Sample records for o2 binding affinity

  1. 3- and 4-O-sulfoconjugated and methylated dopamine: highly reduced binding affinity to dopamine D2 receptors in rat striatal membranes.

    PubMed

    Werle, E; Lenz, T; Strobel, G; Weicker, H

    1988-07-01

    The binding properties of 3- and 4-O-sulfo-conjugated dopamine (DA-3-O-S, DA-4-O-S) as well as 3-O-methylated dopamine (MT) to rat striatal dopamine D2 receptors were investigated. 3H-spiperone was used as a radioligand in the binding studies. In saturation binding experiments (+)butaclamol, which has been reported to bind to dopaminergic D2 and serotoninergic 5HT2 receptors, was used in conjunction with ketanserin and sulpiride, which preferentially label 5HT2 and D2 receptors, respectively, in order to discriminate between 3H-spiperone binding to D2 and to 5HT2 receptors. Under our particular membrane preparation and assay conditions, 3H-spiperone binds to D2 and 5HT2 receptors with a maximal binding capacity (Bmax) of 340 fmol/mg protein in proportions of about 75%:25% with similar dissociation constants KD (35 pmol/l; 43 pmol/l). This result was verified by the biphasic competition curve of ketanserin, which revealed about 20% high (KD = 24 nmol/l) and 80% low (KD = 420 nmol/l) affinity binding sites corresponding to 5HT2 and D2 receptors, respectively. Therefore, all further competition experiments at a tracer concentration of 50 pmol/l were performed in the presence of 0.1 mumol/l ketanserin to mask the 5HT2 receptors. DA competition curves were best fitted assuming two binding sites, with high (KH = 0.12 mumol/l) and low (KL = 18 mumol/l) affinity, present in a ratio of 3:1. The high affinity binding sites were interconvertible by 100 mumol/l guanyl-5-yl imidodiphosphate [Gpp(NH)p], resulting in a homogenous affinity state of DA receptors (KD = 2.8 mumol/l).2+ off

  2. Selection of a novel peptide aptamer with high affinity for TiO2-nanoparticle through a direct electroporation with TiO2-binding phage complexes.

    PubMed

    Inoue, Ippei; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro; Yasueda, Hisashi

    2016-11-01

    We have developed an easy and rapid screening method of peptide aptamers with high affinity for a target material TiO 2 using M13 phage-display and panning procedure. In a selection step, the phage-substrate complexes and Escherichia coli cells were directly applied by electric pulse for electroporation, without separating the objective phages from the TiO 2 nanoparticles. Using this simple and rapid method, we obtained a novel peptide aptamer (named ST-1 with the sequence AYPQKFNNNFMS) with highly strong binding activity for TiO 2 . A cage-shaped protein fused with both ST-1 and an available carbon nanotube-affinity peptide was designed and produced in E. coli. The multi-functional supraprotein could efficiently mineralize a titanium-compound around the surface of single-wall carbon nanotubes (SWNTs), indicating that the ST-1 is valuable in the fabrication of nano-composite materials with titanium-compounds. The structural analysis of ST-1 variants indicated the importance of the N-terminal region (as a motif of AXPQKX 6 S) of the aptamer in the TiO 2 -binding activity. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Increased hemoglobin O2 affinity protects during acute hypoxia

    PubMed Central

    Yalcin, Ozlem

    2012-01-01

    Acclimatization to hypoxia requires time to complete the adaptation mechanisms that influence oxygen (O2) transport and O2 utilization. Although decreasing hemoglobin (Hb) O2 affinity would favor the release of O2 to the tissues, increasing Hb O2 affinity would augment arterial O2 saturation during hypoxia. This study was designed to test the hypothesis that pharmacologically increasing the Hb O2 affinity will augment O2 transport during severe hypoxia (10 and 5% inspired O2) compared with normal Hb O2 affinity. RBC Hb O2 affinity was increased by infusion of 20 mg/kg of 5-hydroxymethyl-2-furfural (5HMF). Control animals received only the vehicle. The effects of increasing Hb O2 affinity were studied in the hamster window chamber model, in terms of systemic and microvascular hemodynamics and partial pressures of O2 (Po2). Pimonidazole binding to hypoxic areas of mice heart and brain was also studied. 5HMF decreased the Po2 at which the Hb is 50% saturated with O2 by 12.6 mmHg. During 10 and 5% O2 hypoxia, 5HMF increased arterial blood O2 saturation by 35 and 48% from the vehicle group, respectively. During 5% O2 hypoxia, blood pressure and heart rate were 58 and 30% higher for 5HMF compared with the vehicle. In addition, 5HMF preserved microvascular blood flow, whereas blood flow decreased to 40% of baseline in the vehicle group. Consequently, perivascular Po2 was three times higher in the 5HMF group compared with the control group at 5% O2 hypoxia. 5HMF also reduced heart and brain hypoxic areas in mice. Therefore, increased Hb O2 affinity resulted in hemodynamics and oxygenation benefits during severe hypoxia. This acute acclimatization process may have implications in survival during severe environmental hypoxia when logistic constraints prevent chronic acclimatization. PMID:22636677

  4. Engineering of Bispecific Affinity Proteins with High Affinity for ERBB2 and Adaptable Binding to Albumin

    PubMed Central

    Nilvebrant, Johan; Åstrand, Mikael; Georgieva-Kotseva, Maria; Björnmalm, Mattias; Löfblom, John; Hober, Sophia

    2014-01-01

    The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein. PMID:25089830

  5. Synthesis and binding affinity analysis of α1-2- and α1-6-O/S-linked dimannosides for the elucidation of sulfur in glycosidic bonds using quartz crystal microbalance sensors.

    PubMed

    Norberg, Oscar; Wu, Bin; Thota, Niranjan; Ge, Jian-Tao; Fauquet, Germain; Saur, Ann-Kathrin; Aastrup, Teodor; Dong, Hai; Yan, Mingdi; Ramström, Olof

    2017-11-27

    The role of sulfur in glycosidic bonds has been evaluated using quartz crystal microbalance methodology. Synthetic routes towards α1-2- and α1-6-linked dimannosides with S- or O-glycosidic bonds have been developed, and the recognition properties assessed in competition binding assays with the cognate lectin concanavalin A. Mannose-presenting QCM sensors were produced using photoinitiated, nitrene-mediated immobilization methods, and the subsequent binding study was performed in an automated flow-through instrumentation, and correlated with data from isothermal titration calorimetry. The recorded K d -values corresponded well with reported binding affinities for the O-linked dimannosides with affinities for the α1-2-linked dimannosides in the lower micromolar range. The S-linked analogs showed slightly disparate effects, where the α1-6-linked analog showed weaker affinity than the O-linked dimannoside, as well as positive apparent cooperativity, whereas the α1-2-analog displayed very similar binding compared to the O-linked structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    PubMed Central

    2011-01-01

    Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of

  7. Hemoglobin-based O2 carrier O2 affinity and capillary inlet pO2 are important factors that influence O2 transport in a capillary.

    PubMed

    Dimino, Michael L; Palmer, Andre F

    2007-01-01

    Hemopure (Biopure; Cambridge, MA) and PolyHeme (Northfield Laboratories; Evanston, IL) are two acellular hemoglobin-based O2 carriers (HBOCs) currently in phase III clinical trials for use as red blood cell substitutes. The most common adverse side effect that these HBOCs exhibit is increased vasoconstriction. Autoregulatory theory has been presented as a possible explanation for this physiological effect, where it is hypothesized that low-affinity HBOCs over-deliver O2 to tissues surrounding arterioles, thereby eliciting vasoconstriction. In this paper, we wanted to investigate HBOC oxygenation of tissue surrounding a capillary, which is the smallest element of the circulatory system. An a priori model has been developed in which the performance of mixtures of acellular HBOCs (synthesized by our group and others) and human red blood cells (hRBCs) has been simulated using a Krogh tissue cylinder model (KTCM) comprising a capillary surrounded by a capillary membrane and skeletal muscle tissue in cylindrical coordinates with specified tissue O2 consumption rates and Michaelis-Menten kinetics. In this study, the total hemoglobin (hRBCs and HBOCs) concentration was kept constant. The HBOCs studied possessed O2 affinities that were higher and lower compared to hRBCs (P50's spanned 5-55 mmHg), and the equilibrium binding/release of oxygen to/from the HBOCs was modeled using the Adair equation. At normoxic inlet pO2's, there was no correlation between O2 flux out of the capillary and the O2 affinity of the HBOC. However, a correlation was found between the average pO2 tension in the capillary and the O2 affinity of the HBOC. Additionally, we studied the change in the O2 equilibrium curve of HBOCs with different O2 affinities over a wide range of inlet pO2's and found that changing the inlet pO2 greatly affected which HBOC, having a unique O2 affinity, best delivered O2 to the surrounding tissue. The analysis of oxygen transport presented could lead to a better prediction

  8. Kir6.2-dependent high-affinity repaglinide binding to β-cell KATP channels

    PubMed Central

    Hansen, Ann Maria K; Hansen, John Bondo; Carr, Richard D; Ashcroft, Frances M; Wahl, Philip

    2005-01-01

    The β-cell KATP channel is composed of two types of subunit – the inward rectifier K+ channel (Kir6.2) which forms the channel pore, and the sulphonylurea receptor (SUR1), which serves as a regulatory subunit. The N-terminus of Kir6.2 is involved in transduction of sulphonylurea binding into channel closure, and deletion of the N-terminus (Kir6.2ΔN14) results in functional uncoupling of the two subunits. In this study, we investigate the interaction of the hypoglycaemic agents repaglinide and glibenclamide with SUR1 and the effect of Kir6.2 on this interaction. We further explore how the binding properties of repaglinide and glibenclamide are affected by functional uncoupling of SUR1 and Kir6.2 in Kir6.2ΔN14/SUR1 channels. All binding experiments are performed on membranes in ATP-free buffer at 37°C. Repaglinide was found to bind with low affinity (KD=59±16 nM) to SUR1 alone, but with high affinity (increased ∼150-fold) when SUR1 was co-expressed with Kir6.2 (KD=0.42±0.03 nM). Glibenclamide, tolbutamide and nateglinide all bound with marginally lower affinity to SUR1 than to Kir6.2/SUR1. Repaglinide bound with low affinity (KD=51±23 nM) to SUR1 co-expressed with Kir6.2ΔN14. In contrast, the affinity for glibenclamide, tolbutamide and nateglinide was only mildly changed as compared to wild-type channels. In whole-cell patch-clamp experiments inhibition of Kir6.2ΔN14/SUR1 currents by both repaglinide and nateglinde is abolished. The results suggest that Kir6.2 causes a conformational change in SUR1 required for high-affinity repaglinide binding, or that the high-affinity repaglinide-binding site includes contributions from both SUR1 and Kir6.2. Glibenclamide, tolbutamide and nateglinide binding appear to involve only SUR1. PMID:15678092

  9. Toxic metals (Ni2+, Pb2+, Hg2+) binding affinity of dissolved organic matter (DOM) derived from different ages municipal landfill leachate

    NASA Astrophysics Data System (ADS)

    Rikta, S. Y.; Tareq, Shafi M.; Uddin, M. Khabir

    2018-03-01

    Solid waste production is rapidly increasing in Bangladesh and landfill leachate is the consequence of the decomposition of this waste. These leachates contain heavy metals and significant amount of dissolved organic matter (DOM). DOM is known to have considerable role in heavy metals speciation. Hence, it is important to characterize DOM/leachate and evaluate toxic metals binding affinity of DOM. The objectives of this study were to characterize the DOM in landfill leachate through physico-chemical and optical analyses and to investigate the toxic metals (Ni2+, Pb2+ and Hg2+) binding affinity of three different ages (fresh sample L-1, young sample L-2 and mature sample L-3) DOM samples. Results suggested that leachate is a potential pollutant which contained very high organic pollutant load. Conditional stability constant (Log K) and percentages of fluorophores that correspond to metal binding (% f) values indicated that young DOM sample (L-2) had the highest binding affinity to all the three metals ions. In general, DOM samples showed the following order affinity to the metal ions; Ni2+ binding affinity: L-2 > L-3 > L-1, Pb2+ binding affinity: L-2 > L-3 > L-1 and Hg2+ binding affinity: L-2 > L-1 > L-3.

  10. Specificity of O-glycosylation in enhancing the stability and cellulose binding affinity of Family 1 carbohydrate-binding modules

    PubMed Central

    Chen, Liqun; Drake, Matthew R.; Resch, Michael G.; Greene, Eric R.; Himmel, Michael E.; Chaffey, Patrick K.; Beckham, Gregg T.; Tan, Zhongping

    2014-01-01

    The majority of biological turnover of lignocellulosic biomass in nature is conducted by fungi, which commonly use Family 1 carbohydrate-binding modules (CBMs) for targeting enzymes to cellulose. Family 1 CBMs are glycosylated, but the effects of glycosylation on CBM function remain unknown. Here, the effects of O-mannosylation are examined on the Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase at three glycosylation sites. To enable this work, a procedure to synthesize glycosylated Family 1 CBMs was developed. Subsequently, a library of 20 CBMs was synthesized with mono-, di-, or trisaccharides at each site for comparison of binding affinity, proteolytic stability, and thermostability. The results show that, although CBM mannosylation does not induce major conformational changes, it can increase the thermolysin cleavage resistance up to 50-fold depending on the number of mannose units on the CBM and the attachment site. O-Mannosylation also increases the thermostability of CBM glycoforms up to 16 °C, and a mannose disaccharide at Ser3 seems to have the largest themostabilizing effect. Interestingly, the glycoforms with small glycans at each site displayed higher binding affinities for crystalline cellulose, and the glycoform with a single mannose at each of three positions conferred the highest affinity enhancement of 7.4-fold. Overall, by combining chemical glycoprotein synthesis and functional studies, we show that specific glycosylation events confer multiple beneficial properties on Family 1 CBMs. PMID:24821760

  11. O2 binding and CO2 sensitivity in haemoglobins of subterranean African mole rats.

    PubMed

    Weber, Roy E; Jarvis, Jennifer U M; Fago, Angela; Bennett, Nigel C

    2017-11-01

    Inhabiting deep and sealed subterranean burrows, mole rats exhibit a remarkable suite of specializations, including eusociality (living in colonies with single breeding queens), extraordinary longevity, cancer immunity and poikilothermy, and extreme tolerance of hypoxia and hypercapnia. With little information available on adjustments in haemoglobin (Hb) function that may mitigate the impact of exogenous and endogenous constraints on the uptake and internal transport of O 2 , we measured haematological characteristics, as well as Hb-O 2 binding affinity and sensitivity to pH (Bohr effect), CO 2 , temperature and 2,3-diphosphoglycerate (DPG, the major allosteric modulator of Hb-O 2 affinity in red blood cells) in four social and two solitary species of African mole rats (family Bathyergidae) originating from different biomes and soil types across Central and Southern Africa. We found no consistent patterns in haematocrit (Hct) and blood and red cell DPG and Hb concentrations or in intrinsic Hb-O 2 affinity and its sensitivity to pH and DPG that correlate with burrowing, sociality and soil type. However, the results reveal low specific (pH independent) effects of CO 2 on Hb-O 2 affinity compared with humans that predictably safeguard pulmonary loading under hypoxic and hypercapnic burrow conditions. The O 2 binding characteristics are discussed in relation to available information on the primary structure of Hbs from adult and developmental stages of mammals subjected to hypoxia and hypercapnia and the molecular mechanisms underlying functional variation in rodent Hbs. © 2017. Published by The Company of Biologists Ltd.

  12. The roles of two O-donor ligands in the Fe2+-binding and H2O2-sensing by the Fe2+-dependent H2O2 sensor PerR.

    PubMed

    Ji, Chang-Jun; Yang, Yoon-Mo; Kim, Jung-Hoon; Ryu, Su-Hyun; Youn, Hwan; Lee, Jin-Won

    2018-05-10

    PerR is a metal-dependent peroxide sensing transcription factor which controls the expression of genes involved in peroxide resistance. The function of Bacillus subtilis PerR is mainly dictated by the regulatory metal ion (Fe 2+ or Mn 2+ ) coordinated by three N-donor ligands (His37, His91, and His93) and two O-donor ligands (Asp85 and Asp104). While H 2 O 2 sensing by PerR is mediated by Fe 2+ -dependent oxidation of N-donor ligand (either His37 or His91), one of the O-donor ligands (Asp104), but not Asp85, has been proposed as the key residue that regulates the sensitivity of PerR to H 2 O 2 . Here we systematically investigated the relative roles of two O-donor ligands of PerR in metal-binding affinity and H 2 O 2 sensitivity in vivo and in vitro. Consistent with the previous report, in vitro the D104E-PerR could not sense low levels of H 2 O 2 in the presence of excess Fe 2+ sufficient for the formation of the Fe 2+ -bound D104E-PerR. However, the expression of PerR-regulated reporter fusion was not repressed by D104E-PerR in the presence of Fe 2+ , suggesting that Fe 2+ is not an effective corepressor for this mutant protein in vivo. Furthermore, in vitro metal titration assays indicate that D104E-PerR has a significantly reduced affinity for Fe 2+ , but not for Mn 2+ , when compared to wild type PerR. These data indicate that the type of O-donor ligand (Asp vs. Glu) at position 104 is an important determinant in providing high Fe 2+ -binding affinity required for the sensing of the physiologically relevant Fe 2+ -levels, in addition to its role in rendering PerR highly sensitive to physiological levels of H 2 O 2 . In comparison, the D85E-PerR did not show a perturbed change in Fe 2+ -binding affinity, however, it displayed a slightly decreased sensitivity to H 2 O 2 both in vivo and in vitro, suggesting that the type of O-donor ligand (Asp vs. Glu) at position 85 may be important for the fine-tuning of H 2 O 2 sensitivity. Copyright © 2018 Elsevier

  13. Modulating Uranium Binding Affinity in Engineered Calmodulin EF-Hand Peptides: Effect of Phosphorylation

    PubMed Central

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Delangle, Pascale; Guilloreau, Luc; Adriano, Jean-Marc; Berthomieu, Catherine

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T9TKE12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from Kd = 25±6 nM to Kd = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (Kd = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the νas(P-O) and νs(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in νas(UO2)2+ vibration (from 923 cm−1 to 908 cm−1) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. PMID:22870263

  14. Sequence2Vec: a novel embedding approach for modeling transcription factor binding affinity landscape.

    PubMed

    Dai, Hanjun; Umarov, Ramzan; Kuwahara, Hiroyuki; Li, Yu; Song, Le; Gao, Xin

    2017-11-15

    An accurate characterization of transcription factor (TF)-DNA affinity landscape is crucial to a quantitative understanding of the molecular mechanisms underpinning endogenous gene regulation. While recent advances in biotechnology have brought the opportunity for building binding affinity prediction methods, the accurate characterization of TF-DNA binding affinity landscape still remains a challenging problem. Here we propose a novel sequence embedding approach for modeling the transcription factor binding affinity landscape. Our method represents DNA binding sequences as a hidden Markov model which captures both position specific information and long-range dependency in the sequence. A cornerstone of our method is a novel message passing-like embedding algorithm, called Sequence2Vec, which maps these hidden Markov models into a common nonlinear feature space and uses these embedded features to build a predictive model. Our method is a novel combination of the strength of probabilistic graphical models, feature space embedding and deep learning. We conducted comprehensive experiments on over 90 large-scale TF-DNA datasets which were measured by different high-throughput experimental technologies. Sequence2Vec outperforms alternative machine learning methods as well as the state-of-the-art binding affinity prediction methods. Our program is freely available at https://github.com/ramzan1990/sequence2vec. xin.gao@kaust.edu.sa or lsong@cc.gatech.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  15. The FOXP2 forkhead domain binds to a variety of DNA sequences with different rates and affinities.

    PubMed

    Webb, Helen; Steeb, Olga; Blane, Ashleigh; Rotherham, Lia; Aron, Shaun; Machanick, Philip; Dirr, Heini; Fanucchi, Sylvia

    2017-07-01

    FOXP2 is a member of the P subfamily of FOX transcription factors, the DNA-binding domain of which is the winged helix forkhead domain (FHD). In this work we show that the FOXP2 FHD is able to bind to various DNA sequences, including a novel sequence identified in this work, with different affinities and rates as detected using surface plasmon resonance. Combining the experimental work with molecular docking, we show that high-affinity sequences remain bound to the protein for longer, form a greater number of interactions with the protein and induce a greater structural change in the protein than low-affinity sequences. We propose a binding model for the FOXP2 FHD that involves three types of binding sequence: low affinity sites which allow for rapid scanning of the genome by the protein in a partially unstructured state; moderate affinity sites which serve to locate the protein near target sites and high-affinity sites which secure the protein to the DNA and induce a conformational change necessary for functional binding and the possible initiation of downstream transcriptional events. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  16. Degenerate Pax2 and Senseless binding motifs improve detection of low-affinity sites required for enhancer specificity

    PubMed Central

    Zandvakili, Arya; Campbell, Ian; Weirauch, Matthew T.

    2018-01-01

    Cells use thousands of regulatory sequences to recruit transcription factors (TFs) and produce specific transcriptional outcomes. Since TFs bind degenerate DNA sequences, discriminating functional TF binding sites (TFBSs) from background sequences represents a significant challenge. Here, we show that a Drosophila regulatory element that activates Epidermal Growth Factor signaling requires overlapping, low-affinity TFBSs for competing TFs (Pax2 and Senseless) to ensure cell- and segment-specific activity. Testing available TF binding models for Pax2 and Senseless, however, revealed variable accuracy in predicting such low-affinity TFBSs. To better define parameters that increase accuracy, we developed a method that systematically selects subsets of TFBSs based on predicted affinity to generate hundreds of position-weight matrices (PWMs). Counterintuitively, we found that degenerate PWMs produced from datasets depleted of high-affinity sequences were more accurate in identifying both low- and high-affinity TFBSs for the Pax2 and Senseless TFs. Taken together, these findings reveal how TFBS arrangement can be constrained by competition rather than cooperativity and that degenerate models of TF binding preferences can improve identification of biologically relevant low affinity TFBSs. PMID:29617378

  17. Super-high-affinity binding site for [3H]diazepam in the presence of Co2+, Ni2+, Cu2+, or Zn2+.

    PubMed

    Mizuno, S; Ogawa, N; Mori, A

    1982-12-01

    Chloride salts of Li+, Na+, K+, Mg2+, Ca2+, Cr3+, Mn2+, Fe2+, and Fe3+ had no effect on [3H]diazepam binding. Chloride salts of Co2+, Ni2+, Cu2+, and Zn2+ increased [3H]diazepam binding by 34 to 68% in a concentration-dependent fashion. Since these divalent cations potentiated the GABA-enhanced [3H]diazepam binding and the effect of each divalent cation was nearly additive with GABA, these cations probably act at a site different from the GABA recognition site in the benzodiazepine-receptor complex. Scatchard plots of [3H]diazepam binding without an effective divalent cation showed a single class of binding, with a Kd value of 5.3 nM. In the presence of 1 mM Co2+, Ni2+, Cu2+, or Zn2+, two distinct binding sites were evident with apparent Kd values of 1.0 nM and 5.7 nM. The higher-affinity binding was not detected in the absence of an effective divalent cation and is probably a novel, super-high-affinity binding site.

  18. Design, synthesis, and activity of 2,3-diphosphoglycerate analogs as allosteric modulators of hemoglobin O2 affinity.

    PubMed

    Kassa, Tigist W; Zhang, Ning; Palmer, Andre F; Matthews, Jason Shastri

    2013-04-01

    Four phosphonate derivates of 2,3-diphosphoglycerate (2,3-DPG), in which the phosphate group is replaced by a methylene or difluoromethylene, were successfully synthesized for use as allosteric modulators of hemoglobin (Hb) O2 affinity. The syntheses were accomplished in four steps and the reagents were converted to their potassium salts to allow for effective binding with Hb in aqueous media. O2 equilibrium measurements of the chemically modified Hbs exhibited P50 values in the range 8.9-12.8 with Hill coefficients in the range of 1.5-2.4.

  19. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bray, J.J.; Drachman, D.B.

    1982-01-01

    Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the rangemore » of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.« less

  20. Relative binding affinities of monolignols to horseradish peroxidase

    DOE PAGES

    Sangha, Amandeep K.; Petridis, Loukas; Cheng, Xiaolin; ...

    2016-07-22

    Monolignol binding to the peroxidase active site is the first step in lignin polymerization in plant cell walls. Using molecular dynamics, docking, and free energy perturbation calculations, we investigate the binding of monolignols to horseradish peroxidase C. Our results suggest that p-coumaryl alcohol has the strongest binding affinity followed by sinapyl and coniferyl alcohol. Stacking interactions between the monolignol aromatic rings and nearby phenylalanine residues play an important role in determining the calculated relative binding affinities. p-Coumaryl and coniferyl alcohols bind in a pose productive for reaction in which a direct H-bond is formed between the phenolic –OH group andmore » a water molecule (W2) that may facilitate proton transfer during oxidation. In contrast, in the case of sinapyl alcohol there is no such direct interaction, the phenolic –OH group instead interacting with Pro139. Furthermore, since proton and electron transfer is the rate-limiting step in monolignol oxidation by peroxidase, the binding pose (and thus the formation of near attack conformation) appears to play a more important role than the overall binding affinity in determining the oxidation rate.« less

  1. Exploring high-affinity binding properties of octamer peptides by principal component analysis of tetramer peptides.

    PubMed

    Kume, Akiko; Kawai, Shun; Kato, Ryuji; Iwata, Shinmei; Shimizu, Kazunori; Honda, Hiroyuki

    2017-02-01

    To investigate the binding properties of a peptide sequence, we conducted principal component analysis (PCA) of the physicochemical features of a tetramer peptide library comprised of 512 peptides, and the variables were reduced to two principal components. We selected IL-2 and IgG as model proteins and the binding affinity to these proteins was assayed using the 512 peptides mentioned above. PCA of binding affinity data showed that 16 and 18 variables were suitable for localizing IL-2 and IgG high-affinity binding peptides, respectively, into a restricted region of the PCA plot. We then investigated whether the binding affinity of octamer peptide libraries could be predicted using the identified region in the tetramer PCA. The results show that octamer high-affinity binding peptides were also concentrated in the tetramer high-affinity binding region of both IL-2 and IgG. The average fluorescence intensity of high-affinity binding peptides was 3.3- and 2.1-fold higher than that of low-affinity binding peptides for IL-2 and IgG, respectively. We conclude that PCA may be used to identify octamer peptides with high- or low-affinity binding properties from data from a tetramer peptide library. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Application of binding free energy calculations to prediction of binding modes and affinities of MDM2 and MDMX inhibitors.

    PubMed

    Lee, Hui Sun; Jo, Sunhwan; Lim, Hyun-Suk; Im, Wonpil

    2012-07-23

    Molecular docking is widely used to obtain binding modes and binding affinities of a molecule to a given target protein. Despite considerable efforts, however, prediction of both properties by docking remains challenging mainly due to protein's structural flexibility and inaccuracy of scoring functions. Here, an integrated approach has been developed to improve the accuracy of binding mode and affinity prediction and tested for small molecule MDM2 and MDMX antagonists. In this approach, initial candidate models selected from docking are subjected to equilibration MD simulations to further filter the models. Free energy perturbation molecular dynamics (FEP/MD) simulations are then applied to the filtered ligand models to enhance the ability in predicting the near-native ligand conformation. The calculated binding free energies for MDM2 complexes are overestimated compared to experimental measurements mainly due to the difficulties in sampling highly flexible apo-MDM2. Nonetheless, the FEP/MD binding free energy calculations are more promising for discriminating binders from nonbinders than docking scores. In particular, the comparison between the MDM2 and MDMX results suggests that apo-MDMX has lower flexibility than apo-MDM2. In addition, the FEP/MD calculations provide detailed information on the different energetic contributions to ligand binding, leading to a better understanding of the sensitivity and specificity of protein-ligand interactions.

  3. Two amino acid residues confer different binding affinities of Abelson family kinase SRC homology 2 domains for phosphorylated cortactin.

    PubMed

    Gifford, Stacey M; Liu, Weizhi; Mader, Christopher C; Halo, Tiffany L; Machida, Kazuya; Boggon, Titus J; Koleske, Anthony J

    2014-07-11

    The closely related Abl family kinases, Arg and Abl, play important non-redundant roles in the regulation of cell morphogenesis and motility. Despite similar N-terminal sequences, Arg and Abl interact with different substrates and binding partners with varying affinities. This selectivity may be due to slight differences in amino acid sequence leading to differential interactions with target proteins. We report that the Arg Src homology (SH) 2 domain binds two specific phosphotyrosines on cortactin, a known Abl/Arg substrate, with over 10-fold higher affinity than the Abl SH2 domain. We show that this significant affinity difference is due to the substitution of arginine 161 and serine 187 in Abl to leucine 207 and threonine 233 in Arg, respectively. We constructed Abl SH2 domains with R161L and S187T mutations alone and in combination and find that these substitutions are sufficient to convert the low affinity Abl SH2 domain to a higher affinity "Arg-like" SH2 domain in binding to a phospho-cortactin peptide. We crystallized the Arg SH2 domain for structural comparison to existing crystal structures of the Abl SH2 domain. We show that these two residues are important determinants of Arg and Abl SH2 domain binding specificity. Finally, we expressed Arg containing an "Abl-like" low affinity mutant Arg SH2 domain (L207R/T233S) and find that this mutant, although properly localized to the cell periphery, does not support wild type levels of cell edge protrusion. Together, these observations indicate that these two amino acid positions confer different binding affinities and cellular functions on the distinct Abl family kinases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Binding affinities of vascular endothelial growth factor (VEGF) for heparin-derived oligosaccharides

    PubMed Central

    Zhao, Wenjing; McCallum, Scott A.; Xiao, Zhongping; Zhang, Fuming; Linhardt, Robert J.

    2011-01-01

    Heparin and heparan sulphate (HS) exert their wide range of biological activities by interacting with extracellular protein ligands. Among these important protein ligands are various angiogenic growth factors and cytokines. HS-binding to vascular endothelial growth factor (VEGF) regulates multiple aspects of vascular development and function through its specific interaction with HS. Many studies have focused on HS-derived or HS-mimicking structures for the characterization of VEGF165 interaction with HS. Using a heparinase 1-prepared small library of heparin-derived oligosaccharides ranging from hexasaccharide to octadecasaccharide, we systematically investigated the heparin-specific structural features required for VEGF binding. We report the apparent affinities for the association between the heparin-derived oligosaccharides with both VEGF165 and VEGF55, a peptide construct encompassing exclusively the heparin-binding domain of VEGF165. An octasaccharide was the minimum size of oligosaccharide within the library to efficiently bind to both forms of VEGF and that a tetradecasaccharide displayed an effective binding affinity to VEGF165 comparable to unfractionated heparin. The range of relative apparent binding affinities among VEGF and the panel of heparin-derived oligosaccharides demonstrate that VEGF binding affinity likely depends on the specific structural features of these oligosaccharides including their degree of sulphation and sugar ring stereochemistry and conformation. Notably, the unique 3-O-sulpho group found within the specific antithrombin binding site of heparin is not required for VEGF165 binding. These findings afford new insight into the inherent kinetics and affinities for VEGF association with heparin and heparin-derived oligosaccharides with key residue specific modifications and may potentially benefit the future design of oligosaccharide-based anti-angiogenesis drugs. PMID:21658003

  5. How Much Binding Affinity Can be Gained by Filling a Cavity?

    PubMed Central

    Kawasaki, Yuko; Chufan, Eduardo E.; Lafont, Virginie; Hidaka, Koushi; Kiso, Yoshiaki; Amzel, L. Mario; Freire, Ernesto

    2011-01-01

    Binding affinity optimization is critical during drug development. Here we evaluate the thermodynamic consequences of filling a binding cavity with functionalities of increasing van der Waals radii (-H, -F, -Cl and CH3) that improve the geometric fit without participating in hydrogen bonding or other specific interactions. We observe a binding affinity increase of two orders of magnitude. There appears to be three phases in the process. The first phase is associated with the formation of stable van der Waals interactions. This phase is characterized by a gain in binding enthalpy and a loss in binding entropy, attributed to a loss of conformational degrees of freedom. For the specific case presented in this paper, the enthalpy gain amounts to −1.5 kcal/mol while the entropic losses amount to +0.9 kcal/mol resulting in a net 3.5-fold affinity gain. The second phase is characterized by simultaneous enthalpic and entropic gains. This phase improves the binding affinity 25-fold. The third phase represents the collapse of the trend and is triggered by the introduction of chemical functionalities larger than the binding cavity itself (CH(CH3)2). It is characterized by large enthalpy and affinity losses. The thermodynamic signatures associated with each phase provide guidelines for lead optimization. PMID:20028396

  6. Determinants of the Differential Antizyme-Binding Affinity of Ornithine Decarboxylase

    PubMed Central

    Liu, Yen-Chin; Hsu, Den-Hua; Huang, Chi-Liang; Liu, Yi-Liang; Liu, Guang-Yaw; Hung, Hui-Chih

    2011-01-01

    Ornithine decarboxylase (ODC) is a ubiquitous enzyme that is conserved in all species from bacteria to humans. Mammalian ODC is degraded by the proteasome in a ubiquitin-independent manner by direct binding to the antizyme (AZ). In contrast, Trypanosoma brucei ODC has a low binding affinity toward AZ. In this study, we identified key amino acid residues that govern the differential AZ binding affinity of human and Trypanosoma brucei ODC. Multiple sequence alignments of the ODC putative AZ-binding site highlights several key amino acid residues that are different between the human and Trypanosoma brucei ODC protein sequences, including residue 119, 124,125, 129, 136, 137 and 140 (the numbers is for human ODC). We generated a septuple human ODC mutant protein where these seven bases were mutated to match the Trypanosoma brucei ODC protein sequence. The septuple mutant protein was much less sensitive to AZ inhibition compared to the WT protein, suggesting that these amino acid residues play a role in human ODC-AZ binding. Additional experiments with sextuple mutants suggest that residue 137 plays a direct role in AZ binding, and residues 119 and 140 play secondary roles in AZ binding. The dissociation constants were also calculated to quantify the affinity of the ODC-AZ binding interaction. The K d value for the wild type ODC protein-AZ heterodimer ([ODC_WT]-AZ) is approximately 0.22 μM, while the K d value for the septuple mutant-AZ heterodimer ([ODC_7M]-AZ) is approximately 12.4 μM. The greater than 50-fold increase in [ODC_7M]-AZ binding affinity shows that the ODC-7M enzyme has a much lower binding affinity toward AZ. For the mutant proteins ODC_7M(-Q119H) and ODC_7M(-V137D), the K d was 1.4 and 1.2 μM, respectively. These affinities are 6-fold higher than the WT_ODC K d, which suggests that residues 119 and 137 play a role in AZ binding. PMID:22073206

  7. Modified high-affinity binding of Ni2+, Ca2+ and Zn2+ to natural mutants of human serum albumin and proalbumin.

    PubMed

    Kragh-Hansen, U; Brennan, S O; Minchiotti, L; Galliano, M

    1994-07-01

    High-affinity binding of radioactive Ni2+, Ca2+ and Zn2+ to six genetic albumin variants and to normal albumin isolated from the same heterozygote carriers was studied by equilibrium dialysis at pH 7.4. The three cations bind differently to albumin. Ni2+ binds to a site in the N-terminal region of the protein which is partially blocked by the presence of a propeptide as in proalbumin (proAlb) Varese (Arg-2-->His), proAlb Christchurch (Arg-1-->Gln) and proAlb Blenheim (Asp1-->Val) and by the presence of only an extra Arg residue (Arg-1) as in Arg-Alb and albumin (Alb) Redhill. The association constants are decreased by more than one order of magnitude in these cases, suggesting biological consequences for the ligand. The additional structural changes in Alb Redhill have no effect on Ni2+ binding. Finally, the modification of Alb Blenheim (Asp1-->Val) reduces the binding constant to 50%. Ca2+ binding is decreased to about 60-80% by the presence of a propeptide and the mutation Asp1-->Val. Arg-1 alone does not affect binding, whereas Alb Redhill binds Ca2+ more strongly than the normal protein (125%). In contrast with binding of Ni2+ and Ca2+, albumin shows heterogeneity with regard to binding of Zn2+, i.e. the number of high-affinity sites was calculated to be, on average, 0.43. The binding constant for Zn2+ is increased to 125% in the case of proAlb Varese, decreased to 50-60% for proAlb Christchurch and Alb Redhill but is normal for proAlb Blenheim, Alb Blenheim and Arg-Alb. The effects of the mutations on binding of Ca2+ and Zn2+ indicate that primary binding, when operative, is to as yet unidentified sites in domain I of the albumin molecule.

  8. Calculation of Host-Guest Binding Affinities Using a Quantum-Mechanical Energy Model.

    PubMed

    Muddana, Hari S; Gilson, Michael K

    2012-06-12

    The prediction of protein-ligand binding affinities is of central interest in computer-aided drug discovery, but it is still difficult to achieve a high degree of accuracy. Recent studies suggesting that available force fields may be a key source of error motivate the present study, which reports the first mining minima (M2) binding affinity calculations based on a quantum mechanical energy model, rather than an empirical force field. We apply a semi-empirical quantum-mechanical energy function, PM6-DH+, coupled with the COSMO solvation model, to 29 host-guest systems with a wide range of measured binding affinities. After correction for a systematic error, which appears to derive from the treatment of polar solvation, the computed absolute binding affinities agree well with experimental measurements, with a mean error 1.6 kcal/mol and a correlation coefficient of 0.91. These calculations also delineate the contributions of various energy components, including solute energy, configurational entropy, and solvation free energy, to the binding free energies of these host-guest complexes. Comparison with our previous calculations, which used empirical force fields, point to significant differences in both the energetic and entropic components of the binding free energy. The present study demonstrates successful combination of a quantum mechanical Hamiltonian with the M2 affinity method.

  9. Design of Bcl-2 and Bcl-xL Inhibitors with Subnanomolar Binding Affinities Based upon a New Scaffold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Haibin; Chen, Jianfang; Meagher, Jennifer L.

    Employing a structure-based strategy, we have designed a new class of potent small-molecule inhibitors of the anti-apoptotic proteins Bcl-2 and Bcl-xL. An initial lead compound with a new scaffold was designed based upon the crystal structure of Bcl-xL and U.S. Food and Drug Administration (FDA) approved drugs and was found to have an affinity of 100 {micro}M for both Bcl-2 and Bcl-xL. Linking this weak lead to another weak-affinity fragment derived from Abbott's ABT-737 led to an improvement of the binding affinity by a factor of >10,000. Further optimization ultimately yielded compounds with subnanomolar binding affinities for both Bcl-2 andmore » Bcl-xL and potent cellular activity. The best compound (21) binds to Bcl-xL and Bcl-2 with K{sub i} < 1 nM, inhibits cell growth in the H146 and H1417 small-cell lung cancer cell lines with IC{sub 50} values of 60-90 nM, and induces robust cell death in the H146 cancer cell line at 30-100 nM.« less

  10. O(2)-dependent K(+) fluxes in trout red blood cells: the nature of O(2) sensing revealed by the O(2) affinity, cooperativity and pH dependence of transport.

    PubMed

    Berenbrink, M; Völkel, S; Heisler, N; Nikinmaa, M

    2000-07-01

    The effects of pH and O(2) tension on the isotonic ouabain-resistant K(+) (Rb+) flux pathway and on haemoglobin O2 binding were studied in trout red blood cells (RBCs) in order to test for a direct effect of haemoglobin O(2) saturation on K(+) transport across the RBC membrane. At pH values corresponding to in vivo control arterial plasma pH and higher, elevation of the O(2) partial pressure (PO(2)) from 7.8 to 157 mmHg increased unidirectional K(+) influx across the RBC membrane several-fold. At lower extracellular pH values, stimulation of K(+) influx by O(2) was depressed, exhibiting an apparent pK(a) (pK'(a)) for the process of 8.0. Under similar conditions the pK'(a) for acid-induced deoxygenation of haemoglobin (Hb) was 7.3. When trout RBCs were exposed to PO(2) values between 0 and 747 mmHg, O(2) equilibrium curves typical of Hb O(2) saturation were also obtained for K(+) influx and efflux. However, at pH 7.9, the PO(2) for half-maximal K(+) efflux and K(+) influx (P50) was about 8- to 12-fold higher than the P(50) for Hb-O(2) binding. While K(+) influx and efflux stimulation by O(2) was essentially non-cooperative, Hb-O(2) equilibrium curves were distinctly sigmoidal (Hill parameters close to 1 and 3, respectively). O(2)-stimulated K(+) influx and efflux were strongly pH dependent. When the definition of the Bohr factor for respiratory pigments (Phi = delta logP50 x delta pH(-1)) was extended to the effect of pH on O(2)-dependent K(+) influx and efflux, extracellular Bohr factors (Phi(o) of -2.00 and -2.06 were obtained, values much higher than that for Hb (Phi(o) = -0.49). The results of this study are consistent with an O(2) sensing mechanism differing markedly in affinity and cooperativity of O(2) binding, as well as in pH sensitivity, from bulk Hb.

  11. Surfactant-free Colloidal Particles with Specific Binding Affinity

    PubMed Central

    2017-01-01

    Colloidal particles with specific binding affinity are essential for in vivo and in vitro biosensing, targeted drug delivery, and micrometer-scale self-assembly. Key to these techniques are surface functionalizations that provide high affinities to specific target molecules. For stabilization in physiological environments, current particle coating methods rely on adsorbed surfactants. However, spontaneous desorption of these surfactants typically has an undesirable influence on lipid membranes. To address this issue and create particles for targeting molecules in lipid membranes, we present here a surfactant-free coating method that combines high binding affinity with stability at physiological conditions. After activating charge-stabilized polystyrene microparticles with EDC/Sulfo-NHS, we first coat the particles with a specific protein and subsequently covalently attach a dense layer of poly(ethyelene) glycol. This polymer layer provides colloidal stability at physiological conditions as well as antiadhesive properties, while the protein coating provides the specific affinity to the targeted molecule. We show that NeutrAvidin-functionalized particles bind specifically to biotinylated membranes and that Concanavalin A-functionalized particles bind specifically to the glycocortex of Dictyostelium discoideum cells. The affinity of the particles changes with protein density, which can be tuned during the coating procedure. The generic and surfactant-free coating method reported here transfers the high affinity and specificity of a protein onto colloidal polystyrene microparticles. PMID:28847149

  12. Characterization of high affinity (/sup 3/H)triazolam binding in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earle, M.; Concas, A.; Yamamura, H.I.

    1986-03-01

    The hypnotic Triazolam (TZ), a triazolo (1,4)-benzodiazepine, displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. Specific binding properties of this recently tritiated TZ were characterized. The authors major objectives were the direct measurement of the temperature dependence and the GABA effect on (/sup 3/H)TZ binding. Saturation studies showed a shift to lower affinity at 37/sup 0/C (K/sub d/ = 0.25 +/- 0.01 nM at O/sup 0/C; K/sub d/ = 1.46 +/- 0.03 nM at 37/sup 0/C) while the B/sub max/ values remained unchanged (1003 +/- 37 fmoles/mg prot. atmore » 0/sup 0/C and 1001 +/- 43 fmoles/mg prot. at 37/sup 0/C). Inhibition studies showed that (/sup 3/H)TZ binding displayed no GABA shift at 0/sup 0/C(K/sub i/ 0.37 +/- 0.03 nM/- GABA and K/sub i/ = 0.55 +/- 0.13 nM/+GABA) but a nearly two-fold shift was apparent at 37/sup 0/C (K/sub i/ = 2.92 +/- 0.2 nM/-GABA; K/sub i/ = 1.37 +/- 0.11 mM/+GABA). These results were also confirmed by saturation studies in the presence or absence of GABA showing a shift to higher affinity in the presence of GABA only at 37/sup 0/C. In Ro 15-1788/(/sup 3/H)TZ competition experiments the presence of GABA did not affect the inhibitory potency of Ro 15-1788 on (/sup 3/H)TZ binding at both temperatures. In conclusion (/sup 3/H)TZ binding showed an extremely high affinity for benzodiazepine receptors. In contrast to reported literature, the findings suggest that TZ interacts with benzodiazepine receptors similar to other benzodiazepine agonists.« less

  13. Binding of ReO[subscript 4];#8722; with an engineered MoO[subscript 4 superscript 2];#8722;-binding protein: towards a new approach in radiopharmaceutical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryal, Baikuntha P.; Brugarolas, Pedro; He, Chuan

    2012-05-25

    Radiolabeled biomolecules are routinely used for clinical diagnostics. {sup 99m}Tc is the most commonly used radioactive tracer in radiopharmaceuticals. {sup 188}Re and {sup 186}Re are also commonly used as radioactive tracers in medicine. However, currently available methods for radiolabeling are lengthy and involve several steps in bioconjugation processes. In this work we present a strategy to engineer proteins that may selectively recognize the perrhenate (ReO{sub 4}{sup -}) ion as a new way to label proteins. We found that a molybdate (MoO{sub 4}{sup 2-})-binding protein (ModA) from Escherichia coli can bind perrhenate with high affinity. Using fluorescence and isothermal titration calorimetrymore » measurements, we determined the dissociation constant of ModA for ReO{sub 4}{sup -} to be 541 nM and we solved a crystal structure of ModA with a bound ReO{sub 4}{sup -}. On the basis of the structure we created a mutant protein containing a disulfide linkage, which exhibited increased affinity for perrhenate (K{sub d} = 104 nM). High-resolution crystal structures of ModA (1.7 {angstrom}) and A11C/R153C mutant (2.0 {angstrom}) were solved with bound perrhenate. Both structures show that a perrhenate ion occupies the molybdate binding site using the same amino acid residues that are involved in molybdate binding. The overall structure of the perrhenate-bound ModA is unchanged compared with that of the molybdate-bound form. In the mutant protein, the bound perrhenate is further stabilized by the engineered disulfide bond.« less

  14. Accurate and sensitive quantification of protein-DNA binding affinity.

    PubMed

    Rastogi, Chaitanya; Rube, H Tomas; Kribelbauer, Judith F; Crocker, Justin; Loker, Ryan E; Martini, Gabriella D; Laptenko, Oleg; Freed-Pastor, William A; Prives, Carol; Stern, David L; Mann, Richard S; Bussemaker, Harmen J

    2018-04-17

    Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes. Copyright © 2018 the Author(s). Published by PNAS.

  15. Accurate and sensitive quantification of protein-DNA binding affinity

    PubMed Central

    Rastogi, Chaitanya; Rube, H. Tomas; Kribelbauer, Judith F.; Crocker, Justin; Loker, Ryan E.; Martini, Gabriella D.; Laptenko, Oleg; Freed-Pastor, William A.; Prives, Carol; Stern, David L.; Mann, Richard S.; Bussemaker, Harmen J.

    2018-01-01

    Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes. PMID:29610332

  16. Inter-residue coupling contributes to high-affinity subtype-selective binding of α-bungarotoxin to nicotinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sine, Steven M.; Huang, Sun; Li, Shu-Xing

    2013-09-01

    The crystal structure of a pentameric α7 ligand-binding domain chimaera with bound α-btx (α-bungarotoxin) showed that of the five conserved aromatic residues in α7, only Tyr 184 in loop C of the ligand-binding site was required for high-affinity binding. To determine whether the contribution of Tyr 184 depends on local residues, we generated mutations in an α7/5HT 3A (5-hydroxytryptamine type 3A) receptor chimaera, individually and in pairs, and measured 125I-labelled α-btx binding. The results show that mutations of individual residues near Tyr 184 do not affect α-btx affinity, but pairwise mutations decrease affinity in an energetically coupled manner. Kinetic measurementsmore » show that the affinity decreases arise through increases in the α-btx dissociation rate with little change in the association rate. Replacing loop C in α7 with loop C from the α-btx-insensitive α2 or α3 subunits abolishes high-affinity α-btx binding, but preserves acetylcholine-elicited single channel currents. However, in both the α2 and α3 construct, mutating either residue that flanks Tyr 184 to its α7 counterpart restores high-affinity α-btx binding. Analogously, in α7, mutating both residues that flank Tyr 184 to the α2 or α3 counterparts abolishes high-affinity α-btx binding. Thus interaction between Tyr 184 and local residues contributes to high-affinity subtype-selective α-btx binding.« less

  17. Characterization of binding affinity of CJ-023,423 for human prostanoid EP4 receptor.

    PubMed

    Murase, Akio; Nakao, Kazunari; Takada, Junji

    2008-01-01

    In order to characterize the receptor binding pharmacology of CJ-023,423, a potent and selective EP4 antagonist, we performed a radioligand receptor binding assay under various assay conditions. An acidic (pH 6) and hypotonic buffer is a conventional, well-known buffer for prostaglandin E2 receptor binding assays. CJ-023,423 showed moderate binding affinity for human EP4 receptor under conventional buffer conditions. However, its binding affinity was greatly increased under neutral (pH 7.4) and isotonic buffer conditions. In this report, the binding mechanism between CJ-023,423 and human EP4 receptor is discussed based on the binding affinities determined under various assay conditions. Copyright 2008 S. Karger AG, Basel.

  18. Calculation of protein-ligand binding affinities.

    PubMed

    Gilson, Michael K; Zhou, Huan-Xiang

    2007-01-01

    Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.

  19. Predicting MHC-II binding affinity using multiple instance regression

    PubMed Central

    EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2011-01-01

    Reliably predicting the ability of antigen peptides to bind to major histocompatibility complex class II (MHC-II) molecules is an essential step in developing new vaccines. Uncovering the amino acid sequence correlates of the binding affinity of MHC-II binding peptides is important for understanding pathogenesis and immune response. The task of predicting MHC-II binding peptides is complicated by the significant variability in their length. Most existing computational methods for predicting MHC-II binding peptides focus on identifying a nine amino acids core region in each binding peptide. We formulate the problems of qualitatively and quantitatively predicting flexible length MHC-II peptides as multiple instance learning and multiple instance regression problems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for predicting MHC-II binding affinity using multiple instance regression. We present results of experiments using several benchmark datasets that show that MHCMIR is competitive with the state-of-the-art methods for predicting MHC-II binding peptides. An online web server that implements the MHCMIR method for MHC-II binding affinity prediction is freely accessible at http://ailab.cs.iastate.edu/mhcmir. PMID:20855923

  20. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes.

    PubMed

    Srinivasulu, Yerukala Sathipati; Wang, Jyun-Rong; Hsu, Kai-Ti; Tsai, Ming-Ju; Charoenkwan, Phasit; Huang, Wen-Lin; Huang, Hui-Ling; Ho, Shinn-Ying

    2015-01-01

    Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization

  1. Reconstitution of high affinity. cap alpha. /sub 2/ adrenergic agonist binding by fusion with a pertussis toxin substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M.H.; Neubig, R.R.

    1986-03-05

    High affinity ..cap alpha../sub 2/ adrenergic agonist binding is thought to occur via a coupling of the ..cap alpha../sub 2/ receptor with N/sub i/, the inhibitory guanyl nucleotide binding protein. Human platelet membranes pretreated at pH 11.5 exhibit a selective inactivation of agonist binding and N/sub i/. To further study the mechanism of agonist binding, alkali treated membranes (ATM) were mixed with membranes pretreated with 10 ..mu..M phenoxybenzamine to block ..cap alpha../sub 2/ receptors (POB-M). The combined membrane pellet was incubated in 50% polyethylene glycol (PEG) to promote membrane-membrane fusion and assayed for binding to the ..cap alpha../sub 2/ agonistmore » (/sup 3/H)UK 14,304 (UK) and the antagonist (/sup 3/H) yohimbine. PEG treatment resulted in a 2-4 fold enhancement of UK binding whereas yohimbine binding was unchanged. No enhancement of UK binding was observed in the absence of PEG treatment. The reconstitution was dependent on the addition of POB-M. They found that a 1:1 ratio of POB-M:ATM was optimal. Reconstituted binding was inhibited by GppNHp. Fusion of rat C6 glioma cell membranes, which do not contain ..cap alpha../sub 2/ receptors, also enhanced agonist binding to ATM. Fusion of C6 membranes from cells treated with pertussis toxin did not enhance (/sup 3/H) UK binding. These data show that a pertussis toxin sensitive membrane component, possibly N/sub i/, can reconstitute high affinity ..cap alpha../sub 2/ agonist binding.« less

  2. High-Affinity Binding of Remyelinating Natural Autoantibodies to Myelin-Mimicking Lipid Bilayers Revealed by Nanohole Surface Plasmon Resonance

    PubMed Central

    Wittenberg, Nathan J.; Im, Hyungsoon; Xu, Xiaohua; Wootla, Bharath; Watzlawik, Jens; Warrington, Arthur E.; Rodriguez, Moses; Oh, Sang-Hyun

    2012-01-01

    Multiple sclerosis is a progressive neurological disorder that results in the degradation of myelin sheaths that insulate axons in the central nervous system. Therefore promotion of myelin repair is a major thrust of multiple sclerosis treatment research. Two mouse monoclonal natural autoantibodies, O1 and O4, promote myelin repair in several mouse models of multiple sclerosis. Natural autoantibodies are generally polyreactive and predominantly of the IgM isotype. The prevailing paradigm is that because they are polyreactive, these antibodies bind antigens with low affinities. Despite their wide use in neuroscience and glial cell research, however, the affinities and kinetic constants of O1 and O4 antibodies have not been measured to date. In this work, we developed a membrane biosensing platform based on surface plasmon resonance in gold nanohole arrays with a series of surface modification techniques to form myelin-mimicking lipid bilayer membranes to measure both the association and dissociation rate constants for O1 and O4 antibodies binding to their myelin lipid antigens. The ratio of rate constants shows that O1 and O4 bind to galactocerebroside and sulfated galactocerebroside, respectively, with unusually small apparent dissociation constants (KD ~0.9 nM) for natural autoantibodies. This is approximately one to two orders of magnitude lower than typically observed for the highest affinity natural autoantibodies. We propose that the unusually high affinity of O1 and O4 to their targets in myelin contributes to the mechanism by which they signal oligodendrocytes and induce central nervous system repair. PMID:22762372

  3. Kinetics of NO and O2 binding to a maleimide poly(ethylene glycol)-conjugated human haemoglobin

    PubMed Central

    2004-01-01

    The hypertensive effect observed with most cell-free haemoglobins has been proposed to result from NO scavenging. However, a newly developed PEG [poly(ethylene glycol)]-conjugated haemoglobin, MalPEG-Hb [maleimide-activated PEG-conjugated haemoglobin], is non-hypertensive with unique physicochemical properties: high O2 affinity, low co-operativity and large molecular radius. It is therefore of interest to compare the ligand-binding properties of MalPEG-Hb with unmodified cell-free HbA (stroma-free human haemoglobin). NO association rates for deoxy and oxyMalPEG-Hb and HbA were found to be identical. These results confirm the lack of correlation between hypertension and NO for a similar modified haemoglobin with high molecular radius and low p50 (pO2 at which haemoglobin is half-saturated with O2) [Rohlfs, Bruner, Chiu, Gonzales, Gonzales, Magde, Magde, Vandegriff and Winslow (1998) J. Biol. Chem. 273, 12128–12134]. The R-state O2 association kinetic constants were also the same for the two haemoglobins. However, even though the p50 of MalPEG-Hb is approx. half of that of HbA, the biphasic O2 dissociation rates measured at relatively high pO2 (150 Torr) were 2-fold higher, giving rise to a 2-fold lower R-state equilibrium association constant for MalPEG-Hb compared with HbA. Thus the O2 affinity of MalPEG-Hb is higher only at pO2 values lower than the intersection point of the O2 equilibrium curves for MalPEG-Hb and HbA. In summary, the present studies found similar rates of NO binding to HbA and MalPEG-Hb, eliminating the possibility that the lack of vasoactivity of MalPEG-Hb is simply the result of reduced molecular reactivity with NO. Alternatively, the unique O2-binding characteristics with low p50 and co-operativity suggest that the ‘R-state’ conformation of MalPEG-Hb is in a more T-state configuration and restricted from conformational change. PMID:15175010

  4. Importance of ligand reorganization free energy in protein-ligand binding-affinity prediction.

    PubMed

    Yang, Chao-Yie; Sun, Haiying; Chen, Jianyong; Nikolovska-Coleska, Zaneta; Wang, Shaomeng

    2009-09-30

    Accurate prediction of the binding affinities of small-molecule ligands to their biological targets is fundamental for structure-based drug design but remains a very challenging task. In this paper, we have performed computational studies to predict the binding models of 31 small-molecule Smac (the second mitochondria-derived activator of caspase) mimetics to their target, the XIAP (X-linked inhibitor of apoptosis) protein, and their binding affinities. Our results showed that computational docking was able to reliably predict the binding models, as confirmed by experimentally determined crystal structures of some Smac mimetics complexed with XIAP. However, all the computational methods we have tested, including an empirical scoring function, two knowledge-based scoring functions, and MM-GBSA (molecular mechanics and generalized Born surface area), yield poor to modest prediction for binding affinities. The linear correlation coefficient (r(2)) value between the predicted affinities and the experimentally determined affinities was found to be between 0.21 and 0.36. Inclusion of ensemble protein-ligand conformations obtained from molecular dynamic simulations did not significantly improve the prediction. However, major improvement was achieved when the free-energy change for ligands between their free- and bound-states, or "ligand-reorganization free energy", was included in the MM-GBSA calculation, and the r(2) value increased from 0.36 to 0.66. The prediction was validated using 10 additional Smac mimetics designed and evaluated by an independent group. This study demonstrates that ligand reorganization free energy plays an important role in the overall binding free energy between Smac mimetics and XIAP. This term should be evaluated for other ligand-protein systems and included in the development of new scoring functions. To our best knowledge, this is the first computational study to demonstrate the importance of ligand reorganization free energy for the

  5. Dicyanovinylnaphthalenes for neuroimaging of amyloids and relationships of electronic structures and geometries to binding affinities

    PubMed Central

    Petrič, Andrej; Johnson, Scott A.; Pham, Hung V.; Li, Ying; Čeh, Simon; Golobič, Amalija; Agdeppa, Eric D.; Timbol, Gerald; Liu, Jie; Keum, Gyochang; Satyamurthy, Nagichettiar; Kepe, Vladimir; Houk, Kendall N.; Barrio, Jorge R.

    2012-01-01

    The positron-emission tomography (PET) probe 2-(1-[6-[(2-fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene) (FDDNP) is used for the noninvasive brain imaging of amyloid-β (Aβ) and other amyloid aggregates present in Alzheimer’s disease and other neurodegenerative diseases. A series of FDDNP analogs has been synthesized and characterized using spectroscopic and computational methods. The binding affinities of these molecules have been measured experimentally and explained through the use of a computational model. The analogs were created by systematically modifying the donor and the acceptor sides of FDDNP to learn the structural requirements for optimal binding to Aβ aggregates. FDDNP and its analogs are neutral, environmentally sensitive, fluorescent molecules with high dipole moments, as evidenced by their spectroscopic properties and dipole moment calculations. The preferred solution-state conformation of these compounds is directly related to the binding affinities. The extreme cases were a nonplanar analog t-butyl-FDDNP, which shows low binding affinity for Aβ aggregates (520 nM Ki) in vitro and a nearly planar tricyclic analog cDDNP, which displayed the highest binding affinity (10 pM Ki). Using a previously published X-ray crystallographic model of 1,1-dicyano-2-[6-(dimethylamino)naphthalen-2-yl]propene (DDNP) bound to an amyloidogenic Aβ peptide model, we show that the binding affinity is inversely related to the distortion energy necessary to avoid steric clashes along the internal surface of the binding channel. PMID:23012452

  6. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes

    PubMed Central

    2015-01-01

    Background Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. Results This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. Conclusions The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein

  7. Predicting the relative binding affinity of mineralocorticoid receptor antagonists by density functional methods

    NASA Astrophysics Data System (ADS)

    Roos, Katarina; Hogner, Anders; Ogg, Derek; Packer, Martin J.; Hansson, Eva; Granberg, Kenneth L.; Evertsson, Emma; Nordqvist, Anneli

    2015-12-01

    In drug discovery, prediction of binding affinity ahead of synthesis to aid compound prioritization is still hampered by the low throughput of the more accurate methods and the lack of general pertinence of one method that fits all systems. Here we show the applicability of a method based on density functional theory using core fragments and a protein model with only the first shell residues surrounding the core, to predict relative binding affinity of a matched series of mineralocorticoid receptor (MR) antagonists. Antagonists of MR are used for treatment of chronic heart failure and hypertension. Marketed MR antagonists, spironolactone and eplerenone, are also believed to be highly efficacious in treatment of chronic kidney disease in diabetes patients, but is contra-indicated due to the increased risk for hyperkalemia. These findings and a significant unmet medical need among patients with chronic kidney disease continues to stimulate efforts in the discovery of new MR antagonist with maintained efficacy but low or no risk for hyperkalemia. Applied on a matched series of MR antagonists the quantum mechanical based method gave an R2 = 0.76 for the experimental lipophilic ligand efficiency versus relative predicted binding affinity calculated with the M06-2X functional in gas phase and an R2 = 0.64 for experimental binding affinity versus relative predicted binding affinity calculated with the M06-2X functional including an implicit solvation model. The quantum mechanical approach using core fragments was compared to free energy perturbation calculations using the full sized compound structures.

  8. Synthesis and binding affinity of neuropeptide Y at opiate receptors.

    PubMed

    Kiddle, James J; McCreery, Heather J; Soles, Sonia

    2003-03-24

    Neuropeptide Y and several metabolic fragments were synthesized and evaluated for binding affinity at non-selective opiate receptors. Neuropeptide Y and several C-terminal fragments were shown to bind to non-selective opiate receptors with an affinity similar to that of Leu-enkephalin.

  9. Accurate Evaluation Method of Molecular Binding Affinity from Fluctuation Frequency

    NASA Astrophysics Data System (ADS)

    Hoshino, Tyuji; Iwamoto, Koji; Ode, Hirotaka; Ohdomari, Iwao

    2008-05-01

    Exact estimation of the molecular binding affinity is significantly important for drug discovery. The energy calculation is a direct method to compute the strength of the interaction between two molecules. This energetic approach is, however, not accurate enough to evaluate a slight difference in binding affinity when distinguishing a prospective substance from dozens of candidates for medicine. Hence more accurate estimation of drug efficacy in a computer is currently demanded. Previously we proposed a concept of estimating molecular binding affinity, focusing on the fluctuation at an interface between two molecules. The aim of this paper is to demonstrate the compatibility between the proposed computational technique and experimental measurements, through several examples for computer simulations of an association of human immunodeficiency virus type-1 (HIV-1) protease and its inhibitor (an example for a drug-enzyme binding), a complexation of an antigen and its antibody (an example for a protein-protein binding), and a combination of estrogen receptor and its ligand chemicals (an example for a ligand-receptor binding). The proposed affinity estimation has proven to be a promising technique in the advanced stage of the discovery and the design of drugs.

  10. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.

    PubMed

    de Ávila, Maurício Boff; Xavier, Mariana Morrone; Pintro, Val Oliveira; de Azevedo, Walter Filgueira

    2017-12-09

    Here we report the development of a machine-learning model to predict binding affinity based on the crystallographic structures of protein-ligand complexes. We used an ensemble of crystallographic structures (resolution better than 1.5 Å resolution) for which half-maximal inhibitory concentration (IC 50 ) data is available. Polynomial scoring functions were built using as explanatory variables the energy terms present in the MolDock and PLANTS scoring functions. Prediction performance was tested and the supervised machine learning models showed improvement in the prediction power, when compared with PLANTS and MolDock scoring functions. In addition, the machine-learning model was applied to predict binding affinity of CDK2, which showed a better performance when compared with AutoDock4, AutoDock Vina, MolDock, and PLANTS scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Functional Analysis of the Citrate Activator CitO from Enterococcus faecalis Implicates a Divalent Metal in Ligand Binding

    PubMed Central

    Blancato, Víctor S.; Pagliai, Fernando A.; Magni, Christian; Gonzalez, Claudio F.; Lorca, Graciela L.

    2016-01-01

    The regulator of citrate metabolism, CitO, from Enterococcus faecalis belongs to the FCD family within the GntR superfamily. In the presence of citrate, CitO binds to cis-acting sequences located upstream of the cit promoters inducing the expression of genes involved in citrate utilization. The quantification of the molecular binding affinities, performed by isothermal titration calorimetry (ITC), indicated that CitO has a high affinity for citrate (KD = 1.2 ± 0.2 μM), while it did not recognize other metabolic intermediates. Based on a structural model of CitO where a putative small molecule and a metal binding site were identified, it was hypothesized that the metal ion is required for citrate binding. In agreement with this model, citrate binding to CitO sharply decreased when the protein was incubated with EDTA. This effect was reverted by the addition of Ni2+, and Zn2+ to a lesser extent. Structure-based site-directed mutagenesis was conducted and it was found that changes to alanine in residues Arg97 and His191 resulted in decreased binding affinities for citrate, as determined by EMSA and ITC. Further assays using lacZ fusions confirmed that these residues in CitO are involved in sensing citrate in vivo. These results indicate that the molecular modifications induced by a ligand and a metal binding in the C-terminal domain of CitO are required for optimal DNA binding activity, and consequently, transcriptional activation. PMID:26903980

  12. F+ and F⁻ affinities of simple N(x)F(y) and O(x)F(y) compounds.

    PubMed

    Grant, Daniel J; Wang, Tsang-Hsiu; Vasiliu, Monica; Dixon, David A; Christe, Karl O

    2011-03-07

    Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes. © 2011

  13. Tyrosine Phosphorylation of the Lyn Src Homology 2 (SH2) Domain Modulates Its Binding Affinity and Specificity*

    PubMed Central

    Jin, Lily L.; Wybenga-Groot, Leanne E.; Tong, Jiefei; Taylor, Paul; Minden, Mark D.; Trudel, Suzanne; McGlade, C. Jane; Moran, Michael F.

    2015-01-01

    Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y194 impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y194 on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. PMID:25587033

  14. Membrane Modulates Affinity for Calcium Ion to Create an Apparent Cooperative Binding Response by Annexin a5

    PubMed Central

    Gauer, Jacob W.; Knutson, Kristofer J.; Jaworski, Samantha R.; Rice, Anne M.; Rannikko, Anika M.; Lentz, Barry R.; Hinderliter, Anne

    2013-01-01

    Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca2+) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturation was performed. A partition function defined the contribution of all heat-evolving or heat-absorbing binding states. We find that annexin a5 binds Ca2+ in solution according to a simple independent-site model (solution-state affinity). In the presence of phosphatidylserine-containing liposomes, binding of Ca2+ differentiates into two classes of sites, both of which have higher affinity compared with the solution-state affinity. As in the solution-state scenario, the sites within each class were described with an independent-site model. Transitioning from a solution state with lower Ca2+ affinity to a membrane-associated, higher Ca2+ affinity state, results in cooperative binding. We discuss how weak membrane association of annexin a5 prior to Ca2+ influx is the basis for the cooperative response of annexin a5 toward Ca2+, and the role of membrane organization in this response. PMID:23746516

  15. SELMAP - SELEX affinity landscape MAPping of transcription factor binding sites using integrated microfluidics

    PubMed Central

    Chen, Dana; Orenstein, Yaron; Golodnitsky, Rada; Pellach, Michal; Avrahami, Dorit; Wachtel, Chaim; Ovadia-Shochat, Avital; Shir-Shapira, Hila; Kedmi, Adi; Juven-Gershon, Tamar; Shamir, Ron; Gerber, Doron

    2016-01-01

    Transcription factors (TFs) alter gene expression in response to changes in the environment through sequence-specific interactions with the DNA. These interactions are best portrayed as a landscape of TF binding affinities. Current methods to study sequence-specific binding preferences suffer from limited dynamic range, sequence bias, lack of specificity and limited throughput. We have developed a microfluidic-based device for SELEX Affinity Landscape MAPping (SELMAP) of TF binding, which allows high-throughput measurement of 16 proteins in parallel. We used it to measure the relative affinities of Pho4, AtERF2 and Btd full-length proteins to millions of different DNA binding sites, and detected both high and low-affinity interactions in equilibrium conditions, generating a comprehensive landscape of the relative TF affinities to all possible DNA 6-mers, and even DNA10-mers with increased sequencing depth. Low quantities of both the TFs and DNA oligomers were sufficient for obtaining high-quality results, significantly reducing experimental costs. SELMAP allows in-depth screening of hundreds of TFs, and provides a means for better understanding of the regulatory processes that govern gene expression. PMID:27628341

  16. Expanding RNA binding specificity and affinity of engineered PUF domains.

    PubMed

    Zhao, Yang-Yang; Mao, Miao-Wei; Zhang, Wen-Jing; Wang, Jue; Li, Hai-Tao; Yang, Yi; Wang, Zefeng; Wu, Jia-Wei

    2018-05-18

    Specific manipulation of RNA is necessary for the research in biotechnology and medicine. The RNA-binding domains of Pumilio/fem-3 mRNA binding factors (PUF domains) are programmable RNA binding scaffolds used to engineer artificial proteins that specifically modulate RNAs. However, the native PUF domains generally recognize 8-nt RNAs, limiting their applications. Here, we modify the PUF domain of human Pumilio1 to engineer PUFs that recognize RNA targets of different length. The engineered PUFs bind to their RNA targets specifically and PUFs with more repeats have higher binding affinity than the canonical eight-repeat domains; however, the binding affinity reaches the peak at those with 9 and 10 repeats. Structural analysis on PUF with nine repeats reveals a higher degree of curvature, and the RNA binding unexpectedly and dramatically opens the curved structure. Investigation of the residues positioned in between two RNA bases demonstrates that tyrosine and arginine have favored stacking interactions. Further tests on the availability of the engineered PUFs in vitro and in splicing function assays indicate that our engineered PUFs bind RNA targets with high affinity in a programmable way.

  17. Expanding RNA binding specificity and affinity of engineered PUF domains

    PubMed Central

    Zhao, Yang-Yang; Zhang, Wen-Jing; Wang, Jue; Li, Hai-Tao; Yang, Yi; Wang, Zefeng; Wu, Jia-Wei

    2018-01-01

    Abstract Specific manipulation of RNA is necessary for the research in biotechnology and medicine. The RNA-binding domains of Pumilio/fem-3 mRNA binding factors (PUF domains) are programmable RNA binding scaffolds used to engineer artificial proteins that specifically modulate RNAs. However, the native PUF domains generally recognize 8-nt RNAs, limiting their applications. Here, we modify the PUF domain of human Pumilio1 to engineer PUFs that recognize RNA targets of different length. The engineered PUFs bind to their RNA targets specifically and PUFs with more repeats have higher binding affinity than the canonical eight-repeat domains; however, the binding affinity reaches the peak at those with 9 and 10 repeats. Structural analysis on PUF with nine repeats reveals a higher degree of curvature, and the RNA binding unexpectedly and dramatically opens the curved structure. Investigation of the residues positioned in between two RNA bases demonstrates that tyrosine and arginine have favored stacking interactions. Further tests on the availability of the engineered PUFs in vitro and in splicing function assays indicate that our engineered PUFs bind RNA targets with high affinity in a programmable way. PMID:29490074

  18. Interplay between binding affinity and kinetics in protein-protein interactions.

    PubMed

    Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong

    2016-07-01

    To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Structural Insights into the Affinity of Cel7A Carbohydrate-binding Module for Lignin*

    PubMed Central

    Strobel, Kathryn L.; Pfeiffer, Katherine A.; Blanch, Harvey W.; Clark, Douglas S.

    2015-01-01

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs. PMID:26209638

  20. Incorporation of Tyrosine and Glutamine Residues into the Soluble Guanylate Cyclase Heme Distal Pocket Alters NO and O2 Binding*

    PubMed Central

    Derbyshire, Emily R.; Deng, Sarah; Marletta, Michael A.

    2010-01-01

    Nitric oxide (NO) is the physiologically relevant activator of the mammalian hemoprotein soluble guanylate cyclase (sGC). The heme cofactor of α1β1 sGC has a high affinity for NO but has never been observed to form a complex with oxygen. Introduction of a key tyrosine residue in the sGC heme binding domain β1(1–385) is sufficient to produce an oxygen-binding protein, but this mutation in the full-length enzyme did not alter oxygen affinity. To evaluate ligand binding specificity in full-length sGC we mutated several conserved distal heme pocket residues (β1 Val-5, Phe-74, Ile-145, and Ile-149) to introduce a hydrogen bond donor in proximity to the heme ligand. We found that the NO coordination state, NO dissociation, and enzyme activation were significantly affected by the presence of a tyrosine in the distal heme pocket; however, the stability of the reduced porphyrin and the proteins affinity for oxygen were unaltered. Recently, an atypical sGC from Drosophila, Gyc-88E, was shown to form a stable complex with oxygen. Sequence analysis of this protein identified two residues in the predicted heme pocket (tyrosine and glutamine) that may function to stabilize oxygen binding in the atypical cyclase. The introduction of these residues into the rat β1 distal heme pocket (Ile-145 → Tyr and Ile-149 → Gln) resulted in an sGC construct that oxidized via an intermediate with an absorbance maximum at 417 nm. This absorbance maximum is consistent with globin FeII-O2 complexes and is likely the first observation of a FeII-O2 complex in the full-length α1β1 protein. Additionally, these data suggest that atypical sGCs stabilize O2 binding by a hydrogen bonding network involving tyrosine and glutamine. PMID:20231286

  1. Tyrosine phosphorylation of the Lyn Src homology 2 (SH2) domain modulates its binding affinity and specificity.

    PubMed

    Jin, Lily L; Wybenga-Groot, Leanne E; Tong, Jiefei; Taylor, Paul; Minden, Mark D; Trudel, Suzanne; McGlade, C Jane; Moran, Michael F

    2015-03-01

    Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y(194) impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y(194) on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. 14-O-Methylmorphine: A Novel Selective Mu-Opioid Receptor Agonist with High Efficacy and Affinity.

    PubMed

    Zádor, Ferenc; Balogh, Mihály; Váradi, András; Zádori, Zoltán S; Király, Kornél; Szűcs, Edina; Varga, Bence; Lázár, Bernadette; Hosztafi, Sándor; Riba, Pál; Benyhe, Sándor; Fürst, Susanna; Al-Khrasani, Mahmoud

    2017-11-05

    14-O-methyl (14-O-Me) group in morphine-6-O-sulfate (M6SU) or oxymorphone has been reported to be essential for enhanced affinity, potency and antinociceptive effect of these opioids. Herein we report on the pharmacological properties (potency, affinity and efficacy) of the new compound, 14-O-methylmorphine (14-O-MeM) in in vitro. Additionally, we also investigated the antinociceptive effect of the novel compound, as well as its inhibitory action on gastrointestinal transit in in vivo. The potency and efficacy of test compound were measured by [ 35 S]GTPγS binding, isolated mouse vas deferens (MVD) and rat vas deferens (RVD) assays. The affinity of 14-O-MeM for opioid receptors was assessed by radioligand binding and MVD assays. The antinociceptive and gastrointestinal effects of the novel compound were evaluated in the rat tail-flick test and charcoal meal test, respectively. Morphine, DAMGO, Ile 5,6 deltorphin II, deltorphin II and U-69593 were used as reference compounds. 14-O-MeM showed higher efficacy (E max ) and potency (EC 50 ) than morphine in MVD, RVD or [ 35 S]GTPγS binding. In addition, 14-O-MeM compared to morphine showed higher affinity for μ-opioid receptor (MOR). In vivo, in rat tail-flick test 14-O-MeM proved to be stronger antinociceptive agent than morphine after peripheral or central administration. Additionally, both compounds inhibited the gastrointestinal peristalsis. However, when the antinociceptive and antitransit doses for each test compound are compared, 14-O-MeM proved to have slightly more favorable pharmacological profile. Our results affirm that 14-O-MeM, an opioid of high efficacy and affinity for MOR can be considered as a novel analgesic agent of potential clinical value. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. PREDICTING ER BINDING AFFINITY FOR EDC RANKING AND PRIORITIZATION: MODEL II

    EPA Science Inventory

    The training set used to derive a common reactivity pattern (COREPA) model for estrogen receptor (ER) binding affinity in Model I (see Abstract I in this series) was extended to include 47 rat estrogen receptor (rER) relative binding affinity (RBA) measurements in addition to the...

