A series of a-plane SnO2 films with thickness between 2.5 nm and 1436 nm were grown epitaxially on c-sapphire by pulsed laser deposition (PLD), to allow a detailed probe into the structure evolution and optical band gap modulation of SnO2 with growing thickness. All films exhibit excellent out-of-plane ordering (lowest (200) rocking-curve half width ∼0.01°) with an orientation of SnO2(100) || Al2O3(0001), while three equivalent domains that are rotated by 120° with one another coexist in-plane with SnO2[010] || Al2O3 [11-20]. Initially the SnO2(100) film assumes a two-dimensional (2D) layer-by-layer growth mode with atomically smooth surface (minimum root-mean-square roughness of 0.183 nm), and endures compressive strain along both c and a axes as well as mild tensile strain along the b-axis. With increasing thickness, transition from the 2D to 3D island growth mode takes place, leading to formation of various defects to allow relief of the stress and thus relaxation of the film towards bulk SnO2. More interestingly, with increasing thickness from nm to μm, the SnO2 films present a non-monotonic V-shaped variation in the optical band gap energy. While the band gap of SnO2 films thinner than 6.1 nm increases rapidly with decreasing film thickness due to the quantum size effect, the band gap of thicker SnO2 films broadens almost linearly with increasing film thickness up to 374 nm, as a result of the strain effect. The present work sheds light on future design of SnO2 films with desired band gap for particular applications by thickness control and strain engineering.

  13. Enhanced optical band-gap of ZnO thin films by sol-gel technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghu, P., E-mail: dpr3270@gmail.com; Naveen, C. S.; Shailaja, J.

    2016-05-06

    Transparent ZnO thin films were prepared using different molar concentration (0.1 M, 0.2 M & 0.8 M) of zinc acetate on soda lime glass substrates by the sol-gel spin coating technique. The optical properties revealed that the transmittance found to decrease with increase in molar concentration. Absorption edge showed that the higher concentration film has increasingly red shifted. An increased band gap energy of the thin films was found to be direct allowed transition of ∼3.9 eV exhibiting their relevance for photovoltaic applications. The extinction coefficient analysis revealed maximum transmittance with negligible absorption coefficient in the respective wavelengths. The resultsmore » of ZnO thin film prepared by sol-gel technique reveal its suitability for optoelectronics and as a window layer in solar cell applications.« less

  14. First-principles calculation on electronic structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Zhi-Fang, E-mail: tongzhifang1998@126.com; Wei, Zhan-Long; Xiao, Cheng

    The crystal structure, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} with varying Eu doping concentrations are computed by the density functional theory (DFT) and compared with experimental results. The results show that the lattice parameters of primitive cells of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} become smaller and Eu–N bond length shortens as Eu concentration increases. The band structure of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} exhibits a direct optical band gap and it's propitious to luminescence. The energy differences from the lowest Eu 5d state to the lowest Eu 4f state decrease with increasing Eumore » concentrations. The analysis of simulative absorption spectra indicates that the electron transition from Eu 4f states to 5d states of both Eu and Ba atoms contributes to the absorption of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x}. Under the coupling effect between Eu and Ba, Ba in BaSi{sub 2}O{sub 2}N{sub 2} exhibits longer wavelength absorption and increases absorption efficiency. The emission wavelength is deduced by measuring energy differences from the lowest Eu 5d state to the lowest Eu 4f state, and the result is in good agreement with experimental value within experimental Eu{sup 2+} doping range. - Graphical abstract: The structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT and its absorption mechanism is analysed. Results show that absorption peak α is from the host lattice absorption. The absorption peaks β, γ and δ are from Eu 4f to Eu 5d and Ba 6s 5d states. The absorption is attributed to the coupling effect of Eu and Ba atom. - Highlights: • The crystal, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT. • The lattice parameters of primitive cells reduces and Eu–N bond length shortens as Eu{sup 2+} increases. • The energy gap from Eu 5d state to Eu 4f state

  15. Band alignment of atomic layer deposited MgO/Zn0.8Al0.2O heterointerface determined by charge corrected X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Yan, Baojun; Liu, Shulin; Yang, Yuzhen; Heng, Yuekun

    2016-05-01

    Pure magnesium (MgO) and zinc oxide doped with aluminum oxide (Zn0.8Al0.2O) were prepared via atomic layer deposition. We have studied the structure and band gap of bulk Zn0.8Al0.2O material by X-ray diffractometer (XRD) and Tauc method, and the band offsets and alignment of atomic layer deposited MgO/Zn0.8Al0.2O heterointerface were investigated systematically using X-ray photoelectron spectroscopy (XPS) in this study. Different methodologies, such as neutralizing electron gun, the use of C 1s peak recalibration and zero charging method, were applied to recover the actual position of the core levels in insulator materials which were easily influenced by differential charging phenomena. Schematic band alignment diagram, valence band offset (ΔEV) and conduction band offset (ΔEC) for the interface of the MgO/Zn0.8Al0.2O heterostructure have been constructed. An accurate value of ΔEV = 0.72 ± 0.11 eV was obtained from various combinations of core levels of heterojunction with varied MgO thickness. Given the experimental band gaps of 7.83 eV for MgO and 5.29 eV for Zn0.8Al0.2O, a type-II heterojunction with a ΔEC of 3.26 ± 0.11 eV was found. Band offsets and alignment studies of these heterojunctions are important for gaining deep consideration to the design of various optoelectronic devices based on such heterointerface.

  16. TiO2 nanorods thin-films embedded with gold nanoparticles for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Raval, Dhyey; Jani, Margi; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    This article reports on the gold nanoparticle (Au-NP) induced absorption enhancement in the hydrothermally grown titanium dioxide nanorods (TiO2-NRs). The localized surface plasmon resonance (LSPR) and transfer of electron from Au-NPs attached to the TiO2-NR have been related to their photocatalytic response. The photocurrent enhancement observed in the studies of IPCE has been explained on the basis of electrons in the conduction band of TiO2-NR. The electrons from the Au-NP to the conduction band of TiO2-NR with respect to the wavelength of the incident spectrum shows an increase in efficiency over pristine TiO2-NRs sample. Further, to investigate the role of Au-NP, an absorption spectra with its incident wavelength shows an increase in the visible spectrum in the present study. This provides an explanation for the response to the absorption of the wide bandgap semiconductor oxide which gives an opportunity to develop a hybrid structure on the transparent substrates. The better response of Au-NPs/TiO2-NRs system can be used in photocatalytic processes.

  17. NuSTAR Reveals Extreme Absorption in z < 0.5 Type 2 Quasars

    NASA Astrophysics Data System (ADS)

    Lansbury, G. B.; Gandhi, P.; Alexander, D. M.; Assef, R. J.; Aird, J.; Annuar, A.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Civano, F.; Comastri, A.; Craig, W. W.; Del Moro, A.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Koss, M.; LaMassa, S. M.; Luo, B.; Puccetti, S.; Stern, D.; Treister, E.; Vignali, C.; Zappacosta, L.; Zhang, W. W.

    2015-08-01

    The intrinsic column density (NH) distribution of quasars is poorly known. At the high obscuration end of the quasar population and for redshifts z < 1, the X-ray spectra can only be reliably characterized using broad-band measurements that extend to energies above 10 keV. Using the hard X-ray observatory NuSTAR, along with archival Chandra and XMM-Newton data, we study the broad-band X-ray spectra of nine optically selected (from the SDSS), candidate Compton-thick (NH > 1.5 × 1024 cm-2) type 2 quasars (CTQSO2s); five new NuSTAR observations are reported herein, and four have been previously published. The candidate CTQSO2s lie at z < 0.5, have observed [O iii] luminosities in the range 8.4\\lt {log}({L}[{{O} {{III}}]}/{L}⊙ )\\lt 9.6, and show evidence for extreme, Compton-thick absorption when indirect absorption diagnostics are considered. Among the nine candidate CTQSO2s, five are detected by NuSTAR in the high-energy (8-24 keV) band: two are weakly detected at the ≈3σ confidence level and three are strongly detected with sufficient counts for spectral modeling (≳90 net source counts at 8-24 keV). For these NuSTAR-detected sources direct (i.e., X-ray spectral) constraints on the intrinsic active galactic nucleus properties are feasible, and we measure column densities ≈2.5-1600 times higher and intrinsic (unabsorbed) X-ray luminosities ≈10-70 times higher than pre-NuSTAR constraints from Chandra and XMM-Newton. Assuming the NuSTAR-detected type 2 quasars are representative of other Compton-thick candidates, we make a correction to the NH distribution for optically selected type 2 quasars as measured by Chandra and XMM-Newton for 39 objects. With this approach, we predict a Compton-thick fraction of {f}{CT}={36}-12+14 %, although higher fractions (up to 76%) are possible if indirect absorption diagnostics are assumed to be reliable.

  18. Reduction of CO2 to low carbon alcohols on CuO FCs/Fe2O3 NTs catalyst with photoelectric dual catalytic interfaces

    NASA Astrophysics Data System (ADS)

    Li, Peiqiang; Wang, Huying; Xu, Jinfeng; Jing, Hua; Zhang, Jun; Han, Haixiang; Lu, Fusui

    2013-11-01

    In this paper, the CuO FCs/Fe2O3 NTs catalyst was obtained after Fe2O3 nanotubes (Fe2O3 NTs) were decorated with CuO flower clusters (CuO FCs) by the pulse electrochemical deposition method. The in situ vertically aligned Fe2O3 NTs were prepared on the ferrous substrate by a potentiostatic anodization method. The SEM result showed the volcano-like Fe2O3 NTs were arranged in order and the CuO FCs constituted of flaky CuO distributed on the Fe2O3 NTs surface uniformly. After CuO FCs were loaded on Fe2O3 NTs, the absorption of visible light was enhanced noticeably, and its band gap narrowed to 1.78 eV from 2.03 eV. The conduction band and valence band locating at -0.73 eV and 1.05 eV, respectively were further obtained. In the PEC reduction of CO2 process, methanol and ethanol were two major products identified by chromatography. Their contents reached 1.00 mmol L-1 cm-2 and 107.38 μmol L-1 cm-2 after 6 h, respectively. This high-efficiency catalyst with photoelectric dual catalytic interfaces has a great guidance and reference significance for CO2 reduction to liquid carbon fuels.In this paper, the CuO FCs/Fe2O3 NTs catalyst was obtained after Fe2O3 nanotubes (Fe2O3 NTs) were decorated with CuO flower clusters (CuO FCs) by the pulse electrochemical deposition method. The in situ vertically aligned Fe2O3 NTs were prepared on the ferrous substrate by a potentiostatic anodization method. The SEM result showed the volcano-like Fe2O3 NTs were arranged in order and the CuO FCs constituted of flaky CuO distributed on the Fe2O3 NTs surface uniformly. After CuO FCs were loaded on Fe2O3 NTs, the absorption of visible light was enhanced noticeably, and its band gap narrowed to 1.78 eV from 2.03 eV. The conduction band and valence band locating at -0.73 eV and 1.05 eV, respectively were further obtained. In the PEC reduction of CO2 process, methanol and ethanol were two major products identified by chromatography. Their contents reached 1.00 mmol L-1 cm-2 and 107.38 μmol L-1

  19. Liesegang bands versus random crystallites in Ag2Cr2O7 - Single and mixed gelled media

    NASA Astrophysics Data System (ADS)

    Ibrahim, Huria; El-Rassy, Houssam; Sultan, Rabih

    2018-02-01

    Liesegang patterns of silver dichromate (Ag2Cr2O7) are studied in two different gel media: agar and gelatin, based on the work of Lagzi and Ueyama (2009). Whereas in gelatin, standard Liesegang bands are obtained as a result of the interdiffusion of Ag+ and Cr2 O72-, random crystallites with dendritic ramifications are observed in agar. We revisit this phenomenon and demonstrate the proposed mechanism, wherein dense heterogeneous nucleation in gelatin leads to Liesegang bands, as opposed to surface nucleation in agar yielding crystallites. We use viscosity, pH measurements, and notably scanning electron microscopy (SEM) in this endeavor.

  20. Band gap narrowing in BaTiO{sub 3} nanoparticles facilitated by multiple mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakanth, S.; James Raju, K. C., E-mail: kcjrsp@uohyd.ernet.in; School of Physics, University of Hyderabad, Hyderabad 500046

    2014-05-07

    In the present work, BaTiO{sub 3} nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nmmore » particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm{sup −1}. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm{sup −1}) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm{sup −1} with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.« less

  1. Surface-modified TiO2 powders with phenol derivatives: A comparative DFT and experimental study

    NASA Astrophysics Data System (ADS)

    Sredojević, Dušan N.; Kovač, Tijana; Džunuzović, Enis; Ðorđević, Vesna; Grgur, Branimir N.; Nedeljković, Jovan M.

    2017-10-01

    The charge transfer complex formation between TiO2 powder and variety of phenol derivatives (phenol, 4-nitrophenol, 4-bromophenol, 4-tert-butylphenol, hydroquinone) was achieved. The red-shift of optical absorption was observed upon surface modification of TiO2 powders with phenol derivatives. The influence of substituent functional groups in para position on the optical band gap and conduction band edge of inorganic/organic hybrids was studied using reflection spectroscopy and cyclic voltammetry. The experimental findings were supported by density functional theory calculations. The measured reflection spectra of surface-modified TiO2 powders with phenol derivatives were compared with calculated electronic excitation spectra of corresponding model systems.

  2. 2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Guo, Xiaoxuan; Sham, Tsun-Kong

    2014-05-01

    Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed. Electronic supplementary information (ESI) available: XEOL spectra with different excitation energies. X-ray attenuation length vs. photon energy. Details of surface defects in ZnO NWs. The second O K-edge and Zn L-edge 2D XANES-XEOL maps. Comparison of the first and second TEY at O K-edge and Zn L-edge scans, respectively. Raman spectra of the ZnO NWs with different IBGE/IDE ratios. See DOI: 10.1039/c4nr01049c

  3. Hydrogenated MoS2 QD-TiO2 heterojunction mediated efficient solar hydrogen production.

    PubMed

    Saha, Arka; Sinhamahapatra, Apurba; Kang, Tong-Hyun; Ghosh, Subhash C; Yu, Jong-Sung; Panda, Asit B

    2017-11-09

    Herein, we report the development of a hydrogenated MoS 2 QD-TiO 2 (HMT) heterojunction as an efficient photocatalytic system via a one-pot hydrothermal reaction followed by hydrogenation. This synthetic strategy facilitates the formation of MoS 2 QDs with an enhanced band gap and a proper heterojunction between them and TiO 2 , which accelerates charge transfer process. Hydrogenation leads to oxygen vacancies in TiO 2 , enhancing the visible light absorption capacity through narrowing its band gap, and sulfur vacancies in MoS 2 , which enhance the active sites for hydrogen adsorption. Due to the band gap reduction of hydrogenated TiO 2 and the band gap enhancement of the MoS 2 QDs, the energy states are rearranged to create a reverse movement of electrons and holes facilitated the charge transfer process which enhance life-time of photo-generated charges. The photocatalyst showed stable, efficient and exceptionally high noble metal free sunlight-induced hydrogen production with a maximum rate of 3.1 mmol g -1 h -1 . The developed synthetic strategy also provides flexibility towards the shape of the MoS 2 , e.g. QDs/single or few layers, on TiO 2 and offers the opportunity to design novel visible light active photocatalysts for different applications.

  4. The mechanism of the UV band edge photorefractivity suppression in highly doped LiNbO3:Zr crystals

    NASA Astrophysics Data System (ADS)

    Xin, Fei-fei

    2017-11-01

    The ultraviolet (UV) band edge photorefractivity of LiNbO3:Zr at 325 nm has been investigated. The experimental results show that the resistance against photorefraction at 325 nm is quite obvious but not as strong as that at 351 nm, when the doping concentration of Zr reaches 2.0 mol%. It is reported that the photorefractivity in other tetravalently doped LiNbO3 crystals, such as LiNbO3:Hf and LiNbO3:Sn, is enhanced dramatically with doping concentration over threshold. Here we give an explicit explanation on such seemly conflicting behaviors of tetravalently doped LiNbO3, which is ascribed to the combined effect of increased photoconductivity and the absorption strength of the band edge photorefractive centers.

  5. Optical absorption edge of ZnO thin films: The effect of substrate

    NASA Astrophysics Data System (ADS)

    Srikant, V.; Clarke, D. R.

    1997-05-01

    The optical absorption edge and the near-absorption edge characteristics of undoped ZnO films grown by laser ablation on various substrates have been investigated. The band edge of films on C [(0001)] and R-plane [(1102)] sapphire, 3.29 and 3.32 eV, respectively, are found to be very close to the single crystal value of ZnO (3.3 eV) with the differences being accounted for in terms of the thermal mismatch strain using the known deformation potentials of ZnO. In contrast, films grown on fused silica consistently exhibit a band edge ˜0.1 eV lower than that predicted using the known deformation potential and the thermal mismatch strains. This behavior is attributed to the small grain size (50 nm) realized in these films and the effect of electrostatic potentials that exist at the grain boundaries. Additionally, the spread in the tail (E0) of the band edge for the different films is found to be very sensitive to the defect structure in the films. For films grown on sapphire substrates, values of E0 as low as 30 meV can be achieved on annealing in air, whereas films on fused silica always show a value >100 meV. We attribute this difference to the substantially higher density of high-angle grain boundaries in the films on fused silica.

  6. Electronic structure of a laterally graded ZrO2-TiO2 film on Si(100) prepared by metal-organic chemical vapor deposition in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Richter, J. H.; Karlsson, P. G.; Sandell, A.

    2008-05-01

    A TiO2-ZrO2 film with laterally graded stoichiometry has been prepared by metal-organic chemical vapor deposition in ultrahigh vacuum. The film was characterized in situ using synchrotron radiation photoelectron spectroscopy (PES) and x-ray absorption spectroscopy. PES depth profiling clearly shows that Ti ions segregate toward the surface region when mixed with ZrO2. The binding energy of the ZrO2 electronic levels is constant with respect to the local vacuum level. The binding energy of the TiO2 electronic levels is aligned to the Fermi level down to a Ti /Zr ratio of about 0.5. At a Ti /Zr ratio between 0.1 and 0.5, the TiO2 related electronic levels become aligned to the local vacuum level. The addition of small amounts of TiO2 to ZrO2 results in a ZrO2 band alignment relative to the Fermi level that is less asymmetric than for pure ZrO2. The band edge positions shift by -0.6eV for a Ti /Zr ratio of 0.03. This is explained in terms of an increase in the work function when adding TiO2, an effect that becomes emphasized by Ti surface segregation.

  7. Optical evidence of strong coupling between valence-band holes and d -localized spins in Zn1-xMnxO

    NASA Astrophysics Data System (ADS)

    Sokolov, V. I.; Druzhinin, A. V.; Gruzdev, N. B.; Dejneka, A.; Churpita, O.; Hubicka, Z.; Jastrabik, L.; Trepakov, V.

    2010-04-01

    We report on optical-absorption study of Zn1-xMnxO (x=0-0.06) films on fused silica substrates taking special attention to the spectral range of the fundamental absorption edge (3.1-4 eV). Well-pronounced excitonic lines observed in the region 3.40-3.45 eV were found to shift to higher energies with increasing Mn concentration. The optical band-gap energy increases with x too, reliably evidencing strong coupling between oxygen holes and localized spins of manganese ions. In the 3.1-3.3 eV region the optical-absorption curve in the manganese-contained films was found to shift to lower energies with respect to that for undoped ZnO. The additional absorption observed in this range is interpreted as a result of splitting of a localized Zhang-Rice-type state into the band gap.

  8. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    PubMed

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  9. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.

    PubMed

    Che, Bien Dong; Nguyen, Bao Quoc; Nguyen, Le-Thu T; Nguyen, Ha Tran; Nguyen, Viet Quoc; Van Le, Thang; Nguyen, Nieu Huu

    2015-01-01

    Carbon nanotube (CNT) characteristics, besides the processing conditions, can change significantly the microwave absorption behavior of CNT/polymer composites. In this study, we investigated the influence of three commercial multi-walled CNT materials with various diameters and length-to-diameter aspect ratios on the X-band microwave absorption of epoxy nanocomposites with CNT contents from 0.125 to 2 wt%, prepared by two dispersion methods, i.e. in solution with surfactant-aiding and via ball-milling. The laser diffraction particle size and TEM analysis showed that both methods produced good dispersions at the microscopic level of CNTs. Both a high aspect ratio resulting in nanotube alignment trend and good infiltration of the matrix in the individual nanotubes, which was indicated by high Brookfield viscosities at low CNT contents of CNT/epoxy dispersions, are important factors to achieve composites with high microwave absorption characteristics. The multi-walled carbon nanotube (MWCNT) with the largest aspect ratio resulted in composites with the best X-band microwave absorption performance, which is considerably better than that of reported pristine CNT/polymer composites with similar or lower thicknesses and CNT loadings below 4 wt%. A high aspect ratio of CNTs resulting in microscopic alignment trend of nanotubes as well as a good level of micro-scale CNT dispersion resulting from good CNT-matrix interactions are crucial to obtain effective microwave absorption performance. This study demonstrated that effective radar absorbing MWCNT/epoxy nanocomposites having small matching thicknesses of 2-3 mm and very low filler contents of 0.25-0.5 wt%, with microwave energy absorption in the X-band region above 90% and maximum absorption peak values above 97%, could be obtained via simple processing methods, which is promising for mass production in industrial applications. Graphical AbstractComparison of the X-band microwave reflection loss of epoxy composites of

  10. Heterodyne frequency measurements on N2O at 5.3 and 9.0 microns

    NASA Technical Reports Server (NTRS)

    Wells, J. S.; Jennings, D. A.; Hinz, A.; Murray, J. S.; Maki, A. G.

    1985-01-01

    Heterodyne frequency measurements on the 01(1)1-00(0)0 band of N2O have been made with the use of a tunable-diode laser, CO laser transfer oscillator, and a CO2 laser frequency synthesizer. A beat frequency was measured between a CO laser and tunable-diode laser whose frequency was locked to the peak of N2O absorption features. The frequency of the CO laser was simultaneously determined by neasuring the beat frequency with respect to a reference synthesized from two CO2 lasers. New rovibrational constants are given for the 01(1)1 state of N2O, which are in excellent agreement with previous results, although the band center is 4 MHz higher than in the previous measurements. A table for the line frequencies and their absolute uncertainties is given for the N2O absorption lines in the wave-number region from 1830 to 1920 kaysers. Some additional frequency measurements near the lower-frequency end of the 02(0)0-00(0)0 band have also been made with respect to a C-12)(0-18)2 laser.

  11. Optical and superparamagnetic behavior of ZnFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Lal, Ganesh; Punia, Khushboo; Dolia, S. N.; Kumar, Sudhish

    2018-05-01

    Nanoparticles of zinc ferrite have been synthesized using a low temperature citrate sol-gel route and characterized by powder X-ray diffraction (XRD), Raman & UV-Vis-NIR spectroscopic and SQUID magnetometry measurements. Analysis of XRD pattern and Raman spectrum confirmed that the synthesized ZnFe2O4 sample crystallizes in single phase fcc spinel ferrite structure and the average particle size of nanoparticles is estimated to 24nm. Optical absorption study shows that maximum photo absorption take place in the visible band and peaking in UV band at 206nm and the band gap energy is estimated to Eg = 2.1eV. Zero Field Cooled (ZFC) and Field Cooled (FC) modes of magnetization down to 5K and in fields up to 20kOe shows that ZnFe2O4 nanoparticles exhibits superparamagnetism with high magneto-crystalline anisotropy and high magnetization. Small difference of 9K between the separation temperature TS=˜30K and blocking temperature TB= 21K are suggestive of the formation of ferromagnetic clusters and a narrow particle size distribution of the nanoparticles in superparamagnetic ZnFe2O4 nanoparticles.

  12. VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.

    PubMed

    Prakash, P Giri; Rao, J Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.

  13. Band-offsets at BaTiO3/Cu2O heterojunction and enhanced photoelectrochemical response: theory and experiment(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sharma, Dipika; Satsangi, Vibha R.; Dass Kaura, Sahab; Shrivastav, Rohit; Waghmare, Umesh V.

    2016-10-01

    Band-offsets at BaTiO3/Cu2O heterojunction and enhanced photoelectrochemical response: theory and experiment Dipika Sharmaa, Vibha R. Satsangib, Rohit Shrivastava, Umesh V. Waghmarec, Sahab Dassa aDepartment of Chemistry, Dayalbagh Educational Institute, Agra-282 110 (India) bDepartment of Physics and Computer Sciences, Dayalbagh Educational Institute, Agra-282 110 (India) cTheoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560 064 (India) * Phone: +91-9219695960. Fax: +91-562-2801226. E-mail: drsahabdas@gmail.com. Study on photoelectrochemical activity of pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction has been carried out using DFT based band offsets and charge carriers effective mass calculations and their experimental verification. The results of DFT calculations show that BaTiO3 and Cu2O have staggered type band alignment after the heterojunction formation and high mobility of electrons in Cu2O as compared to the electrons in BaTiO3. Staggered type band edges alignment and high mobility of electrons and holes improved the separation of photo-generated charge carriers in BaTiO3/Cu2O heterojunction. To validate the theoretical results experiments were carried out on pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction with varying thickness of Cu2O. All samples were characterized by X- Ray Diffractometer, SEM and UV-Vis spectrometry. Nanostructured thin films of pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction were used as photoelectrode in the photoelectrochemical cell for water splitting reaction. Maximum photocurrent density of 1.44 mA/cm2 at 0.90 V/SCE was exhibited by 442 nm thick BaTiO3/Cu2O heterojunction photoelectrode Increased photocurrent density and enhanced photoconversion efficiency, exhibited by the heterojunction may be attributed to improved conductivity and enhanced separation of the photogenerated carriers at the BaTiO3/Cu2O interface. The experimental results and first

  14. First principle study of electronic structures and optical properties of Ce-doped SiO2

    NASA Astrophysics Data System (ADS)

    Cong, Wei-Yan; Lu, Ying-Bo; Zhang, Peng; Guan, Cheng-Bo

    2018-05-01

    Electronic structures and optical properties of Silicon dioxide (SiO2) systems with and without cerium(Ce) dopant were calculated using the density functional theory. We find that after the Ce incorporation, a new localized impurity band appears between the valance band maximum (VBM) and the conduction band minimum (CBM) of SiO2 system, which is induced mainly by the Ce-4f orbitals. The localized impurity band constructs a bridge between the valence band and the conduction band, making the electronic transition much easier. The calculated optical properties show that in contrast from the pure SiO2 sample, absorption in the visible-light region is found in Ce-doped SiO2 system, which originates from the transition between the valence band and Ce-4f dominated impurity band, as well as the electronic transition from Ce-4f states to Ce-5d states. All calculated results indicate that Ce doping is an effective strategy to improve the optical performance of SiO2 sample, which is in agreement with the experimental results.

  15. Design of a dual band metamaterial absorber for Wi-Fi bands

    NASA Astrophysics Data System (ADS)

    Alkurt, Fatih Özkan; Baǧmancı, Mehmet; Karaaslan, Muharrem; Bakır, Mehmet; Altıntaş, Olcay; Karadaǧ, Faruk; Akgöl, Oǧuzhan; Ünal, Emin

    2018-02-01

    The goal of this work is to design and fabrication of a dual band metamaterial based absorber for Wireless Fidelity (Wi-Fi) bands. Wi-Fi has two different operating frequencies such as 2.45 GHz and 5 GHz. A dual band absorber is proposed and the proposed structure consists of two layered unit cells, and different sized square split ring (SSR) resonators located on each layers. Copper is used for metal layer and resonator structure, FR-4 is used as substrate layer in the proposed structure. This designed dual band metamaterial absorber is used in the wireless frequency bands which has two center frequencies such as 2.45 GHz and 5 GHz. Finite Integration Technique (FIT) based simulation software used and according to FIT based simulation results, the absorption peak in the 2.45 GHz is about 90% and the another frequency 5 GHz has absorption peak near 99%. In addition, this proposed structure has a potential for energy harvesting applications in future works.

  16. Dissociation, absorption and ionization of some important sulfur oxoanions (S2On2- n = 2, 3, 4, 6, 7 and 8)

    NASA Astrophysics Data System (ADS)

    Abedi, M.; Farrokhpour, H.; Farnia, S.; Chermahini, A. Najafi

    2015-08-01

    In this work, a systematic theoretical study was performed on the dissociation, absorption and ionization of several important sulfur oxoanions (S2On2- (n = 2, 3, 4, 6, 7 and 8)). ΔEelec (thermal corrected energy), ΔH° and ΔG° of the dissociation reactions of the oxoanions to their radical monoanions were calculated using combined computational levels of theories such as Gaussian-3 (G3) and a new version of complete basis set method (CBS-4M) in different environments including gas phase, microhydrated in gas phase and different solvents. Calculations showed S2O72- is the most stable anion against the dissociation to its radical monoanions (SO4-rad + SO3-rad). It was also found that S2O42- has more tendency to dissociate to its radical anions (SO2-rad + SO2-rad) compared to the other anions. The absorption spectra of the anions were also calculated using the time-dependent density functional theory (TD-DFT) employing M062X functional. The effect of microhydration and electrostatic field of solvent on the different aspects (intensity, energy shift and assignment) of the absorption spectra of these anions were also discussed. It was observed that both hydrogen bonding and electrostatic effect of water increases the intensity of the absorption spectrum compared to the gas phase. Effect of microhydration in shifting the spectra to the shorter wavelength is considerably higher than the effect of electrostatic field of water. Finally, several gas phase ionization energies of the anions were calculated using the symmetry-adapted cluster-configuration interaction methodology (SAC-CI) and found that the first electron detachment energies of S2O22-, S2O32- and S2O42- are negative. Natural bonding orbital (NBO) calculations were also performed to assign the electron detachment bands of the anions.

  17. UTa 2O(S 2) 3Cl 6: A ribbon structure containing a heterobimetallic 5 d-5 f M 3 cluster

    NASA Astrophysics Data System (ADS)

    Wells, Daniel M.; Chan, George H.; Ellis, Donald E.; Ibers, James A.

    2010-02-01

    A new solid-state compound containing a heterobimetallic cluster of U and Ta, UTa 2O(S 2) 3Cl 6, has been synthesized and its structure has been characterized by single-crystal X-ray diffraction methods. UTa 2O(S 2) 3Cl 6 was synthesized from UCl 4 and Ta 1.2S 2 at 883 K. The O is believed to have originated in the Ta 1.2S 2 reactant. The compound crystallizes in the space group P1¯ of the triclinic system. The structure comprises a UTa 2 unit bridged by μ 2-S 2 and μ 3-O groups. Each Ta atom bonds to two μ 2-S 2, the μ 3-O, and two terminal Cl atoms. Each U atom bonds to two μ 2-S 2, the μ 3-O, and four Cl atoms. The Cl atoms bridge in pairs to neighboring U atoms to form a ribbon structure. The bond distances are normal and are consistent with formal oxidation states of +IV/+V/-II/-I/-I for U/Ta/O/S/Cl, respectively. The optical absorbance spectrum displays characteristic transition peaks near the absorption edge. Density functional theory was used to assign these peaks to transitions between S 1- valence-band states and empty U 5 f-6 d hybrid bands. Density-of-states analysis shows overlap between Ta 5 d and U bands, consistent with metal-metal interactions.

  18. Optical properties of a new Bi38Mo7O78 semiconductor with fluorite-type δ-Bi2O3 structure

    NASA Astrophysics Data System (ADS)

    Wang, Zuoshan; Bi, Shala; Wan, Yingpeng; Huang, Pengjie; Zheng, Min

    2017-03-01

    Bi3+-containing inorganic materials usually show rich optical and electronic properties due to the hybridization between 6s and 6p electronic components together with the lone pair in Bi3+ ions. In this work, a new semiconductor of bismuth molybdate Bi38Mo7O78 (19Bi2O3·7MoO3) was synthesized by the sol-gel film coating and the following heat process. The samples developed into nanoparticles with average size of 40 nm. The phase formation was verified via the XRD Rietveld structural refinement. Orthorhombic Bi38Mo7O78 can be regarded to be derived from the cubic δ-phase Bi2O3 structure. The microstructure was investigated by SEM, EDX, TEM, BET and XPS measurements. The UV-vis absorption spectra showed that the band gap of Bi38Mo7O78 (2.38 eV) was greatly narrowed in comparison with Bi2O3 (2.6 eV). This enhances the efficient absorption of visible light. Meanwhile, the conduction band of is wider and shows more dispersion, which greatly benefits the mobility of the light-induced charges taking part in the photocatalytic reactions. Bi38Mo7O78 nanoparticles possess efficient activities on the photodegradation of methylene blue (MB) solutions under the excitation of visible-light. The photocatalysis activities and mechanisms were discussed on the crystal structure characteristics and the measurements such as photoluminescence, exciton lifetime and XPS results.

  19. Temperature-dependence laws of absorption line shape parameters of the CO2 ν3 band

    NASA Astrophysics Data System (ADS)

    Wilzewski, J. S.; Birk, M.; Loos, J.; Wagner, G.

    2018-02-01

    To improve the understanding of temperature-dependence laws of spectral line shape parameters, spectra of the ν3 rovibrational band of CO2 perturbed by 10, 30, 100, 300 and 1000 mbar of N2 were recorded at nine temperatures between 190 K and 330 K using a 22 cm long single-pass absorption cell in a Bruker IFS125 HR Fourier Transform spectrometer. The spectra were fitted employing a quadratic speed-dependent hard collision model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation by means of a multispectrum fitting approach developed at DLR. This enables high accuracy parameter retrievals to reproduce the spectra down to noise level and we present the behavior of line widths, shifts, speed-dependence-, collisional narrowing- and line mixing-parameters over this 140 K temperature range.

