Sample records for o2 concentration increased

  1. Effect of increasing concentration of Na2O on structural, elastic and optical properties of (90  -  x)GeO2-xNa2O-10PbO glass system in the germanate anomaly region

    NASA Astrophysics Data System (ADS)

    Zainudin, C. N.; Hisam, R.; Yusof, M. I. M.; Yahya, A. K.; Halimah, M. K.

    2017-10-01

    Ternary germanate glasses (90  -  x)GeO2-xNa2O-10PbO (x  =  10-30 mol%) have been prepared by the melt-quenching method. Density, ρ increased with Na2O content up to maxima at 20 mol% while molar volume, V a showed an opposite trend to the density, with a minima at 20 mol% of Na2O content indicating the presence of the germanate anomaly. Ultrasonic velocity measurements showed both longitudinal, v l and shear, v s velocities increased up to 20 mol% before decreasing with further addition of Na2O. Independent longitudinal, L and shear, G moduli along with Young’s modulus, Y, mean sound velocity, v m, Debye temperature, θ D, and hardness, H recorded maximum values at 20 mol% of Na2O content which were suggested to be related to the germanate anomaly. Structural modification occurring due to conversion of six-membered GeO4 rings to three-membered rings of GeO4 changed bond density and compactness of the glass systems and caused the increase in rigidity and stiffness of the glasses. Beyond 20 mol% of Na2O, the decrease in the elastic moduli was due to depolymerization of the glass network. Meanwhile, optical energy gap, E opt exhibited a minima at 20 mol% whereas Urbach energy, E U and refractive index, n showed a maxima at the same concentration, thereby indicating variation in polarizability due to changes in concentration of bridging and non-bridging oxygen.

  2. Riverine N2O concentrations, exports to estuary and emissions to atmosphere from the Changjiang River in response to increasing nitrogen loads

    NASA Astrophysics Data System (ADS)

    Yan, Weijin; Yang, Libiao; Wang, Fang; Wang, Jianing; Ma, Pei

    2012-12-01

    This study investigated the variations of dissolved N2O and emissions over diurnal and seasonal temporal scales in 2009, as well as the time series of riverine N2O export to estuary and emission to atmosphere in response to increasing anthropogenic nitrogen loads in the Changjiang River. For the diurnal study, N2O concentrations ranged from 0.26 to 0.34 and from 0.44 to 0.52 μg N-N2O L-1 in August and October 2009, respectively. The dissolved N2O was supersaturated with a mean value of 197%. Studies on N2O emissions, also taken in August and October, ranged from 2.67 to 11.6 and from 6.72 to 15.2 μg N-N2O m-2 h-1, respectively. For the seasonal study (June through December 2009), N2O concentrations ranged from 0.34 to 0.72 μg N-N2O L-1 and were supersaturated in all the samples (average 212%). N2O emissions ranged from 1.87 to 40.8 μg N-N2O m-2 h-1. Our study found no significant differences in diurnal patterns of N2O saturation but detected significant difference in seasonal patterns of N2O saturation: higher during summer while lower during autumn and winter. We found a significant relationship between dissolved N2O and river nitrate, which can predict the variation of N2O concentrations in the River. The net production of N2 ranged from 0.01 to 0.47 mg N-N2 L-1. These excess N2 values were significantly correlated to the N2O production and are suggestive of denitrification in the river. Applying the Global News model to the river system using measures taken during the 1970 to 2002 period, we estimated N2O emissions to atmosphere increased from 330 to 3650 ton N-N2O yr-1. During that same 1970-2002 period, N2O exports to estuary increased from 91 to 470 ton N-N2O yr-1. Taken together, the findings reported here suggest that both the river N2O concentrations and emissions would increase in response to rising anthropogenic nitrogen loads. Our study showed that the mean emission factor based on the ratio of the total N2O flux to NO3- flux is four times greater

  3. Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth

    PubMed Central

    Ivanchenko, Maria G.; den Os, Désirée; Monshausen, Gabriele B.; Dubrovsky, Joseph G.; Bednářová, Andrea; Krishnan, Natraj

    2013-01-01

    Background and Aims The hormone auxin and reactive oxygen species (ROS) regulate root elongation, but the interactions between the two pathways are not well understood. The aim of this study was to investigate how auxin interacts with ROS in regulating root elongation in tomato, Solanum lycopersicum. Methods Wild-type and auxin-resistant mutant, diageotropica (dgt), of tomato (S. lycopersicum ‘Ailsa Craig’) were characterized in terms of root apical meristem and elongation zone histology, expression of the cell-cycle marker gene Sl-CycB1;1, accumulation of ROS, response to auxin and hydrogen peroxide (H2O2), and expression of ROS-related mRNAs. Key Results The dgt mutant exhibited histological defects in the root apical meristem and elongation zone and displayed a constitutively increased level of hydrogen peroxide (H2O2) in the root tip, part of which was detected in the apoplast. Treatments of wild-type with auxin increased the H2O2 concentration in the root tip in a dose-dependent manner. Auxin and H2O2 elicited similar inhibition of cell elongation while bringing forth differential responses in terms of meristem length and number of cells in the elongation zone. Auxin treatments affected the expression of mRNAs of ROS-scavenging enzymes and less significantly mRNAs related to antioxidant level. The dgt mutation resulted in resistance to both auxin and H2O2 and affected profoundly the expression of mRNAs related to antioxidant level. Conclusions The results indicate that auxin regulates the level of H2O2 in the root tip, so increasing the auxin level triggers accumulation of H2O2 leading to inhibition of root cell elongation and root growth. The dgt mutation affects this pathway by reducing the auxin responsiveness of tissues and by disrupting the H2O2 homeostasis in the root tip. PMID:23965615

  4. Soil Nitrification and N2O Production: the connection with N concentration and Soil Water Content

    NASA Astrophysics Data System (ADS)

    Zhu-Barker, X.; Horwath, W. R.

    2016-12-01

    The development of mitigation strategies to reduce nitrous oxide (N2O) emission from soils is dependent on explicating the biophysical factors affecting different N2O production pathways. Ammonia oxidation and heterotrophic denitrification are the main pathways of N2O production, depending on soil conditions such as soil moisture content, oxygen (O2) content and N substrate. Many researchers have reported that N2O production increased as substrate concentration and soil moisture content increased. However, less understood is how N fertilizer concentration and moisture content interact to affect N2O production pathways. To investigate interaction and its effect on O2 consumption, we incubated three agricultural soils (clay, sandy loam, and peat) with different concentrations of (NH4)2SO4 (0-1000 µg N g-1) under 50 %, 75%, and 100% of water holding capacity. All treatments received 15N -KNO3 to bring the concentrations of NO3-_N in soils to 50 mg kg-1 soil and the NO3- pool to an enrichment of 10 atom% 15N. In all soils, the total amount of O2 consumption and N2O production increased as soil ammonical N concentration increased. The increased soil moisture significantly promoted N2O production in sandy loam and clay loam soils, compared to the peat soil. These results indicate that N2O production increased as substrate concentration increased likely due to the onset of O2 limitation caused by ammonia oxidation.

  5. Production of NO2/-/ and N2O by nitrifying bacteria at reduced concentrations of oxygen

    NASA Technical Reports Server (NTRS)

    Goreau, T. J.; Kaplan, W. A.; Wofsy, S. C.; Mcelroy, M. B.; Valois, F. W.; Watson, S. W.

    1980-01-01

    The influence of oxygen concentration on the production of NO2(-) and N2O by nitrifying marine bacteria of the genus Nitrosomonas is investigated. Pure cultures of the ammonium-oxiding bacteria isolated from the Western Tropical Atlantic Ocean were grown at oxygen partial pressures from 0.005 to 0.2 atm, and concentrations of N2O in the air above the growth medium and dissolved NO2(-) were determined. Decreasing oxygen concentrations are observed to induce a marked decrease in NO2(-) production rates and increase in N2O evolution, leading to an increase of the relative yield of N2O with respect to NO2(-) from 0.3% to nearly 10%. Similar yields of N2O at atmospheric oxygen levels are found for nitrifying bacteria of the genera Nitrosomonas, Nitrosolobus, Nitrosospira and Nitrosococcus, while nitrite-oxydizing bacteria and a dinoflagellate did not produce detectable quantities of N2O. Results support the view that nitrification is a major source of N2O in the environment.

  6. Preparation of polystyrene/SiO2 microsphere via Pickering emulsion polymerization: Synergistic effect of SiO2 concentrations and initiator sorts

    NASA Astrophysics Data System (ADS)

    Zhou, Haiou; Shi, Tiejun; Zhou, Xun

    2013-02-01

    In this paper, polystyrene (PS)/SiO2 microspheres were successfully prepared via Pickering emulsion polymerization stabilized solely by ethacryloxypropyltrimethoxysilane (MPTMS) modified SiO2 nanoparticles. The formation mechanisms of PS/SiO2 microspheres with different morphology were investigated under various Pickering emulsion polymerization conditions. The results showed that SiO2 concentrations and initiator sorts would synergistically impact on the morphology of products corresponding to distinct formation mechanisms. When SiO2 concentrations was low and water-solute initiator potassium persulfate (KPS) was used, aqueous nucleation was dominant, which was deduced to the formation of dispersive microspheres sparsely anchored by SiO2 particles. When SiO2 concentrations was increased and oil-solute initiator azobisisobutyronitrile (AIBN) was applied, nucleation in oil phase prevailed which lead to the formation of microspheres densely packed by SiO2 particles.

  7. Crystallization Behavior and Heat Transfer of Fluorine-Free Mold Fluxes with Different Na2O Concentration

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang; Kashiwaya, Yoshiaki

    2016-08-01

    In this study, the crystallization behavior and heat transfer of CaO-SiO2-Na2O-B2O3-TiO2-Al2O3-MgO-Li2O fluorine-free mold fluxes with different Na2O contents (5 to 11 mass pct) were studied using single/double hot thermocouple technique (SHTT/DHTT) and infrared emitter technique (IET), respectively. Continuous cooling transformation (CCT) and time-temperature transformation (TTT) diagrams constructed using SHTT showed that crystallization temperature increased and incubation time shortened with the increase of Na2O concentration, indicating an enhanced crystallization tendency. The crystallization process of mold fluxes in the temperature field simulating the casting condition was also investigated using DHTT. X-ray diffraction (XRD) analysis of the quenched mold fluxes showed that the dominant phase changed from CaSiO3 to Ca11Si4B2O22 with the increasing concentration of Na2O. The heat transfer examined by IET showed that the increase of Na2O concentration reduced the responding heat flux when Na2O was lower than 9 mass pct but the further increase of Na2O to 11 mass pct enhanced the heat flux. The correlation between crystallinity and heat transfer was discussed in terms of crystallization tendency and crystal morphology.

  8. Contribution of Co2+ in increasing chlorophyll a concentration of Nannochloropsis salina in controlled Conwy medium

    NASA Astrophysics Data System (ADS)

    Hala, Y.; Taba, P.; Suryati, E.; Kasih, P.; Firman, N. F.

    2018-03-01

    A research in determining the contribution of Co2+ on the increase of chlorophyll a concentration of Nannochloropsis salina has been caried out. The cultivation of N. salina was conducted in the Conwy medium with a salinity of 5%o and 25%o and various Co2+ concentration (2, 4, and 8 ppm). In this research, Co2+ was exposed early in the cultivation of N. salina. The growth of N. salina was observed daily by counting the number of populations using a haemocytometer while the chlorophyll a concentration was determined by a Uv-Vis spectrophotometer. The results showed that the growth of N. salina in the control was higher than that in the medium containing Co2+. The optimum growth time was achieved on 15th days (5%) and 8th days (25%). In the cultivation medium with a salinity of 5%, Co2+ with a concentration of 2 ppm increased the chlorophyll a level while Co2+ with concentrations of 4 and 8 ppm decreased it. In the medium of cultivation with a salinity of 25%, the increase in chlorophyll a level was observed at Co2+ concentrations of 2 and 4 ppm whereas the decrease in chlorophyl a level was given at a concentration of 8 ppm. It can be concluded that at low concentrations, Co2+ increased the concentration of chlorophyll a in N. salina.

  9. Increased plasma O2 solubility improves O2 uptake of in situ dog muscle working maximally.

    PubMed

    Hogan, M C; Willford, D C; Keipert, P E; Faithfull, N S; Wagner, P D

    1992-12-01

    A perfluorocarbon emulsion [formulation containing 90% wt/vol perflubron (perfluorooctylbromide); Alliance Pharmaceutical] was used to increase O2 solubility in the plasma compartment during hyperoxic low hemoglobin concentration ([Hb]) perfusion of a maximally working dog muscle in situ. Our hypothesis was that the increased plasma O2 solubility would increase the muscle O2 diffusing capacity (DO2) by augmenting the capillary surface area in contact with high [O2]. Oxygen uptake (VO2) was measured in isolated in situ canine gastrocnemius (n = 4) while working for 6 min at a maximal stimulation rate of 1 Hz (isometric tetanic contractions) on three to four separate occasions for each muscle. On each occasion, the last 4 min of the 6-min work period was split into 2 min of a control treatment (only emulsifying agent mixed into blood) and 2 min of perflubron treatment (6 g/kg body wt), reversing the order for each subsequent work bout. Before contractions, the [Hb] of the dog was decreased to 8-9 g/100 ml and arterial PO2 was increased to 500-600 Torr by having the dog breathe 100% O2 to maximize the effect of the perflubron. Muscle blood flow was held constant between the two experimental conditions. Plasma O2 solubility was almost doubled to 0.005 ml O2 x 100 ml blood-1 x Torr-1 by the addition of the perflubron. Muscle O2 delivery and maximal VO2 were significantly improved (at the same blood flow and [Hb]) by 11 and 12.6%, respectively (P < 0.05), during the perflubron treatment compared with the control. O2 extraction by the muscle remained the same between the two treatments, as did the estimate of DO2.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. The effects of Nd2O3 concentration in the laser emission of TeO2-ZnO glasses

    NASA Astrophysics Data System (ADS)

    Moreira, L. M.; Anjos, V.; Bell, M. J. V.; Ramos, C. A. R.; Kassab, L. R. P.; Doualan, D. J. L.; Camy, P.; Moncorgé, R.

    2016-08-01

    The present work reports the modification introduced by different Nd2O3 concentration on optical properties and the laser operation of Nd3+ doped (TeO2-ZnO) bulk tellurite glass. The spectroscopic data are analyzed within the Judd Ofelt formalism framework and the results are compared to the fluorescence lifetime and emission measurements to derive values for the quantum efficiency and the stimulated emission cross section of the considered 4F3/2 → 4I11/2 infrared laser transition around 1062.5 nm. Continuous-wave laser action is achieved with this bulk tellurite glass by pumping the sample inside a standard plan-concave mirror laser cavity with different output couplers. It is possible to observe coherent emission only for the lower concentration (0.5%(wt.) of Nd2 O3). Also laser action could only be observed for this sample with threshold pump power of 73 mW associated with a laser slope efficiency of 8% for an output coupler transmission of 4% indicating that TeO2-ZnO are potential materials for laser action. The results presented in this work together with those previously reported with higher concentration (1.0% (wt) of Nd2O3) determine the adequate Nd2O3 concentration for laser action and guide the correct experimental procedure for TeO2-ZnO glasses preparation.

  11. Influence of nitrogen-doping concentration on the electronic structure of CuAlO2 by first-principles studies

    NASA Astrophysics Data System (ADS)

    Liu, Wei-wei; Chen, Hong-xia; Liu, Cheng-lin; Wang, Rong

    2017-02-01

    Effect of N doping concentration on the electronic structure of N-doped CuAlO2 was investigated by density functional theory based on generalized-gradient approximation plus orbital potential. Lattice parameters a and c both increase with increasing N-doping concentration. Formation energies increase with increasing N doping concentration and all N-doped CuAlO2 were structurally stable. The calculated band gaps for N-doped CuAlO2 narrowed compared to pure CuAlO2, which was attributed to the stronger hybridization between Cu-3d and N-2p states and the downward shift of Cu-3p states in conduction bands. The higher the N-doping concentration is, the narrower the band gap. N-doped CuAlO2 shows a typical p-type semiconductor. The band structure changed from indirect to direct after N doping which will benefit the application of the CuAlO2 materials in optoelectronic and electronic devices.

  12. Electrolyte Concentration Effect of a Photoelectrochemical Cell Consisting of TiO 2 Nanotube Anode

    DOE PAGES

    Ren, Kai; Gan, Yong X.; Nikolaidis, Efstratios; ...

    2013-01-01

    The photoelectrochemical responses of a TiO 2 nanotube anode in ethylene glycol (EG), glycerol, ammonia, ethanol, urea, and Na 2 S electrolytes with different concentrations were investigated. The TiO 2 nanotube anode was highly efficient in photoelectrocatalysis in these solutions under UV light illumination. The photocurrent density is obviously affected by the concentration change. Na 2 S generated the highest photocurrent density at 0, 1, and 2 V bias voltages, but its concentration does not significantly affect the photocurrent density. Urea shows high open circuit voltage at proper concentration and low photocurrent at different concentrations. Externally applied bias voltage is alsomore » an important factor that changes the photoelectrochemical reaction process. In view of the open circuit voltage, EG, ammonia, and ethanol fuel cells show the trend that the open circuit voltage (OCV) increases with the increase of the concentration of the solutions. Glycerol has the highest OCV compared with others, and it deceases with the increase in the concentration because of the high viscosity. The OCV of the urea and Na 2 S solutions did not show obvious concentration effect.« less

  13. Optical Properties of Cu2O Electrodeposited on FTO Substrates: Effects of Cl Concentration

    NASA Astrophysics Data System (ADS)

    Bouderbala, Ibrahim Yaacoub; Herbadji, Abdelmadjid; Mentar, Loubna; Beniaiche, Abdelkrim; Azizi, Amor

    2018-03-01

    In this study, cuprous oxide (Cu2O) nanostructures were deposited via electrochemical route from aqueous solution containing different concentrations of copper chloride (CuCl2). The effect of chloride (Cl- ) ions on structural and optical properties was studied. Photocurrent results show that the type of conduction of these nanostructures is affected by adding Cl- ions and changed from p-type to n-type conduction. The x-ray diffraction (XRD) shows that our samples were pure Cu2O with a preferential orientation along the (111) direction. The intensity of (111) peak increases with the increase of Cl- concentration. The optical characterization of Cu2O was studied by analyzing the transmission spectrum measured in normal incidence in the range of 300-1100 nm. The thickness and the refractive index of Cu2O nanostructures were determined using different methods. The optical gap energy ( E g) and associated Urbach energy ( E u) were also calculated. Effectively, the optical gap was estimated from Tauc extrapolation; it was found that it decreases from 2.02 eV to 1.85 eV with the increase in CuCl2 concentration; on the other hand, the thickness of the layers increases from 267 nm to 300 nm.

  14. Evaluation of the electrochemical O2 concentrator as an O2 compressor

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Carlson, J. N.

    1975-01-01

    A program was successfully completed to analytically and experimentally evaluate the feasibility of using an electrochemical oxygen (O2) concentrator as an O2 compressor. The electrochemical O2 compressor (EOC) compresses 345 kN/sq m (50 psia) O2 generated on board the space vehicle by the water electrolysis subsystem (WES) in a single stage to 20,700 kN/sq m (3000 psia) to refill spent extravehicular equipment O2 bottles and to eliminate the need for high pressure O2 storage. The single cell EOC designed, fabricated, and used for the feasibility testing is capable of being tested at O2 pressures up to 41,400 kN/sq m (6000 psia). A ground support test facility to test the EOC cell was designed, fabricated, and used for the EOC feasibility testing. A product assurance program was established, implemented, and maintained which emphasized safety and materials compatibility associated with high pressure O2 operation. A membrane development program was conducted to develop a membrane for EOC application. Data obtained using a commercially available membrane were used to guide the development of the membranes fabricated specifically for an EOC. A total of 15 membranes were fabricated.

  15. Electrophoretic kinetics of concentrated TiO2 nanoparticle suspensions in aprotic solvent

    NASA Astrophysics Data System (ADS)

    Lee, So-Yeon; Yim, Jung-Ryoul; Lee, Se-Hee; Choi, In-Suk; Nam, Ki Tae; Joo, Young-Chang

    2018-01-01

    We studied the dependences of the concentration of additive and particle size on the electrophoretic mobility of TiO2 nanoparticles. A high concentration of TiO2 nanoparticles was dispersed in aprotic solvent, which is similar to the operating conditions of electrophoretic applications. Because spectroscopy has limits to measuring the electrophoretic mobility of concentrated suspensions in aprotic solvents, we developed a new measurement to determine the electrophoretic mobility of particles using the reflectance change according to the motion of the particles. TiO2 nanoparticles with sizes of 31 nm to 164 nm were synthesized by hydrolysis and were dispersed in cyclohexanone with a dye (Sudan Black B) for use in the new measurement method. In a concentrated suspension in aprotic solvent, the mobility of the particles was proportional to the dye concentration and was inversely proportional to the size of the particles. This infers that the particle size influences the drag force rather than the surface charge, and therefore, to increase the mobility by changing the surface charge, an additive is effective. [Figure not available: see fulltext.

  16. Diagnostic system for measuring temperature, pressure, CO2 concentration and H2O concentration in a fluid stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji-Hyung

    A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperaturesmore » derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.« less

  17. Mn2+ concentration manipulated red emission in BaMg2Si2O7:Eu2+,Mn2+

    NASA Astrophysics Data System (ADS)

    Ye, Song; Zhang, Jiahua; Zhang, Xia; Lu, Shaozhe; Ren, Xinguang; Wang, Xiaojun

    2007-02-01

    The luminescent properties of concentration dependence are reported in BaMg2Si2O7:Eu2+,Mn2+ red phosphor. It is observed that the broad red emission of Mn2+ consists of two bands, located at 620 and 675 nm, respectively, which are attributed to two different Mn2+ centers [Mn2+(I) and Mn2+(II)] substituting for two nonidentical Mg2+ sites [Mg2+(I) and Mg2+(II)] in the host. It is also found that the relative emission intensity of the Mn2+(II) to the Mn2+(I) increases with increasing Mn2+ concentration, leading to a red-shift of the overall emission. A detail analysis on the energy transfer from Eu2+ to the two Mn2+ centers is presented, which indicates that the number ratio of Mn2+(II) to Mn2+(I) increases with increasing Mn2+ concentration. This result is interpreted by the preferential formation of Mn2+(I) substituting for Mg2+(I) site. Based on energy transfer, the emission intensity ratios of Mn2+(I) to Eu2+ and Mn2+(II) to Eu2+, which is Mn2+ concentration dependent, are calculated using related fluorescence lifetimes. The calculated results are in good agreement with that obtained experimentally in the emission spectra.

  18. The effect of TiO2 concentration on properties of apatite-mullite glass-ceramics for dental use.

    PubMed

    Fathi, Hawa M; Johnson, Anthony

    2016-02-01

    The aim of this study was to evaluate the effect of TiO2 concentration on the properties of apatite-mullite glass-ceramics namely strength and the chemical solubility to comply with the ISO standard recommendations for dental ceramics (BS EN ISO 6872-2008). Ten novel glass-ceramic materials were produced based on the general formula (4.5SiO2-3Al2O3-1.5P2O5-3CaO-CaF2-xTiO2) where x varied from 0.5 to 5 wt%. Glass with no TiO2 added (HG1T0.0) was used as a reference. Discs of 12 mm diameter and 1.6 mm (±0.2 mm) thickness were prepared for both biaxial flexural strength (BFS) and chemical solubility testing, in accordance with the BS EN ISO 6872-2008 for dental ceramics. All produced materials were investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Energy dispersive X-ray analysis (EDS) was also carried out on some samples to identify the element composition of samples. Increasing the concentration of TiO2 from 0.5 wt% to 2 wt% significantly (P<0.05) increased the chemical solubility of the material. With the material containing 2.5 wt% of TiO2, the solubility significantly reduced (P<0.05) and resulted in a solubility value of 228.3 μm/cm(2) and BFS value of 197.9 MPa. Increasing the TiO2 concentration more than 2.5 wt%, led to a significant (P<0.05) increase in solubility and a reduction in BFS. TiO2 is an effective agent for improving the durability and the mechanical properties of an apatite-mullite glass-ceramic only up to 2.5 wt% concentration. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Doping concentration dependence of microstructure and magnetic behaviours in Co-doped TiO2 nanorods

    PubMed Central

    2014-01-01

    Co-doped titanium dioxide (TiO2) nanorods with different doping concentrations were fabricated by a molten salt method. It is found that the morphology of TiO2 changes from nanorods to nanoparticles with increasing doping concentration. The mechanism for the structure and phase evolution is investigated in detail. Undoped TiO2 nanorods show strong ferromagnetism at room temperature, whereas incorporating of Co deteriorates the ferromagnetic ordering. X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) results demonstrate that the ferromagnetism is associated with Ti vacancy. PMID:25593558

  20. Mesospheric H2O Concentrations Retrieved from SABER/TIMED Measurements

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Marshall, B. T.; Garcia-Comas, M.; Kutepov, A. A.; Lopez-Puertas, M.; Manuilova, R. O.; Yankovsky, V.A.; Goldberg, R. A.; Gordley, L. L.; Petelin, S.; hide

    2008-01-01

    The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The H2O concentrations are retrieved from 6.3 micron band radiances. The populations of H2O(v2) vibrational levels are in non-Local Thermodynamic Equilibrium (non-LTE) above approximately 55 km altitude and the interpretation of 6.3 micron radiance requires utilizing non-LTE H2O model that includes various energy exchange processes in the system of H2O vibrational levels coupled with O2, N2, and CO2 vibrational levels. We incorporated these processes including kinetics of O2/O3 photolysis products to our research non-LTE H2O model and applied it for the development and optimization of SABER operational model. The latter has been validated using simultaneous SCISAT1/ACE occultation measurements. This helped us to estimate CO2(020)-O2(X,v=I), O2(X,v=I)- H2O(010), and O2(X,v=1) O rates at mesopause temperatures that is critical for an adequate interpretation of non-LTE H2O radiances in the MLT. The first distributions of seasonal and meridional H2O concentrations retrieved from SABER 6.3 micron radiances applying an updated non-LTE H2O model are demonstrated and discussed.

  1. Direct absorption spectroscopy sensor for temperature and H2O concentration of flat flame burner

    NASA Astrophysics Data System (ADS)

    Duan, Jin-hu; Jin, Xing; Wang, Guang-yu; Qu, Dong-sheng

    2016-01-01

    A tunable diode laser absorption sensor, based on direct absorption spectroscopy and time division multiplexing scheme, was developed to measure H2O concentration and temperature of flat flame burner. At the height of 15mm from the furnace surface, temperature and concentration were measured at different equivalence ratios. Then the distance between the laser and the furnace surface was changed while the equivalence ratio was fixed at 1 and experiments were performed to measure temperature and H2O concentration at every height. At last flame temperatures and H2O concentrations were obtained by simulation and computational analysis and these combustion parameters were compared with the reference. The results showed that the experimental results were in accordance with the reference values. Temperature errors were less than 4% and H2O component concentration errors were less than 5%and both of them reached their maximum when the equivalent ratio was set at 1. The temperature and H2O concentration increased with the height from furnace surface to laser when it varied from 3mm to 9mm and it decreased when it varied from 9mm to 30mm and they reached their maximum at the height of 9mm. Keywords: tunable diode laser, direct absorption spectroscopy

  2. Diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji Hyung

    A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperaturesmore » derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.« less

  3. Structural Studies of dielectric HDPE+ZrO2 polymer nanocomposites: filler concentration dependences

    NASA Astrophysics Data System (ADS)

    Nabiyev, A. A.; Islamov, A. Kh; Maharramov, A. M.; Nuriyev, M. A.; Ismayilova, R. S.; Doroshkevic, A. S.; Pawlukojc, A.; Turchenko, V. A.; Olejniczak, A.; Rulev, M. İ.; Almasan, V.; Kuklin, A. I.

    2018-03-01

    Structural properties of HDPE+ZrO2 polymer nanocomposites thin films of 80-100μm thicknesses were investigated using SANS, XRD, Laser Raman and FTIR spectroscopy. The mass fraction of the filler was 1, 3, 10, and 20%. Results of XRD analysis showed that ZrO2 powder was crystallized both in monoclinic and in cubic phase under normal conditions. The percentages of monoclinic and cubic phase were found to be 99.8% and 0.2%, respectively. It was found that ZrO2 nanoparticles did not affect the main crystal and chemical structure of HDPE, but the degree of crystallinity of the polymer decreases with increasing concentration of zirconium oxide. SANS experiments showed that at ambient conditions ZrO2 nanoparticles mainly distributed like mono-particles in the polymer matrix at all concentrations of filler.The structure of HDPE+ZrO2 does not changes up to 132°C at 1-3% of filler, excepting changing of the polymer structure at temperatures upper 82°C. At high concentrations of filler 10-20% the aggregation of ZrO2 nanoparticles occurs, forming domains of 2.5μm. The results of Raman and FTIR spectroscopy did not show additional specific chemical bonds between the filler and the polymer matrix. New peaks formation was not observed. These results suggest that core-shell structure does not exist in the polymer nanocomposite system.

  4. Investigations on the local structures of Cu2+ at various BaO concentrations in 59B2O3-10K2O-(30-x)ZnO-xBaO-1CuO glasses

    NASA Astrophysics Data System (ADS)

    Jin, Jia-Rui; Wu, Shao-Yi; Hong, Jian; Liu, Shi-Nan; Song, Min-Xian; Teng, Bao-Hua; Wu, Ming-He

    2017-11-01

    The local structures and electron paramagnetic resonance (EPR) parameters for Cu2+ in 59B2O3-10K2O-(30-x)ZnO-xBaO-1CuO (BKZBC) glasses are theoretically investigated with distinct modifier BaO concentrations x (= 0, 6, 12, 18, 24 and 30 mol %). The ? clusters are found to undergo the relative tetragonal elongations of about 13.5 and 5.0% at zero and higher BaO concentrations. The concentration dependences of the measured d-d transition bands, g factors and A// are suitably reproduced from the Fourier type functions or sign functions of the relevant quantities with x by using only six adjustable parameters. The features of the EPR parameters and the local structures of Cu2+ are analysed in a consistent way by considering the differences in the local ligand field strength and electronic cloud admixtures around Cu2+ under addition of Ba2+ with the highest ionicity and polarisability. The present theoretical studies would be helpful to the researches on the structures, optical and EPR properties for the similar potassium barium zinc borate glasses containing copper with variation concentration of modifier BaO.

  5. The Response of ClO Radical Concentrations to Variations in NO2 Radical Concentrations in the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Stimpfle, R. M.; Koplow, J. P.; Cohen, R. C.; Kohn, D. W.; Wennberg, P. O.; Judah, D. M.; Toohey, D. W.; Avallone, L. M.; Anderson, J. G.; Salawitch, R. J.

    1994-01-01

    The response of ClO concentrations to changes in NO2 concentrations has been inferred from simultaneous observations of [ClO], [NO], [NO2] and [O3] in the mid-latitude lower stratosphere. This analysis demonstrates that [ClO] is inversely correlated with [NO2], consistent with formation and photolysis of [ClONO2]. A factor of ten range in the concentration of NO2 was sampled (0.1 to 1 x 10(exp 9) mol/cc), with a comparable range in the ratio of [ClO] to total available inorganic chlorine (1% <= [ClO]/[Cl(sub y)] <= 5%). This analysis leads to an estimate of [ClONO2]/[Cl(sub y)] = 0.12 (x/divided by 2), in the mid-latitude, lower-stratospheric air masses sampled.

  6. Space electric field concentrated effect for Zr:SiO2 RRAM devices using porous SiO2 buffer layer

    PubMed Central

    2013-01-01

    To improve the operation current lowing of the Zr:SiO2 RRAM devices, a space electric field concentrated effect established by the porous SiO2 buffer layer was investigated and found in this study. The resistive switching properties of the low-resistance state (LRS) and high-resistance state (HRS) in resistive random access memory (RRAM) devices for the single-layer Zr:SiO2 and bilayer Zr:SiO2/porous SiO2 thin films were analyzed and discussed. In addition, the original space charge limited current (SCLC) conduction mechanism in LRS and HRS of the RRAM devices using bilayer Zr:SiO2/porous SiO2 thin films was found. Finally, a space electric field concentrated effect in the bilayer Zr:SiO2/porous SiO2 RRAM devices was also explained and verified by the COMSOL Multiphysics simulation model. PMID:24330524

  7. Effect of plastic mulching and nitrapyrin on N2O concentration and emissions in China under climate change

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Zhu, C.

    2017-12-01

    Fertilized agricultural soils are the main source of atmospheric nitrous oxide (N2O). In this study, both soil N2O concentration in the profile and N2O emission were measured to quantify the effect of plastic mulching and nitrapyrin on N2O dynamic in an oasis cotton field. During the observation period, both N2O concentration and N2O emissions rapidly increased following fertigation, and soil temperature, moisture and mineral N content were the main factors influencing N2O. Temporal variation in N2O emission coincided with changes in N2O content in all soil layers, indicating that the accumulation of N2O likely drives the release of N2O into the atmosphere. The crop yields, N2O content (the sum of aqueous and gaseous phases) in the soil and N2O emissions increased linearly as the application of N fertilizer increased from 80 to 400 kg N ha-1. Plastic mulching increased the crop yields by 16-21%, increased the N2O contents by 88-99%, and reduced the cumulative N2O emissions by 19-28%, indicating that the application of plastic film reduced N2O emission probably through restricted the N2O diffusion process, and limited the N2O production through enhanced the N uptake of cotton. The addition of nitrapyrin to the N fertilizer significantly reduced the levels of N2O without influencing crop yield, with N2O content in the soil profile and cumulative N2O emissions decreasing by 25-32% and 23-42%, respectively. Overall, our result suggested the combined use of plastic film and nitrapyrin could be an efficient practice to reduce N2O emission in the oasis cotton field. Keywords: N2O emissions; plastic film mulching; nitrapyrin; climate change

  8. FiO2 delivered by a turbine portable ventilator with an oxygen concentrator in an Austere environment.

    PubMed

    Bordes, Julien; Erwan d'Aranda; Savoie, Pierre-Henry; Montcriol, Ambroise; Goutorbe, Philippe; Kaiser, Eric

    2014-09-01

    Management of critically ill patients in austere environments is a logistic challenge. Availability of oxygen cylinders for the mechanically ventilated patient may be difficult in such a context. A solution is to use a ventilator able to function with an oxygen concentrator. We tested the SeQual Integra™ (SeQual, San Diego, CA) 10-OM oxygen concentrator paired with the Pulmonetic System(®) LTV 1000 ventilator (Pulmonetic Systems, Minneapolis, MN) and evaluated the delivered fraction of inspired oxygen (FiO2) across a range of minute volumes and combinations of ventilator settings. Two LTV 1000 ventilators were tested. The ventilators were attached to a test lung and FiO2 was measured by a gas analyzer. Continuous-flow oxygen was generated by the OC from 0.5 L/min to 10 L/min and injected into the oxygen inlet port of the LTV 1000. Several combinations of ventilator settings were evaluated to determine the factors affecting the delivered FiO2. The LTV 1000 ventilator is a turbine ventilator that is able to deliver high FiO2 when functioning with an oxygen concentrator. However, modifications of the ventilator settings such as increase in minute ventilation affect delivered FiO2 even if oxygen flow is constant on the oxygen concentrator. The ability of an oxygen concentrator to deliver high FiO2 when used with a turbine ventilator makes this method of oxygen delivery a viable alternative to cylinders in austere environments when used with a turbine ventilator. However, FiO2 has to be monitored continuously because delivered FiO2 decreases when minute ventilation is increased. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Effect of Er3+ concentration on the luminescence properties of Al2O3-ZrO2 powder

    NASA Astrophysics Data System (ADS)

    Clabel H., J. L.; Rivera, V. A. G.; Nogueira, I. C.; Leite, E. R.; Siu Li, M.; Marega, E.

    2016-12-01

    This manuscript reports on the effects of the luminescence properties of Er3+ on Al2O3-ZrO2 powder synthesized by the conventional solid-state method. The best conditions found for the calcinations were 1500 °C and 4 h. The structural dependence of the luminescence on Er3+:Al2O3-ZrO2 is associated with phase transformations of the Al2O3-ZrO2 host and presence of the OH group. Green and red emissions at room temperature from the 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 levels of Er3+ ions were observed under 482 nm pumping. The green-to-red emission intensity ratios and CIE chromaticity coordinates were determined from emission spectra for the evaluation of light emitted as a function of the Er3+ concentration. The Er3+ luminescence quenching due to group OH and variation in the Er3+ concentration plays an important role in the definition of the luminescent response.

  10. The increased concentration of 2,3-diphosphoglycerate in red blood cells of spontaneously hypertensive rats.

    PubMed

    Przybylski, J; Skotnicka-Fedorowicz, B; Lisiecka, A; Siński, M; Abramczyk, P

    1997-12-01

    It has been recognised that high haemoglobin oxygen capacity is essential for the development of high blood pressure in spontaneously hypertensive rats. In the present study we have found increased concentration of 2,3 diphosphoglycerate (2,3-DPG) in red blood cells of spontaneously hypertensive rats (SHR) of Okamoto-Aoki strain. As 2,3-DPG is the major factor decreasing haemoglobin affinity to oxygen, our finding suggests that at given value of pO2 oxygen delivery to the tissue of SHR would be increased. Therefore increased concentration of 2,3-DPG in red blood cells of SHR would be of the pathophysiological meaning by promoting autoregulatory increase in total vascular resistance in this strain of rats. The mechanism responsible for enhanced synthesis of 2,3-DPG in SHR remains unclear. Intracellular alkalosis due to either hypocapnia and/or an enhanced activity of Na+/H+ antiporter occurring in SHR are the most plausible explanations for the above finding.

  11. Increased hemoglobin O2 affinity protects during acute hypoxia

    PubMed Central

    Yalcin, Ozlem

    2012-01-01

    Acclimatization to hypoxia requires time to complete the adaptation mechanisms that influence oxygen (O2) transport and O2 utilization. Although decreasing hemoglobin (Hb) O2 affinity would favor the release of O2 to the tissues, increasing Hb O2 affinity would augment arterial O2 saturation during hypoxia. This study was designed to test the hypothesis that pharmacologically increasing the Hb O2 affinity will augment O2 transport during severe hypoxia (10 and 5% inspired O2) compared with normal Hb O2 affinity. RBC Hb O2 affinity was increased by infusion of 20 mg/kg of 5-hydroxymethyl-2-furfural (5HMF). Control animals received only the vehicle. The effects of increasing Hb O2 affinity were studied in the hamster window chamber model, in terms of systemic and microvascular hemodynamics and partial pressures of O2 (Po2). Pimonidazole binding to hypoxic areas of mice heart and brain was also studied. 5HMF decreased the Po2 at which the Hb is 50% saturated with O2 by 12.6 mmHg. During 10 and 5% O2 hypoxia, 5HMF increased arterial blood O2 saturation by 35 and 48% from the vehicle group, respectively. During 5% O2 hypoxia, blood pressure and heart rate were 58 and 30% higher for 5HMF compared with the vehicle. In addition, 5HMF preserved microvascular blood flow, whereas blood flow decreased to 40% of baseline in the vehicle group. Consequently, perivascular Po2 was three times higher in the 5HMF group compared with the control group at 5% O2 hypoxia. 5HMF also reduced heart and brain hypoxic areas in mice. Therefore, increased Hb O2 affinity resulted in hemodynamics and oxygenation benefits during severe hypoxia. This acute acclimatization process may have implications in survival during severe environmental hypoxia when logistic constraints prevent chronic acclimatization. PMID:22636677

  12. Effects of increased inspired oxygen concentration on tissue oxygenation: theoretical considerations.

    PubMed

    Lumb, Andrew B; Nair, Sindhu

    2010-03-01

    Breathing increased fractional oxygen concentration (FiO2) is recommended for the treatment of tissue ischaemia. The theoretical benefits of increasing FiO2 on tissue oxygenation were evaluated using standard physiological equations. Assuming constant oxygen consumption by tissues throughout the length of a capillary, the oxygen content at 20 arbitrary points along a capillary was calculated. Using mathematical representations of the haemoglobin dissociation curve and an iterative approach to include the dissolved oxygen component of oxygen content, the oxygen partial pressure (PO2) profile along a capillary was estimated. High FiO2 concentrations cause large increases in PO2 at the arteriolar end of capillaries but these large PO2 values, caused by the extra dissolved oxygen, rapidly decline along the capillary. At the venular end of the capillary (the area of tissue most likely to be hypoxic), breathing oxygen causes only a modest improvement in PO2. Increasing FiO2 to treat tissue hypoxia has clear benefits, but a multimodal approach to management is required.

  13. The response of C1O radical concentrations to variations in NO2 radical concentrations in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Stimfle, R. M.; Koplow, J. P.; Cohen, R. C.; Kohn, D. W.; Wennberg, P. O.; Judah, D. M.; Toohey, D. W.; Avallone, L. M.; Anderson, J. G.; Salawitch, R. J.

    1994-01-01

    The respose of ClO concentrations to changes in NO2 concentrations has been inferred from simultaneous observations of (ClO), (NO), (NO2) and (O3) in the midlatitude lower stratosphere. This analysis demonstrates that (ClO) is inversely correlated with (NO2), consistent with formation and photolysis of (ClONO2). A factor of ten range in the concentration if NO2 was sampled (0.1 to 1 x 10(exp 9) mol/cu cm), with a comparable range in the ratio of (ClO) to total available inorganic chlorine (1% less than or equal to (ClO)/(Cl(sub y)) less than or equal to 5%. This analysis leads to an estimate of (ClONO2)/(Cl(sub y)) = 0.12 (x/2), in the mid-latitude, lower-stratospheric air masses sampled.

  14. Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils

    Treesearch

    Gladys I. Loranger; Kurt S. Pregitzer; John S. King

    2004-01-01

    Rising atmospheric CO2 concentrations may change soil fauna abundance. How increase of tropospheric ozone (O3t) concentration will modify these responses is still unknown. We have assessed independent and interactive effects of elevated [CO2] and [O3t] on selected groups of soil...

  15. Obtaining electrostatically bound CdS-SiO2 aggregates from electrophoretic concentrates of CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Bulavchenko, A. I.; Sap'yanik, A. A.; Demidova, M. G.; Rakhmanova, M. I.; Popovetskii, P. S.

    2015-05-01

    Nonaqueous electrophoresis reveals that the electrokinetic potential of CdS nanoparticles increases slightly (85-120 mV) along with the concentration (0-5 × 10-3 M) of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in n-decane, while negatively charged SiO2 particles acquire positive charge (switching from -75 up to +135 mV). The energies of interparticle interactions in CdS-CdS and CdS-SiO2 systems are calculated from these parameters and the literature values of the Hamaker constants according to the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory. It is concluded that the presence of a minimum (2.5 k B T) on the potential dependences of the CdS-SiO2 system indicates the formation of CdS-SiO2 aggregates electrostatically bound by heterocoagulation at low concentrations of AOT. The luminescent properties of the obtained ultrafine CdS-SiO2 powders depend on the CdS content.

  16. Fullerene-like Cs2O nanoparticles generated by concentrated sunlight

    NASA Astrophysics Data System (ADS)

    Albu-Yaron, Ana; Arad, Talmon; Levy, Moshe; Popovitz-Biro, Ronit; Tenne, Reshef; Gordon, Jeffrey M.; Feuermann, Daniel; Katz, Eugene A.; Jansen, Martin; Mühle, Claus

    2006-09-01

    We report the rapid high-yield generation of inorganic fullerene-like cesium oxide (IF-Cs2O) nanoparticles, activated by highly concentrated sunlight. The solar process represents an alternative to the only reported method for synthesizing IF-Cs2O nanostructures: laser ablation. IF-Cs2O formed at solar irradiation greater-than or equal to 6W, confirmed by high resolution transmission electron microscopy. These closed-cage Cs2O nanostructures are stable under electron microscope conditions, and also when exposed temporarily to air - of significance for their use in a variety of photonic devices.

  17. Phase Equilibria in the System "FeO"-CaO-SiO2-Al2O3-MgO at Different CaO/SiO2 Ratios

    NASA Astrophysics Data System (ADS)

    Jang, Kyoung-oh; Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Zhao, Baojun

    2017-06-01

    The "FeO"-containing slags play an important role in the operation of an ironmaking blast furnace (BF), in particular the primary slags such as the system "FeO"-CaO-SiO2-Al2O3-2 mass pct MgO with CaO/SiO2 weight ratios of 1.3, 1.5, and 1.8 saturated with metallic iron. To investigate the characteristics of such a slag system and its behavior in BF, the phase equilibria and liquidus temperatures in the slag system have been experimentally determined using the high-temperature equilibration and quenching technique followed by an electron probe X-ray microanalysis (EPMA). Isotherms between 1553 K and 1603 K (1280 °C and 1330 °C) were determined in the primary phase fields of dicalcium silicate, melilite, spinel, and monoxide [(Mg,Fe2+)O]. Pseudo-ternary phase diagrams of (CaO + SiO2)-Al2O3-"FeO" with a fixed MgO concentration at 2 mass pct and at CaO/SiO2 ratios of 1.3, 1.5, and 1.8 have been discussed, respectively, simplifying the complexity of the slag system for easy understanding and applying in BF operation. It was found that the liquidus temperatures increase in melilite and spinel primary phase fields, but decrease in dicalcium silicate and monoxide primary phase fields with increasing Al2O3/(CaO + SiO2) ratio. In addition, the liquidus temperatures decrease with increasing "FeO" concentration in dicalcium silicate and melilite primary phase fields, while showing an increasing trend in the spinel and monoxide primary phase fields. The data resulted from this study can be used to improve and optimize currently available database of thermodynamic models used in FactSage.

  18. Thermal and fragility studies on microwave synthesized K2O-B2O3-V2O5 glasses

    NASA Astrophysics Data System (ADS)

    Harikamalasree, Reddy, M. Sudhakara; Viswanatha, R.; Reddy, C. Narayana

    2016-05-01

    Glasses with composition xK2O-60B2O3-(40-x) V2O5 (15 ≤ x ≤ 39 mol %) was prepared by an energy efficient microwave method. The heat capacity change (ΔCp) at glass transition (Tg), width of glass transition (ΔTg), heat capacities in the glassy (Cpg) and liquid (Cpl) state for the investigated glasses were extracted from Modulated Differential Scanning Calorimetry (MDSC) thermograms. The width of glass transition is less than 30°C, indicating that these glasses belongs to fragile category. Fragility functions [NBO]/(Vm3Tg) and (ΔCp/Cpl)increases with increasing modifier oxide concentration. Increase in fragility is attributed to the increasing coordination of boron. Further, addition of K2O creates NBOs and the flow mechanism involves bond switching between BOs and NBOs. Physical properties exhibit compositional dependence and these properties increase with increasing K2O concentration. The observed variations are qualitatively analyzed.

  19. Wheat grain quality under enhanced tropospheric CO{sub 2} and O{sub 3} concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudorff, B.F.T.; Mulchi, C.L.; Fenny, P.

    It is expected that the progressive increase of tropospheric trace gases such as CO{sub 2} and O{sub 3} will have a significant impact on agricultural production. The single and combined effects of CO{sub 2} enrichment and tropospheric O{sub 3} on grain quality characteristics in soft red winter wheat (Triticum aestivum L.) were examined in field studies using 3 m in diam. open-top chambers. Wheat cultivars {open_quotes}Massey{close_quotes} (1991) and {open_quotes}Saluda{close_quotes} (1992) were exposed to two CO{sub 2} concentrations (350 vs. 500 {mu}mol CO{sub 2} mol{sup {minus}1}; 12 h d{sup {minus}1}) in combination with two O{sub 3} regimes (charcoal-filtered air vs. ambientmore » air + 40 {plus_minus} 20 nmol O{sub 3} mol{sup {minus}1}, 7 h d{sup {minus}1}; Monday to Friday) from late March until maturity in June. Grain quality characteristics investigated included: test weight, milling and baking quality, flour yield, protein content, softness equivalent, alkaline water retention capacity, and cookie diameter. In general, exposure of plants to either elevated CO{sub 2} or weekly chronic O{sub 3} episodes caused only small changes in grain quality. Milling and baking quality score were not significantly changed in response to treatments in both years. Flour yield was increased by elevated CO{sub 2} but this increase was counteracted when elevated CO{sub 2} was combined with chronic O{sub 3} exposure. Flour protein contents were increased by enhanced O{sub 3} under elevated CO{sub 2}. Although the single effect of either CO{sub 2} enrichment or chronic O{sub 3} exposure had some impact o grain quality characteristics, it was noted that the combined effect of these gases was minor. It is likely that the concomitant increase of CO{sub 2} and O{sub 3} in the troposphere will have no significant impact on wheat grain quality. 25 refs., 1 fig., 2 tabs.« less

  20. Role of SiO2 coating in multiferroic CoCr2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kamran, M.; Ullah, Asmat; Mehmood, Y.; Nadeem, K.; Krenn, H.

    2017-02-01

    Effect of silica (SiO2) coating concentration on structural and magnetic properties of multiferroic cobalt chromite (CoCr2O4) nanoparticles have been studied. The nanoparticles with average crystallite size in the range 19 to 28 nm were synthesised by sol-gel method. X-ray diffraction (XRD) analysis has verified the composition of single-phase cubic normal spinel structure of CoCr2O4 nanoparticles. The average crystallite size and cell parameter decreased with increasing SiO2 concentration. TEM image revealed that the shape of nanoparticles was non-spherical. Zero field cooled/field cooled (ZFC/FC) curves revealed that nanoparticles underwent a transition from paramagnetic (PM) state to collinear short-range ferrimagnetic (FiM) state, and this PM-FiM transition temperature decreased from 101 to 95 K with increasing SiO2 concentration or decreasing crystallite size. A conical spin state at Ts = 27 K was also observed for all the samples which decreased with decreasing average crystallite size. Low temperature lock-in transition was also observed in these nanoparticles at 12 K for uncoated nanoparticles which slightly shifted towards low temperature with decreasing average crystallite size. Saturation magnetization (Ms) showed decreasing trend with increasing SiO2 concentration, which was due to decrease in average crystallite size of nanoparticles and enhanced surface disorder in smaller nanoparticles. The temperature dependent AC-susceptibility also showed the decrease in the transition temperature (Tc), broadening of the Tc peak and decrease in magnetization with increasing SiO2 concentration or decreasing average crystallite size. In summary, the concentration of SiO2 has significantly affected the structural and magnetic properties of CoCr2O4 nanoparticles.

  1. LED and low level laser therapy association in tooth bleaching using a novel low concentration H2O2/N-doped TiO2 bleaching agent

    NASA Astrophysics Data System (ADS)

    Bezerra Dias, Hércules; Teixeira Carrera, Emanuelle; Freitas Bortolatto, Janaína; Ferrarezi de Andrade, Marcelo; Nara de Souza Rastelli, Alessandra

    2016-01-01

    Since low concentration bleaching agents containing N-doped TiO2 nanoparticles have been introduced as an alternative to conventional agents, it is important to verify their efficacy and the hypersensitivity effect in clinical practice. Six volunteer patients were evaluated for color change and hypersensitivity after bleaching using 35% H2O2 (one session of two 12 min applications) and 6% H2O2/N-doped TiO2 (one session of three 12 min applications) and after low level laser therapy application (LLLT) (780 nm, 40 mW, 10 J.cm-2, 10 s). Based on this case study, the nanobleaching agent provided better or similar aesthetic results than the conventional agent under high concentration, and its association with LLLT satisfactorily decreased the hypersensitivity. The 6% H2O2/N-doped TiO2 agent could be used instead of conventional in-office bleaching agents under high concentrations to fulfill the rising patient demand for aesthetics.

  2. Magnetic properties of x(Fe2O3).(100-x)[P2O5.Li2O] and x(Fe2O3).(100-x)[P2O5.CaO] glass systems

    NASA Astrophysics Data System (ADS)

    Andronache, Constantin; Racolta, Dania; Ardelean, Gheorghe

    2017-12-01

    Magnetic properties of x(Fe2O3).(100-x)[P2O5 .Li2O] and x(Fe2O3).(100-x)[P2O5 .CaO] with 0 < x ≤ 50 mol % were investigated using magnetic susceptibility measurements. The both glass systems were prepared in the same condition. The valence states and the distribution of iron ions in the glass matrix depend on the Fe2O3 content. For the P2O5.CaO glass matrix with x≤35mol%, the data revealed iron ions as isolated or participating in dipole-dipole interaction. For x > 35 mol% an antiferromagnetic coupling is observed. For the P2O5.Li2O glass matrix, the iron ions behave magnetically similarly as in other oxide glasses, but concentration of Fe2O3 over which magnetic superexchange interactions occur is lower. The absolute magnitude of θp values increases when content of Fe2O3 are increased. If the content of the magnetic ions is increased in the glass, the exchange integral increased and as a result the magnitude of the θP increases.

  3. Toxicity of TiO2 nanoparticles on soil nitrification at environmentally relevant concentrations: Lack of classical dose-response relationships.

    PubMed

    Simonin, Marie; Martins, Jean M F; Le Roux, Xavier; Uzu, Gaëlle; Calas, Aude; Richaume, Agnès

    2017-03-01

    Titanium-dioxide nanoparticles (TiO 2 -NPs) are increasingly released in agricultural soils through, e.g. biosolids, irrigation or nanoagrochemicals. Soils are submitted to a wide range of concentrations of TiO 2 -NPs depending on the type of exposure. However, most studies have assessed the effects of unrealistically high concentrations, and the dose-response relationships are not well characterized for soil microbial communities. Here, using soil microcosms, we assessed the impact of TiO 2 -NPs at concentrations ranging from 0.05 to 500 mg kg -1  dry-soil, on the activity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizing bacteria (Nitrobacter and Nitrospira). In addition, aggregation and oxidative potential of TiO 2 -NPs were measured in the spiking suspensions, as they can be important drivers of TiO 2 -NPs toxicity. After 90 days of exposure, non-classical dose-response relationships were observed for nitrifier abundance or activity, making threshold concentrations impossible to compute. Indeed, AOA abundance was reduced by 40% by TiO 2 -NPs whatever the concentration, while Nitrospira was never affected. Moreover, AOB and Nitrobacter abundances were decreased mainly at intermediate concentrations nitrification was reduced by 25% at the lowest (0.05 mg kg -1 ) and the highest (100 and 500 mg kg -1 ) TiO 2 -NPs concentrations. Path analyses indicated that TiO 2 -NPs affected nitrification through an effect on the specific activity of nitrifiers, in addition to indirect effects on nitrifier abundances. Altogether these results point out the need to include very low concentrations of NPs in soil toxicological studies, and the lack of relevance of classical dose-response tests and ecotoxicological dose metrics (EC50, IC50…) for TiO 2 -NPs impact on soil microorganisms.

  4. Structural study of Al2O3-Na2O-CaO-P2O5 bioactive glasses as a function of aluminium content.

    PubMed

    Smith, J M; King, S P; Barney, E R; Hanna, J V; Newport, R J; Pickup, D M

    2013-01-21

    Calcium phosphate based biomaterials are extensively used in the context of tissue engineering: small changes in composition can lead to significant changes in properties allowing their use in a wide range of applications. Samples of composition (Al(2)O(3))(x)(Na(2)O)(0.11-x)(CaO)(0.445)(P(2)O(5))(0.445), where x = 0, 0.03, 0.05, and 0.08, were prepared by melt quenching. The atomic-scale structure has been studied using neutron diffraction and solid state (27)Al MAS NMR, and these data have been rationalised with the determined density of the final glass product. With increasing aluminium concentration the density increases initially, but beyond about 3 mol. % Al(2)O(3) the density starts to decrease. Neutron diffraction data show a concomitant change in the aluminium speciation, which is confirmed by (27)Al MAS NMR studies. The NMR data reveal that aluminium is present in 4, 5, and 6-fold coordination and that the relative concentrations of these environments change with increasing aluminium concentration. Materials containing aluminium in 6-fold coordination tend to have higher densities than analogous materials with the aluminium found in 4-fold coordination. Thus, the density changes may readily be explained in terms of an increase in the relative concentration of 4-coordinated aluminium at the expense of 6-fold aluminium as the Al(2)O(3) content is increased beyond 3 mol. %.

  5. [Selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalysts].

    PubMed

    Sun, Hong; Quan, Xie; Zhang, Yao-bin; Zhao, Ya-zhi

    2008-06-01

    Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst was prepared by sol-gel and impregnation. Furthermore, selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst with propylene under lean burn condition was studied. The effects of the concentration of tetra-n-butyl titanate and dipcoat cycles on TiO2 washcoat were studied by SEM, and the effects of Pd concentration, O2 concentration and gas velocity on catalytic activity were investigated. The experimental results showed that the TiO2 washcoat on wire-mesh support is even and crack-free when the support is impregnated in 20.0% tetra- n-butyl titanate sol for 2 cycles. The NOx conversion decreases with Pd concentration increase. When Pd concentration is 0.23%, NOx conversion is highest. NOx conversion increases with oxygen concentration increase in the range of 1.5%-6.0%. However, when oxygen concentration is higher than 6.0%, NOx conversion decreases with increasing oxygen concentration. The NOx conversion decreases with gas velocity increase and its effect is severer at high temperature than low temperature.

  6. Zn(2+)-dependence of the synergistic increase in rat thymocyte cell lethality caused by simultaneous application of 4,5-dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) and H2O2.

    PubMed

    Saitoh, Shohei; Fukunaga, Eri; Ohtani, Hana; Oyama, Yasuo

    2015-09-01

    4,5-Dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) is an antifouling agent that is an alternative to organotins such as tributyltin (TBT). Because DCOIT decreases catalase activity, it may increase the susceptibility of cells to oxidative stress. We examined the effects of DCOIT on rat thymocytes suffering from oxidative stress induced by H2O2. The simultaneous application of DCOIT and H2O2 induced a synergistic increase in cell lethality that was completely suppressed by chelating intracellular Zn(2+). Intracellular Zn(2+) concentration was increased by DCOIT at concentrations ranging from 0.1 μM to 3 μM. Although the increase in cell lethality produced by DCOIT alone was less than that produced by TBT alone, a synergistic increase was not induced by the combination of TBT and H2O2. Therefore, these results suggest that DCOIT increases vulnerability to oxidative stress and is more cytotoxic than TBT when oxidative stress is induced by H2O2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Understanding the Relationship Between Structure and Thermophysical Properties of CaO-SiO2-MgO-Al2O3 Molten Slags

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Wang, Hao; Zhang, Zuotai

    2018-04-01

    In the present work, the relationship between the microscopic structure and macroscopic thermophysical properties in a basic CaO-SiO2-MgO-Al2O3 quaternary system was identified using Fourier transformation infrared, Raman and 27Al magic angular spinning nuclear magnetic resonance (MAS-NMR) techniques. The Raman spectra quantitatively proved that with increasing Al2O3 content, the concentrations of the symmetric units of Q 0(Si) and Q 2(Si) decreased, while those of the asymmetric units of Q 1(Si) and Q 3(Si) increased; consequently, the degree of polymerization of the networks increased, which resulted in an increase in slag viscosity. The 27Al MAS-NMR spectra demonstrated that three structural units of Al atoms, namely, AlO4, AlO5, and AlO6, mainly existed in the networks. With increasing Al2O3 content, the concentration of AlO4 slightly decreased, while those of AlO5 and AlO6 increased; overall, Al2O3 acted as a network former in the present system. The increasing Al2O3 content led to additional AlO6 and Si-NBO-Ca-NBO-Al frameworks, which replaced Si-NBO-Ca-NBO-Si in the networks (NBO: non-bridging oxygen) and induced a change in the primarily precipitated crystalline phase from Ca2MgSi2O7 and Ca2Al2SiO7 to MgAlO4.

  8. Storage in high-barrier pouches increases the sulforaphane concentration in broccoli florets.

    PubMed

    Makino, Yoshio; Nishimura, Yuto; Oshita, Seiichi; Mizosoe, Takaharu; Akihiro, Takashi

    2018-01-01

    Sulforaphane is a phytochemical that is usually found in cruciferous vegetables and is known to have a depressive effect on gastric cancer. Preliminary investigations showed that the sulforaphane concentration in broccoli (Brassica oleracea var. italica) florets increased under anoxia. Therefore, in the present study, we examined the effect of different atmospheric conditions on the sulforaphane concentration in broccoli and also tested whether there are concurrent effects on the concentration of ethanol, which is an unfavorable byproduct of fermentation. The sulforaphane concentration in broccoli florets was significantly elevated by 1.9- to 2.8-fold after 2 d of storage under hypoxia at ca. 0% O2 and ca. 24% CO2 at 20°C, whereas no such increase was observed following storage under normoxia at ca. 0% O2 without CO2 at 20°C. Furthermore, after 2 d, the sulforaphane concentration under hypoxia was 1.6- to 2.3-fold higher than that under normoxia. These results suggest that storage under hypoxia with high CO2 levels can elevate the sulforaphane concentration in broccoli florets. However, the elevated sulforaphane concentration could not be maintained beyond 2 d. There was no significant difference in the concentration of ethanol between florets that were stored under hypoxia with/without CO2 or normoxia at 2 d. However, the ethanol concentrations inside the pouches significantly increased between 2 d and 7 d. These findings indicate that the quality of broccoli florets can be improved through storage under hypoxia with high CO2 levels at 20°C for 2 d.

  9. Storage in high-barrier pouches increases the sulforaphane concentration in broccoli florets

    PubMed Central

    Nishimura, Yuto; Oshita, Seiichi; Mizosoe, Takaharu; Akihiro, Takashi

    2018-01-01

    Sulforaphane is a phytochemical that is usually found in cruciferous vegetables and is known to have a depressive effect on gastric cancer. Preliminary investigations showed that the sulforaphane concentration in broccoli (Brassica oleracea var. italica) florets increased under anoxia. Therefore, in the present study, we examined the effect of different atmospheric conditions on the sulforaphane concentration in broccoli and also tested whether there are concurrent effects on the concentration of ethanol, which is an unfavorable byproduct of fermentation. The sulforaphane concentration in broccoli florets was significantly elevated by 1.9- to 2.8-fold after 2 d of storage under hypoxia at ca. 0% O2 and ca. 24% CO2 at 20°C, whereas no such increase was observed following storage under normoxia at ca. 0% O2 without CO2 at 20°C. Furthermore, after 2 d, the sulforaphane concentration under hypoxia was 1.6- to 2.3-fold higher than that under normoxia. These results suggest that storage under hypoxia with high CO2 levels can elevate the sulforaphane concentration in broccoli florets. However, the elevated sulforaphane concentration could not be maintained beyond 2 d. There was no significant difference in the concentration of ethanol between florets that were stored under hypoxia with/without CO2 or normoxia at 2 d. However, the ethanol concentrations inside the pouches significantly increased between 2 d and 7 d. These findings indicate that the quality of broccoli florets can be improved through storage under hypoxia with high CO2 levels at 20°C for 2 d. PMID:29466374

  10. Adsorption-desorption mediated separation of low concentrated D2O from water with hydrophobic activated carbon fiber.

    PubMed

    Ono, Yuji; Futamura, Ryusuke; Hattori, Yoshiyuki; Sakai, Toshio; Kaneko, Katsumi

    2017-12-15

    The adsorption and desorption of D 2 O on hydrophobic activated carbon fiber (ACF) occurs at a smaller pressure than the adsorption and desorption of H 2 O. The behavior of the critical desorption pressure difference between D 2 O and H 2 O in the pressure range of 1.25-1.80kPa is applied to separate low concentrated D 2 O from water using the hydrophobic ACF, because the desorption branches of D 2 O and H 2 O drop almost vertically. The deuterium concentration of all desorbed water in the above pressure range is lower than that of water without adsorption-treatment on ACF. The single adsorption-desorption procedure on ACF at 1.66kPa corresponding to the maximum difference of adsorption amount between D 2 O and H 2 O reduced the deuterium concentration of desorbed water to 130.6ppm from 143.0ppm. Thus, the adsorption-desorption procedure of water on ACF is a promising separation and concentration method of low concentrated D 2 O from water. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Molecular Control of TiO2-NPs Toxicity Formation at Predicted Environmental Relevant Concentrations by Mn-SODs Proteins

    PubMed Central

    Wu, Qiuli; Li, Yiping; Tang, Meng; Ye, Boping; Wang, Dayong

    2012-01-01

    With growing concerns of the safety of nanotechnology, the in vivo toxicity of nanoparticles (NPs) at environmental relevant concentrations has drawn increasing attentions. We investigated the possible molecular mechanisms of titanium nanoparticles (Ti-NPs) in the induction of toxicity at predicted environmental relevant concentrations. In nematodes, small sizes (4 nm and 10 nm) of TiO2-NPs induced more severe toxicities than large sizes (60 nm and 90 nm) of TiO2-NPs on animals using lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and reactive oxygen species (ROS) production as endpoints. Locomotion behaviors could be significantly decreased by exposure to 4-nm and 10-nm TiO2-NPs at concentration of 1 ng/L in nematodes. Among genes required for the control of oxidative stress, only the expression patterns of sod-2 and sod-3 genes encoding Mn-SODs in animals exposed to small sizes of TiO2-NPs were significantly different from those in animals exposed to large sizes of TiO2-NPs. sod-2 and sod-3 gene expressions were closely correlated with lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and ROS production in TiO2-NPs-exposed animals. Ectopically expression of human and nematode Mn-SODs genes effectively prevented the induction of ROS production and the development of toxicity of TiO2-NPs. Therefore, the altered expression patterns of Mn-SODs may explain the toxicity formation for different sizes of TiO2-NPs at predicted environmental relevant concentrations. In addition, we demonstrated here a strategy to investigate the toxicological effects of exposure to NPs upon humans by generating transgenic strains in nematodes for specific human genes. PMID:22973466

  12. Influence of Nb Doping Concentration on Bolometric Properties of RF Magnetron Sputtered Nb:TiO2- x Films

    NASA Astrophysics Data System (ADS)

    Reddy, Y. Ashok Kumar; Shin, Young Bong; Kang, In-Ku; Lee, Hee Chul

    2018-03-01

    The present study directly addresses the improved bolometric properties by means of different Nb doping concentrations into TiO2- x films. The x-ray diffraction patterns do not display any obvious diffraction peaks, suggesting that all the films deposited at room temperature had an amorphous structure. A small binding energy shift was observed in x-ray photo electron spectroscopy due to the change of chemical composition with Nb doping concentration. All the device samples exhibit linear I- V characteristics, which attests to the formation of good ohmic contact with low contact resistance between the Nb:TiO2- x (TNO) film and the electrode (Ti) material. The performance of the bolometric material can be evaluated through the temperature coefficient of resistance (TCR), and the absolute value of TCR was found to be increased from 2.54% to 2.78% with increasing the Nb doping concentration. The voltage spectral density of 1/ f noise was measured in the frequency range of 1-60 Hz and found to be decreased with increase of Nb doping concentration. As a result, for 1 at.% Nb-doped TNO sample exhibits improved bolometric properties towards the good infrared image sensor device.

  13. Conversion from rice to vegetable production increases N2O emission via increased soil organic matter mineralization.

    PubMed

    Wu, Lei; Tang, Shuirong; He, Dongdong; Wu, Xian; Shaaban, Muhammad; Wang, Milan; Zhao, Jingsong; Khan, Imran; Zheng, Xunhua; Hu, Ronggui; Horwath, William R

    2017-04-01

    The conversion from rice to vegetable production widely occurs in China. However, the effects of this conversion on N 2 O emission and the underlying mechanisms are not well understood. In the present study, 12 rice paddies (R) were selected and half of them converted to vegetable fields (V) with the following treatments: rice paddies without N-fertilizer (R-CK), rice paddies with conventional N-fertilizer (R-CN), converted vegetable fields without N-fertilizer (V-CK), and converted vegetable fields with conventional N-fertilizer (V-CN) in a randomized block design with 3 replicates. N 2 O emissions were measured with static chambers from December 2012 to December 2015. Within each V-CN plot, a root exclusion subplot was established to measure soil heterotrophic respiration (CO 2 effluxes), a proxy for soil organic matter mineralization. Conversion of rice paddies to vegetable production dramatically increased N 2 O emissions. The three-year cumulative N 2 O emissions were 0.59, 1.90, 55.50 and 160.14kg N ha -1 for R-CK, R-CN, V-CK and V-CN, respectively. The annual N 2 O emissions from vegetable fields ranged between 5.99 and 113.45kg N ha -1 yr -1 , with substantially higher emissions in the first year. N 2 O fluxes from V-CN were significantly and positively related to CO 2 fluxes and inorganic N concentrations. The linear relationship between natural logarithms of N 2 O and CO 2 fluxes was stronger and the regression coefficient higher in the first year, showing the dependence of N 2 O on soil organic matter mineralization. These results suggest that soil organic matter and N mineralization contributes significantly to N 2 O emission following conversion of rice paddies to vegetable production. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Influence of under pressure dissolved oxygen on trichloroethylene degradation by the H2O2/TiO2 process.

    PubMed

    Hoseini, Mohammad; Nabizadeh, Ramin; Nazmara, Shahrokh; Safari, Gholam Hossein

    2013-12-20

    The widespread use of trichloroethylene (TCE) and its frequent release into the environment has caused many environmental and health problems. In this study the degradation of TCE at different micromolar concentrations was investigated in a stainless steel reactor with various concentrations of H2O2 and TiO2 at different oxygen pressures and three different pHs. To examine the synergistic effect of under pressure oxygen on TCE degradation, the concentrations of H2O2 and TiO2 as well as pH were first optimized, and then the experiments were performed under optimal conditions. Gas chromatography with a flame ionization detector (FID) was used to measure TCE concentrations. Results showed that the percentage of TCE degradation without pressurized oxygen was low and it increased with increasing pressure of oxygen at all initial concentrations of TCE. The degradation percentages without oxygen pressure were 48.27%, 51.22%, 58.13% and 64.33% for TCE concentrations of 3000, 1500, 300 and 150 μg/L respectively. At an oxygen pressure of 2.5 atmospheres (atm) the percent degradation of TCE reached 84.85%, 89.14%, 93.13% and 94.99% respectively for the aforementioned TCE concentrations. The results of this study show that the application of dissolved oxygen under pressure increases the efficiency of the H2O2/TiO2 process on the degradation of TCE and can be used along with other oxidants as an effective method for the removal of this compound from aqueous solutions.