  4. Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis

    PubMed Central

    Fan, Zhichao; McArdle, Sara; Marki, Alex; Mikulski, Zbigniew; Gutierrez, Edgar; Engelhardt, Britta; Deutsch, Urban; Ginsberg, Mark; Groisman, Alex; Ley, Klaus

    2016-01-01

    Neutrophils are essential for innate immunity and inflammation and many neutrophil functions are β2 integrin-dependent. Integrins can extend (E+) and acquire a high-affinity conformation with an ‘open' headpiece (H+). The canonical switchblade model of integrin activation proposes that the E+ conformation precedes H+, and the two are believed to be structurally linked. Here we show, using high-resolution quantitative dynamic footprinting (qDF) microscopy combined with a homogenous conformation-reporter binding assay in a microfluidic device, that a substantial fraction of β2 integrins on human neutrophils acquire an unexpected E−H+ conformation. E−H+ β2 integrins bind intercellular adhesion molecules (ICAMs) in cis, which inhibits leukocyte adhesion in vitro and in vivo. This endogenous anti-inflammatory mechanism inhibits neutrophil aggregation, accumulation and inflammation. PMID:27578049

  5. RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR

    EPA Science Inventory

    RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR. T R Henry1, J S Denny2 and P K Schmieder2. USEPA, ORD, NHEERL, 1Experimental Toxicology Division and 2Mid-Continent Ecology Division, Duluth, MN, USA.
    The USEPA has been mandated to screen industria...

  6. ITC-derived binding affinity may be biased due to titrant (nano)-aggregation. Binding of halogenated benzotriazoles to the catalytic domain of human protein kinase CK2

    PubMed Central

    Winiewska, Maria; Bugajska, Ewa

    2017-01-01

    The binding of four bromobenzotriazoles to the catalytic subunit of human protein kinase CK2 was assessed by two complementary methods: Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC). New algorithm proposed for the global analysis of MST pseudo-titration data enabled reliable determination of binding affinities for two distinct sites, a relatively strong one with the Kd of the order of 100 nM and a substantially weaker one (Kd > 1 μM). The affinities for the strong binding site determined for the same protein-ligand systems using ITC were in most cases approximately 10-fold underestimated. The discrepancy was assigned directly to the kinetics of ligand nano-aggregates decay occurring upon injection of the concentrated ligand solution to the protein sample. The binding affinities determined in the reverse ITC experiment, in which ligands were titrated with a concentrated protein solution, agreed with the MST-derived data. Our analysis suggests that some ITC-derived Kd values, routinely reported together with PDB structures of protein-ligand complexes, may be biased due to the uncontrolled ligand (nano)-aggregation, which may occur even substantially below the solubility limit. PMID:28273138

  7. Opposing intermolecular tuning of Ca2+ affinity for Calmodulin by its target peptides

    NASA Astrophysics Data System (ADS)

    Cheung, Margaret

    We investigated the impact of bound calmodulin (CaM)-target compound structure on the affinity of calcium (Ca2+) by integrating coarse-grained models and all-atomistic simulations with non-equilibrium physics. We focused on binding between CaM and two specific targets, Ca2+/CaM-dependent protein kinase II (CaMKII) and neurogranin (Ng), as they both regulate CaM-dependent Ca2+ signaling pathways in neurons. It was shown experimentally that Ca2+/CaM binds to the CaMKII peptide with higher affinity than the Ng peptide. The binding of CaMKII peptide to CaM in return increases the Ca2+ affinity for CaM. However, this reciprocal relation was not observed in the Ng peptide, which binds to Ca2+-free CaM or Ca2+/CaM with similar binding affinity. Unlike CaM-CaMKII peptide that allowed structure determination by crystallography, the structural description of CaM-Ng peptide is unknown due to low binding affinity, therefore, we computationally generated an ensemble of CaM-Ng peptide structures by matching the changes in the chemical shifts of CaM upon Ng peptide binding from nuclear magnetic resonance experiments. We computed the changes in Ca2+ affinity for CaM with and without binding targets in atomistic models using Jarzynski's equality. We discovered the molecular underpinnings of lowered affinity of Ca2+ for CaM in the presence of Ng by showing that the N-terminal acidic region of Ng peptide pries open the β-sheet structure between the Ca2+ binding loops particularly at C-domain of CaM, enabling Ca2+release. In contrast, CaMKII increases Ca2+ affinity for the C-domain of CaM by stabilizing the two Ca2+ binding loops.

  8. THE EFFECTS OF TYPE II BINDING ON METABOLIC STABILITY AND BINDING AFFINITY IN CYTOCHROME P450 CYP3A4

    PubMed Central

    Peng, Chi-Chi; Pearson, Josh T.; Rock, Dan A.; Joswig-Jones, Carolyn A.; Jones, Jeffrey P.

    2010-01-01

    One goal in drug design is to decrease clearance due to metabolism. It has been suggested that a compound’s metabolic stability can be increased by incorporation of a sp2 nitrogen into an aromatic ring. Nitrogen incorporation is hypothesized to increase metabolic stability by coordination of nitrogen to the heme iron (termed type II binding). However, questions regarding binding affinity, metabolic stability, and how metabolism of type II binders occurs remain unanswered. Herein, we use pyridinyl quinoline-4-carboxamide analogs to answer these questions. We show that type II binding can have a profound influence on binding affinity for CYP3A4, and the difference in binding affinity can be as high as 1,200 fold. We also find that type II binding compounds can be extensively metabolized, which is not consistent with the dead-end complex kinetic model assumed for type II binders. Two alternate kinetic mechanisms are presented to explain the results. The first involves a rapid equilibrium between the type II bound substrate and a metabolically oriented binding mode. The second involves direct reduction of the nitrogen-coordinated heme followed by oxygen binding. PMID:20346909

  9. Opiate receptor binding properties of morphine-, dihydromorphine-, and codeine 6-O-sulfate ester congeners.

    PubMed

    Crooks, Peter A; Kottayil, Santosh G; Al-Ghananeem, Abeer M; Byrn, Stephen R; Butterfield, D Allan

    2006-08-15

    A series of 3-O-acyl-6-O-sulfate esters of morphine, dihydromorphine, N-methylmorphinium iodide, codeine, and dihydrocodeine were prepared and evaluated for their ability to bind to mu-, delta-, kappa(1)-, kappa(2)-, and kappa(3)-opiate receptors. Several compounds exhibited good affinity for the mu-opiate receptor. Morphine-3-O-propionyl-6-O-sulfate had four times greater affinity than morphine at the mu-opiate receptor and was the most selective compound at this receptor subtype.

  10. Purification of L-( sup 3 H) Nicotine eliminates low affinity binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romm, E.; Marks, M.J.; Collins, A.C.

    1990-01-01

    Some studies of L-({sup 3}H) nicotine binding to rodent and human brain tissue have detected two binding sites as evidenced by nonlinear Scatchard plots. Evidence presented here indicated that the low affinity binding site is not stereospecific, is not inhibited by low concentrations of cholinergic agonists and is probably due to breakdown products of nicotine since purification of the L-({sup 3}H)nicotine eliminates the low affinity site.

  11. Expression and GTP sensitivity of peptide histidine isoleucine high-affinity-binding sites in rat.

    PubMed

    Debaigt, Colin; Meunier, Annie-Claire; Goursaud, Stephanie; Montoni, Alicia; Pineau, Nicolas; Couvineau, Alain; Laburthe, Marc; Muller, Jean-Marc; Janet, Thierry

    2006-07-01

    High-affinity-binding sites for the vasoactive intestinal peptide (VIP) analogs peptide histidine/isoleucine-amide (PHI)/carboxyterminal methionine instead of isoleucine (PHM) are expressed in numerous tissues in the body but the nature of their receptors remains to be elucidated. The data presented indicate that PHI discriminated a high-affinity guanosine 5'-triphosphate (GTP)-insensitive-binding subtype that represented the totality of the PHI-binding sites in newborn rat tissues but was differentially expressed in adult animals. The GTP-insensitive PHI/PHM-binding sites were also observed in CHO cells over expressing the VPAC2 but not the VPAC1 VIP receptor.

  12. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  13. Structure-based Understanding of Binding Affinity and Mode ...

    EPA Pesticide Factsheets

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicab

  14. WAVE2 Regulates High-Affinity Integrin Binding by Recruiting Vinculin and Talin to the Immunological Synapse▿

    PubMed Central

    Nolz, Jeffrey C.; Medeiros, Ricardo B.; Mitchell, Jason S.; Zhu, Peimin; Freedman, Bruce D.; Shimizu, Yoji; Billadeau, Daniel D.

    2007-01-01

    T-cell-receptor (TCR)-mediated integrin activation is required for T-cell-antigen-presenting cell conjugation and adhesion to extracellular matrix components. While it has been demonstrated that the actin cytoskeleton and its regulators play an essential role in this process, no mechanism has been established which directly links TCR-induced actin polymerization to the activation of integrins. Here, we demonstrate that TCR stimulation results in WAVE2-ARP2/3-dependent F-actin nucleation and the formation of a complex containing WAVE2, ARP2/3, vinculin, and talin. The verprolin-connecting-acidic (VCA) domain of WAVE2 mediates the formation of the ARP2/3-vinculin-talin signaling complex and talin recruitment to the immunological synapse (IS). Interestingly, although vinculin is not required for F-actin or integrin accumulation at the IS, it is required for the recruitment of talin. In addition, RNA interference of either WAVE2 or vinculin inhibits activation-dependent induction of high-affinity integrin binding to VCAM-1. Overall, these findings demonstrate a mechanism in which signals from the TCR produce WAVE2-ARP2/3-mediated de novo actin polymerization, leading to integrin clustering and high-affinity binding through the recruitment of vinculin and talin. PMID:17591693

  15. WAVE2 regulates high-affinity integrin binding by recruiting vinculin and talin to the immunological synapse.

    PubMed

    Nolz, Jeffrey C; Medeiros, Ricardo B; Mitchell, Jason S; Zhu, Peimin; Freedman, Bruce D; Shimizu, Yoji; Billadeau, Daniel D

    2007-09-01

    T-cell-receptor (TCR)-mediated integrin activation is required for T-cell-antigen-presenting cell conjugation and adhesion to extracellular matrix components. While it has been demonstrated that the actin cytoskeleton and its regulators play an essential role in this process, no mechanism has been established which directly links TCR-induced actin polymerization to the activation of integrins. Here, we demonstrate that TCR stimulation results in WAVE2-ARP2/3-dependent F-actin nucleation and the formation of a complex containing WAVE2, ARP2/3, vinculin, and talin. The verprolin-connecting-acidic (VCA) domain of WAVE2 mediates the formation of the ARP2/3-vinculin-talin signaling complex and talin recruitment to the immunological synapse (IS). Interestingly, although vinculin is not required for F-actin or integrin accumulation at the IS, it is required for the recruitment of talin. In addition, RNA interference of either WAVE2 or vinculin inhibits activation-dependent induction of high-affinity integrin binding to VCAM-1. Overall, these findings demonstrate a mechanism in which signals from the TCR produce WAVE2-ARP2/3-mediated de novo actin polymerization, leading to integrin clustering and high-affinity binding through the recruitment of vinculin and talin.

  16. Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor.

    PubMed

    Matulis, Daumantas; Kranz, James K; Salemme, F Raymond; Todd, Matthew J

    2005-04-05

    ThermoFluor (a miniaturized high-throughput protein stability assay) was used to analyze the linkage between protein thermal stability and ligand binding. Equilibrium binding ligands increase protein thermal stability by an amount proportional to the concentration and affinity of the ligand. Binding constants (K(b)) were measured by examining the systematic effect of ligand concentration on protein stability. The precise ligand effects depend on the thermodynamics of protein stability: in particular, the unfolding enthalpy. An extension of current theoretical treatments was developed for tight binding inhibitors, where ligand effect on T(m) can also reveal binding stoichiometry. A thermodynamic analysis of carbonic anhydrase by differential scanning calorimetry (DSC) enabled a dissection of the Gibbs free energy of stability into enthalpic and entropic components. Under certain conditions, thermal stability increased by over 30 degrees C; the heat capacity of protein unfolding was estimated from the dependence of calorimetric enthalpy on T(m). The binding affinity of six sulfonamide inhibitors to two isozymes (human type 1 and bovine type 2) was analyzed by both ThermoFluor and isothermal titration calorimetry (ITC), resulting in a good correlation in the rank ordering of ligand affinity. This combined investigation by ThermoFluor, ITC, and DSC provides a detailed picture of the linkage between ligand binding and protein stability. The systematic effect of ligands on stability is shown to be a general tool to measure affinity.

  17. Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R Grand Challenge 2

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Zeynep; Koukos, Panagiotis I.; Citro, Nevia; Trellet, Mikael E.; Rodrigues, J. P. G. L. M.; Moreira, Irina S.; Roel-Touris, Jorge; Melquiond, Adrien S. J.; Geng, Cunliang; Schaarschmidt, Jörg; Xue, Li C.; Vangone, Anna; Bonvin, A. M. J. J.

    2018-01-01

    We present the performance of HADDOCK, our information-driven docking software, in the second edition of the D3R Grand Challenge. In this blind experiment, participants were requested to predict the structures and binding affinities of complexes between the Farnesoid X nuclear receptor and 102 different ligands. The models obtained in Stage1 with HADDOCK and ligand-specific protocol show an average ligand RMSD of 5.1 Å from the crystal structure. Only 6/35 targets were within 2.5 Å RMSD from the reference, which prompted us to investigate the limiting factors and revise our protocol for Stage2. The choice of the receptor conformation appeared to have the strongest influence on the results. Our Stage2 models were of higher quality (13 out of 35 were within 2.5 Å), with an average RMSD of 4.1 Å. The docking protocol was applied to all 102 ligands to generate poses for binding affinity prediction. We developed a modified version of our contact-based binding affinity predictor PRODIGY, using the number of interatomic contacts classified by their type and the intermolecular electrostatic energy. This simple structure-based binding affinity predictor shows a Kendall's Tau correlation of 0.37 in ranking the ligands (7th best out of 77 methods, 5th/25 groups). Those results were obtained from the average prediction over the top10 poses, irrespective of their similarity/correctness, underscoring the robustness of our simple predictor. This results in an enrichment factor of 2.5 compared to a random predictor for ranking ligands within the top 25%, making it a promising approach to identify lead compounds in virtual screening.

  18. Rapid and Reliable Binding Affinity Prediction of Bromodomain Inhibitors: A Computational Study

    PubMed Central

    2016-01-01

    Binding free energies of bromodomain inhibitors are calculated with recently formulated approaches, namely ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) and TIES (thermodynamic integration with enhanced sampling). A set of compounds is provided by GlaxoSmithKline, which represents a range of chemical functionality and binding affinities. The predicted binding free energies exhibit a good Spearman correlation of 0.78 with the experimental data from the 3-trajectory ESMACS, and an excellent correlation of 0.92 from the TIES approach where applicable. Given access to suitable high end computing resources and a high degree of automation, we can compute individual binding affinities in a few hours with precisions no greater than 0.2 kcal/mol for TIES, and no larger than 0.34 and 1.71 kcal/mol for the 1- and 3-trajectory ESMACS approaches. PMID:28005370

  19. An Origin of Cooperative Oxygen Binding of Human Adult Hemoglobin: Different Roles of the α and β Subunits in the α2β2 Tetramer

    PubMed Central

    Sakurai, Hiroshi; Imai, Kiyohiro; Mizusawa, Naoki; Ogura, Takashi

    2015-01-01

    Human hemoglobin (Hb), which is an α2β2 tetramer and binds four O2 molecules, changes its O2-affinity from low to high as an increase of bound O2, that is characterized by ‘cooperativity’. This property is indispensable for its function of O2 transfer from a lung to tissues and is accounted for in terms of T/R quaternary structure change, assuming the presence of a strain on the Fe-histidine (His) bond in the T state caused by the formation of hydrogen bonds at the subunit interfaces. However, the difference between the α and β subunits has been neglected. To investigate the different roles of the Fe-His(F8) bonds in the α and β subunits, we investigated cavity mutant Hbs in which the Fe-His(F8) in either α or β subunits was replaced by Fe-imidazole and F8-glycine. Thus, in cavity mutant Hbs, the movement of Fe upon O2-binding is detached from the movement of the F-helix, which is supposed to play a role of communication. Recombinant Hb (rHb)(αH87G), in which only the Fe-His in the α subunits is replaced by Fe-imidazole, showed a biphasic O2-binding with no cooperativity, indicating the coexistence of two independent hemes with different O2-affinities. In contrast, rHb(βH92G), in which only the Fe-His in the β subunits is replaced by Fe-imidazole, gave a simple high-affinity O2-binding curve with no cooperativity. Resonance Raman, 1H NMR, and near-UV circular dichroism measurements revealed that the quaternary structure change did not occur upon O2-binding to rHb(αH87G), but it did partially occur with O2-binding to rHb(βH92G). The quaternary structure of rHb(αH87G) appears to be frozen in T while its tertiary structure is changeable. Thus, the absence of the Fe-His bond in the α subunit inhibits the T to R quaternary structure change upon O2-binding, but its absence in the β subunit simply enhances the O2-affinity of α subunit. PMID:26244770

  20. Determining ERβ Binding Affinity to Singly Mutant ERE Using Dual Polarization Interferometry

    NASA Astrophysics Data System (ADS)

    Song, Hong Yan; Su, Xiaodi

    In a classic mode of estrogen action, estrogen receptors (ERs) bind to estrogen responsive element (ERE) to activate gene transcription. A perfect ERE contains a 13-base pair sequence of a palindromic repeat separated by a three-base spacer, 5‧-GGTCAnnnTGACC-3‧. In addition to the consensus or wild-type ERE (wtERE), naturally occurring EREs often have one or two base pairs’ alternation. Based on the newly constructed Thermodynamic Modeling of ChIP-seq (TherMos) model, binding energy between ERβ and a series of 34-bp mutant EREs (mutERE) was simulated to predict the binding affinity between ERs and EREs with single base pair deviation at different sites of the 13-bp inverted sequence. Experimentally, dual polarization interferometry (DPI) method was developed to measure ERβ-mutEREs binding affinity. On a biotin-NeutrAvidin (NA)-biotin treated DPI chip, wtERE is immobilized. In a direct binding assay, ERβ-wtERE binding affinity is determined. In a competition assay, ERβ was preincubated with mutant EREs before being added for competitive binding to the immobilized wtERE. This competition strategy provided a successful platform to evaluate the binding affinity variation among large number of ERE with different base mutations. The experimental result correlates well with the mathematically predicted binding energy with a Spearman correlation coefficient of 0.97.

  1. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities.

    PubMed

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J

    2016-05-01

    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. A structure-based design of new C2- and C13-substituted taxanes: tubulin binding affinities and extended quantitative structure-activity relationships using comparative binding energy (COMBINE) analysis.

    PubMed

    Coderch, Claire; Tang, Yong; Klett, Javier; Zhang, Shu-En; Ma, Yun-Tao; Shaorong, Wang; Matesanz, Ruth; Pera, Benet; Canales, Angeles; Jiménez-Barbero, Jesús; Morreale, Antonio; Díaz, J Fernando; Fang, Wei-Shuo; Gago, Federico

    2013-05-14

    Ten novel taxanes bearing modifications at the C2 and C13 positions of the baccatin core have been synthesized and their binding affinities for mammalian tubulin have been experimentally measured. The design strategy was guided by (i) calculation of interaction energy maps with carbon, nitrogen and oxygen probes within the taxane-binding site of β-tubulin, and (ii) the prospective use of a structure-based QSAR (COMBINE) model derived from an earlier series comprising 47 congeneric taxanes. The tubulin-binding affinity displayed by one of the new compounds (CTX63) proved to be higher than that of docetaxel, and an updated COMBINE model provided a good correlation between the experimental binding free energies and a set of weighted residue-based ligand-receptor interaction energies for 54 out of the 57 compounds studied. The remaining three outliers from the original training series have in common a large unfavourable entropic contribution to the binding free energy that we attribute to taxane preorganization in aqueous solution in a conformation different from that compatible with tubulin binding. Support for this proposal was obtained from solution NMR experiments and molecular dynamics simulations in explicit water. Our results shed additional light on the determinants of tubulin-binding affinity for this important class of antitumour agents and pave the way for further rational structural modifications.

  3. Differences between high-affinity forskolin binding sites in dopamine-riche and other regions of rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poat, J.A.; Cripps, H.E.; Iversen, L.L.

    1988-05-01

    Forskolin labelled with (/sup 3/H) bound to high- and low-affinity sites in the rat brain. The high-affinity site was discretely located, with highest densities in the striatum, nucleus accumbens, olfactory tubercule, substantia nigra, hippocampus, and the molecular layers of the cerebellum. This site did not correlate well with the distribution of adenylate cyclase. The high-affinity striatal binding site may be associated with a stimulatory guanine nucleotide-binding protein. Thus, the number of sites was increased by the addition of Mg/sup 2 +/ and guanylyl imidodiphosphate. Cholera toxin stereotaxically injected into rat striatum increased the number of binding sites, and no furthermore » increase was noted following the subsequent addition of guanyl nucleotide. High-affinity forskolin binding sites in non-dopamine-rich brain areas (hippocampus and cerebullum) were modulated in a qualitatively different manner by guanyl nucleotides. In these areas the number of binding sites was significantly reduced by the addition of guanyl nucleotide. These results suggest that forskolin may have a potential role in identifying different functional/structural guanine nucleotide-binding proteins.« less

  4. Selective, tunable O 2 binding in cobalt(II)–triazolate/pyrazolate metal–organic frameworks

    DOE PAGES

    Xiao, Dianne J.; Gonzalez, Miguel I.; Darago, Lucy E.; ...

    2016-05-16

    Here, the air-free reaction of CoCl 2 with 1,3,5-tri(1H- 1,2,3-triazol-5-yl)benzene (H 3BTTri) in N,N-dimethylformamide (DMF) and methanol leads to the formation of Co- BTTri (Co 3[(Co 4Cl) 3(BTTri) 8] 2·DMF), a sodalite-type metal-organic framework. Desolvation of this material generates coordinatively unsaturated low-spin cobalt(II) centers that exhibit a strong preference for binding O 2 over N 2, with isosteric heats of adsorption (Q st) of -34(1) and -12(1) kJ/ mol, respectively. The low-spin (S = 1/2) electronic configuration of the metal centers in the desolvated framework is supported by structural, magnetic susceptibility, and computational studies. A single-crystal X-ray structure determination revealsmore » that O 2 binds end-on to each framework cobalt center in a 1:1 ratio with a Co-O 2 bond distance of 1.973(6) Å. Replacement of one of the triazolate linkers with a more electron-donating pyrazolate group leads to the isostructural framework Co-BDTriP (Co 3[(Co 4Cl) 3(BDTriP) 8] 2·DMF; H 3BDTriP = 5,5'-(5-(1H-pyrazol-4-yl)-1,3-phenylene)bis(1H-1,2,3-triazole)), which demonstrates markedly higher yet still fully reversible O 2 affinities (Q st = -47(1) kJ/mol at low loadings). Electronic structure calculations suggest that the O 2 adducts in Co-BTTri are best described as cobalt(II)-dioxygen species with partial electron transfer, while the stronger binding sites in Co-BDTriP form cobalt(III)-superoxo moieties. The stability, selectivity, and high O 2 adsorption capacity of these materials render them promising new adsorbents for air separation processes.« less

  5. A model of high-affinity antibody binding to type III group B Streptococcus capsular polysaccharide.

    PubMed

    Wessels, M R; Muñoz, A; Kasper, D L

    1987-12-01

    We recently reported that the single repeating-unit pentasaccharide of type III group B Streptococcus (GBS) capsular polysaccharide is only weakly reactive with type III GBS antiserum. To further elucidate the relationship between antigen-chain length and antigenicity, tritiated oligosaccharides derived from type III capsular polysaccharide were used to generate detailed saturation binding curves with a fixed concentration of rabbit antiserum in a radioactive antigen-binding assay. A graded increase in affinity of antigen-antibody binding was seen as oligosaccharide size increased from 2.6 repeating units to 92 repeating units. These differences in affinity of antibody binding to oligosaccharides of different molecular size were confirmed by immunoprecipitation and competitive ELISA, two independent assays of antigen-antibody binding. Analysis of the saturation binding experiment indicated a difference of 300-fold in antibody-binding affinity for the largest versus the smallest tested oligosaccharides. Unexpectedly, the saturation binding values approached by the individual curves were inversely related to oligosaccharide chain length on a molar basis but equivalent on a weight basis. This observation is compatible with a model in which binding of an immunoglobulin molecule to an antigenic site on the polysaccharide facilitates subsequent binding of antibody to that antigen.

  6. Computational Design of Ligand Binding Proteins with High Affinity and Selectivity

    PubMed Central

    Dou, Jiayi; Doyle, Lindsey; Nelson, Jorgen W.; Schena, Alberto; Jankowski, Wojciech; Kalodimos, Charalampos G.; Johnsson, Kai; Stoddard, Barry L.; Baker, David

    2014-01-01

    The ability to design proteins with high affinity and selectivity for any given small molecule would have numerous applications in biosensing, diagnostics, and therapeutics, and is a rigorous test of our understanding of the physiochemical principles that govern molecular recognition phenomena. Attempts to design ligand binding proteins have met with little success, however, and the computational design of precise molecular recognition between proteins and small molecules remains an “unsolved problem”1. We describe a general method for the computational design of small molecule binding sites with pre-organized hydrogen bonding and hydrophobic interfaces and high overall shape complementary to the ligand, and use it to design protein binding sites for the steroid digoxigenin (DIG). Of 17 designs that were experimentally characterized, two bind DIG; the highest affinity design has the lowest predicted interaction energy and the most pre-organized binding site in the set. A comprehensive binding-fitness landscape of this design generated by library selection and deep sequencing was used to guide optimization of binding affinity to a picomolar level, and two X-ray co-crystal structures of optimized complexes show atomic level agreement with the design models. The designed binder has a high selectivity for DIG over the related steroids digitoxigenin, progesterone, and β-estradiol, which can be reprogrammed through the designed hydrogen-bonding interactions. Taken together, the binding fitness landscape, co-crystal structures, and thermodynamic binding parameters illustrate how increases in binding affinity can result from distal sequence changes that limit the protein ensemble to conformers making the most energetically favorable interactions with the ligand. The computational design method presented here should enable the development of a new generation of biosensors, therapeutics, and diagnostics. PMID:24005320

  7. Ventilatory control in a primitive fish: signal conditioning via non-linear O2 affinity.

    PubMed

    Katz, S L

    1996-02-01

    Gas exchange in the gills of the air-breathing fish Amia calva was modelled to determine how the gills modify fluctuations in venous P O2. These fluctuations form the physiological signal for aerial ventilation in these fish. This study was performed to examine the signal conditioning role that the gills may play in the control system that regulates P O2. The model incorporated a non-linear Hb-O2 affinity relationship. Fluctuations in venous P O2 were modelled as sinusoids, covering a range of frequencies and amplitudes. Mean venous P O2 ranged from normoxic to hypoxic values. Over a broad range of parameters the gills amplify fluctuations in venous P O2 during transit to the arterial side. It was also observed that aquatic hypoxia reduces the effectiveness of the gills in maximizing arterial P O2, while increases in venous P O2 increase the effectiveness of the gills in the face of similar blood-water P O2 gradients. Each of these performance features is a consequence of the sigmoid Hb-O2 affinity relationship.

  8. Recent improvements to Binding MOAD: a resource for protein–ligand binding affinities and structures

    PubMed Central

    Ahmed, Aqeel; Smith, Richard D.; Clark, Jordan J.; Dunbar, James B.; Carlson, Heather A.

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein–ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23 269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. PMID:25378330

  9. [125I]2-(2-chloro-4-iodo-phenylamino)-5-methyl-pyrroline (LNP 911), a high-affinity radioligand selective for I1 imidazoline receptors.

    PubMed

    Greney, Hugues; Urosevic, Dragan; Schann, Stephan; Dupuy, Laurence; Bruban, Véronique; Ehrhardt, Jean-Daniel; Bousquet, Pascal; Dontenwill, Monique

    2002-07-01

    The I1 subtype of imidazoline receptors (I1R) is a plasma membrane protein that is involved in diverse physiological functions. Available radioligands used so far to characterize the I(1)R were able to bind with similar affinities to alpha2-adrenergic receptors (alpha2-ARs) and to I1R. This feature was a major drawback for an adequate characterization of this receptor subtype. New imidazoline analogs were therefore synthesized and the present study describes one of these compounds, 2-(2-chloro-4-iodo-phenylamino)-5-methyl-pyrroline (LNP 911), which was of high affinity and selectivity for the I1R. LNP 911 was radioiodinated and its binding properties characterized in different membrane preparations. Saturation experiments with [125I]LNP 911 revealed a single high affinity binding site in PC-12 cell membranes (K(D) = 1.4 nM; B(max) = 398 fmol/mg protein) with low nonspecific binding. [125I]LNP 911 specific binding was inhibited by various imidazolines and analogs but was insensitive to guanosine-5'-O-(3-thio)triphosphate. The rank order of potency of some competing ligands [LNP 911, PIC, rilmenidine, 4-chloro-2-(imidazolin-2-ylamino)-isoindoline (BDF 6143), lofexidine, and clonidine] was consistent with the definition of [125I]LNP 911 binding sites as I1R. However, other high-affinity I1R ligands (moxonidine, efaroxan, and benazoline) exhibited low affinities for these binding sites in standard binding assays. In contrast, when [125I]LNP 911 was preincubated at 4 degrees C, competition curves of moxonidine became biphasic. In this case, moxonidine exhibited similar high affinities on [125I]LNP 911 binding sites as on I1R defined with [125I]PIC. Moxonidine proved also able to accelerate the dissociation of [125I]LNP 911 from its binding sites. These results suggest the existence of an allosteric modulation at the level of the I1R, which seems to be corroborated by the dose-dependent enhancement by LNP 911 of the agonist effects on the adenylate cyclase pathway

  10. Temporal Hierarchy of Gene Expression Mediated by Transcription Factor Binding Affinity and Activation Dynamics

    PubMed Central

    Gao, Rong

    2015-01-01

    ABSTRACT Understanding cellular responses to environmental stimuli requires not only the knowledge of specific regulatory components but also the quantitative characterization of the magnitude and timing of regulatory events. The two-component system is one of the major prokaryotic signaling schemes and is the focus of extensive interest in quantitative modeling and investigation of signaling dynamics. Here we report how the binding affinity of the PhoB two-component response regulator (RR) to target promoters impacts the level and timing of expression of PhoB-regulated genes. Information content has often been used to assess the degree of conservation for transcription factor (TF)-binding sites. We show that increasing the information content of PhoB-binding sites in designed phoA promoters increased the binding affinity and that the binding affinity and concentration of phosphorylated PhoB (PhoB~P) together dictate the level and timing of expression of phoA promoter variants. For various PhoB-regulated promoters with distinct promoter architectures, expression levels appear not to be correlated with TF-binding affinities, in contrast to the intuitive and oversimplified assumption that promoters with higher affinity for a TF tend to have higher expression levels. However, the expression timing of the core set of PhoB-regulated genes correlates well with the binding affinity of PhoB~P to individual promoters and the temporal hierarchy of gene expression appears to be related to the function of gene products during the phosphate starvation response. Modulation of the information content and binding affinity of TF-binding sites may be a common strategy for temporal programming of the expression profile of RR-regulated genes. PMID:26015501

  11. Increasing the affinity of selective bZIP-binding peptides through surface residue redesign.

    PubMed

    Kaplan, Jenifer B; Reinke, Aaron W; Keating, Amy E

    2014-07-01

    The coiled-coil dimer is a prevalent protein interaction motif that is important for many cellular processes. The basic leucine-zipper (bZIP) transcription factors are one family of proteins for which coiled-coil mediated dimerization is essential for function, and misregulation of bZIPs can lead to disease states including cancer. This makes coiled coils attractive protein-protein interaction targets to disrupt using engineered molecules. Previous work designing peptides to compete with native coiled-coil interactions focused primarily on designing the core residues of the interface to achieve affinity and specificity. However, folding studies on the model bZIP GCN4 show that coiled-coil surface residues also contribute to binding affinity. Here we extend a prior study in which peptides were designed to bind tightly and specifically to representative members of each of 20 human bZIP families. These "anti-bZIP" peptides were designed with an emphasis on target-binding specificity, with contributions to design-target specificity and affinity engineered considering only the coiled-coil core residues. High-throughput testing using peptide arrays indicated many successes. We have now measured the binding affinities and specificities of anti-bZIPs that bind to FOS, XBP1, ATF6, and CREBZF in solution and tested whether redesigning the surface residues can increase design-target affinity. Incorporating residues that favor helix formation into the designs increased binding affinities in all cases, providing low-nanomolar binders of each target. However, changes in surface electrostatic interactions sometimes changed the binding specificity of the designed peptides. © 2014 The Protein Society.

  12. SNP2TFBS - a database of regulatory SNPs affecting predicted transcription factor binding site affinity.

    PubMed

    Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp

    2017-01-04

    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Computational estimation of rainbow trout estrogen receptor binding affinities for environmental estrogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyu, Conrad; Cavileer, Timothy D.; Nagler, James J.

    2011-02-01

    Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17{beta} to the four rainbow trout ER isoformsmore » with that of three known environmental estrogens 17{alpha}-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ER{alpha} subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17{beta}, bisphenol A binds less strongly to all four receptors, 17{alpha}-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the {alpha} subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.« less

  14. Review: correlations between oxygen affinity and sequence classifications of plant hemoglobins.

    PubMed

    Smagghe, Benoit J; Hoy, Julie A; Percifield, Ryan; Kundu, Suman; Hargrove, Mark S; Sarath, Gautam; Hilbert, Jean-Louis; Watts, Richard A; Dennis, Elizabeth S; Peacock, W James; Dewilde, Sylvia; Moens, Luc; Blouin, George C; Olson, John S; Appleby, Cyril A

    2009-12-01

    Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full-length globins with the classical eight helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobins, the physiological functions of these plant hemoglobins remain unknown. We have reviewed and, in some cases, measured new oxygen binding properties of a large number of Class 1 and 2 plant nonsymbiotic Hbs and leghemoglobins. We found that sequence classification correlates with distinct extents of hexacoordination with the distal histidine and markedly different overall oxygen affinities and association and dissociation rate constants. These results suggest strong selective pressure for the evolution of distinct physiological functions. The leghemoglobins evolved from the Class 2 globins and show no hexacoordination, very high rates of O(2) binding ( approximately 250 muM(-1) s(-1)), moderately high rates of O(2) dissociation ( approximately 5-15 s(-1)), and high oxygen affinity (K(d) or P(50) approximately 50 nM). These properties both facilitate O(2) diffusion to respiring N(2) fixing bacteria and reduce O(2) tension in the root nodules of legumes. The Class 1 plant Hbs show weak hexacoordination (K(HisE7) approximately 2), moderate rates of O(2) binding ( approximately 25 muM(-1) s(-1)), very small rates of O(2) dissociation ( approximately 0.16 s(-1)), and remarkably high O(2) affinities (P(50) approximately 2 nM), suggesting a function involving O(2) and nitric oxide (NO) scavenging. The Class 2 Hbs exhibit strong hexacoordination (K(HisE7) approximately 100), low rates of O(2) binding ( approximately 1 muM(-1) s(-1)), moderately low O(2) dissociation rate constants ( approximately 1 s(-1)), and moderate, Mb-like O(2) affinities (P(50) approximately 340 nM), perhaps suggesting a sensing role for sustained low, micromolar levels of oxygen.

  15. Recent improvements to Binding MOAD: a resource for protein-ligand binding affinities and structures.

    PubMed

    Ahmed, Aqeel; Smith, Richard D; Clark, Jordan J; Dunbar, James B; Carlson, Heather A

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein-ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23,269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na{sup +}, Cl{sup {minus}} and K{sup +} to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na{sup +}. Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na{sup +} and Cl{sup {minus}}, the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized,more » purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na{sup +} binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl{sup {minus}}. Cl{sup {minus}} enhances the transporters affinity for imipramine, as well as for Na{sup +}. At concentrations in the range of its K{sub M} for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na{sup +}-independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both ({sup 3}H)imipramine binding and ({sup 3}H)serotonin transport.« less

  17. Interrelationship among Fe-His Bond Strengths, Oxygen Affinities, and Intersubunit Hydrogen Bonding Changes upon Ligand Binding in the β Subunit of Human Hemoglobin: The Alkaline Bohr Effect.

    PubMed

    Nagatomo, Shigenori; Okumura, Miki; Saito, Kazuya; Ogura, Takashi; Kitagawa, Teizo; Nagai, Masako

    2017-03-07

    Regulation of the oxygen affinity of human adult hemoglobin (Hb A) at high pH, known as the alkaline Bohr effect, is essential for its physiological function. In this study, structural mechanisms of the alkaline Bohr effect and pH-dependent O 2 affinity changes were investigated via 1 H nuclear magnetic resonance and visible and UV resonance Raman spectra of mutant Hbs, Hb M Iwate (αH87Y) and Hb M Boston (αH58Y). It was found that even though the binding of O 2 to the α subunits is forbidden in the mutant Hbs, the O 2 affinity was higher at alkaline pH than at neutral pH, and concomitantly, the Fe-His stretching frequency of the β subunits was shifted to higher values. Thus, it was confirmed for the β subunits that the stronger the Fe-His bond, the higher the O 2 affinity. It was found in this study that the quaternary structure of α(Fe 3+ )β(Fe 2+ -CO) of the mutant Hb is closer to T than to the ordinary R at neutral pH. The retained Aspβ94-Hisβ146 hydrogen bond makes the extent of proton release smaller upon ligand binding from Hisβ146, known as one of residues contributing to the alkaline Bohr effect. For these T structures, the Aspα94-Trpβ37 hydrogen bond in the hinge region and the Tyrα42-Aspβ99 hydrogen bond in the switch region of the α 1 -β 2 interface are maintained but elongated at alkaline pH. Thus, a decrease in tension in the Fe-His bond of the β subunits at alkaline pH causes a substantial increase in the change in global structure upon binding of CO to the β subunit.

  18. Improved methods for predicting peptide binding affinity to MHC class II molecules.

    PubMed

    Jensen, Kamilla Kjaergaard; Andreatta, Massimo; Marcatili, Paolo; Buus, Søren; Greenbaum, Jason A; Yan, Zhen; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2018-07-01

    Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC-II-peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC-peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. © 2018 John Wiley & Sons Ltd.

  19. Opposing Intermolecular Tuning of Ca2+ Affinity for Calmodulin by Neurogranin and CaMKII Peptides.

    PubMed

    Zhang, Pengzhi; Tripathi, Swarnendu; Trinh, Hoa; Cheung, Margaret S

    2017-03-28

    We investigated the impact of bound calmodulin (CaM)-target compound structure on the affinity of calcium (Ca 2+ ) by integrating coarse-grained models and all-atomistic simulations with nonequilibrium physics. We focused on binding between CaM and two specific targets, Ca 2+ /CaM-dependent protein kinase II (CaMKII) and neurogranin (Ng), as they both regulate CaM-dependent Ca 2+ signaling pathways in neurons. It was shown experimentally that Ca 2+ /CaM (holoCaM) binds to the CaMKII peptide with overwhelmingly higher affinity than Ca 2+ -free CaM (apoCaM); the binding of CaMKII peptide to CaM in return increases the Ca 2+ affinity for CaM. However, this reciprocal relation was not observed in the Ng peptide (Ng 13-49 ), which binds to apoCaM or holoCaM with binding affinities of the same order of magnitude. Unlike the holoCaM-CaMKII peptide, whose structure can be determined by crystallography, the structural description of the apoCaM-Ng 13-49 is unknown due to low binding affinity, therefore we computationally generated an ensemble of apoCaM-Ng 13-49 structures by matching the changes in the chemical shifts of CaM upon Ng 13-49 binding from nuclear magnetic resonance experiments. Next, we computed the changes in Ca 2+ affinity for CaM with and without binding targets in atomistic models using Jarzynski's equality. We discovered the molecular underpinnings of lowered affinity of Ca 2+ for CaM in the presence of Ng 13-49 by showing that the N-terminal acidic region of Ng peptide pries open the β-sheet structure between the Ca 2+ binding loops particularly at C-domain of CaM, enabling Ca 2+ release. In contrast, CaMKII peptide increases Ca 2+ affinity for the C-domain of CaM by stabilizing the two Ca 2+ binding loops. We speculate that the distinctive structural difference in the bound complexes of apoCaM-Ng 13-49 and holoCaM-CaMKII delineates the importance of CaM's progressive mechanism of target binding on its Ca 2+ binding affinities. Copyright © 2017

  20. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2

    NASA Astrophysics Data System (ADS)

    Athanasiou, Christina; Vasilakaki, Sofia; Dellis, Dimitris; Cournia, Zoe

    2018-01-01

    Computer-aided drug design has become an integral part of drug discovery and development in the pharmaceutical and biotechnology industry, and is nowadays extensively used in the lead identification and lead optimization phases. The drug design data resource (D3R) organizes challenges against blinded experimental data to prospectively test computational methodologies as an opportunity for improved methods and algorithms to emerge. We participated in Grand Challenge 2 to predict the crystallographic poses of 36 Farnesoid X Receptor (FXR)-bound ligands and the relative binding affinities for two designated subsets of 18 and 15 FXR-bound ligands. Here, we present our methodology for pose and affinity predictions and its evaluation after the release of the experimental data. For predicting the crystallographic poses, we used docking and physics-based pose prediction methods guided by the binding poses of native ligands. For FXR ligands with known chemotypes in the PDB, we accurately predicted their binding modes, while for those with unknown chemotypes the predictions were more challenging. Our group ranked #1st (based on the median RMSD) out of 46 groups, which submitted complete entries for the binding pose prediction challenge. For the relative binding affinity prediction challenge, we performed free energy perturbation (FEP) calculations coupled with molecular dynamics (MD) simulations. FEP/MD calculations displayed a high success rate in identifying compounds with better or worse binding affinity than the reference (parent) compound. Our studies suggest that when ligands with chemical precedent are available in the literature, binding pose predictions using docking and physics-based methods are reliable; however, predictions are challenging for ligands with completely unknown chemotypes. We also show that FEP/MD calculations hold predictive value and can nowadays be used in a high throughput mode in a lead optimization project provided that crystal structures of

  1. The intervening domain from MeCP2 enhances the DNA affinity of the methyl binding domain and provides an independent DNA interaction site.

    PubMed

    Claveria-Gimeno, Rafael; Lanuza, Pilar M; Morales-Chueca, Ignacio; Jorge-Torres, Olga C; Vega, Sonia; Abian, Olga; Esteller, Manel; Velazquez-Campoy, Adrian

    2017-01-31

    Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities.

  2. The intervening domain from MeCP2 enhances the DNA affinity of the methyl binding domain and provides an independent DNA interaction site

    PubMed Central

    Claveria-Gimeno, Rafael; Lanuza, Pilar M.; Morales-Chueca, Ignacio; Jorge-Torres, Olga C.; Vega, Sonia; Abian, Olga; Esteller, Manel; Velazquez-Campoy, Adrian

    2017-01-01

    Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities. PMID:28139759

  3. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    NASA Astrophysics Data System (ADS)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxins was studied in the binding essay. Our results demonstrated that GC9 and GC10 were able to selectively bind to B. cereus spores and B. anthracis toxins. Different binding affinities for GCs were found toward Bacillus cereus spores + sTX and spores + cTX. Dilution of GCs does not impede the recognition and binding. Developed method provides a tool for simultaneous recognition and targeting of spores, bacteria toxins, and/or other entities.

  4. Human adenosine A2A receptor binds calmodulin with high affinity in a calcium-dependent manner.

    PubMed

    Piirainen, Henni; Hellman, Maarit; Tossavainen, Helena; Permi, Perttu; Kursula, Petri; Jaakola, Veli-Pekka

    2015-02-17

    Understanding how ligands bind to G-protein-coupled receptors and how binding changes receptor structure to affect signaling is critical for developing a complete picture of the signal transduction process. The adenosine A2A receptor (A2AR) is a particularly interesting example, as it has an exceptionally long intracellular carboxyl terminus, which is predicted to be mainly disordered. Experimental data on the structure of the A2AR C-terminus is lacking, because published structures of A2AR do not include the C-terminus. Calmodulin has been reported to bind to the A2AR C-terminus, with a possible binding site on helix 8, next to the membrane. The biological meaning of the interaction as well as its calcium dependence, thermodynamic parameters, and organization of the proteins in the complex are unclear. Here, we characterized the structure of the A2AR C-terminus and the A2AR C-terminus-calmodulin complex using different biophysical methods, including native gel and analytical gel filtration, isothermal titration calorimetry, NMR spectroscopy, and small-angle X-ray scattering. We found that the C-terminus is disordered and flexible, and it binds with high affinity (Kd = 98 nM) to calmodulin without major conformational changes in the domain. Calmodulin binds to helix 8 of the A2AR in a calcium-dependent manner that can displace binding of A2AR to lipid vesicles. We also predicted and classified putative calmodulin-binding sites in a larger group of G-protein-coupled receptors. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding

    PubMed Central

    Peng, Tao; Free, Paul; Fernig, David G.; Lim, Sierin; Tomczak, Nikodem

    2016-01-01

    Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages’ pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages’ core and low non-specific binding to the cages’ outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage’s core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of

  6. Effect of the Flexible Regions of the Oncoprotein Mouse Double Minute X on Inhibitor Binding Affinity.

    PubMed

    Qin, Lingyun; Liu, Huili; Chen, Rong; Zhou, Jingjing; Cheng, Xiyao; Chen, Yao; Huang, Yongqi; Su, Zhengding

    2017-11-07

    The oncoprotein MdmX (mouse double minute X) is highly homologous to Mdm2 (mouse double minute 2) in terms of their amino acid sequences and three-dimensional conformations, but Mdm2 inhibitors exhibit very weak affinity for MdmX, providing an excellent model for exploring how protein conformation distinguishes and alters inhibitor binding. The intrinsic conformation flexibility of proteins plays pivotal roles in determining and predicting the binding properties and the design of inhibitors. Although the molecular dynamics simulation approach enables us to understand protein-ligand interactions, the mechanism underlying how a flexible binding pocket adapts an inhibitor has been less explored experimentally. In this work, we have investigated how the intrinsic flexible regions of the N-terminal domain of MdmX (N-MdmX) affect the affinity of the Mdm2 inhibitor nutlin-3a using protein engineering. Guided by heteronuclear nuclear Overhauser effect measurements, we identified the flexible regions that affect inhibitor binding affinity around the ligand-binding pocket on N-MdmX. A disulfide engineering mutant, N-MdmX C25-C110/C76-C88 , which incorporated two staples to rigidify the ligand-binding pocket, allowed an affinity for nutlin-3a higher than that of wild-type N-MdmX (K d ∼ 0.48 vs K d ∼ 20.3 μM). Therefore, this mutant provides not only an effective protein model for screening and designing of MdmX inhibitors but also a valuable clue for enhancing the intermolecular interactions of the pharmacophores of a ligand with pronounced flexible regions. In addition, our results revealed an allosteric ligand-binding mechanism of N-MdmX in which the ligand initially interacts with a compact core, followed by augmenting intermolecular interactions with intrinsic flexible regions. This strategy should also be applicable to many other protein targets to accelerate drug discovery.

  7. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency.

    PubMed

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G; Marini, Pietro; Pertwee, Roger G; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-07-14

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ(9)-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3-4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [(3)H]CP55,940 displacement and its effect on [(35)S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [(35)S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes.

  8. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency

    PubMed Central

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M.; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G.; Marini, Pietro; Pertwee, Roger G.; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-01-01

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ9-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3–4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [3H]CP55,940 displacement and its effect on [35S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [35S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes. PMID:26124120

  9. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity.

    PubMed

    Abdiche, Yasmina Noubia; Yeung, Yik Andy; Chaparro-Riggers, Javier; Barman, Ishita; Strop, Pavel; Chin, Sherman Michael; Pham, Amber; Bolton, Gary; McDonough, Dan; Lindquist, Kevin; Pons, Jaume; Rajpal, Arvind

    2015-01-01

    The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.

  10. Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction.

    PubMed

    Cang, Zixuan; Wei, Guo-Wei

    2018-02-01

    Protein-ligand binding is a fundamental biological process that is paramount to many other biological processes, such as signal transduction, metabolic pathways, enzyme construction, cell secretion, and gene expression. Accurate prediction of protein-ligand binding affinities is vital to rational drug design and the understanding of protein-ligand binding and binding induced function. Existing binding affinity prediction methods are inundated with geometric detail and involve excessively high dimensions, which undermines their predictive power for massive binding data. Topology provides the ultimate level of abstraction and thus incurs too much reduction in geometric information. Persistent homology embeds geometric information into topological invariants and bridges the gap between complex geometry and abstract topology. However, it oversimplifies biological information. This work introduces element specific persistent homology (ESPH) or multicomponent persistent homology to retain crucial biological information during topological simplification. The combination of ESPH and machine learning gives rise to a powerful paradigm for macromolecular analysis. Tests on 2 large data sets indicate that the proposed topology-based machine-learning paradigm outperforms other existing methods in protein-ligand binding affinity predictions. ESPH reveals protein-ligand binding mechanism that can not be attained from other conventional techniques. The present approach reveals that protein-ligand hydrophobic interactions are extended to 40Å  away from the binding site, which has a significant ramification to drug and protein design. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Life on the edge: O2 binding in Atlantic cod red blood cells near their southern distribution limit is not sensitive to temperature or haemoglobin genotype

    PubMed Central

    Barlow, Samantha L.; Metcalfe, Julian; Righton, David A.

    2017-01-01

    ABSTRACT Atlantic cod are a commercially important species believed to be threatened by warming seas near their southern, equatorward upper thermal edge of distribution. Limitations to circulatory O2 transport, in particular cardiac output, and the geographic distribution of functionally different haemoglobin (Hb) genotypes have separately been suggested to play a role in setting thermal tolerance in this species. The present study assessed the thermal sensitivity of O2 binding in Atlantic cod red blood cells with different Hb genotypes near their upper thermal distribution limit and modelled its consequences for the arterio-venous O2 saturation difference, Sa–vO2, another major determinant of circulatory O2 supply rate. The results showed statistically indistinguishable red blood cell O2 binding between the three HbI genotypes in wild-caught Atlantic cod from the Irish Sea (53° N). Red blood cells had an unusually low O2 affinity, with reduced or even reversed thermal sensitivity between pH 7.4 and 7.9, and 5.0 and 20.0°C. This was paired with strongly pH-dependent affinity and cooperativity of red blood cell O2 binding (Bohr and Root effects). Modelling of Sa–vO2 at physiological pH, temperature and O2 partial pressures revealed a substantial capacity for increases in Sa–vO2 to meet rising tissue O2 demands at 5.0 and 12.5°C, but not at 20°C. Furthermore, there was no evidence for an increase of maximal Sa–vO2 with temperature. It is suggested that Atlantic cod at such high temperatures may solely depend on increases in cardiac output and blood O2 capacity, or thermal acclimatisation of metabolic rate, for matching circulatory O2 supply to tissue demand. PMID:28148818

  12. Life on the edge: O2 binding in Atlantic cod red blood cells near their southern distribution limit is not sensitive to temperature or haemoglobin genotype.

    PubMed

    Barlow, Samantha L; Metcalfe, Julian; Righton, David A; Berenbrink, Michael

    2017-02-01

    Atlantic cod are a commercially important species believed to be threatened by warming seas near their southern, equatorward upper thermal edge of distribution. Limitations to circulatory O 2 transport, in particular cardiac output, and the geographic distribution of functionally different haemoglobin (Hb) genotypes have separately been suggested to play a role in setting thermal tolerance in this species. The present study assessed the thermal sensitivity of O 2 binding in Atlantic cod red blood cells with different Hb genotypes near their upper thermal distribution limit and modelled its consequences for the arterio-venous O 2 saturation difference, Sa-v O 2 , another major determinant of circulatory O 2 supply rate. The results showed statistically indistinguishable red blood cell O 2 binding between the three HbI genotypes in wild-caught Atlantic cod from the Irish Sea (53° N). Red blood cells had an unusually low O 2 affinity, with reduced or even reversed thermal sensitivity between pH 7.4 and 7.9, and 5.0 and 20.0°C. This was paired with strongly pH-dependent affinity and cooperativity of red blood cell O 2 binding (Bohr and Root effects). Modelling of Sa-v O 2  at physiological pH, temperature and O 2 partial pressures revealed a substantial capacity for increases in Sa-v O 2  to meet rising tissue O 2 demands at 5.0 and 12.5°C, but not at 20°C. Furthermore, there was no evidence for an increase of maximal Sa-v O 2  with temperature. It is suggested that Atlantic cod at such high temperatures may solely depend on increases in cardiac output and blood O 2 capacity, or thermal acclimatisation of metabolic rate, for matching circulatory O 2 supply to tissue demand. © 2017. Published by The Company of Biologists Ltd.

  13. The transformed glucocorticoid receptor has a lower steroid-binding affinity than the nontransformed receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemoto, Takayuki; Ohara-Nemoto, Yuko; Denis, M.

    1990-02-20

    High-salt treatment of cytosolic glucocorticoid receptor (GR) preparations reduces the steroid-binding ability of the receptor and induces the conversion of the receptor from a nontransformed (non-DNA-binding) 9S form to a transformed (DNA-binding) 4S entity. Therefore, the authors decided to investigate the possible relationship between these two phenomena. The binding of ({sup 3}H)triamcinolone acetonide (({sup 3}H)TA) to the 9S form was almost saturated at a concentration of 20 nM, whereas ({sup 3}H)TA was hardly bound to the 4S form at this concentration. The 4S form was efficiently labeled at 200 nM. Scatchard analysis of the GR showed the presence of twomore » types of binding sites. In the absence of molybdate, the ratio of the lower affinity site was increased, but the total number of binding sites was not modified. The GR with the low ({sup 3}H)TA-binding affinity bound to DNA-cellulose even in its unliganded state, whereas the form with the high affinity did not. These results indicate that the transformed GR has a reduced ({sup 3}H)TA-binding affinity as compared to the nontransformed GR. The steroid-binding domain (amino acids 477-777) and the DNA- and steroid-binding domains (amino acids 415-777) of the human GR were expressed in Escherichia coli as protein A fused proteins. Taken together, these results suggest that the component(s) associating with the nontransformed GR, possibly the heat shock protein hsp 90, play(s) an important role in stabilizing the GR in a high-affinity state for steroids.« less

  14. Analysis of Protein Interactions with Picomolar Binding Affinity by Fluorescence-Detected Sedimentation Velocity

    PubMed Central

    2014-01-01

    The study of high-affinity protein interactions with equilibrium dissociation constants (KD) in the picomolar range is of significant interest in many fields, but the characterization of stoichiometry and free energy of such high-affinity binding can be far from trivial. Analytical ultracentrifugation has long been considered a gold standard in the study of protein interactions but is typically applied to systems with micromolar KD. Here we present a new approach for the study of high-affinity interactions using fluorescence detected sedimentation velocity analytical ultracentrifugation (FDS-SV). Taking full advantage of the large data sets in FDS-SV by direct boundary modeling with sedimentation coefficient distributions c(s), we demonstrate detection and hydrodynamic resolution of protein complexes at low picomolar concentrations. We show how this permits the characterization of the antibody–antigen interactions with low picomolar binding constants, 2 orders of magnitude lower than previously achieved. The strongly size-dependent separation and quantitation by concentration, size, and shape of free and complex species in free solution by FDS-SV has significant potential for studying high-affinity multistep and multicomponent protein assemblies. PMID:24552356

  15. High Affinity Binding of Indium and Ruthenium Ions by Gastrins

    PubMed Central

    Baldwin, Graham S.; George, Graham N.; Pushie, M. Jake

    2015-01-01

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10−7 and 1.1 x 10−6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10−15 and 1.7 x 10−7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10−13 and 1.2 x 10−5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0–3.3 Å, the Ru complex clearly demonstrated a short range Ru—Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy. PMID:26457677

  16. Paracetamol and cytarabine binding competition in high affinity binding sites of transporting protein

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2006-07-01

    Paracetamol (acetaminophen, AA) the most popular analgesic drug is commonly used in the treatment of pain in patients suffering from cancer. In our studies, we evaluated the competition in binding with serum albumin between paracetamol (AA) and cytarabine, antyleukemic drug (araC). The presence of one drug can alter the binding affinity of albumin towards the second one. Such interaction can result in changing of the free fraction of the one of these drugs in blood. Two spectroscopic methods were used to determine high affinity binding sites and the competition of the drugs. Basing on the change of the serum albumin fluorescence in the presence of either of the drugs the quenching ( KQ) constants for the araC-BSA and AA-BSA systems were calculated. Analysis of UV difference spectra allowed us to describe the changes in drug-protein complexes (araC-albumin and AA-albumin) induced by the presence of the second drug (AA and araC, respectively). The mechanism of competition between araC and AA has been proposed.

  17. Structure-Based Rational Design of a Toll-like Receptor 4 (TLR4) Decoy Receptor with High Binding Affinity for a Target Protein

    PubMed Central

    Lee, Sang-Chul; Hong, Seungpyo; Park, Keunwan; Jeon, Young Ho; Kim, Dongsup; Cheong, Hae-Kap; Kim, Hak-Sung

    2012-01-01

    Repeat proteins are increasingly attracting much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural features. Nonetheless, engineering interaction interface and understanding molecular basis for affinity maturation of repeat proteins still remain a challenge. Here, we present a structure-based rational design of a repeat protein with high binding affinity for a target protein. As a model repeat protein, a Toll-like receptor4 (TLR4) decoy receptor composed of leucine-rich repeat (LRR) modules was used, and its interaction interface was rationally engineered to increase the binding affinity for myeloid differentiation protein 2 (MD2). Based on the complex crystal structure of the decoy receptor with MD2, we first designed single amino acid substitutions in the decoy receptor, and obtained three variants showing a binding affinity (KD) one-order of magnitude higher than the wild-type decoy receptor. The interacting modes and contributions of individual residues were elucidated by analyzing the crystal structures of the single variants. To further increase the binding affinity, single positive mutations were combined, and two double mutants were shown to have about 3000- and 565-fold higher binding affinities than the wild-type decoy receptor. Molecular dynamics simulations and energetic analysis indicate that an additive effect by two mutations occurring at nearby modules was the major contributor to the remarkable increase in the binding affinities. PMID:22363519

  18. On the binding affinity of macromolecular interactions: daring to ask why proteins interact

    PubMed Central

    Kastritis, Panagiotis L.; Bonvin, Alexandre M. J. J.

    2013-01-01

    Interactions between proteins are orchestrated in a precise and time-dependent manner, underlying cellular function. The binding affinity, defined as the strength of these interactions, is translated into physico-chemical terms in the dissociation constant (Kd), the latter being an experimental measure that determines whether an interaction will be formed in solution or not. Predicting binding affinity from structural models has been a matter of active research for more than 40 years because of its fundamental role in drug development. However, all available approaches are incapable of predicting the binding affinity of protein–protein complexes from coordinates alone. Here, we examine both theoretical and experimental limitations that complicate the derivation of structure–affinity relationships. Most work so far has concentrated on binary interactions. Systems of increased complexity are far from being understood. The main physico-chemical measure that relates to binding affinity is the buried surface area, but it does not hold for flexible complexes. For the latter, there must be a significant entropic contribution that will have to be approximated in the future. We foresee that any theoretical modelling of these interactions will have to follow an integrative approach considering the biology, chemistry and physics that underlie protein–protein recognition. PMID:23235262

  19. Subcutaneous bioavailability of therapeutic antibodies as a function of FcRn binding affinity in mice

    PubMed Central

    Meng, Y Gloria; Hoyte, Kwame; Lutman, Jeff; Lu, Yanmei; Iyer, Suhasini; DeForge, Laura E; Theil, Frank-Peter; Fielder, Paul J; Prabhu, Saileta

    2012-01-01

    The neonatal Fc receptor (FcRn) plays an important and well-known role in immunoglobulin G (IgG) catabolism; however, its role in the disposition of IgG after subcutaneous (SC) administration, including bioavailability, is relatively unknown. To examine the potential effect of FcRn on IgG SC bioavailability, we engineered three anti-amyloid β monoclonal antibody (mAb) reverse chimeric mouse IgG2a (mIgG2a) Fc variants (I253A.H435A, N434H and N434Y) with different binding affinities to mouse FcRn (mFcRn) and compared their SC bioavailability to that of the wild-type (WT) mAb in mice. Our results indicated that the SC bioavailability of mIgG2a was affected by mFcRn-binding affinity. Variant I253A.H435A, which did not bind to mFcRn at either pH 6.0 or pH 7.4, had the lowest bioavailability (41.8%). Variant N434Y, which had the greatest increase in binding affinity at both pH 6.0 and pH 7.4, had comparable bioavailability to the WT antibody (86.1% vs. 76.3%), whereas Variant N434H, which had modestly increased binding affinity at pH 6.0 to mFcRn and affinity comparable to the WT antibody at pH 7.4, had the highest bioavailability (94.7%). A semi-mechanism-based pharmacokinetic model, which described well the observed data with the WT antibody and variant I253A.H435A, is consistent with the hypothesis that the decreased bioavailability of variant I253A.H435A was due to loss of the FcRn-mediated protection from catabolism at the absorption site. Together, these data demonstrate that FcRn plays an important role in SC bioavailability of therapeutic IgG antibodies. PMID:22327433

  20. PREDICTING ER BINDING AFFINITY FOR EDC RANKING AND PRIORITIZATION: A COMPARISON OF THREE MODELS

    EPA Science Inventory

    A comparative analysis of how three COREPA models for ER binding affinity performed when used to predict potential estrogen receptor (ER) ligands is presented. Models I and II were developed based on training sets of 232 and 279 rat ER binding affinity measurements, respectively....

  1. Ultrasensitive Electrochemical Detection of Glycoprotein Based on Boronate Affinity Sandwich Assay and Signal Amplification with Functionalized SiO2@Au Nanocomposites.

    PubMed

    You, Min; Yang, Shuai; Tang, Wanxin; Zhang, Fan; He, Pin-Gang

    2017-04-26

    Herein we propose a multiple signal amplification strategy designed for ultrasensitive electrochemical detection of glycoproteins. This approach introduces a new type of boronate-affinity sandwich assay (BASA), which was fabricated by using gold nanoparticles combined with reduced graphene oxide (AuNPs-GO) to modify sensing surface for accelerating electron transfer, the composite of molecularly imprinted polymer (MIP) including 4-vinylphenylboronic acid (VPBA) for specific capturing glycoproteins, and SiO 2 nanoparticles carried gold nanoparticles (SiO 2 @Au) labeled with 6-ferrocenylhexanethiol (FcHT) and 4-mercaptophenylboronic acid (MPBA) (SiO 2 @Au/FcHT/MPBA) as tracing tag for binding glycoprotein and generating electrochemical signal. As a sandwich-type sensing, the SiO 2 @Au/FcHT/MPBA was captured by glycoprotein on the surface of imprinting film for further electrochemical detection in 0.1 M PBS (pH 7.4). Using horseradish peroxidase (HRP) as a model glycoprotein, the proposed approach exhibited a wide linear range from 1 pg/mL to 100 ng/mL, with a low detection limit of 0.57 pg/mL. To the best of our knowledge, this is first report of a multiple signal amplification approach based on boronate-affinity molecularly imprinted polymer and SiO 2 @Au/FcHT/MPBA, exhibiting greatly enhanced sensitivity for glycoprotein detection. Furthermore, the newly constructed BASA based glycoprotein sensor demonstrated HRP detection in real sample, such as human serum, suggesting its promising prospects in clinical diagnostics.

  2. IL-3 specifically inhibits GM-CSF binding to the higher affinity receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taketazu, F.; Chiba, S.; Shibuya, K.

    1991-02-01

    The inhibition of binding between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor by human interleukin-3 (IL-3) was observed in myelogenous leukemia cell line KG-1 which bore the receptors both for GM-CSF and IL-3. In contrast, this phenomenon was not observed in histiocytic lymphoma cell line U-937 or in gastric carcinoma cell line KATO III, both of which have apparent GM-CSF receptor but an undetectable IL-3 receptor. In KG-1 cells, the cross-inhibition was preferentially observed when the binding of GM-CSF was performed under the high-affinity binding condition; i.e., a low concentration of 125I-GM-CSF was incubated. Scatchard analysis of 125I-GM-CSF bindingmore » to KG-1 cells in the absence and in the presence of unlabeled IL-3 demonstrated that IL-3 inhibited GM-CSF binding to the higher-affinity component of GM-CSF receptor on KG-1 cells. Moreover, a chemical cross-linking study has revealed that the cross-inhibition of the GM-CSF binding observed in KG-1 cells is specific for the beta-chain, Mr 135,000 binding protein which has been identified as a component forming the high-affinity GM-CSF receptor existing specifically on hemopoietic cells.« less

  3. Synergistic use of compound properties and docking scores in neural network modeling of CYP2D6 binding: predicting affinity and conformational sampling.

    PubMed

    Bazeley, Peter S; Prithivi, Sridevi; Struble, Craig A; Povinelli, Richard J; Sem, Daniel S

    2006-01-01

    Cytochrome P450 2D6 (CYP2D6) is used to develop an approach for predicting affinity and relevant binding conformation(s) for highly flexible binding sites. The approach combines the use of docking scores and compound properties as attributes in building a neural network (NN) model. It begins by identifying segments of CYP2D6 that are important for binding specificity, based on structural variability among diverse CYP enzymes. A family of distinct, low-energy conformations of CYP2D6 are generated using simulated annealing (SA) and a collection of 82 compounds with known CYP2D6 affinities are docked. Interestingly, docking poses are observed on the backside of the heme as well as in the known active site. Docking scores for the active site binders, along with compound-specific attributes, are used to train a neural network model to properly bin compounds as strong binders, moderate binders, or nonbinders. Attribute selection is used to preselect the most important scores and compound-specific attributes for the model. A prediction accuracy of 85+/-6% is achieved. Dominant attributes include docking scores for three of the 20 conformations in the ensemble as well as the compound's formal charge, number of aromatic rings, and AlogP. Although compound properties were highly predictive attributes (12% improvement over baseline) in the NN-based prediction of CYP2D6 binders, their combined use with docking score attributes is synergistic (net increase of 23% above baseline). Beyond prediction of affinity, attribute selection provides a way to identify the most relevant protein conformation(s), in terms of binding competence. In the case of CYP2D6, three out of the ensemble of 20 SA-generated structures are found to be the most predictive for binding.

  4. Increased Peptide Contacts Govern High Affinity Binding of a Modified TCR Whilst Maintaining a Native pMHC Docking Mode

    PubMed Central

    Cole, David K.; Sami, Malkit; Scott, Daniel R.; Rizkallah, Pierre J.; Borbulevych, Oleg Y.; Todorov, Penio T.; Moysey, Ruth K.; Jakobsen, Bent K.; Boulter, Jonathan M.; Baker, Brian M.; Yi Li

    2013-01-01

    Natural T cell receptors (TCRs) generally bind to their cognate pMHC molecules with weak affinity and fast kinetics, limiting their use as therapeutic agents. Using phage display, we have engineered a high affinity version of the A6 wild-type TCR (A6wt), specific for the human leukocyte antigen (HLA-A∗0201) complexed with human T cell lymphotropic virus type 111–19 peptide (A2-Tax). Mutations in just 4 residues in the CDR3β loop region of the A6wt TCR were selected that improved binding to A2-Tax by nearly 1000-fold. Biophysical measurements of this mutant TCR (A6c134) demonstrated that the enhanced binding was derived through favorable enthalpy and a slower off-rate. The structure of the free A6c134 TCR and the A6c134/A2-Tax complex revealed a native binding mode, similar to the A6wt/A2-Tax complex. However, concordant with the more favorable binding enthalpy, the A6c134 TCR made increased contacts with the Tax peptide compared with the A6wt/A2-Tax complex, demonstrating a peptide-focused mechanism for the enhanced affinity that directly involved the mutated residues in the A6c134 TCR CDR3β loop. This peptide-focused enhanced TCR binding may represent an important approach for developing antigen specific high affinity TCR reagents for use in T cell based therapies. PMID:23805144

  5. Binding site and affinity prediction of general anesthetics to protein targets using docking.

    PubMed

    Liu, Renyu; Perez-Aguilar, Jose Manuel; Liang, David; Saven, Jeffery G

    2012-05-01

    The protein targets for general anesthetics remain unclear. A tool to predict anesthetic binding for potential binding targets is needed. In this study, we explored whether a computational method, AutoDock, could serve as such a tool. High-resolution crystal data of water-soluble proteins (cytochrome C, apoferritin, and human serum albumin), and a membrane protein (a pentameric ligand-gated ion channel from Gloeobacter violaceus [GLIC]) were used. Isothermal titration calorimetry (ITC) experiments were performed to determine anesthetic affinity in solution conditions for apoferritin. Docking calculations were performed using DockingServer with the Lamarckian genetic algorithm and the Solis and Wets local search method (http://www.dockingserver.com/web). Twenty general anesthetics were docked into apoferritin. The predicted binding constants were compared with those obtained from ITC experiments for potential correlations. In the case of apoferritin, details of the binding site and their interactions were compared with recent cocrystallization data. Docking calculations for 6 general anesthetics currently used in clinical settings (isoflurane, sevoflurane, desflurane, halothane, propofol, and etomidate) with known 50% effective concentration (EC(50)) values were also performed in all tested proteins. The binding constants derived from docking experiments were compared with known EC(50) values and octanol/water partition coefficients for the 6 general anesthetics. All 20 general anesthetics docked unambiguously into the anesthetic binding site identified in the crystal structure of apoferritin. The binding constants for 20 anesthetics obtained from the docking calculations correlate significantly with those obtained from ITC experiments (P = 0.04). In the case of GLIC, the identified anesthetic binding sites in the crystal structure are among the docking predicted binding sites, but not the top ranked site. Docking calculations suggest a most probable binding site

  6. Binding Site and Affinity Prediction of General Anesthetics to Protein Targets Using Docking

    PubMed Central

    Liu, Renyu; Perez-Aguilar, Jose Manuel; Liang, David; Saven, Jeffery G.

    2012-01-01

    Background The protein targets for general anesthetics remain unclear. A tool to predict anesthetic binding for potential binding targets is needed. In this study, we explore whether a computational method, AutoDock, could serve as such a tool. Methods High-resolution crystal data of water soluble proteins (cytochrome C, apoferritin and human serum albumin), and a membrane protein (a pentameric ligand-gated ion channel from Gloeobacter violaceus, GLIC) were used. Isothermal titration calorimetry (ITC) experiments were performed to determine anesthetic affinity in solution conditions for apoferritin. Docking calculations were performed using DockingServer with the Lamarckian genetic algorithm and the Solis and Wets local search method (https://www.dockingserver.com/web). Twenty general anesthetics were docked into apoferritin. The predicted binding constants are compared with those obtained from ITC experiments for potential correlations. In the case of apoferritin, details of the binding site and their interactions were compared with recent co-crystallization data. Docking calculations for six general anesthetics currently used in clinical settings (isoflurane, sevoflurane, desflurane, halothane, propofol, and etomidate) with known EC50 were also performed in all tested proteins. The binding constants derived from docking experiments were compared with known EC50s and octanol/water partition coefficients for the six general anesthetics. Results All 20 general anesthetics docked unambiguously into the anesthetic binding site identified in the crystal structure of apoferritin. The binding constants for 20 anesthetics obtained from the docking calculations correlate significantly with those obtained from ITC experiments (p=0.04). In the case of GLIC, the identified anesthetic binding sites in the crystal structure are among the docking predicted binding sites, but not the top ranked site. Docking calculations suggest a most probable binding site located in the

  7. Production and Characterization of Desmalonichrome Relative Binding Affinity for Uranyl Ions in Relation to Other Siderophores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Kai-For; Dai, Ziyu; Wunschel, David S.

    2016-06-24

    Siderophores are Fe binding secondary metabolites that have been investigated for their uranium binding properties. Much of the previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of uranyl, yet they have not been widely studied and are more difficult to obtain. Desmalonichrome is a carboxylate siderophore which is not commercially available and so was obtained from the ascomycete fungus Fusarium oxysporum cultivated under Fe depleted conditions. The relative affinity for uranyl binding of desmalonichrome was investigated usingmore » a competitive analysis of binding affinities between uranyl acetate and different concentrations of iron(III) chloride using electrospray ionization mass spectrometry (ESI-MS). In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A) were studied to understand their relative affinities for the uranyl ion at two pH values. The binding affinities of hydroxymate siderophores to uranyl ion were found to decrease to a greater degree at lower pH as the concentration of Fe (III) ion increases. On the other hand, lowering pH has little impact on the binding affinities between carboxylate siderophores and uranyl ion. Desmalonichrome was shown to have the greatest relative affinity for uranyl at any pH and Fe(III) concentration. These results suggest that acidic functional groups in the ligands are critical for strong chelation with uranium at lower pH.« less

  8. Is There Consistency between the Binding Affinity and Inhibitory Potential of Natural Polyphenols as α-amylase Inhibitors?

    PubMed

    Xu, Wei; Shao, Rong; Xiao, Jianbo

    2016-07-26

    The inhibitory potential of natural polyphenols for α-amylases has attracted great interests among researchers. The structure-affinity properties of natural polyphenols binding to α-amylase and the structure-activity relationship of dietary polyphenols inhibiting α-amylase were deeply investigated. There is a lack of consistency between the structure-affinity relationship and the structure-activity relationship of natural polyphenols as α-amylase inhibitors. Is it consistent between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors? It was found that the consistency between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors is not equivocal. For example, there is no consistency between the binding affinity and the inhibitory potential of quercetin and its glycosides as α-amylase inhibitors. However, catechins with higher α-amylase inhibitory potential exhibited higher affinity with α-amylase.

  9. Probing the binding affinity of amyloids to reduce toxicity of oligomers in diabetes

    PubMed Central

    Smaoui, Mohamed Raef; Orland, Henri; Waldispühl, Jérôme

    2015-01-01

    Motivation: Amyloids play a role in the degradation of β-cells in diabetes patients. In particular, short amyloid oligomers inject themselves into the membranes of these cells and create pores that disrupt the strictly controlled flow of ions through the membranes. This leads to cell death. Getting rid of the short oligomers either by a deconstruction process or by elongating them into longer fibrils will reduce this toxicity and allow the β-cells to live longer. Results: We develop a computational method to probe the binding affinity of amyloid structures and produce an amylin analog that binds to oligomers and extends their length. The binding and extension lower toxicity and β-cell death. The amylin analog is designed through a parsimonious selection of mutations and is to be administered with the pramlintide drug, but not to interact with it. The mutations (T9K L12K S28H T30K) produce a stable native structure, strong binding affinity to oligomers, and long fibrils. We present an extended mathematical model for the insulin–glucose relationship and demonstrate how affecting the concentration of oligomers with such analog is strictly coupled with insulin release and β-cell fitness. Availability and implementation: SEMBA, the tool to probe the binding affinity of amyloid proteins and generate the binding affinity scoring matrices and R-scores is available at: http://amyloid.cs.mcgill.ca Contact: jeromew@cs.mcgill.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25777526

  10. Lanthanide binding and IgG affinity construct: Potential applications in solution NMR, MRI, and luminescence microscopy

    PubMed Central

    Barb, Adam W; Ho, Tienhuei Grace; Flanagan-Steet, Heather; Prestegard, James H

    2012-01-01

    Paramagnetic lanthanide ions when bound to proteins offer great potential for structural investigations that utilize solution nuclear magnetic resonance spectroscopy, magnetic resonance imaging, or optical microscopy. However, many proteins do not have native metal ion binding sites and engineering a chimeric protein to bind an ion while retaining affinity for a protein of interest represents a significant challenge. Here we report the characterization of an immunoglobulin G-binding protein redesigned to include a lanthanide binding motif in place of a loop between two helices (Z-L2LBT). It was shown to bind Tb3+ with 130 nM affinity. Ions such as Dy3+, Yb3+, and Ce3+ produce paramagnetic effects on NMR spectra and the utility of these effects is illustrated by their use in determining a structural model of the metal-complexed Z-L2LBT protein and a preliminary characterization of the dynamic distribution of IgG Fc glycan positions. Furthermore, this designed protein is demonstrated to be a novel IgG-binding reagent for magnetic resonance imaging (Z-L2LBT:Gd3+ complex) and luminescence microscopy (Z-L2LBT: Tb3+ complex). PMID:22851279

  11. Sugar-binding and crystallographic studies of an arabinose-binding protein mutant (Met108Leu) that exhibits enhanced affinity and altered specificity.