  20. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  1. Tunable multi-band absorption in metasurface of graphene ribbons based on composite structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Jiao, Zheng; Bao, Jie

    2017-05-01

    A tunable multiband absorption based on a graphene metasurface of composite structure at mid-infrared frequency was investigated by the finite difference time domain method. The composite structure were composed of graphene ribbons and a gold-MgF2 layer which was sandwiched in between two dielectric slabs. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. And the absorption of the composite structure can be tuned by the chemical potential of graphene at certain frequencies. The impedance matching was used to study the perfect absorption of the structure in our paper. The results show that multi-band absorption can be obtained and some absorption peaks of the composite structure can be tuned through the changing not only of the width of graphene ribbons and gaps, but also the dielectric and the chemical potential of graphene. However, another peak was hardly changed by parameters due to a different resonant mechanism in proposed structure. This flexibily tunable multiband absorption may be applied to optical communications such as optical absorbers, mid infrared stealth devices and filters.

  2. Interfacial band alignment and structural properties of nanoscale TiO2 thin films for integration with epitaxial crystallographic oriented germanium

    NASA Astrophysics Data System (ADS)

    Jain, N.; Zhu, Y.; Maurya, D.; Varghese, R.; Priya, S.; Hudait, M. K.

    2014-01-01

    We have investigated the structural and band alignment properties of nanoscale titanium dioxide (TiO2) thin films deposited on epitaxial crystallographic oriented Ge layers grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy. The TiO2 thin films deposited at low temperature by physical vapor deposition were found to be amorphous in nature, and high-resolution transmission electron microscopy confirmed a sharp heterointerface between the TiO2 thin film and the epitaxially grown Ge with no traceable interfacial layer. A comprehensive assessment on the effect of substrate orientation on the band alignment at the TiO2/Ge heterointerface is presented by utilizing x-ray photoelectron spectroscopy and spectroscopic ellipsometry. A band-gap of 3.33 ± 0.02 eV was determined for the amorphous TiO2 thin film from the Tauc plot. Irrespective of the crystallographic orientation of the epitaxial Ge layer, a sufficient valence band-offset of greater than 2 eV was obtained at the TiO2/Ge heterointerface while the corresponding conduction band-offsets for the aforementioned TiO2/Ge system were found to be smaller than 1 eV. A comparative assessment on the effect of Ge substrate orientation revealed a valence band-offset relation of ΔEV(100) > ΔEV(111) > ΔEV(110) and a conduction band-offset relation of ΔEC(110) > ΔEC(111) > ΔEC(100). These band-offset parameters are of critical importance and will provide key insight for the design and performance analysis of TiO2 for potential high-κ dielectric integration and for future metal-insulator-semiconductor contact applications with next generation of Ge based metal-oxide field-effect transistors.

  3. Detection and monitoring of H2O and CO2 ice clouds on Mars

    USGS Publications Warehouse

    Bell, J.F.; Calvin, W.M.; Ockert-Bell, M. E.; Crisp, D.; Pollack, James B.; Spencer, J.

    1996-01-01

    We have developed an observational scheme for the detection and discrimination of Mars atmospheric H2O and CO2 clouds using ground-based instruments in the near infrared. We report the results of our cloud detection and characterization study using Mars near IR images obtained during the 1990 and 1993 oppositions. We focused on specific wavelengths that have the potential, based on previous laboratory studies of H2O and CO2 ices, of yielding the greatest degree of cloud detectability and compositional discriminability. We have detected and mapped absorption features at some of these wavelengths in both the northern and southern polar regions of Mars. Compositional information on the nature of these absorption features was derived from comparisons with laboratory ice spectra and with a simplified radiative transfer model of a CO2 ice cloud overlying a bright surface. Our results indicate that both H2O and CO2 ices can be detected and distinguished in the polar hood clouds. The region near 3.00 ??m is most useful for the detection of water ice clouds because there is a strong H2O ice absorption at this wavelength but only a weak CO2 ice band. The region near 3.33 ??m is most useful for the detection of CO2 ice clouds because there is a strong, relatively narrow CO2 ice band at this wavelength but only broad "continuum" H2O ice absorption. Weaker features near 2.30 ??m could arise from CO2 ice at coarse grain sizes, or surface/dust minerals. Narrow features near 2.00 ??m, which could potentially be very diagnostic of CO2 ice clouds, suffer from contamination by Mars atmospheric CO2 absorptions and are difficult to interpret because of the rather poor knowledge of surface elevation at high latitudes. These results indicate that future ground-based, Earth-orbital, and spacecraft studies over a more extended span of the seasonal cycle should yield substantial information on the style and timing of volatile transport on Mars, as well as a more detailed understanding of

  4. Ultraviolet detection using TiO2 nanowire array with Ag Schottky contact

    NASA Astrophysics Data System (ADS)

    Chinnamuthu, P.; Dhar, J. C.; Mondal, A.; Bhattacharyya, A.; Singh, N. K.

    2012-04-01

    The glancing angle deposition technique has been employed to synthesize TiO2 nanowire (NW) arrays which have been characterized by x-ray diffraction, field emission-scanning electron microscopy and high resolution transmission electron microscopy. Optical absorption measurements show the absorption edge at 3.42 eV and 3.48 eV for TiO2 thin film (TF) and NW, respectively. The blue shift in absorption band is attributed to quantum confinement in NW structures. Photoluminescence measurement revealed oxygen-defect-related emission at 425 nm (˜2.9 eV). Ag/TiO2 (NW) and Ag/TiO2 (TF) contacts exhibit Schottky behaviour, and a higher turn-on voltage (˜6.5 V) was observed for NW devices than that of TF devices (˜5.25 V) under dark condition. In addition, TiO2-NW-based devices show twofold improvement in photodetection efficiency in the UV region, compared with TiO2-TF-based devices.

  5. Direct absorption spectroscopy sensor for temperature and H2O concentration of flat flame burner

    NASA Astrophysics Data System (ADS)

    Duan, Jin-hu; Jin, Xing; Wang, Guang-yu; Qu, Dong-sheng

    2016-01-01

    A tunable diode laser absorption sensor, based on direct absorption spectroscopy and time division multiplexing scheme, was developed to measure H2O concentration and temperature of flat flame burner. At the height of 15mm from the furnace surface, temperature and concentration were measured at different equivalence ratios. Then the distance between the laser and the furnace surface was changed while the equivalence ratio was fixed at 1 and experiments were performed to measure temperature and H2O concentration at every height. At last flame temperatures and H2O concentrations were obtained by simulation and computational analysis and these combustion parameters were compared with the reference. The results showed that the experimental results were in accordance with the reference values. Temperature errors were less than 4% and H2O component concentration errors were less than 5%and both of them reached their maximum when the equivalent ratio was set at 1. The temperature and H2O concentration increased with the height from furnace surface to laser when it varied from 3mm to 9mm and it decreased when it varied from 9mm to 30mm and they reached their maximum at the height of 9mm. Keywords: tunable diode laser, direct absorption spectroscopy

  6. Tailoring optical properties of TiO2-Cr co-sputtered films using swift heavy ions

    NASA Astrophysics Data System (ADS)

    Gupta, Ratnesh; Sen, Sagar; Phase, D. M.; Avasthi, D. K.; Gupta, Ajay

    2018-05-01

    Effect of 100 MeV Au7+ ion irradiation on structure and optical properties of Cr-doped TiO2 films has been studied using X-ray photoelectron spectroscopy, soft X-ray absorption spectroscopy, UV-Visible spectroscopy, X-ray reflectivity, and atomic force microscopy. X-ray reflectivity measurement implied that film thickness reduces as a function of ion fluence while surface roughness increases. The variation in surface roughness is well correlated with AFM results. Ion irradiation decreases the band gap energy of the film. Swift heavy ion irradiation enhances the oxygen vacancies in the film, and the extra electrons in the vacancies act as donor-like states. In valence band spectrum, there is a shift in the Ti3d peak towards lower energies and the shift is equivalent to the band gap energy obtained from UV spectrum. Evidence for band bending is also provided by the corresponding Ti XPS peak which exhibits a shift towards lower energy due to the downward band bending. X-ray absorption studies on O Kand Cr L3,2 edges clearly indicate that swift heavy ion irradiation induces formation of Cr-clusters in TiO2 matrix.

  7. Characterization of the thin layer photocatalysts TiO2 and V2O5- and Fe2O3- doped TiO2 prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Nguyen, Quoc Tuan; Thoang Ho, Si; Nguyen, Tri

    2013-09-01

    The catalysts TiO2 and TiO2 doped with Fe and V were prepared using the sol-gel method. TiO2-modified samples were obtained in the form of a thick film on pyrex glass sticks and tubes and were used as catalysts in the gas phase photo-oxidation of p-xylene. The physico-chemical characteristics of the catalysts were determined using the methods of Brunauer-Emmett-Teller adsorption, x-ray diffraction, and infrared, ultraviolet and visible and Raman spectroscopies. The experimental results show that the introduction of V did not expand the region of light absorption, but slightly reduced the size of the TiO2 particles, and reduced the number of OH-groups, which should decrease the photocatalytic activity and efficiency of the obtained catalysts compared to those of pure TiO2. The Fe-doped TiO2 samples, in contrast, are characterized by an extension of the spectrum of photon absorption to the visible region with wavenumbers λ up to 464 nm and the values of their band gap energy decreased to lower quantities (up to 2.67 eV), therefore they should have higher catalytic activity and conversion efficiency of p-xylene in the visible region than the original sample. For these catalysts, a combined utilization of radiation by ultraviolet (λ = 365 nm) and visible (λ = 470 nm) light increased the activity and the yield in p-xylene conversion by a factor of around 2-3, as well as making these quantities more stable in comparison with those of TiO2-P25 Degussa.

  8. Review of the absorption spectra of solid O2 and N2 as they relate to contamination of a cooled infrared telescope

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1977-01-01

    During contamination studies for the liquid helium cooled shuttle infrared telescope facility, a literature search was conducted to determine the absorption spectra of the solid state of homonuclear molecules of O2 and N2, and ascertain what laboratory measurements of the solid have been made in the infrared. With the inclusion of one unpublished spectrum, the absorption spectrum of the solid oxygen molecule has been thoroughly studied from visible to millimeter wavelengths. Only two lines appear in the solid that do not also appear in the gas or liquid. A similar result is implied for the solid nitrogen molecule because it also is homonuclear. The observed infrared absorption lines result from lattice modes of the alpha phase of the solid, and disappear at the warmer temperatures of the beta, gamma, and liquid phases. They are not observed from polycrystalline forms of O2, while strong scattering is. Scattering, rather than absorption, is considered to be the principal natural contamination problem for cooled infrared telescopes in low earth orbit.

  9. Continuum definition for Ceres absorption bands at 3.1, 3.4 and 4.0 μm

    NASA Astrophysics Data System (ADS)

    Galiano, A.; Palomba, E.; Longobardo, A.; Zinzi, A.; De Sanctis, M. C.; Raponi, A.; Carrozzo, F. G.; Ciarniello, M.; Dirri, F.

    2017-09-01

    The images and hyperspectral data acquired during various Dawn mission phases (e.g. Survey, HAMO and LAMO) allowed identifying regions of different albedo on Ceres surface, where absorption bands located at 3.4 and 4.0 μm can assume different shapes. The 3.1 μm feature is observed on the entire Ceres surface except on Cerealia Facula, the brightest spot located on the dome of Occator crater. To perform a mineralogical investigation, absorption bands in reflectance spectra should be properly isolated by removing spectral continuum; hence, parameters as band centers and band depths must be estimated. The problem in the defining the continuum is in the VIR spectral range, which ends at 5.1 μm even though the reliable data, where the thermal contribution is properly removed, stops at 4.2 μm. Band shoulders located at longer wavelengths cannot be estimated. We defined different continua, with the aim to find the most appropriate to isolate the three spectral bands, whatever the region and the spatial resolution of hyperspectral images. The linear continuum seems to be the most suitable definition for our goals. Then, we performed an error evaluation on band depths and band centers introduced by this continuum definition.

  10. Investigation on charge transfer bands of Ce 4+ in Sr 2CeO 4 blue phosphor

    NASA Astrophysics Data System (ADS)

    Li, Ling; Zhou, Shihong; Zhang, Siyuan

    2008-03-01

    Bulk and nano-materials Sr2CeO4 were prepared by solid-state reaction and sol-gel technique, respectively. Photoluminescence shows that luminescence has the characteristic of a ligand-to-metal charge transfer (CT) emission. Compared with bulk Sr2CeO4, the nano-material exhibits stronger emission intensity, longer decay time, and higher CT excitation energy. Three CT excitation peaks were observed in both bulk and nano samples. Based on the theoretical calculations of the average energy gap of the chemical bond using the dielectric theory of complex crystal, the highest and the lowest energy CT bands were assigned to the transitions O1 → Ce4+ and O2 → Ce4+, respectively. The middle bands were due to the superposition of the transitions Ce-O1 and Ce-O2.

  11. Would the solvent effect be the main cause of band shift in the theoretical absorption spectrum of large lanthanide complexes?

    NASA Astrophysics Data System (ADS)

    Freire, Ricardo O.; Rodrigues, Nailton M.; Rocha, Gerd B.; Gimenez, Iara F.; da Costa Junior, Nivan B.

    2011-06-01

    As most reactions take place in solution, the study of solvent effects on relevant molecular properties - either by experimental or theoretical methods - is crucial for the design of new processes and prediction of technological properties. In spite of this, only few works focusing the influence of the solvent nature specifically on the spectroscopic properties of lanthanide complexes can be found in the literature. The present work describes a theoretical study of the solvent effect on the prediction of the absorption spectra for lanthanide complexes, but other possible relevant factors have been also considered such as the molecular geometry and the excitation window used for interaction configuration (CI) calculations. The [Eu(ETA) 2· nH 2O] +1 complex has been chosen as an ideal candidate for this type of study due to its small number of atoms (only 49) and also because the absorption spectrum exhibits a single band. Two Monte Carlo simulations were performed, the first one considering the [Eu(ETA) 2] +1 complex in 400 water molecules, evidencing that the complex presents four coordinated water molecules. The second simulation considered the [Eu(ETA) 2·4H 2O] +1 complex in 400 ethanol molecules, in order to evaluate the solvent effect on the shift of the maximum absorption in calculated spectra, compared to the experimental one. Quantum chemical studies were also performed in order to evaluate the effect of the accuracy of calculated ground state geometry on the prediction of absorption spectra. The influence of the excitation window used for CI calculations on the spectral shift was also evaluated. No significant solvent effect was found on the prediction of the absorption spectrum for [Eu(ETA) 2·4H 2O] +1 complex. A small but significant effect of the ground state geometry on the transition energy and oscillator strength was also observed. Finally it must be emphasized that the absorption spectra of lanthanide complexes can be predicted with great accuracy

  12. High-resolution spectroscopy and global analysis of CF4 rovibrational bands to model its atmospheric absorption

    NASA Astrophysics Data System (ADS)

    Carlos, M.; Gruson, O.; Richard, C.; Boudon, V.; Rotger, M.; Thomas, X.; Maul, C.; Sydow, C.; Domanskaya, A.; Georges, R.; Soulard, P.; Pirali, O.; Goubet, M.; Asselin, P.; Huet, T. R.

    2017-11-01

    CF4, or tetrafluoromethane, is a chemically inert and strongly absorbing greenhouse gas, mainly of anthropogenic origin. In order to monitor and reduce its atmospheric emissions and concentration, it is thus necessary to obtain an accurate model of its infrared absorption. Such models allow opacity calculations for radiative transfer atmospheric models. In the present work, we perform a global analysis (divided into two distinct fitting schemes) of 17 rovibrational bands of CF4. This gives a reliable model of many of its lower rovibrational levels and allows the calculation of the infrared absorption in the strongly absorbing ν3 region (1283 cm-1 / 7.8 μm), including the main hot band, namely ν3 +ν22 as well as ν3 +ν1 -ν1 ; we could also extrapolate the ν3 +ν4 -ν4 absorption. This represents almost 92% of the absorption at room temperature in this spectral region. A new accurate value of the C-F bond length is evaluated to re = 1.314860(21) Å. The present results have been used to update the HITRAN, GEISA and TFMeCaSDa (VAMDC) databases.

  13. Preparation of TiO2-SiO2 via sol-gel method: Effect of Silica precursor on Catalytic and Photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Fatimah, I.

    2017-02-01

    TiO2-SiO2have been synthesized by the sol-gel method from titanium isopropoxide and varied silica precursors: tetraethyl orthosilicate and tetra methyl ortho silicate. To study the effect of the precursor, prepared materials were characterized by X-ray diffraction, scanning electron microscopy, Diffuse Reflectance UV-vis optical absorption, and also gas sorption analysis. XRD patterns showed the formation of TiO2 anatase in the TiO2-SiO2 composite with different crystallite size from different silica precursor as well as the different surface morphology. The DRUV-vis absorption spectra exhibit similar band gap energy correspond to 3.21eV value while the surface area, pore volume and pore radius of the materials seems to be affected by the precursor. The higher specific surface area contributes to give the enhanced activity in phenol hydroxylation and methylene blue photodegradation.

  14. A computational study on the photoelectric properties of various Bi2O3 polymorphs as visible-light driven photocatalysts.

    PubMed

    Wang, Fang; Cao, Kun; Zhang, Qian; Gong, Xuedong; Zhou, Ying

    2014-11-01

    This paper presents first-principle studies on the photoelectric properties of various Bi2O3 polymorphs. The intrinsic reason of different photocatalytic activities was revealed by electronic structures and optical features. Results showed that for α, β, and γ-Bi2O3, the top of valence bands were mainly constructed by Bi6s and O2p orbitals, and the bottom of conduction bands were dominantly composed by Bi6p orbital. However, two intermediate bands were found at the Fermi level for γ-Bi2O3, which leads to a two-step transition from the top of valence band to the bottom of conduction band and facilitates electron transition under irradiation. Absent forbidden gap was found in δ-Bi2O3, resulting in a semimetallic character due to its intrinsic oxygen vacancy and high ionic conductivity. Moreover, the optical properties of α, β, and γ-Bi2O3 were investigated by absorption spectrum, dielectric constant function, and energy loss spectroscopy. We concluded that the photocatalytic activities followed in the order of γ-Bi2O3 > β-Bi2O3 > α-Bi2O3, in accord with the experimental report. Calculation results illustrated the experimental observations and provided a useful guidance in exploring promising visible-light semiconductor photocatalysts.

  15. Surface modification of TiO{sub 2} nanoparticles with carotenoids. EPR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konovalova, T.A.; Kispert, L.D.; Konovalov, V.V.

    1999-06-03

    Among the semiconductors, titanium dioxide is the most suitable for many environmental applications. EPR measurements demonstrate efficient charge separation on carotenoid-modified titanium dioxide nanoparticles (7 nm). Strong complexation of carotenoids containing terminal carboxy groups ({minus}CO{sub 2}H) with the TiO{sub 2} surface leads to electron transfer from the adsorbed carotenoid molecule to the surface trapping site. For these systems, EPR signals of the carotenoid radical cations Car{sup {sm_bullet}+} and the electrons trapped on the TiO{sub 2} are observed before irradiation (77 K). Their UV-visible spectra show an absorption band with a maximum near 650 nm that is characteristic of the trappedmore » electrons. Surface modification of the TiO{sub 2} by other carotenoids results in the formation of a complex with an optical absorption band near 545 nm. These systems form charge-separated pairs [Car{sup {sm_bullet}+}{hor_ellipsis}TiO{sub 2}(e{sup {minus}}{sub tr}){sub surf}. TiO{sub 2}(e{sup {minus}}{sub tr}){sub latt}] only upon 365--600 nm illumination at 77 K. Complexation of the TiO{sub 2} colloids with carotenoids enhances spatial charge separation, shifts the absorption threshold into the visible region, and thus greatly improves the reducing ability of the semiconductor. Photoreduction of acceptor molecules such as 2,5-dichloro-1,4-benzoquinone, nitrobenzene, and oxygen is demonstrated.« less

  16. Absorption sensor for CO in combustion gases using 2.3 µm tunable diode lasers

    NASA Astrophysics Data System (ADS)

    Chao, X.; Jeffries, J. B.; Hanson, R. K.

    2009-11-01

    Tunable diode laser absorption spectroscopy of CO was studied in the controlled laboratory environments of a heated cell and a combustion exhaust rig. Two absorption lines, R(10) and R(11) in the first overtone band of CO near 2.3 µm, were selected from a HITRAN simulation to minimize interference from water vapor at a representative combustion exhaust temperature (~1200 K). The linestrengths and collision broadening coefficients for these lines were measured in a heated static cell. This database was then used in a comparative study of direct absorption and wavelength-modulation absorption. CO concentration measurements using scanned-wavelength direct absorption (DA) and wavelength modulation with the second-harmonic signal normalized by the first-harmonic signal (WMS-2f/1f) all agreed with those measured by a conventional gas sampling analyzer over the range from <10 ppm to 2.3%. As expected, water vapor was found to be the dominant source of background interference for CO detection in combustion flows at high temperatures. Water absorption was measured to a high spectral resolution within the wavelength region 4295-4301 cm-1 at 1100 K, and shown to produce <10 ppm level interference for CO detection in combustion exhausts at temperatures up to 1200 K. We found that the WMS-2f/1f strategy avoids the need for WMS calibration measurements but requires characterization of the wavelength and injection-current intensity modulation of the specific diode laser. We conclude that WMS-2f/1f using the selected R(10) or R(11) transitions in the CO overtone band holds good promise for sensitive in situ detection of ppm-level CO in combustion flows, with high resistance to interference absorption from H2O.

  17. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β -Ga2O3

    NASA Astrophysics Data System (ADS)

    Mock, Alyssa; Korlacki, Rafał; Briley, Chad; Darakchieva, Vanya; Monemar, Bo; Kumagai, Yoshinao; Goto, Ken; Higashiwaki, Masataka; Schubert, Mathias

    2017-12-01

    We employ an eigenpolarization model including the description of direction dependent excitonic effects for rendering critical point structures within the dielectric function tensor of monoclinic β -Ga2O3 yielding a comprehensive analysis of generalized ellipsometry data obtained from 0.75-9 eV. The eigenpolarization model permits complete description of the dielectric response. We obtain, for single-electron and excitonic band-to-band transitions, anisotropic critical point model parameters including their polarization vectors within the monoclinic lattice. We compare our experimental analysis with results from density functional theory calculations performed using the Gaussian-attenuation-Perdew-Burke-Ernzerhof hybrid density functional. We present and discuss the order of the fundamental direct band-to-band transitions and their polarization selection rules, the electron and hole effective mass parameters for the three lowest band-to-band transitions, and their excitonic contributions. We find that the effective masses for holes are highly anisotropic and correlate with the selection rules for the fundamental band-to-band transitions. The observed transitions are polarized close to the direction of the lowest hole effective mass for the valence band participating in the transition.

  18. Effect of Germanium on the TiO2 Photoanode for Dye Sensitized Solar Cell Applications. A Potential Sintering Aid

    NASA Astrophysics Data System (ADS)

    Ahmad, M. S.; Pandey, AK; Rahim, N. A.

    2018-05-01

    Anatase titanium-germanium (TiO2-Ge) nanocomposite has been prepared by using colloidal suspension process and investigated for photoanode to be used in dye sensitized solar cell. Ge possesses lower band gap energy compared to TiO2 and has the capability to absorb infrared region of solar spectrum. Its remarkable absorption and good electron transfer ability due to lower band gap energy makes it a potential candidate material in the field of DSSCs to counter important disadvantages such as high probability of electron recombination reactions and absorption of small region (UV region) of solar spectrum. Another advantage is its low sintering temperature which proved to be an added advantage to increase inter-particle contact which in turn leads to improved electron transfer. Scanning electron microscopy (SEM), uv-vis spectroscopy and electron impedance spectroscopy (EIS) have been employed to evaluate the effect of Ge on TiO2photoanode.

  19. Constructing Repairable Meta-Structures of Ultra-Broad-Band Electromagnetic Absorption from Three-Dimensional Printed Patterned Shells.

    PubMed

    Song, Wei-Li; Zhou, Zhili; Wang, Li-Chen; Cheng, Xiao-Dong; Chen, Mingji; He, Rujie; Chen, Haosen; Yang, Yazheng; Fang, Daining

    2017-12-13

    Ultra-broad-band electromagnetic absorption materials and structures are increasingly attractive for their critical role in competing with the advanced broad-band electromagnetic detection systems. Mechanically soft and weak wax-based materials composites are known to be insufficient to serve in practical electromagnetic absorption applications. To break through such barriers, here we developed an innovative strategy to enable the wax-based composites to be robust and repairable meta-structures by employing a three-dimensional (3D) printed polymeric patterned shell. Because of the integrated merits from both the dielectric loss wax-based composites and mechanically robust 3D printed shells, the as-fabricated meta-structures enable bear mechanical collision and compression, coupled with ultra-broad-band absorption (7-40 and 75-110 GHz, reflection loss  smaller than -10 dB) approaching state-of-the-art electromagnetic absorption materials. With the assistance of experiment and simulation methods, the design advantages and mechanism of employing such 3D printed shells for substantially promoting the electromagnetic absorption performance have been demonstrated. Therefore, such universal strategy that could be widely extended to other categories of wax-based composites highlights a smart stage on which high-performance practical multifunction meta-structures with ultra-broad-band electromagnetic absorption could be envisaged.

  20. Photoluminescence of samarium-doped TiO{sub 2} nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Dong Jin; Sekino, Tohru, E-mail: sekino@tagen.tohoku.ac.jp; Tsukuda, Satoshi

    2011-10-15

    Samarium (Sm)-modified TiO{sub 2} nanotubes (TNTs) were synthesized by low-temperature soft chemical processing. X-ray powder diffraction analyses of the synthesized Sm-doped and non-doped TNTs show a broad peak near 2{theta}=10{sup o}, which is typical of TNTs. The binding energy of Sm {sup 3}d{sub 5/2} for 10 mol% Sm-doped TNT (1088.3 eV) was chemically shifted from that of Sm{sub 2}O{sub 3} (1087.5 eV), showing that Sm existed in the TiO{sub 2} lattice. Sm-doped TNTs clearly exhibited red fluorescence, corresponding to the doped Sm{sup 3+} ion in the TNT lattice. The Sm-doped TNT excitation spectrum exhibited a broad curve, which was similarmore » to the UV-vis optical absorption spectrum. Thus, it was considered that the photoluminescence emission of Sm{sup 3+}-doped TNT with UV-light irradiation was caused by the energy transfer from the TNT matrix via the band-to-band excitation of TiO{sub 2} to the Sm{sup 3+} ion. - Graphical Abstract: Samarium-doped TiO{sub 2} nanotubes (TNTs) having a nanotubular structure were synthesized by soft chemical route. It was revealed that the energy associated by the band-to-band excitation of TNT matrix transferred to the doped Sm{sup 3+} ions in the lattice, resulting in emission of strong and visible red fluorescence. Highlights: > Sm-doped TiO{sub 2} nanotubes synthesized by low-temperature soft chemical processing. > Sm{sup 3+} substitutes Ti{sup 4+} ions in the nanotube lattice. > Clear fluorescent emission due to the f-f transition at the Sm{sup 3+} in a crystal field environment. > Band-to-band excitation of TiO{sub 2} and followed energy transfer to Sm{sup 3+} causes the luminescence.« less

  1. Ba 2TeO as an optoelectronic material: First-principles study

    DOE PAGES

    Sun, Jifeng; Shi, Hongliang; Du, Mao-Hua; ...

    2015-05-21

    The band structure, optical and defects properties of Ba 2TeO are systematically investigated using density functional theory with a view to understanding its potential as an optoelectronic or transparent conducting material. Ba 2TeO crystallizes with tetragonal structure (space group P4/nmm) and with a 2.93 eV optical band gap1. We find relatively modest band masses for both electrons and holes suggesting applications. Optical properties show a infrared-red absorption when doped. This could potentially be useful for combining wavelength filtering and transparent conducting functions. Furthermore, our defect calculations show that Ba 2TeO is intrinsically p-type conducting under Ba-poor condition. However, the spontaneousmore » formation of the donor defects may constrain the p-type transport properties and would need to be addressed to enable applications.« less

  2. Attikaite, Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O, a new mineral species

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Pekov, I. V.; Zadov, A. E.

    2007-12-01

    Attikaite, a new mineral species, has been found together with arsenocrandalite, arsenogoyazite, conichalcite, olivenite, philipsbornite, azurite, malachite, carminite, beudantite, goethite, quartz, and allophane at the Christina Mine No. 132, Kamareza, Lavrion District, Attiki Prefecture (Attika), Greece. The mineral is named after the type locality. It forms spheroidal segregations (up to 0.3 mm in diameter) consisting of thin flexible crystals up to 3 × 20 × 80 μm in size. Its color is light blue to greenish blue, with a pale blue streak. The Mohs’ hardness is 2 to 2.5. The cleavage is eminent mica-like parallel to {001}. The density is 3.2(2) g/cm3 (measured in heavy liquids) and 3.356 g/cm3 (calculated). The wave numbers of the absorption bands in the infrared spectrum of attikaite are (cm-1; sh is shoulder; w is a weak band): 3525 sh, 3425, 3180, 1642, 1120 w, 1070 w, 1035 w, 900 sh, 874, 833, 820, 690 w, 645 w, 600 sh, 555, 486, 458, and 397. Attikaite is optically biaxial, negative, α = 1.642(2), β = γ = 1.644(2) ( X = c) 2 V means = 10(8)°, and 2 V calc = 0°. The new mineral is microscopically colorless and nonpleochroic. The chemical composition (electron microprobe, average over 4 point analyses, wt %) is: 0.17 MgO, 17.48 CaO, 0.12 FeO, 16.28 CuO, 10.61 Al2O3, 0.89 P2O5, 45.45 As2O5, 1.39 SO3, and H2O (by difference) 7.61, where the total is 100.00. The empirical formula calculated on the basis of (O,OH,H2O)22 is: Ca2.94Cu{1.93/2+} Al1.97Mg0.04Fe{0.02/2+} [(As3.74S0.16P0.12)Σ4.02O16.08](OH)3.87 · 2.05H2 O. The simplified formula is Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O. Attikaite is orthorhombic, space group Pban, Pbam or Pba2; the unit-cell dimensions are a = 10.01(1), b = 8.199(5), c = 22.78(1) Å, V = 1870(3) Å3, and Z = 4. In the result of the ignition of attikaite for 30 to 35 min at 128 140°, the H2O bands in the IR spectrum disappear, while the OH-group band is not modified; the weight loss is 4.3%, which approximately corresponds to two H2O

  3. Fundamental bands of S(32)O2(16)

    NASA Technical Reports Server (NTRS)

    Fox, K.; Tejwani, G. D. T.; Corice, R. J., Jr.

    1972-01-01

    The infrared-active vibration-rotation fundamentals of sulfur dioxide were measured with moderately high spectral resolution. Quantum number assignments were made for spectral lines from J = O to 57, by comparison with theoretically computed spectra which include the effects of centrifugal distortion. The following values for the band centers were determined: nu sub 1 = 1151.65 + or - 0.10/cm, nu sub 2 = 517.75 + or - 0.10/cm, and nu sub 3 = 1362.00 + or - 0.10/cm. Intensities of the observed lines have also been computed. Dipole moment derivatives were obtained.

  4. Luminescence and energy transfer of Tb3+-doped BaO-Gd2O3-Al2O3-B2O3-SiO2 glasses.

    PubMed

    Zuo, Chenggang; Huang, Jinze; Liu, Shaoyou; Xiao, Anguo; Shen, Youming; Zhang, Xiangyang; Zhou, Zhihua; Zhu, Ligang

    2017-12-05

    Transparent Tb 3+ -doped BaO-Gd 2 O 3 -Al 2 O 3 -B 2 O 3 -SiO 2 glasses with the greater than 4g/cm 3 were prepared by high temperature melting method and its luminescent properties have been investigated by measured UV-vis transmission, excitation, emission and luminescence decay spectra. The transmission spectrum shows there are three weak absorption bands locate at about 312, 378 and 484nm in the glasses and it has good transmittance in the visible spectrum region. Intense green emission can be observed under UV excitation. The effective energy transfer from Gd 3+ ion to Tb 3+ ion could occur and sensitize the luminescence of Tb 3+ ion. The green emission intensity of Tb 3+ ion could change with the increasing SiO 2 /B 2 O 3 ratio in the borosilicate glass matrix. With the increasing concentration of Tb 3+ ion, 5 D 4 → 7 F J transitions could be enhanced through the cross relaxation between the two nearby Tb 3+ ions. Luminescence decay time of 2.12ms from 546nm emission is obtained. The results indicate that Tb 3+ -doped BaO-Gd 2 O 3 -Al 2 O 3 -B 2 O 3 -SiO 2 glasses would be potential scintillating material for applications in X-ray imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection.

    PubMed

    Senapati, Samarpita; Srivastava, Suneel Kumar; Singh, Shiv Brat; Kulkarni, Ajit R

    2014-11-01

    The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous. FESEM images established the growth of iron nanorods from the annealed product and also formation of silica and silver coating on its surface. The appearance of the characteristics bands in FTIR confirmed the presence of SiO2 on the Fe surface. Magnetic measurements at room temperature indicated the ferromagnetic behavior of as prepared iron nanorods, Fe@SiO2 and silver encapsulated Fe@SiO2 nanostructures. All the samples exhibited strong microwave absorption property in the high frequency range (10GHz), though it is superior for Ag encapsulated Fe@SiO2 (-14.7dB) compared with Fe@SiO2 (-9.7dB) nanostructures of the same thickness. The synthesized Ag encapsulated Fe@SiO2 nanostructure also exhibited the SERS phenomena, which is useful in the detection of the carcinogenic dye crystal violet (CV) upto the concentration of 10(-10)M. All these findings clearly demonstrate that the Ag encapsulated Fe@SiO2 nanostructure could efficiently be used in the environmental remediation. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Improvements to Shortwave Absorption in the GFDL General Circulation Model Radiation Code

    NASA Astrophysics Data System (ADS)

    Freidenreich, S.