  15. Influence of under pressure dissolved oxygen on trichloroethylene degradation by the H2O2/TiO2 process

    PubMed Central

    2013-01-01

    Background The widespread use of trichloroethylene (TCE) and its frequent release into the environment has caused many environmental and health problems. In this study the degradation of TCE at different micromolar concentrations was investigated in a stainless steel reactor with various concentrations of H2O2 and TiO2 at different oxygen pressures and three different pHs. Methods To examine the synergistic effect of under pressure oxygen on TCE degradation, the concentrations of H2O2 and TiO2 as well as pH were first optimized, and then the experiments were performed under optimal conditions. Gas chromatography with a flame ionization detector (FID) was used to measure TCE concentrations. Results Results showed that the percentage of TCE degradation without pressurized oxygen was low and it increased with increasing pressure of oxygen at all initial concentrations of TCE. The degradation percentages without oxygen pressure were 48.27%, 51.22%, 58.13% and 64.33% for TCE concentrations of 3000, 1500, 300 and 150 μg/L respectively. At an oxygen pressure of 2.5 atmospheres (atm) the percent degradation of TCE reached 84.85%, 89.14%, 93.13% and 94.99% respectively for the aforementioned TCE concentrations. Conclusions The results of this study show that the application of dissolved oxygen under pressure increases the efficiency of the H2O2/TiO2 process on the degradation of TCE and can be used along with other oxidants as an effective method for the removal of this compound from aqueous solutions. PMID:24359702

  16. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Xu, Wu; Yan, Pengfei

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbitalmore » energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.« less

  17. Effects of subtoxic concentrations of TiO{sub 2} and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson-Willman, Britta; Gehrmann, Ulf; Cansu, Zekiye

    Metal oxide nanoparticles are widely used in the paint and coating industry as well as in cosmetics, but the knowledge of their possible interactions with the immune system is very limited. Our aims were to investigate if commercially available TiO{sub 2} and ZnO nanoparticles may affect different human immune cells and their production of exosomes, nano-sized vesicles that have a role in cell to cell communication. We found that the TiO{sub 2} or ZnO nanoparticles at concentrations from 1 to 100 μg/mL did not affect the viability of primary human peripheral blood mononuclear cells (PBMC). In contrast, monocyte-derived dendritic cellsmore » (MDDC) reacted with a dose dependent increase in cell death and caspase activity to ZnO but not to TiO{sub 2} nanoparticles. Non-toxic exposure, 10 μg/mL, to TiO{sub 2} and ZnO nanoparticles did not significantly alter the phenotype of MDDC. Interestingly, ZnO but not TiO{sub 2} nanoparticles induced a down regulation of FcγRIII (CD16) expression on NK-cells in the PBMC population, suggesting that subtoxic concentrations of ZnO nanoparticles might have an effect on FcγR-mediated immune responses. The phenotype and size of exosomes produced by PBMC or MDDC exposed to the nanoparticles were similar to that of exosomes harvested from control cultures. TiO{sub 2} or ZnO nanoparticles could not be detected within or associated to exosomes as analyzed with TEM. We conclude that TiO{sub 2} and ZnO nanoparticles differently affect immune cells and that evaluations of nanoparticles should be performed even at subtoxic concentrations on different primary human immune cells when investigating potential effects on immune functions. -- Highlights: ► ZnO nanoparticles induce cell death of MDDC but not of PBMC. ► ZnO nanoparticles induce caspase activation and DNA fragmentation in MDDC. ► TiO{sub 2} nanoparticles are taken up by MDDC but have no effect on their phenotype. ► ZnO nanoparticles induce a significant reduction of CD16

  18. N2O production and consumption from stable isotopic and concentration data in the Peruvian coastal upwelling system

    NASA Astrophysics Data System (ADS)

    Bourbonnais, Annie; Letscher, Robert T.; Bange, Hermann W.; Échevin, Vincent; Larkum, Jennifer; Mohn, Joachim; Yoshida, Naohiro; Altabet, Mark A.

    2017-04-01

    The ocean is an important source of nitrous oxide (N2O) to the atmosphere, yet the factors controlling N2O production and consumption in oceanic environments are still not understood nor constrained. We measured N2O concentrations and isotopomer ratios, as well as O2, nutrient and biogenic N2 concentrations, and the isotopic compositions of nitrate and nitrite at several coastal stations during two cruises off the Peru coast ( 5-16°S, 75-81°W) in December 2012 and January 2013. N2O concentrations varied from below equilibrium values in the oxygen deficient zone (ODZ) to up to 190 nmol L-1 in surface waters. We used a 3-D-reaction-advection-diffusion model to evaluate the rates and modes of N2O production in oxic waters and rates of N2O consumption versus production by denitrification in the ODZ. Intramolecular site preference in N2O isotopomer was relatively low in surface waters (generally -3 to 14‰) and together with modeling results, confirmed the dominance of nitrifier-denitrification or incomplete denitrifier-denitrification, corresponding to an efflux of up to 0.6 Tg N yr-1 off the Peru coast. Other evidence, e.g., the absence of a relationship between ΔN2O and apparent O2 utilization and significant relationships between nitrate, a substrate during denitrification, and N2O isotopes, suggest that N2O production by incomplete denitrification or nitrifier-denitrification decoupled from aerobic organic matter remineralization are likely pathways for extreme N2O accumulation in newly upwelled surface waters. We observed imbalances between N2O production and consumption in the ODZ, with the modeled proportion of N2O consumption relative to production generally increasing with biogenic N2. However, N2O production appeared to occur even where there was high N loss at the shallowest stations.

  19. Increased serum concentrations of soluble ST2 predict mortality after burn injury.

    PubMed

    Hacker, Stefan; Dieplinger, Benjamin; Werba, Gregor; Nickl, Stefanie; Roth, Georg A; Krenn, Claus G; Mueller, Thomas; Ankersmit, Hendrik J; Haider, Thomas

    2018-06-27

    Large burn injuries induce a systemic response in affected patients. Soluble ST2 (sST2) acts as a decoy receptor for interleukin-33 (IL-33) and has immunosuppressive effects. sST2 has been described previously as a prognostic serum marker. Our aim was to evaluate serum concentrations of sST2 and IL-33 after thermal injury and elucidate whether sST2 is associated with mortality in these patients. We included 32 burn patients (total body surface area [TBSA] >10%) admitted to our burn intensive care unit and compared them to eight healthy probands. Serum concentrations of sST2 and IL-33 were measured serially using an enzyme-linked immunosorbent assay (ELISA) technique. The mean TBSA was 32.5%±19.6%. Six patients (18.8%) died during the hospital stay. Serum analyses showed significantly increased concentrations of sST2 and reduced concentrations of IL-33 in burn patients compared to healthy controls. In our study cohort, higher serum concentrations of sST2 were a strong independent predictor of mortality. Burn injuries cause an increment of sST2 serum concentrations with a concomitant reduction of IL-33. Higher concentrations of sST2 are associated with increased in-hospital mortality in burn patients.

  20. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2.

    PubMed

    van Groenigen, Kees Jan; Osenberg, Craig W; Hungate, Bruce A

    2011-07-13

    Increasing concentrations of atmospheric carbon dioxide (CO(2)) can affect biotic and abiotic conditions in soil, such as microbial activity and water content. In turn, these changes might be expected to alter the production and consumption of the important greenhouse gases nitrous oxide (N(2)O) and methane (CH(4)) (refs 2, 3). However, studies on fluxes of N(2)O and CH(4) from soil under increased atmospheric CO(2) have not been quantitatively synthesized. Here we show, using meta-analysis, that increased CO(2) (ranging from 463 to 780 parts per million by volume) stimulates both N(2)O emissions from upland soils and CH(4) emissions from rice paddies and natural wetlands. Because enhanced greenhouse-gas emissions add to the radiative forcing of terrestrial ecosystems, these emissions are expected to negate at least 16.6 per cent of the climate change mitigation potential previously predicted from an increase in the terrestrial carbon sink under increased atmospheric CO(2) concentrations. Our results therefore suggest that the capacity of land ecosystems to slow climate warming has been overestimated. ©2011 Macmillan Publishers Limited. All rights reserved

  1. Rapid increase of ozone concentrations in Xi'an, China: Anthropogenically or naturally?

    NASA Astrophysics Data System (ADS)

    Wu, J.; Li, G.; Junji, C.

    2017-12-01

    The air quality in the Guanzhong basin, China has deteriorated recently caused by growing industries, city expansions, and increasing transportation activity. We report here a substantial increasing trend of ozone (O3) concentrations in Xi'an, the largest city of the basin, and the average observed O3 concentration in the afternoon during summertime has increased by 39% from 2013 to 2016. There are two main possible reasons for the rapid O3 increase. Motor vehicle has been reported to increase by 35% in Xi'an, which enhances the O3 precursors emissions to facilitate the O3 formation. In addition, the surface solar radiation at the meteorological site in Xi'an has been observed to intensify by 30%, which increases the photolysis rates to expedite the O3 production. A persistent high O3 episode from 16 to 22 June 2016 in Xi'an has been simulated using the WRF-CHEM model to evaluate the contribution of the transportation emission and solar radiation enhancement on the O3 trend. The model generally performs reasonably well in simulating the temporal variation and spatial distribution of near-surface O3 and NO2 concentrations against measurements in Xi'an. Sensitivity studies have revealed that the enhancement of transportation emissions and the solar radiation explains about 70% of the O3 trend from 2013 to 2016. Considering that large amounts of biogenic emissions are released over the Qinling Mountains on the south of Xi'an, which can be delivered to Xi'an under favorable meteorological conditions, enhancing O3 formation. Therefore, future studies need to be performed to evaluate impacts of the solar radiation enhancement on the biogenic emissions and further the O3 formation in Xi'an.

  2. Spectroscopic features of Ni(2+) ion in PbO-Bi2O3-SiO2 glass system.

    PubMed

    Suresh, B; Srinivasa Reddy, M; Siva Sesha Reddy, A; Gandhi, Y; Ravi Kumar, V; Veeraiah, N

    2015-04-15

    Glasses of the composition (30-x)PbO-5Bi2O3-65SiO2: xNiO (with x ranging from 0 to 1.0 mol%) were synthesized. A variety of spectroscopic studies, viz., IR, Raman optical absorption and luminescence properties of these glasses have been carried out as a function of NiO concentration. The analysis of results of all these studies has indicated that the nickel ions occupy both octahedral and tetrahedral positions. However, with the increase of NiO concentration the octahedral occupancy of Ni(2+) ions prevailed over the tetrahedral ions. The luminescence spectra of these glasses have exhibited a broad NIR emission band in region 1100-1500 nm. This band is identified as being due to (3)T2(3F)→(3)A2(3F) octahedral transition of Ni(2+) ions. The luminescence efficiency and cross section have been found to be the highest for the glass containing the highest concentration of NiO. The reasons for such high luminescence efficiency have been discussed in the light of structural variations taking place in the host glass network. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Increasing the availability of l-arginine and nitric oxide increases sensitivity of nitrous oxide (N2O)-insensitive inbred mice to N2O-induced antinociception.

    PubMed

    Chung, Eunhee; Ohgami, Yusuke; Quock, Raymond M

    2016-07-01

    Nitrous oxide (N2O)-induced antinociception in mice is dependent on the neuromodulator nitric oxide (NO). In contrast to C57BL/6J (B6) mice, DBA/2J (D2) mice fail to respond to N2O with a robust antinociceptive response or with an increase in brain nitric oxide synthase (NOS) enzyme activity, suggesting that failure of D2 mice to respond to N2O might result from a deficit of NO function. Therefore, it was of interest to determine whether increasing the availability of NO might increase sensitivity of D2 mice to N2O. Male D2 mice were pretreated with sub-antinociceptive intracerebroventricular doses of the NO donor 3-morpholinosydnoimine or the NO precursor l-arginine then assessed for responsiveness to N2O-induced antinociception using the acetic acid abdominal constriction test. Both pretreatments increased the antinociceptive responsiveness of D2 mice to N2O. These results indicate that the NOS enzyme in D2 mice is functional and that the deficit in NO function that obstructs sensitivity to N2O-induced antinociception may lie in availability or utilization of l-arginine. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core-shell formation effects

    NASA Astrophysics Data System (ADS)

    Robindro Singh, L.; Ningthoujam, R. S.; Sudarsan, V.; Srivastava, Iti; Dorendrajit Singh, S.; Dey, G. K.; Kulshreshtha, S. K.

    2008-02-01

    Nanoparticles of Eu3+ doped Y2O3 (core) and Eu3+ doped Y2O3 covered with Y2O3 shell (core-shell) are prepared by urea hydrolysis for 3 h in ethylene glycol medium at a relatively low temperature of 140 °C, followed by heating at 500 and 900 °C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18 nm for 500 and 900 °C heated samples respectively. Based on the luminescence studies of 500 and 900 °C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu3+ emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu3+ concentration of 4-5 at.%. A luminescence study establishes that the Eu3+ environment in amorphous Y (OH)3 is different from that in crystalline Y2O3. For a fixed concentration of Eu3+ doping, there is a reduction in Eu3+ emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu3+ increases with increase of crystallinity.

  5. Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field.

    PubMed

    Riikonen, Johanna; Holopainen, Toini; Oksanen, Elina; Vapaavuori, Elina

    2005-05-01

    Effects of elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) on photosynthesis and related biochemistry of two European silver birch (Betula pendula Roth) clones were studied under field conditions during 1999-2001. Seven-year-old trees of Clones 4 and 80 were exposed for 3 years to the following treatments in an open-top chamber experiment: outside control (OC), chamber control (CC), 2x ambient [CO2] (EC), 2x ambient [O3] (EO) and 2x ambient [CO2] + 2x ambient [O3] (EC+EO). During the experiment, gas exchange, chlorophyll fluorescence, amount and activity of Rubisco, concentrations of chlorophyll, soluble protein, soluble sugars, starch, nitrogen (N) and carbon:nitrogen (C:N) ratio were determined in short- and long-shoot leaves. Elevated [CO2] increased photosynthetic rate by around 30% when measurements were made at the growth [CO2]. When measured at ambient [CO2], photosynthesis was around 15% lower in EC trees than in CC trees. This was related to a approximately 10% decrease in total leaf N, to 26 and 20% decreases in the amount and activity of Rubisco, respectively, and to a 49% increase in starch concentration in elevated [CO2]. Elevated [O3] had no significant effect on gas exchange parameters and its effect on biochemistry was small in both clones. However, elevated [O3] decreased the proportion of Rubisco in total soluble proteins and the apparent quantum yield of photosystem II (PSII) photochemistry in light and increased non-photochemical quenching in 2000. The interactive effect of CO2 and O3 was variable. Elevated [O3] decreased chlorophyll concentration only in EO trees, and the EC+EO treatment decreased the total activity of Rubisco and increased the C:N ratio more than the EO treatment alone. The small effect of elevated [O3] on photosynthesis indicates that these young silver birches were fairly tolerant to annual [O3] exposures that were 2-3 times higher than the AOT40 value of 10 ppm.h. set as a critical dose for forest trees.

  6. Nitrification and N2O production processes in soil incubations after ammonium fertilizer application at high concentrations

    NASA Astrophysics Data System (ADS)

    Deppe, Marianna; Well, Reinhard; Giesemann, Anette; Flessa, Heinz

    2016-04-01

    High concentrations of ammonium as they occur, e.g., after point-injection of ammonium fertilizer solution according to the CULTAN fertilization technique may retard nitrification. Potential advantages in comparison to conventional fertilization include a higher N efficiency of crops, reduced nitrate leaching, and lower N2O and N2 emissions. Dynamics of nitrification due to plant uptake and dilution processes, leading to decreasing ammonium concentrations in fertilizer depots, has only poorly been studied before. Furthermore, there is little information about the relative contribution of different N2O production processes under these conditions. To elucidate the process dynamics a laboratory incubation study was conducted. After fertilization with ammonium sulfate at 5 levels (from 0 to 5000 mg NH4+-N kg-1; 20mg NO3--N kg-1 each), sandy loam soil was incubated in dynamic soil microcosms for 21 days. N2O, CH4 and CO2 fluxes as well as isotope signatures of N2O and, at three dates, NO3- and NH4+ were measured. To identify N2O production processes, acetylene inhibition (0.01 vol.%), 15N tracer approaches, and isotopomer data (15N site preference and δ18O) were used. N2O emissions were highest at 450mg NH4+-N kg-1 and declined with further increasing concentrations. At 5000 mg NH4+-N kg-1 nitrification was completely inhibited. However, approximately 90% of N2O production was inhibited by acetylene application, and there was no change in the relative contribution of nitrification and denitrification to N2O production with N level. Applying the non-equilibrium technique to our 15N tracer data revealed heterogeneous distribution of denitrification in soil, with at least two distinct NO3- pools, and spatial separation of NO3- formation and consumption. In comparison with the acetylene inhibition and 15N tracer approaches the results of the isotopomer approach were reasonable and indicated substantial contribution of nitrifier-denitrification (10-40%) to total N2O

  7. Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae.

    PubMed

    García-Saucedo, Citlali; Field, James A; Otero-Gonzalez, Lila; Sierra-Álvarez, Reyes

    2011-09-15

    Increasing use of nanomaterials necessitates an improved understanding of their potential impact on environment health. This study evaluated the cytotoxicity of nanosized HfO(2), SiO(2), Al(2)O(3) and CeO(2) towards the eukaryotic model organism Saccharomyces cerevisiae, and characterized their state of dispersion in bioassay medium. Nanotoxicity was assessed by monitoring oxygen consumption in batch cultures and by analysis of cell membrane integrity. CeO(2), Al(2)O(3), and HfO(2) nanoparticles were highly unstable in yeast medium and formed micron-sized, settleable agglomerates. A non-toxic polyacrylate dispersant (Dispex A40) was used to improve nanoparticle stability and determine the impact of enhanced dispersion on toxicity. None of the NPs tested without dispersant inhibited O(2) uptake by yeast at concentrations as high as 1000 mg/L. Dispersant supplementation only enhanced the toxicity of CeO(2) (47% at 1000 mg/L). Dispersed SiO(2) and Al(2)O(3) (1000 mg/L) caused cell membrane damage, whereas dispersed HfO(2) and CeO(2) did not cause significant disruption of membrane integrity at the same concentration. These results suggest that the O(2) uptake inhibition observed with dispersed CeO(2) NPs was not due to reduced cell viability. This is the first study evaluating toxicity of nanoscale HfO(2), SiO(2), Al(2)O(3) and CeO(2) to S. cerevisiae. Overall the results obtained demonstrate that these nanomaterials display low or no toxicity to yeast. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Stabilization of the high coercivity {epsilon}-Fe{sub 2}O{sub 3} phase in the CeO{sub 2}-Fe{sub 2}O{sub 3}/SiO{sub 2} nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantlikova, A., E-mail: mantlikova@fzu.cz; Poltierova Vejpravova, J.; Bittova, B.

    2012-07-15

    We have investigated the processes leading to the formation of the Fe{sub 2}O{sub 3} and CeO{sub 2} nanoparticles in the SiO{sub 2} matrix in order to stabilize the {epsilon}-Fe{sub 2}O{sub 3} as the major phase. The samples with two different concentrations of the Fe were prepared by sol-gel method, subsequently annealed at different temperatures up to 1100 Degree-Sign C, and characterized by the Moessbauer spectroscopy, Transmission Electron Microscopy (TEM), Powder X-ray Diffraction (PXRD), Energy Dispersive X-ray analysis (EDX) and magnetic measurements. The evolution of the different Fe{sub 2}O{sub 3} phases under various conditions of preparation was investigated, starting with themore » preferential appearance of the {gamma}-Fe{sub 2}O{sub 3} phase for the sample with low Fe concentration and low annealing temperature and stabilization of the major {epsilon}-Fe{sub 2}O{sub 3} phase for high Fe concentration and high annealing temperature, coexisting with the most stable {alpha}-Fe{sub 2}O{sub 3} phase. A continuous increase of the particle size of the CeO{sub 2} nanocrystals with increasing annealing temperature was also observed. - Graphical abstract: The graphical abstract displays the most important results of our work. The significant change of the phase composition due to the variation of preparation conditions is demonstrated. As a result, significant change of the magnetic properties from superparamagnetic {gamma}-Fe{sub 2}O{sub 3} phase with negligible coercivity to the high coercivity {epsilon}-Fe{sub 2}O{sub 3} phase has been observed. Highlights: Black-Right-Pointing-Pointer Research of the stabilization of the high coercivity {epsilon}-Fe{sub 2}O{sub 3} in CeO{sub 2}-Fe{sub 2}O{sub 3}/SiO{sub 2}. Black-Right-Pointing-Pointer Samples with two different concentrations of Fe and three annealing temperatures. Black-Right-Pointing-Pointer Phase transition {gamma}{yields}{epsilon}{yields}({beta}){yields}{alpha} with increasing annealing temperature

  9. Analysis of the co-deposition of Al2O3 particles with nickel by an electrolytic route: The influence of organic additives presence and Al2O3 concentration

    NASA Astrophysics Data System (ADS)

    Temam, H. B.; Temam, E. G.

    2016-04-01

    Alloy coatings were prepared by co-deposition of Al2O3 particles in Ni matrix on carbon steel substrate from nickel chloride bath in which metallic powders were held in suspension. The influence of metal powder amount in the bath on chemical composition, morphology, thickness, microhardness and corrosion behavior of obtained coatings, has been investigated. It was shown that the presence of Al2O3 particles in deposit greatly improves the hardness and the wear resistance of alloy coatings. Characterization by microanalysis (EDX) of the various deposits elaborated confirms that the rate of particles incorporated increases as the concentration of solid particles increasing. The results showed that the presence of organic additives in Ni-Al2O3 electrolyte deposition led to an increase in the hardness and corrosion resistance of the deposits.

  10. Increasing atmospheric humidity and CO 2 concentration alleviate forest mortality risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yanlan; Parolari, Anthony J.; Kumar, Mukesh

    Climate-induced forest mortality is being increasingly observed throughout the globe. Alarmingly, it is expected to exacerbate under climate change due to shifting precipitation patterns and rising air temperature. However, the impact of concomitant changes in atmospheric humidity and CO 2 concentration through their influence on stomatal kinetics remains a subject of debate and inquiry. By using a dynamic soil–plant–atmosphere model, mortality risks associated with hydraulic failure and stomatal closure for 13 temperate and tropical forest biomes across the globe are analyzed. The mortality risk is evaluated in response to both individual and combined changes in precipitation amounts and their seasonalmore » distribution, mean air temperature, specific humidity, and atmospheric CO 2 concentration. Model results show that the risk is predicted to significantly increase due to changes in precipitation and air temperature regime for the period 2050–2069. However, this increase may largely get alleviated by concurrent increases in atmospheric specific humidity and CO 2 concentration. The increase in mortality risk is expected to be higher for needleleaf forests than for broadleaf forests, as a result of disparity in hydraulic traits. These findings will further facilitate decisions about intervention and management of different forest types under changing climate.« less

  11. Increasing atmospheric humidity and CO 2 concentration alleviate forest mortality risk

    DOE PAGES

    Liu, Yanlan; Parolari, Anthony J.; Kumar, Mukesh; ...

    2017-08-28

    Climate-induced forest mortality is being increasingly observed throughout the globe. Alarmingly, it is expected to exacerbate under climate change due to shifting precipitation patterns and rising air temperature. However, the impact of concomitant changes in atmospheric humidity and CO 2 concentration through their influence on stomatal kinetics remains a subject of debate and inquiry. By using a dynamic soil–plant–atmosphere model, mortality risks associated with hydraulic failure and stomatal closure for 13 temperate and tropical forest biomes across the globe are analyzed. The mortality risk is evaluated in response to both individual and combined changes in precipitation amounts and their seasonalmore » distribution, mean air temperature, specific humidity, and atmospheric CO 2 concentration. Model results show that the risk is predicted to significantly increase due to changes in precipitation and air temperature regime for the period 2050–2069. However, this increase may largely get alleviated by concurrent increases in atmospheric specific humidity and CO 2 concentration. The increase in mortality risk is expected to be higher for needleleaf forests than for broadleaf forests, as a result of disparity in hydraulic traits. These findings will further facilitate decisions about intervention and management of different forest types under changing climate.« less

  12. Effects of Al2O3, B2O3, Li2O, Na2O, and SiO2 on Nepheline Crystallization in Hanford High Level Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroll, Jared O.; Vienna, John D.; Schweiger, Michael J.

    2016-09-15

    Nepheline (nominally NaAlSiO4) formation during slow cooling of high-alumina (25.4 - 34.5 mass% Al2O3) Hanford high level waste glasses may significantly reduce product durability. To investigate the effects of composition on nepheline crystallization, 29 compositions were formulated by adjusting Al2O3, B2O3, Li2O, Na2O, and SiO2 around a baseline glass that precipitated 12 mass% nepheline. Thirteen of these compositions were generated by adjusting one-component-at-a-time, while two or three components were adjusted to produce the other 16 (with all remaining components staying in the same relative proportions). Quantitative X-ray diffraction was used to determine nepheline concentration in each sample. Twenty two glassesmore » precipitated nepheline, two of which also precipitated eucryptite (nominally LiAlSiO4), and one glass formed only eucryptite upon slow cooling. Increasing Na2O and Li2O had the strongest effect in promoting nepheline formation. Increasing B2O3 inhibited nepheline formation. SiO2 and Al2O3 showed non-linear behavior related to nepheline formation. The composition effects on nepheline formation in these glasses are reported.« less

  13. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis

    NASA Technical Reports Server (NTRS)

    Kitaya, Y.; Azuma, H.; Kiyota, M.

    2005-01-01

    Microalgae culture is likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality as well as aquatic higher plants. In the present study, the effects of culture conditions on the cellular multiplication of microalgae, Euglena gracilis, was investigated as a fundamental study to determine the optimum culture conditions for microalgae production in aquatic food production modules including both microalgae culture and fish culture systems. E. gracilis was cultured under conditions with five levels of temperatures (25-33 degrees C), three levels of CO2 concentrations (2-6%), five levels of O2 concentrations (10-30%), and six levels of photosynthetic photon flux (20-200 micromoles m-2 s-1). The number of Euglena cells in a certain volume of solution was monitored with a microscope under each environmental condition. The multiplication rate of the cells was highest at temperatures of 27-31 degrees C, CO2 concentration of 4%, O2 concentration of 20% and photosynthetic photon flux of about 100 micromoles m-2 s-1. The results demonstrate that E. gracilis could efficiently produce biomass and convert CO2 to O2 under relatively low light intensities in aquatic food production modules. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  14. Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass.

    PubMed

    Masai, Hirokazu; Tanimoto, Toshiro; Fujiwara, Takumi; Matsumoto, Syuji; Tokuda, Yomei; Yoko, Toshinobu

    2012-12-03

    The authors report on the correlation between the photoluminescence (PL) property and the SnO amount in SnO-ZnO-P2O5 (SZP) glass. In the PL excitation (PLE) spectra of the SZP glass containing Sn2+ emission center, two S1 states, one of which is strongly affected by SnO amount, are assumed to exist. The PLE band closely correlates with the optical band edge originating from Sn2+ species, and they both largely red-shifts with increasing amount of SnO. The emission decay time of the SZP glass decreased with increasing amount of SnO and the internal quantum efficiencies of the SZP glasses containing 1~5 mol% of SnO are comparable to that of MgWO4. It is expected that the composition-dependent S1 state (the lower energy excitation band) governs the quantum efficiency of the SZP glasses.

  15. Effects of N2-O2 and CO2-O2 tensions on growth of fungi isolated from damaged flue-cured tobacco.

    PubMed

    Yang, H; Lucas, G B

    1970-02-01

    Ten fungi, Aspergillus niger, A. flavus, A. ochraceus, A. ruber, A. repens, A. amstelodami, Alternaria tenuis, Penicillium brevi-compactum, Cladosporium herbarum, and Chaetomium dolicotrichum, were isolated from moldy flue-cured tobacco and grown in various mixtures of N(2)-O(2) or CO(2)-O(2). A 1 to 5% concentration of O(2) in an N(2) atmosphere caused the greatest change in growth of the nine species, and a 10 to 20% concentration of O(2) for A. flavus. All species, except A. amstelodami and A. ruber, grew faster in air than in mixtures containing 10% O(2). High O(2) concentrations generally inhibited furrow production in the mycelial mats. In an atmosphere of 5 to 40% O(2) in the N(2) atmosphere, furrows formed in mycelial mats between 5 and 40% O(2) in the species except for A. ruber, A. repens, and A. amstelodami, which produced none in any concentration. As O(2) decreased below 20%, spore production was progressively decreased, colony color faded to white, and cleistothecia formation was suppressed. In CO(2)-O(2) mixtures radial growth of all species increased with each quantitative decrease of CO(2). All species except A. niger grew faster in air than in 10% CO(2). In contrast to N(2)-O(2) mixtures, the fungi formed furrows, sporulation and cleistothecial formation were suppressed, and colony color changed to white in higher O(2) concentrations.

  16. Pyrite-enhanced degradation of chloramphenicol by low concentrations of H2O2.

    PubMed

    Wu, Deli; Liu, Yanxia; Zhang, Zhiyong; Ma, Luming; Zhang, Yalei

    2015-01-01

    A pyrite-catalyzed reaction was used to degrade chloramphenicol. Chloramphenicol could be almost 100% removed within 60 minutes when 1 mM H2O2 and 0.1 g/L pyrite were added at an initial pH=3. During oxidation, intermediates such as nitrobenzaldehyde and dichloroacetamide were identified by gas chromatography/mass spectrometry (GC/MS). The •OH was identified by electron spin-resonance spectroscopy. Pyrite was digested to determine elements by ICP (inductive coupled plasma emission spectrometer). To understand the reaction mechanism and the role of natural pyrite in these processes, techniques including scanning electron microscopy and energy dispersive spectrometry were employed to characterize the solid sample. The results explain that pyrite acts as a 'bond' between Fe3+ and H2O2, and this pathway continues to form •OH and inhibit the quenching reaction. Therefore, pyrite-catalyzed reactions would proceed even in low concentrations of H2O2.

  17. Thermal characteristics, Raman spectra, optical and structural properties of TiO2-Bi2O3-B2O3-TeO2 glasses

    NASA Astrophysics Data System (ADS)

    Gupta, Nupur; Khanna, Atul; Gonzàlez, Fernando; Iordanova, Reni

    2017-05-01

    Tellurite and borotellurite glasses containing Bi2O3 and TiO2 were prepared and structure-property correlations were carried out by density measurements, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Raman and UV-visible spectroscopy. Titanium tellurite glasses require high melt-cooling rates and were fabricated by splat quenching. On adding B2O3, the glass forming ability (GFA) enhances, and glasses could be synthesized at lower quenching rates. The density of glasses shows a direct correlation with molecular mass of the constituents. UV-visible studies were used to determine the optical band gap and refractive index. Raman studies found that the co-ordination number of tellurium ions with oxygen (NTe-O) decreases with the increase in B2O3 as well as Bi2O3 content while, TiO2 produce only a small decrease in NTe-O, which explains the lower GFA of titanium tellurite glasses that do not contain Bi2O3 and B2O3. DSC studies show that the glass transition temperature (Tg) increases with B2O3 and TiO2 concentrations and that Tg correlates well with bond enthalpy of the metal oxides.

  18. Salt at concentrations relevant to meat processing enhances Shiga toxin 2 production in Escherichia coli O157:H7.

    PubMed

    Harris, Shaun M; Yue, Wan-Fu; Olsen, Sarena A; Hu, Jia; Means, Warrie J; McCormick, Richard J; Du, Min; Zhu, Mei-Jun

    2012-10-15

    Escherichia coli (E. coli) O157:H7 remains a major food safety concern associated with meat, especially beef products. Shiga toxins (Stx) are key virulence factors produced by E. coli O157:H7 that are responsible for hemorrhagic colitis and Hemolytic Uremic Syndrome. Stx are heat stable and can be absorbed after oral ingestion. Despite the extensive study of E. coli O157:H7 survival during meat processing, little attention is paid to the production of Stx during meat processing. The objective of this study was to elucidate the effect of salt, an essential additive to processed meat, at concentrations relevant to meat processing (0%, 1%, 2%, 3%, W/V) on Stx2 production and Stx2 prophage induction by E. coli O157:H7 strains. For both E. coli O157:H7 86-24 and EDL933 strains, including 2% salt in LB broth decreased (P<0.05) E. coli O157:H7 population, but increased (P<0.05) Stx2 production (as measured relative to Log(10)CFU) compared to that of the control (1% salt). Supplementing 3% salt decreased (P<0.05) both E. coli O157:H7 number and Stx2 production. Quantitative RT-PCR indicated that stx2 mRNA expression in culture media containing 2% salt was greatly increased (P<0.05) compared to other salt concentrations. Consistent with enhanced Stx2 production and stx2 expression, the 2% salt group had highest lambdoid phage titer and stx2 prophage induction among all salt treatments. RecA is a key mediator of bacterial response to stress, which mediates prophage activation. Quantitative RT-PCR further indicated that recA mRNA expression was higher in both 2% and 3% salt than that of 0% and 1% salt treatments, indicating that stress was involved in enhanced Stx2 production. In conclusion, salt at the concentration used for meat processing enhances Stx production, a process linked to bacterial stress response and lambdoid prophage induction. Published by Elsevier B.V.

  19. Structural and electrical characterisation of Li(2)O : TiO(2) : SnO(2) : P(2)O(5) electrolyte glass.

    PubMed

    Abrahams, Isaac; Hadzifejzovic, Emina; Dygas, Jozef R

    2004-10-07

    Glasses of general formula 50Li(2)O : xSnO(2) : (10 -x)TiO(2) : 40P(2)O(5)(0.0 < or = x < or = 10) were investigated by differential scanning calorimetry, X-ray diffraction and ac impedance, (31)P solid-state NMR and IR spectroscopies. Three isotropic resonances can be identified in the (31)P NMR spectra, which have been assigned to various phosphate species. Analysis of the ratios of integrated intensities in the (31)P spectra leads to models for the Ti and Sn coordination environments. Both TiO(2) and SnO(2) are found to be predominantly network forming with Ti and Sn proposed to be in five- and four-coordinate environments respectively. Analysis of ac impedance spectra collected at low temperatures reveals two forms of permittivity dispersion, viz: high frequency conductivity dispersion and Cole-Cole type relaxation of permittivity. The activation energy of the relaxation frequency of the permittivity dispersion is equal to that of the dc conductivity, which is consistent with cooperative motion of lithium ions. The results also suggest that the observed increase in conductivity with temperature appears to be mainly due to an increase in mobility rather than increase in carrier concentration.

  20. Investigating the solubility and cytocompatibility of CaO-Na2 O-SiO2 /TiO2 bioactive glasses.

    PubMed

    Wren, Anthony W; Coughlan, Aisling; Smith, Courtney M; Hudson, Sarah P; Laffir, Fathima R; Towler, Mark R

    2015-02-01

    This study aims to investigate the solubility of a series of titanium (TiO2 )-containing bioactive glasses and their subsequent effect on cell viability. Five glasses were synthesized in the composition range SiO2 -Na2 O-CaO with 5 mol % of increments TiO2 substituted for SiO2 . Glass solubility was investigated with respect to (1) exposed surface area, (2) particle size, (3) incubation time, and (4) compositional effects. Ion release profiles showed that sodium (Na(+) ) presented high release rates after 1 day and were unchanged between 7 and 14 days. Calcium (Ca(2+) ) release presented a significant change at each time period and was also composition dependent, where a reduction in Ca(2+) release is observed with an increase in TiO2 concentration. Silica (Si(4+) ) release did not present any clear trends while no titanium (Ti(4+) ) was released. Cell numbers were found to increase up to 44%, compared to the growing control population, with a reduction in particle size and with the inclusion of TiO2 in the glass composition. © 2014 Wiley Periodicals, Inc.

  1. The Paradox of a Wet (High H2O) and Dry (Low H2O/Ce) Mantle: High Water Concentrations in Mantle Garnet Pyroxenites from Hawaii

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizimis, Michael

    2013-01-01

    Water dissolved as trace amounts in anhydrous minerals has a large influence on the melting behavior and physical properties of the mantle. The water concentration of the oceanic mantle is inferred from the analyses of Mid-Ocean Ridge Basalt (MORB) and Oceanic Island Basalt (OIB). but there is little data from actual mantle samples. Moreover, enriched mineralogies (pyroxenites, eclogites) are thought as important sources of heterogeneity in the mantle, but their water concentrations and their effect on the water budget and cycling in the mantle are virtually unknown. Here, we analyzed by FTIR water in garnet clinopyroxenite xenoliths from Salt Lake Crater, Oahu, Hawaii. These pyroxenites are high-pressure (>20kb) crystal fractionates from alkalic melts. The clinopyroxenes (cpx) have 260 to 576 ppm wt H2O, with the least differentiated samples (Mg#>0.8) in the 400-500 ppm range. Orthopyroxene (opx) contain 117-265 ppm H2O, about half of that of cpx, consistent with other natural sample studies, but lower than cpx/opx equilibrium from experimental data. The pyroxenite cpx and opx H2O concentrations are at the high-end of on-and off-craton peridotite xenolith concentrations and those of Hawaiian spinel peridotites. In contrast, garnet has extremely low water contents (<5ppm H2O). There is no correlation between H2O in cpx and lithophile element concentrations. Phlogopite is present in some samples, and its modal abundance shows a positive correlation in Mg# with cpx, implying equilibrium. However, there is no correlation between H2O concentrations and or the presence of phlogopite. These data imply that cpx and opx may be at water saturation, far lower than experimental data suggest. Reconstructed bulk rock pyroxenite H2O ranges from 200-460 ppm (average 331 +/- 75 ppm), 2 to 8 times higher than H2O estimates for the MORB source (50-200 ppm), but in the range of E-MORB, OIB and the source of rejuvenated Hawaiian magmas. The average bulk rock pyroxenite H2O/Ce is 69

  2. Spatial Variations in N2O Concentration and Isotopomer Composition off the Peru Coast

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Letscher, R. T.; Kock, A.; Bange, H. W.; Altabet, M. A.

    2016-02-01

    Nitrous oxide (N2O) is a potent greenhouse gas and stratospheric ozone depleting substance. The ocean is an important source of N2O to the atmosphere, accounting for up to about 30% of total emissions. However, the factors controlling N2O production and consumption in oceanic environments are still not understood nor constrained. N2O is a by-product of aerobic nitrification, and is formed by two different pathways: 1) the decomposition of hydroxylamine, an intermediate during ammonium oxidation to nitrite, or 2) the reduction of nitrite to N2O (nitrifier-denitrification). N2O is also an intermediate during denitrification under anoxic conditions. In this study, we measured N2O concentrations and isotopomer ratios, as well as O2, nutrient and biogenic N2 concentrations and the isotopic compositions of nitrate, nitrite and biogenic N2 at several coastal stations during two cruises off the Peru coast (6-14°S, 75-81°W) in December 2012 and January 2013. [N2O] varied from below equilibrium values in the OMZ to up to 238 nmol L-1 at 11 m depth at one of the shallowest stations. The isotopic composition of N2O (bulk δ15N: -5 to 30‰, δ18O: 41 to 95‰, and Site Preference: -3 to 65‰) also varied widely, with important differences between stations. Our results show a strong spatial heterogeneity in the mechanisms controlling N2O production and consumption in coastal upwelling regions, which should be taken into account in oceanic N2O models. We will discuss the contributions from different N2O production processes responsible for the observed extreme N2O accumulations.

  3. Falsely increased plasma lactate concentration due to ethylene glycol poisoning in 2 dogs.

    PubMed

    Hopper, Kate; Epstein, Steven E

    2013-01-01

    To describe false increases in plasma lactate concentration measured on point-of-care analyzers in 2 dogs with ethylene glycol (EG) intoxication. Two dogs presenting with EG intoxication had extreme increases of plasma lactate concentrations recorded on a point-of-care machine. Laboratory analysis by spectrophotometry of lactate concentration determined these lactate measurements to be erroneous. False increases in plasma lactate concentration were demonstrated in 2 out of 3 point-of-care machines tested. Glycolate, a toxic metabolite of EG, can interfere with the measurement of plasma lactate by some analyzers and this may delay the correct diagnosis of EG toxicity if not recognized. © Veterinary Emergency and Critical Care Society 2012.

  4. Effects of N2-O2 and CO2-O2 Tensions on Growth of Fungi Isolated from Damaged Flue-Cured Tobacco 1

    PubMed Central

    Yang, H.; Lucas, G. B.

    1970-01-01

    Ten fungi, Aspergillus niger, A. flavus, A. ochraceus, A. ruber, A. repens, A. amstelodami, Alternaria tenuis, Penicillium brevi-compactum, Cladosporium herbarum, and Chaetomium dolicotrichum, were isolated from moldy flue-cured tobacco and grown in various mixtures of N2-O2 or CO2-O2. A 1 to 5% concentration of O2 in an N2 atmosphere caused the greatest change in growth of the nine species, and a 10 to 20% concentration of O2 for A. flavus. All species, except A. amstelodami and A. ruber, grew faster in air than in mixtures containing 10% O2. High O2 concentrations generally inhibited furrow production in the mycelial mats. In an atmosphere of 5 to 40% O2 in the N2 atmosphere, furrows formed in mycelial mats between 5 and 40% O2 in the species except for A. ruber, A. repens, and A. amstelodami, which produced none in any concentration. As O2 decreased below 20%, spore production was progressively decreased, colony color faded to white, and cleistothecia formation was suppressed. In CO2-O2 mixtures radial growth of all species increased with each quantitative decrease of CO2. All species except A. niger grew faster in air than in 10% CO2. In contrast to N2-O2 mixtures, the fungi formed furrows, sporulation and cleistothecial formation were suppressed, and colony color changed to white in higher O2 concentrations. PMID:5461786

  5. A comparative study of the magnetization in transition metal ion doped CeO2, TiO2 and SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.

    2018-05-01

    Using the microscopic s-d model taking into account anharmonic spin-phonon interactions we have studied the magnetic properties of Co and Cu ion doped CeO2 and TiO2 nanoparticles and compared them with those of SnO2. By Co-doping there is a maximum in the magnetization M(x) curve for all nanoparticles observed in the most transition metal doped ones. The s-d interaction plays an important role by the decrease of M at higher dopant concentration. We have discussed the magnetization in dependence of different model parameters. By small Cu-ion doping there are some differences. In CeO2M decreases with the Cu-concentration, whereas in TiO2 and SnO2M increases. For higher Cu dopant concentrations M(X) decreases in TiO2 nanoparticles. We obtain room temperature ferromagnetism also in Zn doped CeO2, TiO2 and SnO2 nanoparticles, i.e. in non-transition metal ion doped ones. The different behavior of M in Co and Cu doped nanoparticles is due to a combination effect of multivalent metal ions, oxygen vacancies, different radius of cation dopants, connection between lattice and magnetism, as well as competition between the s-d and d-d ferromagnetic or antiferromagnetic interactions.

  6. Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors

    PubMed Central

    2012-01-01

    Uniform, spherical-shaped TiO2:Eu nanoparticles with different doping concentrations have been synthesized through controlled hydrolysis of titanium tetrabutoxide under appropriate pH and temperature in the presence of EuCl3·6H2O. Through air annealing at 500°C for 2 h, the amorphous, as-grown nanoparticles could be converted to a pure anatase phase. The morphology, structural, and optical properties of the annealed nanostructures were studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy [EDS], and UV-Visible diffuse reflectance spectroscopy techniques. Optoelectronic behaviors of the nanostructures were studied using micro-Raman and photoluminescence [PL] spectroscopies at room temperature. EDS results confirmed a systematic increase of Eu content in the as-prepared samples with the increase of nominal europium content in the reaction solution. With the increasing dopant concentration, crystallinity and crystallite size of the titania particles decreased gradually. Incorporation of europium in the titania particles induced a structural deformation and a blueshift of their absorption edge. While the room-temperature PL emission of the as-grown samples is dominated by the 5D0 - 7Fj transition of Eu+3 ions, the emission intensity reduced drastically after thermal annealing due to outwards segregation of dopant ions. PMID:22214494

  7. Effect of precursor concentration and film thickness deposited by layer on nanostructured TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    Sol-gel spin coating method is used in the production of nanostructured TiO2 thin film. The surface topology and morphology was observed using the Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The electrical properties were investigated by using two probe current-voltage (I-V) measurements to study the electrical resistivity behavior, hence the conductivity of the thin film. The solution concentration will be varied from 14.0 to 0.01wt% with 0.02wt% interval where the last concentration of 0.02 to 0.01wt% have 0.01wt% interval to find which concentrations have the highest conductivity then the optimized concentration's sample were chosen for the thickness parameter based on layer by layer deposition from 1 to 6 layer. Based on the result, the lowest concentration of TiO2, the surface becomes more uniform and the conductivity will increase. As the result, sample of 0.01wt% concentration have conductivity value of 1.77E-10 S/m and will be advanced in thickness parameter. Whereas in thickness parameter, the 3layer deposition were chosen as its conductivity is the highest at 3.9098E9 S/m.

  8. Luminescence and energy transfer of Tb3+-doped BaO-Gd2O3-Al2O3-B2O3-SiO2 glasses.

    PubMed

    Zuo, Chenggang; Huang, Jinze; Liu, Shaoyou; Xiao, Anguo; Shen, Youming; Zhang, Xiangyang; Zhou, Zhihua; Zhu, Ligang

    2017-12-05

    Transparent Tb 3+ -doped BaO-Gd 2 O 3 -Al 2 O 3 -B 2 O 3 -SiO 2 glasses with the greater than 4g/cm 3 were prepared by high temperature melting method and its luminescent properties have been investigated by measured UV-vis transmission, excitation, emission and luminescence decay spectra. The transmission spectrum shows there are three weak absorption bands locate at about 312, 378 and 484nm in the glasses and it has good transmittance in the visible spectrum region. Intense green emission can be observed under UV excitation. The effective energy transfer from Gd 3+ ion to Tb 3+ ion could occur and sensitize the luminescence of Tb 3+ ion. The green emission intensity of Tb 3+ ion could change with the increasing SiO 2 /B 2 O 3 ratio in the borosilicate glass matrix. With the increasing concentration of Tb 3+ ion, 5 D 4 → 7 F J transitions could be enhanced through the cross relaxation between the two nearby Tb 3+ ions. Luminescence decay time of 2.12ms from 546nm emission is obtained. The results indicate that Tb 3+ -doped BaO-Gd 2 O 3 -Al 2 O 3 -B 2 O 3 -SiO 2 glasses would be potential scintillating material for applications in X-ray imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site.

    PubMed

    Kim, You Jin; He, Wenmei; Ko, Daegeun; Chung, Haegeun; Yoo, Gayoung

    2017-12-31

    Atmospheric carbon dioxide (CO 2 ) concentrations is continuing to increase due to anthropogenic activity, and geological CO 2 storage via carbon capture and storage (CCS) technology can be an effective way to mitigate global warming due to CO 2 emission. However, the possibility of CO 2 leakage from reservoirs and pipelines exists, and such leakage could negatively affect organisms in the soil environment. Therefore, to determine the impacts of geological CO 2 leakage on plant and soil processes, we conducted a greenhouse study in which plants and soils were exposed to high levels of soil CO 2 . Cabbage, which has been reported to be vulnerable to high soil CO 2 , was grown under BI (no injection), NI (99.99% N 2 injection), and CI (99.99% CO 2 injection). Mean soil CO 2 concentration for CI was 66.8-76.9% and the mean O 2 concentrations in NI and CI were 6.6-12.7%, which could be observed in the CO 2 leaked soil from the pipelines connected to the CCS sites. The soil N 2 O emission was increased by 286% in the CI, where NO 3 - -N concentration was 160% higher compared to that in the control. This indicates that higher N 2 O emission from CO 2 leakage could be due to enhanced nitrification process. Higher NO 3 - -N content in soil was related to inhibited plant metabolism. In the CI treatment, chlorophyll content decreased and chlorosis appeared after 8th day of injection. Due to the inhibited root growth, leaf water and nitrogen contents were consistently lowered by 15% under CI treatment. Our results imply that N 2 O emission could be increased by the secondary effects of CO 2 leakage on plant metabolism. Hence, monitoring the environmental changes in rhizosphere would be very useful for impact assessment of CCS technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Room temperature radiolytic synthesized Cu@CuAlO(2)-Al(2)O(3) nanoparticles.

    PubMed

    Abedini, Alam; Saion, Elias; Larki, Farhad; Zakaria, Azmi; Noroozi, Monir; Soltani, Nayereh

    2012-01-01

    Colloidal Cu@CuAlO(2)-Al(2)O(3) bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a (60)Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO(2)-Al(2)O(3) nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO(2)-Al(2)O(3) nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation.

  11. Synthesis of nano-TiO2 photocatalysts with tunable Fe doping concentration from Ti-bearing tailings

    NASA Astrophysics Data System (ADS)

    Sui, Yulei; Liu, Qingxia; Jiang, Tao; Guo, Yufeng

    2018-01-01

    In this work, highly pure nano-TiO2 photocatalysts with varying Fe doping concentration were successfully synthesized from low-cost Ti-bearing tailings by an acidolysis-hydrothermal route. The effects of H2SO4 concentration, leaching temperature, acid/tailings ratio and leaching time on the recovery of TiO2 from the tailings were investigated. Synthesized samples were characterized by XRD, TEM, EDS, XPS, and UV-vis spectroscopy. The results showed that the material prepared is characteristic anatase with the average size of 20 nm and the Fe doping concentration in the synthesized nano-TiO2 is tunable. The photocatalytic activity of synthesized nano-TiO2 photocatalyst was also evaluated by the photodegradation of Rhodamine B under visible light and UV light irradiation. Our study demonstrates a low-cost approach to synthesize highly efficient and visible light responsive catalysts.

  12. Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells.

    PubMed

    Yang, Tianle; Chan, Noel Yan-Ki; Sauve, Anthony A

    2007-12-27

    A new two-step methodology achieves stereoselective synthesis of beta-nicotinamide riboside and a series of related amide, ester, and acid nucleosides. Compounds were prepared through a triacetylated-nicotinate ester nucleoside, via coupling of either ethylnicotinate or phenylnicotinate with 1,2,3,5-tetra-O-acetyl-beta-D-ribofuranose. Nicotinamide riboside, nicotinic acid riboside, O-ethylnicotinate riboside, O-methylnicotinate riboside, and several N-alkyl derivatives increased NAD+ concentrations from 1.2-2.7-fold in several mammalian cell lines. These findings establish bioavailability and potent effects of these nucleosides in stimulating the increase of NAD+ concentrations in mammalian cells.

  13. NO2/NO partitioning as a test of stratospheric ClO concentrations over Antarctica

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.

    1987-01-01

    Physical conditions in the 10-20 km region of the Antarctic stratosphere make the (NO2)/(NO) ratio particularly sensitive to high chlorine levels in the form of ClO. According to simple known photochemical relationships between NO2, NO, ClO, and O3, high ClO levels of 1 ppbv over Antarctica must be accompanied by large values of the (NO2)/(NO) ratio. At high ClO abundances, the (NO2)/(NO) ratio is approximately proportional to the ClO concentration. It is proposed that in-situ measurements of the (NO2)/(NO) ratio could be used to test the high chlorine hypothesis.

  14. Structural, mechanical and optical investigations in the TeO2-rich part of the TeO2-GeO2-ZnO ternary glass system

    NASA Astrophysics Data System (ADS)

    Ghribi, N.; Dutreilh-Colas, M.; Duclère, J.-R.; Gouraud, F.; Chotard, T.; Karray, R.; Kabadou, A.; Thomas, P.

    2015-02-01

    Stable glasses are successfully synthesized in the TeO2-GeO2-ZnO system at 850 °C by the melt-quenching method and the glass forming domain is determined in the TeO2-rich part of the diagram. The thermal study, carried out using differential scanning calorimetry, reveals that the glass transition temperature, as well as the thermal stability, increases with the addition of ZnO or GeO2. Bulk glass samples are elaborated within two series of compositions, corresponding to fixed concentrations in GeO2 (respectively 5 or 10 mol. %), and to various contents in ZnO. Structural changes caused by the ZnO addition are discussed based on Raman spectroscopy data. A progressive but very moderate network depolymerization is shown with increasing amount of ZnO. However, two different regimes can be identified, depending on the ZnO content. It is believed that ZnO acts as a network modifier for compositions below 20 mol. %, and starts to participate as a glass network former over such concentration. It is well evidenced that GeO2 contributes to the increase in Young's modulus E, evaluated from ultrasonic echography measurements. In addition, this oxide favors the network reticulation detected by the decrease of the Poisson ratio and the increase of the fractal bond connectivity. However, the role of ZnO is more complicated and will be extensively discussed. The decrease in the atomic packing density Cg probably explains the global evolution of E as a function of ZnO content. The refractive indices and optical band gap energies are extracted from UV-Visible-NIR optical transmission data. For the studied glasses, it is found that the transmission threshold decreases with larger ZnO contents, reflecting the increase in the optical band gap value. Refractive index is finally seen to decrease as a function of both ZnO and GeO2 contents. Such variation is explained by the decrease of the molar electronic polarizability, and by the lower optical basicity values known for TeO3 entities

  15. Increased photocatalytic activity induced by TiO2/Pt/SnO2 heterostructured films

    NASA Astrophysics Data System (ADS)

    Testoni, Glaucio O.; Amoresi, Rafael A. C.; Lustosa, Glauco M. M. M.; Costa, João P. C.; Nogueira, Marcelo V.; Ruiz, Miguel; Zaghete, Maria A.; Perazolli, Leinig A.

    2018-02-01

    In this work, a high photocatalytic activity was attained by intercalating a Pt layer between SnO2 and TiO2 semiconductors, which yielded a TiO2/Pt/SnO2 - type heterostructure used in the discoloration of blue methylene (MB) solution. The porous films and platinum layer were obtained by electrophoretic deposition and DC Sputtering, respectively, and were both characterized morphologically and structurally by FE-SEM and XRD. The films with the Pt interlayer were evaluated by photocatalytic activity through exposure to UV light. An increase in efficiency of 22% was obtained for these films compared to those without platinum deposition. Studies on the reutilization of the films pointed out high efficiency and recovery of the photocatalyst, rendering the methodology favorable for the construction of fixed bed photocatalytic reactors. A proposal associated with the mechanism is discussed in this work in terms of the difference in Schottky barrier between the semiconductors and the electrons transfer and trapping cycle. These are fundamental factors for boosting photocatalytic efficiency.

  16. Crystallization of MgFe2O4 from a glass in the system K2O/B2O3/MgO/P2O5/Fe2O3

    NASA Astrophysics Data System (ADS)

    El Shabrawy, Samha; Bocker, Christian; Rüssel, Christian

    2016-10-01

    Spherical magnetic Mg-Fe-O nanoparticles were successfully prepared by the crystallization of glass in the system K2O/B2O3/MgO/P2O5/Fe2O3. The magnetic glass ceramics were prepared by melting the raw materials using the conventional melt quenching technique followed by a thermal treatment at temperatures in the range 560-700 °C for a time ranging from 2 to 8 h. The studies of the X-ray diffraction, electron microscopy and FTIR spectra confirmed the precipitation of finely dispersed spherical (Mg, Fe) based spinel nanoparticles with a minor quantity of hematite (α-Fe2O3) in the glass matrix. The average size of the magnetic nano crystals increases slightly with temperature and time from 9 to 15 nm as determined by the line broadening from the XRD patterns. XRD studies show that annealing the glass samples for long periods of time at temperature ≥604 °C results in an increase of the precipitated hematite concentration, dissolution of the spinel phase and the formation of magnesium di-borate phase (Mg2B2O5). For electron microscopy, the particles were extracted by two methods; (i) replica extraction technique and (ii) dissolution of the glass matrix by diluted acetic acid. An agglomeration of the nano crystals to larger particles (25-35 nm) was observed.

  17. High-accuracy measurements of N2O concentration and site-specific nitrogen isotopes in small or high concentration samples

    NASA Astrophysics Data System (ADS)

    Palmer, M. R.; Arata, C.; Huang, K.

    2014-12-01

    Nitrous oxide (N2O) gas is among the major contributors to global warming and ozone depletion in stratosphere. Quantitative estimate of N­2O production in various pathways and N­2O fluxes across different reservoirs is the key to understanding the role of N­2O in the global change. To achieve this goal, accurate and concurrent measurement of both N2O concentration ([N2O]) and its site-specific isotopic composition (SP-δ15N), namely δ15Nα and δ15Nβ, is desired. Recent developments in Cavity Ring-Down Spectroscopy (CRDS) have enabled high precision measurements of [N2O] and SP-δ15N of a continuous gas flow. However, many N­­2O samples are discrete with limited volume (< 500 ml), and/or high [N2O] (> 2 ppm), and are not suitable for direct measurements by CRDS. Here we present results of a Small Sample Isotope Module 2 (SSIM2) which is coupled to and automatically coordinated with a Picarro isotopic N2O CRDS analyzer to handle and measure high concentration and/or small volume samples. The SSIM2 requires 20 ml of sample per analysis, and transfers the sample to the CRDS for high precision measurement. When the sample injection is < 20 ml, a zero gas is optionally filled to make up the volume. We used the SSIM2 to dilute high [N2O] samples and < 20 ml samples, and tested the effect of dilution on the measured SP-δ15N. In addition, we employed and tested a newly developed double injection method for samples adequate for two 20 ml injections. After the SSIM2 and the CRDS cavity was primed with the first injection, the second injection, which has negligible dilution of the sample, can be accurately measured for both [N2O] and SP-δ15N. Results of these experiments indicate that the precision of SSIM2-CRDS is similar to that of the continuous measurements using the CRDS alone, and that dilution has minimal effect on SP-δ15N, as along as the [N2O] is > 300 ppb after dilution. Overall, the precision of SP-δ15N measured using the SSIM2 is < 0.5 ‰.

  18. Effect of the CTAB concentration on the upconversion emission of ZrO 2:Er 3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    López-Luke, T.; De la Rosa, E.; Sólis, D.; Salas, P.; Angeles-Chavez, C.; Montoya, A.; Díaz-Torres, L. A.; Bribiesca, S.

    2006-10-01

    Upconversion emission of ZrO 2:Er 3+ (0.2 mol%) nanophosphor were studied as function of surfactant concentration after excitation at 968 nm. The strong green emission was produced by the transition 2H 11/2 + 4S 3/2 → 4I 15/2 and was explained in terms of cooperative energy transfer between neighboring ions. The upconverted signal was enhanced but the fluorescence decay time was reduced as either the surfactant concentration increases or the annealing time reduces. Experimental results show that surfactant concentration controls the particle size and morphology while annealing time control the phase composition and crystallite size. The highest intensity was obtained for a sample composed of a mixture of tetragonal (33 wt.%) and monoclinic (67 wt.%) phase with crystallite size of 31 and 59 nm, respectively. This result suggests that tetragonal crystalline structure and small crystallite size are more favorable for the upconversion emission.

  19. Physical and optical studies of BaO-TeO2-TiO2-B2O3 glasses containing Cu2+ transition metal ion

    NASA Astrophysics Data System (ADS)

    Srinivas, B.; Kumar, R. Vijaya; Hameed, Abdul; Sagar, D. Karuna; Chary, M. Narasimha; Shareefuddin, Md.

    2018-05-01

    Glasses with the composition xBaO-(30-x) TeO2-10TiO2-59B2O3-1CuO (where x = 10, 15, 20 and 25 mole %) were prepared by melt quenching technique. The XRD studies were made on these glass samples at room temperature. The amorphous nature of the glass samples was confirmed from the XRD patterns. The physical parameters such as density (ρ), molar volume (Vm), average boron-boron separation (dB-B) and oxygen packing density (OPD) were calculated. The change in density and molar volume has been investigated in terms of the variation of BaO in the glass composition. The optical absorption spectra have been recorded at room temperature. The values of optical band gap have been estimated from the ASF and Tauc's methods. Both Tauc's and ASF methods have been showing progressively increasing indirect optical band gap values with the increase of BaO concentrations.

  20. Optimization of NO oxidation by H2O2 thermal decomposition at moderate temperatures.

    PubMed

    Zhao, Hai-Qian; Wang, Zhong-Hua; Gao, Xing-Cun; Liu, Cheng-Hao; Qi, Han-Bing

    2018-01-01

    H2O2 was adopted to oxidize NO in simulated flue gas at 100-500°C. The effects of the H2O2 evaporation conditions, gas temperature, initial NO concentration, H2O2 concentration, and H2O2:NO molar ratio on the oxidation efficiency of NO were investigated. The reason for the narrow NO oxidation temperature range near 500°C was determined. The NO oxidation products were analyzed. The removal of NOx using NaOH solution at a moderate oxidation ratio was studied. It was proven that rapid evaporation of the H2O2 solution was critical to increase the NO oxidation efficiency and broaden the oxidation temperature range. the NO oxidation efficiency was above 50% at 300-500°C by contacting the outlet of the syringe needle and the stainless-steel gas pipe together to spread H2O2 solution into a thin film on the surface of the stainless-steel gas pipe, which greatly accelerated the evaporation of H2O2. The NO oxidation efficiency and the NO oxidation rate increased with increasing initial NO concentration. This method was more effective for the oxidation of NO at high concentrations. H2O2 solution with a concentration higher than 15% was more efficient in oxidizing NO. High temperatures decreased the influence of the H2O2 concentration on the NO oxidation efficiency. The oxidation efficiency of NO increased with an increase in the H2O2:NO molar ratio, but the ratio of H2O2 to oxidized NO decreased. Over 80% of the NO oxidation product was NO2, which indicated that the oxidation ratio of NO did not need to be very high. An 86.7% NO removal efficiency was obtained at an oxidation ratio of only 53.8% when combined with alkali absorption.

  1. Optimization of NO oxidation by H2O2 thermal decomposition at moderate temperatures

    PubMed Central

    Wang, Zhong-hua; Gao, Xing-cun; Liu, Cheng-hao; Qi, Han-bing

    2018-01-01

    H2O2 was adopted to oxidize NO in simulated flue gas at 100–500°C. The effects of the H2O2 evaporation conditions, gas temperature, initial NO concentration, H2O2 concentration, and H2O2:NO molar ratio on the oxidation efficiency of NO were investigated. The reason for the narrow NO oxidation temperature range near 500°C was determined. The NO oxidation products were analyzed. The removal of NOx using NaOH solution at a moderate oxidation ratio was studied. It was proven that rapid evaporation of the H2O2 solution was critical to increase the NO oxidation efficiency and broaden the oxidation temperature range. the NO oxidation efficiency was above 50% at 300–500°C by contacting the outlet of the syringe needle and the stainless-steel gas pipe together to spread H2O2 solution into a thin film on the surface of the stainless-steel gas pipe, which greatly accelerated the evaporation of H2O2. The NO oxidation efficiency and the NO oxidation rate increased with increasing initial NO concentration. This method was more effective for the oxidation of NO at high concentrations. H2O2 solution with a concentration higher than 15% was more efficient in oxidizing NO. High temperatures decreased the influence of the H2O2 concentration on the NO oxidation efficiency. The oxidation efficiency of NO increased with an increase in the H2O2:NO molar ratio, but the ratio of H2O2 to oxidized NO decreased. Over 80% of the NO oxidation product was NO2, which indicated that the oxidation ratio of NO did not need to be very high. An 86.7% NO removal efficiency was obtained at an oxidation ratio of only 53.8% when combined with alkali absorption. PMID:29668672

  2. Effect of the SiO 2 support on the catalytic performance of Ag/ZrO 2/SiO 2 catalysts for the single-bed production of butadiene from ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Vanessa Lebarbier; Flake, Matthew D.; Lemmon, Teresa L.

    A ternary Ag/ZrO 2/SiO 2 catalyst system was studied for single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO 2 loading, and choice of SiO 2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO 2/SiO 2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325°C, 1 atm, and 0.23 h –1). Several classes of silica—silica gels, fumed silicas, mesoporous silicas)—were evaluated as catalyst supports, and SBA-16 was found to be the most promising choice. Themore » SiO 2 support was found to significantly influence both conversion and selectivity. A higher SiO 2 catalyst surface area facilitates increased Ag dispersion which leads to greater conversion due to the accelerated initial ethanol dehydrogenation reaction step. By independently varying Ag and ZrO 2 loading, Ag was found to be the main component that affects ethanol conversion. ZrO 2 loading and thus Lewis acid sites concentration was found to have little impact on the ethanol conversion. Butadiene selectivity depends on the concentration of Lewis acid site, which in turn differs depending on the choice of SiO 2 support material. We observed a direct relationship between butadiene selectivity and concentration of Lewis acid sites. Butadiene selectivity decreases as the concentration of Lewis acid sites increases, which corresponds to an increase in ethanol dehydration to ethylene and diethyl ether. Additionally, adding H 2 to the feed had little effect on conversion while improving catalytic stability; however, selectivity to butadiene decreased. Lastly, catalyst regenerability was successfully demonstrated for several cycles.« less

  3. Effect of the SiO 2 support on the catalytic performance of Ag/ZrO 2/SiO 2 catalysts for the single-bed production of butadiene from ethanol

    DOE PAGES

    Dagle, Vanessa Lebarbier; Flake, Matthew D.; Lemmon, Teresa L.; ...

    2018-05-19

    A ternary Ag/ZrO 2/SiO 2 catalyst system was studied for single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO 2 loading, and choice of SiO 2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO 2/SiO 2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325°C, 1 atm, and 0.23 h –1). Several classes of silica—silica gels, fumed silicas, mesoporous silicas)—were evaluated as catalyst supports, and SBA-16 was found to be the most promising choice. Themore » SiO 2 support was found to significantly influence both conversion and selectivity. A higher SiO 2 catalyst surface area facilitates increased Ag dispersion which leads to greater conversion due to the accelerated initial ethanol dehydrogenation reaction step. By independently varying Ag and ZrO 2 loading, Ag was found to be the main component that affects ethanol conversion. ZrO 2 loading and thus Lewis acid sites concentration was found to have little impact on the ethanol conversion. Butadiene selectivity depends on the concentration of Lewis acid site, which in turn differs depending on the choice of SiO 2 support material. We observed a direct relationship between butadiene selectivity and concentration of Lewis acid sites. Butadiene selectivity decreases as the concentration of Lewis acid sites increases, which corresponds to an increase in ethanol dehydration to ethylene and diethyl ether. Additionally, adding H 2 to the feed had little effect on conversion while improving catalytic stability; however, selectivity to butadiene decreased. Lastly, catalyst regenerability was successfully demonstrated for several cycles.« less

  4. Exposure to TiO2 nanoparticles increases Staphylococcusaureusinfection of HeLa cells

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wei, Ming-Tzo; Walker, Stephen. G.; Wang, Hong Zhan; Gondon, Chris; Brink, Peter; Guterman, Shoshana; Zawacki, Emma; Applebaum, Eliana; Rafailovich, Miriam; Ou-Yang, H. Daniel; Mironava, Tatsiana

    TiO2 is one of the most common nanoparticles in industry from food additives to energy generation. Even though TiO2 is also used as an anti-bacterial agent in combination with UV, we found that, in the absence of UV, exposure of HeLa cells to TiO2 nanoparticles largely increased their risk of bacterial invasion. HeLa cells cultured with low dosage rutile and anatase TiO2 nanoparticles (0.1 mg/ml) for 24 hrs prior to exposure to bacteria had 350% and 250% respectively more bacteria infected per cell. The increase was attributed to increased LDH leakage, and changes in the mechanical response of the cell membrane. On the other hand, macrophages exposed to TiO2 particles ingested 40% fewer bacteria, further increasing the risk of infection. In combination, these two factors raise serious concerns regarding the impact of exposure to TiO2 nanoparticles on the ability of organisms to resist bacterial infection.

  5. Dependence of transition temperature on hole concentration per CuO2 sheet in the Bi-based superconductors

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Seehra, M. S.

    1991-01-01

    The recently observed variations of the transition temperature (T sub c) with oxygen content in the Bi based (2212) and (2223) superconductors are analyzed in terms of p+, the hole concentration per CuO2 sheet. This analysis shows that in this system, T sub c increases with p+ initially, reaching maxima at p+ = 0.2 approx. 0.3, followed by monotonic decrease of T sub c with p+. The forms of these variations are similar to those observed in the La(2-x)Sr(x)CuO4 and YBa2Cu3Oy systems, suggesting that p+ may be an important variable governing superconductivity in the cuprate superconductors.

  6. Simulation and experiment on the catalytic degradation of high-concentration SF6 on TiO2 surface under UV light

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Li, Yalong; Cui, Zhaolun; Chen, Dachang; Zhang, Xiaoxing

    2018-05-01

    The high-temperature effect gas SF6 is used in the power industry, and its emissions are increasing daily. Therefore, the degradation of SF6 is particularly important. In this work, SF6 with a high concentration of 2% was degraded using the catalytic principle of TiO2 under UV light at normal temperature and pressure. Experimental results proved that this method can effectively degrade SF6. Moreover, the addition of TiO2 can effectively increase the degradation rate of SF6. The degradation of eight pieces of TiO2 with a unit area of 3 cm2 was 8.98% after 3 h of catalysis. FTIR spectral analysis showed that the main degradation products were SO2F2, SiF4, SF4, and SO2. Adding H2O can further increase the degradation rate, which can reach 27.22% in 3 h. The main degradation products were SO2F2, SiF4, SF4, SiH4, HF, and SO2. Finally, simulations verified the catalytic decomposition of SF6 on the surface of TiO2.

  7. Increased photocatalytic activity of TiO 2 mesoporous microspheres from codoping with transition metals and nitrogen

    DOE PAGES

    Mathis, John E.; Lieffers, Justin J.; Mitra, Chandrima; ...

    2015-11-06

    The composition of anatase TiO 2 was modified by codoping using combinations of a transition metal and nitrogen in order to increase its photocatalytic activity and extend it performance in the visible region of the electromagnetic spectrum. The transition metals (Mn, Co, Ni, Cu) were added during the hydrothermal preparation of mesoporous TiO 2 particles, and the nitrogen was introduced by post-annealing in flowing ammonia gas at high temperature. The samples were analyzed by SEM, XRD, BET, inductively-coupled plasma spectroscopy, and diffuse reflectance UV-vis spectroscopy. The photocatalytic activity was assessed by observing the change in methylene blue concentrations under bothmore » UV-vis and visible-only light irradiation. As a result, the photocatalytic activity of the (Mn,N), (Co,N), (Cu,N), and Ni,N) codoped TiO 2 was significantly enhanced relative to (N) TiO 2.« less

  8. Trends of NOx, NO2 and O3 concentrations at three different types of air quality monitoring stations in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Mavroidis, I.; Ilia, M.