    PubMed

    Vermersch, P S; Lemon, D D; Tesmer, J J; Quiocho, F A

    1991-07-16

    In addition to hydrogen bonds, van der Waals forces contribute to the affinity of protein-carbohydrate interactions. Nonpolar van der Waals contacts in the complexes of the L-arabinose-binding protein (ABP) with monosaccharides have been studied by means of site-directed mutagenesis, equilibrium and rapid kinetic binding techniques, and X-ray crystallography. ABP, a periplasmic transport receptor of Escherichia coli, binds L-arabinose, D-galactose, and D-fucose with preferential affinity in the order of Ara greater than Gal much greater than Fuc. Well-refined, high-resolution structures of ABP complexed with the three sugars revealed that the structural differences in the ABP-sugar complexes are localized around C5 of the sugars, where the equatorial H of Ara has been substituted for CH3 (Fuc) or CH2OH (Gal). The side chain of Met108 undergoes a sterically dictated, ligand-specific, conformational change to optimize nonpolar interactions between its methyl group and the sugar. We found that the Met108Leu ABP binds Gal tighter than wild-type ABP binds Ara and exhibits a preference for ligand in the order of Gal much greater than Fuc greater than Ara. The differences in affinity can be attributed to differences in the dissociation rates of the ABP-sugar complexes. We have refined at better than 1.7-A resolution the crystal structures of the Met108Leu ABP complexed with each of the sugars and offer a molecular explanation for the altered binding properties.

  12. NADP+ Binding to the Regulatory Subunit of Methionine Adenosyltransferase II Increases Intersubunit Binding Affinity in the Hetero-Trimer

    PubMed Central

    Ortega, Rebeca; Martínez-Júlvez, Marta; Revilla-Guarinos, Ainhoa; Pérez-Pertejo, Yolanda; Velázquez-Campoy, Adrián; Sanz-Aparicio, Julia; Pajares, María A.

    2012-01-01

    Mammalian methionine adenosyltransferase II (MAT II) is the only hetero-oligomer in this family of enzymes that synthesize S-adenosylmethionine using methionine and ATP as substrates. Binding of regulatory β subunits and catalytic α2 dimers is known to increase the affinity for methionine, although scarce additional information about this interaction is available. This work reports the use of recombinant α2 and β subunits to produce oligomers showing kinetic parameters comparable to MAT II purified from several tissues. According to isothermal titration calorimetry data and densitometric scanning of the stained hetero-oligomer bands on denatured gels, the composition of these oligomers is that of a hetero-trimer with α2 dimers associated to single β subunits. Additionally, the regulatory subunit is able to bind NADP+ with a 1∶1 stoichiometry, the cofactor enhancing β to α2-dimer binding affinity. Mutants lacking residues involved in NADP+ binding and N-terminal truncations of the β subunit were able to oligomerize with α2-dimers, although the kinetic properties appeared altered. These data together suggest a role for both parts of the sequence in the regulatory role exerted by the β subunit on catalysis. Moreover, preparation of a structural model for the hetero-oligomer, using the available crystal data, allowed prediction of the regions involved in β to α2-dimer interaction. Finally, the implications that the presence of different N-terminals in the β subunit could have on MAT II behavior are discussed in light of the recent identification of several splicing forms of this subunit in hepatoma cells. PMID:23189196

  13. Microfluidic affinity and ChIP-seq analyses converge on a conserved FOXP2-binding motif in chimp and human, which enables the detection of evolutionarily novel targets.

    PubMed

    Nelson, Christopher S; Fuller, Chris K; Fordyce, Polly M; Greninger, Alexander L; Li, Hao; DeRisi, Joseph L

    2013-07-01

    The transcription factor forkhead box P2 (FOXP2) is believed to be important in the evolution of human speech. A mutation in its DNA-binding domain causes severe speech impairment. Humans have acquired two coding changes relative to the conserved mammalian sequence. Despite intense interest in FOXP2, it has remained an open question whether the human protein's DNA-binding specificity and chromatin localization are conserved. Previous in vitro and ChIP-chip studies have provided conflicting consensus sequences for the FOXP2-binding site. Using MITOMI 2.0 microfluidic affinity assays, we describe the binding site of FOXP2 and its affinity profile in base-specific detail for all substitutions of the strongest binding site. We find that human and chimp FOXP2 have similar binding sites that are distinct from previously suggested consensus binding sites. Additionally, through analysis of FOXP2 ChIP-seq data from cultured neurons, we find strong overrepresentation of a motif that matches our in vitro results and identifies a set of genes with FOXP2 binding sites. The FOXP2-binding sites tend to be conserved, yet we identified 38 instances of evolutionarily novel sites in humans. Combined, these data present a comprehensive portrait of FOXP2's-binding properties and imply that although its sequence specificity has been conserved, some of its genomic binding sites are newly evolved.

  14. Microfluidic affinity and ChIP-seq analyses converge on a conserved FOXP2-binding motif in chimp and human, which enables the detection of evolutionarily novel targets

    PubMed Central

    Nelson, Christopher S.; Fuller, Chris K.; Fordyce, Polly M.; Greninger, Alexander L.; Li, Hao; DeRisi, Joseph L.

    2013-01-01

    The transcription factor forkhead box P2 (FOXP2) is believed to be important in the evolution of human speech. A mutation in its DNA-binding domain causes severe speech impairment. Humans have acquired two coding changes relative to the conserved mammalian sequence. Despite intense interest in FOXP2, it has remained an open question whether the human protein’s DNA-binding specificity and chromatin localization are conserved. Previous in vitro and ChIP-chip studies have provided conflicting consensus sequences for the FOXP2-binding site. Using MITOMI 2.0 microfluidic affinity assays, we describe the binding site of FOXP2 and its affinity profile in base-specific detail for all substitutions of the strongest binding site. We find that human and chimp FOXP2 have similar binding sites that are distinct from previously suggested consensus binding sites. Additionally, through analysis of FOXP2 ChIP-seq data from cultured neurons, we find strong overrepresentation of a motif that matches our in vitro results and identifies a set of genes with FOXP2 binding sites. The FOXP2-binding sites tend to be conserved, yet we identified 38 instances of evolutionarily novel sites in humans. Combined, these data present a comprehensive portrait of FOXP2’s-binding properties and imply that although its sequence specificity has been conserved, some of its genomic binding sites are newly evolved. PMID:23625967

  15. HD Exchange and PLIMSTEX Determine the Affinities and Order of Binding of Ca2+ with Troponin C

    PubMed Central

    Huang, Richard Y-C.; Rempel, Don L.; Gross, Michael L.

    2011-01-01

    Troponin C (TnC), present in all striated muscle, is the Ca2+-activated trigger that initiates myocyte contraction. The binding of Ca2+ to TnC initiates a cascade of conformational changes involving the constituent proteins of the thin filament. The functional properties of TnC and its ability to bind Ca2+ have significant regulatory influence on the contractile reaction of muscle. Changes in TnC may also correlate with cardiac and various other muscle-related diseases. We report here the implementation of the PLIMSTEX strategy (Protein Ligand Interaction by Mass Spectrometry, Titration and H/D Exchange) to elucidate the binding affinity of TnC with Ca2+ and, more importantly, to determine the order of Ca2+ binding of the four EF hands of the protein. The four equilibrium constants, K1 = (5 ± 5) × 10 M-1, K2 = (1.8 ± 0.8) × 107 M-1, K3 = (4.2 ± 0.9) × 106 M-1, and K4 = (1.6 ± 0.6) × 106 M-1, agree well with determinations by other methods and serve to increase our confidence in the PLIMSTEX approach. We determined the order of binding to the four EF hands to be III, IV, II, and I by extracting from the H/DX results the deuterium patterns for each EF hand for each state of the protein (apo through fully Ca2+ bound). This approach, demonstrated for the first time, may be general for determining binding orders of metal ions and other ligands to proteins. PMID:21574565

  16. The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region

    NASA Astrophysics Data System (ADS)

    Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm

    2017-04-01

    Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine.

  17. The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region.

    PubMed

    Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm

    2017-04-07

    Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine.

  18. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuziemko, G.M.; Stroh, M.; Stevens, R.C.

    1996-05-21

    The present study determines the affinity of cholera toxin for the ganglioside series GM1, GM2, GM3, GD1A, GD1B, GT1B, asialo GM1, globotriosyl ceramide, and lactosyl ceramide using real time biospecific interaction analysis (surface plasmon resonance, SPR). SPR shows that cholera toxin preferably binds to gangliosides in the following sequence: GM1 > GM2 > GD1A > GM3 > GT1B > GD1B > asialo-GM1. The measured binding affinity of cholera toxin for the ganglioside sequence ranges from 4.61 {times} 10{sup {minus}12} M for GM1 to 1.88 {times} 10{sup {minus}10} M for asialo GM1. The picomolar values obtained by surface plasmon resonance aremore » similar to K{sub d} values determined with whole-cell binding assays. Both whole-cell assays ans SPR measurements on synthetic membranes are higher than free solution measurements by several orders of magnitude. This difference may be caused by the effects of avidity and charged lipid head-groups, which may play a major role in the binding between cholera toxin, the receptor, and the membrane surface. The primary difference between free solution binding studies and surface plasmon resonance studies is that the latter technique is performed on surfaces resembling the cell membrane. Surface plasmon resonance has the further advantage of measuring apparent kinetic association and dissociation rates in real time, providing direct information about binding events at the membrane surface. 34 refs., 8 figs., 2 tabs.« less

  19. Oxygen binding by alpha(Fe2+)2beta(Ni2+)2 hemoglobin crystals.

    PubMed Central

    Bruno, S.; Bettati, S.; Manfredini, M.; Mozzarelli, A.; Bolognesi, M.; Deriu, D.; Rosano, C.; Tsuneshige, A.; Yonetani, T.; Henry, E. R.

    2000-01-01

    Oxygen binding by hemoglobin fixed in the T state either by crystallization or by encapsulation in silica gels is apparently noncooperative. However, cooperativity might be masked by different oxygen affinities of alpha and beta subunits. Metal hybrid hemoglobins, where the noniron metal does not bind oxygen, provide the opportunity to determine the oxygen affinities of alpha and beta hemes separately. Previous studies have characterized the oxygen binding by alpha(Ni2+)2beta(Fe2+)2 crystals. Here, we have determined the three-dimensional (3D) structure and oxygen binding of alpha(Fe2+)2beta(Ni2+)2 crystals grown from polyethylene glycol solutions. Polarized absorption spectra were recorded at different oxygen pressures with light polarized parallel either to the b or c crystal axis by single crystal microspectrophotometry. The oxygen pressures at 50% saturation (p50s) are 95 +/- 3 and 87 +/- 4 Torr along the b and c crystal axes, respectively, and the corresponding Hill coefficients are 0.96 +/- 0.06 and 0.90 +/- 0.03. Analysis of the binding curves, taking into account the different projections of the alpha hemes along the optical directions, indicates that the oxygen affinity of alpha1 hemes is 1.3-fold lower than alpha2 hemes. Inspection of the 3D structure suggests that this inequivalence may arise from packing interactions of the Hb tetramer within the monoclinic crystal lattice. A similar inequivalence was found for the beta subunits of alpha(Ni2+)2beta(Fe2+)2 crystals. The average oxygen affinity of the alpha subunits (p50 = 91 Torr) is about 1.2-fold higher than the beta subunits (p50 = 110 Torr). In the absence of cooperativity, this heterogeneity yields an oxygen binding curve of Hb A with a Hill coefficient of 0.999. Since the binding curves of Hb A crystals exhibit a Hill coefficient very close to unity, these findings indicate that oxygen binding by T-state hemoglobin is noncooperative, in keeping with the Monod, Wyman, and Changeux model. PMID

  20. Learning a peptide-protein binding affinity predictor with kernel ridge regression

    PubMed Central

    2013-01-01

    Background The cellular function of a vast majority of proteins is performed through physical interactions with other biomolecules, which, most of the time, are other proteins. Peptides represent templates of choice for mimicking a secondary structure in order to modulate protein-protein interaction. They are thus an interesting class of therapeutics since they also display strong activity, high selectivity, low toxicity and few drug-drug interactions. Furthermore, predicting peptides that would bind to a specific MHC alleles would be of tremendous benefit to improve vaccine based therapy and possibly generate antibodies with greater affinity. Modern computational methods have the potential to accelerate and lower the cost of drug and vaccine discovery by selecting potential compounds for testing in silico prior to biological validation. Results We propose a specialized string kernel for small bio-molecules, peptides and pseudo-sequences of binding interfaces. The kernel incorporates physico-chemical properties of amino acids and elegantly generalizes eight kernels, comprised of the Oligo, the Weighted Degree, the Blended Spectrum, and the Radial Basis Function. We provide a low complexity dynamic programming algorithm for the exact computation of the kernel and a linear time algorithm for it’s approximation. Combined with kernel ridge regression and SupCK, a novel binding pocket kernel, the proposed kernel yields biologically relevant and good prediction accuracy on the PepX database. For the first time, a machine learning predictor is capable of predicting the binding affinity of any peptide to any protein with reasonable accuracy. The method was also applied to both single-target and pan-specific Major Histocompatibility Complex class II benchmark datasets and three Quantitative Structure Affinity Model benchmark datasets. Conclusion On all benchmarks, our method significantly (p-value ≤ 0.057) outperforms the current state-of-the-art methods at predicting

  1. Prediction of kinase-inhibitor binding affinity using energetic parameters

    PubMed Central

    Usha, Singaravelu; Selvaraj, Samuel

    2016-01-01

    The combination of physicochemical properties and energetic parameters derived from protein-ligand complexes play a vital role in determining the biological activity of a molecule. In the present work, protein-ligand interaction energy along with logP values was used to predict the experimental log (IC50) values of 25 different kinase-inhibitors using multiple regressions which gave a correlation coefficient of 0.93. The regression equation obtained was tested on 93 kinase-inhibitor complexes and an average deviation of 0.92 from the experimental log IC50 values was shown. The same set of descriptors was used to predict binding affinities for a test set of five individual kinase families, with correlation values > 0.9. We show that the protein-ligand interaction energies and partition coefficient values form the major deterministic factors for binding affinity of the ligand for its receptor. PMID:28149052

  2. Mapping the affinity landscape of Thrombin-binding aptamers on 2΄F-ANA/DNA chimeric G-Quadruplex microarrays

    PubMed Central

    Abou Assi, Hala; Gómez-Pinto, Irene; González, Carlos

    2017-01-01

    Abstract In situ fabricated nucleic acids microarrays are versatile and very high-throughput platforms for aptamer optimization and discovery, but the chemical space that can be probed against a given target has largely been confined to DNA, while RNA and non-natural nucleic acid microarrays are still an essentially uncharted territory. 2΄-Fluoroarabinonucleic acid (2΄F-ANA) is a prime candidate for such use in microarrays. Indeed, 2΄F-ANA chemistry is readily amenable to photolithographic microarray synthesis and its potential in high affinity aptamers has been recently discovered. We thus synthesized the first microarrays containing 2΄F-ANA and 2΄F-ANA/DNA chimeric sequences to fully map the binding affinity landscape of the TBA1 thrombin-binding G-quadruplex aptamer containing all 32 768 possible DNA-to-2΄F-ANA mutations. The resulting microarray was screened against thrombin to identify a series of promising 2΄F-ANA-modified aptamer candidates with Kds significantly lower than that of the unmodified control and which were found to adopt highly stable, antiparallel-folded G-quadruplex structures. The solution structure of the TBA1 aptamer modified with 2΄F-ANA at position T3 shows that fluorine substitution preorganizes the dinucleotide loop into the proper conformation for interaction with thrombin. Overall, our work strengthens the potential of 2΄F-ANA in aptamer research and further expands non-genomic applications of nucleic acids microarrays. PMID:28100695

  3. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation.

    PubMed

    Zielonka, Stefan; Weber, Niklas; Becker, Stefan; Doerner, Achim; Christmann, Andreas; Christmann, Christine; Uth, Christina; Fritz, Janine; Schäfer, Elena; Steinmann, Björn; Empting, Martin; Ockelmann, Pia; Lierz, Michael; Kolmar, Harald

    2014-12-10

    A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Familial secondary erythrocytosis due to increased oxygen affinity is caused by destabilization of the T state of hemoglobin Brigham (α2β2Pro100Leu)

    PubMed Central

    Mollan, Todd L; Abraham, Bindu; Strader, Michael Brad; Jia, Yiping; Lozier, Jay N; Olson, John S; Alayash, Abdu I

    2012-01-01

    Hemoglobin Brigham (β Pro100 to Leu) was first reported in a patient with familial erythrocytosis. Erythrocytes of an affected individual from the same family contain both HbA and Hb Brigham and exhibit elevated O2 affinity compared with normal cells (P50 = 23 mm Hg vs. 31 mmHg at pH 7.4 at 37°C). O2 affinities measured for hemolysates were sensitive to changes in pH or chloride concentrations, indicating little change in the Bohr and Chloride effects. Hb Brigham was separated from normal HbA by nondenaturing cation exchange liquid chromatography, and the amino acid substitution was verified by mass spectrometry. The properties of Hb Brigham isolated from the patient's blood were then compared with those of recombinant Hb Brigham expressed in Escherichia coli. Kinetic experiments suggest that the rate constants for ligand binding and release in the high (R) and low (T) affinity quaternary states of Hb Brigham are similar to those of native hemoglobin. However, the Brigham mutation decreases the T to R equilibrium constant (L) which accelerates the switch to the R state during ligand binding to deoxy-Hb, increasing the rate of association by approximately twofold, and decelerates the switch during ligand dissociation from HbO2, decreasing the rate approximately twofold. These kinetic data help explain the high O2 affinity characteristics of Hb Brigham and provide further evidence for the importance of the contribution of Pro100 to intersubunit contacts and stabilization of the T quaternary structure. PMID:22821886

  5. The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region

    PubMed Central

    Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm

    2017-01-01

    Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine. PMID:28387240

  6. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsicmore » activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights:

  7. Decrease in the red cell cofactor 2,3-diphosphoglycerate increases hemoglobin oxygen affinity in the hibernating brown bear Ursus arctos.

    PubMed

    Revsbech, Inge G; Malte, Hans; Fröbert, Ole; Evans, Alina; Blanc, Stéphane; Josefsson, Johan; Fago, Angela

    2013-01-01

    During winter hibernation, brown bears (Ursus arctos) reduce basal O(2) consumption rate to ∼25% compared with the active state, while body temperature decreases moderately (to ∼30°C), suggesting a temperature-independent component in their metabolic depression. To establish whether changes in O(2) consumption during hibernation correlate with changes in blood O(2) affinity, we took blood samples from the same six individuals of hibernating and nonhibernating free-ranging brown bears during winter and summer, respectively. A single hemoglobin (Hb) component was detected in all samples, indicating no switch in Hb synthesis. O(2) binding curves measured on red blood cell lysates at 30°C and 37°C showed a less temperature-sensitive O(2) affinity than in other vertebrates. Furthermore, hemolysates from hibernating bears consistently showed lower cooperativity and higher O(2) affinity than their summer counterparts, regardless of the temperature. We found that this increase in O(2) affinity was associated with a significant decrease in the red cell Hb-cofactor 2,3-diphosphoglycerate (DPG) during hibernation to approximately half of the summer value. Experiments performed on purified Hb, to which DPG had been added to match summer and winter levels, confirmed that the low DPG content was the cause of the left shift in the Hb-O(2) equilibrium curve during hibernation. Levels of plasma lactate indicated that glycolysis is not upregulated during hibernation and that metabolism is essentially aerobic. Calculations show that the increase in Hb-O(2) affinity and decrease in cooperativity resulting from decreased red cell DPG may be crucial in maintaining a fairly constant tissue oxygen tension during hibernation in vivo.

  8. Occupancy of the Zinc-binding Site by Transition Metals Decreases the Substrate Affinity of the Human Dopamine Transporter by an Allosteric Mechanism*

    PubMed Central

    Li, Yang; Mayer, Felix P.; Hasenhuetl, Peter S.; Burtscher, Verena; Schicker, Klaus; Sitte, Harald H.; Freissmuth, Michael; Sandtner, Walter

    2017-01-01

    The human dopamine transporter (DAT) has a tetrahedral Zn2+-binding site. Zn2+-binding sites are also recognized by other first-row transition metals. Excessive accumulation of manganese or of copper can lead to parkinsonism because of dopamine deficiency. Accordingly, we examined the effect of Mn2+, Co2+, Ni2+, and Cu2+ on transport-associated currents through DAT and DAT-H193K, a mutant with a disrupted Zn2+-binding site. All transition metals except Mn2+ modulated the transport cycle of wild-type DAT with affinities in the low micromolar range. In this concentration range, they were devoid of any action on DAT-H193K. The active transition metals reduced the affinity of DAT for dopamine. The affinity shift was most pronounced for Cu2+, followed by Ni2+ and Zn2+ (= Co2+). The extent of the affinity shift and the reciprocal effect of substrate on metal affinity accounted for the different modes of action: Ni2+ and Cu2+ uniformly stimulated and inhibited, respectively, the substrate-induced steady-state currents through DAT. In contrast, Zn2+ elicited biphasic effects on transport, i.e. stimulation at 1 μm and inhibition at 10 μm. A kinetic model that posited preferential binding of transition metal ions to the outward-facing apo state of DAT and a reciprocal interaction of dopamine and transition metals recapitulated all experimental findings. Allosteric activation of DAT via the Zn2+-binding site may be of interest to restore transport in loss-of-function mutants. PMID:28096460

  9. Hemoglobin isoform differentiation and allosteric regulation of oxygen binding in the turtle, Trachemys scripta

    PubMed Central

    Damsgaard, Christian; Storz, Jay F.; Hoffmann, Federico G.

    2013-01-01

    When freshwater turtles acclimatize to winter hibernation, there is a gradual transition from aerobic to anaerobic metabolism, which may require adjustments of blood O2 transport before turtles become anoxic. Here, we report the effects of protons, anionic cofactors, and temperature on the O2-binding properties of isolated hemoglobin (Hb) isoforms, HbA and HbD, in the turtle Trachemys scripta. We determined the primary structures of the constituent subunits of the two Hb isoforms, and we related the measured functional properties to differences in O2 affinity between untreated hemolysates from turtles that were acclimated to normoxia and anoxia. Our data show that HbD has a consistently higher O2 affinity compared with HbA, whereas Bohr and temperature effects, as well as thiol reactivity, are similar. Although sequence data show amino acid substitutions at two known β-chain ATP-binding site positions, we find high ATP affinities for both Hb isoforms, suggesting an alternative and stronger binding site for ATP. The high ATP affinities indicate that, although ATP levels decrease in red blood cells of turtles acclimating to anoxia, the O2 affinity would remain largely unchanged, as confirmed by O2-binding measurements of untreated hemolysates from normoxic and anoxic turtles. Thus, the increase in blood-O2 affinity that accompanies winter acclimation is mainly attributable to a decrease in temperature rather than in concentrations of organic phosphates. This is the first extensive study on freshwater turtle Hb isoforms, providing molecular evidence for adaptive changes in O2 transport associated with acclimation to severe hypoxia. PMID:23986362

  10. Hemoglobin encapsulation in vesicles retards NO and CO binding and O2 release when perfused through narrow gas-permeable tubes.

    PubMed

    Sakai, Hiromi; Okuda, Naoto; Sato, Atsushi; Yamaue, Tatsuya; Takeoka, Shinji; Tsuchida, Eishun

    2010-03-01

    Intravenous administration of cell-free Hb induces vasoconstriction and circulatory disorders, presumably because of the intrinsic affinities to endogenous nitric oxide (NO) and carbon monoxide (CO) as vasorelaxation factors and because of the facilitated O(2) release that might induce autoregulatory vasoconstriction. We examined these gas reactions when Hb-containing solutions of four kinds were perfused through artificial narrow tubes at a practical Hb concentration (10 g/dl). Purified Hb solution, polymerized bovine Hb (Poly(B)Hb), encapsulated Hb [Hb-vesicles (HbV), 279 nm], and red blood cells (RBCs) were perfused through a gas-permeable narrow tube (25 microm inner diameter) at 1 mm/s centerline velocity. The level of reactions was determined microscopically based on the visible-light absorption spectrum of Hb. When the tube was immersed in NO and CO atmospheres, both NO binding and CO binding of deoxygenated Hb (deoxy-Hb) and Poly(B)Hb in the tube was faster than those of HbV and RBCs, and HbV and RBCs showed almost identical binding rates. When the tube was immersed in a N(2) atmosphere, oxygenated Hb and Poly(B)Hb showed much faster O(2) release than did HbV and RBCs. Poly(B)Hb showed a faster reaction than Hb because of the lower O(2) affinity of Poly(B)Hb than Hb. The diffusion process of the particles was simulated using Navier-Stokes and Maxwell-Stefan equations. Results clarified that small Hb (6 nm) diffuses laterally and mixes rapidly. However, the large-dimension HbV shows no such rapid diffusion. The purely physicochemical differences in diffusivity of the particles and the resulting reactivity with gas molecules are one factor inducing biological vasoconstriction of Hb-based oxygen carriers.

  11. Density Functional Study of Structures and Electron Affinities of BrO4F/BrO4F−

    PubMed Central

    Gong, Liangfa; Xiong, Jieming; Wu, Xinmin; Qi, Chuansong; Li, Wei; Guo, Wenli

    2009-01-01

    The structures, electron affinities and bond dissociation energies of BrO4F/BrO4F− species have been investigated with five density functional theory (DFT) methods with DZP++ basis sets. The planar F-Br…O2O2 complexes possess 3A′ electronic state for neutral molecule and 4A′ state for the corresponding anion. Three types of the neutral-anion energy separations are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The EAad value predicted by B3LYP method is 4.52 eV. The bond dissociation energies De (BrO4F → BrO4-mF + Om) (m = 1–4) and De− (BrO4F− → BrO4-mF− + Om and BrO4F− → BrO4-mF + Om−) are predicted. The adiabatic electron affinities (EAad) were predicted to be 4.52 eV for F-Br…O2O2 (3A′←4A′) (B3LYP method). PMID:19742128

  12. Induced binding of proteins by ammonium sulfate in affinity and ion-exchange column chromatography.

    PubMed

    Arakawa, Tsutomu; Tsumoto, Kouhei; Ejima, Daisuke; Kita, Yoshiko; Yonezawa, Yasushi; Tokunaga, Masao

    2007-04-10

    In general, proteins bind to affinity or ion-exchange columns at low salt concentrations, and the bound proteins are eluted by raising the salt concentration, changing the solvent pH, or adding competing ligands. Blue-Sepharose is often used to remove bovine serum albumin (BSA) from samples, but when we applied BSA to Blue-Sepharose in 20 mM phosphate, pH 7.0, 50%-60% of the protein flowed through the column; however, complete binding of BSA was achieved by the addition of 2 M ammonium sulfate (AS) to the column equilibration buffer and the sample. The bound protein was eluted by decreasing the AS concentration or by adding 1 M NaCl or arginine. AS at high concentrations resulted in binding of BSA even to an ion-exchange column, Q-Sepharose, at pH 7.0. Thus, although moderate salt concentrations elute proteins from Blue-Sepharose or ion-exchange columns, proteins can be bound to these columns under extreme salting-out conditions. Similar enhanced binding of proteins by AS was observed with an ATP-affinity column.

  13. The role of CH/π interactions in the high affinity binding of streptavidin and biotin.

    PubMed

    Ozawa, Motoyasu; Ozawa, Tomonaga; Nishio, Motohiro; Ueda, Kazuyoshi

    2017-08-01

    The streptavidin-biotin complex has an extraordinarily high affinity (Ka: 10 15 mol -1 ) and contains one of the strongest non-covalent interactions known. This strong interaction is widely used in biological tools, including for affinity tags, detection, and immobilization of proteins. Although hydrogen bond networks and hydrophobic interactions have been proposed to explain this high affinity, the reasons for it remain poorly understood. Inspired by the deceased affinity of biotin observed for point mutations of streptavidin at tryptophan residues, we hypothesized that a CH/π interaction may also contribute to the strong interaction between streptavidin and biotin. CH/π interactions were explored and analyzed at the biotin-binding site and at the interface of the subunits by the fragment molecular orbital method (FMO) and extended applications: PIEDA and FMO4. The results show that CH/π interactions are involved in the high affinity for biotin at the binding site of streptavidin. We further suggest that the involvement of CH/π interactions at the subunit interfaces and an extended CH/π network play more critical roles in determining the high affinity, rather than involvement at the binding site. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Low-affinity binding in cis to P2Y2R mediates force-dependent integrin activation during hantavirus infection

    PubMed Central

    Bondu, Virginie; Wu, Chenyu; Cao, Wenpeng; Simons, Peter C.; Gillette, Jennifer; Zhu, Jieqing; Erb, Laurie; Zhang, X. Frank; Buranda, Tione

    2017-01-01

    Pathogenic hantaviruses bind to the plexin-semaphorin-integrin (PSI) domain of inactive, β3 integrins. Previous studies have implicated a cognate cis interaction between the bent conformation β5/β3 integrins and an arginine-glycine-aspartic acid (RGD) sequence in the first extracellular loop of P2Y2R. With single-molecule atomic force microscopy, we show a specific interaction between an atomic force microscopy tip decorated with recombinant αIIbβ3 integrins and (RGD)P2Y2R expressed on cell membranes. Mutation of the RGD sequence to RGE in the P2Y2R removes this interaction. Binding of inactivated and fluorescently labeled Sin Nombre virus (SNV) to the integrin PSI domain stimulates higher affinity for (RGD)P2Y2R on cells, as measured by an increase in the unbinding force. In CHO cells, stably expressing αIIbβ3 integrins, virus engagement at the integrin PSI domain, recapitulates physiologic activation of the integrin as indicated by staining with the activation-specific mAB PAC1. The data also show that blocking of the Gα13 protein from binding to the cytoplasmic domain of the β3 integrin prevents outside-in signaling and infection. We propose that the cis interaction with P2Y2R provides allosteric resistance to the membrane-normal motion associated with the switchblade model of integrin activation, where the development of tensile force yields physiological integrin activation. PMID:28835374

  15. Imparting albumin-binding affinity to a human protein by mimicking the contact surface of a bacterial binding protein.

    PubMed

    Oshiro, Satoshi; Honda, Shinya

    2014-04-18

    Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.

  16. Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP+

    NASA Astrophysics Data System (ADS)

    Schindler, Christina; Rippmann, Friedrich; Kuhn, Daniel

    2018-01-01

    Physics-based free energy simulations have increasingly become an important tool for predicting binding affinity and the recent introduction of automated protocols has also paved the way towards a more widespread use in the pharmaceutical industry. The D3R 2016 Grand Challenge 2 provided an opportunity to blindly test the commercial free energy calculation protocol FEP+ and assess its performance relative to other affinity prediction methods. The present D3R free energy prediction challenge was built around two experimental data sets involving inhibitors of farnesoid X receptor (FXR) which is a promising anticancer drug target. The FXR binding site is predominantly hydrophobic with few conserved interaction motifs and strong induced fit effects making it a challenging target for molecular modeling and drug design. For both data sets, we achieved reasonable prediction accuracy (RMSD ≈ 1.4 kcal/mol, rank 3-4 according to RMSD out of 20 submissions) comparable to that of state-of-the-art methods in the field. Our D3R results boosted our confidence in the method and strengthen our desire to expand its applications in future in-house drug design projects.

  17. Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP.

    PubMed

    Schindler, Christina; Rippmann, Friedrich; Kuhn, Daniel

    2018-01-01

    Physics-based free energy simulations have increasingly become an important tool for predicting binding affinity and the recent introduction of automated protocols has also paved the way towards a more widespread use in the pharmaceutical industry. The D3R 2016 Grand Challenge 2 provided an opportunity to blindly test the commercial free energy calculation protocol FEP+ and assess its performance relative to other affinity prediction methods. The present D3R free energy prediction challenge was built around two experimental data sets involving inhibitors of farnesoid X receptor (FXR) which is a promising anticancer drug target. The FXR binding site is predominantly hydrophobic with few conserved interaction motifs and strong induced fit effects making it a challenging target for molecular modeling and drug design. For both data sets, we achieved reasonable prediction accuracy (RMSD ≈ 1.4 kcal/mol, rank 3-4 according to RMSD out of 20 submissions) comparable to that of state-of-the-art methods in the field. Our D3R results boosted our confidence in the method and strengthen our desire to expand its applications in future in-house drug design projects.

  18. Sequence-specific DNA binding by MYC/MAX to low-affinity non-E-box motifs.

    PubMed

    Allevato, Michael; Bolotin, Eugene; Grossman, Mark; Mane-Padros, Daniel; Sladek, Frances M; Martinez, Ernest

    2017-01-01

    The MYC oncoprotein regulates transcription of a large fraction of the genome as an obligatory heterodimer with the transcription factor MAX. The MYC:MAX heterodimer and MAX:MAX homodimer (hereafter MYC/MAX) bind Enhancer box (E-box) DNA elements (CANNTG) and have the greatest affinity for the canonical MYC E-box (CME) CACGTG. However, MYC:MAX also recognizes E-box variants and was reported to bind DNA in a "non-specific" fashion in vitro and in vivo. Here, in order to identify potential additional non-canonical binding sites for MYC/MAX, we employed high throughput in vitro protein-binding microarrays, along with electrophoretic mobility-shift assays and bioinformatic analyses of MYC-bound genomic loci in vivo. We identified all hexameric motifs preferentially bound by MYC/MAX in vitro, which include the low-affinity non-E-box sequence AACGTT, and found that the vast majority (87%) of MYC-bound genomic sites in a human B cell line contain at least one of the top 21 motifs bound by MYC:MAX in vitro. We further show that high MYC/MAX concentrations are needed for specific binding to the low-affinity sequence AACGTT in vitro and that elevated MYC levels in vivo more markedly increase the occupancy of AACGTT sites relative to CME sites, especially at distal intergenic and intragenic loci. Hence, MYC binds diverse DNA motifs with a broad range of affinities in a sequence-specific and dose-dependent manner, suggesting that MYC overexpression has more selective effects on the tumor transcriptome than previously thought.

  19. Measurement of free glucocorticoids: quantifying corticosteroid-binding globulin binding affinity and its variation within and among mammalian species.

    PubMed

    Delehanty, Brendan; Hossain, Sabrina; Jen, Chao Ching; Crawshaw, Graham J; Boonstra, Rudy

    2015-01-01

    Plasma glucocorticoids (GCs) are commonly used as measures of stress in wildlife. A great deal of evidence indicates that only free GC (GC not bound by the specific binding protein, corticosteroid-binding globulin, CBG) leaves the circulation and exerts biological effects on GC-sensitive tissues. Free hormone concentrations are difficult to measure directly, so researchers estimate free GC using two measures: the binding affinity and the binding capacity in plasma. We provide an inexpensive saturation binding method for calculating the binding affinity (equilibrium dissociation constant, K d) of CBG that can be run without specialized laboratory equipment. Given that other plasma proteins, such as albumin, also bind GCs, the method compensates for this non-specific binding. Separation of bound GC from free GC was achieved with dextran-coated charcoal. The method provides repeatable estimates (12% coefficient of variation in the red squirrel, Tamiasciurus hudsonicus), and there is little evidence of inter-individual variation in K d (range 2.0-7.3 nM for 16 Richardson's ground squirrels, Urocitellus richardsonii). The K d values of 28 mammalian species we assessed were mostly clustered around a median of 4 nM, but five species had values between 13 and 61 nM. This pattern may be distinct from birds, for which published values are more tightly distributed (1.5-5.1 nM). The charcoal separation method provides a reliable and robust method for measuring the K d in a wide range of species. It uses basic laboratory equipment to provide rapid results at very low cost. Given the importance of CBG in regulating the biological activity of GCs, this method is a useful tool for physiological ecologists.

  20. Structure-affinity relationships for the binding of actinomycin D to DNA

    NASA Astrophysics Data System (ADS)

    Gallego, José; Ortiz, Angel R.; de Pascual-Teresa, Beatriz; Gago, Federico

    1997-03-01

    Molecular models of the complexes between actinomycin D and 14 different DNA hexamers were built based on the X-ray crystal structure of the actinomycin-d(GAAGCTTC)2 complex. The DNA sequences included the canonical GpC binding step flanked by different base pairs, nonclassical binding sites such as GpG and GpT, and sites containing 2,6-diamino- purine. A good correlation was found between the intermolecular interaction energies calculated for the refined complexes and the relative preferences of actinomycin binding to standard and modified DNA. A detailed energy decomposition into van der Waals and electrostatic components for the interactions between the DNA base pairs and either the chromophore or the peptidic part of the antibiotic was performed for each complex. The resulting energy matrix was then subjected to principal component analysis, which showed that actinomycin D discriminates among different DNA sequences by an interplay of hydrogen bonding and stacking interactions. The structure-affinity relationships for this important antitumor drug are thus rationalized and may be used to advantage in the design of novel sequence-specific DNA-binding agents.

  1. Using homology modeling to interrogate binding affinity in neutralization of ricin toxin by a family of single domain antibodies.

    PubMed

    Bazzoli, Andrea; Vance, David J; Rudolph, Michael J; Rong, Yinghui; Angalakurthi, Siva Krishna; Toth, Ronald T; Middaugh, C Russell; Volkin, David B; Weis, David D; Karanicolas, John; Mantis, Nicholas J

    2017-11-01

    In this report we investigated, within a group of closely related single domain camelid antibodies (V H Hs), the relationship between binding affinity and neutralizing activity as it pertains to ricin, a fast-acting toxin and biothreat agent. The V1C7-like V H Hs (V1C7, V2B9, V2E8, and V5C1) are similar in amino acid sequence, but differ in their binding affinities and toxin-neutralizing activities. Using the X-ray crystal structure of V1C7 in complex with ricin's enzymatic subunit (RTA) as a template, Rosetta-based homology modeling coupled with energetic decomposition led us to predict that a single pairwise interaction between Arg29 on V5C1 and Glu67 on RTA was responsible for the difference in ricin toxin binding affinity between V1C7, a weak neutralizer, and V5C1, a moderate neutralizer. This prediction was borne out experimentally: substitution of Arg for Gly at position 29 enhanced V1C7's binding affinity for ricin, whereas the reverse (ie, Gly for Arg at position 29) diminished V5C1's binding affinity by >10 fold. As expected, the V5C1 R29G mutant was largely devoid of toxin-neutralizing activity (TNA). However, the TNA of the V1C7 G29R mutant was not correspondingly improved, indicating that in the V1C7 family binding affinity alone does not account for differences in antibody function. V1C7 and V5C1, as well as their respective point mutants, recognized indistinguishable epitopes on RTA, at least at the level of sensitivity afforded by hydrogen-deuterium mass spectrometry. The results of this study have implications for engineering therapeutic antibodies because they demonstrate that even subtle differences in epitope specificity can account for important differences in antibody function. © 2017 Wiley Periodicals, Inc.

  2. Oxygen binding to partially nitrosylated hemoglobin.

    PubMed

    Fago, Angela; Crumbliss, Alvin L; Hendrich, Michael P; Pearce, Linda L; Peterson, Jim; Henkens, Robert; Bonaventura, Celia

    2013-09-01

    Reactions of nitric oxide (NO) with hemoglobin (Hb) are important elements in protection against nitrosative damage. NO in the vasculature is depleted by the oxidative reaction with oxy Hb or by binding to deoxy Hb to generate partially nitrosylated Hb (Hb-NO). Many aspects of the formation and persistence of Hb-NO are yet to be clarified. In this study, we used a combination of EPR and visible absorption spectroscopy to investigate the interactions of partially nitrosylated Hb with O2. Partially nitrosylated Hb samples had predominantly hexacoordinate NO-heme geometry and resisted oxidation when exposed to O2 in the absence of anionic allosteric effectors. Faster oxidation occurred in the presence of 2,3-diphosphoglycerate (DPG) or inositol hexaphosphate (IHP), where the NO-heme derivatives had higher levels of pentacoordinate heme geometry. The anion-dependence of the NO-heme geometry also affected O2 binding equilibria. O2-binding curves of partially nitrosylated Hb in the absence of anions were left-shifted at low saturations, indicating destabilization of the low O2 affinity T-state of the Hb by increasing percentages of NO-heme, much as occurs with increasing levels of CO-heme. Samples containing IHP showed small decreases in O2 affinity, indicating shifts toward the low-affinity T-state and formation of inert α-NO/β-met tetramers. Most remarkably, O2-equilibria in the presence of the physiological effector DPG were essentially unchanged by up to 30% NO-heme in the samples. As will be discussed, under physiological conditions the interactions of Hb with NO provide protection against nitrosative damage without impairing O2 transport by Hb's unoccupied heme sites. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Novel soluble, high-affinity gastrin-releasing peptide binding proteins in Swiss 3T3 fibroblasts.

    PubMed

    Kane, M A; Portanova, L B; Kelley, K; Holley, M; Ross, S E; Boose, D; Escobedo-Morse, A; Alvarado, B

    1994-01-01

    Swiss 3T3 cells contained substantial amounts of soluble and specific [125I]GRP binders. Like the membrane-associated GRP receptor, they were of high affinity, saturable, bound to GRP(14-27) affinity gels, and exhibited specificity for GRP(14-27) binding. They differed in that acid or freezing destroyed specific binding, specific binding exhibited different time and temperature effects, no detergent was required for their solubilization, ammonium sulfate fractionation yielded different profiles, the M(rs) were lower, GRP(1-16) also blocked binding, and a polyclonal anti-GRP receptor antiserum did not bind on Western blots. The isolated, soluble GRP binding protein(s) rapidly degraded [125I]GRP. These soluble GRP binding proteins may play a role in the regulation of the mitogenic effects of GRP on these cells.

  4. Characterization of diadenosine tetraphosphate (Ap4A) binding sites in cultured chromaffin cells: evidence for a P2y site.

    PubMed Central

    Pintor, J.; Torres, M.; Castro, E.; Miras-Portugal, M. T.

    1991-01-01

    1. Diadenosine tetraphosphate (Ap4A) a dinucleotide, which is stored in secretory granules, presents two types of high affinity binding sites in chromaffin cells. A Kd value of 8 +/- 0.65 x 10(-11) M and Bmax value of 5420 +/- 450 sites per cell were obtained for the high affinity binding site. A Kd value of 5.6 +/- 0.53 x 10(-9) M and a Bmax value close to 70,000 sites per cell were obtained for the second binding site with high affinity. 2. The diadenosine polyphosphates, Ap3A, Ap4A, Ap5A and Ap6A, displaced [3H]-Ap4A from the two binding sites, the Ki values being 1.0 nM, 0.013 nM, 0.013 nM and 0.013 nM for the very high affinity binding site and 0.5 microM, 0.13 microM, 0.062 microM and 0.75 microM for the second binding site. 3. The ATP analogues displaced [3H]-Ap4A with the potency order of the P2y receptors, adenosine 5'-O-(2 thiodiphosphate) (ADP-beta-S) greater than 5'-adenylyl imidodiphosphate (AMP-PNP) greater than alpha, beta-methylene ATP (alpha, beta-MeATP), in both binding sites. The Ki values were respectively 0.075 nM, 0.2 nM and 0.75 nM for the very high affinity binding site and 0.125 microM, 0.5 microM and 0.9 microM for the second binding site. PMID:1912985

  5. Haemoglobin Rahere (beta Lys-Thr): A new high affinity haemoglobin associated with decreased 2, 3-diphosphoglycerate binding and relative polycythaemia.

    PubMed Central

    Lorkin, P A; Stephens, A D; Beard, M E; Wrigley, P F; Adams, L; Lehmann, H

    1975-01-01

    A new haemoglobin with increased oxygen affinity, beta82 (EF6) lysine leads to threonine (Hb Rahere), was found during the investigation of a patient who was found to have a raised haemoglobin concentration after a routine blood count. The substitution affects one of the 2, 3-diphosphoglycerate binding sites, resulting in an increased affinity for oxygen, but both the haem-haem interaction and the alkaline Bohr effect are normal in the haemolysate. This variant had the same mobility as haemoglobin A on electrophoresis at alkaline pH but was detected by measuring the whole blood oxygen affinity; it could be separated from haemoglobin A, however, by electrophoresis in agar at acid pH. The raised haemoglobin concentration was mainly due to a reduction in plasma volume (a relative polycythaemia) and was associated with a persistently raised white blood count. This case emphasises the need to measure the oxygen affinity of haemoglobin in all patients with absolute or relative polycythaemia when some obvious cause is not evident. PMID:124

  6. Binding Affinity prediction with Property Encoded Shape Distribution signatures

    PubMed Central

    Das, Sourav; Krein, Michael P.

    2010-01-01

    We report the use of the molecular signatures known as “Property-Encoded Shape Distributions” (PESD) together with standard Support Vector Machine (SVM) techniques to produce validated models that can predict the binding affinity of a large number of protein ligand complexes. This “PESD-SVM” method uses PESD signatures that encode molecular shapes and property distributions on protein and ligand surfaces as features to build SVM models that require no subjective feature selection. A simple protocol was employed for tuning the SVM models during their development, and the results were compared to SFCscore – a regression-based method that was previously shown to perform better than 14 other scoring functions. Although the PESD-SVM method is based on only two surface property maps, the overall results were comparable. For most complexes with a dominant enthalpic contribution to binding (ΔH/-TΔS > 3), a good correlation between true and predicted affinities was observed. Entropy and solvent were not considered in the present approach and further improvement in accuracy would require accounting for these components rigorously. PMID:20095526

  7. Identification and binding mechanism of phage displayed peptides with specific affinity to acid-alkali treated titanium.

    PubMed

    Sun, Yuhua; Tan, Jing; Wu, Baohua; Wang, Jianxin; Qu, Shuxin; Weng, Jie; Feng, Bo

    2016-10-01

    Acid-alkali treatment is one of means widely used for preparing bioactive titanium surfaces. Peptides with specific affinity to titanium surface modified by acid-alkali two-steps treatment were obtained via phage display technology. Out of the eight new unique peptides, titanium-binding peptide 54 displayed by monoclonal M13 phage at its pIII coat protein (TBP54-M13 phage) was proved to have higher binding affinity to the substrate. The binding interaction occurred at the domain from phenylalanine at position 1 to arginine at position 6 in the sequences of TBP54 (FAETHRGFHFSF) mainly via the reaction of these residues with the Ti surface. Together the coordination and electrostatic interactions controlled the specific binding of the phage to the substrate. The binding affinity was dependent on the surface basic hydroxyl group content. In addition, the phage showed a different interaction way with the Ti surface without acid-alkali treatment along with an impaired affinity. This study could provide more understanding of the interaction mechanism between the selected peptide and its specific substrate, and develop a promising method for the biofunctionalization of titanium. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Relationship of nonreturn rates of dairy bulls to binding affinity of heparin to sperm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, J.L.; Ax, R.L.

    1985-08-01

    The binding of the glycosaminoglycan (3H) heparin to bull spermatozoa was compared with nonreturn rates of dairy bulls. Semen samples from five bulls above and five below an average 71% nonreturn rate were used. Samples consisted of first and second ejaculates on a single day collected 1 d/wk for up to 5 consecutive wk. Saturation binding assays using (TH) heparin were performed to quantitate the binding characteristics of each sample. Scatchard plot analyses indicated a significant difference in the binding affinity for (TH) heparin between bulls of high and low fertility. Dissociation constants were 69.0 and 119.3 pmol for bullsmore » of high and low fertility, respectively. In contrast, the number of binding sites for (TH) heparin did not differ significantly among bulls. Differences in binding affinity of (TH) heparin to bull sperm might be used to predict relative fertility of dairy bulls.« less

  9. Proteins feel more than they see: fine-tuning of binding affinity by properties of the non-interacting surface.

    PubMed

    Kastritis, Panagiotis L; Rodrigues, João P G L M; Folkers, Gert E; Boelens, Rolf; Bonvin, Alexandre M J J

    2014-07-15

    Protein-protein complexes orchestrate most cellular processes such as transcription, signal transduction and apoptosis. The factors governing their affinity remain elusive however, especially when it comes to describing dissociation rates (koff). Here we demonstrate that, next to direct contributions from the interface, the non-interacting surface (NIS) also plays an important role in binding affinity, especially polar and charged residues. Their percentage on the NIS is conserved over orthologous complexes indicating an evolutionary selection pressure. Their effect on binding affinity can be explained by long-range electrostatic contributions and surface-solvent interactions that are known to determine the local frustration of the protein complex surface. Including these in a simple model significantly improves the affinity prediction of protein complexes from structural models. The impact of mutations outside the interacting surface on binding affinity is supported by experimental alanine scanning mutagenesis data. These results enable the development of more sophisticated and integrated biophysical models of binding affinity and open new directions in experimental control and modulation of biomolecular interactions. Copyright © 2014. Published by Elsevier Ltd.

  10. Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding

    NASA Astrophysics Data System (ADS)

    Rosilo, Henna; McKee, Jason R.; Kontturi, Eero; Koho, Tiia; Hytönen, Vesa P.; Ikkala, Olli; Kostiainen, Mauri A.

    2014-09-01

    Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface-initiated atom-transfer radical polymerization of poly(N,N-dimethylaminoethyl methacrylate) and subsequent quaternization of the polymer pendant amino groups. The cationic polymer brush-modified CNCs maintained excellent dispersibility and colloidal stability in water and showed a ζ-potential of +38 mV. Dynamic light scattering and electron microscopy showed that the modified CNCs electrostatically bind cowpea chlorotic mottle virus and norovirus-like particles with high affinity. Addition of only a few weight percent of the modified CNCs in water dispersions sufficed to fully bind the virus capsids to form micrometer-sized assemblies. This enabled the concentration and extraction of the virus particles from solution by low-speed centrifugation. These results show the feasibility of the modified CNCs in virus binding and concentrating, and pave the way for their use as transduction enhancers for viral delivery applications.Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface

  11. Ap4A and ADP-beta-S binding to P2 purinoceptors present on rat brain synaptic terminals.

    PubMed Central

    Pintor, J.; Díaz-Rey, M. A.; Miras-Portugal, M. T.

    1993-01-01

    1. Diadenosine tetraphosphate (Ap4A) a dinucleotide stored and released from rat brain synaptic terminals presents two types of affinity binding sites in synaptosomes. When [3H]-Ap4A was used for binding studies a Kd value of 0.10 +/- 0.014 nM and a Bmax value of 16.6 +/- 1.2 fmol mg-1 protein were obtained for the high affinity binding site from the Scatchard analysis. The second binding site, obtained by displacement studies, showed a Ki value of 0.57 +/- 0.09 microM. 2. Displacement of [3H]-Ap4A by non-labelled Ap4A and P2-purinoceptor ligands showed a displacement order of Ap4A > adenosine 5'-O-(2-thiodiphosphate) (ADP-beta-S) > 5'-adenylyl-imidodiphosphate (AMP-PNP) > alpha,beta-methylene adenosine 5'-triphosphate (alpha,beta-MeATP) in both sites revealed by the Ki values of 0.017 nM, 0.030 nM, 0.058 nM and 0.147 nM respectively for the high affinity binding site and values of 0.57 microM, 0.87 microM, 2.20 microM and 4.28 microM respectively for the second binding site. 3. Studies of the P2-purinoceptors present in synaptosomes were also performed with [35S]-ADP-beta-S. This radioligand showed two binding sites the first with Kd and Bmax values of 0.11 +/- 0.022 nM and 3.9 +/- 2.1 fmol mg-1 of protein respectively for the high affinity binding site obtained from the Scatchard plot. The second binding site showed a Ki of 0.018 +/- 0.0035 microM obtained from displacement curves. 4. Competition studies with diadenosine polyphosphates of [35S]-ADP-beta-S binding showed a displacement order of Ap4A > Ap5A > Ap6A in the high affinity binding site and Ki values of 0.023 nM, 0.081 nM and 5.72 nM respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8485620

  12. Structure-based engineering to restore high affinity binding of an isoform-selective anti-TGFβ1 antibody

    PubMed Central

    Honey, Denise M.; Best, Annie; Qiu, Huawei

    2018-01-01

    ABSTRACT Metelimumab (CAT192) is a human IgG4 monoclonal antibody developed as a TGFβ1-specific antagonist. It was tested in clinical trials for the treatment of scleroderma but later terminated due to lack of efficacy. Subsequent characterization of CAT192 indicated that its TGFβ1 binding affinity was reduced by ∼50-fold upon conversion from the parental single-chain variable fragment (scFv) to IgG4. We hypothesized this result was due to decreased conformational flexibility of the IgG that could be altered via engineering. Therefore, we designed insertion mutants in the elbow region and screened for binding and potency. Our results indicated that increasing the elbow region linker length in each chain successfully restored the isoform-specific and high affinity binding of CAT192 to TGFβ1. The crystal structure of the high binding affinity mutant displays large conformational rearrangements of the variable domains compared to the wild-type antigen-binding fragment (Fab) and the low binding affinity mutants. Insertion of two glycines in both the heavy and light chain elbow regions provided sufficient flexibility for the variable domains to extend further apart than the wild-type Fab, and allow the CDR3s to make additional interactions not seen in the wild-type Fab structure. These interactions coupled with the dramatic conformational changes provide a possible explanation of how the scFv and elbow-engineered Fabs bind TGFβ1 with high affinity. This study demonstrates the benefits of re-examining both structure and function when converting scFv to IgG molecules, and highlights the potential of structure-based engineering to produce fully functional antibodies. PMID:29333938

  13. Methods for quantifying T cell receptor binding affinities and thermodynamics

    PubMed Central

    Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868

  14. Impaired binding affinity of electronegative low-density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and lysophosphatidylcholine content.

    PubMed

    Benítez, Sonia; Villegas, Virtudes; Bancells, Cristina; Jorba, Oscar; González-Sastre, Francesc; Ordóñez-Llanos, Jordi; Sánchez-Quesada, José Luis

    2004-12-21

    The binding characteristics of electropositive [LDL(+)] and electronegative LDL [LDL(-)] subfractions to the LDL receptor (LDLr) were studied. Saturation kinetic studies in cultured human fibroblasts demonstrated that LDL(-) from normolipemic (NL) and familial hypercholesterolemic (FH) subjects had lower binding affinity than their respective LDL(+) fractions (P < 0.05), as indicated by higher dissociation constant (K(D)) values. FH-LDL(+) also showed lower binding affinity (P < 0.05) than NL-LDL(+) (K(D), sorted from lower to higher affinity: NL-LDL(-), 33.0 +/- 24.4 nM; FH-LDL(-), 24.4 +/- 7.1 nM; FH-LDL(+), 16.6 +/- 7.0 nM; NL-LDL(+), 10.9 +/- 5.7 nM). These results were confirmed by binding displacement studies. The impaired affinity binding of LDL(-) could be attributed to altered secondary and tertiary structure of apolipoprotein B, but circular dichroism (CD) and tryptophan fluorescence (TrpF) studies revealed no structural differences between LDL(+) and LDL(-). To ascertain the role of increased nonesterified fatty acids (NEFA) and lysophosphatidylcholine (LPC) content in LDL(-), LDL(+) was enriched in NEFA or hydrolyzed with secretory phospholipase A(2). Modification of LDL gradually decreased the affinity to LDLr in parallel to the increasing content of NEFA and/or LPC. Modified LDLs with a NEFA content similar to that of LDL(-) displayed similar affinity. ApoB structure studies of modified LDLs by CD and TrpF showed no difference compared to LDL(+) or LDL(-). Our results indicate that NEFA loading or phospholipase A(2) lipolysis of LDL leads to changes that affect the affinity of LDL to LDLr with no major effect on apoB structure. Impaired affinity to the LDLr shown by LDL(-) is related to NEFA and/or LPC content rather than to structural differences in apolipoprotein B.

  15. Ion-binding properties of Calnuc, Ca2+ versus Mg2+--Calnuc adopts additional and unusual Ca2+-binding sites upon interaction with G-protein.

    PubMed

    Kanuru, Madhavi; Samuel, Jebakumar J; Balivada, Lavanya M; Aradhyam, Gopala K

    2009-05-01

    Calnuc is a novel, highly modular, EF-hand containing, Ca(2+)-binding, Golgi resident protein whose functions are not clear. Using amino acid sequences, we demonstrate that Calnuc is a highly conserved protein among various organisms, from Ciona intestinalis to humans. Maximum homology among all sequences is found in the region that binds to G-proteins. In humans, it is known to be expressed in a variety of tissues, and it interacts with several important protein partners. Among other proteins, Calnuc is known to interact with heterotrimeric G-proteins, specifically with the alpha-subunit. Herein, we report the structural implications of Ca(2+) and Mg(2+) binding, and illustrate that Calnuc functions as a downstream effector for G-protein alpha-subunit. Our results show that Ca(2+) binds with an affinity of 7 mum and causes structural changes. Although Mg(2+) binds to Calnuc with very weak affinity, the structural changes that it causes are further enhanced by Ca(2+) binding. Furthermore, isothermal titration calorimetry results show that Calnuc and the G-protein bind with an affinity of 13 nm. We also predict a probable function for Calnuc, that of maintaining Ca(2+) homeostasis in the cell. Using Stains-all and terbium as Ca(2+) mimic probes, we demonstrate that the Ca(2+)-binding ability of Calnuc is governed by the activity-based conformational state of the G-protein. We propose that Calnuc adopts structural sites similar to the ones seen in proteins such as annexins, c2 domains or chromogrannin A, and therefore binds more calcium ions upon binding to Gialpha. With the number of organelle-targeted G-protein-coupled receptors increasing, intracellular communication mediated by G-proteins could become a new paradigm. In this regard, we propose that Calnuc could be involved in the downstream signaling of G-proteins.

  16. Argonaute pull-down and RISC analysis using 2'-O-methylated oligonucleotides affinity matrices.

    PubMed

    Jannot, Guillaume; Vasquez-Rifo, Alejandro; Simard, Martin J

    2011-01-01

    During the last decade, several novel small non-coding RNA pathways have been unveiled, which reach out to many biological processes. Common to all these pathways is the binding of a small RNA molecule to a protein member of the Argonaute family, which forms a minimal core complex called the RNA-induced silencing complex or RISC. The RISC targets mRNAs in a sequence-specific manner, either to induce mRNA cleavage through the intrinsic activity of the Argonaute protein or to abrogate protein synthesis by a mechanism that is still under investigation. We describe here, in details, a method for the affinity chromatography of the let-7 RISC starting from extracts of the nematode Caenorhabditis elegans. Our method exploits the sequence specificity of the RISC and makes use of biotinylated and 2'-O-methylated oligonucleotides to trap and pull-down small RNAs and their associated proteins. Importantly, this technique may easily be adapted to target other small RNAs expressed in different cell types or model organisms. This method provides a useful strategy to identify the proteins associated with the RISC, and hence gain insight in the functions of small RNAs.

  17. Computing the binding affinity of Zn2+ in human carbonic anhydrase II on the basis of all-atom molecular dynamics simulations.

    NASA Astrophysics Data System (ADS)

    Wambo, Thierry; Rodriguez, Roberto

    Human carbonic anhydrase II (hCAII) is a metalloenzyme with a Zinc cation at its binding site. The presence of the Zinc turns the protein into an efficient enzyme which catalyzes the reversible hydration of carbon dioxide into bicarbonate anion. Available X-ray structures of the apo-hCAII and holo-hCAII show no significant differences in the overall structure of these proteins. What difference, if any, is there between the structures of the hydrated apo-hCAII and holo? How can we use computer simulation to efficiently compute the binding affinity of Zinc to hCAII? We will present a scheme developed to compute the binding affinity of Zinc cation to hCAII on the basis of all-atom molecular dynamics simulation where Zinc is represented as a point charge and the CHARMM36 force field is used for running the dynamics of the system. Our computed binding affinity of the cation to hCAII is in good agreement with experiment, within the margin of error, while a look at the dynamics of the binding site suggests that in the absence of the Zinc, there is a re-organization of the nearby histidine residues which adopt a new distinct configuration. The authors are thankful for the NIH support through Grants GM084834 and GM060655. They also acknowledge the Texas Advanced Computing Center at the University of Texas at Austin for the supercomputing time. They thank Dr Liao Chen for his comments.

  18. High Affinity Binding of Epibatidine to Serotonin Type 3 Receptors*

    PubMed Central

    Drisdel, Renaldo C.; Sharp, Douglas; Henderson, Tricia; Hales, Tim G.; Green, William N.

    2008-01-01

    Epibatidine and mecamylamine are ligands used widely in the study of nicotinic acetylcholine receptors (nAChRs) in the central and peripheral nervous systems. In the present study, we find that nicotine blocks only 75% of 125I-epibatidine binding to rat brain membranes, whereas ligands specific for serotonin type 3 receptors (5-HT3Rs) block the remaining 25%. 125I-Epibatidine binds with a high affinity to native 5-HT3Rs of N1E-115 cells and to receptors composed of only 5-HT3A subunits expressed in HEK cells. In these cells, serotonin, the 5-HT3R-specific antagonist MDL72222, and the 5-HT3R agonist chlorophenylbiguanide readily competed with 125I-epibatidine binding to 5-HT3Rs. Nicotine was a poor competitor for 125I-epibatidine binding to 5-HT3Rs. However, the noncompetitive nAChR antagonist mecamylamine acted as a potent competitive inhibitor of 125I-epibatidine binding to 5-HT3Rs. Epibatidine inhibited serotonin-induced currents mediated by endogenous 5-HT3Rs in neuroblastoma cell lines and 5-HT3ARs expressed in HEK cells in a competitive manner. Our results demonstrate that 5-HT3Rs are previously uncharacterized high affinity epibatidine binding sites in the brain and indicate that epibatidine and mecamylamine act as 5-HT3R antagonists. Previous studies that depended on epibatidine and mecamylamine as nAChR-specific ligands, in particular studies of analgesic properties of epibatidine, may need to be reinterpreted with respect to the potential role of 5-HT3Rs. PMID:17702741

  19. Proflavine acts as a Rev inhibitor by targeting the high-affinity Rev binding site of the Rev responsive element of HIV-1.

    PubMed

    DeJong, Eric S; Chang, Chia-en; Gilson, Michael K; Marino, John P

    2003-07-08

    Rev is an essential regulatory HIV-1 protein that binds the Rev responsive element (RRE) within the env gene of the HIV-1 RNA genome, activating the switch between viral latency and active viral replication. Previously, we have shown that selective incorporation of the fluorescent probe 2-aminopurine (2-AP) into a truncated form of the RRE sequence (RRE-IIB) allowed the binding of an arginine-rich peptide derived from Rev and aminoglycosides to be characterized directly by fluorescence methods. Using these fluorescence and nuclear magnetic resonance (NMR) methods, proflavine has been identified, through a limited screen of selected small heterocyclic compounds, as a specific and high-affinity RRE-IIB binder which inhibits the interaction of the Rev peptide with RRE-IIB. Direct and competitive 2-AP fluorescence binding assays reveal that there are at least two classes of proflavine binding sites on RRE-IIB: a high-affinity site that competes with the Rev peptide for binding to RRE-IIB (K(D) approximately 0.1 +/- 0.05 microM) and a weaker binding site(s) (K(D) approximately 1.1 +/- 0.05 microM). Titrations of RRE-IIB with proflavine, monitored using (1)H NMR, demonstrate that the high-affinity proflavine binding interaction occurs with a 2:1 (proflavine:RRE-IIB) stoichiometry, and NOEs observed in the NOESY spectrum of the 2:1 proflavine.RRE-IIB complex indicate that the two proflavine molecules bind specifically and close to each other within a single binding site. NOESY data further indicate that formation of the 2:1 proflavine.RRE-IIB complex stabilizes base pairing and stacking within the internal purine-rich bulge of RRE-IIB in a manner analogous to what has been observed in the Rev peptide.RRE-IIB complex. The observation that proflavine competes with Rev for binding to RRE-IIB by binding as a dimer to a single high-affinity site opens the possibility for rational drug design based on linking and modifying it and related compounds.

  20. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niles, L.P.; Hashemi, F.

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax =more » 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.« less

  1. High-Affinity Low-Capacity and Low-Affinity High-Capacity N-Acetyl-2-Aminofluorene (AAF) Macromolecular Binding Sites Are Revealed During the Growth Cycle of Adult Rat Hepatocytes in Primary Culture.

    PubMed

    Koch, Katherine S; Moran, Tom; Shier, W Thomas; Leffert, Hyam L

    2018-05-01

    Long-term cultures of primary adult rat hepatocytes were used to study the effects of N-acetyl-2-aminofluorene (AAF) on hepatocyte proliferation during the growth cycle; on the initiation of hepatocyte DNA synthesis in quiescent cultures; and, on hepatocyte DNA replication following the initiation of DNA synthesis. Scatchard analyses were used to identify the pharmacologic properties of radiolabeled AAF metabolite binding to hepatocyte macromolecules. Two classes of growth cycle-dependent AAF metabolite binding sites-a high-affinity low-capacity site (designated Site I) and a low-affinity high-capacity site (designated Site II)-associated with two spatially distinct classes of macromolecular targets, were revealed. Based upon radiolabeled AAF metabolite binding to purified hepatocyte genomic DNA or to DNA, RNA, proteins, and lipids from isolated nuclei, Site IDAY 4 targets (KD[APPARENT] ≈ 2-4×10-6 M and BMAX[APPARENT] ≈ 6 pmol/106 cells/24 h) were consistent with genomic DNA; and with AAF metabolized by a nuclear cytochrome P450. Based upon radiolabeled AAF binding to total cellular lysates, Site IIDAY 4 targets (KD[APPARENT] ≈ 1.5×10-3 M and BMAX[APPARENT] ≈ 350 pmol/106 cells/24 h) were consistent with cytoplasmic proteins; and with AAF metabolized by cytoplasmic cytochrome P450s. DNA synthesis was not inhibited by concentrations of AAF that saturated DNA binding in the neighborhood of the Site I KD. Instead, hepatocyte DNA synthesis inhibition required higher concentrations of AAF approaching the Site II KD. These observations raise the possibility that carcinogenic DNA adducts derived from AAF metabolites form below concentrations of AAF that inhibit replicative and repair DNA synthesis.

  2. Identification of the High-affinity Substrate-binding Site of the Multidrug and Toxic Compound Extrusion (MATE) Family Transporter from Pseudomonas stutzeri*

    PubMed Central

    Nie, Laiyin; Grell, Ernst; Malviya, Viveka Nand; Xie, Hao; Wang, Jingkang; Michel, Hartmut

    2016-01-01

    Multidrug and toxic compound extrusion (MATE) transporters exist in all three domains of life. They confer multidrug resistance by utilizing H+ or Na+ electrochemical gradients to extrude various drugs across the cell membranes. The substrate binding and the transport mechanism of MATE transporters is a fundamental process but so far not fully understood. Here we report a detailed substrate binding study of NorM_PS, a representative MATE transporter from Pseudomonas stutzeri. Our results indicate that NorM_PS is a proton-dependent multidrug efflux transporter. Detailed binding studies between NorM_PS and 4′,6-diamidino-2-phenylindole (DAPI) were performed by isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and spectrofluorometry. Two exothermic binding events were observed from ITC data, and the high-affinity event was directly correlated with the extrusion of DAPI. The affinities are about 1 μm and 0.1 mm for the high and low affinity binding, respectively. Based on our homology model of NorM_PS, variants with mutations of amino acids that are potentially involved in substrate binding, were constructed. By carrying out the functional characterization of these variants, the critical amino acid residues (Glu-257 and Asp-373) for high-affinity DAPI binding were determined. Taken together, our results suggest a new substrate-binding site for MATE transporters. PMID:27235402

  3. Two distinctive β subunits are separately involved in two binding sites of imidacloprid with different affinities in Locusta migratoria manilensis.

    PubMed

    Bao, Haibo; Liu, Yang; Zhang, Yixi; Liu, Zewen

    2017-08-01

    Due to great diversity of nicotinic acetylcholine receptor (nAChR) subtypes in insects, one β subunit may be contained in numerous nAChR subtypes. In the locust Locusta migratoria, a model insect species with agricultural importance, the third β subunits (Locβ3) was identified in this study, which reveals at least three β subunits in this insect species. Imidacloprid was found to bind nAChRs in L. migratoria central nervous system at two sites with different affinities, with K d values of 0.16 and 10.31nM. The specific antisera (L1-1, L2-1 and L3-1) were raised against fusion proteins at the large cytoplasmic loop of Locβ1, Locβ2 and Locβ3 respectively. Specific immunodepletion of Locβ1 with antiserum L1-1 resulted in the selective loss of the low affinity binding site for imidacloprid, whereas the immunodepletion of Locβ3 with L3-1 caused the selective loss of the high affinity site. Dual immunodepletion with L1-1 and L3-1 could completely abolish imidacloprid binding. In contrast, the immunodepletion of Locβ2 had no significant effect on the specific [ 3 H]imidacloprid binding. Taken together, these data indicated that Locβ1 and Locβ3 were respectively contained in the low- and high-affinity binding sites for imidacloprid in L. migratoria, which is different to the previous finding in Nilaparvata lugens that Nlβ1 was in two binding sites for imidacloprid. The involvement of two β subunits separately in two binding sites may decrease the risk of imidacloprid resistance due to putative point mutations in β subunits in L. migratoria. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Protein Binding and Astringent Taste of a Polymeric Procyanidin, 1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranose, Castalagin and Grandinin

    PubMed Central

    Hofmann, Thomas; Glabasnia, Arne; Schwarz, Bernd; Wisman, Kimberly N.; Gangwer, Kelly A.; Hagerman, Ann E.

    2008-01-01

    The objective of the present investigation was to examine oral astringency and protein binding activity of four structurally well-defined tannins, namely procyanidin (epicatechin16(4→8)catechin), pentagalloyl glucose (1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose), castalagin, and grandinin, representing the three main structural categories of tannins, the proanthocyanidins, the gallotannins, and the ellagitannins. Astringency threshold and dose response were determined by the half-tongue test using a trained human panel. Protein binding stoichiometry and relative affinity were determined using radioiodinated bovine serum albumin in precipitation or competitive binding assays. Procyanidin and pentagalloyl glucose were perceived as highly astringent compounds and had relatively steep dose response curves but castalagin and grandinin had a lower mass threshold for detection. In vitro, procyanidin was the most effective protein precipitating agent, and grandinin the least. Increasing the temperature increased protein precipitation by the hydrolysable tannins, especially grandinin. All four polyphenols had higher relative affinity for proline-rich proteins than for bovine serum albumin. PMID:17147439

  5. Selection, Identification, and Binding Mechanism Studies of an ssDNA Aptamer Targeted to Different Stages of E. coli O157:H7.

    PubMed

    Zou, Ying; Duan, Nuo; Wu, Shijia; Shen, Mofei; Wang, Zhouping

    2018-06-06

    Enterohemorrhagic Escherichia coli O157:H7 ( E. coli O157:H7) is known as an important food-borne pathogen related to public health. In this study, aptamers which could bind to different stages of E. coli O157:H7 (adjustment phase, log phase, and stationary phase) with high affinity and specificity were obtained by the whole cell-SELEX method through 14 selection rounds including three counter-selection rounds. Altogether, 32 sequences were obtained, and nine families were classified to select the optimal aptamer. To analyze affinity and specificity by flow cytometer, an ssDNA aptamer named Apt-5 was picked out as the optimal aptamer that recognizes different stages of E. coli O157:H7 specifically with the K d value of 9.04 ± 2.80 nM. In addition, in order to study the binding mechanism, target bacteria were treated by proteinase K and trypsin, indicating that the specific binding site is not protein on the cell membrane. Furthermore, when we treated E. coli O157:H7 with EDTA, the result showed that the binding site might be lipopolysaccharide (LPS) on the outer membrane of E. coli O157:H7.

  6. Relationship between helix stability and binding affinities: molecular dynamics simulations of Bfl-1/A1-binding pro-apoptotic BH3 peptide helices in explicit solvent.

    PubMed

    Modi, Vivek; Lama, Dilraj; Sankararamakrishnan, Ramasubbu

    2013-01-01

    The anti-apoptotic protein Bfl-1, also known as A1, belongs to the Bcl-2 family of proteins and interacts with pro-apoptotic Bcl-2 counterparts to regulate programmed cell death. As demonstrated for other anti-apoptotic Bcl-2 proteins, Bfl-1/A1 has also been shown to be overexpressed in various human cancers and hence they are attractive targets for anticancer drugs. Peptides derived from the BH3 region of pro-apoptotic Bcl-2 proteins have been shown to elicit similar biological response as that of parent proteins. BH3 peptides from different pro-apoptotic proteins have wide range of affinities for Bfl-1/A1. Experimentally determined complex structures show that the hydrophobic side of amphipathic BH3 peptides binds to the hydrophobic groove formed by the α-helical bundle of Bfl-1/A1 protein. Apart from the length and amino acid composition, a BH3 peptide's ability to form a stable helical structure has been suggested to be important for its high binding affinity. Molecular dynamics simulations of three BH3 peptides derived from the pro-apoptotic proteins Bak, Bid, and Bmf were carried out each for a period of at least 100 ns after 2 ns equilibration run. The length of simulated BH3 peptides varied from 22 to 24 residues and their binding affinities for Bfl-1/A1 varied from 1 to 180 nM. Our results show that the hydrophobic residues from the hydrophobic face of BH3 peptides tend to cluster together quickly to avoid being exposed to the solvent. This resulted in either reduction of helix length or complete loss of helical character. Bak and Bid BH3 peptides with high affinities for Bf1-1/A1 have stable helical segments in the N-terminal region. The highly conserved Leu residue lies just outside the helical region at the C-terminal end. Capping interactions arising out of N-cap residues seem to be extremely important to maintain the helical stability. Favorable hydrophilic interactions between residues also give further stability to the helix fragment and at least

  7. Update of the ATTRACT force field for the prediction of protein-protein binding affinity.

    PubMed

    Chéron, Jean-Baptiste; Zacharias, Martin; Antonczak, Serge; Fiorucci, Sébastien

    2017-06-05

    Determining the protein-protein interactions is still a major challenge for molecular biology. Docking protocols has come of age in predicting the structure of macromolecular complexes. However, they still lack accuracy to estimate the binding affinities, the thermodynamic quantity that drives the formation of a complex. Here, an updated version of the protein-protein ATTRACT force field aiming at predicting experimental binding affinities is reported. It has been designed on a dataset of 218 protein-protein complexes. The correlation between the experimental and predicted affinities reaches 0.6, outperforming most of the available protocols. Focusing on a subset of rigid and flexible complexes, the performance raises to 0.76 and 0.69, respectively. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. The electron affinities of C{sub 3}O and C{sub 4}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rienstra-Kiracofe, J.C.; Ellison, G.B.; Hoffman, B.C.

    The authors predict the adiabatic electron affinities of C{sub 3}O and C{sub 4}O based on electronic structure calculations, using a large triple-{zeta} basis set with polarization and diffuse functions (TZ2Pf+diff) with the SCF, CCSD, and CCSD(T) methods as well as with the aug-cc-pVDZ and aug-cc-pVTZ basis sets. The results imply electron affinities for C{sub 3}O and C{sub 4}O; EA(C{sub 3}O) = 0.93 eV {+-} 0.10 and EA(C{sub 4}O) = 2.99 {+-} 0.10. The EA(C{sub 3}O) is 0.41 eV lower than the experimental value of 1.34 {+-} 0.15 eV, while the EA(C{sub 4}O) is 0.94 eV higher than the experimental valuemore » of 2.05 {+-} 0.15 eV. Optimized geometries for all species at each level of theory are given, and harmonic vibrational frequencies are reported at the SCF/TZ2Pf+diff and CCSD/aug-cc-pVDZ levels.« less

  9. Prediction of Binding Energy of Keap1 Interaction Motifs in the Nrf2 Antioxidant Pathway and Design of Potential High-Affinity Peptides.