    2015-12-01

    The multiple-band shortwave radiation parameterization used in the GFDL general circulation models is being revised to better simulate the disposition of the solar flux in comparison with line-by-line+doubling-adding reference calculations based on the HITRAN 2012 catalog. For clear skies, a notable deficiency in the older formulation is an underestimate of atmospheric absorption. The two main reasons for this is the neglecting of both H2O absorption for wavenumbers < 2500 cm-1 and the O2 continuum. Further contributions to this underestimate are due to neglecting the effects of CH4, N2O and stratospheric H2O absorption. These issues are addressed in the revised formulation and result in globally average shortwave absorption increasing from 74 to 78 Wm-2. The number of spectral bands considered remains the same (18), but the number of pseudomonochromatic intervals (based mainly on the exponential-sum-fit technique) for the determination of H2O absorption is increased from 38 to 74, allowing for more accuracy in its simulation. Also, CO2 absorption is now determined by the exponential-sum-fit technique, replacing an algebraic absorptivity expression in the older parameterization; this improves the simulation of the heating in the stratosphere. Improvements to the treatment of multiple scattering are currently being tested. This involves replacing the current algorithm, which consists of the two stream delta-Eddington, with a four stream algorithm. Initial results show that in most, but not all cases these produce better agreement with the reference doubling-adding results.

  7. Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system

    NASA Astrophysics Data System (ADS)

    Hivrekar, Mahesh M.; Bhoyar, D. N.; Mande, V. K.; Dhole, V. V.; Solunke, M. B.; Jadhav, K. M.

    2018-05-01

    Zinc borate glass activated with rare earth oxide (Nd2O3, Sm2O3) of Na2O-Li2O-ZnO-B2O3 quaternary system has been prepared successfully by melt quenching method. The nucleation and growth of RE oxide were controlled temperature range 950-1000° C and rapid cooling at room temperature. The physical, structural and optical properties were characterized by using X-ray diffraction (XRD), SEM, Ultraviolet-visible spectroscopy (UV-Vis). XRD and SEM studies confirmed the amorphous nature, surface morphology of prepared zinc borate glass. The physical parameters like density, molar volume, molar mass of Nd3+, Sm3+ doped borate glass are summarized in the present article. The optical absorption spectra along with tauc's plot are presented. The optical energy band gap increases due to the addition of rare earth oxide confirming the role of network modifier.

  8. Enhancement of photoelectrochemical activity of SnS thin-film photoelectrodes using TiO2, Nb2O5, and Ta2O5 metal oxide layers

    NASA Astrophysics Data System (ADS)

    Vequizo, Junie Jhon M.; Yokoyama, Masanori; Ichimura, Masaya; Yamakata, Akira

    2016-06-01

    Tin sulfide (SnS) fine photoelectrodes fabricated by three-step pulsed electrodeposition were active for H2 evolution. The incident-photon-conversion-efficiency increases from 900 nm and offers a good fit with the absorption spectrum. The activity was enhanced by 3.4, 3.0, and 1.8 times compared to bare SnS by loading Nb2O5, TiO2, and Ta2O5, respectively. Nb2O5 was most efficient because its conduction band is low enough to facilitate effective electron transfer from SnS; it also has sufficiently high potential for H2 evolution. The overall activity is determined by the competitive interfacial electron transfer between SnS/metal-oxide and metal-oxide/water. Therefore, constructing appropriate heterojunctions is necessary for further improving photoelectrochemical systems.

  9. Cationic (V, Y)-codoped TiO2 with enhanced visible light induced photocatalytic activity: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Khan, Matiullah; Cao, Wenbin

    2013-11-01

    To employ TiO2 as an efficient photocatalyst, high reactivity under visible light and improved separation of photoexcited carriers are required. An effective co-doping approach is applied to modify the photocatalytic properties of TiO2 by doping vanadium (transition metal) and yttrium (rare earth element). V and/or Y codoped TiO2 was prepared using hydrothermal method without any post calcination for crystallization. Based on density functional theory, compensated and noncompensated V, Y codoped TiO2 models were constructed and their structural, electronic, and optical properties were calculated. Through combined experimental characterization and theoretical modeling, V, Y codoped TiO2 exhibited high absorption coefficient with enhanced visible light absorption. All the prepared samples showed pure anatase phase and spherical morphology with uniform particle distribution. Electronic band structure demonstrates that V, Y codoping drastically reduced the band gap of TiO2. It is found that both the doped V and Y exist in the form of substitutional point defects replacing Ti atom in the lattice. The photocatalytic activity, evaluated by the degradation of methyl orange, displays that the codoped TiO2 sample exhibits enhanced visible light photocatalytic activity. The synergistic effects of V and Y drastically improved the Brunauer-Emmett-Teller specific surface area, visible light absorption, and electron-hole pair's separation leading to the enhanced visible light catalytic activity.

  10. First-principles study of Mn-S codoped anatase TiO2

    NASA Astrophysics Data System (ADS)

    Li, Senlin; Huang, Jinliang; Ning, Xiangmei; Chen, Yongcha; Shi, Qingkui

    2018-04-01

    In this work, the CASTEP program in Materials Studio 2017 software package was applied to calculate the electronic structures and optical properties of pure anatase TiO2, S-doped, Mn-doped and Mn-S co-doped anatase TiO2 by GGA + U methods based on the density function theory (DFT). The results indicate that the lattice is distorted and the lattice constant is reduce due to doping. The doping also introduces impurity energy levels into the forbidden band. After substitution of Mn for Ti atom, band gap narrowing of anatase TiO2 is caused by the impurity energy levels appearance in the near Fermi surface, which are contributed by Mn-3d orbital, Ti-3d orbital and O-2p orbital hybridization. After substitution of S for O atom, band gap narrowing is creited with the shallow accepter level under the conduction hand of S-3p orbital. The Mn-S co-doped anatase TiO2 could be a potential candidate for a photocatalyst because of tis enhanced absorption ability of visible light. The results can well explain the immanent cause of a band gap narrowing as well as a red shift in the spectrum for doped anatase TiO2.

  11. Intrinsic defect oriented visible region absorption in zinc oxide films

    NASA Astrophysics Data System (ADS)

    Rakhesh, V.; Shankar, Balakrishnan

    2018-05-01

    Zinc Oxide films were deposited on the glass substrate using vacuum arc sputtering technology. Films were prepared in oxygen ambience for 10mA and 15 mA deposition current separately. The UV-Visible spectroscopy of the samples showed that both samples possess sharp absorption near 3.5eV which is the characteristic band gap absorption energy of ZnO films. The absorption coefficient were calculated for the samples and the (αℎϑ)2 vs energy plot is drawn. The plot suggested that in addition to the sharp band edge absorption, the sample prepared at 10mA deposition current showed sharp absorption edge near 1.51eV and that at 15 mA showed absorption edge near 1.47eV. This refers to the presence of an intrinsic defect level which is likely to be deep in the band gap.

  12. Jet-resolved vibronic structure in the higher excited states of N2O - Ultraviolet three-photon absorption spectroscopy from 80,000 to 90,000/cm

    NASA Technical Reports Server (NTRS)

    Patsilinakou, E.; Wiedmann, R. T.; Fotakis, C.; Grant, E. R.

    1989-01-01

    Ionization-detected UV multiphoton absorption spectroscopy of the excited states of N2O is presented, showing Rydberg structure within 20,000/cm of the first ionization threshold. Despite evidence for strong Rydberg-continuum coupling in the form of broadened bands and Fano line-shapes, the Rydberg structure persists, with atomic-like quantum defects and vibration structure well-matched with that of the ion. In the most clearly resolved spectrum, corresponding to the 3p(delta)1Pi state, Renner-Teller and Herzberg-Teller coupling of electronic and vibrational angular momentum are revealed. It is suggested that these mixings are properties of the N2O(+)Pi ion core.

  13. Elastic properties and optical absorption studies of mixed alkali borogermanate glasses

    NASA Astrophysics Data System (ADS)

    Taqiullah, S. M.; Ahmmad, Shaik Kareem; Samee, M. A.; Rahman, Syed

    2018-05-01

    First time the mixed alkali effect (MAE) has been investigated in the glass system xNa2O-(30-x)Li2O-40B2O3- 30GeO2 (0≤x≤30 mol%) through density and optical absorption studies. The present glasses were prepared by melt quench technique. The density of the present glasses varies non-linearly exhibiting mixed alkali effect. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter. From the absorption edge studies, the values of optical band gap energies for all transitions have been evaluated. It was established that the type of electronic transition in the present glass system is indirect allowed. The indirect optical band gap exhibit non-linear behavior with compositional parameter showing the mixed alkali effect.

  14. Infrared absorption spectrum of the simplest deuterated Criegee intermediate CD{sub 2}OO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yu-Hsuan; Nishimura, Yoshifumi; Witek, Henryk A., E-mail: hwitek@mail.nctu.edu.tw, E-mail: yplee@mail.nctu.edu.tw

    We report a transient infrared (IR) absorption spectrum of the simplest deuterated Criegee intermediate CD{sub 2}OO recorded using a step-scan Fourier-transform spectrometer coupled with a multipass absorption cell. CD{sub 2}OO was produced from photolysis of flowing mixtures of CD{sub 2}I{sub 2}, N{sub 2}, and O{sub 2} (13 or 87 Torr) with laser light at 308 nm. The recorded spectrum shows close structural similarity with the spectrum of CH{sub 2}OO reported previously [Y.-T. Su et al., Science 340, 174 (2013)]. The four bands observed at 852, 1017, 1054, and 1318 cm{sup −1} are assigned to the OO stretching mode, two distinctmore » in-plane OCD bending modes, and the CO stretching mode of CD{sub 2}OO, respectively, according to vibrational wavenumbers, IR intensities, rotational contours, and deuterium-isotopic shifts predicted with extensive quantum-chemical calculations. The CO-stretching mode of CD{sub 2}OO at 1318 cm{sup −1} is blue shifted from the corresponding band of CH{sub 2}OO at 1286 cm{sup −1}; this can be explained by a mechanism based on mode mixing and isotope substitution. A band near 936 cm{sup −1}, observed only at higher pressure (87 Torr), is tentatively assigned to the CD{sub 2} wagging mode of CD{sub 2}IOO.« less

  15. Band alignments of different buffer layers (CdS, Zn(O,S), and In{sub 2}S{sub 3}) on Cu{sub 2}ZnSnS{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Chang; Liu, Fangyang; Song, Ning

    2014-04-28

    The heterojunctions of different n-type buffers, i.e., CdS, Zn(O,S), and In{sub 2}S{sub 3} on p-type Cu{sub 2}ZnSnS{sub 4} (CZTS) were investigated using X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) Measurements. The band alignment of the heterojunctions formed between CZTS and the buffer materials was carefully measured. The XPS data were used to determine the Valence Band Offsets (VBO) of different buffer/CZTS heterojunctions. The Conduction Band Offset (CBO) was calculated indirectly by XPS data and directly measured by NEXAFS characterization. The CBO of the CdS/CZTS heterojunction was found to be cliff-like with CBO{sub XPS} = −0.24 ± 0.10 eV and CBO{submore » NEXAFS} = −0.18 ± 0.10 eV, whereas those of Zn(O,S) and In{sub 2}S{sub 3} were found to be spike-like with CBO{sub XPS} = 0.92 ± 0.10 eV and CBO{sub NEXAFS} = 0.87 ± 0.10 eV for Zn(O,S)/CZTS and CBO{sub XPS} = 0.41 ± 0.10 eV for In{sub 2}S{sub 3}/CZTS, respectively. The CZTS photovoltaic device using the spike-like In{sub 2}S{sub 3} buffer was found to yield a higher open circuit voltage (Voc) than that using the cliff-like CdS buffer. However, the CBO of In{sub 2}S{sub 3}/CZTS is slightly higher than the optimum level and thus acts to block the flow of light-generated electrons, significantly reducing the short circuit current (Jsc) and Fill Factor (FF) and thereby limiting the efficiency. Instead, the use of a hybrid buffer for optimization of band alignment is proposed.« less

  16. Visible Light Assisted Photocatalytic Hydrogen Generation by Ta 2O 5/Bi 2O 3, TaON/Bi 2O 3, and Ta 3N 5/Bi 2O 3 Composites

    DOE PAGES

    Adhikari, Shiba; Hood, Zachary D.; More, Karren Leslie; ...

    2015-06-15

    Composites comprised of two semiconducting materials with suitable band gaps and band positions have been reported to be effective at enhancing photocatalytic activity in the visible light region of the electromagnetic spectrum. Here, we report the synthesis, complete structural and physical characterizations, and photocatalytic performance of a series of semiconducting oxide composites. UV light active tantalum oxide (Ta2O5) and visible light active tantalum oxynitride (TaON) and tantalum nitride (Ta 3N 5) were synthesized, and their composites with Bi 2O 3 were prepared in situ using benzyl alcohol as solvent. The composite prepared using equimolar amounts of Bi 2O 3 andmore » Ta 2O 5 leads to the formation of the ternary oxide, bismuth tantalate (BiTaO 4) upon calcination at 1000 °C. The composites and single phase bismuth tantalate formed were characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) surface area measurement, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectroscopy, and photoluminescence. The photocatalytic activities of the catalysts were evaluated for generation of hydrogen using aqueous methanol solution under visible light irradiation (λ ≥ 420 nm). The results show that as-prepared composite photocatalysts extend the light absorption range and restrict photogenerated charge-carrier recombination, resulting in enhanced photocatalytic activity compared to individual phases. The mechanism for the enhanced photocatalytic activity for the heterostructured composites is elucidated based on observed activity, band positions calculations, and photoluminescence data.« less

  17. Rotational dependence of the predissociation linewidths of the Schumann-Runge bands of O2

    NASA Technical Reports Server (NTRS)

    Cheung, A. S.-C.; Mok, D. K.-W.; Jamieson, M. J.; Finch, M.; Yoshino, K.; Dalgarno, A.; Parkinson, W. H.

    1993-01-01

    The rotational coupling constant for the O2 molecule is estimated theoretically, and the predissociation linewidths of the Schumann-Runge bands of vibration levels v = 0-12 are calculated for (O-16)2, (O-16)(O-18), and (O-18)2 molecules in the B 3Sigma-u(-) state. Calculations accounted for both the spin-orbit and rotational couplings with rotational quantum number N up to 20. The theoretical linewidths are compared with experimental widths, showing satisfactory agreement.

  18. Infrared line intensity measurements in the v = 0-1 band of the ClO radical

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Howard, Carleton J.; Hammer, Philip D.; Goldman, Aaron

    1989-01-01

    Integrated line intensity measurements in the ClO-radical fundamental vibrational v = 0-1 band were carried out using a high-resolution Fourier transform spectrometer coupled to a long-path-length absorption cell. The results of a series of measurements designed to minimize systematic errors, yielded a value of the fundamental IR band intensity of the ClO-radical equal to 9.68 + or - 1.45/sq cm per atm at 296 K. This result is consistent with all the earlier published results, with the exception of measurements reported by Kostiuk et al. (1986) and Lang et al. (1988).

  19. Elevated aerosol layers modify the O2O2 absorption measured by ground-based MAX-DOAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Ivan; Berg, Larry K.; Ferrare, Richard A.

    2016-06-01

    The oxygen collisional complex (O2-O2, or O4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O4 correction factor (CFO4) when comparing simulated and measured O4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA’s multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosolmore » Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD ~ 0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD < 0.10 at 477 nm) the measured and calculated O4 dSCDs agreed within 6.4±0.4% (360 nm) and 4.7±0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53« less

  20. Photopyroelectric spectroscopic studies of ZnO-MnO(2)-Co(3)O(4)-V(2)O(5) ceramics.

    PubMed

    Rizwan, Zahid; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2011-01-01

    Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO(2) + 0.4Co(3)O(4) + xV(2)O(5)), x = 0-1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300-800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (E(g)) was 2.11 eV for 0.3 mol% V(2)O(5) at a sintering temperature of 1025 °C as determined from the plot (ρhυ)(2)versushυ. With a further increase in V(2)O(5), the value of E(g) was found to be 2.59 eV. Steepness factor 'σ(A)' and 'σ(B)', which characterize the slope of exponential optical absorption, is discussed with reference to the variation of E(g). XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively.

  1. Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys

    NASA Astrophysics Data System (ADS)

    Jin, Moon-Seog; Kim, Chang-Dae; Jang, Kiwan; Park, Sang-An; Kim, Duck-Tae; Kim, Hyung-Gon; Kim, Wha-Tek

    2006-09-01

    Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys were investigated in the composition region of 0.0 x 0.4 and in the wavelength region of 300 to 2500 nm at 4.8 K and 290 K. We observed several absorption bands in the wavelength regions corresponding to the 4A2(4F) 4T1(4P) transition and the 4A2(4F) 4T1(4F) transition of Co2+ at a tetrahedral Td point symmetry point in the host crystals, as well as unknown absorption bands. The several absorption bands were analyzed in the framework of the crystal-field theory along with the second-order spin-orbit coupling. The unknown absorption bands were assigned as due to phonon-assisted absorption bands. We also investigated the variations of the crystal-field parameter Dq and the Racah parameter B with composition x in the Mgx Cd1-x Se system. The results showed that the crystal-field parameter (Dq ) increases, on the other hand, the Racah parameter (B ) decreases with increasing composition x, which may be connected with an increase in the covalency of the metal-ligand bond with increasing composition x in the Mgx Cd1-x Se system.

  2. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  3. Temperature and pressure dependence of dichloro-difluoromethane (CF2C12) absorption coefficients for CO2 waveguide laser radiation

    NASA Technical Reports Server (NTRS)

    Harward, C. N.

    1977-01-01

    Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.

  4. Photopyroelectric Spectroscopic Studies of ZnO-MnO2-Co3O4-V2O5 Ceramics

    PubMed Central

    Rizwan, Zahid; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2011-01-01

    Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO2 + 0.4Co3O4 + xV2O5), x = 0–1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300–800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (Eg) was 2.11 eV for 0.3 mol% V2O5 at a sintering temperature of 1025 °C as determined from the plot (ρhυ)2 versus hυ. With a further increase in V2O5, the value of Eg was found to be 2.59 eV. Steepness factor ‘σA’ and ‘σB’, which characterize the slope of exponential optical absorption, is discussed with reference to the variation of Eg. XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively. PMID:21673911

  5. Copper doped TiO2 nanoparticles characterized by X-ray absorption spectroscopy, total scattering, and powder diffraction--a benchmark structure-property study.

    PubMed

    Lock, Nina; Jensen, Ellen M L; Mi, Jianli; Mamakhel, Aref; Norén, Katarina; Qingbo, Meng; Iversen, Bo B

    2013-07-14

    Metal functionalized nanoparticles potentially have improved properties e.g. in catalytic applications, but their precise structures are often very challenging to determine. Here we report a structural benchmark study based on tetragonal anatase TiO2 nanoparticles containing 0-2 wt% copper. The particles were synthesized by continuous flow synthesis under supercritical water-isopropanol conditions. Size determination using synchrotron PXRD, TEM, and X-ray total scattering reveals 5-7 nm monodisperse particles. The precise dopant structure and thermal stability of the highly crystalline powders were characterized by X-ray absorption spectroscopy and multi-temperature synchrotron PXRD (300-1000 K). The combined evidence reveals that copper is present as a dopant on the particle surfaces, most likely in an amorphous oxide or hydroxide shell. UV-VIS spectroscopy shows that copper presence at concentrations higher than 0.3 wt% lowers the band gap energy. The particles are unaffected by heating to 600 K, while growth and partial transformation to rutile TiO2 occur at higher temperatures. Anisotropic unit cell behavior of anatase is observed as a consequence of the particle growth (a decreases and c increases).

  6. Optical, structural and thermal properties of sodium metaphosphate glasses containing Bi2O3 with interactions of gamma rays

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; ElBatal, F. H.; ElBadry, K. M.; ElBatal, H. A.

    2017-01-01

    Sodium metaphosphate glasses with successive increasing added Bi2O3 contents (5-40%) were prepared to improve their chemical stability and increase their optical and thermal properties through the additional building BiO6 and BiO3 units. The optical spectrum of the base metaphosphate glass reveals strong UV absorption due to the presence of trace iron (Fe3 +) ions present as impurities. Glasses containing additional 5, 7.5 and 10% Bi2O3 show further band around 406 nm which can be related to absorption of Bi3 + ions. With increasing the Bi2O3 content, this near visible band is observed to disappear indicating peculiar behavior needing further work. Gamma irradiation causes only minor changes in the position of the strong UV peaks but an obvious induced visible broad band centered at 452-460 nm in the base and Bi2O3 containing glasses. This induced band is related to the generation of phosphorus oxygen hole center or non bridging oxygen hole center as revealed by various authors. FTIR results reveal characteristic vibrational bands due to phosphate groups and with the addition of Bi2O3, some interference of Bisbnd O vibrational units are expected. Gamma irradiation causes limited changes in the IR spectra due to suggested shielding effect of the heavy metal oxide Bi2O3.

  7. A density functional study of the effect of hydrogen on electronic properties and band discontinuity at anatase TiO2/diamond interface

    NASA Astrophysics Data System (ADS)

    Wu, Kongping; Liao, Meiyong; Sang, Liwen; Liu, Jiangwei; Imura, Masataka; Ye, Haitao; Koide, Yasuo

    2018-04-01

    Tailoring the electronic states of the dielectric oxide/diamond interface is critical to the development of next generation semiconductor devices like high-power high-frequency field-effect transistors. In this work, we investigate the electronic states of the TiO2/diamond 2 × 1-(100) interface by using first principles total energy calculations. Based on the calculation of the chemical potentials for the TiO2/diamond interface, it is observed that the hetero-interfaces with the C-OTi configuration or with two O vacancies are the most energetically favorable structures under the O-rich condition and under Ti-rich condition, respectively. The band structure and density of states of both TiO2/diamond and TiO2/H-diamond hetero-structures are calculated. It is revealed that there are considerable interface states at the interface of the anatase TiO2/diamond hetero-structure. By introducing H on the diamond surface, the interface states are significantly suppressed. A type-II alignment band structure is disclosed at the interface of the TiO2/diamond hetero-structure. The valence band offset increases from 0.6 to 1.7 eV when H is introduced at the TiO2/diamond interface.

  8. Stratospheric N2O5, CH4, and N2O profiles from IR solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Camy-Peyret, C.; Flaud, J.-M.; Perrin, A.; Rinsland, C. P.; Goldman, A.; Murcray, F. J.

    1993-01-01

    Stratospheric volume mixing ratio profiles of N2O5, CH4, and N2O have been retrieved from a set of 0.052/cm resolution (FWHM) solar occultation spectra recorded at sunrise during a balloon flight from Aire sur l'Adour, France (44 N latitude) on 12 October 1990. The N2O5 results have been derived from measurements of the integrated absorption by the 1246/cm band. Assuming a total intensity of 4.32 x 10 exp -17 cm/molecule/sq cm independent of temperature, the retrieved N2O5 volume mixing ratios in ppbv, interpolated to 2 km height spacings, are 1.64 +/- 0.49 at 37.5 km, 1.92 +/- 0.56 at 35.5 km, 2.06 +/- 0.47 at 33.5 km, 1.95 +/- 0.42 at 31.5 km, 1.60 +/- 0.33 at 29.5 km, 1.26 +/- 0.28 at 27.5 km, and 0.85 +/- 0.20 at 25.5 km. Error bars indicate the estimated 1-sigma uncertainty including the error in the total band intensity. The retrieved profiles are compared with previous measurements and photochemical model results.

  9. Photochemistry of the α-Al 2O 3-PETN interface

    DOE PAGES

    Tsyshevsky, Roman V.; Zverev, Anton; Mitrofanov, Anatoly; ...

    2016-02-29

    Optical absorption measurements are combined with electronic structure calculations to explore photochemistry of an α-Al 2O 3-PETN interface formed by a nitroester (pentaerythritol tetranitrate, PETN, C 5H 8N 4O 12) and a wide band gap aluminum oxide (α-Al 2O 3) substrate. The first principles modeling is used to deconstruct and interpret the α-Al 2O 3-PETN absorption spectrum that has distinct peaks attributed to surface F 0-centers and surfacePETN transitions. We predict the low energy α-Al 2O 3 F 0-centerPETN transition, producing the excited triplet state, and α-Al 2O 3 F- 0-centerPETN charge transfer, generating the PETN anion radical. This impliesmore » that irradiation by commonly used lasers can easily initiate photodecomposition of both excited and charged PETN at the interface. As a result, the feasible mechanism of the photodecomposition is proposed.« less

  10. Structural anisotropy in amorphous SnO2 film probed by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2013-07-01

    Polarization-dependent X-ray absorption measurements reveal the existence of structural anisotropy in amorphous (a-) SnO2 film. The anisotropy is readily seen for the second neighbor interaction whose magnitude differs along three measured directions. The differences can be well accounted for by 10%-20% variation in the Debye-Waller factor. Instead of a single Gaussian distribution found in crystalline SnO2, the Sn-O bond distribution is bimodal in a-SnO2 whose separation shows a weak angular dependence. The oxygen vacancies, existing in the a-SnO2 film in the order of 1021 cm-3, distribute preferentially along the film surface direction.

  11. First-principles C band absorption spectra of SO2 and its isotopologues

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Kumar, Praveen; Kłos, Jacek; Alexander, Millard H.; Poirier, Bill; Guo, Hua

    2017-04-01

    The low-energy wing of the C ˜ B12 ←X˜ 1A1 absorption spectra for SO2 in the ultraviolet region is computed for the 32S,33S,34S and 36S isotopes, using the recently developed ab initio potential energy surfaces (PESs) of the two electronic states and the corresponding transition dipole surface. The state-resolved absorption spectra from various ro-vibrational states of SO2(X˜ 1A1 ) are computed. When contributions of these excited ro-vibrational states are included, the thermally averaged spectra are broadened but maintain their key characters. Excellent agreement with experimental absorption spectra is found, validating the accuracy of the PESs. The isotope shifts of the absorption peaks are found to increase linearly with energy, in good agreement with experiment.

  12. Morphology, structure and optical properties of hydrothermally synthesized CeO2/CdS nanocomposites

    NASA Astrophysics Data System (ADS)

    Mohanty, Biswajyoti; Nayak, J.

    2018-04-01

    CeO2/CdS nanocomposites were synthesized using a two-step hydrothermal technique. The effects of precursor concentration on the optical and structural properties of the CeO2/CdS nanoparticles were systematically studied. The morphology, composition and the structure of the CeO2/CdS nanocomposite powder were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectrum analysis (EDXA) and X-ray diffraction (XRD), respectively. The optical properties of CeO2/CdS nanocomposites were studied by UV-vis absorption and photoluminescence (PL) spectroscopy. The optical band gaps of the CeO2/CdS nanopowders ranged from 2.34 eV to 2.39 eV as estimated from the UV-vis absorption. In the room temperature photoluminescence spectrum of CeO2/CdS nanopowder, a strong blue emission band was observed at 400 nm. Since the powder shows strong visible luminescence, it may be used as a blue phosphor in future. The original article published with this DOI was submitted in error. The correct article was inadvertently left out of the original submission. This has been rectified and the correct article was published online on 16 April 2018.

  13. Reduction of chromium (VI) on the hetero-system CuBi2O4/TiO2 under solar light

    NASA Astrophysics Data System (ADS)

    Lahmar, H.; Benamira, M.; Akika, F. Z.; Trari, M.

    2017-11-01

    The CuBi2O4/TiO2 heterojunction was tested with success for the photo-catalytic reduction of chromate ions under sunlight. CuBi2O4, prepared by nitrate process, was characterised photo-electrochemically. The oxide is stable against photo corrosion by consumption of holes in presence of oxalic acid. The light absorption promotes electrons in the conduction band of the sensitizer (CuBi2O4) with a very negative potential (-1.74 VSCE) to participate in the exchange of the electron with HCrO4-. The enhanced activity is due to electron injection of activated CuBi2O4 into TiO2-CB (-0.97 VSCE). The band gap of the semiconductor CuBi2O4 is 1.50 eV with a direct optical transition. This compound is a p-type semiconductor with a flat band potential of -0.39 VSCE and activation energy of 0.18 eV. The electrochemical impedance spectroscopy was undertaken to study the semiconductor/electrolyte interfacial phenomena. The photoactivity on the heterojunction is strongly enhanced. A remarkable performance is obtained in less than 4 h for a concentration of 30 mg in (Cr (VI)) at pH ∼ 4 and a dose of 1 mg/mL; a 98% reduction has been obtained. The kinetic of chromate photoreduction is well described by the Langmuir-Hinshelwood model. The chromate elimination obeys to a pseudo-first order kinetic with an apparent rate constant of 0.014 min-1.

  14. Fiber-coupled 2.7 µm laser absorption sensor for CO2 in harsh combustion environments

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Goldenstein, C. S.; Jeffries, J. B.; Hanson, R. K.

    2013-05-01

    A tunable diode laser absorption sensor near 2.7 µm, based on 1f-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f), was developed to measure CO2 concentration in harsh combustion flows. Wavelength selection at 3733.48 cm-1 exploited the overlap of two CO2 transitions in the ν1 + ν3 vibrational band at 3733.468 cm-1 and 3733.498 cm-1. Primary factors influencing wavelength selection were isolation and strength of the CO2 absorption lines relative to infrared water absorption at elevated pressures and temperatures. The HITEMP 2010 database was used to model the combined CO2 and H2O absorption spectra, and key line-strength and line-broadening spectroscopic parameters were verified by high-temperature static cell measurements. To validate the accuracy and precision of the WMS-based sensor, measurements of CO2 concentration were carried out in non-reactive shock-tube experiments (P ˜ 3-12 atm, T ˜ 1000-2600 K). The laser was then free-space fiber-coupled with a zirconium fluoride single-mode fiber for remote light delivery to harsh combustion environments, and demonstrated on an ethylene/air pulse detonation combustor at pressures up to 10 atm and temperatures up to 2500 K. To our knowledge, this work represents the first time-resolved in-stream measurements of CO2 concentration in a detonation-based engine.

  15. Infrared Optical Absorption in Low-spin Fe2+-doped SrTiO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comes, Ryan B.; Kaspar, Tiffany C.; Heald, Steve M.

    2016-01-06

    Band gap engineering in SrTiO3 and related titanate perovskites has long been explored due to the intriguing properties of the materials for photocatalysis and photovoltaic applications. A popular approach in the materials chemistry community is to substitutionally dope aliovalent transition metal ions onto the B site in the lattice to alter the valence band. However, in such a scheme there is limited control over the dopant valence, and compensating defects often form. Here we demonstrate a novel technique to controllably synthesize Fe2+- and Fe3+-doped SrTiO3 thin films without formation of compensating defects by co-doping with La3+ ions on the Amore » site. We stabilize Fe2+-doped films by doping with two La ions for every Fe dopant, and find that the Fe ions exhibit a low-spin electronic configuration, producing optical transitions in the near infrared regime and degenerate doping. The novel electronic states observed here offer a new avenue for band gap engineering in perovskites for photocatalytic and photovoltaic applications.« less

  16. Atomic scale origins of sub-band gap optical absorption in gold-hyperdoped silicon

    NASA Astrophysics Data System (ADS)

    Ferdous, Naheed; Ertekin, Elif

    2018-05-01

    Gold hyperdoped silicon exhibits room temperature sub band gap optical absorption, with potential applications as infrared absorbers/detectors and impurity band photovoltaics. We use first-principles density functional theory to establish the origins of the sub band gap response. Substitutional gold AuSi and substitutional dimers AuSi - AuSi are found to be the energetically preferred defect configurations, and AuSi gives rise to partially filled mid-gap defect bands well offset from the band edges. AuSi is predicted to offer substantial sub-band gap absorption, exceeding that measured in prior experiments by two orders of magnitude for similar Au concentration. This suggests that in experimentally realized systems, in addition to AuSi, the implanted gold is accommodated by the lattice in other ways, including other defect complexes and gold precipitates. We further identify that it is energetically favorable for isolated AuSi to form AuSi - AuSi, which by contrast do not exhibit mid-gap states. The formation of dimers and other complexes could serve as nuclei in the earliest stages of Au precipitation, which may be responsible for the observed rapid deactivation of sub-band gap response upon annealing.

  17. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriquez, Michael D.; Allan, Graham R.; Hasselbrack, William E.; Mao, Jianping; Stephen, Mark A.; Abshire, James B.

    2012-01-01

    Accurate measurements of greenhouse gas mixing ratios on a global scale are currently needed to gain a better understanding of climate change and its possible impact on our planet. In order to remotely measure greenhouse gas concentrations in the atmosphere with regard to dry air, the air number density in the atmosphere is also needed in deriving the greenhouse gas concentrations. Since oxygen is stable and uniformly mixed in the atmosphere at 20.95%, the measurement of an oxygen absorption in the atmosphere can be used to infer the dry air density and used to calculate the dry air mixing ratio of a greenhouse gas, such as carbon dioxide or methane. OUT technique of measuring Oxygen uses integrated path differential absorption (IPDA) with an Erbium Doped Fiber Amplifier (EDF A) laser system and single photon counting module (SPCM). It measures the absorbance of several on- and off-line wavelengths tuned to an O2 absorption line in the A-band at 764.7 nm. The choice of wavelengths allows us to maximize the pressure sensitivity using the trough between two absorptions in the Oxygen A-band. Our retrieval algorithm uses ancillary meteorological and aircraft altitude information to fit the experimentally obtained lidar O2 line shapes to a model atmosphere and derives the pressure from the profiles of the two lines. We have demonstrated O2 measurements from the ground and from an airborne platform. In this paper we will report on our airborne measurements during our 2011 campaign for the ASCENDS program.