    2012-12-01

    This work presents a systematic analysis and evaluation of the historic and current levels of atmospheric pollution in the Athens metropolitan region, regarding nitrogen oxides (NOx = NO + NO2), ozone (O3) and the NO2/NOx and NO/NO2 concentration ratios. Hourly, daily, monthly, seasonal and annual pollutant variations are examined and compared, using the results of concentration time series from three different stations of the national network for air pollution monitoring, one urban-traffic, one urban-background and one suburban-background. Concentration data are also related to meteorological parameters. The results show that the traffic affected station of Patission Street presents the higher NOx values and the lower concentrations of O3, while it is the station with the highest number of NO2 limit exceedances. The monitoring data suggest, inter alia, that there is a change in the behaviour of the suburban-background station of Liossia at about year 2000, indicating that the exact location of this station may need to be reconsidered. Comparison of NOx concentrations in Athens with concentrations in urban areas of other countries reveal that the Patission urban-traffic station records very high NOx concentrations, while remarkably high is the ratio of NO2 concentrations recorded at the urban-traffic vs. the urban-background station in Athens, indicating the overarching role of vehicles and traffic congestion on NO2 formation. The NO2/NOx ratio in the urban-traffic station appears to be almost constant with time, while it has been increasing in other urban areas, such as London and Seoul, suggesting an increased effect of primary NO2 in these areas. Diesel passenger cars were only recently allowed in Athens and, therefore, NO2 trends should be carefully monitored since a possible increase in primary NO2 may affect compliance with NO2 air quality standards.

  9. Room Temperature Radiolytic Synthesized Cu@CuAlO2-Al2O3 Nanoparticles

    PubMed Central

    Abedini, Alam; Saion, Elias; Larki, Farhad; Zakaria, Azmi; Noroozi, Monir; Soltani, Nayereh

    2012-01-01

    Colloidal Cu@CuAlO2-Al2O3 bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a 60Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO2-Al2O3 nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO2-Al2O3 nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation. PMID:23109893

  10. Potential short-term losses of N2O and N2 from high concentrations of biogas digestate in arable soils

    NASA Astrophysics Data System (ADS)

    Fiedler, Sebastian Rainer; Augustin, Jürgen; Wrage-Mönnig, Nicole; Jurasinski, Gerald; Gusovius, Bertram; Glatzel, Stephan

    2017-09-01

    Biogas digestate (BD) is increasingly used as organic fertilizer, but has a high potential for NH3 losses. Its proposed injection into soils as a countermeasure has been suggested to promote the generation of N2O, leading to a potential trade-off. Furthermore, the effect of high nutrient concentrations on N2 losses as they may appear after injection of BD into soil has not yet been evaluated. Hence, we performed an incubation experiment with soil cores in a helium-oxygen atmosphere to examine the influence of soil substrate (loamy sand, clayey silt), water-filled pore space (WFPS; 35, 55, 75 %) and application rate (0, 17.6 and 35.2 mL BD per soil core, 250 cm3) on the emission of N2O, N2 and CO2 after the usage of high loads of BD. To determine the potential capacity for gaseous losses, we applied anaerobic conditions by purging with helium for the last 24 h of incubation. Immediate N2O and N2 emissions as well as the N2 / (N2O+N2) product ratio depended on soil type and increased with WFPS, indicating a crucial role of soil gas diffusivity for the formation and emission of nitrogenous gases in agricultural soils. However, emissions did not increase with the application rate of BD. This is probably due to an inhibitory effect of the high NH4+ content of BD on nitrification. Our results suggest a larger potential for N2O formation immediately following BD injection in the fine-textured clayey silt compared to the coarse loamy sand. By contrast, the loamy sand showed a higher potential for N2 production under anaerobic conditions. Our results suggest that short-term N losses of N2O and N2 after injection may be higher than probable losses of NH3 following surface application of BD.

  11. Temporal mismatch between induction of superoxide dismutase and ascorbate peroxidase correlates with high H2O2 concentration in seawater from clofibrate-treated red algae Kappaphycus alvarezii.

    PubMed

    Barros, Marcelo P; Granbom, Malena; Colepicolo, Pio; Pedersén, Marianne

    2003-12-01

    Algal cells have developed different strategies to cope with the common environmentally promoted generation of H(2)O(2), which include induction of catalase (CAT) and ascorbate peroxidase (APX), massive H(2)O(2) release in seawater, and synthesis of volatile halocarbons by specific peroxidases. The antioxidant adaptability of the economically important carrageenophyte Kappaphycus alvarezii (Doty) Doty (Gigartinales: Rhodophyta) was tested here against exposure to clofibrate (CFB), a known promoter of peroxisomal beta-oxidation in mammals and plants. Possibly as a consequence of CFB-induced H2O2 peroxisomal production, the maximum concentration of H(2)O(2) in the seawater of red algae cultures was found to occur (120+/-17 min) after the addition of CFB, which was followed by a significant decrease in the photosynthetic activity of PSII after 24 h. Interestingly, 4 h after the addition of CFB, the total SOD activity was about 2.5-fold higher than in the control, whereas no significant changes were observed in lipoperoxidation levels (TBARS) or in CAT and APX activities. The two H(2)O(2)-scavenging enzymes were only induced later (after 72 h), whereupon CAT showed a dose-dependent response with increasing concentrations of CFB. A more pronounced increase of TBARS concentration than in the controls was evidenced when a 50 microM Fe(2+/3+) solution (3:2 ratio) was added to CFB-treated cultures, suggesting that the combination of exacerbated H(2)O(2) levels in the seawater-in this work, caused by CFB exposure-and Fenton-reaction catalyst (ferric/ferrous ions), imposes harsh oxidative conditions on algal cultures. The bulk of data suggests that K. alvarezii possesses little ability to promptly induce CAT and APX compared to the immediately responsive antioxidant enzyme SOD and, to avoid harmful accumulation of H(2)O(2), the red alga presumably releases H(2)O(2) into the surrounding medium as an alternative mechanism.

  12. Enhanced bio-concentration of tris(1,3-dichloro-2-propyl) phosphate in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish.

    PubMed

    Ren, Xin; Zhao, Xuesong; Duan, Xiaoyue; Fang, Ziwei

    2018-02-01

    Interactions between organic toxicants and nano-particles in the aquatic environment may modify toxicant bioavailability and consequently the toxicant's fate and toxicity. To evaluate the potential impact of nano-titanium dioxide (TiO 2 ) on the bio-concentration and reproductive endocrine disruption of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) in fish, a comparative bioaccumulation study was conducted on zebrafish (Danio rerio, AB strain) treated with 0, 5.74, 23.6, or 90.7 μg L -1 TDCIPP alone or co-exposed to TDCIPP and 0.09 mg L -1 nano-TiO 2 for 21 days. Nano-TiO 2 can absorb TDCIPP and nano-TiO 2 is taken up into zebrafish. Chemical measurements showed that TDCIPP was bio-concentrated in zebrafish, and the highest level was detected in the liver, followed by the brain and gonads. Compared with TDCIPP treatment, increased tissue burdens of both TDCIPP were observed in the liver, brain, and gonads suggesting that nano-TiO 2 adsorbed TDCIPP and acted as a carrier facilitating the uptake and translocation of TDCIPP in tissues. Higher bio-concentration in the presence of nano-TiO 2 resulted in a significant decrease in the hepatic-somatic index, gonad-somatic index and brain-somatic index in F0 females but not F0 males. Moreover, a further gender-dependent reduction in testosterone (T), estradiol (E2), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), and induction of plasma vitellogenin (VTG) concentrations in adults were observed following co-exposure. Co-exposure also inhibited egg production and caused significant developmental toxicity in F1 larvae. The results obtained using this multi-marker approach suggested that nano-TiO 2 is a carrier of TDCIPP and accelerated its bio-concentration in adult zebrafish, resulting in adverse reproduction outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Lattice Parameter Behavior with Different Nd and O Concentrations in (U 1-yNd y)O 2±x Solid Solution

    DOE PAGES

    Lee, Seung Min; Knight, Travis W.; Voit, Stwart L.; ...

    2016-02-02

    The solid solution of (U1-yFPy)O- 2±x, has the same fluorite structure as UO 2±x lambda, and the lattice parameter is affected by dissolved fission product and oxygen concentrations. We investigated the relation between the lattice parameter and the concentrations of neodymium and oxygen in the fluorite structure of (U 1-yNd y)O 2±x using X-ray diffraction. Moreover, the lattice parameter behavior in the (U 1-yNd y)O 2±x, solid solution shows a linear change as a function of the oxygen-to-metal ratio and solubility of neodymium. The lattice parameter depends on the radii of ions forming the fluorite structure and also can bemore » expressed by a particular rule (modified Vegard's law). Furthermore, the numerical analyses of the lattice parameters for the stoichiometric and nonstoichionietric solid solutions were conducted, and the lattice parameter model for the (U1-yNdy)O 2±x, solid solution was assessed. There is a very linear relationship between the lattice parameter and the Nd and O concentration for the stoichiometry and nonstoichiometry of the (U 1-yNd y)O 2±x solid solution was verified.« less

  14. Effect of Cr3+ concentration on structural and optical properties of TiO2:Cr3+ anatase and rutile phases

    NASA Astrophysics Data System (ADS)

    Loan, Trinh Thi; Bang, Ngac An; Huong, Vu Hoang; Long, Nguyen Ngoc

    2017-07-01

    TiO2 powders doped with different amounts of Cr3+ions (from 0 to 10 mol%) have been prepared by hydrothermal technique. TiO2:Cr3+ powders were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, diffuse reflection, absorption, photoluminescence and photoluminescence excitation spectra. The results showed that the Cr3+ dopant concentrations did not affect on the lattice constants of TiO2 crystal, but affected on shift and broadening of the Raman modes for both anatase and rutile phases. The band gap of both the anatase and rutile TiO2 host lattice was strongly decreased with increasing Cr3+ dopant concentration. The photoluminescence spectra of TiO2:Cr3+ anatase phase exhibited a weak narrow peak (the so-called R-line) at 698 nm, meanwhile those of TiO2:Cr3+ rutile phase consisted of a very intense narrow zero-phonon R-line at 695 nm assigned to the 2E(2G) → 4A2(4F) transition of Cr3+ ions in strong octahedral field and its phonon-sidebands. In particular, in the PL spectrum of TiO2:Cr3+ rutile phase is also observed an abroad emission band centered at 813 nm assigned to the 4T2(4F) → 4A2(4F) transition of ions Cr3+ in weak octahedral field.

  15. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment

    PubMed Central

    Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana

    2015-01-01

    Background and Aims Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Methods Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Key Results Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. Conclusions A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and

  16. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment.

    PubMed

    Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana

    2015-09-01

    Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative

  17. Controlling of magnetocaloric effect in Gd2O3@SiO2 nanocomposites by substrate dimensionality and particles' concentration

    NASA Astrophysics Data System (ADS)

    ZeleÅáková, Adriana; Hrubovčák, Pavol; Kapusta, Ondrej; Berkutova, Anna; ZeleÅák, Vladimir; Franco, Victorino

    2018-04-01

    The magnetocaloric effect (MCE) of hybrid nanostructures consisting of fine gadolinium oxide (Gd2O3) nanoparticles with diameter 7 nm and 12 nm loaded into the pores of the periodically ordered mesoporous silica with hexagonal (SBA-15) or cubic (SBA-16) symmetry were investigated. The concentration effect of the added nanoparticles (NPs) and the effect of the silica matrix dimensionality on the structural properties, magnetization M(H), magnetic entropy change ΔSM, and parameters A(T) and B(T) derived from Arrott plots were studied in four samples. Examined nanocomposites exhibited reasonable high values of magnetic entropy change ΔSM varying from 29 J/kgK established for Gd2O3@SBA-15 up to 64 J/kgK observed in Gd2O3@SBA-16 at maximal field change 5 T at low temperatures. This suggests that studied nanocomposites, where diamagnetic silica matrices serve as nanoreactors for growth of Gd2O3 nanoparticles and their symmetry strongly affect magnetic properties of whole composites, could be feasible for cryomagnetic refrigeration applications.

  18. Dopant concentration dependent optical and X-Ray induced photoluminescence in Eu3+ doped La2Zr2O7

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab; Brik, Mikhail; Mao, Yuanbing

    2015-03-01

    Herein, we will be presenting the dopant (Eu) concentration dependent high density La2Zr2O7 nanoparticles for optical and X-ray scintillation applications by use of X - ray diffraction, Raman, FTIR, scanning electron microscope (SEM), transmission electron microscopy (TEM), optically and X-ray excited photoluminescence (PL). Several theoretical methods have been used in order to investigate the structural, electronic, optical, elastic, dynamic properties of Eu doped La2Zr2O7. It is observed that Eu: La2Zr2O7 shows an intense red luminescence under 258, 322, 394 and 465 nm excitation. The optical intensity of Eu: La2Zr2O7 depends on the dopant concentration of Eu3+. Following high energy excitation with X-rays, Eu: La2Zr2O7 shows an atypical Eu PL response (scintillation) with a red emission. The intense color emission of Eu obtained under 258 nm excitation, the X-ray induced luminescence property along with reportedly high density of La2Zr2O7, makes these nanomaterials attractive for optical and X-ray applications. The authors thank the support from the Defense Threat Reduction Agency (DTRA) of the U.S. Department of Defense (Award #HDTRA1-10-1-0114).

  19. Anatase phase stability and doping concentration dependent refractivity in codoped transparent conducting TiO2 films

    NASA Astrophysics Data System (ADS)

    Chen, T. L.; Furubayashi, Y.; Hirose, Y.; Hitosugi, T.; Shimada, T.; Hasegawa, T.

    2007-10-01

    Nb0.06SnxTi0.94-xO2 (x <= 0.3) thin films were grown by a pulsed-laser deposition method with varying Sn concentration. Through a combinatorial technique, we find that Sn concentration can reach a maximum of about x = 0.3 while maintaining the stable anatase phase and epitaxy. A doping concentration dependence of the refractivity is revealed, in which refractivity reduction at a wavelength of λ = 500 nm is estimated to be 12.4% for Nb0.06Sn0.3 Ti0.64O2 thin film. Sn doping induced band-gap blue shift can be contributed to the mixing of extended Sn 5s orbitals with the conduction band of TiO2. Low resistivity on the order of 10-4 Ω cm at room temperature and high internal transmittance of more than 95% in the visible light region are exhibited for Nb0.06Snx Ti0.94-xO2 thin films (x <= 0.2). Optical and transport analyses demonstrate that doping Sn into Nb0.06 Ti0.94O2 can reduce the refractivity while maintaining low resistivity and high transparency.

  20. DSC and optical studies on BaO-Li{sub 2}O-B{sub 2}O{sub 3}-CuO glass system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhogi, Ashok, E-mail: ashokbhogi@gmail.com; Kumar, R. Vijaya; Ahmmad, Shaik Kareem

    2016-05-06

    Glasses with composition 15BaO-25Li{sub 2}O-(60-x)B{sub 2}O{sub 3} -xCuO (x= 0, 0.2, 0.4, 0.6, 0.8 and 1 mol%) were prepared by the conventional melt quenching technique. These glasses were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and density measurements. Optical absorption studies were carried out as a function of copper ion concentration. The optical absorption spectra of studied glasses containing copper oxide exhibit a single broad band around 761nm which has been assigned to the 2B{sub 1g}→2B{sub 2g} transition. From these studies, the variations in the values of glass transition temperature (T{sub g}) have been observed. The fundamental absorption edgemore » has been determined from the optical absorption spectra. The values of optical band gap and Urbach energy were determined with increase in concentration of CuO. The variations in density, glass transition temperature, optical band gap and Urbach energy with CuO content have been discussed in terms of changes in the glass structure. The analysis of these results indicated that copper ions mostly exist in Cu{sup 2+} state in these glasses when the concentration of CuO ≤ 0.8 mol% and above this concentration copper ions seem to subsist in Cu{sup 1+} state.« less

  1. Novel ZrO2 based ceramics stabilized by Fe2O3, SiO2 and Y2O3

    NASA Astrophysics Data System (ADS)

    Rada, S.; Culea, E.; Rada, M.

    2018-03-01

    Samples in the 5Fe2O3·10SiO2·xY2O3·(85-x)ZrO2 composition where x = 5, 10 and 15 mol% Y2O3 were synthesized and investigated by XRD, SEM, density measurements, FTIR, UV-Vis, EPR and PL spectroscopies. X-ray diffraction patterns confirm the presence of the tetragonal and cubic ZrO2 crystalline phases in all samples. The IR data show the overlaps of absorption bands assigned to Zrsbnd Osbnd Zr and Sisbnd Osbnd linkages in samples. UV-Vis and PL data indicate higher concentrations of intrinsic defects by doping with Y2O3 concentrations. The EPR spectra are characterized by two resonance lines situated at about g ∼ 4.3 and g ∼ 2 for lower Y2O3 contents.

  2. Effect of TiO2 Nanofiller Concentration on the Mechanical, Thermal and Biological Properties of HDPE/TiO2 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mozumder, Mohammad Sayem; Mourad, Abdel-Hamid I.; Mairpady, Anusha; Pervez, Hifsa; Haque, Md Emdadul

    2018-03-01

    The necessity for advanced and effective biomimetic tissue engineering materials has increased massively as bone diseases such as osteoporosis and bone cancer have become a major public health problem. Therefore, the objective of this study is to develop titanium dioxide (TiO2) nanoparticles-enriched high-density polyethylene (HDPE) nanocomposites that could serve as potential biomaterials. HDPE/TiO2 nanocomposites with varying TiO2 nanoparticles content were fabricated by using injection molding technique and were subjected to mechanical, thermal and biological characterization. SEM-EDS analysis confirmed even dispersion of TiO2 nanoparticles into the HDPE matrix. It was observed from the mechanical testing that the addition of TiO2 nanoparticles to HDPE noticeably improved the stiffness (from 345 to 378 MPa) while maintaining almost similar yield strength of pure HDPE. The thermal analyses revealed that TiO2 nanoparticles inclusion to HDPE matrix enhanced the thermal stability of nanocomposites, as the overall rate of crystallization increased by almost 4%. Furthermore, biocompatibility of nanocomposites was also studied by means of various cell culture experiments; human osteoblasts (hFOB) were seeded on the HDPE/TiO2 nanocomposites and were visualized through SEM after 72 h of incubation; surface morphology revealed normal cell growth and spreading with more attachment on PNC-10 that contains 10 wt.% of TiO2. Moreover, cell viability assays (i.e., MTT and cell attachment) revealed consistent increase in cell count and metabolic activity when triplicate cultures were incubated for 1, 3 and 7 days.

  3. Effect of TiO2 Nanofiller Concentration on the Mechanical, Thermal and Biological Properties of HDPE/TiO2 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mozumder, Mohammad Sayem; Mourad, Abdel-Hamid I.; Mairpady, Anusha; Pervez, Hifsa; Haque, Md Emdadul

    2018-05-01

    The necessity for advanced and effective biomimetic tissue engineering materials has increased massively as bone diseases such as osteoporosis and bone cancer have become a major public health problem. Therefore, the objective of this study is to develop titanium dioxide (TiO2) nanoparticles-enriched high-density polyethylene (HDPE) nanocomposites that could serve as potential biomaterials. HDPE/TiO2 nanocomposites with varying TiO2 nanoparticles content were fabricated by using injection molding technique and were subjected to mechanical, thermal and biological characterization. SEM-EDS analysis confirmed even dispersion of TiO2 nanoparticles into the HDPE matrix. It was observed from the mechanical testing that the addition of TiO2 nanoparticles to HDPE noticeably improved the stiffness (from 345 to 378 MPa) while maintaining almost similar yield strength of pure HDPE. The thermal analyses revealed that TiO2 nanoparticles inclusion to HDPE matrix enhanced the thermal stability of nanocomposites, as the overall rate of crystallization increased by almost 4%. Furthermore, biocompatibility of nanocomposites was also studied by means of various cell culture experiments; human osteoblasts (hFOB) were seeded on the HDPE/TiO2 nanocomposites and were visualized through SEM after 72 h of incubation; surface morphology revealed normal cell growth and spreading with more attachment on PNC-10 that contains 10 wt.% of TiO2. Moreover, cell viability assays (i.e., MTT and cell attachment) revealed consistent increase in cell count and metabolic activity when triplicate cultures were incubated for 1, 3 and 7 days.

  4. A Simple Method for High-Performance, Solution-Processed, Amorphous ZrO2 Gate Insulator TFT with a High Concentration Precursor

    PubMed Central

    Cai, Wei; Zhu, Zhennan; Wei, Jinglin; Fang, Zhiqiang; Zheng, Zeke; Zhou, Shangxiong; Peng, Junbiao; Lu, Xubing

    2017-01-01

    Solution-processed high-k dielectric TFTs attract much attention since they cost relatively little and have a simple fabrication process. However, it is still a challenge to reduce the leakage of the current density of solution-processed dielectric TFTs. Here, a simple solution method is presented towards enhanced performance of ZrO2 films by intentionally increasing the concentration of precursor. The ZrO2 films not only exhibit a low leakage current density of 10−6 A/cm2 at 10 V and a breakdown field of 2.5 MV/cm, but also demonstrate a saturation mobility of 12.6 cm2·V−1·s−1 and a Ion/Ioff ratio of 106 in DC pulse sputtering IGZO-TFTs based on these films. Moreover, the underlying mechanism of influence of precursor concentration on film formation is presented. Higher concentration precursor results in a thicker film within same coating times with reduced ZrO2/IGZO interface defects and roughness. It shows the importance of thickness, roughness, and annealing temperature in solution-processed dielectric oxide TFT and provides an approach to precisely control solution-processed oxide films thickness. PMID:28825652

  5. Effect of Ta concentration on the refractive index of TiO{sub 2}:Ta studied by spectroscopic ellipsometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurfani, Eka, E-mail: ekanurfani@gmail.com; Kurniawan, Robi; Muhammady, Shibghatullah

    2016-04-19

    We have investigated optical properties of Ta-doped TiO{sub 2} thin film on LaAlO{sub 3} (LAO) substrate using Spectroscopic Ellipsometry (SE) at room temperature. Amplitude ratio Ψ and phase difference L1 between p- and s- polarized light waves are obtained by multiple incident angles measurement (60°, 70°, and 80°) at energy range of 0.5 – 6.5 eV. In order to obtain optical properties for every Ta concentrations (0.01, 0.4, and 5 at. %), multilayer modelling was performed simultaneously by using Drude-Lorentz model. Refractive index and optical dispersion parameters were determined by Wemple-DiDomenico relation. In general, refractive index at zero photon energymore » n(0) increases by increasing Ta concentration. Furthermore, optical band gap shows a significant increasing due to presence of Ta dopant. In addition, other optical constants are discussed as well.« less

  6. Environmental conditions affecting concentrations of He, CO2, O2 and N2 in soil gases

    USGS Publications Warehouse

    Hinkle, Margaret E.

    1994-01-01

    The measurement of concentrations of volatile species in soil gases has potential for use in geochemical exploration for concealed ore deposits and for monitoring of subsurface contaminants. However, the interpretation of anomalies in surficial gases can be difficult because soil-gas concentrations are dependent on both meteorological and environmental conditions.For this study, concentrations of He, CO2, O2 and N2 and meteorological conditions were monitored for 10–14 months at eight nonmineralized sites in both humid and dry environments. Gases were collected at 0.6–0.7-m depth at seven sites. At one site, gases were collected from 0.3-, 0.6-, 1.2-, and 2.0-m depths; diurnal monitoring studies were conducted at this site also. Rain and snowfall, soil and air temperatures, barometric pressure, and relative humidity were monitored at all the sites. The sand, silt and clay content, and the organic carbon content of surficial soil were measured at each site.Meteorological conditions generally affected He and CO2 concentrations in the same way at all the sites; however, these effects were modified by local environmental conditions. Both seasonal and diurnal concentration changes occurred. The most important seasonal concentration changes were related to rain and snowfall and soil and air temperatures. Seasonal changes tended to be larger then the diurnal changes, but both could be related to the same processes. Local conditions of soil type and organic content affected the amount of pore space and moisture present in the soil and therefore the soil-gas concentrations.

  7. Novel Process of Simultaneous Removal of Nitric Oxide and Sulfur Dioxide Using a Vacuum Ultraviolet (VUV)-Activated O2/H2O/H2O2 System in A Wet VUV-Spraying Reactor.

    PubMed

    Liu, Yangxian; Wang, Qian; Pan, Jianfeng

    2016-12-06

    A novel process for NO and SO 2 simultaneous removal using a vacuum ultraviolet (VUV, with 185 nm wavelength)-activated O 2 /H 2 O/H 2 O 2 system in a wet VUV-spraying reactor was developed. The influence of different process variables on NO and SO 2 removal was evaluated. Active species (O 3 and ·OH) and liquid products (SO 3 2- , NO 2 - , SO 4 2- , and NO 3 - ) were analyzed. The chemistry and routes of NO and SO 2 removal were investigated. The oxidation removal system exhibits excellent simultaneous removal capacity for NO and SO 2 , and a maximum removal of 96.8% for NO and complete SO 2 removal were obtained under optimized conditions. SO 2 reaches 100% removal efficiency under most of test conditions. NO removal is obviously affected by several process variables. Increasing VUV power, H 2 O 2 concentration, solution pH, liquid-to-gas ratio, and O 2 concentration greatly enhances NO removal. Increasing NO and SO 2 concentration obviously reduces NO removal. Temperature has a dual impact on NO removal, which has an optimal temperature of 318 K. Sulfuric acid and nitric acid are the main removal products of NO and SO 2 . NO removals by oxidation of O 3 , O·, and ·OH are the primary routes. NO removals by H 2 O 2 oxidation and VUV photolysis are the complementary routes. A potential scaled-up removal process was also proposed initially.

  8. Optical, physical and structural studies of vanadium doped P2O5-BaO-Li2O glasses

    NASA Astrophysics Data System (ADS)

    Lakshmikantha, R.; Ayachit, N. H.; Anavekar, R. V.

    2014-02-01

    Glasses in the compositions (Li2O)25-(BaO)25-(P2O5)50-x-(V2O5)x (with x=0.5,1.0,1.5,2.0,2.5, and 3.0 mol%) have been prepared by the conventional melt quenching technique. X-ray powder diffractrogram show broad peaks which conforms glassy nature of the sample. Differential scanning calorimetry (DSC) thermograms show characteristic glass transition temperature (Tg) and it increases with increasing substitution of V2O5 for P2O5. The measured physical parameters like density, refractive index, ionic concentration and electronic polarizability are found to vary linearly with increasing x. Infrared spectra exhibits few bands, which are attributed to (P=O)AS, (P=O)S, (V=O), (P-O-P)AS,P-O-V, (P-O-P)AS and O-P-O vibrations. The optical absorption spectra of VO2+ ions in these glasses show three bands and are assigned to the 2B22E,2B22B1 and 2B22A1 transitions. Electron paramagnetic resonance spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of Spin-Hamiltonian parameters indicate that the VO2+ ions are present in octahedral sites with tetragonal compression and belong to C4V symmetry.

  9. Effect of CO2 concentration on strength development and carbonation of a MgO-based binder for treating fine sediment.

    PubMed

    Hwang, Kyung-Yup; Kim, Jin Young; Phan, Hoang Quang Huy; Ahn, Jun-Young; Kim, Tae Yoo; Hwang, Inseong

    2018-05-28

    We previously described a MgO-based binder for treating fine sediment and simultaneously store CO 2 . Here, we describe a study of the physical/mechanical characteristics and carbonation reactions of the MgO-based binder used to solidify/stabilize fine sediment in atmospheres containing different CO 2 concentrations. Carbonation of the sediment treated with the MgO-based binder at the atmospheric CO 2 concentration markedly improved the compressive strength of the product. The compressive strength was 4.78 MPa after 365 days of curing, 1.3 times higher than the compressive strength of sediment treated with portland cement. This improvement was caused by the formation of carbonation products, such as hydromagnesite, nesquehonite, and lansfordite, and the constant high pH (~ 12) of the specimen, which favored the growth of hydration products such as calcium silicate hydrates and portlandite. Very low compressive strengths were found when 50 and 100% CO 2 atmospheres were used because of excessive formation of carbonation products, which occupied 78% of the specimen depth. Abundant carbonation products increased the specimen volume and decreased the pH to 10.2, slowing the growth of hydration products. The absence of brucite in specimens produced in a 100% CO 2 atmosphere indicated that MgO carbonation is favored over hydration at high CO 2 concentrations.

  10. Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2.

    PubMed

    Roshankhah, Shiva; Rostami-Far, Zahra; Shaveisi-Zadeh, Farhad; Movafagh, Abolfazl; Bakhtiari, Mitra; Shaveisi-Zadeh, Jila

    2016-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as H 2 O 2 . We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of H 2 O 2 , which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and 120 µM concentrations of H 2 O 2 . After 1 hour incubation at 37℃, sperms were evaluated for motility and viability. Incubation of sperms with 10 and 20 µM H 2 O 2 led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and 80 µM H 2 O 2 , and viability decreased in both groups in 40, 60, 80, and 120 µM H 2 O 2 . However, no statistically significant differences were found between the G6PD-deficient group and controls. G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by H 2 O 2 , and the reducing equivalents necessary for protection against H 2 O 2 are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility.

  11. Photocatalytic degradation of diclofenac using TiO2-SnO2 mixed oxide catalysts.

    PubMed

    Mugunthan, E; Saidutta, M B; Jagadeeshbabu, P E

    2017-12-26

    The complex nature of diclofenac limits its biological degradation, posing a serious threat to aquatic organisms. Our present work aims to eliminate diclofenac from wastewater through photocatalytic degradation using TiO 2 -SnO 2 mixed-oxide catalysts under various operating conditions such as catalyst loading, initial diclofenac concentration and initial pH. Different molar ratios of Ti-Sn (1:1, 5:1, 10:1, 20:1 and 30:1) were prepared by the hydrothermal method and were characterized. The results indicated that addition of Sn in small quantity enhances the catalytic activity of TiO 2 . Energy Band gap of the TiO 2 -SnO 2 catalysts was found to increase with an increase in Tin content. TiO 2 -SnO 2 catalyst with a molar ratio of 20:1 was found to be the most effective when compared to other catalysts. The results suggested that initial drug concentration of 20 mg/L, catalyst loading of 0.8 g/L and pH 5 were the optimum operating conditions for complete degradation of diclofenac. Also, the TiO 2 -SnO 2 catalyst was effective in complete mineralization of diclofenac with a maximum total organic carbon removal of 90% achieved under ultraviolet irradiation. The repeatability and stability results showed that the TiO 2 -SnO 2 catalyst exhibited an excellent repeatability and better stability over the repeated reaction cycles. The photocatalytic degradation of diclofenac resulted in several photoproducts, which were identified through LC-MS.

  12. The paradox of a wet (high H2O) and dry (low H2O/Ce) mantle: High water concentrations in mantle garnet pyroxenites from Hawaii

    NASA Astrophysics Data System (ADS)

    Bizimis, M.; Peslier, A. H.

    2013-12-01

    Water dissolved as trace amounts in anhydrous minerals has a large influence on the melting behavior and physical properties of the mantle. The water concentration of the oceanic mantle is inferred from the analyses of MORB and OIB [1], but there is little data from actual mantle samples. Moreover, enriched mineralogies (pyroxenites, eclogites) are thought as important sources of heterogeneity in the mantle, but their water concentrations and their effect on the water budget and cycling in the mantle are virtually unknown. We analyzed by FTIR water concentrations in garnet clinopyroxenite xenoliths from Salt Lake Crater, Oahu, Hawaii. These pyroxenites are high-pressure (>20kb) crystal fractionates from alkalic melts. The clinopyroxenes (cpx) have 260 to 576 ppm wt. H2O, with the least differentiated samples (Mg#>0.8) in the 400-500 ppm range. Orthopyroxene (opx) contain 117-265 ppm H2O, about half of that of cpx, consistent with other natural sample studies, but lower than experimental cpx/opx equilibrium data. These pyroxenite cpx and opx water concentrations are at the high-end of on-and off-craton peridotite xenolith concentrations and megacrysts from kimberites [2] and those of Hawaiian spinel peridotites. In contrast, garnet has extremely low water contents (<5ppm H2O). There is no correlation between water in cpx and lithophile element concentrations. Phlogopite is present in some samples, and its modal abundance shows a positive correlation in Mg# with cpx, implying equilibrium. However, there is no correlation between water concentrations and the presence of phlogopite. These data imply that cpx and opx water concentrations may be buffered by phlogopite crystallization. Reconstructed bulk rock pyroxenite water concentrations (not including phlogopite, i.e. minimum) range from 200-460 ppm (average 331× 75 ppm), significantly higher than water estimates for the MORB source (50-200 ppm), but in the range of E-MORB, OIB and the source of rejuvenated Hawaiian

  13. Electrical and structural properties of Nb-doped TiO2 at different Nb concentrations deposited by spin coating technique

    NASA Astrophysics Data System (ADS)

    Saurdi, I.; Shafura, A. K.; Mamat, M. H.; Ishak, A.; Rusop, M.

    2018-05-01

    In this paper, the Nb-doped TiO2 films were deposited on glass substrate and their electrical and structural properties were investigated. The results revealed that the resistivity of Nb-doped TiO2 films of 0 at.%, 1 at.%, 3 at.%, 5 at.% and 7 at.% were 2.78 × 105, 1.35 × 105 Ω.cm, 5.89 × 104 Ω.cm, 9.20 × 102 Ω.cm and 9.56 × 103 Ω.cm, respectively. Where, the lowest resistivity of 9.20 × 102 Ω.cm was obtained at 5at.% Nb-doped TiO2 films. The resistivity of Nb-doped TiO2 films decreases as the Nb concentration increased from 0 at.% to 5 at.%. However, the resistivity decrease at 7 at.% Nb-doped TiO2 films. Meanwhile, from the FESEM images the Nb-doped TiO2 films with 0 at.%, 1 at.%, 3 at.% and 5 at.% Nb had a rough and porous structures were observed. However, the Nb-doped TiO2 at 7 at.% has a agglomerated and denser structures.

  14. Phase and Physicochemical Properties Diagrams of Quaternary System Li2B4O7 + Na2B4O7 + Mg2B6O11 + H2O

    NASA Astrophysics Data System (ADS)

    Wang, Shi-qiang; Du, Xue-min; Jing, Yan; Guo, Ya-fei; Deng, Tian-long

    2017-12-01

    The phase and physicochemical properties diagrams of the quaternary system (Li2B4O7 + Na2B4O7 + Mg2B6O11) at 288.15 K and 0.1 MPa were constructed using the solubilities, densities, and refractive indices measured. In the phase diagrams of the system there are one invariant point, three univariant isothermic dissolution curves, and three crystallization regions corresponding to Li2B4O7 · 3H2O, Na2B4O7 · 10H2O, and Mg2B6O11 · 15H2O, respectively. The solution density, refractive index of the quaternary system changes regularly with the increasing of Li2B4O7 concentration. The calculated values of density and refractive index using empirical equations of the quaternary system are in good agreement with the experimental values.

  15. Soil CO2, CH4 and N2O effluxes and concentrations in soil profiles down to 15.5m depth in eucalypt plantations under contrasted rainfall regimes

    NASA Astrophysics Data System (ADS)

    Germon, A.; Nouvellon, Y.; Christophe, J.; Chapuis-Lardy, L.; Robin, A.; Rosolem, C. A.; Gonçalves, J. L. D. M.; Guerrini, I. A.; Laclau, J. P.

    2017-12-01

    Silvicultural practices in planted forests affect the fluxes of greenhouse gases at the soil surface and the major factors driving greenhouse gas production in forest soils (substrate supply, temperature, water content,…) vary with soil depth. Our study aimed to assess the consequences of drought on the temporal variability of CO2, CH4 and N2O fluxes throughout very deep soil profiles in Eucalyptus grandis plantations 3 months before the harvest then in coppice, the first 18 months after clear-cutting. Two treatments were compared: one with 37% of throughfall excluded by plastic sheets (TE), and one without rainfall exclusion (WE). Measurements of soil CO2 efflux were made every two weeks for 30 months using a closed-path Li8100 system in both treatment. Every two weeks for 21 months, CO2, CH4 and N2O surface effluxes were measured using the closed-chamber method and concentrations in the soil were measured at 7 depths down to 15.5 m in both TE and WE. At most measurement dates, soil CO2 efflux were significantly higher in TE than in WE. Across the two treatments and the measurement dates, CO2 concentrations increased from 4446 ± 2188 ppm at 10 cm deep to 15622 ± 3523 ppm at 15.5 m, CH4 concentrations increased from 0.41 ± 0.17 ppm at 10 cm deep to 0.77 ± 0.24 ppm at 15.5 m and N2O concentrations remained roughly constant and were on average 478 ± 55 ppb between soil surface and 15.5 m deep. CO2 and N2O concentrations were on average 20.7 and 7.6% lower in TE than in WE, respectively, across the sampling depths. However, CH4 concentrations in TE were on average 44.4% higher than in WE, throughout the soil profile. Those results suggest that extended drought periods might reduce the production of CO2 and N2O but increase the accumulation of CH4 in eucalypt plantations established in deep tropical soils. Very deep tropical soils cover huge areas worldwide and improving our understanding of the spatiotemporal dynamics of gas concentrations in deep soil layers

  16. Phenylethylamine induces an increase in cytosolic Ca2+ in yeast.

    PubMed

    Pinontoan, Reinhard; Krystofova, Svetlana; Kawano, Tomonori; Mori, Izumi C; Tsuji, Frederick I; Iida, Hidetoshi; Muto, Shoshi

    2002-05-01

    Beta-phenylethylamine (PEA) induced an increase in cytosolic free calcium ion concentration ([Ca2+]c) in Saccharomyces cerevisiae cells monitored with transgenic aequorin, a Ca2+-dependent photoprotein. The PEA-induced [Ca2+]c increase was dependent on the concentrations of PEA applied, and the Ca2+ mostly originated from an extracellular source. Preceding the Ca2+ influx, H2O2 was generated in the cells by the addition of PEA. Externally added H2O2 also induced a [Ca2+]c increase. These results suggest that PEA induces the [Ca2+]c increase via H2O2 generation. The PEA-induced [Ca2+]c increase occurred in the mid1 mutant with a slightly smaller peak than in the wild-type strain, indicating that Mid1, a stretch-activated nonselective cation channel, may not be mainly involved in the PEA-induced Ca2+ influx. When PEA was applied, the MATa mid1 mutant was rescued from alpha-factor-induced death in a Ca2+-limited medium, suggesting that the PEA-induced [Ca2+]c increase can reinforce calcium signaling in the mating pheromone response pathway.

  17. Effect of Synthesis Temperature and NaOH Concentration on Microstructural and Magnetic Properties of Mn0.5Zn0.5Fe2O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Siregar, N.; Indrayana, I. P. T.; Suharyadi, E.; Kato, T.; Iwata, S.

    2017-05-01

    Mn0.5Zn0.5Fe2O4 nanoparticles have been successfully synthesized through coprecipitation method by varying NaOH concentrations from 0.5 M to 6 M and synthesis temperatures from 30 to 120 °C. The X-ray diffraction (XRD) pattern indicates samples consisting of multiphase structures such as spinel of Mn0.5Zn0.5Fe2O4, α-MnO2, ZnO, λ-MnO2, and γ-Fe2O3. The crystallite size of Mn0.5Zn0.5Fe2O4 is in the range of 14.1 to 26.7 nm. The Transmission electron microscope (TEM) image shows that sample was agglomerate. The hysteresis loops confirm that nanoparticles are soft magnetic materials with low coercivity (H c) in the range of 45.9 to 68.5 Oe. Those values increased relatively with increasing particles size. For NaOH concentration variation, the maximum magnetization of the sample increased from 10.4 emu/g to 11.6 emu/g with increasing ferrite content. Meanwhile, the maximum magnetization increased from 7.9 to 15.7 emu/g for samples with various synthesis temperature. The highest coercivity of 68.5 Oe was attained for a sample of 6 M NaOH under 90 °C. The highest magnetization of 15.7 emu/g was achieved for a sample of 1.5 M NaOH under 120 °C caused by the maximum crystallinity of sample.

  18. The Increasing Concentrations of Atmospheric CO2: How Much, When and Why?

    DOE Data Explorer

    Marland, Gregg [Environmental Sciences Division, Oak Ridge National Laboratory (ORNL); Boden, Tom [Environmental Sciences Division, Oak Ridge National Laboratory (ORNL)

    2009-01-01

    There is now a sense that the world community has achieved a broad consensus that: 1.) the atmospheric concentration of carbon dioxide (CO2) is increasing, 2.) this increase is due largely to the combustion of fossil fuels, and 3.) this increase is likely to lead to changes in the global climate. This consensus is sufficiently strong that virtually all countries are involved in trying to achieve a functioning agreement on how to confront, and mitigate, these changes in climate. This paper reviews the first two of these components in a quantitative way. We look at the data on the atmospheric concentration of carbon dioxide and on the magnitude of fossil-fuel combustion, and we examine the trends in both. We review the extent to which cause and effect can be demonstrated between the trends in fossil-fuel burning and the trends in atmospheric CO2 concentration. Finally, we look at scenarios for the future use of fossil fuels and what these portend for the future of atmospheric chemistry. Along the way we examine how and where fossil fuels are used on the Earth and some of the issues that are raised by any effort to reduce fossil-fuel use.

  19. Factors associated with NO2 and NOX concentration gradients near a highway

    NASA Astrophysics Data System (ADS)

    Richmond-Bryant, J.; Snyder, M. G.; Owen, R. C.; Kimbrough, S.

    2018-02-01

    The objective of this research is to learn how the near-road gradient, in which NO2 and NOX (NO + NO2) concentrations are elevated, varies with changes in meteorological and traffic variables. Measurements of NO2 and NOX were obtained east of I-15 in Las Vegas and fit to functions whose slopes (dCNO2/dx and dCNOX/dx, respectively) characterize the size of the near-road zone where NO2 and NOX concentrations from mobile sources on the highway are elevated. These metrics were used to learn about the near-road gradient by modeling dCNO2/dx and dCNOX/dx as functions of meteorological variables (e.g., wind direction, wind speed), traffic (vehicle count), NOX concentration upwind of the road, and O3 concentration at two fixed-site ambient monitors. Generalized additive models (GAM) were used to model dCNO2/dx and dCNOX/dx versus the independent variables because they allowed for nonlinearity of the variables being compared. When data from all wind directions were included in the analysis, variability in O3 concentration comprised the largest proportion of variability in dCNO2/dx, followed by variability in wind direction. In a second analysis constrained to winds from the west, variability in O3 concentration remained the largest contributor to variability in dCNO2/dx, but the relative contribution of variability in wind speed to variability in dCNO2/dx increased relative to its contribution for the all-wind analysis. When data from all wind directions were analyzed, variability in wind direction was by far the largest contributor to variability in dCNOX/dx, with smaller contributions from hour of day and upwind NOX concentration. When only winds from the west were analyzed, variability in upwind NOX concentration, wind speed, hour of day, and traffic count all were associated with variability in dCNOX/dx. Increases in O3 concentration were associated with increased magnitude near-road dCNO2/dx, possibly shrinking the zone of elevated concentrations occurring near roads

  20. Acetone sensors based on microsheet-assembled hierarchical Fe2O3 with different Fe3+ concentrations

    NASA Astrophysics Data System (ADS)

    Wang, Han; Yan, Lei; Li, Shuo; Li, Yu; Liu, Li; Du, Liting; Duan, Haojie; Cheng, Yali

    2018-02-01

    Several different morphologies of microsheet-assembled Fe2O3 have been fabricated by hydrothermal method using diverse concentrations of Fe3+ precursor solutions (0.025, 0.020, 0.015, 0.010 mol/L Fe3+). The as-synthesized materials have been characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). The SEM images reflect that the morphologies of as-synthesized materials are affected by the concentrations of Fe3+ in precursor solutions. The less concentration of Fe3+, the more porous of Fe2O3 microflowers, and thinner of slices distributed on the surface. Furthermore, gas sensors based on these Fe2O3 microflowers manufactured and tested to various common gases. The optimum response value to 100 ppm acetone is 52 at the working temperature of 220 °C. Meanwhile, the Fe2O3 microflower sensors possess ultrafast response-recovery speed, which are 8 and 19 s, respectively. The possible sensing mechanism was mainly attributed to the high surface area, three-dimensional porous structure.

  1. Effect of Relative Humidity and CO2 Concentration on the Properties of Carbonated Reactive MgO Cement Based Materials

    NASA Astrophysics Data System (ADS)

    Bilan, Yaroslav

    Sustainability of modern concrete industry recently has become an important topic of scientific discussion, and consequently there is an effort to study the potential of the emerging new supplementary cementitious materials. This study has a purpose to investigate the effect of reactive magnesia (reactive MgO) as a replacement for general use (GU) Portland Cements and the effect of environmental factors (CO2 concentrations and relative humidity) on accelerated carbonation curing results. The findings of this study revealed that improvement of physical properties is related directly to the increase in CO2 concentrations and inversely to the increase in relative humidity and also depends much on %MgO in the mixture. The conclusions of this study helped to clarify the effect of variable environmental factors and the material replacement range on carbonation of reactive magnesia concrete materials, as well as providing an assessment of the optimal conditions for the effective usage of the material.

  2. Influence of humic acid concentration on nTiO2 attachment to quartz sand and Fe-coated quartz sand

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Wu, Y.

    2016-12-01

    The transport of nano-scale or micro-scale titanium dioxide particles (nTiO2) in subsurface environments are strongly influenced by nTiO2 attachment to sediment grains. The objective of this study is to investigate the role of humic acid (HA) in the attachment of nTiO2 to sand at low HA concentrations that are relevant to typical groundwater conditions, so that mechanisms that control nTiO2 immobilization and transport in groundwater can be elucidated. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the transport of negatively-charged colloids, may influence nTiO2 in different manners. Attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand are experimentally measured under a range of HA concentrations at fixed pH. Experimental results show that at pH 5, negatively-charged HA strongly adsorbs to positively-charged nTiO2 and Fe oxyhydroxide, which, at low HA concentrations, partially neutralizes the positive charges on nTiO2 and Fe oxyhydroxide, and therefore decreases the repulsive electrostatic forces between the surfaces, resulting in relatively high nTiO2 attachment. At high HA concentrations, adsorbed HA reverses the surface charges of nTiO2 and Fe oxyhydroxide, and makes nTiO2 and Fe oxyhydroxide strongly negatively charged, resulting in low nTiO2 attachment. At pH 9, HA, nTiO2, and Fe oxyhydroxide are all negatively charged, and HA adsorption is low and does not have a strong impact on the attachment of nTiO2. This study demonstrates that the changes in surface charges of nTiO2 and Fe oxyhydroxide coating caused by HA adsorption could be a key factor that controls the attachment of nTiO2 to sediment grains.

  3. Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba.

    PubMed

    Li, Dewen; Chen, Ying; Shi, Yi; He, Xingyuan; Chen, Xin

    2009-04-01

    In natural environment with ambient air, ginkgo trees emitted volatile organic compounds 0.18 microg g(-1) h(-1) in July, and 0.92 microg g(-1) h(-1) in September. Isoprene and limonene were the most abundant detected compounds. In September, alpha-pinene accounted for 22.5% of the total. Elevated CO(2) concentration in OTCs increased isoprene emission significantly in July (p<0.05) and September (p<0.05), while the total monoterpenes emission was enhanced in July and decreased in September by elevated CO(2). Exposed to elevated O(3) increased the isoprene and monoterpenes emissions in July and September, and the total volatile organic compounds emission rates were 0.48 microg g(-1) h(-1) (in July) and 2.24 microg g(-1) h(-1) (in September), respectively. The combination of elevated CO(2) and O(3) did not have any effect on biogenic volatile organic compounds emissions, except increases of isoprene and Delta3-carene in September.

  4. Fenoterol increases erythropoietin concentrations during tocolysis

    PubMed Central

    Gleiter, C H; Schreeb, K H; Goldbach, S; Herzog, S; Cunze, T; Kuhn, W

    1998-01-01

    Aims The present study was carried out to assess the effect of the selective β2- adrenoceptor agonists on erythropoietin (EPO) production. Methods Routine tocolysis with fenoterol (using the regular rate of 2 μg min−1) was used as a clinically easily accessible model. Results EPO concentrations had doubled 24 h after the start of tocolysis (P < 0.001). This increase lasted over the entire observation period of 48 h. Potassium concentrations fell significantly during the first hours of fenoterol infusion. There was no increase of human placenta lactogen during the period of EPO increase. Conclusions The data confirm our earlier results that fenoterol increases EPO concentrations following haemorrhage. In this model it was not necessary to stimulate EPO production prior to pharmacological treatment. PMID:9491829

  5. Effect of europium ion concentration on the structural and photoluminescence properties of novel Li2BaZrO4: Eu3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Ahemen, I.; Dejene, F. B.; Kroon, R. E.; Swart, H. C.

    2017-12-01

    This work reports the influence of Eu3+ ion concentration on the structure and photoluminescence properties of Li2BaZrO4 nanocrystals including its intrinsic quantum efficiency (IQE). Chemical bath method was employed in the synthesis procedure. X-ray diffraction results showed tetragonal phase for Eu3+ ion concentration in the range 1 and 7 mol% and cubic phase at 8 mol%. The presence of barium oxide (BaO) was confirmed from selected area electron diffraction (SAED). The excitation spectra for these phosphors consisted of broad charge transfer (CT) bands due to the combination of Zr4+ - O2- and Eu3+-O2- charge transfer states. Superimposed on the CT band were direct excitation levels of Eu3+ and Ba2+ ions, in the range 320-450 nm. At high Eu3+ ions concentrations, the intensities of CT bands decreased because some of the ions were coordinated with Ba2+ ions. Photoluminescence emissions for all the doped samples at room temperature appeared to be entirely from intraconfigurational Eu3+ emissions and depended both on the site symmetry as well as the ion concentration. The quadrupole-quadrupole multipolar process was found to be solely responsible for the luminescence quenching. The intensity parameters (Ω2 ,Ω4), asymmetry ratio, R0 and the average decay lifetime of the nanocrystals showed dependence on concentration. High internal quantum efficiency (IQE) values were obtained at low Eu3+ ion concentrations, but efficiency decreased with increasing ion concentration. The CIE coordinates values were comparable to existing red phosphors and in combination with the high IQE make this phosphor a good candidate for red light emitting applications.

  6. Improved thermal conductivity of TiO2-SiO2 hybrid nanofluid in ethylene glycol and water mixture

    NASA Astrophysics Data System (ADS)

    Hamid, K. A.; Azmi, W. H.; Nabil, M. F.; Mamat, R.

    2017-10-01

    The need to study hybrid nanofluid properties such as thermal conductivity has increased recently in order to provide better understanding on nanofluid thermal properties and behaviour. Due to its ability to improve heat transfer compared to conventional heat transfer fluids, nanofluids as a new coolant fluid are widely investigated. This paper presents the thermal conductivity of TiO2-SiO2 nanoparticles dispersed in ethylene glycol (EG)-water. The TiO2-SiO2 hybrid nanofluids is measured for its thermal conductivity using KD2 Pro Thermal Properties Analyzer for concentration ranging from 0.5% to 3.0% and temperature of 30, 50 and 70°C. The results show that the increasing in concentration and temperature lead to enhancement in thermal conductivity at range of concentration studied. The maximum enhancement is found to be 22.1% at concentration 3.0% and temperature 70°C. A new equation is proposed based on the experiment data and found to be in good agreement where the average deviation (AD), standard deviation (SD) and maximum deviation (MD) are 1.67%, 1.66% and 5.13%, respectively.

  7. Heat transfer and friction factor of composite TiO2-SiO2 nanofluids in water-ethylene glycol (60:40) mixture

    NASA Astrophysics Data System (ADS)

    Nabil, M. F.; Azmi, W. H.; Hamid, K. A.; Mamat, R.

    2017-10-01

    The need for high performance of heat transfer has been evaluated by finding different ways to enhance heat transfer rate in fluid. One of the methods is the combination of two or more nanoparticles and it is known as hybrid/composite nanofluids which can give better performance of heat transfer. Thus, the present study focused on combination of Titanium oxide (TiO2) and Silicon oxide (SiO2) nanoparticles dispersed in 60:40 volume ratio of water and ethylene glycol mixture as the base fluid. The TiO2-SiO2 hybrid nanofluids are prepared using two-step method for different concentration of 2.0%, 2.5% and 3.0%. The experimental determination of heat transfer coefficients are conducted in the Reynolds numbers range from 2000 to 10000 at a bulk temperature of 30°C. The experiments are undertaken for constant heat flux in a circular tube. The Nusselt number of composite TiO2- SiO2 nanofluids is observed to be higher than the base fluid. The finding on heat transfer coefficient shows that 3.0% volume concentration is the highest enhancement with 45.9% compared with base fluid. While at concentration 2.0% and 2.5%, the enhancement recorded were 29.4% and 33.2%, respectively. The friction factor of nanofluids shows a decreased with the increasing of Reynolds numbers. However, the friction factor slightly increased with the increased of concentration.

  8. Photodegradation of 4-tert-butylphenol in aqueous solution by UV-C, UV/H2O2 and UV/S2O8(2-) system.

    PubMed

    Wu, Yanlin; Zhu, Xiufen; Chen, Hongche; Dong, Wenbo; Zhao, Jianfu

    2016-01-01

    The photolytic degradation of 4-tert-butylphenol (4-t-BP) in aqueous solution was investigated using three kinds of systems: UV-C directly photodegradation system, UV/H2O2 and UV/S2O8(2-) system. Under experimental conditions, the degradation rate of 4-t-BP was in the order: UV/S2O8(2-) > UV/H2O2 > UV-C. The reaction kinetics of UV/S2O8(2-) system were thoroughly investigated. The increase of S2O8(2-) concentration enhanced the 4-t-BP degradation rate, which was inhibited when the concentration of S2O8(2-) exceeded 4.0 mM. The highest efficacy in 4-t-BP degradation was obtained at pH 6.5. The oxidation rate of 4-t-BP could be accelerated by increasing the reaction temperature and irradiation intensity. The highest rate constant (kobs = 8.4 × 10(-2) min(-1)) was acquired when the reaction temperature was 45 °C. The irradiation intensity was measured by irradiation distance, and the optimum irradiation distance was 10 cm. Moreover, the preliminary mechanism of 4-t-BP degradation was studied. The bond scission of the 4-t-BP molecule occurred by the oxidation of SO4(•-), which dimerized and formed two main primary products. Under the conditions of room temperature (25 °C ± 1 °C) and low concentration of K2S2O8 (0.5 mM), 35.4% of total organic carbon (TOC) was removed after 8.5-h irradiation. The results showed that UV/S2O8(2-) system was effective for the degradation of 4-t-BP.

  9. The potential impact on atmospheric ozone and temperature of increasing trace gas concentrations

    NASA Technical Reports Server (NTRS)

    Brasseur, G.; Derudder, A.

    1987-01-01

    The response of the atmosphere to emissions of chlorofluorocarbons (CFCs) and other chlorocarbons, and to increasing concentrations of other radiatively active trace gases such as CO2, CH4, and N2O is calculated by a coupled chemical-radiative transport one-dimensional model. It is shown that significant reductions in the ozone concentration and in the temperature are expected in the upper stratosphere as a result of increasing concentrations of active chlorine produced by photodecomposition of the CFCs. The ozone content is expected to increase in the troposphere, as a consequence of increasing concentrations of methane and nitrogen oxides. Due to enhanced greenhouse effects, the Earth's surface should warm up by several degrees. The amplitude and even the sign of future changes in the ozone column are difficult to predict as they are strongly scenario-dependent. An early detection system to prevent noticeable ozone changes as a result of increasing concentrations of source gases should thus be based on a continuous monitoring of the ozone amount in the upper stratosphere rather than on measurements of the ozone column only. Measurements of NOx, Clx, and HOx are also required for unambiguous trend detection and interpretation.

  10. Concentration dependence of luminescence efficiency of Dy3+ ions in strontium zinc phosphate glasses mixed with Pb3 O4.

    PubMed

    Kumar, Valluri Ravi; Giridhar, G; Veeraiah, N

    2017-02-01

    In this work we synthesized SrO-ZnO-P 2 O 5 glasses mixed with Pb 3 O 4 (heavy metal oxide) and doped with different amounts of Dy 2 O 3 (0.1 to 1.0 mol%). Subsequently their emission and decay characteristics were investigated as a function of Dy 2 O 3 concentration. The emission spectra exhibited three principal emission bands in the visible region corresponding to 4 F 9 /2  →  6 H 15 /2 (482 nm), 6 H 13 /2 (574 nm) and 6 H 11 /2 (663 nm) transitions. With increase in the concentration of Dy 2 O 3 (upto 0.8 mol%) a considerable increase in the intensity of these bands was observed and, for further increase, quenching of photoluminescence (PL) output was observed. Using emission spectra, various radiative parameters were evaluated and all these parameters were found to increase with increase in Dy 2 O 3 concentration. The Y/B integral emission intensity ratio of Dy 3 + ions evaluated from these spectra exhibited a decreasing trend with increase in the Dy 2 O 3 concentration up to 0.8 mol%. Quenching of luminescence observed in the case of the glasses doped with 1.0 mol% is attributed to clustering of Dy 3 + ions. The quantitative analysis of these results together with infra-red (IR) spectral studies indicated that 0.8 mol% is the optimum concentration of Dy 3 + ions needed to achieve maximum luminescence efficiency. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Mechanistic analysis of water oxidation catalyst cis-[Ru(bpy) 2(H 2O) 2] 2+: Effect of dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdman, Darren; Pineda-Galvan, Yuliana; Pushkar, Yulia

    While the catalytic activity of some Ru-based polypyridine complexes in water oxidation is well established, the relationship between their chemical structure and activity is less known. In this work, the single site Ru complex [Ru(bpy) 2(H 2O) 2] 2+ (bpy = 2,20-bipyridine)—which can exist as either a cis isomer or a trans isomer—is investigated. While a difference in the catalytic activity of these two isomers is well established, with cis-[Ru(bpy) 2(H 2O) 2] 2+ being much more active, no mechanistic explanation of this fact has been presented. The oxygen evolving capability of both isomers at multiple concentrations has been investigated,more » with cis-[Ru(bpy) 2(H 2O) 2] 2+ showing a second-order dependence of O2 evolution activity with increased catalyst concentration. Measurement of the electron paramagnetic resonance (EPR) spectrum of cis-[Ru(bpy) 2(H 2O) 2] 2+, shortly after oxidation with CeIV, showed the presence of a signal matching that of cis,cis-[Ru III(bpy) 2(H 2O)ORu IV(bpy) 2(OH)] 4+, also known as “blue dimer”. The formation of dimers is a concentration-dependent process, which could serve to explain the greater than first order increase in catalytic activity. The trans isomer showed a first-order dependence of O 2 evolution on catalyst concentration. As a result, behavior of [Ru(bpy) 2(H 2O) 2] 2+ isomers is compared with other Ru-based catalysts, in particular [Ru(tpy)(bpy)(H 2O)] 2+ (tpy = 2,20;6,20 0-terpyridine).« less

  12. Mechanistic analysis of water oxidation catalyst cis-[Ru(bpy) 2(H 2O) 2] 2+: Effect of dimerization

    DOE PAGES

    Erdman, Darren; Pineda-Galvan, Yuliana; Pushkar, Yulia

    2017-01-25

    While the catalytic activity of some Ru-based polypyridine complexes in water oxidation is well established, the relationship between their chemical structure and activity is less known. In this work, the single site Ru complex [Ru(bpy) 2(H 2O) 2] 2+ (bpy = 2,20-bipyridine)—which can exist as either a cis isomer or a trans isomer—is investigated. While a difference in the catalytic activity of these two isomers is well established, with cis-[Ru(bpy) 2(H 2O) 2] 2+ being much more active, no mechanistic explanation of this fact has been presented. The oxygen evolving capability of both isomers at multiple concentrations has been investigated,more » with cis-[Ru(bpy) 2(H 2O) 2] 2+ showing a second-order dependence of O2 evolution activity with increased catalyst concentration. Measurement of the electron paramagnetic resonance (EPR) spectrum of cis-[Ru(bpy) 2(H 2O) 2] 2+, shortly after oxidation with CeIV, showed the presence of a signal matching that of cis,cis-[Ru III(bpy) 2(H 2O)ORu IV(bpy) 2(OH)] 4+, also known as “blue dimer”. The formation of dimers is a concentration-dependent process, which could serve to explain the greater than first order increase in catalytic activity. The trans isomer showed a first-order dependence of O 2 evolution on catalyst concentration. As a result, behavior of [Ru(bpy) 2(H 2O) 2] 2+ isomers is compared with other Ru-based catalysts, in particular [Ru(tpy)(bpy)(H 2O)] 2+ (tpy = 2,20;6,20 0-terpyridine).« less

  13. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.

    PubMed

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2013-10-15

    The behavior of manufactured TiO2 nanoparticles is studied in a systematic way in presence of alginate and Suwannee River humic acids at variable concentrations. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is discussed by considering three pH-dependent electrostatic scenarios. In the first scenario, when pH is below the TiO2 nanoparticle point of zero charge, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee River humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation. By increasing further alginate and Suwannee River humic acids concentrations charge inversion and stabilization of TiO2 nanoparticles are obtained. In the second electrostatic scenario, at the surface charge neutralization pH, TiO2 nanoparticles are rapidly forming aggregates. Adsorption of alginate and Suwannee River humic acids on aggregates leads to their partial fragmentation. In the third electrostatic scenario, when nanoparticles, alginate and Suwannee River humic acids are negatively charged, only a small amount of Suwannee River humic acids is adsorbed on TiO2 nanoparticles surface. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions, steric and van der Waals interactions, as well as concentration ratio. Results also suggest that environmental aquatic concentration ranges of humic acids and biopolymers largely modify the stability of aggregated or dispersed TiO2 nanoparticles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wu, Qi; Huang, Qunxing; Zhang, Haidan; Yan, Jianhua; Cen, Kefa

    2015-07-01

    An innovative tomographic method using tunable diode laser absorption spectroscopy (TDLAS) and algebraic reconstruction technique (ART) is presented in this paper for detecting two-dimensional distribution of H2O concentration and temperature in a premixed flame. The collimated laser beam emitted from a low cost diode laser module was delicately split into 24 sub-beams passing through the flame from different angles and the acquired laser absorption signals were used to retrieve flame temperature and H2O concentration simultaneously. The efficiency of the proposed reconstruction system and the effect of measurement noise were numerically evaluated. The temperature and H2O concentration in flat methane/air premixed flames under three different equivalence ratios were experimentally measured and reconstruction results were compared with model calculations. Numerical assessments indicate that the TDLAS tomographic system is capable for temperature and H2O concentration profiles detecting even the noise strength reaches 3% of absorption signal. Experimental results under different combustion conditions are well demonstrated along the vertical direction and the distribution profiles are in good agreement with model calculation. The proposed method exhibits great potential for 2-D or 3-D combustion diagnostics including non-uniform flames.

  15. Factors associated with NO2 and NOX concentration gradients near a highway.

    PubMed

    Richmond-Bryant, J; Snyder, M G; Owen, R C; Kimbrough, S

    2017-11-21

    The objective of this research is to learn how the near-road gradient, in which NO 2 and NO X (NO + NO 2 ) concentrations are elevated, varies with changes in meteorological and traffic variables. Measurements of NO 2 and NO X were obtained east of I-15 in Las Vegas and fit to functions whose slopes (dC NO 2 /dx and dC NO X /dx, respectively) characterize the size of the near-road zone where NO 2 and NO X concentrations from mobile sources on the highway are elevated. These metrics were used to learn about the near-road gradient by modeling dC NO 2 /dx and dC NO X /dx as functions of meteorological variables (e.g., wind direction, wind speed), traffic (vehicle count), NO X concentration upwind of the road, and O 3 concentration at two fixed-site ambient monitors. Generalized additive models (GAM) were used to model dC NO 2 /dx and dC NO X /dx versus the independent variables because they allowed for nonlinearity of the variables being compared. When data from all wind directions were included in the analysis, variability in O 3 concentration comprised the largest proportion of variability in dC NO 2 /dx, followed by variability in wind direction. In a second analysis constrained to winds from the west, variability in O 3 concentration remained the largest contributor to variability in dC NO 2 /dx, but the relative contribution of variability in wind speed to variability in dC NO 2 /dx increased relative to its contribution for the all-wind analysis. When data from all wind directions were analyzed, variability in wind direction was by far the largest contributor to variability in dC NO X /dx, with smaller contributions from hour of day and upwind NO X concentration. When only winds from the west were analyzed, variability in upwind NO X concentration, wind speed, hour of day, and traffic count all were associated with variability in dC NO X /dx. Increases in O 3 concentration were associated with increased magnitude near-road dC NO 2 /dx, possibly shrinking the

  16. Germination and early plant development of 10 plant species exposed to Nano TiO2 and CeO2

    EPA Science Inventory

    Ten agronomic plant species were exposed to different concentrations of nano-TiO2 or CeO2 (0, 250, 500 and 1000 ug/l) and followed to examine effects on germination and early seedling development. For TiO2, cabbage showed increased and corn decreased percent germination, while ...

  17. From atomic structure to excess entropy: a neutron diffraction and density functional theory study of CaO-Al2O3-SiO2 melts

    NASA Astrophysics Data System (ADS)

    Liu, Maoyuan; Jacob, Aurélie; Schmetterer, Clemens; Masset, Patrick J.; Hennet, Louis; Fischer, Henry E.; Kozaily, Jad; Jahn, Sandro; Gray-Weale, Angus

    2016-04-01

    Calcium aluminosilicate \\text{CaO}-\\text{A}{{\\text{l}}2}{{\\text{O}}3}-\\text{Si}{{\\text{O}}2} (CAS) melts with compositions {{≤ft(\\text{CaO}-\\text{Si}{{\\text{O}}2}\\right)}x}{{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}1-x} for x  <  0.5 and {{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}x}{{≤ft(\\text{Si}{{\\text{O}}2}\\right)}1-x} for x≥slant 0.5 are studied using neutron diffraction with aerodynamic levitation and density functional theory molecular dynamics modelling. Simulated structure factors are found to be in good agreement with experimental structure factors. Local atomic structures from simulations reveal the role of calcium cations as a network modifier, and aluminium cations as a non-tetrahedral network former. Distributions of tetrahedral order show that an increasing concentration of the network former Al increases entropy, while an increasing concentration of the network modifier Ca decreases entropy. This trend is opposite to the conventional understanding that increasing amounts of network former should increase order in the network liquid, and so decrease entropy. The two-body correlation entropy S 2 is found to not correlate with the excess entropy values obtained from thermochemical databases, while entropies including higher-order correlations such as tetrahedral order, O-M-O or M-O-M bond angles and Q N environments show a clear linear correlation between computed entropy and database excess entropy. The possible relationship between atomic structures and excess entropy is discussed.

  18. Investigation the influences of B2O3 and R2O on the structure and crystallization behaviors of CaO-Al2O3 based F-free mold flux

    NASA Astrophysics Data System (ADS)

    Li, Jiangling; Kong, Bowen; Gao, Xiangyu; Liu, Qingcai; Shu, Qifeng; Chou, Kuochih

    2018-04-01

    The influences of B2O3 and R2O on the structure and crystallization of CaO-Al2O3 based F-free mold flux were investigated by Raman Spectroscopy and Differential Scanning Calorimetry Technique, respectively, for developing a new type of F-free mold flux. The results of structural investigations showed that B3+ is mainly in the form of [BO3]. And [BO3] appears to form BIII-O-Al linkage which will produce a positive effect on forming [AlO4] network. The number of bridging oxygen and the degree of polymerization of [AlO4] network structure for CaO-Al2O3 system were also increased with the increasing of B2O3. On the contrary, with the addition of R2O into CaO-Al2O3-B2O3 system, the number of bridging oxygen and the degree of polymerization of [AlO4] network were decreased. DSC results showed that the crystallization process became more sluggish with the increase of B2O3, which indicated that the crystallization ability was weakened. While the quenched mold fluxes crystallized more rapidly when introducing R2O. In other word, the crystallization rates of CaO-Al2O3 based slags were accelerated by the introduction of R2O. The liquidus temperature and crystallization temperature were decreased with the increasing amount of B2O3 or by addition of R2O into CaO-Al2O3 system. Only one kind of crystal was precipitated in 8% B2O3 and %R2O-containing samples, which was CaAl2O4 identified by SEM-EDS. When the content of B2O3 increased from 8% to 16%, Ca3B2O6 is clearly observed, demonstrating that the crystallization ability of Ca3B2O6 is enhanced by the increasing concentration of B2O3 in mold flux. The Ca/Al ratio of the generated calcium aluminate has been altered from 1:2 to 1:4 with the increasing of B2O3. The size of CaAl2O4 crystal is gradually increased with the addition of R2O. The crystallization ability of CaAl2O4 is promoted by R2O.

  19. High-Intensity Interval Training Increases Cardiac Output and V˙O2max.

    PubMed

    Astorino, Todd A; Edmunds, Ross M; Clark, Amy; King, Leesa; Gallant, Rachael A; Namm, Samantha; Fischer, Anthony; Wood, Kimi M

    2017-02-01

    Increases in maximal oxygen uptake (V˙O2max) frequently occur with high-intensity interval training (HIIT), yet the specific adaptation explaining this result remains elusive. This study examined changes in V˙O2max and cardiac output (CO) in response to periodized HIIT. Thirty-nine active men and women (mean age and V˙O2max = 22.9 ± 5.4 yr and 39.6 ± 5.6 mL·kg·min) performed HIIT and 32 men and women (age and V˙O2max = 25.7 ± 4.5 yr and 40.7 ± 5.2 mL·kg·min) were nonexercising controls (CON). The first 10 sessions of HIIT required eight to ten 60 s bouts of cycling at 90%-110% percent peak power output interspersed with 75 s recovery, followed by randomization to one of three regimes (sprint interval training (SIT), high-volume interval training (HIITHI), or periodized interval training (PER) for the subsequent 10 sessions. Before, midway, and at the end of training, progressive cycling to exhaustion was completed during which V˙O2max and maximal CO were estimated. Compared with CON, significant (P < 0.001) increases in V˙O2max in HIIT + SIT (39.8 ± 7.3 mL·kg·min to 43.6 ± 6.1 mL·kg·min), HIIT + HIITHI (41.1 ± 4.9 mL·kg·min to 44.6 ± 7.0 mL·kg·min), and HIIT + PER (39.5 ± 5.6 mL·kg·min to 44.1 ± 5.4 mL·kg·min) occurred which were mediated by significant increases in maximal CO (20.0 ± 3.1 L·min to 21.7 ± 3.2 L·min, P = 0.04). Maximal stroke volume was increased with HIIT (P = 0.04), although there was no change in maximal HR (P = 0.88) or arteriovenous O2 difference (P = 0.36). These CO data are accurate and represent the mean changes from pre- to post-HIIT across all three training groups. Increases in V˙O2max exhibited in response to different HIIT regimes are due to improvements in oxygen delivery.