    PubMed

    Karttunen, Mikko; Choy, Wing-Yiu; Cino, Elio A

    2018-06-07

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor and principal regulator of the antioxidant pathway. The Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) binds to motifs in the N-terminal region of Nrf2, promoting its degradation. There is interest in developing ligands that can compete with Nrf2 for binding to Kelch, thereby activating its transcriptional activities and increasing antioxidant levels. Using experimental Δ G bind values of Kelch-binding motifs determined previously, a revised hydrophobicity-based model was developed for estimating Δ G bind from amino acid sequence and applied to rank potential uncharacterized Kelch-binding motifs identified from interaction databases and BLAST searches. Model predictions and molecular dynamics (MD) simulations suggested that full-length MAD2A binds Kelch more favorably than a high-affinity 20-mer Nrf2 E78P peptide, but that the motif in isolation is not a particularly strong binder. Endeavoring to develop shorter peptides for activating Nrf2, new designs were created based on the E78P peptide, some of which showed considerable propensity to form binding-competent structures in MD, and were predicted to interact with Kelch more favorably than the E78P peptide. The peptides could be promising new ligands for enhancing the oxidative stress response.

  10. A Fluorescent Protein Scaffold for Presenting Structurally Constrained Peptides Provides an Effective Screening System to Identify High Affinity Target-Binding Peptides

    PubMed Central

    Kadonosono, Tetsuya; Yabe, Etsuri; Furuta, Tadaomi; Yamano, Akihiro; Tsubaki, Takuya; Sekine, Takuya; Kuchimaru, Takahiro; Sakurai, Minoru; Kizaka-Kondoh, Shinae

    2014-01-01

    Peptides that have high affinity for target molecules on the surface of cancer cells are crucial for the development of targeted cancer therapies. However, unstructured peptides often fail to bind their target molecules with high affinity. To efficiently identify high-affinity target-binding peptides, we have constructed a fluorescent protein scaffold, designated gFPS, in which structurally constrained peptides are integrated at residues K131–L137 of superfolder green fluorescent protein. Molecular dynamics simulation supported the suitability of this site for presentation of exogenous peptides with a constrained structure. gFPS can present 4 to 12 exogenous amino acids without a loss of fluorescence. When gFPSs presenting human epidermal growth factor receptor type 2 (HER2)-targeting peptides were added to the culture medium of HER2-expressing cells, we could easily identify the peptides with high HER2-affinity and -specificity based on gFPS fluorescence. In addition, gFPS could be expressed on the yeast cell surface and applied for a high-throughput screening. These results demonstrate that gFPS has the potential to serve as a powerful tool to improve screening of structurally constrained peptides that have a high target affinity, and suggest that it could expedite the one-step identification of clinically applicable cancer cell-binding peptides. PMID:25084350

  11. PREDICTING ER BINDING AFFINITY FOR EDC RANKING AND PRIORITIZATION: MODEL I

    EPA Science Inventory

    A Common Reactivity Pattern (COREPA) model, based on consideration of multiple energetically reasonable conformations of flexible chemicals was developed using a training set of 232 rat estrogen receptor (rER) relative binding affinity (RBA) measurements. The training set include...

  12. Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein-Polysaccharide Interactions.

    PubMed

    Kang, Yu; Gohlke, Ulrich; Engström, Olof; Hamark, Christoffer; Scheidt, Tom; Kunstmann, Sonja; Heinemann, Udo; Widmalm, Göran; Santer, Mark; Barbirz, Stefanie

    2016-07-27

    Understanding interactions of bacterial surface polysaccharides with receptor protein scaffolds is important for the development of antibiotic therapies. The corresponding protein recognition domains frequently form low-affinity complexes with polysaccharides that are difficult to address with experimental techniques due to the conformational flexibility of the polysaccharide. In this work, we studied the tailspike protein (TSP) of the bacteriophage Sf6. Sf6TSP binds and hydrolyzes the high-rhamnose, serotype Y O-antigen polysaccharide of the Gram-negative bacterium Shigella flexneri (S. flexneri) as a first step of bacteriophage infection. Spectroscopic analyses and enzymatic cleavage assays confirmed that Sf6TSP binds long stretches of this polysaccharide. Crystal structure analysis and saturation transfer difference (STD) NMR spectroscopy using an enhanced method to interpret the data permitted the detailed description of affinity contributions and flexibility in an Sf6TSP-octasaccharide complex. Dodecasaccharide fragments corresponding to three repeating units of the O-antigen in complex with Sf6TSP were studied computationally by molecular dynamics simulations. They showed that distortion away from the low-energy solution conformation found in the octasaccharide complex is necessary for ligand binding. This is in agreement with a weak-affinity functional polysaccharide-protein contact that facilitates correct placement and thus hydrolysis of the polysaccharide close to the catalytic residues. Our simulations stress that the flexibility of glycan epitopes together with a small number of specific protein contacts provide the driving force for Sf6TSP-polysaccharide complex formation in an overall weak-affinity interaction system.

  13. Binding characteristics of [125I]Bolton-Hunter [Sar9,Met(O2)11]substance P, a new selective radioligand for the NK1 receptor.

    PubMed

    Lew, R; Geraghty, D P; Drapeau, G; Regoli, D; Burcher, E

    1990-08-02

    The selective tachykinin agonist [Sar9,Met(O2)11]substance P (Sar-SP) was radioiodinated with [125I]Bolton-Hunter reagent and the product [125I]Bolton-Hunter-[Sar9,Met(O)2)11]SP (BHSar-SP) purified using reverse phase HPLC. Autoradiographic studies showed dense specific binding of BHSar-SP over the rat submandibular gland and over several regions in rat brain, with very low nonspecific binding, identical with the pattern of binding sites seen in a parallel study with [125I]Bolton-Hunter SP (BHSP). In homogenate binding experiments, BHSar-SP bound with high affinity to a single site in membranes from rat brain (KD 261 pM) and rat submandibular gland (KD 105 pM). Comparative values for BHSP were 495 and 456 pM, i.e. of two and four fold lower affinity than BHSar-SP. Association of BHSar-SP to membranes from brain (k+1 3.7 x 10(9) M-1 min-1) was faster than to membranes from salivary gland (k+1 5.6 x 10(8) M-1 min-1). In competition studies, BHSar-SP was displaced from salivary gland membranes by substance P (SP) approximately physalaemin greater than or equal to Sar-SP approximately SP-(3-11) greater than SP-(5-11) much greater than neurokinin A (NKA) approximately eledoisin = kassinin = SP-methyl ester greater than or equal to neurokinin B (NKB) much greater than [Nle10]NKA-(4-10) greater than [MePhe7]NKB-(4-10). In brain membranes, the rank potency order was SP greater than Sar-SP greater than or equal to physalaemin greater than SP-(3-11) greater than SP-(5-11) greater than NKA greater than or equal to eledoisin much greater than NKB greater than kassinin greater than SP-methyl ester: however [MePhe7]NKB-(4-10) and [Nle10]NKA-(4-10) were ineffective competitors at concentrations up to 1 microM. Both binding patterns are consistent with BHSar-SP binding to an NK1 site. With the exception of SP, Sar-SP, SP-(3-11) and physalaemin, all competitors were 5 to 54 times less potent at BHSar-SP binding sites in brain than in salivary gland. These data reveal some

  14. Bio-inorganic synthesis of ZnO powders using recombinant His-tagged ZnO binding peptide as a promoter.

    PubMed

    Song, Lei; Liu, Yingying; Zhang, Zhifang; Wang, Xi; Chen, Jinchun

    2010-10-01

    Inorganic-binding peptides termed as genetically engineered polypeptides for inorganics (GEPIs), are small peptide sequences selected via combinatorial biology-based protocols of phage or cell surface display technologies. Recent advances in nanotechnology and molecular biology allow the engineering of these peptides with specific affinity to inorganics, often used as molecular linkers or assemblers, to facilitate materials synthesis, which provides a new insight into the material science and engineering field. As a case study on this biomimetic application, here we report a novel biosynthetic ZnO binding protein and its application in promoting bio-inorganic materials synthesis. In brief, the gene encoding a ZnO binding peptide(ZBP) was genetically fused with His(6)-tag and GST-tag using E.coli expression vector pET-28a (+) and pGEX-4T-3. The recombinant protein GST-His-ZBP was expressed, purified with Ni-NTA system, identified by SDS-PAGE electrophoresis and Western blot analysis and confirmed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis. Affinity adsorption test demonstrated that the fusion protein had a specific avidity for ZnO nanoparticles (NPs). Results from the bio-inorganic synthesis experiment indicated that the new protein played a promoting part in grain refinement and accelerated precipitation during the formation of the ultra-fine precursor powders in the Zn(OH)(2) sol. X-ray diffraction (XRD) analysis on the final products after calcining the precursor powders showed that hexagonal wurtzite ZnO crystals were obtained. Our work suggested a novel approach to the application about the organic-inorganic interactions.

  15. PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity

    PubMed Central

    Liu, Geng; Li, Dongli; Li, Zhang; Qiu, Si; Li, Wenhui; Chao, Cheng-chi; Yang, Naibo; Li, Handong; Cheng, Zhen; Song, Xin; Cheng, Le; Zhang, Xiuqing; Wang, Jian; Yang, Huanming

    2017-01-01

    Abstract Predicting peptide binding affinity with human leukocyte antigen (HLA) is a crucial step in developing powerful antitumor vaccine for cancer immunotherapy. Currently available methods work quite well in predicting peptide binding affinity with HLA alleles such as HLA-A*0201, HLA-A*0101, and HLA-B*0702 in terms of sensitivity and specificity. However, quite a few types of HLA alleles that are present in the majority of human populations including HLA-A*0202, HLA-A*0203, HLA-A*6802, HLA-B*5101, HLA-B*5301, HLA-B*5401, and HLA-B*5701 still cannot be predicted with satisfactory accuracy using currently available methods. Furthermore, currently the most popularly used methods for predicting peptide binding affinity are inefficient in identifying neoantigens from a large quantity of whole genome and transcriptome sequencing data. Here we present a Position Specific Scoring Matrix (PSSM)-based software called PSSMHCpan to accurately and efficiently predict peptide binding affinity with a broad coverage of HLA class I alleles. We evaluated the performance of PSSMHCpan by analyzing 10-fold cross-validation on a training database containing 87 HLA alleles and obtained an average area under receiver operating characteristic curve (AUC) of 0.94 and accuracy (ACC) of 0.85. In an independent dataset (Peptide Database of Cancer Immunity) evaluation, PSSMHCpan is substantially better than the popularly used NetMHC-4.0, NetMHCpan-3.0, PickPocket, Nebula, and SMM with a sensitivity of 0.90, as compared to 0.74, 0.81, 0.77, 0.24, and 0.79. In addition, PSSMHCpan is more than 197 times faster than NetMHC-4.0, NetMHCpan-3.0, PickPocket, sNebula, and SMM when predicting neoantigens from 661 263 peptides from a breast tumor sample. Finally, we built a neoantigen prediction pipeline and identified 117 017 neoantigens from 467 cancer samples of various cancers from TCGA. PSSMHCpan is superior to the currently available methods in predicting peptide binding affinity with a

  16. The kangaroo cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II with low affinity.

    PubMed

    Yandell, C A; Dunbar, A J; Wheldrake, J F; Upton, Z

    1999-09-17

    The mammalian cation-independent mannose 6-phosphate receptor (CI-MPR) binds mannose 6-phosphate-bearing glycoproteins and insulin-like growth factor (IGF)-II. However, the CI-MPR from the opossum has been reported to bind bovine IGF-II with low affinity (Dahms, N. M., Brzycki-Wessell, M. A., Ramanujam, K. S., and Seetharam, B. (1993) Endocrinology 133, 440-446). This may reflect the use of a heterologous ligand, or it may represent the intrinsic binding affinity of this receptor. To examine the binding of IGF-II to a marsupial CI-MPR in a homologous system, we have previously purified kangaroo IGF-II (Yandell, C. A., Francis, G. L., Wheldrake, J. F., and Upton, Z. (1998) J. Endocrinol. 156, 195-204), and we now report the purification and characterization of the CI-MPR from kangaroo liver. The interaction of the kangaroo CI-MPR with IGF-II has been examined by ligand blotting, radioreceptor assay, and real-time biomolecular interaction analysis. Using both a heterologous and homologous approach, we have demonstrated that the kangaroo CI-MPR has a lower binding affinity for IGF-II than its eutherian (placental mammal) counterparts. Furthermore, real-time biomolecular interaction analysis revealed that the kangaroo CI-MPR has a higher affinity for kangaroo IGF-II than for human IGF-II. The cDNA sequence of the kangaroo CI-MPR indicates that there is considerable divergence in the area corresponding to the IGF-II binding site of the eutherian receptor. Thus, the acquisition of a high-affinity binding site for regulating IGF-II appears to be a recent event specific to the eutherian lineage.

  17. Labeling by ( sup 3 H)1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: Evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, R.B.; Reid, A.; Mahboubi, A.

    1991-02-01

    Equilibrium binding studies with the sigma receptor ligand ({sup 3}H)1,3-di(2-tolyl)guanidine (({sup 3}H)DTG) demonstrated two high affinity binding sites in membranes prepared from guinea pig brain. The apparent Kd values of DTG for sites 1 and 2 were 11.9 and 37.6 nM, respectively. The corresponding Bmax values were 1045 and 1423 fmol/mg of protein. Site 1 had high affinity for (+)-pentazocine, haloperidol, (R)-(+)-PPP, carbepentane, and other sigma ligands, suggesting a similarity with the dextromethorphan/sigma 1 binding site described by Musacchio et al. (Life Sci. 45:1721-1732 (1989)). Site 2 had high affinity for DTG and haloperidol (Ki = 36.1 nM) and lowmore » affinity for most other sigma ligands. Kinetic experiments demonstrated that ({sup 3}H)DTG dissociated in a biphasic manner from both site 1 and site 2. DTG and haloperidol increased the dissociation rate of ({sup 3}H)DTG from site 1 and site 2, demonstrating the presence of pseudoallosteric interactions. Inorganic calcium channel blockers such as Cd2+ selectively increased the dissociation rate of ({sup 3}H)DTG from site 2, suggesting an association of this binding site with calcium channels.« less

  18. Dextran as a Generally Applicable Multivalent Scaffold for Improving Immunoglobulin-Binding Affinities of Peptide and Peptidomimetic Ligands

    PubMed Central

    2015-01-01

    Molecules able to bind the antigen-binding sites of antibodies are of interest in medicine and immunology. Since most antibodies are bivalent, higher affinity recognition can be achieved through avidity effects in which a construct containing two or more copies of the ligand engages both arms of the immunoglobulin simultaneously. This can be achieved routinely by immobilizing antibody ligands at high density on solid surfaces, such as ELISA plates, but there is surprisingly little literature on scaffolds that routinely support bivalent binding of antibody ligands in solution, particularly for the important case of human IgG antibodies. Here we show that the simple strategy of linking two antigens with a polyethylene glycol (PEG) spacer long enough to span the two arms of an antibody results in higher affinity binding in some, but not all, cases. However, we found that the creation of multimeric constructs in which several antibody ligands are displayed on a dextran polymer reliably provides much higher affinity binding than is observed with the monomer in all cases tested. Since these dextran conjugates are simple to construct, they provide a general and convenient strategy to transform modest affinity antibody ligands into high affinity probes. An additional advantage is that the antibody ligands occupy only a small number of the reactive sites on the dextran, so that molecular cargo can be attached easily, creating molecules capable of delivering this cargo to cells displaying antigen-specific receptors. PMID:25073654

  19. BiodMHC: an online server for the prediction of MHC class II-peptide binding affinity.

    PubMed

    Wang, Lian; Pan, Danling; Hu, Xihao; Xiao, Jinyu; Gao, Yangyang; Zhang, Huifang; Zhang, Yan; Liu, Juan; Zhu, Shanfeng

    2009-05-01

    Effective identification of major histocompatibility complex (MHC) molecules restricted peptides is a critical step in discovering immune epitopes. Although many online servers have been built to predict class II MHC-peptide binding affinity, they have been trained on different datasets, and thus fail in providing a unified comparison of various methods. In this paper, we present our implementation of seven popular predictive methods, namely SMM-align, ARB, SVR-pairwise, Gibbs sampler, ProPred, LP-top2, and MHCPred, on a single web server named BiodMHC (http://biod.whu.edu.cn/BiodMHC/index.html, the software is available upon request). Using a standard measure of AUC (Area Under the receiver operating characteristic Curves), we compare these methods by means of not only cross validation but also prediction on independent test datasets. We find that SMM-align, ProPred, SVR-pairwise, ARB, and Gibbs sampler are the five best-performing methods. For the binding affinity prediction of class II MHC-peptide, BiodMHC provides a convenient online platform for researchers to obtain binding information simultaneously using various methods.

  20. Protein Cofactors Are Essential for High-Affinity DNA Binding by the Nuclear Factor κB RelA Subunit.

    PubMed

    Mulero, Maria Carmen; Shahabi, Shandy; Ko, Myung Soo; Schiffer, Jamie M; Huang, De-Bin; Wang, Vivien Ya-Fan; Amaro, Rommie E; Huxford, Tom; Ghosh, Gourisankar

    2018-05-22

    Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.

  1. Affinity binding of inclusion bodies on supermacroporous monolithic cryogels using labeling with specific antibodies.

    PubMed

    Ahlqvist, Josefin; Kumar, Ashok; Sundström, Heléne; Ledung, Erika; Hörnsten, E Gunnar; Enfors, Sven-Olof; Mattiasson, Bo

    2006-03-23

    A new chromatographic method based on affinity supermacroporous monolithic cryogels is developed for binding and analyzing inclusion bodies during fermentation. The work demonstrated that it is possible to bind specific IgG and IgY antibodies to the 15 and 17 amino acids at the terminus ends of a 33 kDa target protein aggregated as inclusion bodies. The antibody treated inclusion bodies from lysed fermentation broth can be specifically retained in protein A and pseudo-biospecific ligand sulfamethazine modified supermacroporous cryogels. The degree of binding of IgG and IgY treated inclusion bodies to the Protein A and sulfamethazine gels are investigated, as well as the influence of pH on the sulfamethazine ligand. Optimum binding of 78 and 72% was observed on both protein A and sulfamethazine modified cryogel columns, respectively, using IgG labeling of the inclusion bodies. The antibody treated inclusion bodies pass through unretained in the sulfamethazine supermacroporous gel at pH that does not favour the binding between the ligand on the gel and the antibodies on the surface of inclusion bodies. Also the unlabeled inclusion bodies went through the gel unretained, showing no non-specific binding or trapping within the gel. These findings may very well be the foundation for the building of a powerful analytical tool during fermentation of inclusion bodies as well as a convenient way to purify them from fermentation broth. These results also support our earlier findings [Kumar, A., Plieva, F.M., Galaev, I.Yu., Mattiasson, B., 2003. Affinity fractionation of lymphocytes using a monolithic cyogel. J. Immunol. Methods 283, 185-194] with mammalian cells that were surface labeled with specific antibodies and recognized on protein A supermacroporous gels. A general binding and separation system can be established on antibody binding cryogel affinity matrices.

  2. The High-Affinity Binding Site for Tricyclic Antidepressants Resides in the Outer Vestibule of the Serotonin TransporterⓈ

    PubMed Central

    Sarker, Subhodeep; Weissensteiner, René; Steiner, Ilka; Sitte, Harald H.; Ecker, Gerhard F.; Freissmuth, Michael; Sucic, Sonja

    2015-01-01

    The structure of the bacterial leucine transporter from Aquifex aeolicus (LeuTAa) has been used as a model for mammalian Na+/Cl−-dependent transporters, in particular the serotonin transporter (SERT). The crystal structure of LeuTAa liganded to tricyclic antidepressants predicts simultaneous binding of inhibitor and substrate. This is incompatible with the mutually competitive inhibition of substrates and inhibitors of SERT. We explored the binding modes of tricyclic antidepressants by homology modeling and docking studies. Two approaches were used subsequently to differentiate between three clusters of potential docking poses: 1) a diagnostic SERTY95F mutation, which greatly reduced the affinity for [3H]imipramine but did not affect substrate binding; 2) competition binding experiments in the presence and absence of carbamazepine (i.e., a tricyclic imipramine analog with a short side chain that competes with [3H]imipramine binding to SERT). Binding of releasers (para-chloroamphetamine, methylene-dioxy-methamphetamine/ecstasy) and of carbamazepine were mutually exclusive, but Dixon plots generated in the presence of carbamazepine yielded intersecting lines for serotonin, MPP+, paroxetine, and ibogaine. These observations are consistent with a model, in which 1) the tricyclic ring is docked into the outer vestibule and the dimethyl-aminopropyl side chain points to the substrate binding site; 2) binding of amphetamines creates a structural change in the inner and outer vestibule that precludes docking of the tricyclic ring; 3) simultaneous binding of ibogaine (which binds to the inward-facing conformation) and of carbamazepine is indicative of a second binding site in the inner vestibule, consistent with the pseudosymmetric fold of monoamine transporters. This may be the second low-affinity binding site for antidepressants. PMID:20829432

  3. Application of volcanic ash particles for protein affinity purification with a minimized silica-binding tag.

    PubMed

    Abdelhamid, Mohamed A A; Ikeda, Takeshi; Motomura, Kei; Tanaka, Tatsuya; Ishida, Takenori; Hirota, Ryuichi; Kuroda, Akio

    2016-11-01

    We recently reported that the spore coat protein, CotB1 (171 amino acids), from Bacillus cereus mediates silica biomineralization and that the polycationic C-terminal sequence of CotB1 (14 amino acids), designated CotB1p, serves as a silica-binding tag when fused to other proteins. Here, we reduced the length of this silica-binding tag to only seven amino acids (SB7 tag: RQSSRGR) while retaining its affinity for silica. Alanine scanning mutagenesis indicated that the three arginine residues in the SB7 tag play important roles in binding to a silica surface. Monomeric l-arginine, at concentrations of 0.3-0.5 M, was found to serve as a competitive eluent to release bound SB7-tagged proteins from silica surfaces. To develop a low-cost, silica-based affinity purification procedure, we used natural volcanic ash particles with a silica content of ∼70%, rather than pure synthetic silica particles, as an adsorbent for SB7-tagged proteins. Using green fluorescent protein, mCherry, and mKate2 as model proteins, our purification method achieved 75-90% recovery with ∼90% purity. These values are comparable to or even higher than that of the commonly used His-tag affinity purification. In addition to low cost, another advantage of our method is the use of l-arginine as the eluent because its protein-stabilizing effect would help minimize alteration of the intrinsic properties of the purified proteins. Our approach paves the way for the use of naturally occurring materials as adsorbents for simple, low-cost affinity purification. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. The presence of high-affinity, low-capacity estradiol-17β binding in rainbow trout scale indicates a possible endocrine route for the regulation of scale resorption

    USGS Publications Warehouse

    Persson, Petra; Shrimpton, J.M.; McCormick, S.D.; Bjornsson, Bjorn Thrandur

    2000-01-01

    High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol x mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol x mg protein-1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.

  5. Comparison of Relative Binding Affinities for Trout and Human Estrogen Receptor Based upon Different Competitive Binding Assays

    EPA Science Inventory

    The development of a predictive model based upon a single aquatic species inevitably raises the question of whether this information is valid for other species. To partially address this question, relative binding affinities (RBA) for six alkylphenols (para-substituted, n- and b...

  6. 2'-O-[2-[2-(N,N-Dimethylamino)ethoxy]ethyl] Modified Antisense Oligonucleotides: Symbiosis of Charge Interaction Factors and Stereoelectronic Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prhavc, M.; Prakash, T.P.; Minasov, G.

    Oligonucleotides with a novel, 2'-O-[2-[2-(N,N-dimethylamino)ethoxy]ethyl] (2'-O-DMAEOE) modification have been synthesized. This modification, a cationic analogue of the 2'-O-(2-methoxyethyl) (2'-O-MOE) modification, exhibits high binding affinity to target RNA (but not to DNA) and exceptional resistance to nuclease degradation. Analysis of the crystal structure of a self-complementary oligonucleotide containing a single 2'-O-DMAEOE modification explains the importance of charge factors and gauche effects on the observed antisense properties. 2'-O-DMAEOE modified oligonucleotides are ideal candidates for antisense drugs.

  7. [Zn(phen)(O,N,O)(H2O)] and [Zn(phen)(O,N)(H2O)] with O,N,O is 2,6-dipicolinate and N,O is L-threoninate: synthesis, characterization, and biomedical properties.

    PubMed

    Chin, Lee-Fang; Kong, Siew-Ming; Seng, Hoi-Ling; Tiong, Yee-Lian; Neo, Kian-Eang; Maah, Mohd Jamil; Khoo, Alan Soo-Beng; Ahmad, Munirah; Hor, Tzi-Sum Andy; Lee, Hong-Boon; San, Swee-Lan; Chye, Soi-Moi; Ng, Chew-Hee

    2012-10-01

    Two ternary Zn(II) complexes, with 1,10-phenanthroline (phen) as the main ligand and a carboxylate-containing ligand [dipicolinate (dipico) or L-threoninate (L-Thr)] as the subsidiary ligand, were prepared and characterized by elemental analysis, Fourier transform IR, UV, and fluorescence spectroscopy, X-ray diffraction, molar conductivity, and electrospray ionization mass spectrometry. X-ray structure analysis shows that both [Zn(phen)(dipico)(H(2)O)]·H(2)O (1) and [Zn(phen)(L-Thr)(H(2)O)Cl]·2H(2)O (2) have octahedral geometry about the Zn(II) atom. Both complexes can inhibit topoisomerase I, and have better anticancer activity than cisplatin against nasopharyngeal cancer cell lines, HK1 and HONE-1, with concentrations causing 50 % inhibition of cell proliferation (IC(50)) in the low micromolar range. Complex 2 has the highest therapeutic index for HK1. Both Zn(II) complexes can induce cell death by apoptosis. Changing the subsidiary ligand in the Zn(II) complexes affects the UV-fluorescence spectral properties of the coordinated phen ligand, the binding affinity for some DNA sequences, nucleobase sequence-selective binding, the phase at which cell cycle progression was arrested for treated cancer cells, and their therapeutic index.

  8. Unusual Characteristics of the DNA Binding Domain of Epigenetic Regulatory Protein MeCP2 Determine Its Binding Specificity

    PubMed Central

    2015-01-01

    The protein MeCP2 mediates epigenetic regulation by binding methyl-CpG (mCpG) sites on chromatin. MeCP2 consists of six domains of which one, the methyl binding domain (MBD), binds mCpG sites in duplex DNA. We show that solution conditions with physiological or greater salt concentrations or the presence of nonspecific competitor DNA is necessary for the MBD to discriminate mCpG from CpG with high specificity. The specificity for mCpG over CpG is >100-fold under these solution conditions. In contrast, the MBD does not discriminate hydroxymethyl-CpG from CpG. The MBD is unusual among site-specific DNA binding proteins in that (i) specificity is not conferred by the enhanced affinity for the specific site but rather by suppression of its affinity for generic DNA, (ii) its specific binding to mCpG is highly electrostatic, and (iii) it takes up as well as displaces monovalent cations upon DNA binding. The MBD displays an unusually high affinity for single-stranded DNA independent of modification or sequence. In addition, the MBD forms a discrete dimer on DNA via a noncooperative binding pathway. Because the affinity of the second monomer is 1 order of magnitude greater than that of nonspecific binding, the MBD dimer is a unique molecular complex. The significance of these results in the context of neuronal function and development and MeCP2-related developmental disorders such as Rett syndrome is discussed. PMID:24828757

  9. Bean peptides have higher in silico binding affinities than ezetimibe for the N-terminal domain of cholesterol receptor Niemann-Pick C1 Like-1.

    PubMed

    Real Hernandez, Luis M; Gonzalez de Mejia, Elvira

    2017-04-01

    Niemann-Pick C1 like-1 (NPC1L1) mediates cholesterol absorption at the apical membrane of enterocytes through a yet unknown mechanism. Bean, pea, and lentil proteins are naturally hydrolyzed during digestion to produce peptides. The potential for pulse peptides to have high binding affinities for NPC1L1 has not been determined. In this study , in silico binding affinities and interactions were determined between the N-terminal domain of NPC1L1 and 14 pulse peptides (5≥ amino acids) derived through pepsin-pancreatin digestion. Peptides were docked in triplicate to the N-terminal domain using docking program AutoDock Vina, and results were compared to those of ezetimibe, a prescribed NPC1L1 inhibitor. Three black bean peptides (-7.2 to -7.0kcal/mol) and the cowpea bean dipeptide Lys-Asp (-7.0kcal/mol) had higher binding affinities than ezetimibe (-6.6kcal/mol) for the N-terminal domain of NPC1L1. Lentil and pea peptides studied did not have high binding affinities. The common bean peptide Tyr-Ala-Ala-Ala-Thr (-7.2kcal/mol), which can be produced from black or navy bean proteins, had the highest binding affinity. Ezetimibe and peptides with high binding affinities for the N-terminal domain are expected to interact at different locations of the N-terminal domain. All high affinity black bean peptides are expected to have van der Waals interactions with SER130, PHE136, and LEU236 and a conventional hydrogen bond with GLU238 of NPC1L1. Due to their high affinity for the N-terminal domain of NPC1L1, black and cowpea bean peptides produced in the digestive track have the potential to disrupt interactions between NPC1L1 and membrane proteins that lead to cholesterol absorption. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Design and synthesis of N-(3,3-diphenylpropenyl)alkanamides as a novel class of high-affinity MT2-selective melatonin receptor ligands.

    PubMed

    Bedini, Annalida; Spadoni, Gilberto; Gatti, Giuseppe; Lucarini, Simone; Tarzia, Giorgio; Rivara, Silvia; Lorenzi, Simone; Lodola, Alessio; Mor, Marco; Lucini, Valeria; Pannacci, Marilou; Scaglione, Francesco

    2006-12-14

    A novel series of melatonin receptor ligands was discovered by opening the cyclic scaffolds of known classes of high affinity melatonin receptor antagonists, while retaining the pharmacophore elements postulated by previously described 3D-QSAR and receptor models. Compounds belonging to the classes of 2,3- and [3,3-diphenylprop(en)yl]alkanamides and of o- or [(m-benzyl)phenyl]ethyl-alkanamides were synthesized and tested on MT(1) and MT(2) receptors. The class of 3,3-diphenyl-propenyl-alkanamides was the most interesting one, with compounds having MT(2) receptor affinity similar to that of MLT, remarkable MT(2) selectivity, and partial agonist or antagonist behavior. In particular, the (E)-m-methoxy cyclobutanecarboxamido derivative 18f and the di-(m-methoxy) acetamido one, 18g, have sub-nM affinity for the MT(2) subtype, with more than 100-fold selectivity over MT(1), 18f being an antagonist and 18g a partial agonist on GTPgammaS test. Docking of 18g into a previously developed MT(2) receptor model showed a binding scheme consistent with that of other antagonists. The MT(2) expected binding affinities of the new compounds were calculated by a previously developed 3D-QSAR CoMFA model, giving satisfactory predictions.

  11. 3H[2-(2-benzofuranyl)-2-imidazoline] (BFI) binding in human platelets: modulation by tranylcypromine.

    PubMed

    Wiest, S A; Steinberg, M I

    1999-08-01

    2-(2-Benzofuranyl)-2-imidazoline (BFI) is a highly selective ligand for imidazoline-type 2 (I2) binding sites that are known to be associated with monoamine oxidase (MAO). Recently we demonstrated a potentiation of 3H-BFI binding in human but not in rat brain by the nonselective MAO inhibitor tranylcypromine. In the present studies, we evaluated the effect of tranylcypromine on the binding of 3H-BFI to human platelet inner membranes. Membranes were incubated with 3H-BFI at 22 degrees C in 50 mM Tris, 1.5 mM EDTA, pH 7.5. Saturation experiments with 3H-BFI (0.5-80 nM) were analyzed using non-linear curve fitting. Addition of tranylcypromine (0.1 mM) increased the number of 3H-BFI binding sites (Bmax=0.35+/-0.06 vs. 1.87+/-0.15 pmol/mg protein for vehicle and tranylcypromine, respectively) and increased 3H-BFI affinity slightly (KD =16.0+/-4.1 vs. 6.5+/-0.3 nM for vehicle and tranylcypromine, respectively). In competitive binding experiments using the less selective I2 ligand, 3H-idazoxan, tranylcypromine only weakly inhibited binding. Preincubation of platelet membranes with tranylcypromine (1 nM-10 microM) enhanced the Bmax of 3H-BFI binding in a concentration-dependent manner peaking at 1 microM (13 x control) and returning to near baseline at 100 microM. 3H-BFI binding was displaced monophasically (in order of decreasing potency) by BFI > or = 2-(4,5-dihydroimidazol-2-yl)quinoline (BU224) > or = cirazoline >idazoxan >(1,4-benzodioxan-2-methoxy-2-yl)-2-imidazoline (RX821002)= moxonidine. Amiloride, clorgyline, guanabenz and clonidine displayed biphasic curves with nanomolar high affinity components. Tranylcypromine altered the competition curves for all ligands (except BFI) by increasing the affinities for clonidine and RX821002 and decreasing affinities for BU224, cirazoline, guanabenz, idazoxan, clorgyline, moxonidine, and amiloride. Thus, in human platelets tranylcypromine exposes a high capacity 3H-BFI binding site distinct from previously described I2 sites

  12. High-affinity PD-1 molecules deliver improved interaction with PD-L1 and PD-L2.

    PubMed

    Li, Yanyan; Liang, Zhaoduan; Tian, Ye; Cai, Wenxuan; Weng, Zhiming; Chen, Lin; Zhang, Huanling; Bao, Yifeng; Zheng, Hongjun; Zeng, Sihai; Bei, Chunhua; Li, Yi

    2018-06-11

    The inhibitory checkpoint molecule programmed death (PD)-1 plays a vital role in maintaining immune homeostasis upon binding to its ligands, PD-L1 and PD-L2. Several recent studies have demonstrated that soluble PD-1 (sPD-1) can block the interaction between membrane PD-1 and PD-L1 to enhance the anti-tumor capability of T cells. However, the affinity of natural sPD-1 binding to PD-L1 is too low to permit therapeutic applications. Here a PD-1 variant with ~3,000-fold and ~70-fold affinity increase to bind PD-L1 and PD-L2, respectively, was generated through directed molecular evolution and phage display technology. Structural analysis showed that mutations at amino acid positions 124 and 132 of PD-1 played major roles in enhancing the affinity of PD-1 binding to its ligands. The high-affinity PD-1 mutant could compete with the binding of antibodies specific to PD-L1 or PD-L2 on cancer cells or dendritic cells (DCs), and it could enhance the proliferation and IFN-γ release of activated lymphocytes. These features potentially qualify the high-affinity PD-1 variant as a unique candidate for the development of a new class of PD-1 immune checkpoint blockade therapeutics. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. L-Asp is a useful tool in the purification of the ionotropic glutamate receptor A2 ligand-binding domain.

    PubMed

    Krintel, Christian; Frydenvang, Karla; Ceravalls de Rabassa, Anna; Kaern, Anne M; Gajhede, Michael; Pickering, Darryl S; Kastrup, Jette S

    2014-05-01

    In purification of the ionotropic glutamate receptor A2 (GluA2) ligand-binding domain (LBD), L-Glu-supplemented buffers have previously been used for protein stabilization during the procedure. This sometimes hampers structural studies of low-affinity ligands, because L-Glu is difficult to displace, despite extensive dialysis. Here, we show that L-Asp binds to full-length GluA2 with low affinity (Ki = 0.63 mM) and to the GluA2 LBD with even lower affinity (Ki = 2.6 mM), and we use differential scanning fluorimetry to show that L-Asp is able to stabilize the isolated GluA2 LBD. We also show that L-Asp can replace L-Glu during purification, providing both equal yields and purity of the resulting protein sample. Furthermore, we solved three structures of the GluA2 LBD in the presence of 7.5, 50 and 250 mM L-Asp. Surprisingly, with 7.5 mM L-Asp, the GluA2 LBD crystallized as a mixed dimer, with L-Glu being present in one subunit, and neither L-Asp nor L-Glu being present in the other subunit. Thus, residual L-Glu is retained from the expression medium. On the other hand, only L-Asp was found at the binding site when 50 or 250 mM L-Asp was used for crystallization. The binding mode observed for L-Asp at the GluA2 LBD is very similar to that described for L-Glu. Taking our findings together, we have shown that L-Asp can be used instead of L-Glu for ligand-dependent stabilization of the GluA2 LBD during purification. This will enable structural studies of low-affinity ligands for lead optimization in structure-based drug design. Structural data are available in the Protein Data Bank under accession numbers 4O3B (7.5 mM L-Asp), 4O3C (50 mM L-Asp), and 4O3A (250 mM L-Asp). © 2014 FEBS.

  14. ( sup 3 H)-DOB(4-bromo-2,5-dimethoxyphenylisopropylamine) and ( sup 3 H) ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branchek, T.; Adham, N.; Macchi, M.

    1990-11-01

    The binding properties of the 5-hydroxytryptamine2 (5-HT2) receptor have been the subject of much interest and debate in recent years. The hallucinogenic amphetamine derivative 4-bromo-2,5-dimethoxyphenylisopropylamine (DOB) has been shown to bind to a small number of binding sites with properties very similar to (3H)ketanserin-labeled 5-HT2 receptors, but with much higher agonist affinities. Some researchers have interpreted this as evidence for the existence of a new subtype of 5-HT2 receptor (termed 5-HT2A), whereas others have interpreted these data as indicative of agonist high affinity and agonist low affinity states for the 5-HT2 receptor. In this investigation, a cDNA clone encoding themore » serotonin 5-HT2 receptor was transiently transfected into monkey kidney Cos-7 cells and stably transfected into mouse fibroblast L-M(TK-) cells. In both systems, expression of this single serotonin receptor cDNA led to the appearance of both (3H)DOB and (3H)ketanserin binding sites with properties that matched their binding characteristics in mammalian brain homogenates. Addition of guanosine 5'-(beta, gamma-imido) triphosphate (Gpp(NH)p) to this system caused a rightward shift and steepening of agonist competition curves for (3H) ketanserin binding, converting a two-site binding curve to a single low affinity binding state. Gpp(NH)p addition also caused a 50% decrease in the number of high affinity (3H)DOB binding sites, with no change in the dissociation constant of the remaining high affinity states. These data on a single human 5-HT2 receptor cDNA expressed in two different transfection host cells indicate that (3H)DOB and (3H)ketanserin binding reside on the same gene product, apparently interacting with agonist and antagonist conformations of a single human 5-HT2 receptor protein.« less

  15. Binding affinity and decontamination of dermal decontamination gel to model chemical warfare agent simulants.

    PubMed

    Cao, Yachao; Elmahdy, Akram; Zhu, Hanjiang; Hui, Xiaoying; Maibach, Howard

    2018-05-01

    Six chemical warfare agent simulants (trimethyl phosphate, dimethyl adipate, 2-chloroethyl methyl sulfide, diethyl adipate, chloroethyl phenyl sulfide and diethyl sebacate) were studied in in vitro human skin to explore relationship between dermal penetration/absorption and the mechanisms of simulant partitioning between stratum corneum (SC) and water as well as between dermal decontamination gel (DDGel) and water. Both binding affinity to and decontamination of simulants using DDGel were studied. Partition coefficients of six simulants between SC and water (Log P SC/w ) and between DDGel and water (Log P DDGel/w ) were determined. Results showed that DDGel has a similar or higher binding affinity to each simulant compared to SC. The relationship between Log P octanol/water and Log P SC/w as well as between Log P octanol/water and Log P DDGel/w demonstrated that partition coefficient of simulants correlated to their lipophilicity or hydrophilicity. Decontamination efficiency results with DDGel for these simulants were consistent with binding affinity results. Amounts of percentage dose of chemicals in DDGel of trimethyl phosphate, dimethyl adipate, 2-chloroethyl methyl sulfide, diethyl adipate, chloroethyl phenyl sulfide and diethyl sebacate were determined to be 61.15, 85.67, 75.91, 53.53, 89.89 and 76.58, with corresponding amounts absorbed in skin of 0.96, 0.65, 1.68, 0.72, 0.57 and 1.38, respectively. In vitro skin decontamination experiments coupled with a dermal absorption study demonstrated that DDGel can efficiently remove chemicals from skin surface, back-extract from the SC, and significantly reduced chemical penetration into skin or systemic absorption for all six simulants tested. Therefore, DDGel offers a great potential as a NextGen skin Decon platform technology for both military and civilian use. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Affinities of penicillins and cephalosporins for the penicillin-binding proteins of Escherichia coli K-12 and their antibacterial activity.

    PubMed Central

    Curtis, N A; Orr, D; Ross, G W; Boulton, M G

    1979-01-01

    The affinities of a range of penicillins and cephalosporins for ther penicillin-binding proteins of Escherichia coli K-12 have been studied, and the results were compared with the antibacterial activity of the compounds against E. coli K-12 and an isogenic permeability mutant. Different penicillins and cephalosporins exhibited different affinities for the "essential" penicillin-binding proteins of E. coli K-12, in a manner which directly correlated with their observed effects upon bacterial morphology. Furthermore, the affinities of the compounds for their "primary" lethal penicillin-binding protein targets showed close agreement with their antibacterial activities against the permeability mutant. Images PMID:393164

  17. High-Speed Lateral Flow Strategy for a Fast Biosensing with an Improved Selectivity and Binding Affinity.

    PubMed

    Cho, Dong Guk; Yoo, Haneul; Lee, Haein; Choi, Yeol Kyo; Lee, Minju; Ahn, Dong June; Hong, Seunghun

    2018-05-10

    We report a high-speed lateral flow strategy for a fast biosensing with an improved selectivity and binding affinity even under harsh conditions. In this strategy, biosensors were fixed at a location away from the center of a round shape disk, and the disk was rotated to create the lateral flow of a target solution on the biosensors during the sensing measurements. Experimental results using the strategy showed high reaction speeds, high binding affinity, and low nonspecific adsorptions of target molecules to biosensors. Furthermore, binding affinity between target molecules and sensing molecules was enhanced even in harsh conditions such as low pH and low ionic strength conditions. These results show that the strategy can improve the performance of conventional biosensors by generating high-speed lateral flows on a biosensor surface. Therefore, our strategy can be utilized as a simple but powerful tool for versatile bio and medical applications.

  18. Dynamics, magnetic properties, and electron binding energies of H2O2 in water.

    PubMed

    C Cabral, Benedito J

    2017-06-21

    Results for the magnetic properties and electron binding energies of H 2 O 2 in liquid water are presented. The adopted methodology relies on the combination of Born-Oppenheimer molecular dynamics and electronic structure calculations. The Keal-Tozer functional was applied for predicting magnetic shieldings and H 2 O 2 intramolecular spin-spin coupling constants. Electron binding energies were calculated with electron propagator theory. In water, H 2 O 2 is a better proton donor than proton acceptor, and the present results indicate that this feature is important for understanding magnetic properties in solution. In comparison with the gas-phase, H 2 O 2 atoms are deshielded in water. For oxygen atoms, the deshielding is mainly determined by structural/conformational changes. Hydrogen-bond interactions explain the deshielding of protons in water. The predicted chemical shift for the H 2 O 2 protons in water (δ∼11.8 ppm) is in good agreement with experimental information (δ=11.2 ppm). The two lowest electron binding energies of H 2 O 2 in water (10.7±0.5 and 11.2±0.5 eV) are in reasonable agreement with experiment. In keeping with data from photoelectron spectroscopy, an ∼1.6 eV red-shift of the two first ionisation energies relative to the gas-phase is observed in water. The strong dependence of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between the σ( 17 O) magnetic shielding constant and the energy gap between the [2a] lowest valence and [1a] core orbitals of H 2 O 2 .

  19. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  20. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography.

    PubMed

    Hu, S; Brady, S R; Kovar, D R; Staiger, C J; Clark, G B; Roux, S J; Muday, G K

    2000-10-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  1. Characterization of monocarboxylate transporter 1 (MCT1) binding affinity for Basigin gene products and L1cam.

    PubMed

    Howard, John; Finch, Nicole A; Ochrietor, Judith D

    2010-07-01

    The purpose of this study was to determine the binding affinities of Basigin gene products and neural cell adhesion molecule L1cam for monocarboxylate transporter-1 (MCT1). ELISA binding assays were performed in which recombinant proteins of the transmembrane domains of Basigin gene products and L1cam were incubated with MCT1 captured from mouse brain. It was determined that Basigin gene products bind MCT1 with moderate affinity, but L1cam does not bind MCT1. Despite a high degree of sequence conservation between Basigin gene products and L1cam, the sequences are different enough to prevent L1cam from interacting with MCT1.

  2. Identification of a Lacosamide Binding Protein Using an Affinity Bait and Chemical Reporter Strategy: 14-3-3 ζ

    PubMed Central

    Park, Ki Duk; Kim, Dong Wook; Reamtong, Onrapak; Eyers, Claire; Gaskell, Simon J.; Liu, Rihe; Kohn, Harold

    2011-01-01

    We have advanced a useful strategy to elucidate binding partners of ligands (drugs) with modest binding affinity. Key to this strategy is attaching to the ligand an affinity bait (AB) and a chemical reporter (CR) group, where the AB irreversibly attaches the ligand to the receptor upon binding and the CR group is employed for receptor detection and isolation. We have tested this AB&CR strategy using lacosamide ((R)-1), a low-molecular-weight antiepileptic drug. We demonstrate that using a (R)-lacosamide AB&CR agent ((R)-2) 14-3-3 ζ in rodent brain soluble lysates is preferentially adducted, adduction is stereospecific with respect to the AB&CR agent, and adduction depends upon the presence of endogenous levels of the small molecule metabolite xanthine. Substitution of lacosamide AB agent ((R)- 5) for (R)-2 led to the identification of the 14-3-3 ζ adduction site (K120) by mass spectrometry. Competition experiments using increasing amounts of (R)-1 in the presence of (R)-2 demonstrated that (R)-1 binds at or near the (R)-2 modification site on 14-3-3 ζ. Structure-activity studies of xanthine derivatives provided information concerning the likely binding interaction between this metabolite and recombinant 14-3-3 ζ. Documentation of the 14-3-3 ζ-xanthine interaction was obtained with isothermal calorimetry using xanthine and the xanthine analogue 1,7-dimethylxanthine. PMID:21692503

  3. Two classes of binding sites for [3H]substance P in rat cerebral cortex.

    PubMed

    Geraghty, D P; Burcher, E

    1993-01-22

    The binding characteristics of [3H]substance P ([3H]SP) were investigated in membranes prepared from rat cerebral cortex. Binding of [3H]SP reached equilibrium after 50 min at 25 degrees C and was saturable at 8 nM. Saturation data could be resolved into high affinity (equilibrium dissociation constant, Kd, 0.22 nM) and low affinity sites (Kd, 2.65 nM). The low affinity sites were more numerous than the high affinity sites, with a ratio of 4:1. The non-hydrolyzable GTP analogue GppNHp had no effect on binding, indicating that the high and low affinity sites are not guanine nucleotide-regulated states of the same (NK-1) receptor. The low affinity sites are unlikely to represent NK-3 receptors since coincubation with the selective NK-3 receptor agonist senktide did not alter the biphasic nature of [3H]SP binding. The rank order of potency for inhibition of [3H]SP (2 nM) binding was SP > or = [Sar9, Met(O2)11]-SP > or = physalaemin > SP(3-11) > NP gamma = [Ala3]-SP > or = SP(4-11) > or = NPK > or = SP(5-11) > or = NKB approximately NKA > SP(1-9), compatible with binding to an NK-1 site. N-terminal fragments and non-amidated analogues were ineffective competitors for [3H]SP binding. However, competition data for several peptides including substance P (SP) and the NK-1 selective agonist [Sar9, Met(O2)11]-SP could be resolved into two components.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Evaluation of galectin binding by frontal affinity chromatography (FAC).

    PubMed

    Iwaki, Jun; Hirabayashi, Jun

    2015-01-01

    Frontal affinity chromatography (FAC) is a simple and versatile procedure enabling quantitative determination of diverse biological interactions in terms of dissociation constants (K d), even though these interactions are relatively weak. The method is best applied to glycans and their binding proteins, with the analytical system operating on the basis of highly reproducible isocratic elution by liquid chromatography. Its application to galectins has been successfully developed to characterize their binding specificities in detail. As a result, their minimal requirements for recognition of disaccharides, i.e., β-galactosides, as well as characteristic features of individual galectins, have been elucidated. In this chapter, we describe standard procedures to determine the K d's for interactions between a series of standard glycans and various galectins.

  5. Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model

    PubMed Central

    2010-01-01

    Background The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC. Results We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides. Conclusions The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at http://bordnerlab.org/RTA/. PMID:20089173

  6. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

    PubMed Central

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.

    2017-01-01

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  7. Binding affinities of NKG2D and CD94 to sialyl Lewis X-expressing N-glycans and heparin.

    PubMed

    Higai, Koji; Suzuki, Chiho; Imaizumi, Yuzo; Xin, Xin; Azuma, Yutaro; Matsumoto, Kojiro

    2011-01-01

    Lectin-like receptors natural killer group 2D (NKG2D) and CD94 on natural killer (NK) cells bind to α2,3-NeuAc-containing N-glycans and heparin/heparan sulfate (HS). Using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rGST-NKG2Dlec) and CD94 (rGST-CD94lec), we evaluated their binding affinities (K(d)) to high sialyl Lewis X (sLeX)-expressing transferrin secreted by HepG2 cells (HepTf) and heparin-conjugated bovine serum albumin (Heparin-BSA), using quartz crystal microbalance (QCM) and enzyme immunoassay (EIA) microplate methods. K(d) values obtained by linear reciprocal plots revealed good coincidence between the two methods. K(d) values of rGST-NKG2Dlec obtained by QCM and EIA, respectively, were 1.19 and 1.11 µM for heparin-BSA >0.30 and 0.20 µM for HepTf, while those of rGST-CD94lec were 1.31 and 1.45 µM for HepTf >0.37 and 0.36 µM for heparin-BSA. These results suggested that these glycans can interact with NKG2D and CD94 to modulate NK cell-dependent cytotoxicity.

  8. Characterization of nicotine binding to the rat brain P/sub 2/ preparation: the identification of multiple binding sites which include specific up-regulatory site(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloan, J.W.

    1984-01-01

    These studies show that nicotine binds to the rat brain P/sub 2/ preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) havemore » been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-(/sup 3/H)nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-(/sup 3/H)nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine.« less

  9. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015

    NASA Astrophysics Data System (ADS)

    Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin

    2017-08-01

    The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.

  10. Temperature-sensitive high affinity (/sup 3/H)serotonin binding: characterization and effects of antidepressant treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmeste, D.M.; Tang, S.W.

    1984-08-13

    Characterization of temperature-sensitive (/sup 3/H)serotonin (5-HT) binding sites (1 and 4 nM Kd sites) revealed complex inhibition by neuroleptics and serotonin antagonists. There was no simple correlation with affinities for S/sub 1/ and S/sub 2/ receptors. In vivo pretreatment (48 h before) with mianserin did not alter B/sub max/ or Kd for the 1 nM Kd (/sup 3/H)5-HT site, although (/sup 3/H)ketanserin (S/sub 2/) densities were decreased by 50%. This suggested that possible S/sub 2/ components of (/sup 3/H)5-HT binding must be negligible, even though ketanserin competed with high affinity (IC/sub 50/ = 3 nM) for a portion of themore » 1 nM Kd (/sup 3/H)5-HT site. Low concentrations of mianserin inhibited the 1 nM Kd (/sup 3/H)5-HT site in a non-competitive manner, as shown by a decrease in B/sub max/ with no change in Kd after in vitro incubation. The complex inhibition data may therefore represent indirect interactions through another site.« less

  11. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3.

    PubMed

    Jeanne, Marion; Lallemand-Breitenbach, Valérie; Ferhi, Omar; Koken, Marcel; Le Bras, Morgane; Duffort, Stéphanie; Peres, Laurent; Berthier, Caroline; Soilihi, Hassane; Raught, Brian; de Thé, Hugues

    2010-07-13

    As(2)O(3) cures acute promyelocytic leukemia (APL) by initiating PML/RARA oncoprotein degradation, through sumoylation of its PML moiety. However, how As(2)O(3) initiates PML sumoylation has remained largely unexplained. As(2)O(3) binds vicinal cysteines and increases reactive oxygen species (ROS) production. We demonstrate that upon As(2)O(3) exposure, PML undergoes ROS-initiated intermolecular disulfide formation and binds arsenic directly. Disulfide-linked PML or PML/RARA multimers form nuclear matrix-associated nuclear bodies (NBs), become sumoylated and are degraded. Hematopoietic progenitors transformed by an As(2)O(3)-binding PML/RARA mutant exhibit defective As(2)O(3) response. Conversely, nonarsenical oxidants elicit PML/RARA multimerization, NB-association, degradation, and leukemia response in vivo, but do not affect PLZF/RARA-driven APLs. Thus, PML oxidation regulates NB-biogenesis, while oxidation-enforced PML/RARA multimerization and direct arsenic-binding cooperate to enforce APL's exquisite As(2)O(3) sensitivity. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides.

    PubMed

    Yoga, Yano M K; Traore, Daouda A K; Sidiqi, Mahjooba; Szeto, Chris; Pendini, Nicole R; Barker, Andrew; Leedman, Peter J; Wilce, Jacqueline A; Wilce, Matthew C J

    2012-06-01

    Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual αCP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA and DNA, KH3 binds with intermediate affinity and KH2 only interacts detectibly with DNA. The crystal structure of KH1 bound to a 5'-CCCTCCCT-3' DNA sequence shows a 2:1 protein:DNA stoichiometry and demonstrates a molecular arrangement of KH domains bound to immediately adjacent oligonucleotide target sites. SPR experiments, with a series of poly-C-sequences reveals that cytosine is preferred at all four positions in the oligonucleotide binding cleft and that a C-tetrad binds KH1 with 10 times higher affinity than a C-triplet. The basis for this high affinity interaction is finally detailed with the structure determination of a KH1.W.C54S mutant bound to 5'-ACCCCA-3' DNA sequence. Together, these data establish the lead role of KH1 in oligonucleotide binding by αCP1 and reveal the molecular basis of its specificity for a C-rich tetrad.

  13. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    PubMed Central

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  14. Localization in human interleukin 2 of the binding site to the alpha chain (p55) of the interleukin 2 receptor.

    PubMed Central

    Sauvé, K; Nachman, M; Spence, C; Bailon, P; Campbell, E; Tsien, W H; Kondas, J A; Hakimi, J; Ju, G

    1991-01-01

    Human interleukin 2 (IL-2) analogs with defined amino acid substitutions were used to identify specific residues that interact with the 55-kDa subunit (p55) or alpha chain of the human IL-2 receptor. Analog proteins containing specific substitutions for Lys-35, Arg-38, Phe-42, or Lys-43 were inactive in competitive binding assays for p55. All of these analogs retained substantial competitive binding to the intermediate-affinity p70 subunit (beta chain) of the receptor complex. The analogs varied in ability to interact with the high-affinity p55/p70 receptor. Despite the lack of binding to p55, all analogs exhibited significant biological activity, as assayed on the murine CTLL cell line. The dissociation constants of Arg-38 and Phe-42 analogs for p70 were consistent with intermediate-affinity binding; the Kd values were not significantly affected by the presence of p55 in binding to the high-affinity IL-2 receptor complex. These results confirm the importance of the B alpha-helix in IL-2 as the locus for p55-receptor binding and support a revised model of IL-2-IL-2 receptor interaction. PMID:2052547

  15. Insights into structural features determining odorant affinities to honey bee odorant binding protein 14.

    PubMed

    Schwaighofer, Andreas; Pechlaner, Maria; Oostenbrink, Chris; Kotlowski, Caroline; Araman, Can; Mastrogiacomo, Rosa; Pelosi, Paolo; Knoll, Wolfgang; Nowak, Christoph; Larisika, Melanie

    2014-04-18

    Molecular interactions between odorants and odorant binding proteins (OBPs) are of major importance for understanding the principles of selectivity of OBPs towards the wide range of semiochemicals. It is largely unknown on a structural basis, how an OBP binds and discriminates between odorant molecules. Here we examine this aspect in greater detail by comparing the C-minus OBP14 of the honey bee (Apis mellifera L.) to a mutant form of the protein that comprises the third disulfide bond lacking in C-minus OBPs. Affinities of structurally analogous odorants featuring an aromatic phenol group with different side chains were assessed based on changes of the thermal stability of the protein upon odorant binding monitored by circular dichroism spectroscopy. Our results indicate a tendency that odorants show higher affinity to the wild-type OBP suggesting that the introduced rigidity in the mutant protein has a negative effect on odorant binding. Furthermore, we show that OBP14 stability is very sensitive to the position and type of functional groups in the odorant. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Copper binding to soil fulvic and humic acids: NICA-Donnan modeling and conditional affinity spectra.

    PubMed

    Xu, Jinling; Tan, Wenfeng; Xiong, Juan; Wang, Mingxia; Fang, Linchuan; Koopal, Luuk K

    2016-07-01

    Binding of Cu(II) to soil fulvic acid (JGFA), soil humic acids (JGHA, JLHA), and lignite-based humic acid (PAHA) was investigated through NICA-Donnan modeling and conditional affinity spectrum (CAS). It is to extend the knowledge of copper binding by soil humic substances (HS) both in respect of enlarging the database of metal ion binding to HS and obtaining a good insight into Cu binding to the functional groups of FA and HA by using the NICA-Donnan model to unravel the intrinsic and conditional affinity spectra. Results showed that Cu binding to HS increased with increasing pH and decreasing ionic strength. The amount of Cu bound to the HAs was larger than the amount bound to JGFA. Milne's generic parameters did not provide satisfactory predictions for the present soil HS samples, while material-specific NICA-Donnan model parameters described and predicted Cu binding to the HS well. Both the 'low' and 'high' concentration fitting procedures indicated a substantial bidentate structure of the Cu complexes with HS. By means of CAS underlying NICA isotherm, which was scarcely used, the nature of the binding at different solution conditions for a given sample and the differences in binding mode were illustrated. It was indicated that carboxylic group played an indispensable role in Cu binding to HS in that the carboxylic CAS had stronger conditional affinity than the phenolic distribution due to its large degree of proton dissociation. The fact was especially true for JGFA and JLHA which contain much larger amount of carboxylic groups, and the occupation of phenolic sites by Cu was negligible. Comparable amounts of carboxylic and phenolic groups on PAHA and JGHA, increased the occupation of phenolic type sites by Cu. The binding strength of PAHA-Cu and JGHA-Cu was stronger than that of JGFA-Cu and JLHA-Cu. The presence of phenolic groups increased the chance of forming more stable complexes, such as the salicylate-Cu or catechol-Cu type structures. Copyright © 2016

  17. Circular permutation of the starch-binding domain: inversion of ligand selectivity with increased affinity.

    PubMed

    Stephen, Preyesh; Tseng, Kai-Li; Liu, Yu-Nan; Lyu, Ping-Chiang

    2012-03-07

    Proteins containing starch-binding domains (SBDs) are used in a variety of scientific and technological applications. A circularly permutated SBD (CP90) with improved affinity and selectivity toward longer-chain carbohydrates was synthesized, suggesting that a new starch-binding protein may be developed for specific scientific and industrial applications. This journal is © The Royal Society of Chemistry 2012

  18. The presence of high-affinity, low-capacity estradiol-17β binding in rainbow trout scale indicates a possible endocrine route for the regulation of scale resorption

    USGS Publications Warehouse

    Persson, Petra; Shrimpton, J. Mark; McCormick, Stephen D.; Bjornsson, Bjorn Thrandur

    2000-01-01

    High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol × mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol × mg protein−1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.

  19. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

    PubMed

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H

    2017-01-09

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Quantification of transcription factor-DNA binding affinity in a living cell

    PubMed Central

    Belikov, Sergey; Berg, Otto G.; Wrange, Örjan

    2016-01-01

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [3H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element. PMID:26657626

  1. Enhanced binding by dextran-grafting to Protein A affinity chromatographic media.

    PubMed

    Zhao, Lan; Zhu, Kai; Huang, Yongdong; Li, Qiang; Li, Xiunan; Zhang, Rongyue; Su, Zhiguo; Wang, Qibao; Ma, Guanghui

    2017-04-01

    Dextran-grafted Protein A affinity chromatographic medium was prepared by grafting dextran to agarose-based matrix, followed by epoxy-activation and Protein A coupling site-directed to sulfhydryl groups of cysteine molecules. An enhancement of both the binding performance and the stability was achieved for this dextran-grafted Protein A chromatographic medium. Its dynamic binding capacity was 61 mg immunoglobulin G/mL suction-dried gel, increased by 24% compared with that of the non-grafted medium. The binding capacity of dextran-grafted medium decreased about 7% after 40 cleaning-in-place cycles, much lower than that of the non-grafted medium as decreased about 15%. Confocal laser scanning microscopy results showed that immunoglobulin G was bound to both the outside and the inside of dextran-grafted medium faster than that of non-grafted one. Atomic force microscopy showed that this dextran-grafted Protein A medium had much rougher surface with a vertical coordinate range of ±80 nm, while that of non-grafted one was ±10 nm. Grafted dextran provided a more stereo surface morphology and immunoglobulin G molecules were more easily to be bound. This high-performance dextran-grafted Protein A affinity chromatographic medium has promising applications in large-scale antibody purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Odorant-binding proteins display high affinities for behavioral attractants and repellents in the natural predator Chrysopa pallens.

    PubMed

    Li, Zhao-Qun; Zhang, Shuai; Luo, Jun-Yu; Wang, Si-Bao; Dong, Shuang-Lin; Cui, Jin-Jie

    2015-07-01

    Chrysopa pallens is an important natural predator of various pests in many different cropping systems. Understanding the sophisticated olfactory system of insect antennae is crucial for studying the physiological bases of olfaction and could also help enhance the effectiveness of C. pallens in biological control. However, functional studies of the olfactory genes in C. pallens are still lacking. In this study, we cloned five odorant-binding protein (OBP) genes from C. pallens (CpalOBPs). Quantitative RT-PCR results indicated that the five CpalOBPs had different tissue expression profiles. Ligand-binding assays showed that farnesol, farnesene, cis-3-hexenyl hexanoate, geranylacetone, beta-ionone, octyl aldehyde, decanal, nerolidol (Ki<20 μM), and especially 2-pentadecanone (Ki=1.19 μM) and 2-hexyl-1-decanol (Ki=0.37 μM) strongly bound to CpalOBP2. CpalOBP15 exhibited high binding affinities for beta-ionone, 2-tridecanone, trans-nerolidol, and dodecyl aldehyde. Behavioral trials using the 14 compounds exhibiting high binding affinities for the CpalOBPs revealed that nine were able to elicit significant behavioral responses from C. pallens. Among them, farnesene and its corresponding alcohol, farnesol, elicited remarkable repellent behavioral responses from C. pallens. Our study provides several compounds that could be selected to develop slow-release agents that attract/repel C. pallens and to improve the search for strategies to eliminate insect pests. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Discovery of high-affinity BCL6-binding peptide and its structure-activity relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Kotaro; Sogabe, Satoshi; Kamada, Yusuke

    B cell lymphoma 6 (BCL6) is a transcriptional repressor that interacts with its corepressors BcoR and SMRT. Since this protein-protein interaction (PPI) induces activation and differentiation of B lymphocytes, BCL6 has been an attractive drug target for potential autoimmune disease treatments. Here we report a novel BCL6 inhibitory peptide, F1324 (Ac-LWYTDIRMSWRVP-OH), which we discovered using phage display technology; we also discuss this peptide's structure-activity relationship (SAR). For BCL6(5-129) binding, K{sub D} and IC{sub 50} values of F1324 were 0.57 nM and 1 nM according to the results of an SPR analysis and cell-free ELISA assay, respectively. In contrast, BcoR(Arg498-514Pro) and SMRT(Leu1422-Arg1438) exhibitedmore » relatively weak micromole-order binding to BCL6. Furthermore, Fusion protein AcGFP-F1324 transiently expressed in HEK293T cells inhibited intracellular PPI in cell-based M2H assay. By examination of the truncation and fragmentation of F1324, the C-terminal sequence WRVP, which is similar to the BcoR(509-512) sequence WVVP, was identified as being critical for BCL6 binding. In addition, subsequent single-crystal X-ray diffraction analysis of F1324/BCL6(5-129) complex revealed that the high affinity of F1324 was caused by effective interaction of its side chains while its main chain structure was similar to that of BcoR(Arg498-514Pro). To our knowledge, F1324 is the strongest BCL6-binding peptide yet reported. - Highlights: • F1324 was discovered as 5000-times higher affinity peptide to BCL6 than that of BcoR(R498-P514). • X-ray crystal structure analysis revealed the binding mode. • To our knowledge, F1324 is the strongest BCL6-binding and -inhibition peptide so far.« less

  4. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nye, J.S.

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one classmore » of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.« less

  5. Use of 2-(/sup 125/I)iodomelatonin to characterize melatonin binding sites in chicken retina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubocovich, M.L.; Takahashi, J.S.

    2-(/sup 125/I)Iodomelatonin binds with high affinity to a site possessing the pharmacological characteristics of a melatonin receptor in chicken retinal membranes. The specific binding of 2-(/sup 125/I)iodomelatonin is stable, saturable, and reversible. Saturation experiments indicated that 2-(/sup 125/I)iodomelatonin labeled a single class of sites with an affinity constant (Kd) of 434 +/- 56 pM and a total number of binding sites (Bmax) of 74.0 +/- 13.6 fmol/mg of protein. The affinity constant obtained from kinetic analysis was in close agreement with that obtained in saturation experiments. Competition experiments showed a monophasic reduction of 2-(/sup 125/I)iodomelatonin binding with a pharmacological ordermore » of indole amine affinities characteristic of a melatonin receptor: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-dichloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin much greater than N-acetyltryptamine greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine greater than 5-hydroxytryptamine (inactive). The affinities of these melatonin analogs in competing for 2-(/sup 125/I)iodomelatonin binding sites were correlated closely with their potencies for inhibition of the calcium-dependent release of (3H)dopamine from chicken and rabbit retinas, indicating association of the binding site with a functional response regulated by melatonin. The results indicate that 2-(/sup 125/I)iodomelatonin is a selective, high-affinity radioligand for the identification and characterization of melatonin receptor sites.« less

  6. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Feng; Miyakawa, Takuya; Kataoka, Michihiko

    2014-04-18

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystalmore » structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.« less

  7. Water-Hydrogel Binding Affinity Modulates Freeze-Drying-Induced Micropore Architecture and Skeletal Myotube Formation.

    PubMed

    Rich, Max H; Lee, Min Kyung; Marshall, Nicholas; Clay, Nicholas; Chen, Jinrong; Mahmassani, Ziad; Boppart, Marni; Kong, Hyunjoon

    2015-08-10

    Freeze-dried hydrogels are increasingly used to create 3D interconnected micropores that facilitate biomolecular and cellular transports. However, freeze-drying is often plagued by variance in micropore architecture based on polymer choice. We hypothesized that water-polymer binding affinity plays a significant role in sizes and numbers of micropores formed through freeze-drying, influencing cell-derived tissue quality. Poly(ethylene glycol)diacrylate (PEGDA) hydrogels with alginate methacrylate (AM) were used due to AM's higher binding affinity for water than PEGDA. PEGDA-AM hydrogels with larger AM concentrations resulted in larger sizes and numbers of micropores than pure PEGDA hydrogels, attributed to the increased mass of water binding to the PEGDA-AM gel. Skeletal myoblasts loaded in microporous PEGDA-AM hydrogels were active to produce 3D muscle-like tissue, while those loaded in pure PEGDA gels were localized on the gel surface. We propose that this study will be broadly useful in designing and improving the performance of various microporous gels.

  8. Ring size of somatostatin analogues (ODT-8) modulates receptor selectivity and binding affinity

    PubMed Central

    Erchegyi, Judit; Grace, Christy Rani R.; Samant, Manoj; Cescato, Renzo; Piccand, Veronique; Riek, Roland; Reubi, Jean Claude; Rivier, Jean E.

    2009-01-01

    The synthesis, biological testing and NMR studies of several analogues of H-c[Cys3-Phe6-Phe7-dTrp8-Lys9-Thr10-Phe11-Cys14]-OH (ODT-8, a pan-somatostatin analogue) (1), have been performed to assess the effect of changing the stereochemistry and the number of the atoms in the disulfide bridge on binding affinity. Cysteine at positions 3 and/or 14 (SRIF numbering) were/was substituted with d-cysteine, Nor-cysteine, d-Nor-cysteine, Homo-cysteine and/or d-Homo-cysteine. The 3D structures of selected partially selective, bioactive analogues (3, 18, 19 and 21) were carried out in DMSO. Interestingly and not unexpectedly, the 3D structures of these analogues comprised the pharmacophore for which the analogues had the highest binding affinities (i.e., sst4 in all cases). PMID:18410084

  9. Free energy simulations and MM-PBSA analyses on the affinity and specificity of steroid binding to antiestradiol antibody.

    PubMed

    Laitinen, Tuomo; Kankare, Jussi A; Peräkylä, Mikael

    2004-04-01

    Antiestradiol antibody 57-2 binds 17beta-estradiol (E2) with moderately high affinity (K(a) = 5 x 10(8) M(-1)). The structurally related natural estrogens estrone and estriol as well synthetic 17-deoxy-estradiol and 17alpha-estradiol are bound to the antibody with 3.7-4.9 kcal mol(-1) lower binding free energies than E2. Free energy perturbation (FEP) simulations and the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method were applied to investigate the factors responsible for the relatively low cross-reactivity of the antibody with these four steroids, differing from E2 by the substituents of the steroid D-ring. In addition, computational alanine scanning of the binding site residues was carried out with the MM-PBSA method. Both the FEP and MM-PBSA methods reproduced the experimental relative affinities of the five steroids in good agreement with experiment. On the basis of FEP simulations, the number of hydrogen bonds formed between the antibody and steroids, which varied from 0 to 3 in the steroids studied, determined directly the magnitude of the steroid-antibody interaction free energies. One hydrogen bond was calculated to contribute about 3 kcal mol(-1) to the interaction energy. Because the relative binding free energies of estrone (two antibody-steroid hydrogen bonds), estriol (three hydrogen bonds), 17-deoxy-estradiol (no hydrogen bonds), and 17alpha-estradiol (two hydrogen bonds) are close to each other and clearly lower than that of E2 (three hydrogen bonds), the water-steroid interactions lost upon binding to the antibody make an important contribution to the binding free energies. The MM-PBSA calculations showed that the binding of steroids to the antiestradiol antibody is driven by van der Waals interactions, whereas specificity is solely due to electrostatic interactions. In addition, binding of steroids to the antiestradiol antibody 57-2 was compared to the binding to the antiprogesterone antibody DB3 and antitestosterone antibody 3

  10. Determination of O:4 antigen-antibody affinity level in O:5 antigen positive and negative variants of Salmonella enterica serovar Typhimurium.

    PubMed

    Nakai, Yuka; Ito, Akihisa; Ogawa, Yohsuke; Aribam, Swarmistha Devi; Elsheimer-Matulova, Marta; Shiraiwa, Kazumasa; Kisaka, Stevens M B; Hikono, Hirokazu; Nishikawa, Sayaka; Akiba, Masato; Kawahara, Kazuyoshi; Shimoji, Yoshihiro; Eguchi, Masahiro

    2017-04-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) has two serological variants: one that expresses the O:5 antigen (1,4,5,12:i:1,2) and one that lacks O:5 antigen (1,4,12:i:1,2). For serotyping, S. Typhimurium is agglutinated by diagnostic O:4 antigen serum. This study was carried out to compare the antigen-antibody affinity of O:4 antigen in S. Typhimurium χ3306 O:5-positive and S. Typhimurium χ3306 O:5-negative strains. The affinity of O:4 antigen with O:4 antigen serum was found to be stronger in the O:5-negative strains compared to O:5-positive strains. Next, we investigated the antigen-antibody affinity of O:4 antigen with O:4 antigen serum in field strains of S. Typhimurium, which showed the same tendency in affinity as seen with S. Typhimurium χ3306 O:5-positive and negative strains. This study suggests that the presence or absence of O:5 antigen causes differences in O:4 agglutination reactions with different field strains of S. Typhimurium. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Isomer-Specific Binding Affinity of Perfluorooctanesulfonate (PFOS) and Perfluorooctanoate (PFOA) to Serum Proteins.

    PubMed

    Beesoon, Sanjay; Martin, Jonathan W

    2015-05-05

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are among the most prominent contaminants in human serum, and these were historically manufactured as technical mixtures of linear and branched isomers. The isomers display unique pharmacokinetics in humans and in animal models, but molecular mechanisms underlying isomer-specific PFOS and PFOA disposition have not previously been studied. Here, ultrafiltration devices were used to examine (i) the dissociation constants (Kd) of individual PFOS and PFOA isomers with human serum albumin (HSA) and (ii) relative binding affinity of isomers in technical mixtures spiked to whole calf serum and human serum. Measurement of HSA Kd's demonstrated that linear PFOS (Kd=8(±4)×10(-8) M) was much more tightly bound than branched PFOS isomers (Kd range from 8(±1)×10(-5) M to 4(±2)×10(-4) M). Similarly, linear PFOA (Kd=1(±0.9)×10(-4) M) was more strongly bound to HSA compared to branched PFOA isomers (Kd range from 4(±2)×10(-4) M to 3(±2)×10(-4) M). The higher binding affinities of linear PFOS and PFOA to total serum protein were confirmed when both calf serum and human serum were spiked with technical mixtures. Overall, these data provide a mechanistic explanation for the longer biological half-life of PFOS in humans, compared to PFOA, and for the higher transplacental transfer efficiencies and renal clearance of branched PFOS and PFOA isomers, compared to the respective linear isomer.

  12. Two classes of cholesterol binding sites for the β2AR revealed by thermostability and NMR.

    PubMed

    Gater, Deborah L; Saurel, Olivier; Iordanov, Iordan; Liu, Wei; Cherezov, Vadim; Milon, Alain

    2014-11-18

    Cholesterol binding to G protein-coupled receptors (GPCRs) and modulation of their activities in membranes is a fundamental issue for understanding their function. Despite the identification of cholesterol binding sites in high-resolution x-ray structures of the ?2 adrenergic receptor (β2AR) and other GPCRs, the binding affinity of cholesterol for this receptor and exchange rates between the free and bound cholesterol remain unknown. In this study we report the existence of two classes of cholesterol binding sites in β2AR. By analyzing the β2AR unfolding temperature in lipidic cubic phase (LCP) as a function of cholesterol concentration we observed high-affinity cooperative binding of cholesterol with sub-nM affinity constant. In contrast, saturation transfer difference (STD) NMR experiments revealed the existence of a second class of cholesterol binding sites, in fast exchange on the STD NMR timescale. Titration of the STD signal as a function of cholesterol concentration provided a lower limit of 100 mM for their dissociation constant. However, these binding sites are specific for both cholesterol and β2AR, as shown with control experiments using ergosterol and a control membrane protein (KpOmpA). We postulate that this specificity is mediated by the high-affinity bound cholesterol molecules and propose the formation of transient cholesterol clusters around the high-affinity binding sites.

  13. Sequestration by IFIT1 Impairs Translation of 2O-unmethylated Capped RNA

    PubMed Central

    Lacerda, Livia; Benda, Christian; Holze, Cathleen; Eberl, Christian H.; Mann, Angelika; Kindler, Eveline; Gil-Cruz, Cristina; Ziebuhr, John; Thiel, Volker; Pichlmair, Andreas

    2013-01-01

    Viruses that generate capped RNA lacking 2O methylation on the first ribose are severely affected by the antiviral activity of Type I interferons. We used proteome-wide affinity purification coupled to mass spectrometry to identify human and mouse proteins specifically binding to capped RNA with different methylation states. This analysis, complemented with functional validation experiments, revealed that IFIT1 is the sole interferon-induced protein displaying higher affinity for unmethylated than for methylated capped RNA. IFIT1 tethers a species-specific protein complex consisting of other IFITs to RNA. Pulsed stable isotope labelling with amino acids in cell culture coupled to mass spectrometry as well as in vitro competition assays indicate that IFIT1 sequesters 2O-unmethylated capped RNA and thereby impairs binding of eukaryotic translation initiation factors to 2O-unmethylated RNA template, which results in inhibition of translation. The specificity of IFIT1 for 2O-unmethylated RNA serves as potent antiviral mechanism against viruses lacking 2O-methyltransferase activity and at the same time allows unperturbed progression of the antiviral program in infected cells. PMID:24098121

  14. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    ERIC Educational Resources Information Center

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  15. Quantitation of the calcium and membrane binding properties of the C2 domains of dysferlin.