  18. Evolution of optical properties and band structure from amorphous to crystalline Ga2O3 films

    NASA Astrophysics Data System (ADS)

    Zhang, Fabi; Li, Haiou; Cui, Yi-Tao; Li, Guo-Ling; Guo, Qixin

    2018-04-01

    The optical properties and band structure evolution from amorphous to crystalline Ga2O3 films was investigated in this work. Amorphous and crystalline Ga2O3 films were obtained by changing the growth substrate temperatures of pulsed laser deposition and the crystallinity increase with the rising of substrate temperature. The bandgap value and ultraviolet emission intensity of the films increase with the rising of crystallinity as observed by means of spectrophotometer and cathodoluminescence spectroscopy. Abrupt bandgap value and CL emission variations were observed when amorphous to crystalline transition took place. X-ray photoelectron spectroscopy core level spectra reveal that more oxygen vacancies and disorders exist in amorphous Ga2O3 film grown at lower substrate temperature. The valence band spectra of hard X-ray photoelectron spectroscopy present the main contribution from Ga 4sp for crystalline film deposited at substrate temperature of 500 oC, while extra subgap states has been observed in amorphous film deposited at 300 oC. The oxygen vacancy and the extra subgap density of states are suggested to be the parts of origin of bandgap and CL spectra variations. The experimental data above yields a realistic picture of optical properties and band structure variation for the amorphous to crystalline transition of Ga2O3 films.

  19. Sensor for headspace pressure and H2O concentration measurements in closed vials by tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cai, Tingdong; Wang, Guishi; Cao, Zhensong; Zhang, Weijun; Gao, Xiaoming

    2014-07-01

    The concentration of H2O and the pressure in the headspace of vials are simultaneously measured by a tunable diode laser sensor based on absorption spectroscopy techniques. The 7168.437 cm-1 spectral line of H2O is chosen as the sensing transition for its strong absorption strength and being reasonably far away from its neighboring molecular transitions. In order to prevent interference absorption by ambient water vapor in the room air, a difference between the measured signal and the referenced signal is used to calculate the pressure and H2O concentration in the headspace of vials, eliminating the need for inert gas purges and calibration with known gas. The validation of the sensor is conducted in a static vial, yielding an accuracy of 1.23% for pressure and 3.81% for H2O concentration. The sensitivity of the sensor is estimated to be about 2.5 Torr for pressure and 400 ppm for H2O concentration over a 3 cm absorption path length respectively. Accurate measurements for commercial freeze-dried products demonstrate the in-line applications of the sensor for the pharmaceutical industry.

  20. Structural and Visible-Near Infrared Optical Properties of Cr-Doped TiO2 for Colored Cool Pigments

    NASA Astrophysics Data System (ADS)

    Yuan, Le; Weng, Xiaolong; Zhou, Ming; Zhang, Qingyong; Deng, Longjiang

    2017-11-01

    Chromium-doped TiO2 pigments were synthesized via a solid-state reaction method and studied with X-ray diffraction, SEM, XPS, and UV-VIS-NIR reflectance spectroscopy. The incorporation of Cr3+ accelerates the transition from the anatase phase to the rutile phase and compresses the crystal lattice. Moreover, the particle morphology, energy gap, and reflectance spectrum of Cr-doped TiO2 pigments is affected by the crystal structure and doping concentration. For the rutile samples, some of the Cr3+ ions are oxidized to Cr4+ after sintering at a high temperature, which leads to a strong near-infrared absorption band due to the 3A2 → 3 T1 electric dipole-allowed transitions of Cr4+. And the decrease of the band gap causes an obvious redshift of the optical absorption edges as the doping concentration increases. Thus, the VIS and near-infrared average reflectance of the rutile Ti1 - x Cr x O2 sample decrease by 60.2 and 58%, respectively, when the Cr content increases to x = 0.0375. Meanwhile, the color changes to black brown. However, for the anatase Ti1 - x Cr x O2 pigments, only the VIS reflection spectrum is inhibited by forming some characteristic visible light absorption peaks of Cr3+. The morphology, band gap, and NIR reflectance are not significantly affected. Finally, a Cr-doped anatase TiO2 pigment with a brownish-yellow color and 90% near-infrared reflectance can be obtained.

  1. Effective charge separation in BiOI/Cu2O composites with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Xia, Yongmei; He, Zuming; Yang, Wei; Tang, Bin; Lu, Yalin; Hu, Kejun; Su, Jiangbin; Li, Xiaoping

    2018-02-01

    Novel BiOI/Cu2O composites were designed and synthesized for the first time by coupling reduction method at low temperature. The samples were characterized by XRD, XPS, SEM, EDS, HRTEM, UV-vis (DRS), FTIR and photo-electro-chemical (PEC) analysis. Results showed that the BiOI/Cu2O composites consisted of three-dimensional (3D), hierarchical cauliflower-like structure composed of BiOI nanosheet and Cu2O cubic submicrometer structure, the composite absorption band broadened, and the absorption intensity in the visible region strengthened. And the composites exhibited an excellent photocatalytic performance, which might be attributed to the improvement of the composite absorption and effective charge separation in BiOI/Cu2O composites. In addition, the possible photocatalytic mechanism was proposed.

  2. H2O absorption spectroscopy for determination of temperature and H2O mole fraction in high-temperature particle synthesis systems.

    PubMed

    Torek, Paul V; Hall, David L; Miller, Tiffany A; Wooldridge, Margaret S

    2002-04-20

    Water absorption spectroscopy has been successfully demonstrated as a sensitive and accurate means for in situ determination of temperature and H2O mole fraction in silica (SiO2) particle-forming flames. Frequency modulation of near-infrared emission from a semiconductor diode laser was used to obtain multiple line-shape profiles of H2O rovibrational (v1 + v3) transitions in the 7170-7185-cm(-1) region. Temperature was determined by the relative peak height ratios, and XH2O was determined by use of the line-shape profiles. Measurements were made in the multiphase regions of silane/hydrogen/oxygen/ argon flames to verify the applicability of the diagnostic approach to combustion synthesis systems with high particle loadings. A range of equivalence ratios was studied (phi = 0.47 - 2.15). The results were compared with flames where no silane was present and with adiabatic equilibrium calculations. The spectroscopic results for temperature were in good agreement with thermocouple measurements, and the qualitative trends as a function of the equivalence ratio were in good agreement with the equilibrium predictions. The determinations for water mole fraction were in good agreement with theoretical predictions but were sensitive to the spectroscopic model parameters used to describe collisional broadening. Water absorption spectroscopy has substantial potential as a valuable and practical technology for both research and production combustion synthesis facilities.

  3. A -Site Ordered Double Perovskite CaMnTi 2 O 6 as a Multifunctional Piezoelectric and Ferroelectric–Photovoltaic Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Gaoyang; Charles, Nenian; Shi, Jing

    2017-09-11

    The double perovskite CaMnTi2O6, is a rare A site ordered perovskite oxide that exhibits a sizable ferroelectric polarization and relatively high Curie temperature. Using first-principles calculations combined with detailed symmetry analyses, we identify the origin of the ferroelectricity in CaMnTi2O6. We further explore the material properties of CaMnTi2O6, including its ferroelectric polarization, dielectric and piezoelectric responses, magnetic order, electronic structure, and optical absorption coefficient. It is found that CaMnTi2O6 exhibits room-temperature-stable ferroelectricity and moderate piezoelectric responses. Moreover, CaMnTi2O6 is predicted to have a semiconducting energy band gap similar to that of BiFeO3, and its band gap can further be tuned-viamore » distortions of the planar Mn-O bond lengths. CaMnTi2O6 exemplifies a new class of single-phase semiconducting ferroelectric perovskites for potential applications in ferroelectric photovoltaic solar cells.« less

  4. Nickel complexes of o-amidochalcogenophenolate(2-)/o-iminochalcogenobenzosemiquinonate(1-) pi-radical: synthesis, structures, electron spin resonance, and x-ray absorption spectroscopic evidence.

    PubMed

    Hsieh, Chung-Hung; Hsu, I-Jui; Lee, Chien-Ming; Ke, Shyue-Chu; Wang, Tze-Yuan; Lee, Gene-Hsiang; Wang, Yu; Chen, Jin-Ming; Lee, Jyh-Fu; Liaw, Wen-Feng

    2003-06-16

    The preparation of complexes trans-[Ni(-SeC(6)H(4)-o-NH-)(2)](-) (1), cis-[Ni(-TeC(6)H(4)-o-NH-)(2)](-) (2), trans-[Ni(-SC(6)H(4)-o-NH-)(2)](-) (3), and [Ni(-SC(6)H(4)-o-S-)(2)](-) (4) by oxidative addition of 2-aminophenyl dichalcogenides to anionic [Ni(CO)(SePh)(3)](-) proves to be a successful approach in this direction. The cis arrangement of the two tellurium atoms in complex 2 is attributed to the intramolecular Te.Te contact interaction (Te.Te contact distance of 3.455 A). The UV-vis electronic spectra of complexes 1 and 2 exhibit an intense absorption at 936 and 942 nm, respectively, with extinction coefficient epsilon > 10000 L mol(-)(1) cm(-)(1). The observed small g anisotropy, the principal g values at g(1) = 2.036, g(2) = 2.062, and g(3) = 2.120 for 1 and g(1) = 2.021, g(2) = 2.119, and g(3) = 2.250 for 2, respectively, indicates the ligand radical character accompanied by the contribution of the singly occupied d orbital of Ni(III). The X-ray absorption spectra of all four complexes show L(III) peaks at approximately 854.5 and approximately 853.5 eV. This may indicate a variation of contribution of the Ni(II)-Ni(III) valence state. According to the DFT calculation, the unpaired electron of complex 1 and 2 is mainly distributed on the 3d(xz)() orbital of the nickel ion and on the 4p(z)() orbital of selenium (tellurium, 5p(z)()) as well as the 2p(z)() orbital of nitrogen of the ligand. On the basis of X-ray structural data, UV-vis absorption, electron spin resonance, magnetic properties, DFT computation, and X-ray absorption (K- and L-edge) spectroscopy, the monoanionic trans-[Ni(-SeC(6)H(4)-o-NH-)(2)](-) and cis-[Ni(-TeC(6)H(4)-o-NH-)(2)](-) complexes are appositely described as a resonance hybrid form of Ni(III)-bis(o-amidochalcogenophenolato(2-)) and Ni(II)-(o-amidochalcogenophenolato(2-))-(o-iminochalcogenobenzosemiquinonato(1-) pi-radical; i.e., complexes 1 and 2 contain delocalized oxidation levels of the nickel ion and ligands.

  5. Exploration of faint absorption bands in the reflectance spectra of the asteroids by method of optimal smoothing: Vestoids

    NASA Astrophysics Data System (ADS)

    Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.

    2007-04-01

    An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038

  6. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish

    2015-08-15

    Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the opticalmore » absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.« less

  7. Cl2O photochemistry: ultraviolet/vis absorption spectrum temperature dependence and O(3P) quantum yield at 193 and 248 nm.

    PubMed

    Papanastasiou, Dimitrios K; Feierabend, Karl J; Burkholder, James B

    2011-05-28

    The photochemistry of Cl(2)O (dichlorine monoxide) was studied using measurements of its UV/vis absorption spectrum temperature dependence and the O((3)P) atom quantum yield, Φ(Cl(2)O)(O)(λ), in its photolysis at 193 and 248 nm. The Cl(2)O UV/vis absorption spectrum was measured over the temperature range 201-296 K between 200 and 500 nm using diode array spectroscopy. Cl(2)O absorption cross sections, σ(Cl(2)O)(λ,T), at temperatures <296 K were determined relative to its well established room temperature values. A wavelength and temperature dependent parameterization of the Cl(2)O spectrum using the sum of six Gaussian functions, which empirically represent transitions from the ground (1)A(1) electronic state to excited states, is presented. The Gaussian functions are found to correlate well with published theoretically calculated vertical excitation energies. O((3)P) quantum yields in the photolysis of Cl(2)O at 193 and 248 nm were measured using pulsed laser photolysis combined with atomic resonance fluorescence detection of O((3)P) atoms. O((3)P) quantum yields were measured to be 0.85 ± 0.15 for 193 nm photolysis at 296 K and 0.20 ± 0.03 at 248 nm, which was also found to be independent of temperature (220-352 K) and pressure (17 and 28 Torr, N(2)). The quoted uncertainties are at the 2σ (95% confidence) level and include estimated systematic errors. ClO radical temporal profiles obtained following the photolysis of Cl(2)O at 248 nm, as reported previously in Feierabend et al. [J. Phys. Chem. A 114, 12052, (2010)], were interpreted to establish a <5% upper-limit for the O + Cl(2) photodissociation channel, which indicates that O((3)P) is primarily formed in the three-body, O + 2Cl, photodissociation channel at 248 nm. The analysis also indirectly provided a Cl atom quantum yield of 1.2 ± 0.1 at 248 nm. The results from this work are compared with previous studies where possible. © 2011 American Institute of Physics

  8. Contribution of the New WORLDVIEW-2 Spectral Bands for Urban Mapping in Coastal Areas: Case Study SÃO LUÍS ( MARANHÃO State, Brazil)

    NASA Astrophysics Data System (ADS)

    Souza, U. D. V.; kux, H. J. H.

    2012-07-01

    The objective of this study is to verify the contribution of the spectral bands from the new WorldView-2 satellite for the extraction of urban targets aiming a detailed mapping from the city of São Luis, at the coastal zone of Maranhão State, Brazil. This satellite system has 3 bands in the visible portion of the spectrum and also the following 4 new bands: Coastal (400-450 nm), Yellow (585- 625 nm), Red Edge (705-745 nm), and Near Infrared 2 (860-1040 nm). As for the methodology used, initially a fusion was made among the panchromatic and the multispectral bands, combining the spectral information of the multispectral bands with the geometric information of the panchromatic band. Following the ortho-rectification of the dataset was done, using ground control points (GCPs) obtained during field survey. The classification reached high values of Kappa indices. The use of the new bands Red Edge and Near Infrared 2, allowed the improvement of discriminations at tidal flats, mangrove and other vegetation types. The Yellow band improved the discrimination of bare soils - very important information for urban planning - and ceramic roofs. The Coastal band allowed to map the tidal channels which cross the urban area of São Luis, a typical feature of this coastal area. The functionalities of software GEODMA used, allowed an efficient attribute selection which improved the land cover classification from the test sites. The new WorldView-2 bands permit the identification and extraction of the features mentioned, because these bands are positioned at important parts of the electromagnetic spectrum, such as band Red Edge, which strongly improves the discrimination of vegetation conditions. Combining both higher spatial and spectral resolutions, WorldView-2 data allows an improvement on the discrimination of physical characteristics of the targets of interest, thus permitting a higher precision of land use/land cover maps, contributing to urban planning. The test sites of this

  9. Remote plasma enhanced chemical deposition of non-crystalline GeO2 on Ge and Si substrates.

    PubMed

    Lucovsky, Gerald; Zeller, Daniel

    2011-09-01

    Non-crystalline GeO2 films remote were plasma deposited at 300 degrees C onto Ge substrates after a final rinse in NH4OH. The reactant precursors gas were: (i) down-stream injected 2% GeH4 in He as the Ge precursor, and (ii) up-stream, plasma excited O2-He mixtures as the O precursor. Films annealed at 400 degrees C displayed no evidence for loss of O resulting in Ge sub-oxide formation, and for a 5-6 eV mid-gap absorption associated with formation of GeOx suboxide bonding, x < 2. These films were stable in normal laboratory ambients with no evidence for reaction with atmospheric water. Films deposited on Ge and annealed at 600 degrees C and 700 degrees C display spectra indicative of loss of O-atoms, accompanied with a 5.5 eV absorption. X-ray absorption spectroscopy and many-electron theory are combined to describe symmetries and degeneracies for O-vacancy bonding defects. These include comparisons with remote plasma-deposited non-crystalline SiO2 on Si substrates with SiON interfacial layers. Three different properties of remote plasma GeO2 films are addressed comparisons between (i) conduction band and band edge states of GeO2 and SiO2, and (ii) electronic structure of O-atom vacancy defects in GeO2 and SiO2, and differences between (iii) annealing of GeO2 films on Ge substrates, and Si substrates passivated with SiON interfacial transition regions important for device applications.

  10. Electronic structures of anatase (TiO2)1-x(TaON)x solid solutions: a first-principles study.

    PubMed

    Dang, Wenqiang; Chen, Hungru; Umezawa, Naoto; Zhang, Junying

    2015-07-21

    Sensitizing wide band gap photo-functional materials under visible-light irradiation is an important task for efficient solar energy conversion. Although nitrogen doping into anatase TiO2 has been extensively studied for this purpose, it is hard to increase the nitrogen content in anatase TiO2 because of the aliovalent nitrogen substituted for oxygen, leading to the formation of secondary phases or defects that hamper the migration of photoexcited charge carriers. In this paper, electronic structures of (TiO2)1-x(TaON)x (0 ≤ x ≤ 1) solid solutions, in which the stoichiometry is satisfied with the co-substitution of Ti for Ta along with O for N, are investigated within the anatase crystal structure using first-principles calculations. Our computational results show that the solid solutions have substantially narrower band gaps than TiO2, without introducing any localized energy states in the forbidden gap. In addition, in comparison with the pristine TiO2, the solid solution has a direct band gap when the content of TaON exceeds 0.25, which is advantageous to light absorption. The valence band maximum (VBM) of the solid solutions, which is mainly composed of N 2p states hybridized with O 2p, Ti 3d or Ta 5d orbitals, is higher in energy than that of pristine anatase TiO2 consisting of non-bonding O 2p states. On the other hand, incorporating TaON into TiO2 causes the formation of d-d bonding states through π interactions and substantially lowers the conduction band minimum (CBM) because of the shortened distance between some metal atoms. As a result, the anatase (TiO2)1-x(TaON)x is expected to become a promising visible-light absorber. In addition, some atomic configurations are found to possess exceptionally narrow band gaps.

  11. Composition and Band Gap Tailoring of Crystalline (GaN)1- x(ZnO) x Solid Solution Nanowires for Enhanced Photoelectrochemical Performance.

    PubMed

    Li, Jing; Liu, Baodan; Wu, Aimin; Yang, Bing; Yang, Wenjin; Liu, Fei; Zhang, Xinglai; An, Vladimir; Jiang, Xin

    2018-05-07

    Photoelectrochemical water splitting has emerged as an effective artificial photosynthesis technology to generate clean energy of H 2 from sunlight. The core issue in this reaction system is to develop a highly efficient photoanode with a large fraction of solar light absorption and greater active surface area. In this work, we take advantage of energy band engineering to synthesize (GaN) 1- x (ZnO) x solid solution nanowires with ZnO contents ranging from 10.3% to 47.6% and corresponding band gap tailoring from 3.08 to 2.77 eV on the basis of the Au-assisted VLS mechanism. The morphology of nanowires directly grown on the conductive substrate facilitates the charge transfer and simultaneously improves the surface reaction sites. As a result, a photocurrent approximately 10 times larger than that for a conventional powder-based photoanode is obtained, which indicates the potential of (GaN) 1- x (ZnO) x nanowires in the preparation of superior photoanodes for enhanced water splitting. It is anticipated that the water-splitting capability of (GaN) 1- x (ZnO) x nanowire can be further increased through alignment control for enhanced visible light absorption and reduction of charge transfer resistance.

  12. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  13. Study of the High Resolution Spectrum of the S18O16O Molecule in the Hot 2ν2 + ν3 - ν2 Band

    NASA Astrophysics Data System (ADS)

    Ziatkova, A. G.; Gromova, O. V.; Ulenikov, O. N.

    2018-05-01

    The hot 2ν2 + ν3 - ν2 hybrid band of the S18O16O molecule is assigned in the range 1800-1900 cm-1 for the first time. The spectrum is analyzed based on the method of combination differences. 56 energy levels (Jmax = 15, {K}a^{max}=12 ) are determined based on the experimental data obtained. Rotational parameters of the (021) vibrational state are determined.

  14. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  15. Raman study of TiO2 role in SiO2-Al2O3-MgO-TiO2-ZnO glass crystallization.

    PubMed

    Furić, Kresimir; Stoch, Leszek; Dutkiewicz, Jan

    2005-05-01

    Tough glass-ceramic material of special mechanical properties with nanosize crystal phases formed by appropriately controlled crystallization was studied by Raman spectroscopy. It was obtained by TiO2 activated crystallization of Mg-aluminosilicate glass of SiO2-Al2O3-MgO-TiO2-ZnO composition. Crystallization was preceded by a change in the TiO2 structural position and state, which is manifested by a changed color of glass from yellow into blue shortly before the glass transformation (Tg) temperature. Raman spectroscopy was applied to explain the mechanism of this process and to establish the role of TiO2 in the early stage of glass crystallization that precedes a complete crystal phase formation. The starting glasses were found in almost complete disorder, since all bands were weak, broad and dominated by a Bose band at about 90 cm-1. After the sample annealing all bands turned out better resolved and the Bose band practically disappeared, both confirming the amorphous structure reorganization process. A multiplet observed in the vicinity of 150 cm-1 we assigned to the anatase and other titania structures that can be considered prime centers of crystallization. Finally, in the closest neighborhood of the Rayleigh line the low frequency mode characterizing nanoparticles was observed. According to this band theory, the mean size of initial titania crystallites is about 10nm for all samples, but the size distribution varies within factor two among them.

  16. Raman study of TiO 2 role in SiO 2-Al 2O 3-MgO-TiO 2-ZnO glass crystallization

    NASA Astrophysics Data System (ADS)

    Furić, Krešimir; Stoch, Leszek; Dutkiewicz, Jan

    2005-05-01

    Tough glass-ceramic material of special mechanical properties with nanosize crystal phases formed by appropriately controlled crystallization was studied by Raman spectroscopy. It was obtained by TiO 2 activated crystallization of Mg-aluminosilicate glass of SiO 2-Al 2O 3-MgO-TiO 2-ZnO composition. Crystallization was preceded by a change in the TiO 2 structural position and state, which is manifested by a changed color of glass from yellow into blue shortly before the glass transformation ( Tg) temperature. Raman spectroscopy was applied to explain the mechanism of this process and to establish the role of TiO 2 in the early stage of glass crystallization that precedes a complete crystal phase formation. The starting glasses were found in almost complete disorder, since all bands were weak, broad and dominated by a Bose band at about 90 cm -1. After the sample annealing all bands turned out better resolved and the Bose band practically disappeared, both confirming the amorphous structure reorganization process. A multiplet observed in the vicinity of 150 cm -1 we assigned to the anatase and other titania structures that can be considered prime centers of crystallization. Finally, in the closest neighborhood of the Rayleigh line the low frequency mode characterizing nanoparticles was observed. According to this band theory, the mean size of initial titania crystallites is about 10 nm for all samples, but the size distribution varies within factor two among them.

  17. First analysis of the rotationally-resolved ν 2 and 2ν 22 bands of sulfur dioxide, 33S 16O 2

    DOE PAGES

    Blake, T. A.; Flaud, J. -M.; Lafferty, W. J.

    2017-01-03

    A Fourier transform spectrum of sulfur dioxide 33S 16O 2 has been recorded in the 18.3 μm spectral region at a resolution of 0.002 cm $-$1 using a Bruker IFS 125HR spectrometer leading to the observation of the ν 2 and 2ν 22 vibrational bands of the 33S 16O 2 molecule. The corresponding upper state ro-vibrational levels were fit using Watson-type Hamiltonians. In this way it was possible to reproduce the upper state ro-vibrational levels to within the experimental uncertainty; i.e., ~ 0.20 × 10 $-$3 cm $-$1. Finally, very accurate rotational and centrifugal distortion constants were derived frommore » the fit together with the following band centers: ν 0 (ν 2) = 515.659089(50) cm $-$1, ν 0 (2ν 2) = 1030.697723(20) cm $-$1.« less

  18. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy.

    PubMed

    Wei, Wei; Qin, Zhixin; Fan, Shunfei; Li, Zhiwei; Shi, Kai; Zhu, Qinsheng; Zhang, Guoyi

    2012-10-10

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV.

  19. The A2Πi˜X2Σ+ interaction in CO +: Deperturbation analyses of B- A and A- X bands of 12C 16O +, 13C 16O + and 14C 16O +

    NASA Astrophysics Data System (ADS)

    Coxon, John A.; Kępa, Ryszard; Piotrowska, Izabela

    2010-08-01

    The 1-0, 6-0 and 6-1 bands of the A2Πi→X2Σ+ system of 13C 16O + and the 2-0 and 2-1 bands of the A2Πi→X2Σ+ system of 14C 16O + have been recorded at high resolution for the first time. The 0-2 and 5-0 bands of the A → X system of 12C 16O + have also been recorded at higher resolution than in previous work. The spectra were excited in an air-cooled hollow cathode discharge and photographed using a 2-m plane grating spectrograph. The spectral resolution and the Doppler-broadened line widths are both ˜0.12 cm -1, and the experimental measurement precision of resolved lines is ˜0.02 cm -1. The measured line positions, sometimes in combination with literature data on the B2Σ+→A2Πi transition, have been employed in deperturbation analyses of level crossings in the near-degenerate A(0)˜ X(10) and A(5)˜ X(14) interactions in 12C 16O +, the A(1)˜ X(11) and A(6)˜ X(15) interactions in 13C 16O +, and the A(2)˜ X(12) interaction in 14C 16O +. No radial dependence of the electronic perturbation matrix elements HSO( r) and HRE( r) could be detected over the narrow range of r-centroids (1.477-1.501 Å), and the mean values of these parameters are HSO = -49.06(15) cm -1 and HRE = 0.211(2). Using iteratively improved RKR potentials and FC-overlap integrals, the mean HSO and HRE were employed in least-squares analyses of A → X literature data involving A( υ) levels of the three isotopologues that are affected by interactions with one or two distant X( υ∗) levels. The fitted parameters of the A2Πi state ( B υ, A υ, A Dυ, p υ, q υ) exhibit υ-dependences that are much smoother than those employing perturbed parameters determined in previous investigations. In addition, a significant electronic isotope effect has been characterized. The separations Te( A)- Te( X) of the minima of the A and X states of 13C 16O + and 14C 16O + are less than that of 12C 16O + by 0.39 and 0.73 cm -1, respectively. Although Born-Oppenheimer breakdown of this magnitude is

  20. Interfacial, Electrical, and Band Alignment Characteristics of HfO2/Ge Stacks with In Situ-Formed SiO2 Interlayer by Plasma-Enhanced Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Cao, Yan-Qiang; Wu, Bing; Wu, Di; Li, Ai-Dong

    2017-05-01

    In situ-formed SiO2 was introduced into HfO2 gate dielectrics on Ge substrate as interlayer by plasma-enhanced atomic layer deposition (PEALD). The interfacial, electrical, and band alignment characteristics of the HfO2/SiO2 high-k gate dielectric stacks on Ge have been well investigated. It has been demonstrated that Si-O-Ge interlayer is formed on Ge surface during the in situ PEALD SiO2 deposition process. This interlayer shows fantastic thermal stability during annealing without obvious Hf-silicates formation. In addition, it can also suppress the GeO2 degradation. The electrical measurements show that capacitance equivalent thickness of 1.53 nm and a leakage current density of 2.1 × 10-3 A/cm2 at gate bias of Vfb + 1 V was obtained for the annealed sample. The conduction (valence) band offsets at the HfO2/SiO2/Ge interface with and without PDA are found to be 2.24 (2.69) and 2.48 (2.45) eV, respectively. These results indicate that in situ PEALD SiO2 may be a promising interfacial control layer for the realization of high-quality Ge-based transistor devices. Moreover, it can be demonstrated that PEALD is a much more powerful technology for ultrathin interfacial control layer deposition than MOCVD.

  1. Interfacial, Electrical, and Band Alignment Characteristics of HfO2/Ge Stacks with In Situ-Formed SiO2 Interlayer by Plasma-Enhanced Atomic Layer Deposition.

    PubMed

    Cao, Yan-Qiang; Wu, Bing; Wu, Di; Li, Ai-Dong

    2017-12-01

    In situ-formed SiO 2 was introduced into HfO 2 gate dielectrics on Ge substrate as interlayer by plasma-enhanced atomic layer deposition (PEALD). The interfacial, electrical, and band alignment characteristics of the HfO 2 /SiO 2 high-k gate dielectric stacks on Ge have been well investigated. It has been demonstrated that Si-O-Ge interlayer is formed on Ge surface during the in situ PEALD SiO 2 deposition process. This interlayer shows fantastic thermal stability during annealing without obvious Hf-silicates formation. In addition, it can also suppress the GeO 2 degradation. The electrical measurements show that capacitance equivalent thickness of 1.53 nm and a leakage current density of 2.1 × 10 -3 A/cm 2 at gate bias of V fb  + 1 V was obtained for the annealed sample. The conduction (valence) band offsets at the HfO 2 /SiO 2 /Ge interface with and without PDA are found to be 2.24 (2.69) and 2.48 (2.45) eV, respectively. These results indicate that in situ PEALD SiO 2 may be a promising interfacial control layer for the realization of high-quality Ge-based transistor devices. Moreover, it can be demonstrated that PEALD is a much more powerful technology for ultrathin interfacial control layer deposition than MOCVD.

  2. Annealing temperature and environment effects on ZnO nanocrystals embedded in SiO2: a photoluminescence and TEM study

    PubMed Central

    2013-01-01

    We report on efficient ZnO nanocrystal (ZnO-NC) emission in the near-UV region. We show that luminescence from ZnO nanocrystals embedded in a SiO2 matrix can vary significantly as a function of the annealing temperature from 450°C to 700°C. We manage to correlate the emission of the ZnO nanocrystals embedded in SiO2 thin films with transmission electron microscopy images in order to optimize the fabrication process. Emission can be explained using two main contributions, near-band-edge emission (UV range) and defect-related emissions (visible). Both contributions over 500°C are found to be size dependent in intensity due to a decrease of the absorption cross section. For the smallest-size nanocrystals, UV emission can only be accounted for using a blueshifted UV contribution as compared to the ZnO band gap. In order to further optimize the emission properties, we have studied different annealing atmospheres under oxygen and under argon gas. We conclude that a softer annealing temperature at 450°C but with longer annealing time under oxygen is the most preferable scenario in order to improve near-UV emission of the ZnO nanocrystals embedded in an SiO2 matrix. PMID:24314071

  3. Annealing temperature and environment effects on ZnO nanocrystals embedded in SiO2: a photoluminescence and TEM study.

    PubMed

    Pita, Kantisara; Baudin, Pierre; Vu, Quang Vinh; Aad, Roy; Couteau, Christophe; Lérondel, Gilles

    2013-12-06

    We report on efficient ZnO nanocrystal (ZnO-NC) emission in the near-UV region. We show that luminescence from ZnO nanocrystals embedded in a SiO2 matrix can vary significantly as a function of the annealing temperature from 450°C to 700°C. We manage to correlate the emission of the ZnO nanocrystals embedded in SiO2 thin films with transmission electron microscopy images in order to optimize the fabrication process. Emission can be explained using two main contributions, near-band-edge emission (UV range) and defect-related emissions (visible). Both contributions over 500°C are found to be size dependent in intensity due to a decrease of the absorption cross section. For the smallest-size nanocrystals, UV emission can only be accounted for using a blueshifted UV contribution as compared to the ZnO band gap. In order to further optimize the emission properties, we have studied different annealing atmospheres under oxygen and under argon gas. We conclude that a softer annealing temperature at 450°C but with longer annealing time under oxygen is the most preferable scenario in order to improve near-UV emission of the ZnO nanocrystals embedded in an SiO2 matrix.

  4. Aerosols correction of the OMI tropospheric NO2 retrievals over cloud-free scenes: Different methodologies based on the O2-O2 477 nm band

    NASA Astrophysics Data System (ADS)

    Chimot, Julien; Vlemmix, Tim; Veefkind, Pepijn; Levelt, Pieternel

    2016-04-01

    Numerous studies have drawn attention to the complexities related to the retrievals of tropospheric NO2 columns derived from satellite UltraViolet-Visible (UV-Vis) measurements in the presence of aerosols. Correction for aerosol effects will remain a challenge for the next generation of air quality satellite instruments such as TROPOMI on Sentinel-5 Precursor, Sentinel-4 and Sentinel-5. The Ozone Monitoring Instrument (OMI) instrument has provided daily global measurements of tropospheric NO2 for more than a decade. However, aerosols are not explicitly taken into account in the current operational OMI tropospheric NO2 retrieval chain (DOMINO v2 [Boersma et al., 2011]). Our study analyses 2 approaches for an operational aerosol correction, based on the use of the O2-O2 477 nm band. The 1st approach is the cloud-model based aerosol correction, also named "implicit aerosol correction", and already used in the operational chain. The OMI O2-O2 cloud retrieval algorithm, based on the Differential Optical Absorption Spectroscopy (DOAS) approach, is applied both to cloudy and to cloud-free scenes with aerosols present. Perturbation of the OMI cloud retrievals over scenes dominated by aerosols has been observed in recent studies led by [Castellanos et al., 2015; Lin et al., 2015; Lin et al., 2014]. We investigated the causes of these perturbations by: (1) confronting the OMI tropospheric NO2, clouds and MODIS AQUA aerosol products; (2) characterizing the key drivers of the aerosol net effects, compared to a signal from clouds, in the UV-Vis spectra. This study has focused on large industrialised areas like East-China, over cloud-free scenes. One of the key findings is the limitation due to the coarse sampling of the employed cloud Look-Up Table (LUT) to convert the results of the applied DOAS fit into effective cloud fraction and pressure. This leads to an underestimation of tropospheric NO2 amount in cases of particles located at elevated altitude. A higher sampling of the

  5. Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Du, Zoufei; Cheng, Cheng; Tan, Lin; Lan, Jianwu; Jiang, Shouxiang; Zhao, Ludan; Guo, Ronghui

    2018-03-01

    In this study, a visible-light-driven photocatalyst Bi2WO6/TiO2 composite was reported using one-step hydrothermal method and then coated on the polyester fabric. The samples were systematically characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, UV-vis diffuse reflection spectroscopy and photoluminescence spectroscopy (PL). The photocatalytic activity of Bi2WO6/TiO2 coated polyester fabric was evaluated by degradation of Rhodamine B (RhB) and Methylene blue (MB) under visible light irradiation. The self-cleaning property of the fabrics was assessed through removing red wine stain. The results reveal that the Bi2WO6/TiO2 composites with irregular shape are coated on the polyester fabric successfully. The UV-vis absorption spectra show a broad absorption band in the visible region, which extends the scope of absorption spectrum and helps to improve the photocatalytic degradation efficiency. Photocatalytic activities of the Bi2WO6/TiO2 composite polyester fabric are associated with the content of TiO2. Bi2WO6/15%TiO2 coated polyester fabric exhibits the degradation efficiency for RhB and MB up to 98% and 95.1%, respectively, which is much higher than that of pure Bi2WO6 and TiO2 coated polyester fabric. Moreover, Bi2WO6/15%TiO2 coated polyester fabric shows good cycle stability toward continuous three cycles of photocatalytic experiment for dyes degradation. In addition, the Bi2WO6/TiO2 coated polyester fabric shows good self-cleaning property. This work could be extended to design of other composite photocatalyst coating on the fabric for enhancing activity by coupling suitable wide and narrow band-gap semiconductors.