  20. The effect of Eu{sup 2+} doping concentration on luminescence properties of Sr{sub 3}B{sub 2}O{sub 6}:Eu{sup 2+} yellow phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yue; Liu, Quansheng, E-mail: liuqs@cust.edu.cn; School of Physics, JiLin University, No. 2699 Qianjin Street, Changchun 130012

    2013-10-15

    Graphical abstract: - Highlights: • The concentration quenching mechanism of Sr{sub 3}B{sub 2}O{sub 6}:Eu{sup 2+}can be interpreted by the dipole–dipole (d–d) interaction of Eu{sup 2+} ions. • The average electronegativity of O{sup 2−} ions located around Eu{sup 2+} ion is 1.9991 eV. • The optimum concentration of Eu{sup 2+} ions in Sr{sub 3}B{sub 2}O{sub 6} is 7 mol%. • Sr{sub 3}B{sub 2}O{sub 6}:Eu{sup 2+} is a hexagonal crystal structure. - Abstract: The Sr{sub 3}B{sub 2}O{sub 6}:Eu{sup 2+} yellow phosphors were synthesized by high-temperature solid state reaction method. The crystal structure and optical properties of the Sr{sub 3}B{sub 2}O{sub 6}:Eu{sup 2+}more » phosphor was studied. Results indicate that Sr{sub 3}B{sub 2}O{sub 6}:Eu{sup 2+} has a hexagonal crystal structure. The excitation spectrum indicates that this phosphor can be effectively excited by ultraviolet light of near 390 nm and blue light of 460 nm. The emission spectrum shows a intense broad band spectrum peaking at 566 nm, which corresponds to the 4f{sup 6}({sup 7}F)5d ({sup 2}e{sub g})→{sup 8}S{sub 7/2} (4f{sup 7})transition of Eu{sup 2+} ion. The excitation spectrum is a broad asymmetric excitation band extending from 300 nm to 500 nm and the main excitation peak is at 468 nm. The average electronegativity of O{sup 2−} ions located around Eu{sup 2+} ion is 1.9991 eV. The optimum concentration of Eu{sup 2+} is 7 mol%. The concentration quenching mechanism can be interpreted by the dipole–dipole (d–d) interaction of Eu{sup 2+} ions.« less

  1. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2.

    PubMed

    Colon, Gabriel; Ward, Brian C; Webster, Thomas J

    2006-09-01

    Many engineers and surgeons trace implant failure to poor osseointegration (or the bonding of an orthopedic implant to juxtaposed bone) and/or bacteria infection. By using novel nanotopographies, researchers have shown that nanostructured ceramics, carbon fibers, polymers, metals, and composites enhance osteoblast adhesion and calcium/phosphate mineral deposition. However, the function of bacteria on materials with nanostructured surfaces remains largely uninvestigated. This is despite the fact that during normal surgical insertion of an orthopedic implant, bacteria from the patient's own skin and/or mucosa enters the wound site. These bacteria (namely, Staphylococcus epidermidis) irreversibly adhere to an implant surface while various physiological stresses induce alterations in the bacterial growth rate leading to biofilm formation. Because of their integral role in determining the success of orthopedic implants, the objective of this in vitro study was to examine the functions of (i) S. epidermidis and (ii) osteoblasts (or bone-forming cells) on ZnO and titania (TiO(2)), which possess nanostructured compared to microstructured surface features. ZnO is a well-known antimicrobial agent and TiO(2) readily forms on titanium once implanted. Results of this study provided the first evidence of decreased S. epidermidis adhesion on ZnO and TiO(2) with nanostructured when compared with microstructured surface features. Moreover, compared with microphase formulations, results of this study showed increased osteoblast adhesion, alkaline phosphatase activity, and calcium mineral deposition on nanophase ZnO and TiO(2). In this manner, this study suggests that nanophase ZnO and TiO(2) may reduce S. epidermidis adhesion and increase osteoblast functions necessary to promote the efficacy of orthopedic implants.

  2. Effects of TiO2 NPs on Silkworm Growth and Feed Efficiency.

    PubMed

    Li, YangYang; Ni, Min; Li, FanChi; Zhang, Hua; Xu, KaiZun; Zhao, XiaoMing; Tian, JiangHai; Hu, JingSheng; Wang, BinBin; Shen, WeiDe; Li, Bing

    2016-02-01

    Silkworm (Bombyx mori) (B. mori) is an economically important insect and a model species for Lepidoptera. It has been reported that feeding of low concentrations of titanium dioxide nanoparticles (TiO2 NPs) can improve feed efficiency and increase cocoon mass, cocoon shell mass, and the ratio of cocoon shell. However, high concentrations of TiO2 NPs are toxic. In this study, we fed B. mori with different concentrations of TiO2 NPs (5, 10, 20, 40, 80, and 160 mg/L) and investigated B. mori growth, feed efficiency, and cocoon quality. We found that low concentrations of TiO2 NPs (5 and 10 mg/L) were more effective for weight gains, with significant weight gain being obtained at 72 h (P < 0.05). TiO2 NPs at 20 mg/L or higher had certain inhibitory effects, with significant inhibition to B. mori growth being observed at 48 h. The feed efficiency was significantly improved at low concentrations of 5 and 10 mg/L for 14.6 and 13.1 %, respectively (P < 0.05). All B. mori fed with TiO2 NPs showed increased cocoon mass and cocoon shell mass; at 5 and 10 mg/L TiO2 NPs, cocoon mass was significantly increased by 8.29 and 9.39 %, respectively (P < 0.05). We also found that low concentrations (5 and 10 mg/L) of TiO2 NPs promoted B. mori growth and development, improved feed efficiency, and increased cocoon production, while high concentrations (20 mg/L or higher) of TiO2 NPs showed inhibitory effect to the B. mori. Consecutive feeding of high concentrations of TiO2 NPs led to some degrees of adaptability. This study provides a reference for the research on TiO2 NPs toxicity and the basis for the development of TiO2 NPs as a feed additive for B. mori.

  3. Sensor for headspace pressure and H2O concentration measurements in closed vials by tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cai, Tingdong; Wang, Guishi; Cao, Zhensong; Zhang, Weijun; Gao, Xiaoming

    2014-07-01

    The concentration of H2O and the pressure in the headspace of vials are simultaneously measured by a tunable diode laser sensor based on absorption spectroscopy techniques. The 7168.437 cm-1 spectral line of H2O is chosen as the sensing transition for its strong absorption strength and being reasonably far away from its neighboring molecular transitions. In order to prevent interference absorption by ambient water vapor in the room air, a difference between the measured signal and the referenced signal is used to calculate the pressure and H2O concentration in the headspace of vials, eliminating the need for inert gas purges and calibration with known gas. The validation of the sensor is conducted in a static vial, yielding an accuracy of 1.23% for pressure and 3.81% for H2O concentration. The sensitivity of the sensor is estimated to be about 2.5 Torr for pressure and 400 ppm for H2O concentration over a 3 cm absorption path length respectively. Accurate measurements for commercial freeze-dried products demonstrate the in-line applications of the sensor for the pharmaceutical industry.

  4. A thermodynamic model for the solubility of HfO2(am) in the aqueous K +– HCO 3 -– CO 3 2-–O -–H 2O system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Dhanpat; Kitamura, Akira; Rosso, Kevin M.

    Solubility of HfO2(am) was determined as a function of KHCO3 concentrations ranging from 0.001 mol·kg-1 to 0.1 mol·kg-1. The solubility of HfO2(am) increased dramatically with the increase in KHCO3 concentrations, indicating that Hf(IV) makes strong complexes with carbonate. Thermodynamic equilibrium constants for the formation of Hf-carbonate complexes were determined using both the Pitzer and SIT models. The dramatic increase in Hf concentrations with the increase in KHCO3 concentrations can best be described by the formation of Hf(OH-)2(CO3)22- and Hf(CO3)56-. The log10 K0 values for the reactions [Hf4++2CO32-+2OH-⇌Hf(OH)2(CO3)22-] and [Hf4++5CO32-⇌Hf(CO3)56-], based on the SIT model, were determined to be 44.53±0.46 andmore » 41.53±0.46, respectively, and based on the Pitzer model they were 44.56±0.48 and 40.20±0.48, respectively.« less

  5. Concentration, behavior and storage of H/sub 2/O in the suboceanic upper mantle: implications for mantle metasomatism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael, P.J.

    1988-02-01

    Mid-ocean ridge basalt glasses from the Pacific-Nazca Ridge and the northern Juan de Fuca Ridge were analyzed for H/sub 2/O by gas chromatography. Incompatible element enriched (IEE) glasses have higher H/sub 2/O contents than depleted (IED) glasses. H/sub 2/O increases systematically with decreasing Mg/Mg + Fe/sup 2 +/ within each group. Near-primary IED MORBs have an average of about 800 ppm H/sub 2/O, while near-primary IEE MORBs (with chondrite normalized Nb/Zr or La/Sm approx. 2) have about 2100 ppm H/sub 2/O. If these basalts formed by 10-20% partial melting then the IED mantle source had 100-180 ppm H/sub 2/O, whilemore » the IEE source had 250-450 ppm H/sub 2/O. The ratio H/sub 2/O/(Ce + Nd) is fairly constant at 95 +/- 30 for all oceanic basalts from the Pacific. During trace element fractionation in the suboceanic upper mantle, H/sub 2/O behaves more compatibly than K, Rb, Nb, and Cl, but less compatibly than Sm, Zr and Ti. H/sub 2/O is contained mostly in amphibole in the shallow upper mantle. At pressures greater than the amphibole stability limit, it is likely that a significant proportion of H/sub 2/O is contained in a mantle phase which is more refractory than phlogopite at these pressures. The role of H/sub 2/O in mantle enrichment processes is examined by assuming that an enriched component was added. The modeled concentrations of K, Na, Ti and incompatible trace elements in this component are high relative to H/sub 2/O, indicating that suboceanic mantle enrichment is caused by silicate melts such as basanites and not by aqueous fluids.« less

  6. Influence of pH and europium concentration on the luminescent and morphological properties of Y2O3 powders

    NASA Astrophysics Data System (ADS)

    Esquivel-Castro, Tzipatly; Carrillo-Romo, Felipe de J.; Oliva-Uc, Jorge; García-Murillo, Antonieta; Hirata-Flores, Gustavo A.; Cayetano-Castro, Nicolás; De la Rosa, Elder; Morales-Ramírez, Angel de J.

    2015-10-01

    This work reports on the synthesis and characterization of Y2O3:Eu3+ powders obtained by the hydrothermal method. We studied the influence of different pH values (7-12) and Eu3+ concentrations (2.5-25 mol%) on the structural, morphological and luminescent characteristics of Y2O3:Eu3+ powders. The hydrothermal synthesis was performed at 200 °C for 12 h by employing Y2O3, HNO3, H2O and Eu (NO3)3 as precursors, in order to obtain two sets of samples. The first set of powders was obtained with different pH values and named Eu5PHx (x = 7, 8, 9, 10, 11, and 12), and the second set was obtained by using a constant pH = 7 with different Eu concentrations, named EuxPH7 (x = 2.5, 5, 8, 15, 20 and 25). The XRD spectra showed that the Y2O3:Eu3+ powders exhibited a cubic phase, regardless of the pH values and Eu3+ concentrations. The SEM observations indicated that pH influenced the morphology and size of phosphors; for instance, for pH = 7, hexagonal microplatelets were obtained, and microrods at pH values from 8 to 12. Doping Y2O3 with various Eu3+ concentrations (in mol%) also produced changes in morphology, in these cases, hexagonal microplatelets were obtained in the range of 2.5-5 mol%, and non uniform plates were observed at higher doping concentrations ranging from 8 to 25 mol%. According to our results, the microplatelets synthesized with a pH of 7 and an 8 mol% Eu3+ concentration presented the highest luminescence under excitation at 254 nm. All of these results indicate that our phosphors could be useful for applications of controlled drug delivery, photocatalysis and biolabeling.

  7. Laser stimulated third harmonic generation studies in ZnO-Ta2O5-B2O3 glass ceramics entrenched with Zn3Ta2O8 crystal phases

    NASA Astrophysics Data System (ADS)

    Siva Sesha Reddy, A.; Jedryka, J.; Ozga, K.; Ravi Kumar, V.; Purnachand, N.; Kityk, I. V.; Veeraiah, N.

    2018-02-01

    In this study zinc borate glasses doped with different concentrations Ta2O5 were synthesized and were crystallized by heat treatment for prolonged times. The samples were characterized by XRD, SEM, IR and Raman spectroscopy techniques. The SEM images of the crystallized samples have indicated that the samples contain randomly distributed crystal grains with size ∼1 μm entrenched in the residual amorphous phase. XRD studies have exhibited diffraction peaks identified as being due to the reflections from (1 1 1) planes of monoclinic Zn3Ta2O8 crystal phase that contains intertwined tetrahedral zinc and octahedral tantalate structural units. The concentration of such crystal phases in the bulk samples is observed to increase with increase of Ta2O5 up to 3.0 mol%. The IR and Raman spectroscopy studies have confirmed the presence of ZnO4 and TaO6 structural units in the glass network in addition to the conventional borate structural units. For measuring third harmonic generation (THG) in the samples, the samples were irradiated with 532 nm laser beam and the intensity of THG of probing beam (Nd:YAG λ = 1064 nm 20 ns pulsed laser (ω)) is measured as a function of fundamental beam power varying up to 200 J/m2. The intensity of THG is found to be increasing with increase of fundamental beam power and found to be the maximal for the glass crystallized with 3.0 mol% of Ta2O5. The intensity of THG of the ceramicized samples is found to be nearly 5 times higher with respect to that of pre-crystallized samples. The generation of 3ω is attributed to the perturbation/interaction between Zn3Ta2O8 anisotropic crystal grains and the incident probing beam.

  8. Nucleate pool boiling heat transfer characteristics of TiO{sub 2}-water nanofluids at very low concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suriyawong, Adirek; Wongwises, Somchai

    2010-11-15

    A study of nucleate pool boiling heat transfer of TiO{sub 2}-water nanofluids is experimentally conducted. Nanofluids with various concentrations of 0.00005, 0.0001, 0.0005, 0.005, and 0.01 vol.% are employed. Horizontal circular plates made from copper and aluminium with different roughness values of 0.2 and 4 {mu}m are used as heating surfaces. The experiments are performed to explore the effects of nanofluids concentration as well as heating surface material and roughness on nucleate pool boiling characteristics and the heat transfer coefficient under ambient pressure. The results show that based on the copper heated surface which is tested with a concentration ofmore » 0.0001 vol.%, higher nucleate pool boiling heat transfer coefficient is obtained when compared with the base fluid. A 15% increase is obtained for the surface roughness of 0.2 {mu}m and a 4% increase is obtained for roughness of 4 {mu}m. For concentrations higher than 0.0001 vol.%, however, the higher the concentration, the lower the heat transfer coefficient. In the case of aluminium heated surface, the corresponding heat transfer coefficients are larger than for the copper surface by around 30% with a roughness of 0.2 {mu}m and around 27% with a roughness of 4 {mu}m. Moreover, the results also indicate that the heat transfer coefficient obtained based on a roughness of 4 {mu}m is higher than that for a roughness of 0.2 {mu}m by around 12% for aluminium and by around 13% for copper. (author)« less

  9. Effect of oxygen concentration on the magnetic properties of La2CoMnO6 thin films

    NASA Astrophysics Data System (ADS)

    Guo, H. Z.; Gupta, A.; Zhang, Jiandi; Varela, M.; Pennycook, S. J.

    2007-11-01

    The dependence of the magnetic properties on oxygen concentration in epitaxial La2CoMnO6 thin films deposited on (100)-oriented SrTiO3 substrates has been investigated by varying the oxygen background pressure during growth using pulsed laser deposition. Two distinct ferromagnetic (FM) phases are revealed, and the relative fraction varies with the oxygen concentration. The existence of oxygen vacancies induces the local vibronic Mn3+-O -Co3+ superexchange interactions in direct competition with the static FM Mn4+-O-Co2+ interactions. This results in the appearance of a new low temperature FM phase and suppression of the high-temperature FM phase, creating two distinct magnetic phase transitions.

  10. Trees in urban parks and forests reduce O3, but not NO2 concentrations in Baltimore, MD, USA

    NASA Astrophysics Data System (ADS)

    Yli-Pelkonen, Vesa; Scott, Anna A.; Viippola, Viljami; Setälä, Heikki

    2017-10-01

    Trees and other vegetation absorb and capture air pollutants, leading to the common perception that they, and trees in particular, can improve air quality in cities and provide an important ecosystem service for urban inhabitants. Yet, there has been a lack of empirical evidence showing this at the local scale with different plant configurations and climatic regions. We studied the impact of urban park and forest vegetation on the levels of nitrogen dioxide (NO2) and ground-level ozone (O3) while controlling for temperature during early summer (May) using passive samplers in Baltimore, USA. Concentrations of O3 were significantly lower in tree-covered habitats than in adjacent open habitats, but concentrations of NO2 did not differ significantly between tree-covered and open habitats. Higher temperatures resulted in higher pollutant concentrations and NO2 and O3 concentration were negatively correlated with each other. Our results suggest that the role of trees in reducing NO2 concentrations in urban parks and forests in the Mid-Atlantic USA is minor, but that the presence of tree-cover can result in lower O3 levels compared to similar open areas. Our results further suggest that actions aiming at local air pollution mitigation should consider local variability in vegetation, climate, micro-climate, and traffic conditions.

  11. On the origin of a sustained increase in cytosolic Ca2+ concentration after a toxic glutamate treatment of the nerve cell culture.

    PubMed

    Khodorov, B; Pinelis, V; Golovina, V; Fajuk, D; Andreeva, N; Uvarova, T; Khaspekov, L; Victorov, I

    1993-06-21

    A sustained increase of cytosolic Ca2+ concentration, [Ca2+]i, (Ca2+ plateau) was induced by a 15-min treatment with 50 microM glutamate of cultured cerebellar granule cells and hippocampal neurons in a Mg(2+)-free solution. Plateau proved to be insensitive to inhibition of Na+o/Ca2+i exchange caused by removal external Na+ in the post-glutamate period. A approximately 10(5)-fold reduction of [Ca2+]o (from 1.5 mM to 20 nM) in the post-glutamate period caused in most cells only a slow and small decrease in [Ca2+]i, although the same low-Ca2+ trial before glutamate treatment caused in hippocampal cells very quick blockade of spontaneous [Ca2+]i oscillation and a decrease in the basal [Ca2+]i. The results suggest that the Ca2+ plateau is due to a suppression of the Ca2+ extrusion from the cell (in particular via Na+/Ca2+ exchange) rather than from a persistent increase in Ca2+ permeability of neuronal membrane.

  12. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells.

    PubMed

    Kim, In-Sun; Baek, Miri; Choi, Soo-Jin

    2010-05-01

    The increased applications of nanoparticles in a wide range of industrial fields raise the concern about their potential toxicity to human. The aim of this study was to assess and compare the toxicity of four different oxide nanoparticles (Al2O3, CeO2, TiO2 and ZnO) to human lung epithelial cells, A549 carcinoma cells and L-132 normal cells, in vitro. We focused on the toxicological effects of the present nanoparticles on cell proliferation, cell viability, membrane integrity and oxidative stress. The long-term cytotoxicity of nanoparticles was also evaluated by employing the clonogenic assay. Among four nanoparticles tested, ZnO exhibited the highest cytotoxicity in terms of cell proliferation, cell viability, membrane integrity and colony formation in both cell lines. Al2O3, CeO2 and TiO2 showed little adverse effects on cell proliferation and cell viability. However, TiO2 induced oxidative stress in a concentration- and time-dependent manner. CeO2 caused membrane damage and inhibited colony formation in long-term, but with different degree depending on cell lines. Al2O3 seems to be less toxic than the other nanoparticles even after long time exposure. These results highlight the need for caution during manufacturing process of nanomaterials as well as further investigation on the toxicity mechanism.

  13. TiO2, SiO2 and ZrO2 Nanoparticles Synergistically Provoke Cellular Oxidative Damage in Freshwater Microalgae

    PubMed Central

    Liu, Yinghan; Ye, Nan; Fang, Hao; Wang, Degao

    2018-01-01

    Metal-based nanoparticles (NPs) are the most widely used engineered nanomaterials. The individual toxicities of metal-based NPs have been plentifully studied. However, the mixture toxicity of multiple NP systems (n ≥ 3) remains much less understood. Herein, the toxicity of titanium dioxide (TiO2) nanoparticles (NPs), silicon dioxide (SiO2) NPs and zirconium dioxide (ZrO2) NPs to unicellular freshwater algae Scenedesmus obliquus was investigated individually and in binary and ternary combination. Results show that the ternary combination systems of TiO2, SiO2 and ZrO2 NPs at a mixture concentration of 1 mg/L significantly enhanced mitochondrial membrane potential and intracellular reactive oxygen species level in the algae. Moreover, the ternary NP systems remarkably increased the activity of the antioxidant defense enzymes superoxide dismutase and catalase, together with an increase in lipid peroxidation products and small molecule metabolites. Furthermore, the observation of superficial structures of S. obliquus revealed obvious oxidative damage induced by the ternary mixtures. Taken together, the ternary NP systems exerted more severe oxidative stress in the algae than the individual and the binary NP systems. Thus, our findings highlight the importance of the assessment of the synergistic toxicity of multi-nanomaterial systems. PMID:29419775

  14. [Degradation of Organic Sunscreens 2-hydroxy-4-methoxybenzophenone by UV/ H2O2 Process: Kinetics and Factors].

    PubMed

    Feng, Xin-xin; Du, Er-deng; Guo, Ying-qing; Li, Hua-jie; Liu, Xiang; Zhou, Fang

    2015-06-01

    Organic sunscreens continue to enter the environment through people's daily consumption, and become a kind of emerging contaminants. The photochemical degradation of benzophenone-3 (BP-3) in water by UV/H2O2 process was investigated. Several factors, including the initial BP-3 concentration, H2O2 concentration, UV light intensity, coexisting cations and anions, humic acid and tert-butyl alcohol, were also discussed. The results showed that BP-3 degradation rate constant decreased with increasing initial BP-3 concentration, while increased with increasing H2O2 dosage and UV intensity. Coexisting anions could reduce the degradation rate, while coexisting ferric ions could stimulate the production of OH through Fenton-like reaction, further significantly accelerated BP-3 degradation process. The BP-3 degradation would be inhibited by humic acid or tert-butyl alcohol. The electrical energy per order (E(Eo)) values were also calculated to evaluate the cost of BP-3 degradation by UV/H2O2 process. The addition of ferric ions significantly reduced the value of E(Eo). The investigation of processing parameter could provide a reference for the practical engineering applications of benzophenone compounds removal by UV/H2O2 process.

  15. Magnetism from Fe2O3 nanoparticles embedded in amorphous SiO2 matrix

    NASA Astrophysics Data System (ADS)

    Sendil Kumar, A.; Bhatnagar, Anil K.

    2018-02-01

    Fe2O3 nanoparticles are embedded in amorphous SiO2 matrix by coprecipitation method with varying concentrations. Conditions are optimized to get almost monodispersed Fe2O3 nanoparticles with high chemical stability. Microstructure of synthesized nanoparticles is well characterized and found that Fe2O3 is in nanocrystalline form and embedded uniformly in amorphous SiO2 matrix. Enhanced surface reactivity is found for nanoparticles which influences physical properties of the SiO2 supported Fe2O3 system due to adsorption. In oxide nanoparticles, significant number of defect sites at the surface is expected but when supported medium such as SiO2 it reduces this defect concentration. Field- and temperature-dependent magnetisation studies on these samples show superparamagnetic behaviour. Superparamagnetic behaviour is seen in all the concentration systems but the coercivity observed in the lower concentration systems is found to be anomalous compared to that of higher concentrations. The observed magnetic behaviour comes from either unsaturated bond existing due to the absence of anions at the surface of nanoparticles or reconstruction of atomic orbitals taking place at interface of Fe2O3-SiO2 system.

  16. Vertical profiles of H2O, H2SO4, and sulfuric acid concentration at 45-75 km on Venus

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2015-05-01

    A method developed by Krasnopolsky and Pollack (Krasnopolsky, V.A., Pollack, J.B. [1994]. Icarus 109, 58-78) to model vertical profiles of H2O and H2SO4 vapors and sulfuric acid concentration in the Venus cloud layer has been updated with improved thermodynamic parameters for H2O and H2SO4 and reduced photochemical production of sulfuric acid. The model is applied to the global-mean conditions and those at the low latitudes and at 60°. Variations in eddy diffusion near the lower cloud boundary are used to simulate variability in the cloud properties and abundances of H2O and H2SO4. The best version of the model for the global-mean condition results in a lower cloud boundary (LCB) at 47.5 km, H2SO4 peak abundance of 7.5 ppm at the LCB, and H2O mixing ratios of 7 ppm at 62 km and 3.5 ppm above 67 km. The model for low latitudes gives LCB at 48.5 km, the H2SO4 peak of 5 ppm, H2O of 8.5 ppm at 62 km and 3 ppm above 67 km. The model for 60° shows LCB at 46 km, the H2SO4 peak of 8.5 ppm, H2O of 9 ppm at 62 km and 4.5 ppm above 67 km. The calculated variability is induced by the proper changes in the production of sulfuric acid (by factors of 1.2 and 0.7 for the low latitudes and 60°, respectively) and reduction of eddy diffusion near 45 km relative to the value at 54 km by factors of 1.1, 3, and 4.5 for the low and middle (global-mean) latitudes and 60°, respectively. Concentration of sulfuric acid at the low and middle latitudes varies from ∼98% near 50 km to ∼80% at 60 km and then is almost constant at 79% at 70 km. Concentration at 60° is 98% at 50 km, 73% at 63 km, and 81% at 70 km. There is a reasonable agreement between the model results and observations except for the sulfuric acid concentration in the lower clouds. Variations of eddy diffusion in the lower cloud layer simulate variations in atmospheric dynamics and may induce strong variations in water vapor near the cloud tops. Variations in temperature may affect abundances of the H2O and H2SO4 vapors

  17. Effect of MgO on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-06-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO system have been determined experimentally in equilibrium with metallic iron. Synthetic slags were equilibrated at a high temperature, quenched, and then the compositions of the phases in equilibrium were measured using electron probe X-ray microanalysis. Pseudoternary sections of the form ZnO-"FeO"-(Al2O3 + CaO + SiO2) for CaO/SiO2 = 0.71, (CaO + SiO2)/Al2O3 = 5 and fixed MgO concentrations of 2, 4, and 6 wt pct have been constructed. Wustite (Fe2+,Mg,Zn)O and spinel (Fe2+,Mg,Zn)O·(Al,Fe3+)2O3 are the major primary phases in the temperature and composition ranges investigated. The liquidus temperatures are increased by 140 K in the wustite primary phase field and by 70 K in the spinel primary phase field with the addition of 6 wt pct MgO in the slag. The partitioning of MgO and ZnO between the solid and liquid phases has been discussed.

  18. Self-organized and uniform TiO2 nanotube arrays with optimized NH4F concentration in electrolyte by high voltage electrochemical anodization

    NASA Astrophysics Data System (ADS)

    Chamanzadeh, Z.; Noormohammadi, M.; Zahedifar, M.

    2018-05-01

    Large diameter and ordered TiO2 nanotubes (NTs) were fast fabricated in an electrolyte containing lactic acid and ethylene glycol with different amount of NH4F at various high anodization voltages up to 220 V. In this work, we could optimize F‑ ionic concentration in the electrolyte at each anodization voltage and the uniform films without any oxide breakdown were successfully achieved. The optimum NH4F concentration at which NTs can be formed homogeneously, decreases with the increment of anodization voltage. As a result, the fastest mean growth rate of 2.45 μm min‑1 was attained in 0.075 M NH4F at 150 V. Growth rate of TiO2 nanotubes is explained taking into account the role of F‑ ions and their limited diffusion through TiO2 nanotubes from bulk electrolyte. The interpore distance of the nanotubes is increased with enhanced anodization voltage.

  19. Experimental and numerical study on heat transfer enhancement of flat tube radiator using Al2O3 and CuO nanofluids

    NASA Astrophysics Data System (ADS)

    Alosious, Sobin; R, Sarath S.; Nair, Anjan R.; Krishnakumar, K.

    2017-12-01

    Forced convective heat transfer of Al2O3 and CuO nanofluids through flat tube automobile radiator were studied experimentally and numerically. Nanofluids of 0.05% volume concentrations were prepared with Al2O3 and CuO nanoparticles having diameter below 50 nm. The working fluid recirculates through an automobile flat tube radiator with constant inlet temperature of 90 °C. Experiments were conducted by using water and nanofluids by varying the Reynolds numbers from 136 to 816. The flat tube of the radiator with same dimensions were modeled and numerically studied the heat transfer. The model includes the thickness of tube wall and also considers the effect of fins in the radiator. Numerical studies were carried out for six different volume concentrations from 0.05% to 1% and Reynolds number varied between 136 and 816 for both nanofluids. The results show an enhancement in heat transfer coefficient and effectiveness of radiator with increase in Reynolds number and volume concentration. A maximum enhancement of 13.2% and 16.4% in inside heat transfer coefficient were obtained for 1% concentration of CuO and Al2O3 nanofluids respectively. However increasing the volume concentration causes an increase in viscosity and density, which leads to an increase in pumping power. For same heat rejection of water, the area of the radiator can be reduced by 2.1% and 2.9% by using 1% concentration of CuO and Al2O3 nanofluids respectively. The optimum values of volume concentration were found to be 0.4% to 0.8% in which heat transfer enhancement dominates pumping power increase. Al2O3 nanofluids gives the maximum heat transfer enhancement and stability compared to CuO nanofluids.

  20. Effect of Zn(NO3)2 concentration in hydrothermal-electrochemical deposition on morphology and photoelectrochemical properties of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ceren; Unal, Ugur

    2016-04-01

    Zn(NO3)2 concentration had been reported to be significantly influential on electrodeposition of ZnO structures. In this work, this issue is revisited using hydrothermal-electrochemical deposition (HED). Seedless, cathodic electrochemical deposition of ZnO films is carried out on ITO electrode at 130 °C in a closed glass reactor with varying Zn(NO3)2 concentration. Regardless of the concentration of Zn2+ precursor (0.001-0.1 M) in the deposition solution, vertically aligned 1-D ZnO nanorods are obtained as opposed to electrodepositions at lower temperatures (70-80 °C). We also report the effects of high bath temperature and pressure on the photoelectrochemical properties of the ZnO films. Manipulation of precursor concentration in the deposition solution allows adjustment of the aspect ratio of the nanorods and the degree of texturation along the c-axis; hence photoinduced current density. HED is shown to provide a single step synthesis route to prepare ZnO rods with desired aspect ratio specific for the desired application just by controlling the precursor concentration.

  1. A two-dimensional model with coupled dynamics, radiative transfer, and photochemistry. 2: Assessment of the response of stratospheric ozone to increased levels of CO2, N2O, CH4, and CFC

    NASA Technical Reports Server (NTRS)

    Schneider, Hans R.; Ko, Malcolm K. W.; Shia, Run-Lie; Sze, Nien-Dak

    1993-01-01

    The impact of increased levels of carbon dioxide (CO2), chlorofluorocarbons (CFCs), and other trace gases on stratospheric ozone is investigated with an interactive, two-dimensional model of gas phase chemistry, dynamics, and radiation. The scenarios considered are (1) a doubling of the CO2 concentration, (2) increases of CFCs, (3) CFC increases combined with increases of nitrous oxide (N2O) and methane CH4, and (4) the simultaneous increase of CO2, CFCs, N2O, and CH4. The radiative feedback and the effect of temperature and circulation changes are studied for each scenario. For the double CO2 calculations the tropospheric warming was specified. The CO2 doubling leads to a 3.1% increase in the global ozone content. Doubling of the CO2 concentrations would lead to a maximum cooling of about 12 C at 45 km if the ozone concentration were held fixed. The cooling of the stratosphere leads to an ozone increase with an associated increase in solar heating, reducing the maximum temperature drop by about 3 C. The CFC increase from continuous emissions at 1985 rate causes a 4.5% loss of ozone. For the combined perturbations a net loss of 1.3% is calculated. The structure of the perturbations shows a north-south asymmetry. Ozone losses (when expressed in terms of percent changes) are generally larger in the high latitudes of the southern hemisphere as a result of the eddy mixing being smaller than in the northern hemisphere. Increase of chlorine leads to ozone losses above 30 km altitude where the radiative feedback results in a cooler temperature and an ozone recovery of about one quarter of the losses predicted with a noninteractive model. In all the cases, changes in circulation are small. In the chlorine case, circulation changes reduce the calculated column depletion by about one tenth compared to offline calculations.

  2. Calibration-free sensor for pressure and H2O concentration in headspace of sterile vial using tunable diode laser absorption spectroscopy.

    PubMed

    Cai, Tingdong; Gao, Guangzhen; Liu, Ying

    2013-11-10

    Tunable diode laser absorption measurements of pressure and H2O concentration in the headspace of vials using a distributed-feedback (DFB) diode laser near 1.4 μm are reported. A H2O line located near 7161.41 cm(-1) is selected based on its strong absorption strength and isolation from interference of neighboring transitions. Direct absorption spectra of H2O are obtained for the measurement path as well as the reference path by scanning the laser wavelength. The pressure and H2O vapor concentration in the headspace of a vial are inferred from a differential absorption signal, which is the difference between the measured and the referenced absorbance spectra. This sensor is calibration-free and no purge gas is needed. The demonstrated capability would enable measurements of pressure and H2O concentration in the headspace of vials within 2.21% and 2.86%, respectively. A precision of 1.02 Torr and 390 ppm is found for the pressure and H2O concentration, respectively. A set of measurements for commercial freeze-dried products are also performed to illustrate the usefulness of this sensor.

  3. Bioactivity of Y2O3 and CeO2 doped SiO2-SrO-Na2O glass-ceramics.

    PubMed

    Placek, L M; Keenan, T J; Wren, A W

    2016-08-01

    The bioactivity of yttrium and cerium are investigated when substituted for Sodium (Na) in a 0.52SiO2-0.24SrO-0.24-xNa2O-xMO glass-ceramics (where x = 0.08 and MO = Y2O3 or CeO2). Bioactivity is monitored through pH and inductively coupled plasma-optical emission spectrometry where pH of simulated body fluid ranged from 7.5 to 7.6 and increased between 8.2 and 10.0 after 14-day incubation with the glass-ceramic disks. Calcium (Ca) and phosphorus (P) levels in simulated body fluid after incubation with yttrium and cerium containing disks show a continual decline over the 14-day period. In contrast, Con disks (not containing yttrium or cerium) caused the elimination of Ca in solution after 1 day and throughout the incubation period, and initially showed a decline in P levels followed by an increase at 14 days. Scanning electron microscopy and energy dispersive spectroscopy confirmed the presence of Ca and P on the surface of the simulated body fluid-incubated disks and showed precipitates on Con and HCe (8 mol% cerium) samples. Cell viability of MC3T3 osteoblasts was not significantly affected at a 9% extract concentration. Optical microscopy after 24 h cell incubation with disks showed that Con samples do not support osteoblast or Schwann cell growth, while all yttrium and cerium containing disks have direct contact with osteoblasts spread across the wells. Schwann cells attached in all wells, but only showed spreading with the HY-S (8 mol% yttrium, heated to sintering temperature) and YCe (4 mol% yttrium and cerium) disks. Scanning electron microscopy of the compatible disks shows osteoblast and sNF96.2 Schwann cells attachment and spreading directly on the disk surfaces. © The Author(s) 2016.

  4. Influences of Na2O and K2O Additions on Electrical Conductivity of CaO-MgO-Al2O3-SiO2 Melts

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Hua; Zheng, Wei-Wei; Chou, Kuo-Chih

    2017-04-01

    The present study investigated the influences of Na2O and K2O additions on electrical conductivity of blast furnace type CaO-MgO-Al2O3-SiO2 melts by the four-electrode method. Both the single addition of Na2O or K2O and the double additions of Na2O and K2O were studied. It was found that electrical conductivity monotonously increased as the amount of Na2O addition was gradually increased, whereas, when K2O was added, there was a continuous decrease of electrical conductivity. With melts containing both Na2O and K2O, electrical conductivity first decreased but then increased when Na2O was gradually substituted for K2O while keeping the molar fractions of other components constant. In other words, the mixed-alkali effect took place in CaO-Mg-Al2O3-SiO2-ΣR2O melts.

  5. Ultrasensitive spectroscopy based on photonic waveguides on Al2O3/SiO2 platform

    NASA Astrophysics Data System (ADS)

    Heidari, Elham; Xu, Xiaochuan; Tang, Naimei; Mokhtari-Koushyar, Farzad; Dalir, Hamed; Chen, Ray T.

    2018-02-01

    Here a photonic waveguide on Al2O3/SiO2 platform is proposed to cover the 240 320 nm wavelength-range, which is of paramount significance in protein and nuclei acid quantification. Our optical waveguide increases path-length and overlap integration for light-matter interaction with proteins. The proposed system detects one order less proteins concentration as low as 12.5 μg/ml compared with NanoDropTM that detects <125 μg/ml. Also, a linear absorbance change up to protein concentration of 7500 μg/ml is experimentally attained which is based on the Beer-Lambert-law.

  6. Simulated nitrogen deposition reduces CH4 uptake and increases N2O emission from a subtropical plantation forest soil in southern China.

    PubMed

    Wang, Yongsheng; Cheng, Shulan; Fang, Huajun; Yu, Guirui; Xu, Minjie; Dang, Xusheng; Li, Linsen; Wang, Lei

    2014-01-01

    To date, few studies are conducted to quantify the effects of reduced ammonium (NH4+) and oxidized nitrate (NO3-) on soil CH4 uptake and N2O emission in the subtropical forests. In this study, NH4Cl and NaNO3 fertilizers were applied at three rates: 0, 40 and 120 kg N ha(-1) yr(-1). Soil CH4 and N2O fluxes were determined twice a week using the static chamber technique and gas chromatography. Soil temperature and moisture were simultaneously measured. Soil dissolved N concentration in 0-20 cm depth was measured weekly to examine the regulation to soil CH4 and N2O fluxes. Our results showed that one year of N addition did not affect soil temperature, soil moisture, soil total dissolved N (TDN) and NH4+-N concentrations, but high levels of applied NH4Cl and NaNO3 fertilizers significantly increased soil NO3(-)-N concentration by 124% and 157%, respectively. Nitrogen addition tended to inhibit soil CH4 uptake, but significantly promoted soil N2O emission by 403% to 762%. Furthermore, NH4+-N fertilizer application had a stronger inhibition to soil CH4 uptake and a stronger promotion to soil N2O emission than NO3(-)-N application. Also, both soil CH4 and N2O fluxes were driven by soil temperature and moisture, but soil inorganic N availability was a key integrator of soil CH4 uptake and N2O emission. These results suggest that the subtropical plantation soil sensitively responses to atmospheric N deposition, and inorganic N rather than organic N is the regulator to soil CH4 uptake and N2O emission.

  7. Single-crystalline oxide films of the Al2O3-Y2O3-R2O3 system as optical sensors of various types of ionizing radiation: significant advantages over volume analogs

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuri V.; Batenchuk, M.; Gorbenco, V.; Pashkovsky, M.

    1997-02-01

    This investigation is dedicated to studying of peculiarities of luminescent properties of the single crystalline films (SCF) of Al2O3-Y2O3-R2O3 oxide system with alpha-Al2O3 and garnet structure, which are used as various types of ionizing radiation luminescent detectors. These peculiarities define the number of nontrivial advantages over their volume analogues. It is shown that SCF are characterized by the low concentrations of vacancy type defects and substituent defects, and the high concentration of Pb ion as dopant. This allows us to substantially increase the spatial resolution and selectivity of cathodoluminophores on the base of these compounds.

  8. Availability of O(2) and H(2)O(2) on pre-photosynthetic Earth.

    PubMed

    Haqq-Misra, Jacob; Kasting, James F; Lee, Sukyoung

    2011-05-01

    Old arguments that free O(2) must have been available at Earth's surface prior to the origin of photosynthesis have been revived by a new study that shows that aerobic respiration can occur at dissolved oxygen concentrations much lower than had previously been thought, perhaps as low as 0.05 nM, which corresponds to a partial pressure for O(2) of about 4 × 10(-8) bar. We used numerical models to study whether such O(2) concentrations might have been provided by atmospheric photochemistry. Results show that disproportionation of H(2)O(2) near the surface might have yielded enough O(2) to satisfy this constraint. Alternatively, poleward transport of O(2) from the equatorial stratosphere into the polar night region, followed by downward transport in the polar vortex, may have brought O(2) directly to the surface. Thus, our calculations indicate that this "early respiration" hypothesis might be physically reasonable.

  9. Effect of coagulation on treatment of municipal wastewater reverse osmosis concentrate by UVC/H2O2.

    PubMed

    Umar, Muhammad; Roddick, Felicity; Fan, Linhua

    2014-02-15

    Disposal of reverse osmosis concentrate (ROC) is a growing concern due to potential health and ecological risks. Alum coagulation was investigated as pre-treatment for the UVC/H2O2 treatment of two high salinity ROC samples (ROC A and B) of comparable organic and inorganic content. Coagulation removed a greater fraction of the organic content for ROC B (29%) than ROC A (16%) which correlated well with the reductions of colour and A254. Although the total reductions after 60 min UVC/H2O2 treatment with and without coagulation were comparable, large differences in the trends of reduction were observed which were attributed to the different nature of the organic content (humic-like) of the samples as indicated by the LC-OCD analyses and different initial (5% and 16%) biodegradability. Coagulation and UVC/H2O2 treatment preferentially removed humic-like compounds which resulted in low reaction rates after UVC/H2O2 treatment of the coagulated samples. The improvement in biodegradability was greater (2-3-fold) during UVC/H2O2 treatment of the pre-treated samples than without pre-treatment. The target DOC residual (≤ 15 mg/L) was obtained after 30 and 20 min irradiation of pre-treated ROC A and ROC B with downstream biological treatment, corresponding to reductions of 55% and 62%, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Oxidative stress mediated toxicity of TiO2 nanoparticles after a concentration and time dependent exposure of the aquatic macrophyte Hydrilla verticillata.

    PubMed

    Spengler, Annette; Wanninger, Lena; Pflugmacher, Stephan

    2017-09-01

    The present study focused on oxidative stress effects in the aquatic macrophyte Hydrilla verticillata after exposure to titanium dioxide nanoparticles (TiO 2 -NPs). Experiments were conducted with different TiO 2 -NPs and concentrations (0.1 mg/L and 10 mg/L) in a time-dependent manner (0 h, 24 h, 48 h, 96 h, 168 h). To assess various levels of the oxidative stress response in H. verticillata, the level of hydrogen peroxide (H 2 O 2 ), the ratio of reduced to oxidized glutathione (GSH/GSSG), and activities of the antioxidative enzymes catalase (CAT) and glutathione reductase (GR) were evaluated. Study results imply oxidative stress effects after TiO 2 -NP exposure as adaptations in plant metabolism became apparent to counteract increased ROS formation. All TiO 2 -NPs caused elevated activities of the enzymes CAT and GR. Moreover, decreased ratios of GSH/GSSG indicated an activation of GSH-dependent pathways counteracting ROS formation. Plants exposed to a bulk-sized control revealed a size-dependent influence on the antioxidative stress response. As H 2 O 2 level increases were solely detected after exposure to 10 mg/L TiO 2 -NPs and nano-exposed plants showed normalization in its antioxidative stress response after 168h of exposure, it can be suggested that macrophytes are able to cope with currently predicted low-level exposures to TiO 2 -NPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Influence of valence state of copper ions on structural and spectroscopic properties of multi-component PbO-Al2O3-TeO2-GeO2-SiO2 glass ceramic system- a possible material for memory switching devices

    NASA Astrophysics Data System (ADS)

    Tirupataiah, Ch.; Narendrudu, T.; Suresh, S.; Srinivasa Rao, P.; Vinaya Teja, P. M.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2017-11-01

    Multi-component glass ceramics with composition 29PbO-5Al2O3-1TeO2 -10GeO2- (55-x) SiO2 doped with different concentrations of CuO (0 ≤ x ≤ 1.0 mol %) were synthesized by melt quenching technique and subsequent heat treatment. These glass ceramics were characterized by X-ray diffraction, scanning electron microscope, differential thermal analysis, optical absorption, electron paramagnetic resonance, Fourier transform infrared and Raman studies. The absorption spectra of these glass ceramics exhibited a broad absorption band in the range 650-950 nm which is ascribed to 2B1g → 2B2g octahedral transition of Cu2+ ions. A feeble band around 364 nm is also identified in the samples doped with CuO up to 0.6 mol% as being due to charge transfer between the two oxidation states Cu2+ and Cu+ of copper ions. The EPR spectrum recorded at room temperature exhibited a strong resonance signal at g⊥ = 2.072 and a shallow quadruplet at about gǁ = 2.401. FTIR and Raman spectra of the titled samples provide significant information about various structural units viz., silicate, germanate, PbO4, PbO6, AlO6, TeO4 and TeO3 that are present in these ceramic matrix. Analysis of the spectroscopic investigations reveals that with an increase in the concentration of CuO up to 0.6 mol% copper ions do exist in Cu2+ and Cu+ states and they act as modifiers and net work formers respectively. Therefore, glass ceramic sample contains 0.6 mol% of CuO is favorable for memory switching action.

  12. Comparative evaluation of nano-CuO crossing Caco-2 cell monolayers and cellular uptake

    NASA Astrophysics Data System (ADS)

    Chen, Gao; Lianqin, Zhu; Fenghua, Zhu; Fang, Zheng; Mingming, Song; Kai, Huang

    2015-04-01

    Different concentrations of CuSO4, micro-CuO, and nano-CuO were added to Caco-2 cell monolayers to study the absorption and transport characteristics in this epithelial cell model. Nano-CuO nanoparticles had a diameter of 10-20 nm. Inhibitors of endocytosis were used to explore whether nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and to ascertain the endocytotic pathway that is involved in the transport process. The apparent permeability coefficient ( P app) of CuSO4 and nano-CuO increased with the Cu concentration in the culture medium ( p < 0.05). The micro-CuO of different concentrations had no significant impact on the P app value of Caco-2 cells ( p > 0.05). When the Cu concentration in the culture medium was in the range 31.25-500 μM, the P app value of Caco-2 cells incubated with nano-CuO was significantly higher than that obtained with CuSO4. The latter was also significantly higher than that when cells were incubated with micro-CuO ( p < 0.05). The amount of Cu transport increased with the increase of CuSO4 concentration in the culture medium. After 90 min, the amount of transport began to saturate, and the transport rate of Cu declined with the increase of CuSO4 concentration. For the cells incubated with nano-CuO, the amount of Cu transport increased with the increase of nano-CuO concentration, but did not show an obvious saturation with the extension of transport time. Nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and were found in the cytoplasm, vesicles, lysosomes, and cell nuclei. Several inhibitors of endocytosis effectively prevented the entry of nano-CuO into the Caco-2 cells. It was concluded that nano-CuO particles can enter the Caco-2 cells through several cellular endocytotic pathways.

  13. Concentrating versus non-concentrating reactors for solar photocatalytic degradation of p-nitrotoluene-o-sulfonic acid.

    PubMed

    Parra, S; Malato, S; Blanco, J; Péringer, P; Pulgari, C

    2001-01-01

    The photocatalytic oxidation of the non-biodegradable p-nitrotoluene-o-sulfonic acid (p-NTS) in homogeneous (photo-Fenton reactions) and heterogeneous (with TiO2) solutions has been studied at a pilot-scale under solar irradiation at the Plataforma Solar de Almeria (PSA). In this study two different reactors were tested: a medium concentrating radiation system (Heliomans, HM) and a non-concentrating radiation system (CPC). Their advantages and disadvantages for p-NTS degradation have been compared and discussed. The degradation rates obtained in the CPC collector are around three times more efficient than in the HM collectors. However, in both systems, 100% of the initial concentration of p-NTS was removed. Kinetic experiments were performed in both systems using TiO2 suspensions. During the photodegradation, the disappearance of p-NTS was followed by HPLC, the mineralization of the solution by the TOC technique, the evolution of NO3-, NO2-, and SO4(2-) concentration by ionic chromatography, the toxicity by the standard Microtox test, and the biodegradability by BOD5 and COD measurements. The obtained results demonstrated the utility of the heterogeneous catalysis (using TiO2 as catalyst) as a pretreatment method that can be followed by a biological process.

  14. Heterogeneous reaction of HO2 with airborne TiO2 particles and its implication for climate change mitigation strategies

    NASA Astrophysics Data System (ADS)

    Moon, Daniel R.; Taverna, Giorgio S.; Anduix-Canto, Clara; Ingham, Trevor; Chipperfield, Martyn P.; Seakins, Paul W.; Baeza-Romero, Maria-Teresa; Heard, Dwayne E.

    2018-01-01

    One geoengineering mitigation strategy for global temperature rises resulting from the increased concentrations of greenhouse gases is to inject particles into the stratosphere to scatter solar radiation back to space, with TiO2 particles emerging as a possible candidate. Uptake coefficients of HO2, γ(HO2), onto sub-micrometre TiO2 particles were measured at room temperature and different relative humidities (RHs) using an atmospheric pressure aerosol flow tube coupled to a sensitive HO2 detector. Values of γ(HO2) increased from 0.021 ± 0.001 to 0.036 ± 0.007 as the RH was increased from 11 to 66 %, and the increase in γ(HO2) correlated with the number of monolayers of water surrounding the TiO2 particles. The impact of the uptake of HO2 onto TiO2 particles on stratospheric concentrations of HO2 and O3 was simulated using the TOMCAT three-dimensional chemical transport model. The model showed that, when injecting the amount of TiO2 required to achieve the same cooling effect as the Mt Pinatubo eruption, heterogeneous reactions between HO2 and TiO2 would have a negligible effect on stratospheric concentrations of HO2 and O3.

  15. Gemfibrozil markedly increases the plasma concentrations of montelukast: a previously unrecognized role for CYP2C8 in the metabolism of montelukast.

    PubMed

    Karonen, T; Filppula, A; Laitila, J; Niemi, M; Neuvonen, P J; Backman, J T

    2010-08-01

    According to available information, montelukast is metabolized by cytochrome P450 (CYP) 3A4 and 2C9. In order to study the significance of CYP2C8 in the pharmacokinetics of montelukast, 10 healthy subjects were administered gemfibrozil 600 mg or placebo twice daily for 3 days, and 10 mg montelukast on day 3, in a randomized, crossover study. Gemfibrozil increased the mean area under the plasma concentration-time curve (AUC)(0-infinity), peak plasma concentration (C(max)), and elimination half-life (t(1/2)) of montelukast 4.5-fold, 1.5-fold, and 3.0-fold, respectively (P < 0.001). After administration of gemfibrozil, the time to reach C(max) (t(max)) of the montelukast metabolite M6 was prolonged threefold (P = 0.005), its AUC(0-7) was reduced by 40% (P = 0.027), and the AUC(0-24) of the secondary metabolite M4 was reduced by >90% (P < 0.001). In human liver microsomes, gemfibrozil 1-O-beta glucuronide inhibited the formation of M6 (but not of M5) from montelukast 35-fold more potently than did gemfibrozil (half-maximal inhibitory concentration (IC(50)) 3.0 and 107 micromol/l, respectively). In conclusion, gemfibrozil markedly increases the plasma concentrations of montelukast, indicating that CYP2C8 is crucial in the elimination of montelukast.

  16. Efficient photocatalytic oxidation of arsenite from contaminated water by Fe2O3-Mn2O3 nanocomposite under UVA radiation and process optimization with experimental design.

    PubMed

    Eslami, Hadi; Ehrampoush, Mohammad Hassan; Esmaeili, Abbas; Ebrahimi, Ali Asghar; Salmani, Mohammad Hossein; Ghaneian, Mohammad Taghi; Falahzadeh, Hossein

    2018-09-01

    The efficiency of photocatalytic oxidation process in arsenite (As(III)) removal from contaminated water by a new Fe 2 O 3 -Mn 2 O 3 nanocomposite under UV A radiation was investigated. The effect of nanocomposite dosage, pH and initial As(III) concentration on the photocatalytic oxidation of As(III) were studied by experimental design. The synthesized nanocomposite had a uniform and spherical morphological structure and contained 49.83% of Fe 2 O 3 and 29.36% of Mn 2 O 3 . Based on the experimental design model, in photocatalytic oxidation process, the effect of pH was higher than other parameters. At nanocomposite concentrations of more than 12 mg L -1 , pH 4 to 6 and oxidation time of 30 min, photocatalytic oxidation efficiency was more than 95% for initial As(III) concentration of less than 500 μg L -1 . By decreasing pH and increasing the nanocomposite concentration, the photocatalytic oxidation efficiency was increased. Furthermore, by increasing the oxidation time from 10 to 240 min, in addition to oxidation of As(III) to arsenate (As(V)), the residual As(V) was adsorbed on the Fe 2 O 3 -Mn 2 O 3 nanocomposite and total As concentration was decreased. Therefore, Fe 2 O 3 -Mn 2 O 3 nanocomposite as a bimetal oxide, at low doses and short time, can enhance and improve the efficiency of the photocatalytic oxidation and adsorption of As(III) from contaminated water resources. Furthermore, the energy and material costs of the UV A /Fe 2 O 3 -Mn 2 O 3 system for photocatalytic oxidation of 1  mg L -1 As(III) in the 1 L laboratory scale reactor was 0.0051 €. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Effect of Trisodium Citrate Concentration on the Structural and Photodiode Performance of CdO Thin Films

    NASA Astrophysics Data System (ADS)

    Ravikumar, M.; Valanarasu, S.; Chandramohan, R.; Jacob, S. Santhosh Kumar; Kathalingam, A.

    2015-08-01

    CdO thin films were deposited on glass and silicon substrates by simple perfume atomizer at 350°C using cadmium acetate and trisodium citrate (TSC). The effect of the TSC concentration on the structural, morphological, optical, and photoconductive properties of the prepared CdO thin films was investigated. X-Ray diffraction (XRD) studies of the deposited films revealed improvement in crystalline nature with increase of TSC concentration. Films prepared without TSC showed porous nature, not fully covering the substrate, whereas films prepared using TSC exhibited full coverage of the substrate with uniform particles. Optical transmittance study of the films showed high transmittance (50% to 60%), and the absorption edge was found to shift towards the red region depending on the TSC concentration. The films exhibited a direct band-to-band transition with bandgap varying between 2.31 eV and 2.12 eV. Photoconductivity studies of the n-CdO/ p-Si structure for various TSC concentrations were also carried out. I- V characteristics of this n-CdO/ p-Si structure revealed the formation of rectifying junctions, and its photoconductivity was found to increase with the TSC concentration.

  18. Evaluating Effects of H2O and overhead O3 on Global Mean Tropospheric OH Concentration

    NASA Technical Reports Server (NTRS)

    Nicely, Julie M.; Salawitch, R.J.; Canty, T.; Lang, Chang; Duncan, Bryan; Liang, Qing; Oman, Luke David; Stolarski, Richard S.; Waugh, Darryn

    2012-01-01

    The oxidizing capacity of the troposphere is controlled, to a large extent, by the abundance of hydroxyl radical (OH). The global mean concentration of OH, [OH]GLOBAL, inferred from measurements of methyl chloroform, has remained relatively constant during the past several decades, despite rising levels of CH4 that should have led to a steady decline. Here we examine other factors that may have affected [OH]GLOBAL, such as the overhead burden of stratospheric O3 and tropospheric H2O, using global OH fields from the GEOS-CHEM Chemistry-Climate Model. Our analysis suggests these factors may have contributed a positive trend to [OH]GLOBAL large enough to counter the decrease due to CH4.

  19. Crystallisation of Ba1-xSrxZn2Si2O7 from BaO/SrO/ZnO/SiO2 glass with different ZrO2 and TiO2 concentrations

    NASA Astrophysics Data System (ADS)

    Vladislavova, Liliya; Kracker, Michael; Zscheckel, Tilman; Thieme, Christian; Rüssel, Christian

    2018-04-01

    The effect of different nucleation agents such as ZrO2 and TiO2 was investigated for a first time with respect to their crystallisation behaviour in the glass system BaO-SrO-ZnO-SiO2. In all studied glasses, a Ba1-xSrxZn2Si2O7 (0.1 ≤ x ≤ 0.9) solid solution crystallized. This phase was first described in 2015 to possess a similar structure as the high temperature phase of BaZn2Si2O7 and a thermal expansion close to zero or even negative. It may find applications e.g. as cook panels, telescope mirrors, and furnace windows. Kinetic parameters of the crystallisation process were determined by supplying different heating rates in a differential scanning calorimeter (DSC). The results were evaluated using the equations of Ozawa and Kissinger with respect to the activation energies. Furthermore, the Ozawa method was used for the determination of Avrami parameters, which provides further information on the nucleation and crystallisation processes. Scanning electron microscopy including electron backscatter diffraction (EBSD) was used to characterise the microstructure, to determine the crystallite size and the crystal orientation. For the characterisation of the occurring crystalline phases, X-ray diffraction was used.

  20. CO2 Sensors Based on Nanocrystalline SnO2 Doped with CuO

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Liu, Chung Chiun; Ward, Benjamin J.

    2008-01-01

    Nanocrystalline tin oxide (SnO2) doped with copper oxide (CuO) has been found to be useful as an electrical-resistance sensory material for measuring the concentration of carbon dioxide in air. SnO2 is an n-type semiconductor that has been widely used as a sensing material for detecting such reducing gases as carbon monoxide, some of the nitrogen oxides, and hydrocarbons. Without doping, SnO2 usually does not respond to carbon dioxide and other stable gases. The discovery that the electrical resistance of CuO-doped SnO2 varies significantly with the concentration of CO2 creates opportunities for the development of relatively inexpensive CO2 sensors for detecting fires and monitoring atmospheric conditions. This discovery could also lead to research that could alter fundamental knowledge of SnO2 as a sensing material, perhaps leading to the development of SnO2-based sensing materials for measuring concentrations of oxidizing gases. Prototype CO2 sensors based on CuO-doped SnO2 have been fabricated by means of semiconductor-microfabrication and sol-gel nanomaterial-synthesis batch processes that are amendable to inexpensive implementation in mass production.

  1. Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 μm laser applications

    NASA Astrophysics Data System (ADS)

    Wang, Shunbin; Li, Chengzhi; Yao, Chuanfei; Jia, Shijie; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-02-01

    Intense ∼1.2 μm fluorescence is observed in Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses under 915 nm laser diode excitation. The 1.2 μm emission can be ascribed to the transition 5I6→5I8 of Ho3+. With the introducing of BaF2, the content of OH in the glasses drops markedly, and the 1.2 μm emission intensity increases gradually as increasing the concentration percentage of BaF2. Furthermore, microstructured fibers based on the TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method, and a relative positive gain of ∼9.42 dB at 1175.3 nm is obtained in a 5 cm long fiber.

  2. Stabilization of arsenic and lead by magnesium oxide (MgO) in different seawater concentrations.

    PubMed

    Kameda, Kentaro; Hashimoto, Yohey; Ok, Yong Sik

    2018-02-01

    Ongoing sea level rise will have a major impact on mobility and migration of contaminants by changing a number of natural phenomena that alter geochemistry and hydrology of subsurface environment. In-situ immobilization techniques may be a promising remediation strategy for mitigating contaminant mobility induced by sea level rise. This study investigated the reaction mechanisms of magnesium oxide (MgO) with aqueous Pb and As under freshwater and seawater using XAFS spectroscopy. Initial concentrations of Pb and As in freshwater strongly controlled the characteristics of the reaction product of MgO. Our study revealed that i) the removal of aqueous Pb and As by MgO was increased by the elevation of seawater concentration, and ii) the removal of As was attributed primarily to (inner-sphere) surface adsorption on MgO, independent on seawater concentrations, and iii) the retention mechanism of Pb was dependent on seawater concentrations where formations of Pb oxides and adsorption on the MgO surface were predominant in solutions with low and high salinity, respectively. The release of As fixed with MgO significantly increased in seawater compared to freshwater, although the amount of As desorbed accounted for <0.2% of total As. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Formation of hydroxyapatite onto glasses of the CaO-MgO-SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives.

    PubMed

    Agathopoulos, S; Tulyaganov, D U; Ventura, J M G; Kannan, S; Karakassides, M A; Ferreira, J M F

    2006-03-01

    New bioactive glasses with compositions based on the CaO-MgO-SiO(2) system and additives of B(2)O(3), P(2)O(5), Na(2)O, and CaF(2) were prepared. The in vitro mineralization behaviour was tested by immersion of powders or bulk glasses in simulated body fluid (SBF). Monitoring of ionic concentrations in SBF and scanning electron microscopy (SEM) observations at the surface of the glasses were conducted over immersion time. Raman and infrared (IR) spectroscopy shed light on the structural evolution occurring at the surface of the glasses that leads to formation of hydroxyapatite.

  4. H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium

    NASA Astrophysics Data System (ADS)

    Aranovich, L. Y.; Newton, R. C.

    1996-10-01

    H2O activities in concentrated NaCl solutions were measured in the ranges 600° 900° C and 2 15 kbar and at NaCl concentrations up to halite saturation by depression of the brucite (Mg(OH)2) periclase (MgO) dehydration equilibrium. Experiments were made in internally heated Ar pressure apparatus at 2 and 4.2 kbar and in 1.91-cm-diameter piston-cylinder apparatus with NaCl pressure medium at 4.2, 7, 10 and 15 kbar. Fluid compositions in equilibrium with brucite and periclase were reversed to closures of less than 2 mol% by measuring weight changes after drying of punctured Pt capsules. Brucite-periclase equilibrium in the binary system was redetermined using coarsely crystalline synthetic brucite and periclase to inhibit back-reaction in quenching. These data lead to a linear expression for the standard Gibbs free energy of the brucite dehydration reaction in the experimental temperature range: ΔG° (±120J)=73418 134.95 T(K). Using this function as a baseline, the experimental dehydration points in the system MgO-H2O-NaCl lead to a simple systematic relationship of high-temperature H2O activity in NaCl solution. At low pressure and low fluid densities near 2 kbar the H2O activity is closely approximated by its mole fraction. At pressures of 10 kbar and greater, with fluid densities approaching those of condensed H2O, the H2O activity becomes nearly equal to the square of its mole fraction. Isobaric halite saturation points terminating the univariant brucite-periclase curves were determined at each experimental pressure. The five temperature-composition points in the system NaCl-H2O are in close agreement with the halite saturation curves (liquidus curves) given by existing data from differential thermal analysis to 6 kbar. Solubility of MgO in the vapor phase near halite saturation is much less than one mole percent and could not have influenced our determinations. Activity concentration relations in the experimental P-T range may be retrieved for the binary

  5. Decoloration Kinetics of Waste Cooking Oil by 60Co γ-ray/H2O2

    NASA Astrophysics Data System (ADS)

    Xiang, Yulin; Xiang, Yuxiu; Wang, Lipeng

    2016-03-01

    In order to decolorize, waste cooking oil, a dark red close to black solution from homes and restaurants, was subjected to 60Co γ-ray/H2O2 treatment. By virtue of UV/Vis spectrophotometric method, the influence of Gamma irradiation to decoloration kinetics and rate constants of the waste cooking oil in the presence of H2O2 was researched. In addition, the influence of different factors such as H2O2 concentration and irradiation dose on the decoloration rate of waste cooking oil was investigated. Results indicated that the decoloration kinetics of waste cooking oil conformed to the first-order reaction. The decoloration rate increased with the increase of irradiation dose and H2O2 concentration. Saponification analysis and sensory evaluation showed that the sample by 60Co γ-ray/H2O2 treatment presented better saponification performance and sensory score. Furthermore, according to cost estimate, the cost of the 60Co γ-ray/H2O2 was lower and more feasible than the H2O2 alone for decoloration of waste cooking oil.

  6. Fluorine sites in glasses and transparent glass-ceramics of the system Na{sub 2}O/K{sub 2}O/Al{sub 2}O{sub 3}/SiO{sub 2}/BaF{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocker, Christian, E-mail: christian.bocker@uni-jena.d; Munoz, Francisco; Duran, Alicia

    2011-02-15

    The transparent glass-ceramics obtained in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} show homogeneously dispersed BaF{sub 2} nano crystals with a narrow size distribution. The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses and the respective glass-ceramics in order to clarify the crystallization mechanism and the role of fluorine during crystallization. With an increasing annealing time, the concentration and also the number of crystals remain approximately constant. With an increasing annealing temperature, the crystalline fraction increases until a saturation limit is reached, while the number of crystals decreases and the size of the crystals increases.more » Fluoride in the glassy network occurs as Al-F-Ba, Al-F-Na and also as Ba-F structures. The latter are transformed into crystalline BaF{sub 2} and fluoride is removed from the Al-F-Ba/Na bonds. However, some fluorine is still present in the glassy phase after the crystallization. -- Graphical abstract: The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} and the respective glass-ceramics with BaF{sub 2} nano crystals in order to clarify the crystallization mechanism and the role of fluorine during crystallization. Display Omitted Research highlights: {yields} BaF{sub 2} nano crystals are precipitated from a silicate glass system. {yields} Ostwald ripening during the late stage of crystallization does not occur. {yields} Fluorine in the glass is coordinated with Ba as well as Al together with Ba or Na.{yields} In the glass-ceramics, the residual fluorine is coordinated as Al-F-Ba/Na.« less

  7. Effect of TiO2 nano fillers on the electrical conductivity of PSAN/TiO2 polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Ningaraju, S.; Munirathnamma, L. M.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2016-05-01

    The microstructural characterization of Polystyrene co-acrylonitrile and Titanium dioxide (PSAN/TiO2) nanocomposites has been performed by Positron Annihilation Lifetime Spectroscopy. The decrease of positron lifetime parameters viz. o-Ps lifetime (τ3) and free volume size (Vf) up to 0.6 wt% of TiO2 is attributed to the filling of free volume holes by TiO2 nanoparticles. The increased free volume size (Vf) after 0.6 wt% of TiO2 indicates the formation of interface due to TiO2 nanoclusters. The variation of electrical conductivity at the lower and higher concentration of TiO2 in (PSAN/TiO2) nanocomposites is attributed to the blocking effect and space charge effect respectively.

  8. Unconventional Synthesis of γ-Fe2O3: Excellent Low-Concentration Ethanol Sensing Performance

    NASA Astrophysics Data System (ADS)

    Naskar, Atanu; Narjinary, Mousumi; Kundu, Susmita

    2017-01-01

    This study reports on a simple unconventional procedure for synthesis of γ-Fe2O3 nanopowder and its fabrication as a resistive ethanol sensor. γ-Fe2O3 powder having an average particle size of ˜15 nm was prepared by thermal decomposition of iron(III) acetylacetonate. Platinum incorporation (0.5-1.5 wt.%) was also carried out for enhancing sensing performance. The powders were characterized using an x-ray diffractometer, x-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area, field area scanning electron microscopy, transmission electron microscopy along with energy dispersion x-ray analyses. Sensor fabricated from pure γ-Fe2O3 exhibited excellent ethanol sensing performance at concentrations down to 1 ppm, having a great demand in medical diagnosis and food-processing industries. The response observed for pure γ-Fe2O3 (˜75% for 1 ppm ethanol) was enhanced ˜10% after 1 wt.% Pt impregnation. Sensors were quite stable and selective towards ethanol vapour detection. A possible mechanism for high sensing performance has been discussed.

  9. TiO2/SiO2 porous composite thin films: Role of TiO2 areal loading and modification with gold nanospheres on the photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Levchuk, Irina; Sillanpää, Mika; Guillard, Chantal; Gregori, Damia; Chateau, Denis; Parola, Stephane

    2016-10-01

    The aim of the work was to study photocatalytic activity of composite TiO2/Au/SiO2 thin films. Coatings were prepared using sol-gel technique. Physicochemical parameters of coatings were characterized using UV-vis spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), ellipsometry, tactile measurements, goniometry and diffuse reflectance measurements. The photocatalytic activity of the films was tested in batch mode using aqueous solution of formic acid. Changes of formic acid concentration were determined by means of high pressure liquid chromatography (HPLC). Increase of initial degradation rate of formic acid was detected for TiO2/Au/SiO2 films with gold nanoparticle's load 0.5 wt.% and 1.25 wt.%. However, deeper insights using more detailed characterization of these coatings demonstrated that the improvement of the photocatalytic activity is more probably attributed to an increase in the areal loading of TiO2.

  10. COEXISTENCE OF DIFFERENT TYPES OF TRANSVERSE CONDUCTIVITY IN Y1-xPrxBa2Cu3 O7-δ SINGLE CRYSTALS WITH DIFFERENT PRASEODYMIUM CONCENTRATIONS

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Vovk, N. R.; Goulatis, I. L.; Chroneos, A.

    2013-10-01

    In this paper, the influence of praseodymium doping on the conductivity across (transverse) the basal plane of high-temperature superconducting Y1-xPrxBa2Cu3O7-δ single crystals is investigated. It is determined that an increase of praseodymium doping leads to increased localization effects and the implementation of a metal-insulator transition Y1-xPrxBa2Cu3O7-δ, which always precedes the superconducting transition. The increase of the praseodymium concentration also leads to a significant displacement of the point of the metal-insulator transition to the low temperature region.

  11. The presence of Ti(II) centers in doped nanoscale TiO2 and TiO2-xNx

    NASA Astrophysics Data System (ADS)

    Mikulas, Tanya; Fang, Zongtang; Gole, James L.; White, Mark G.; Dixon, David A.