    PubMed

    Abdullah, Nazish; Padmanarayana, Murugesh; Marty, Naomi J; Johnson, Colin P

    2014-01-21

    Dysferlin is a large membrane protein involved in calcium-triggered resealing of the sarcolemma after injury. Although it is generally accepted that dysferlin is Ca(2+) sensitive, the Ca(2+) binding properties of dysferlin have not been characterized. In this study, we report an analysis of the Ca(2+) and membrane binding properties of all seven C2 domains of dysferlin as well as a multi-C2 domain construct. Isothermal titration calorimetry measurements indicate that all seven dysferlin C2 domains interact with Ca(2+) with a wide range of binding affinities. The C2A and C2C domains were determined to be the most sensitive, with Kd values in the tens of micromolar, whereas the C2D domain was least sensitive, with a near millimolar Kd value. Mutagenesis of C2A demonstrates the requirement for negatively charged residues in the loop regions for divalent ion binding. Furthermore, dysferlin displayed significantly lower binding affinity for the divalent cations magnesium and strontium. Measurement of a multidomain construct indicates that the solution binding affinity does not change when C2 domains are linked. Finally, sedimentation assays suggest all seven C2 domains bind lipid membranes, and that Ca(2+) enhances but is not required for interaction. This report reveals for the first time, to our knowledge, that all dysferlin domains bind Ca(2+) albeit with varying affinity and stoichiometry. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. New approaches for the reliable in vitro assessment of binding affinity based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics.

    PubMed

    Zeilinger, Markus; Pichler, Florian; Nics, Lukas; Wadsak, Wolfgang; Spreitzer, Helmut; Hacker, Marcus; Mitterhauser, Markus

    2017-12-01

    Resolving the kinetic mechanisms of biomolecular interactions have become increasingly important in early-phase drug development. Since traditional in vitro methods belong to dose-dependent assessments, binding kinetics is usually overlooked. The present study aimed at the establishment of two novel experimental approaches for the assessment of binding affinity of both, radiolabelled and non-labelled compounds targeting the A 3 R, based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics. A novel time-resolved competition assay was developed and applied to determine the K i of eight different A 3 R antagonists, using CHO-K1 cells stably expressing the hA 3 R. In addition, a new kinetic real-time cell-binding approach was established to quantify the rate constants k on and k off , as well as the dedicated K d of the A 3 R agonist [ 125 I]-AB-MECA. Furthermore, lipophilicity measurements were conducted to control influences due to physicochemical properties of the used compounds. Two novel real-time cell-binding approaches were successfully developed and established. Both experimental procedures were found to visualize the kinetic binding characteristics with high spatial and temporal resolution, resulting in reliable affinity values, which are in good agreement with values previously reported with traditional methods. Taking into account the lipophilicity of the A 3 R antagonists, no influences on the experimental performance and the resulting affinity were investigated. Both kinetic binding approaches comprise tracer administration and subsequent binding to living cells, expressing the dedicated target protein. Therefore, the experiments resemble better the true in vivo physiological conditions and provide important markers of cellular feedback and biological response.

  17. Fast O2 Binding at Dicopper Complexes Containing Schiff-Base Dinucleating Ligands

    PubMed Central

    Company, Anna; Gómez, Laura; Mas-Ballesté, Rubén; Korendovych, Ivan V.; Ribas, Xavi; Poater, Albert; Parella, Teodor; Fontrodona, Xavier; Benet-Buchholz, Jordi; Solà, Miquel; Que, Lawrence; Rybak-Akimova, Elena; Costas, Miquel

    2008-01-01

    A new family of dicopper(I) complexes [CuI2RL](X)2, (R = H, 1X, R = tBu, 2X and R = NO2, 3X, X = CF3SO3, ClO4, SbF6 or BArF, BArF = [B{3,5-(CF3)2-C6H3}4]−), where RL is a Schiff-base ligand containing two tridentate binding sites linked by a xylyl spacer have been prepared, characterized, and their reaction with O2 studied. The complexes were designed with the aim of reproducing structural aspects of the active site of type 3 dicopper proteins; they contain two three-coordinate copper sites and a rather flexible podand ligand backbone. The solid state structures of 1ClO4, 2CF3SO3, 2ClO4 and 3BArF·CH3CN have been established by single crystal X-ray diffraction analysis. 1ClO4 adopts a polymeric structure in solution while 2CF3SO3, 2ClO4 and 3BArF·CH3CN are monomeric. The complexes have been studied in solution by means of 1H and 19F NMR spectroscopy, which put forward the presence of dynamic processes in solution. 1-3BArF and 1-3CF3SO3 in acetone react rapidly with O2 to generate metaestable [CuIII2(μ-O)2(RL)]2+ 1-3(O2) and [CuIII2(μ-O)2(CF3SO3)(RL)]+ 1-3(O2)(CF3SO3) species, respectively that have been characterized by UV-vis spectroscopy and resonance Raman analysis. Instead, reaction of 1-3BArF with O2 in CH2Cl2 results in intermolecular O2 binding. DFT methods have been used to study the chemical identities and structural parameters of the O2 adducts, and the relative stability of the CuIII2(μ-O)2 form with respect to the CuII2(μ-η2: η2-peroxo) isomer. The reaction of 1X, X = CF3SO3 and BArF with O2 in acetone has been studied by stopped-flow exhibiting an unexpected very fast reaction rate (k = 3.82(4) × 103 M−1s−1, ΔH‡ = 4.9 ± 0.5 kJ·mol−1, ΔS‡ = −148 ± 5 J·K−1·mol−1), nearly three orders of magnitude faster than in the parent [CuI2(m-XYLMeAN)]2+. Thermal decomposition of 1-3(O2) does not result in aromatic hydroxylation. The mechanism and kinetics of O2 binding to 1X (X = CF3SO3 and BArF) is discussed and compared with those

  18. Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides

    PubMed Central

    Yoga, Yano M. K.; Traore, Daouda A. K.; Sidiqi, Mahjooba; Szeto, Chris; Pendini, Nicole R.; Barker, Andrew; Leedman, Peter J.; Wilce, Jacqueline A.; Wilce, Matthew C. J.

    2012-01-01

    Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual αCP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA and DNA, KH3 binds with intermediate affinity and KH2 only interacts detectibly with DNA. The crystal structure of KH1 bound to a 5′-CCCTCCCT-3′ DNA sequence shows a 2:1 protein:DNA stoichiometry and demonstrates a molecular arrangement of KH domains bound to immediately adjacent oligonucleotide target sites. SPR experiments, with a series of poly-C-sequences reveals that cytosine is preferred at all four positions in the oligonucleotide binding cleft and that a C-tetrad binds KH1 with 10 times higher affinity than a C-triplet. The basis for this high affinity interaction is finally detailed with the structure determination of a KH1.W.C54S mutant bound to 5′-ACCCCA-3′ DNA sequence. Together, these data establish the lead role of KH1 in oligonucleotide binding by αCP1 and reveal the molecular basis of its specificity for a C-rich tetrad. PMID:22344691

  19. Development of QSAR models for predicting the binding affinity of endocrine disrupting chemicals to eight fish estrogen receptor.

    PubMed

    He, Junyi; Peng, Tao; Yang, Xianhai; Liu, Huihui

    2018-02-01

    Endocrine disrupting effect has become a central point of concern, and various biological mechanisms involve in the disruption of endocrine system. Recently, we have explored the mechanism of disrupting hormonal transport protein, through the binding affinity of sex hormone-binding globulin in different fish species. This study, serving as a companion article, focused on the mechanism of activating/inhibiting hormone receptor, by investigating the binding interaction of chemicals with the estrogen receptor (ER) of different fish species. We collected the relative binding affinity (RBA) of chemicals with 17β-estradiol binding to the ER of eight fish species. With this parameter as the endpoints, quantitative structure-activity relationship (QSAR) models were established using DRAGON descriptors. Statistical results indicated that the developed models had satisfactory goodness of fit, robustness and predictive ability. The Euclidean distance and Williams plot verified that these models had wide application domains, which covered a large number of structurally diverse chemicals. Based on the screened descriptors, we proposed an appropriate mechanism interpretation for the binding potency. Additionally, even though the same chemical had different affinities for ER from different fish species, the affinity of ER exhibited a high correlation for fish species within the same Order (i.e., Salmoniformes, Cypriniformes, Perciformes), which consistent with that in our previous study. Hence, when performing the endocrine disrupting effect assessment, the species diversity should be taken into account, but maybe the fish species in the same Order can be grouped together. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Binding pose and affinity prediction in the 2016 D3R Grand Challenge 2 using the Wilma-SIE method

    NASA Astrophysics Data System (ADS)

    Hogues, Hervé; Sulea, Traian; Gaudreault, Francis; Corbeil, Christopher R.; Purisima, Enrico O.

    2018-01-01

    The Farnesoid X receptor (FXR) exhibits significant backbone movement in response to the binding of various ligands and can be a challenge for pose prediction algorithms. As part of the D3R Grand Challenge 2, we tested Wilma-SIE, a rigid-protein docking method, on a set of 36 FXR ligands for which the crystal structures had originally been blinded. These ligands covered several classes of compounds. To overcome the rigid protein limitations of the method, we used an ensemble of publicly available structures for FXR from the PDB. The use of the ensemble allowed Wilma-SIE to predict poses with average and median RMSDs of 2.3 and 1.4 Å, respectively. It was quite clear, however, that had we used a single structure for the receptor the success rate would have been much lower. The most successful predictions were obtained on chemical classes for which one or more crystal structures of the receptor bound to a molecule of the same class was available. In the absence of a crystal structure for the class, observing a consensus binding mode for the ligands of the class using one or more receptor structures of other classes seemed to be indicative of a reasonable pose prediction. Affinity prediction proved to be more challenging with generally poor correlation with experimental IC50s (Kendall tau 0.3). Even when the 36 crystal structures were used the accuracy of the predicted affinities was not appreciably improved. A possible cause of difficulty is the internal energy strain arising from conformational differences in the receptor across complexes, which may need to be properly estimated and incorporated into the SIE scoring function.

  1. Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures.

    PubMed

    Rosenthaler, Sarah; Pöhn, Birgit; Kolmanz, Caroline; Huu, Chi Nguyen; Krewenka, Christopher; Huber, Alexandra; Kranner, Barbara; Rausch, Wolf-Dieter; Moldzio, Rudolf

    2014-01-01

    Phytocannabinoids are potential candidates for neurodegenerative disease treatment. Nonetheless, the exact mode of action of major phytocannabinoids has to be elucidated, but both, receptor and non-receptor mediated effects are discussed. Focusing on the often presumed structure-affinity-relationship, Ki values of phytocannabinoids cannabidiol (CBD), cannabidivarin (CBDV), cannabichromene (CBC), cannabigerol (CBG), cannabinol (CBN), THC acid (THCA) and THC to human CB1 and CB2 receptors were detected by using competitive inhibition between radioligand [(3)H]CP-55,940 and the phytocannabinoids. The resulting Ki values to CB1 range from 23.5 nM (THCA) to 14711 nM (CBDV), whereas Ki values to CB2 range from 8.5 nM (THC) to 574.2 nM (CBDV). To study the relationship between binding affinity and effects on neurons, we investigated possible CB1 related cytotoxic properties in murine mesencephalic primary cell cultures and N18TG2 neuroblastoma cell line. Most of the phytocannabinoids did not affect the number of dopaminergic neurons in primary cultures, whereas propidium iodide and resazurin formation assays revealed cytotoxic properties of CBN, CBDV and CBG. However, THC showed positive effects on N18TG2 cell viability at a concentration of 10 μM, whereas CBC and THCA also displayed slightly positive activities. These findings are not linked to the receptor binding affinity therewith pointing to another mechanism than a receptor mediated one. [Corrected] Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Scaffold hopping from (5-hydroxymethyl) isophthalates to multisubstituted pyrimidines diminishes binding affinity to the C1 domain of protein kinase C

    PubMed Central

    Brandoli, Giulia; Lempinen, Antti; Artes, Sanna; Turku, Ainoleena; Jäntti, Maria Helena; Talman, Virpi; Yli-Kauhaluoma, Jari; Tuominen, Raimo K.; Boije af Gennäs, Gustav

    2018-01-01

    Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. Utilizing the crystal structure of the PKCδ C1B domain, we have developed hydrophobic isophthalic acid derivatives that modify PKC functions by binding to the C1 domain of the enzyme. In the present study, we aimed to improve the drug-like properties of the isophthalic acid derivatives by increasing their solubility and enhancing the binding affinity. Here we describe the design and synthesis of a series of multisubstituted pyrimidines as analogs of C1 domain–targeted isophthalates and characterize their binding affinities to the PKCα isoform. In contrast to our computational predictions, the scaffold hopping from phenyl to pyrimidine core diminished the binding affinity. Although the novel pyrimidines did not establish improved binding affinity for PKCα compared to our previous isophthalic acid derivatives, the present results provide useful structure-activity relationship data for further development of ligands targeted to the C1 domain of PKC. PMID:29641588

  3. Scaffold hopping from (5-hydroxymethyl) isophthalates to multisubstituted pyrimidines diminishes binding affinity to the C1 domain of protein kinase C.

    PubMed

    Provenzani, Riccardo; Tarvainen, Ilari; Brandoli, Giulia; Lempinen, Antti; Artes, Sanna; Turku, Ainoleena; Jäntti, Maria Helena; Talman, Virpi; Yli-Kauhaluoma, Jari; Tuominen, Raimo K; Boije Af Gennäs, Gustav

    2018-01-01

    Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. Utilizing the crystal structure of the PKCδ C1B domain, we have developed hydrophobic isophthalic acid derivatives that modify PKC functions by binding to the C1 domain of the enzyme. In the present study, we aimed to improve the drug-like properties of the isophthalic acid derivatives by increasing their solubility and enhancing the binding affinity. Here we describe the design and synthesis of a series of multisubstituted pyrimidines as analogs of C1 domain-targeted isophthalates and characterize their binding affinities to the PKCα isoform. In contrast to our computational predictions, the scaffold hopping from phenyl to pyrimidine core diminished the binding affinity. Although the novel pyrimidines did not establish improved binding affinity for PKCα compared to our previous isophthalic acid derivatives, the present results provide useful structure-activity relationship data for further development of ligands targeted to the C1 domain of PKC.

  4. Identification and characterization of a novel high affinity metal-binding site in the hammerhead ribozyme.

    PubMed Central

    Hansen, M R; Simorre, J P; Hanson, P; Mokler, V; Bellon, L; Beigelman, L; Pardi, A

    1999-01-01

    A novel metal-binding site has been identified in the hammerhead ribozyme by 31P NMR. The metal-binding site is associated with the A13 phosphate in the catalytic core of the hammerhead ribozyme and is distinct from any previously identified metal-binding sites. 31P NMR spectroscopy was used to measure the metal-binding affinity for this site and leads to an apparent dissociation constant of 250-570 microM at 25 degrees C for binding of a single Mg2+ ion. The NMR data also show evidence of a structural change at this site upon metal binding and these results are compared with previous data on metal-induced structural changes in the core of the hammerhead ribozyme. These NMR data were combined with the X-ray structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68-74) to model RNA ligands involved in binding the metal at this A13 site. In this model, the A13 metal-binding site is structurally similar to the previously identified A(g) metal-binding site and illustrates the symmetrical nature of the tandem G x A base pairs in domain 2 of the hammerhead ribozyme. These results demonstrate that 31P NMR represents an important method for both identification and characterization of metal-binding sites in nucleic acids. PMID:10445883

  5. New horizons in mouse immunoinformatics: reliable in silico prediction of mouse class I histocompatibility major complex peptide binding affinity.

    PubMed

    Hattotuwagama, Channa K; Guan, Pingping; Doytchinova, Irini A; Flower, Darren R

    2004-11-21

    Quantitative structure-activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide-protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2-D(b), H2-K(b) and H2-K(k). As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online ( http://www.jenner.ac.uk/MHCPred).

  6. Group Additivity in Ligand Binding Affinity: An Alternative Approach to Ligand Efficiency.

    PubMed

    Reynolds, Charles H; Reynolds, Ryan C

    2017-12-26

    Group additivity is a concept that has been successfully applied to a variety of thermochemical and kinetic properties. This includes drug discovery, where functional group additivity is often assumed in ligand binding. Ligand efficiency can be recast as a special case of group additivity where ΔG/HA is the group equivalent (HA is the number of non-hydrogen atoms in a ligand). Analysis of a large data set of protein-ligand binding affinities (K i ) for diverse targets shows that in general ligand binding is distinctly nonlinear. It is possible to create a group equivalent scheme for ligand binding, but only in the context of closely related proteins, at least with regard to size. This finding has broad implications for drug design from both experimental and computational points of view. It also offers a path forward for a more general scheme to assess the efficiency of ligand binding.

  7. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses.

    PubMed

    Nürnberger, T; Nennstiel, D; Jabs, T; Sacks, W R; Hahlbrock, K; Scheel, D

    1994-08-12

    An oligopeptide of 13 amino acids (Pep-13) identified within a 42 kDa glycoprotein elicitor from P. mega-sperma was shown to be necessary and sufficient to stimulate a complex defense response in parsley cells comprising H+/Ca2+ influxes, K+/Cl- effluxes, an oxidative burst, defense-related gene activation, and phytoalexin formation. Binding of radiolabeled Pep-13 to parsley microsomes and protoplasts was specific, reversible, and saturable. Identical structural features of Pep-13 were found to be responsible for specific binding and initiation of all plant responses analyzed. The high affinity binding site recognizing the peptide ligand (KD = 2.4 nM) may therefore represent a novel class of receptors in plants, and the rapidly induced ion fluxes may constitute elements of the signal transduction cascade triggering pathogen defense in plants.

  8. Probing SH2-domains using Inhibitor Affinity Purification (IAP).

    PubMed

    Höfener, Michael; Heinzlmeir, Stephanie; Kuster, Bernhard; Sewald, Norbert

    2014-01-01

    Many human diseases are correlated with the dysregulation of signal transduction processes. One of the most important protein interaction domains in the context of signal transduction is the Src homology 2 (SH2) domain that binds phosphotyrosine residues. Hence, appropriate methods for the investigation of SH2 proteins are indispensable in diagnostics and medicinal chemistry. Therefore, an affinity resin for the enrichment of all SH2 proteins in one experiment would be desirable. However, current methods are unable to address all SH2 proteins simultaneously with a single compound or a small array of compounds. In order to overcome these limitations for the investigation of this particular protein family in future experiments, a dipeptide-derived probe has been designed, synthesized and evaluated. This probe successfully enriched 22 SH2 proteins from mixed cell lysates which contained 50 SH2 proteins. Further characterization of the SH2 binding properties of the probe using depletion and competition experiments indicated its ability to enrich complexes consisting of SH2 domain bearing regulatory PI3K subunits and catalytic phosphoinositide 3-kinase (PI3K) subunits that have no SH2 domain. The results make this probe a promising starting point for the development of a mixed affinity resin with complete SH2 protein coverage. Moreover, the additional findings render it a valuable tool for the evaluation of PI3K complex interrupting inhibitors.

  9. Convergence of Domain Architecture, Structure, and Ligand Affinity in Animal and Plant RNA-Binding Proteins.

    PubMed

    Dias, Raquel; Manny, Austin; Kolaczkowski, Oralia; Kolaczkowski, Bryan

    2017-06-01

    Reconstruction of ancestral protein sequences using phylogenetic methods is a powerful technique for directly examining the evolution of molecular function. Although ancestral sequence reconstruction (ASR) is itself very efficient, downstream functional, and structural studies necessary to characterize when and how changes in molecular function occurred are often costly and time-consuming, currently limiting ASR studies to examining a relatively small number of discrete functional shifts. As a result, we have very little direct information about how molecular function evolves across large protein families. Here we develop an approach combining ASR with structure and function prediction to efficiently examine the evolution of ligand affinity across a large family of double-stranded RNA binding proteins (DRBs) spanning animals and plants. We find that the characteristic domain architecture of DRBs-consisting of 2-3 tandem double-stranded RNA binding motifs (dsrms)-arose independently in early animal and plant lineages. The affinity with which individual dsrms bind double-stranded RNA appears to have increased and decreased often across both animal and plant phylogenies, primarily through convergent structural mechanisms involving RNA-contact residues within the β1-β2 loop and a small region of α2. These studies provide some of the first direct information about how protein function evolves across large gene families and suggest that changes in molecular function may occur often and unassociated with major phylogenetic events, such as gene or domain duplications. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Vsx2 Controls Eye Organogenesis and Retinal Progenitor Identity Via Homeodomain and Non-Homeodomain Residues Required for High Affinity DNA Binding

    PubMed Central

    Zou, Changjiang; Levine, Edward M.

    2012-01-01

    The homeodomain and adjacent CVC domain in the visual system homeobox (VSX) proteins are conserved from nematodes to humans. Humans with missense mutations in these regions of VSX2 have microphthalmia, suggesting both regions are critical for function. To assess this, we generated the corresponding mutations in mouse Vsx2. The homeodomain mutant protein lacked DNA binding activity and the knock-in mutant phenocopied the null mutant, ocular retardation J. The CVC mutant protein exhibited weakened DNA binding; and, although the corresponding knock-in allele was recessive, it unexpectedly caused the strongest phenotype, as indicated by severe microphthalmia and hyperpigmentation of the neural retina. This occurred through a cryptic transcriptional feedback loop involving the transcription factors Mitf and Otx1 and the Cdk inhibitor p27Kip1. Our data suggest that the phenotypic severity of the CVC mutant depends on the weakened DNA binding activity elicited by the CVC mutation and a previously unknown protein interaction between Vsx2 and its regulatory target Mitf. Our data also suggest that an essential function of the CVC domain is to assist the homeodomain in high-affinity DNA binding, which is required for eye organogenesis and unhindered execution of the retinal progenitor program in mammals. Finally, the genetic and phenotypic behaviors of the CVC mutation suggest it has the characteristics of a recessive neomorph, a rare type of genetic allele. PMID:23028343

  11. Feature selection and classification of protein-protein complexes based on their binding affinities using machine learning approaches.

    PubMed

    Yugandhar, K; Gromiha, M Michael

    2014-09-01

    Protein-protein interactions are intrinsic to virtually every cellular process. Predicting the binding affinity of protein-protein complexes is one of the challenging problems in computational and molecular biology. In this work, we related sequence features of protein-protein complexes with their binding affinities using machine learning approaches. We set up a database of 185 protein-protein complexes for which the interacting pairs are heterodimers and their experimental binding affinities are available. On the other hand, we have developed a set of 610 features from the sequences of protein complexes and utilized Ranker search method, which is the combination of Attribute evaluator and Ranker method for selecting specific features. We have analyzed several machine learning algorithms to discriminate protein-protein complexes into high and low affinity groups based on their Kd values. Our results showed a 10-fold cross-validation accuracy of 76.1% with the combination of nine features using support vector machines. Further, we observed accuracy of 83.3% on an independent test set of 30 complexes. We suggest that our method would serve as an effective tool for identifying the interacting partners in protein-protein interaction networks and human-pathogen interactions based on the strength of interactions. © 2014 Wiley Periodicals, Inc.

  12. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases.

    PubMed

    Vermeiren, Céline; Motte, Philippe; Viot, Delphine; Mairet-Coello, Georges; Courade, Jean-Philippe; Citron, Martin; Mercier, Joël; Hannestad, Jonas; Gillard, Michel

    2018-02-01

    Lilly/Avid's AV-1451 is one of the most advanced tau PET tracers in the clinic. Although results obtained in Alzheimer's disease patients are compelling, discrimination of tracer uptake in healthy individuals and patients with supranuclear palsy (PSP) is less clear as there is substantial overlap of signal in multiple brain regions. Moreover, accurate quantification of [ 18 F]AV-1451 uptake in Alzheimer's disease may not be possible. The aim of the present study was to characterize the in vitro binding of AV-1451 to understand and identify potential off-target binding that could explain the poor discrimination observed in PSP patients. [ 3 H]AV-1451 and AV-1451 were characterized in in vitro binding assays using recombinant and native proteins/tissues from postmortem samples of controls and Alzheimer's disease and PSP patients. [ 3 H]AV-1451 binds to multiple sites with nanomolar affinities in brain homogenates and to tau fibrils isolated from Alzheimer's disease or PSP patients. [ 3 H]AV-1451 also binds with similarly high affinities in brain homogenates devoid of tau pathology. This unexpected binding was demonstrated to be because of nanomolar affinities of [ 3 H]AV-1451 for monoamine oxidase A and B enzymes. High affinity of AV-1451 for monoamine oxidase proteins may limit its utility as a tau PET tracer in PSP and Alzheimer's disease because of high levels of monoamine oxidase expression in brain regions also affected by tau deposition, especially if monoamine oxidase levels change over time or with a treatment intervention. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  13. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    PubMed

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  14. The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor beta receptor.

    PubMed Central

    Klippel, A; Escobedo, J A; Fantl, W J; Williams, L T

    1992-01-01

    Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor. Images PMID:1312663

  15. Identification and characterization of Cu(2)O- and ZnO-binding polypeptides by Escherichia coli cell surface display: toward an understanding of metal oxide binding.

    PubMed

    Thai, Corrine K; Dai, Haixia; Sastry, M S R; Sarikaya, Mehmet; Schwartz, Daniel T; Baneyx, François

    2004-07-20

    We have used the FliTrx cell surface display system to identify disulfide-constrained dodecapeptides binding to the semiconducting metal oxides Cu(2)O and ZnO. Sequence analysis of the inserts revealed that the two populations exhibit similar, yet subtly different patterns of amino acid usage. Both sets of binders were enriched in arginine, tryptophan, and glycine with a higher degree of positional preference in the case of Cu(2)O binders. Tyrosine, proline, and serine were underrepresented in both populations. Peptides binding electrodeposited Cu(2)O or ZnO with high avidity could be subdivided into two classes based on pI and hydrophilicity. In the hydrophilic and positively charged Class I binders, the Arg-X-X-Arg tetrapeptide appears to be implicated in metal oxide binding, whereas Arg-Arg and Arg-Lys pairs allow for discrimination between Cu(2)O and ZnO. Molecular dynamics simulations of the disulfide-constrained peptides suggest that the aforementioned motifs are important to properly orient two basic residues that are likely to contact the metal oxides. The implications of our results in understanding the rules governing the interaction between peptides and inorganic compounds and in their use for the design of hybrid nanoarchitectures are discussed. Copyright 2004 Wiley Periodicals, Inc.

  16. Affinity, Avidity, and Kinetics of Target Sequence Binding to LC8 Dynein Light Chain Isoforms*

    PubMed Central

    Radnai, László; Rapali, Péter; Hódi, Zsuzsa; Süveges, Dániel; Molnár, Tamás; Kiss, Bence; Bécsi, Bálint; Erdödi, Ferenc; Buday, László; Kardos, József; Kovács, Mihály; Nyitray, László

    2010-01-01

    LC8 dynein light chain (DYNLL) is a highly conserved eukaryotic hub protein with dozens of binding partners and various functions beyond being a subunit of dynein and myosin Va motor proteins. Here, we compared the kinetic and thermodynamic parameters of binding of both mammalian isoforms, DYNLL1 and DYNLL2, to two putative consensus binding motifs (KXTQTX and XG(I/V)QVD) and report only subtle differences. Peptides containing either of the above motifs bind to DYNLL2 with micromolar affinity, whereas a myosin Va peptide (lacking the conserved Gln) and the noncanonical Pak1 peptide bind with Kd values of 9 and 40 μm, respectively. Binding of the KXTQTX motif is enthalpy-driven, although that of all other peptides is both enthalpy- and entropy-driven. Moreover, the KXTQTX motif shows strikingly slower off-rate constant than the other motifs. As most DYNLL partners are homodimeric, we also assessed the binding of bivalent ligands to DYNLL2. Compared with monovalent ligands, a significant avidity effect was found as follows: Kd values of 37 and 3.5 nm for a dimeric myosin Va fragment and a Leu zipper dimerized KXTQTX motif, respectively. Ligand binding kinetics of DYNLL can best be described by a conformational selection model consisting of a slow isomerization and a rapid binding step. We also studied the binding of the phosphomimetic S88E mutant of DYNLL2 to the dimeric myosin Va fragment, and we found a significantly lower apparent Kd value (3 μm). We conclude that the thermodynamic and kinetic fine-tuning of binding of various ligands to DYNLL could have physiological relevance in its interaction network. PMID:20889982

  17. Biomimetic design of platelet adhesion inhibitors to block integrin α2β1-collagen interactions: I. Construction of an affinity binding model.

    PubMed

    Zhang, Lin; Sun, Yan

    2014-04-29

    Platelet adhesion on a collagen surface through integrin α2β1 has been proven to be significant for the formation of arterial thrombus. However, the molecular determinants mediating the integrin-collagen complex remain unclear. In the present study, the dynamics of integrin-collagen binding and molecular interactions were investigated using molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis. Hydrophobic interaction is identified as the major driving force for the formation of the integrin-collagen complex. On the basis of the MD simulation and MM-PBSA results, an affinity binding model (ABM) of integrin for collagen is constructed; it is composed of five residues, including Y157, N154, S155, R288, and L220. The ABM has been proven to capture the major binding motif contributing 84.8% of the total binding free energy. On the basis of the ABM, we expect to establish a biomimetic design strategy of platelet adhesion inhibitors, which would be beneficial for the development of potent peptide-based drugs for thrombotic diseases.

  18. Tsetse Salivary Gland Proteins 1 and 2 Are High Affinity Nucleic Acid Binding Proteins with Residual Nuclease Activity

    PubMed Central

    Caljon, Guy; Ridder, Karin De; Stijlemans, Benoît; Coosemans, Marc; Magez, Stefan; De Baetselier, Patrick; Van Den Abbeele, Jan

    2012-01-01

    Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans) saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2) display DNA/RNA non-specific, high affinity nucleic acid binding with KD values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents. PMID:23110062

  19. Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification. II. Dynamic binding capacity using lysozyme as a model.

    PubMed

    Boto, R E F; Anyanwu, U; Sousa, F; Almeida, P; Queiroz, J A

    2009-09-01

    A constant development of dye-affinity chromatography to replace more traditional techniques is verified, with the aim of increasing specificity in the purification of biomolecules. The establishment of a new dye-affinity chromatographic support imposes their complete characterization, namely with relation to the binding capacity for proteins, in order to evaluate its applicability on global purification processes. Following previous studies, the adsorption of lysozyme onto a thiacarbocyanine dye immobilized on beaded cellulose was investigated. The effect of different parameters, such as temperature, ionic strength, pH, protein concentration and flow rate, on the dynamic binding capacity of the support to retain lysozyme was also studied. Increasing the temperature and the lysozyme concentration had a positive effect on the dynamic binding capacity (DBC), whereas increasing the ionic strength and the flow rate resulted in the opposite. It was also discovered that the pH used had an important impact on the lysozyme binding onto the immobilized dye. The maximum DBC value obtained for lysozyme was 8.6 mg/mL, which was achieved at 30 degrees C and pH 9 with a protein concentration of 0.5 mg/mL and a flow rate of 0.05 mL/min. The dissociation constant (K(d)) obtained was 2.61 +/- 0.36 x 10(-5 )m, proving the affinity interaction between the thiacarbocyanine dye ligand and the lysozyme. Copyright (c) 2009 John Wiley & Sons, Ltd.

  20. Fluorescent-responsive synthetic C1b domains of protein kinase Cδ as reporters of specific high-affinity ligand binding.

    PubMed

    Ohashi, Nami; Nomura, Wataru; Narumi, Tetsuo; Lewin, Nancy E; Itotani, Kyoko; Blumberg, Peter M; Tamamura, Hirokazu

    2011-01-19

    Protein kinase C (PKC) is a critical cell signaling pathway involved in many disorders such as cancer and Alzheimer-type dementia. To date, evaluation of PKC ligand binding affinity has been performed by competitive studies against radiolabeled probes that are problematic for high-throughput screening. In the present study, we have developed a fluorescent-based binding assay system for identifying ligands that target the PKC ligand binding domain (C1 domain). An environmentally sensitive fluorescent dye (solvatochromic fluorophore), which has been used in multiple applications to assess protein-binding interactions, was inserted in proximity to the binding pocket of a novel PKCδ C1b domain. These resultant fluorescent-labeled δC1b domain analogues underwent a significant change in fluorescent intensity upon ligand binding, and we further demonstrate that the fluorescent δC1b domain analogues can be used to evaluate ligand binding affinity.

  1. Correlation of Local Effects of DNA Sequence and Position of Beta-Alanine Inserts with Polyamide-DNA Complex Binding Affinities and Kinetics

    PubMed Central

    Wang, Shuo; Nanjunda, Rupesh; Aston, Karl; Bashkin, James K.; Wilson, W. David

    2012-01-01

    In order to better understand the effects of β-alanine (β) substitution and the number of heterocycles on DNA binding affinity and selectivity, the interactions of an eight-ring hairpin polyamide (PA) and two β derivatives as well as a six-heterocycle analog have been investigated with their cognate DNA sequence, 5′-TGGCTT-3′. Binding selectivity and the effects of β have been investigated with the cognate and five mutant DNAs. A set of powerful and complementary methods have been employed for both energetic and structural evaluations: UV-melting, biosensor-surface plasmon resonance, isothermal titration calorimetry, circular dichroism and a DNA ligation ladder global structure assay. The reduced number of heterocycles in the six-ring PA weakens the binding affinity; however, the smaller PA aggregates significantly less than the larger PAs, and allows us to obtain the binding thermodynamics. The PA-DNA binding enthalpy is large and negative with a large negative ΔCp, and is the primary driving component of the Gibbs free energy. The complete SPR binding results clearly show that β substitutions can substantially weaken the binding affinity of hairpin PAs in a position-dependent manner. More importantly, the changes in PA binding to the mutant DNAs further confirm the position-dependent effects on PA-DNA interaction affinity. Comparison of mutant DNA sequences also shows a different effect in recognition of T•A versus A•T base pairs. The effects of DNA mutations on binding of a single PA as well as the effects of the position of β substitution on binding tell a clear and very important story about sequence dependent binding of PAs to DNA. PMID:23167504

  2. FMRFamide: low affinity inhibition of opioid binding to rabbit brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X.Z.; Raffa, R.B.

    1986-03-05

    FMRFamide (Phe-Met-Arg-Phe-NH/sub 2/) was first isolated from the ganglia of molluscs by Price and Greenberg in 1977. The peptide was subsequently shown to have diverse actions on various types of molluscan and mammalian tissues. The presence of immunoreactive FMRFamide-like material (irFMRF) in multiple areas of rat brain, spinal cord, and gastrointestinal tract suggests that irFMRF may have a physiological role in mammals. Tang, Yang and Costa recently demonstrated that FMRFamide attenuates morphine antinociception in rats and postulated, based on this and several other lines of evidence, that irFMRF might be an endogenous opioid antagonist. In the present study, they testedmore » the ability of FMRFamide to inhibit the binding of opioid receptor ligands to rabbit membrane preparations. FMRFamide inhibited the specific binding of both /sup 3/(H)-dihydromorphine and /sup 3/(H)-ethylketocyclazocine (IC/sub 50/ = 14 ..mu..M and 320 ..mu..M, respectively) in a dose-related manner, suggesting that FMRFamide may affect binding to at least two types of opioid receptors (mu and kappa). These data are consistent with the concept that irFMRF might act as an endogenous opioid antagonist. However, the low affinity of FMRFamide leaves open the possibility of another mechanism of opioid antagonism, such as neuromodulation.« less

  3. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations

    PubMed Central

    Laudenbach, Beatrice Theres; Martínez-Montero, Saúl; Cencic, Regina; Habjan, Matthias; Pichlmair, Andreas; Damha, Masad J.; Pelletier, Jerry; Nagar, Bhushan

    2017-01-01

    IFIT1 (IFN-induced protein with tetratricopeptide repeats-1) is an effector of the host innate immune antiviral response that prevents propagation of virus infection by selectively inhibiting translation of viral mRNA. It relies on its ability to compete with the translation initiation factor eIF4F to specifically recognize foreign capped mRNAs, while remaining inactive against host mRNAs marked by ribose 2′-O methylation at the first cap-proximal nucleotide (N1). We report here several crystal structures of RNA-bound human IFIT1, including a 1.6-Å complex with capped RNA. IFIT1 forms a water-filled, positively charged RNA-binding tunnel with a separate hydrophobic extension that unexpectedly engages the cap in multiple conformations (syn and anti) giving rise to a relatively plastic and nonspecific mode of binding, in stark contrast to eIF4E. Cap-proximal nucleotides encircled by the tunnel provide affinity to compete with eIF4F while allowing IFIT1 to select against N1 methylated mRNA. Gel-shift binding assays confirm that N1 methylation interferes with IFIT1 binding, but in an RNA-dependent manner, whereas translation assays reveal that N1 methylation alone is not sufficient to prevent mRNA recognition at high IFIT1 concentrations. Structural and functional analysis show that 2′-O methylation at N2, another abundant mRNA modification, is also detrimental for RNA binding, thus revealing a potentially synergistic role for it in self- versus nonself-mRNA discernment. Finally, structure-guided mutational analysis confirms the importance of RNA binding for IFIT1 restriction of a human coronavirus mutant lacking viral N1 methylation. Our structural and biochemical analysis sheds new light on the molecular basis for IFIT1 translational inhibition of capped viral RNA. PMID:28251928

  4. Structural Basis for High Affinity Volatile Anesthetic Binding in a Natural 4-helix Bundle Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu,R.; Loll, P.; Eckenhoff, R.

    2005-01-01

    Physiologic sites for inhaled anesthetics are presumed to be cavities within transmembrane 4-{alpha}-helix bundles of neurotransmitter receptors, but confirmation of binding and structural detail of such sites remains elusive. To provide such detail, we screened soluble proteins containing this structural motif, and found only one that exhibited evidence of strong anesthetic binding. Ferritin is a 24-mer of 4-{alpha}-helix bundles; both halothane and isoflurane bind with K{sub A} values of {approx}10{sup 5} M{sup -1, } higher than any previously reported inhaled anesthetic-protein interaction. The crystal structures of the halothane/apoferritin and isoflurane/apoferritin complexes were determined at 1.75 Angstroms resolution, revealing a commonmore » anesthetic binding pocket within an interhelical dimerization interface. The high affinity is explained by several weak polar contacts and an optimal host/guest packing relationship. Neither the acidic protons nor ether oxygen of the anesthetics contribute to the binding interaction. Compared with unliganded apoferritin, the anesthetic produced no detectable alteration of structure or B factors. The remarkably high affinity of the anesthetic/apoferritin complex implies greater selectivity of protein sites than previously thought, and suggests that direct protein actions may underlie effects at lower than surgical levels of anesthetic, including loss of awareness.« less

  5. Differential affinities of molindone, metoclopramide and domperidone for classes of [3H]spiroperidol binding sites in rat striatum: evidence for pharmacologically distinct classes of receptors.

    PubMed

    Rosenfeld, M R; Dvorkin, B; Klein, P N; Makman, M H

    1982-03-04

    Rat striatum contains two populations of dopaminergic [3H]spiroperidol binding sites. The two populations are similar in their affinities for chlorpromazine and dopamine. Only one population, that with a somewhat higher affinity for spiroperidol itself, exhibits high affinity for the selective D2 antagonists molindone, metoclopramide and domperidone. Hence, this population may represent D2 receptor sites. The other larger population may represent either a separate class of receptor sites or a different form of D2 receptor sites.

  6. Characterization of calmodulin binding domains in TRPV2 and TRPV5 C-tails.

    PubMed

    Holakovska, Blanka; Grycova, Lenka; Bily, Jan; Teisinger, Jan

    2011-02-01

    The transient receptor potential channels TRPV2 and TRPV5 belong to the vanilloid TRP subfamily. TRPV2 is highly similar to TRPV1 and shares many common properties with it. TRPV5 (and also its homolog TRPV6) is a rather distinct member of the TRPV subfamily. It is distant for being strictly Ca(2+)-selective and features quite different properties from the rest of the TRPV subfamily. It is known that TRP channels are regulated by calmodulin in a calcium-dependent manner. In our study we identified a calmodulin binding site on the C-termini of TRPV2 (654-683) and TRPV5 (587-616) corresponding to the consensus CaM binding motif 1-5-10. The R679 and K681 single mutants of TRPV2 caused a 50% decrease in binding affinity and a double mutation of K661/K664 of the same peptide lowered the binding affinity by up to 75%. A double mutation of R606/K607 and triple mutation of R594/R606/R610 in TRPV5 C-terminal peptide resulted in the total loss of binding affinity to calmodulin. These results demonstrate that the TRPV2 C-tail and TRPV5 C-tail contain calmodulin binding sites and that the basic residues are strongly involved in TRP channel binding to calmodulin.

  7. Quantifying Protein-Ligand Binding Constants using Electrospray Ionization Mass Spectrometry: A Systematic Binding Affinity Study of a Series of Hydrophobically Modified Trypsin Inhibitors

    NASA Astrophysics Data System (ADS)

    Cubrilovic, Dragana; Biela, Adam; Sielaff, Frank; Steinmetzer, Torsten; Klebe, Gerhard; Zenobi, Renato

    2012-10-01

    NanoESI-MS is used for determining binding strengths of trypsin in complex with two different series of five congeneric inhibitors, whose binding affinity in solution depends on the size of the P3 substituent. The ligands of the first series contain a 4-amidinobenzylamide as P1 residue, and form a tight complex with trypsin. The inhibitors of the second series have a 2-aminomethyl-5-chloro-benzylamide as P1 group, and represent a model system for weak binders. The five different inhibitors of each group are based on the same scaffold and differ only in the length of the hydrophobic side chain of their P3 residue, which modulates the interactions in the S3/4 binding pocket of trypsin. The dissociation constants (KD) for high affinity ligands investigated by nanoESI-MS ranges from 15 nM to 450 nM and decreases with larger hydrophobic P3 side chains. Collision-induced dissociation (CID) experiments of five trypsin and benzamidine-based complexes show a correlation between trends in KD and gas-phase stability. For the second inhibitor series we could show that the effect of imidazole, a small stabilizing additive, can avoid the dissociation of the complex ions and as a result increases the relative abundance of weakly bound complexes. Here the KD values ranging from 2.9 to 17.6 μM, some 1-2 orders of magnitude lower than the first series. For both ligand series, the dissociation constants (KD) measured via nanoESI-MS were compared with kinetic inhibition constants (Ki) in solution.

  8. Polyadenylation proteins CstF-64 and τCstF-64 exhibit differential binding affinities for RNA polymers

    PubMed Central

    Monarez, Roberto R.; Macdonald, Clinton C.; Dass, Brinda

    2006-01-01

    CstF-64 (cleavage stimulation factor-64), a major regulatory protein of polyadenylation, is absent during male meiosis. Therefore a paralogous variant, τCstF-64 is expressed in male germ cells to maintain normal spermatogenesis. Based on sequence differences between τCstF-64 and CstF-64, and on the high incidence of alternative polyadenylation in testes, we hypothesized that the RBDs (RNA-binding domains) of τCstF-64 and CstF-64 have different affinities for RNA elements. We quantified Kd values of CstF-64 and τCstF-64 RBDs for various ribopolymers using an RNA cross-linking assay. The two RBDs had similar affinities for poly(G)18, poly(A)18 or poly(C)18, with affinity for poly(C)18 being the lowest. However, CstF-64 had a higher affinity for poly(U)18 than τCstF-64, whereas it had a lower affinity for poly(GU)9. Changing Pro-41 to a serine residue in the CstF-64 RBD did not affect its affinity for poly(U)18, but changes in amino acids downstream of the C-terminal α-helical region decreased affinity towards poly(U)18. Thus we show that the two CstF-64 paralogues differ in their affinities for specific RNA sequences, and that the region C-terminal to the RBD is important in RNA sequence recognition. This supports the hypothesis that τCstF-64 promotes germ-cell-specific patterns of polyadenylation by binding to different downstream sequence elements. PMID:17029590

  9. Peptide-nucleic acids (PNAs) with pyrimido[4,5-d]pyrimidine-2,4,5,7-(1H,3H,6H,8H)-tetraone (PPT) as a universal base: their synthesis and binding affinity for oligodeoxyribonucleotides.

    PubMed

    Hirano, Taisuke; Kuroda, Kenji; Kataoka, Masanori; Hayakawa, Yoshihiro

    2009-07-21

    Peptide-nucleic acids (PNAs) including pyrimido[4,5-d]pyrimidine-2,4,5,7-(1H,3H,6H,8H)-tetraone (PPT) as a nucleobase were synthesized, and their binding affinity for the complementary oligodeoxyribonucleotides was investigated. We found that PNAs with one or two PPT(s) and natural nucleobases (i.e., adenine, cytosine, guanine, or thymine) have excellent binding affinity for oligodeoxyribonucleotides with complementary bases at the positions facing the natural nucleobases, and with adenine, cytosine, guanine, and thymine at the positions opposite PPT in PNAs. The binding affinity of the PPT-containing PNA is higher than or comparable to that of a PNA consisting of all complementary natural nucleobases, viz. a PNA with a suitable natural nucleobase in place of PPT in the PPT-containing PNA. Consequently, it was concluded that PPT serves as a useful universal base that can recognize all natural nucleobases.

  10. Current Understanding of the Binding Sites, Capacity, Affinity, and Biological Significance of Metals in Melanin

    PubMed Central

    Hong, Lian; Simon, John D.

    2008-01-01

    Metal chelation is often invoked as one of the main biological functions of melanin. In order to understand the interaction between metals and melanin, extensive studies have been carried out to determine the nature of the metal binding sites, binding capacity and affinity. These data are central to efforts aimed at elucidating the role metal binding plays in determining the physical, structural, biological, and photochemical properties of melanin. This article examines the current state of understanding of this field. PMID:17580858

  11. [Propranolol beta-blocker decrease in the concentration of high-affinity binding sites for calcium ions by sarcolemma membranes of the rat heart].

    PubMed

    Seleznev, Iu M; Martynov, A V; Smirnov, V N

    1982-05-01

    In vivo administration of propranolol considerably inhibits the isoproterenol-stimulated increase in 45Ca accumulation by the myocardium and completely eliminates the potentiation of isoproterenol effect by hydrocortisone. A significant lowering of the concentration of high affinity binding sites for calcium in the sarcolemmal membranes can be produced by propranolol in vitro. Under these conditions, the glucocorticoids do not change the sarcolemmal Ca2+-binding parameters or modulate the propranolol effect. Therefore, for the manifestation of glucocorticoid action to be brought about, the integrity of the cells is apparently required, while propranolol seems to change calcium binding by direct interaction with the sarcolemmal membranes. It is suggested that in vivo propranolol inhibition of catecholamine effect on calcium ion accumulation by the myocardium depends on the interaction with the beta-receptors and direct modulation of the concentration of high affinity binding sites for calcium ions on the surface of the sarcolemma.

  12. Investigation of differences in the binding affinities of two analogous ligands for untagged and tagged p38 kinase using thermodynamic integration MD simulation.

    PubMed

    Sun, Ying-Chieh; Hsu, Wen-Chi; Hsu, Chia-Jen; Chang, Chia-Ming; Cheng, Kai-Hsiang

    2015-11-01

    Thermodynamic integration (TI) molecular dynamics (MD) simulations for the binding of a pair of a reference ("ref") ligand and an analogous ("analog") ligand to either tagged (with six extra residues at the N-terminus) or untagged p38 kinase proteins were carried out in order to probe how the binding affinity is influenced by the presence or absence of the peptide tag in p38 kinase. This possible effect of protein length on the binding affinity of a ligand-which is seldom addressed in the literature-is important because, even when two labs claim to have performed experiments with the same protein, they may actually have studied variants of the same protein with different lengths because they applied different protein expression conditions/procedures. Thus, if we wanted to compare ligand binding affinities measured in the two labs, it would be necessary to account for any variation in ligand binding affinity with protein length. The pair of ligand-p38 kinase complexes examined in this work (pdb codes: 3d7z and 3lhj, respectively) were ideal for investigating this effect. The experimentally determined binding energy for the ref ligand with the untagged p38 kinase was -10.9 kcal mol(-1), while that for the analog ligand with the tagged p38 kinase was -11.9 kcal mol(-1). The present TI-MD simulation of the mutation of the ref ligand into the analog ligand while the ligand is bound to the untagged p38 kinase predicted that the binding affinity of the analog ligand is 2.0 kcal mol(-1) greater than that of the ref ligand. A similar simulation also indicated that the same was true for ligand binding to the tagged protein, but in this case the binding affinity for the analog ligand is 2.5 kcal mol(-1) larger than that for the ref ligand. These results therefore suggest that the presence of the peptide tag on p38 kinase increased the difference in the binding energies of the ligands by a small amount of 0.5 kcal mol(-1). This result supports the assumption that the

  13. Class B type I scavenger receptor is responsible for the high affinity cholesterol binding activity of intestinal brush border membrane vesicles

    PubMed Central

    Labonté, Eric D.; Howles, Philip N.; Granholm, Norman A.; Rojas, Juan C.; Davies, Joanna P.; Ioannou, Yiannis A.; Hui, David Y.

    2007-01-01

    Recent studies have documented the importance of Niemann Pick C1-like 1 protein (NPC1L1), a putative physiological target of the drug ezetimibe, in mediating intestinal cholesterol absorption. However, whether NPC1L1 is the high affinity cholesterol binding protein on intestinal brush border membranes is still controversial. In this study, brush border membrane vesicles (BBMV) from wild type and NPC1L1−/− mice were isolated and assayed for micellar cholesterol binding in the presence or absence of ezetimibe. Results confirmed the loss of the high affinity component of cholesterol binding when wild type BBMV preparations were incubated with antiserum against the class B type 1 scavenger receptor (SR-BI) in the reaction mixture similar to previous studies. Subsequently, second order binding of cholesterol was observed with BBMV from wild type and NPC1L1−/− mice. The inclusion of ezetimibe in these in vitro reaction assays resulted in the loss of the high affinity component of cholesterol interaction. Surprisingly, BBMVs from NPC1L1−/− mice maintained active binding of cholesterol. These results documented that SR-BI, not NPC1L1, is the major protein responsible for the initial high affinity cholesterol ligand binding process in the cholesterol absorption pathway. Additionally, ezetimibe may inhibit BBM cholesterol binding through targets such as SR-BI in addition to its inhibition of NPC1L1. PMID:17442616

  14. Molecular Characterization of Lipopolysaccharide Binding to Human α-1-Acid Glycoprotein

    PubMed Central

    Huang, Johnny X.; Azad, Mohammad A. K.; Yuriev, Elizabeth; Baker, Mark A.; Nation, Roger L.; Li, Jian; Cooper, Matthew A.; Velkov, Tony

    2012-01-01

    The ability of AGP to bind circulating lipopolysaccharide (LPS) in plasma is believed to help reduce the proinflammatory effect of bacterial lipid A molecules. Here, for the first time we have characterized human AGP binding characteristics of the LPS from a number of pathogenic Gram-negative bacteria: Escherichia coli, Salmonella typhimurium, Klebsiella pneumonia, Pseudomonas aeruginosa, and Serratia marcescens. The binding affinity and structure activity relationships (SAR) of the AGP-LPS interactions were characterized by surface plasma resonance (SPR). In order to dissect the contribution of the lipid A, core oligosaccharide and O-antigen polysaccharide components of LPS, the AGP binding affinity of LPS from smooth strains, were compared to lipid A, Kdo2-lipid A, Ra, Rd, and Re rough LPS mutants. The SAR analysis enabled by the binding data suggested that, in addition to the important role played by the lipid A and core components of LPS, it is predominately the unique species- and strain-specific carbohydrate structure of the O-antigen polysaccharide that largely determines the binding affinity for AGP. Together, these data are consistent with the role of AGP in the binding and transport of LPS in plasma during acute-phase inflammatory responses to invading Gram-negative bacteria. PMID:23316371

  15. High-Affinity Binding of Silybin Derivatives to the Nucleotide-Binding Domain of a Leishmania tropica P-Glycoprotein-Like Transporter and Chemosensitization of a Multidrug-Resistant Parasite to Daunomycin

    PubMed Central

    Pérez-Victoria, José M.; Pérez-Victoria, F. Javier; Conseil, Gwenaëlle; Maitrejean, Mathias; Comte, Gilles; Barron, Denis; Di Pietro, Attilio; Castanys, Santiago; Gamarro, Francisco

    2001-01-01

    In order to overcome the multidrug resistance mediated by P-glycoprotein-like transporters in Leishmania spp., we have studied the effects produced by derivatives of the flavanolignan silybin and related compounds lacking the monolignol unit on (i) the affinity of binding to a recombinant C-terminal nucleotide-binding domain of the L. tropica P-glycoprotein-like transporter and (ii) the sensitization to daunomycin on promastigote forms of a multidrug-resistant L. tropica line overexpressing the transporter. Oxidation of the flavanonol silybin to the corresponding flavonol dehydrosilybin, the presence of the monolignol unit, and the addition of a hydrophobic substituent such as dimethylallyl, especially at position 8 of ring A, considerably increased the binding affinity. The in vitro binding affinity of these compounds for the recombinant cytosolic domain correlated with their modulation of drug resistance phenotype. In particular, 8-(3,3-dimethylallyl)-dehydrosilybin effectively sensitized multidrug-resistant Leishmania spp. to daunomycin. The cytosolic domains are therefore attractive targets for the rational design of inhibitors against P-glycoprotein-like transporters. PMID:11158738

  16. Mass Spectrometric Determination of ILPR G-quadruplex Binding Sites in Insulin and IGF-2

    PubMed Central

    Xiao, JunFeng

    2009-01-01

    The insulin-linked polymorphic region (ILPR) of the human insulin gene promoter region forms G-quadruplex structures in vitro. Previous studies show that insulin and insulin-like growth factor-2 (IGF-2) exhibit high affinity binding in vitro to 2-repeat sequences of ILPR variants a and h, but negligible binding to variant i. Two-repeat sequences of variants a and h form intramolecular G-quadruplex structures that are not evidenced for variant i. Here we report on the use of protein digestion combined with affinity capture and MALDI-MS detection to pinpoint ILPR binding sites in insulin and IGF-2. Peptides captured by ILPR variants a and h were sequenced by MALDI-MS/MS, LC-MS and in silico digestion. On-bead digestion of insulin-ILPR variant a complexes supported the conclusions. The results indicate that the sequence VCG(N)RGF is generally present in the captured peptides and is likely involved in the affinity binding interactions of the proteins with the ILPR G-quadruplexes. The significance of arginine in the interactions was studied by comparing the affinities of synthesized peptides VCGERGF and VCGEAGF with ILPR variant a. Peptides from other regions of the proteins that are connected through disulfide linkages were also detected in some capture experiments. Identification of binding sites could facilitate design of DNA binding ligands for capture and detection of insulin and IGF-2. The interactions may have biological significance as well. PMID:19747845

  17. Binding of phycoerythrin and its conjugates to murine low affinity receptors for immunoglobulin G.

    PubMed

    Takizawa, F; Kinet, J P; Adamczewski, M

    1993-06-18

    Conjugates of R-phycoerythrin are widely used for immunohistochemistry, especially for two-color flow cytometry. Their use is however limited by their apparent tendency to bind non-specifically. Using cells transfected with cDNAs for the murine low affinity receptors for immunoglobulin G (Fc gamma RII and -III) and cells naturally expressing these receptors, we demonstrate that R-phycoerythrin and its conjugates bind specifically and inhibitably to Fc gamma RII and -III. Immunofluorescence stainings of cells bearing these receptors, such as macrophages, monocytes, neutrophils, mast cells, subsets of T cells, and natural killer cells, may therefore not reflect the binding of antibody to antigen, but rather the binding of R-phycoerythrin to the receptors.

  18. Lanthanide ions induce hydrolysis of hemoglobin-bound 2,3-diphosphoglycerate (2,3-DPG), conformational changes of globin and bidirectional changes of 2,3-DPG-hemoglobin's oxygen affinity.

    PubMed

    Cheng, Y; Lin, H; Xue, D; Li, R; Wang, K

    2001-02-14

    The changes in structure and function of 2,3-diphosphoglycerate-hemoglobin (2,3-DPG-Hb) induced by Ln(3+) binding were studied by spectroscopic methods. The binding of lanthanide cations to 2,3-DPG is prior to that to Hb. Ln(3+) binding causes the hydrolysis of either one from the two phosphomonoester bonds in 2,3-DPG non-specifically. The results using the ultrafiltration method indicate that Ln(3+) binding sites for Hb can be classified into three categories: i.e. positive cooperative sites (N(I)), non-cooperative strong sites (N(S)) and non-cooperative weak sites (N(W)) with binding constants in decreasing order: K(I)>K(S)>K(W). The total number of binding sites amounts to about 65 per Hb tetramer. Information on reaction kinetics was obtained from the change of intrinsic fluorescence in Hb monitored by stopped-flow fluorometry. Fluctuation of fluorescence dependent on Ln(3+) concentration and temperature was observed and can be attributed to the successive conformational changes induced by Ln(3+) binding. The results also reveal the bidirectional changes of the oxygen affinity of Hb in the dependence on Ln(3+) concentration. At the range of [Ln(3+)]/[Hb]<2, the marked increase of oxygen affinity (P(50) decrease) with the Ln(3+) concentration can be attributed to the hydrolysis of 2,3-DPG, while the slight rebound of oxygen affinity in higher Ln(3+) concentration can be interpreted by the transition to the T-state of the Hb tetramer induced by Ln(3+) binding. This was indicated by the changes in secondary structure characterized by the decrease of alpha-helix content.

  19. Binding mode of cytochalasin B to F-actin is altered by lateral binding of regulatory proteins.

    PubMed

    Suzuki, N; Mihashi, K

    1991-01-01

    The binding of cytochalasin B (CB) to F-actin was studied using a trace amount of [3H]-cytochalasin B. F-Actin-bound CB was separated from free CB by ultracentrifugation and the amount of F-actin-bound CB was determined by comparing the radioactivity both in the supernatant and in the precipitate. A filament of pure F-actin possessed one high-affinity binding site for CB (Kd = 5.0 nM) at the B-end. When the filament was bound to native tropomyosin (complex of tropomyosin and troponin), two low-affinity binding sites for CB (Kd = 230 nM) were created, while the high-affinity binding site was reserved (Kd = 3.4 nM). It was concluded that the creation of low-affinity binding sites was primarily due to binding of tropomyosin to F-actin, as judged from the following two observations: (1) a filament of F-actin/tropomyosin complex possessed one high-affinity binding site (Kd = 3.9 nM) plus two low-affinity binding sites (Kd = 550 nM); (2) the Ca2(+)-receptive state of troponin C in F-actin/native tropomyosin complex did not affect CB binding.

  20. Cost Function Network-based Design of Protein-Protein Interactions: predicting changes in binding affinity.

    PubMed

    Viricel, Clément; de Givry, Simon; Schiex, Thomas; Barbe, Sophie

    2018-02-20

    Accurate and economic methods to predict change in protein binding free energy upon mutation are imperative to accelerate the design of proteins for a wide range of applications. Free energy is defined by enthalpic and entropic contributions. Following the recent progresses of Artificial Intelligence-based algorithms for guaranteed NP-hard energy optimization and partition function computation, it becomes possible to quickly compute minimum energy conformations and to reliably estimate the entropic contribution of side-chains in the change of free energy of large protein interfaces. Using guaranteed Cost Function Network algorithms, Rosetta energy functions and Dunbrack's rotamer library, we developed and assessed EasyE and JayZ, two methods for binding affinity estimation that ignore or include conformational entropic contributions on a large benchmark of binding affinity experimental measures. If both approaches outperform most established tools, we observe that side-chain conformational entropy brings little or no improvement on most systems but becomes crucial in some rare cases. as open-source Python/C ++ code at sourcesup.renater.fr/projects/easy-jayz. thomas.schiex@inra.fr and sophie.barbe@insa-toulouse.fr. Supplementary data are available at Bioinformatics online.

  1. 3D QSAR studies on binding affinities of coumarin natural products for glycosomal GAPDH of Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Menezes, Irwin R. A.; Lopes, Julio C. D.; Montanari, Carlos A.; Oliva, Glaucius; Pavão, Fernando; Castilho, Marcelo S.; Vieira, Paulo C.; Pupo, M.^onica T.

    2003-05-01

    Drug design strategies based on Comparative Molecular Field Analysis (CoMFA) have been used to predict the activity of new compounds. The major advantage of this approach is that it permits the analysis of a large number of quantitative descriptors and uses chemometric methods such as partial least squares (PLS) to correlate changes in bioactivity with changes in chemical structure. Because it is often difficult to rationalize all variables affecting the binding affinity of compounds using CoMFA solely, the program GRID was used to describe ligands in terms of their molecular interaction fields, MIFs. The program VolSurf that is able to compress the relevant information present in 3D maps into a few descriptors can treat these GRID fields. The binding affinities of a new set of compounds consisting of 13 coumarins, for one of which the three-dimensional ligand-enzyme bound structure is known, were studied. A final model based on the mentioned programs was independently validated by synthesizing and testing new coumarin derivatives. By relying on our knowledge of the real physical data (i.e., combining crystallographic and binding affinity results), it is also shown that ligand-based design agrees with structure-based design. The compound with the highest binding affinity was the coumarin chalepin, isolated from Rutaceae species, with an IC50 value of 55.5 μM towards the enzyme glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) from glycosomes of the parasite Trypanosoma cruzi, the causative agent of Chagas' disease. The proposed models from GRID MIFs have revealed the importance of lipophilic interactions in modulating the inhibition, but without excluding the dependence on stereo-electronic properties as found from CoMFA fields.

  2. EFFECTS OF CYTOSOLIC CONVERSION OF ESTRONE TO ESTRADIOL ON RAINBOW TROUT ER BINDING AFFINITY

    EPA Science Inventory

    Relative binding affinity (RBA) for estrone (E1) to the rainbow trout (Oncorhynchus mykiss) estrogen receptor (rtER) was measured as part of a larger effort to determine chemical structural features predictive of chemical estrogenicity in fish. Estrone RBA was found to vary consi...

  3. High affinity binding of 125I-neurotensin to dispersed cells from chicken liver and brain.

    PubMed

    Mitra, S P; Carraway, R E

    1997-01-01

    Dispersed cells from chicken brain and liver were found to possess cell surface binding sites for 125I-neurotensin (125I-NT). Scatchard analyses indicated the presence of high affinity (K4, 25-80 pM) and low affinity (Kd, 250-450 pM) components in adult tissues. Binding capacity was reduced 25-40% by incubation with pertussis toxin. Ontogenetic studies indicated that NT receptor capacity increased approximately 20-fold from the embryonic stage to adult. Cross-linking of 125I-NT to intact cells labeled one major band (52 kDa, > or = 90%) and two minor bands (40 and 90 kDa, < or = 10%) which could represent distinct NT-receptors or one receptor partly degraded or cross-linked to G-protein(s). The binding of 125I-NT to dispersed cells was enhanced by reduction with dithoithreitol and suppressed by alkylation with N-ethyl-maleimide (NEM), maleimidocaproic acid (MCA) and p-chloromercuribenzenesulfonate (PCMBS). Since MCA and PCMBS do not permeate cells, this suggests that the sulfhydryl group(s) critical to binding are located within the NT receptor itself. Preincubation of cells with NT prior to treatment with NEM diminished its inhibitory effect, suggesting that the critical SH-group(s) were within the NT binding pocket or were protected by an allosteric effect. These results suggest that one or more of the nine cysteine residues in the NT receptor is involved in the NT binding reaction.

  4. Complementary DNA display selection of high-affinity peptides binding the vacuolating toxin (VacA) of Helicobacter pylori.

    PubMed

    Hayakawa, Yumiko; Matsuno, Mitsuhiro; Tanaka, Makoto; Wada, Akihiro; Kitamura, Koichiro; Takei, Osamu; Sasaki, Ryuzo; Mizukami, Tamio; Hasegawa, Makoto

    2015-09-01

    Artificial peptides designed for molecular recognition of a bacterial toxin have been developed. Vacuolating cytotoxin A protein (VacA) is a major virulence factor of Helicobacter pylori, a gram-negative microaerophilic bacterium inhabiting the upper gastrointestinal tract, particularly the stomach. This study attempted to identify specific peptide sequences with high affinity for VacA using systematic directed evolution in vitro, a cDNA display method. A surface plasmon resonance-based biosensor and fluorescence correlation spectroscopy to examine binding of peptides with VacA identified a peptide (GRVNQRL) with high affinity. Cyclization of the peptide by attaching cysteine residues to both termini improved its binding affinity to VacA, with a dissociation constant (Kd ) of 58 nm. This study describes a new strategy for the development of artificial functional peptides, which are promising materials in biochemical analyses and medical applications. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  5. Copper binding affinity of the C2B domain of synaptotagmin-1 and its potential role in the nonclassical secretion of Acidic Fibroblast Growth Factor

    PubMed Central

    Jayanthi, Srinivas; Kathir, Karuppanan Muthusamy; Rajalingam, Dakshinamurthy; Furr, Mercede; Daily, Anna; Thurman, Ryan; Rutherford, Lindsay; Chandrashekar, Reena; Adams, Paul; Prudovsky, Igor; Suresh Kumar, Thallapuranam Krishnaswamy

    2014-01-01

    Fibroblast growth factor 1 (FGF1) is a heparin-binding proangiogenic protein. FGF1 lacks the conventional N-terminal signal peptide required for secretion through the endoplasmic reticulum (ER) -Golgi secretory pathway. FGF1 is released through a Cu2+ - mediated nonclassical secretion pathway. The secretion of FGF1 involves the formation of a Cu2+- mediated multiprotein release complex (MRC) including FGF1, S100A13 (a calcium-binding protein) and p40 synaptotagmin (Syt1). It is believed that binding of Cu2+ to the C2B domain is important for the release of FGF1 in to the extracellular medium. In this study, using a variety of biophysical studies, Cu2+ and lipid interactions of the C2B domain of Syt1were characterized. Isothermal titration calorimetry (ITC) experiments reveal that C2B domain binds to Cu2+ in a biphasic manner involving an initial endothermic and a subsequent exothermic phase. Fluorescence energy transfer experiments using Tb3+ show that there are two Cu2+- binding pockets on the C2B domain, and one of these is also a Ca2+- binding site. Lipid-binding studies using ITC demonstrate that the C2B domain preferentially binds to small unilamellar vesicles of phosphatidyl serine (PS). Results of the differential scanning calorimetry and limited trypsin digestion experiments suggest that C2B domain is marginally destabilized upon binding to PS vesicles. These results, for the first time, suggest that the main role of the C2B domain of Syt1 is to serve as an anchor for the FGF1 MRC on the membrane bilayer. In addition, binding of the C2B domain to the lipid bilayer is shown to significantly decrease the binding affinity of the protein to Cu2+. The study provides valuable insights on the sequence of structural events that occur in the nonclassical secretion of FGF1. PMID:25224745

  6. Comparative analysis the binding affinity of mycophenolic sodium and meprednisone with human serum albumin: Insight by NMR relaxation data and docking simulation.

    PubMed

    Ma, Xiaoli; He, Jiawei; Yan, Jin; Wang, Qing; Li, Hui

    2016-03-25

    Mycophenolic sodium is an immunosuppressive agent that is always combined administration with corticosteroid in clinical practice. Considering the distribution and side-effect of the drug may change when co-administrated drug exist, this paper comparatively analyzed the binding ability of mycophenolic sodium and meprednisone toward human serum albumin by nuclear magnetic resonance relaxation data and docking simulation. The nuclear magnetic resonance approach was based on the analysis of proton selective and non-selective relaxation rate enhancement of the ligand in the absence and presence of macromolecules. The contribution of the bound ligand fraction to the observed relaxation rate in relation to protein concentration allowed the calculation of the affinity index. This approach allowed the comparison of the binding affinity of mycophenolic sodium and meprednisone. Molecular modeling was operated to simulate the binding model of ligand and albumin through Autodock 4.2.5. Competitive binding of mycophenolic sodium and meprednisone was further conducted through fluorescence spectroscopy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Ni doping effect on the electronic and sensing properties of 2D SnO2

    NASA Astrophysics Data System (ADS)

    Patel, Anjali; Roondhe, Basant; Jha, Prafulla K.

    2018-05-01

    In the present work using state of art first principles calculations under the frame work of density functional theory the effect of Nickel (Ni) doping on electronic as well as sensing properties of most stable two dimensional (2D) T-SnO2 phase towards ethanol (C2H5OH) has been observed. It has been found that Ni atom when dope on T-SnO2 causes prominent decrement in the band gap from 2.26 eV to 1.48 eV and improves the sensing phenomena of pristine T-SnO2 towards C2H5OH by increasing the binding energy from -0.18eV to -0.93eV. The comparative analysis of binding energy shows that Ni improves the binding of C2H5OH by 5.16 times the values for pristine T-SnO2. The doping of Ni into 2D T-SnO2 reduces the band gap through lowering of the conduction band minimum, thereby increasing the electron affinity which increases the sensing performance of T-SnO2. The variation in the electronic properties after and before the exposure of ethanol reinforced to use Ni:SnO2 nano structure for sensing applications. The results indicate that the Ni doped T-SnO2 can be utilized in improved optoelectronic as well as sensor devices in the future.

  8. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Politi, Regina; Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599; Rusyn, Ivan, E-mail: iir@unc.edu

    2014-10-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure–Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R{sup 2} = 0.55 and CCR = 0.76, respectively. In addition, for the first time a QSAR model was developed to predict bindingmore » affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R{sup 2} = 0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. - Highlights: • This is the largest curated dataset for ligand binding domain (LBD) of the THRβ. • We report the first QSAR model for antagonists of AF-2 domain of THRβ. • A combination of QSAR and docking enables

  9. Towards a tunable tautomeric switch in azobenzene biomimetics: implications for the binding affinity of 2-(4'-hydroxyphenylazo)benzoic acid to streptavidin.

    PubMed

    Farrera, Joan-Antoni; Canal, Ivan; Hidalgo-Fernández, Pedro; Pérez-García, M Lluïsa; Huertas, Oscar; Luque, F Javier

    2008-01-01

    The tautomeric equilibria of 2-(4'-hydroxyphenylazo)benzoic acid (HABA) and 2-(3',5'-dimethyl-4'-hydroxyphenylazo)benzoic acid (3',5'-dimethyl-HABA) have been studied by a combination of spectroscopic and computational methods. For neutral HABA in solvents of different polarity (toluene, chloroform, DMSO, DMF, butanol, and ethanol) the azo tautomer (AT) is largely predominant. For monoanionic HABA, the hydrazone tautomer (HT) is the only detected species in apolar solvents such as toluene and chloroform, while the AT is the only detected species in water and a mixture of both tautomers is detected in ethanol. Comparison of the results obtained for HABA and its 3',5'-dimethylated derivative shows that dimethylation of the hydroxybenzene ring shifts the tautomeric preferences towards the hydrazone species. These findings have been used to examine the differences in binding affinity to streptavidin, as the lower affinity of HABA can be explained in terms of the larger energetic cost associated with the tautomeric shift to the bioactive hydrazone species. Overall, these results suggest that a balanced choice of chemical substituents, embedding environment, and pH can be valuable for exploitation of the azo-hydrazone tautomerism of HABA biomimetics in biotechnological applications.

  10. Use of thermodynamic coupling between antibody-antigen binding and phospholipid acyl chain phase transition energetics to predict immunoliposome targeting affinity.

    PubMed

    Klegerman, Melvin E; Zou, Yuejiao; Golunski, Eva; Peng, Tao; Huang, Shao-Ling; McPherson, David D

    2014-09-01

    Thermodynamic analysis of ligand-target binding has been a useful tool for dissecting the nature of the binding mechanism and, therefore, potentially can provide valuable information regarding the utility of targeted formulations. Based on a consistent coupling of antibody-antigen binding and gel-liquid crystal transition energetics observed for antibody-phosphatidylethanolamine (Ab-PE) conjugates, we hypothesized that the thermodynamic parameters and the affinity for antigen of the Ab-PE conjugates could be effectively predicted once the corresponding information for the unconjugated antibody is determined. This hypothesis has now been tested in nine different antibody-targeted echogenic liposome (ELIP) preparations, where antibody is conjugated to dipalmitoylphosphatidylethanolamine (DPPE) head groups through a thioether linkage. Predictions were satisfactory (affinity not significantly different from the population of values found) in five cases (55.6%), but the affinity of the unconjugated antibody was not significantly different from the population of values found in six cases (66.7%), indicating that the affinities of the conjugated antibody tended not to deviate appreciably from those of the free antibody. While knowledge of the affinities of free antibodies may be sufficient to judge their suitability as targeting agents, thermodynamic analysis may still provide valuable information regarding their usefulness for specific applications.

  11. Structural Basis of the High Affinity Interaction between the Alphavirus Nonstructural Protein-3 (nsP3) and the SH3 Domain of Amphiphysin-2.

    PubMed

    Tossavainen, Helena; Aitio, Olli; Hellman, Maarit; Saksela, Kalle; Permi, Perttu

    2016-07-29

    We show that a peptide from Chikungunya virus nsP3 protein spanning residues 1728-1744 binds the amphiphysin-2 (BIN1) Src homology-3 (SH3) domain with an unusually high affinity (Kd 24 nm). Our NMR solution complex structure together with isothermal titration calorimetry data on several related viral and cellular peptide ligands reveal that this exceptional affinity originates from interactions between multiple basic residues in the target peptide and the extensive negatively charged binding surface of amphiphysin-2 SH3. Remarkably, these arginines show no fixed conformation in the complex structure, indicating that a transient or fluctuating polyelectrostatic interaction accounts for this affinity. Thus, via optimization of such dynamic electrostatic forces, viral peptides have evolved a superior binding affinity for amphiphysin-2 SH3 compared with typical cellular ligands, such as dynamin, thereby enabling hijacking of amphiphysin-2 SH3-regulated host cell processes by these viruses. Moreover, our data show that the previously described consensus sequence PXRPXR for amphiphysin SH3 ligands is inaccurate and instead define it as an extended Class II binding motif PXXPXRpXR, where additional positive charges between the two constant arginine residues can give rise to extraordinary high SH3 binding affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Mechanism for recognition of polyubiquitin chains: balancing affinity through interplay between multivalent binding and dynamics.

    PubMed

    Markin, Craig J; Xiao, Wei; Spyracopoulos, Leo

    2010-08-18

    RAP80 plays a key role in signal transduction in the DNA damage response by recruiting proteins to DNA damage foci by binding K63-polyubiquitin chains with two tandem ubiquitin-interacting motifs (tUIM). It is generally recognized that the typically weak interaction between ubiquitin (Ub) and various recognition motifs is intensified by themes such as tandem recognition motifs and Ub polymerization to achieve biological relevance. However, it remains an intricate problem to develop a detailed molecular mechanism to describe the process that leads to amplification of the Ub signal. A battery of solution-state NMR methods and molecular dynamics simulations were used to demonstrate that RAP80-tUIM employs mono- and multivalent interactions with polyUb chains to achieve enhanced affinity in comparison to monoUb interactions for signal amplification. The enhanced affinity is balanced by unfavorable entropic effects that include partial quenching of rapid reorientation between individual UIM domains and individual Ub domains in the bound state. For the RAP80-tUIM-polyUb interaction, increases in affinity with increasing chain length are a result of increased numbers of mono- and multivalent binding sites in the longer polyUb chains. The mono- and multivalent interactions are characterized by intrinsically weak binding and fast off-rates; these weak interactions with fast kinetics may be an important factor underlying the transient nature of protein-protein interactions that comprise DNA damage foci.

  13. Bioinorganic Chemistry of Parkinson's Disease: Affinity and Structural Features of Cu(I) Binding to the Full-Length β-Synuclein Protein.