  6. Structural and optical properties of glancing angle deposited In2O3 columnar arrays and Si/In2O3 photodetector

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Shougaijam, B.; Goswami, T.; Dhar, J. C.; Singh, N. K.; Choudhury, S.; Chattopadhay, K. K.

    2014-04-01

    Ordered and perpendicular columnar arrays of In2O3 were synthesized on conducting ITO electrode by a simple glancing angle deposition (GLAD) technique. The as-deposited In2O3 columns were investigated by field emission gun-scanning electron microscope (FEG-SEM). The average length and diameter of the columns were estimated ˜400 nm and ˜100 nm, respectively. The morphology of the structure was examined by transmission electron microscopy (TEM). X-ray diffraction (XRD) analysis shows the polycrystalline nature of the sample which was verified by selective area electron diffraction (SAED) analysis. The growth mechanism and optical properties of the columns were also discussed. Optical absorption shows that In2O3 columns have a high band to band transition at ˜3.75 eV. The ultraviolet and green emissions were obtained from the In2O3 columnar arrays. The P-N junction was formed between In2O3 and P-type Si substrate. The GLAD synthesized In2O3 film exhibits low current conduction compared to In2O3 TF. However, the Si/GLAD-In2O3 detector shows ˜1.5 times enhanced photoresponsivity than that of Si/In2O3 TF.

  7. CoO-doped MgO-Al2O3-SiO2-colored transparent glass-ceramics with high crystallinity

    NASA Astrophysics Data System (ADS)

    Tang, Wufu; Zhang, Qian; Luo, Zhiwei; Yu, Jingbo; Gao, Xianglong; Li, Yunxing; Lu, Anxian

    2018-02-01

    To obtain CoO-doped MgO-Al2O3-SiO2 (MAS)-colored transparent glass-ceramics with high crystallinity, the glass with the composition 21MgO-21Al2O3-54SiO2-4B2O3-0.2CoO (in mol %) was prepared by conventional melt quenching technique and subsequently thermal treated at several temperatures. The crystallization behavior of the glass, the precipitated crystalline phases and crystallinity were analyzed by X-ray diffraction (XRD). The microstructure of the glass-ceramics was characterized by field emission scanning electron microscopy (FSEM). The transmittance of glass-ceramic was measured by UV spectrophotometer. The results show that a large amount of α-cordierite (indianite) with nano-size was precipitated from the glass matrix after treatment at 1020 °C for 3 h. The crystallinity of the transparent glass-ceramic reached up to 97%. Meanwhile, the transmittance of the glass-ceramic was 74% at 400 nm with a complex absorption band from 450 nm to 700 nm. In addition, this colored transparent glass-ceramic possessed lower density (2.469 g/cm3), lower thermal expansion coefficient (1.822 × 10-6 /℃), higher Vickers hardness (9.1 GPa) and higher bending strength (198 MPa) than parent glass.

  8. Critical increase in Na-doping facilitates acceptor band movements that yields ~180 meV shallow hole conduction in ZnO bulk crystals

    PubMed Central

    Parmar, Narendra S.; Yim, Haena; Choi, Ji-Won

    2017-01-01

    Stable p-type conduction in ZnO has been a long time obstacle in utilizing its full potential such as in opto-electronic devices. We designed a unique experimental set-up in the laboratory for high Na-doping by thermal diffusion in the bulk ZnO single crystals. SIMS measurement shows that Na concentration increases by 3 orders of magnitude, to ~3 × 1020 cm−3 as doping temperature increases to 1200 °C. Electronic infrared absorption was measured for Na-acceptors. Absorption bands were observed near (0.20–0.24) eV. Absorption bands blue shifted by 0.04 eV when doped at 1200 °C giving rise to shallow acceptor level. NaZn band movements as a function of doping temperature are also seen in Photoluminescence emission (PL), Photoluminescence excitation (PLE) and UV-Vis transmission measurements. Variable temperature Hall measurements show stable p-type conduction with hole binding energy ~0.18 eV in ZnO samples that were Na-doped at 1200 °C. PMID:28272444

  9. Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.

    PubMed

    Wu, Zhi-Feng; Gao, Peng-Fei; Guo, Lei; Kang, Jun; Fang, Dang-Qi; Zhang, Yang; Xia, Ming-Gang; Zhang, Sheng-Li; Wen, Yu-Hua

    2017-12-06

    A traditional doping technique plays an important role in the band structure engineering of two-dimensional nanostructures. Since electron interaction is changed by doping, the optical and electrochemical properties could also be significantly tuned. In this study, density functional theory calculations have been employed to explore the structural stability, and electronic and optical properties of B-doped phosphorene. The results show that all B-doped phosphorenes are stable with a relatively low binding energy. Of particular interest is that these B-doped systems exhibit an indirect band gap, which is distinct from the direct one of pure phosphorene. Despite the different concentrations and configurations of B dopants, such indirect band gaps are robust. The screened hybrid density functional HSE06 predicts that the band gap of B-doped phosphorene is slightly smaller than that of pure phosphorene. Spatial charge distributions at the valence band maximum (VBM) and the conduction band minimum (CBM) are analyzed to understand the features of an indirect band gap. By comparison with pure phosphorene, B-doped phosphorenes exhibit strong anisotropy and intensity of optical absorption. Moreover, B dopants could enhance the stability of Li adsorption on phosphorene with less sacrifice of the Li diffusion rate. Our results suggest that B-doping is an effective way of tuning the band gap, enhancing the intensity of optical absorption and improving the performances of Li adsorption, which could promote potential applications in novel optical devices and lithium-ion batteries.

  10. High resolution x-ray absorption and emission spectroscopy of Li x CoO2 single crystals as a function delithiation

    NASA Astrophysics Data System (ADS)

    Simonelli, L.; Paris, E.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Mizokawa, T.; Saini, N. L.

    2017-03-01

    The effect of delithiation in Li x CoO2 is studied by high resolution Co K-edge x-ray absorption and x-ray emission spectroscopy. Polarization dependence of the x-ray absorption spectra on single crystal samples is exploited to reveal information on the anisotropic electronic structure. We find that the electronic structure of Li x CoO2 is significantly affected by delithiation in which the Co ions oxidation state tending to change from 3+  to 4+. The Co intersite (intrasite) 4p-3d hybridization suffers a decrease (increase) by delithiation. The unoccupied 3d t 2g orbitals with a 1g symmetry, containing substantial O 2p character, hybridize isotropically with Co 4p orbitals and likely to have itinerant character unlike anisotropically hybridized 3d e g orbitals. Such a peculiar electronic structure could have significant effect on the mobility of Li in Li x CoO2 cathode and hence the battery characteristics.

  11. Hydrothermal synthesis of In2O3 nanoparticles hybrid twins hexagonal disk ZnO heterostructures for enhanced photocatalytic activities and stability

    NASA Astrophysics Data System (ADS)

    Liu, Hairui; Zhai, Haifa; Hu, Chunjie; Yang, Jien; Liu, Zhiyong

    2017-07-01

    In2O3 nanoparticles hybrid twins hexagonal disk (THD) ZnO with different ratios were fabricated by a hydrothermal method. The as-obtained ZnO/In2O3 composites are constituted by hexagonal disks ZnO with diameters of about 1 μm and In2O3 nanoparticles with sizes of about 20-50 nm. With the increase of In2O3 content in ZnO/In2O3 composites, the absorption band edges of samples shifted from UV to visible light region. Compared with pure ZnO, the ZnO/In2O3 composites show enhanced photocatalytic activities for degradation of methyl orange (MO) and 4-nitrophenol (4-NP) under solar light irradiation. Due to suitable alignment of their energy band-gap structure of the In2O3 and ZnO, the formation of type п heterostructure can enhance efficient separation of photo-generate electro-hole pairs and provides convenient carrier transfer paths.

  12. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters

    DTIC Science & Technology

    2017-10-31

    of isolated molecules and that of bulk systems. DFT calculated absorption spectra represent quantitative estimates that can be correlated with...spectra, can be correlated with the presence of these hydrocarbons (see reference [1]). Accordingly, the molecular structure and IR absorption spectra of...associated with different types of ambient molecules, e.g., H2O, in order to apply background subtraction or spectral-signature- correlation algorithms

  13. Valence-band and core-level photoemission study of single-crystal Bi2CaSr2Cu2O8 superconductors

    NASA Astrophysics Data System (ADS)

    Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1988-12-01

    High-quality single crystals of Bi2CaSr2Cu2O8 superconductors have been prepared and cleaved in ultrahigh vacuum. Low-energy electron diffraction measurements show that the surface structure is consistent with the bulk crystal structure. Ultraviolet photoemission and x-ray photoemission experiments were performed on these well-characterized sample surfaces. The valence-band and the core-level spectra obtained from the single-crystal surfaces are in agreement with spectra recorded from polycrystalline samples, justifying earlier results from polycrystalline samples. Cu satellites are observed both in the valence band and Cu 2p core level, signaling the strong correlation among the Cu 3d electrons. The O 1s core-level data exhibit a sharp, single peak at 529-eV binding energy without any clear satellite structures.

  14. Ultrawide Band Gap β-Ga2O3 Nanomechanical Resonators with Spatially Visualized Multimode Motion.

    PubMed

    Zheng, Xu-Qian; Lee, Jaesung; Rafique, Subrina; Han, Lu; Zorman, Christian A; Zhao, Hongping; Feng, Philip X-L

    2017-12-13

    Beta gallium oxide (β-Ga 2 O 3 ) is an emerging ultrawide band gap (4.5 eV-4.9 eV) semiconductor with attractive properties for future power electronics, optoelectronics, and sensors for detecting gases and ultraviolet radiation. β-Ga 2 O 3 thin films made by various methods are being actively studied toward such devices. Here, we report on the experimental demonstration of single-crystal β-Ga 2 O 3 nanomechanical resonators using β-Ga 2 O 3 nanoflakes grown via low-pressure chemical vapor deposition (LPCVD). By investigating β-Ga 2 O 3 circular drumhead structures, we demonstrate multimode nanoresonators up to the sixth mode in high and very high frequency (HF/VHF) bands, and also realize spatial mapping and visualization of the multimode motion. These measurements reveal a Young's modulus of E Y = 261 GPa and anisotropic biaxial built-in tension of 37.5 MPa and 107.5 MPa. We find that thermal annealing can considerably improve the resonance characteristics, including ∼40% upshift in frequency and ∼90% enhancement in quality (Q) factor. This study lays a foundation for future exploration and development of mechanically coupled and tunable β-Ga 2 O 3 electronic, optoelectronic, and physical sensing devices.

  15. Optical, structural and thermal properties of sodium metaphosphate glasses containing Bi2O3 with interactions of gamma rays.

    PubMed

    Marzouk, M A; ElBatal, F H; ElBadry, K M; ElBatal, H A

    2017-01-15

    Sodium metaphosphate glasses with successive increasing added Bi 2 O 3 contents (5-40%) were prepared to improve their chemical stability and increase their optical and thermal properties through the additional building BiO 6 and BiO 3 units. The optical spectrum of the base metaphosphate glass reveals strong UV absorption due to the presence of trace iron (Fe 3+ ) ions present as impurities. Glasses containing additional 5, 7.5 and 10% Bi 2 O 3 show further band around 406nm which can be related to absorption of Bi 3+ ions. With increasing the Bi 2 O 3 content, this near visible band is observed to disappear indicating peculiar behavior needing further work. Gamma irradiation causes only minor changes in the position of the strong UV peaks but an obvious induced visible broad band centered at 452-460nm in the base and Bi 2 O 3 containing glasses. This induced band is related to the generation of phosphorus oxygen hole center or non bridging oxygen hole center as revealed by various authors. FTIR results reveal characteristic vibrational bands due to phosphate groups and with the addition of Bi 2 O 3 , some interference of BiO vibrational units are expected. Gamma irradiation causes limited changes in the IR spectra due to suggested shielding effect of the heavy metal oxide Bi 2 O 3 . Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Change In The Electronic Structure And Optical Absorption Of Cuprate Delafossites Via B-site Alloying

    NASA Astrophysics Data System (ADS)

    Beesley, Ramon; Panapitiya, Gihan; Lewis, James; Lewis Group Team

    Delafossite oxides are a family of materials with the form ABO2 , where the A-site is a monovalent cation (Cu , Ag , Au) and the B-site is a trivalent cation (Ga , Al , In). Delafossites typically have a wide optical band gap, this band gap may be tuned by adding a second B-site element forming an AB(1- x) 1B(x)2O2 alloy. We investigate changes in the electronic structure of CuAlO2 , CuGaO2 , and CuInO2 when alloyed with CuFeO2 . Using the FIREBALL program to optimize the atomic structure, calculate the total and partial density of states, calculate the valence band edge for each alloy level, and investigate the clustering factor of the second B-site atom, it is found that alloying with Fe creates midgap states caused by Fe - O interactions. From the partial density of state, each type of atoms contribution to the change in the valence band edge can be seen. Observed changes to the materials include increased optical absorption in the visible range, and symmetry breaking because of the deformation in the crystal structure. The CuFeO2 alloying percentages range from 0-5%. We are synthesizing these alloys to experimentally verify the changes in the optical absorption spectra.

  17. Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials

    NASA Astrophysics Data System (ADS)

    von Blanckenhagen, Bernhard; Tonova, Diana; Ullmann, Jens

    2002-06-01

    Recent progress in ellipsometry instrumentation permits precise measurement and characterization of optical coating materials in the deep-UV wavelength range. Dielectric coating materials exhibit their first electronic interband transition in this spectral range. The Tauc-Lorentz model is a powerful tool with which to parameterize interband absorption above the band edge. The application of this model for the parameterization of the optical absorption of TiO2, Ta2O5, HfO2, Al2O3, and LaF3 thin-film materials is described.

  18. Gas-phase Absorption of {{\\rm{C}}}_{70}^{2+} below 10 K: Astronomical Implications

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.

    2017-02-01

    The electronic spectrum of the fullerene dication {{{C}}}702+ has been measured in the gas phase at low temperature in a cryogenic radiofrequency ion trap. The spectrum consists of a strong origin band at 7030 Å and two weaker features to higher energy. The bands have FWHMs of 35 Å indicating an excited state lifetime on the order of one-tenth of a picosecond. Absorption cross-section measurements yield (2 ± 1) × 10-15 cm2 at 7030 Å. These results are used to predict the depth of diffuse interstellar bands (DIBs) due to the absorption by {{{C}}}702+. At an assumed column density of 2 × 1012 cm-2 the attenuation of starlight at 7030 Å is around 0.4% and thus the detection of such a shallow and broad interstellar band would be difficult. The electronic spectrum of {{{C}}}602+ shows no absorptions in the visible. Below 4000 Å the spectra of C60, {{{C}}}60+ and {{{C}}}602+ are similar. The large intrinsic FWHM of the features in this region, ˜200 Å for the band near 3250 Å, make them unsuitable for DIB detection.

  19. Doping induced modifications in the electronic structure and magnetism of ZnO films: Valence band and conduction band studies

    NASA Astrophysics Data System (ADS)

    Katba, Savan; Jethva, Sadaf; Udeshi, Malay; Trivedi, Priyanka; Vagadia, Megha; Shukla, D. K.; Choudhary, R. J.; Phase, D. M.; Kuberkar, D. G.

    2017-11-01

    The electronic structure of Pulsed Laser Deposited (PLD) ZnO, Zn0.95Fe0.05O (ZFO), Zn0.98Al0.02O (ZAO) and Zn0.93Fe0.05Al0.02O (ZFAO) films were investigated by Photoelectron spectroscopy and X-ray absorption spectroscopy. X-ray diffraction and ϕ-scan measurements show epitaxial c-directional growth of the films. Temperature dependent magnetization and M-H loop measurements show the presence of room temperature magnetic ordering in all the films. Fittings of Fe 2p XPS and Fe L3,2 -edge XAS of ZFO and ZFAO films show the presence of Fe, in both, Fe+2 and Fe+3 states in tetrahedral symmetry. Valence band spectra in resonance mode show resonance photon energy at 56 eV showing the presence of Fe2+ state (∼2 eV) near the Fermi level. A significant effect of Fe and Al doping on the spectral shape of O K-edge XAS was observed. Results of the Spectroscopic studies reveal that, ferromagnetism in the films is due to the contribution of oxygen deficiency which increases the number of charge carriers that take part in the exchange interaction. Al co-doping with Fe (in ZFAO) results in the enhancement of saturation magnetization by increase in the carrier-mediated ferromagnetic exchange interaction.

  20. 2D-2D stacking of graphene-like g-C3N4/Ultrathin Bi4O5Br2 with matched energy band structure towards antibiotic removal

    NASA Astrophysics Data System (ADS)

    Ji, Mengxia; Di, Jun; Ge, Yuping; Xia, Jiexiang; Li, Huaming

    2017-08-01

    A novel visible-light-driven 2D-2D graphene-like g-C3N4/ultrathin Bi4O5Br2 photocatalyst was prepared via a facile solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br) for the first time. FT-IR, XPS and TEM analysis results demonstrated the successful introduction of the 2D graphene-like g-C3N4 material to the Bi4O5Br2 system. DRS and BET analysis results indicated the existence of the g-C3N4 could lead to the broaden absorption edge and larger surface area of the ultrathin Bi4O5Br2 nanosheets. The electrochemical analysis implied a fast transfer of the interfacial electrons and low recombination rate of photogenerated charge carriers in g-C3N4/Bi4O5Br2, which could be assigned to the sufficient and tight contact between ultrathin Bi4O5Br2 and graphene-like g-C3N4. The quinolone antibiotic ciprofloxacin (CIP) was chosen as the target pollutant to evaluate the photocatalytic performance of the as-prepared samples under visible light irradiation. 1 wt% g-C3N4/Bi4O5Br2 composite exhibited the highest photocatalytic degradation performance among all of the as-prepared photocatalysts. The enhancement of photocatalytic activity was attributed to the maximum contact between graphene-like g-C3N4 and ultrathin Bi4O5Br2 material with matched energy band structure, which enable the efficient charge seperation. A possible photocatalytic mechanism also was proposed.

  1. The Electronic Structure and Optical Properties of Anatase TiO2 with Rare Earth Metal Dopants from First-Principles Calculations

    PubMed Central

    Xie, Kefeng; Jia, Qiangqiang; Wang, Yizhe; Zhang, Wenxue; Xu, Jingcheng

    2018-01-01

    The electronic and optical properties of the rare earth metal atom-doped anatase TiO2 have been investigated systematically via density functional theory calculations. The results show that TiO2 doped by Ce or Pr is the optimal choice because of its small band gap and strong optical absorption. Rare earth metal atom doping induces several impurity states that tune the location of valence and conduction bands and an obvious lattice distortion that should reduce the probability of electron–hole recombination. This effect of band change originates from the 4f electrons of the rare earth metal atoms, which leads to an improved visible light absorption. This finding indicates that the electronic structure of anatase TiO2 is tuned by the introduction of impurity atoms. PMID:29364161

  2. UV absorption spectrum and photodissociation channels of the simplest Criegee intermediate (CH2OO).

    PubMed

    Dawes, Richard; Jiang, Bin; Guo, Hua

    2015-01-14

    The lowest-lying singlet states of the simplest Criegee intermediate (CH2OO) have been characterized along the O-O dissociation coordinate using explicitly correlated MRCI-F12 electronic structure theory and large active spaces. It is found that a high-level treatment of dynamic electron-correlation is essential to accurately describe these states. A significant well on the B-state is identified at the MRCI-F12 level with an equilibrium structure that differs substantially from that of the ground X-state. This well is presumably responsible for the apparent vibrational structure in some experimental UV absorption spectra, analogous to the structured Huggins band of the iso-electronic ozone. The B-state potential in the Franck-Condon region is sufficiently accurate that an absorption spectrum calculated with a one-dimensional model agrees remarkably well with experiment.

  3. Calibration-free sensor for pressure and H2O concentration in headspace of sterile vial using tunable diode laser absorption spectroscopy.

    PubMed

    Cai, Tingdong; Gao, Guangzhen; Liu, Ying

    2013-11-10

    Tunable diode laser absorption measurements of pressure and H2O concentration in the headspace of vials using a distributed-feedback (DFB) diode laser near 1.4 μm are reported. A H2O line located near 7161.41 cm(-1) is selected based on its strong absorption strength and isolation from interference of neighboring transitions. Direct absorption spectra of H2O are obtained for the measurement path as well as the reference path by scanning the laser wavelength. The pressure and H2O vapor concentration in the headspace of a vial are inferred from a differential absorption signal, which is the difference between the measured and the referenced absorbance spectra. This sensor is calibration-free and no purge gas is needed. The demonstrated capability would enable measurements of pressure and H2O concentration in the headspace of vials within 2.21% and 2.86%, respectively. A precision of 1.02 Torr and 390 ppm is found for the pressure and H2O concentration, respectively. A set of measurements for commercial freeze-dried products are also performed to illustrate the usefulness of this sensor.

  4. Heterostructured ZnFe2O4/Fe2TiO5/TiO2 Composite Nanotube Arrays with an Improved Photocatalysis Degradation Efficiency Under Simulated Sunlight Irradiation

    NASA Astrophysics Data System (ADS)

    Xiong, Kun; Wang, Kunzhou; Chen, Lin; Wang, Xinqing; Fan, Qingbo; Courtois, Jérémie; Liu, Yuliang; Tuo, Xianguo; Yan, Minhao

    2018-03-01

    To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays (TONTAs), ZnFe2O4 (ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltage-assisted perfusion method. ZFO nanocrystals were well anchored on the inner walls of the pristine TONTAs when the ZFO suspensions (0.025 mg mL-1) were kept under a 60 V bias voltage for 1 h. After annealing at 750 °C for 2 h, the heterostructured ZFO/Fe2TiO5 (FTO)/TiO2 composite nanotube arrays were successfully obtained. Furthermore, Fe3+ was reduced to Fe2+ when solid solution reactions occurred at the interface of ZFO and the pristine TONTAs. Introducing ZFO significantly enhanced the visible light absorption of the ZFO/FTO/TONTAs relative to that of the annealed TONTAs. The coexistence of type I and staggered type II band alignment in the ZFO/FTO/TONTAs facilitated the separation of photogenerated electrons and holes, thereby improving the efficiency of the ZFO/FTO/TONTAs for photocatalytic degradation of methylene blue when irradiated with simulated sunlight. [Figure not available: see fulltext.

  5. Stratospheric N2O5, CH4, and N2O Profiles from IR Solar Occultation Spectra

    NASA Technical Reports Server (NTRS)

    Peyeret, C. Camy; Flaud, J.-M.; Perrin, A.; Rinsland, C. P.; Goldman, A.; Murcray, F. J.

    1993-01-01

    Stratospheric volume mixing ratio profiles of N2O5, CH4, and N2O have been retrieved from a set of 0.052/ cm resolution (FWHM) solar occultation spectra recorded at sunrise during a balloon flight from Aire sur I'Adour, France (44 deg N latitude) on 12 October 1990. The N2O5 results have been derived from measurements of the integrated absorption by the 1246/ cm band. Assuming a total intensity of 4.32 x 10(exp 17)cm(exp -1) molecule sq cm(exp -2) independent of temperature, the retrieved N2O5 volume mixing ratios in ppbv (parts per billion by volume, 10(exp -9)), interpolated to 2 km height spacings, are 1.64 +/- 0.49 at 37.5 km, 1.92 +/- 0.56 at 35.5 km, 2.06 +/- 0.47 at 33.5 km, 1.95 +/- 0.42 at 31.5 km, 1.60 +/- 0.33 at 29.5 km, 1.26 +/- 0.28 at 27.5 km, and 0.85 +/- 0.20 at 25.5 km. Error bars indicate the estimated I-sigma uncertainty including the error in the total band intensity (+/- 20% has been assumed). The retrieved profiles are compared with previous measurements and photochemical model results.

  6. Composition dependent band offsets of ZnO and its ternary alloys

    NASA Astrophysics Data System (ADS)

    Yin, Haitao; Chen, Junli; Wang, Yin; Wang, Jian; Guo, Hong

    2017-01-01

    We report the calculated fundamental band gaps of wurtzite ternary alloys Zn1-xMxO (M = Mg, Cd) and the band offsets of the ZnO/Zn1-xMxO heterojunctions, these II-VI materials are important for electronics and optoelectronics. Our calculation is based on density functional theory within the linear muffin-tin orbital (LMTO) approach where the modified Becke-Johnson (MBJ) semi-local exchange is used to accurately produce the band gaps, and the coherent potential approximation (CPA) is applied to deal with configurational average for the ternary alloys. The combined LMTO-MBJ-CPA approach allows one to simultaneously determine both the conduction band and valence band offsets of the heterojunctions. The calculated band gap data of the ZnO alloys scale as Eg = 3.35 + 2.33x and Eg = 3.36 - 2.33x + 1.77x2 for Zn1-xMgxO and Zn1-xCdxO, respectively, where x being the impurity concentration. These scaling as well as the composition dependent band offsets are quantitatively compared to the available experimental data. The capability of predicting the band parameters and band alignments of ZnO and its ternary alloys with the LMTO-CPA-MBJ approach indicate the promising application of this method in the design of emerging electronics and optoelectronics.

  7. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy

    PubMed Central

    2012-01-01

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV. PMID:23046910

  8. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  9. Effect of Variable Oxidation States of Vanadium on the Structural, Optical, and Dielectric Properties of B2O3-Li2O-ZnO-V2O5 Glasses.

    PubMed

    Arya, S K; Danewalia, S S; Arora, Manju; Singh, K

    2016-12-01

    In the present study, the effect of variable vanadium oxidation states on the structural, optical, and dielectric properties of vanadium oxide containing lithium borate glasses has been investigated. Electron paramagnetic resonance studies indicate that vanadium in these glasses is mostly in the V 4+ state, having a tetragonal symmetry. As the glass composition of V 2 O 5 increases, tetragonality also increases at the cost of octahedral symmetry. The photoluminescence (PL) spectra of these glasses are dominated by zinc oxide transition, whereas the peaks pertaining to the vanadyl group are not visible in the PL spectra. The optical absorption spectra show a single wide absorption band, which is attributed to V 4+ ions in these glasses. The ac conductivity of the glasses increases with an increase in vanadium content. The highest electrical conductivity observed is ∼10 -5 S cm -1 at 250 °C for the glass with 2.5 mol % V 2 O 5 . Electrical conductivity is dominated by electron conduction, as indicated by the activation energy calculation.

  10. Evolution of ferroelectric SrBi2Nb2O9 phase embedded in tellurite glass

    NASA Astrophysics Data System (ADS)

    Mohamed, E. A.

    2017-12-01

    Glasses with the composition, [(100-x)TeO2- x(SrO-Bi2O3-Nb2O5)] with x = 20, 30 and 40 (in mol %) were prepared. The X-ray diffraction (XRD) pattern and differential thermal analysis (DTA) for the as-prepared samples confirmed the amorphous and glassy characteristics, respectively. The SrBi2Nb2O9 phase in tellurite glass for HT773 sample at x = 40 mol % is formed and confirmed by the Rietveld refinement. DTA curves for all glass samples exhibit two endothermic dips while the two broad exothermic peaks at lower x reduced to one at higher x. Infrared (IR) results revealed that the glassy matrix are composed of TeO3, TeO3+1, TeO4, BiO6 and NbO6 structural units. The changes in the density (ρ), molar volume (Vm), oxygen molar volume (V0) and oxygen packing fraction (OPD) have correlated with structural changes in the glass network. The optical studies show an absorption bands below the absorption edge in the glass samples.

  11. First analysis of the 2ν1 + 3ν3 band of NO2 at 7192.159 cm-1

    NASA Astrophysics Data System (ADS)

    Raghunandan, R.; Perrin, A.; Ruth, A. A.; Orphal, J.

    2014-03-01

    The first investigation of the very weak 2ν1 + 3ν3 absorption band of nitrogen dioxide, 14N16O2, located at 7192.1587(1) cm-1 was performed using Fourier-transform incoherent broadband cavity-enhanced absorption spectroscopy (FT-IBBCEAS) in the 7080-7210 cm-1 spectral range. The assigned 2ν1 + 3ν3 lines involve energy levels of the (2 0 3) vibrational state with rotational quantum numbers up to Ka = 7 and N = 47. Furthermore, due to local resonances involving energy levels from the (2,2,2)⇔(2,0,3) and (5,1,0)⇔(2,0,3) states, several transitions were also observed for the 2ν1 + 2ν2 + 2ν3 and 5ν1 + ν3 dark bands, respectively. The energy levels were satisfactorily reproduced within their experimental uncertainty using a theoretical model which takes explicitly into account the Coriolis interactions between the levels of the (2, 0, 3) vibrational state and those of (2, 2, 2) and of (5, 1, 0). As a consequence, precise vibrational energies, rotational, and coupling constants were achieved for the triad {(5, 0, 1), (2, 2, 2), (2, 0, 3)} of interacting states of 14N16O2. This theoretical model also accounts for the electron spin-rotation resonances within the (2, 0, 3), (2, 2, 2) and (5, 1, 0) vibrational states. However, owing to the limited experimental resolution (˜0.075 cm-1), it was not possible to observe the spin-rotation doublet structure. As a consequence, the spin-rotation constants in the {(2, 2, 2), (2, 0, 3), (5, 1, 0)} excited states were maintained fixed to their ground state values in this study. Using these parameters a comprehensive list of line positions and line intensities was generated for the 2ν1 + 3ν3 band of NO2.

  12. Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi

    2017-04-01

    The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.

  13. Room-Temperature-Synthesized High-Mobility Transparent Amorphous CdO-Ga2O3 Alloys with Widely Tunable Electronic Bands.

    PubMed

    Liu, Chao Ping; Ho, Chun Yuen; Dos Reis, Roberto; Foo, Yishu; Guo, Peng Fei; Zapien, Juan Antonio; Walukiewicz, Wladek; Yu, Kin Man

    2018-02-28

    In this work, we have synthesized Cd 1-x Ga x O 1+δ alloy thin films at room temperature over the entire composition range by radio frequency magnetron sputtering. We found that alloy films with high Ga contents of x > 0.3 are amorphous. Amorphous Cd 1-x Ga x O 1+δ alloys in the composition range of 0.3 < x < 0.5 exhibit a high electron mobility of 10-20 cm 2 V -1 s -1 with a resistivity in the range of 10 -2 to high 10 -4 Ω cm range. The resistivity of the amorphous alloys can also be controlled over 5 orders of magnitude from 7 × 10 -4 to 77 Ω cm by controlling the oxygen stoichiometry. Over the entire composition range, these crystalline and amorphous alloys have a large tunable intrinsic band gap range of 2.2-4.8 eV as well as a conduction band minimum range of 5.8-4.5 eV below the vacuum level. Our results suggest that amorphous Cd 1-x Ga x O 1+δ alloy films with 0.3 < x < 0.4 have favorable optoelectronic properties as transparent conductors on flexible and/or organic substrates, whereas the band edges and electrical conductivity of films with 0.3 < x < 0.7 can be manipulated for transparent thin-film transistors as well as electron transport layers.

  14. First-principles calculation of the structure and electronic properties of Fe-substituted Bi2Ti2O7

    NASA Astrophysics Data System (ADS)

    Huang, Jin-Dou; Zhang, Zhenyi; Lin, Feng; Dong, Bin

    2017-12-01

    We performed first-principles calculations to investigate the formation energy, geometry structure, and electronic property of Fe-doped Bi2Ti2O7 systems with different Fe doping content. The calculated formation energies indicate that the substitutional configurations of Fe-doping Bi2Ti2O7 are easy to obtain under O-rich growth condition, but their thermodynamic stability decreases with the increase of Fe content. The calculated spin-resolved density of states and band structures indicate that the introduction of Fe into Bi2Ti2O7 brings high spin polarization. The spin-down impurity levels in Fe x Bi2-x Ti2O7 and spin-up impurity levels in Fe x Bi2Ti2-x O7 systems locate in the bottom of conduction band and narrow the band gap significantly, thus leading to the absorption of visible light. Interestingly, the impurity states in Fe x Bi2-x Ti2O7 are the efficient separation center of photogenerated electron and hole, and less affected by Fe doping content, in comparison, the levels of impurity band in Fe x Bi2Ti2-x O7 systems are largely effected by the Fe doping content, and high Fe doping content is the key factor to improve the separating rate of photogenerated electron and hole.