    2012-06-01

    Unusual trends are observed in the Ti (2s, 2p) XPS spectra of Fe(II) doped TiO2 and TiO2-xNx. The binding energy of Ti (2s, 2p) initially decreases with increasing Fe(II) concentration, as expected, but increases at higher Fe(II) doping levels. Density functional theory is used to analyze the results. The observed VB-XPS and core level XPS spectra are consistent with the facile charge transfer sequence Ti(IV) + Fe(II) → Ti(III) + Fe(III) followed by Ti(III) + Fe(II) → Ti(II) + Fe(III). The formed Ti(II) sites may be relevant to nanoparticle catalysis on TiO2 surfaces.

  12. Uptake properties of Ni2+ by nCaO.Al2O3.2SiO2 (n=1-4) prepared from solid-state reaction of kaolinite and calcite.

    PubMed

    Jha, Vinay Kumar; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; MacKenzie, Kenneth J D

    2005-08-31

    A series of nCaO.Al2O3.2SiO2 samples (n=1-4) were prepared by solid-state reaction of mechanochemically treated mixtures of kaolinite and calcite fired at 600-1000 degrees C for 24 h. All the samples were X-ray amorphous after firing at 600-800 degrees C but had crystallized by 900 degrees C. The main crystalline phases were anorthite (n=1), gehlenite (n=2 and 3) and larnite (n=4). The uptake of Ni2+ by nCaO.Al2O3.2SiO2 samples fired at 800 and 900 degrees C was investigated at room temperature using solutions with initial Ni2+ concentrations of 0.1-50 mmol/l. Amorphous samples (fired at 800 degrees C) showed a higher Ni2+ uptake capacity than crystalline samples (fired at 900 degrees C). Ni2+ uptake was found to increase with increasing of CaO content. Amorphous 4CaO.Al2O3.2SiO2 showed the highest Ni2+ uptake capacity (about 9 mmol/g). The Ni2+ uptake abilities of the present samples are higher than those of other materials reported in the literature. Since the sorbed Ni2+/released Ca2+ ratios of these samples are close to unity, ion replacement of Ni2+ for Ca2+ is thought to be the principal mechanism of Ni2+ uptake by the present samples.

  13. The role of Tin Oxide Concentration on The X-ray Diffraction, Morphology and Optical Properties of In2O3:SnO2 Thin Films

    NASA Astrophysics Data System (ADS)

    Hasan, Bushra A.; Abdallah, Rusul M.

    2018-05-01

    Alloys were performed from In2O3 doped SnO2 with different doping ratio by quenching from the melt technique. Pulsed Laser Deposition PLD was used to deposit thin films of different doping ratio In2O3 : SnO2 (0, 1, 3, 5, 7 and 9 % wt.) on glass substrate at ambient temperature under vacuum of 10-3 bar thickness of ∼100nm. The structural type,grain size and morphology of the prepared alloys compounds and thin films were examined using X-ray diffraction and atomic force microscopy. The results showed that all alloys have polycrystalline structures and the peaks belonged to the preferred plane for crystal growth were identical with the ITO (Indium – Tin –Oxide) standard cards also another peaks were observed belonged to SnO2 phase. The structures of thin films was also polycrystalline, and the predominate peaks are identical with standard cards ITO. On the other side the prepared thin films declared decrease a reduction of degree of crystallinity with the increase of doping ratio. Atomic Force Microscopy AFM measurements showed the average grain size and average surface roughness exhibit to change in systematic manner with the increase of doping ratio with tin oxide. The optical measurements show that the In2O3:SnO2 thin films have a direct energy gap Eg opt in the first stage decreases with the increase of doping ratio and then get to increase with further increase of doping ration, whereas reverse to that the optical constants such as refractive index (n), extinction coefficient (k) and dielectric constant (εr, εi) have a regular increase with the doping ratio by tin oxide and then decreases.

  14. Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics.

    PubMed

    Peitl, Oscar; Zanotto, Edgar D; Serbena, Francisco C; Hench, Larry L

    2012-01-01

    Bioactive glasses having chemical compositions between 1Na(2)O-2CaO-3SiO(2) (1N2C3S) and 1.5Na(2)O-1.5CaO-3SiO(2) (1N1C2S) containing 0, 4 and 6 wt.% P(2)O(5) were crystallized through two stage thermal treatments. By carefully controlling these treatments we separately studied the effects on the mechanical properties of two important microstructural features not studied before, crystallized volume fraction and crystal size. Fracture strength, elastic modulus and indentation fracture toughness were measured as a function of crystallized volume fraction for a constant crystal size. Glass-ceramics with a crystalline volume fraction between 34% and 60% exhibited a three-fold improvement in fracture strength and an increase of 40% in indentation fracture toughness compared with the parent glass. For the optimal crystalline concentration (34% and 60%) these mechanical properties were then measured for different grain sizes, from 5 to 21 μm. The glass-ceramic with the highest fracture strength and indentation fracture toughness was that with 34% crystallized volume fracture and 13 μm crystals. Compared with the parent glass, the average fracture strength of this glass-ceramic was increased from 80 to 210 MPa, and the fracture toughness from 0.60 to 0.95 MPa.m(1/2). The increase in indentation fracture toughness was analyzed using different theoretical models, which demonstrated that it is due to crack deflection. Fortunately, the elastic modulus E increased only slightly; from 60 to 70 GPa (the elastic modulus of biomaterials should be as close as possible to that of cortical bone). In summary, the flexural strength of our best material (215 MPa) is significantly greater than that of cortical bone and comparable with that of apatite-wollastonite (A/W) bioglass ceramics, with the advantage that it shows a much lower elastic modulus. These results thus provide a relevant guide for the design of bioactive glass-ceramics with improved microstructure. Copyright © 2011 Acta

  15. Influences of the (NH2)2CO concentration on magnetic photocatalytic composites

    NASA Astrophysics Data System (ADS)

    Liŭ, Dan; Li, Ziheng; Wang, Wenquan; Liú, Dan; Wang, Guoqiang; Lin, Junhong; He, Yingqiao; Li, Xiangru

    2016-11-01

    Magnetic photocatalytic Fe3O4@TiO2 composites have been fabricated by changing the concentration of (NH2)2CO. Samples were named as low (NH2)2CO concentration group which the (NH2)2CO concentration in the synthesis process was below 2.25 mol/L and high (NH2)2CO concentration group which the (NH2)2CO concentration was above 2.5 mol/L. Photocatalytic degradation experiments of methyl orange showed that the final degradation rates of low (NH2)2CO concentration group samples were higher than that of high (NH2)2CO concentration group, even better than P25 at the same test conditions. And it was interesting that samples of low (NH2)2CO concentration group had smaller values of BET surface areas than that of high (NH2)2CO concentration group. It indicated that the improvement of photocatalytic activity which was effected by BET surface areas was not obvious. There were two main factors enhancing the photocatalytic property of low (NH2)2CO concentration group: First, diffusing reflection spectra showed that the low (NH2)2CO concentration group samples had lower reflectivity, this suggested that the structure improved the efficiency of light absorption; Second, NH4+ would take up the active sites on the surface of the TiO2 particles, the FT-IR test results showed that the samples of the low (NH2)2CO concentration group samples bonded less NH4+, thus leading to the higher photocatalytic activity. It had enlightenment role for optimizing the performance of photocatalytic materials.

  16. Effect of concentration variation on 2.0 µm emission of Ho3+-doped SiO2-Al2O3-Na2CO3-SrF2-CaF2 oxyfluorosilicate glasses

    NASA Astrophysics Data System (ADS)

    Gelija, Devarajulu; Borelli, Deva Prasad Raju

    2018-02-01

    The concentration variation of Ho3+ ion-doped SiO2-Al2O3-Na2CO3-SrF2-CaF2 glasses has been prepared by conventional melt quenching method. The thermal stability of 1 mol % of Ho3+-doped oxyfluorosilicate glass has been calculated using the differential thermal analysis (DTA) spectra. The phenomenological Judd-Ofelt intensity parameters Ωλ ( λ = 2, 4 and 6) were calculated for all concentrations of Ho3+ ions. The luminescence spectra in visible region of Ho3+ ion-doped glasses were recorded under the excitation wavelength of 452 nm. The spectra consists of several intense emission bands (5F4, 5S2) → 5I8 (547 nm), 5F3 → 5I8 (647 nm), 5F5 → 5I7 (660 nm) and (5F4, 5S2) → 5I7 (750 nm) in the range 500-780 nm. The fluorescence emission at ˜2.0 µm (5I7 → 5I8) was observed under the excitation of 488 nm Ar-ion laser. The stimulated emission cross section for 5I7 → 5I8 transition (˜2.0 µm) varies from 8.46 to 9.52 × 10-21 cm2, as calculated by the Fuchtbauer-Ladenburg (FL) theory. However, Mc-Cumber theory was used to calculate emission cross section values about 4.24-5.75 × 10-21 cm2 for the 5I7 → 5I8 transition in all concentrations of Ho3+-doped oxyfluorosilicate glasses. Therefore, these results reveal that the 0.5 mol % of Ho3+-doped oxyfluorosilicate glasses, exhibiting higher emission cross section, has potentially been used for laser applications at ˜ 2.0 µm.

  17. Effects of elevated ozone concentration on CH4 and N2O emission from paddy soil under fully open-air field conditions.

    PubMed

    Tang, Haoye; Liu, Gang; Zhu, Jianguo; Kobayashi, Kazuhiko

    2015-04-01

    We investigated the effects of elevated ozone concentration (E-O3) on CH4 and N2O emission from paddies with two rice cultivars: an inbred Indica cultivar Yangdao 6 (YD6) and a hybrid one II-you 084 (IIY084), under fully open-air field conditions in China. A mean 26.7% enhancement of ozone concentration above the ambient level (A-O3) significantly reduced CH4 emission at tillering and flowering stages leading to a reduction of seasonal integral CH4 emission by 29.6% on average across the two cultivars. The reduced CH4 emission is associated with O3-induced reduction in the whole-plant biomass (-13.2%), root biomass (-34.7%), and maximum tiller number (-10.3%), all of which curbed the carbon supply for belowground CH4 production and its release from submerged soil to atmosphere. Although no significant difference was detected between the cultivars in the CH4 emission response to E-O3, a larger decrease in CH4 emission with IIY084 (-33.2%) than that with YD6 (-7.0%) was observed at tillering stage, which may be due to the larger reduction in tiller number in IIY084 by E-O3. Additionally, E-O3 reduced seasonal mean NOx flux by 5.7% and 11.8% with IIY084 and YD6, respectively, but the effects were not significant statistically. We found that the relative response of CH4 emission to E-O3 was not significantly different from those reported in open-top chamber experiments. This study has thus confirmed that increasing ozone concentration would mitigate the global warming potential of CH4 and suggested consideration of the feedback mechanism between ozone and its precursor emission into the projection of future ozone effects on terrestrial ecosystem. © 2014 John Wiley & Sons Ltd.

  18. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    PubMed Central

    Yang, Jingbin; Li, Dongxu; Fang, Yuan

    2017-01-01

    C-A-S-H (CaO-Al2O3-SiO2-H2O) and N-A-S-H (Na2O-Al2O3-SiO2-H2O) have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O)/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH)2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH)2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali-activated materials. PMID

  19. Structure and photoluminescence properties of TeO2-core/TiO2-shell nanowires

    NASA Astrophysics Data System (ADS)

    Park, Sunghoon; An, Soyeon; Lee, Chongmu

    2013-12-01

    TeO2-core/TiO2-shell nanowires were fabricated by thermal evaporation of Te powders and MOCVD of TiO2. The as-synthesized TeO2 nanowires showed a weak broad violet band centered at approximately 430 nm. The emission peak was shifted to a bluish violet region (∼455 nm) by the encapsulation of the nanowires with a TiO2 thin film. The intensity of the major emission from the core-shell nanowires showed strong dependence on the shell layer thickness. The strongest emission was obtained for the shell layer thickness of ∼15 nm and its intensity was approximately 80 times higher than that of the violet emission from the as-synthesized TeO2 nanowires. This enhancement in emission intensity is attributed to the subwavelength optical resonant cavity formation in the shell layer. The major emission intensity was enhanced further and blue-shifted by annealing, which might be attributed to the increase in the Ti interstitial and O vacancy concentrations in the TeO2 cores during annealing.

  20. Concentration effect of Er{sup 3+} ions on structural and spectroscopic properties of CdNb{sub 2}O{sub 6} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghafouri, Sanaz Aian; Erdem, Murat, E-mail: merdem@marmara.edu.tr; Ekmekçi, M. Kaan

    2014-12-15

    Excitation and emission spectra of a visible room-temperature Er{sup 3+} ions luminescence from powders. - Highlights: • This is the first report on spectroscopic properties of CdNb{sub 2}O{sub 6}:Er{sup 3+}. • The crystalline sizes are affected as the concentration of Er{sup 3+} ions increased. • Quenching of the luminescence was observed to be above 1.0 mol% Er{sup 3+}. - Abstract: This study is focused on the synthesis and characterization of CdNb{sub 2}O{sub 6} compounds doped with of Er{sup 3+} ions. Powders were synthesized by using the molten salt method and annealed at 900 °C for 4 h. The synthesized particlesmore » were structurally characterized by using X-ray diffraction, scanning electron microscopy. A single phase of the CdNb{sub 2}O{sub 6} was determined and the size of the particles was found to be affected by the presence and the concentration of Er{sup 3+} ions. Luminescence properties of each sample were investigated by measuring accurately the emission and excitation spectra at room temperature in the wavelength range of 200–1700 nm by exciting the Er{sup 3+} ions at 379 nm and 805 nm. Quenching of the luminescence in both visible and near infrared spectral regions was observed to be above 1.0 mol% Er{sup 3+} concentration.« less

  1. Direct observation of ozone formation on SiO2 surfaces in O2 discharges

    NASA Astrophysics Data System (ADS)

    Marinov, D.; Guaitella, O.; Booth, J. P.; Rousseau, A.

    2013-01-01

    Ozone production is studied in a pulsed O2 discharge at pressures in the range 1.3-6.7 mbar. Time-resolved absolute concentrations of O3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O2 pressure and is favoured by the presence of OH groups and adsorbed H2O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface.

  2. Interactive Effects of CO2 and O2 in Soil on Root and Top Growth of Barley and Peas

    PubMed Central

    Geisler, G.

    1967-01-01

    Barley and pea plants were grown under several regimens of different compositions of soil atmosphere, the O2 concentration varying from 0 to 21% and the CO2 concentration from 0 to 8%. In absence of CO2, the effect of O2 on root length in barley was characterized by equal root lengths within the range of 21 to 7% O2 and a steep decline between 7 and 0%. In peas, while showing the same general response, the decline occurred between 14 and 7% O2. Root numbers of the seminal roots of barley decreased already with reduction in O2 concentration from 21 to 14%. Dry matter production was affected somewhat differently by O2 and CO2 concentration. Dry matter production in barley was reduced at 14% O2 while root length decreased between 7 and 0%. In peas, dry matter production was favored by low CO2 concentrations except where there was no oxygen. At 21% O2, increasing CO2 concentrations did not seem to affect root length up to concentrations of 2% CO2. At 8% CO2, root length was decreased. The inter-active effects of CO2 and O2 are characterized by a reduced susceptibility to CO2 at O2 values below 7%, and a very deleterious effect of 8% CO2 at 7% O2. PMID:16656508

  3. High temperature calorimetric studies of heat of solution of NiO, CuO, La2O3, TiO2, HfO2 in sodium silicate liquids

    NASA Astrophysics Data System (ADS)

    Linard, Yannick; Wilding, Martin C.; Navrotsky, Alexandra

    2008-01-01

    The enthalpies of solution of La2O3, TiO2, HfO2, NiO and CuO were measured in sodium silicate melts at high temperature. When the heat of fusion was available, we derived the corresponding liquid-liquid enthalpies of mixing. These data, combined with previously published work, provide insight into the speciation reactions in sodium silicate melts. The heat of solution of La2O3 in these silicate solvents is strongly exothermic and varies little with La2O3 concentration. The variation of heat of solution with composition of the liquid reflects the ability of La(III) to perturb the transient silicate framework and compete with other cations for oxygen. The enthalpy of solution of TiO2 is temperature-dependent and indicates that the formation of Na-O-Si species is favored over Na-O-Ti at low temperature. The speciation reactions can be interpreted in terms of recent spectroscopic studies of titanium-bearing melts which identify a dual role of Ti4+ as both a network-former end network-modifier. The heats of solution of oxides of transition elements (Ni and Cu) are endothermic, concentration-dependent and reach a maximum with concentration. These indicate a charge balanced substitution which diminishes the network modifying role of Na+ by addition of Ni2+ or Cu2+. The transition metal is believed to be in tetrahedral coordination, charge balanced by the sodium cation in the melts.

  4. Thermodynamic balance of photosynthesis and transpiration at increasing CO2 concentrations and rapid light fluctuations.

    PubMed

    Marín, Dolores; Martín, Mercedes; Serrot, Patricia H; Sabater, Bartolomé

    2014-02-01

    Experimental and theoretical flux models have been developed to reveal the influence of sun flecks and increasing CO2 concentrations on the energy and entropy balances of the leaf. The rapid and wide range of fluctuations in light intensity under field conditions were simulated in a climatic gas exchange chamber and we determined the energy and entropy balance of the leaf based on radiation and gas exchange measurements. It was estimated that the energy of photosynthetic active radiation (PAR) accounts for half of transpiration, which is the main factor responsible for the exportation of the entropy generated in photosynthesis (Sg) out of the leaf in order to maintain functional the photosynthetic machinery. Although the response of net photosynthetic production to increasing concentrations of CO2 under fluctuating light is similar to that under continuous light, rates of transpiration respond slowly to changes of light intensity and are barely affected by the concentration of CO2 in the range of 260-495 ppm, in which net photosynthesis increases by more than 100%. The analysis of the results confirms that future increases of CO2 will improve the efficiency of the conversion of radiant energy into biomass, but will not reduce the contribution of plant transpiration to the leaf thermal balance. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. Synthesis of CaO-SiO2-P2O5 mesoporous bioactive glasses with high P2O5 content by evaporation induced self assembly process.

    PubMed

    Zhao, Shan; Li, Yanbao; Li, Dongxu

    2011-02-01

    Mesoporous bioactive glasses (MBGs) of the CaO-SiO(2)-P(2)O(5) system containing relatively high P(2)O(5) contents (10-30 mol%) were prepared from a sol-gel. An evaporation-induced self-assembly (EISA) technique was used with poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (EO(20)-PO(70)-EO(20), P123) acting as a template. The structural, morphological and textural properties of MBGs were investigated by small-angle X-ray diffraction (SAXRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and a N(2) sorption/desorption technique. SAXRD and TEM results display the reduced long-range ordering of mesopores with increasing P(2)O(5) content. N(2) sorption/desorption analysis shows that all three samples exhibit a type IV isotherm with type H1 hysteresis loops, characteristic of independent cylindrical slim pore channels and this material has a Barret-Joyner-Halenda (BJH) model pore size of ~4 nm and BET specific surface area ~430 m(2)/g. NMR results indicate a more condensed framework for samples with 30 mol% P(2)O(5) than samples with 10 mol% P(2)O(5). For in vitro bioactivity tests where samples were soaked in simulated body fluid (SBF), samples with 30 mol% P(2)O(5) showed higher crystallinity than those with lower P(2)O(5) contents Silicon concentration increased in SBF solution during the soaking period, which indicates MBGs can be degradable in SBF solution.

  6. Structural, optical and thermal characterization of PVC/SnO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Taha, T. A.; Ismail, Z.; Elhawary, M. M.

    2018-04-01

    The structural, optical, and thermal properties of PVC/SnO2 nanocomposites were investigated. XRD patterns were used to explore the structures of these prepared samples. Optical UV-Vis measurements were analyzed to calculate the spectroscopic optical constants of the prepared PVC/SnO2 nanocomposites. Both direct and indirect optical band gaps decreased with increasing SnO2 content. The refractive index, high frequency dielectric constant, plasma frequency, and optical conductivity values increased with SnO2. The single oscillator energy increased from 5.64 to 10.97 eV and the dispersion energy increased from 6.35 to 19.80 eV with the addition of SnO2. The other optical parameters such as optical moments, single oscillator strength, volume energy loss, and surface energy loss were calculated for different SnO2 concentrations. Raman spectra of the PVC/SnO2 nanocomposite films revealed the characteristic vibrational modes of PVC and surface phonon modes of SnO2. The thermal stability of PVC/SnO2 nanocomposite films was studied using DTA and thermogravimetric analysis. The glass transition ( T g) values abruptly changed from 46 °C for PVC to an average value of 59 °C for the polymer films doped with 2.0, 4.0, and 6.0 wt% SnO2. The weight loss decreased as the SnO2 concentration increased in the temperature range of 350-500 °C, corresponding to enhanced thermal stability.

  7. EPR spectroscopic investigations in 15BaO-25Li2O-(60-x) B2O3-xFe2O3 glass system

    NASA Astrophysics Data System (ADS)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P.

    2018-05-01

    Glasses with composition 15BaO-25Li2O-(60-x) B2O3 -xFe2O3 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1 mol %) were prepared by the conventional melt quenching technique. These glasses were characterized using X-ray diffraction (XRD). Electron paramagnetic resonance (EPR) investigations have been carried out as a function of iron ion concentration. The observed EPR spectra of Fe3+ ion exhibits resonance signals at g= 2.0, 4.3 and 8.0. The resonance signal at g= 4.3 is due to isolated Fe3+ ions in site with rhombic symmetry where as the g= 2.0 resonance signal is attributed to the Fe3+ ions coupled by exchange interaction in a distorted octahedral environment and the signal at g= 8.0 arises from axially distorted sites. The number of spins participating in resonance (N) and its paramagnetic susceptibilities (χ) have also been evaluated. The peak-to-peak line width ΔB for the resonance lines at g ≈ 4.3 and at g ≈ 2.0 is increasing as function of the iron ion content. The line intensity of the resonance centered at g ≈ 4.3 and at g ≈ 2.0 increases up to 0.8 mol% of Fe2O3 and for 1 mol% of Fe2O3 its value is found to decrease. The analysis of these results indicated that the conversion some of Fe3+ cations to Fe2+ ions beyond 0.8 mol%.

  8. Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution

    NASA Astrophysics Data System (ADS)

    Amirfakhri, Seyed Javad; Meunier, Jean-Luc; Berk, Dimitrios

    2014-12-01

    The catalytic activity of LaNiO3 toward H2O2 reduction reaction (HPRR), with a potential application in the cathode side of fuel cells, is studied in alkaline, neutral and acidic solutions by rotating disk electrode. The LaNiO3 particles synthesised by citrate-based sol-gel method have sizes between 30 and 70 nm with an active specific surface area of 1.26 ± 0.05 m2 g-1. LaNiO3 shows high catalytic activity toward HPRR in 0.1 M KOH solution with an exchange current density based on the active surface area (j0A) of (7.4 ± 1) × 10-6 A cm-2 which is noticeably higher than the j0A of N-doped graphene. The analysis of kinetic parameters suggests that the direct reduction of H2O2, H2O2 decomposition, O2 reduction and O2 desorption occur through HPRR on this catalyst. In order to control and minimize oxygen evolution from the electrode surface, the effects of catalyst loading, bulk concentration of H2O2, and using a mixture of LaNiO3 and N-doped graphene are studied. Although the mechanism of HPRR is independent of the aforementioned operating conditions, gas evolution decreases by increasing the catalyst loading, decreasing the bulk concentration of H2O2, and addition of N-doped graphene to LaNiO3.

  9. Oxygen vacancies enabled enhancement of catalytic property of Al reduced anatase TiO2 in the decomposition of high concentration ozone

    NASA Astrophysics Data System (ADS)

    Ding, Yanhua; Zhang, Xiaolei; Chen, Li; Wang, Xiaorui; Zhang, Na; Liu, Yufeng; Fang, Yongzheng

    2017-06-01

    The catalytic decomposition of gaseous ozone (O3) is investigated using anatase TiO2 (A-TiO2) and Aluminum-reduced A-TiO2 (ARA-TiO2) at high concentration and high relative humidity (RH) without light illumination. Compared with the pristine A-TiO2, the ARA-TiO2 sample possesses a unique crystalline core-amorphous shell structure. It is proved to be an excellent solar energy ;capture; for solar thermal collectors due to lots of oxygen vacancies. The results indicate that the overall decomposition efficiency of O3 without any light irradiation has been greatly improved from 4.8% on A-TiO2 to 100% on ARA-TiO2 under the RH=100% condition. The ozone conversion over T500/ARA-TiO2 catalyst is still maintained at 95% after a 72 h test under the reaction condition of 18.5 g/m3 ozone initial concentration, and RH=90%. The results can be explained that T500/ARA-TiO2 possesses the largest amorphous contour, the lowest crystallinity, the most surface-active Ti3+/Ti4+couples, and the most oxygen vacancies. This result opens a new door to widen the application of TiO2 in the thermal-catalytic field.

  10. Increase of dielectric constant in PVDF by incorporating La{sub 1.8}Sr{sub 0.2}NiO{sub 4} into its matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajnish, E-mail: rajnish@iitp.ac.in; Goswami, Ashwin M., E-mail: ashwin.nanoplast@gmail.com; Kar, Manoranjan, E-mail: mano-iitg@yahoo.com

    2016-05-06

    To obtain the material with high dielectric constant and high dielectric strength for the technological applications, nanocomposite of Lanthanum Strontium Nickelete (La{sub 1.8}Sr{sub 0.2}NiO{sub 4}) as nanofiller and polyvinylidene fluoride (PVDF) as polymer matrix has been prepared. The different nanofiler weight concentration varies from 2-8 weight percent. X-ray diffraction technique confirms the phase formation of nanocomposite. Differential scanning calorimeter (DSC) has been employed to study the percentage of crystallinity and Impedance measurement has been carried out to study the dielectric constant. DSC analysis shows decreasing trend of crystallinity whereas impedance analysis gives increasing dielectric constant with increasing La{sub 1.8}Sr{sub 0.2}NiO{submore » 4} concentration in the nanocomposite. Also, these materials can be used as insulator in the transformer as the strength and dielectric behavior of present composite meets the technological requirements.« less

  11. Optical spectroscopy of Sm(3+) doped Na2O-ZnO-La2O3-TeO2 glasses.

    PubMed

    Sobczyk, Marcin

    2015-10-05

    Telluride glasses with the composition xSm2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2 (where x=0.1, 1, 2, 5 and 7 mol%) were obtained by the melt quenching technique. Electronic absorption and fluorescence spectra as well as fluorescence dynamics of the Sm(3+)-doped title glasses are presented and analysed in detail. A Judd-Ofelt intensity analysis of the absorption spectrum at 300 K has been applied for determination of Ωλ parameters (Ω2=3.10, Ω4=3.80, Ω6=1.61×10(-20) cm(2)) which in turn have been used for calculations of the radiative transition probabilities (AT), the natural (radiative) lifetimes (τR) of the (4)G5/2 level of Sm(3+), the fluorescence branching ratios (β) and the emission cross-sections (σem). The τR value of the (4)G5/2 level amount to 1546 μs and is slightly higher than the measured decay time of 1306 μs. With the increasing of Sm2O3 concentration from 0.1 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 1306 to 41 μs. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The optical achieved results indicate that the investigated glasses are potentially applicable as an orange and/or red laser host. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Reduction on NOx emissions on urban areas by changing specific vehicle fleets: effects on NO2 and O3 concentration

    NASA Astrophysics Data System (ADS)

    Goncalves, M.; Jimenez, P.; Baldasano, J.

    2007-12-01

    cent (-6 μg m-3 on average). The urban areas are VOC-controlled, therefore the reduction on NOx emissions involves a minor increase on tropospheric O3 concentration (Jiménez and Baldasano, 2004), up to 1.5 per cent at some points. Nevertheless, the O3 precursors reduction has positive effects in the downwind areas affected by the urban plume, slightly reducing the O3 levels, but at the regional scale the reduction applied on urban traffic emissions has negligible effects. Both scenarios tested are very similar in terms of emissions reductions and air quality changes, which means that the NOx/NMVOCs ratio do not involve an O3-sensitivity regime variation among scenarios. The HEC scenario is more effective in reducing NO2 levels in urban areas than the NGC scenario (with maximum reductions affecting a larger area) and involves a larger increase in urban O3 concentration.

  13. Structural investigation of vanadium ions doped Li2Osbnd PbOsbnd B2O3sbnd P2O5 glasses by means of spectroscopic and dielectric studies

    NASA Astrophysics Data System (ADS)

    Yusub, S.; Narendrudu, T.; Suresh, S.; Krishna Rao, D.

    2014-11-01

    In the present investigation we report the synthesis of a series of transparent glasses of composition 20Li2Osbnd 20PbOsbnd 45B2O3sbnd (15-x) P2O5: xV2O5 with eight values of x ranging from 0 to 2.5 mol%, and their characterization. X-ray diffraction (XRD) spectra reflected the amorphous nature of the glasses. Optical absorption, electron paramagnetic resonance (EPR) spectra and FTIR study of vanadyl ions in the present glass network have been analyzed. The optical absorption and EPR investigations have revealed that vanadium ions do exist in both V4+ and V5+ states and the redox ratio (V4+/V5+) is observed to increase with the increase in concentration of V2O5. Dielectric properties viz., dielectric constant ε‧(ω), loss tan δ, electrical moduli M‧(ω), M″(ω), a.c. conductivity σac over an extensive scale of frequency and temperature have been investigated as a function of V2O5 concentration. The dispersion of dielectric constant ε‧(ω) with temperature has been interpreted by space charge polarization model. The dielectric loss and electrical moduli variation with frequency and temperature exhibited relaxation effects. These effects are ascribed to V4+ ions. The a.c. conductivity of the prepared glasses is perceived to escalate with the hike in V2O5 concentration whereas the activation energy for conduction exhibits a reverse trend. The conductivity mechanism is explained on the basis of polaronic transfer between V4+ and V5+ ions. The low temperature a.c. conductivity mechanism is elucidated by the quantum mechanical tunneling model. The growth in the values of dielectric parameters with raise in the concentration of V2O5 is due to V4+ ions which act as modifiers. The investigation of these results has indicated that at higher concentrations of V2O5, the VO2+ ions in the glasses were present in octahedral sites with tetragonal compression and belong to C4v symmetry.

  14. Detection of CO2 leaks from carbon capture and storage sites to the atmosphere with combined CO2 and O2 measurements

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Charlotte; Meijer, Harro A. J.

    2015-04-01

    One of the main issues in carbon capture and storage (CCS) is the possibility of leakage of CO2 from the storage reservoir to the atmosphere, both from a public health and a climate change combat perspective. Detecting these leaks in the atmosphere is difficult due to the rapid mixing of the emitted CO2 with the surrounding air masses and the high natural variability of the atmospheric CO2 concentration. Instead of measuring only the CO2 concentration of the atmosphere, its isotopes or chemical tracers that are released together with the CO2, our method uses O2 measurements in addition to CO2 measurements to detect a leak from a CCS site. CO2 and O2 are coupled in most processes on earth. In photosynthesis, plants take up CO2 and release O2 at the same time. In respiration and fossil fuel burning, O2 is consumed while CO2 is released. In case of a leak from a CCS site, however, there is no relationship between CO2 and O2. A CO2 leak can therefore be distinguished from other sources of CO2 by looking at the atmospheric CO2-O2 ratio. A natural increase of the CO2 concentration is accompanied by a drop in the O2 concentration, while an increase in the CO2 concentration caused by a leak from a CCS site does not have any effect on the O2 concentration. To demonstrate this leak detection strategy we designed and built a transportable CO2 and O2 measurement system, that is capable of measuring the relatively minute (ppm's variations on a 21% concentration) changes in the O2 concentration. The system comprises of three cases that contain the instrumentation and gas handling equipment, the gas cylinders used as reference and calibration gases and a drying system, respectively. Air is pumped to the system from an air inlet that is placed in a small tower in the field. At the conference, we will demonstrate the success of leak detection with our system by showing measurements of several CO2 release experiments, where CO2 was released at a small distance from the air inlet of

  15. Responses of Ceriodaphnia dubia to TiO2 and Al2O3 nanoparticles: a dynamic nano-toxicity assessment of energy budget distribution.

    PubMed

    Li, Minghua; Czymmek, Kirk J; Huang, C P

    2011-03-15

    The in vivo responses of C. dubia to nanoparticles exemplified by a photoactive titanium oxide (TiO(2)) and a non-photocatalytic aluminum oxide (Al(2)O(3)) were studied. Both nanomaterials inhibited the growth of C. dubia at concentrations ca. >100mg/L. The EC50 value was 42 and 45 mg/L in the presence of TiO(2) and Al(2)O(3), respectively, based on 3-brood reproduction assay. Results implied that reactive oxygen species (ROS) may not be totally responsible for the adverse effects exerted on the invertebrate. Aggregation and interaction among nanoparticles, C. dubia, and algal cells, major food source of Daphnia, played a significant role on the responses of C. dubia to nanoparticles. Dynamic energy budget (DEB) analysis was used to assess the impact of nanoparticles on the energy allocation of C. dubia. Results indicated that nanoparticles could disrupt the assimilation and consumption of energy in C. dubia dramatically. The assimilation energy was negatively correlated to the concentration of nanomaterials, a reduction from 11 to near 0 μg-C/animal/day in the presence of TiO(2) or Al(2)O(3) nanoparticles at a nanoparticle concentration of 200mg/L. The energy consumed for life-maintenance increased also with increase in the concentration of nanomaterials. Results clearly demonstrated the importance of energy disruption in determining the toxicity of nanoparticles toward C. dubia. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Spatial variability in groundwater N2 and N2O in the San Joaquin River

    NASA Astrophysics Data System (ADS)

    Hinshaw, S.; Dahlgren, R. A.

    2010-12-01

    The San Joaquin River is surrounded by nearly 2 million acres of irrigated agricultural land. Groundwater inputs from agricultural areas can have severe negative effects on water quality with high nitrate concentrations being a major concern. Riparian zones are important ecological habitats that mitigate nitrogen loading from groundwater discharging into rivers primarily by denitrification. Denitrification is a permanent removal of nitrate by anaerobic microbial communities via the reduction to NO, N2O and N2. However, previous studies have shown that these areas can be source of N2O emissions. Although removal of nitrate through denitrification is advantageous from a water quality perspective, N2O is a harmful greenhouse gas. This study aimed to investigate nitrogen dynamics and dissolved N gases in surface and groundwater of the riparian zones of the San Joaquin River. Excess N2 and N2O concentrations were measured in surface and groundwater at 4 locations along a 33 km reach of the river. Samples were collected within bank sediments and 5 transect points across the river at depth intervals between 2-3 cm and 150 cm. Dissolved N2 and Ar were measured by membrane inlet mass spectrometry and used to estimate excess dissolved N2 concentrations. Dissolved N2O concentrations were measured using the headspace equilibrium technique and analyzed with a gas chromatograph. Both N2 uptake and excess N2 were present, ranging from -3.40 to 8.65 N2 mg/L with a median concentration of 1.20 N2 mg/L. Significantly lower concentrations of N2O were present ranging from 0.0 to 0.12 N2O mg/L. Deeper groundwater sites had significantly higher N2 and N2O concentrations coinciding with decreased O2. The presence of excess N2 and low N2O concentrations documents the importance of denitrification in removing nitrate from groundwater. Further investigation will examine N2O emissions from riparian soils and benthic sediments using static chambers and focus on nitrogen pathways that

  17. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  18. Sub-toxic concentrations of nano-ZnO and nano-TiO2 suppress neurite outgrowth in differentiated PC12 cells.

    PubMed

    Irie, Tomohiko; Kawakami, Tsuyoshi; Sato, Kaoru; Usami, Makoto

    2017-01-01

    Nanomaterials have been extensively used in our daily life, and may also induce health effects and toxicity. Nanomaterials can translocate from the outside to internal organs, including the brain. For example, both nano-ZnO and nano-TiO 2 translocate into the brain via the olfactory pathway in rodents, possibly leading to toxic effects on the brain. Although the effects of nano-ZnO and nano-TiO 2 on neuronal viability or neuronal excitability have been studied, no work has focused on how these nanomaterials affect neuronal differentiation and development. In this study, we investigated the effects of nano-ZnO and nano-TiO 2 on neurite outgrowth of PC12 cells, a useful model system for neuronal differentiation. Surprisingly, the number, length, and branching of differentiated PC12 neurites were significantly suppressed by the 7-day exposure to nano-ZnO (in the range of 1.0 × 10 -4 to 1.0 × 10 -1 µg/mL), at which the cell viability was not affected. The number and length were also significantly inhibited by the 7-day exposure to nano-TiO 2 (1.0 × 10 -3 to 1.0 µg/mL), which did not have cytotoxic effects. These results demonstrate that the neurite outgrowth in differentiated PC12 cells was suppressed by sub-cytotoxic concentrations of nano-ZnO or nano-TiO 2 .

  19. Copper Bioaccumulation and Depuration in Common Carp (Cyprinus carpio) Following Co-exposure to TiO2 and CuO Nanoparticles.

    PubMed

    Mansouri, Borhan; Maleki, Afshin; Johari, Seyed Ali; Shahmoradi, Behzad; Mohammadi, Ebrahim; Shahsavari, Siros; Davari, Behroz

    2016-11-01

    Metal oxide nanoparticles (NPs), such as TiO 2 and CuO, are widely applied in an increasing number of products and applications, and therefore their release to the aquatic ecosystems is unavoidable. However, little is known about joint toxicity of different NPs on tissues of aquatic organisms, such as fish. This study was conducted to assess the uptake and depuration of Cu following exposure to CuO NPs in the presence of TiO 2 NPs in the liver, intestine, muscle, and gill of common carp, Cyprinus carpio. Carps with a mean total length of 23 ± 1.5 cm and mean weight of 13 ± 1.3 g were divided into 6 groups of 15 each (1 control group) and exposed to TiO 2 NPs, CuO NPs, and a mixture of TiO 2 and CuO NPs for periods of 20 days for uptake and 10 days for depuration. The determination of total Cu concentration was carried out by an ICP-OES. The order of Cu uptake in different tissues of the carps was liver > gill > muscle > intestine in both levels of CuO NPs alone; results showed that the total Cu concentrations in the presence of TiO 2 nanoparticles were increased and were in the sequence of liver > gill > intestine > muscle. In depuration period, Cu concentrations were decreased in all treatments in the sequence of gill > intestine > muscle > liver. Uptake of Cu in different tissues of common carp increased with increasing concentration and time and was tissues- and time-dependent. In conclusion, this study suggested that the uptake of Cu in the tissues of common carp increased in the joint presence of TiO 2 NPs.

  20. CO2-induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus

    PubMed Central

    Hu, Menghong; Lin, Daohui; Shang, Yueyong; Hu, Yi; Lu, Weiqun; Huang, Xizhi; Ning, Ke; Chen, Yimin; Wang, Youji

    2017-01-01

    The increasing usage of nanoparticles has caused their considerable release into the aquatic environment. Meanwhile, anthropogenic CO2 emissions have caused a reduction of seawater pH. However, their combined effects on marine species have not been experimentally evaluated. This study estimated the physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus under high pCO2 (2500–2600 μatm). We found that respiration rate (RR), food absorption efficiency (AE), clearance rate (CR), scope for growth (SFG) and O:N ratio were significantly reduced by nano-TiO2, whereas faecal organic weight rate and ammonia excretion rate (ER) were increased under nano-TiO2 conditions. High pCO2 exerted lower effects on CR, RR, ER and O:N ratio than nano-TiO2. Despite this, significant interactions of CO2-induced pH change and nano-TiO2 were found in RR, ER and O:N ratio. PCA showed close relationships among most test parameters, i.e., RR, CR, AE, SFG and O:N ratio. The normal physiological responses were strongly correlated to a positive SFG with normal pH and no/low nano-TiO2 conditions. Our results indicate that physiological functions of M. coruscus are more severely impaired by the combination of nano-TiO2 and high pCO2. PMID:28054631

  1. CO2-induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus

    NASA Astrophysics Data System (ADS)

    Hu, Menghong; Lin, Daohui; Shang, Yueyong; Hu, Yi; Lu, Weiqun; Huang, Xizhi; Ning, Ke; Chen, Yimin; Wang, Youji

    2017-01-01

    The increasing usage of nanoparticles has caused their considerable release into the aquatic environment. Meanwhile, anthropogenic CO2 emissions have caused a reduction of seawater pH. However, their combined effects on marine species have not been experimentally evaluated. This study estimated the physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus under high pCO2 (2500-2600 μatm). We found that respiration rate (RR), food absorption efficiency (AE), clearance rate (CR), scope for growth (SFG) and O:N ratio were significantly reduced by nano-TiO2, whereas faecal organic weight rate and ammonia excretion rate (ER) were increased under nano-TiO2 conditions. High pCO2 exerted lower effects on CR, RR, ER and O:N ratio than nano-TiO2. Despite this, significant interactions of CO2-induced pH change and nano-TiO2 were found in RR, ER and O:N ratio. PCA showed close relationships among most test parameters, i.e., RR, CR, AE, SFG and O:N ratio. The normal physiological responses were strongly correlated to a positive SFG with normal pH and no/low nano-TiO2 conditions. Our results indicate that physiological functions of M. coruscus are more severely impaired by the combination of nano-TiO2 and high pCO2.

  2. Pressure, O2, and CO2, in aquatic Closed Ecological Systems

    NASA Astrophysics Data System (ADS)

    Taub, Frieda B.; McLaskey, Anna K.

    2013-03-01

    Pressure increased during net photosynthetic O2 production in the light and decreased during respiratory O2 uptake during the dark in aquatic Closed Ecological Systems (CESs) with small head gas volumes. Because most CO2 will be in the liquid phase as bicarbonate and carbonate anions, and CO2 is more soluble than O2, volumes of gaseous CO2 and gaseous O2 will not change in a compensatory manner, leading to the development of pressure. Pressure increases were greatest with nutrient rich medium with NaHCO3 as the carbon source. With more dilute media, pressure was greatest with NaHCO3, and less with cellulose or no-added carbon. Without adequate turbulence, pressure measurements lagged dissolved O2 concentrations by several hours and dark respiration would have been especially underestimated in our systems (250-1000 ml). With adequate turbulence (rotary shaker), pressure measurements and dissolved O2 concentrations generally agreed during lights on/off cycles, but O2 measurements provided more detail. At 20 °C, 29.9 times as much O2 will distribute into the gas phase as in the liquid, per unit volume, as a result of the limited solubility of O2 in water and according to Henry's Law. Thus even a small head gas volume can contain more O2 than a larger volume of water. When both dissolved and gaseous O2 and CO2 are summed, the changes in Total O2 and CO2 are in relatively close agreement when NaHCO3 is the carbon source. These findings disprove an assumption made in some of Taub's earlier research that aquatic CESs would remain at approximately atmospheric pressure because approximately equal molar quantities of O2 and CO2 would exchange during photosynthesis and respiration; this assumption neglected the distribution of O2 between water and gas phases. High pressures can occur when NaHCO3 is the carbon source in nutrient rich media and if head-gas volumes are small relative to the liquid volume; e.g., one "worse case" condition developed 800 mm Hg above atmospheric

  3. Low-concentration hydrogen peroxide can upregulate keratinocyte intracellular calcium and PAR-2 expression in a human keratinocyte-melanocyte co-culture system.

    PubMed

    Li, Jian; Tang, Lu-Yan; Fu, Wen-Wen; Yuan, Jin; Sheng, You-Yu; Yang, Qin-Ping

    2016-12-01

    Hydrogen peroxide (H 2 O 2 ) may have a biphasic effect on melanin synthesis and melanosome transfer. High H 2 O 2 concentrations are involved in impaired melanosome transfer in vitiligo. However, low H 2 O 2 concentration promotes the beneficial proliferation and migration of melanocytes. The aim of this study was to explore low H 2 O 2 and its mechanism in melanosome transfer, protease-activated receptor-2 (PAR-2) expression and calcium balance. Melanosomes were fluorescein-labeled for clear visualization of their transfer. The expression of protease-activated receptor-2 (PAR-2) in keratinocytes was determined by western blot analysis. Flow cytometry was employed to evaluate the effects of H 2 O 2 on calcium levels in keratinocytes. Fluorescence microscopy showed the upregulation of melanosome transfer into keratinocytes following 0.3 mM H 2 O 2 treatment in the co-cultures rather than in the untreated control groups, which was associated with higher expression of PAR-2 protein and increased calcium concentration. The addition of a PAR-2 antagonist inhibited the positive activity of H 2 O 2 and calcium flow in keratinocytes. When calcium flow was blocked by a calcium chelator, the addition of H 2 O 2 did not increase the PAR-2 expression level in keratinocytes, therefore, inhibiting dendrite formation and melanosome transfer. Low H 2 O 2 concentration promotes melanosome transfer with increased PAR-2 expression level and calcium concentration in keratinocytes. In addition, the interaction between melanocytes and keratinocytes is more beneficial to enhance calcium levels in keratinocytes which mediate melanin transfer. Moreover, low H 2 O 2 concentration promotes dendrite formation, in which extracellular calcium and Par-2 were involved.

  4. Short-term treatments with high CO2 and low O2 concentrations on quality of fresh goji berries (Lycium barbarum L.) during cold storage.

    PubMed

    Kafkaletou, Mina; Christopoulos, Miltiadis V; Tsantili, Eleni

    2017-12-01

    Goji berries (Lycium barbarum L.) are functional fruits but are usually marketed as a dried product. The aim of this study was to investigate the storability of fresh goji berries treated with high CO 2 and low O 2 concentrations before air storage at 1 °C for 21 days. Berries harvested without stems were exposed to air (controls) or subjected for 2 days at 1 °C to the following controlled atmosphere (CA) treatments: 21% O 2 + 0% CO 2 (21+0), 5% O 2 + 15% CO 2 (5+15), 10% O 2 + 10% CO 2 (10+10) and 20% O 2 + 20% CO 2 (20+20). During 14 days of storage, all treatments decreased weight loss, while treatments 5+15 and 20+20 prevented fungal decay. No fermentation was observed. The treatments did not affect color changes, decreases in soluble sugars and increases in total soluble solids, titratable acidity, ascorbic acid, total carotenoids, total phenolics and ferric-reducing antioxidant power (FRAP) during storage, apart from the marginally reduced FRAP by treatment 20+20 on day 7. Treatments 5+15, 10+10 and 20+20 resulted in residual decreases in respiration rates and pH values early during storage. After 14 days of storage, panelists rated the CA-treated samples as sweet, with good acceptance. Treatments 5+15 and 20+20 showed the best results after 14 days of storage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Effects of Eu3+ concentration on structural, optical and vibrational properties of multifunctional Ce(1-x)Eu(x)O2-delta) nanoparticles synthesized by thermolysis of 2,4-pentanedione complexes.

    PubMed

    Kremenovic, A; Bozanic, D K; Welsch, A M; Jancar, B; Nikolic, A S; Boskovic, M; Colomban, Ph; Fabian, Martin; Antic, B

    2012-12-01

    The 5-10 nm Ce(1-x)Eu(x)O(2-delta) (0 < or = x < or = 0.30) nanoparticles with fluorite structure were synthesized by thermal decomposition of Eu- and Ce-2,4-pentanedione complexes mixtures. X-ray line broadening analysis of mixed samples Ce(1-x)Eu(x)O(2-delta) (0.05 < or = x < or = 0.30) showed that the crystallite size was lower and root mean square strain higher than in pure ceria. However, within mixed samples Ce(1-x)Eu(x)O(2-delta) (0.05 < or = x < or = 0.30) crystallite size and root mean square strain were independent of Eu3+ concentration. Raman spectroscopy results indicated that europium ions yield disorder by breaking the phonon propagation and therefore making the non-centre Brillouin zone modes Raman active. The absorption bands in the spectra of mixed oxides were blue-shifted in comparison to pure CeO(2-delta) nanopowder. The samples show red emission typical for Eu ions. The biggest photoluminescent intensity was observed for the highest Eu3+ concentration (x = 0.30) and further enhanced with the increase in crystallinity.

  6. Effect of TiO2 nanoparticles on the reproduction of silkworm.

    PubMed

    Ni, Min; Li, Fanchi; Wang, Binbin; Xu, Kaizun; Zhang, Hua; Hu, Jingsheng; Tian, Jianghai; Shen, Weide; Li, Bing

    2015-03-01

    Silkworm (Bombyx mori) is an important economic insect and the model insect of Lepidoptera. Because of its high fecundity and short reproduction cycle, it has been widely used in reproduction and development research. The high concentrations of titanium dioxide nanoparticles (TiO2 NPs) show reproductive toxicity, while low concentrations of TiO2 NPs have been used as feed additive and demonstrated significant biological activities. However, whether the low concentrations of TiO2 NPs affect the reproduction of B. mori has not been reported. In this study, the growth and development of gonad of B. mori fed with a low concentration of TiO2 NPs (5 mg/L) were investigated by assessing egg production and expression of reproduction-related genes. The results showed that the low concentration of TiO2 NPs resulted in faster development of the ovaries and testes and more gamete differentiation and formation, with an average increase of 51 eggs per insect and 0.34 × 10(-4) g per egg after the feeding. The expressions of several reproduction-related genes were upregulated, such as the yolk-development-related genes Ovo-781 and vitellogenin (Vg) were increased by 5.33- and 6.77-folds, respectively. This study shows that TiO2 NPs feeding at low concentration can enhance the reproduction of B. mori, and these results are useful in developing new methods to improve fecundity in B. mori and providing new clues for its broad biological applications.

  7. Microstructure characterization and phase transformation kinetic study of ball-milled m-ZrO 2-30 mol% a-TiO 2 mixture by Rietveld method

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Dutta, H.

    2005-05-01

    High-energy ball milling of monoclinic ZrO 2-30 mol% anatase TiO 2 mixture at different durations results in the formation of m-ZrO 2-a-TiO 2 solid solution from which the nucleation of nanocrystalline cubic (c) ZrO 2 polymorphic phase sets in. Post-annealing of 12 h ball-milled sample at different elevated temperatures for 1 h results in almost complete formation of c-ZrO 2 phase. Microstructure of the unmilled, all the ball milled and annealed samples has been characterized by Rietveld's X-ray powder structure refinement method. Particle size, rms lattice strain, change in lattice parameters and phase content of individual phases have been estimated from Rietveld analysis, and are utilized to interpret the results. In course of milling, (1 1 1) of cubic lattice became parallel to ( 1bar 1 1) plane of monoclinic lattice due to the orientation effect and cubic phase may have been formed on the (0 0 1) of the m-ZrO 2-a-TiO 2 solid solution lattice. A comparative study of microstructure and phase transformation kinetics of ZrO 2-10, 20 and 30 mol% a-TiO 2 ball-milled and post-annealed samples reveals that rate of phase transformation m→c-ZrO 2 increases with increasing a-TiO 2 concentration and ∼30 mol% of nanocrystalline c-ZrO 2 phase can be obtained within 4 h of milling time in the presence of 30 mol% of a-TiO 2. The post-annealing treatment at 773, 873 and 973 K for 1 h duration each reveals that rate of c-ZrO 2 formation with increasing temperature is retarded with increasing a-TiO 2 concentration but the amount of c-ZrO 2 becomes almost equal (∼95 mol%) at 973 K. It suggests that almost fully stabilized nanocrystalline c-ZrO 2 can be formed by adding a tetravalent solute to m-ZrO 2.

  8. SnO2, IrO2, Ta2O5, Bi2O3, and TiO2 nanoparticle anodes: electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H2

    NASA Astrophysics Data System (ADS)

    Choi, Jina; Qu, Yan; Hoffmann, Michael R.

    2012-08-01

    In recent years, the search for environmentally friendly alternative energy sources with reduced carbon footprints has increased. The coupling of photovoltaic power sources with advanced electrolysis systems for hydrogen production via water splitting using organic contaminants as sacrificial electron donors has been considered to a be viable alternative. In this report, we demonstrated the feasibility of a scaled-up rooftop prototype of the proposed hybrid photovoltaic-electrolysis system, which utilizes semiconductor nanoparticles coated on to metal substrates as electrodes for the generation of hydrogen coupled with the oxidation of wastewater. Application of an anodic bias of >2.0 V to bismuth-doped TiO2 (BiO x -TiO2) on Ti metal anodes with a sequential under-coatings of nanoparticulate SnO2, IrO2, Ta2O5, and Bi2O3 results in the electrochemical degradation of a variety of organic chemical contaminants in water (i.e., rhodamine B (Rh.B), methylene blue (MB), salicylic acid, triclosan, and phenol) and actual wastewater from a chemical manufacturing plant, while at the same time, molecular hydrogen is produced at stainless steel (SS) cathodes. The kinetics of the anodic substrates oxidation is investigated as a function of the cell current ( I cell), substrate concentration, and background electrolyte composition (e.g., NaCl, Na2SO4, or seawater). Average current efficiencies were found to be in the range of 4-22 %, while the cathodic current and energy efficiencies for hydrogen production were found to be in the range of 50-70 % and 20-40 %, respectively.

  9. Dynamic aggregation of the mid-sized gadolinium complex {Ph4[Gd(DTTA)(H2O)2](-)3}.

    PubMed

    Jaccard, Hugues; Miéville, Pascal; Cannizzo, Caroline; Mayer, Cédric R; Helm, Lothar

    2014-02-01

    A compound binding three Gd(3+) ions, {Ph4[Gd(DTTA)(H2O)2](-) 3} (where H5DTTA is diethylenetriaminetetraacetic acid), has been synthesized around a hydrophobic center made up of four phenyl rings. In aqueous solution the molecules start to self-aggregate at concentrations well below 1 mM as shown by the increase of rotational correlation times and by the decrease of the translational self-diffusion constant. NMR spectra recorded in aqueous solution of the diamagnetic analogue {Ph4[Y(DTTA)(H2O)2](-)3} show that the aggregation is dynamic and due to intermolecular π-stacking interactions between the hydrophobic aromatic centers. From estimations of effective radii, it can be concluded that the aggregates are composed of two to three monomers. The paramagnetic {Ph4[Gd(DTTA)(H2O)2](-)3} exhibits concentration-dependent (1)H NMR relaxivities with high values of approximately 50 mM(-1) s(-1) (30 MHz, 25 °C) at gadolinium concentrations above 20 mM. A combined analysis of (1)H NMR dispersion profiles measured at different concentrations of the compound and (17)O NMR data measured at various temperatures was performed using different theoretical approaches. The fitted parameters showed that the increase in relaxivity with increasing concentration of the compound is due to slower global rotational motion and an increase of the Lipari-Szabo order parameter S(2).

  10. [Influence of hypoxia and hyperoxia on the 2,3-diphosphoglycerate concentration in rat red blood cells].

    PubMed

    Gross, J; Beischukurowa, A; Lun, A; Pohle, R; Voitkevich, V; Scherba, M M

    1978-01-01

    The influence of hypoxia (pO2 = 85 mmHg) lasting 5 h, a strong single bleeding of the animals, and the effect of hyperoxia (pO2 = 745 and 1520 mmHg) lasting 24 and 5 h, respectively, on the 2.3-DPG concentration of red cells from rat has been studied. A distinct increase in 2.3-DPG concentration at hypoxia and bleedig, but no reliable alteration in hyperoxia were found. When bled and anemic animals are exposed to hyperoxia (24 h, pO2 = 745 mmHg, normal air pressure) there is also observed a rise of 2.3-DPG concentration, which is much less than in normoxia. A non-linear relationship was established between the change of 2.3-DPG concentration and the percentage of deoxyhemoglobin in the centralvenous blood.

  11. Betalains increase vitexin-2-O-xyloside cytotoxicity in CaCo-2 cancer cells.

    PubMed

    Farabegoli, F; Scarpa, E S; Frati, A; Serafini, G; Papi, A; Spisni, E; Antonini, E; Benedetti, S; Ninfali, P

    2017-03-01

    Vitexin-2-O-xyloside (XVX) from Beta vulgaris var. cicla L. (BVc) seeds, betaxanthin (R1) and betacyanin (R2) fractions from Beta vulgaris var. rubra L. (BVr) roots were combined and tested for cytotoxicity in CaCo-2 colon cancer cells. XVX was the most cytotoxic molecule, but the combination of XVX with R1 and R2 significantly prolonged its cytotoxicity. Cytotoxicity was mediated by the intrinsic apoptotic pathway, as shown by an increase in Bcl2-like protein 4, cleaved Poly ADP-Ribosyl Polymerase 1 and cleaved Caspase 3 levels with a parallel decrease in anti-apoptotic protein B-cell leukemia/lymphoma 2 levels. R1 and R2, used alone or in combination, reduced oxidative stress triggered by H 2 O 2 in CaCo-2 cells. Betalains dampened cyclooxygenase-2 and interleukin-8 mRNA expression after lipopolysaccharide induction in CaCo-2, showing an anti-inflammatory action. Our results support the use of a cocktail of R1, R2 and XVX as a chemopreventive tool against colon cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Postperovskite phase equilibria in the MgSiO3-Al2O3 system.

    PubMed

    Tsuchiya, Jun; Tsuchiya, Taku

    2008-12-09

    We investigate high-P,T phase equilibria of the MgSiO(3)-Al(2)O(3) system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh(2)O(3)(II) phase, present calculations demonstrate that (i) dissolving Al(2)O(3) tends to decrease the postperovskite transition pressure of MgSiO(3) but the effect is not significant ( approximately -0.2 GPa/mol% Al(2)O(3)); (ii) Al(2)O(3) produces the narrow perovskite+postperovskite coexisting P,T area (approximately 1 GPa) for the pyrolitic concentration (x(Al2O3) approximately 6 mol%), which is sufficiently responsible to the deep-mantle D'' seismic discontinuity; (iii) the transition would be smeared (approximately 4 GPa) for the basaltic Al-rich composition (x(Al2O3) approximately 20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh(2)O(3)(II) with increasing the Al concentration involving small displacements of the Mg-site cations.

  13. Effects of Al2O3 and CaO/SiO2 Ratio on Phase Equilbria in the ZnO-"FeO"-Al2O3-CaO-SiO2 System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-02-01

    The phase equilibria and liquidus temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2 system in equilibrium with metallic iron have been determined experimentally in the temperature range 1383 K to 1573 K (1150 °C to 1300 °C). The experimental conditions were selected to characterize lead blast furnace and imperial smelting furnace slags. The results are presented in a form of pseudoternary sections ZnO-"FeO"-(Al2O3 + CaO + SiO2) with fixed CaO/SiO2 and (CaO + SiO2)/Al2O3 ratios. It was found that wustite and spinel are the major primary phases in the composition range investigated. Effects of Al2O3 concentration as well as the CaO/SiO2 ratio on the primary phase field, the liquidus temperature, and the partitioning of ZnO between liquid and solid phases have been discussed for zinc-containing slags.

  14. Cytotoxicity of TiO{sub 2} nanoparticles towards freshwater sediment microorganisms at low exposure concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumari, Jyoti; Kumar, Deepak; Mathur, Ankita

    2014-11-15

    There is a persistent need to assess the effects of TiO{sub 2} nanoparticles on the aquatic ecosystem owing to their increasing usage in consumer products and risk of environmental release. The current study is focused on TiO{sub 2} nanoparticle-induced acute toxicity at sub-ppm level (≤1 ppm) on the three different freshwater sediment bacterial isolates and their consortium under two different irradiation (visible light and dark) conditions. The consortium of the bacterial isolates was found to be less affected by the exposure to the nanoparticles compared to the individual cells. The oxidative stress contributed considerably towards the cytotoxicity under both lightmore » and dark conditions. A statistically significant increase in membrane permeability was noted under the dark conditions as compared to the light conditions. The optical and fluorescence microscopic images showed aggregation and chain formation of the bacterial cells, when exposed to the nanoparticles. The electron microscopic (SEM, TEM) observations suggested considerable damage of cells and bio-uptake of nanoparticles. The exopolysaccrides (EPS) production and biofilm formation were noted to increase in the presence of the nanoparticles, and expression of the key genes involved in biofilm formation was studied by RT-PCR. - Highlights: • Toxicity of NPs towards freshwater sediment bacteria at sub-ppm concentrations. • Decreased toxicity of the nanoparticles in the consortium of microorganisms. • Enhanced bacterial resistance through EPS and biofilm formation in the presence of NPs. • Considerable surface damage of cells and internalization of NPs. • Gene expression analyses related to biofilm formation in the presence of NPs.« less

  15. Simultaneous effect of initial weight, initial crowding, temperature and O2 concentration on the nutritional use of food by rainbow trout (Oncorhynchus mykiss).

    PubMed

    Martinez, F J; Garcia, M P; Canteras, M; De Costa, J; Zamora, S

    1992-01-01

    The simultaneous effects of initial weight, initial crowding, temperature and O2 concentration on the following ratios: relative growth rate percent (RGRP), feed efficiency (FE), protein efficiency ratio (PER) and protein productive value (PPV) were studied in the rainbow trout. Multivariant equations were obtained for each of the mentioned indices. The joint effects of these factors were evidenced by means of a multiple correlation analysis. The influence of temperature and, to a lesser extent, of crowding, and O2 concentration on the nutritional use of food by the trout was demonstrated, their fundamental dependence on factors extrinsic to the animal being underlined. The non proportional changes in PER and PPV as temperature rises revealed that an increasing part of the ingested aminoacids were used for synthesis of fat, non for proteins edification.

  16. An isopiestic study of aqueous NaBr and KBr at 50 °C: Chemical equilibrium model of solution behavior and solubility in the NaBr-H 2O, KBr-H 2O and Na-K-Br-H 2O systems to high concentration and temperature

    NASA Astrophysics Data System (ADS)

    Christov, Christomir

    2007-07-01

    The isopiestic method has been used to determine the osmotic coefficients of the binary solutions NaBr-H 2O (from 0.745 to 5.953 mol kg -1) and KBr-H 2O (from 0.741 to 5.683 mol kg -1) at the temperature t = 50 °C. Sodium chloride solutions have been used as isopiestic reference standards. The isopiestic results obtained have been combined with all other experimental thermodynamic quantities available in literature (osmotic coefficients, water activities, bromide mineral's solubilities) to construct a chemical model that calculates solute and solvent activities and solid-liquid equilibria in the NaBr-H 2O, KBr-H 2O and Na-K-Br-H 2O systems from dilute to high solution concentration within the 0-300 °C temperature range. The Harvie and Weare [Harvie C., and Weare J. (1980) The prediction of mineral solubilities in naturalwaters: the Na-K-Mg-Ca-Cl-SO 4-H 2O system from zero to high concentration at 25 °C. Geochim. Cosmochim. Acta44, 981-997] solubility modeling approach, incorporating their implementation of the concentration-dependent specific interaction equations of Pitzer [Pitzer K. (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem.77, 268-277] is employed. The model for binary systems is validated by comparing activity coefficient predictions with those given in literature, and not used in the parameterization process. Limitations of the mixed solutions model due to data insufficiencies are discussed. This model expands the variable temperature sodium-potassium model of Greenberg and Moller [Greenberg J., and Moller N. (1989) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Cl-SO 4-H 2O system to high concentration from 0 to 250 °C. Geochim. Cosmochim. Acta53, 2503-2518] by evaluating Br - pure electrolyte and mixing solution parameters and the chemical potentials of three bromide solid phases: NaBr-2H 2O (cr), NaBr (cr) and KBr (cr).

  17. Benthic iron and phosphorus release from river dominated shelf sediments under varying bottom water O2 concentrations.

    NASA Astrophysics Data System (ADS)

    Ghaisas, N. A.; Maiti, K.; White, J. R.

    2017-12-01

    Phosphorus (P) cycling in coastal ocean is predominantly controlled by river discharge and biogeochemistry of the sediments. In coastal Louisiana, sediment biogeochemistry is strongly influenced by seasonally fluctuating bottom water O2, which, in turn transitions the shelf sediments from being a sink to source of P. Sediment P-fluxes were 9.73 ± 0.76 mg / m2 /d and 0.67±0.16 mg/m2/d under anaerobic and aerobic conditions respectively, indicating a 14 times higher P-efflux from oxygen deprived sediments. A high sedimentary oxygen consumption rate of 889 ± 33.6 mg/m2/d was due to organic matter re-mineralization and resulted in progressively decreasing the water column dissolved O2 , coincident with a P-flux of 7.2 ± 5.5 mg/m2/d from the sediment. Corresponding water column flux of Fe total was 19.7 ± 7.80 mg/m2/d and the sediment-TP decreased from 545 mg/Kg to 513 mg/Kg. A simultaneous increase in pore water Fe and P concentrations in tandem with a 34.6% loss in sedimentary Fe-bound P underscores the importance of O2 on coupled Fe- P biogeochemistry. This study suggests that from a 14,025 sq. km hypoxia area, Louisiana shelf sediments can supply 1.33x105 kg P/day into the water column compared to 0.094 x 105 kg P/day during the fully aerobic water column conditions.

  18. Effect of TiO2, ZrO2, and TiO2-ZrO2 on the performance of CuO-ZnO catalyst for CO2 hydrogenation to methanol

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Mao, Dongsen; Guo, Xiaoming; Yu, Jun

    2015-05-01

    The influence of TiO2, ZrO2, and TiO2-ZrO2 mixed oxide on the catalytic performance of CuO-ZnO catalyst in the methanol synthesis from CO2 hydrogenation was studied. The catalysts were prepared by oxalate co-precipitation method and characterized by TGA, N2 adsorption, XRD, reactive N2O adsorption, XPS, H2-TPR, H2-TPD, and CO2-TPD techniques. Characterization results reveal that all the additives improve the CuO dispersion in the catalyst body and increase the Cu surface area and adsorption capacities of CO2 and H2. The results of catalytic test reveal that the additives increase both the CO2 conversion and methanol selectivity, and TiO2-ZrO2 mixed oxide is more effective than single components of TiO2 or ZrO2. Moreover, the activity of methanol synthesis is correlated directly with CO2 adsorption capacity over the catalysts.

  19. Upconversion properties of Er3+/Yb3+ co-doped TeO2-TiO2-K2O glasses.

    PubMed

    Su, Fangning; Deng, Zaide

    2006-01-01

    The Er3+/Yb3+ co-doped TeO2-TiO2-K2O glasses were prepared by conventional melting procedures, and their upconversion spectra were performed. The dependence of luminescence intensity on the ratio of Yb3+/Er3+ was studied, and the relationship between green upconversion luminescence intensity and Er3+ concentration is discussed in detail. The 546 nm green upconversion luminescence intensity is optimised in the studied glasses either when the Yb3+/Er3+ ratio is 25/1 and Er3+ concentration is 0.1 mol%, or when the Yb3+/Er3+ ratio is 10/1 and Er3+ concentration is 0.15 mol%. These glasses could be one of the potential candidates for LD pumping microchip solid-state lasers.

  20. Paramagnetic defects in KH{sub 2}PO{sub 4} crystals with high concentration of embedded TiO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grachev, Valentin G., E-mail: grachev@physics.montana.edu; Tse, Romand; Malovichko, Galina I.

    2016-01-21

    Qualitative transformations of spectra of Electron Paramagnetic Resonance, EPR, were found in KH{sub 2}PO{sub 4} crystals grown from liquor with 10{sup −5}–10{sup −1 }wt. % of anatase TiO{sub 2} nanoparticles in comparison with nominally pure KH{sub 2}PO{sub 4}. The nanoparticles have larger segregation coefficient for prismatic parts of the crystals than for pyramidal ones. Significant decrease in resonance absorption, complete disappearance of EPR lines of Fe{sup 3+} and Cr{sup 3+} centers, and appearance of four weak lines of equal intensities together with broad asymmetric lines with g-factors about 2.07–2.5 was observed in pyramidal parts grown with concentration of TiO{sub 2} nanoparticlesmore » larger than the threshold value 10{sup −2 }wt. %. The four lines were attributed to non-controlled impurity As substituted for P. In the presence of TiO{sub 2} nanoparticles, non-paramagnetic AsO{sub 4}{sup 3−} clusters trap electrons becoming AsO{sub 4}{sup 4−}. Disappearance of Fe{sup 3+} and Cr{sup 3+} centers was explained by their recharge to “EPR-silent” states and/or pairing at the surface of TiO{sub 2} nanoparticles.« less

  1. In vitro evaluation of bioactivity of SiO2-CaO-P2O5-Na2O-CaF2-ZnO glass-ceramics

    NASA Astrophysics Data System (ADS)

    Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat; Bashir, Farooq; Hossain, Tousif; Kayani, Zohra

    2014-09-01

    Zinc is an essential trace element that stimulates bone formation but it is also known as an inhibitor of apatite crystal growth. In this work addition of ZnO to SiO2-CaO-P2O5-Na2O-CaF2 glass-ceramic system was made by conventional melt-quenching technique. DSC curves showed that the addition of ZnO moved the endothermic and exothermic peaks to lower temperatures. X-ray diffraction analysis did not reveal any additional phase caused by ZnO addition and showed the presence of wollastonite and hydroxyapatite crystalline phases only in all the glass-ceramic samples. As bio-implant apatite forming ability is an essential condition, the surface reactivity of the prepared glass-ceramic specimens was studied in vitro in Kokubo's simulated body fluid (SBF) [1] with ion concentration nearly equal to human blood plasma for 30 days at 37 °C under static condition. Atomic absorption spectroscopy (AAS) was used to study the changes in element concentrations in soaking solutions and XRD, FT-IR and SEM were used to elucidate surface properties of prepared glass-ceramics, which confirmed the formation of HCAp on the surface of all glass-ceramics. It was found that the addition of ZnO had a positive effect on bioactivity of glass-ceramics and made it a potential candidate for restoration of damaged bones.

  2. High indoor CO2 concentrations in an office environment increases the transcutaneous CO2 level and sleepiness during cognitive work.