    PubMed

    Miotto, Marco C; Pavese, Mayra D; Quintanar, Liliana; Zweckstetter, Markus; Griesinger, Christian; Fernández, Claudio O

    2017-09-05

    Alterations in the levels of copper in brain tissue and formation of α-synuclein (αS)-copper complexes might play a key role in the amyloid aggregation of αS and the onset of Parkinson's disease (PD). Recently, we demonstrated that formation of the high-affinity Cu(I) complex with the N-terminally acetylated form of the protein αS substantially increases and stabilizes local conformations with α-helical secondary structure and restricted motility. In this work, we performed a detailed NMR-based structural characterization of the Cu(I) complexes with the full-length acetylated form of its homologue β-synuclein (βS), which is colocalized with αS in vivo and can bind copper ions. Our results show that, similarly to αS, the N-terminal region of βS constitutes the preferential binding interface for Cu(I) ions, encompassing two independent and noninteractive Cu(I) binding sites. According to these results, βS binds the metal ion with higher affinity than αS, in a coordination environment that involves the participation of Met-1, Met-5, and Met-10 residues (site 1). Compared to αS, the shift of His from position 50 to 65 in the N-terminal region of βS does not change the Cu(I) affinity features at that site (site 2). Interestingly, the formation of the high-affinity βS-Cu(I) complex at site 1 in the N-terminus promotes a short α-helix conformation that is restricted to the 1-5 segment of the AcβS sequence, which differs with the substantial increase in α-helix conformations seen for N-terminally acetylated αS upon Cu(I) complexation. Our NMR data demonstrate conclusively that the differences observed in the conformational transitions triggered by Cu(I) binding to AcαS and AcβS find a correlation at the level of their backbone dynamic properties; added to the potential biological implications of these findings, this fact opens new avenues of investigations into the bioinorganic chemistry of PD.

  14. Improved binding affinity and interesting selectivities of aminopyrimidine-bearing carbohydrate receptors in comparison with their aminopyridine analogues.

    PubMed

    Lippe, Jan; Seichter, Wilhelm; Mazik, Monika

    2015-12-28

    Due to the problems with the exact prediction of the binding properties of an artificial carbohydrate receptor, the identification of characteristic structural features, having the ability to influence the binding properties in a predictable way, is of high importance. The purpose of our investigation was to examine whether the previously observed higher affinity of 2-aminopyrimidine-bearing carbohydrate receptors in comparison with aminopyridine substituted analogues represents a general tendency of aminopyrimidine-bearing compounds. Systematic binding studies on new compounds consisting of 2-aminopyrimidine groups confirmed such a tendency and allowed the identification of interesting structure-activity relationships. Receptors having different symmetries showed systematic preferences for specific glycosides, which are remarkable for such simple receptor systems. Particularly suitable receptor architectures for the recognition of selected glycosides were identified and represent a valuable base for further developments in this field.

  15. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    PubMed

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The

  16. Study of the Thermodynamics of Chromium(III) and Chromium(VI) Binding to Fe3O4 and MnFe2O4 nanoparticles

    PubMed Central

    Luther, Steven; Brogfeld, Nathan; Kim, Jisoo; Parsons, J.G.

    2013-01-01

    Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4 ± 0.9 nm (Fe3O4) and 15.5 ± 0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative. PMID:23558081

  17. High affinity binding of amyloid β-peptide to calmodulin: Structural and functional implications.

    PubMed

    Corbacho, Isaac; Berrocal, María; Török, Katalin; Mata, Ana M; Gutierrez-Merino, Carlos

    2017-05-13

    Amyloid β-peptides (Aβ) are a major hallmark of Alzheimer's disease (AD) and their neurotoxicity develop with cytosolic calcium dysregulation. On the other hand, calmodulin (CaM), a protein which plays a major multifunctional role in neuronal calcium signaling, has been shown to be involved in the regulation of non-amyloidogenic processing of amyloid β precursor protein (APP). Using fluorescent 6-bromoacetyl-2-dimethylaminonaphthalene derivatives of CaM, Badan-CaM, and human amyloid β(1-42) HiLyte™-Fluor555, we show in this work that Aβ binds with high affinity to CaM through the neurotoxic Aβ25-35 domain. In addition, the affinity of Aβ for calcium-saturated CaM conformation is approximately 20-fold higher than for CaM conformation in the absence of calcium (apo-CaM). Moreover, the value of K d of 0.98 ± 0.11 nM obtained for Aβ1-42 dissociation from CaM saturated by calcium points out that CaM is one of the cellular targets with highest affinity for neurotoxic Aβ peptides. A major functional consequence of Aβ-CaM interaction is that it slowdowns Aβ fibrillation. The novel and high affinity interaction between calmodulin and Aβ shown in this work opens a yet-unexplored gateway to further understand the neurotoxic effect of Aβ in different neural cells and also to address the potential of calmodulin and calmodulin-derived peptides as therapeutic agents in AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Protein unfolding as a switch from self-recognition to high-affinity client binding

    PubMed Central

    Groitl, Bastian; Horowitz, Scott; Makepeace, Karl A. T.; Petrotchenko, Evgeniy V.; Borchers, Christoph H.; Reichmann, Dana; Bardwell, James C. A.; Jakob, Ursula

    2016-01-01

    Stress-specific activation of the chaperone Hsp33 requires the unfolding of a central linker region. This activation mechanism suggests an intriguing functional relationship between the chaperone's own partial unfolding and its ability to bind other partially folded client proteins. However, identifying where Hsp33 binds its clients has remained a major gap in our understanding of Hsp33's working mechanism. By using site-specific Fluorine-19 nuclear magnetic resonance experiments guided by in vivo crosslinking studies, we now reveal that the partial unfolding of Hsp33's linker region facilitates client binding to an amphipathic docking surface on Hsp33. Furthermore, our results provide experimental evidence for the direct involvement of conditionally disordered regions in unfolded protein binding. The observed structural similarities between Hsp33's own metastable linker region and client proteins present a possible model for how Hsp33 uses protein unfolding as a switch from self-recognition to high-affinity client binding. PMID:26787517

  19. Water channel in the binding site of a high affinity anti-methotrexate antibody.

    PubMed

    Gayda, Susan; Longenecker, Kenton L; Manoj, Sharmila; Judge, Russell A; Saldana, Sylvia C; Ruan, Qiaoqiao; Swift, Kerry M; Tetin, Sergey Y

    2014-06-17

    In the present study, we report the structure of the free and drug-bound Fab fragment of a high affinity anti-methotrexate antibody and perform a thermodynamic analysis of the binding process. The anti-methotrexate Fab fragment features a remarkably rigid tunnel-like binding site that extends into a water channel serving as a specialized route to move solvent out and into the site upon ligand binding and dissociation. This new finding in antibody structure-function relationships directly relates to the fast association (1 × 10⁷ M⁻¹ s⁻¹) and slow dissociation (4 × 10⁻⁵ s⁻¹) rates determined for mAb ADD056, resulting in a very strong binding with a K(D) ~ 3.6 pM at 20 °C. As follows from the X-ray data analysis, the methotrexate-antibody complex is stabilized by an extended network of hydrogen bonds and stacking interactions. The analysis also shows structural involvement of the CDR H3 in formation of the water channel revealing another important role of this hypervariable region. This suggests a new direction in natural affinity maturation and opens a new possibility in antibody engineering. Methotrexate is a widely used therapeutic agent for many malignant diseases and inflammatory disorders. Unfortunately, it may also interfere with central aspects of metabolism and thereby cause inevitable side effects. Therefore, methotrexate therapy requires careful monitoring of drug blood levels, which is traditionally done by immunoassays. An understanding of the structure-function properties of antibodies selected for drug monitoring substantiates the performance and robustness of such tests.

  20. A distal point mutation in the streptavidin-biotin complex preserves structure but diminishes binding affinity: experimental evidence of electronic polarization effects?

    PubMed

    Baugh, Loren; Le Trong, Isolde; Cerutti, David S; Gülich, Susanne; Stayton, Patrick S; Stenkamp, Ronald E; Lybrand, Terry P

    2010-06-08

    We have identified a distal point mutation in streptavidin that causes a 1000-fold reduction in biotin binding affinity without disrupting the equilibrium complex structure. The F130L mutation creates a small cavity occupied by a water molecule; however, all neighboring side chain positions are preserved, and protein-biotin hydrogen bonds are unperturbed. Molecular dynamics simulations reveal a reduced mobility of biotin binding residues but no observable destabilization of protein-ligand interactions. Our combined structural and computational studies suggest that the additional water molecule may affect binding affinity through an electronic polarization effect that impacts the highly cooperative hydrogen bonding network in the biotin binding pocket.

  1. Comparison of N-terminal modifications on neurotensin(8-13) analogues correlates peptide stability but not binding affinity with in vivo efficacy.

    PubMed

    Orwig, Kevin S; Lassetter, McKensie R; Hadden, M Kyle; Dix, Thomas A

    2009-04-09

    Neurotensin(8-13) and two related analogues were used as model systems to directly compare various N-terminal peptide modifications representing both commonly used and novel capping groups. Each N-terminal modification prevented aminopeptidase cleavage but surprisingly differed in its ability to inhibit cleavage at other sites, a phenomenon attributed to long-range conformational effects. None of the capping groups were inherently detrimental to human neurotensin receptor 1 (hNTR1) binding affinity or receptor agonism. Although the most stable peptides exhibited the lowest binding affinities and were the least potent receptor agonists, they produced the largest in vivo effects. Of the parameters studied only stability significantly correlated with in vivo efficacy, demonstrating that a reduction in binding affinity at NTR1 can be countered by increased in vivo stability.

  2. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure based modeling methods

    PubMed Central

    Politi, Regina; Rusyn, Ivan; Tropsha, Alexander

    2016-01-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure-Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R2=0.55 and CCR=0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R2=0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. PMID:25058446

  3. Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue

    NASA Astrophysics Data System (ADS)

    Ross, Ryan D.; Cole, Lisa E.; Roeder, Ryan K.

    2012-10-01

    Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate ( l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.

  4. Maximizing in vivo target clearance by design of pH-dependent target binding antibodies with altered affinity to FcRn.

    PubMed

    Yang, Danlin; Giragossian, Craig; Castellano, Steven; Lasaro, Marcio; Xiao, Haiguang; Saraf, Himanshu; Hess Kenny, Cynthia; Rybina, Irina; Huang, Zhong-Fu; Ahlberg, Jennifer; Bigwarfe, Tammy; Myzithras, Maria; Waltz, Erica; Roberts, Simon; Kroe-Barrett, Rachel; Singh, Sanjaya

    2017-10-01

    Antibodies with pH-dependent binding to both target antigens and neonatal Fc receptor (FcRn) provide an alternative tool to conventional neutralizing antibodies, particularly for therapies where reduction in antigen level is challenging due to high target burden. However, the requirements for optimal binding kinetic framework and extent of pH dependence for these antibodies to maximize target clearance from circulation are not well understood. We have identified a series of naturally-occurring high affinity antibodies with pH-dependent target binding properties. By in vivo studies in cynomolgus monkeys, we show that pH-dependent binding to the target alone is not sufficient for effective target removal from circulation, but requires Fc mutations that increase antibody binding to FcRn. Affinity-enhanced pH-dependent FcRn binding that is double-digit nM at pH 7.4 and single-digit nM at pH 6 achieved maximal target reduction when combined with similar target binding affinities in reverse pH directions. Sustained target clearance below the baseline level was achieved 3 weeks after single-dose administration at 1.5 mg/kg. Using the experimentally derived mechanistic model, we demonstrate the essential kinetic interplay between target turnover and antibody pH-dependent binding during the FcRn recycling, and identify the key components for achieving maximal target clearance. These results bridge the demand for improved patient dosing convenience with the "know-how" of therapeutic modality by design.

  5. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    PubMed Central

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-01-01

    Background Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. Results The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. Conclusion The SMM-align method was

  6. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.

    PubMed

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-07-04

    Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. The SMM-align method was shown to outperform other

  7. Ether modifications to 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine (SA4503): effects on binding affinity and selectivity for sigma receptors and monoamine transporters.

    PubMed

    Xu, Rong; Lord, Sarah A; Peterson, Ryan M; Fergason-Cantrell, Emily A; Lever, John R; Lever, Susan Z

    2015-01-01

    Two series of novel ether analogs of the sigma (σ) receptor ligand 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine (SA4503) have been prepared. In one series, the alkyl portion of the 4-methoxy group was replaced with allyl, propyl, bromoethyl, benzyl, phenethyl, and phenylpropyl moieties. In the second series, the 3,4-dimethoxy was replaced with cyclic methylenedioxy, ethylenedioxy and propylenedioxy groups. These ligands, along with 4-O-des-methyl SA4503, were evaluated for σ1 and σ2 receptor affinity, and compared to SA4503 and several known ether analogs. SA4503 and a subset of ether analogs were also evaluated for dopamine transporter (DAT) and serotonin transporter (SERT) affinity. The highest σ1 receptor affinities, Ki values of 1.75-4.63 nM, were observed for 4-O-des-methyl SA4503, SA4503 and the methylenedioxy analog. As steric bulk increased, σ1 receptor affinity decreased, but only to a point. Allyl, propyl and bromoethyl substitutions gave σ1 receptor Ki values in the 20-30 nM range, while bulkier analogs having phenylalkyl, and Z- and E-iodoallyl, ether substitutions showed higher σ1 affinities, with Ki values in the 13-21 nM range. Most ligands studied exhibited comparable σ1 and σ2 affinities, resulting in little to no subtype selectivity. SA4503, the fluoroethyl analog and the methylenedioxy congener showed modest six- to fourteen-fold selectivity for σ1 sites. DAT and SERT interactions proved much more sensitive than σ receptor interactions to these structural modifications. For example, the benzyl congener (σ1Ki=20.8 nM; σ2Ki=16.4 nM) showed over 100-fold higher DAT affinity (Ki=121 nM) and 6-fold higher SERT affinity (Ki=128nM) than the parent SA4503 (DAT Ki=12650 nM; SERT Ki=760 nM). Thus, ether modifications to the SA4503 scaffold can provide polyfunctional ligands having a broader spectrum of possible pharmacological actions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Use of entrapment and high-performance affinity chromatography to compare the binding of drugs and site-specific probes with normal and glycated human serum albumin

    PubMed Central

    Jackson, Abby J.; Anguizola, Jeanethe; Pfaunmiller, Erika L.; Hage, David S.

    2013-01-01

    Protein entrapment and high-performance affinity chromatography were used with zonal elution to examine the changes in binding that occurred for site-specific probes and various sulfonylurea drugs with normal and glycated forms of human serum albumin (HSA). Samples of this protein in a soluble form were physically entrapped within porous silica particles by using glycogen-capped hydrazide-activated silica; these supports were then placed into 1.0 cm × 2.1 mm inner diameter columns. Initial zonal elution studies were performed using (R)-warfarin and L-tryptophan as probes for Sudlow sites I and II (i.e., the major drug binding sites of HSA), giving quantitative measures of binding affinities in good agreement with literature values. It was also found for solutes with multisite binding to the same proteins, such as many sulfonylurea drugs, that this method could be used to estimate the global affinity of the solute for the entrapped protein. This entrapment and zonal approach provided retention information with precisions of ±0.1–3.3% (± one standard deviation) and elution within 0.50–3.00 min for solutes with binding affinities of 1 × 104–3 × 105 M−1. Each entrapped-protein column was used for many binding studies, which decreased the cost and amount of protein needed per injection (e.g., the equivalent of only 125–145 pmol of immobilized HSA or glycated HSA per injection over 60 sample application cycles). This method can be adapted for use with other proteins and solutes and should be valuable in high-throughput screening or quantitative studies of drug–protein binding or related biointeractions. PMID:23657448

  9. Imino proton exchange rates imply an induced-fit binding mechanism for the VEGF165-targeting aptamer, Macugen

    PubMed Central

    Lee, Joon-Hwa; Jucker, Fiona; Pardi, Arthur

    2008-01-01

    The 2′-fluoro/2′-O-methyl modified RNA aptamer Macugen is a potent inhibitor of the angiogenic regulatory protein, VEGF165. Macugen binds with high affinity to the heparin-binding domain (HBD) of VEGF165. Hydrogen exchange rates of the imino protons were measured for free Macugen and Macugen bound to the HBD or full-length VEGF to better understand the mechanism for high affinity binding. The results here show that the internal loop and hairpin loop of Macugen are highly dynamic in the free state and are greatly stabilized and/or protected from solvent upon protein binding. PMID:18485899

  10. Lack of conventional oxygen-linked proton and anion binding sites does not impair allosteric regulation of oxygen binding in dwarf caiman hemoglobin

    PubMed Central

    Fago, Angela; Malte, Hans; Storz, Jay F.; Gorr, Thomas A.

    2013-01-01

    In contrast to other vertebrate hemoglobins (Hbs) whose high intrinsic O2 affinities are reduced by red cell allosteric effectors (mainly protons, CO2, organic phosphates, and chloride ions), crocodilian Hbs exhibit low sensitivity to organic phosphates and high sensitivity to bicarbonate (HCO3−), which is believed to augment Hb-O2 unloading during diving and postprandial alkaline tides when blood HCO3− levels and metabolic rates increase. Examination of α- and β-globin amino acid sequences of dwarf caiman (Paleosuchus palpebrosus) revealed a unique combination of substitutions at key effector binding sites compared with other vertebrate and crocodilian Hbs: β82Lys→Gln, β143His→Val, and β146His→Tyr. These substitutions delete positive charges and, along with other distinctive changes in residue charge and polarity, may be expected to disrupt allosteric regulation of Hb-O2 affinity. Strikingly, however, P. palpebrosus Hb shows a strong Bohr effect, and marked deoxygenation-linked binding of organic phosphates (ATP and DPG) and CO2 as carbamate (contrasting with HCO3− binding in other crocodilians). Unlike other Hbs, it polymerizes to large complexes in the oxygenated state. The highly unusual properties of P. palpebrosus Hb align with a high content of His residues (potential sites for oxygenation-linked proton binding) and distinctive surface Cys residues that may form intermolecular disulfide bridges upon polymerization. On the basis of its singular properties, P. palpebrosus Hb provides a unique opportunity for studies on structure-function coupling and the evolution of compensatory mechanisms for maintaining tissue O2 delivery in Hbs that lack conventional effector-binding residues. PMID:23720132

  11. Septide and neurokinin A are high-affinity ligands on the NK-1 receptor: evidence from homologous versus heterologous binding analysis.

    PubMed

    Hastrup, H; Schwartz, T W

    1996-12-16

    The three main tachykinins, substance P, neurokinin A (NKA), and neurokinin B, are believed to be selective ligands for respectively the NK-1, NK-2 and NK-3 receptors. However, NKA also has actions which cannot be mediated through its normal NK-2 receptor and the synthetic peptide [pGlu6,Pro9]-Substance P9-11--called septide--is known to have tachykinin-like actions despite its apparent lack of binding to any known tachykinin receptor. In the cloned NK-1 receptor expressed in COS-7 cells NKA and septide as expected were poor competitors for radiolabeled substance P. However, by using radiolabeled NKA and septide directly, it was found that both peptides in homologous binding assays as well as in competition against each other in fact bound to the NK-1 receptor with high affinity: Kd values of 0.51 +/- 0.15 nM (NKA) and 0.55 +/- 0.03 nM (septide). It is concluded that NKA and septide are high-affinity ligands for the NK-1 receptor but that they are poor competitors for substance P, which in contrast competes very well for binding with both NKA and septide.

  12. Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells.

    PubMed

    Gans, Jonathan; Osborne, Jonathan; Cheng, Juliet; Djapgne, Louise; Oglesby-Sherrouse, Amanda G

    2018-01-01

    Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.

  13. Competition effects in cation binding to humic acid: Conditional affinity spectra for fixed total metal concentration conditions

    NASA Astrophysics Data System (ADS)

    David, Calin; Mongin, Sandrine; Rey-Castro, Carlos; Galceran, Josep; Companys, Encarnació; Garcés, José Luis; Salvador, José; Puy, Jaume; Cecilia, Joan; Lodeiro, Pablo; Mas, Francesc

    2010-09-01

    Information on the Pb and Cd binding to a purified Aldrich humic acid (HA) is obtained from the influence of different fixed total metal concentrations on the acid-base titrations of this ligand. NICA (Non-Ideal Competitive Adsorption) isotherm has been used for a global quantitative description of the binding, which has then been interpreted by plotting the Conditional Affinity Spectra of the H + binding at fixed total metal concentrations (CAScTM). This new physicochemical tool, here introduced, allows the interpretation of binding results in terms of distributions of proton binding energies. A large increase in the acidity of the phenolic sites as the total metal concentration increases, especially in presence of Pb, is revealed from the shift of the CAScTM towards lower affinities. The variance of the CAScTM distribution, which can be used as a direct measure of the heterogeneity, also shows a significant dependence on the total metal concentration. A discussion of the factors that influence the heterogeneity of the HA under the conditions of each experiment is provided, so that the smoothed pattern exhibited by the titration curves can be justified.

  14. Probing the electrostatics and pharmacologic modulation of sequence-specific binding by the DNA-binding domain of the ETS-family transcription factor PU.1: a binding affinity and kinetics investigation

    PubMed Central

    Munde, Manoj; Poon, Gregory M. K.; Wilson, W. David

    2013-01-01

    Members of the ETS family of transcription factors regulate a functionally diverse array of genes. All ETS proteins share a structurally-conserved but sequence-divergent DNA-binding domain, known as the ETS domain. Although the structure and thermodynamics of the ETS-DNA complexes are well known, little is known about the kinetics of sequence recognition, a facet that offers potential insight into its molecular mechanism. We have characterized DNA binding by the ETS domain of PU.1 by biosensor-surface plasmon resonance (SPR). SPR analysis revealed a striking kinetic profile for DNA binding by the PU.1 ETS domain. At low salt concentrations, it binds high-affinity cognate DNA with a very slow association rate constant (≤105 M−1 s−1), compensated by a correspondingly small dissociation rate constant. The kinetics are strongly salt-dependent but mutually balance to produce a relatively weak dependence in the equilibrium constant. This profile contrasts sharply with reported data for other ETS domains (e.g., Ets-1, TEL) for which high-affinity binding is driven by rapid association (>107 M−1 s−1). We interpret this difference in terms of the hydration properties of ETS-DNA binding and propose that at least two mechanisms of sequence recognition are employed by this family of DNA-binding domain. Additionally, we use SPR to demonstrate the potential for pharmacological inhibition of sequence-specific ETS-DNA binding, using the minor groove-binding distamycin as a model compound. Our work establishes SPR as a valuable technique for extending our understanding of the molecular mechanisms of ETS-DNA interactions as well as developing potential small-molecule agents for biotechnological and therapeutic purposes. PMID:23416556

  15. An unexpected way forward: towards a more accurate and rigorous protein-protein binding affinity scoring function by eliminating terms from an already simple scoring function.

    PubMed

    Swanson, Jon; Audie, Joseph

    2018-01-01

    A fundamental and unsolved problem in biophysical chemistry is the development of a computationally simple, physically intuitive, and generally applicable method for accurately predicting and physically explaining protein-protein binding affinities from protein-protein interaction (PPI) complex coordinates. Here, we propose that the simplification of a previously described six-term PPI scoring function to a four term function results in a simple expression of all physically and statistically meaningful terms that can be used to accurately predict and explain binding affinities for a well-defined subset of PPIs that are characterized by (1) crystallographic coordinates, (2) rigid-body association, (3) normal interface size, and hydrophobicity and hydrophilicity, and (4) high quality experimental binding affinity measurements. We further propose that the four-term scoring function could be regarded as a core expression for future development into a more general PPI scoring function. Our work has clear implications for PPI modeling and structure-based drug design.

  16. Binding of human serum proteins to titanium dioxide particles in vitro.

    PubMed

    Zaqout, Mazen S K; Sumizawa, Tomoyuki; Igisu, Hideki; Higashi, Toshiaki; Myojo, Toshihiko

    2011-01-01

    To determine the capacity of human serum proteins to bind to titanium dioxide (TiO(2)) particles of different polymorphs and sizes. TiO(2) particles were mixed with diluted human serum, purified human serum albumin (HSA) or purified human serum gamma-globulin (HGG) solutions. After incubation at 37°C for 1 h, the particles were sedimented by centrifugation, and proteins in the supernatant, as well as those bound to the particles, were analyzed. The total protein concentration in the supernatant was lowered by TiO(2), whereas the albumin/globulin ratio was elevated by the particles. Incubation with TiO(2) also lowered the immunoglobulin, pre-albumin, beta2-microglobulin, ceruloplasmin and retinol-binding protein levels, but not ferritin levels, in the supernatant. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), proteins in the supernatant, especially HGG, were observed to decrease, while those released from the particles (after adding 1% SDS and heating) increased, depending on the dose of TiO(2). Purified HGG and HSA were also bound to TiO(2), although the former appeared to have a higher affinity. All the proteins tested showed the highest binding potency to the amorphous particles (<50 nm) and the lowest to the rutile particles (<5,000 nm), while binding to anatase particles was intermediate. The affinity to the larger anatase was higher than that to smaller anatase particles in most cases. Human serum proteins, including the two major components, HSA and HGG, are bound by TiO(2) particles. The polymorph of the particles seems to be important for determining the binding capacity of the particles and it may affect distribution of the particles in the body.

  17. DOTA-derivatives of octreotide dicarba-analogues with high affinity for somatostatin sst2,5 receptors

    NASA Astrophysics Data System (ADS)

    Pratesi, Alessandro; Ginanneschi, Mauro; Lumini, Marco; Papini, Anna M.; Novellino, Ettore; Brancaccio, Diego; Carotenuto, Alfonso

    2017-02-01

    In vivo somatostatin receptor scintigraphy is a valuable method for the visualization of human endocrine tumours and their metastases. In fact, peptide ligands of somatostatin receptors (sst’s) conjugated with chelating agents are in clinical use. We have recently developed octreotide dicarba-analogues, which show interesting binding profiles at sst’s. In this context, it was mandatory to explore the possibility that our analogues could maintain their activity also upon conjugation with DOTA. In this paper, we report and discuss the synthesis, binding affinity and conformational preferences of three DOTA-conjugated dicarba-analogues of octreotide. Interestingly, two conjugated analogues exhibited nanomolar affinities on sst2 and sst5 somatostatin receptor subtypes.

  18. DOTA-Derivatives of Octreotide Dicarba-Analogs with High Affinity for Somatostatin sst2,5 Receptors.

    PubMed

    Pratesi, Alessandro; Ginanneschi, Mauro; Lumini, Marco; Papini, Anna M; Novellino, Ettore; Brancaccio, Diego; Carotenuto, Alfonso

    2017-01-01

    In vivo somatostatin receptor scintigraphy is a valuable method for the visualization of human endocrine tumors and their metastases. In fact, peptide ligands of somatostatin receptors (sst's) conjugated with chelating agents are in clinical use. We have recently developed octreotide dicarba-analogs, which show interesting binding profiles at sst's. In this context, it was mandatory to explore the possibility that our analogs could maintain their activity also upon conjugation with DOTA. In this paper, we report and discuss the synthesis, binding affinity and conformational preferences of three DOTA-conjugated dicarba-analogs of octreotide. Interestingly, two conjugated analogs exhibited nanomolar affinities on sst 2 and sst 5 somatostatin receptor subtypes.

  19. Understanding Ion Binding Affinity and Selectivity in β-Parvalbumin Using Molecular Dynamics and Mean Spherical Approximation Theory.

    PubMed

    Kucharski, Amir N; Scott, Caitlin E; Davis, Jonathan P; Kekenes-Huskey, Peter M

    2016-08-25

    Parvalbumin (PV) is a globular calcium (Ca(2+))-selective protein expressed in a variety of biological tissues. Our computational studies of the rat β-parvalbumin (β-PV) isoform seek to elucidate the molecular thermodynamics of Ca(2+) versus magnesium (Mg(2+)) binding at the protein's two EF-hand motifs. Specifically, we have utilized molecular dynamics (MD) simulations and a mean-field electrolyte model (mean spherical approximation (MSA) theory) to delineate how the EF-hand scaffold controls the "local" thermodynamics of Ca(2+) binding selectivity over Mg(2+). Our MD simulations provide the probability density of metal-chelating oxygens within the EF-hand scaffolds for both Ca(2+) and Mg(2+), as well the conformational strain induced by Mg(2+) relative to Ca(2+) binding. MSA theory utilizes the binding domain oxygen and charge distributions to predict the chemical potential of ion binding, as well as their corresponding concentrations within the binding domain. We find that the electrostatic and steric contributions toward ion binding were similar for Mg(2+) and Ca(2+), yet the latter was 5.5 kcal/mol lower in enthalpy when internal strain within the EF hand was considered. We therefore speculate that beyond differences in dehydration energies for the Ca(2+) versus Mg(2+), strain induced in the β-PV EF hand by cation binding significantly contributes to the nearly 10,000-fold difference in binding affinity reported in the literature. We further complemented our analyses of local factors governing cation binding selectivity with whole-protein (global) contributions, such as interhelical residue-residue contacts and solvent exposure of hydrophobic surface. These contributions were found to be comparable for both Ca(2+)- and Mg(2+)-bound β-PV, which may implicate local factors, EF-hand strain, and dehydration, in providing the primary means of selectivity. We anticipate these methods could be used to estimate metal binding thermodynamics across a broad range of

  20. ANALYSIS OF DRUG-PROTEIN BINDING BY ULTRAFAST AFFINITY CHROMATOGRAPHY USING IMMOBILIZED HUMAN SERUM ALBUMIN

    PubMed Central

    Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.

    2010-01-01

    Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701

  1. Bioinspired assemblies of plant cell wall polymers unravel the affinity properties of carbohydrate-binding modules.

    PubMed

    Paës, Gabriel; von Schantz, Laura; Ohlin, Mats

    2015-09-07

    Lignocellulose-acting enzymes play a central role in the biorefinery of plant biomass to make fuels, chemicals and materials. These enzymes are often appended to carbohydrate binding modules (CBMs) that promote substrate targeting. When used in plant materials, which are complex assemblies of polymers, the binding properties of CBMs can be difficult to understand and predict, thus limiting the efficiency of enzymes. In order to gain more information on the binding properties of CBMs, some bioinspired model assemblies that contain some of the polymers and covalent interactions found in the plant cell walls have been designed. The mobility of three engineered CBMs has been investigated by FRAP in these assemblies, while varying the parameters related to the polymer concentration, the physical state of assemblies and the oligomerization state of CBMs. The features controlling the mobility of the CBMs in the assemblies have been quantified and hierarchized. We demonstrate that the parameters can have additional or opposite effects on mobility, depending on the CBM tested. We also find evidence of a relationship between the mobility of CBMs and their binding strength. Overall, bioinspired assemblies are able to reveal the unique features of affinity of CBMs. In particular, the results show that oligomerization of CBMs and the presence of ferulic acid motifs in the assemblies play an important role in the binding affinity of CBMs. Thus we propose that these features should be finely tuned when CBMs are used in plant cell walls to optimise bioprocesses.

  2. Computer-aided structure-affinity relationships in a set of piperazine and 3,8-diazabicyclo[3.2.1]octane derivatives binding to the μ-opioid receptor

    NASA Astrophysics Data System (ADS)

    Barlocco, Daniela; Cignarella, Giorgio; Greco, Giovanni; Novellino, Ettore

    1993-10-01

    Molecular modeling studies were carried out on a set of piperazine and 3,8-diazabicyclo[3.2.1]octane derivatives with the aim to highlight the main factors modulating their affinity for the μ-opioid receptor. Structure-affinity relationships were developed with the aid of molecular mechanics and semiempirical quantum-mechanics methods. According to our proposed pharmacodynamic model, the binding to the μ-receptor is promoted by the following physico-chemical features: the presence of hydrocarbon fragments on the nitrogen ring frame capable of interacting with one of two hypothesized hydrophobic receptor pockets; a `correct' orientation of an N-propionyl side chain so as to avoid a sterically hindered region of the receptor; the possibility of accepting a hydrogen bond from a receptor site complementary to the morphine phenol oxygen.

  3. VP24-Karyopherin Alpha Binding Affinities Differ between Ebolavirus Species, Influencing Interferon Inhibition and VP24 Stability.

    PubMed

    Schwarz, Toni M; Edwards, Megan R; Diederichs, Audrey; Alinger, Joshua B; Leung, Daisy W; Amarasinghe, Gaya K; Basler, Christopher F

    2017-02-15

    Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Reston ebolavirus (RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA binding affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability. The interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the interactions of VP24 proteins from EBOV and two members of the Ebolavirus genus, Bundibugyo virus (BDBV) and Reston virus (RESTV). The data reveal lower binding affinity of the BDBV VP24 (bVP24) for KPNAs and demonstrate that the interaction with KPNA modulates inhibition

  4. A Mixed QM/MM Scoring Function to Predict Protein-Ligand Binding Affinity

    PubMed Central

    Hayik, Seth A.; Dunbrack, Roland; Merz, Kenneth M.

    2010-01-01

    Computational methods for predicting protein-ligand binding free energy continue to be popular as a potential cost-cutting method in the drug discovery process. However, accurate predictions are often difficult to make as estimates must be made for certain electronic and entropic terms in conventional force field based scoring functions. Mixed quantum mechanics/molecular mechanics (QM/MM) methods allow electronic effects for a small region of the protein to be calculated, treating the remaining atoms as a fixed charge background for the active site. Such a semi-empirical QM/MM scoring function has been implemented in AMBER using DivCon and tested on a set of 23 metalloprotein-ligand complexes, where QM/MM methods provide a particular advantage in the modeling of the metal ion. The binding affinity of this set of proteins can be calculated with an R2 of 0.64 and a standard deviation of 1.88 kcal/mol without fitting and 0.71 and a standard deviation of 1.69 kcal/mol with fitted weighting of the individual scoring terms. In this study we explore using various methods to calculate terms in the binding free energy equation, including entropy estimates and minimization standards. From these studies we found that using the rotational bond estimate to ligand entropy results in a reasonable R2 of 0.63 without fitting. We also found that using the ESCF energy of the proteins without minimization resulted in an R2 of 0.57, when using the rotatable bond entropy estimate. PMID:21221417

  5. Affinity States of Striatal Dopamine D2 Receptors in Antipsychotic-Free Patients with Schizophrenia

    PubMed Central

    Kubota, Manabu; Nagashima, Tomohisa; Takano, Harumasa; Kodaka, Fumitoshi; Fujiwara, Hironobu; Takahata, Keisuke; Moriguchi, Sho; Higuchi, Makoto; Okubo, Yoshiro; Takahashi, Hidehiko; Ito, Hiroshi

    2017-01-01

    Abstract Background Dopamine D2 receptors are reported to have high-affinity (D2High) and low-affinity (D2Low) states. Although an increased proportion of D2High has been demonstrated in animal models of schizophrenia, few clinical studies have investigated this alteration of D2High in schizophrenia in vivo. Methods Eleven patients with schizophrenia, including 10 antipsychotic-naive and 1 antipsychotic-free individuals, and 17 healthy controls were investigated. Psychopathology was assessed by Positive and Negative Syndrome Scale, and a 5-factor model was used. Two radioligands, [11C]raclopride and [11C]MNPA, were employed to quantify total dopamine D2 receptor and D2High, respectively, in the striatum by measuring their binding potentials. Binding potential values of [11C]raclopride and [11C]MNPA and the binding potential ratio of [11C]MNPA to [11C]raclopride in the striatal subregions were statistically compared between the 2 diagnostic groups using multivariate analysis of covariance controlling for age, gender, and smoking. Correlations between binding potential and Positive and Negative Syndrome Scale scores were also examined. Results Multivariate analysis of covariance demonstrated a significant effect of diagnosis (schizophrenia and control) on the binding potential ratio (P=.018), although the effects of diagnosis on binding potential values obtained with either [11C]raclopride or [11C]MNPA were nonsignificant. Posthoc test showed that the binding potential ratio was significantly higher in the putamen of patients (P=.017). The Positive and Negative Syndrome Scale “depressed” factor in patients was positively correlated with binding potential values of both ligands in the caudate. Conclusions The present study indicates the possibilities of: (1) a higher proportion of D2High in the putamen despite unaltered amounts of total dopamine D2 receptors; and (2) associations between depressive symptoms and amounts of caudate dopamine D2 receptors in patients

  6. DNA Mismatch Binding and Antiproliferative Activity of Rhodium Metalloinsertors

    PubMed Central

    Ernst, Russell J.; Song, Hang; Barton, Jacqueline K.

    2009-01-01

    Deficiencies in mismatch repair (MMR) are associated with carcinogenesis. Rhodium metalloinsertors bind to DNA base mismatches with high specificity and inhibit cellular proliferation preferentially in MMR-deficient cells versus MMR-proficient cells. A family of chrysenequinone diimine complexes of rhodium with varying ancillary ligands that serve as DNA metalloinsertors has been synthesized, and both DNA mismatch binding affinities and antiproliferative activities against the human colorectal carcinoma cell lines HCT116N and HCT116O, an isogenic model system for MMR deficiency, have been determined. DNA photocleavage experiments reveal that all complexes bind to the mismatch sites with high specificities; DNA binding affinities to oligonucleotides containing single base CA and CC mismatches, obtained through photocleavage titration or competition, vary from 104 to 108 M−1 for the series of complexes. Significantly, binding affinities are found to be inversely related to ancillary ligand size and directly related to differential inhibition of the HCT116 cell lines. The observed trend in binding affinity is consistent with the metalloinsertion mode where the complex binds from the minor groove with ejection of mismatched base pairs. The correlation between binding affinity and targeting of the MMR-deficient cell line suggests that rhodium metalloinsertors exert their selective biological effects on MMR-deficient cells through mismatch binding in vivo. PMID:19175313

  7. C5-epimerase and 2-O-sulfotransferase associate in vitro to generate contiguous epimerized and 2-O-sulfated heparan sulfate domains.

    PubMed

    Préchoux, Aurélie; Halimi, Célia; Simorre, Jean-Pierre; Lortat-Jacob, Hugues; Laguri, Cédric

    2015-04-17

    Heparan sulfate (HS), a complex polysaccharide of the cell surface, is endowed with the remarkable ability to bind numerous proteins and, as such, regulates a large variety of biological processes. Protein binding depends on HS structure; however, in the absence of a template driving its biosynthesis, the mechanism by which protein binding sequences are assembled remains poorly known. Here, we developed a chemically defined 13C-labeled substrate and NMR based experiments to simultaneously follow in real time the activity of HS biosynthetic enzymes and characterize the reaction products. Using this new approach, we report that the association of C5-epimerase and 2-O-sulfotransferase, which catalyze the production of iduronic acid and its 2-O-sulfation, respectively, is necessary to processively generate extended sequences of contiguous IdoA2S-containing disaccharides, whereas modifications are randomly introduced when the enzymes are uncoupled. These data shed light on the mechanisms by which HS motifs are generated during biosynthesis. They support the view that HS structure assembly is controlled not only by the availability of the biosynthetic enzymes but also by their physical association, which in the case of the C5-epimerase and 2-O-sulfotransferase was characterized by an affinity of 80 nM as demonstrated by surface plasmon resonance experiments.

  8. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity

    NASA Astrophysics Data System (ADS)

    Keefe, Andrew J.; Jiang, Shaoyi

    2012-01-01

    Treatment with therapeutic proteins is an attractive approach to targeting a number of challenging diseases. Unfortunately, the native proteins themselves are often unstable in physiological conditions, reducing bioavailability and therefore increasing the dose that is required. Conjugation with poly(ethylene glycol) (PEG) is often used to increase stability, but this has a detrimental effect on bioactivity. Here, we introduce conjugation with zwitterionic polymers such as poly(carboxybetaine). We show that poly(carboxybetaine) conjugation improves stability in a manner similar to PEGylation, but that the new conjugates retain or even improve the binding affinity as a result of enhanced protein-substrate hydrophobic interactions. This chemistry opens a new avenue for the development of protein therapeutics by avoiding the need to compromise between stability and affinity.

  9. High Specific Activity Tritium-Labeled N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (INBMeO): A High Affinity 5-HT2A Receptor-Selective Agonist Radioligand

    PubMed Central

    Nichols, David E.; Frescas, Stewart P.; Chemel, Benjamin R.; Rehder, Kenneth S.; Zhong, Desong; Lewin, Anita H.

    2009-01-01

    The title compound ([3H]INBMeO) was prepared by an O,O-dimethylation reaction of a t-BOC protected diphenolic precursor using no carrier added tritiated iodomethane in DMF with K2CO3. Removal of the t-BOC protecting group and purification by HPLC afforded an overall yield of 43%, with a radiochemical purity of 99% and specific activity of 164 Ci/mmol. The new radioligand was suitable for labeling human 5-HT2A receptors in two heterologous cell lines and had about 20-fold higher affinity than [3H]ketanserin. PMID:18468904

  10. High-affinity 3H-substance P binding to longitudinal muscle membranes of the guinea pig small intestine.

    PubMed

    Buck, S H; Maurin, Y; Burks, T F; Yamamura, H I

    1984-01-30

    The binding of 3H-substance P (3H-SP) to longitudinal muscle membranes of the guinea pig small intestine has been characterized. The binding of 3H-SP exhibited a high affinity (Kd = 0.5nM). It was saturable (Bmax = 2 fmoles/mg tissue), reversible, and temperature-dependent. Kinetic studies and competition of 3H-SP binding by unlabeled SP yielded Kd and Ki values, respectively, which were in good agreement with the Kd calculated from saturation studies. The binding of 3H-SP appeared to be dependent on the presence of divalent cations in the incubation buffer. It was displaced by SP and various analogs and fragments in the rank order of SP greater than SP-(2-11) = SP-(3-11) greater than Nle11- SP = physalaemin greater than SP-(4-11) greater than SP-(5-11) greater than eledoisin much greater than SP-(7-11). Our results indicate that 3H-SP binds in longitudinal muscle of the guinea pig small intestine to a biologically relevant receptor which in many respects resembles the SP receptor characterized in the brain and the salivary gland of the rat.

  11. Crystal structure and ligand affinity of avidin in the complex with 4‧-hydroxyazobenzene-2-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Strzelczyk, Paweł; Bujacz, Grzegorz

    2016-04-01

    Avidin is a protein found in egg white that binds numerous organic compounds with high affinity, especially biotin and its derivatives. Due to its extraordinary affinity for its ligands, avidin is extensively used in biotechnology. X-ray crystallography and fluorescence-based biophysical techniques were used to show that avidin binds the dye 4‧-hydroxyazobenzene-2-carboxylic acid (HABA) with a lower affinity than biotin. The apparent dissociation constant determined for the avidin complex with HABA by microscale thermophoresis (MST) is 4.12 μM. The crystal structure of avidin-HABA complex was determined at a resolution of 2.2 Å (PDB entry 5chk). The crystals belong to a hexagonal system, in the space group P6422. In that structure, the hydrazone tautomer of HABA is bound at the bottom part of the central calyx near the polar residues. We show interactions of the dye with avidin and compare them with the previously reported avidin-biotin complex.

  12. Direct and selective immobilization of proteins by means of an inorganic material-binding peptide: discussion on functionalization in the elongation to material-binding peptide.

    PubMed

    Yokoo, Nozomi; Togashi, Takanari; Umetsu, Mitsuo; Tsumoto, Kouhei; Hattori, Takamitsu; Nakanishi, Takeshi; Ohara, Satoshi; Takami, Seiichi; Naka, Takashi; Abe, Hiroya; Kumagai, Izumi; Adschiri, Tadafumi

    2010-01-14

    Using an artificial peptide library, we have identified a peptide with affinity for ZnO materials that could be used to selectively accumulate ZnO particles on polypropylene-gold plates. In this study, we fused recombinant green fluorescent protein (GFP) with this ZnO-binding peptide (ZnOBP) and then selectively immobilized the fused protein on ZnO particles. We determined an appropriate condition for selective immobilization of recombinant GFP, and the ZnO-binding function of ZnOBP-fused GFP was examined by elongating the ZnOBP tag from a single amino acid to the intact sequence. The fusion of ZnOBP with GFP enabled specific adsorption of GFP on ZnO substrates in an appropriate solution, and thermodynamic studies showed a predominantly enthalpy-dependent electrostatic interaction between ZnOBP and the ZnO surface. The ZnOBP's binding affinity for the ZnO surface increased first in terms of material selectivity and then in terms of high affinity as the GFP-fused peptide was elongated from a single amino acid to intact ZnOBP. We concluded that the enthalpy-dependent interaction between ZnOBP and ZnO was influenced by the presence of not only charged amino acids but also their surrounding residues in the ZnOBP sequence.

  13. Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2.

    PubMed

    Bubenik, Jodi L; Miniard, Angela C; Driscoll, Donna M

    2014-01-01

    Selenium, a micronutrient, is primarily incorporated into human physiology as selenocysteine (Sec). The 25 Sec-containing proteins in humans are known as selenoproteins. Their synthesis depends on the translational recoding of the UGA stop codon to allow Sec insertion. This requires a stem-loop structure in the 3' untranslated region of eukaryotic mRNAs known as the Selenocysteine Insertion Sequence (SECIS). The SECIS is recognized by SECIS-binding protein 2 (SBP2) and this RNA:protein interaction is essential for UGA recoding to occur. Genetic mutations cause SBP2 deficiency in humans, resulting in a broad set of symptoms due to differential effects on individual selenoproteins. Progress on understanding the different phenotypes requires developing robust tools to investigate SBP2 structure and function. In this study we demonstrate that SBP2 protein produced by in vitro translation discriminates among SECIS elements in a competitive UGA recoding assay and has a much higher specific activity than bacterially expressed protein. We also show that a purified recombinant protein encompassing amino acids 517-777 of SBP2 binds to SECIS elements with high affinity and selectivity. The affinity of the SBP2:SECIS interaction correlated with the ability of a SECIS to compete for UGA recoding activity in vitro. The identification of a 250 amino acid sequence that mediates specific, selective SECIS-binding will facilitate future structural studies of the SBP2:SECIS complex. Finally, we identify an evolutionarily conserved core cysteine signature in SBP2 sequences from the vertebrate lineage. Mutation of multiple, but not single, cysteines impaired SECIS-binding but did not affect protein localization in cells.

  14. A molecular recognizing system of serotonin in rat fetal axonal growth cones: uptake and high affinity binding.

    PubMed

    Mercado, R; Hernández, J

    1992-09-18

    Axonal growth cone particles (AGCP) isolated from prenatal and postnatal rat brain had different high-affinity 5-HT uptake characteristics. In postnatal AGCP the uptake behaves as in the adult rat brain, while in the prenatal AGCP the uptake characteristics seem to be in a transitional stage. Also in prenatal AGCP we observed specific, high-affinity 5-HT binding sites. These results support the idea of an important role for 5-HT during axogenesis.

  15. Near-infrared fluorescence probes for enzymes based on binding affinity modulation of squarylium dye scaffold.

    PubMed

    Oushiki, Daihi; Kojima, Hirotatsu; Takahashi, Yuki; Komatsu, Toru; Terai, Takuya; Hanaoka, Kenjiro; Nishikawa, Makiya; Takakura, Yoshinobu; Nagano, Tetsuo

    2012-05-15

    We present a novel design strategy for near-infrared (NIR) fluorescence probes utilizing dye-protein interaction as a trigger for fluorescence enhancement. The design principle involves modification of a polymethine dye with cleavable functional groups that reduce the dye's protein-binding affinity. When these functional groups are removed by specific interaction with the target enzymes, the dye's protein affinity is restored, protein binding occurs, and the dye's fluorescence is strongly enhanced. To validate this strategy, we first designed and synthesized an alkaline phosphatase (ALP) sensor by introducing phosphate into the squarylium dye scaffold; this sensor was able to detect ALP-labeled secondary antibodies in Western blotting analysis. Second, we synthesized a probe for β-galactosidase (widely used as a reporter of gene expression) by means of β-galactosyl substitution of the squarylium scaffold; this sensor was able to visualize β-galactosidase activity both in vitro and in vivo. Our strategy should be applicable to obtain NIR fluorescence probes for a wide range of target enzymes.

  16. Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides

    NASA Astrophysics Data System (ADS)

    Zorzi, Alessandro; Middendorp, Simon J.; Wilbs, Jonas; Deyle, Kaycie; Heinis, Christian

    2017-07-01

    The rapid renal clearance of peptides in vivo limits this attractive platform for the treatment of a broad range of diseases that require prolonged drug half-lives. An intriguing approach for extending peptide circulation times works through a `piggy-back' strategy in which peptides bind via a ligand to the long-lived serum protein albumin. In accordance with this strategy, we developed an easily synthesized albumin-binding ligand based on a peptide-fatty acid chimera that has a high affinity for human albumin (Kd=39 nM). This ligand prolongs the elimination half-life of cyclic peptides in rats 25-fold to over seven hours. Conjugation to a peptide factor XII inhibitor developed for anti-thrombotic therapy extends the half-life from 13 minutes to over five hours, inhibiting coagulation for eight hours in rabbits. This high-affinity albumin ligand could potentially extend the half-life of peptides in human to several days, substantially broadening the application range of peptides as therapeutics.

  17. Toward Fast and Accurate Binding Affinity Prediction with pmemdGTI: An Efficient Implementation of GPU-Accelerated Thermodynamic Integration.

    PubMed

    Lee, Tai-Sung; Hu, Yuan; Sherborne, Brad; Guo, Zhuyan; York, Darrin M

    2017-07-11

    We report the implementation of the thermodynamic integration method on the pmemd module of the AMBER 16 package on GPUs (pmemdGTI). The pmemdGTI code typically delivers over 2 orders of magnitude of speed-up relative to a single CPU core for the calculation of ligand-protein binding affinities with no statistically significant numerical differences and thus provides a powerful new tool for drug discovery applications.

  18. 2-Oxoglutarate levels control adenosine nucleotide binding by Herbaspirillum seropedicae PII proteins.

    PubMed

    Oliveira, Marco A S; Gerhardt, Edileusa C M; Huergo, Luciano F; Souza, Emanuel M; Pedrosa, Fábio O; Chubatsu, Leda S

    2015-12-01

    Nitrogen metabolism in Proteobacteria is controlled by the Ntr system, in which PII proteins play a pivotal role, controlling the activity of target proteins in response to the metabolic state of the cell. Characterization of the binding of molecular effectors to these proteins can provide information about their regulation. Here, the binding of ATP, ADP and 2-oxoglutarate (2-OG) to the Herbaspirillum seropedicae PII proteins, GlnB and GlnK, was characterized using isothermal titration calorimetry. Results show that these proteins can bind three molecules of ATP, ADP and 2-OG with homotropic negative cooperativity, and 2-OG binding stabilizes the binding of ATP. Results also show that the affinity of uridylylated forms of GlnB and GlnK for nucleotides is significantly lower than that of the nonuridylylated proteins. Furthermore, fluctuations in the intracellular concentration of 2-OG in response to nitrogen availability are shown. Results suggest that under nitrogen-limiting conditions, PII proteins tend to bind ATP and 2-OG. By contrast, after an ammonium shock, a decrease in the 2-OG concentration is observed causing a decrease in the affinity of PII proteins for ATP. This phenomenon may facilitate the exchange of ATP for ADP on the ligand-binding pocket of PII proteins, thus it is likely that under low ammonium, low 2-OG levels would favor the ADP-bound state. © 2015 FEBS.

  19. Host-Guest Complexes with Protein-Ligand-Like Affinities: Computational Analysis and Design

    PubMed Central

    Moghaddam, Sarvin; Inoue, Yoshihisa

    2009-01-01

    It has recently been discovered that guests combining a nonpolar core with cationic substituents bind cucurbit[7]uril (CB[7]) in water with ultra-high affinities. The present study uses the Mining Minima algorithm to study the physics of these extraordinary associations and to computationally test a new series of CB[7] ligands designed to bind with similarly high affinity. The calculations reproduce key experimental observations regarding the affinities of ferrocene-based guests with CB[7] and β-cyclodextrin and provide a coherent view of the roles of electrostatics and configurational entropy as determinants of affinity in these systems. The newly designed series of compounds is based on a bicyclo[2.2.2]octane core, which is similar in size and polarity to the ferrocene core of the existing series. Mining Minima predicts that these new compounds will, like the ferrocenes, bind CB[7] with extremely high affinities. PMID:19133781

  20. How Structure Defines Affinity in Protein-Protein Interactions

    PubMed Central

    Erijman, Ariel; Rosenthal, Eran; Shifman, Julia M.

    2014-01-01

    Protein-protein interactions (PPI) in nature are conveyed by a multitude of binding modes involving various surfaces, secondary structure elements and intermolecular interactions. This diversity results in PPI binding affinities that span more than nine orders of magnitude. Several early studies attempted to correlate PPI binding affinities to various structure-derived features with limited success. The growing number of high-resolution structures, the appearance of more precise methods for measuring binding affinities and the development of new computational algorithms enable more thorough investigations in this direction. Here, we use a large dataset of PPI structures with the documented binding affinities to calculate a number of structure-based features that could potentially define binding energetics. We explore how well each calculated biophysical feature alone correlates with binding affinity and determine the features that could be used to distinguish between high-, medium- and low- affinity PPIs. Furthermore, we test how various combinations of features could be applied to predict binding affinity and observe a slow improvement in correlation as more features are incorporated into the equation. In addition, we observe a considerable improvement in predictions if we exclude from our analysis low-resolution and NMR structures, revealing the importance of capturing exact intermolecular interactions in our calculations. Our analysis should facilitate prediction of new interactions on the genome scale, better characterization of signaling networks and design of novel binding partners for various target proteins. PMID:25329579

  1. An O({radical}nL) primal-dual affine scaling algorithm for linear programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Siming

    1994-12-31

    We present a new primal-dual affine scaling algorithm for linear programming. The search direction of the algorithm is a combination of classical affine scaling direction of Dikin and a recent new affine scaling direction of Jansen, Roos and Terlaky. The algorithm has an iteration complexity of O({radical}nL), comparing to O(nL) complexity of Jansen, Roos and Terlaky.

  2. Analysis of the Glutamate Agonist LY404,039 Binding to Nonstatic Dopamine Receptor D2 Dimer Structures and Consensus Docking.

    PubMed

    Salmas, Ramin Ekhteiari; Seeman, Philip; Aksoydan, Busecan; Erol, Ismail; Kantarcioglu, Isik; Stein, Matthias; Yurtsever, Mine; Durdagi, Serdar

    2017-06-21

    Dopamine receptor D2 (D2R) plays an important role in the human central nervous system and is a focal target of antipsychotic agents. The D2 High R and D2 Low R dimeric models previously developed by our group are used to investigate the prediction of binding affinity of the LY404,039 ligand and its binding mechanism within the catalytic domain. The computational data obtained using molecular dynamics simulations fit well with the experimental results. The calculated binding affinities of LY404,039 using MM/PBSA for the D2 High R and D2 Low R targets were -12.04 and -9.11 kcal/mol, respectively. The experimental results suggest that LY404,039 binds to D2 High R and D2 Low R with binding affinities (K i ) of 8.2 and 1640 nM, respectively. The high binding affinity of LY404,039 in terms of binding to [ 3 H]domperidone was inhibited by the presence of a guanine nucleotide, indicating an agonist action of the drug at D2 High R. The interaction analysis demonstrated that while Asp114 was among the most critical amino acids for D2 High R binding, residues Ser193 and Ser197 were significantly more important within the binding cavity of D2 Low R. Molecular modeling analyses are extended to ensemble docking as well as structure-based pharmacophore model (E-pharmacophore) development using the bioactive conformation of LY404,039 at the binding pocket as a template and screening of small-molecule databases with derived pharmacophore models.

  3. A Modeling and Experimental Investigation of the Effects of Antigen Density, Binding Affinity, and Antigen Expression Ratio on Bispecific Antibody Binding to Cell Surface Targets*

    PubMed Central

    Rhoden, John J.; Dyas, Gregory L.

    2016-01-01

    Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. PMID:27022022

  4. A Modeling and Experimental Investigation of the Effects of Antigen Density, Binding Affinity, and Antigen Expression Ratio on Bispecific Antibody Binding to Cell Surface Targets.

    PubMed

    Rhoden, John J; Dyas, Gregory L; Wroblewski, Victor J

    2016-05-20

    Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The Src SH2 domain interacts dynamically with the focal adhesion kinase binding site as demonstrated by paramagnetic NMR spectroscopy.

    PubMed

    Lindfors, Hanna E; Drijfhout, Jan Wouter; Ubbink, Marcellus

    2012-06-01

    The interaction between the tyrosine kinases Src and focal adhesion kinase (FAK) is a key step in signaling processes from focal adhesions. The phosphorylated tyrosine residue 397 in FAK is able to bind the Src SH2 domain. To establish the extent of the FAK binding motif, the binding affinity of the SH2 domain for phosphorylated and unphosphorylated FAK-derived peptides of increasing length was determined and compared with that of the internal Src SH2 binding site. It is shown that the FAK peptides have higher affinity than the internal binding site and that seven negative residues adjacent to the core SH2 binding motif increase the binding constant 30-fold. A rigid spin-label incorporated in the FAK peptides was used to establish on the basis of paramagnetic relaxation enhancement whether the peptide-protein complex is well defined. A large spread of the paramagnetic effects on the surface of the SH2 domain suggests that the peptide-protein complex exhibits dynamics, despite the high affinity of the peptide. The strong electrostatic interaction between the positive side of the SH2 domain and the negative peptide results in a high affinity but may also favor a dynamic interaction. Copyright © 2012 Wiley Periodicals, Inc.

  6. Calculations of binding affinity between C8-substituted GTP analogs and the bacterial cell-division protein FtsZ

    PubMed Central

    Hritz, Jozef; Läppchen, Tilman

    2010-01-01

    The FtsZ protein is a self-polymerizing GTPase that plays a central role in bacterial cell division. Several C8-substituted GTP analogs are known to inhibit the polymerization of FtsZ by competing for the same binding site as its endogenous activating ligand GTP. Free energy calculations of the relative binding affinities to FtsZ for a set of five C8-substituted GTP analogs were performed. The calculated values agree well with the available experimental data, and the main contribution to the free energy differences is determined to be the conformational restriction of the ligands. The dihedral angle distributions around the glycosidic bond of these compounds in water are known to vary considerably depending on the physicochemical properties of the substituent at C8. However, within the FtsZ protein, this substitution has a negligible influence on the dihedral angle distributions, which fall within the narrow range of −140° to −90° for all investigated compounds. The corresponding ensemble average of the coupling constants 3J(C4,H1′) is calculated to be 2.95 ± 0.1 Hz. The contribution of the conformational selection of the GTP analogs upon binding was quantified from the corresponding populations. The obtained restraining free energy values follow the same trend as the relative binding affinities to FtsZ, indicating their dominant contribution. PMID:20559630

  7. Quantitative cumulative biodistribution of antibodies in mice: effect of modulating binding affinity to the neonatal Fc receptor.

    PubMed

    Yip, Victor; Palma, Enzo; Tesar, Devin B; Mundo, Eduardo E; Bumbaca, Daniela; Torres, Elizabeth K; Reyes, Noe A; Shen, Ben Q; Fielder, Paul J; Prabhu, Saileta; Khawli, Leslie A; Boswell, C Andrew

    2014-01-01

    The neonatal Fc receptor (FcRn) plays an important and well-known role in antibody recycling in endothelial and hematopoietic cells and thus it influences the systemic pharmacokinetics (PK) of immunoglobulin G (IgG). However, considerably less is known about FcRn's role in the metabolism of IgG within individual tissues after intravenous administration. To elucidate the organ distribution and gain insight into the metabolism of humanized IgG1 antibodies with different binding affinities FcRn, comparative biodistribution studies in normal CD-1 mice were conducted. Here, we generated variants of herpes simplex virus glycoprotein D-specific antibody (humanized anti-gD) with increased and decreased FcRn binding affinity by genetic engineering without affecting antigen specificity. These antibodies were expressed in Chinese hamster ovary cell lines, purified and paired radiolabeled with iodine-125 and indium-111. Equal amounts of I-125-labeled and In-111-labeled antibodies were mixed and intravenously administered into mice at 5 mg/kg. This approach allowed us to measure both the real-time IgG uptake (I-125) and cumulative uptake of IgG and catabolites (In-111) in individual tissues up to 1 week post-injection. The PK and distribution of the wild-type IgG and the variant with enhanced binding for FcRn were largely similar to each other, but vastly different for the rapidly cleared low-FcRn-binding variant. Uptake in individual tissues varied across time, FcRn binding affinity, and radiolabeling method. The liver and spleen emerged as the most concentrated sites of IgG catabolism in the absence of FcRn protection. These data provide an increased understanding of FcRn's role in antibody PK and catabolism at the tissue level.

  8. UO₂²⁺ uptake by proteins: understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity.

    PubMed

    Odoh, Samuel O; Bondarevsky, Gary D; Karpus, Jason; Cui, Qiang; He, Chuan; Spezia, Riccardo; Gagliardi, Laura

    2014-12-17

    The capture of uranyl, UO2(2+), by a recently engineered protein (Zhou et al. Nat. Chem. 2014, 6, 236) with high selectivity and femtomolar sensitivity has been examined by a combination of density functional theory, molecular dynamics, and free-energy simulations. It was found that UO2(2+) is coordinated to five carboxylate oxygen atoms from four amino acid residues of the super uranyl binding protein (SUP). A network of hydrogen bonds between the amino acid residues coordinated to UO2(2+) and residues in its second coordination sphere also affects the protein's uranyl binding affinity. Free-energy simulations show how UO2(2+) capture is governed by the nature of the amino acid residues in the binding site, the integrity and strength of the second-sphere hydrogen bond network, and the number of water molecules in the first coordination sphere. Alteration of any of these three factors through mutations generally results in a reduction of the binding free energy of UO2(2+) to the aqueous protein as well as of the difference between the binding free energies of UO2(2+) and other ions (Ca(2+), Cu(2+), Mg(2+), and Zn(2+)), a proxy for the protein's selectivity over these ions. The results of our free-energy simulations confirmed the previously reported experimental results and allowed us to discover a mutant of SUP, specifically the GLU64ASP mutant, that not only binds UO2(2+) more strongly than SUP but that is also more selective for UO2(2+) over other ions. The predictions from the computations were confirmed experimentally.

  9. Simple and Efficient Purification of Recombinant Proteins Using the Heparin-Binding Affinity Tag.

    PubMed

    Jayanthi, Srinivas; Gundampati, Ravi Kumar; Kumar, Thallapuranam Krishnaswamy Suresh

    2017-11-01

    Heparin, a member of the glycosaminoglycan family, is known to interact with more than 400 different types of proteins. For the past few decades, significant progress has been made to understand the molecular details involved in heparin-protein interactions. Based on the structural knowledge available from the FGF1-heparin interaction studies, we have designed a novel heparin-binding peptide (HBP) affinity tag that can be used for the simple, efficient, and cost-effective purification of recombinant proteins of interest. HBP-tagged fusion proteins can be purified by heparin Sepharose affinity chromatography using a simple sodium chloride gradient to elute the bound fusion protein. In addition, owing to the high density of positive charges on the HBP tag, recombinant target proteins are preferably expressed in their soluble forms. The purification of HBP-fusion proteins can also be achieved in the presence of chemical denaturants, including urea. Additionally, polyclonal antibodies raised against the affinity tag can be used to detect HBP-fused target proteins with high sensitivity. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  10. Binding affinity toward human prion protein of some anti-prion compounds - Assessment based on QSAR modeling, molecular docking and non-parametric ranking.

    PubMed

    Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija

    2018-01-01

    The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Reduction of high-affinity beta2-adrenergic receptor binding by hyperforin and hyperoside on rat C6 glioblastoma cells measured by fluorescence correlation spectroscopy.

    PubMed

    Prenner, Lars; Sieben, Anne; Zeller, Karin; Weiser, Dieter; Häberlein, Hanns

    2007-05-01

    Beta-adrenergic receptors (beta-AR) are potential targets for antidepressants. Desensitization and downregulation of beta-AR are discussed as possible modes of action for antidepressants. We have investigated the effects of hyperforin and hyperoside, compounds with potentially antidepressant activity from St. John's Wort, on the binding behavior and dynamics of beta2-AR in living rat C6 glioblastoma cells, compared to desipramine (desmethylimipramine; DMI) by means of fluorescence correlation spectroscopy (FCS) and fluorescence microscopy. FCS-binding studies with the fluorescently labeled ligand Alexa532-noradrenaline (Alexa532-NA) binding to beta2-AR of C6 cells showed a significant reduction in total beta2-AR binding after preincubation with hyperforin and hyperoside for 3 days, respectively, which was also found for DMI. This was mainly observed in high-affinity receptor-ligand complexes with hindered lateral mobility (D2 = 1.1 (+/-0.4) microm2/s) in the biomembrane. However, internalization of beta2-AR was found neither in z-scans of these C6 cells nor in HEK 293 cells stably transfected with GFP-tagged beta2-adrenergic receptors (beta2AR-GFP) after incubation up to 6 days with either DMI, hyperforin, or hyperoside. Thus, under these conditions reduction of beta2-AR binding was not mediated by receptor internalization. Additionally, preincubation of C6 cells with DMI, hyperforin, and hyperoside led to a loss of second messenger cAMP after beta2-adrenergic stimulating conditions with terbutaline. Our current results indicate that hyperforin and hyperoside from St. John's Wort, as well as DMI, reduce beta2-adrenergic sensitivity in C6 cells, emphasizing the potential usefulness of St. John's Wort dry extracts in clinical treatment of depressive symptoms.

  12. SKF 525-A and cytochrome P-450 ligands inhibit with high affinity the binding of ( sup 3 H)dextromethorphan and. sigma. ligands to guinea pig brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, M.; Canoll, P.D.; Musacchio, J.M.

    1991-01-01

    The DM{sub 1}/{sigma}{sub 1} site binds dextromethorphan (DM) and {sigma} receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of ({sup 3}H)dextromethorphan, ({sup 3}H)3- (3-Hydroxyphenyl) -N- (1-propyl) piperidine and (+)-({sup 3}H)1,3-Di-o-tolyl-guanidine (({sup 3}H)DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drugmore » has identical nM K{sub i} values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM{sub 1}{sigma}{sub 1} site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed K{sub i} values of 9-13 and 3-4 {mu}M respectively against the three labeled ligands. These results, the broad specificity of the DM{sub 1}/{sigma}{sub 1} binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor.« less

  13. Gonadotropin stimulation of cyclic adenosine monophosphate and testosterone production without detectable high-affinity binding sites in purified Leydig cells from rat testis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browne, E.S.; Bhalla, V.K.

    1991-02-01

    Rat testicular interstitial cells were separated by three different gradient-density procedures and, with each, two biochemically and morphologically distinct cell fractions were isolated. The lighter density cells in fraction-I bound iodine 125-labeled human chorionic gonadotropin (hCG) with high-affinity (apparent equilibrium dissociation constant, Kd, approximately 10{sup {minus} 10} M) without producing either cyclic adenosine monophosphate or testosterone in response to hormone action. The heavier-density cells displayed morphologic features typical of Leydig cells and produced cyclic adenosine monophosphate and testosterone in the presence of hCG without detectable {sup 125}I-labeled hCG high-affinity binding. These cell fractions were further characterized by studies using deglycosylatedmore » hCG, a known antagonist to hCG action. Cell concentration-dependent studies with purified Leydig cells revealed that maximal testosterone production was achieved when lower cell concentrations (0.5 x 10(6) cells/250 microliters) were used for in vitro hCG stimulation assays. Under these conditions, the {sup 125}I-labeled hCG binding was barely detectable (2.24 fmol; 2,698 sites/cell). Furthermore, these studies revealed that the hCG-specific binding in Leydig cells is overestimated by the classic method for nonspecific binding correction using excess unlabeled hormone. An alternate method is presented.« less

  14. Band offset and electron affinity of MBE-grown SnSe2

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Li, Mingda Oscar; Lochocki, Edward B.; Vishwanath, Suresh; Liu, Xinyu; Yan, Rusen; Lien, Huai-Hsun; Dobrowolska, Malgorzata; Furdyna, Jacek; Shen, Kyle M.; Cheng, Guangjun; Hight Walker, Angela R.; Gundlach, David J.; Xing, Huili G.; Nguyen, N. V.

    2018-01-01

    SnSe2 is currently considered a potential two-dimensional material that can form a near-broken gap heterojunction in a tunnel field-effect transistor due to its large electron affinity which is experimentally confirmed in this letter. With the results from internal photoemission and angle-resolved photoemission spectroscopy performed on Al/Al2O3/SnSe2/GaAs and SnSe2/GaAs test structures where SnSe2 is grown on GaAs by molecular beam epitaxy, we ascertain a (5.2 ± 0.1) eV electron affinity of SnSe2. The band offset from the SnSe2 Fermi level to the Al2O3 conduction band minimum is found to be (3.3 ± 0.05) eV and SnSe2 is seen to have a high level of intrinsic electron (n-type) doping with the Fermi level positioned at about 0.2 eV above its conduction band minimum. It is concluded that the electron affinity of SnSe2 is larger than that of most semiconductors and can be combined with other appropriate semiconductors to form near broken-gap heterojunctions for the tunnel field-effect transistor that can potentially achieve high on-currents.

  15. One-pot synthesis and sigma receptor binding studies of novel spirocyclic-2,6-diketopiperazine derivatives.

    PubMed

    Ghandi, Mehdi; Sherafat, Fatemeh; Sadeghzadeh, Masoud; Alirezapour, Behrouz

    2016-06-01

    New spirocyclic-2,6-diketopiperazine derivatives containing benzylpiperidine and cycloalkane moieties were synthesized by a one-pot two-step sequential Ugi/intramolecular N-amidation process in moderate to good yields. The in vitro ligand-binding profile studies performed on the sigma-1 and sigma-2 receptors revealed that the σ1 affinities and subtype selectivities of three spirocyclic piperidine derivatives are generally comparable to those of spirocycloalkane analogues. Compared to the low σ1 affinities obtained for cycloalkyl-substituted spirocyclic-2,6-diketopiperazines with n=2, those with n=1 proved to have optimal fitting with σ2 subtype by exhibiting higher affinities. Moreover, the best binding affinity and subtype selectivity was identified for compound 3c with Kiσ1=5.9±0.5nM and Kiσ2=563±21nM as well as 95-fold σ1/σ2 selectivity ratio, respectively. Copyright © 2016. Published by Elsevier Ltd.

  16. Atypical binding of the Swa2p UBA domain to ubiquitin.

    PubMed

    Matta-Camacho, Edna; Kozlov, Guennadi; Trempe, Jean-François; Gehring, Kalle

    2009-02-20

    Swa2p is an auxilin-like yeast protein that is involved in vesicular transport and required for uncoating of clathrin-coated vesicles. Swa2p contains a ubiquitin-associated (UBA) domain, which is present in a variety of proteins involved in ubiquitin (Ub)-mediated processes. We have determined a structural model of the Swa2p UBA domain in complex with Ub using NMR spectroscopy and molecular docking. Ub recognition occurs predominantly through an atypical interaction in which UBA helix alpha1 and the N-terminal part of helix alpha2 bind to Ub. Mutation of Ala148, a key residue in helix alpha1, to polar residues greatly reduced the affinity of the UBA domain for Ub and revealed a second low-affinity Ub-binding site located on the surface formed by helices alpha1 and alpha3. Surface plasmon resonance showed that the Swa2p UBA domain binds K48- and K63-linked di-Ub in a non-linkage-specific manner. These results reveal convergent evolution of a Ub-binding site on helix alpha1 of UBA domains involved in membrane protein trafficking.

  17. Structural considerations for functional anti-EGFR × anti-CD3 bispecific diabodies in light of domain order and binding affinity.

    PubMed

    Asano, Ryutaro; Nagai, Keisuke; Makabe, Koki; Takahashi, Kento; Kumagai, Takashi; Kawaguchi, Hiroko; Ogata, Hiromi; Arai, Kyoko; Umetsu, Mitsuo; Kumagai, Izumi

    2018-03-02

    We previously reported a functional humanized bispecific diabody (bsDb) that targeted EGFR and CD3 (hEx3-Db) and enhancement of its cytotoxicity by rearranging the domain order in the V domain. Here, we further dissected the effect of domain order in bsDbs on their cross-linking ability and binding kinetics to elucidate general rules regarding the design of functional bsDbs. Using Ex3-Db as a model system, we first classified the four possible domain orders as anti-parallel (where both chimeric single-chain components are variable heavy domain (VH)-variable light domain (VL) or VL-VH order) and parallel types (both chimeric single-chain components are mixed with VH-VL and VL-VH order). Although anti-parallel Ex3-Dbs could cross-link the soluble target antigens, their cross-linking ability between soluble targets had no correlation with their growth inhibitory effects. In contrast, the binding affinity of one of the two constructs with a parallel-arrangement V domain was particularly low, and structural modeling supported this phenomenon. Similar results were observed with E2x3-Dbs, in which the V region of the anti-EGFR antibody clone in hEx3 was replaced with that of another anti-EGFR clone. Only anti-parallel types showed affinity-dependent cancer inhibitory effects in each molecule, and E2x3-LH (both components in VL-VH order) showed the most intense anti-tumor activity in vitro and in vivo . Our results showed that, in addition to rearranging the domain order of bsDbs, increasing their binding affinity may be an ideal strategy for enhancing the cytotoxicity of anti-parallel constructs and that E2x3-LH is particularly attractive as a candidate next-generation anti-cancer drug.

  18. A Single Mutation at Position 190 in Hemagglutinin Enhances Binding Affinity for Human Type Sialic Acid Receptor and Replication of H9N2 Avian Influenza Virus in Mice

    PubMed Central

    Teng, Qiaoyang; Xu, Dawei; Shen, Weixia; Liu, Qinfang; Rong, Guangyu; Li, Xuesong; Yan, Liping; Yang, Jianmei; Chen, Hongjun; Yu, Hai

    2016-01-01

    ABSTRACT H9N2 avian influenza virus (AIV) has an extended host range, but the molecular basis underlying H9N2 AIV transmission to mammals remains unclear. We isolated more than 900 H9N2 AIVs in our 3-year surveillance in live bird markets in China from 2009 to 2012. Thirty-seven representative isolates were selected for further detailed characterization. These isolates were categorized into 8 genotypes (B64 to B71) and formed a distinct antigenic subgroup. Three isolates belonging to genotype B69, which is a predominant genotype circulating in China, replicated efficiently in mice, while the viruses tested in parallel in other genotypes replicated poorly, although they, like the three B69 isolates, have a leucine at position 226 in the hemagglutinin (HA) receptor binding site, which is critical for binding human type sialic acid receptors. Further molecular and single mutation analysis revealed that a valine (V) residue at position 190 in HA is responsible for efficient replication of these H9N2 viruses in mice. The 190V in HA does not affect virus receptor binding specificity but enhances binding affinity to human cells and lung tissues from mouse and humans. All these data indicate that the 190V in HA is one of the important determinants for H9N2 AIVs to cross the species barrier to infect mammals despite multiple genes conferring adaptation and replication of H9N2 viruses in mammals. Our findings provide novel insights on understanding host range expansion of H9N2 AIVs. IMPORTANCE Influenza virus hemagglutinin (HA) is responsible for binding to host cell receptors and therefore influences the viral host range and pathogenicity in different species. We showed that the H9N2 avian influenza viruses harboring 190V in the HA exhibit enhanced virus replication in mice. Further studies demonstrate that 190V in the HA does not change virus receptor binding specificity but enhances virus binding affinity of the H9N2 virus to human cells and attachment to lung tissues

  19. A Single Mutation at Position 190 in Hemagglutinin Enhances Binding Affinity for Human Type Sialic Acid Receptor and Replication of H9N2 Avian Influenza Virus in Mice.