  15. Carrier-Specific Femtosecond XUV Transient Absorption of PbI 2 Reveals Ultrafast Nonradiative Recombination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ming-Fu; Verkamp, Max A.; Leveillee, Joshua

    Femtosecond carrier recombination in PbI 2 is measured using tabletop high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy and ultrafast electron diffraction. XUV absorption from 45 eV to 62 eV measures transitions from the iodine 4d core level to the conduction band density of states. Photoexcitation at 400 nm creates separate and distinct transient absorption signals for holes and electrons, separated in energy by the 2.4 eV band gap of the semiconductor. The shape of the conduction band and therefore the XUV absorption spectrum is temperature dependent, and nonradiative recombination converts the initial electronic excitation to thermal excitation within picoseconds. Ultrafastmore » electron diffraction (UED) is used to measure the lattice temperature and confirm the recombination mechanism. Lastly, the XUV and UED results support a 2nd-order recombination model with a rate constant of 2.5x10 -9 cm 3/s.« less

  16. Carrier-Specific Femtosecond XUV Transient Absorption of PbI 2 Reveals Ultrafast Nonradiative Recombination

    DOE PAGES

    Lin, Ming-Fu; Verkamp, Max A.; Leveillee, Joshua; ...

    2017-11-30

    Femtosecond carrier recombination in PbI 2 is measured using tabletop high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy and ultrafast electron diffraction. XUV absorption from 45 eV to 62 eV measures transitions from the iodine 4d core level to the conduction band density of states. Photoexcitation at 400 nm creates separate and distinct transient absorption signals for holes and electrons, separated in energy by the 2.4 eV band gap of the semiconductor. The shape of the conduction band and therefore the XUV absorption spectrum is temperature dependent, and nonradiative recombination converts the initial electronic excitation to thermal excitation within picoseconds. Ultrafastmore » electron diffraction (UED) is used to measure the lattice temperature and confirm the recombination mechanism. Lastly, the XUV and UED results support a 2nd-order recombination model with a rate constant of 2.5x10 -9 cm 3/s.« less

  17. Z-scan measurement for nonlinear absorption property of rGO/ZnO:Al thin film

    NASA Astrophysics Data System (ADS)

    Sreeja, V. G.; Anila, E. I.

    2018-04-01

    We report the fabrication of reduced graphene oxide integrated aluminium doped zinc oxide (rGO/ZnO:Al) composite thin film on a glass substrate by spin coating technique. The effect of rGO on structural and linear optical properties of rGO/ZnO:Al composite thin film was explored with the help of X-Ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis absorption spectroscopy. Structural studies reveals that the composite film has hexagonal wurtzite structure with a strong bonding between rGO and ZnO:Al material. The band gap energy of ZnO:Al thin film was red shifted by the addition of rGO. The Nonlinear absorption property was investigated by open aperture Z-scan technique by using Q switched Nd-YAG laser at 532nm. The Z-scan results showed that the composite film demonstrates reverse saturable absorption property with a nonlinear absorption coefficient, β, of 12.75×10-7m/w. The results showed that investigated rGO/ZnO:Al thin film is a promising material suitable for the applications in absorbing type optical devices such as optical limiters, optical switches and protection of the optical sensors in the field of nonlinear optics.

  18. Interaction of TiO2 nanocluster with graphene oxide: Experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Yadav, A.; Gangan, A. S.; Chakraborty, B.; Ramaniah, L. M.; Patel, N.; Yadav, M.; Dashora, A.; Kothari, D. C.; Press, M.

    2017-05-01

    Go-TiO2 composites are gaining importance because of their applications in various fields and also due to their stability. In this work, we have reported for the first time, interaction of Graphene Oxide (GO) with TiO2 nanocluster. To understand the interfacial interaction between GO and TiO2, we have proposed GO-TiO2 models through simulations. The calculated optical properties of theoretical models were compared with experimentally synthesized RGO-TiO2 composite. Optical absorption spectra indicated enhancement in visible region for RGO-TiO2 nanocomposite when compared to that of TiO2. The variation in optical properties of RGO-TiO2 cluster with degree of functionalization was also studied. It was observed that in GO-TiO2 model with optimum OH groups, new states were formed within the band gap which could be responsible for enhanced absorption in visible region.

  19. Microwave electromagnetic and absorption properties of SiO2/C core/shell composites plated with metal cobalt

    NASA Astrophysics Data System (ADS)

    Shen, Guozhu; Fang, Xumin; Wu, Hongyan; Wei, Hongyu; Li, Jingfa; Li, Kaipeng; Mei, Buqing; Xu, Yewen

    2017-04-01

    A facile method has been developed to fabricate magnetic core/shell SiO2/C/Co sub-microspheres via the pyrolysis of SiO2/PANI (polyaniline) and electroless plating method. The electromagnetic parameters of these SiO2/C and SiO2/C/Co composites were measured and the microwave reflection loss properties were evaluated in the frequency range of 2-18 GHz. The results show that the dielectric loss of SiO2/C composite increases with the increase of carbonization temperature and the magnetic loss enhances due to the deposition of cobalt on the SiO2/C sub-microspheres. The reflection loss results exhibit that the microwave absorption properties of the SiO2/C/Co composites are more excellent than those of SiO2/C composites for each thickness. The maximum effective absorption bandwidth (reflection loss ≤ -10 dB) arrives at 5.0 GHz (13.0-18 GHz) for SiO2/C/Co composite with 1.5 mm of thickness and the minimum reflection loss value is -24.0 dB at 5.0 GHz with 4.0 mm of thickness. The microwave loss mechanism of the SiO2/C/Co composites was also discussed in this paper.

  20. Microwave assisted synthesis of a series of charge-transfer photosensitizers having quinoxaline-2(1H)-one as anchoring group onto TiO2 surface

    NASA Astrophysics Data System (ADS)

    Caicedo, Mauricio; Echeverry, Carlos A.; Guimarães, Robson R.; Ortiz, Alejandro; Araki, Koiti; Insuasty, Braulio

    2017-04-01

    In this work, we present the synthesis of novel donor-acceptor compounds based on 3-methylquinoxaline-2(1H)one which follow an easy synthetic route, involving Knoevenagel reaction with electron-donor groups such as N,N-dimethylaminobenzene, ferrocene, triphenylamine (TPA) and ((E)-4,4'-(ethene-1,2-diyl) bis (N,N-diphenylaniline). Additionally, the optical properties were measured by means of the absorption and emission spectroscopy suggesting a push-pull behavior which was further confirmed by electrochemical experiments. Finally, the quinoxaline-2(1H)one fragment not only bestow wide absorption, but also can chelate to titanium ions on the TiO2 surface, allowing a strong electron coupling between the excited-state energy level of the dyes and the conduction band of TiO2.

  1. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Optical Properties of TiO2-SiO2 Glass Over a Wide Spectral Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith,D.; Black, C.; Homes, C.

    Optical properties of vitreous SiO{sub 2} with 7.4 wt.% TiO{sub 2} are found by dispersion analysis of reflectivity measured in the infrared, visible, and ultraviolet augmented with literature values of vacuum-ultraviolet reflectivity and absorption. The principal infrared absorption associated with the titanium dopant occurs at 950 cm{sup -1} in a deep minimum of the host silica absorption. We attribute this to a perturbation of the silica's absorption at 1076 cm{sup -1} involving oxygen atoms bridging SiO{sub 4} and TiO{sub 4} tetrahedra. Strong ultraviolet absorptions of Ti{sup 4+} occur just below the silica exciton peak between 5.5 and 7.8 eV. Wemore » attribute these to charge-transfer transitions at TiO{sub 4} tetrahedra; i.e., bound excitons consisting of a Ti{sup 3+} ion and a hole shared by four oxygen neighbours.« less

  3. Preparation and optical properties of TeO2-BaO-ZnO-ZnF2 fluoro-tellurite glass for mid-infrared fiber Raman laser applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Xiao, Xusheng; Gu, Shaoxuan; Xu, Yantao; Zhou, Zhiguang; Guo, Haitao

    2017-04-01

    A serial of novel fluoro-tellurite glasses with compositions of 60TeO2-20BaO-(20-x)ZnO-xZnF2 (x = 0, 2, 4, 5 and 6 mol%) were prepared. The compositional dependences of glass structural evaluation, Raman gain coefficient, UV-Vis transmission spectrum, IR transmission spectrum, linear refractive index and third-order nonlinearity were analyzed. The results showed that the addition of 6 mol% ZnF2 can further improve the Raman gain coefficient to as well as 52 × 10-11 cm/W and effectively decrease around 73% and 57% absorption coefficients respectively caused by free Osbnd H groups (@3.3 μm) and hydrogen-bonded Osbnd H groups (@4.5 μm) in glass. Addition of ZnF2 does not change the UV-Vis absorption edge, optical band gap energy and infrared region cut-off edge almost, while the linear refraction index and ultrafast third-nonlinearity show unmonotonic changes. These novel fluoro-tellurite glasses may be suitable candidates for using in mid-infrared Raman fiber laser and/or amplifier.

  4. Laser-excited luminescence and absorption study of mixed valence for K 2Pt(CN) 4—K 2Pt(CN) 6 crystals

    NASA Astrophysics Data System (ADS)

    Kasi Viswanath, A.; Smith, Wayne L.; Patterson, H.

    1982-04-01

    Crystals of K 2Pt(CN) 6 doped with Pt(CN) 2-4 show an absorption band at 337 nm which is assigned as a mixed-valence (MV) transition from Pt (II) to Pt(IV). From a Hush model analysis, the absorption band is interpreted to be class II in the Day—Robin scheme. When the MV band is laser excited at 337 nm, emmision is observed from Pt(CN) 2-4 clusters.

  5. H2O absorption tomography in a diesel aftertreatment system using a polymer film for optical access

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Sanders, Scott T.; Backhaus, Jacob A.; Munnannur, Achuth; Schmidt, Niklas M.

    2017-12-01

    Film-optical-access H2O absorption tomography is, for the first time, applied to a practical diesel aftertreatment system. A single rotation stage and a single translation stage are used to move a single laser beam to obtain each of the 3480 line-of-sight measurements used in the tomographic reconstruction. It takes 1 h to acquire one image in a 60-view-angle measurement. H2O images are acquired in a 292.4-mm-diameter selective catalytic reduction (SCR) can with a 5-mm spatial resolution at temperatures in the 158-185 °C range. When no liquid H2O is injected into the gas, the L1 norm-based uniformity index is 0.994, and the average mole fraction error is - 6% based on a separate FTIR measurement. When liquid water is injected through the reductant dosing system designed to inject diesel exhaust fluid, nonuniformity is observed, as evidenced by measured uniformity indices for H2O in the 0.977-0.986 range. A mixing plate installed into the system is able to improve the uniformity of the H2O mole fraction.

  6. Experimental Studies on the Formation of D2O and D2O2 by Implantation of Energetic D+ Ions into Oxygen Ices

    NASA Astrophysics Data System (ADS)

    Bennett, Chris J.; Ennis, Courtney P.; Kaiser, Ralf I.

    2014-02-01

    The formation of water (H2O) in the interstellar medium is intrinsically linked to grain-surface chemistry; thought to involve reactions between atomic (or molecular) hydrogen with atomic oxygen (O), molecular oxygen (O2), and ozone (O3). Laboratory precedent suggests that H2O is produced efficiently when O2 ices are exposed to H atoms (~100 K). This leads to the sequential generation of the hydroxyperoxyl radical (HO2), then hydrogen peroxide (H2O2), and finally H2O and a hydroxyl radical (OH); despite a barrier of ~2300 K for the last step. Recent detection of the four involved species toward ρ Oph A supports this general scenario; however, the precise formation mechanism remains undetermined. Here, solid O2 ice held at 12 K is exposed to a monoenergetic beam of 5 keV D+ ions. Products formed during the irradiation period are monitored through FTIR spectroscopy. O3 is observed through seven archetypal absorptions. Three additional bands found at 2583, 2707, and 1195 cm -1 correspond to matrix isolated DO2 (ν1) and D2O2 (ν1, ν5), and D2O2), respectively. During subsequent warming, the O2 ice sublimates, revealing a broad band at 2472 cm-1 characteristic of amorphous D2O (ν1, ν3). Sublimating D2, D2O, D2O2, and O3 products were confirmed through their subsequent detection via quadrupole mass spectrometry. Reaction schemes based on both thermally accessible and suprathermally induced chemistries were developed to fit the observed temporal profiles are used to elucidate possible reaction pathways for the formation of D2-water. Several alternative schemes to the hydrogenation pathway (O2→HO2→H2O2→H2O) were identified; their astrophysical implications are briefly discussed.

  7. Simultaneous 183 GHz H2O maser and SiO observations towards evolved stars using APEX SEPIA Band 5

    NASA Astrophysics Data System (ADS)

    Humphreys, E. M. L.; Immer, K.; Gray, M. D.; De Beck, E.; Vlemmings, W. H. T.; Baudry, A.; Richards, A. M. S.; Wittkowski, M.; Torstensson, K.; De Breuck, C.; Møller, P.; Etoka, S.; Olberg, M.

    2017-07-01

    Aims: The aim is to investigate the use of 183 GHz H2O masers for characterization of the physical conditions and mass loss process in the circumstellar envelopes of evolved stars. Methods: We used APEX SEPIA Band 5 (an ALMA Band 5 receiver on the APEX telescope) to observe the 183 GHz H2O line towards two red supergiant (RSG) and three asymptotic giant branch (AGB) stars. Simultaneously, we observed the J = 4-3 line for 28SiO v = 0, 1, 2 and 3, and for 29SiO v = 0 and 1. We compared the results with simulations and radiative transfer models for H2O and SiO, and examined data for the individual linear orthogonal polarizations. Results: We detected the 183 GHz H2O line towards all the stars with peak flux densities >100 Jy, including a new detection from VY CMa. Towards all five targets, the water line had indications of being caused by maser emission and had higher peak flux densities than for the SiO lines. The SiO lines appear to originate from both thermal and maser processes. Comparison with simulations and models indicate that 183 GHz maser emission is likely to extend to greater radii in the circumstellar envelopes than SiO maser emission and to similar or greater radii than water masers at 22, 321 and 325 GHz. We speculate that a prominent blue-shifted feature in the W Hya 183 GHz spectrum is amplifying the stellar continuum, and is located at a similar distance from the star as mainline OH maser emission. We note that the coupling of an SiO maser model to a hydrodynamical pulsating model of an AGB star yields qualitatively similar simulated results to the observations. From a comparison of the individual polarizations, we find that the SiO maser linear polarization fraction of several features exceeds the maximum fraction allowed under standard maser assumptions and requires strong anisotropic pumping of the maser transition and strongly saturated maser emission. The low polarization fraction of the H2O maser however, fits with the expectation for a non

  8. Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial

    NASA Astrophysics Data System (ADS)

    Avinash, B. S.; Chaturmukha, V. S.; Jayanna, H. S.; Naveen, C. S.; Rajeeva, M. P.; Harish, B. M.; Suresh, S.; Lamani, Ashok R.

    2016-05-01

    Materials reduced to the Nano scale can exhibit different properties compared to what they exhibit on a micro scale, enabling unique applications. When TiO2 is reduced to Nano scale it shows unique properties, of which the electrical aspect is highly important. This paper presents increase in the energy gap and decrease in conductivity with decrease in particle size of pure Nano TiO2 synthesized by hydrolysis and peptization of titanium isopropoxide. Aqueous solution with various pH and peptizing the resultant suspension will form Nano TiO2 at different particle sizes. As the pH of the solution is made acidic reduction in the particle size is observed. And it is confirmed from XRD using Scherer formula and SEM, as prepared samples are studied for UV absorbance, and DC conductivity from room temperature to 400°C. From the tauc plot it was observed, and calculated the energy band gap increases as the particle size decreases and shown TiO2 is direct band gap. From Arrhenius plot clearly we encountered, decrease in the conductivity for the decrease in particle size due to hopping of charge carriers and it is evident that, we can tailor the band gap by varying particle size.

  9. Effect of geometric nanostructures on the absorption edges of 1-D and 2-D TiO₂ fabricated by atomic layer deposition.

    PubMed

    Chang, Yung-Huang; Liu, Chien-Min; Cheng, Hsyi-En; Chen, Chih

    2013-05-01

    2-Dimensional (2-D) TiO2 thin films and 1-dimensional (1-D) TiO2 nanotube arrays were fabricated on Si and quartz substrates using atomic layer deposition (ALD) with an anodic aluminum oxide (AAO) template at 400 °C. The film thickness and the tube wall thickness can be precisely controlled using the ALD approach. The intensities of the absorption spectra were enhanced by an increase in the thickness of the TiO2 thin film and tube walls. A blue-shift was observed for a decrease in the 1-D and 2-D TiO2 nanostructure thicknesses, indicating a change in the energy band gap with the change in the size of the TiO2 nanostructures. Indirect and direct interband transitions were used to investigate the change in the energy band gap. The results indicate that both quantum confinement and interband transitions should be considered when the sizes of 1-D and 2-D TiO2 nanostructures are less than 10 nm.

  10. Absorption Spectroscopy Analysis of Calcium-Phosphate Glasses Highly Doped with Monovalent Copper.

    PubMed

    Jiménez, José A

    2016-06-03

    CaO-P2 O5 glasses with high concentrations of monovalent copper ions were prepared by a simple melt-quench method through CuO and SnO co-doping. Spectroscopic characterization was carried out by optical absorption with the aim of analyzing the effects of Cu(+) ions on the optical band-gap energies, which were estimated on the basis of indirect-allowed transitions. The copper(I) content is estimated in the CuO/SnO-containing glasses after the assessment of the concentration dependence of Cu(2+) absorption in the visible region for CuO singly doped glasses. An exponential dependence of the change in optical band gaps (relative to the host) with Cu(+) concentration is inferred up to about 10 mol %. However, the entire range is divided into two distinct linear regions that are characterized by different rates of change with respect to concentration: 1) below 5 mol %, where the linear dependence presents a relatively high magnitude of the slope; and 2) from 5-10 mol %, where a lower magnitude of the slope is manifested. With increasing concentration, the mean Cu(+) -Cu(+) interionic distance decreases, thereby decreasing the sensitivity of monovalent copper for light absorption. The decrease in optical band-gap energies is ultimately shown to follow a linear dependence with the interionic distance, suggesting the potential of the approach to gauge the concentration of monovalent copper straightforwardly in amorphous hosts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Augmented Photoelectrochemical Efficiency of ZnO/TiO2 Nanotube Heterostructures

    NASA Astrophysics Data System (ADS)

    Boda, Muzaffar Ahmad; Shah, Mohammad Ashraf

    2017-11-01

    ZnO/TiO2 nanotube heterostructures have been fabricated by electrodeposition of ZnO microcrystals over electrochemically anodized TiO2 nanotube arrays. The resulting ZnO/TiO2 nanotube heterostructures showed enhanced photocurrent density of 5.72 mA cm-2, about 1.5 times the value of 3.68 mA cm-2 shown by bare compact TiO2 nanotubes. This enhanced photocurrent density of the ZnO/TiO2 nanotube heterostructures is due to high electron mobility in the ZnO crystals, thereby decreasing the electron-hole recombination process, good interfacial quality between the ZnO and TiO2 structures, and a proposed smooth charge-transfer mechanism due to band bending at the interface. The morphological features of the as-prepared heterostructures were determined by field-emission scanning electron microscopy (FESEM). The crystallinity and phase purity of the samples were confirmed by x-ray diffraction (XRD) analysis. The light absorption properties of the prepared samples were investigated by ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The photoelectrochemical efficiency of bare and ZnO-modified TiO2 nanotube heterostructures was determined by electrochemical analyzer.

  12. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  13. Enhanced performance of dye-sensitized solar cells based on TiO{sub 2} with NIR-absorption and visible upconversion luminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Li; Yulin, Yang, E-mail: ylyang@hit.edu.cn; Mi, Zhou

    2013-02-15

    TiO{sub 2} with NIR-absorption and visible upconversion luminescence (UC-TiO{sub 2}) is prepared by a sol-gel method and calcined at 700 Degree-Sign C for 6 h. The material broadens the response region of dye sensitized solar cells (DSSCs) from an ultraviolet-visible region to the whole region of the solar spectrum. It shifts NIR sunlight to visible light which matches the strong absorbing region of the dye (N719). DSSCs based on UC-TiO{sub 2} achieved higher conversion efficiency than that on raw TiO{sub 2}. UC-TiO{sub 2} was mixed with commercial raw TiO{sub 2} as additive, and the short-circuit current density, open-circuit voltage andmore » conversion efficiency of the DSSC reached to the optimum values 13.38 mA/cm{sup 2}, 0.78 V and 6.63% (AM1.5 global), comparing with the blank values: 7.99 mA/cm{sup 2}, 0.75 V and 4.07%, respectively. Also the mechanisms of upconversion by multiphoton absorption and energy transfer processes are interpreted in this paper. - Graphical abstract: By introducing TiO{sub 2} with NIR-absorption and visible up-conversion luminescence into DSSC, a signal reflection was explored from ultra-violet region to visible region, and to near-IR region. Highlights: Black-Right-Pointing-Pointer TiO{sub 2} with NIR-absorption and visible up-conversion luminescence (UC-TiO{sub 2}) was prepared by a sol-gel method. Black-Right-Pointing-Pointer A systematic characterization and analysis was carried out to discuss the mechanism. Black-Right-Pointing-Pointer A significantly enhanced performance of DSSC was explored by using UC-TiO{sub 2} as an additive.« less

  14. Effect of synthesis method on structure, band gap and surface morphology of delafossite oxides, CuAlO2 and CuFeO2

    NASA Astrophysics Data System (ADS)

    Shah, Aadil Abass; Azam, Ameer

    2018-04-01

    In this research work we have reported the synthesis of two different delafossites, CuAlO2 and CuFeO2 by two different synthesis methods viz hydrothermal method and the combustion method. The effect of synthesis on structure, band gap and morphology of the synthesized delafossites was carried out using various techniques. The phase and structure of the synthesized delafossites were studied and confirmed using X-ray diffraction and the crystallite size was calculated. FTIR measurements showed the presence of different stretching modes and functional groups in the synthesized oxides. The surface morphology was studied using the scanning electron microscopy. The band gap of the synthesized delafossite oxides was found to be in the range of 2.8 and 3.3 eV.

  15. First-principles study on codoping effect to enhance photocatalytic activity of anatase TiO2

    NASA Astrophysics Data System (ADS)

    Bai, Yujie; Zhang, Qinfang; Zheng, Fubao; Yang, Yun; Meng, Qiangqiang; Zhu, Lei; Wang, Baolin

    2017-03-01

    Codopant is an effective approach to modify the bandgap and band edge positions of transition metal oxide. Here, the electronic structures as well as the optical properties of pristine, mono-doped (N/P/Sb) and codoped (Sb, N/P) anatase TiO2 have been systematically investigated based on density functional theory calculations. It is found that mono-doped TiO2 exhibits either unoccupied or partially occupied intermediate state within the energy gap, which promotes the recombination of electron-hole pairs. However, the presence of (Sb, N/P) codopant not only effectively reduces the width of bandgap by introducing delocalized occupied intermediate states, but also adjusts the band edge alignment to enhance the hydrogen evolution activity of TiO2. Moreover, the optical absorption spectrum for (Sb, N/P) codoped TiO2, which is favored under oxygen-rich condition, demonstrates the improvement of its visible light absorption. These findings will promote the potential application of (Sb, N/P) codoped TiO2 photocatalysis for water splitting under visible light irradiation.

  16. Spectroscopy of the simplest Criegee intermediate CH2OO: simulation of the first bands in its electronic and photoelectron spectra.

    PubMed

    Lee, Edmond P F; Mok, Daniel K W; Shallcross, Dudley E; Percival, Carl J; Osborn, David L; Taatjes, Craig A; Dyke, John M

    2012-09-24

    CH(2)OO, the simplest Criegee intermediate, and ozone are isoelectronic. They both play very important roles in atmospheric chemistry. Whilst extensive experimental studies have been made on ozone, there were no direct gas-phase studies on CH(2)OO until very recently when its photoionization spectrum was recorded and kinetics studies were made of some reactions of CH(2)OO with a number of molecules of atmospheric importance, using photoionization mass spectrometry to monitor CH(2)OO. In order to encourage more direct studies on CH(2)OO and other Criegee intermediates, the electronic and photoelectron spectra of CH(2)OO have been simulated using high level electronic structure calculations and Franck-Condon factor calculations, and the results are presented here. Adiabatic and vertical excitation energies of CH(2)OO were calculated with TDDFT, EOM-CCSD, and CASSCF methods. Also, DFT, QCISD and CASSCF calculations were performed on neutral and low-lying ionic states, with single energy calculations being carried out at higher levels to obtain more reliable ionization energies. The results show that the most intense band in the electronic spectrum of CH(2) OO corresponds to the B(1)A' ← X(1)A' absorption. It is a broad band in the region 250-450 nm showing extensive structure in vibrational modes involving O-O stretching and C-O-O bending. Evidence is presented to show that the electronic absorption spectrum of CH(2)OO has probably been recorded in earlier work, albeit at low resolution. We suggest that CH(2)OO was prepared in this earlier work from the reaction of CH(2)I with O(2) and that the assignment of the observed spectrum solely to CH(2)IOO is incorrect. The low ionization energy region of the photoelectron spectrum of CH(2)OO consists of two overlapping vibrationally structured bands corresponding to one-electron ionizations from the highest two occupied molecular orbitals of the neutral molecule. In each case, the adiabatic component is the most intense

  17. Electronic structure, magnetism, and optical properties of Fe2SiO4 fayalite at ambient and high pressures: A GGA+U study

    NASA Astrophysics Data System (ADS)

    Jiang, Xuefan; Guo, G. Y.

    2004-04-01

    The electronic structure, magnetism, and optical properties of Fe2SiO4 fayalite, the iron-rich end member of the olivine-type silicate, one of the most abundant minerals in Earth’s upper mantle, have been studied by density-functional theory within the generalized gradient approximation (GGA) with the on-site Coulomb energy U=4.5 eV taken into account (GGA+U). The stable insulating antiferromagnetic solution with an energy gap ˜1.49 eV and a spin magnetic moment of 3.65μB and an orbital magnetic moment of 0.044μB per iron atom is obtained. It is found that the gap opening in this fayalite results mainly from the strong on-site Coulomb interaction on the iron atoms. In this band structure, the top of valence bands consists mainly of the 3d orbitals of Fe2 atoms, and the bottom of the conduction bands is mainly composed of the 3d orbitals of Fe1 atoms. Therefore, since the electronic transition from the Fe2 3d to Fe1 3d states is weak, significant electronic transitions would appear only about 1 eV above the absorption edge when Fe-O orbitals are involved in the final states. In addition, our band-structure calculations can explain the observed phenomena including redshift near the absorption edge and the decrease of the electrical resistivity of Fe2SiO4 upon compression. The calculated Fe p partial density of states agree well with Fe K-edge x-ray absorption spectrum. The calculated lattice constants and atomic coordinates for Fe2SiO4 fayalite in orthorhombic structure are in good agreement with experiments.

  18. ESR and nonresonant microwave absorption of ErBa2Cu3O(7-delta) and HoBa2Cu3O(7-delta) single crystals

    NASA Astrophysics Data System (ADS)

    Tagaya, Kimihito; Fukuoka, Nobuo; Nakanishi, Shigemitsu

    1990-12-01

    ESR measurements were performed for ErBa2Cu3O(7-delta) and HoBa2Cu3O(7-delta) single crystals from 77 K to room temperature. The ESR signals of Er2BaCuO5 and Ho2BaCuO5 were observed, and their temperature variations were investigated. Nonresonant microwave absorption was also observed below the superconducting critical temperature of 93 K. The principal values of lower critical field were determined.

  19. Band alignment of TiO{sub 2}/FTO interface determined by X-ray photoelectron spectroscopy: Effect of annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Haibo, E-mail: hbfan@nwu.edu.cn, E-mail: liusz@snnu.edu.cn; School of Physics, Northwest University, Xi’an 710069; Yang, Zhou

    2016-01-15

    The energy band alignment between pulsed-laser-deposited TiO{sub 2} and FTO was firstly characterized using high-resolution X-ray photoelectron spectroscopy. A valence band offset (VBO) of 0.61 eV and a conduction band offset (CBO) of 0.29 eV were obtained across the TiO{sub 2}/FTO heterointerface. With annealing process, the VBO and CBO across the heterointerface were found to be -0.16 eV and 1.06 eV, respectively, with the alignment transforming from type-I to type-II. The difference in the band alignment is believed to be dominated by the core level down-shift of the FTO substrate, which is a result of the oxidation of Sn. Current-voltagemore » test has verified that the band alignment has a significant effect on the current transport of the heterojunction.« less

  20. AB INITIO STUDY OF OPTOELECTRONIC PROPERTIES OF SPINEL ZnAl2O4 BEYOND GGA AND LDA

    NASA Astrophysics Data System (ADS)

    Yousaf, Masood; Saeed, M. A.; Isa, Ahmad Radzi Mat; Rahnamaye Aliabad, H. A.; Noor, N. A.

    2012-12-01

    Electronic band structure and optical parameters of ZnAl2O4 are investigated by first-principles technique based on a new potential approximation, known as modified Becke-Johnson (mBJ). This method describes the excited states of insulators and semiconductors more accurately The recent direct band gap result by EV-GGA is underestimated by about 15% compared to our band gap value using mBJ-GGA. The value of the band gap of ZnAl2O4 decreases as follows: Eg(mBJ-GGA/LDA) > Eg(GGA) > Eg(LDA). The band structure base optical parametric quantities (dielectric constant, index of refraction, reflectivity and optical conductivity) are also calculated, and their variations with energy range are discussed. The first critical point (optical absorption's edge) in ZnAl2O4 occurs at about 5.26 eV in case of mBJ. This study about the optoelectronic properties indicates that ZnAl2O4 can be used in optical devices.

  1. Electronic structure of LiCoO2 thin films: A combined photoemission spectroscopy and density functional theory study

    NASA Astrophysics Data System (ADS)

    Ensling, David; Thissen, Andreas; Laubach, Stefan; Schmidt, Peter C.; Jaegermann, Wolfram

    2010-11-01

    The electronic properties of LiCoO2 have been studied by theoretical band-structure calculations (using density functional theory) and experimental methods (photoemission). Synchrotron-induced photoelectron spectroscopy, resonant photoemission spectroscopy (ResPES), and soft x-ray absorption (XAS) have been applied to investigate the electronic structure of both occupied and unoccupied states. High-quality PES spectra were obtained from stoichiometric and highly crystalline LiCoO2 thin films deposited “in situ” by rf magnetron sputtering. An experimental approach of separating oxygen- and cobalt-derived (final) states by ResPES in the valence-band region is presented. The procedure takes advantage of an antiresonant behavior of cobalt-derived states at the 3p-3d excitation threshold. Information about the unoccupied density of states has been obtained by OK XAS. The structure of the CoL absorption edge is compared to semiempirical charge-transfer multiplet calculations. The experimental results are furthermore compared with band-structure calculations considering three different exchange potentials [generalized gradient approximation (GGA), using a nonlocal Hubbard U (GGA+U) and using a hybrid functional (Becke, three-parameter, Lee-Yang-Parr [B3LYP])]. For these different approaches total density of states and partial valence-band density of states have been investigated. The best qualitative agreement with experimental results has been obtained by using a GGA+U functional with U=2.9eV .

  2. 3D nanostructured N-doped TiO2 photocatalysts with enhanced visible absorption.

    PubMed

    Cho, Sumin; Ahn, Changui; Park, Junyong; Jeon, Seokwoo

    2018-05-24

    Considering the environmental issues, it is essential to develop highly efficient and recyclable photocatalysts in purification systems. Conventional TiO2 nanoparticles have strong intrinsic oxidizing power and high surface area, but are difficult to collect after use and rarely absorb visible light, resulting in low photocatalytic efficiency under sunlight. Here we develop a new type of highly efficient and recyclable photocatalyst made of a three-dimensional (3D) nanostructured N-doped TiO2 monolith with enhanced visible light absorption. To prepare the sample, an ultrathin TiN layer (∼10 nm) was conformally coated using atomic layer deposition (ALD) on 3D nanostructured TiO2. Subsequent thermal annealing at low temperature (550 °C) converted TiN to anatase phase N-doped TiO2. The resulting 3D N-doped TiO2 showed ∼33% enhanced photocatalytic performance compared to pure 3D TiO2 of equivalent thickness under sunlight due to the reduced bandgap, from 3.2 eV to 2.75 eV through N-doping. The 3D N-doped TiO2 monolith could be easily collected and reused at least 5 times without any degradation in photocatalytic performance.

  3. Rational Construction of Uniform CoNi-Based Core-Shell Microspheres with Tunable Electromagnetic Wave Absorption Properties.