    PubMed

    Vehviläinen, Tommi; Lindholm, Harri; Rintamäki, Hannu; Pääkkönen, Rauno; Hirvonen, Ari; Niemi, Olli; Vinha, Juha

    2016-01-01

    The purpose of this study is to perform a multiparametric analysis on the environmental factors, the physiological stress reactions in the body, the measured alertness, and the subjective symptoms during simulated office work. Volunteer male subjects were monitored during three 4-hr work meetings in an office room, both in a ventilated and a non-ventilated environment. The environmental parameters measured included CO(2), temperature, and relative humidity. The physiological test battery consisted of measuring autonomic nervous system functions, salivary stress hormones, blood's CO(2)- content and oxygen saturation, skin temperatures, thermal sensations, vigilance, and sleepiness. The study shows that we can see physiological changes caused by high CO(2) concentration. The findings support the view that low or moderate level increases in concentration of CO(2) in indoor air might cause elevation in the blood's transcutaneously assessed CO(2). The observed findings are higher CO(2) concentrations in tissues, changes in heart rate variation, and an increase of peripheral blood circulation during exposure to elevated CO(2) concentration. The subjective parameters and symptoms support the physiological findings. This study shows that a high concentration of CO(2) in indoor air seem to be one parameter causing physiological effects, which can decrease the facility user's functional ability. The correct amount of ventilation with relation to the number of people using the facility, functional air distribution, and regular breaks can counteract the decrease in functional ability. The findings of the study suggest that merely increasing ventilation is not necessarily a rational solution from a technical-economical viewpoint. Instead or in addition, more comprehensive, anthropocentric planning of space is needed as well as instructions and new kinds of reference values for the design and realization of office environments.

  3. B2O3/SiO2 substitution effect on structure and properties of Na2O-CaO-SrO-P2O5-SiO2 bioactive glasses from molecular dynamics simulations.

    PubMed

    Ren, Mengguo; Lu, Xiaonan; Deng, Lu; Kuo, Po-Hsuen; Du, Jincheng

    2018-05-23

    The effect of B2O3/SiO2 substitution in SrO-containing 55S4.3 bioactive glasses on glass structure and properties, such as ionic diffusion and glass transition temperature, was investigated by combining experiments and molecular dynamics simulations with newly developed potentials. Both short-range (such as bond length and bond angle) and medium-range (such as polyhedral connection and ring size distribution) structures were determined as a function of glass composition. The simulation results were used to explain the experimental results for glass properties such as glass transition temperature and bioactivity. The fraction of bridging oxygen increased linearly with increasing B2O3 content, resulting in an increase in overall glass network connectivity. Ion diffusion behavior was found to be sensitive to changes in glass composition and the trend of the change with the level of substitution is also temperature dependent. The differential scanning calorimetry (DSC) results show a decrease in glass transition temperature (Tg) with increasing B2O3 content. This is explained by the increase in ion diffusion coefficient and decrease in ion diffusion energy barrier in glass melts, as suggested by high-temperature range (above Tg) ion diffusion calculations as B2O3/SiO2 substitution increases. In the low-temperature range (below Tg), the Ea for modifier ions increased with B2O3/SiO2 substitution, which can be explained by the increase in glass network connectivity. Vibrational density of states (VDOS) were calculated and show spectral feature changes as a result of the substitution. The change in bioactivity with B2O3/SiO2 substitution is discussed with the change in pH value and release of boric acid into the solution.

  4. Radiation-induced amorphization of Ce-doped Mg2Y8(SiO4)6O2 silicate apatite

    NASA Astrophysics Data System (ADS)

    Zhou, Jianren; Yao, Tiankai; Lian, Jie; Shen, Yiqiang; Dong, Zhili; Lu, Fengyuan

    2016-07-01

    Ce-doped Mg2Y8(SiO4)6O2 silicate apatite (Ce = 0.05 and 0.5) were irradiated with 1 MeV Kr2+ ion beam irradiation at different temperatures and their radiation response and the cation composition dependence of the radiation-induced amorphization were studied by in situ TEM. The two Ce-doped Mg2Y8(SiO4)6O2 silicate apatites are sensitive to ion beam induced amorphization with a low critical dose (0.096 dpa) at room temperature, and exhibits significantly different radiation tolerance at elevated temperatures. Ce concentration at the apatite AI site plays a critical role in determining the radiation response of this silicate apatite, in which the Ce3+ rich Mg2Y7.5Ce0.5(SiO4)6O2 displays lower amorphization susceptibility than Mg2Y7.95Ce0.05(SiO4)6O2 with a lower Ce3+ occupancy at the AI sites. The critical temperature (Tc) and activation energy (Ea) change from 667.5 ± 33 K and 0.162 eV of Mg2Y7.5Ce0.5(SiO4)6O2 to 963.6 ± 64 K and 0.206 eV of Mg2Y7.95Ce0.05(SiO4)6O2. We demonstrate that the radiation tolerance can be controlled by varying the chemical composition, and enhanced radiation tolerance is achieved by increasing the Ce concentration at the AI site.

  5. Development of a TDLAS sensor for temperature and concentration of H2 O in high speed and high temperature flows

    NASA Astrophysics Data System (ADS)

    Sheehe, Suzanne; O'Byrne, Sean

    2017-06-01

    The development of a sensor for simultaneous temperature concentration of H2 O and temperature in high speed flows is presented. H2 O is a desirable target sensing species because it is a primary product in combustion systems; both temperature and concentration profiles can be used to assess both the extent of the combustion and the flow field characteristics. Accurate measurements are therefore highly desirable. The sensor uses a vertical-cavity surface emitting laser (VCSEL) scanned at 50 kHz from 7172 to 7186 cm-1. Temperatures and concentrations are extracted from the spectra by fitting theoretical spectra to the experimental data. The theoretical spectra are generated using GENSPECT in conjunction with line parameters from the HITRAN 2012 database. To validate the theoretical spectra, experimental spectra of H2 O were obtained at known temperatures (290-550 K) and pressures (30 torr) in a heated static gas cell. The results show that some theoretical lines deviate from the experimental lines. New line-strengths are calculated assuming that the line assignments and broadening parameters in HITRAN are correct. This data is essential for accurate H2 O concentration and temperature measurements at low pressure and high temperature conditions. US Air Force Asian Office of Aerospace Research and Development Grant FA2386-16-1-4092.

  6. Bimetallic Pt-Au Nanocatalysts on ZnO/Al2O3/Monolith for Air Pollution Control.

    PubMed

    Kim, Ki-Joong; Ahn, Ho-Geun

    2015-08-01

    The catalytic activity of a monolithic catalyst with nanosized Pt and Au particles on ZnO/Al2O3 (Pt-Au/ZnO/Al2O3/M) prepared by a wash-coat method was examined, specifically for toluene oxidation. Scanning electron microscopy image showed clearly the formation of a ZnO/Al2O3 layer on the monolith. Nanosized Pt-Au particles on ZnO/Al2O3/M with different sizes could be found in the Pt-Au/ZnO/Al2O3/M catalyst. The conversion of toluene decreased with increasing toluene concentration and was also largely affected by the feed flow rate. The Pt-Au/ZnO/Al2O3/M catalysts prepared in this work have almost the same activity (molecules of toluene per second) compared with a powder Pt-Au/ZnO/Al2O3 catalyst with the same loadings of Pt and Au components; thus this catalyst could be used in controlling air pollution with very low concentrations and high flow rate.

  7. Development of a circulation direct sampling and monitoring system for O2 and CO2 concentrations in the gas-liquid phases of shake-flask systems during microbial cell culture.

    PubMed

    Takahashi, Masato; Sawada, Yoshisuke; Aoyagi, Hideki

    2017-08-23

    Monitoring the environmental factors during shake-flask culture of microorganisms can help to optimise the initial steps of bioprocess development. Herein, we developed a circulation direct monitoring and sampling system (CDMSS) that can monitor the behaviour of CO 2 and O 2 in the gas-liquid phases and obtain a sample without interrupting the shaking of the culture in Erlenmeyer flasks capped with breathable culture plugs. Shake-flask culturing of Escherichia coli using this set-up indicated that a high concentration of CO 2 accumulated not only in the headspace (maximum ~100 mg/L) but also in the culture broth (maximum ~85 mg/L) during the logarithmic phase (4.5-9.0 h). By packing a CO 2 absorbent in the gas circulation unit of CDMSS, a specialised shake-flask culture was developed to remove CO 2 from the headspace. It was posited that removing CO 2 from the headspace would suppress increases in the dissolved CO 2 concentration in the culture broth (maximum ~15 mg/L). Furthermore, the logarithmic growth phase (4.5-12.0 h) was extended, the U.O.D. 580 and pH value increased, and acetic acid concentration was reduced, compared with the control. To our knowledge, this is the first report of a method aimed at improving the growth of E. coli cells without changing the composition of the medium, temperature, and shaking conditions.

  8. Uncertainties in United States agricultural N2O emissions: comparing forward model simulations to atmospheric N2O data.

    NASA Astrophysics Data System (ADS)

    Nevison, C. D.; Saikawa, E.; Dlugokencky, E. J.; Andrews, A. E.; Sweeney, C.

    2014-12-01

    Atmospheric N2O concentrations have increased from 275 ppb in the preindustrial to about 325 ppb in recent years, a ~20% increase with important implications for both anthropogenic greenhouse forcing and stratospheric ozone recovery. This increase has been driven largely by synthetic fertilizer production and other perturbations to the global nitrogen cycle associated with human agriculture. Several recent regional atmospheric inversion studies have quantified North American agricultural N2O emissions using top-down constraints based on atmospheric N2O data from the National Oceanic and Atmospheric Administration (NOAA) Global Greenhouse Gas Reference Network, including surface, aircraft and tall tower platforms. These studies have concluded that global N2O inventories such as EDGAR may be underestimating the true U.S. anthropogenic N2O source by a factor of 3 or more. However, simple back-of-the-envelope calculations show that emissions of this magnitude are difficult to reconcile with the basic constraints of the global N2O budget. Here, we explore some possible reasons why regional atmospheric inversions might overestimate the U.S. agricultural N2O source. First, the seasonality of N2O agricultural sources is not well known, but can have an important influence on inversion results, particularly when the inversions are based on data that are concentrated in the spring/summer growing season. Second, boundary conditions can strongly influence regional inversions but the boundary conditions used may not adequately account for remote influences on surface data such as the seasonal stratospheric influx of N2O-depleted air. We will present a set of forward model simulations, using the Community Land Model (CLM) and two atmospheric chemistry tracer transport models, MOZART and the Whole Atmosphere Community Climate Model (WACCM), that examine the influence of terrestrial emissions and atmospheric chemistry and dynamics on atmospheric variability in N2O at U.S. and

  9. Effect of the SiO2 Support on the Catalytic Performance of Ag/ZrO2/SiO2 Catalysts for the Single-Bed Production of Butadiene from Ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Vanessa; Flake, Matthew D.; Lemmon, Teresa

    2018-05-18

    A ternary Ag/ZrO2/SiO2 catalyst system was studied for the single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO2 loading, and choice of SiO2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO2/SiO2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325ºC, 1 atm, 0.23 hr-1). Several classes of silica (i.e., silica gels, fumed silicas, meoporous silicas) were evaluated as support, and SBA-16 was found to be the most promising. The nature of the SiO2 support wasmore » found to have a strong influence on both conversion and selectivity. Higher SiO2 catalyst surface areas lead to greater conversion due to increased Ag dispersion thus accelerating the initial ethanol dehydrogenation reaction. By independently varying Ag and ZrO2 loading, Ag was found to be the main component affecting ethanol conversion. Butadiene selectivity varied depending on the concentration of ZrO2 and acidic characteristics of the SiO2 support. A direct relationship between butadiene selectivity and concentration of Lewis acid sites was evidenced. Also, adding H2 to the feed had little effect on conversion while improving catalytic stability, however, selectivity to butadiene was decreased. Finally, catalyst regenerability was successfully demonstrated for several cycles.« less

  10. Effect of the SiO 2 support on the catalytic performance of Ag/ZrO 2 /SiO 2 catalysts for the single-bed production of butadiene from ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Vanessa Lebarbier; Flake, Matthew D.; Lemmon, Teresa L.

    A ternary Ag/ZrO2/SiO2 catalyst system was studied for the single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO2 loading, and choice of SiO2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO2/SiO2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325ºC, 1 atm, 0.23 hr-1). Several classes of silica (i.e., silica gels, fumed silicas, meoporous silicas) were evaluated as support, and SBA-16 was found to be the most promising. The nature of the SiO2 support wasmore » found to have a strong influence on both conversion and selectivity. Higher SiO2 catalyst surface areas lead to greater conversion due to increased Ag dispersion thus accelerating the initial ethanol dehydrogenation reaction. By independently varying Ag and ZrO2 loading, Ag was found to be the main component affecting ethanol conversion. Butadiene selectivity varied depending on the concentration of ZrO2 and acidic characteristics of the SiO2 support. A direct relationship between butadiene selectivity and concentration of Lewis acid sites was evidenced. Also, adding H2 to the feed had little effect on conversion while improving catalytic stability, however, selectivity to butadiene was decreased. Finally, catalyst regenerability was successfully demonstrated for several cycles.« less

  11. Increased erythropoietin concentration after repeated apneas in humans.

    PubMed

    de Bruijn, Robert; Richardson, Matt; Schagatay, Erika

    2008-03-01

    Hypoxia-induced increases in red blood cell production have been found in both altitude-adapted populations and acclimatized lowlanders. This process is mediated by erythropoietin (EPO) released mainly by the hypoxic kidney. We have previously observed high hemoglobin concentrations in elite breath-hold divers and our aim was to investigate whether apnea-induced hypoxia could increase EPO concentration. Ten healthy volunteers performed 15 maximal duration apneas, divided into three series of five apneas, each series separated by 10 min of rest. Apneas within series were separated by 2 min and preceded by 1 min of hyperventilation to increase apnea duration and arterial oxygen desaturation. When EPO concentration after serial apneas was compared to baseline values, an average maximum increase of 24% was found (P < 0.01). No changes in EPO concentration were observed during a control day without apnea, eliminating possible effects of a diurnal rhythm or blood loss. We therefore conclude that serial apneas increase circulating EPO concentration in humans.

  12. Structural and photocatalytic studies of hydrothermally synthesized Mn2+-TiO2 nanoparticles under UV and visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kamble, Ravi; Sabale, Sandip; Chikode, Prashant; Puri, Vijaya; Mahajan, Smita

    2016-11-01

    Pure TiO2 and Mn2+-TiO2 nanoparticles have been prepared by simple hydrothermal method with different Mn2+ concentrations. Obtained samples were analysed to determine it’s structural, optical, morphological and compositional properties using x-ray diffraction, UV-DRS, Raman, photoluminescence, XPS, TEM and EDS analysis. The EDS micrograph confirms the existence of Mn2+ atoms in TiO2 matrix with 0.86, 1.60 and 1.90 wt%. The crystallite size as well as band gap decreases with increase in Mn2+ concentration. The average particle size obtained from TEM was found 8-11 nm which is in good agreement with XRD results. Raman bands at 640, 518 and 398 cm-1 further confirmed pure phase anatase in all samples. XPS shows the proper substitutions of few sites of Ti4+ ions by Mn2+ ions in the TiO2 host lattice. The intensity of PL spectra for Mn2+-TiO2 shows a gradual decrease in the peak intensity with increasing Mn2+ concentration in TiO2, it implies lower electron-hole recombination rate as Mn2+ ions increases. The obtained samples were further studied for its photocatalytic activities using malachite green dye under UV light and visible light.

  13. The new insight into the structure-activity relation of Pd/CeO2-ZrO2-Nd2O3 catalysts by Raman, in situ DRIFTS and XRD Rietveld analysis.

    PubMed

    Yang, X; Yang, L; Lin, J; Zhou, R

    2016-01-28

    Pd/CeO2-ZrO2-Nd2O3 (CZN) catalysts with different CeO2/ZrO2 molar ratios were synthesized and have been characterized by multiple techniques, e.g. XRD in combination with Rietveld refinement, UV-Raman, XPS and in situ DRIFTS. The XRD pattern of CZN with CeO2/ZrO2 molar ratios ≥1/2 can be indexed satisfactorily to the fluorite structure with a space group Fm3̄m, while the XRD patterns of CZ12 only display diffraction peaks of the tetragonal phase (S.G. P42/nmc). Nd addition can effectively stabilize the cubic structure of the CZN support and increase the enrichment of defect sites on the surface, which may be related to the better catalytic activity of Pd/CZN12 catalysts compared with Pd/CZ12. The presence of moderate ZrO2 can increase the concentration of O* active species, leading to accelerate the formation of nitrate species and thus enhance the catalytic activity of NOx and HC elimination. The Pd-dispersion decreases with the increasing Zr content, leading to the decreased CO catalytic activity, especially for the aged catalysts. The change regularity of the OSC value is almost the same with the in situ dynamic operational window, demonstrating that the in situ dynamic operational window is basically affected by the OSC value.

  14. The Partial Molar Volume and Compressibility of FeO in CaO-SiO2 Liquids: Systematic Variation with Fe2+ Coordination Change

    NASA Astrophysics Data System (ADS)

    Guo, X.; Lange, R. A.; Ai, Y.

    2009-12-01

    Iron is an important element in magmatic liquid, since its concentration can range up to 18% in some basaltic liquids, and it has two oxidation states. In order to model magmatic processes, thermodynamic descriptions of silicate melts must include precise information for both the FeO and Fe2O3 components. Currently, the partial molar volume of FeO is not as well known as that for Fe2O3 because of the difficulty of performing double-bob density measurements under reducing conditions. Yet these data are required in order to convert sound speed measurements on FeO-bearing liquids into compressibility data, which in turn are needed extend density models for magmatic liquids to elevated pressures. Moreover, there is growing evidence from the spectroscopic literature that Fe2+ occurs in 4, 5, and 6-fold coordination in silicate melts, and thus it is possible that the partial molar volume and compressibility of FeO may vary with Fe2+ coordination, and thus with melt composition. To explore these issues, we have conducted both density and relaxed sound speed measurements on liquids in the CaO-FeO-SiO2 system, where the CaO/SiO2 ratio was systematically varied at constant FeO concentration (40 mol%). Density was measured between 1594 and 1813K with the double-bob Archimedean method using molybdenum bobs and crucible in a reducing gas (1%CO-99%Ar) environment. The sounds speeds were measured under similar conditions with a frequency-sweep acoustic interferometer. The derived partial molar volume of FeO increases systematically from 13.7 to 15.2 cm3/mol at 1673 K as the CaO/SiO2 ratio increases and the Fe2+ coordination number decreases. From a comparison with the crystalline volume of FeO (halite structure; 12.06 cm3/mol), which serves as a lower limit for VFeO in silicate liquids when Fe2+ is in 6-fold coordination, we estimate that the average Fe2+ coordination in our experimental melts extends up to values between 5 and 4, consistent with the spectroscopic literature. The

  15. Room-temperature NaI/H2O compression icing: solute-solute interactions.

    PubMed

    Zeng, Qingxin; Yao, Chuang; Wang, Kai; Sun, Chang Q; Zou, Bo

    2017-10-11

    In situ Raman spectroscopy revealed that transiting the concentrated NaI/H 2 O solutions to an ice VI phase and then into an ice VII phase at 298 K proceeds in a way different from that activated by the solute type. Unlike the solute type that raises both the critical pressures P C1 and P C2 , for the liquid-VI, the VI-VII transition simultaneously occurs in the Hofmeister series order: I > Br > Cl > F ∼ 0; concentration increase raises the P C1 faster than the P C2 that remains almost constant at higher NaI/H 2 O molecular number ratios. Concentration increase moves the P C1 along the liquid-VI phase boundary and it finally merges with P C2 at the triple-phase junction featured at 350 K and 3.05 GPa. The highly-deformed H-O bond is less sensitive to the concentration because of the involvement of anion-anion repulsion that weakens the electric field in the hydration shells. Observations confirm that the salt solvation lengthens the O:H nonbond and softens its phonon but relaxes the H-O bond contrastingly. Compression, however, has the opposite effect from that of salt solvation. Therefore, compression recovers the polarization-deformed O:H-O bond first and then proceeds to the phase transitions. The anion-anion interaction discriminates the effect of NaI/H 2 O concentration from that of the solute type at an identical concentration on the phase transitions.

  16. Circulating asprosin concentrations are increased in type 2 diabetes mellitus and independently associated with fasting glucose and triglyceride.

    PubMed

    Zhang, Lei; Chen, Chao; Zhou, Nan; Fu, Yuming; Cheng, Xingbo

    2017-11-03

    Asprosin has been identified as a novel hormone enriched in white adipose tissue and is pathologically increased in insulin-resistant mice and humans. However, information regarding the role of asprosin in type 2 diabetes mellitus (T2DM) remains unavailable. Via conducting a hospital-based study, we purposed to ascertain the potential relationship between circulating asprosin concentrations and T2DM. The study recruited 84 adults with T2DM and 86 controls with normal glucose tolerance. They matched in age, body mass index (BMI), and sex. Serum asprosin concentrations were measured via ELISA method. Compared to the controls, serum asprosin concentrations were significantly increased in the T2DM adults (P<0.001). As asprosin concentrations increased across its tertiles, the percentage of T2DM increased (39.28, 37.50, and 70.68%; P value for trend <0.001). Multivariate logistic regression models demonstrated that compared with the 1st tertile of asprosin, the odds ratio of T2DM was 3.278(95% CI 1.053-10.200, P=0.040) for the 3rd tertile after adjustment for potential confounders. Area under ROC curve of asprosin (sex and age adjusted) for predicting the presence of T2DM was 0.707[95% CI 0.628-0.786]. Finally, multiple stepwise regression analysis indicated that fasting glucose and triglyceride were independently associated with serum asprosin in T2DM. Asprosin concentrations are increased in adults with T2DM. The results suggest that asprosin might serve as a risk factor associated with the pathogenesis of T2DM, but not an ideal biomarker for predicting T2DM. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Electrodeposition and characterization of Ni-Mo-ZrO2 composite coatings

    NASA Astrophysics Data System (ADS)

    Laszczyńska, A.; Winiarski, J.; Szczygieł, B.; Szczygieł, I.

    2016-04-01

    Ni-Mo-ZrO2 composite coatings were produced by electrodeposition technique from citrate electrolytes containing dispersed ZrO2 nanopowder. The influence of deposition parameters i.e. concentration of molybdate and ZrO2 nanoparticles in the electrolyte, bath pH and deposition current density on the composition and surface morphology of the coating has been investigated. The structure, microhardness and corrosion properties of Ni-Mo-ZrO2 composites with different molybdenum and ZrO2 content have been also examined. It was found that ZrO2 content in the deposit is increased by rising the nanoparticles concentration in the plating solution up to 20 g dm-3. An increase in molybdate concentration in the electrolyte affects negatively the amount of codeposited ZrO2 nanoparticles. The correlation between the deposition current efficiency and ZrO2 content in the composite coating has been also observed. A decrease in deposition current efficiency leads to deposition of Ni-Mo-ZrO2 composite with low nanoparticles content. This may be explained by formation of higher amounts of gas bubbles on the cathode surface, which prevent the adsorption of ZrO2 nanoparticles on the growing deposit. The XRD analysis revealed that all the studied Ni-Mo-ZrO2 coatings were composed of a single, nanocrystalline phase with FCC structure. It was found that the incorporation of ZrO2 nanoparticles into Ni-Mo alloy matrix affects positively the microhardness and also slightly improves the corrosion properties of Ni-Mo alloy coating.

  18. Modeling TiO2 nanoparticle phototoxicity: The importance of chemical concentration, ultraviolet radiation intensity, and time

    EPA Science Inventory

    Toxicity of TiO2 nanoparticles (nano-TiO2) to aquatic organisms can be greatly increased upon the exposure to ultraviolet radiation (UV). This phenomenon has received some attention for pelagic species, however, investigations of nano-TiO2 phototoxicity in benthic organisms are s...

  19. Assessment of role of iron ions on the physical and spectroscopic properties of multi-component Na2O-PbO-Bi2O3-SiO2 glass ceramics

    NASA Astrophysics Data System (ADS)

    Rao, M. V. Sambasiva; Kumar, A. Suneel; Ram, G. Chinna; Tirupataiah, Ch.; Rao, D. Krishna

    2018-01-01

    Multi-component glass ceramics composition Na2O-PbO-Bi2O3-SiO2 doped with different concentrations of Fe2O3 as nucleating agent were characterised by XRD, SEM (scanning electron microscope) and DTA (differential thermal analysis) techniques. Optical absorption, EPR, FTIR and Raman studies are also carried out on these glass ceramics. Absorption bands observed at about 457, 489, 678 and 820 nm are the characteristics of Fe3+ ions whereas the band observed at about 964 nm is due to Fe2+ ions. EPR studies suggested that Fe3+ ions entered in the lattice as tetragonally distorted octahedral symmetry or rhombic sites at low concentration of Fe2O3, whereas at higher concentration of Fe2O3 (beyond 1 mol%), the super exchange type of interactions between multivalency iron ions begin to dominate. FTIR and Raman spectra have revealed the behaviour of various structural units in the glass ceramic matrix. The analysis of these spectroscopic studies indicates that iron ions do exist in Fe3+ and Fe2+ state.

  20. Synthesis of Au/TiO2 Core-Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Woo; Lim, Young-Min; Tripathy, Suraj Kumar; Kim, Byoung-Gyu; Lee, Min-Sang; Yu, Yeon-Tae

    2007-04-01

    On the synthesis of Au/TiO2 core-shell structure nanoparticles, the effect of the concentration of Ti4+ on the morphology and optical property of Au/TiO2 core-shell nanoparticles was examined. A gold colloid was prepared by mixing HAuCl4\\cdot4H2O and C6H5Na3\\cdot2H2O. Titanium stock solution was prepared by mixing solutions of titanium(IV) isopropoxide (TTIP) and triethanolamine (TEOA). The concentration of the Ti4+ stock solution was adjusted to 0.01-0.3 mM, and then the gold colloid was added to the Ti4+ stock solution. Au/TiO2 core-shell structure nanoparticles could be prepared by the hydrolysis of the Ti4+ stock solution at 80 °C. The size of the as-prepared Au nanoparticles was 15 nm. The thickness of the TiO2 shell on the surface of gold particles was about 10 nm. The absorption peak of the Au/TiO2 core-shell nanoparticles shifted towards the red end of the spectrum by about 3 nm because of the formation of the TiO2 shell on the surface of the gold particles. The crystal structure of the TiO2 shell showed an anatase phase. The increase in the Au crystallite size of the Au/TiO2 nanoparticles with increasing heat treatment temperature is smaller than that in the pure Au nanoparticles. This may be due to the encapsulation of Au particles with the TiO2 shell that prevents the growth of the nanoparticle nucleation.

  1. Nd3+-doped TeO2-Bi2O3-ZnO transparent glass ceramics for laser application at 1.06 μm

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Luo, Zhiwei; Liu, Taoyong; Lu, Anxian

    2017-04-01

    The high crystallinity transparent glass ceramics based on Nd3+-doped 70TeO2-15Bi2O3-15ZnO (TBZ) compositions were successfully prepared by two-step heat treatment process. The effects of Nd2O3 content on the thermal, structural, mechanical, and optical properties of TBZ glass ceramics were studied. The incorporation of Nd2O3 enhanced the crystallization tendency in the matrix glass composition. The crystal phase and morphology of Bi2Te4O11 in the glass ceramics were confirmed by X-ray diffraction and field emission scanning electron microscopy. Due to precipitate more crystal phase, the hardness values increased from 3.21 to 3.66 GPa. Eight absorption peaks were observed from 400 to 900 nm and three emission bands appeared in the range of 850-1400 nm. With the increasing of Nd2O3 content from 0.5 to 2.5 wt%, the intensity of absorption peaks enhanced and the emission intensity increased up to 1.0 wt% and then fell down for further dopant concentration. The fluorescence decay lifetime decreased rapidly starting from 1.5 wt% Nd2O3 content due to the obvious energy migration among Nd3+. According to the extreme strong emission band around 1062 nm and the optimum Nd2O3 content (1.0 wt%), N10 glass ceramic was considered as a potential material for 1.06 μm laser applications.

  2. Physicochemical degradation studies of calcium phosphate glass ceramic in the CaO-P2O5-MgO-TiO2 system.

    PubMed

    Dias, A G; Gibson, I R; Santos, J D; Lopes, M A

    2007-03-01

    The aim of this work was to evaluate the in vitro degradation behaviour of a 45CaO-37P(2)O(5)-5MgO-13TiO(2) (mol.%) glass ceramic, under two different simulated physiological conditions: normal physiological pH 7.4, and pH 3.0, which was designed to simulate the acidic conditions produced by osteoclast cells. The in vitro testing was carried out at 37 degrees C for up to 42 days for the pH 7.4 solution and for up to 1 day for the pH 3.0 solution. The incorporation of TiO(2) into the glass structure leads to the precipitation of specific crystalline phases in the glass matrix, namely alpha- and beta-Ca(2)P(2)O(7), TiP(2)O(7) and CaTi(4)(PO(4))(6). The degradation testing at pH 3.0 showed a higher weight loss compared with degradation testing at pH 7.4; the weight loss under the acidic condition after 1 day (24 h) was about 10 times higher than the weight loss after 42 days of immersion at pH 7.4. The ionic release profile of Ca(2+), PO(4)(3-), Mg(2+) and Ti(4+) showed a continuous increase in concentration over all immersion times for both testing solutions. After 1 day of immersion at pH 3.0, the concentration levels of Mg(2+), Ca(2+), PO(4)(3-) were about six times higher than the levels achieved after 42 days of immersion at pH 7.4. The glass ceramic showed similar degradation to hydroxyapatite, and therefore has potential to be used in certain clinical applications where relatively slow resorption of the implant and replacement by bone is required, e.g. cranioplasty.

  3. Structural and optical properties of α-Fe2O3 nanoparticles, influence by holmium ions

    NASA Astrophysics Data System (ADS)

    Mathevula, L. E.; Noto, L. L.; Mothudi, B. M.; Dhlamini, M. S.

    2018-04-01

    α-Fe2O3 and α-Fe2O3 doped with different concentration of holmium ions were synthesized by a simple sol-gel method. The XRD data confirmed the hexagonal structure of α-Fe2O3 for un-doped and holmium doped samples. The crystallite size was found to be decreasing with increasing holmium concentration. The amount of holmium was quantified using an EDS, which shows an increase in holmium quantity as concentration increases. The UV-Vis measurement shows an absorption edge around 570 nm. The band gap was estimated using the Kubelka-Munk relation and it was found to be fluctuating between 1.94 eV and 2.04 eV. The PL spectra confirmed the effect of holmium ions on luminescence properties of α-Fe2O3 which showed a maximum intensity at 0.1 mol% Holmium, and quenching as the concentration is increased from 0.3 mol% to 0.9 mol%.

  4. Hemoglobin-based O2 carrier O2 affinity and capillary inlet pO2 are important factors that influence O2 transport in a capillary.

    PubMed

    Dimino, Michael L; Palmer, Andre F

    2007-01-01

    Hemopure (Biopure; Cambridge, MA) and PolyHeme (Northfield Laboratories; Evanston, IL) are two acellular hemoglobin-based O2 carriers (HBOCs) currently in phase III clinical trials for use as red blood cell substitutes. The most common adverse side effect that these HBOCs exhibit is increased vasoconstriction. Autoregulatory theory has been presented as a possible explanation for this physiological effect, where it is hypothesized that low-affinity HBOCs over-deliver O2 to tissues surrounding arterioles, thereby eliciting vasoconstriction. In this paper, we wanted to investigate HBOC oxygenation of tissue surrounding a capillary, which is the smallest element of the circulatory system. An a priori model has been developed in which the performance of mixtures of acellular HBOCs (synthesized by our group and others) and human red blood cells (hRBCs) has been simulated using a Krogh tissue cylinder model (KTCM) comprising a capillary surrounded by a capillary membrane and skeletal muscle tissue in cylindrical coordinates with specified tissue O2 consumption rates and Michaelis-Menten kinetics. In this study, the total hemoglobin (hRBCs and HBOCs) concentration was kept constant. The HBOCs studied possessed O2 affinities that were higher and lower compared to hRBCs (P50's spanned 5-55 mmHg), and the equilibrium binding/release of oxygen to/from the HBOCs was modeled using the Adair equation. At normoxic inlet pO2's, there was no correlation between O2 flux out of the capillary and the O2 affinity of the HBOC. However, a correlation was found between the average pO2 tension in the capillary and the O2 affinity of the HBOC. Additionally, we studied the change in the O2 equilibrium curve of HBOCs with different O2 affinities over a wide range of inlet pO2's and found that changing the inlet pO2 greatly affected which HBOC, having a unique O2 affinity, best delivered O2 to the surrounding tissue. The analysis of oxygen transport presented could lead to a better prediction

  5. Effect of Sulfur on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-S System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-10-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-S system have been determined experimentally in equilibrium with metallic iron. A pseudoternary section of the form ZnO-"FeO"-(Al2O3+CaO+SiO2) for CaO/SiO2 = 0.71 (weight), (CaO+SiO2)/Al2O3 = 5.0 (weight), and fixed 2.0 wt pct S concentration has been constructed. It was found that the addition of 2.0 wt pct S to the liquid extends the spinel primary phase field significantly and decreases the size of the wustite primary phase field. The liquidus temperature in the wustite primary phase field is decreased by approximately 80 K and the liquidus temperature in the spinel primary phase field is decreased by approximately 10 K with addition of 2.0 wt pct S in the composition range investigated. It was also found that iron-zinc sulfides are present in some samples in the spinel primary phase field, which are matte appearing at low zinc concentrations and sphalerite (Zn,Fe)S at higher zinc concentrations. The presence of sulfur in the slag has a minor effect on the partitioning of ZnO between the wustite and liquid phases but no effect on the partitioning of ZnO between the spinel and liquid phases.

  6. Effects of TiO2 nanoparticles on wheat (Triticum aestivum L.) seedlings cultivated under super-elevated and normal CO2 conditions.

    PubMed

    Jiang, Fuping; Shen, Yunze; Ma, Chuanxin; Zhang, Xiaowen; Cao, Weidong; Rui, Yukui

    2017-01-01

    Concerns over the potential risks of nanomaterials to ecosystem have been raised, as it is highly possible that nanomaterials could be released to the environment and result in adverse effects on living organisms. Carbon dioxide (CO2) is one of the main greenhouse gases. The level of CO2 keeps increasing and subsequently causes a series of environmental problems, especially for agricultural crops. In the present study, we investigated the effects of TiO2 NPs on wheat seedlings cultivated under super-elevated CO2 conditions (5000 mg/L CO2) and under normal CO2 conditions (400 mg/L CO2). Compared to the normal CO2 condition, wheat grown under the elevated CO2 condition showed increases of root biomass and large numbers of lateral roots. Under both CO2 cultivation conditions, the abscisic acid (ABA) content in wheat seedlings increased with increasing concentrations of TiO2 NPs. The indolepropioponic acid (IPA) and jasmonic acid (JA) content notably decreased in plants grown under super-elevated CO2 conditions, while the JA content increased with increasing concentrations of TiO2 NPs. Ti accumulation showed a dose-response manner in both wheat shoots and roots as TiO2 NPs concentrations increased. Additionally, the presence of elevated CO2 significantly promoted Ti accumulation and translocation in wheat treated with certain concentrations of TiO2 NPs. This study will be of benefit to the understanding of the joint effects and physiological mechanism of high-CO2 and nanoparticle to terrestrial plants.

  7. Carbon gain and bud physiology in Populus tremuloides and Betula papyrifera grown under long-term exposure to elevated concentrations of CO2 and O3.

    PubMed

    Riikonen, Johanna; Kets, Katre; Darbah, Joseph; Oksanen, Elina; Sober, Anu; Vapaavuori, Elina; Kubiske, Mark E; Nelson, Neil; Karnosky, David F

    2008-02-01

    Paper birch (Betula papyrifera Marsh.) and three trembling aspen clones (Populus tremuloides Michx.) were studied to determine if alterations in carbon gain in response to an elevated concentration of CO(2) ([CO(2)]) or O(3) ([O(3)]) or a combination of both affected bud size and carbohydrate composition in autumn, and early leaf development in the following spring. The trees were measured for gas exchange, leaf size, date of leaf abscission, size and biochemical characteristics of the overwintering buds and early leaf development during the 8th-9th year of free-air CO(2) and O(3) exposure at the Aspen FACE site located near Rhinelander, WI. Net photosynthesis was enhanced 49-73% by elevated [CO(2)], and decreased 13-30% by elevated [O(3)]. Elevated [CO(2)] delayed, and elevated [O(3)] tended to accelerate, leaf abscission in autumn. Elevated [CO(2)] increased the ratio of monosaccharides to di- and oligosaccharides in aspen buds, which may indicate a lag in cold acclimation. The total carbon concentration in overwintering buds was unaffected by the treatments, although elevated [O(3)] decreased the amount of starch by 16% in birch buds, and reduced the size of aspen buds, which may be related to the delayed leaf development in aspen during the spring. Elevated [CO(2)] generally ameliorated the effects of elevated [O(3)]. Our results show that both elevated [CO(2)] and elevated [O(3)] have the potential to alter carbon metabolism of overwintering buds. These changes may cause carry-over effects during the next growing season.

  8. Weekend effect of O3, NO, NO2, CO and PM10 concentrations in the south of Spain during 2003-2008

    NASA Astrophysics Data System (ADS)

    Adame Carnero, Jose Antonio; Lozano, Antonio; Sorribas, Mar; Contreras, Juan; Ángel Hernández-Ceballos, Miguel; Godoy, Francisca; Fernández-León, Mercedes; Bolívar, Juan Pedro; de La Morena, Benito A.

    2010-05-01

    The weekly evolutions and the difference between labour and non-labour days for O3, NO, NO2, CO and PM10 concentrations have been analysed in the south of Spain (Andalusia). The hourly data have been collected in 70 stations (urban, suburban and rural) belong to the Air Quality Network of Andalusia. The data period used was 2003-2008. The study has been focused in order to identify the weekend effect for those pollutants. The weekly patterns has been evaluated using daily mean of O3 and CO and 90th percentile daily values of NO, NO2 and PM10. The mean daily ozone concentrations show similar values during the week days with a maximum increase of the concentrations during weekend days of 5 ?g m-3 in urban stations. The NO and NO2 levels present in general a decrease of 90th percentile daily values during weekend days. The maximum decrease observed was of 50 and 25 ?g m-3 for NO and NO2 respectively. The most of stations show similar concentrations for the mean daily CO levels during the week. In the event of PM10 while some stations present an increase of the concentrations during the weekdays others have similar values during all days with 90th percentile of 45 ?g m-3. The daily pollutants variation between week and weekend days has been evaluated from the hourly differences between weekend and week concentrations. The ozone daily evolution show negative differences from 00:00 to 5:00 local time (LT) while during the rest of the day the differences are positives. The maximum differences were registered early in the morning ranging between 4 ?g m-3 for rural stations to 14 ?g m-3 for urban stations. The NO and NO2 show positive differences between 00:00 to 7:00 (LT) with negative values within the next hours. The higher differences could reach 80 ?g m-3 for NO and 25 ?g m-3 for NO2, both in urban stations, with values lower than 10 ?g m-3and 5 ?g m-3 in suburban and rural stations respectively. The CO daily evolution show similar values in week and weekend days. The

  9. Microscopic adaptation of BaHfO3 and Y2O3 artificial pinning centers for strong and isotropic pinning landscape in YBa2Cu3O7-x thin films

    NASA Astrophysics Data System (ADS)

    Gautam, Bibek; Sebastian, Mary Ann; Chen, Shihong; Haugan, Timothy; Zhang, Wenrui; Huang, Jijie; Wang, Haiyan; Wu, Judy Z.

    2018-07-01

    A study of 3 vol% Y2O3 + 2-6 vol% BaHfO3 double-doped YBa2Cu3O7-x (BHO DD) epitaxial thin films was carried out to explore the morphology adaption of c-axis aligned one-dimensional BHO artificial pinning centers (1D APCs) to secondary Y2O3 nanoparticles (3D APCs). BHO 1D APCs have been predicted to have the least rigidity in an elastic strain energy model in APC/YBa2Cu3O7-x nanocomposite films. Consequently, they could be best ‘tuned’ away from the c-axis alignment by local strains generated by the Y2O3 3D APCs. This provides an opportunity to generate mixed-morphology APCs, especially at high BHO concentrations. Motivated by this, we have carried out a systematic study of the transport critical current density J c(H, T, θ) on the BHO DD samples in magnetic fields (H) up to 90 kOe at different H orientations from H//c-axis (θ = 0), to θ = 45°, and to H//ab-plane (θ = 90°). Enhanced pinning at all three orientations was observed as illustrated in the comparable low alpha (α) values in the range of 0.13-0.25 at 65 K, which is consistent with the mixed 1D (in c-axis) + 2D (in ab-plane) + 3D APCs observed in transmission electron microscopy (TEM). Upon increasing BHO concentration from 2 to 4 vol%, a monotonic increase of the accommodation field H* at θ = 0°, 45° and 90° was observed, indicative of the APC concentration increase of the mixed morphologies. At 6 vol% BHO, the H* continues the increase to 85 kOe at H//c-axis (θ = 0), and >90 kOe H//ab-plane (θ = 90°), while it decreases from 80 to 85 kOe at 2-4 vol% to 60 kOe at 6 vol% at θ = 45°, which is consistent with the TEM observation of the connection of 3D APCs, appeared at lower BHO concentration into 2D ones in ab-plane at the higher BHO concentrations. These results shed light on the quantitative adaptation of APCs of mixed morphologies with increasing BHO doping in the BHO DD thin films and are important for controlling the APC pinning landscape towards minimal angular dependence.

  10. Postperovskite phase equilibria in the MgSiO3–Al2O3 system

    PubMed Central

    Tsuchiya, Jun; Tsuchiya, Taku

    2008-01-01

    We investigate high-P,T phase equilibria of the MgSiO3–Al2O3 system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh2O3(II) phase, present calculations demonstrate that (i) dissolving Al2O3 tends to decrease the postperovskite transition pressure of MgSiO3 but the effect is not significant (≈-0.2 GPa/mol% Al2O3); (ii) Al2O3 produces the narrow perovskite+postperovskite coexisting P,T area (≈1 GPa) for the pyrolitic concentration (xAl2O3 ≈6 mol%), which is sufficiently responsible to the deep-mantle D″ seismic discontinuity; (iii) the transition would be smeared (≈4 GPa) for the basaltic Al-rich composition (xAl2O3 ≈20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh2O3(II) with increasing the Al concentration involving small displacements of the Mg-site cations. PMID:19036928

  11. Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast☆

    PubMed Central

    Martins, Dorival; English, Ann M.

    2014-01-01

    Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to our observation that catalase activity is depressed when yeast are challenged with H2O2 in nutrient-poor media. Hence, we performed a systematic comparison of catalase activity and cell viability of wild-type yeast and of the single catalase knockouts, ctt1∆ and cta1∆, following H2O2 challenge in nutrient-rich medium (YPD) and in phosphate buffer (pH 7.4). Ctt1 but not Cta1 activity is strongly induced by H2O2 when cells are challenged in YPD but suppressed when cells are challenged in buffer. Consistent with the activity results, exponentially growing ctt1∆ cells in YPD are more sensitive to H2O2 than wild-type or cta1∆ cells, whereas in buffer all three strains exhibit comparable H2O2 hypersensitivity. Furthermore, catalase activity is increased during adaptation to sublethal H2O2 concentrations in YPD but not in buffer. We conclude that induction of cytosolic Ctt1 activity is vital in protecting yeast against exogenous H2O2 but this activity is inhibited by H2O2 when cells are challenged in nutrient-free media. PMID:24563848

  12. Effects of training on muscle O2 transport at VO2max

    NASA Technical Reports Server (NTRS)

    Roca, J.; Agusti, A. G.; Alonso, A.; Poole, D. C.; Viegas, C.; Barbera, J. A.; Rodriguez-Roisin, R.; Ferrer, A.; Wagner, P. D.

    1992-01-01

    To quantify the relative contributions of convective and peripheral diffusive components of O2 transport to the increase in leg O2 uptake (VO2leg) at maximum O2 uptake (VO2max) after 9 wk of endurance training, 12 sedentary subjects (age 21.8 +/- 3.4 yr, VO2max 36.9 +/- 5.9 ml.min-1.kg-1) were studied. VO2max, leg blood flow (Qleg), and arterial and femoral venous PO2, and thus VO2leg, were measured while the subjects breathed room air, 15% O2, and 12% O2. The sequence of the three inspirates was balanced. After training, VO2max and VO2leg increased at each inspired O2 concentration [FIO2; mean over the 3 FIO2 values 25.2 +/- 17.8 and 36.5 +/- 33% (SD), respectively]. Before training, VO2leg and mean capillary PO2 were linearly related through the origin during hypoxia but not during room air breathing, suggesting that, at 21% O2, VO2max was not limited by O2 supply. After training, VO2leg and mean capillary PO2 at each FIO2 fell along a straight line with zero intercept, just as in athletes (Roca et al. J. Appl. Physiol. 67: 291-299, 1989). Calculated muscle O2 diffusing capacity (DO2) rose 34% while Qleg increased 19%. The relatively greater rise in DO2 increased the DO2/Qleg, which led to 9.9% greater O2 extraction. By numerical analysis, the increase in Qleg alone (constant DO2) would have raised VO2leg by 35 ml/min (mean), but that of DO2 (constant Qleg) would have increased VO2leg by 85 ml/min, more than twice as much. The sum of these individual effects (120 ml/min) was less (P = 0.013) than the observed rise of 164 ml/min (mean). This synergism (explained by the increase in DO2/Qleg) seems to be an important contribution to increases in VO2max with training.

  13. Viscosity and Structure of CaO-SiO2-P2O5-FetO System with Varying P2O5 and FeO Content

    NASA Astrophysics Data System (ADS)

    Diao, Jiang; Gu, Pan; Liu, De-Man; Jiang, Lu; Wang, Cong; Xie, Bing

    2017-10-01

    A rotary viscosimeter and Raman spectrum were employed to measure the viscosity and structural information of the CaO-SiO2-P2O5-FetO system at 1673 K. The experimental data have been compared with the calculated results using different viscosity models. It shows that the National Physical Laboratory (NPL) and Pal models fit the CaO-SiO2-P2O5-FeOt system better. With the P2O5 content increasing from 5% to 14%, the viscosity increases from 0.12 Pa s to 0.27 Pa s. With the FeO content increasing from 30% to 40%, the viscosity decreases from 0.21 Pa s to 0.12 Pa s. Increasing FeO content makes the complicated molten melts become simple, and increasing P2O5 content will complicate the molten melts. The linear relation between viscosity and structure parameter Q(Si + P) was obtained by regression analysis. The calculated viscosity by using the optimized NPL and Pal model are almost identical with the fitted values.

  14. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases during the industrial period

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2012-12-01

    Increases in surface ozone (O3) and fine particulate matter (≤ 2.5μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. Here we estimate changes in surface O3 and PM2.5 since preindustrial (1860) times and the global present-day (2000) premature human mortalities associated with these changes. We go beyond previous work to analyze and differentiate the contribution of three factors: changes in emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and the associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-hour daily maximum O3 in a year) have increased by 8±0.16 μg/m3 and 30±0.16 ppbv, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global average PM2.5 (O3) to change by +7.5±0.19 μg/m3 (+25±0.30 ppbv), +0.4±0.17 μg/m3 (+0.5±0.28 ppbv), and -0.02±0.01 μg/m3 (+4.3±0.33 ppbv), respectively. Total changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.0-2.5) million all-cause mortalities annually and in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3 respectively). However, changing climate and increasing CH4 concentrations also increased premature mortality associated with air

  15. Structure and properties of CdO-B2O3 and CdO-MnO-B2O3 glasses; Criteria of getting the fraction of four coordinated boron atoms from infrared spectra

    NASA Astrophysics Data System (ADS)

    Doweidar, H.; El-Damrawi, G.; El-Stohy, Sh.

    2017-11-01

    IR spectra of CdO-B2O3 and xCdO·(50 - x)MnO·50B2O3 glasses (0 ≤ x ≤ 50 mol%) have been analyzed. The fraction N4 of four coordinated boron atoms obtained from the integrated area under the IR spectra of CdO-B2O3 glasses is markedly higher than the reported NMR values. In both cases, N4 does not change with CdO content. The difference between N4 values of both techniques has been correlated with the relative absorption coefficient of BO4 unit with respect to BO3 unit, as suggested by Chryssikos et al. N4 data of xCdO·(50 - x)MnO·50B2O3 glasses could be used to calculate the fraction of modifier and former CdO and MnO in the borate matrix, as a function of composition. There is a linear increase in both the density and molar volume with increasing CdO content. The change has been correlated with the contribution of CdO and MnO. Electric conduction is assumed to take place via hopping of small polarons. There is a decrease in conductivity with increasing CdO concentration, which suggests that the electrons related to Cd sites are more localized than those at Mn sites.

  16. Determination of H2O and CO2 concentrations in fluid inclusions in minerals using laser decrepitation and capacitance manometer analysis

    NASA Technical Reports Server (NTRS)

    Yonover, R. N.; Bourcier, W. L.; Gibson, E. K.

    1985-01-01

    Water and carbon dioxide concentrations within individual and selected groups of fluid inclusions in quartz were analyzed by using laser decrepitation and quantitative capacitance manometer determination. The useful limit of detection (calculated as ten times the typical background level) is about 5 x 10(-10) mol of H2O and 5 x 10(-11) mol of CO2; this H2O content translates into an aqueous fluid inclusion approximately 25 micrometers in diameter. CO2/H2O determinations for 38 samples (100 separate measurements) have a range of H2O amounts of 5.119 x 10(-9) to 1.261 x 10(-7) mol; CO2 amounts of 7.216 x 10(-10) to 1.488 x 10(-8) mol, and CO2/H2O mole ratios of 0.011 to 1.241. Replicate mole ratio determinations of CO2/H2O for three identical (?) clusters of inclusions in quartz have average mole ratios of 0.0305 +/- 0.0041 1 sigma. Our method offers much promise for analysis of individual fluid inclusions, is sensitive, is selective when the laser energy is not so great as to melt the mineral (laser pits approximately 50 micrometers in diameter), and permits rapid analysis (approximately 1 h per sample analysis).

  17. Coupled phase and aqueous species equilibrium of the H 2O-CO 2-NaCl-CaCO 3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite

    NASA Astrophysics Data System (ADS)

    Duan, Zhenhao; Li, Dedong

    2008-10-01

    A model is developed for the calculation of coupled phase and aqueous species equilibrium in the H 2O-CO 2-NaCl-CaCO 3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. The vapor-liquid-solid (calcite, halite) equilibrium together with the chemical equilibrium of H +, Na +, Ca 2+, CaHCO3+, Ca(OH) +, OH -, Cl -, HCO3-, CO32-, CO 2(aq) and CaCO 3(aq) in the aqueous liquid phase as a function of temperature, pressure, NaCl concentrations, CO 2(aq) concentrations can be calculated, with accuracy close to those of experiments in the stated T- P- m range, hence calcite solubility, CO 2 gas solubility, alkalinity and pH values can be accurately calculated. The merit and advantage of this model is its predictability, the model was generally not constructed by fitting experimental data. One of the focuses of this study is to predict calcite solubility, with accuracy consistent with the works in previous experimental studies. The resulted model reproduces the following: (1) as temperature increases, the calcite solubility decreases. For example, when temperature increases from 273 to 373 K, calcite solubility decreases by about 50%; (2) with the increase of pressure, calcite solubility increases. For example, at 373 K changing pressure from 10 to 500 bar may increase calcite solubility by as much as 30%; (3) dissolved CO 2 can increase calcite solubility substantially; (4) increasing concentration of NaCl up to 2 m will increase calcite solubility, but further increasing NaCl solubility beyond 2 m will decrease its solubility. The functionality of pH value, alkalinity, CO 2 gas solubility, and the concentrations of many aqueous species with temperature, pressure and NaCl (aq) concentrations can be found from the application of this model. Online calculation is made available on www.geochem-model.org/models/h2o_co2_nacl_caco3/calc.php.

  18. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations.

    PubMed

    Prieto-Rodriguez, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Li Puma, G; Malato, S

    2012-04-15

    The optimal photocatalyst concentration for industrial wastewater treatment in current photoreactor designs is several hundreds of milligrams per liter. However, the elimination of emerging contaminants (ECs), which are present at extremely low concentrations in waste water treatment plants (WWTP) effluents might be accomplished at much lower catalyst (TiO(2)) concentrations. One of the main drawbacks of reducing catalyst loading below the optimum is the loss of useful photons which instead are transmitted through the TiO(2) suspension without being absorbed by the catalyst. Accordingly, in this work, laboratory and solar pilot-scale experiments were performed with real WWTP effluents to evaluate the kinetics of photocatalytic degradation of 52 emerging contaminants under realistic (ppb) concentrations. The analysis of the samples was accomplished by solid phase extraction (SPE) followed by liquid chromatography-mass spectrometry (LC-MS). In view of the results, low concentrations of TiO(2) of the order of tens of milligrams per liter were found to be insufficient for the degradation of the ECs in photoreactors with a short light-path length (29 cm). However, it was established that solar reactors of diameters of several hundreds of millimetres could be used for the efficient removal of ECs from WWTP effluents. The results presented show a general methodology for selecting the most efficient reactor diameter on the basis of the desired catalyst concentration. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Improving the Photocatalytic Activity of Modified Anatase TiO2 with Different Concentrations of Aluminum under Visible Light: Mechanistic Survey.

    PubMed

    Afshar, Shahrara; Pordel, Shabnam; Tahmouresilerd, Babak; Azad, Alireza

    2016-11-01

    Visible light-driven Al-doped TiO 2 with different aluminum contents (2, 5 and 10 mol%) were synthesized via a facile sol-gel method. Fourier transform infrared (FTIR), UV-visible diffuse reflectance, energy dispersive X-ray (EDX) spectroscopy as well as X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM) methods were used for the characterization of the obtained nanoparticles. The photocatalytic performance of the samples was evaluated by the degradation of rhodamine B (RhB) under visible light irradiation. The yield of the degradation RhB was estimated to be 71%, 89%, 65% and 56%, for the bare TiO 2 , 2%, 5% and 10% Al-doped TiO 2 , respectively. It was found that 2 mol% of Al-doped TiO 2 shows the best photocatalytic performance. In low concentration of dopant, separation of photogenerated electron-hole pairs promoted, and subsequently, the degradation efficiency increased. It was proposed that the degradation of RhB by 2 mol% Al-doped TiO 2 photocatalyst follows both N-deethylation and chromophore cleavage mechanisms, while the N-deethylation still predominated over cleavage of dye chromophore structure. The key role of hydroxyl radicals in RhB degradation was verified by the effects of scavengers. In addition, the photocatalyst can be reused for three runs without any significant loss of its catalytic activity. © 2016 The American Society of Photobiology.

  20. TiO2 dye sensitized solar cell (DSSC): linear relationship of maximum power point and anthocyanin concentration

    NASA Astrophysics Data System (ADS)

    Ahmadian, Radin

    2010-09-01

    This study investigated the relationship of anthocyanin concentration from different organic fruit species and output voltage and current in a TiO2 dye-sensitized solar cell (DSSC) and hypothesized that fruits with greater anthocyanin concentration produce higher maximum power point (MPP) which would lead to higher current and voltage. Anthocyanin dye solution was made with crushing of a group of fresh fruits with different anthocyanin content in 2 mL of de-ionized water and filtration. Using these test fruit dyes, multiple DSSCs were assembled such that light enters through the TiO2 side of the cell. The full current-voltage (I-V) co-variations were measured using a 500 Ω potentiometer as a variable load. Point-by point current and voltage data pairs were measured at various incremental resistance values. The maximum power point (MPP) generated by the solar cell was defined as a dependent variable and the anthocyanin concentration in the fruit used in the DSSC as the independent variable. A regression model was used to investigate the linear relationship between study variables. Regression analysis showed a significant linear relationship between MPP and anthocyanin concentration with a p-value of 0.007. Fruits like blueberry and black raspberry with the highest anthocyanin content generated higher MPP. In a DSSC, a linear model may predict MPP based on the anthocyanin concentration. This model is the first step to find organic anthocyanin sources in the nature with the highest dye concentration to generate energy.

  1. Driving the photoluminescent and structural properties of X2-Y2SiO5 by varying the dopant Dy3+ concentration towards cool WLED applications

    NASA Astrophysics Data System (ADS)

    Ramakrishna, G.; Nagabhushana, H.; Hareesh, K.; Sunitha, D. V.

    2017-07-01

    Dy3+ doped Y2SiO5 nanophosphors were synthesized by solution combustion technique using Calotropis gigantean milk latex and NaCl as fuel and flux respectively. Powder X-ray diffraction (PXRD) confirmed the formation of monoclinic X2-phase Y2SiO5 belonging to the phase group C2/c. Fourier transform infrared spectroscopy (FTIR) shows characteristic metal-oxygen (Y-O) vibration band at 721 cm-1. Transmission electron microscopic (TEM) and Scanning electron microscopic (SEM) morphological feature exhibits non-uniform almost spherical shaped nanosized particles. The photoluminescence (PL) emission peaks, recorded at 388 nm, showed radiative emissions at 483, 575 and 636 nm respectively. Judd-Ofelt (JO) analysis was carried out to estimate the radiative (AR) properties, radiative life time (τR), branching ratio (βR) and stimulated emission crossection (σλp). The CIE and CCT was estimated using McCamy empirical formula. In the beginning, the CIE co-ordinate values were lying in the light blue region. However, with increase in Dy3+ concentration the values shifted towards white region. CCT value was found to be ∼6984 K. Therefore, Y2SiO5:Dy3+ (9 mol%) can be used for cool day light and WLED applications.

  2. Modeling steady state SO2-dependent changes in capillary ATP concentration using novel O2 micro-delivery methods

    PubMed Central

    Ghonaim, Nour W.; Fraser, Graham M.; Ellis, Christopher G.; Yang, Jun; Goldman, Daniel

    2013-01-01

    Adenosine triphosphate (ATP) is known to be released from the erythrocyte in an oxygen (O2) dependent manner. Since ATP is a potent vasodilator, it is proposed to be a key regulator in the pathway that mediates micro-vascular response to varying tissue O2 demand. We propose that ATP signaling mainly originates in the capillaries due to the relatively long erythrocyte transit times in the capillary and the short ATP diffusion distance to the electrically coupled endothelium. We have developed a computational model to investigate the effect of delivering or removing O2 to limited areas at the surface of a tissue with an idealized parallel capillary array on total ATP concentration. Simulations were conducted when exposing full surface to perturbations in tissue O2 tension (PO2) or locally using a circular micro-outlet (~100 μm in diameter), a square micro-slit (200 × 200 μm), or a rectangular micro-slit (1000 μm wide × 200 μm long). Results indicated the rectangular micro-slit has the optimal dimensions for altering hemoglobin saturations (SO2) in sufficient number capillaries to generate effective changes in total [ATP]. This suggests a threshold for the minimum number of capillaries that need to be stimulated in vivo by imposed tissue hypoxia to induce a conducted micro-vascular response. SO2 and corresponding [ATP] changes were also modeled in a terminal arteriole (9 μm in diameter) that replaces 4 surface capillaries in the idealized network geometry. Based on the results, the contribution of terminal arterioles to the net change in [ATP] in the micro-vascular network is minimal although they would participate as O2 sources thus influencing the O2 distribution. The modeling data presented here provide important insights into designing a novel micro-delivery device for studying micro-vascular O2 regulation in the capillaries in vivo. PMID:24069001

  3. Structural and Magnetic Properties of {Eu}(3+) Eu 3 + -Doped {CdNb}_{2} {O}_{6} CdNb 2 O 6 Powders

    NASA Astrophysics Data System (ADS)

    Topkaya, Ramazan; Boyraz, Cihat; Ekmekçi, Mete Kaan

    2018-03-01

    Europium-doped CdNb2O6 powders with the molar concentration of Eu^{3+} (0.5, 3 and 6 mol%) were successfully prepared at 900°C by using molten salt synthesis method. The effect of europium (Eu) molar concentration on the structural and temperature-dependent magnetic properties of CdNb2O6 powders has been investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), vibrating sample magnetometer (VSM) and ferromagnetic resonance (FMR) techniques in the temperature range of 10-300 K. XRD results confirm that all the powders have orthorhombic crystal structure. It has been confirmed from VSM and FMR measurements that Eu^{3+}-doped CdNb2O6 powders have ferromagnetic behaviour for each Eu^{3+} molar concentration between 10 and 300 K. XRD and EDX analyses indicate that there is no magnetic impurity in Eu^{3+}-doped CdNb_2O_6 powders, supporting that the ferromagnetic behaviour of the powders arises from Eu^{3+} ions. The observed ferromagnetism was elucidated with the intrinsic exchange interactions between the magnetic moments associated with the unpaired 4 f electrons in Eu^{3+} ions. The saturation magnetization decreases with increasing Eu^{3+} molar concentration. The temperature-dependent magnetization behaviour was observed not to agree with Curie-Weiss law because europium obeys Van Vleck paramagnetism. Broad FMR spectra and a g-value higher than 2 were observed from FMR measurements, indicating the ferromagnetic behaviour of the powders. It was found that while the resonance field of FMR spectra decreases, the linewidth increases as a function of Eu^{3+} molar concentration.

  4. Inverse Catalysts for CO Oxidation: Enhanced Oxide–Metal Interactions in MgO/Au(111), CeO 2/Au(111), and TiO 2/Au(111)

    DOE PAGES

    Palomino, Robert M.; Gutiérrez, Ramón A.; Liu, Zongyuan; ...

    2017-09-26

    Au(111) does not bind CO and O 2 well. The deposition of small nanoparticles of MgO, CeO 2, and TiO 2 on Au(111) produces excellent catalysts for CO oxidation at room temperature. In an inverse oxide/metal configuration there is a strong enhancement of the oxide–metal interactions, and the inverse catalysts are more active than conventional Au/MgO(001), Au/CeO 2(111), and Au/TiO 2(110) catalysts. An identical trend was seen after comparing the CO oxidation activity of TiO2/Au and Au/TiO 2 powder catalysts. In the model systems, the activity increased following the sequence: MgO/Au(111) < CeO 2/Au(111) < TiO 2/Au(111). Ambient pressure X-raymore » photoelectron spectroscopy (AP-XPS) was used to elucidate the role of the titania–gold interface in inverse TiO 2/Au(111) model catalysts during CO oxidation. Stable surface intermediates such as CO(ads), CO 3 2–(ads), and OH(ads) were identified under reaction conditions. CO 3 2–(ads) and OH(ads) behaved as spectators. The concentration of CO(ad) initially increased and then decreased with increasing TiO 2 coverage, demonstrating a clear role of the Ti–Au interface and the size of the TiO 2 nanostructures in the catalytic process. Overall, our results show an enhancement in the strength of the oxide–metal interactions when working with inverse oxide/metal configurations, a phenomenon that can be utilized for the design of efficient catalysts useful for green and sustainable chemistry.« less

  5. Inverse Catalysts for CO Oxidation: Enhanced Oxide–Metal Interactions in MgO/Au(111), CeO 2/Au(111), and TiO 2/Au(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomino, Robert M.; Gutiérrez, Ramón A.; Liu, Zongyuan

    Au(111) does not bind CO and O 2 well. The deposition of small nanoparticles of MgO, CeO 2, and TiO 2 on Au(111) produces excellent catalysts for CO oxidation at room temperature. In an inverse oxide/metal configuration there is a strong enhancement of the oxide–metal interactions, and the inverse catalysts are more active than conventional Au/MgO(001), Au/CeO 2(111), and Au/TiO 2(110) catalysts. An identical trend was seen after comparing the CO oxidation activity of TiO2/Au and Au/TiO 2 powder catalysts. In the model systems, the activity increased following the sequence: MgO/Au(111) < CeO 2/Au(111) < TiO 2/Au(111). Ambient pressure X-raymore » photoelectron spectroscopy (AP-XPS) was used to elucidate the role of the titania–gold interface in inverse TiO 2/Au(111) model catalysts during CO oxidation. Stable surface intermediates such as CO(ads), CO 3 2–(ads), and OH(ads) were identified under reaction conditions. CO 3 2–(ads) and OH(ads) behaved as spectators. The concentration of CO(ad) initially increased and then decreased with increasing TiO 2 coverage, demonstrating a clear role of the Ti–Au interface and the size of the TiO 2 nanostructures in the catalytic process. Overall, our results show an enhancement in the strength of the oxide–metal interactions when working with inverse oxide/metal configurations, a phenomenon that can be utilized for the design of efficient catalysts useful for green and sustainable chemistry.« less

  6. Superconducting YBa2Cu3O7 Powder: Reduction of Carbon, Moisture, and Impurity Phase Concentrations in Commercial Powders and the Reactivity with Moisture and Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Stecura, Stephan

    1994-01-01

    The purpose of this study was to determine the experimental parameters under which commercially pure YBa2Cu3O7 (1237) powders would be converted into a single phase (1237) powder only. Carbon (present as carbonate) and impurity phase concentrations in the (1237) powder are very dependent upon the firing temperatures, heat-treating temperatures and times, and atmosphere, while the moisture concentration is not. YBa2Cu3O7 powder with about 0.03 wt/%, carbon, 0.03 wt% moisture, and low impurity phase concentrations was obtained. Moisture and carbon concentrations in heat-treated powders did not increase significantly after 48 and 72 h of exposure to air, respectively, and after 144 h of exposure they were less than 0.26 and 0.08 wt/%, respectively. The (1237) powder first reacts with moisture and then hydroxide reacts with CO2. Firing the as received powders in air led to the decomposition of the superconducting (1237) phase.

  7. Photocatalytic Active Bismuth Fluoride/Oxyfluoride Surface Crystallized 2Bi2O3-B2O3 Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Sharma, Sumeet Kumar; Singh, V. P.; Chauhan, Vishal S.; Kushwaha, H. S.; Vaish, Rahul

    2018-03-01

    The present article deals with 2Bi2O3-B2O3 (BBO) glass whose photocatalytic activity has been enhanced by the method of wet etching using an aqueous solution of hydrofluoric acid (HF). X-ray diffraction of the samples reveals that etching with an aqueous solution of HF leads to the formation of BiF3 and BiO0.1F2.8 phases. Surface morphology obtained from scanning electron microscopy show granular and plate-like morphology on the etched glass samples. Rhodamine 6G (Rh 6G) has been used to investigate the photocatalytic activity of the as-quenched and etched glasses. Enhanced visible light-driven photocatalytic activity was observed in HF etched glass-ceramics compared to the as-quenched BBO glass. Contact angle of the as-quenched glass was 90.2°, which decreases up to 20.02° with an increase in concentration of HF in the etching solution. Enhanced photocatalytic activity and increase in the hydrophilic nature suggests the efficient treatment of water pollutants by using the prepared surface crystallized glass-ceramics.

  8. Sensitizing of pyrene fluorescence by β-cyclodextrin-modified TiO2 nanoparticles.

    PubMed

    Shown, Indrajit; Ujihara, Masaki; Imae, Toyoko

    2010-12-15

    TiO(2) nanoparticles were synthesized by hydrolysis of tetraisopropyl orthotitanate in an aqueous solution of cyclodextrin. The β-cyclodextrin-modified spherical TiO(2) nanoparticles were water-dispersible and had an average particle diameter of 4.4 ± 1 nm. Pyrene fluorescence was enhanced by increasing the concentration of β-cyclodextrin-modified TiO(2) nanoparticle and the sensitization effect was triply stronger than the case of the β-cyclodextrin only. The increase in a concentration of host (β-cyclodextrin) changes its microenvironment for guest (pyrene), that is, the interaction of pyrene with apolar cavity of β-cyclodextrin increases, resulting in enhancement of fluorescence. The sensitization behavior of pyrene fluorescence in the presence of TiO(2) nanoparticles occurs from the increase in the extinction coefficient of pyrene, demonstrating the charge transfer between pyrene and metal oxide nanoparticle. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.

  9. Effect of AL2O3 and TiO2 nanoparticles on aquatic organisms

    NASA Astrophysics Data System (ADS)

    Gosteva, I.; Morgalev, Yu; Morgaleva, T.; Morgalev, S.

    2015-11-01

    Environmental toxicity of aqueous disperse systems of nanoparticles of binary compounds of titanium dioxides (with particle size Δ50=5 nm, Δ50=50 nm, Δ50=90 nm), aluminum oxide alpha-forms (Δ50=7 nm and Δ50=70 nm) and macro forms (TiO2 Δ50=350 nm, Al2O3 A50=4000 nm) were studied using biological testing methods. The bioassay was performed using a set of test organisms representing the major trophic levels. We found the dependence of the toxic effect concentration degree of nTiO2 and nAl2O3 on the fluorescence of the bacterial biosensor "Ekolyum", the chemotactic response of ciliates Paramecium caudatum, the growth of unicellular algae Chlorella vulgaris Beijer and mortality of entomostracans Daphnia magna Straus. We revealed the selective dependence of nTiO2 and nAl2O3 toxicity on the size, concentration and chemical nature of nanoparticles. The minimal concentration causing an organism's response on nTiO2 and nAl2O3 effect depends on the type of the test- organism and the test reaction under study. We specified L(E)C50 and acute toxicity categories for all the studied nanoparticles. We determined that nTiO2 (Δ50=5 nm) belong to the category «Acute toxicity 1», nTiO2 (A50=90 nm) and nAl2O3 (Δ50=70 nm) - to the category «Acute toxicity 2», nAl2O3 (Δ50=7 nm) - to the category «Acute toxicity 3». No acute toxicity was registered for nTiO2 (Δ50=50 nm) and macro form TiO2.

  10. Studies of CW lasing action in CO2-CO, N2O-CO, CO2-H2O, and N2O-H2O mixtures pumped by blackbody radiation

    NASA Technical Reports Server (NTRS)

    Abel, Robert W.; Christiansen, Walter H.; Li, Jian-Guo

    1988-01-01

    A proof of principle experiment to evaluate the efficacy of CO and H2O in increasing the power output for N2O and CO2 lasing mixtures has been conducted and theoretically analyzed for a blackbody radiation-pumped laser. The results for N2O-CO, CO2-CO, N2O-H2O and CO2-H2O mixtures are presented. Additions of CO to the N2O lasant increased power up to 28 percent for N2O laser mixtures, whereas additions of CO to the CO2 lasant, and the addition of H2O to both the CO2 and N2O lasants, resulted in decreased output power.

  11. Influence of precursor concentration on physical properties of CdO thin films prepared by spray pyrolysis technique using nebulizer

    NASA Astrophysics Data System (ADS)

    Anitha, M.; Amalraj, L.; Anitha, N.