    PubMed

    Teng, Qiaoyang; Xu, Dawei; Shen, Weixia; Liu, Qinfang; Rong, Guangyu; Li, Xuesong; Yan, Liping; Yang, Jianmei; Chen, Hongjun; Yu, Hai; Ma, Wenjun; Li, Zejun

    2016-11-01

    H9N2 avian influenza virus (AIV) has an extended host range, but the molecular basis underlying H9N2 AIV transmission to mammals remains unclear. We isolated more than 900 H9N2 AIVs in our 3-year surveillance in live bird markets in China from 2009 to 2012. Thirty-seven representative isolates were selected for further detailed characterization. These isolates were categorized into 8 genotypes (B64 to B71) and formed a distinct antigenic subgroup. Three isolates belonging to genotype B69, which is a predominant genotype circulating in China, replicated efficiently in mice, while the viruses tested in parallel in other genotypes replicated poorly, although they, like the three B69 isolates, have a leucine at position 226 in the hemagglutinin (HA) receptor binding site, which is critical for binding human type sialic acid receptors. Further molecular and single mutation analysis revealed that a valine (V) residue at position 190 in HA is responsible for efficient replication of these H9N2 viruses in mice. The 190V in HA does not affect virus receptor binding specificity but enhances binding affinity to human cells and lung tissues from mouse and humans. All these data indicate that the 190V in HA is one of the important determinants for H9N2 AIVs to cross the species barrier to infect mammals despite multiple genes conferring adaptation and replication of H9N2 viruses in mammals. Our findings provide novel insights on understanding host range expansion of H9N2 AIVs. Influenza virus hemagglutinin (HA) is responsible for binding to host cell receptors and therefore influences the viral host range and pathogenicity in different species. We showed that the H9N2 avian influenza viruses harboring 190V in the HA exhibit enhanced virus replication in mice. Further studies demonstrate that 190V in the HA does not change virus receptor binding specificity but enhances virus binding affinity of the H9N2 virus to human cells and attachment to lung tissues from humans and mouse

  20. The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide-Localization of a putative binding site.

    PubMed

    Dayan, Avraham; Babin, Gilad; Ganoth, Assaf; Kayouf, Nivin Samir; Nitoker Eliaz, Neta; Mukkala, Srijana; Tsfadia, Yossi; Fleminger, Gideon

    2017-08-01

    Titanium (Ti) and its alloys are widely used in orthodontic and orthopedic implants by virtue to their high biocompatibility, mechanical strength, and high resistance to corrosion. Biointegration of the implants with the tissue requires strong interactions, which involve biological molecules, proteins in particular, with metal oxide surfaces. An exocellular high-affinity titanium dioxide (TiO 2 )-binding protein (TiBP), purified from Rhodococcus ruber, has been previously studied in our lab. This protein was shown to be homologous with the orthologous cytoplasmic rhodococcal dihydrolipoamide dehydrogenase (rhDLDH). We have found that rhDLDH and its human homolog (hDLDH) share the TiO 2 -binding capabilities with TiBP. Intrigued by the unique TiO 2 -binding properties of hDLDH, we anticipated that it may serve as a molecular bridge between Ti-based medical structures and human tissues. The objective of the current study was to locate the region and the amino acids of the protein that mediate the protein-TiO 2 surface interaction. We demonstrated the role of acidic amino acids in the nonelectrostatic enzyme/dioxide interactions at neutral pH. The observation that the interaction of DLDH with various metal oxides is independent of their isoelectric values strengthens this notion. DLDH does not lose its enzymatic activity upon binding to TiO 2 , indicating that neither the enzyme undergoes major conformational changes nor the TiO 2 binding site is blocked. Docking predictions suggest that both rhDLDH and hDLDH bind TiO 2 through similar regions located far from the active site and the dimerization sites. The putative TiO 2 -binding regions of both the bacterial and human enzymes were found to contain a CHED (Cys, His, Glu, Asp) motif, which has been shown to participate in metal-binding sites in proteins. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Alternative Affinity Ligands for Immunoglobulins.

    PubMed

    Kruljec, Nika; Bratkovič, Tomaž

    2017-08-16

    The demand for recombinant therapeutic antibodies and Fc-fusion proteins is expected to increase in the years to come. Hence, extensive efforts are concentrated on improving the downstream processing. In particular, the development of better-affinity chromatography matrices, supporting robust time- and cost-effective antibody purification, is warranted. With the advances in molecular design and high-throughput screening approaches from chemical and biological combinatorial libraries, novel affinity ligands representing alternatives to bacterial immunoglobulin (Ig)-binding proteins have entered the scene. Here, we review the design, development, and properties of diverse classes of alternative antibody-binding ligands, ranging from engineered versions of Ig-binding proteins, to artificial binding proteins, peptides, aptamers, and synthetic small-molecular-weight compounds. We also provide examples of applications for the novel affinity matrices in chromatography and beyond.

  2. Magneto-nanosensor platform for probing low-affinity protein–protein interactions and identification of a low-affinity PD-L1/PD-L2 interaction

    PubMed Central

    Lee, Jung-Rok; Bechstein, Daniel J. B.; Ooi, Chin Chun; Patel, Ashka; Gaster, Richard S.; Ng, Elaine; Gonzalez, Lino C.; Wang, Shan X.

    2016-01-01

    Substantial efforts have been made to understand the interactions between immune checkpoint receptors and their ligands targeted in immunotherapies against cancer. To carefully characterize the complete network of interactions involved and the binding affinities between their extracellular domains, an improved kinetic assay is needed to overcome limitations with surface plasmon resonance (SPR). Here, we present a magneto-nanosensor platform integrated with a microfluidic chip that allows measurement of dissociation constants in the micromolar-range. High-density conjugation of magnetic nanoparticles with prey proteins allows multivalent receptor interactions with sensor-immobilized bait proteins, more closely mimicking natural-receptor clustering on cells. The platform has advantages over traditional SPR in terms of insensitivity of signal responses to pH and salinity, less consumption of proteins and better sensitivities. Using this platform, we characterized the binding affinities of the PD-1—PD-L1/PD-L2 co-inhibitory receptor system, and discovered an unexpected interaction between the two known PD-1 ligands, PD-L1 and PD-L2. PMID:27447090

  3. Hierarchy and Assortativity as New Tools for Binding-Affinity Investigation: The Case of the TBA Aptamer-Ligand Complex.

    PubMed

    Cataldo, Rosella; Alfinito, Eleonora; Reggiani, Lino

    2017-12-01

    Aptamers are single stranded DNA, RNA, or peptide sequences having the ability to bind several specific targets (proteins, molecules as well as ions). Therefore, aptamer production and selection for therapeutic and diagnostic applications is very challenging. Usually, they are generated in vitro, although computational approaches have been recently developed for the in silico production. Despite these efforts, the mechanism of aptamer-ligand formation is not completely clear, and producing high-affinity aptamers is still quite difficult. This paper aims to develop a computational model able to describe aptamer-ligand affinity. Topological tools, such as the conventional degree distribution, the rank-degree distribution (hierarchy), and the node assortativity are employed. In doing so, the macromolecules tertiary-structures are mapped into appropriate graphs. These graphs reproduce the main topological features of the macromolecules, by preserving the distances between amino acids (nucleotides). Calculations are applied to the thrombin binding aptamer (TBA), and the TBA-thrombin complex produced in the presence of Na + or K + . The topological analysis is able to detect several differences between complexes obtained in the presence of the two cations, as expected by previous investigations. These results support graph analysis as a novel computational tool for testing affinity. Otherwise, starting from the graphs, an electrical network can be obtained by using the specific electrical properties of amino acids and nucleobases. Therefore, a further analysis concerns with the electrical response, revealing that the resistance is sensitively affected by the presence of sodium or potassium, thus suggesting resistance as a useful physical parameter for testing binding affinity.

  4. High-affinity binding of laurate to naturally occurring mutants of human serum albumin and proalbumin.

    PubMed

    Kragh-Hansen, U; Pedersen, A O; Galliano, M; Minchiotti, L; Brennan, S O; Tárnoky, A L; Franco, M H; Salzano, F M

    1996-12-15

    Binding of laurate (n-dodecanoate) to genetic variants of albumin or its proprotein and to normal albumin isolated from the same heterozygous carriers was studied by a kinetic dialysis technique at physiological pH. The first stoichiometric association constant for binding to proalbumin Lille (Arg-2-->His) and albumin (Alb) Roma (Glu321-->Lys) was increased to 126% and 136% respectively compared with that for binding to normal albumin, whereas the constant for Alb Maku (Lys541-->Glu) was decreased to 80%. In contrast, normal laurate-binding properties were found for as many as nine other albumin variants with single amino acid substitutions. Because the net charges of all these mutants were different from that of normal albumin, the results suggest that the examples of modified laurate binding are not caused by long-range electrostatic effects. Rather, the three positions mentioned are located close to different binding sites for the fatty acid anion. The most pronounced effect was observed for the glycosylated Alb Casebrook, the binding constant of which was decreased to 20%. Binding to the glycosylated Alb Redhill was also decreased, but to a smaller extent (68%). These decreases in binding are caused by partial or total blocking of the high-affinity site by the oligosaccharides, by the negative charges of the oligosaccharides, and/or by conformational changes induced by these bulky moieties. Laurate binding to two chain-termination mutants (Alb Catania and Alb Venezia) was normal, indicating that the C-terminus of albumin is not important for binding. By using different preparations of normal albumin as controls in the binding experiments, it was also possible to compare the effect of various methods for isolation and defatting on laurate binding.

  5. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings.

    PubMed

    Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R

    1985-09-01

    We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere apparently shifts the allosteric equilibrium toward the low affinity state, it greatly diminishes the cofactor effects by anions. The oxygen affinity of the patient's erythrocytes is substantially lowered by the presence of bezafibrate, which combines with sites different from those of 2,3-diphosphoglycerate in either hemoglobin Rahere or hemoglobin A.

  6. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings.

    PubMed Central

    Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R

    1985-01-01

    We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere apparently shifts the allosteric equilibrium toward the low affinity state, it greatly diminishes the cofactor effects by anions. The oxygen affinity of the patient's erythrocytes is substantially lowered by the presence of bezafibrate, which combines with sites different from those of 2,3-diphosphoglycerate in either hemoglobin Rahere or hemoglobin A. PMID:3930571

  7. Calculations of the binding affinities of protein-protein complexes with the fast multipole method

    NASA Astrophysics Data System (ADS)

    Kim, Bongkeun; Song, Jiming; Song, Xueyu

    2010-09-01

    In this paper, we used a coarse-grained model at the residue level to calculate the binding free energies of three protein-protein complexes. General formulations to calculate the electrostatic binding free energy and the van der Waals free energy are presented by solving linearized Poisson-Boltzmann equations using the boundary element method in combination with the fast multipole method. The residue level model with the fast multipole method allows us to efficiently investigate how the mutations on the active site of the protein-protein interface affect the changes in binding affinities of protein complexes. Good correlations between the calculated results and the experimental ones indicate that our model can capture the dominant contributions to the protein-protein interactions. At the same time, additional effects on protein binding due to atomic details are also discussed in the context of the limitations of such a coarse-grained model.

  8. Bicarbonate increases binding affinity of Vibrio cholerae ToxT to virulence gene promoters.

    PubMed

    Thomson, Joshua J; Withey, Jeffrey H

    2014-11-01

    The major Vibrio cholerae virulence gene transcription activator, ToxT, is responsible for the production of the diarrhea-inducing cholera toxin (CT) and the major colonization factor, toxin coregulated pilus (TCP). In addition to the two primary virulence factors mentioned, ToxT is responsible for the activation of accessory virulence genes, such as aldA, tagA, acfA, acfD, tcpI, and tarAB. ToxT activity is negatively modulated by bile and unsaturated fatty acids found in the upper small intestine. Conversely, previous work identified another intestinal signal, bicarbonate, which enhances the ability of ToxT to activate production of CT and TCP. The work presented here further elucidates the mechanism for the enhancement of ToxT activity by bicarbonate. Bicarbonate was found to increase the activation of ToxT-dependent accessory virulence promoters in addition to those that produce CT and TCP. Bicarbonate is taken up into the V. cholerae cell, where it positively affects ToxT activity by increasing DNA binding affinity for the virulence gene promoters that ToxT activates regardless of toxbox configuration. The increase in ToxT binding affinity in the presence of bicarbonate explains the elevated level of virulence gene transcription. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Bicarbonate Increases Binding Affinity of Vibrio cholerae ToxT to Virulence Gene Promoters

    PubMed Central

    Thomson, Joshua J.

    2014-01-01

    The major Vibrio cholerae virulence gene transcription activator, ToxT, is responsible for the production of the diarrhea-inducing cholera toxin (CT) and the major colonization factor, toxin coregulated pilus (TCP). In addition to the two primary virulence factors mentioned, ToxT is responsible for the activation of accessory virulence genes, such as aldA, tagA, acfA, acfD, tcpI, and tarAB. ToxT activity is negatively modulated by bile and unsaturated fatty acids found in the upper small intestine. Conversely, previous work identified another intestinal signal, bicarbonate, which enhances the ability of ToxT to activate production of CT and TCP. The work presented here further elucidates the mechanism for the enhancement of ToxT activity by bicarbonate. Bicarbonate was found to increase the activation of ToxT-dependent accessory virulence promoters in addition to those that produce CT and TCP. Bicarbonate is taken up into the V. cholerae cell, where it positively affects ToxT activity by increasing DNA binding affinity for the virulence gene promoters that ToxT activates regardless of toxbox configuration. The increase in ToxT binding affinity in the presence of bicarbonate explains the elevated level of virulence gene transcription. PMID:25182489

  10. Optimization of reverse chemical ecology method: false positive binding of Aenasius bambawalei odorant binding protein 1 caused by uncertain binding mechanism.

    PubMed

    Li, Q L; Yi, S C; Li, D Z; Nie, X P; Li, S Q; Wang, M-Q; Zhou, A M

    2018-06-01

    Odorant binding proteins (OBPs) are considered as the core molecular targets in reverse chemical ecology, which is a convenient and efficient method by which to screen potential semiochemicals. Herein, we identified a classic OBP, AbamOBP1 from Aenasius bambawalei, which showed high mRNA expression in male antennae. Fluorescence competitive binding assay (FCBA) results demonstrated that AbamOBP1 has higher binding affinity with ligands at acid pH, suggesting the physiologically inconsistent binding affinity of this protein. Amongst the four compounds with the highest binding affinities at acid pH, 2, 4, 4-trimethyl-2-pentene and 1-octen-3-one were shown to have attractant activity for male adults, whereas (-)-limonene and an analogue of 1-octen-3-ol exhibited nonbehavioural activity. Further homology modelling and fluorescence quenching experiments demonstrated that the stoichiometry of the binding of this protein to these ligands was not 1: 1, suggesting that the results of FCBA were false. In contrast, the apparent association constants (Ka) of fluorescence quenching experiments seemed to be more reliable, because 2, 4, 4-trimethyl-2-pentene and 1-octen-3-one had observably higher Ka than (-)-limonene and 1-octen-3-ol at neutral pH. Based on the characteristics of different OBPs, various approaches should be applied to study their binding affinities with ligands, which could modify and complement the results of FCBA and contribute to the application of reverse chemical ecology. © 2018 The Royal Entomological Society.

  11. Improved estimation of ligand macromolecule binding affinities by linear response approach using a combination of multi-mode MD simulation and QM/MM methods

    NASA Astrophysics Data System (ADS)

    Khandelwal, Akash; Balaz, Stefan

    2007-01-01

    Structure-based predictions of binding affinities of ligands binding to proteins by coordination bonds with transition metals, covalent bonds, and bonds involving charge re-distributions are hindered by the absence of proper force fields. This shortcoming affects all methods which use force-field-based molecular simulation data on complex formation for affinity predictions. One of the most frequently used methods in this category is the Linear Response (LR) approach of Åquist, correlating binding affinities with van der Waals and electrostatic energies, as extended by Jorgensen's inclusion of solvent-accessible surface areas. All these terms represent the differences, upon binding, in the ensemble averages of pertinent quantities, obtained from molecular dynamics (MD) or Monte Carlo simulations of the complex and of single components. Here we report a modification of the LR approach by: (1) the replacement of the two energy terms through the single-point QM/MM energy of the time-averaged complex structure from an MD simulation; and (2) a rigorous consideration of multiple modes (mm) of binding. The first extension alleviates the force-field related problems, while the second extension deals with the ligands exhibiting large-scale motions in the course of an MD simulation. The second modification results in the correlation equation that is nonlinear in optimized coefficients, but does not lead to an increase in the number of optimized coefficients. The application of the resulting mm QM/MM LR approach to the inhibition of zinc-dependent gelatinase B (matrix metalloproteinase 9) by 28 hydroxamate ligands indicates a significant improvement of descriptive and predictive abilities.

  12. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    PubMed

    Wall, Jonathan S; Williams, Angela; Richey, Tina; Stuckey, Alan; Huang, Ying; Wooliver, Craig; Macy, Sallie; Heidel, Eric; Gupta, Neil; Lee, Angela; Rader, Brianna; Martin, Emily B; Kennel, Stephen J

    2013-01-01

    Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  13. A solid-phase combinatorial approach for indoloquinolizidine-peptides with high affinity at D(1) and D(2) dopamine receptors.

    PubMed

    Molero, Anabel; Vendrell, Marc; Bonaventura, Jordi; Zachmann, Julian; López, Laura; Pardo, Leonardo; Lluis, Carme; Cortés, Antoni; Albericio, Fernando; Casadó, Vicent; Royo, Miriam

    2015-06-05

    Ligands acting at multiple dopamine receptors hold potential as therapeutic agents for a number of neurodegenerative disorders. Specifically, compounds able to bind at D1R and D2R with high affinity could restore the effects of dopamine depletion and enhance motor activation on degenerated nigrostriatal dopaminergic systems. We have directed our research towards the synthesis and characterisation of heterocycle-peptide hybrids based on the indolo[2,3-a]quinolizidine core. This privileged structure is a water-soluble and synthetically accessible scaffold with affinity for diverse GPCRs. Herein we have prepared a solid-phase combinatorial library of 80 indoloquinolizidine-peptides to identify compounds with enhanced binding affinity at D2R, a receptor that is crucial to re-establish activity on dopamine-depleted degenerated GABAergic neurons. We applied computational tools and high-throughput screening assays to identify 9a{1,3,3} as a ligand for dopamine receptors with nanomolar affinity and agonist activity at D2R. Our results validate the application of indoloquinolizidine-peptide combinatorial libraries to fine-tune the pharmacological profiles of multiple ligands at D1 and D2 dopamine receptors. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. High-affinity DNA-binding Domains of Replication Protein A (RPA) Direct SMARCAL1-dependent Replication Fork Remodeling*

    PubMed Central

    Bhat, Kamakoti P.; Bétous, Rémy; Cortez, David

    2015-01-01

    SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. PMID:25552480

  15. High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling.

    PubMed

    Bhat, Kamakoti P; Bétous, Rémy; Cortez, David

    2015-02-13

    SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Anle138b and related compounds are aggregation specific fluorescence markers and reveal high affinity binding to α-synuclein aggregates.

    PubMed

    Deeg, Andreas A; Reiner, Anne M; Schmidt, Felix; Schueder, Florian; Ryazanov, Sergey; Ruf, Viktoria C; Giller, Karin; Becker, Stefan; Leonov, Andrei; Griesinger, Christian; Giese, Armin; Zinth, Wolfgang

    2015-09-01

    Special diphenyl-pyrazole compounds and in particular anle138b were found to reduce the progression of prion and Parkinson's disease in animal models. The therapeutic impact of these compounds was attributed to the modulation of α-synuclein and prion-protein aggregation related to these diseases. Photophysical and photochemical properties of the diphenyl-pyrazole compounds anle138b, anle186b and sery313b and their interaction with monomeric and aggregated α-synuclein were studied by fluorescence techniques. The fluorescence emission of diphenyl-pyrazole is strongly increased upon incubation with α-synuclein fibrils, while no change in fluorescence emission is found when brought in contact with monomeric α-synuclein. This points to a distinct interaction between diphenyl-pyrazole and the fibrillar structure with a high binding affinity (Kd=190±120nM) for anle138b. Several α-synuclein proteins form a hydrophobic binding pocket for the diphenyl-pyrazole compound. A UV-induced dehalogenation reaction was observed for anle138b which is modulated by the hydrophobic environment of the fibrils. Fluorescence of the investigated diphenyl-pyrazole compounds strongly increases upon binding to fibrillar α-synuclein structures. Binding at high affinity occurs to hydrophobic pockets in the fibrils. The observed particular fluorescence properties of the diphenyl-pyrazole molecules open new possibilities for the investigation of the mode of action of these compounds in neurodegenerative diseases. The high binding affinity to aggregates and the strong increase in fluorescence upon binding make the compounds promising fluorescence markers for the analysis of aggregation-dependent epitopes. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Binding of TEM-1 beta-lactamase to beta-lactam antibiotics by frontal affinity chromatography.

    PubMed

    Chen, Xiu; Li, Yuhua; Zhang, Yan; Yang, Jianting; Bian, Liujiao

    2017-04-15

    TEM-1 beta-lactamases can accurately catalyze the hydrolysis of the beta-lactam rings in beta-lactam antibiotics, which make beta-lactam antibiotics lose its activity, and the prerequisite for the hydrolysis procedure in the binding interaction of TEM-1 beta-lactamases with beta-lactam antibiotics is the beta-lactam rings in beta-lactam antibiotics. Therefore, the binding of TEM-1 beta-lactamase to three beta-lactam antibiotics including penicillin G, cefalexin as well as cefoxitin was explored here by frontal affinity chromatography in combination with fluorescence spectra, adsorption and thermodynamic data in the temperature range of 278-288K under simulated physiological conditions. The results showed that all the binding of TEM-1 beta-lactamase to the three antibiotics were spontaneously exothermic processes with the binding constants of 8.718×10 3 , 6.624×10 3 and 2.244×10 3 (mol/L), respectively at 288K. All the TEM-1 beta-lactamases were immobilized on the surface of the stationary phase in the mode of monolayer and there existed only one type of binding sites on them. Each TEM-1 beta-lactamase bound with only one beta-lactam antibiotic and hydrogen bond interaction and Van der Waals force were the main forces between them. This work provided an insight into the binding interactions between TEM-1 beta-lactamases and beta-lactam antibiotics, which may be beneficial for the designing and developing of new substrates resistant to TEM-1 beta-lactamases. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations

    NASA Astrophysics Data System (ADS)

    Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf

    2016-09-01

    We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.

  19. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations.

    PubMed

    Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf

    2016-09-01

    We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.

  20. VP24-Karyopherin Alpha Binding Affinities Differ between Ebolavirus Species, Influencing Interferon Inhibition and VP24 Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Toni M.; Edwards, Megan R.; Diederichs, Audrey

    ABSTRACT Zaire ebolavirus(EBOV),Bundibugyo ebolavirus(BDBV), andReston ebolavirus(RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA bindingmore » affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability. IMPORTANCEThe interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the interactions of VP24 proteins from EBOV and two members of theEbolavirusgenus, Bundibugyo virus (BDBV) and Reston virus (RESTV). The data reveal lower binding affinity of the BDBV VP24 (bVP24) for KPNAs and demonstrate that the interaction with KPNA

  1. Affinity cleavage at the putative metal-binding site of pigeon liver malic enzyme by the Fe(2+)-ascorbate system.

    PubMed

    Wei, C H; Chou, W Y; Huang, S M; Lin, C C; Chang, G G

    1994-06-28

    Pigeon liver malic enzyme was rapidly inactivated by micromolar concentrations of ferrous sulfate in the presence of ascorbate at neutral pH and 0 or 25 degrees C. Omitting the ascorbate or replacing the ferrous ion with manganese ion did not lead to any inactivation. Manganese, magnesium, zinc, cobalt, or calcium ion at 200 molar excess over ferrous ion offered complete protection of the enzyme from Fe(2+)-induced inactivation. Ni2+ provided partial protection, while Ba2+ or imidazole was ineffective in protection. Addition of 4 mM Mn2+ or 5 mM EDTA into a partially modified enzyme stopped further inactivation of the enzyme. Inclusion of substrates (L-malate or NADP+, singly or in combination) in the incubation mixture did not affect the inactivation rate. The enzyme inactivation was demonstrated to be followed by protein cleavage. Native pigeon liver malic enzyme had a subunit M(r) of 65,000. The inactivated enzyme with residual activity of only 0.3% was cleaved into two fragments with M(r) of 31,000 and 34,000, respectively. The cleavage site was identified as the peptide bond between Asp258 and Ile259. Native pigeon liver malic enzyme was blocked at the N-terminus. Cleavage at the putative metal-binding site exposed a new N-terminus, which was identified to be at the 34-kDa fragment containing the C-terminal half of original sequence 259-557. Our results indicated that Fe2+ catalyzed a specific oxidation of pigeon liver malic enzyme at Asp258 and/or some other essential amino acid residues that caused enzyme inactivation. The modified enzyme was then affinity cleaved at the Mn(2+)-binding site.

  2. Low density and high affinity of platelet [3H]paroxetine binding in women with bulimia nervosa.

    PubMed

    Ekman, Agneta; Sundblad-Elverfors, Charlotta; Landén, Mikael; Eriksson, Tomas; Eriksson, Elias

    2006-06-15

    Impaired serotonin transmission has been suggested to be implicated in the pathophysiology of bulimia nervosa. As an indirect measure of brain serotonergic activity, the binding of tritiated ligands to platelet serotonin transporters has been studied in bulimia nervosa as well as in other putatively serotonin-related psychiatric disorders. In this study, the density and affinity of platelet serotonin transporters were assessed in 20 women meeting the DSM-IV criteria for bulimia nervosa and in 14 controls without previous or ongoing eating disorder using [(3)H]paroxetine as a ligand. In comparison to controls, women with bulimia nervosa had a significantly reduced number of platelet binding sites (B(max) = 721 +/- 313 vs. 1145 +/- 293 fmol/mg protein) and an increase in the affinity for the ligand demonstrated by a lower dissociaton constant (K(d) = 33 +/- 10 vs. 44 +/- 10 pM). A significant correlation between B(max) and K(d) values was found in patients but not in controls. Our results support the notion that bulimia nervosa is associated with a reduction in platelet serotonin transporter density. In addition, our study is the first to report that this reduced transporter density in women with bulimia nervosa is accompanied by an increase in the affinity of the transporter for the ligand.

  3. Allelic variation in KIR2DL3 generates a KIR2DL2-like receptor with increased binding to its HLA-C ligand.

    PubMed

    Frazier, William R; Steiner, Noriko; Hou, Lihua; Dakshanamurthy, Sivanesan; Hurley, Carolyn Katovich

    2013-06-15

    Although extensive homology exists between their extracellular domains, NK cell inhibitory receptors killer Ig-like receptor (KIR) 2DL2*001 and KIR2DL3*001 have previously been shown to differ substantially in their HLA-C binding avidity. To explore the largely uncharacterized impact of allelic diversity, the most common KIR2DL2/3 allelic products in European American and African American populations were evaluated for surface expression and binding affinity to their HLA-C group 1 and 2 ligands. Although no significant differences in the degree of cell membrane localization were detected in a transfected human NKL cell line by flow cytometry, surface plasmon resonance and KIR binding to a panel of HLA allotypes demonstrated that KIR2DL3*005 differed significantly from other KIR2DL3 allelic products in its ability to bind HLA-C. The increased affinity and avidity of KIR2DL3*005 for its ligand was also demonstrated to have a larger impact on the inhibition of IFN-γ production by the human KHYG-1 NK cell line compared with KIR2DL3*001, a low-affinity allelic product. Site-directed mutagenesis established that the combination of arginine at residue 11 and glutamic acid at residue 35 in KIR2DL3*005 were critical to the observed phenotype. Although these residues are distal to the KIR/HLA-C interface, molecular modeling suggests that alteration in the interdomain hinge angle of KIR2DL3*005 toward that found in KIR2DL2*001, another strong receptor of the KIR2DL2/3 family, may be the cause of this increased affinity. The regain of inhibitory capacity by KIR2DL3*005 suggests that the rapidly evolving KIR locus may be responding to relatively recent selective pressures placed upon certain human populations.

  4. High-affinity binding of (/sup 3/H)estradiol-17 beta by an estrogen receptor in the liver of the turtle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, S.M.; Fehrer, S.; Yu, M.

    1988-06-01

    Specific (3H)estradiol-17 beta ((3H)E2) binding activity (EBA) with characteristics of an estrogen receptor (ER) was demonstrated in cytosols and nuclear extracts of the female turtle, Chrysemys picta. Three different receptor assays (dextran-coated charcoal assay, hydroxylapatite batch procedure, and DNA-cellulose chromatography) were evaluated in terms of their applicability in analyzing large numbers of samples. For the measurement of cytosolic EBA, the hydroxylapatite batch procedure was found to be the most reliable assay. On the other hand, the dextran-coated charcoal assay was found to be the most appropriate method for the measurement of nuclear EBA. Turtle hepatic EBA binds (3H)E2 with highmore » affinity (cytosolic, 17.4 +/- 2.8 X 10(9) M-1; nuclear, 17.7 +/- 1.9 X 10(9) M-1), limited capacity (cytosolic, 133.7 +/- 4.6 fmol/g tissue; nuclear, 81.1 +/- 9.0 fmol/g tissue), and strict steroid specificity. The EBA bound natural estrogens (E2, estrone, estriol) as well as the nonsteroidal estrogen, diethylstilbestrol, but exhibited little affinity for androgens, progesterone, or corticosterone. The turtle hepatic EBA resembled mammalian and avian ERs in terms of binding characteristics; however, unlike mammalian and avian ERs it was shown to be heat-labile. Incubation at 30 degrees caused rapid loss of (3H)E2 binding activity in both cytosolic and nuclear fractions. The exchange between (3H)E2 and the endogenously bound estrogen was slow at 4 and 15 degrees, but the exchange process was facilitated in the presence of the chaotropic salt, NaSCN. Establishment of quantitation methods for both cytosolic and nuclear forms of EBA will enable future investigation of the mechanism and regulation of estrogen action in the liver of this turtle species.« less

  5. Synthesis of poly(N-isopropylacrylamide) particles for metal affinity binding of peptides

    PubMed Central

    Tsai, Hsin-Yi; Lee, Alexander; Peng, Wei; Yates, Matthew Z.

    2013-01-01

    Temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) microgel particles with metal affinity ligands were prepared for selective binding of peptides containing the His6-tag (six consecutive histidine residues). The PNIPAM particles were copolymerized with the functional ligand vinylbenzyl iminodiacetic acid (VBIDA) through a two-stage dispersion polymerization using poly(N-vinyl pyrrolidone) (PVP) as a steric stabilizer. The resulting particles were monodisperse in size and colloidally stable over a wide range of temperature and ionic strength due to chemically grafted PVP chains. The particle size was also found to be sensitive to ionic strength and pH of the aqueous environment, likely due to the electrostatic repulsion between ionized VBIDA groups. Divalent nickel ions were chelated to the VBIDA groups, allowing selective metal affinity attachment of a His6-Cys peptide. The peptide was released upon the addition of the competitive ligand imidazole, demonstrating that the peptide attachment to the particles is reversible and selective. PMID:24176889

  6. Design of fluorinated 5-HT(4)R antagonists: influence of the basicity and lipophilicity toward the 5-HT(4)R binding affinities.

    PubMed

    Fontenelle, Clement Q; Wang, Zhong; Fossey, Christine; Cailly, Thomas; Linclau, Bruno; Fabis, Frederic

    2013-12-01

    Analogues of potent 5-HT(4)R antagonists possessing a fluorinated N-alkyl chain have been synthesized in order to investigate the effect of the resulting change in basicity and lipophilicity on the affinity and selectivity profile. We demonstrate that for this series, the affinity is decreased with decreased basicity of the piperidine's nitrogen atom. In contrast, the resulting increase in lipophilicity has minimal impact on binding affinity and selectivity. 3,3,3-Trifluoropropyl and 4,4,4-trifluorobutyl derivatives 6d and 6e have shown to bind to the 5-HT(4)R while maintaining their pharmacological profile and selectivity toward other 5-HT receptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Tamavidin 2-REV: an engineered tamavidin with reversible biotin-binding capability.

    PubMed

    Takakura, Yoshimitsu; Sofuku, Kozue; Tsunashima, Masako

    2013-03-10

    A biotin-binding protein with reversible biotin-binding capability is of great technical value in the affinity purification of biotinylated biomolecules. Although several proteins, chemically or genetically modified from avidin or streptavidin, with reversible biotin-binding have been reported, they have been problematic in one way or another. Tamavidin 2 is a fungal protein similar to avidin and streptavidin in biotin-binding. Here, a mutein, tamavidin 2-REV, was engineered from tamavidin 2 by replacing the serine at position 36 (S36) with alanine. S36 is thought to form a hydrogen bond with biotin in tamavidin 2/biotin complexes and two hydrogen bonds with V38 within the protein. Tamavidin 2-REV bound to biotin-agarose and was eluted with excess free biotin at a neutral pH. In addition, the model substrate biotinylated bovine serum albumin was efficiently purified from a crude extract from Escherichia coli by means of single-step affinity chromatography with tamavidin 2-REV-immobilized resin. Tamavidin 2-REV thus demonstrated reversible biotin-binding capability. The Kd value of tamavidin 2-REV to biotin was 2.8-4.4×10(-7)M.Tamavidin 2-REV retained other convenient characteristics of tamavidin 2, such as high-level expression in E. coli, resistance to proteases, and a neutral isoelectric point, demonstrating that tamavidin 2-REV is a powerful tool for the purification of biotinylated biomolecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Tripartite ATP-independent Periplasmic (TRAP) Transporters Use an Arginine-mediated Selectivity Filter for High Affinity Substrate Binding*

    PubMed Central

    Fischer, Marcus; Hopkins, Adam P.; Severi, Emmanuele; Hawkhead, Judith; Bawdon, Daniel; Watts, Andrew G.; Hubbard, Roderick E.; Thomas, Gavin H.

    2015-01-01

    Tripartite ATP-independent periplasmic (TRAP) transporters are secondary transporters that have evolved an obligate dependence on a substrate-binding protein (SBP) to confer unidirectional transport. Different members of the DctP family of TRAP SBPs have binding sites that recognize a diverse range of organic acid ligands but appear to only share a common electrostatic interaction between a conserved arginine and a carboxylate group in the ligand. We investigated the significance of this interaction using the sialic acid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP transporter. Using in vitro, in vivo, and structural methods applied to SiaP, we demonstrate that the coordination of the acidic ligand moiety of sialic acid by the conserved arginine (Arg-147) is essential for the function of the transporter as a high affinity scavenging system. However, at high substrate concentrations, the transporter can function in the absence of Arg-147 suggesting that this bi-molecular interaction is not involved in further stages of the transport cycle. As well as being required for high affinity binding, we also demonstrate that the Arg-147 is a strong selectivity filter for carboxylate-containing substrates in TRAP transporters by engineering the SBP to recognize a non-carboxylate-containing substrate, sialylamide, through water-mediated interactions. Together, these data provide biochemical and structural support that TRAP transporters function predominantly as high affinity transporters for carboxylate-containing substrates. PMID:26342690

  9. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides

    PubMed Central

    Choe, Weonu; Durgannavar, Trishaladevi A.; Chung, Sang J.

    2016-01-01

    The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed. PMID:28774114

  10. Using affinity capillary electrophoresis and computational models for binding studies of heparinoids with p-selectin and other proteins.

    PubMed

    Mozafari, Mona; Balasupramaniam, Shantheya; Preu, Lutz; El Deeb, Sami; Reiter, Christian G; Wätzig, Hermann

    2017-06-01

    A fast and precise affinity capillary electrophoresis (ACE) method has been developed and applied for the investigation of the binding interactions between P-selectin and heparinoids as potential P-selectin inhibitors in the presence and absence of calcium ions. Furthermore, model proteins and vitronectin were used to appraise the binding behavior of P-selectin. The normalized mobility ratios (∆R/R f ), which provided information about the binding strength and the overall charge of the protein-ligand complex, were used to evaluate the binding affinities. It was found that P-selectin interacts more strongly with heparinoids in the presence of calcium ions. P-selectin was affected by heparinoids at the concentration of 3 mg/L. In addition, the results of the ACE experiments showed that among other investigated proteins, albumins and vitronectin exhibited strong interactions with heparinoids. Especially with P-selectin and vitronectin, the interaction may additionally induce conformational changes. Subsequently, computational models were applied to interpret the ACE experiments. Docking experiments explained that the binding of heparinoids on P-selectin is promoted by calcium ions. These docking models proved to be particularly well suited to investigate the interaction of charged compounds, and are therefore complementary to ACE experiments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mössbauer properties of the diferric cluster and the differential iron(II)-binding affinity of the iron sites in protein R2 of class Ia Escherichia coli ribonucleotide reductase: a DFT/electrostatics study.

    PubMed

    Han, Wen-Ge; Sandala, Gregory M; Giammona, Debra Ann; Bashford, Donald; Noodleman, Louis

    2011-11-14

    The R2 subunit of class-Ia ribonucleotide reductase (RNR) from Escherichia coli (E. coli) contains a diiron active site. Starting from the apo-protein and Fe(II) in solution at low Fe(II)/apoR2 ratios, mononuclear Fe(II) binding is observed indicating possible different Fe(II) binding affinities for the two alternative sites. Further, based on their Mössbauer spectroscopy and two-iron-isotope reaction experiments, Bollinger et al. (J. Am. Chem. Soc., 1997, 119, 5976-5977) proposed that the site Fe1, which bonds to Asp84, should be associated with the higher observed (57)Fe Mössbauer quadrupole splitting (2.41 mm s(-1)) and lower isomer shift (0.45 mm s(-1)) in the Fe(III)Fe(III) state, site Fe2, which is further from Tyr122, should have a greater affinity for Fe(II) binding than site Fe1, and Fe(IV) in the intermediate X state should reside at site Fe2. In this paper, using density functional theory (DFT) incorporated with the conductor-like screening (COSMO) solvation model and with the finite-difference Poisson-Boltzmann self-consistent reaction field (PB-SCRF) methodologies, we have demonstrated that the observed large quadrupole splitting for the diferric state R2 does come from site Fe1(III) and it is mainly caused by the binding position of the carboxylate group of the Asp84 sidechain. Further, a series of active site clusters with mononuclear Fe(II) binding at either site Fe1 or Fe2 have been studied, which show that with a single dielectric medium outside the active site quantum region, there is no energetic preference for Fe(II) binding at one site over another. However, when including the explicit extended protein environment in the PB-SCRF model, the reaction field favors the Fe(II) binding at site Fe2 rather than at site Fe1 by ~9 kcal mol(-1). Therefore our calculations support the proposal of the previous Mössbauer spectroscopy and two-iron-isotope reaction experiments by Bollinger et al.

  12. Estrogen Receptor Binding Affinity of Food Contact Material Components Estimated by QSAR.

    PubMed

    Sosnovcová, Jitka; Rucki, Marián; Bendová, Hana

    2016-09-01

    The presented work characterized components of food contact materials (FCM) with potential to bind to estrogen receptor (ER) and cause adverse effects in the human organism. The QSAR Toolbox, software application designed to identify and fill toxicological data gaps for chemical hazard assessment, was used. Estrogen receptors are much less of a lock-and-key interaction than highly specific ones. The ER is nonspecific enough to permit binding with a diverse array of chemical structures. There are three primary ER binding subpockets, each with different requirements for hydrogen bonding. More than 900 compounds approved as of FCM components were evaluated for their potential to bind on ER. All evaluated chemicals were subcategorized to five groups with respect to the binding potential to ER: very strong, strong, moderate, weak binder, and no binder to ER. In total 46 compounds were characterized as potential disturbers of estrogen receptor. Among the group of selected chemicals, compounds with high and even very high affinity to the ER binding subpockets were found. These compounds may act as gene activators and cause adverse effects in the organism, particularly during pregnancy and breast-feeding. It should be considered to carry out further in vitro or in vivo tests to confirm their potential to disturb the regulation of physiological processes in humans by abnormal ER signaling and subsequently remove these chemicals from the list of approved food contact materials. Copyright© by the National Institute of Public Health, Prague 2016

  13. Calculation of Cyclodextrin Binding Affinities: Energy, Entropy, and Implications for Drug Design

    PubMed Central

    Chen, Wei; Chang, Chia-En; Gilson, Michael K.

    2004-01-01

    The second generation Mining Minima method yields binding affinities accurate to within 0.8 kcal/mol for the associations of α-, β-, and γ-cyclodextrin with benzene, resorcinol, flurbiprofen, naproxen, and nabumetone. These calculations require hours to a day on a commodity computer. The calculations also indicate that the changes in configurational entropy upon binding oppose association by as much as 24 kcal/mol and result primarily from a narrowing of energy wells in the bound versus the free state, rather than from a drop in the number of distinct low-energy conformations on binding. Also, the configurational entropy is found to vary substantially among the bound conformations of a given cyclodextrin-guest complex. This result suggests that the configurational entropy must be accounted for to reliably rank docked conformations in both host-guest and ligand-protein complexes. In close analogy with the common experimental observation of entropy-enthalpy compensation, the computed entropy changes show a near-linear relationship with the changes in mean potential plus solvation energy. PMID:15339804

  14. Enriching Peptide Libraries for Binding Affinity and Specificity Through Computationally Directed Library Design.

    PubMed

    Foight, Glenna Wink; Chen, T Scott; Richman, Daniel; Keating, Amy E

    2017-01-01

    Peptide reagents with high affinity or specificity for their target protein interaction partner are of utility for many important applications. Optimization of peptide binding by screening large libraries is a proven and powerful approach. Libraries designed to be enriched in peptide sequences that are predicted to have desired affinity or specificity characteristics are more likely to yield success than random mutagenesis. We present a library optimization method in which the choice of amino acids to encode at each peptide position can be guided by available experimental data or structure-based predictions. We discuss how to use analysis of predicted library performance to inform rounds of library design. Finally, we include protocols for more complex library design procedures that consider the chemical diversity of the amino acids at each peptide position and optimize a library score based on a user-specified input model.

  15. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data.

    PubMed

    Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; Nielsen, Morten

    2017-11-01

    Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy

    PubMed Central

    Jakubík, J; Janíčková, H; El-Fakahany, EE; Doležal, V

    2011-01-01

    BACKGROUND AND PURPOSE Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [35S]GTPγS and [3H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M2 muscarinic acetylcholine receptor. KEY RESULTS Agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [3H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from Gi/o G-proteins but only its dissociation from Gs/olf G-proteins. CONCLUSIONS AND IMPLICATIONS These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of Gi/o versus Gs/olf G-proteins that are not identified by conventional GTPγS binding. PMID:20958290

  17. Myelin-reactive “type B” T cells and T cells specific for low-affinity MHC-binding myelin peptides escape tolerance in HLA-DR transgenic mice

    PubMed Central

    Kawamura, Kazuyuki; McLaughlin, Katherine A.; Weissert, Robert; Forsthuber, Thomas G.

    2009-01-01

    Genes of the major histocompatibility complex (MHC) show the strongest genetic association with multiple sclerosis (MS) but the underlying mechanisms have remained unresolved. Here, we asked whether the MS-associated MHC class II molecules, HLA-DRB1*1501, HLA-DRB5*0101, and HLA-DRB1*0401 contribute to autoimmune central nervous system (CNS) demyelination by promoting pathogenic T cell responses to human myelin basic protein (hMBP), using three transgenic (Tg) mouse lines expressing these MHC molecules. Unexpectedly, profound T cell tolerance to the high-affinity MHC-binding hMBP82-100 epitope was observed in all Tg mouse lines. T cell tolerance to hMBP82-100 was abolished upon backcrossing the HLA-DR Tg mice to MBP-deficient mice. In contrast, T cell tolerance was incomplete for low-affinity MHC-binding hMBP epitopes. Furthermore, hMBP82-100-specific “type B” T cells escaped tolerance in HLA-DRB5*0101 Tg mice. Importantly, T cells specific for low-affinity MHC-binding hMBP epitopes and hMBP82-100-specific “type B” T cells were highly encephalitogenic. Collectively, the results show that MS-associated MHC class II molecules are highly efficient at inducing T cell tolerance to high-affinity MHC-binding epitope, whereas autoreactive T cells specific for the low-affinity MHC-binding epitopes and “type B” T cells can escape the induction of T cell tolerance and may promote MS. PMID:18713991

  18. CCN2/CTGF binds to fibroblast growth factor receptor 2 and modulates its signaling.

    PubMed

    Aoyama, Eriko; Kubota, Satoshi; Takigawa, Masaharu

    2012-12-14

    CCN2 plays a critical role in the development of mesenchymal tissues such as cartilage and bone, and the binding of CCN2 to various cytokines and receptors regulates their signaling.By screening a protein array, we found that CCN2 could bind to fibroblast growth factor receptors (FGFRs) 2 and 3, with a higher affinity toward FGFR2.We ascertained that FGFR2 bound to CCN2 and that the binding of FGFR2 to FGF2 and FGF4 was enhanced by CCN2.CCN2 and FGF2 had a collaborative effect on the phosphorylation of ERK and the differentiation of osteoblastic cells.The present results indicate the biological significance of the binding of CCN2 to FGFR2 in bone metabolism. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates.

    PubMed

    Angulo, Jesús; Enríquez-Navas, Pedro M; Nieto, Pedro M

    2010-07-12

    The direct evaluation of dissociation constants (K(D)) from the variation of saturation transfer difference (STD) NMR spectroscopy values with the receptor-ligand ratio is not feasible due to the complex dependence of STD intensities on the spectral properties of the observed signals. Indirect evaluation, by competition experiments, allows the determination of K(D), as long as a ligand of known affinity is available for the protein under study. Herein, we present a novel protocol based on STD NMR spectroscopy for the direct measurements of receptor-ligand dissociation constants (K(D)) from single-ligand titration experiments. The influence of several experimental factors on STD values has been studied in detail, confirming the marked impact on standard determinations of protein-ligand affinities by STD NMR spectroscopy. These factors, namely, STD saturation time, ligand residence time in the complex, and the intensity of the signal, affect the accumulation of saturation in the free ligand by processes closely related to fast protein-ligand rebinding and longitudinal relaxation of the ligand signals. The proposed method avoids the dependence of the magnitudes of ligand STD signals at a given saturation time on spurious factors by constructing the binding isotherms using the initial growth rates of the STD amplification factors, in a similar way to the use of NOE growing rates to estimate cross relaxation rates for distance evaluations. Herein, it is demonstrated that the effects of these factors are cancelled out by analyzing the protein-ligand association curve using STD values at the limit of zero saturation time, when virtually no ligand rebinding or relaxation takes place. The approach is validated for two well-studied protein-ligand systems: the binding of the saccharides GlcNAc and GlcNAcbeta1,4GlcNAc (chitobiose) to the wheat germ agglutinin (WGA) lectin, and the interaction of the amino acid L-tryptophan to bovine serum albumin (BSA). In all cases, the

  20. A TATA binding protein mutant with increased affinity for DNA directs transcription from a reversed TATA sequence in vivo.

    PubMed

    Spencer, J Vaughn; Arndt, Karen M

    2002-12-01

    The TATA-binding protein (TBP) nucleates the assembly and determines the position of the preinitiation complex at RNA polymerase II-transcribed genes. We investigated the importance of two conserved residues on the DNA binding surface of Saccharomyces cerevisiae TBP to DNA binding and sequence discrimination. Because they define a significant break in the twofold symmetry of the TBP-TATA interface, Ala100 and Pro191 have been proposed to be key determinants of TBP binding orientation and transcription directionality. In contrast to previous predictions, we found that substitution of an alanine for Pro191 did not allow recognition of a reversed TATA box in vivo; however, the reciprocal change, Ala100 to proline, resulted in efficient utilization of this and other variant TATA sequences. In vitro assays demonstrated that TBP mutants with the A100P and P191A substitutions have increased and decreased affinity for DNA, respectively. The TATA binding defect of TBP with the P191A mutation could be intragenically suppressed by the A100P substitution. Our results suggest that Ala100 and Pro191 are important for DNA binding and sequence recognition by TBP, that the naturally occurring asymmetry of Ala100 and Pro191 is not essential for function, and that a single amino acid change in TBP can lead to elevated DNA binding affinity and recognition of a reversed TATA sequence.

  1. Exploring the Origin of Differential Binding Affinities of Human Tubulin Isotypes αβII, αβIII and αβIV for DAMA-Colchicine Using Homology Modelling, Molecular Docking and Molecular Dynamics Simulations

    PubMed Central

    Panda, Dulal; Kunwar, Ambarish

    2016-01-01

    Tubulin isotypes are found to play an important role in regulating microtubule dynamics. The isotype composition is also thought to contribute in the development of drug resistance as tubulin isotypes show differential binding affinities for various anti-cancer agents. Tubulin isotypes αβII, αβIII and αβIV show differential binding affinity for colchicine. However, the origin of differential binding affinity is not well understood at the molecular level. Here, we investigate the origin of differential binding affinity of a colchicine analogue N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) for human αβII, αβIII and αβIV isotypes, employing sequence analysis, homology modeling, molecular docking, molecular dynamics simulation and MM-GBSA binding free energy calculations. The sequence analysis study shows that the residue compositions are different in the colchicine binding pocket of αβII and αβIII, whereas no such difference is present in αβIV tubulin isotypes. Further, the molecular docking and molecular dynamics simulations results show that residue differences present at the colchicine binding pocket weaken the bonding interactions and the correct binding of DAMA-colchicine at the interface of αβII and αβIII tubulin isotypes. Post molecular dynamics simulation analysis suggests that these residue variations affect the structure and dynamics of αβII and αβIII tubulin isotypes, which in turn affect the binding of DAMA-colchicine. Further, the binding free-energy calculation shows that αβIV tubulin isotype has the highest binding free-energy and αβIII has the lowest binding free-energy for DAMA-colchicine. The order of binding free-energy for DAMA-colchicine is αβIV ≃ αβII >> αβIII. Thus, our computational approaches provide an insight into the effect of residue variations on differential binding of αβII, αβIII and αβIV tubulin isotypes with DAMA-colchicine and may help to design new analogues with higher

  2. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase.

    PubMed

    Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I

    2011-05-01

    A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.

  3. Affinity and Efficacy Studies of Tetrahydrocannabinolic Acid A at Cannabinoid Receptor Types One and Two.

    PubMed

    McPartland, John M; MacDonald, Christa; Young, Michelle; Grant, Phillip S; Furkert, Daniel P; Glass, Michelle

    2017-01-01

    Introduction: Cannabis biosynthesizes Δ 9 -tetrahydrocannabinolic acid (THCA-A), which decarboxylates into Δ 9 -tetrahydrocannabinol (THC). There is growing interest in the therapeutic use of THCA-A, but its clinical application may be hampered by instability. THCA-A lacks cannabimimetic effects; we hypothesize that it has little binding affinity at cannabinoid receptor 1 (CB 1 ). Materials and Methods: Purity of certified reference standards were tested with high performance liquid chromatography (HPLC). Binding affinity of THCA-A and THC at human (h) CB 1 and hCB 2 was measured in competition binding assays, using transfected HEK cells and [ 3 H]CP55,940. Efficacy at hCB 1 and hCB 2 was measured in a cyclic adenosine monophosphase (cAMP) assay, using a Bioluminescence Resonance Energy Transfer (BRET) biosensor. Results: The THCA-A reagent contained 2% THC. THCA-A displayed small but measurable binding at both hCB 1 and hCB 2 , equating to approximate K i values of 3.1μM and 12.5μM, respectively. THC showed 62-fold greater affinity at hCB 1 and 125-fold greater affinity at hCB 2 . In efficacy tests, THCA-A (10μM) slightly inhibited forskolin-stimulated cAMP at hCB 1 , suggestive of weak agonist activity, and no measurable efficacy at hCB 2 . Discussion: The presence of THC in our THCA-A certified standard agrees with decarboxylation kinetics (literature reviewed herein), which indicate contamination with THC is nearly unavoidable. THCA-A binding at 10μM approximated THC binding at 200nM. We therefore suspect some of our THCA-A binding curve was artifact-from its inevitable decarboxylation into THC-and the binding affinity of THCA-A is even weaker than our estimated values. We conclude that THCA-A has little affinity or efficacy at CB 1 or CB 2 .

  4. Binding affinity and adhesion force of organophosphate hydrolase enzyme with soil particles related to the isoelectric point of the enzyme.

    PubMed

    Islam, Shah Md Asraful; Yeasmin, Shabina; Islam, Md Saiful; Islam, Md Shariful

    2017-07-01

    The binding affinity of organophosphate hydrolase enzyme (OphB) with soil particles in relation to the isoelectric point (pI) was studied. Immobilization of OphB with soil particles was observed by confocal microscopy, Fourier transform infrared spectroscopy (FT-IR), and Atomic force microscopy (AFM). The calculated pI of OphB enzyme was increased from 8.69 to 8.89, 9.04 and 9.16 by the single, double and triple mutant of OphB enzyme, respectively through the replacement of negatively charged aspartate with positively charged histidine. Practically, the binding affinity was increased to 5.30%, 11.50%, and 16.80% for single, double and triple mutants, respectively. In contrast, enzyme activity of OphB did not change by the mutation of the enzyme. On the other hand, adhesion forces were gradually increased for wild type OphB enzyme (90 pN) to 96, 100 and 104 pN for single, double and triple mutants of OphB enzyme, respectively. There was an increasing trend of binding affinity and adhesion force by the increase of isoelectric point (pI) of OphB enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Lactobacillus acidophilus binds to MUC3 component of cultured intestinal epithelial cells with highest affinity.

    PubMed

    Das, Jugal Kishore; Mahapatra, Rajani Kanta; Patro, Shubhransu; Goswami, Chandan; Suar, Mrutyunjay

    2016-04-01

    Lactobacillus strains have been shown to adhere to the mucosal components of intestinal epithelial cells. However, established in vitro adhesion assays have several drawbacks in assessing the adhesion of new Lactobacillus strains. The present study aimed to compare the adhesion of four different Lactobacillus strains and select the most adherent microbe, based on in silico approach supported by in vitro results. The mucus-binding proteins in Lactobacillus acidophilus, L. plantarum, L. brevis and L. fermentum were identified and their capacities to interact with intestinal mucin were compared by molecular docking analysis. Lactobacillus acidophilus had the maximal affinity of binding to mucin with predicted free energy of -6.066 kcal mol(-1) Further, in vitro experimental assay of adhesion was performed to validate the in silico results. The adhesion of L. acidophilus to mucous secreting colon epithelial HT-29 MTX cells was highest at 12%, and it formed biofilm with maximum depth (Z = 84 μm). Lactobacillus acidophilus was determined to be the most adherent strain in the study. All the Lactobacillus strains tested in this study, displayed maximum affinity of binding to MUC3 component of mucus as compared to other gastrointestinal mucins. These findings may have importance in the design of probiotics and health care management. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. CdTe/CdSe quantum dots improve the binding affinities between α-amylase and polyphenols.

    PubMed

    Ni, Xiaoling

    2012-03-01

    People exposed to engineered nanomaterials have potential health risks associated. Human α-amylase is one of the key enzymes in the digestive system. There are few reports about the influence of quantum dots (QDs) on the digestive enzymes and their inhibition system. This work focused on the toxic effect of CdTe/CdSe QDs on the interactions between α-amylase and its natural inhibitors. Thirty-six dietary polyphenols, natural α-amylase inhibitors from food, were studied for their affinities for α-amylase in the absence and presence of CdTe/CdSe QDs by a fluorescence quenching method. The magnitudes of apparent binding constants of polyphenols for α-amylase were almost in the range of 10(5)-10(7) L mol(-1) in the presence of CdTe/CdSe QDs, which were higher than the magnitudes of apparent binding constants in the absence of CdTe/CdSe QDs (10(4)-10(6) L mol(-1)). CdTe/CdSe QDs obviously improved the affinities of dietary polyphenols for α-amylase up to 389.04 times. It is possible that the binding interaction between polyphenols and α-amylase in the presence of CdTe/CdSe QDs was mainly caused by electrostatic interactions. QDs significantly influence the digestive enzymes and their inhibition system. This journal is © The Royal Society of Chemistry 2012

  7. Allelic Variation in KIR2DL3 Generates a KIR2DL2-like Receptor with Increased Binding to Its HLA-C Ligand12

    PubMed Central

    Frazier, William R.; Steiner, Noriko; Hou, Lihua; Dakshanamurthy, Sivanesan; Hurley, Carolyn Katovich

    2013-01-01

    Although extensive homology exists between their extracellular domains, natural killer cell inhibitory receptors KIR2DL2*001 and KIR2DL3*001 have previously been shown to differ substantially in their HLA-C binding avidity. To explore the largely uncharacterized impact of allelic diversity, the most common KIR2DL2/3 allelic products in European American and African American populations were evaluated for surface expression and binding affinity to their HLA-C group 1 and 2 ligands. Although no significant differences in the degree of cell membrane localization were detected in a transfected human NKL cell line by flow cytometry, surface plasmon resonance and KIR binding to a panel of HLA allotypes demonstrated that KIR2DL3*005 differed significantly from other KIR2DL3 allelic products in its ability to bind HLA-C. The increased affinity and avidity of KIR2DL3*005 for its ligand was also demonstrated to have a larger impact on the inhibition of IFN-γ production by the human KHYG-1 NK cell line compared to KIR2DL3*001, a low affinity allelic product. Site-directed mutagenesis established that the combination of arginine at residue 11 and glutamic acid at residue 35 in KIR2DL3*005 were critical to the observed phenotype. Although these residues are distal to the KIR/HLA-C interface, molecular modeling suggests that alteration in the interdomain hinge angle of KIR2DL3*005 towards that found in KIR2DL2*001, another strong receptor of the KIR2DL2/3 family, may be the cause of this increased affinity. The regain of inhibitory capacity by KIR2DL3*005 suggests that the rapidly evolving KIR locus may be responding to relatively recent selective pressures placed upon certain human populations. PMID:23686481

  8. Binding affinity of pro-apoptotic BH3 peptides for the anti-apoptotic Mcl-1 and A1 proteins: Molecular dynamics simulations of Mcl-1 and A1 in complex with six different BH3 peptides.

    PubMed

    Modi, Vivek; Sankararamakrishnan, Ramasubbu

    2017-05-01

    The anti-apoptotic members of Bcl-2 family of proteins bind to their pro-apoptotic counterparts to induce or prevent cell death.Based on the distinct binding profiles for specific pro-apoptotic BH3 peptides, the anti-apoptotic Bcl-2 proteins can be divided into at least two subclasses. The subclass that includes Bcl-X L binds strongly to Bad BH3 peptide while it has weak binding affinity for the second subclass of Bcl-2 proteins such as Mcl-1 and A1. Anti-apoptotic Bcl-2 proteins are considered to be attractive drug targets for anti-cancer drugs. BH3-mimetic inhibitors such as ABT-737 have been shown to be specific to Bcl-X L subclass while Mcl-1 and A1 show resistance to the same drug. An efficacious inhibitor should target all the anti-apoptotic Bcl-2 proteins. Hence, development of inhibitors selective to Mcl-1 and A1 is of prime importance for targeted cancer therapeutics. The first step to achieve this goal is to understand the molecular basis of high binding affinities of specific pro-apoptotic BH3 peptides for Mcl-1 and A1. To understand the interactions between the BH3 peptides and Mcl-1/A1, we performed multi-nanosecond molecular dynamics (MD) simulations of six complex structures of Mcl-1 and A1. With the exception of Bad, all complex structures were experimentally determined. Bad complex structures were modeled. Our simulation studies identified specific pattern of polar interactions between Mcl-1/A1 and high-affinity binding BH3 peptides. The lack of such polar interactions in Bad peptide complex is attributed to specific basic residues present before and after the highly conserved Leu residue. The close approach of basic residues in Bad and Mcl-1/A1 is hypothesized to be the cause of weak binding affinity. To test this hypothesis, we generated in silico mutants of these basic residues in Bad peptide and Mcl-1/A1 proteins. MD simulations of the mutant systems established the pattern of stable polar interactions observed in high-affinity binding BH3

  9. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites.

    PubMed

    Erspamer, V; Melchiorri, P; Falconieri-Erspamer, G; Negri, L; Corsi, R; Severini, C; Barra, D; Simmaco, M; Kreil, G

    1989-07-01

    Deltorphins are endogenous linear heptapeptides, isolated from skin extracts of frogs belonging to the genus Phyllomedusa, that have a higher affinity and selectivity for delta opioid binding sites than any other natural compound known. Two deltorphins with the sequence Tyr-Ala-Phe-Asp(or Glu)-Val-Val-Gly-NH2 have been isolated from skin extracts of Phyllomedusa bicolor. The alanine in position 2 is in the D configuration. These peptides, [D-Ala2]deltorphins I and II, show an even higher affinity for delta receptors than the previously characterized deltorphin, which contains D-methionine as the second amino acid. These peptides show some similarity to another constituent of Phyllomedusa skin, dermorphin, which is highly selective for mu-opioid receptors. These peptides all have the N-terminal sequence Tyr-D-Xaa-Phe, where D-Xaa is either D-alanine or D-methionine. While this structure seems to be capable of activating both mu and delta opioid receptors, differences in the C-terminal regions of these peptides are probably responsible for the observed high receptor selectivity of dermorphin and deltorphin.

  10. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites.

    PubMed Central

    Erspamer, V; Melchiorri, P; Falconieri-Erspamer, G; Negri, L; Corsi, R; Severini, C; Barra, D; Simmaco, M; Kreil, G

    1989-01-01

    Deltorphins are endogenous linear heptapeptides, isolated from skin extracts of frogs belonging to the genus Phyllomedusa, that have a higher affinity and selectivity for delta opioid binding sites than any other natural compound known. Two deltorphins with the sequence Tyr-Ala-Phe-Asp(or Glu)-Val-Val-Gly-NH2 have been isolated from skin extracts of Phyllomedusa bicolor. The alanine in position 2 is in the D configuration. These peptides, [D-Ala2]deltorphins I and II, show an even higher affinity for delta receptors than the previously characterized deltorphin, which contains D-methionine as the second amino acid. These peptides show some similarity to another constituent of Phyllomedusa skin, dermorphin, which is highly selective for mu-opioid receptors. These peptides all have the N-terminal sequence Tyr-D-Xaa-Phe, where D-Xaa is either D-alanine or D-methionine. While this structure seems to be capable of activating both mu and delta opioid receptors, differences in the C-terminal regions of these peptides are probably responsible for the observed high receptor selectivity of dermorphin and deltorphin. PMID:2544892

  11. Various Bee Pheromones Binding Affinity, Exclusive Chemosensillar Localization, and Key Amino Acid Sites Reveal the Distinctive Characteristics of Odorant-Binding Protein 11 in the Eastern Honey Bee, Apis cerana.

    PubMed

    Song, Xin-Mi; Zhang, Lin-Ya; Fu, Xiao-Bin; Wu, Fan; Tan, Jing; Li, Hong-Liang

    2018-01-01

    Odorant-binding proteins (OBPs) are the critical elements responsible for binding and transporting odors and pheromones in the sensitive olfactory system in insects. Honey bees are representative social insects that have complex odorants and pheromone communication systems relative to solitary insects. Here, we first cloned and characterized OBP11 ( AcerOBP11 ), from the worker bees antennae of Eastern honey bee, Apis cerana . Based on sequence and phylogenetic analysis, most sequences homologous to AcerOBP11 belong to the typical OBPs family. The transcriptional expression profiles showed that AcerOBP11 was expressed throughout the developmental stages and highly specifically expressed in adult antennae. Using immunofluorescence localization, AcerOBP11 in worker bee's antennae was only localized in the sensilla basiconica (SB) near the fringe of each segment. Fluorescence ligand-binding assay showed that AcerOBP11 protein had strong binding affinity with the tested various bee pheromones components, including the main queen mandibular pheromones (QMPs), methyl p-hydroxybenzoate (HOB), and ( E )-9-oxo-2-decanoic acid (9-ODA), alarm pheromone (n-hexanol), and worker pheromone components. AcerOBP11 also had strong binding affinity to plant volatiles, such as 4-Allylveratrole. Based on the docking and site-directed mutagenesis, two key amino acid residues (Ile97 and Ile140) were involved in the binding of AcerOBP11 to various bee pheromones. Taken together, we identified that AcerOBP11 was localized in a single type of antennal chemosensilla and had complex ligand-binding properties, which confer the dual-role with the primary characteristics of sensing various bee pheromones and secondary characteristics of sensing general odorants. This study not only prompts the theoretical basis of OBPs-mediated bee pheromones recognition of honey bee, but also extends the understanding of differences in pheromone communication between social and solitary insects.

  12. WGA-based lectin affinity gel electrophoresis: A novel method for the detection of O-GlcNAc-modified proteins.

    PubMed

    Kubota, Yuji; Fujioka, Ko; Takekawa, Mutsuhiro

    2017-01-01

    Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc) occurs selectively on serine and/or threonine residues of cytoplasmic and nuclear proteins, and dynamically regulates their molecular functions. Since conventional strategies to evaluate the O-GlcNAcylation level of a specific protein require time-consuming steps, the development of a rapid and easy method for the detection and quantification of an O-GlcNAcylated protein has been a challenging issue. Here, we describe a novel method in which O-GlcNAcylated and non-O-GlcNAcylated forms of proteins are separated by lectin affinity gel electrophoresis using wheat germ agglutinin (WGA), which primarily binds to N-acetylglucosamine residues. Electrophoresis of cell lysates through a gel containing copolymerized WGA selectively induced retardation of the mobility of O-GlcNAcylated proteins, thereby allowing the simultaneous visualization of both the O-GlcNAcylated and the unmodified forms of proteins. This method is therefore useful for the quantitative detection of O-GlcNAcylated proteins.

  13. Revealing multi-binding sites for taspine to VEGFR-2 by cell membrane chromatography zonal elution.

    PubMed

    Du, Hui; Wang, Sicen; Ren, Jing; Lv, Nan; He, Langchong

    2012-03-01

    A new high-expression vascular endothelial growth factor receptor-2 (VEGFR-2) cell membrane chromatography (CMC) method was developed to investigate the affinity of ligands for VEGFR-2. An HEK293 VEGFR-2/CMC system was applied to specifically recognize ligands acting on VEGFR-2. Sorafenib was used as a mobile phase additive to evaluate the effect of the marker's concentration on the retention of sorafenib and taspine, respectively. The relationship among the retention, the types of binding sites and the affinity of taspine binding to VEGFR-2 has also been concerned. The retention behavior indicated that sorafenib had two major binding regions on VEGFR-2, and that taspine might act as a multi-target VEGFR-2 inhibitor with similar biological activity to sorafenib. The equilibrium dissociation constants (K(D)) obtained from the model are (5.25 ± 0.31) × 10⁻⁷ and (9.88 ± 0.54) × 10⁻⁵ mol L⁻¹ for sorafenib at the high- and low-affinity sites, respectively, and the corresponding values for taspine are (3.88 ± 0.31) × 10⁻⁶ and (7.04 ± 0.49)×10⁻⁵ mol L⁻¹. The two types of binding sites contributed about a 1:2 ratio on the retention of taspine. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Structure of the cobalamin-binding protein of a putative O-demethylase from Desulfitobacterium hafniense DCB-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjuts, Hanno; Dunstan, Mark S.; Fisher, Karl

    2013-08-01

    The first crystal structure of the vitamin B12-binding protein from a three-component O-demethylase enzyme system is reported. During O-demethylation methyl groups are transferred from phenyl methyl ethers to tetrahydrofolate via methyl-B12 intermediates. This study describes the identification and the structural and spectroscopic analysis of a cobalamin-binding protein (termed CobDH) implicated in O-demethylation by the organohalide-respiring bacterium Desulfitobacterium hafniense DCB-2. The 1.5 Å resolution crystal structure of CobDH is presented in the cobalamin-bound state and reveals that the protein is composed of an N-terminal helix-bundle domain and a C-terminal Rossmann-fold domain, with the cobalamin coordinated in the base-off/His-on conformation similar tomore » other cobalamin-binding domains that catalyse methyl-transfer reactions. EPR spectroscopy of CobDH confirms cobalamin binding and reveals the presence of a cob(III)alamin superoxide, indicating binding of oxygen to the fully oxidized cofactor. These data provide the first structural insights into the methyltransferase reactions that occur during O-demethylation by D. hafniense.« less

  15. Enriching peptide libraries for binding affinity and specificity through computationally directed library design

    PubMed Central

    Foight, Glenna Wink; Chen, T. Scott; Richman, Daniel; Keating, Amy E.

    2017-01-01

    Peptide reagents with high affinity or specificity for their target protein interaction partner are of utility for many important applications. Optimization of peptide binding by screening large libraries is a proven and powerful approach. Libraries designed to be enriched in peptide sequences that are predicted to have desired affinity or specificity characteristics are more likely to yield success than random mutagenesis. We present a library optimization method in which the choice of amino acids to encode at each peptide position can be guided by available experimental data or structure-based predictions. We discuss how to use analysis of predicted library performance to inform rounds of library design. Finally, we include protocols for more complex library design procedures that consider the chemical diversity of the amino acids at each peptide position and optimize a library score based on a user-specified input model. PMID:28236241

  16. Roles of yeast eIF2α and eIF2β subunits in the binding of the initiator methionyl-tRNA

    PubMed Central

    Naveau, Marie; Lazennec-Schurdevin, Christine; Panvert, Michel; Dubiez, Etienne; Mechulam, Yves; Schmitt, Emmanuelle

    2013-01-01

    Heterotrimeric eukaryotic/archaeal translation initiation factor 2 (e/aIF2) binds initiator methionyl-tRNA and plays a key role in the selection of the start codon on messenger RNA. tRNA binding was extensively studied in the archaeal system. The γ subunit is able to bind tRNA, but the α subunit is required to reach high affinity whereas the β subunit has only a minor role. In Saccharomyces cerevisiae however, the available data suggest an opposite scenario with β having the most important contribution to tRNA-binding affinity. In order to overcome difficulties with purification of the yeast eIF2γ subunit, we designed chimeric eIF2 by assembling yeast α and β subunits to archaeal γ subunit. We show that the β subunit of yeast has indeed an important role, with the eukaryote-specific N- and C-terminal domains being necessary to obtain full tRNA-binding affinity. The α subunit apparently has a modest contribution. However, the positive effect of α on tRNA binding can be progressively increased upon shortening the acidic C-terminal extension. These results, together with small angle X-ray scattering experiments, support the idea that in yeast eIF2, the tRNA molecule is bound by the α subunit in a manner similar to that observed in the archaeal aIF2–GDPNP–tRNA complex. PMID:23193270

  17. Complex high affinity interactions occur between MHCI and superantigens

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Herpich, A. R.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Staphylococcal enterotoxins A and C1 (SEA or SEC1) bound to major histocompatibility-I (MHCI) molecules with high affinity (binding constants ranging from 1.1 microM to 79 nM). SEA and SEC1 directly bound MHCI molecules that had been captured by monoclonal antibodies specific for H-2Kk, H-2Dk, or both. In addition, MHCI-specific antibodies inhibited the binding of SEC1 to LM929 cells and SEA competitively inhibited SEC1 binding; indicating that the superantigens bound to MHCI on the cell surface. The affinity and number of superantigen binding sites differed depending on whether MHCI was expressed in the membrane of LM929 cells or whether it was captured. These data support the hypothesis that MHCI molecules can serve as superantigen receptors.

  18. A peptide affinity column for the identification of integrin alpha IIb-binding proteins.

    PubMed

    Daxecker, Heide; Raab, Markus; Bernard, Elise; Devocelle, Marc; Treumann, Achim; Moran, Niamh

    2008-03-01

    To understand the regulation of integrin alpha(IIb)beta(3), a critical platelet adhesion molecule, we have developed a peptide affinity chromatography method using the known integrin regulatory motif, LAMWKVGFFKR. Using standard Fmoc chemistry, this peptide was synthesized onto a Toyopearl AF-Amino-650 M resin on a 6-aminohexanoic acid (Ahx) linker. Peptide density was controlled by acetylation of 83% of the Ahx amino groups. Four recombinant human proteins (CIB1, PP1, ICln and RN181), previously identified as binding to this integrin regulatory motif, were specifically retained by the column containing the integrin peptide but not by a column presenting an irrelevant peptide. Hemoglobin, creatine kinase, bovine serum albumin, fibrinogen and alpha-tubulin failed to bind under the chosen conditions. Immunodetection methods confirmed the binding of endogenous platelet proteins, including CIB1, PP1, ICln RN181, AUP-1 and beta3-integrin, from a detergent-free platelet lysate. Thus, we describe a reproducible method that facilitates the reliable extraction of specific integrin-binding proteins from complex biological matrices. This methodology may enable the sensitive and specific identification of proteins that interact with linear, membrane-proximal peptide motifs such as the integrin regulatory motif LAMWKVGFFKR.

  19. Synthetic Polymer Affinity Ligand for Bacillus thuringiensis ( Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein-Insect Receptor Binding Mechanism.

    PubMed

    Liu, Mingming; Huang, Rong; Weisman, Adam; Yu, Xiaoyang; Lee, Shih-Hui; Chen, Yalu; Huang, Chao; Hu, Senhua; Chen, Xiuhua; Tan, Wenfeng; Liu, Fan; Chen, Hao; Shea, Kenneth J

    2018-05-24

    We report a novel strategy for creating abiotic Bacillus thuringiensis ( Bt) protein affinity ligands by biomimicry of the recognition process that takes place between Bt Cry1Ab/Ac proteins and insect receptor cadherin-like Bt-R 1 proteins. Guided by this strategy, a library of synthetic polymer nanoparticles (NPs) was prepared and screened for binding to three epitopes 280 FRGSAQGIEGS 290 , 368 RRPFNIGINNQQ 379 and 436 FRSGFSNSSVSIIR 449 located in loop α8, loop 2 and loop 3 of domain II of Bt Cry1Ab/Ac proteins. A negatively charged and hydrophilic nanoparticle (NP12) was found to have high affinity to one of the epitopes, 368 RRPFNIGINNQQ 379 . This same NP also had specific binding ability to both Bt Cry1Ab and Bt Cry1Ac, proteins that share the same epitope, but very low affinity to Bt Cry2A, Bt Cry1C and Bt Cry1F closely related proteins that lack epitope homology. To locate possible NP- Bt Cry1Ab/Ac interaction sites, NP12 was used as a competitive inhibitor to block the binding of 865 NITIHITDTNNK 876 , a specific recognition site in insect receptor Bt-R 1 , to 368 RRPFNIGINNQQ 379 . The inhibition by NP12 reached as high as 84%, indicating that NP12 binds to Bt Cry1Ab/Ac proteins mainly via 368 RRPFNIGINNQQ 379 . This epitope region was then utilized as a "target" or "bait" for the separation and concentration of Bt Cry1Ac protein from the extract of transgenic Bt cotton leaves by NP12. This strategy, based on the antigen-receptor recognition mechanism, can be extended to other biotoxins and pathogen proteins when designing biomimic alternatives to natural protein affinity ligands.

  20. Normalized Synergy Predicts That CD8 Co-Receptor Contribution to T Cell Receptor (TCR) and pMHC Binding Decreases As TCR Affinity Increases in Human Viral-Specific T Cells

    PubMed Central

    Williams, Chad M.; Schonnesen, Alexandra A.; Zhang, Shu-Qi; Ma, Ke-Yue; He, Chenfeng; Yamamoto, Tori; Eckhardt, S. Gail; Klebanoff, Christopher A.; Jiang, Ning

    2017-01-01

    The discovery of naturally occurring T cell receptors (TCRs) that confer specific, high-affinity recognition of pathogen and cancer-associated antigens remains a major goal in cellular immunotherapies. The contribution of the CD8 co-receptor to the interaction between the TCR and peptide-bound major histocompatibility complex (pMHC) has previously been correlated with the activation and responsiveness of CD8+ T cells. However, these studies have been limited to model systems of genetically engineered hybridoma TCRs or transgenic mouse TCRs against either a single epitope or an array of altered peptide ligands. CD8 contribution in a native human antigen-specific T cell response remains elusive. Here, using Hepatitis C Virus-specific precursor CTLs spanning a large range of TCR affinities, we discovered that the functional responsiveness of any given TCR correlated with the contribution of CD8 to TCR/pMHC binding. Furthermore, we found that CD8 contribution to TCR/pMHC binding in the two-dimensional (2D) system was more accurately reflected by normalized synergy (CD8 cooperation normalized by total TCR/pMHC bonds) rather than synergy (total CD8 cooperation) alone. While synergy showed an increasing trend with TCR affinity, normalized synergy was demonstrated to decrease with the increase of TCR affinity. Critically, normalized synergy was shown to correlate with CTL functionality and peptide sensitivity, corroborating three-dimensional (3D) analysis of CD8 contribution with respect to TCR affinity. In addition, we identified TCRs that were independent of CD8 for TCR/pMHC binding. Our results resolve the current discrepancy between 2D and 3D analysis on CD8 contribution to TCR/pMHC binding, and demonstrate that naturally occurring high-affinity TCRs are more capable of CD8-independent interactions that yield greater functional responsiveness even with CD8 blocking. Taken together, our data suggest that addition of the normalized synergy parameter to our previously

  1. Mononuclear zinc(II) complexes of 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols: Synthesis, structural characterization, DNA binding and cheminuclease activities

    NASA Astrophysics Data System (ADS)

    Ravichandran, J.; Gurumoorthy, P.; Karthick, C.; Kalilur Rahiman, A.