    PubMed

    Chen, Na; Jiang, Jian-Tang; Xu, Cheng-Yan; Yan, Shao-Jiu; Zhen, Liang

    2018-02-16

    Core-shell particles with integration of ferromagnetic core and dielectric shell are attracting extensive attention for promising microwave absorption applications. In this work, CoNi microspheres with conical bulges were synthesized by a simple and scalable liquid-phase reduction method. Subsequent coating of dielectric materials was conducted to acquire core-shell structured CoNi@TiO 2 composite particles, in which the thickness of TiO 2 is about 40 nm. The coating of TiO 2 enables the absorption band of CoNi to effectively shift from K u to S band, and endows CoNi@TiO 2 microspheres with outstanding electromagnetic wave absorption performance along with a maximum reflection loss of 76.6 dB at 3.3 GHz, much better than that of bare CoNi microspheres (54.4 dB at 17.8 GHz). The enhanced EMA performance is attributed to the unique core-shell structures, which can induce dipole polarization and interfacial polarization, and tune the dielectric properties to achieve good impedance matching. Impressively, TiO 2 coating endows the composites with better microwave absorption capability than CoNi@SiO 2 microspheres. Compared with SiO 2 , TiO 2 dielectric shells could protect CoNi microspheres from merger and agglomeration during annealed. These results indicate that CoNi@TiO 2 core-shell microspheres can serve as high-performance absorbers for electromagnetic wave absorbing application.

  4. Thermoelectric properties of 2H-CuGaO2 for device applications: A first principle TB-mBJ potential study

    NASA Astrophysics Data System (ADS)

    Bhamu, K. C.; Praveen, C. S.

    2017-12-01

    Here we report the structural, electronic, optical, and thermoelectric properties of delafossite type 2H-CuGaO2 using first principles calculations. The present calculation predict an indirect band gap of 1.20 eV and a direct band gap of 3.48 eV. A detailed analysis of the electronic structure is provided based on atom and orbital projected density of states. Frequency dependent dielectric functions, refractive index, and absorption coefficient as a function of photon energy are discussed. The thermoelectric properties with power factor, and the figure of merit are reported as a function of chemical potential in the region ± 0.195 (μ -EF) eV at constant temperature of 300 and 800 K. The thermoelectric properties shows that 2H-CuGaO2 could be potential candidate for engineering devises operating at high temperature for the chemical potential in the range of ± 0.055 (μ -EF) eV and beyond this range the thermoelectric performance of 2H-CuGaO2 get reduced.

  5. Emergence of Very Broad Infrared Absorption Band By Hyperdoping of Silicon with Chalcogens

    DTIC Science & Technology

    2013-06-03

    measured by Hall effect in Ref. 9 (crosses) as functions of implanted sulfur dose. (c) Calculated reflectivity by Kramers- Kronig transformation of the...MIR band is small enough, this assumption is reasonable according to the Kramers- Kronig relationship between optical absorption and reflectivity...calculated by a Kramers- Kronig transformation of the absorption spectrum shown in Fig. 1(a) and the results are shown in Fig. 1(c). However, the a value

  6. Electromagnetic properties of absorber fabric coated with BaFe12O19/MWCNTs/PANi nanocomposite in X and Ku bands frequency

    NASA Astrophysics Data System (ADS)

    Afzali, Arezoo; Mottaghitalab, Vahid; Seyyed Afghahi, Seyyed Salman; Jafarian, Mojtaba; Atassi, Yomen

    2017-11-01

    Current investigation focuses on the electromagnetic properties of nonwoven fabric coated with BaFe12O19 (BHF) /MWCNTs/PANi nanocomposite in X and Ku bands. The BHF/MWCNTs and BHF/MWCNTs/PANi nanocomposites are prepared using the sol gel and in-situ polymerization methods respectively. The absorbent fabric was prepared based on applying a 40 wt% of BHF/MWCNTs/PANi nanocomposite in silicon resin on nonwoven fabric via roller coating technique The X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and vector network analysis (VNA) are used to peruse microstructural, magnetic and electromagnetic features of the composite and absorber fabric respectively. The microscopic images of the fabric coated with magnetic nanocomposite shows a homogenous layer of nanoparticles on the fabric surface. The maximum reflection loss of binary nano-composite BHF/MWCNTs was measured about -28.50 dB at 11.72 GHz with 1.7 GHz bandwidth (RL < -10 dB) in X band. Moreover in Ku band, the maximum reflection loss is -29.66 dB at 15.78 GHz with 3.2 GHz bandwidths. Also the ternary nanocomposite BHF/MWCNTs/PANi exhibits a broad band absorber over a wide range of X band with a maximum reflection loss of -36.2 dB at 10.2 GHz with 1.5 GHz bandwidth and in the Ku band has arrived a maximum reflection loss of -37.65 dB at 12.84 GHz with 2.43 GHz bandwidth. This result reflects the synergistic effect of the different components with different loss mechanisms. As it is observed due to the presence of PANi in the structure of nanocomposite, the amount of absorption has increased extraordinarily. The absorber fabric exhibits a maximum reflection loss of -24.2 dB at 11.6 GHz with 4 GHz bandwidth in X band. However, in Ku band, the absorber fabric has had the maximum absorption in 16.88 GHz that is about -24.34 dB with 6 GHz bandwidth. Therefore, results indicate that the fabric samples coated represents appreciable maximum absorption value of more than 99% in

  7. Analysis of wavelength-dependent photoisomerization quantum yields in bilirubins by fitting two exciton absorption bands

    NASA Astrophysics Data System (ADS)

    Mazzoni, M.; Agati, G.; Troup, G. J.; Pratesi, R.

    2003-09-01

    The absorption spectra of bilirubins were deconvoluted by two Gaussian curves of equal width representing the exciton bands of the non-degenerate molecular system. The two bands were used to study the wavelength dependence of the (4Z, 15Z) rightarrow (4Z, 15E) configurational photoisomerization quantum yield of the bichromophoric bilirubin-IXalpha (BR-IX), the intrinsically asymmetric bile pigment associated with jaundice and the symmetrically substituted bilirubins (bilirubin-IIIalpha and mesobilirubin-XIIIalpha), when they are irradiated in aqueous solution bound to human serum albumin (HSA). The same study was performed for BR-IX in ammoniacal methanol solution (NH4OH/MeOH). The quantum yields of the configurational photoprocesses were fitted with a combination function of the two Gaussian bands normalized to the total absorption, using the proportionality coefficients and a scaling factor as parameters. The decrease of the (4Z, 15Z) rightarrow (4Z, 15E) quantum yield with increasing wavelength, which occurs for wavelengths longer than the most probable Franck-Condon transition of the molecule, did not result in a unique function of the exciton absorptions. In particular we found two ranges corresponding to different exciton interactions with different proportionality coefficients and scaling factors. The wavelength-dependent photoisomerization of bilirubins was described as an abrupt change in quantum yield as soon as the resulting excitation was strongly localized in each chromophore. The change was correlated to a variation of the interaction between the two chromophores when the short-wavelength exciton absorption became vanishingly small. With the help of the circular dichroism (CD) spectrum of BR-IX in HSA, a small band was resolved in the bilirubin absorption spectrum, delivering part of the energy required for the (4Z, 15Z) rightarrow (4Z, 15E) photoisomerization of the molecule.

  8. Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers.

    PubMed

    Zhang, Nan; Zhou, Peiheng; Cheng, Dengmu; Weng, Xiaolong; Xie, Jianliang; Deng, Longjiang

    2013-04-01

    We present the simulation, fabrication, and characterization of a dual-band metamaterial absorber in the mid-infrared regime. Two pairs of circular-patterned metal-dielectric stacks are employed to excite the dual-band absorption peaks. Dielectric characteristics of the dielectric spacing layer determine energy dissipation in each resonant stack, i.e., dielectric or ohmic loss. By controlling material parameters, both two mechanisms are introduced into our structure. Up to 98% absorption is obtained at 9.03 and 13.32 μm in the simulation, which is in reasonable agreement with experimental results. The proposed structure holds promise for various applications, e.g., thermal radiation modulators and multicolor infrared focal plane arrays.

  9. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods

    NASA Astrophysics Data System (ADS)

    Paul, Kamal Kumar; Ghosh, Ramesh; Giri, P. K.

    2016-08-01

    We report on the ultra-high rate of photodegradation of organic dyes under visible light illumination on Ag2O-nanoparticle-decorated (NP) porous pure B-phase TiO2 (TiO2(B)) nanorods (NRs) grown by a solvothermal route. The as-grown TiO2(B) NRs are found to be nanoporous in nature and the Ag2O NPs are uniformly decorated over its surface, since most of the pores work as nucleation sites for the growth of Ag2O NPs. The effective band gap of the TiO2(B)/Ag2O heterostructure (HS), with a weight ratio of 1:1, has been significantly reduced to 1.68 eV from the pure TiO2(B) band gap of 2.8 eV. Steady state and time-resolved photoluminescence (PL) studies show the reduced intensity of visible PL and slower recombination dynamics in the HS samples. The photocatalytic degradation efficiency of the TiO2(B)/Ag2O HS has been investigated using aqueous methyl orange and methylene blue as reference dyes under visible light (390-800 nm) irradiation. It is found that photodegradation by the TiO2(B)/Ag2O HS is about one order of magnitude higher than that of bare TiO2(B) NRs and Ag2O NPs. The optimized TiO2(B)/Ag2O HS exhibited the highest photocatalytic efficiency, with 88.2% degradation for 30 min irradiation. The corresponding first order degradation rate constant is 0.071 min-1, which is four times higher than the reported values. Furthermore, cyclic stability studies show the high stability of the HS photocatalyst for up to four cycles of use. The major improvement in photocatalytic efficiency has been explained on the basis of enhanced visible light absorption and band-bending-induced efficient charge separation in the HS. Our results demonstrate the long-term stability and superiority of the TiO2(B)/Ag2O HS over the bare TiO2(B) NRs and other TiO2-based photocatalysts for its cutting edge application in hydrogen production and environmental cleaning driven by solar light photocatalysis.

  10. Electronic, optical and photocatalytic behavior of Mn, N doped and co-doped TiO{sub 2}: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Ya Fei; Li, Can, E-mail: canli1983@gmail.com; Lu, Song

    2016-03-15

    The crystal phase structure, surface morphology, chemical states and optical properties of Mn, N mono-doped and co-doped TiO{sub 2} nanoparticles were investigated by X-ray powder diffractometry, Raman spectra, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy. Meanwhile, geometry structures, formation energies, electronic and optical properties of all systems have been also analyzed by density functional theory. The results showed that the band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and themore » carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light. Especially, the photocatalytic activity of Mn-2N co-doped TiO{sub 2} beyond three-fold than that of pure TiO{sub 2} under visible-light. - Graphical abstract: The ILs formed by N-2p orbital in N single doped specimen lie above the VB, while the ILs formed by Mn-3d orbital in Mn single doped specimen appear below the CB. However, a large amount of ILs formed by N-2p orbital and Mn-3d orbital in N and Mn codoped specimens. The band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and the carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light.« less

  11. Properties of the 4.45 eV optical absorption band in LiF:Mg,Ti.

    PubMed

    Nail, I; Oster, L; Horowitz, Y S; Biderman, S; Belaish, Y

    2006-01-01

    The optical absorption (OA) and thermoluminescence (TL) of dosimetric LiF:Mg,Ti (TLD-100) as well as nominally pure LiF single crystal have been studied as a function of irradiation dose, thermal and optical bleaching in order to investigate the role of the 4.45 eV OA band in low temperature TL. Computerised deconvolution was used to resolve the absorption spectrum into individual gaussian bands and the TL glow curve into glow peaks. Although the 4.45 eV OA band shows thermal decay characteristics similar to the 4.0 eV band its dose filling constant and optical bleaching properties suggest that it cannot be associated with the TL of composite peaks 4 or 5. Its presence in optical grade single crystal LiF further suggests that it is an intrinsic defect or possibly associated with chance impurities other than Mg, Ti.

  12. Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation.

    PubMed

    Hwang, Jih-Shang; Liu, Tai-Yan; Chattopadhyay, Surjit; Hsu, Geng-Ming; Basilio, Antonio M; Chen, Han-Wei; Hsu, Yu-Kuei; Tu, Wen-Hsun; Lin, Yan-Gu; Chen, Kuei-Hsien; Li, Chien-Cheng; Wang, Sheng-Bo; Chen, Hsin-Yi; Chen, Li-Chyong

    2013-02-08

    Enhanced photoelectrochemical (PEC) performances of Ga(2)O(3) and GaN nanowires (NWs) grown in situ from GaN were demonstrated. The PEC conversion efficiencies of Ga(2)O(3) and GaN NWs have been shown to be 0.906% and 1.09% respectively, in contrast to their 0.581% GaN thin film counterpart under similar experimental conditions. A low crystallinity buffer layer between the grown NWs and the substrate was found to be detrimental to the PEC performance, but the layer can be avoided at suitable growth conditions. A band bending at the surface of the GaN NWs generates an electric field that drives the photogenerated electrons and holes away from each other, preventing recombination, and was found to be responsible for the enhanced PEC performance. The enhanced PEC efficiency of the Ga(2)O(3) NWs is aided by the optical absorption through a defect band centered 3.3 eV above the valence band of Ga(2)O(3). These findings are believed to have opened up possibilities for enabling visible absorption, either by tailoring ion doping into wide bandgap Ga(2)O(3) NWs, or by incorporation of indium to form InGaN NWs.

  13. Spectral studies of SiCl4 + N2O + Ar and SiH4 + Ar mixtures in a shock tube in 160-550 nm range

    NASA Technical Reports Server (NTRS)

    Park, C.; Fujiwara, T.

    1978-01-01

    Gases containing SiO, SiO2, SiH, and Si2 were produced in the reflected-shock region of a shock tube by heating SiCl4 + N2O + Ar and SiH4 + Ar mixtures with shock waves. Spectral absorption characteristics were measured in the 160-550 nm wavelength range and in the 2800-3600 K temperature range and compared to calculated values. The sums of the squares of electronic transition moments at equilibrium separation were derived. It was found that absorption by SiO2 and other known bands of SiO, SiH, and Si2 were too weak to be measured. The cross section of absorption by a continuum, believed due to SiH, varied from 2.5 x 10 to the -17th sq cm at 280 nm to 1.6 x 10 to the -18th sq cm at 440 nm.

  14. Search for molecular absorptions with the Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Knacke, Roger F.

    1995-01-01

    The objective of this research was a search for water molecules in the gas phase in molecular clouds. Water should be among the most abundant gases in the clouds and is of fundamental importance in gas chemistry, cloud cooling, shock wave chemistry, and gas-grain interactions of interstellar dust. Detection of water in Comet Halley in the 2.7 micron v(3) band in 1986 had shown that airborne H2O observations are feasible (ground-based observations of H2O are impossible because of the massive water content of the atmosphere). We planned to observe the v(3) band in interstellar clouds where a number of lines of this band should be in absorption. The search for H2O commenced in 1988 with a two flight program on the KAO. this resulted in a detection of interstellar H2O with S/N of 2-4 in the v(3) 1(01)-2(02) line at 3801.42/cm. A subsequent flight series of two flights in 1989 resulted in confirmation to the 3801.42/cm line detection and the detection of altogether four strong lines in the 000-001 v(3) vibration-rotation band of H2O.

  15. Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window.

    PubMed

    Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao

    2018-06-15

    SrAl 2 O 4 -Sr 3 Al 2 O 6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO 2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV-vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl 2 O 4 -Sr 3 Al 2 O 6 samples fabricated by the containerless process and SPS between 852 °C-857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl 2 O 4 -Sr 3 Al 2 O 6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.

  16. Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window

    NASA Astrophysics Data System (ADS)

    Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao

    2018-06-01

    SrAl2O4-Sr3Al2O6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV–vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl2O4-Sr3Al2O6 samples fabricated by the containerless process and SPS between 852 °C–857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl2O4-Sr3Al2O6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.

  17. Magneto-optical properties of α-Fe2O3@ZnO nanocomposites prepared by the high energy ball-milling technique

    NASA Astrophysics Data System (ADS)

    Chaudhury, Chandana Roy; Roychowdhury, Anirban; Das, Anusree; Das, Dipankar

    2016-05-01

    Magnetic-fluorescent nanocomposites (NCs) with 10 wt% of α-Fe2O3 in ZnO have been prepared by the high energy ball-milling. The crystallite sizes of α-Fe2O3 and ZnO in the NCs are found to vary from 65 nm to 20 nm and 47 nm to 15 nm respectively as milling time is increased from 2 to 30 h. XRD analysis confirms presence of α-Fe2O3 and ZnO in pure form in all the NCs. UV-vis study of the NCs shows a continuous blue-shift of the absorption peak and a steady increase of band gap of ZnO with increasing milling duration that are assigned to decreasing particle size of ZnO in the NCs. Photoluminescence (PL) spectra of the NCs reveal three weak emission bands in the visible region at 421, 445 and 485 nm along with the strong near band edge emission at 391 nm. These weak emission bands are attributed to different defect - related energy levels e.g. Zn-vacancy, Zn interstitial and oxygen vacancy. Dc and ac magnetization measurements show presence of weakly interacting superparamagnetic (SPM) α-Fe2O3 particles in the NCs. 57Fe-Mössbauer study confirms presence of SPM hematite in the sample milled for 30 h. Positron annihilation lifetime measurements indicate presence of cation vacancies in ZnO nanostructures confirming results of PL studies.

  18. On the optical band gap of zinc oxide

    NASA Astrophysics Data System (ADS)

    Srikant, V.; Clarke, D. R.

    1998-05-01

    Three different values (3.1, 3.2, and 3.3 eV) have been reported for the optical band gap of zinc oxide single crystals at room temperature. By comparing the optical properties of ZnO crystals using a variety of optical techniques it is concluded that the room temperature band gap is 3.3 eV and that the other values are attributable to a valence band-donor transition at ˜3.15 eV that can dominate the optical absorption when the bulk of a single crystal is probed.

  19. The effect of carbon nanotubes functionalization on the band-gap energy of TiO2-CNT nanocomposite

    NASA Astrophysics Data System (ADS)

    Shahbazi, Hessam; Shafei, Alireza; Sheibani, Saeed

    2018-01-01

    In this paper the morphology and structure of TiO2-CNT nanocomposite powder obtained by an in situ sol-gel process were investigated. The synthesized nanocomposite powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectance spectroscopy (DRS). The effect of functionalizing of CNT on the properties was studied. XRD results showed amorphous structure before calcination. Also, anatase phase TiO2 was formed after calcination at 400 °C. The SEM results indicate different distributions of TiO2 on CNTs. As a result, well dispersed TiO2 microstructure on the surface of CNTs was observed after functionalizing, while compact and large aggregated particles were found without functionalizing. The average thickness of uniform and well-defined coated TiO2 layer was in the range of 30-40 nm. The DRS results have determined the reflective properties and band gap energies of nanocomposite powders and have shown that functionalizing of CNTs caused the change of band-gap energy from 2.98 to 2.87 eV.

  20. Fabrication and enhanced photoluminescence properties of Sm3+-doped ZnO-Al2O3-B2O3-SiO2 glass derived willemite glass-ceramic nanocomposites

    NASA Astrophysics Data System (ADS)

    Tarafder, Anal; Molla, Atiar Rahaman; Mukhopadhyay, Sunanda; Karmakar, Basudeb

    2014-07-01

    The transparent willemite, Zn2SiO4 (ZS) glass-ceramic nanocomposites were prepared from melt-quench derived ZnO-Al2O3-B2O3-SiO2 (ZABS) precursor glass by an isothermal heat-treatment process. The generation of willemite crystal phase, size and morphology with increase in heat-treatment time was examined by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. The average calculated crystallite size obtained from XRD is found to be in the range 80-120 nm. The decreased refractive index with increase in heat-treatment time attributed to partial replacement of ZnO4 units of willemite nanocrystals by AlO4 units and simultaneous generation of vacancies in the Zn-site. Fourier transform infrared (FTIR) reflection spectroscopy exhibits the structural evolution of willemite glass-ceramics. The photoluminescence spectra of Sm3+ ions exhibit emission transitions of 4G5/2 → 6HJ (J = 5/2, 7/2, 9/2, 11/2) and its excitation spectra shows an intense absorption band at 402 nm. These spectra reveal that the luminescence performance of the glass-ceramic nanocomposites is enhanced up to 14-fold with crystallization into willemite.

  1. W:Al 2O 3 nanocomposite thin films with tunable optical properties prepared by atomic layer deposition

    DOE PAGES

    Babar, Shaista; Mane, Anil U.; Yanguas-Gil, Angel; ...

    2016-06-17

    Here, a systematic alteration in the optical properties of W:Al 2O 3 nanocomposite films is demonstrated by precisely varying the W cycle percentage (W%) from 0 to 100% in Al 2O 3 during atomic layer deposition. The direct and indirect band energies of the nanocomposite materials decrease from 5.2 to 4.2 eV and from 3.3 to 1.8 eV, respectively, by increasing the W% from 10 to 40. X-ray absorption spectroscopy reveals that, for W% < 50, W is present in both metallic and suboxide states, whereas, for W% ≥ 50, only metallic W is seen. This transition from dielectric tomore » metallic character at W% ~ 50 is accompanied by an increase in the electrical and thermal conductivity and the disappearance of a clear band gap in the absorption spectrum. The density of the films increases monotonically from 3.1 g/cm 3 for pure Al 2O 3 to 17.1 g/cm 3 for pure W, whereas the surface roughness is greatest for the W% = 50 films. The W:Al 2O 3 nanocomposite films are thermally stable and show little change in optical properties upon annealing in air at 500 °C. These W:Al 2O 3 nanocomposite films show promise as selective solar absorption coatings for concentrated solar power applications.« less

  2. Understanding ferromagnetism and optical absorption in 3d transition metal-doped cubic ZrO{sub 2} with the modified Becke-Johnson exchange-correlation functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boujnah, M.; Zaari, H.; El Kenz, A., E-mail: elkenz@fsr.ac.ma

    The electronic structure, magnetic, and optical properties in cubic crystalline phase of Zr{sub 1−x}TM{sub x}O{sub 2} (TM = V, Mn, Fe, and Co) at x = 6.25% are studied using density functional theory with the Generalized Gradient Approximation and the modified Becke-Johnson of the exchange-correlation energy and potential. In our calculations, the zirconia is a p-type semiconductor and has a large band gap. We evaluated the possibility of long-range magnetic order for transition metal ions substituting Zr. Our results show that ferromagnetism is the ground state in V, Mn, and Fe-doped ZrO{sub 2} and have a high value of energy in Mn-doped ZrO{sub 2}.more » However, in Co-doped ZrO{sub 2}, antiferromagnetic ordering is more stable than the ferromagnetic one. The exchange interaction mechanism has been discussed to explain the responsible of this stability. Moreover, it has been found that the V, Mn, and Fe transition metals provide half-metallic properties considered to be the leading cause, responsible for ferromagnetism. Furthermore, the optical absorption spectra in the TM -doped cubic ZrO{sub 2} are investigated.« less

  3. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    PubMed

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  4. Infrared absorption of CH3OSO and CD3OSO radicals produced upon photolysis of CH3OS(O)Cl and CD3OS(O)Cl in p-H2 matrices.

    PubMed

    Lee, Yu-Fang; Kong, Lin-Jun; Lee, Yuan-Pern

    2012-03-28

    Irradiation at 239 ± 20 nm of a p-H(2) matrix containing methoxysulfinyl chloride, CH(3)OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν(1), CH(2) antisymmetric stretching), 2999.5 (ν(2), CH(3) antisymmetric stretching), 2950.4 (ν(3), CH(3) symmetric stretching), 1465.2 (ν(4), CH(2) scissoring), 1452.0 (ν(5), CH(3) deformation), 1417.8 (ν(6), CH(3) umbrella), 1165.2 (ν(7), CH(3) wagging), 1152.1 (ν(8), S=O stretching mixed with CH(3) rocking), 1147.8 (ν(9), S=O stretching mixed with CH(3) wagging), 989.7 (ν(10), C-O stretching), and 714.5 cm(-1) (ν(11), S-O stretching) modes of syn-CH(3)OSO. When CD(3)OS(O)Cl in a p-H(2) matrix was used, lines at 2275.9 (ν(1)), 2251.9 (ν(2)), 2083.3 (ν(3)), 1070.3 (ν(4)), 1056.0 (ν(5)), 1085.5 (ν(6)), 1159.7 (ν(7)), 920.1 (ν(8)), 889.0 (ν(9)), 976.9 (ν(10)), and 688.9 (ν(11)) cm(-1) appeared and are assigned to syn-CD(3)OSO; the mode numbers correspond to those used for syn-CH(3)OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86∕aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH(3)OSO near 2991, 2956, 1152, and 994 cm(-1) to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD(3)OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H(2) such that the Cl atom, produced via UV photodissociation of CH(3)OS(O)Cl in situ, might escape from the original cage to yield isolated CH(3)OSO radicals.

  5. Tunable emission and excited state absorption induced optical limiting in Tb2(MoO4)3: Sm3+/Eu3+ nanophosphors

    NASA Astrophysics Data System (ADS)

    Mani, Kamal P.; Sreekanth, Perumbilavil; Vimal, G.; Biju, P. R.; Unnikrishnan, N. V.; Ittyachen, M. A.; Philip, Reji; Joseph, Cyriac

    2016-12-01

    Photoluminescence properties and optical limiting behavior of pure and Sm3+/Eu3+ doped Tb2(MoO4)3 nanophosphors are investigated. The prepared nanophosphors exhibit excellent emission when excited by UV light. Color-tunable emissions in Tb2-xSmx(MoO4)3 and Tb2-xEux(MoO4)3 are realized by employing different excitation wavelengths or by controlling the doping concentration of Sm3+ and Eu3+. Luminescence quantum yield and CIE chromatic coordinates of the prepared phosphors were also presented. Optical limiting properties of the samples are investigated by open aperture Z-scan technique using 5 ns laser pulses at 532 nm. Numerical fitting of the measured Z-scan data to the relevant nonlinear transmission equations reveals that the nonlinear absorption is arising from strong excited state absorption, along with weak absorption saturation and it is found that the optical nonlinearity of Tb2(MoO4)3 increases with Sm3+/Eu3+doping. Parameters such as saturation fluence, excited state absorption cross section and ground state absorption cross section of the samples have been determined numerically, from which the figure of merit for nonlinear absorption is calculated. The excited state absorption cross-section of the samples is found to be one order of magnitude higher than that of the ground state absorption cross-section, indicating strong reverse saturable absorption. These results indicate that Sm3+/Eu3+ doped Tb2(MoO4)3 nanophosphors are efficient media for UV/n-UV pumped LEDs, and are also potential candidates for designing efficient optical limiting devices for the protection of human eyes and sensitive optical detectors from harmful laser radiation.

  6. Absorption cross sections of some atmospheric molecules for resonantly scattered O I 1304-A radiation

    NASA Technical Reports Server (NTRS)

    Starr, W. L.

    1976-01-01

    Absorption cross sections for O2, N2, CO2, CH4, N2O, and CO have been measured at each of the lines of the atomic oxygen triplet at 1302, 1305, and 1306 A. Radiation resonantly scattered from oxygen atoms at a temperature of about 300 K was used for the line source. Absorber temperatures were also near 300 K. Direct application of the Lambert-Beer absorption equation yielded pressure-dependent cross sections for carbon monoxide at each line of the O I triplet. Reasons for this apparent dependence are presented and discussed.

  7. NiO: correlated band structure of a charge-transfer insulator.

    PubMed

    Kunes, J; Anisimov, V I; Skornyakov, S L; Lukoyanov, A V; Vollhardt, D

    2007-10-12

    The band structure of the prototypical charge-transfer insulator NiO is computed by using a combination of an ab initio band structure method and the dynamical mean-field theory with a quantum Monte-Carlo impurity solver. Employing a Hamiltonian which includes both Ni d and O p orbitals we find excellent agreement with the energy bands determined from angle-resolved photoemission spectroscopy. This brings an important progress in a long-standing problem of solid-state theory. Most notably we obtain the low-energy Zhang-Rice bands with strongly k-dependent orbital character discussed previously in the context of low-energy model theories.

  8. Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection-absorption spectroscopy.

    PubMed

    Biswas, Somnath; Husek, Jakub; Baker, L Robert

    2018-04-24

    Here we review the recent development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. This method combines the benefits of X-ray absorption spectroscopy, such as element, oxidation, and spin state specificity, with surface sensitivity and ultrafast time resolution, having a probe depth of only a few nm and an instrument response less than 100 fs. Using this technique we investigated the ultrafast electron dynamics at a hematite (α-Fe2O3) surface. Surface electron trapping and small polaron formation both occur in 660 fs following photoexcitation. These kinetics are independent of surface morphology indicating that electron trapping is not mediated by defects. Instead, small polaron formation is proposed as the likely driving force for surface electron trapping. We also show that in Fe2O3, Co3O4, and NiO, band gap excitation promotes electron transfer from O 2p valence band states to metal 3d conduction band states. In addition to detecting the photoexcited electron at the metal M2,3-edge, the valence band hole is directly observed as transient signal at the O L1-edge. The size of the resulting charge transfer exciton is on the order of a single metal-oxygen bond length. Spectral shifts at the O L1-edge correlate with metal-oxygen bond covalency, confirming the relationship between valence band hybridization and the overpotential for water oxidation. These examples demonstrate the unique ability to measure ultrafast electron dynamics with element and chemical state resolution using XUV-RA spectroscopy. Accordingly, this method is poised to play an important role to reveal chemical details of previously unseen surface electron dynamics.

  9. A new method for the determination of optical band gap and the nature of optical transitions in semiconductors

    NASA Astrophysics Data System (ADS)

    Souri, Dariush; Tahan, Zahra Esmaeili

    2015-05-01

    A new method (named as DASF: Derivation of absorption spectrum fitting) is proposed for the determination of optical band gap and the nature of optical transitions in semiconductors; this method only requires the measurement of the absorbance spectrum of the sample, avoiding any needs to film thickness or any other parameters. In this approach, starting from absorption spectrum fitting (ASF) procedure and by the first derivation of the absorbance spectrum, the optical band gap and then the type of optical transition can be determined without any presumption about the nature of transition. DASF method was employed on (60-x)V2O5-40TeO2-xAg2O glassy systems (hereafter named as TVAgx), in order to confirm the validity of this new method. For the present glasses, the DASF results were compared with the results of ASF procedure for, confirming a very good agreement between these approaches. These glasses were prepared by using the melt quenching and blowing methods to obtain bulk and film samples, respectively. Results show that the optical band gap variation for TVAgx glasses can be divided into two regions, 0 ≤ x ≤ 20 and 20 ≤ x ≤ 40 mol%. The optical band gap has a maximum value equal to 2.72 eV for x = 40 and the minimum value equal to 2.19 eV for x = 40. Also, some physical quantities such as the width of the band tails (Urbach energy), glass density, molar volume, and optical basicity were reported for the under studied glasses.

  10. Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pal, Dipayan; Singhal, Jaya; Mathur, Aakash; Singh, Ajaib; Dutta, Surjendu; Zollner, Stefan; Chattopadhyay, Sudeshna

    2017-11-01

    Atomic Layer Deposition technique was used to grow high quality, very low roughness, crystalline, Zinc Oxide (ZnO) thin films on silicon (Si) and fused quartz (SiO2) substrates to study the optical properties. Spectroscopic ellipsometry results of ZnO/Si system, staggered type-II quantum well, demonstrate that there is a significant drop in the magnitudes of both the real and imaginary parts of complex dielectric constants and in near-band gap absorption along with a blue shift of the absorption edge with decreasing film thickness at and below ∼20 nm. Conversely, UV-vis absorption spectroscopy of ZnO/SiO2, thin type-I quantum well, consisting of a narrower-band gap semiconductor grown on a wider-band gap (insulator) substrate, shows the similar thickness dependent blue-shift of the absorption edge but with an increase in the magnitude of near-band gap absorption with decreasing film thickness. Thickness dependent blue shift, energy vs. 1/d2, in two different systems, ZnO/Si and ZnO/SiO2, show a difference in their slopes. The observed phenomena can be consistently explained by the corresponding exciton (or carrier/s) deconfinement and confinement effects at the ZnO/Si and ZnO/SiO2 interface respectively, where Tanguy-Elliott amplitude pre-factor plays the key role through the electron-hole overlap factor at the interface.

  11. Redox chemistry of a binary transition metal oxide (AB2O4): a study of the Cu(2+)/Cu(0) and Fe(3+)/Fe(0) interconversions observed upon lithiation in a CuFe2O4 battery using X-ray absorption spectroscopy.

    PubMed

    Cama, Christina A; Pelliccione, Christopher J; Brady, Alexander B; Li, Jing; Stach, Eric A; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2016-06-22

    Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  12. Band alignment of 2D WS2/HfO2 interfaces from x-ray photoelectron spectroscopy and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhu, H. L.; Zhou, C. J.; Tang, B. S.; Yang, W. F.; Chai, J. W.; Tay, W. L.; Gong, H.; Pan, J. S.; Zou, W. D.; Wang, S. J.; Chi, D. Z.

    2018-04-01

    We report on the growth of two-dimensional (2D) WS2 on high-k HfO2/Si substrates by reactive sputtering deposition. Raman, x-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy characterizations indicate that the 2D WS2 layers exhibit high-quality crystallinity and exact stoichiometry. Through high-resolution XPS valence spectra, we find a type I alignment at the interface of monolayer WS2/HfO2 with a valence band offset (VBO) of 1.95 eV and a conduction band offset (CBO) of 1.57 eV. The VBO and CBO are also found to increase up to 2.24 eV and 2.09 eV, respectively, with increasing WS2 layers. This is consistent with the results obtained from our first-principles calculations. Our theoretical calculations reveal that the remarkable splitting and shift of the W 5 d z 2 orbital originating from interlayer orbital coupling in thicker WS2 films induce a reduction of its bandgap, leading to an increase in both the VBO and CBO. This observation can be attributed to the asymmetric splitting at different high symmetric k-points caused by the interlayer orbital coupling.

  13. Adiabatic pressure dependence of the 2.7 and 1.9 micron water vapor bands

    NASA Technical Reports Server (NTRS)

    Mathai, C. V.; Walls, W. L.; Broersma, S.