    2017-12-01

    Cadmium oxide (CdO) thin films were prepared with different concentrations of precursor solution (0.05, 0.1, 0.15, 0.2 and 0.25 M, respectively) at the optimized temperature (200 °C) using the nebulized spray pyrolysis technique to obtain better crystallinity in polycrystalline thin films on amorphous glass substrates. The XRD characterization of those samples revealed a preferential orientation along the (111) plane having a cubic structure. The scanning electron microscopy (SEM) analysis displayed that all the as-deposited thin films have spherical shaped grains. The transmittance of the as-deposited CdO thin films had decreased from 88 to 71% for longer wavelength regions (600-900 nm) as the precursor concentration had increased and then increased for higher precursor concentration. The optical band gap was found to lie between 2.45 and 2.40 eV belonging to direct transition for those thin films. The presence of Cd-O bond (540 cm-1) was confirmed by FTIR spectrum. The emission properties of CdO thin films were studied by luminescence spectrum recorded at room temperature. A maximum carrier concentration and minimum resistivity values of 4.743 × 1019 cm- 3 and 1.06 × 10-3 Ω-cm, respectively, were obtained for 0.2 M precursor concentration. These CdO thin films have high optical transmittance and high room temperature conductivity, which can be used as the TCO and Solar cell (window layer) material.

  12. Strong electroluminescence from SiO{sub 2}-Tb{sub 2}O{sub 3}-Al{sub 2}O{sub 3} mixed layers fabricated by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebohle, L., E-mail: l.rebohle@hzdr.de; Braun, M.; Wutzler, R.

    2014-06-23

    We report on the bright green electroluminescence (EL) with power efficiencies up to 0.15% of SiO{sub 2}-Tb{sub 2}O{sub 3}-mixed layers fabricated by atomic layer deposition and partly co-doped with Al{sub 2}O{sub 3}. The electrical, EL, and breakdown behavior is investigated as a function of the Tb and the Al concentration. Special attention has been paid to the beneficial role of Al{sub 2}O{sub 3} co-doping which improves important device parameters. In detail, it increases the maximum EL power efficiency and EL decay time, it nearly doubles the fraction of excitable Tb{sup 3+} ions, it shifts the region of high EL powermore » efficiencies to higher injection currents, and it reduces the EL quenching over the device lifetime by an approximate factor of two. It is assumed that the presence of Al{sub 2}O{sub 3} interferes the formation of Tb clusters and related defects. Therefore, the system SiO{sub 2}-Tb{sub 2}O{sub 3}-Al{sub 2}O{sub 3} represents a promising alternative for integrated, Si-based light emitters.« less

  13. Sol concentration effect on ZnO nanofibers photocatalytic activity synthesized by sol-gel dip coating method

    NASA Astrophysics Data System (ADS)

    Toubane, M.; Tala-Ighil, R.; Bensouici, F.; Bououdina, M.; Souier, M.; Liu, S.; Cai, W.; Iratni, A.

    2017-03-01

    ZnO thin films were deposited onto glass substrate by sol-gel dip coating method. The initial sol concentrations were varied from 0.2 to 0.5 M. Zinc acetate dihydrate, ethanol and Diethanolamine (DEA) were used as staring material, solvent and stabilizer respectively. The evolution of structural, optical properties and methylene blue (MB) photodegradation of the as-deposited films on sol concentration was investigated. Rietveld refinements of x-ray patterns reveal that all the as-prepared thin films have a Zincite-type structure with grain orientation along to c-axis. The strongest sol concentration is favorable for the highest crystallization quality. However, the high preferred orientation factor (POF) occurs for 0.3 M sol concentration. The field emission scanning electron microscopy observations reveals nanofibrous morphology with different lengths. The nanofibers density increases with increasing sols concentrations until forming a flower-like morphology. The EDS analysis confirms the high purity of the as-deposited ZnO films. It is found that all films present good transparency greater than 95% in the visible range; the optical band gap is slightly reduced with the increase in sol concentration. The photocatalytic degradation is enhanced by 90% with the sol concentration. The K app rate reaction increased with increasing sol concentration. The films stability is found to slightly decrease after the third cycle, especially for 0.5 M sol concentration.

  14. Viscosity of TiO2-FeO-Ti2O3-SiO2-MgO-CaO-Al2O3 for High-Titania Slag Smelting Process

    NASA Astrophysics Data System (ADS)

    Hu, Kai; Lv, Xuewei; Li, Shengping; Lv, Wei; Song, Bing; Han, Kexi

    2018-05-01

    The present study demonstrates the dependence of viscosity on chemical composition and temperature of high-titania slag, a very important raw material for producing titanium dioxide. The results indicated that completely molten high-titania slag exhibits a viscosity of less than 1 dPa s with negligible dependence on temperature. However, it increases dramatically with decreasing temperature slightly below the critical temperature, i.e., the solidus temperature of the slag. Above the critical temperature, the slag samples displayed the same order of viscosity at 0.6 dPa s, regardless of their compositional variation. However, the FeO, CaO, and MgO were confirmed to decrease viscosity, while SiO2 and Ti2O3 increase it. The apparent activation energy for viscosity-temperature relation and liquidus temperature based on experiments and thermodynamic calculations are also presented. Conclusively, the critical temperatures of the slags are on average 15 K below their corresponding calculated liquidus temperatures. The increase in FeO content was found to considerably lower the critical temperature, while the increase in both Ti2O3 and TiO2 contents increases it. The main phases of the slag in solid state, as indicated by X-ray diffraction, are (Fe, Mg) x Ti y O5 (x + y = 3, pseudobrookite) and rutile.

  15. H2O Paradox and its Implications on H2O in Moon

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue

    2017-04-01

    The concentration of H2O in the mantle of a planetary body plays a significant role in the viscosity and partial melting and hence the convection and evolution of the planetary body. Even though the composition of the primitive terrestrial mantle (PTM) is thought to be well known [1-2], the concentration of H2O in PTM remains paradoxial because different methods of estimation give different results [3]: Using H2O/Ce ratio in MORB and OIB and Ce concentration in PTM, the H2O concentration in PTM would be (300÷×1.5) ppm; using mass balance by adding surface water to the mantle [3-4], H2O concentration in PTM would be (900÷×1.3) ppm [2-3]. The inconsistency based on these two seemingly reliable methods is referred to as the H2O paradox [3]. For Moon, H2O contents in the primitive lunar mantle (PLM) estimated from H2O in plagioclase in lunar anorthosite and that from H2O/Ce ratio in melt inclusions are roughly consistent at ˜110 ppm [5-6] even though there is still debate about the volatile depletion trend [7]. One possible solution to the H2O paradox in PTM is to assume that early Earth experienced whole mantle degassing, which lowered the H2O/Ce ratio in the whole mantle but without depleting Ce in the mantle. The second possible solution is that some deep Earth reservoirs with high H2O/Ce ratios have not been sampled by MORB and OIB. Candidates include the transition zone [8] and the D" layer. The third possible solution is that ocean water only partially originated from mantle degassing, but partially from extraterrestrial sources such as comets [9-10]. At present, there is not enough information to determine which scenario is the answer to the H2O paradox. On the other hand, each scenario would have its own implications to H2O in PLM. If the first scenario applies to Moon, because degassed H2O or H2 would have escaped from the lunar surface, the very early lunar mantle could have much higher H2O [11] than that obtained using the H2O/Ce ratio method. The

  16. A fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2

    NASA Astrophysics Data System (ADS)

    Zanatta, A. R.

    2017-07-01

    Titanium-dioxide (TiO2) is a low-cost, chemically inert material that became the basis of many modern applications ranging from, for example, cosmetics to photovoltaics. TiO2 exists in three different crystal phases - Rutile, Anatase and, less commonly, Brookite - and, in most of the cases, the presence or relative amount of these phases are essential to decide the TiO2 final application and its related efficiency. Traditionally, X-ray diffraction has been chosen to study TiO2 and provides both the phases identification and the Rutile-to-Anatase ratio. Similar information can be achieved from Raman scattering spectroscopy that, additionally, is versatile and involves rather simple instrumentation. Motivated by these aspects this work took into account various TiO2 Rutile+Anatase powder mixtures and their corresponding Raman spectra. Essentially, the method described here was based upon the fact that the Rutile and Anatase crystal phases have distinctive phonon features, and therefore, the composition of the TiO2 mixtures can be readily assessed from their Raman spectra. The experimental results clearly demonstrate the suitability of Raman spectroscopy in estimating the concentration of Rutile or Anatase in TiO2 and is expected to influence the study of TiO2-related thin films, interfaces, systems with reduced dimensions, and devices like photocatalytic and solar cells.

  17. Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edalati, Khatereh, E-mail: kh_ed834@stu.um.ac.ir; Shakiba, Atefeh; Vahdati-Khaki, Jalil

    2016-02-15

    Highlights: • We synthesized ZnO nanorods by a simple hydrothermal process at 60 °C. • Effects of zinc salt concentration, solvent and alkaline mineralizer was studied. • Increasing concentration of zinc salt changed ZnO nucleation system. • NaOH yielded better results in the production of nanorods in both solvents. • Methanol performed better in the formation of nanorods using the two mineralizers. - Abstract: ZnO has been produced using various methods in the solid, gaseous, and liquid states, and the hydrothermal synthesis at low temperatures has been shown to be an environmentally-friendly one. The current work utilizes a low reactionmore » temperature (60 °C) for the simple hydrothermal synthesis of ZnO nanorod morphologies. Furthermore, the effects of zinc salt concentration, solvent type and alkaline mineralizer type on ZnO nanorods synthesis at a low reaction temperature by hydrothermal processing was studied. Obtained samples were analyzed using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Increasing the concentration of the starting zinc salt from 0.02 to 0.2 M changed ZnO nucleation system from the homogeneous to the heterogeneous state. The XRD results confirmed the production hexagonal ZnO nanostructures of with a crystallite size of 40.4 nm. Varying the experimental parameters (mineralizer and solvent) yielded ZnO nanorods with diameters ranging from 90–250 nm and lengths of 1–2 μm.« less

  18. Determinants of the Associations between Ambient Concentrations and Personal Exposures to Ambient PM2.5, NO2, and O3 during DEARS

    EPA Science Inventory

    In this analysis, ambient concentrations and personal exposures to PM2.5, O3, and NO2, air exchange rates, meteorological parameters, and questionnaire survey responses collected during the Detroit Exposure and Aerosol Research Study (DEARS) are used: 1) to evaluate different met...

  19. Light–dark O2 dynamics in submerged leaves of C3 and C4 halophytes under increased dissolved CO2: clues for saltmarsh response to climate change

    PubMed Central

    Duarte, B.; Santos, D.; Silva, H.; Marques, J. C.; Caçador, I.; Sleimi, N.

    2014-01-01

    Waterlogging and submergence are the major constraints to which wetland plants are subjected, with inevitable impacts on their physiology and productivity. Global warming and climate change, as driving forces of sea level rise, tend to increase such submersion periods and also modify the carbonate chemistry of the water column due to the increased concentration of CO2 in the atmosphere. In the present work, the underwater O2 fluxes in the leaves of two abundant Mediterranean halophytes were evaluated at different levels of dissolved CO2. Photosynthetic enhancement due to increased dissolved CO2 was confirmed for both Halimione portulacoides and Spartina maritima, probably due to high tissue porosity, formation of leaf gas films and reduction of the oxygenase activity of Rubisco. Enhancement of the photosynthetic rates in H. portulacoides and S. maritima was concomitant with an increase in energy trapping and transfer, mostly due to enhancement of the carboxylation reaction of Rubisco, leading to a reduction of the energy costs for carbon fixation. Transposing these findings to the ecosystem, and assuming increased dissolved CO2 concentration scenarios, the halophyte community displays a new ecosystem function, increasing the water column oxygenation and thus reinforcing their role as principal primary producers of the estuarine system. PMID:25381259

  20. RNA adducts with Na 2SeO 4 and Na 2SeO 3 - Stability and structural features

    NASA Astrophysics Data System (ADS)

    Nafisi, Shohreh; Manouchehri, Firouzeh; Montazeri, Maryam

    2011-12-01

    Selenium compounds are widely available in dietary supplements and have been extensively studied for their antioxidant and anticancer properties. Low blood Se levels were found to be associated with an increased incidence and mortality from various types of cancers. Although many in vivo and clinical trials have been conducted using these compounds, their biochemical and chemical mechanisms of efficacy are the focus of much current research. This study was designed to examine the interaction of Na 2SeO 4 and Na 2SeO 3 with RNA in aqueous solution at physiological conditions, using a constant RNA concentration (6.25 mM) and various sodium selenate and sodium selenite/polynucleotide (phosphate) ratios of 1/80, 1/40, 1/20, 1/10, 1/5, 1/2 and 1/1. Fourier transform infrared, UV-Visible spectroscopic methods were used to determine the drug binding modes, the binding constants, and the stability of Na 2SeO 4 and Na 2SeO 3-RNA complexes in aqueous solution. Spectroscopic evidence showed that Na 2SeO 4 and Na 2SeO 3 bind to the major and minor grooves of RNA ( via G, A and U bases) with some degree of the Se-phosphate (PO 2) interaction for both compounds with overall binding constants of K(Na 2SeO 4-RNA) = 8.34 × 10 3 and K(Na 2SeO 3-RNA) = 4.57 × 10 3 M -1. The order of selenium salts-biopolymer stability was Na 2SeO 4-RNA > Na 2SeO 3-RNA. RNA aggregations occurred at higher selenium concentrations. No biopolymer conformational changes were observed upon Na 2SeO 4 and Na 2SeO 3 interactions, while RNA remains in the A-family structure.

  1. Increase in the CO2 exchange rate of leaves of Ilex rotunda with elevated atmospheric CO2 concentration in an urban canyon

    NASA Astrophysics Data System (ADS)

    Takagi, M.; Gyokusen, Koichiro; Saito, Akira

    It was found that the atmospheric carbon dioxide (CO2) concentration in an urban canyon in Fukuoka city, Japan during August 1997 was about 30 µmol mol-1 higher than that in the suburbs. When fully exposed to sunlight, in situ the rate of photosynthesis in single leaves of Ilex rotunda planted in the urban canyon was higher when the atmospheric CO2 concentration was elevated. A biochemically based model was able to predict the in situ rate of photosynthesis well. The model also predicted an increase in the daily CO2 exchange rate for leaves in the urban canyon with an increase in atmospheric CO2 concentration. However, in situ such an increase in the daily CO2 exchange rate may be offset by diminished sunlight, a higher air temperature and a lower relative humidity. Thus, the daily CO2 exchange rate predicted using the model based soleley on the environmental conditions prevailing in the urban canyon was lower than that predicted based only on environmental factors found in the suburbs.

  2. Spectroscopic and optical properties of the VO2+ ion doped TeO2-TiO2-ZnO-Nb2O5 glass system

    NASA Astrophysics Data System (ADS)

    Swapna; Upender, G.; Sreenivasulu, V.; Prasad, M.

    2016-04-01

    Studies such as optical absorption, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Electron paramagnetic resonance (EPR) spectroscopy and Differential scanning calorimetry (DSC) were carried out on VO2+ ion doped TeO2-TiO2-ZnO-Nb2O5 glass system. Raman and FTIR spectra of the glasses revealed the presence of [TeO3], [TeO4] and [NbO6] structural units in the glass network. The Urbach energy (Δ E), cut-off wavelength (λ c ), optical band gap ( E opt ), optical basicity (Λ) and electron polarizability ( α) of the glasses were determined from optical absorption studies. The density ( ρ), molar volume ( V m ), oxygen molar volume ( V o ) and refractive index ( n) were also measured. Spin-Hamiltonian parameters were calculated from the EPR studies. When Nb2O5 was increased at the expense of ZnO, the density, optical band gap and Urbach energy of the glasses increased, and the electronic polarizability and optical basicity decreased. The EPR spectra clearly showed that vanadium was in the glass as VO2+ and occupied octahedral sites with tetrahedral compression. Spin-Hamiltonian parameters g‖ and g⊥ decreased as Nb2O5 content increased in the glass. The glass transition temperature ( T g ) also increased with increasing Nb2O5 content in the glass.

  3. Method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H (tritium) concentrations of xylem waters and subsurface waters using time series sampling

    DOEpatents

    Smith, Brian; Menchaca, Leticia

    1999-01-01

    A method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H concentrations of xylem and subsurface waters using time series sampling, insulating sampling chambers, and combined .sup.18 O/.sup.16 O, .sup.2 H/.sup.1 H and .sup.3 H concentration data on transpired water. The method involves collecting water samples transpired from living plants and correcting the measured isotopic compositions of oxygen (.sup.18 O/.sup.16 O) and hydrogen (.sup.2 H/.sup.1 H and/or .sup.3 H concentrations) to account for evaporative isotopic fractionation in the leafy material of the plant.

  4. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities

    Treesearch

    Lingli Liu; John S. King; Christian P. Giardina

    2005-01-01

    Human activities are increasing the concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]), potentially leading to changes in the quantity and chemical quality of leaf litter inputs to forest soils. Because the quality and quantity of labile and recalcitrant carbon (C) compounds influence forest...

  5. Effect of deuteration on hydrogen bonding: A comparative concentration dependent Raman and DFT study of pyridine in CH3OH and CD3OD and pyrimidine in H2O and D2O

    NASA Astrophysics Data System (ADS)

    Singh, Anurag; Gangopadhyay, Debraj; Popp, Jürgen; Singh, Ranjan K.

    2012-12-01

    The relative effect of hydrogen bonding of pyrimidine (Pyr) in H2O/D2O and pyridine (Py) in CH3OH/CD3OD has been analyzed using Raman Difference Spectroscopic (RDS) technique and DFT calculations. This study is focused on analyzing the concentration dependent variation of linewidth, peak position and intensity of ring breathing mode of Py and Pyr. The ring breathing mode of Pyr in H2O and D2O has three components; due to free Pyr, lighter complexes of mPyr + nH2O/D2O and heavier complexes of mPyr + nH2O/D2O. The pyridine molecules, however, show only two components in CH3OH and CD3OD. Of these two components, one corresponds to free Py and the other inhomogeneously broadened profile corresponds to all mPy + nCH3OH/CD3OD complexes. The variation of peak position and linewidth establishes the role of dipole moment of complexes and the diffusion in the mixture. In case of CD3OD solution splitting was observed in ˜1030 cm-1 band of Py, where an additional band at ˜1034 cm-1 appears at x(Py) ⩽ 0.4. However, this band remains single at all concentrations in case of CH3OH solvent.

  6. Intrinsic ferromagnetism in nanocrystalline Mn-doped ZnO depending on Mn concentration.

    PubMed

    Subramanian, Munisamy; Tanemura, Masaki; Hihara, Takehiko; Soga, Tetsuo; Jimbo, Takashi

    2011-04-01

    The physical properties of Zn(1-x)Mn(x)O nanoparticles synthesized by thermal decomposition are extensively investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman light scattering and Hysteresis measurements. XRD and XPS spectra reveal the absence of secondary phase in nanocrystalline ZnO doped with 5% or less Mn; and, later confirms that the valance state of Mn to be 2+ for all the samples. Raman spectra exhibit a peak at 660 cm(-1) which we attribute to the intrinsic lattice defects of ZnO with increasing Mn concentration. Overall, our results demonstrate that ferromagnetic properties can be realized while Mn-doped ZnO obtained in the nanocrystalline form.

  7. Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags

    NASA Astrophysics Data System (ADS)

    Lü, Jian-fang; Jin, Zhe-nan; Yang, Hong-ying; Tong, Lin-lin; Chen, Guo-bao; Xiao, Fa-xin

    2017-07-01

    An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The [FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.

  8. Spatial atomic layer deposition of ZnO/TiO{sub 2} nanolaminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Rong, E-mail: rongchen@mail.hust.edu.cn; Lin, Ji-Long; He, Wen-Jie

    2016-09-15

    Spatial atomic layer deposition (S-ALD) is a potential high-throughput manufacturing technique offering fast and large scale ultrathin films deposition. Here, an S-ALD system with modular injectors is introduced for fabricating binary oxides and their nanolaminates. By optimizing the deposition conditions, both ZnO and TiO{sub 2} films demonstrate linear growth and desired surface morphology. The as-deposited ZnO film has high carrier mobility, and the TiO{sub 2} film shows suitable optical transmittance and band gap. The ZnO/TiO{sub 2} nanolaminates are fabricated by alternating substrate movement between each S-ALD modular units of ZnO and TiO{sub 2}. The grazing incidence x-ray diffraction spectra ofmore » nanolaminates demonstrating the signature peaks are weaker for the same thickness nanolaminates with more bilayers, suggesting tuning nanolaminates from crystalline to amorphous. Optical transmittances of ZnO/TiO{sub 2} laminates are enhanced with the increase of the bilayers' number in the visible range. Refractive indices of nanolaminates increase with the thickness of each bilayer decreasing, which demonstrates the feasibility of obtaining desired refractive indices by controlling the bilayer number. The electronic properties, including mobility, carrier concentration, and conductivity, are also tunable with different bilayers.« less

  9. First-principles calculation on electronic structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Zhi-Fang, E-mail: tongzhifang1998@126.com; Wei, Zhan-Long; Xiao, Cheng

    The crystal structure, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} with varying Eu doping concentrations are computed by the density functional theory (DFT) and compared with experimental results. The results show that the lattice parameters of primitive cells of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} become smaller and Eu–N bond length shortens as Eu concentration increases. The band structure of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} exhibits a direct optical band gap and it's propitious to luminescence. The energy differences from the lowest Eu 5d state to the lowest Eu 4f state decrease with increasing Eumore » concentrations. The analysis of simulative absorption spectra indicates that the electron transition from Eu 4f states to 5d states of both Eu and Ba atoms contributes to the absorption of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x}. Under the coupling effect between Eu and Ba, Ba in BaSi{sub 2}O{sub 2}N{sub 2} exhibits longer wavelength absorption and increases absorption efficiency. The emission wavelength is deduced by measuring energy differences from the lowest Eu 5d state to the lowest Eu 4f state, and the result is in good agreement with experimental value within experimental Eu{sup 2+} doping range. - Graphical abstract: The structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT and its absorption mechanism is analysed. Results show that absorption peak α is from the host lattice absorption. The absorption peaks β, γ and δ are from Eu 4f to Eu 5d and Ba 6s 5d states. The absorption is attributed to the coupling effect of Eu and Ba atom. - Highlights: • The crystal, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT. • The lattice parameters of primitive cells reduces and Eu–N bond length shortens as Eu{sup 2+} increases. • The energy gap from Eu 5d state to Eu 4f state

  10. Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass.

    PubMed

    Yu, Shenglei; Yang, Zhongmin; Xu, Shanhui

    2010-05-01

    This paper reports on the spectroscopic properties and energy transfer analysis of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)-La(2)O(3) glasses with different Tm(2)O(3) doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm-2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm(3+), cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm(2)O(3) doping concentrations. The maximum fluorescence intensity at around 1.8 mum has been obtained in Tm(2)O(3)-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm(3+) in this sample is about 0.48 x 10(-20) cm(2) at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)- La(2)O(3) glass for 2.0-microm optical fiber laser.

  11. D2O clusters isolated in rare-gas solids: Dependence of infrared spectrum on concentration, deposition rate, heating temperature, and matrix material

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi; Arakawa, Ichiro; Yamakawa, Koichiro

    2018-04-01

    The infrared absorption spectra of D2O monomers and clusters isolated in rare-gas matrices were systematically reinvestigated under the control of the following factors: the D2O concentration, deposition rate, heating temperature, and rare-gas species. We clearly show that the cluster-size distribution is dependent on not only the D2O concentration but also the deposition rate of a sample; as the rate got higher, smaller clusters were preferentially formed. Under the heating procedures at different temperatures, the cluster-size growth was successfully observed. Since the monomer diffusion was not enough to balance the changes in the column densities of the clusters, the dimer diffusion was likely to contribute the cluster growth. The frequencies of the bonded-OD stretches of (D2O)k with k = 2-6 were almost linearly correlated with the square root of the critical temperature of the matrix material. Additional absorption peaks of (D2O)2 and (D2O)3 in a Xe matrix were assigned to the species trapped in tight accommodation sites.

  12. Impedance spectroscopy study of SiO2-Li2O:Nd2O3 glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereia, R.; Gozzo, C B; Guedes, I.

    2014-01-01

    In the present study, neodymium-doped lithium silicate glasses have been prepared by the conventional melt-quenching technique. The dielectric properties, electric modulus and electrical conductivity of SiO2-Li2O (SiLi-0Nd) and SiO2-Li2O:Nd2O3 (SiLi-1.35Nd) have been studied from 1 Hz to 1 MHz in the 333 423 K temperature range. At a given temperature and frequency, we observe that the resistivity increases while the conductivity accordingly decreases when neodymium ions are added to the glass matrix. The activation energy of two distinct regions was evaluated from the ln( dc)=f(1/T) plot and was found to be E1(T<363K)=0.61(0.66)eV and E2(T>363K)=1.26(1.09)eV for SiLi-0Nd (SiLi-1,35Nd). The dielectric constantmore » ( Re) decreases while the dielectric loss (tan ( )) increases under Nd2O3 doping. We also observe that for both glasses, Re and tan ( ) tend to increase with increasing temperature and decrease with increasing frequency.« less

  13. Strong composition-dependent variation of MCs + calibration factors in TiO x and GeO x ( x ≤ 2) films

    NASA Astrophysics Data System (ADS)

    Gnaser, Hubert; Le, Yongkang; Su, Weifeng

    2006-07-01

    The emission of MCs + secondary ions (M designates the analyte species) from TiO x (0.2 ≤ x ≤ 2) and GeO x (0.001 ≤ x ≤ 0.8) films under Cs + bombardment was examined. The relative calibration factors of OCs +/TiCs + and OCs +/GeCs + were determined and were found to depend pronouncedly on the O/Ti and O/Ge atomic concentration ratios. Specifically, with increasing oxygen content OCs + ions form much more efficiently (as compared to TiCs + or GeCs + ions), an enhancement amounting to more than a factor of 10 for the highest oxygen concentrations. Concurrently, the formation of TiOCs + or GeOCs + ions increases drastically. For both oxide systems, an empirical relation for the oxygen-concentration dependence of the relative calibration factors could be established.

  14. Isotopic Monitoring of N2O Emissions from Wastewater Treatment: Evidence for N2O Production Associated with Anammox Metabolism?

    NASA Astrophysics Data System (ADS)

    Harris, E. J.; Wunderlin, P.; Joss, A.; Emmenegger, L.; Kipf, M.; Wolf, B.; Mohn, J.

    2015-12-01

    Microbial production is the major source of N2O, the strongest greenhouse gas produced within the nitrogen cycle, and the most important stratospheric ozone destructant released in the 21st century. Wastewater treatment is an important and growing source of N2O, with best estimates predicting N2O emissions from this sector will have increased by >25% by 2020. Novel treatment employing partial nitritation-anammox, rather than traditional nitrification-denitrification, has the potential to achieve a neutral carbon footprint due to increased biogas production - if N2O production accounts for <0.5-1% of total nitrogen turnover. As a further motivation for this research, microbial pathways identified from wastewater treatment can be applied to our understanding of N cycling in the natural environment. This study presents the first online isotopic measurements of offgas N2O from a partial-nitritation anammox reactor 1. The measured N2O isotopic composition - in particular the N2O isotopic site preference (SP = δ15Nα - δ15Nβ) - was used to understand N2O production pathways in the reactor. When N2O emissions peaked due to high dissolved oxygen concentrations, low SP showed that N2O was produced primarily via nitrifier denitrification by ammonia oxidizing bacteria (AOBs). N2O production by AOBs via NH2OH oxidation, in contrast, did not appear to be important under any conditions. Over the majority of the one-month measurement period, the measured SP was much higher than expected following our current understanding of N2O production pathways 2. SP reached 41‰ during normal operating conditions and achieved a maximum of 45‰ when nitrite was added under anoxic conditions. These results could be explained by unexpectedly strong heterotrophic N2O reduction despite low dissolved organic matter concentrations, or by an incomplete understanding of isotopic fractionation during N2O production from NH2OH oxidation by AOBs - however the explanation most consistent with all

  15. Effects of TiO2 and Co3O4 Nanoparticles on Circulating Angiogenic Cells

    PubMed Central

    Spigoni, Valentina; Cito, Monia; Alinovi, Rossella; Pinelli, Silvana; Passeri, Giovanni; Zavaroni, Ivana; Goldoni, Matteo; Campanini, Marco; Aliatis, Irene; Mutti, Antonio

    2015-01-01

    Background and Aim Sparse evidence suggests a possible link between exposure to airborne nanoparticles (NPs) and cardiovascular (CV) risk, perhaps through mechanisms involving oxidative stress and inflammation. We assessed the effects of TiO2 and Co3O4 NPs in human circulating angiogenic cells (CACs), which take part in vascular endothelium repair/replacement. Methods CACs were isolated from healthy donors’ buffy coats after culturing lymphomonocytes on fibronectin-coated dishes in endothelial medium for 7 days. CACs were pre-incubated with increasing concentration of TiO2 and Co3O4 (from 1 to 100 μg/ml) to test the effects of NP – characterized by Transmission Electron Microscopy – on CAC viability, apoptosis (caspase 3/7 activation), function (fibronectin adhesion assay), oxidative stress and inflammatory cytokine gene expression. Results Neither oxidative stress nor cell death were associated with exposure to TiO2 NP (except at the highest concentration tested), which, however, induced a higher pro-inflammatory effect compared to Co3O4 NPs (p<0.01). Exposure to Co3O4 NPs significantly reduced cell viability (p<0.01) and increased caspase activity (p<0.01), lipid peroxidation end-products (p<0.05) and pro-inflammatory cytokine gene expression (p<0.05 or lower). Notably, CAC functional activity was impaired after exposure to both TiO2 (p<0.05 or lower) and Co3O4 (p<0.01) NPs. Conclusions In vitro exposure to TiO2 and Co3O4 NPs exerts detrimental effects on CAC viability and function, possibly mediated by accelerated apoptosis, increased oxidant stress (Co3O4 NPs only) and enhancement of inflammatory pathways (both TiO2 and Co3O4 NPs). Such adverse effects may be relevant for a potential role of exposure to TiO2 and Co3O4 NPs in enhancing CV risk in humans. PMID:25803285

  16. Thermodynamic modeling of melts in the system Na 2O-NaAlO 2-SiO 2-F 2O -1

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Baker, Don R.

    2005-12-01

    Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms and thermodynamic description in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids that links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals, fluoride-silicate immiscibility in natural felsic melts, and metallurgical processes. Configurational properties of fluorosilicate melts are described by mixing on three site levels (sublattices): (1) alkali fluoride, polyhedral aluminofluoride and silicofluoride species and nonbridging terminations of the aluminosilicate network, (2) alkali-aluminate and silicate tetrahedra within the network and (3) bridging oxygen, nonbridging oxygen and terminal fluorine atoms on tetrahedral apices of the network. Abundances of individual chemical species are described by a homogeneous equilibrium representing melt depolymerization: F - (free) + O 0 (bridging) = F 0 (terminal) + O - (nonbridging) which corresponds to a replacement of an oxygen bridging two tetrahedra by a pair of terminations, one with F and the other with an O and a charge-balancing Na. In cryolite-bearing systems two additional interaction mechanisms occur: (1) the self-dissociation of octahedral aluminofluoride complexes: [AlF 6] = [AlF 4] + 2 [F], and (2) the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F. Portrayal of these equilibria in ternary Thompson reaction space allows for the decrease in the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the nonideal thermodynamic properties are represented by reaction energies of homogeneous equilibria, thus defining directly individual chemical species concentrations and configurational

  17. A study of optical, mechanical and electrical properties of poly(methacrylic acid)/TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    AL-Baradi, Ateyyah M.; Al-Shehri, Samar F.; Badawi, Ali; Merazga, Amar; Atta, A. A.

    2018-06-01

    This work is concerned with the study of the effect of titanium dioxide (TiO2) nanofillers on the optical, mechanical and electrical properties of poly(methacrylic acid) (PMAA) networks as a function of TiO2 concentration and crosslink density. The structure of the prepared samples was investigated by X-ray diffractometry (XRD) and Transmittance Electron Microscope (TEM). XRD results showed a single phase for the nanocomposites indicating that no large TiO2 aggregates in the polymer matrix. The optical properties of the prepared samples including the absorption, transmittance, energy band gap and refractive index were explored using Spectrophotometer. These measurements showed that there is a red-shift in the absorption caused by the increase of TiO2 concentration. However, the crosslink density in the polymer plays no role in changing the absorption. The energy band gap (Eg) decreases with increasing the concentration of TiO2 in the polymer matrix; whereas Eg increases with increasing the crosslink density. Moreover, the mechanical properties of PMAA/TiO2 nanocomposites by Dynamic Mechanical Analysis (DMA) showed that the viscoelasticity of PMAA decreases with adding TiO2 nanoparticles and the glass transition temperature (Tg) was also found to drop from 130 °C to 114 °C. Finally, the DC conductivity of the obtained systems was found to increase with increasing TiO2 nanoparticles in the matrix.

  18. Uranium luminescence in La2 Zr2 O7 : effect of concentration and annealing temperature.

    PubMed

    Mohapatra, M; Rajeswari, B; Hon, N S; Kadam, R M

    2016-12-01

    The speciation of a particular element in any given matrix is a prerequisite to understanding its solubility and leaching properties. In this context, speciation of uranium in lanthanum zirconate pyrochlore (La 2 Zr 2 O 7  = LZO), prepared by a low-temperature combustion route, was carried out using a simple photoluminescence lifetime technique. The LZO matrix is considered to be a potential ceramic host for fixing nuclear and actinide waste products generated during the nuclear fuel cycle. Special emphasis has been given to understanding the dynamics of the uranium species in the host as a function of annealing temperature and concentration. It was found that, in the LZO host, uranium is stabilized as the commonly encountered uranyl species (UO 2 2+ ) up to a heat treatment of 500 °C at the surface. Above 500 °C, the uranyl ion is diffused into the matrix as the more symmetric octahedral uranate species (UO 6 6- ). The uranate ions thus formed replace the six-coordinated 'Zr' atoms at regular lattice positions. Further, it was observed that concentration quenching takes place beyond 5 mol% of uranium doping. The mechanism of the quenching was found to be a multipolar interaction. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Investigating the effect of V2O5 addition on sodium barium borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Halder, Rumu; Sengupta, Pranesh; Sudarsan, V.; Kaushik, C. P.; Dey, G. K.

    2016-05-01

    V2O5 doped sodium barium borosilicate glasses were characterized by photoluminescence spectroscopy and electron probe microanalyzer (EPMA). The glass remains homogeneous for lower concentration of V2O5 but a phase separation is observed when V2O5 doping is increased beyond 5 mol%. Detailed microanalysis reveals that the phase separated glass consists of a phase containing V, Ba and Si and a separate Si rich phase within the glass matrix. The luminescence study demonstrated that at low concentration the vanadium mainly interacts with the structural units of B/Si while at higher concentrations, V-O-V/ V-O- Na+/Ba2+ linkages are formed.

  20. Effect of SO2 concentration on polyphenol development during red wine micro-oxygenation.

    PubMed

    Tao, Jianxiong; Dykes, Stuart I; Kilmartin, Paul A

    2007-07-25

    A Merlot wine in 15 L research tanks was subjected to micro-oxygenation at 10 mL O2 per liter of wine per month over a 16 week period with additions of 0, 50, 100, and 200 mg/L SO2. A large decrease in monomeric anthocyanins and flavan-3-ols was seen in wines with a lower concentration of SO2, coupled with an increase in nonbleachable pigments; an increase in tannin, measured using precipitation with methyl cellulose; and a greater size and red coloration of a proanthocyanidin extract obtained using Sephadex LH-20. These changes were largely suppressed in wines initially treated with 200 mg/L SO2 and occurred more slowly in wines stored in bottles in the absence of O2. The concentration of SO2 is shown to regulate the polyphenol chemistry involved in the formation of polymeric pigments and changes in tannin structure affecting wine astringency.

  1. TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton

    PubMed Central

    Miller, Robert J.; Bennett, Samuel; Keller, Arturo A.; Pease, Scott; Lenihan, Hunter S.

    2012-01-01

    Nanoparticulate titanium dioxide (TiO2) is highly photoactive, and its function as a photocatalyst drives much of the application demand for TiO2. Because TiO2 generates reactive oxygen species (ROS) when exposed to ultraviolet radiation (UVR), nanoparticulate TiO2 has been used in antibacterial coatings and wastewater disinfection, and has been investigated as an anti-cancer agent. Oxidative stress mediated by photoactive TiO2 is the likely mechanism of its toxicity, and experiments demonstrating cytotoxicity of TiO2 have used exposure to strong artificial sources of ultraviolet radiation (UVR). In vivo tests of TiO2 toxicity with aquatic organisms have typically shown low toxicity, and results across studies have been variable. No work has demonstrated that photoactivity causes environmental toxicity of TiO2 under natural levels of UVR. Here we show that relatively low levels of ultraviolet light, consistent with those found in nature, can induce toxicity of TiO2 nanoparticles to marine phytoplankton, the most important primary producers on Earth. No effect of TiO2 on phytoplankton was found in treatments where UV light was blocked. Under low intensity UVR, ROS in seawater increased with increasing nano-TiO2 concentration. These increases may lead to increased overall oxidative stress in seawater contaminated by TiO2, and cause decreased resiliency of marine ecosystems. Phototoxicity must be considered when evaluating environmental impacts of nanomaterials, many of which are photoactive. PMID:22276179

  2. Electrochemical Quantification of Extracellular Local H2O2 Kinetics Originating from Single Cells.

    PubMed

    Bozem, Monika; Knapp, Phillip; Mirčeski, Valentin; Slowik, Ewa J; Bogeski, Ivan; Kappl, Reinhard; Heinemann, Christian; Hoth, Markus

    2017-05-15

    H 2 O 2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local H 2 O 2 concentrations ([H 2 O 2 ]) originating from single cells is required. Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H 2 O 2 ] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H 2 O 2 ] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H 2 O 2 ] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H 2 O 2 to an unstimulated MC, the local [H 2 O 2 ] decreased on average by 4.2 nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H 2 O 2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex ® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H 2 O 2 separately. Local extracellular [H 2 O 2 ] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 00, 000-000.

  3. Kinetics of O{sub 2}({sup 1{Sigma}}) formation in the reaction O{sub 2}({sup 1{Delta}}) + O{sub 2}({sup 1{Delta}}) {yields} O{sub 2}({sup 1{Sigma}}) + O{sub 2}({sup 3{Sigma}})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagidullin, M V; Khvatov, N A; Nyagashkin, A Yu

    2011-02-28

    The dependence of the ratio of specific powers of dimole radiation of singlet oxygen in the 634 nm band and in the b - X band of the O{sub 2}({sup 1{Sigma}}) molecule in the O{sub 2}(X) - O{sub 2}({sup 1{Delta}}) - O{sub 2}({sup 1{Sigma}}) - H{sub 2}O - CO{sub 2} mixture on the CO{sub 2} concentration is measured. As a result, the rate constant of the reaction O{sub 2}({sup 1{Delta}}) + O{sub 2}({sup 1{Delta}}) {yields} O{sub 2}({sup 1{Sigma}}) + O{sub 2}({sup 3{Sigma}}) at the temperature {approx}330 K is found to equal (4.5 {+-} 1.1) 10{sup -17} cm{sup 3} s{sup -1}.more » (active media)« less

  4. Cu2S-Cu-TiO2 mesoporous carbon composites for the degradation of high concentration of methyl orange under visible light

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Zhao, Yuan; Zhong, Lvling; Wang, Yang; Chai, Shouning; Yang, Tao; Han, Xuanli

    2017-11-01

    A Schiff base compound was used to prepare a Cu2S-Cu-TiO2 mesoporous carbon composite photocatalyst (Cu2S-Cu-TiO2/MC) by a simple precipitation-carbonization method with a carbonization temperature of 750 °C. X-ray diffraction and x-ray photoelectron spectroscopy studies show that Cu2S, Cu, and TiO2 exist in Cu2S-Cu-TiO2/MC in the form of nanometer-sized particles. Scanning electron microscope and transmission electron microscope images show that the composites form a spherical carbon structure inlaid with Cu2S and Cu and coated TiO2. The Brunauer-Emmett-Teller test shows that the material has a large specific surface area (76.14 m2/g) and mesoporous structure. UV-vis diffuse reflection spectroscopy and photoluminescence spectroscopy indicate that the recombination of photo-generated electrons and holes in the samples were inhibited. The composites show good degradation performance in a high concentration (300 mg/L) of methyl orange (MO) solution under visible light. The composites exhibit great potential in the treatment of dyes for wastewater treatment.

  5. Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis.

    PubMed

    Yang, Liming; Yu, Liya E; Ray, Madhumita B

    2008-07-01

    In this study, photo/photocatalytic oxidation of common analgesic and antipyretic drug, paracetamol (acetaminophen), was investigated to determine the optimal operating conditions for degradation in water. UVA (365 nm) radiation alone degraded negligible amount of paracetamol, whereas paracetamol concentration decreased substantially under an irradiation of UVC (254 nm) with marginal changes in total organic carbon (TOC). In the presence of TiO2, much faster photodegradation of paracetamol and effective mineralization occurred; more than 95% of 2.0mM paracetamol was degraded within 80 min. The degradation rate constant decreased with an increase in the initial concentration of paracetamol, while it increased with light intensity and oxygen concentration. The degradation rate also increased with TiO2 loading until a concentration of 0.8 g L(-1). The degradation rate slowly increased between pH 3.5 and 9.5, but significantly decreased with increasing pH between 9.5 and 11.0. Based on the experimental data, a kinetic equation describing paracetamol photocatalytic degradation with various process parameters is obtained.

  6. Effects of Ti doping on the dielectric properties of HfO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhriyal, S.; Biswas, S., E-mail: drsomnathbiswas@gmail.com

    2016-05-06

    We report the effects of Ti doping on the dielectric properties of HfO{sub 2} [Hf{sub 1-x}Ti{sub x}O{sub 2} (x = 0.2-0.8)] nanoparticles at room temperature. The Hf{sub 1-x}Ti{sub x}O{sub 2} nanoparticles were synthesized by a wet chemical process. The structural and morphological properties of the derived samples were analyzed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM). Impedance analysis was performed in pelletized samples in the frequency range of 1 MHz to 1 GHz. The obtained results were analyzed in correlation with microstructure and doping concentration in the derived samples. The averagemore » size of the Hf{sub 1-x}Ti{sub x}O{sub 2} nanoparticles is typically in the range of 4-8 nm depending on the processing temperature. The Hf{sub 1−x}Ti{sub x}O{sub 2} nanoparticles show reduction in crystallinity with the increase in Ti doping. The dielectric constants of the derived samples decrease with the increase in frequency. The ac-conductivity in the samples increases with the increase in frequency irrespective of Ti concentration and shows significant drop with the increase in Ti concentration at all frequencies.« less

  7. To study the effect of dopant NiO concentration and duration of calcinations on structural and optical properties of MgO-NiO nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Deptt. of Physics,Vaish College of Engineering, Rohtak-124001, Haryana; Praveen,

    2016-05-06

    In present work Magnesium oxide (MgO) samples were doped with different concentration of Transition metal Nickel Oxide(NiO) by using Chemical co-precipitation method. The doping levels were varied from NiO (5%, 10%, 15%) and all the samples were calcined at 600°C for 4hrs and 8hrs respectively. Structural analysis of these calcined materials is carried out by X-ray diffraction (XRD) techniques which reveals that average crystalline sizes are in nano region i.e. 21.77nm-31.13 nm and tabulated in table 1. The powder of calcined samples were also characterized by using various other techniques i.e. Scanning Electron Microscopy (SEM), Fourier Transformation Infrared Spectroscopy (FTIR), UV-Visiblemore » spectroscopy, Transmission Electron Microscopy (TEM) etc. The effects of dopant concentration, calcined temperature, calcinations duration on samples were studied and also investigate the effect of varying dopant concentration on morphology and optical properties of calcined nanomaterials. From results it was observed that the crystallite size of nanocomposites increases with increases dopant concentration or increases calcinations duration. The optical band gap decreases with increases sintering time and increase with increases dopant concentrations. TEM results coincide with XRD results and show that particles are polycrystalline in nature. FTIR spectra show that for all samples particles are pure in composition and transmission rate increases with calcinations duration.« less

  8. Persistence analysis of extreme CO, NO2 and O3 concentrations in ambient air of Delhi

    NASA Astrophysics Data System (ADS)

    Chelani, Asha B.

    2012-05-01

    Persistence analysis of air pollutant concentration and corresponding exceedance time series is carried out to examine for temporal evolution. For this purpose, air pollutant concentrations, namely, CO, NO2 and O3 observed during 2000-2009 at a traffic site in Delhi are analyzed using detrended fluctuation analysis. Two types of extreme values are analyzed; exceeded concentrations to a threshold provided by national pollution controlling agency and time interval between two exceedances. The time series of three pollutants is observed to possess persistence property whereas the extreme value time series of only primary pollutant concentrations is found to be persistent. Two time scaling regions are observed to be significant in extreme time series of CO and NO2, mainly attributed to implementation of CNG in vehicles. The presence of persistence in three pollutant concentration time series is linked to the property of self-organized criticality. The observed persistence in the time interval between two exceeded levels is a matter of concern as persistent high concentrations can trigger health problems.

  9. Water vapor δ(2) H, δ(18) O and δ(17) O measurements using an off-axis integrated cavity output spectrometer - sensitivity to water vapor concentration, delta value and averaging-time.

    PubMed

    Tian, Chao; Wang, Lixin; Novick, Kimberly A

    2016-10-15

    High-precision analysis of atmospheric water vapor isotope compositions, especially δ(17) O values, can be used to improve our understanding of multiple hydrological and meteorological processes (e.g., differentiate equilibrium or kinetic fractionation). This study focused on assessing, for the first time, how the accuracy and precision of vapor δ(17) O laser spectroscopy measurements depend on vapor concentration, delta range, and averaging-time. A Triple Water Vapor Isotope Analyzer (T-WVIA) was used to evaluate the accuracy and precision of δ(2) H, δ(18) O and δ(17) O measurements. The sensitivity of accuracy and precision to water vapor concentration was evaluated using two international standards (GISP and SLAP2). The sensitivity of precision to delta value was evaluated using four working standards spanning a large delta range. The sensitivity of precision to averaging-time was assessed by measuring one standard continuously for 24 hours. Overall, the accuracy and precision of the δ(2) H, δ(18) O and δ(17) O measurements were high. Across all vapor concentrations, the accuracy of δ(2) H, δ(18) O and δ(17) O observations ranged from 0.10‰ to 1.84‰, 0.08‰ to 0.86‰ and 0.06‰ to 0.62‰, respectively, and the precision ranged from 0.099‰ to 0.430‰, 0.009‰ to 0.080‰ and 0.022‰ to 0.054‰, respectively. The accuracy and precision of all isotope measurements were sensitive to concentration, with the higher accuracy and precision generally observed under moderate vapor concentrations (i.e., 10000-15000 ppm) for all isotopes. The precision was also sensitive to the range of delta values, although the effect was not as large compared with the sensitivity to concentration. The precision was much less sensitive to averaging-time than the concentration and delta range effects. The accuracy and precision performance of the T-WVIA depend on concentration but depend less on the delta value and averaging-time. The instrument can

  10. Comparison of O2 and H2O as oxygen source for homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Konishi, Keita; Goto, Ken; Togashi, Rie; Murakami, Hisashi; Higashiwaki, Masataka; Kuramata, Akito; Yamakoshi, Shigenobu; Monemar, Bo; Kumagai, Yoshinao

    2018-06-01

    Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy (HVPE) using O2 or H2O as an oxygen source was investigated by thermodynamic analysis, and compared with measured properties after growth. The thermodynamic analysis revealed that Ga2O3 growth is expected even at 1000 °C using both oxygen sources due to positive driving forces for Ga2O3 deposition. The experimental results for homoepitaxial growth on (0 0 1) β-Ga2O3 substrates showed that the surfaces of the layers grown with H2O were smoother than those grown with O2, although the growth rate with H2O was approximately half that with O2. However, in the homoepitaxial layer grown using H2O, incorporation of Si impurities with a concentration almost equal to the effective donor concentration (2 × 1016 cm-3) was confirmed, which was caused by decomposition of the quartz glass reactor due to the presence of hydrogen in the system.

  11. Effects of the precursor concentration and different annealing ambients on the structural, optical, and electrical properties of nanostructured V2O5 thin films deposited by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Irani, Rowshanak; Rozati, Seyed Mohammad; Beke, Szabolcs

    2018-04-01

    V2O5 thin films were deposited with different precursor concentrations of 0.01, 0.05, and 0.1 M on glass substrates by spray pyrolysis technique, then the optimized films were annealed in different ambients (air, oxygen, and vacuum). The results showed that by increasing the concentration, the films grew along the (001) direction with an orthorhombic structure. Field emission scanning electron microscopy showed that nanorods were formed when depositing 0.05 molar of VCl3. We conclude that with the precursor concentration, the surface nanostructure can be well-controlled. Annealing improved the crystallinity under all ambients, but the best crystallinity was achieved in vacuum. It was revealed that the as-deposited films had the highest transmission, whereas the films annealed in air had the lowest. When annealed in air, the optical band gap decreased from 2.45 to 2.32 eV. The sheet resistance, resistivity, mobility, conductivity, and carrier concentration were measured for all the prepared V2O5 films.

  12. Effect of N, S Co-doped TiO2 concentration on photocatalytic degradation of phenol

    NASA Astrophysics Data System (ADS)

    Yunus, Nur Najwa; Hamzah, Fazlena; So'aib, Mohamad Sufian; Krishnan, Jagannathan

    2017-12-01

    The effect of N, S Co-doped TiO2 concentration on photocatalytic degradation of phenol was investigated. The photocatalyst were prepared using sol-gel method with different concentration of dopant ranging from 0.5% to 1.0%. The precursor of titania was Titanium (IV) isopropoxide (TTIP) while the sources of nitrogen and sulfur were ammonium nitrate and thiourea respectively. The precursors were mixed to obtain a gel. The gel was dried, ground and calcined at 600 °C. The characterization of the photocatalyst using XRD showed the presence of anatase phase only and dopant concentration of 1.0% had the smallest size of crystallite which is 24 nm. The performance of the photocatalyst was tested under visible light for five hours of irradiation time. The highest degradation efficiency of phenol was at 81.8% by dopant concentration of 1.0%.

  13. Peripartum cardiomyopathy is associated with increased uric acid concentrations: A population based study.

    PubMed

    Sagy, Iftach; Salman, Amjad Abu; Kezerle, Louise; Erez, Offer; Yoel, Idan; Barski, Leonid

    Peri-partum cardiomyopathy (PPCM) is a clinical heart failure that usually develops during the final stage of pregnancy or the first months following delivery. High maternal serum uric acid concentrations have been previous associated with heart failure and preeclampsia. 1) To explored the clinical characteristics of PPCM patients; and 2) to determine the association between maternal serum uric acid concentrations and PPCM. This is a retrospective population based case control study. Cases and controls were matched 1:4 (for gestational age, medical history of cardiac conditions and creatinine); conditional logistic regression was used to identify clinical parameters that were associated with PPCM. The prevalence of peripartum cardiomyopathy at our institution was 1-3832 deliveries (42/160,964). In a matched multivariate analysis high maternal serum uric acid concentrations were associated with PPCM (O.R 1.336, 95% C.I 1.003-1.778). Uric acid concentrations were higher within the Non-Jewish patients and mothers of male infant with PPCM in compare to those without PPCM (p value 0.003 and 0.01 respectively). PPCM patients had increased maternal serum uric acid concentrations. This observation aligns with previous report regarding the increased uric acid concentration in women with preeclampsia and congestive heart failure, suggestive of a common underlying mechanism that mediates the myocardial damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Sailuotong Prevents Hydrogen Peroxide (H2O2)-Induced Injury in EA.hy926 Cells

    PubMed Central

    Seto, Sai Wang; Chang, Dennis; Ko, Wai Man; Zhou, Xian; Kiat, Hosen; Bensoussan, Alan; Lee, Simon M. Y.; Hoi, Maggie P. M.; Steiner, Genevieve Z.; Liu, Jianxun

    2017-01-01

    Sailuotong (SLT) is a standardised three-herb formulation consisting of Panax ginseng, Ginkgo biloba, and Crocus sativus designed for the management of vascular dementia. While the latest clinical trials have demonstrated beneficial effects of SLT in vascular dementia, the underlying cellular mechanisms have not been fully explored. The aim of this study was to assess the ability and mechanisms of SLT to act against hydrogen peroxide (H2O2)-induced oxidative damage in cultured human vascular endothelial cells (EAhy926). SLT (1–50 µg/mL) significantly suppressed the H2O2-induced cell death and abolished the H2O2-induced reactive oxygen species (ROS) generation in a concentration-dependent manner. Similarly, H2O2 (0.5 mM; 24 h) caused a ~2-fold increase in lactate dehydrogenase (LDH) release from the EA.hy926 cells which were significantly suppressed by SLT (1–50 µg/mL) in a concentration-dependent manner. Incubation of SLT (50 µg/mL) increased superoxide dismutase (SOD) activity and suppressed the H2O2-enhanced Bax/Bcl-2 ratio and cleaved caspase-3 expression. In conclusion, our results suggest that SLT protects EA.hy916 cells against H2O2-mediated injury via direct reduction of intracellular ROS generation and an increase in SOD activity. These protective effects are closely associated with the inhibition of the apoptotic death cascade via the suppression of caspase-3 activation and reduction of Bax/Bcl-2 ratio, thereby indicating a potential mechanism of action for the clinical effects observed. PMID:28067784

  15. Progesterone amplifies oxidative stress signal and promotes NO production via H2O2 in mouse kidney arterial endothelial cells.

    PubMed

    Yuan, Xiao-Hua; Fan, Yang-Yang; Yang, Chun-Rong; Gao, Xiao-Rui; Zhang, Li-Li; Hu, Ying; Wang, Ya-Qin; Jun, Hu

    2016-01-01

    The role of progesterone on the cardiovascular system is controversial. Our present research is to specify the effect of progesterone on arterial endothelial cells in response to oxidative stress. Our result showed that H2O2 (150 μM and 300 μM) induced cellular antioxidant response. Glutathione (GSH) production and the activity of Glutathione peroxidase (GPx) were increased in H2O2-treated group. The expression of glutamate cysteine ligase catalytic subunit (GCLC) and modifier subunit (GCLM) was induced in response to H2O2. However, progesterone absolutely abolished the antioxidant response through increasing ROS level, inhibiting the activity of Glutathione peroxidase (GPx), decreasing GSH level and reducing expression of GClC and GCLM. In our study, H2O2 induced nitrogen monoxide (NO) production and endothelial nitric oxide synthase (eNOS) expression, and progesterone promoted H2O2-induced NO production. Progesterone increased H2O2-induced expression of hypoxia inducible factor-α (HIFα) which in turn regulated eNOS expression and NO synthesis. Further study demonstrated that progesterone increased H2O2 concentration of culture medium which may contribute to NO synthesis. Exogenous GSH decreased the content of H2O2 of culture medium pretreated by progesterone combined with H2O2 or progesterone alone. GSH also inhibited expression of HIFα and eNOS, and abolished NO synthesis. Collectively, our study demonstrated for the first time that progesterone inhibited cellular antioxidant effect and increased oxidative stress, promoted NO production of arterial endothelial cells, which may be due to the increasing H2O2 concentration and amplified oxidative stress signal. Copyright © 2015. Published by Elsevier Ltd.

  16. Physical-chemical examination of the N2O3-SO3-H2O system

    NASA Technical Reports Server (NTRS)

    Linstroem, C.; Malyska, G.

    1977-01-01

    It was found that when (NO)HSO4 is added to absolute H2SO4, specific conductivity rises sharply, possibly due to an increase in mutual interionic effects and viscosity as the (NO)HSO4 concentration rises. The addition of SO3 to the solution yielded a precipitate; a combination of analysis, IR spectroscopy and X-ray diffraction techniques indicated that this precipitate was (NO)HS2O7.

  17. Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation.

    PubMed

    Wu, Chung-Hsin; Kuo, Chao-Yin; Chen, Shih-Ting

    2013-01-01

    This study synthesized a TiO2/carbon nanotubes (CNTs) composite via the sol-gel method. The surface characteristics of the TiO2/CNTs composite were determined by X-ray diffraction, transmission electron microscopy, specific surface area analyser, ultraviolent (UV)-vis spectroscopy, X-ray photoelectron spectroscopy and Raman spectrometer. The photocatalytic activity ofthe TiO2/CNTs composite was evaluated by decolourizing C.I. Reactive Red 2 (RR2) under visible light irradiation. Furthermore, the effects of calcination temperature, pH, RR2 concentration, and the TiO2/CNTs composite dosage on RR2 decolourization were determined simultaneously. The optimal calcination temperature to generate TiO2 and the TiO2/CNTs composite was 673 K, as the percentage of anatase crystallization at this temperature was highest. The specific surface area of the TiO2/CNTs composite and TiO2 were 45 and 42 m2/g, respectively. The band gap of TiO2 and the TiO2/CNTs composite was 2.97 and 2.71 eV by UV-vis measurements, respectively. Experimental data indicate that the Ti-O-C bond formed in the TiO2/CNTs composite. The RR2 decolourization rates can be approximated by pseudo-first-order kinetics; moreover, only the TiO2/CNTs composite had photocatalytic activity under visible light irradiation. At pH 7, the RR2 decolourization rate constant of 0.5, 1 and 2 g/L TiO2/CNTs addition was 0.005, 0.0015, and 0.0047 min(-1), respectively. Decolourization rate increased as pH and the RR2 concentration decreased. The CNTs functioned as electron acceptors, promoting separation of photoinduced electron-hole pairs to retard their recombination; thus, photocatalytic activity of the TiO2/CNTs composite exceeded that of TiO2.

  18. Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid.

    PubMed

    Tan, Xiaoli; Fang, Ming; Li, Jiaxing; Lu, Yi; Wang, Xiangke

    2009-08-30

    The effects of pH, initial Eu(III) concentration, ionic strength and fulvic acid (FA) on the adsorption of Eu(III) on TiO(2) are investigated by using batch techniques. The results indicate that the presence of FA strongly enhances the adsorption of Eu(III) on TiO(2) at low pH values. Besides, the adsorption of Eu(III) on TiO(2) is significantly dependent on pH values and independent of ionic strength. The adsorption of Eu(III) on TiO(2) is attributed to inner-sphere surface complexation. The diffuse layer model (DLM) is applied to simulate the adsorption data, and fits the experimental data well with the aid of FITEQL 3.2. X-ray photoelectron spectroscopy (XPS) is performed to study the species of Eu(III) adsorbed on the surfaces of TiO(2)/FA-TiO(2) hybrids at a molecular level, which suggest that FA act as "bridge" between Eu(III) and TiO(2) particles to enhance the ability to adsorb Eu(III) in solution.

  19. Crack-resistant Al2O3-SiO2 glasses.

    PubMed

    Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-04-07

    Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3 • 40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.

  20. Crack-resistant Al2O3-SiO2 glasses

    NASA Astrophysics Data System (ADS)

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-04-01

    Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.

  1. Controlling the size and optical properties of ZnO nanoparticles by capping with SiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, K. Sowri, E-mail: sowribabuk@gmail.com; Reddy, A. Ramachandra; Reddy, K. Venugopal

    Graphical abstract: - Highlights: • Small and uniform sized ZnO nanoparticles were obtained with SiO{sub 2} coating. • ZnO and ZnO–SiO{sub 2} nanocomposite exhibited excitation wavelength dependent PL. • Maximum UV emission intensity was obtained with 353 nm excitation wavelength. • Excitation processes in SiO{sub 2} were also contributed to the UV intensity. • It was found that oxygen vacancies and interstitials enhanced with SiO{sub 2} coating. - Abstract: The size and shape of the ZnO nanoparticles synthesized through sol–gel method were controlled by capping with SiO{sub 2}. X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM) and Highmore » Resolution Transmission Electron Microscope (HR-TEM) results demonstrated that the particle growth of the ZnO nanoparticles has been restricted to 5 nm with SiO{sub 2} capping. As a result, the absorption spectra of ZnO nanoparticles capped with SiO{sub 2} got blue shifted (toward lower wavelength side) due to strong quantum confinement effects. BET (Brunauer–Emmet–Teller) surface area pore size analyzer results showed that surface area of samples increased monotonously with increase of SiO{sub 2} concentration. It was observed that the absorption spectra of ZnO capped with SiO{sub 2} broadened with increase of SiO{sub 2} concentration. Absorption and photoluminescence excitation results (PLE) confirmed that this broadening is due to the absorption of non-bridging oxygen hole centers (NBOHC) of SiO{sub 2}. These results also indicated that ZnO nanoparticles capped with SiO{sub 2} are insensitive to Raman scattering. Maximum UV emission intensity was achieved with 353 nm excitation wavelength compared to 320 nm in ZnO as well as in SiO{sub 2} capped ZnO nanoparticles. Furthermore, there is an enhancement in the intensities of emission peaks related to oxygen vacancies and interstitials with SiO{sub 2} capping. The enhancement in the UV intensity is attributed to the surface

  2. Effect of Co doping concentration on structural properties and optical parameters of Co-doped ZnO thin films by sol-gel dip-coating method.

    PubMed

    Nam, Giwoong; Yoon, Hyunsik; Kim, Byunggu; Lee, Dong-Yul; Kim, Jong Su; Leem, Jae-Young

    2014-11-01

    The structural and optical properties of Co-doped ZnO thin films prepared by a sol-gel dip-coating method were investigated. X-ray diffraction analysis showed that the thin films were grown with a c-axis preferred orientation. The position of the (002) peak was almost the same in all samples, irrespective of the Co concentration. It is thus clear that Co doping had little effect on the position of the (002) peak. To confirm that Co2+ was substituted for Zn2+ in the wurtzite structure, optical measurements were conducted at room temperature by a UV-visible spectrometer. Three absorption peaks are apparent in the Co-doped ZnO thin films that do not appear for the undoped ZnO thin film. As the Co concentration was increased, absorption related to characteristic Co2+ transitions increased because three absorption band intensities and the area underneath the absorption wells between 500 and 700 nm increased with increasing Co concentration. The optical band gap and static dielectric constant decreased and the Urbach energy and extinction coefficient increased with increasing Co concentration.

  3. Factors affecting color strength of printing on film-coated tablets by UV laser irradiation: TiO2 particle size, crystal structure, or concentration in the film, and the irradiated UV laser power.

    PubMed

    Hosokawa, Akihiro; Kato, Yoshiteru

    2011-08-01

    The purpose of this article is to study factors affecting color strength of printing on film-coated tablets by ultraviolet (UV) laser irradiation: particle size, crystal structure, or concentration of titanium dioxide (TiO2) in film, and irradiated UV laser power. Hydroxypropylmethylcellulose films containing 4.0% of TiO2, of which BET particle sizes were ranging from 126.1 to 219.8 nm, were irradiated 3.14W of UV laser at a wavelength 355 nm to study effects of TiO2 particle size and crystal structure on the printing. The films containing TiO2 concentration ranging from 1.0 to 7.7% were irradiated 3.14 or 5.39W of the UV laser to study effect of TiO2 concentration on the printing. The film containing 4.0% of TiO2, was irradiated the UV laser up to 6.42W to study effect of the UV laser power on the printing. The color strength of the printed films was estimated by a spectrophotometer as total color difference (dE). Particle size, crystal structure, and concentration of TiO2 in the films did not affect the printing. In the relationship between the irradiated UV laser power and dE, there found an inflection point (1.6W). When the UV laser power was below 1.6W, the films were not printed. When it was beyond the point, total color difference increased linearly in proportion with the irradiated laser power. The color strength of the printing on film was not changed by TiO2 particle size, crystal structure, and concentration, but could be controlled by regulating the irradiated UV laser power beyond the inflection point.

  4. Development of TDLAS sensor for diagnostics of CO, H2O and soot concentrations in reactor core of pilot-scale gasifier

    NASA Astrophysics Data System (ADS)

    Sepman, A.; Ögren, Y.; Gullberg, M.; Wiinikka, H.

    2016-02-01

    This paper reports on the development of the tunable diode laser absorption spectroscopy sensor near 4350 cm-1 (2298 nm) for measurements of CO and H2O mole fractions and soot volume fraction under gasification conditions. Due to careful selection of the molecular transitions [CO ( υ″ = 0 → υ' = 2) R34-R36 and H2O at 4349.337 cm-1], a very weak (negligible) sensitivity of the measured species mole fractions to the temperature distribution inside the high-temperature zone (1000 K < T < 1900 K) of the gasification process is achieved. The selected transitions are covered by the tuning range of single diode laser. The CO and H2O concentrations measured in flat flames generally agree better than 10 % with the results of 1-D flame simulations. Calibration-free absorption measurements of studied species in the reactor core of atmospheric pilot-scale entrained-flow gasifier operated at 0.1 MW power are reported. Soot concentration is determined from the measured broadband transmittance. The estimated uncertainties in the reactor core CO and H2O measurements are 15 and 20 %, respectively. The reactor core average path CO mole fractions are in quantitative agreement with the µGC CO concentrations sampled at the gasifier output.

  5. Magnetoresistance of oxygen concentration-modulated Co-Ti-O films

    NASA Astrophysics Data System (ADS)

    Nakano, Masatoshi; Wan, Fuxing; Wang, Jian; Sannomiya, Takumi; Muraishi, Shinji; Harumoto, Takashi; Nakamura, Yoshio; Shi, Ji

    2018-06-01

    Co-Ti-O films have been prepared by a sputtering method in an Ar- and O2-mixed atmosphere. The O2 flow rate was modulated during the deposition to optimize the oxygen concentration and the microstructure of the films. For the as-deposited film, negligible magnetization and magnetoresistance (MR) were observed. The structure of the layers with lower O2 flow rate is basically amorphous alloy with Ti-O and Co-Ti bonds. On the other hand, in the layers with high O2 flow rate, both Ti and Co are oxidized. Upon thermal annealing in a vacuum, significant enhancements in both magnetization and MR in Co-Ti-O films were observed. It is found that granular structure of Co particles embedded in insulating TiO2 matrix is formed due to the oxygen diffusion and further oxidization of Ti as a result of the heat treatment. The significantly enhanced magnetization and MR ratio have been ascribed to the formation of nano-sized Co particles and the tunneling conduction between these Co particles across the TiO2 interlayers, respectively.

  6. Site Occupancies, Luminescence, and Thermometric Properties of LiY9(SiO4)6O2:Ce3+ Phosphors.

    PubMed

    Zhou, Weijie; Pan, Fengjuan; Zhou, Lei; Hou, Dejian; Huang, Yan; Tao, Ye; Liang, Hongbin

    2016-10-04

    In this work, we report the tunable emission properties of Ce 3+ in an apatite-type LiY 9 (SiO 4 ) 6 O 2 compound via adjusting the doping concentration or temperature. The occupancies of Ce 3+ ions at two different sites (Wyckoff 6h and 4f sites) in LiY 9 (SiO 4 ) 6 O 2 have been determined by Rietveld refinements. Two kinds of Ce 3+ f-d transitions have been studied in detail and then assigned to certain sites. The effects of temperature and doping concentration on Ce 3+ luminescence properties have been systematically investigated. It is found that the Ce 3+ ions prefer occupying Wyckoff 6h sites and the energy transfer between Ce 3+ at two sites becomes more efficient with an increase in doping concentration. In addition, the charge-transfer vibronic exciton (CTVE) induced by the existence of free oxygen ion plays an important role in the thermal quenching of Ce 3+ at 6h sites. Because of the tunable emissions from cyan to blue with increasing temperature, the phosphors LiY 9 (SiO 4 ) 6 O 2 :Ce 3+ are endowed with possible thermometric applications.

  7. Phase equilibria in the UO 2-PuO 2 system under a temperature gradient

    NASA Astrophysics Data System (ADS)

    Kleykamp, Heiko

    2001-04-01

    The phase behaviour of U 0.80Pu 0.20O 1.95 was investigated under a steady-state temperature gradient between the solidus and liquidus by a short-time power-to-melt irradiation experiment. The radial U, Pu, Am and O profiles in the fuel pin after redistribution were measured by X-ray microanalysis. During irradiation, an inner fuel melt forms which is separated from the outer solid only by one concentric liquid-solid-phase boundary. The UO 2 concentration increases to 85% and the PuO 2 concentration decreases to 15% on the solid side of the interface. Opposite gradients occur on the liquid side of the interface. The concentration discontinuity is a consequence of the necessary equality of the chemical potentials of UO 2 and PuO 2 on both sides of the phase boundary which corresponds to a 2750°C isotherm. The radial oxygen profile results in an O/(U + Pu) ratio of 2.00 at the fuel surface and 1.92 at the central void of the fuel. The redistribution is caused by the thermal diffusion of oxygen vacancies in the lattice along the temperature gradient. This process is quantified by the heat of transport Q*v which ranges between -10 kJ/mol at the central void and about -230 kJ/mol near the fuel surface.

  8. Moderate exercise increases endotoxin concentration in hypoxia but not in normoxia: A controlled clinical trial.

    PubMed

    Machado, Paola; Caris, Aline; Santos, Samile; Silva, Edgar; Oyama, Lila; Tufik, Sergio; Santos, Ronaldo

    2017-01-01

    Hypoxia and high altitudes affect various organs, which impairs important physiological functions, such as a disruption of the intestinal barrier mediated by increased translocation of bacteria and increased circulating endotoxin levels. Physical exercise can alter endotoxin concentration in normoxia. The aim of this study is to evaluate the effects of moderate exercise on endotoxin concentration in normobaric hypoxia. Nine healthy male volunteers exercised on a treadmill for 60 minutes at an intensity of 50% VO2peak in normoxic or hypoxic conditions (4200 m). Blood was collected at rest, immediately after exercise and 1 hour after exercise to evaluate serum endotoxin levels. Under hypoxic exercise conditions, SaO2% saturation was lower after exercise compared with resting levels (P < 0.05) and returned to the resting level during recovery in normoxia (P < 0.05). Endotoxin concentration increased after exercise in hypoxia (P < 0.05); it remained high 1 hour after exercise in hypoxia compared with normoxia (P < 0.05) and was higher after exercise and recovery compared with resting levels (P < 0.05). HR was higher during exercise in relation basal in both conditions (P < 0.05) and RPR increase after 60 minutes in comparison to 20 minutes in hypoxia (P < 0.05). Moderate exercise performed in hypoxia equivalent to 4200 m increased endotoxin plasma concentration after exercise. One hour of rest in normoxic conditions was insufficient for the recovery of circulating endotoxins.