    2014-03-01

    Four new zinc(II) complexes [Zn(HL1-4)Cl2] (1-4), where HL1-4 = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, have been isolated and fully characterized using various spectro-analytical techniques. The X-ray crystal structure of complex 4 shows the distorted trigonal-bipyramidal coordination geometry around zinc(II) ion. The crystal packing is stabilized by intermolecular NH⋯O hydrogen bonding interaction. The complexes display no d-d electronic band in the visible region due to d10 electronic configuration of zinc(II) ion. The electrochemical properties of the synthesized ligands and their complexes exhibit similar voltammogram at reduction potential due to electrochemically innocent Zn(II) ion, which evidenced that the electron transfer is due to the nature of the ligand. Binding interaction of complexes with calf thymus DNA was studied by UV-Vis absorption titration, viscometric titration and cyclic voltammetry. All complexes bind with CT DNA by intercalation, giving the binding affinity in the order of 2 > 1 ≫ 3 > 4. The prominent cheminuclease activity of complexes on plasmid DNA (pBR322 DNA) was observed in the absence and presence of H2O2. Oxidative pathway reveals that the underlying mechanism involves hydroxyl radical.

  2. Sodium ion modulates D2 receptor characteristics of dopamine agonist and antagonist binding sites in striatum and retina

    PubMed Central

    Makman, Maynard H.; Dvorkin, B.; Klein, Patrice N.

    1982-01-01

    Sodium ion (Na+) influences binding of both dopamine agonists and antagonists to D2 receptors in striatum and retina. Also, Na+ markedly potentiates the loss of high-affinity agonist binding due to the GTP analogue p[NH]ppG. 2-Amino-6, 7-dihydroxy-1,2,3,4-tetrahydro[5,8-3H]naphthalene ([3H]ADTN) binds exclusively to an agonist conformation of D2 receptor in both striatum and retina, distinct from the antagonist conformation labeled by [3H]spiroperidol or [3H]domperidone in striatum or by [3H]spiroperidol in retina. Na+ is not required for interaction of [3H]ADTN or antagonist radioligand sites with the selective D2 agonist LY-141865, the D2 antagonist domperidone, or nonselective dopamine agonists or antagonists; however, Na+ is necessary for high affinity interaction of those radioligand sites with the D2 antagonists molindone and metoclopramide. With Na+ present, striatal sites for [3H]ADTN, [3H]spiroperidol, and [3H]domperidone have similar affinities for antagonists but only [3H]ADTN sites have high affinity for agonists. Na+ further decreases the low affinity of dopamine agonists for [3H]spiroperidol binding sites. Also, Na+ enhances [3H]spiroperidol and decreases [3H]ADTN binding. Na+ alone causes bound [3H]ADTN to dissociate from at least 30% of striatal and 50% of retinal sites, and with Na+ present [3H]ADTN rapidly dissociates from the remaining sites upon addition of p[NH]ppG. It is proposed that D2 receptors in striatum and retina exist in distinct but interconvertible conformational states, with different properties depending on the presence or absence of Na+ and of guanine nucleotide. PMID:6213964

  3. Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences

    PubMed Central

    McPartland, J M; Glass, M; Pertwee, R G

    2007-01-01

    A meta-analysis, unlike a literature review, synthesizes previous studies into new results. Pooled data from 211 studies measured ligand binding affinities at human (Hs) or rat (Rn) cannabinoid receptors CB1 and CB2. Cochrane methods were modified for this non-clinical analysis. Meta-regression detected data heterogeneity arising from methodological factors: use of sectioned tissues, lack of PMSF and choice of radioligand. Native brain tissues exhibited greater affinity (lower nM) than transfected cells, but the trend fell short of significance, as did the trend between centrifugation and filtration methods. Correcting for heterogeneity, mean Ki values for Δ9-tetrahydrocannabinol differed significantly between HsCB1 and RnCB1 (25.1 and 42.6 nM, respectively) but not between HsCB1 and HsCB2 (25.1 and 35.2). Mean Kd values for HsCB1, RnCB1 and HsCB2 of CP55,940 (2.5, 0.98, 0.92) and WIN55,212-2 (16.7, 2.4, 3.7) differed between HsCB1 and RnCB1 and between HsCB1 and HsCB2. SR141716A differed between HsCB1 and RnCB1 (2.9 and 1.0 nM). Anandamide at HsCB1, RnCB1 and HsCB2 (239.2, 87.7, 439.5) fell short of statistical differences due to heterogeneity. We consider these Kd and Ki values to be the most valid estimates in the literature. Sensitivity analyses did not support the numerical validity of cannabidiol, cannabinol, 2-arachidonoyl glycerol and all ligands at RnCB2. Aggregate rank order analysis of CB1 distribution in the brain (pooled from 119 autoradiographic, immunohistochemical and in situ hybridization studies) showed denser HsCB1 expression in cognitive regions (cerebral cortex) compared to RnCB1, which was relatively richer in movement-associated areas (cerebellum, caudate-putamen). Implications of interspecies differences are discussed. PMID:17641667

  4. Characterization of breakpoint cluster region kinase and SH2-binding activities.

    PubMed

    Afar, D E; Witte, O N

    1995-01-01

    BCR is an interesting signaling protein, whose cellular function is currently unknown. Its biochemical properties include serine kinase activity, SH2-binding activity, and a GTPase-activating activity. The SH2-binding activity is particularly interesting because it may link BCR to signaling pathways involving SH2-containing molecules. Since tyrosine phosphorylation of BCR has been detected in CML-derived cell lines and since tyrosine-phosphorylated BCR shows increased affinity toward certain SH2 domains, it seems particularly important to further characterize this activity. This chapter described a simple purification scheme for partial purification of BCR, which can be used to assess in vitro kinase and SH2-binding activities.

  5. Monitoring binding affinity between drug and α1-acid glycoprotein in real time by Venturi easy ambient sonic-spray ionization mass spectrometry.

    PubMed

    Liu, Ning; Lu, Xin; Yang, YuHan; Yao, Chen Xi; Ning, BaoMing; He, Dacheng; He, Lan; Ouyang, Jin

    2015-10-01

    A new approach for monitoring the binding affinity between drugs and alpha 1-acid glycoprotein in real time was developed based on a combination of drug-protein reaction followed by Venturi easy ambient sonic-spray ionization mass spectrometry determination of the free drug concentrations. A known basic drug, propranolol was used to validate the new built method. Binding constant values calculated by venturi easy ambient sonic-spray ionization mass spectrometry was in good accordance with a traditional ultrafiltration combined with high performance liquid chromatography method. Then six types of basic drugs were used as the samples to conduct the real time analysis. Upon injection of alpha 1-acid glycoprotein to the drug mixture, the ion chromatograms were extracted to show the changes in the free drug concentrations in real time. By observing the drop-out of six types of drugs during the whole binding reaction, the binding affinities of different drugs were distinguished. A volume shift validating experiment and an injection delay correcting experiment were also performed to eliminate extraneous factors and verify the reliability of our experiment. Therefore, the features of Venturi easy ambient sonic-spray ionization mass spectrometry (V-EASI-MS) and the experimental results indicate that our technique is likely to become a powerful tool for monitoring drug-AGP binding affinity in real time. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Computing the binding affinity of a ligand buried deep inside a protein with the hybrid steered molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villarreal, Oscar D.; Yu, Lili; Department of Laboratory Medicine, Yancheng Vocational Institute of Health Sciences, Yancheng, Jiangsu 224006

    Computing the ligand-protein binding affinity (or the Gibbs free energy) with chemical accuracy has long been a challenge for which many methods/approaches have been developed and refined with various successful applications. False positives and, even more harmful, false negatives have been and still are a common occurrence in practical applications. Inevitable in all approaches are the errors in the force field parameters we obtain from quantum mechanical computation and/or empirical fittings for the intra- and inter-molecular interactions. These errors propagate to the final results of the computed binding affinities even if we were able to perfectly implement the statistical mechanicsmore » of all the processes relevant to a given problem. And they are actually amplified to various degrees even in the mature, sophisticated computational approaches. In particular, the free energy perturbation (alchemical) approaches amplify the errors in the force field parameters because they rely on extracting the small differences between similarly large numbers. In this paper, we develop a hybrid steered molecular dynamics (hSMD) approach to the difficult binding problems of a ligand buried deep inside a protein. Sampling the transition along a physical (not alchemical) dissociation path of opening up the binding cavity- -pulling out the ligand- -closing back the cavity, we can avoid the problem of error amplifications by not relying on small differences between similar numbers. We tested this new form of hSMD on retinol inside cellular retinol-binding protein 1 and three cases of a ligand (a benzylacetate, a 2-nitrothiophene, and a benzene) inside a T4 lysozyme L99A/M102Q(H) double mutant. In all cases, we obtained binding free energies in close agreement with the experimentally measured values. This indicates that the force field parameters we employed are accurate and that hSMD (a brute force, unsophisticated approach) is free from the problem of error amplification

  7. The volume- and surface-binding energies of ice systems containing CO, CO2, and H2O

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1990-01-01

    Laboratory-measured, temperature-dependent sticking efficiencies are presently used to derive the surface-binding energies of CO and CO2 on H2O-rich ices, with a view to determining the condensation and vaporization properties of these systems as well as to the measured energies' implications for both cometary behavior and the evolution of interstellar ices. The molecular volume and the surface binding energies are not found to be necessarily related on the basis of simple nearest-neighbor scaling in surface and bulk sites; this may be due to the physical constraints associated with matrix structure-associated physical constraints, which sometimes dominate the volume-binding energies.

  8. Side-chain conformational space analysis (SCSA): A multi conformation-based QSAR approach for modeling and prediction of protein-peptide binding affinities

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Chen, Xiang; Shang, Zhicai

    2009-03-01

    In this article, the concept of multi conformation-based quantitative structure-activity relationship (MCB-QSAR) is proposed, and based upon that, we describe a new approach called the side-chain conformational space analysis (SCSA) to model and predict protein-peptide binding affinities. In SCSA, multi-conformations (rather than traditional single-conformation) have received much attention, and the statistical average information on multi-conformations of side chains is determined using self-consistent mean field theory based upon side chain rotamer library. Thereby, enthalpy contributions (including electrostatic, steric, hydrophobic interaction and hydrogen bond) and conformational entropy effects to the binding are investigated in terms of occurrence probability of residue rotamers. Then, SCSA was applied into the dataset of 419 HLA-A*0201 binding peptides, and nonbonding contributions of each position in peptide ligands are well determined. For the peptides, the hydrogen bond and electrostatic interactions of the two ends are essential to the binding specificity, van der Waals and hydrophobic interactions of all the positions ensure strong binding affinity, and the loss of conformational entropy at anchor positions partially counteracts other favorable nonbonding effects.

  9. Detection of Serum Lysophosphatidic Acids Using Affinity Binding and Surface Enhanced Laser Desorption/Ionization (SELDI) Time of Flight Mass Spectrometry

    DTIC Science & Technology

    2005-04-01

    AD Award Number: DAIMD17-03-1-0222 TITLE: Detection of Serum Lysophosphatidic Acids Using Affinity Binding and Surface Enhanced Laser Desorption...Annual (1 Apr 04 - 31 Mar 05) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Detection of Serum Lysophosphatidic Acids Using Affinity DAMD17-03-1-0222...of multiple forms of lysophosphatidic acid (LPA). LPA increases proliferation, prevents apoptosis and anoikis, increases invasiveness, decreases

  10. The Binding of Four Licorice Flavonoids to Bovine Serum Albumin by Multi-Spectroscopic and Molecular Docking Methods: Structure-Affinity Relationship

    NASA Astrophysics Data System (ADS)

    Hou, J.; Liang, Q.; Shao, S.

    2017-03-01

    Flavanones are the main compound of licorice, and the C'-4 position substitution is a significant structural feature for their biological activity. The ability of three selected flavanones (liquiritigenin, liquiritin, and liquiritin apioside) bearing different substituents (hydroxyl groups, glucose, and glucose-apiose sugar moiety) at the C'-4 position and a chalcone ( isoliquiritigenin, an isomer of liquiritigenin) to bind bovine serum albumin (BSA) was studied by multispectroscopic and molecular docking methods under physiological conditions. The binding mechanism of fl avonoids to BSA can be explained by the formation of a flavonoids-BSA complex, and the binding affinity is the strongest for isoliquiritigenin, followed by liquiritin apioside, liquiritin, and liquiritigenin. The thermodynamic analysis and the molecular docking indicated that the interaction between flavonoids and BSA was dominated by the hydrophobic force and hydrogen bonds. The competitive experiments as well as the molecular docking results suggested the most possible binding site of licorice flavonoids on BSA at subdomain IIA. These results revealed that the basic skeleton structure and the substituents at the C'-4 position of flavanones significantly affect the structure-affinity relationships of the licorice flavonoid binding to BSA.

  11. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.

    PubMed

    Hattotuwagama, Channa K; Doytchinova, Irini A; Flower, Darren R

    2007-01-01

    Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method

  12. Arp2/3 Complex from Acanthamoeba Binds Profilin and Cross-links Actin Filaments

    PubMed Central

    Mullins, R. Dyche; Kelleher, Joseph F.; Xu, James; Pollard, Thomas D.

    1998-01-01

    The Arp2/3 complex was first purified from Acanthamoeba castellanii by profilin affinity chromatography. The mechanism of interaction with profilin was unknown but was hypothesized to be mediated by either Arp2 or Arp3. Here we show that the Arp2 subunit of the complex can be chemically cross-linked to the actin-binding site of profilin. By analytical ultracentrifugation, rhodamine-labeled profilin binds Arp2/3 complex with a Kd of 7 μM, an affinity intermediate between the low affinity of profilin for barbed ends of actin filaments and its high affinity for actin monomers. These data suggest the barbed end of Arp2 is exposed, but Arp2 and Arp3 are not packed together in the complex exactly like two actin monomers in a filament. Arp2/3 complex also cross-links actin filaments into small bundles and isotropic networks, which are mechanically stiffer than solutions of actin filaments alone. Arp2/3 complex is concentrated at the leading edge of motile Acanthamoeba, and its localization is distinct from that of α-actinin, another filament cross-linking protein. Based on localization and actin filament nucleation and cross-linking activities, we propose a role for Arp2/3 in determining the structure of the actin filament network at the leading edge of motile cells. PMID:9529382

  13. Transfer of a proton between H2 and O2.

    PubMed

    Kluge, Lars; Gärtner, Sabrina; Brünken, Sandra; Asvany, Oskar; Gerlich, Dieter; Schlemmer, Stephan

    2012-11-13

    The proton affinities of hydrogen and oxygen are very similar. Therefore, it has been discussed that the proton transfer from the omnipresent H(3)(+) to molecular oxygen in the near thermoneutral reaction H(3)(+) + O(2) <--> O(2)H(+) + H(2) effectively binds the interstellar oxygen in O(2)H(+). In this work, the proton transfer reaction has been investigated in a low-temperature 22-pole ion trap from almost room temperature (280 K) down to the lowest possible temperature limited by freeze out of oxygen gas (about 40 K at a low pressure). The Arrhenius behaviour of the rate coefficient for the forward reaction shows that it is subject to an activation energy of E(A)/k=113 K. Thus, the forward reaction can proceed only in higher temperature molecular clouds. Applying laser-induced reactions to the given reaction (in the backward direction), a preliminary search for spectroscopic signatures of O(2)H(+) in the infrared was unsuccessful, whereas the forward reaction has been successfully used to probe the population of the lowest ortho and para levels of H(3)(+).

  14. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    PubMed

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  15. Determining the Ice-binding Planes of Antifreeze Proteins by Fluorescence-based Ice Plane Affinity

    PubMed Central

    Basu, Koli; Garnham, Christopher P.; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-01

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms. PMID:24457629

  16. Influence of various force fields in estimating the binding affinity of acetylcholinesterase inhibitors using fast pulling of ligand scheme

    NASA Astrophysics Data System (ADS)

    Tam, Nguyen Minh; Vu, Khanh B.; Vu, Van V.; Ngo, Son Tung

    2018-06-01

    Acetylcholinesterase (AChE) is considered as one of the most favored drug targets for Alzheimer's disease. The effects of different force fields (FFs) on ranking affinity of acetylcholinesterase inhibitors were obtained using the fast pulling of ligand (FPL) method in steered-molecular dynamics (SMD) simulations. GROMOS, AMBER, CHARMM, and OPLS-AA FFs were investigated in this work. The pulling work derived with GROMOS FF has the strongest correlation and smallest error compared with experimental binding affinity. Moreover, the CPU consumption in the calculations using GROMOS FF is the lowest, which could allow us to rank affinity of a large number of AChE ligands.

  17. Detergent enhances binding of a secreted HLA-A2 molecule to solid phase peptides.

    PubMed

    Tussey, L G; Frelinger, J A

    1991-11-01

    We have constructed a secreted analogue (sA2) of the human class I molecule HLA-A2. sA2 was affinity purified both in the presence and absence of detergent and the effects of detergent on the magnitude and specificity of A2 binding to solid phase peptides tested. sA2 purified in the presence of detergent and detergent-solubilized A2 are shown to function comparably in the binding of the synthetic peptide M.Y + 57-68, a known T-cell epitope derived from the influenza A matrix protein. The molecules binding to M.Y + 57-68 typically represent 8% to 10% of the added protein. In contrast, less than 1% of sA2 protein purified in the absence of detergent binds M.Y + 57-68. This reduced binding is not due to a change in the affinity of sA2 for M.Y + 57-68. Addition of detergent at various stages of the purification and iodination procedures indicates that the longer the sA2 molecules are exposed to detergent the better they bind. However, the concentration of detergent during the actual binding assay does not appear to be critical. We also find that while the sA2-detergent and the sA2-no detergent molecules differ in the extent to which they bind various peptides, they do not differ in their patterns of binding. We conclude that detergent probably does not influence the specificity of class I/peptide binding but does increase the number of sA2 molecules that can participate in the binding of peptide either by generating and stabilizing "empty" sA2 molecules or by stabilizing a structure that is more amenable to binding peptide.

  18. Determination of binding affinity upon mutation for type I dockerin-cohesin complexes from Clostridium thermocellum and Clostridium cellulolyticum using deep sequencing.

    PubMed

    Kowalsky, Caitlin A; Whitehead, Timothy A

    2016-12-01

    The comprehensive sequence determinants of binding affinity for type I cohesin toward dockerin from Clostridium thermocellum and Clostridium cellulolyticum was evaluated using deep mutational scanning coupled to yeast surface display. We measured the relative binding affinity to dockerin for 2970 and 2778 single point mutants of C. thermocellum and C. cellulolyticum, respectively, representing over 96% of all possible single point mutants. The interface ΔΔG for each variant was reconstructed from sequencing counts and compared with the three independent experimental methods. This reconstruction results in a narrow dynamic range of -0.8-0.5 kcal/mol. The computational software packages FoldX and Rosetta were used to predict mutations that disrupt binding by more than 0.4 kcal/mol. The area under the curve of receiver operator curves was 0.82 for FoldX and 0.77 for Rosetta, showing reasonable agreements between predictions and experimental results. Destabilizing mutations to core and rim positions were predicted with higher accuracy than support positions. This benchmark dataset may be useful for developing new computational prediction tools for the prediction of the mutational effect on binding affinities for protein-protein interactions. Experimental considerations to improve precision and range of the reconstruction method are discussed. Proteins 2016; 84:1914-1928. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    PubMed

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

  20. Novel fluorescent labelled affinity probes for diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A)-binding studies.

    PubMed

    Wright, Michael; Miller, Andrew D

    2006-02-15

    Tandem synthetic-biosynthetic procedures were used to prepare two novel fluorescent labelled affinity probes for diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A)-binding studies. These compounds (dial-mant-Ap4A and azido-mant-Ap4A) are shown to clearly distinguish known Ap4A-binding proteins from Escherichia coli (LysU and GroEL) and a variety of other control proteins. Successful labelling of chaperonin GroEL appears to be allosteric with respect to the well-characterized adenosine 5'-triphosphate (ATP)-binding site, suggesting that GroEL possesses a distinct Ap4A-binding site.

  1. A strategy to identify linker-based modules for the allosteric regulation of antibody-antigen binding affinities of different scFvs

    PubMed Central

    Thie, Holger

    2017-01-01

    ABSTRACT Antibody single-chain variable fragments (scFvs) are used in a variety of applications, such as for research, diagnosis and therapy. Essential for these applications is the extraordinary specificity, selectivity and affinity of antibody paratopes, which can also be used for efficient protein purification. However, this use is hampered by the high affinity for the protein to be purified because harsh elution conditions, which may impair folding, integrity or viability of the eluted biomaterials, are typically required. In this study, we developed a strategy to obtain structural elements that provide allosteric modulation of the affinities of different antibody scFvs for their antigen. To identify suitable allosteric modules, a complete set of cyclic permutations of calmodulin variants was generated and tested for modulation of the affinity when substituting the linker between VH and VL. Modulation of affinity induced by addition of different calmodulin-binding peptides at physiologic conditions was demonstrated for 5 of 6 tested scFvs of different specificities and antigens ranging from cell surface proteins to haptens. In addition, a variety of different modulator peptides were tested. Different structural solutions were found in respect of the optimal calmodulin permutation, the optimal peptide and the allosteric effect for scFvs binding to different antigen structures. Significantly, effective linker modules were identified for scFvs with both VH-VL and VL-VH architecture. The results suggest that this approach may offer a rapid, paratope-independent strategy to provide allosteric regulation of affinity for many other antibody scFvs. PMID:28055297

  2. Modulation of DNA-Polyamide Interaction by β-alanine Substitutions: A Study of Positional Effects on Binding Affinity, Kinetics and Thermodynamics

    PubMed Central

    Wang, Shuo; Aston, Karl; Koeller, Kevin J.; Harris, G. Davis; Rath, Nigam P.

    2014-01-01

    Hairpin polyamides (PAs) are an important class of sequence-specific DNA minor groove binders, and frequently employ a flexible motif, β-alanine (β), to reduce the molecular rigidity to maintain the DNA recognition register. To better understand the diverse effects β can have on DNA-PA binding affinity, selectivity, and especially kinetics, which have rarely been reported, we have initiated a detailed study for an eight-heterocyclic hairpin PA and its β derivatives with their cognate and mutant sequences. With these derivatives, all internal pyrroles of the parent PA are systematically substituted with single or double βs. A set of complementary experiments have been conducted to evaluate the molecular interactions in detail: UV-melting, biosensor-surface plasmon resonance, circular dichroism and isothermal titration calorimetry. The β substitutions generally weaken the binding affinities of these PAs with cognate DNA, and have large and diverse influences on PA binding kinetics in a position- and number-dependent manner. The DNA base mutations have also shown positional effects on binding of a single PA. Besides the β substitutions, the monocationic Dp group [3-(dimethylamino) propylamine] in parent PA has been modified into a dicationic Ta group (3, 3'-Diamino-N-methyldipropylamine) to minimize the frequently observed PA aggregation with ITC experiments. The results clearly show that the Ta modification not only maintains the DNA binding mode and affinity of PA, but also significantly reduces PA aggregation and allows the complete thermodynamic signature of eight-ring hairpin PA to be determined for the first time. This combined set of results significantly extends our understanding of the energetic basis of specific DNA recognition by PAs. PMID:25141096

  3. Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o.

    PubMed

    Barranco-Medina, Sergio; Krell, Tino; Bernier-Villamor, Laura; Sevilla, Francisca; Lázaro, Juan-José; Dietz, Karl-Josef

    2008-01-01

    Mitochondria from plants, yeast, and animals each contain at least one peroxiredoxin (Prx) that is involved in peroxide detoxification and redox signalling. The supramolecular dynamics of atypical type II Prx targeted to the mitochondrion was addressed in pea. Microcalorimetric (ITC) titrations identified an extremely high-affinity binding between the mitochondrial PsPrxIIF and Trx-o with a K(D) of 126+/-14 pM. Binding was driven by a favourable enthalpy change (DeltaH= -60.6 kcal mol(-1)) which was counterbalanced by unfavourable entropy changes (TDeltaS= -47.1 kcal mol(-1)). This is consistent with the occurrence of large conformational changes during binding which was abolished upon site-directed mutaganesis of the catalytic C59S and C84S. The redox-dependent interaction was confirmed by gel filtration of mitochondrial extracts and co-immunoprecipitation from extracts. The heterocomplex of PsPrxIIF and Trx-o reduced peroxide substrates more efficiently than free PsPrxIIF suggesting that Trx-o serves as an efficient and specific electron donor to PsPrxIIF in vivo. Other Trx-s tested by ITC analysis failed to interact with PsPrxIIF indicating a specific recognition of PsPrxIIF by Trx-o. PsPrxIIF exists primarily as a dimer or a hexamer depending on the redox state. In addition to the well-characterized oligomerization of classical 2-Cys Prx the results also show that atypical Prx undergo large structural reorganization with implications for protein-protein interaction and function.

  4. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.

    PubMed

    Brylinski, Michal

    2013-11-25

    A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of novel techniques is required. In this communication, we describe eSimDock, a new approach to ligand docking and binding affinity prediction. eSimDock employs nonlinear machine learning-based scoring functions to improve the accuracy of ligand ranking and similarity-based binding pose prediction, and to increase the tolerance to structural imperfections in the target structures. In large-scale benchmarking using the Astex/CCDC data set, we show that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover, using binding sites predicted by recently developed eFindSite, eSimDock models ligand binding poses with an RMSD of 4 Å for 50.0-39.7% of the complexes at the protein homology level limited to 80-40%. Simulations against non-native receptor structures, whose mean backbone rearrangements vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of ∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the crystal structures of protein-ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models. eSimDock is freely

  5. Structural Basis of Low-Affinity Nickel Binding to the Nickel-Responsive Transcription Factor NikR from Escherichia coli†‡

    PubMed Central

    2010-01-01

    Escherichia coli NikR regulates cellular nickel uptake by binding to the nik operon in the presence of nickel and blocking transcription of genes encoding the nickel uptake transporter. NikR has two binding affinities for the nik operon: a nanomolar dissociation constant with stoichiometric nickel and a picomolar dissociation constant with excess nickel [Bloom, S. L., and Zamble, D. B. (2004) Biochemistry 43, 10029−10038; Chivers, P. T., and Sauer, R. T. (2002) Chem. Biol. 9, 1141−1148]. While it is known that the stoichiometric nickel ions bind at the NikR tetrameric interface [Schreiter, E. R., et al. (2003) Nat. Struct. Biol. 10, 794−799; Schreiter, E. R., et al. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 13676−13681], the binding sites for excess nickel ions have not been fully described. Here we have determined the crystal structure of NikR in the presence of excess nickel to 2.6 Å resolution and have obtained nickel anomalous data (1.4845 Å) in the presence of excess nickel for both NikR alone and NikR cocrystallized with a 30-nucleotide piece of double-stranded DNA containing the nik operon. These anomalous data show that excess nickel ions do not bind to a single location on NikR but instead reveal a total of 22 possible low-affinity nickel sites on the NikR tetramer. These sites, for which there are six different types, are all on the surface of NikR, and most are found in both the NikR alone and NikR−DNA structures. Using a combination of crystallographic data and molecular dynamics simulations, the nickel sites can be described as preferring octahedral geometry, utilizing one to three protein ligands (typically histidine) and at least two water molecules. PMID:20704276

  6. A large-scale test of free-energy simulation estimates of protein-ligand binding affinities.

    PubMed

    Mikulskis, Paulius; Genheden, Samuel; Ryde, Ulf

    2014-10-27

    We have performed a large-scale test of alchemical perturbation calculations with the Bennett acceptance-ratio (BAR) approach to estimate relative affinities for the binding of 107 ligands to 10 different proteins. Employing 20-Å truncated spherical systems and only one intermediate state in the perturbations, we obtain an error of less than 4 kJ/mol for 54% of the studied relative affinities and a precision of 0.5 kJ/mol on average. However, only four of the proteins gave acceptable errors, correlations, and rankings. The results could be improved by using nine intermediate states in the simulations or including the entire protein in the simulations using periodic boundary conditions. However, 27 of the calculated affinities still gave errors of more than 4 kJ/mol, and for three of the proteins the results were not satisfactory. This shows that the performance of BAR calculations depends on the target protein and that several transformations gave poor results owing to limitations in the molecular-mechanics force field or the restricted sampling possible within a reasonable simulation time. Still, the BAR results are better than docking calculations for most of the proteins.

  7. Different roles suggested by sex-biased expression and pheromone binding affinity among three pheromone binding proteins in the pink rice borer, Sesamia inferens (Walker) (Lepidoptera: Noctuidae).

    PubMed

    Jin, Jun-Yan; Li, Zhao-Qun; Zhang, Ya-Nan; Liu, Nai-Yong; Dong, Shuang-Lin

    2014-07-01

    Pheromone binding proteins (PBPs) are thought to bind and transport hydrophobic sex pheromone molecules across the aqueous sensillar lymph to specific pheromone receptors on the dendritic membrane of olfactory neurons. A maximum of 3 PBP genes have been consistently identified in noctuid species, and each of them shares high identity with its counterparts in other species within the family. The functionality differences of the 3 proteins are poorly understood. In the present study, 3 PBP cDNAs (SinfPBP1, 2, 3) were identified from the pink rice borer, Sesamia inferens, for the first time. The quantitative real-time PCR indicated that the 3 PBPs displayed similar temporal but very different sex related expression profiles. Expression of SinfPBP1 and SinfPBP2 were highly and moderately male biased, respectively, while SinfPBP3 was slightly female biased, as SinfPBPs were expressed at very different levels (PBP1>PBP2≫PBP3) in male antennae, but at similar levels in female antennae. Furthermore, the 3 SinfPBPs displayed different ligand binding profiles in fluorescence competitive binding assays. SinfPBP1 exhibited high and similar binding affinities to all 3 sex pheromone components (Ki=0.72-1.60 μM), while SinfPBP2 showed selective binding to the alcohol and aldehyde components (Ki=0.78-1.71 μM), and SinfPBP3 showed no obvious binding to the 3 sex pheromone components. The results suggest that SinfPBP1 plays a major role in the reception of female sex pheromones in S. inferens, while SinfPBP3 plays a least role (if any) and SinfPBP2 functions as a recognizer of alcohol and aldehyde components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A dye-binding assay for measurement of the binding of Cu(II) to proteins.

    PubMed

    Wilkinson-White, Lorna E; Easterbrook-Smith, Simon B

    2008-10-01

    We analysed the theory of the coupled equilibria between a metal ion, a metal ion-binding dye and a metal ion-binding protein in order to develop a procedure for estimating the apparent affinity constant of a metal ion:protein complex. This can be done by analysing from measurements of the change in the concentration of the metal ion:dye complex with variation in the concentration of either the metal ion or the protein. Using experimentally determined values for the affinity constant of Cu(II) for the dye, 2-(5-bromo-2-pyridylaxo)-5-(N-propyl-N-sulfopropylamino) aniline (5-Br-PSAA), this procedure was used to estimate the apparent affinity constants for formation of Cu(II):transthyretin, yielding values which were in agreement with literature values. An apparent affinity constant for Cu(II) binding to alpha-synuclein of approximately 1 x 10(9)M(-1) was obtained from measurements of tyrosine fluorescence quenching by Cu(II). This value was in good agreement with that obtained using 5-Br-PSAA. Our analysis and data therefore show that measurement of changes in the equilibria between Cu(II) and 5-Br-PSAA by Cu(II)-binding proteins provides a general procedure for estimating the affinities of proteins for Cu(II).

  9. Water inhibits CO oxidation on gold cations in the gas phase. Structures and binding energies of the sequential addition of CO, H2O, O2, and N2 onto Au.

    PubMed

    Reveles, J Ulises; Saoud, Khaled M; El-Shall, M Samy

    2016-10-19

    We report a detailed experimental and theoretical study of the gas phase reactivity of Au + with CO, O 2 , N 2 and their mixtures in the presence of a trace amount of water impurity. The gold cation is found to strongly interact with CO and H 2 O molecules via successive addition reactions until reaching saturation. The stoichiometry of the formed complex is determined by the strength of the binding energy of the neutral molecule to the gold cation. CO binds the strongest to Au + , followed by H 2 O, N 2 and then O 2 . We found that the gold cation (Au + ) can activate the O 2 molecule within the Au + (CO) 2 (O 2 ) complex which could react with another CO molecule to form Au + (CO)(CO 2 ) + CO 2 . The product Au + (CO)(CO 2 ) is observed experimentally with a small intensity at room temperature. However, the presence of water leads to the formation of Au + (CO)(H 2 O)(O 2 ) instead of Au + (CO) 2 (O 2 ) due to the strong interaction between Au + and water. The current experiments and calculations might lead to a molecular level understanding of the interactions between the active sites, reactants and impurities which could pave the way for the design of efficient nanocatalysts.

  10. Direct Measurement of Equilibrium Constants for High-Affinity Hemoglobins

    PubMed Central

    Kundu, Suman; Premer, Scott A.; Hoy, Julie A.; Trent, James T.; Hargrove, Mark S.

    2003-01-01

    The biological functions of heme proteins are linked to their rate and affinity constants for ligand binding. Kinetic experiments are commonly used to measure equilibrium constants for traditional hemoglobins comprised of pentacoordinate ligand binding sites and simple bimolecular reaction schemes. However, kinetic methods do not always yield reliable equilibrium constants with more complex hemoglobins for which reaction mechanisms are not clearly understood. Furthermore, even where reaction mechanisms are clearly understood, it is very difficult to directly measure equilibrium constants for oxygen and carbon monoxide binding to high-affinity (KD ≪ 1 μM) hemoglobins. This work presents a method for direct measurement of equilibrium constants for high-affinity hemoglobins that utilizes a competition for ligands between the "target" protein and an array of "scavenger" hemoglobins with known affinities. This method is described for oxygen and carbon monoxide binding to two hexacoordinate hemoglobins: rice nonsymbiotic hemoglobin and Synechocystis hemoglobin. Our results demonstrate that although these proteins have different mechanisms for ligand binding, their affinities for oxygen and carbon monoxide are similar. Their large affinity constants for oxygen, 285 and ∼100 μM−1 respectively, indicate that they are not capable of facilitating oxygen transport. PMID:12770899

  11. Choline+ is a low-affinity ligand for alpha 1-adrenoceptors.

    PubMed

    Unelius, L; Cannon, B; Nedergaard, J

    1994-10-07

    The effect of choline+, a commonly used Na+ substitute, on ligand binding to alpha 1-adrenoceptors was investigated. It was found that replacement of 25% of the Na+ in a Krebs-Ringer bicarbonate buffer with choline+ led to a 3-fold decrease in the apparent affinity of [3H]prazosin for its binding site (i.e. the alpha 1-receptor) in a membrane preparation from brown adipose tissue, while no decrease in the total number of binding sites was observed. Similar effects were seen in membrane preparations from liver and brain. In competition experiments, it was found that choline+ could inhibit [3H]prazosin binding; from the inhibition curve, an affinity (Ki) of 31 mM choline+ for the [3H]prazosin-binding site could be calculated. In fully choline(+)-substituted buffers, where the level of [3H]prazosin binding was substantially reduced, both phentolamine and norepinephrine could still compete with [3H]prazosin for its binding site, with virtually unaltered affinity; thus choline+ did not substantially affect the characteristics of those receptors to which it did not bind. Choline+ did not affect the binding characteristics of the beta 1/beta 2 radioligand [3H]CGP-12177; thus, the effect on alpha 1-receptors was not due to general, unspecific effects on the membrane preparations. It is concluded that choline+ possesses characteristics similar to those of a competitive ligand for the alpha 1-adrenoceptor; it has a low affinity but the competitive type of interaction of choline may nonetheless under experimental conditions interfere with agonist interaction with the alpha 1-receptor.

  12. Ligand binding affinity and changes in the lateral diffusion of receptor for advanced glycation endproducts (RAGE).

    PubMed

    Syed, Aleem; Zhu, Qiaochu; Smith, Emily A

    2016-12-01

    The effect of ligand on the lateral diffusion of receptor for advanced glycation endproducts (RAGE), a receptor involved in numerous pathological conditions, remains unknown. Single particle tracking experiments that use quantum dots specifically bound to hemagglutinin (HA)-tagged RAGE (HA-RAGE) are reported to elucidate the effect of ligand binding on HA-RAGE diffusion in GM07373 cell membranes. The ligand used in these studies is methylglyoxal modified-bovine serum albumin (MGO-BSA) containing advanced glycation end products modifications. The binding affinity between soluble RAGE and MGO-BSA increases by 1.8 to 9.7-fold as the percent primary amine modification increases from 24 to 74% and with increasing negative charge on the MGO-BSA. Ligand incubation affects the HA-RAGE diffusion coefficient, the radius of confinement, and duration of confinement. There is, however, no correlation between MGO-BSA ligand binding affinity with soluble RAGE and the extent of the changes in HA-RAGE lateral diffusion. The ligand induced changes to HA-RAGE lateral diffusion do not occur when cholesterol is depleted from the cell membrane, indicating the mechanism for ligand-induced changes to HA-RAGE diffusion is cholesterol dependent. The results presented here serve as a first step in unraveling how ligand influences RAGE lateral diffusion. Copyright © 2016. Published by Elsevier B.V.

  13. Enhanced Requirement for TNFR2 in Graft Rejection Mediated by Low Affinity Memory CD8+ T Cells During Heterologous Immunity

    PubMed Central

    Krummey, Scott M.; Chen, Ching-Wen; Guasch, Sara A.; Liu, Danya; Wagener, Maylene; Larsen, Christian P; Ford, Mandy L.

    2016-01-01

    The affinity of a T cell receptor (TCR) binding to peptide:MHC profoundly impacts the phenotype and function of effector and memory cell differentiation. Little is known about the effect of low affinity priming on memory cell generation and function, which is particularly important in heterologous immunity, when microbe-specific T cells cross-react with allogeneic antigen and mediate graft rejection. We found that low affinity primed memory CD8+ T cells produced high levels of TNF ex vivo in response to heterologous rechallenge compared to high affinity primed memory T cells. Low affinity secondary effectors significantly upregulated TNFR2 on the cell surface and contained a higher frequency of TNFR2hi proliferating cells. Low affinity primed secondary effectors concurrently downregulated TNF production. Importantly, blockade of TNFR2 attenuated graft rejection in low but not high affinity primed animals. These data establish a functional connection between TNF signaling and TCR priming affinity and have implications for the immunomodulation of pathogenic T cell responses during transplantation. PMID:27481849

  14. Searching for DNA Lesions: Structural Evidence for Lower- and Higher-Affinity DNA Binding Conformations of Human Alkyladenine DNA Glycosylase

    PubMed Central

    2011-01-01

    To efficiently repair DNA, human alkyladenine DNA glycosylase (AAG) must search the million-fold excess of unmodified DNA bases to find a handful of DNA lesions. Such a search can be facilitated by the ability of glycosylases, like AAG, to interact with DNA using two affinities: a lower-affinity interaction in a searching process and a higher-affinity interaction for catalytic repair. Here, we present crystal structures of AAG trapped in two DNA-bound states. The lower-affinity depiction allows us to investigate, for the first time, the conformation of this protein in the absence of a tightly bound DNA adduct. We find that active site residues of AAG involved in binding lesion bases are in a disordered state. Furthermore, two loops that contribute significantly to the positive electrostatic surface of AAG are disordered. Additionally, a higher-affinity state of AAG captured here provides a fortuitous snapshot of how this enzyme interacts with a DNA adduct that resembles a one-base loop. PMID:22148158

  15. Affinity chromatographic purification of tetrodotoxin by use of tetrodotoxin-binding high molecular weight substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands.

    PubMed

    Shiomi, K; Yamaguchi, S; Shimakura, K; Nagashima, Y; Yamamori, K; Matsui, T

    1993-12-01

    A purification method for tetrodotoxin (TTX), based on affinity chromatography using the TTX-binding high mol. wt substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands, was developed. This method was particularly useful for analysis of TTX in biological samples with low concentrations of TTX. The affinity gel prepared was highly specific for TTX, having no ability to bind 4-epi-TTX and anhydro-TTX as well as saxitoxin.

  16. Binding of 3O2 and 1O2 to dyes used in photodynamic therapy in gas phase and aqueous media

    NASA Astrophysics Data System (ADS)

    Kushwaha, P. S.; Mishra, P. C.

    Density functional theory (DFT) was employed at the B3LYP/6-31+G* level to study complexes of 1O2 and 3O2 with the dye molecules proflavine, methylene blue, and acridine orange, which are useful in photodynamic therapy. It was found that the most stable complex between 1O2 and proflavine are formed when 1O2 is located above the central ring, while the most stable complex between 1O2 and methylene blue is formed when 1O2 is located above the molecular plane, but not above any of the rings, near the sulfur atom. 1O2 can make a stable complex with acridine orange, as it is located above the outer ring of the dye. The binding energies of the complexes of 1O2 with all three dyes are enhanced considerably in going from gas phase to aqueous media. The complexes of 3O2 with the dyes will be unstable in all cases, while those of 1O2 with the same will be quite stable and will not be dissociated due to thermal fluctuations at room temperature. In the complexes of 1O2 and 3O2 with the dyes, charge transfer occurs from the dyes to the O2 moiety, the amount of charge transfer being much more to 1O2 than to 3O2 in each case.

  17. Efficient one-cycle affinity selection of binding proteins or peptides specific for a small-molecule using a T7 phage display pool.

    PubMed

    Takakusagi, Yoichi; Kuramochi, Kouji; Takagi, Manami; Kusayanagi, Tomoe; Manita, Daisuke; Ozawa, Hiroko; Iwakiri, Kanako; Takakusagi, Kaori; Miyano, Yuka; Nakazaki, Atsuo; Kobayashi, Susumu; Sugawara, Fumio; Sakaguchi, Kengo

    2008-11-15

    Here, we report an efficient one-cycle affinity selection using a natural-protein or random-peptide T7 phage pool for identification of binding proteins or peptides specific for small-molecules. The screening procedure involved a cuvette type 27-MHz quartz-crystal microbalance (QCM) apparatus with introduction of self-assembled monolayer (SAM) for a specific small-molecule immobilization on the gold electrode surface of a sensor chip. Using this apparatus, we attempted an affinity selection of proteins or peptides against synthetic ligand for FK506-binding protein (SLF) or irinotecan (Iri, CPT-11). An affinity selection using SLF-SAM and a natural-protein T7 phage pool successfully detected FK506-binding protein 12 (FKBP12)-displaying T7 phage after an interaction time of only 10 min. Extensive exploration of time-consuming wash and/or elution conditions together with several rounds of selection was not required. Furthermore, in the selection using a 15-mer random-peptide T7 phage pool and subsequent analysis utilizing receptor ligand contact (RELIC) software, a subset of SLF-selected peptides clearly pinpointed several amino-acid residues within the binding site of FKBP12. Likewise, a subset of Iri-selected peptides pinpointed part of the positive amino-acid region of residues from the Iri-binding site of the well-known direct targets, acetylcholinesterase (AChE) and carboxylesterase (CE). Our findings demonstrate the effectiveness of this method and general applicability for a wide range of small-molecules.

  18. Ion channel regulation by phosphoinositides analyzed with VSPs—PI(4,5)P2 affinity, phosphoinositide selectivity, and PI(4,5)P2 pool accessibility

    PubMed Central

    Rjasanow, Alexandra; Leitner, Michael G.; Thallmair, Veronika; Halaszovich, Christian R.; Oliver, Dominik

    2015-01-01

    The activity of many proteins depends on the phosphoinositide (PI) content of the membrane. E.g., dynamic changes of the concentration of PI(4,5)P2 are cellular signals that regulate ion channels. The susceptibility of a channel to such dynamics depends on its affinity for PI(4,5)P2. Yet, measuring affinities for endogenous PIs has not been possible directly, but has relied largely on the response to soluble analogs, which may not quantitatively reflect binding to native lipids. Voltage-sensitive phosphatases (VSPs) turn over PI(4,5)P2 to PI(4)P when activated by depolarization. In combination with voltage-clamp electrophysiology VSPs are useful tools for rapid and reversible depletion of PI(4,5)P2. Because cellular PI(4,5)P2 is resynthesized rapidly, steady state PI(4,5)P2 changes with the degree of VSP activation and thus depends on membrane potential. Here we show that titration of endogenous PI(4,5)P2 with Ci-VSP allows for the quantification of relative PI(4,5)P2 affinities of ion channels. The sensitivity of inward rectifier and voltage-gated K+ channels to Ci-VSP allowed for comparison of PI(4,5)P2 affinities within and across channel subfamilies and detected changes of affinity in mutant channels. The results also reveal that VSPs are useful only for PI effectors with high binding specificity among PI isoforms, because PI(4,5)P2 depletion occurs at constant overall PI level. Thus, Kir6.2, a channel activated by PI(4,5)P2 and PI(4)P was insensitive to VSP. Surprisingly, despite comparable PI(4,5)P2 affinity as determined by Ci-VSP, the Kv7 and Kir channel families strongly differed in their sensitivity to receptor-mediated depletion of PI(4,5)P2. While Kv7 members were highly sensitive to activation of PLC by Gq-coupled receptors, Kir channels were insensitive even when PI(4,5)P2 affinity was lowered by mutation. We hypothesize that different channels may be associated with distinct pools of PI(4,5)P2 that differ in their accessibility to PLC and VSPs. PMID

  19. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    PubMed Central

    Orcutt, Kelly Davis; Slusarczyk, Adrian L; Cieslewicz, Maryelise; Ruiz-Yi, Benjamin; Bhushan, Kumar R; Frangioni, John V; Wittrup, K Dane

    2014-01-01

    Introduction In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to DOTA chelates for use in PRIT applications. Methods We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), reformatted as a single chain variable fragment (scFv). Results Modeling predicts that for high antigen density and saturating bsAb dose, a hapten binding affinity of 100 picomolar (pM) is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nanomolar (nM) to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2 ± 1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen (CEA), pretargeted high-affinity scFv results in significantly higher tumor retention of a 111In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions We have engineered a versatile, high-affinity DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals. PMID:21315278

  20. Oxygen binding properties of hemoglobin from the white rhinoceros (beta 2-GLU) and the tapir.

    PubMed

    Baumann, R; Mazur, G; Braunitzer, G

    1984-04-01

    The beta-chain of rhinoceros hemoglobin contains glutamic acid at position beta 2, and important site for the binding of organic phosphates. We have investigated the oxygen binding properties of this hemoglobin and its interaction with ATP, 2,3-diphosphoglycerate, CO2 and chloride. The results show that the presence of GLU at position beta 2 nearly abolishes the effect of organic phosphates and CO2, whereas the oxygen-linked binding of chloride is not affected. Thus rhinoceros hemoglobin has only protons and chloride anions as major allosteric effectors for the control of its oxygen affinity. From the results obtained with hemoglobin solutions it can be calculated that the blood oxygen affinity of the rhinoceros must be rather high with a P50 of about 20 torr at pH 7.4 and 37 degrees C, which conforms with observations obtained for other large mammals.

  1. The human RNA-binding protein and E3 ligase MEX-3C binds the MEX-3-recognition element (MRE) motif with high affinity.

    PubMed

    Yang, Lingna; Wang, Chongyuan; Li, Fudong; Zhang, Jiahai; Nayab, Anam; Wu, Jihui; Shi, Yunyu; Gong, Qingguo

    2017-09-29

    MEX-3 is a K-homology (KH) domain-containing RNA-binding protein first identified as a translational repressor in Caenorhabditis elegans , and its four orthologs (MEX-3A-D) in human and mouse were subsequently found to have E3 ubiquitin ligase activity mediated by a RING domain and critical for RNA degradation. Current evidence implicates human MEX-3C in many essential biological processes and suggests a strong connection with immune diseases and carcinogenesis. The highly conserved dual KH domains in MEX-3 proteins enable RNA binding and are essential for the recognition of the 3'-UTR and post-transcriptional regulation of MEX-3 target transcripts. However, the molecular mechanisms of translational repression and the consensus RNA sequence recognized by the MEX-3C KH domain are unknown. Here, using X-ray crystallography and isothermal titration calorimetry, we investigated the RNA-binding activity and selectivity of human MEX-3C dual KH domains. Our high-resolution crystal structures of individual KH domains complexed with a noncanonical U-rich and a GA-rich RNA sequence revealed that the KH1/2 domains of human MEX-3C bound MRE10, a 10-mer RNA (5'-CAGAGUUUAG-3') consisting of an eight-nucleotide MEX-3-recognition element (MRE) motif, with high affinity. Of note, we also identified a consensus RNA motif recognized by human MEX-3C. The potential RNA-binding sites in the 3'-UTR of the human leukocyte antigen serotype ( HLA-A2 ) mRNA were mapped with this RNA-binding motif and further confirmed by fluorescence polarization. The binding motif identified here will provide valuable information for future investigations of the functional pathways controlled by human MEX-3C and for predicting potential mRNAs regulated by this enzyme. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation

    NASA Astrophysics Data System (ADS)

    Grudinin, Sergei; Kadukova, Maria; Eisenbarth, Andreas; Marillet, Simon; Cazals, Frédéric

    2016-09-01

    The 2015 D3R Grand Challenge provided an opportunity to test our new model for the binding free energy of small molecules, as well as to assess our protocol to predict binding poses for protein-ligand complexes. Our pose predictions were ranked 3-9 for the HSP90 dataset, depending on the assessment metric. For the MAP4K dataset the ranks are very dispersed and equal to 2-35, depending on the assessment metric, which does not provide any insight into the accuracy of the method. The main success of our pose prediction protocol was the re-scoring stage using the recently developed Convex-PL potential. We make a thorough analysis of our docking predictions made with AutoDock Vina and discuss the effect of the choice of rigid receptor templates, the number of flexible residues in the binding pocket, the binding pocket size, and the benefits of re-scoring. However, the main challenge was to predict experimentally determined binding affinities for two blind test sets. Our affinity prediction model consisted of two terms, a pairwise-additive enthalpy, and a non pairwise-additive entropy. We trained the free parameters of the model with a regularized regression using affinity and structural data from the PDBBind database. Our model performed very well on the training set, however, failed on the two test sets. We explain the drawback and pitfalls of our model, in particular in terms of relative coverage of the test set by the training set and missed dynamical properties from crystal structures, and discuss different routes to improve it.

  3. Rapid, High Affinity Binding by a Fluorescein Templated Copolymer Combining Covalent, Hydrophobic, and Acid–Base Noncovalent Crosslinks

    PubMed Central

    Timberman, Anthony; Yang, Rongfang; Papantones, Alex; Seitz, W. Rudolf

    2018-01-01

    A new type of biomimetic templated copolymer has been prepared by reverse addition fragmentation chain transfer polymerization (RAFT) in dioxane. The initial formulation includes the template fluorescein, N-isopropylacrylamide (NIPAM, 84 mol %), methacrylic acid (MAA, 5-mol %), 4-vinylpyridine (4-VP, 9 mmol %), and N,N′-methylenebis(acrylamide) (MBA, 2 mol %). PolyNIPAM is a thermosensitive polymer that comes out of aqueous solution above its lower critical solution temperature forming hydrophobic ‘crosslinks’. MAA and 4-VP interact in dioxane forming acid–base crosslinks. The excess 4-VP serves as a recognition monomer organizing around the template fluorescein to form a binding site that is held in place by the noncovalent and covalent crosslinks. The MBA is a covalent crosslinker. The RAFT agent in the resulting copolylmer was reduced to a thiol and attached to gold nanoparticles. The gold nanoparticle bound copolymer binds fluorescein completely in less than two seconds with an affinity constant greater than 108 M−1. A reference copolymer prepared with the same monomers by the same procedure binds fluorescein much more weakly. PMID:29693601

  4. A photo-cleavable biotin affinity tag for the facile release of a photo-crosslinked carbohydrate-binding protein.

    PubMed

    Chang, Tsung-Che; Adak, Avijit K; Lin, Ting-Wei; Li, Pei-Jhen; Chen, Yi-Ju; Lai, Chain-Hui; Liang, Chien-Fu; Chen, Yu-Ju; Lin, Chun-Cheng

    2016-03-15

    The use of photo-crosslinking glycoprobes represents a powerful strategy for the covalent capture of labile protein complexes and allows detailed characterization of carbohydrate-mediated interactions. The selective release of target proteins from solid support is a key step in functional proteomics. We envisaged that light activation can be exploited for releasing labeled protein in a dual photo-affinity probe-based strategy. To investigate this possibility, we designed a trifunctional, galactose-based, multivalent glycoprobe for affinity labeling of carbohydrate-binding proteins. The resulting covalent protein-probe adduct is attached to a photo-cleavable biotin affinity tag; the biotin moiety enables specific presentation of the conjugate on streptavidin-coated beads, and the photolabile linker allows the release of the labeled proteins. This dual probe promotes both the labeling and the facile cleavage of the target protein complexes from the solid surfaces and the remainder of the cell lysate in a completely unaltered form, thus eliminating many of the common pitfalls associated with traditional affinity-based purification methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fast and reliable prediction of domain-peptide binding affinity using coarse-grained structure models.

    PubMed

    Tian, Feifei; Tan, Rui; Guo, Tailin; Zhou, Peng; Yang, Li

    2013-07-01

    Domain-peptide recognition and interaction are fundamentally important for eukaryotic signaling and regulatory networks. It is thus essential to quantitatively infer the binding stability and specificity of such interaction based upon large-scale but low-accurate complex structure models which could be readily obtained from sophisticated molecular modeling procedure. In the present study, a new method is described for the fast and reliable prediction of domain-peptide binding affinity with coarse-grained structure models. This method is designed to tolerate strong random noises involved in domain-peptide complex structures and uses statistical modeling approach to eliminate systematic bias associated with a group of investigated samples. As a paradigm, this method was employed to model and predict the binding behavior of various peptides to four evolutionarily unrelated peptide-recognition domains (PRDs), i.e. human amph SH3, human nherf PDZ, yeast syh GYF and yeast bmh 14-3-3, and moreover, we explored the molecular mechanism and biological implication underlying the binding of cognate and noncognate peptide ligands to their domain receptors. It is expected that the newly proposed method could be further used to perform genome-wide inference of domain-peptide binding at three-dimensional structure level. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Binding patterns and structure-affinity relationships of food azo dyes with lysozyme: a multitechnique approach.

    PubMed

    Peng, Wei; Ding, Fei; Peng, Yu-Kui; Jiang, Yu-Ting; Zhang, Li

    2013-12-18

    Food dyes serve to beguile consumers: they are often used to imitate the presence of healthful, colorful food produce such as fruits and vegetables. But considering the hurtful impact of these chemicals on the human body, it is time to thoroughly uncover the toxicity of these food dyes at the molecular level. In the present contribution, we have examined the molecular reactions of protein lysozyme with model food azo compound Color Index (C.I.) Acid Red 2 and its analogues C.I. Acid Orange 52, Solvent Yellow 2, and the core structure of azobenzene using a combination of biophysical methods at physiological conditions. Fluorescence, circular dichroism (CD), time-resolved fluorescence, UV-vis absorption as well as computer-aided molecular modeling were used to analyze food dye affinity, binding mode, energy transfer, and the effects of food dye complexation on lysozyme stability and conformation. Fluorescence emission spectra indicate complex formation at 10(-5) M dye concentration, and this corroborates time-resolved fluorescence results showing the diminution in the tryptophan (Trp) fluorescence mainly via a static type (KSV = 1.505 × 10(4) M(-1)) and Förster energy transfer. Structural analysis displayed the participation of several amino acid residues in food dye protein adducts, with hydrogen bonds, π-π and cation-π interactions, but the conformation of lysozyme was unchanged in the process, as derived from fluorescence emission, far-UV CD, and synchronous fluorescence spectra. The overall affinity of food dye is 10(4) M(-1) and there exists only one kind of binding domain in protein for food dye. These data are consistent with hydrophobic probe 8-anilino-1-naphthalenesulfonic acid (ANS) displacement, and molecular modeling manifesting the food dye binding patch was near to Trp-62 and Trp-63 residues of lysozyme. On the basis of the computational analyses, we determine that the type of substituent on the azobenzene structure has a powerful influence on the

  7. Chemoenzymatic synthesis and structural characterization of 2-O-sulfated glucuronic acid-containing heparan sulfate hexasaccharides

    PubMed Central

    Hsieh, Po-Hung; Xu, Yongmei; Keire, David A; Liu, Jian

    2014-01-01

    Heparan sulfate and heparin are highly sulfated polysaccharides that consist of a repeating disaccharide unit of glucosamine and glucuronic or iduronic acid. The 2-O-sulfated iduronic acid (IdoA2S) residue is commonly found in heparan sulfate and heparin; however, 2-O-sulfated glucuronic acid (GlcA2S) is a less abundant monosaccharide (∼<5% of total saccharides). Here, we report the synthesis of three GlcA2S-containing hexasaccharides using a chemoenzymatic approach. For comparison purposes, additional IdoA2S-containing hexasaccharides were synthesized. Nuclear magnetic resonance analyses were performed to obtain full chemical shift assignments for the GlcA2S- and IdoA2S-hexasaccharides. These data show that GlcA2S is a more structurally rigid saccharide residue than IdoA2S. The antithrombin (AT) binding affinities of a GlcA2S- and an IdoA2S-hexasaccharide were determined by affinity co-electrophoresis. In contrast to IdoA2S-hexasaccharides, the GlcA2S-hexasaccharide does not bind to AT, confirming that the presence of IdoA2S is critically important for the anticoagulant activity. The availability of pure synthetic GlcA2S-containing oligosaccharides will allow the investigation of the structure and activity relationships of individual sites in heparin or heparan sulfate. PMID:24770491

  8. Binding affinity of the L-742,001 inhibitor to the endonuclease domain of A/H1N1/PA influenza virus variants: Molecular simulation approaches

    NASA Astrophysics Data System (ADS)

    Nguyen, Hung; Nguyen, Hoang Linh; Linh, Huynh Quang; Nguyen, Minh Tho

    2018-01-01

    The steered molecular dynamics (SMD), molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and free energy perturbation (FEP) methods were used to determine the binding affinity of the L-742,001 inhibitor to the endonuclease domain of the A/H1N1/PA influenza viruses (including wild type (WT) and three mutations I79L, E119D and F105S for both pH1N1 PA and PR8 PA viruses). Calculated results showed that the L-742,001 inhibitor not only binds to the PR8 PAs (1934 A influenza virus) better than to the pH1N1 PAs (2009 A influenza virus) but also more strongly interacts with the WT endonuclease domain than with three mutant variants for both pH1N1 PA and PR8 PA viruses. The binding affinities obtained by the SMD, MM-PBSA and FEP methods attain high correlation with available experimental data. Here the FEP method appears to provide a more accurate determination of the binding affinity than the SMD and MM-PBSA counterparts.

  9. Exceptionally tight membrane-binding may explain the key role of the synaptotagmin-7 C 2 A domain in asynchronous neurotransmitter release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voleti, Rashmi; Tomchick, Diana R.; Südhof, Thomas C.

    Synaptotagmins (Syts) act as Ca2+ sensors in neurotransmitter release by virtue of Ca2+-binding to their two C2 domains, but their mechanisms of action remain unclear. Puzzlingly, Ca2+-binding to the C2B domain appears to dominate Syt1 function in synchronous release, whereas Ca2+-binding to the C2A domain mediates Syt7 function in asynchronous release. Here we show that crystal structures of the Syt7 C2A domain and C2AB region, and analyses of intrinsic Ca2+-binding to the Syt7 C2 domains using isothermal titration calorimetry, did not reveal major differences that could explain functional differentiation between Syt7 and Syt1. However, using liposome titrations under Ca2+ saturatingmore » conditions, we show that the Syt7 C2A domain has a very high membrane affinity and dominates phospholipid binding to Syt7 in the presence or absence of L-α-phosphatidylinositol 4,5-diphosphate (PIP2). For Syt1, the two Ca2+-saturated C2 domains have similar affinities for membranes lacking PIP2, but the C2B domain dominates binding to PIP2-containing membranes. Mutagenesis revealed that the dramatic differences in membrane affinity between the Syt1 and Syt7 C2A domains arise in part from apparently conservative residue substitutions, showing how striking biochemical and functional differences can result from the cumulative effects of subtle residue substitutions. Viewed together, our results suggest that membrane affinity may be a key determinant of the functions of Syt C2 domains in neurotransmitter release.« less

  10. CO Binding and Ligand Discrimination in Human Myeloperoxidase†

    PubMed Central

    Murphy, Emma J.; Maréchal, Amandine; Segal, Anthony W.; Rich, Peter R.

    2015-01-01

    Despite the fact that ferrous myeloperoxidase (MPO) can bind both O2 and NO, its ability to bind CO has been questioned. UV/visible spectroscopy was used to confirm that CO induces small spectral shifts in ferrous MPO, and Fourier transform infrared difference spectroscopy showed definitively that these arose from formation of a heme ferrous–CO compound. Recombination rates after CO photolysis were monitored at 618 and 645 nm as a function of CO concentration and pH. At pH 6.3, kon and koff were 0.14 mM−1·s−1 and 0.23 s−1, respectively, yielding an unusually high KD of 1.6 mM. This affinity of MPO for CO is 10 times weaker than its affinity for O2. The observed rate constant for CO binding increased with increasing pH and was governed by a single protonatable group with a pKa of 7.8. Fourier transform infrared spectroscopy revealed two different conformations of bound CO with frequencies at 1927 and 1942 cm−1. Their recombination rate constants were identical, indicative of two forms of bound CO that are in rapid thermal equilibrium rather than two distinct protein populations with different binding sites. The ratio of bound states was pH-dependent (pKa ≈ 7.4) with the 1927 cm−1 form favored at high pH. Structural factors that account for the ligand-binding properties of MPO are identified by comparisons with published data on a range of other ligand-binding heme proteins, and support is given to the recent suggestion that the proximal His336 in MPO is in a true imidazolate state. PMID:20146436

  11. Insulin-like growth factor binding protein-2: contributions of the C-terminal domain to insulin-like growth factor-1 binding.

    PubMed

    Kibbey, Megan M; Jameson, Mark J; Eaton, Erin M; Rosenzweig, Steven A

    2006-03-01

    Signaling by the insulin-like growth factor (IGF)-1 receptor (IGF-1R) has been implicated in the promotion and aggressiveness of breast, prostate, colorectal, and lung cancers. The IGF binding proteins (IGFBPs) represent a class of natural IGF antagonists that bind to and sequester IGF-1/2 from the IGF-1R, making them attractive candidates as therapeutics for cancer prevention and control. Recombinant human IGFBP-2 significantly attenuated IGF-1-stimulated MCF-7 cell proliferation with coaddition of 20 or 100 nM IGFBP-2 (50 or 80% inhibition, respectively). We previously identified IGF-1 contact sites both upstream and downstream of the CWCV motif (residues 247-250) in human IGFBP-2 (J Biol Chem 276:2880-2889, 2001). To further test their contributions to IGFBP-2 function, the single tryptophan in human IGFBP-2, Trp-248, was selectively cleaved with 2-(2'nitrophenylsulfenyl)-3-methyl-3 bromoindolenine (BNPS-skatole) and the BNPS-skatole products IGFBP-2(1-248) and IGFBP-2(249-289) as well as IGFBP-2(1-190) were expressed as glutathione S-transferase-fusion proteins and purified. Based on competition binding analysis, deletion of residues 249 to 289 caused an approximately 20-fold decrease in IGF-1 binding affinity (IGFBP-2 EC50 = 0.35 nM and IGFBP-2(1-248) = 7 nM). Removal of the remainder of the C-terminal domain had no further effect on affinity (IGFBP-2(1-190) EC50 = 9.2 nM). In kinetic assays, IGFBP-2(1-248) and IGFBP-2(1-190) exhibited more rapid association and dissociation rates than full-length IGFBP-2. These results confirm that regions upstream and downstream of the CWCV motif participate in IGF-1 binding. They further support the development of full-length IGFBP-2 as a cancer therapeutic.

  12. Acetylcholinesterase affinity-based screening assay on Lippia gracilis Schauer extracts.

    PubMed

    Vanzolini, K L; da F Sprenger, R; Leme, G M; de S Moraes, V R; Vilela, A F L; Cardoso, C L; Cass, Q B

    2018-05-10

    The use of affinity-based protein assay produced by covalently linking acetylcholinesterase to magnetic beads, followed by chemical characterization of the selective binders using Liquid Chromatography with tandem High-Resolution Mass Spectrometry (LC-HRMS) is herein described for profiling crude aqueous natural product extracts. The fishing assay was first modulated using galanthamine as a reference ligand and then, the assay condition was adjusted for the aqueous leaves extracts obtained from Lippia gracilis Schauer (genotype 201) that was used as the natural combinatory library. From the experiments, a selective binder has been undisclosed with an accurate mass of 449.1131 m/z and identified as eriodictyol 2'-O-glucoside or eriodictyol 3'-O-glucoside. The selectivity of the binding assay was demonstrated, as much as, that erydictiol 7-O-glucoside was not fished, although it was present in the crude aqueous extract. The binding assay platform exhibited high specificity and did not require any sample pretreatment, making it appropriate for profiling binders at natural libraries. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking.

    PubMed

    Ballester, Pedro J; Mitchell, John B O

    2010-05-01

    Accurately predicting the binding affinities of large sets of diverse protein-ligand complexes is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for analysing the outputs of molecular docking, which in turn is an important technique for drug discovery, chemical biology and structural biology. Each scoring function assumes a predetermined theory-inspired functional form for the relationship between the variables that characterize the complex, which also include parameters fitted to experimental or simulation data and its predicted binding affinity. The inherent problem of this rigid approach is that it leads to poor predictivity for those complexes that do not conform to the modelling assumptions. Moreover, resampling strategies, such as cross-validation or bootstrapping, are still not systematically used to guard against the overfitting of calibration data in parameter estimation for scoring functions. We propose a novel scoring function (RF-Score) that circumvents the need for problematic modelling assumptions via non-parametric machine learning. In particular, Random Forest was used to implicitly capture binding effects that are hard to model explicitly. RF-Score is compared with the state of the art on the demanding PDBbind benchmark. Results show that RF-Score is a very competitive scoring function. Importantly, RF-Score's performance was shown to improve dramatically with training set size and hence the future availability of more high-quality structural and interaction data is expected to lead to improved versions of RF-Score. pedro.ballester@ebi.ac.uk; jbom@st-andrews.ac.uk Supplementary data are available at Bioinformatics online.

  14. Protoporphyrinogen oxidase: high affinity tetrahydrophthalimide radioligand for the inhibitor/herbicide-binding site in mouse liver mitochondria.

    PubMed

    Birchfield, N B; Casida, J E

    1996-01-01

    Protoporphyrinogen oxidase (protox), the last common enzyme in heme and chlorophyll biosynthesis, is the target of several classes of herbicides acting as inhibitors in both plants and mammals. N-(4-Chloro-2-fluoro-5-(propargyloxy)phenyl)-3,4,5,6-tetrahydro phthalimide (a potent protox inhibitor referred to as THP) was synthesized as a candidate radioligand ([3H]-THP) by selective catalytic reduction of 3,6-dihydrophthalic anhydride (DHPA) with tritium gas followed by condensation in 45% yield with 4-chloro-2-fluoro-5-(propargyloxy)aniline. Insertion of tritium at the 3 and 6 carbons of DHPA as well as the expected 4 and 5 carbons resulted in high specific activity [3H]THP (92 Ci/mmol). This radioligand undergoes rapid, specific, saturable, and reversible binding to the inhibitor/herbicide binding site of the protox component of cholate-solubilized mouse liver mitochondria with an apparent Kd of 0.41 nM and Bmax of 0.40 pmol/mg of protein. In the standard assay, mouse preparation (150 micrograms of protein) and [3H]THP (0.5 nM) are incubated in 500 microL of phosphate buffer at pH 7.2 for 15 min at 25 degrees C followed by addition of ammonium sulfate and filtration with glass fiber filters. The potencies of five nitrodiphenyl ethers and two other herbicides as inhibitors of [3H]THP binding correlate well with those for inhibition of protox activity (r2 = 0.97, n = 7), thus validating the binding assay as relevant to enzyme inhibition. It is also suitable to determine in vivo block as illustrated by an approximately 50% decrease in [3H]THP binding in liver mitochondria from mice treated ip with oxyfluorfen at 4 mg/kg. This is the first report of a binding assay for protox in mammals. The high affinity and specific activity of [3H]THP facilitate quantitation of protox and therefore research on a sensitive inhibition site for porphyrin biosynthesis.

  15. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches.

    PubMed

    Idili, Andrea; Plaxco, Kevin W; Vallée-Bélisle, Alexis; Ricci, Francesco

    2013-12-23

    Naturally occurring chemoreceptors almost invariably employ structure-switching mechanisms, an observation that has inspired the use of biomolecular switches in a wide range of artificial technologies in the areas of diagnostics, imaging, and synthetic biology. In one mechanism for generating such behavior, clamp-based switching, binding occurs via the clamplike embrace of two recognition elements onto a single target molecule. In addition to coupling recognition with a large conformational change, this mechanism offers a second advantage: it improves both affinity and specificity simultaneously. To explore the physics of such switches we have dissected here the thermodynamics of a clamp-switch that recognizes a target DNA sequence through both Watson-Crick base pairing and triplex-forming Hoogsteen interactions. When compared to the equivalent linear DNA probe (which relies solely on Watson-Crick interactions), the extra Hoogsteen interactions in the DNA clamp-switch increase the probe's affinity for its target by ∼0.29 ± 0.02 kcal/mol/base. The Hoogsteen interactions of the clamp-switch likewise provide an additional specificity check that increases the discrimination efficiency toward a single-base mismatch by 1.2 ± 0.2 kcal/mol. This, in turn, leads to a 10-fold improvement in the width of the "specificity window" of this probe relative to that of the equivalent linear probe. Given these attributes, clamp-switches should be of utility not only for sensing applications but also, in the specific field of DNA nanotechnology, for applications calling for a better control over the building of nanostructures and nanomachines.

  16. Amphiphilic Bio-molecules/ZnO Interface: Enhancement of Bio-affinity and Dispersibility

    NASA Astrophysics Data System (ADS)

    Meng, Xiu-Qing; Fang, Yun-Zhang; Wu, Feng-Min

    2012-01-01

    The dispersibility of bio-molecules such as lecithins on the surface of ZnO nanowires are investigated for biosensor applications. Lecithins can be absorbed on an as-synthesized ZnO nanowire surface in the form of sub-micro sized clusters, while scattering well on those annealed under oxygen atmosphere. Wettability analysis reveals that the as-synthesized ZnO nanowires bear a super-hydrophobic surface, which convents to superhydrophilic after oxygen annealing. First-principles calculations indicate that the adsorption energy of ZnO with water is about 0.2 eV at a distance of 2 Å when it is superhydrophilic, suggesting that lecithin can be absorbed on the hydrophilic surface stably at this distance and the bio-affinity can be enhanced under this condition.

  17. A robust viologen and Mn-based porous coordination polymer with two types of Lewis acid sites providing high affinity for H2O, CO2 and NH3.

    PubMed

    Leblanc, A; Mercier, N; Allain, M; Dul, M-C; Weber, G; Geoffroy, N; Bellat, J-P; Bezverkhyy, I

    2017-11-21

    A novel porous coordination polymer [Mn(pc3)(H 2 O) 2 ]·xH 2 O (3 < x < 4) is synthesized in water at pH = 7 using the anionic viologen-carboxylate ligand 4,4'-bipyridinium,1,1'-bis-(2,4-dicarboxyphenyl) (pc3 2- ). Dehydration of the material results in the formation of open pores containing two types of accessible Lewis acid sites: exposed Mn 2+ cations and N + atoms of viologen units. Due to this property the PCP shows high affinity and capacity in the adsorption of H 2 O, CO 2 and NH 3 . Despite the presence of strong adsorption sites this material is stable in liquid water and in gaseous NH 3 .

  18. High affinity soluble ILT2 receptor: a potent inhibitor of CD8(+) T cell activation.

    PubMed

    Moysey, Ruth K; Li, Yi; Paston, Samantha J; Baston, Emma E; Sami, Malkit S; Cameron, Brian J; Gavarret, Jessie; Todorov, Penio; Vuidepot, Annelise; Dunn, Steven M; Pumphrey, Nicholas J; Adams, Katherine J; Yuan, Fang; Dennis, Rebecca E; Sutton, Deborah H; Johnson, Andy D; Brewer, Joanna E; Ashfield, Rebecca; Lissin, Nikolai M; Jakobsen, Bent K

    2010-12-01

    Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin super-family receptor ILT2 (synonyms: LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical cross-linking with bivalent polyethylene glycol (PEG) derivatives or as a genetic fusion with human IgG Fc-fragment, the mutants exhibited a further increase in ligand-binding strength due to the avidity effect, with resident half-times (t(1/2)) on the surface of MHC I-positive cells of many hours. The novel compounds antagonized the interaction of CD8 co-receptor with MHC I in vitro without affecting the peptide-specific binding of T-cell receptors (TCRs). In both cytokine-release assays and cell-killing experiments the engineered receptors inhibited the activation of CD8(+) cytotoxic T lymphocytes (CTLs) in the presence of their target cells, with subnanomolar potency and in a dose-dependent manner. As a selective inhibitor of CD8(+) CTL responses, the engineered high affinity ILT2 receptor presents a new tool for studying the activation mechanism of different subsets of CTLs and could have potential for the development of novel autoimmunity therapies.

  19. Development of binding assays for the SH2 domain of Grb7 and Grb2 using fluorescence polarization.

    PubMed

    Luzy, Jean-Philippe; Chen, Huixiong; Gril, Brunilde; Liu, Wang-Qing; Vidal, Michel; Perdereau, Dominique; Burnol, Anne-Françoise; Garbay, Christiane

    2008-02-01

    Adaptor proteins Grb7 and Grb2 have been implicated as being 2 potential therapeutic targets in several human cancers, especially those that overexpress ErbB2. These 2 proteins contain both a SH2 domain (Src homology 2) that binds to phosphorylated tyrosine residues contained within ErbB2 and other specific protein targets. Two assays based on enzyme-linked immunosorbent assay and fluorescence polarization methods have been developed and validated to find and rank inhibitors for both proteins binding to the pY(1139). Fluorescence polarization assays allowed the authors to determine quickly and reproducibly affinities of peptides from low nanomolar to high micromolar range and to compare them directly for Grb7 and Grb2. As a result, the assays have identified a known peptidomimetic Grb2 SH2 inhibitor (mAZ-pTyr-(alphaMe)pTyr-Asn-NH(2)) that exhibits the most potent affinity for the Grb7 SH2 domain described to date.

  20. Purification and characterization of a new type lactose-binding Ulex europaeus lectin by affinity chromatography.

    PubMed

    Konami, Y; Yamamoto, K; Osawa, T

    1991-02-01

    A new type lactose-binding lectin was purified from extracts of Ulex europaeus seeds by affinity chromatography on a column of galactose-Sepharose 4B, followed by gel filtration on Sephacryl S-300. This lectin, designated as Ulex europaeus lectin III (UEA-III), was found to be inhibited by lactose. The dimeric lectin is a glycoprotein with a molecular mass of 70,000 Da; it consists of two apparently identical subunits of a molecular mass of 34,000 Da. Compositional analysis showed that this lectin contains 30% carbohydrate and a large amount of aspartic acid, serine and valine, but no sulfur-containing amino acids. The N-terminal amino-acid sequences of L-fucose-binding Ulex europaeus lectin I (UEA-I) and di-N-acetylchitobiose-binding Ulex europaeus lectin II (UEA-II), both of which we have already purified and characterized, and that of UEA-III were determined and compared.