    1977-01-01

    An acoustic excitation technique is used to determine the adiabatic pressure derivative of the spectral absorptance of the 2.7 and 1.9 micron water vapor bands, and the 3.5 micron HCl band. The dependence of this derivative on thermodynamic parameters such as temperature, concentration, and pressure is evaluated. A cross-flow water vapor system is used to measure spectral absorptance. Taking F as the ratio of nonrigid to rotor line strengths, it is found that an F factor correction is needed for the 2.7 micron band. The F factor for the 1.9 micron band is also determined. In the wings of each band a wavelength can be found where the concentration dependence is predominant. Farther out in the wings a local maximum occurs for the temperature derivative. It is suggested that the pressure derivative is significant in the core of the band.

  14. Spectroscopic and theoretical investigation of the electronic states of layered perovskite oxyfluoride S r2Ru O3F2 thin films

    NASA Astrophysics Data System (ADS)

    Chikamatsu, Akira; Kurauchi, Yuji; Kawahara, Keisuke; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya

    2018-06-01

    We investigated the electronic structure of a layered perovskite oxyfluoride S r2Ru O3F2 thin film by hard x-ray photoemission spectroscopy (HAXPES) and soft x-ray absorption spectroscopy (XAS) as well as density functional theory (DFT)-based calculations. The core-level HAXPES spectra suggested that S r2Ru O3F2 is a Mott insulator. The DFT calculations described the total and site-projected density of states and the band dispersion for the optimized crystal structure of S r2Ru O3F2 , predicting that R u4 + takes a high-spin configuration of (xy ) ↑(yz ,z x ) ↑↑(3z2-r2 ) ↑ and that S r2Ru O3F2 has an indirect band gap of 0.7 eV with minima at the M ,A and X ,R points. HAXPES spectra near the Fermi level and the angular-dependent O 1 s XAS spectra of the S r2Ru O3F2 thin film, corresponding to the valence band and conduction band density of states, respectively, were drastically different compared to those of the S r2Ru O4 film, suggesting that the changes in the electronic states were mainly driven by the substitution of an oxygen atom coordinated to Ru by fluorine and subsequent modification of the crystal field.

  15. Role of Fe doping in tuning the band gap of TiO2 for photo-oxidation induced cytotoxicity paradigm

    PubMed Central

    George, Saji; Pokhrel, Suman; Ji, Zhaoxia; Henderson, Bryana L.; Xia, Tian; Li, LinJiang; Zink, Jeffrey I.; Nel, André E.; Mädler, Lutz

    2014-01-01

    UV-Light induced electron-hole (e−/h+) pair generation and free radical production in TiO2 based nanoparticles is a major conceptual paradigm for biological injury. However, to date, this hypothesis has been difficult to experimentally verify due to the high energy of UV light that is intrinsically highly toxic to biological systems. Here, a versatile flame spray pyrolysis (FSP) synthetic process has been exploited to synthesize a library of iron doped (0–10 at wt%) TiO2 nanoparticles. These particles have been tested for photoactivation-mediated cytotoxicity using near-visible light exposure. The reduction in TiO2 band gap energy with incremental levels of Fe loading maintained the nanoparticle crystalline structure in spite of homogeneous Fe distribution (demonstrated by XRD, HRTEM, SAED, EFTEM, and EELS). Photochemical studies showed that band gap energy was reciprocally tuned proportional to the Fe content. The photo-oxidation capability of Fe-doped TiO2 was found to increase during near-visible light exposure. Use of a macrophage cell line to evaluate cytotoxic and ROS production showed increased oxidant injury and cell death in parallel with a decrease in band gap energy. These findings demonstrate the importance of band gap energy in the phototoxic response of the cell to TiO2 nanoparticles and reflect the potential of this material to generate adverse effects in humans and the environment during high intensity light exposure. PMID:21678906

  16. Communication: Saturated CO2 absorption near 1.6 μm for kilohertz-accuracy transition frequencies

    NASA Astrophysics Data System (ADS)

    Burkart, Johannes; Sala, Tommaso; Romanini, Daniele; Marangoni, Marco; Campargue, Alain; Kassi, Samir

    2015-05-01

    Doppler-free saturated-absorption Lamb dips were measured on weak rovibrational lines of 12C16O2 between 6189 and 6215 cm-1 at sub-Pa pressures using optical feedback frequency stabilized cavity ring-down spectroscopy. By referencing the laser source to an optical frequency comb, transition frequencies for ten lines of the 30013←00001 band P-branch and two lines of the 31113←01101 hot band R-branch were determined with an accuracy of a few parts in 1011. Involving rotational quantum numbers up to 42, the data were used for improving the upper level spectroscopic constants. These results provide a highly accurate reference frequency grid over the spectral interval from 1599 to 1616 nm.

  17. The profile of the bending mode band in solid CO2

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Palumbo, M. E.

    2017-12-01

    Context. Solid carbon dioxide (CO2) is one of the most abundant species detected in icy grain mantles in dense molecular clouds. Its identification is based on the comparison between astronomical and laboratory spectra. In the past 30 yr the profile of solid CO2 infrared absorption bands has been extensively studied experimentally, however, the debate on the structure (amorphous versus crystalline) of CO2 samples obtained in laboratory by the thin-film technique is still open. Aims: The aim of this work is to investigate if the presence of the double peak feature in the profile of the CO2 bending mode band is related to the crystalline or amorphous structure of the sample. Methods: We performed new laboratory experiments depositing CO2 under ultra high vacuum (UHV) conditions at 17 K. We investigated, using infrared transmission spectroscopy, the influence of various experimental parameters on the profile of the CO2 bands, namely deposition rate, sample thickness, annealing, and presence of H2O, CH3OH or CO co-deposited with CO2. Results: We found that, within experimental uncertainties, under UHV conditions the profile of the CO2 bands in pure solid samples does not depend on the deposition rate or the sample thickness in the ranges investigated. In all cases the bending mode band profile shows a double peak (at 660 and 655 cm-1). The spectra also show the Fermi resonance features that cannot be active in crystalline samples. On the other hand, when a small fraction of H2O or CH3OH is co-deposited with CO2 the double peak is not observed while it is observed when a CO2:CO mixture is considered. Furthermore, we measured the density of solid CO2 and the refractive index (at 543.5 nm) at 17 K and at 70 K: ρ(17 K)= 1.17 g cm-3, ρ(70K)= 1.49 g cm-3, n(17K)= 1.285, and n(70K)= 1.372. Conclusions: Our experimental results indicate that the presence of the double peak in the profile of the bending mode band is not an indication of a crystalline structure of the sample

  18. Equilibrium Structures and Absorption Spectra for SixOy-nH2O Molecular Clusters using Density Functional Theory

    DTIC Science & Technology

    2017-05-04

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9723 Equilibrium Structures and Absorption Spectra for SixOy-nH2O Molecular...Absorption Spectra for SixOy-nH2O Molecular Clusters using Density Functional Theory L. Huang, S.G. Lambrakos, and L. Massa1 Naval Research Laboratory, Code...and time-dependent density functional theory (TD-DFT). The size of the clusters considered is relatively large compared to those considered in

  19. Effects of post-deposition annealing ambient on band alignment of RF magnetron-sputtered Y2O3 film on gallium nitride

    PubMed Central

    2013-01-01

    The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10−6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV). PMID:23360596

  20. Topological aspect and transport property in multi-band spin-triplet chiral p-wave superconductor Sr2RuO4

    NASA Astrophysics Data System (ADS)

    Imai, Yoshiki; Wakabayashi, Katsunori; Sigrist, Manfred

    2015-03-01

    Considering the superconductor Sr2RuO4, we analyze a three-band tight-binding model with one hole-like and two electron-like Fermi surfaces corresponding to the α, β and γ bands of Sr2RuO4 by means of a self-consistent Bogoliubov-de Gennes approach for ribbonshaped system to investigate topological properties and edge states. In the superconducting phase two types of gapless edge states can be identified, one of which displays an almost flat dispersion at zero energy, while the other, originating from the γ band, has a linear dispersion and constitutes a genuine chiral edge states. Not only a charge current appears at the edges but also a spin current due to the multi-band effect in the superconducting phase. In particular, the chiral edge state from the γ band is closely tied to topological properties, and the chiral p-wave superconducting states are characterized by an integer topological number, the so-called Chern number. We show that the γ band is close to a Lifshitz transition. Since the sign of the Chern number may be very sensitive to the surface condition, we consider the effect of the surface reconstruction observed in Sr2RuO4 on the topological property and show the possibility of the hole-like Fermi surface at the surface.

  1. The quasiparticle band structure of zincblende and rocksalt ZnO.

    PubMed

    Dixit, H; Saniz, R; Lamoen, D; Partoens, B

    2010-03-31

    We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the p-d hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong p-d hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn(20+) pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ∼ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong p-d hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.

  2. Origin of Blue-Green Emission in α-Zn2P2O7 and Local Structure of Ln3+ Ion in α-Zn2P2O7:Ln3+ (Ln = Sm, Eu): Time-Resolved Photoluminescence, EXAFS, and DFT Measurements.

    PubMed

    Gupta, Santosh Kumar; Ghosh, Partha Sarathi; Yadav, Ashok Kumar; Jha, Shambhu Nath; Bhattacharyya, Dibyendu; Kadam, Ramakant Mahadeo

    2017-01-03

    Considering the fact that pyrophosphate-based hosts are in high demand for making highly efficient luminescence materials, we doped two visible lanthanide ions, viz. Sm 3+ and Eu 3+ , in Zn 2 P 2 O 7 . Interestingly, it was oberved that pure Zn 2 P 2 O 7 displayed blue-green dual emission on irradiation with ultraviolet light. Emission and lifetime spectroscopy shows the presence of defects in pyrophosphate samples which are responsible for such emission. DFT calculations clearly pinpointed that the electronic transitions between defect states located at just below the conduction band minimum (arises due to V O 1+ and V O 2+ defects) and valence band maximum, as well as impurity states situated in the band gap, can lead to dual emission in the blue-green region, as is also indicated by emission and lifetime spectra. X-ray absorption near edge spectroscopy (XANES) shows the stabilization of europium as well as samarium ion in the +3 oxidation state in α-Zn 2 P 2 O 7 . The fact that α-Zn 2 P 2 O 7 has two different coordination numbers for zinc ions, i.e. five- and six-coordinate, the study of dopant ion distribution in this particular matrix will be an important step in realizing a highly efficient europium- and samarium-based red-emitting phosphor. Time resolved photoluminescence (TRPL) shows that both of these ions are heterogeneously distributed between five- and six-coordinated Zn 2+ sites and it is the six-coordinated Zn 2+ site which is the most favorable for lanthanide ion doping. Extended X-ray absorption fine structure (EXAFS) measurements also suggested that a six-coordinated zinc ion is the preferred site occupied by trivalent lanthanide ions, which is in complete agreement with TRPL results. It was observed that there is almost complete transfer of photon energy from Zn 2 P 2 O 7 to Eu 3+ , whereas this transfer is inefficient and almost incomplete in case of Sm 3+ , which is indeed important information for the realization of pyrophosphate

  3. Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase.

    PubMed

    De Los Santos, Desiré M; Navas, Javier; Aguilar, Teresa; Sánchez-Coronilla, Antonio; Fernández-Lorenzo, Concha; Alcántara, Rodrigo; Piñero, Jose Carlos; Blanco, Ginesa; Martín-Calleja, Joaquín

    2015-01-01

    Tm-doped TiO2 nanoparticles were synthesized using a water-controlled hydrolysis reaction. Analysis was performed in order to determine the influence of the dopant concentration and annealing temperature on the phase, crystallinity, and electronic and optical properties of the resulting material. Various characterization techniques were utilized such as X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and UV-vis spectroscopy. For the samples annealed at 773 and 973 K, anatase phase TiO2 was obtained, predominantly internally doped with Tm(3+). ICP-AES showed that a doping concentration of up to 5.8 atom % was obtained without reducing the crystallinity of the samples. The presence of Tm(3+) was confirmed by X-ray photoelectron spectroscopy and UV-vis spectroscopy: the incorporation of Tm(3+) was confirmed by the generation of new absorption bands that could be assigned to Tm(3+) transitions. Furthermore, when the samples were annealed at 1173 K, a pyrochlore phase (Tm2Ti2O7) mixed with TiO2 was obtained with a predominant rutile phase. The photodegradation of methylene blue showed that this pyrochlore phase enhanced the photocatalytic activity of the rutile phase.

  4. Thermo-selective Tm(x)Ti(1-x)O(2-x/2) nanoparticles: from Tm-doped anatase TiO2 to a rutile/pyrochlore Tm2Ti2O7 mixture. An experimental and theoretical study with a photocatalytic application.

    PubMed

    Navas, Javier; Sánchez-Coronilla, Antonio; Aguilar, Teresa; De los Santos, Desireé M; Hernández, Norge C; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2014-11-07

    This is an experimental and theoretical study of thulium doped TiO2 nanoparticles. From an experimental perspective, a method was used to synthesize thulium-doped TiO2 nanoparticles in which Tm(3+) replaces Ti(4+) in the lattice, which to our knowledge has neither been reported nor studied theoretically so far. Different proportions of anatase and rutile phases were obtained at different annealing temperatures, and XRD and Raman spectroscopy also revealed the presence of a pyrochlore phase (Tm2Ti2O7) at 1173 K. Thus, the structure of the Tm-doped nanoparticles was thermally-controlled. Furthermore, XPS showed the presence of Tm(3+) in the samples synthesized, which produces oxygen vacancies to maintain the local neutrality in the lattice. The presence of Tm(3+) in the samples led to changes in the UV-Vis absorption spectra, so they showed photoluminescence properties and new states in the band gap, which produce a new lower energy electronic transition than the main TiO2 one. Periodic DFT calculations were performed to understand the experimentally produced structures. The production of oxygen vacancies was analysed and the changes generated in the structure were fully detailed. The DOS and PDOS analyses confirmed the experimental results obtained using UV-Vis spectroscopy, and showed that the new electronic states in the band gap are due to interactions of the f state of Tm and the p state of O. Likewise, the charge study and the ELF analysis indicate that when Tm is introduced into the TiO2 structure, the Ti-O bond around the oxygen vacancy is strengthened. Finally, an example of a photocatalytic application was developed to show the high efficiency of the samples due to the heterojunction in the interfaces of the phases in the samples, which improved the charge separation and the good charge carrier mobility due to the presence of the pyrochlore phase, as was also shown theoretically.

  5. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  6. The ν 2and ν 8+ ν 10Bands of CF 2=CH 2

    NASA Astrophysics Data System (ADS)

    Wang, W. F.; Tan, T. L.; Ong, P. P.

    1997-01-01

    The high-resolution FTIR spectrum of CF 2=CH 2was measured and analyzed in the Fermi interacting ν 2and ν 8+ ν 10bands around 1735 cm -1. Both bands have strong infrared absorption with an A-type appearance. Watson's A-reduced Hamiltonian in the I rrepresentation was employed in the computation of the energy levels, taking into account the Fermi resonance contribution. A total of 2119 ν 2transitions and 2056 ν 8+ ν 10transitions were eventually assigned with a rms deviation of 0.00075 cm -1. In a nonlinear least-squares fit, accurate rovibrational constants of the upper states were determined with the band origins ν 2= 1728.49829 ± 0.00005 cm -1and ν 8+ ν 10= 1741.50207 ± 0.00004 cm -1. Finally, a set of equilibrium rotational constants of CF 2=CH 2were derived.

  7. Directional charge transfer mediated by mid-gap states: A transient absorption spectroscopy study of CdSe quantum dot/β-Pb 0.33V 2O 5 heterostructures

    DOE PAGES

    Milleville, Christopher C.; Pelcher, Kate E.; Sfeir, Matthew Y.; ...

    2016-02-15

    For solar energy conversion, not only must a semiconductor absorb incident solar radiation efficiently but also its photoexcited electron—hole pairs must further be separated and transported across interfaces. Charge transfer across interfaces requires consideration of both thermodynamic driving forces as well as the competing kinetics of multiple possible transfer, cooling, and recombination pathways. In this work, we demonstrate a novel strategy for extracting holes from photoexcited CdSe quantum dots (QDs) based on interfacing with β-Pb 0.33V 2O 5 nanowires that have strategically positioned midgap states derived from the intercalating Pb 2+ ions. Unlike midgap states derived from defects or dopants,more » the states utilized here are derived from the intrinsic crystal structure and are thus homogeneously distributed across the material. CdSe/β-Pb 0.33V 2O 5 heterostructures were assembled using two distinct methods: successive ionic layer adsorption and reaction (SILAR) and linker-assisted assembly (LAA). Transient absorption spectroscopy measurements indicate that, for both types of heterostructures, photoexcitation of CdSe QDs was followed by the transfer of electrons to the conduction band of β-Pb 0.33V 2O 5 nanowires and holes to the midgap states of β-Pb 0.33V 2O 5 nanowires. Holes were transferred on time scales less than 1 ps, whereas electrons were transferred more slowly on time scales of ~2 ps. In contrast, for analogous heterostructures consisting of CdSe QDs interfaced with V 2O 5 nanowires (wherein midgap states are absent), only electron transfer was observed. Interestingly, electron transfer was readily achieved for CdSe QDs interfaced with V 2O 5 nanowires by the SILAR method; however, for interfaces incorporating molecular linkers, electron transfer was observed only upon excitation at energies substantially greater than the bandgap absorption threshold of CdSe. Furthermore, transient absorbance decay traces reveal longer excited

  8. High resolution absolute absorption cross sections of the B ̃(1)A'-X ̃(1)A' transition of the CH2OO biradical.

    PubMed

    Foreman, Elizabeth S; Kapnas, Kara M; Jou, YiTien; Kalinowski, Jarosław; Feng, David; Gerber, R Benny; Murray, Craig

    2015-12-28

    Carbonyl oxides, or Criegee intermediates, are formed from the gas phase ozonolysis of alkenes and play a pivotal role in night-time and urban area atmospheric chemistry. Significant discrepancies exist among measurements of the strong B ̃(1)A'-X ̃(1)A' electronic transition of the simplest Criegee intermediate, CH2OO in the visible/near-UV. We report room temperature spectra of the B ̃(1)A'-X ̃(1)A' electronic absorption band of CH2OO acquired at higher resolution using both single-pass broadband absorption and cavity ring-down spectroscopy. The new absorption spectra confirm the vibrational structure on the red edge of the band that is absent from ionization depletion measurements. The absolute absorption cross sections over the 362-470 nm range are in good agreement with those reported by Ting et al. Broadband absorption spectra recorded over the temperature range of 276-357 K were identical within their mutual uncertainties, confirming that the vibrational structure is not due to hot bands.

  9. Uniform Fe3O4 coating on flower-like ZnO nanostructures by atomic layer deposition for electromagnetic wave absorption.

    PubMed

    Wan, Gengping; Wang, Guizhen; Huang, Xianqin; Zhao, Haonan; Li, Xinyue; Wang, Kan; Yu, Lei; Peng, Xiange; Qin, Yong

    2015-11-21

    An elegant atomic layer deposition (ALD) method has been employed for controllable preparation of a uniform Fe3O4-coated ZnO (ZnO@Fe3O4) core-shell flower-like nanostructure. The Fe3O4 coating thickness of the ZnO@Fe3O4 nanostructure can be tuned by varying the cycle number of ALD Fe2O3. When serving as additives for microwave absorption, the ZnO@Fe3O4-paraffin composites exhibit a higher absorption capacity than the ZnO-paraffin composites. For ZnO@500-Fe3O4, the effective absorption bandwidth below -10 dB can reach 5.2 GHz and the RL values below -20 dB also cover a wide frequency range of 11.6-14.2 GHz when the coating thickness is 2.3 mm, suggesting its potential application in the treatment of the electromagnetic pollution problem. On the basis of experimental observations, a mechanism has been proposed to understand the enhanced microwave absorption properties of the ZnO@Fe3O4 composites.

  10. Evidence for sulphur implantation in Europa's UV absorption band

    NASA Technical Reports Server (NTRS)

    Lane, A. L.; Nelson, R. M.; Matson, D. L.

    1981-01-01

    The UV spectral characteristics of the Galilean satellites are investigated (using data from the International Ultraviolet Explorer (IUE) spacecraft) as a function of the orbital position, large-scale areal variability, and temporal dynamics. The discovery of an absorption feature at 280 nm in Europa's reflection spectrum is reported and observations show that the absorption is strongest on the trailing hemisphere (central longitude 270 degrees). The feature resembles SO2 and seems to result from S-O bond formation between deeply implanted sulphur atoms and the adjacent damaged water-ice-lattice. The sulphur supposedly comes from energetic (hundreds of keV) sulphur ions that are present in the Jovian magnetosphere. An appropriate equilibrium condition can be found to match the observed spectral data if sputtering erosion occurs at no greater than approximately 20 meters per one billion years.

  11. O2 Herzberg State Reaction with N2: A Possible Source of Stratospheric N2O

    NASA Technical Reports Server (NTRS)

    Slanger, Tom G.; Copeland, Richard A.

    1997-01-01

    The goal of this one-year investigation was to determine whether N2O is formed in atmospherically significant quantities by the reaction of vibrationally excited levels of the O2((A3 Sigma(sub u)(sup +)) state with nitrogen. O2(A3 Sigma(sub u)(sup +)) is made throughout the upper stratosphere in considerable amounts by solar photoabsorption, and only a very small reactive yield is necessary for this mechanism to be a major N2O source. By long-term 245-252 nm irradiation of O2/N2 mixtures on- and off-resonance with absorption lines in the O2(A3 Sigma(sub u)(sup +) - X3 Sigma(sub g)(sup -)) transition, followed by N2O analysis by frequency-modulated diode laser absorption spectroscopy, we determined an upper limit for the N2O yield of the candidate reaction. This limit, 3 x 10(exp -5), eliminates O2(A3 Sigma(sub u)(sup +)) + N2 as a significant channel for the generation of stratospheric N2O. In further measurements, we established that N2O is stable under our photolysis conditions, showing that the small amounts of ozone generated from the reaction of O2(A) and O2 do not indirectly lead to destruction of N2O.

  12. X ray absorption by dark nebulae (HEAO-2 guest investigator program)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T.

    1991-01-01

    A study is described of data obtained from the Imaging Proportional Counter (IPC) x ray detector aboard the HEAO-2 satellite (Einstein Observatory). The research project involved a search for absorption of diffuse low energy x ray background emission by galactic dark nebulae. The commonly accepted picture that the bulk of the C band emission originates locally, closer that a few hundred parsec, and the bulk of the M band emission originates farther away than a few hundred parsec, was tested. The idea was to look for evidence of absorption of the diffuse background radiation by nearby interstellar clouds.

  13. Hotspots of soil N 2O emission enhanced through water absorption by plant residue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravchenko, A. N.; Toosi, E. R.; Guber, A. K.

    N 2O is a highly potent greenhouse gas and arable soils represent its major anthropogenic source. Field-scale assessments and predictions of soil N 2O emission remain uncertain and imprecise due to the episodic and microscale nature of microbial N 2O production, most of which occurs within very small discrete soil volumes. Such hotspots of N 2O production are often associated with decomposing plant residue. Here we quantify physical and hydrological soil characteristics that lead to strikingly accelerated N 2O emissions in plant residue-induced hotspots. Results reveal a mechanism for microscale N 2O emissions: water absorption by plant residue that createsmore » unique micro-environmental conditions, markedly different from those of the bulk soil. Moisture levels within plant residue exceeded those of bulk soil by 4–10-fold and led to accelerated N 2O production via microbial denitrification. The presence of large (Ø >35 μm) pores was a prerequisite for maximized hotspot N 2O production and for subsequent diffusion to the atmosphere. Understanding and modelling hotspot microscale physical and hydrologic characteristics is a promising route to predict N 2O emissions and thus to develop effective mitigation strategies and estimate global fluxes in a changing environment.« less

  14. Hotspots of soil N2O emission enhanced through water absorption by plant residue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravchenko, A. N.; Toosi, E. R.; Guber, A. K.

    N2O is a highly potent greenhouse gas and arable soils represent its major anthropogenic source. Field-scale assessments and predictions of soil N2O emission remain uncertain and imprecise due to the episodic and microscale nature of microbial N2O production, most of which occurs within very small discrete soil volumes. Such hotspots of N2O production are often associated with decomposing plant residue. Here we quantify physical and hydrological soil characteristics that lead to strikingly accelerated N2O emissions in plant residue-induced hotspots. Results reveal a mechanism for microscale N2O emissions: water absorption by plant residue that creates unique micro-environmental conditions, markedly different frommore » those of the bulk soil. Moisture levels within plant residue exceeded those of bulk soil by 4–10-fold and led to accelerated N2O production via microbial denitrification. The presence of large (Ø >35 μm) pores was a prerequisite for maximized hotspot N2O production and for subsequent diffusion to the atmosphere. Understanding and modelling hotspot microscale physical and hydrologic characteristics is a promising route to predict N2O emissions and thus to develop effective mitigation strategies and estimate global fluxes in a changing environment.« less

  15. Hotspots of soil N 2O emission enhanced through water absorption by plant residue

    DOE PAGES

    Kravchenko, A. N.; Toosi, E. R.; Guber, A. K.; ...

    2017-06-05

    N 2O is a highly potent greenhouse gas and arable soils represent its major anthropogenic source. Field-scale assessments and predictions of soil N 2O emission remain uncertain and imprecise due to the episodic and microscale nature of microbial N 2O production, most of which occurs within very small discrete soil volumes. Such hotspots of N 2O production are often associated with decomposing plant residue. Here we quantify physical and hydrological soil characteristics that lead to strikingly accelerated N 2O emissions in plant residue-induced hotspots. Results reveal a mechanism for microscale N 2O emissions: water absorption by plant residue that createsmore » unique micro-environmental conditions, markedly different from those of the bulk soil. Moisture levels within plant residue exceeded those of bulk soil by 4–10-fold and led to accelerated N 2O production via microbial denitrification. The presence of large (Ø >35 μm) pores was a prerequisite for maximized hotspot N 2O production and for subsequent diffusion to the atmosphere. Understanding and modelling hotspot microscale physical and hydrologic characteristics is a promising route to predict N 2O emissions and thus to develop effective mitigation strategies and estimate global fluxes in a changing environment.« less

  16. Induced changes in refractive index, optical band gap, and absorption edge of polycarbonate-SiO2 thin films by Vis-IR lasers

    NASA Astrophysics Data System (ADS)

    Ehsani, Hassan; Akhoondi, Somaieh

    2016-09-01

    In this experimental work, we have studied induced changes in refractive index, extinction coefficient, and optical band-gap of Bisphenol-A-polycarbonate (BPA-PC) coated with a uniform and thin, anti-scratch SiO2 film irradiated by visible to near-infrared lasers at 532 nm (green),650 nm(red), and 980 nm (IR)wavelength lasers with different energy densities. Our lasers sources are indium-gallium-aluminum-phosphide, second harmonic of neodymium-YAG-solid state lasers and gallium-aluminum-arsenide-semiconductor laser. The energy densities of our sources have been changed by changing the spot size of incident laser. samples transmission spectra were monitored by carry500 spectrophotometer and induced changes in optical properties are evaluated by using, extrapolation of the transmission spectrum through Swanepoel method and computer application

  17. Spectrum of excess partial molar absorptivity. Part II: a near infrared spectroscopic study of aqueous Na-halides.

    PubMed

    Sebe, Fumie; Nishikawa, Keiko; Koga, Yoshikata

    2012-04-07

    Our earlier thermodynamic studies suggested that F(-) and Cl(-) form hydration shells with the hydration number 14 ± 2 and 2.3 ± 0.6, respectively, and leave the bulk H(2)O away from hydration shells unperturbed. Br(-) and I(-), on the other hand, form hydrogen bonds directly with the momentarily existing hydrogen bond network of H(2)O, and retard the degree of entropy-volume cross fluctuation inherent in liquid H(2)O. The effect of the latter is stronger for I(-) than Br(-). Here we seek additional information about this qualitative difference between Cl(-) and (Br(-) and I(-)) pair by near infrared (NIR) spectroscopy. We analyze the ν(2) + ν(3) band of H(2)O in the range 4600-5500 cm(-1) of aqueous solutions of NaCl, NaBr and NaI, by a new approach. From observed absorbance, we calculate excess molar absorptivity, ε(E), excess over the additive contributions of solute and solvent. ε(E) thus contains information about the effect of inter-molecular interactions in the ν(2) + ν(3) spectrum. The spectrum of ε(E) shows three bands; two negative ones at 5263 and 4873 cm(-1), and the positive band at 5123 cm(-1). We then define and calculate the excess partial molar absorptivity of each salt, ε(E)(salt). From the behaviour of ε(E)(salt) we suggest that the negative band at 5263 cm(-1) represents free H(2)O without much hydrogen bonding under the influence of local electric field of ions. Furthermore, from a sudden change in the x(salt) (mole fraction of salt) dependence of ε(E)(salt), we suggest that there is an ion-pairing in x(salt) > 0.032, 0.036, and 0.04 for NaCl, NaBr and NaI respectively. The positive band of ε(E) at 5123 cm(-1) is attributed to a modestly organized hydrogen bond network of H(2)O (or liquid-likeness), and the x(salt) dependence of ε indicated a qualitative difference in the effect of Cl(-) from those of Br(-) and I(-). Namely, the values of ε(E)(salt) stay constant for Cl(-) but those for Br(-) and I(-) decrease smoothly on

  18. Simulation of a 20-ton LiBr/H{sub 2}O absorption cooling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardono, B.; Nelson, R.M.

    The possibility of using solar energy as the main heat input for cooling systems has led to several studies of available cooling technologies that use solar energy. The results show that double-effect absorption cooling systems give relatively high performance. To further study absorption cooling systems, a computer code was developed for a double-effect lithium bromide/water (LiBr/H{sub 2}O) absorption system. To evaluate the performance, two objective functions were developed including the coefficient of performance (COP) and the system cost. Based on the system cost, an optimization to find the minimum cost was performed to determine the nominal heat transfer areas ofmore » each heat exchanger. The nominal values of other system variables, such as the mass flow rates and inlet temperatures of the hot water, cooling water, and chilled water, are specified as commonly used values for commercial machines. The results of the optimization show that there are optimum heat transfer areas. In this study, hot water is used as the main energy input. Using a constant load of 20 tons cooling capacity, the effects of various variables including the heat transfer ares, mass flow rates, and inlet temperatures of hot water, cooling water, and chilled water are presented.« less

  19. Magnetic Fe3O4@V2O5/rGO nanocomposite as a recyclable photocatalyst for dye molecules degradation under direct sunlight irradiation.

    PubMed

    Boruah, Purna K; Szunerits, Sabine; Boukherroub, Rabah; Das, Manash R

    2018-01-01

    Reduced graphene oxide nanosheets decorated with Fe 3 O 4 and V 2 O 5 nanoparticles as a magnetically recoverable nanocomposite (Fe 3 O 4 @V 2 O 5 /rGO) was synthesized by a simple solution chemistry approach. The synthesized nanocomposite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), Fourier transform infrared (FTIR), fluorescence, and zeta potential measurements. The narrow band gap and different band gap energies of Fe 3 O 4 and V 2 O 5 proved to be suitable for the absorption of visible light in the solar spectrum. The Fe 3 O 4 @V 2 O 5 /rGO displayed indeed excellent photocatalytic activity towards the degradation of harmful cationic Bismarck Brown (BB) as well as anionic Acid Orange 7 (AO) dyes under direct sunlight irradiation. The photocatalytic activity of the Fe 3 O 4 @V 2 O 5 /rGO is influenced by solution pH, catalyst loading, initial dye concentration and the presence of different inorganic ions (NH 4 + , Na + , Mg 2+ , Ca 2+, SO 4 2- , Br - , NO 3 - , Cl - , HCO 3 - ). This study provides a new scientific knowledge on the sunlight driven photocatalytic degradation of dye molecules using novel mixed metal oxide/rGO nanocomposite photocatalyst. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. High resolution jet-cooled infrared absorption spectra of (HCOOH)2, (HCOOD)2, and HCOOH—HCOOD complexes in 7.2 μm region

    NASA Astrophysics Data System (ADS)

    Zhang, Yuluan; Li, Wenguang; Luo, Wei; Zhu, Yu; Duan, Chuanxi

    2017-06-01

    The rotationally resolved infrared spectra of (HCOOH)2, (HCOOD)2, and HCOOH—HCOOD complexes have been measured in 7.2 μm region by using a segmented rapid-scan distributed-feedback quantum cascade laser absorption spectrometer to probe a slit supersonic jet expansion. The observed spectra are assigned to the v21 (H—C/O—H in-plane bending) fundamental band of (HCOOH)2, the v15 (H—C/O—D in-plane bending) fundamental band of HCOOH—HCOOD, and the v20 (H—C—O in-plane bending) fundamental band of (HCOOD)2. Strong local perturbations caused by the rotation-tunneling coupling between two tunneling components are observed in (HCOOH)2. The v21 fundamental band of (HCOOH)2 and the previously measured v22 fundamental and v12 + v14 combination bands [K. G. Goroya et al., J. Chem. Phys. 140, 164311 (2014)] are analyzed together, yielding a more precise tunneling splitting in the ground state, 0.011 367(92) cm-1. The band-origin of the v21 band of (HCOOH)2 is 1371.776 74(8) cm-1, and the tunneling splitting decreases to 0.000 38(18) cm-1 upon the vibrational excitation. The vibrational energy is 1386.755 49(16) cm-1 for the v15 vibrational mode of HCOOH—HCOOD and 1391.084 39(17) cm-1 for the v20 vibrational mode of (HCOOD)2. No apparent spectral splittings are resolved for HCOOH—HCOOD and (HCOOD)2 under our experimental conditions. The tunneling splitting in the ground state of HCOOH—HCOOD is estimated to be 0.001 13 cm-1 from its average linewidth.