  9. Hypothyroidism leads to increased dopamine receptor sensitivity and concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocker, A.D.; Overstreet, D.H.; Crocker, J.M.

    1986-06-01

    Rats treated with iodine-131 were confirmed to be hypothyroid by their reduced baseline core body temperatures, reduced serum thyroxine concentrations and elevated serum thyroid stimulating hormone concentrations. When hypothyroid rats were compared to euthyroid controls they were more sensitive to the effects of apomorphine (1.0 mumol/kg) on stereotypy, operant responding and body temperature and showed a smaller reduction in locomotor activity after injection of haloperidol (0.25 mumol/kg). Receptor binding studies on striatal homogenates indicated that hypothyroid rats had increased concentrations of D2 dopamine receptors but there was no change in the affinity. It is concluded that hypothyroidism increases dopamine receptormore » sensitivity by increasing receptor concentration.« less

  10. Passivation of phosphorus diffused silicon surfaces with Al2O3: Influence of surface doping concentration and thermal activation treatments

    NASA Astrophysics Data System (ADS)

    Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.

    2014-12-01

    Thin layers of Al2O3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p+ emitters, due to a high density of fixed negative charges. Recent results indicate that Al2O3 can also provide a good passivation of certain phosphorus-diffused n+ c-Si surfaces. In this work, we studied the recombination at Al2O3 passivated n+ surfaces theoretically with device simulations and experimentally for Al2O3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al2O3 interface. This pronounced maximum was also observed experimentally for n+ surfaces passivated either with Al2O3 single layers or stacks of Al2O3 capped by SiNx, when activated with a low temperature anneal (425 °C). In contrast, for Al2O3/SiNx stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n+ diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al2O3/SiNx stacks can provide not only excellent passivation on p+ surfaces but also on n+ surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.

  11. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria.

    PubMed

    Kim, Byunghoon; Kim, Dohwan; Cho, Donglyun; Cho, Sungyong

    2003-07-01

    Titanium dioxide (TiO(2)) photocatalysts have attracted great attention as a material for photocatalytic sterilization in the food and environmental industry. This research aimed to design a new photobioreactor and its application to sterilize selected food borne pathogenic bacteria, Salmonella choleraesuis subsp., Vibrio parahaemolyticus, and Listeria monocytogenes. The photocatalytic reaction was carried out with various TiO(2) concentrations and Ultraviolet (UV) illumination time. A feasible synergistic effect was found that the bactericidal effect of TiO(2) on all bacterial suspension after UV light irradiation was much higher than that of without TiO(2). As the concentration of TiO(2) increased to 1.0 mg/ml, bactericidal effect increased. However, the bactericidal effect was rapidly abbreviated at TiO(2) concentration higher than 1.25 mg/ml to all selected bacteria. UV illumination time affected drastically the viability of all bacteria with different death rate. Similar trends were obtained from S. choleraesuis subsp. and V. parahaemolyticus that their complete killing was achieved after 3 h of illumination. However, L. monocytogenes was more resistant and its death ratio was about 87% at that time.

  12. Adsorption of Cd2+ ions on plant mediated SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Haq, Sirajul; Rehman, Wajid; Waseem, Muhammad; Shahid, Muhammad; Mahfooz-ur-Rehman; Hussain Shah, Khizar; Nawaz, Mohsan

    2016-10-01

    Plant mediated SnO2 nanoparticles were synthesized by using SnCl4.5H2O as a precursor material. The nanoparticles were then characterized for BET surface area measurements, energy dispersive x-rays (EDX), scanning electron microscopy (SEM), UV-vis diffuse reflectance (DRS) spectra and x-rays diffraction (XRD) analysis. The successful synthesis of SnO2 nanoparticles was confirmed by EDX analysis. The particle sizes were in the range 19-27 nm whereas the crystallite size computed from XRD measurement was found to be 19.9 nm. Batch adsorption technique was employed for the removal of Cd2+ ions from aqueous solution. The sorption studies of Cd2+ ions were performed at pHs 4 and 6. The equilibrium concentration of Cd2+ ions was determined by atomic absorption spectrometer (flame mode). The uptake of Cd2+ ions was affected by initial concentration, pH and temperature of the electrolytic solution. It was observed that the adsorption of Cd2+ ions enhanced with increase in the initial concentration of Cd2+ ions whereas a decrease in the percent adsorption was detected. From the thermodynamic parameters, the adsorption process was found spontaneous and endothermic in nature. The n values confirmed 2:1 exchange mechanism between surface protons and Cd2+ ions.

  13. [Photophysical properties of poly (2-methoxy-5-octyloxy)-p-phenylene vinylene/TiO2 nano-composites].

    PubMed

    Sun, Jian-ping; Weng, Jia-bao; Cheng, Yun-tao; Lin, Ting; Huang, Xiao-zhu

    2008-12-01

    The photoelectric composites of poly (2-methoxy-5-octyloxy)-p-phenylene vinylene/nanometer TiO2 (PMOCOPV/ TiO2) with different nanometer TiOz amount were synthesized through dehydrochlorination in-situ polymerization. The results of Fourier transform infrared spectroscopy and Raman spectroscopy indicated that the surface of nanometer TiO2 was coated with PMOCOPV. UV-Vis spectrum showed that the absorption of PMOCOPV/TiO2 nano-composites was strengthened in the range of violet and visible light with the contents of TiO2 increasing. The composite dimensions were observed by highly resolution transmission electron microscope, PMOCOPV/TiO2 nano-composites dispersed uniformly and possessed core-shell structure, the diameter of PMOCOPV/TiO2 was measured to be about 30 nm, and the thickness of the PMOCOPV coating was about 8-10 nm. Photoluminescence spectroscopy indicated that the maximum emission wavelength of the PMOCOPV/TiO2 was red-shifted with increasing TiO2 concentration. The fluorescence lifetime of PMOCOPV/TiO2 was about 1 ns. The intensity and lifetime of fluorescence was increased remarkably with the contents of TiO2 increasing. The mechanism of the strengthened fluorescence quantum efficiency and fluorescence intensity of PMOCOPV/TiO2 was investigated through the charge transfer, exciton dissociation and potential energy in PMOCOPV/TiO2 nano-composites.

  14. Effects of Irradiation Dose and O2 and CO2 Concentrations in Packages on Foodborne Pathogenic Bacteria and Quality of Ready-to-Cook Seasoned Ground Beef Product (Meatball) during Refrigerated Storage

    PubMed Central

    Gunes, Gurbuz; Yilmaz, Neriman; Ozturk, Aylin

    2012-01-01

    Combined effects of gamma irradiation and concentrations of O2 (0, 5, 21%) and CO2 (0, 50%) on survival of Escherichia coli O157:H7, Salmonella enteritidis, Listeria monocytogenes, lipid oxidation, and color changes in ready-to-cook seasoned ground beef (meatball) during refrigerated storage were investigated. Ground beef seasoned with mixed spices was packaged in varying O2 and CO2 levels and irradiated at 2 and 4 kGy. Irradiation (4 kGy) caused about 6 Log inactivation of the inoculated pathogens. Inactivation of Salmonella was 0.9- and 0.4-Log lower in 0 and 5% O2, respectively, compared to 21% O2. Irradiation at 2 and 4 kGy increased thiobarbituric acid reactive substances in meatballs by 0.12 and 0.28 mg malondialdehyde kg−1, respectively, compared to control. In reduced-O2 packages, radiation-induced oxidation was lower, and the initial color of an irradiated sample was maintained. Packaging with 0% + 50% CO2 or 5% O2 + 50% CO2 maintained the oxidative and the color quality of irradiated meatballs during 14-day refrigerated storage. MAP with 5%O2 + 50% CO2 combined with irradiation up to 4 kGy is suggested for refrigerated meatballs to reduce the foodborne pathogen risk and to maintain the quality. PMID:22566763

  15. Effects of irradiation dose and O(2) and CO(2) concentrations in packages on foodborne pathogenic bacteria and quality of ready-to-cook seasoned ground beef product (meatball) during refrigerated storage.

    PubMed

    Gunes, Gurbuz; Yilmaz, Neriman; Ozturk, Aylin

    2012-01-01

    Combined effects of gamma irradiation and concentrations of O(2) (0, 5, 21%) and CO(2) (0, 50%) on survival of Escherichia coli O157:H7, Salmonella enteritidis, Listeria monocytogenes, lipid oxidation, and color changes in ready-to-cook seasoned ground beef (meatball) during refrigerated storage were investigated. Ground beef seasoned with mixed spices was packaged in varying O(2) and CO(2) levels and irradiated at 2 and 4 kGy. Irradiation (4 kGy) caused about 6 Log inactivation of the inoculated pathogens. Inactivation of Salmonella was 0.9- and 0.4-Log lower in 0 and 5% O(2), respectively, compared to 21% O(2). Irradiation at 2 and 4 kGy increased thiobarbituric acid reactive substances in meatballs by 0.12 and 0.28 mg malondialdehyde kg(-1), respectively, compared to control. In reduced-O(2) packages, radiation-induced oxidation was lower, and the initial color of an irradiated sample was maintained. Packaging with 0% + 50% CO(2) or 5% O(2) + 50% CO(2) maintained the oxidative and the color quality of irradiated meatballs during 14-day refrigerated storage. MAP with 5%O(2) + 50% CO(2) combined with irradiation up to 4 kGy is suggested for refrigerated meatballs to reduce the foodborne pathogen risk and to maintain the quality.

  16. Chemical trend of superconducting transition temperature in hole-doped delafossite of CuAlO2, AgAlO2 and AuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-12-01

    We have performed the first-principles calculations about the superconducting transition temperature Tc of hole-doped delafossite CuAlO2, AgAlO2 and AuAlO2. Calculated Tc are about 50 K (CuAlO2), 40 K (AgAlO2) and 3 K(AuAlO2) at maximum in the optimum hole-doping concentration. The low Tc of AuAlO2 is attributed to the weak electron-phonon interaction caused by the low covalency and heavy atomic mass.

  17. Quantitative analysis of hydrogen in SiO{sub 2}/SiN/SiO{sub 2} stacks using atom probe tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunimune, Yorinobu, E-mail: yorinobu.kunimune.vz@renesas.com; Shimada, Yasuhiro; Sakurai, Yusuke

    2016-04-15

    We have demonstrated that it is possible to reproducibly quantify hydrogen concentration in the SiN layer of a SiO{sub 2}/SiN/SiO{sub 2} (ONO) stack structure using ultraviolet laser-assisted atom probe tomography (APT). The concentration of hydrogen atoms detected using APT increased gradually during the analysis, which could be explained by the effect of hydrogen adsorption from residual gas in the vacuum chamber onto the specimen surface. The amount of adsorbed hydrogen in the SiN layer was estimated by analyzing another SiN layer with an extremely low hydrogen concentration (<0.2 at. %). Thus, by subtracting the concentration of adsorbed hydrogen, the actualmore » hydrogen concentration in the SiN layer was quantified as approximately 1.0 at. %. This result was consistent with that obtained by elastic recoil detection analysis (ERDA), which confirmed the accuracy of the APT quantification. The present results indicate that APT enables the imaging of the three-dimensional distribution of hydrogen atoms in actual devices at a sub-nanometer scale.« less

  18. The natural greenhouse effect of atmospheric oxygen (O2) and nitrogen (N2)

    NASA Astrophysics Data System (ADS)

    Höpfner, M.; Milz, M.; Buehler, S.; Orphal, J.; Stiller, G.

    2012-05-01

    The effect of collision-induced absorption by molecular oxygen (O2) and nitrogen (N2) on the outgoing longwave radiation (OLR) of the Earth's atmosphere has been quantified. We have found that on global average under clear-sky conditions the OLR is reduced due to O2 by 0.11 Wm-2 and due to N2 by 0.17 Wm-2. Together this amounts to 15% of the OLR-reduction caused by CH4 at present atmospheric concentrations. Over Antarctica the combined effect of O2 and N2 increases on average to about 38% of CH4 with single values reaching up to 80%. This is explained by less interference of H2O spectral bands on the absorption features of O2 and N2 for dry atmospheric conditions.

  19. Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels.

    PubMed

    Schiavo, S; Oliviero, M; Miglietta, M; Rametta, G; Manzo, S

    2016-04-15

    The increasing use of oxide nanoparticles (NPs) in commercial products has intensified the potential release into the aquatic environment where algae represent the basis of the trophic chain. NP effects upon algae population growth were indeed already reported in literature, but the concurrent effects at cellular and genomic levels are still largely unexplored. Our work investigates the genotoxic (by COMET assay) and cytotoxic effects (by qualitative ROS production and cell viability) of ZnO nanoparticles toward marine microalgae Dunaliella tertiolecta. A comparison at defined population growth inhibition levels (i.e. 50% Effect Concentration, EC50, and No Observed Effect Concentration, NOEC) with SiO2 and TiO2 genotoxic effects and previously investigated cytotoxic effects (Manzo et al., 2015) was performed in order to elucidate the possible diverse mechanisms leading to algae growth inhibition. After 72h exposure, ZnO particles act firstly at the level of cell division inhibition (EC50: 2mg Zn/L) while the genotoxic action is evident only starting from 5mg Zn/L. This outcome could be ascribable mainly to the release of toxic ions from the aggregate of ZnO particle in the proximity of cell membrane. In the main, at EC50 and NOEC values for ZnO NPs showed the lowest cytotoxic and genotoxic effect with respect to TiO2 and SiO2. Based on Mutagenic Index (MI) the rank of toxicity is actually: TiO2>SiO2>ZnO with TiO2 and SiO2 that showed similar MI values at both NOEC and EC50 concentrations. The results presented herein suggest that up to TiO2 NOEC (7.5mg/L), the algae DNA repair mechanism is efficient and the DNA damage does not result in an evident algae population growth inhibition. A similar trend for SiO2, although at lower effect level with respect to TiO2, is observable. The comparison among all the tested nanomaterial toxicity patterns highlighted that the algae population growth inhibition occurred through pathways specific for each NP also related to their

  20. CeO2-CuO/Cu2O/Cu monolithic catalysts with three-kind morphologies Cu2O layers for preferential CO oxidation

    NASA Astrophysics Data System (ADS)

    Jing, Guojuan; Zhang, Xuejiao; Zhang, Aiai; Li, Meng; Zeng, Shanghong; Xu, Changjin; Su, Haiquan

    2018-03-01

    The supports of copper slices with three-kind morphologies Cu2O layers were prepared by the hydrothermal method. The Cu2O layers are rod-like structure, three-dimensional reticular and porous morphology as well as flower-like morphology, respectively. The CeO2-CuO/Cu2O/Cu monolithic catalysts present porous and network structure or foam morphology after loading CeO2 and CuO. Cu and Ce elements are uniformly dispersed onto the support surface. It is found that the monolithic catalyst with flower-like Cu2O layer displays better low-temperature activity because of highly-dispersed CuO and high Olatt concentration. The monolithic catalysts with rod-like or reticular-morphology Cu2O layers present high-temperature activity due to larger CuO crystallite sizes and good synergistic effect at copper-ceria interfacial sites. The as-prepared CeO2-CuO/Cu2O/Cu monolithic catalysts show good performance in the CO-PROX reaction. The generation of Cu2O layers with three-kind morphologies is beneficial to the loading and dispersion of copper oxides and ceria.

  1. Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO2 on the reduction rates of stearic acid on Ni/ZrO2.

    PubMed

    Foraita, Sebastian; Fulton, John L; Chase, Zizwe A; Vjunov, Aleksei; Xu, Pinghong; Baráth, Eszter; Camaioni, Donald M; Zhao, Chen; Lercher, Johannes A

    2015-02-02

    The role of the specific physicochemical properties of ZrO2 phases on Ni/ZrO2 has been explored with respect to the reduction of stearic acid. Conversion on pure m-ZrO2 is 1.3 times more active than on t-ZrO2 , whereas Ni/m-ZrO2 is three times more active than Ni/t-ZrO2 . Although the hydrodeoxygenation of stearic acid can be catalyzed solely by Ni, the synergistic interaction between Ni and the ZrO2 support causes the variations in the reaction rates. Adsorption of the carboxylic acid group on an oxygen vacancy of ZrO2 and the abstraction of the α-hydrogen atom with the elimination of the oxygen atom to produce a ketene is the key to enhance the overall rate. The hydrogenated intermediate 1-octadecanol is in turn decarbonylated to heptadecane with identical rates on all catalysts. Decarbonylation of 1-octadecanol is concluded to be limited by the competitive adsorption of reactants and intermediate. The substantially higher adsorption of propionic acid demonstrated by IR spectroscopy and the higher reactivity to O2 exchange reactions with the more active catalyst indicate that the higher concentration of active oxygen defects on m-ZrO2 compared to t-ZrO2 causes the higher activity of Ni/m-ZrO2 . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. ZnO, TiO(2), SiO(2,) and Al(2)O(3) nanoparticles-induced toxic effects on human fetal lung fibroblasts.

    PubMed

    Zhang, Xiao Qiang; Yin, Li Hong; Tang, Meng; Pu, Yue Pu

    2011-12-01

    This study aims to investigate and compare the toxic effects of four types of metal oxide (ZnO, TiO(2), SiO(2,) and Al(2)O(3)) nanoparticles with similar primary size (∼20 nm) on human fetal lung fibroblasts (HFL1) in vitro. The HFL1 cells were exposed to the nanoparticles, and toxic effects were analyzed by using MTT assay, cellular morphology observation and Hoechst 33 258 staining. The results show that the four types of metal oxide nanoparticles lead to cellular mitochondrial dysfunction, morphological modifications and apoptosis at the concentration range of 0.25-1.50 mg/mL and the toxic effects are obviously displayed in dose-dependent manner. ZnO is the most toxic nanomaterials followed by TiO(2), SiO(2), and Al(2)O(3) nanoparticles in a descending order. The results highlight the differential cytotoxicity associated with exposure to ZnO, TiO(2), SiO(2), and Al(2)O(3) nanoparticles, and suggest an extreme attention to safety utilization of these nanomaterials. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  3. Parametric studies of diethyl phosphoramidate photocatalytic decomposition over TiO2.

    PubMed

    Sun, Bo; Vorontsov, Alexander V; Smirniotis, Panagiotis G

    2011-02-28

    The present study is focused on influences of parameters including pH, temperature, TiO(2) catalyst concentration, and reactant concentration on the rate of photocatalytic diethyl phosphoramidate (DEPA) decomposition with Hombikat UV 100 (HK) and Degussa P25 (P25) TiO(2). Total mineralization of DEPA is observed. Two regimes of pH, namely in acid and near-neutral environments were found where maximum total carbon (TC) decomposition was observed. The electrostatic effects on adsorption over the TiO(2) surface explain the above phenomena. The maximum rate is observed for P25 at DEPA concentration 1.3 mM whereas the rate grows continuously with DEPA concentration rise for HK. The temperature dependence of TC decomposition rate in the range of 15-63°C with both HK and P25 follows the Arrhenius equation. The activation energy for total carbon decomposition with HK and P25 are 29.5±1.0 and 24.3±3.1 kJ/mol, respectively. The decomposition rate of DEPA is larger over P25 than over HK. The rate over P25 increases faster than that with HK for each unit of the titania added when the TiO(2) concentration is less than 375 mg/l. The higher light absorption and particles aggregation of P25 are responsible for the decrease of reaction rate we observed at catalyst concentration above a certain level. In contrast, the rate over HK increases monotonically with the concentration of the photocatalyst used. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. A clinical evaluation comparing two H2O2 concentrations used with a light-assisted chairside tooth whitening system.

    PubMed

    Ward, Marilyn; Felix, Heather

    2012-04-01

    The purpose of this study was to assess the efficacy of two different BriteSmile hydrogen peroxide (H2O2) gels in a split-arch protocol for whitening teeth in a clinical setting when used in conjunction with a BriteSmile BS4000 lamp. Fifteen subjects were enrolled into a single-center clinical trial. The efficacy of the BriteSmile BS4000 lamp using both 15% H2O2 and 25% H2O2 gel formulations was tested. Study subjects were concurrently exposed to the whitening lamp with the 15% H2O2 gel placed on half of their anterior teeth and the 25% H2O2 gel on the other half for a total light and gel exposure of 60 minutes. The clinical data collected were shade score, gingival health, and dentinal hypersensitivity self-assessment. Changes in tooth shade were better for subjects exposed to the 25% gel and the dental whitening lamp (average 8.0 shade changes) compared to subjects exposed to the 15% gel and dental whitening lamp (average 7.6 shade changes) immediately after treatment. The same held true at the 7-day follow-up (25% gel average 7.4 shade changes versus 15% gel average 7.3 shade changes). However, these differences were not statistically significant. No reports of irritation of gingival soft tissues were documented. The relative changes in mean sensitivity scores were similar for both groups with no significant differences in mean sensitivity scores between the groups. Both concentrations of H2O2 gel and the whitening lamp combined gave study subjects an average of 8.0 (25% gel) and 7.6 (15% gel) shade changes immediately after treatment. The 7-day follow-up examination resulted in a regression of lightest to an average of 7.4 (25% gel) and 7.3 (15% gel). It was concluded that the use of the chairside whitening light and either 15% or 25% hydrogen peroxide gel is safe and effective for whitening teeth in 1 hour.

  5. Sol-gel preparation of self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective coating for solar glass

    NASA Astrophysics Data System (ADS)

    Lin, Wensheng; Zheng, Jiaxian; Yan, Lianghong; Zhang, Xinxiang

    2018-03-01

    Self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective (AR) coating is prepared by sol-gel process. SiO2 sol is prepared by using tetraethyl orthosilicate (TEOS) as precursor and ammonia as catalyst, while TiO2 sol was prepared by using tetrabutyl orthotitanate (TBOT) as precursor and hydrochloric acid as catalyst. The effect of TiO2 content on refractive index, abrasion-resistance and photo-catalytic activity of SiO2-TiO2 hybrid thin films or powders is systematically investigated. It is found that the refractive index of SiO2-TiO2 hybrid thin films increases gradually from 1.18 to 1.53 as the weight ratio of TiO2 to SiO2 increased from 0 to 1.0. The SiO2-TiO2 hybrid thin film and powder possesses good abrasion-resistance and photo-catalytic activity, respectively, as the weight ratio of TiO2 to SiO2 is 0.4. The degradation degree of Rhodamine B by SiO2-TiO2 hybrid powder is 88.3%. Finally, SiO2-TiO2/SiO2-TiO2 double-layer AR coating with high transmittance, abrasion-resistance and self-cleaning property is realized.

  6. Synthesis and characterization of binary ZnO-SnO2 (ZTO) thin films by e-beam evaporation technique

    NASA Astrophysics Data System (ADS)

    Bibi, Shagufta; Shah, A.; Mahmood, Arshad; Ali, Zahid; Raza, Qaisar; Aziz, Uzma; Haneef; Waheed, Abdul; Shah, Ziaullah

    2018-04-01

    The binary ZnO-SnO2 (ZTO) thin films with varying SnO2 concentrations (5, 10, 15, and 20 wt%) were grown on glass substrate by e-beam evaporation technique. The prepared ZTO films were annealed at 400 °C in air. These films were then characterized to investigate their structural, optical, and electrical properties as a function of SnO2 concentration. XRD analysis reveals that the crystallinity of the film decreases with the addition of SnO2 and it transforms to an amorphous structure at a composition of 40% SnO2 and 60% ZnO. Morphology of the films was examined by atomic force microscopy which points out that surface roughness of the films decreases with the increasing of SnO2 in the film. Optical properties such as optical transparency, band-gap energy, and optical constants of these films were examined by spectrophotometer and spectroscopic Ellipsometer. It was observed that the average optical transmission of mixed films improves with incorporation of SnO2. In addition, the band-gap energy of the films was determined to be in the range of 3.37-3.7 eV. Furthermore, it was found that the optical constants (n and k) decrease with the addition of SnO2. Similarly, it is observed that the electrical resistivity increases nonlinearly with the increase in SnO2 in ZnO-SnO2 thin films. However, it is noteworthy that the highest figure of merit (FOM) value, i.e., 55.87 × 10-5 Ω-1, is obtained for ZnO-SnO2 (ZTO) thin film with 40 wt% of SnO2 composition. Here, we suggest that ZnO-SnO2 (ZTO) thin film with composition of 60:40 wt% can be used as an efficient TCO film due to the improved transmission, and reduced RMS value and highest FOM value.

  7. A quantitative study of NF-kappaB activation by H2O2: relevance in inflammation and synergy with TNF-alpha.

    PubMed

    de Oliveira-Marques, Virgínia; Cyrne, Luísa; Marinho, H Susana; Antunes, Fernando

    2007-03-15

    Although the germicide role of H(2)O(2) released during inflammation is well established, a hypothetical regulatory function, either promoting or inhibiting inflammation, is still controversial. In particular, after 15 years of highly contradictory results it remains uncertain whether H(2)O(2) by itself activates NF-kappaB or if it stimulates or inhibits the activation of NF-kappaB by proinflammatory mediators. We investigated the role of H(2)O(2) in NF-kappaB activation using, for the first time, a calibrated and controlled method of H(2)O(2) delivery--the steady-state titration--in which cells are exposed to constant, low, and known concentrations of H(2)O(2). This technique contrasts with previously applied techniques, which disrupt cellular redox homeostasis and/or introduce uncertainties in the actual H(2)O(2) concentration to which cells are exposed. In both MCF-7 and HeLa cells, H(2)O(2) at extracellular concentrations up to 25 microM did not induce significantly per se NF-kappaB translocation to the nucleus, but it stimulated the translocation induced by TNF-alpha. For higher H(2)O(2) doses this stimulatory role shifts to an inhibition, which may explain published contradictory results. The stimulatory role was confirmed by the observation that 12.5 microM H(2)O(2), a concentration found during inflammation, increased the expression of several proinflammatory NF-kappaB-dependent genes induced by TNF-alpha (e.g., IL-8, MCP-1, TLR2, and TNF-alpha). The same low H(2)O(2) concentration also induced the anti-inflammatory gene coding for heme oxygenase-1 (HO-1) and IL-6. We propose that H(2)O(2) has a fine-tuning regulatory role, comprising both a proinflammatory control loop that increases pathogen removal and an anti-inflammatory control loop, which avoids an exacerbated harmful inflammatory response.

  8. Following 18O uptake in scCO2–H2O mixtures with Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windisch, Charles F.; Schaef, Herbert T.; Martin, Paul F.

    2012-03-01

    The kinetics of 18O/16O isotopic exchange in scCO2 containing liquid water was followed with Raman spectroscopy using a specially designed high-pressure optical cell. Characteristic bands from the C16O18O and C18O2 molecules were identified in the supercritical phase and measured in the spectra as a function of time after introducing liquid H218O into scC16O2. Temporal dependence indicated the isotopic exchange was diffusion-limited in our cell for both molecules, and that the chemical reactions within the liquid phase were comparatively rapid. However, the ratio of concentrations of the 18O-labeled CO2 molecules, C18O2/C16O18O, was much higher than expected in the supercritical phase, suggestingmore » the role of an intermediate step, possibly desorption, in moderating the concentrations of these species in the liquid water phase.« less

  9. SiO2 nanofluid planar jet impingement cooling on a convex heated plate

    NASA Astrophysics Data System (ADS)

    Asghari Lafmajani, Neda; Ebrahimi Bidhendi, Mahsa; Ashjaee, Mehdi

    2016-12-01

    The main objective of this paper is to investigate the heat transfer coefficient of a planar jet of SiO2 nanofluid that impinges vertically on the middle of a convex heated plate for cooling purposes. The planar jet issues from a rectangular slot nozzle. The convex aluminum plate has a thickness, width and length of 0.2, 40 and 130 mm, respectively, and is bent with a radius of 200 mm. A constant heat-flux condition is employed. 7 nm SiO2 particles are added to water to prepare the nanofluid with 0.1, 1 and 2 % (ml SiO2/ml H2O) concentrations. The tests are also performed at different Reynolds numbers from 1803 to 2782. Results indicate that adding the SiO2 nanoparticles can effectively increase both local and average heat transfer coefficients up to 39.37 and 32.78 %, respectively. These positive effects often are more pronounced with increasing Reynolds numbers. This enhancement increases with ascending the concentration of nanofluid, especially from 0.1 to 1 %.

  10. Cation and Vacancy Disorder in U 1-yNd yO 2.00-X Alloys

    DOE PAGES

    Barabash, Rozaliya I.; Voit, Stewart L.; Aidhy, Dilpuneet S.; ...

    2015-09-14

    In this study, the intermixing and clustering of U/Nd, O, and vacancies were studied by both laboratory and synchrotron-based x-ray diffraction in U 1-yNd yO 2-X alloys. It was found that an increased holding time at the high experimental temperature during initial alloy preparation results in a lower disorder of the Nd distribution in the alloys. Adjustment of the oxygen concentration in the U 1-yNd yO 2-X alloys with different Nd concentrations was accompanied by the formation of vacancies on the oxygen sublattice and a nanocrystalline component. The lattice parameters in the U 1-yNd yO 2-X alloys were also foundmore » to deviate significantly from Vegard's law when the Nd concentration was high (53%) and decreased with increasing oxygen concentration. Such changes indicate the formation of large vacancy concentrations during oxygen adjustment at these high temperatures. Finally, the change in the vacancy concentration after the oxygen adjustment was estimated relative to Nd concentration and oxygen stoichiometry.« less

  11. Hydrogen Sensor Based on Pd/GeO{sub 2} Using a Low Cost Electrochemical Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jawad, M. J.; Hashim, M. R.; Ali, N. K.

    2011-05-25

    This work reports on a synthesis of sub micron germanium dioxide (GeO{sub 2}) on porous silicon (PS) by electrochemical deposition. n-type Si (100) wafer was used to fabricate (PS) using conventional method of electrochemical etching in HF based solution. A GeCl{sub 4} was directly hydrolyzed by hydrogen peroxide to produce pure GeO{sub 2}, and then electrochemically deposited on PS. Followed by palladium (Pd) contact on GeO{sub 2} /PS was achieved by using RF sputtering technique. The grown GeO{sub 2} crystals were characterized using SEM and EDX. I-V characteristics of Pd/ GeO{sub 2} were recorded before and after hydrogen gas exposuremore » as well as with different H{sub 2} concentrations and different applied temperatures. The sensitivity of Pd/ GeO{sub 2} also has been investigated it could be seen to increase significantly with increased hydrogen concentration while it decreased with increase temperature.« less

  12. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.

    PubMed

    Smith, Alexander M; Lee, Alpha A; Perkin, Susan

    2016-06-16

    According to classical electrolyte theories interactions in dilute (low ion density) electrolytes decay exponentially with distance, with the Debye screening length the characteristic length scale. This decay length decreases monotonically with increasing ion concentration due to effective screening of charges over short distances. Thus, within the Debye model no long-range forces are expected in concentrated electrolytes. Here we reveal, using experimental detection of the interaction between two planar charged surfaces across a wide range of electrolytes, that beyond the dilute (Debye-Hückel) regime the screening length increases with increasing concentration. The screening lengths for all electrolytes studied-including aqueous NaCl solutions, ionic liquids diluted with propylene carbonate, and pure ionic liquids-collapse onto a single curve when scaled by the dielectric constant. This nonmonotonic variation of the screening length with concentration, and its generality across ionic liquids and aqueous salt solutions, demonstrates an important characteristic of concentrated electrolytes of substantial relevance from biology to energy storage.

  13. Effect of Na2O on Crystallisation Behaviour and Heat Transfer of Fluorine-Free Mould Fluxes

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang; Kashiwaya, Yoshiaki

    Most of the commercial mould fluxes contain fluorides which bring about serious environmental problems. The major challenge in the application of fluorine-free mould fluxes is to control the heat transfer from the strand to copper mould which is closely related to crystallisation behaviour. In this study, the effects of Na2O on the crystallisation behaviour and heat transfer of CaO-SiO2-Na2O-B2O3-TiO2-Al2O3-MgO-Li2O mould fluxes were investigated using single /double hot thermocouple technique (SHTT/DHTT) and infrared emitter technique (IET), respectively. Continuous cooling transformation (CCT) and time-temperature transformation (TTT) diagrams constructed using SHTT showed that the increase of Na2O concentration led to higher critical cooling rate and shorter incubation time. The crystallisation behaviour in a thermal gradient was examined using DHTT. The heat flux measured by IET showed that the increase of Na2O concentration decreased the heat flux when Na2O was lower than 9 mass% but the further increase of Na2O raised the heat flux. The relationship between flux crystallisation and heat transfer was also discussed.

  14. An insight into the origin of room-temperature ferromagnetism in SnO2 and Mn-doped SnO2 quantum dots: an experimental and DFT approach.

    PubMed

    Manikandan, Dhamodaran; Boukhvalov, D W; Amirthapandian, S; Zhidkov, I S; Kukharenko, A I; Cholakh, S O; Kurmaev, E Z; Murugan, Ramaswamy

    2018-02-28

    SnO 2 and Mn-doped SnO 2 single-phase tetragonal crystal structure quantum dots (QDs) of uniform size with control over dopant composition and microstructure were synthesized using the high pressure microwave synthesis technique. On a broader vision, we systematically investigated the influence of dilute Mn ions in SnO 2 under the strong quantum confinement regime through various experimental techniques and density functional theoretical (DFT) calculations to disclose the physical mechanism governing the observed ferromagnetism. DFT calculations revealed that the formation of the stable (001) surface was much more energetically favorable than that of the (100) surface, and the formation energy of the oxygen vacancies in the stable (001) surface was comparatively higher in the undoped SnO 2 QDs. X-ray photoelectron spectroscopy (XPS) and first-principles modeling of doped QDs revealed that the lower doping concentration of Mn favored the formation of MnO-like (Mn 2+ ) structures in defect-rich areas and the higher doping concentration of Mn led to the formation of multiple configurations of Mn (Mn 2+ and Mn 3+ ) in the stable surfaces of SnO 2 QDs. Electronic absorption spectra indicated the characteristic spin allowed ligand field transitions of Mn 2+ and Mn 3+ and the red shift in the band gap. DFT calculations clearly indicated that only the substitutional dopant antiferromagnetic configurations were more energetically favorable. The gradual increase of magnetization at a low level of Mn-doping could be explained by the prevalence of antiferromagnetic manganese-vacancy pairs. Higher concentrations of Mn led to the appearance of ferromagnetic interactions between manganese and oxygen vacancies. The increase in the concentration of metallic dopants caused not just an increase in the total magnetic moment of the system but also changed the magnetic interactions between the magnetic moments on the metal ions and oxygen. The present study provides new insight into the

  15. Oxygenic photosynthesis as a protection mechanism for cyanobacteria against iron-encrustation in environments with high Fe2+ concentrations

    PubMed Central

    Ionescu, Danny; Buchmann, Bettina; Heim, Christine; Häusler, Stefan; de Beer, Dirk; Polerecky, Lubos

    2014-01-01

    If O2 is available at circumneutral pH, Fe2+ is rapidly oxidized to Fe3+, which precipitates as FeO(OH). Neutrophilic iron oxidizing bacteria have evolved mechanisms to prevent self-encrustation in iron. Hitherto, no mechanism has been proposed for cyanobacteria from Fe2+-rich environments; these produce O2 but are seldom found encrusted in iron. We used two sets of illuminated reactors connected to two groundwater aquifers with different Fe2+ concentrations (0.9 μM vs. 26 μM) in the Äspö Hard Rock Laboratory (HRL), Sweden. Cyanobacterial biofilms developed in all reactors and were phylogenetically different between the reactors. Unexpectedly, cyanobacteria growing in the Fe2+-poor reactors were encrusted in iron, whereas those in the Fe2+-rich reactors were not. In-situ microsensor measurements showed that O2 concentrations and pH near the surface of the cyanobacterial biofilms from the Fe2+-rich reactors were much higher than in the overlying water. This was not the case for the biofilms growing at low Fe2+ concentrations. Measurements with enrichment cultures showed that cyanobacteria from the Fe2+-rich environment increased their photosynthesis with increasing Fe2+ concentrations, whereas those from the low Fe2+ environment were inhibited at Fe2+ > 5 μM. Modeling based on in-situ O2 and pH profiles showed that cyanobacteria from the Fe2+-rich reactor were not exposed to significant Fe2+ concentrations. We propose that, due to limited mass transfer, high photosynthetic activity in Fe2+-rich environments forms a protective zone where Fe2+ precipitates abiotically at a non-lethal distance from the cyanobacteria. This mechanism sheds new light on the possible role of cyanobacteria in precipitation of banded iron formations. PMID:25228899

  16. Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation.

    PubMed

    Zhao, Lijuan; Peng, Bo; Hernandez-Viezcas, Jose A; Rico, Cyren; Sun, Youping; Peralta-Videa, Jose R; Tang, Xiaolei; Niu, Genhua; Jin, Lixin; Varela-Ramirez, Armando; Zhang, Jian-ying; Gardea-Torresdey, Jorge L

    2012-11-27

    The rapid development of nanotechnology will inevitably release nanoparticles (NPs) into the environment with unidentified consequences. In addition, the potential toxicity of CeO(2) NPs to plants and the possible transfer into the food chain are still unknown. Corn plants (Zea mays) were germinated and grown in soil treated with CeO(2) NPs at 400 or 800 mg/kg. Stress-related parameters, such as H(2)O(2), catalase (CAT), and ascorbate peroxidase (APX) activity, heat shock protein 70 (HSP70), lipid peroxidation, cell death, and leaf gas exchange were analyzed at 10, 15, and 20 days post-germination. Confocal laser scanning microscopy was used to image H(2)O(2) distribution in corn leaves. Results showed that the CeO(2) NP treatments increased accumulation of H(2)O(2), up to day 15, in phloem, xylem, bundle sheath cells and epidermal cells of shoots. The CAT and APX activities were also increased in the corn shoot, concomitant with the H(2)O(2) levels. Both 400 and 800 mg/kg CeO(2) NPs triggered the up-regulation of the HSP70 in roots, indicating a systemic stress response. None of the CeO(2) NPs increased the level of thiobarbituric acid reacting substances, indicating that no lipid peroxidation occurred. CeO(2) NPs, at both concentrations, did not induce ion leakage in either roots or shoots, suggesting that membrane integrity was not compromised. Leaf net photosynthetic rate, transpiration, and stomatal conductance were not affected by CeO(2) NPs. Our results suggest that the CAT, APX, and HSP70 might help the plants defend against CeO(2) NP-induced oxidative injury and survive NP exposure.

  17. Stress Response and Tolerance of Zea mays to CeO2 Nanoparticles: Cross Talk among H2O2, Heat Shock Protein and Lipid Peroxidation

    PubMed Central

    Zhao, Lijuan; Peng, Bo; Hernandez-Viezcas, Jose A.; Rico, Cyren; Sun, Youping; Peralta-Videa, Jose R.; Tang, Xiaolei; Niu, Genhua; Jin, Lixin; Varela-Ramirez, Armando; Zhang, Jian-ying; Gardea-Torresdey, Jorge L.

    2014-01-01

    The rapid development of nanotechnology will inevitably release nanoparticles (NPs) into the environment with unidentified consequences. In addition, the potential toxicity of CeO2 NPs to plants, and the possible transfer into the food chain, are still unknown. Corn plants (Zea mays) were germinated and grown in soil treated with CeO2 NPs at 400 or 800 mg/kg. Stress related parameters, such as: H2O2, catalase (CAT) and ascorbate peroxidase (APX) activity, heat shock protein 70 (HSP 70), lipid peroxidation, cell death and leaf gas exchange were analyzed at 10, 15, and 20 days post germination. Confocal laser scanning microscopy was used to image H2O2 distribution in corn leaves. Results showed that the CeO2 NP treatments increased accumulation of H2O2, up to day 15, in phloem, xylem, bundle sheath cells, and epidermal cells of shoots. The CAT and APX activities were also increased in the corn shoot, concomitant with the H2O2 levels. Both 400 and 800 mg/kg CeO2 NPs triggered the up regulation of the HSP 70 in roots, indicating a systemic stress response. None of the CeO2 NPs increased the level of thiobarbituric acid reacting substances, indicating that no lipid peroxidation occurred. CeO2 NPs, at both concentrations, did not induce ion leakage in either roots or shoots, suggesting membrane integrity was not compromised. Leaf net photosynthetic rate, transpiration, and stomatal conductance were not affected by CeO2 NPs. Our results suggest that the CAT, APX and HSP 70 might help the plants defend against CeO2 NPs induced oxidative injury and survive NP exposure. PMID:23050848

  18. Influence of cobalt ions on spectroscopic and dielectric properties of Sb2O3 doped lithium fluoroborophosphate glasses

    NASA Astrophysics Data System (ADS)

    Kumar, G. Ravi; Srikumar, T.; Rao, M. C.; Venkat Reddy, P.; Srinivasa Rao, Ch

    2018-03-01

    Glasses with compositions (20–x) LiF–10 Sb2O3–10 B2O3–60 P2O5: x CoO (0 < x < 0.25) were synthesized by conventional rapid melt quenching method. The non–crystalline nature of the samples was confirmed by XRD analysis and the glass forming abilities were analyzed by DTA studies. The compositional dependence of various structural vibrational units was analyzed by FT–IR and Raman studies. The DTA, FT–IR and Raman studies suggested a higher degree of disorder in the glass network with increasing concentration of CoO up to 0.15 mol%. The reversal trend has been observed beyond 0.15 mol% suggesting an increasing polymerization of glass network. The optical properties of LiF–Sb2O3–B2O3–P2O5: CoO glasses were analyzed by optical absorption and photoluminescence studies. The observations from OA and PL spectral studies suggested that the gradual increase of octahedral Co2+ ions with the increase in the concentration of CoO up to 0.15 mol%. At higher concentration i.e. above 0.15 mol% of CoO, there was a reduction in the concentration of octahedral Co2+ ions. The electrical properties of the glass samples were studied by both DC and AC conductivity studies. The dielectric dispersion analysis was also performed on the prepared glass samples. The results of these studies indicated that there is a mixed conduction (both ionic and polaronic) and the polaron hoping seems to prevail over ionic conduction in the glasses containing CoO less than 0.15 mol%. The increasing space charge polarization is responsible for enhanced values of dielectric constant, dielectric loss and AC conductivity for all frequency and temperature ranges with the increase in concentration of CoO up to 0.15 mol%.

  19. Investigation of trimethylacetic acid adsorption on stoichiometric and oxygen-deficient CeO 2 (111) surfaces

    DOE PAGES

    Sanghavi, Shail; Wang, Weina; Nandasiri, Manjula I.; ...

    2016-05-12

    We studied the interactions between the carboxylate anchoring group from trimethylacetic acid (TMAA) and CeO 2(111) surfaces as a function of oxygen stoichiometry using in situ X-ray photoelectron spectroscopy (XPS). The stoichiometric CeO 2(111) surface was obtained by annealing the thin film under 2.0 × 10 –5 Torr of oxygen at ~550 °C for 30 min. In order to reduce the CeO 2(111) surface, the thin film was annealed under ~5.0 × 10 –10 Torr vacuum conditions at 550 °C, 650 °C, 750 °C and 850 °C for 30 min to progressively increase the oxygen defect concentration on the surface.more » The saturated TMAA coverage on the CeO 2(111) surface determined from XPS elemental composition is found to increase with increasing oxygen defect concentration. This is attributed to the increase of under-coordinated cerium sites on the surface with the increase in the oxygen defect concentrations. Furthermore, XPS results were in agreement with periodic density functional theory (DFT) calculations and indicate a stronger binding between the carboxylate group from TMAA and the oxygen deficient CeO 2–δ(111) surface through dissociative adsorption.« less

  20. Degradation of 5-FU by means of advanced (photo)oxidation processes: UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2--Comparison of transformation products, ready biodegradability and toxicity.

    PubMed

    Lutterbeck, Carlos Alexandre; Wilde, Marcelo Luís; Baginska, Ewelina; Leder, Christoph; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-09-15

    The present study investigates the degradation of the antimetabolite 5-fluorouracil (5-FU) by three different advanced photo oxidation processes: UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. Prescreening experiments varying the H2O2 and TiO2 concentrations were performed in order to set the best catalyst concentrations in the UV/H2O2 and UV/TiO2 experiments, whereas the UV/Fe(2+)/H2O2 process was optimized varying the pH, Fe(2+) and H2O2 concentrations by means of the Box-Behnken design (BBD). 5-FU was quickly removed in all the irradiation experiments. The UV/Fe(2+)/H2O2 and UV/TiO2 processes achieved the highest degree of mineralization, whereas the lowest one resulted from the UV/H2O2 treatment. Six transformation products were formed during the advanced (photo)oxidation processes and identified using low and high resolution mass spectrometry. Most of them were formed and further eliminated during the reactions. The parent compound of 5-FU was not biodegraded, whereas the photolytic mixture formed in the UV/H2O2 treatment after 256 min showed a noticeable improvement of the biodegradability in the closed bottle test (CBT) and was nontoxic towards Vibrio fischeri. In silico predictions showed positive alerts for mutagenic and genotoxic effects of 5-FU. In contrast, several of the transformation products (TPs) generated along the processes did not provide indications for mutagenic or genotoxic activity. One exception was TP with m/z 146 with positive alerts in several models of bacterial mutagenicity which could demand further experimental testing. Results demonstrate that advanced treatment can eliminate parent compounds and its toxicity. However, transformation products formed can still be toxic. Therefore toxicity screening after advanced treatment is recommendable. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A Hybrid Method for Calculating TiO2 Concentrations Using Clementine UVVIS Data, and Verified with Lunar Prospector Neutron Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Jolliff, B. L.; Elphic, R. C.; Maurice, S.; Feldman, W. C.; Lawrence, D. J.

    2001-01-01

    We present a new algorithm for extracting TiO2 concentrations from Clementine UVVIS data, which accounts for soil darkness and UV/VIS ratio. The accuracy of these TiO2 estimates are examined with Lunar Prospector thermal/epithermal neutron flux data. Additional information is contained in the original extended abstract.

  2. Thermodynamic Simulation of Viscosity of TiO2-Ti2O3-CaO Ternary Slag

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Ma, W. H.; Zhang, S. J.; Lei, Y.; Wen, J. H.

    2017-12-01

    The viscosity of high titanium slag at high temperature is one of the key factors of slag-iron separation. Based on the Einstein-Roscoe equation, thermodynamic simulation of viscosity of TiO2-Ti2O3-CaO ternary slag is studied by using FactSage® software, and the effects of temperature, CaO content and solid-phase particles on the viscosity of slag were studied. The results show that the increase of CaO content has the effect of reducing melting temperature and viscosity of TiO2-Ti2O3-CaO ternary slag. After the TiO2-Ti2O3-CaO ternary slag is completely melted, the increase of temperature has little effect on viscosity of slag, and the viscosity is about 110~125mPa·s. When the temperature is lower than melting temperature, TiO2-Ti2O3-CaO ternary slag will precipitate solid-phase particles, and the precipitation process is carried out in stages, and with the decrease of temperature, the precipitation will increase and the viscosity will sharply increase. TiO2-Ti2O3-CaO ternary titanium slag has obvious characteristics of short slag.

  3. Synthesis of Copper-Based Nanostructured Catalysts on SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 Supports for NO Reduction.

    PubMed

    Namkhang, Pornpan; Kongkachuichay, Paisan

    2015-07-01

    The selective catalytic reduction of NO over a series of Cu-based catalysts supported on modified silica including SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 prepared via a sol-gel process and a flame spray pyrolysis (FSP) was studied. The prepared catalysts were characterized by means of TEM, XRD, XRF, TPR, and nitrogen physisorption measurement techniques, to determine particle diameter, morphology, crystallinity, phase composition, copper reducibility, surface area, and pore size of catalysts. The particles obtained from sol-gel method were almost spherical while the particles obtained from the FSP were clearly spherical and non-porous nanosized particles. The effects of Si:Al, Si:Ti, and Si:Zr molar ratio of precursor were identified as the domain for different crystalline phase of materials. It was clearly seen that a high SiO2 content inhibited the crystallization of materials. The BET surface area of catalysts obtained from sol-gel method was higher than that from the FSP and it shows that surface area increased with increasing SiO2 molar ratio due to high surface area from SiO2. The catalyst performances were tested for the selective catalytic reduction of NO with H2. It was found that the catalyst prepared over 7 wt% Cu on Si02-Al2O3 support was the most active compared with the others which converted NO as more than 70%. Moreover, the excess copper decreased the performance of NO reduction, due to the formation of CuO agglomeration covered on the porous silica as well as the alumina surface, preventing the direct contact of CO2 and AL2O3.

  4. CaO-MgO-Al 2O 3-SiO 2 (CMAS) corrosion of Gd 2Zr 2O 7 and Sm 2Zr 2O 7

    DOE PAGES

    Wang, Honglong; Bakal, Ahmet; Zhang, Xingxing; ...

    2016-08-08

    Ceramic thermal barrier coatings are applied to superalloys used in gas turbine engineering to increase the operating temperature and the energy conversion efficiency. However, dust consisting of CaO-MgO-Al 2O 3-SiO 2 (CMAS) from the air can be injected into the engines and corrode the thermal barrier coatings. Lanthanide zirconates are promising materials in thermal barrier coatings due to their low thermal conductivities, good phase stability and good corrosion resistance. However, the corrosion resistance mechanism of CMAS on lanthanide zirconates is still not clearly understood. In this work, the corrosion mechanism of Gd 2Zr 2O 7 and Sm 2Zr 2O 7more » in CMAS is studied. Here, the results show that the CMAS can easily react with lanthanide zirconate thermal barrier coatings to form a dense layer, which can resist further corrosion« less

  5. Phenol-photodegradation on ZrO2. Enhancement by semiconductors.

    PubMed

    Karunakaran, C; Dhanalakshmi, R; Gomathisankar, P

    2012-06-15

    On illumination with light of wavelength 365 nm phenol undergoes degradation on the surface of ZrO(2). The rate of degradation enhances linearly with the concentration of phenol and also the light intensity but decreases with increase of pH. The photonic efficiency of degradation is higher with illumination at 254 nm than with 365 nm. The diffuse reflectance spectral study suggests phenol-sensitized activation of ZrO(2) with 365 nm light. TiO(2), Fe(2)O(3), CuO, ZnO, ZnS, Nb(2)O(5) and CdO particles enhance the photodegradation on ZrO(2), indicating inter-particle charge-transfer. Determination of size of the particles under suspension, by light scattering technique, shows agglomeration of particles supporting the proposition of charge-transfer between particles. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Ultrasonication effect on thermophysical properties of Al2O3 nanofluids

    NASA Astrophysics Data System (ADS)

    Shah, Janki; Ranjan, Mukesh; Gupta, Sanjeev K.; Sonvane, Yogesh

    2018-04-01

    In this work, we studied the thermal conductivity and viscosity of alumina nanofluids for their excellent thermophysical properties. Here we considered the bath sonication time effects on thermal conductivity, viscosity and zeta potential of alumina nanofluid with different concentration (0.2, 0.3, 0.4, 0.5 Vol.%). We observed that the thermal conductivity of the nanofluids increased nonlinearly with an increased sonication time/energy as well as viscosity decreased. An enhancement of the thermal conductivity and viscosity at higher particle concentration is also observed. The results indicate that thermal properties of Al2O3 nanofluid enhances as the sonication time increases and prove Al2O3 nanofluid is one of the best thermostable heat transfer fluids compared to conventional cooling fluids.

  7. Combined Effect of Ultrasound Stimulations and Autoclaving on the Enhancement of Antibacterial Activity of ZnO and SiO2/ZnO Nanoparticles

    PubMed Central

    Rokbani, Hajer; Ajji, Abdellah

    2018-01-01

    This study investigates the antibacterial activity (ABA) of suspensions of pure ZnO nanoparticles (ZnO-NPs) and mesoporous silica doped with ZnO (ZnO-UVM7), as well as electrospun nanofibers containing those nanoparticles. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of these two materials were also determined under the same conditions. The results showed a concentration-dependent effect of antibacterial nanoparticles on the viability of Escherichia coli (E. coli). Moreover, the combination of the stimulations and sterilization considerably enhanced the antimicrobial activity (AMA) of the ZnO suspensions. Poly (lactic acid) (PLA) solutions in 2,2,2-trifluoroethanol (TFE) were mixed with different contents of nanoparticles and spun into nonwoven mats by the electrospinning process. The morphology of the mats was analyzed by scanning electron microscopy (SEM). The amount of nanoparticles contained in the mats was determined by thermogravimetric analysis (TGA). The obtained PLA-based mats showed a fibrous morphology, with an average diameter ranging from 350 to 450 nm, a porosity above 85%, but with the nanoparticles agglomeration on their surface. TGA analysis showed that the loss of ZnO-NPs increased with the increase of ZnO-NPs content in the PLA solutions and reached 79% for 1 wt % of ZnO-NPs, which was mainly due to the aggregation of nanoparticles in solution. The ABA of the obtained PLA mats was evaluated by the dynamic method according to the ASTM standard E2149. The results showed that, above an optimal concentration, the nanoparticle agglomeration reduced the antimicrobial efficiency of PLA mats. These mats have potential features for use as antimicrobial food packaging material. PMID:29495334

  8. Characteristics of N2O production and hydroxylamine variation in short-cut nitrification SBR process.

    PubMed

    Hu, Bo; Ye, Junhong; Zhao, Jianqiang; Ding, Xiaoqian; Yang, Liwei; Tian, Xiaolei

    2018-01-01

    In order to study the characteristics of nitrous oxide (N 2 O) production and hydroxylamine (NH 2 OH) variation under oxic conditions, concentrations of NH 2 OH and N 2 O were simultaneously monitored in a short-cut nitrification sequencing batch reactor (SBR) operated with different influent ammonia concentrations. In the short-cut nitrification process, N 2 O production was increased with the increasing of ammonia concentration in influent. The maximum concentrations of dissolved N 2 O-N in the reactor were 0.11 mg/L and 0.52 mg/L when ammonia concentrations in the influent were 50 mg/L and 70 mg/L respectively. Under the low and medium ammonia load phases, the concentrations of NH 2 OH-N in the reactor were remained at a low level which fluctuated around 0.06 mg/L in a small range, and did not change with the variation of influent NH 4 + -N concentration. Based on the determination results, the half-saturation of NH 2 OH in the biochemical conversion process of NH 2 OH to NO 2 - -N was very small, and the value of 0.05 mg NH 2 OH-N/L proposed in the published literature was accurate. NH 2 OH is an important intermediate in the nitrification process, and the direct determination of NH 2 OH in the nitrification process was beneficial for revealing the kinetic process of NH 2 OH production and consumption as well as the effects of NH 2 OH on N 2 O production in the nitrification process.

  9. Effect of H2O on the NO emission characteristics of pulverized coal during oxy-fuel combustion.

    PubMed

    Lei, Ming; Sun, Cen; Zou, Chan; Mi, Hang; Wang, Chunbo

    2018-04-01

    The NO emission characteristics of Datong bituminous coal and Yangquan anthracite in O 2 /H 2 O/CO 2 atmospheres were investigated by using a fixed-bed reactor system, and the emission characteristics were compared with the experimental results from O 2 /N 2 and O 2 /CO 2 atmospheres, especially at low O 2 concentrations and high temperatures. The results showed that NO emissions of pulverized coal in O 2 /CO 2 environments were less than those in the O 2 /N 2 environments, regardless of the O 2 concentration and the furnace temperature. Adding H 2 O decreased the possibility of reactions between the reductive groups (NH) and the oxygen radical during devolatilization, which led to a decrease in NO emissions at 1000 °C. However, as the furnace temperature increased, "additional" nitrogen precursors (HCN and NH 3 ) generated by enhanced char-H 2 O gasification were quickly oxidized to generate a large amount of NO during char oxidation that exceeded the amount of NO reduced by NH during devolatilization. Thus, the NO emissions in O 2 /CO 2 /H 2 O atmosphere were higher than those in O 2 /CO 2 atmosphere at a low O 2 concentration. However, as the O 2 concentration increased, the NO emissions in O 2 /CO 2 /H 2 O atmosphere became lower than those in O 2 /CO 2 atmosphere because the effect of H 2 O gasification became weaker. The NO emissions of Yangquan anthracite (YQ) were higher than those of DT, but the changing trend of YQ was similar to that of DT.

  10. Evaluation of H2O2 and pH in exhaled breath condensate samples: methodical and physiological aspects.

    PubMed

    Knobloch, Henri; Becher, Gunther; Decker, Manfred; Reinhold, Petra

    2008-05-01

    This veterinary study is aimed at further standardization of H(2)O(2) and pH measurements in exhaled breath condensate (EBC). Data obtained in the study provide valuable information for many mammalian species including humans, and may help to avoid general pitfalls in interpretation of EBC data. EBC was sampled via the 'ECoScreen' in healthy calves (body weight 63-98 kg). Serum samples and condensates of ambient (indoor) air were collected in parallel. In the study on H(2)O(2), concentrations of H(2)O(2) in EBC, blood and ambient air were determined with the biosensor system 'ECoCheck'. In EBC, the concentration of H(2)O(2) was found to be dependent on food intake and increased significantly in the course of the day. Physiologically, lowest H(2)O(2) concentrations at 06:00 varied within the range 138-624 nmol l(-1) EBC or 0.10-0.94 nmol per 100 l exhaled breath and individual concentrations were significantly different indicating a remarkable intersubject variability. Highly reproducible results were seen within each subject (three different days within 4 weeks). No correlation existed between H(2)O(2) concentrations in EBC and blood, and EBC-H(2)O(2) was not influenced by variables of spontaneous breathing. Further results confirmed that standardization of H(2)O(2) measurements in EBC requires (1) the re-calculation of the concentration exhaled per 100 l exhaled breath (because the analyzed concentration in the liquid condensate underlies multiple methodological sources of variability given by the collection process), and (2) subtracting the concentration of inspired indoor H(2)O(2). In the study on pH use of the ISFET electrode (Sentron, the Netherlands) and a blood gas analyzer ABL 550 (Radiometer, Denmark) led to comparable results for EBC-pH (r=0.89, R(2)=79.3%, p

  11. Enhanced infrared emissivity of CeO2 coatings by La doping

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Fan, Chenglei; Song, Guangping; Li, Yibin; He, Xiaodong; Zhang, Xinjiang; Sun, Yue; Du, Shanyi; Zhao, Yijie

    2013-09-01

    Pure CeO2 and La doped CeO2 (LDC) coatings were prepared on nickel-based substrates by electron beam physical vapor deposition at 1173 K. The infrared emissivity in 2.5-25 μm of LDC coatings was enhanced with the increase of La concentration at high temperature 873-1273 K. Compared to the undoped CeO2 coating, the infrared emissivity of 16.7% LDC coating increases by 55%, and reaches up to 0.9 at 873 K. The enhancement of doped coatings’ emissivity is attributed to the increasing lattice absorption and free-carrier absorption. The high emissivity LDC coatings show a promising potential in high temperature application.

  12. Low levels of iron enhance UV/H2O2 efficiency at neutral pH.

    PubMed

    Ulliman, Sydney L; McKay, Garrett; Rosario-Ortiz, Fernando L; Linden, Karl G

    2018-03-01

    While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H 2 O 2 (UV 254  + H 2 O 2  + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (<0.3 mg/L). Para-chlorobenzoic acid (pCBA) was used as a hydroxyl radical (HO) probe to quantify HO steady state concentrations. Compounds degraded by different mechanisms including, carbamazepine (CBZ, HO oxidation) and N-nitrosodimethylamine (NDMA, direct photolysis), were used to investigate the effect of iron on compound degradation for UV/H 2 O 2 systems. The effects of iron species (Fe 2+ and Fe 3+ ), iron concentration (0-0.3 mg/L), H 2 O 2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H 2 O 2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H 2 O 2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H 2 O 2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Optical properties of BaO added bioactive Na2O-CaO-P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Edathazhe, Akhila B.; Shashikala, H. D.

    2018-04-01

    This paper deals with the effect of BaO addition on the optical properties of bioactive Na2O-CaO-P2O5 glasses for biomedical optics applications. The phosphate glasses with composition (26-x)Na2O-xBaO-29CaO-45P2O5 (x = 0, 5, 10, 15 mol%) have been prepared by melt-quenching technique at 1100°C. The refractive index of glasses increased with BaO content. The optical band gap and Urbach energy of synthesized glasses were derived from the optical absorption spectra by using UV-Visible spectrometer. The addition of 5 mol% of BaO increased the band gap energy of glasses due to the formation of ionic cross-links in the glass structure. The defect and interstitial bonds formation in theglasses decreased with BaO additions as indicated by reductions in the Urbach energy values. No such variations in the band gap and Urbach energy values of glasses were observed with BaO content from 5 to 15 mol%. The molar and oxide ion polarizability values were calculated from the band gap and molar volume of glasses. The increase in the calculated optical basicity and metallization criteria of glasses supported the rise in band gap energy values with BaO additions. As the melting temperature of glasses decreased from 1200 to 1100°C, the refractive index increased as supported by the measured density values. The band gap energy is not changed with melting temperature. The Urbach energy decreased with decrease in melting temperature in case of BaO-free Na2O-CaO-P2O5 glasses, whereas it increased in case of BaO added glasses due to the role of BaO as modifying oxide.

  14. Crack-resistant Al2O3–SiO2 glasses

    PubMed Central

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-01-01

    Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006

  15. Electrical mobility of silver ion in Ag2O-B2O3-P2O5-TeO2 glasses.

    PubMed

    Sklepić, Kristina; Vorokhta, Maryna; Mošner, Petr; Koudelka, Ladislav; Moguš-Milanković, Andrea

    2014-10-16

    The effect of adding TeO(2) into (100 - x)[0.5Ag(2)O - 0.1B(2)O(3) - 0.4P(2)O(5)] - xTeO(2), with 0-80 mol % TeO(2) glass, on the structural changes and electrical properties has been investigated. DSC and thermodilatomery were used to study their thermal behavior, structure was studied by Raman spectroscopy, and electrical properties have been studied by impedance spectroscopy over a wide temperature and frequency range. The introduction of TeO(2) as a third glass former to the glass network causes the structural transformation from TeO(3) (tp) to TeO(4) (tbp) which contributes to the changes in conductivity. The glasses with low TeO(2) content show only a slow decrease in dc conductivity with addition of TeO(2) due to the increase of the number of nonbridging oxygens, which increases the mobility of Ag(+) ions. The steep decrease in conductivity for glasses containing more than 40 mol % TeO(2) is a result of decrease of the Ag(2)O content and stronger cross-linkage in glass network through the formation of more Te-(eq)O(ax)-Te bonds in TeO(4) tbp units. The glasses obey ac conductivity scaling with respect to temperature, implying that the dynamic process is not temperature dependent. On the other hand, the scaling of the spectra for different glass compositions showed the deviations from the Summerfield scaling because of the local structural disorder which occurs as a result of the structural modifications in the tellurite glass network.

  16. Increased concentration of iodide in airway secretions is associated with reduced respiratory syncytial virus disease severity.

    PubMed

    Derscheid, Rachel J; van Geelen, Albert; Berkebile, Abigail R; Gallup, Jack M; Hostetter, Shannon J; Banfi, Botond; McCray, Paul B; Ackermann, Mark R

    2014-02-01

    Recent studies have revealed that the human and nonrodent mammalian airway mucosa contains an oxidative host defense system. This three-component system consists of the hydrogen peroxide (H2O2)-producing enzymes dual oxidase (Duox)1 and Duox2, thiocyanate (SCN(-)), and secreted lactoperoxidase (LPO). The LPO-catalyzed reaction between H2O2 and SCN(-) yields the bactericidal hypothiocyanite (OSCN(-)) in airway surface liquid (ASL). Although SCN(-) is the physiological substrate of LPO, the Duox/LPO/halide system can generate hypoiodous acid when the iodide (I(-)) concentration is elevated in ASL. Because hypoiodous acid, but not OSCN(-), inactivates respiratory syncytial virus (RSV) in cell culture, we used a lamb model of RSV to test whether potassium iodide (KI) could enhance this system in vivo. Newborn lambs received KI by intragastric gavage or were left untreated before intratracheal inoculation of RSV. KI treatment led to a 10-fold increase in ASL I(-) concentration, and this I(-) concentration was approximately 30-fold higher than that measured in the serum. Also, expiratory effort, gross lung lesions, and pulmonary expression of an RSV antigen and IL-8 were reduced in the KI-treated lambs as compared with nontreated control lambs. Inhibition of LPO activity significantly increased lesions, RSV mRNA, and antigen. Similar experiments in 3-week-old lambs demonstrated that KI administration was associated with reduced gross lesions, decreased RSV titers in bronchoalveolar lavage fluid, and reduced RSV antigen expression. Overall, these data indicate that high-dose KI supplementation can be used in vivo to lessen the severity of RSV infections, potentially through the augmentation of mucosal oxidative defenses.

  17. Application of response surface methodology for optimization of natural organic matter degradation by UV/H2O2 advanced oxidation process

    PubMed Central

    2014-01-01

    Background In this research, the removal of natural organic matter from aqueous solutions using advanced oxidation processes (UV/H2O2) was evaluated. Therefore, the response surface methodology and Box-Behnken design matrix were employed to design the experiments and to determine the optimal conditions. The effects of various parameters such as initial concentration of H2O2 (100–180 mg/L), pH (3–11), time (10–30 min) and initial total organic carbon (TOC) concentration (4–10 mg/L) were studied. Results Analysis of variance (ANOVA), revealed a good agreement between experimental data and proposed quadratic polynomial model (R2 = 0.98). Experimental results showed that with increasing H2O2 concentration, time and decreasing in initial TOC concentration, TOC removal efficiency was increased. Neutral and nearly acidic pH values also improved the TOC removal. Accordingly, the TOC removal efficiency of 78.02% in terms of the independent variables including H2O2 concentration (100 mg/L), pH (6.12), time (22.42 min) and initial TOC concentration (4 mg/L) were optimized. Further confirmation tests under optimal conditions showed a 76.50% of TOC removal and confirmed that the model is accordance with the experiments. In addition TOC removal for natural water based on response surface methodology optimum condition was 62.15%. Conclusions This study showed that response surface methodology based on Box-Behnken method is a useful tool for optimizing the operating parameters for TOC removal using UV/H2O2 process. PMID:24735555

  18. Increased passive stiffness promotes diastolic dysfunction despite improved Ca2+ handling during left ventricular concentric hypertrophy

    PubMed Central

    Røe, Åsmund T.; Aronsen, Jan Magnus; Skårdal, Kristine; Hamdani, Nazha; Linke, Wolfgang A.; Danielsen, Håvard E.; Sejersted, Ole M.; Sjaastad, Ivar; Louch, William E.

    2017-01-01

    Abstract Aims Concentric hypertrophy following pressure-overload is linked to preserved systolic function but impaired diastolic function, and is an important substrate for heart failure with preserved ejection fraction. While increased passive stiffness of the myocardium is a suggested mechanism underlying diastolic dysfunction in these hearts, the contribution of active diastolic Ca2+ cycling in cardiomyocytes remains unclear. In this study, we sought to dissect contributions of passive and active mechanisms to diastolic dysfunction in the concentrically hypertrophied heart following pressure-overload. Methods and results Rats were subjected to aortic banding (AB), and experiments were performed 6 weeks after surgery using sham-operated rats as controls. In vivo ejection fraction and fractional shortening were normal, confirming preservation of systolic function. Left ventricular concentric hypertrophy and diastolic dysfunction following AB were indicated by thickening of the ventricular wall, reduced peak early diastolic tissue velocity, and higher E/e’ values. Slowed relaxation was also observed in left ventricular muscle strips isolated from AB hearts, during both isometric and isotonic stimulation, and accompanied by increases in passive tension, viscosity, and extracellular collagen. An altered titin phosphorylation profile was observed with hypophosphorylation of the phosphosites S4080 and S3991 sites within the N2Bus, and S12884 within the PEVK region. Increased titin-based stiffness was confirmed by salt-extraction experiments. In contrast, isolated, unloaded cardiomyocytes exhibited accelerated relaxation in AB compared to sham, and less contracture at high pacing frequencies. Parallel enhancement of diastolic Ca2+ handling was observed, with augmented NCX and SERCA2 activity and lowered resting cytosolic [Ca2+]. Conclusion In the hypertrophied heart with preserved systolic function, in vivo diastolic dysfunction develops as cardiac fibrosis and

  19. Glucose Acutely Reduces Cytosolic and Mitochondrial H2O2 in Rat Pancreatic Beta Cells.

    PubMed

    Deglasse, Jean-Philippe; Roma, Leticia Prates; Pastor-Flores, Daniel; Gilon, Patrick; Dick, Tobias P; Jonas, Jean-Christophe

    2018-06-14

    Whether H 2 O 2 contributes to the glucose-dependent stimulation of insulin secretion (GSIS) by pancreatic β cells is highly controversial. We used two H 2 O 2 -sensitive probes, roGFP2-Orp1 (reduction/oxidation-sensitive enhanced green fluorescent protein fused to oxidant receptor peroxidase 1) and HyPer (hydrogen peroxide sensor) with its pH-control SypHer, to test the acute effects of glucose, monomethyl succinate, leucine with glutamine, and α-ketoisocaproate on β cell cytosolic and mitochondrial H 2 O 2 concentrations. We then tested the effects of low H 2 O 2 and menadione concentrations on insulin secretion. RoGFP2-Orp1 was more sensitive than HyPer to H 2 O 2 (response at 2-5 vs. 10 μM) and less pH-sensitive. Under control conditions, stimulation with glucose reduced mitochondrial roGFP2-Orp1 oxidation without affecting cytosolic roGFP2-Orp1 and HyPer fluorescence ratios, except for the pH-dependent effects on HyPer. However, stimulation with glucose decreased the oxidation of both cytosolic probes by 15 μM exogenous H 2 O 2 . The glucose effects were not affected by overexpression of catalase, mitochondrial catalase, or superoxide dismutase 1 and 2. They followed the increase in NAD(P)H autofluorescence, were maximal at 5 mM glucose in the cytosol and 10 mM glucose in the mitochondria, and were partly mimicked by the other nutrients. Exogenous H 2 O 2 (1-15 μM) did not affect insulin secretion. By contrast, menadione (1-5 μM) did not increase basal insulin secretion but reduced the stimulation of insulin secretion by 20 mM glucose. Subcellular changes in β cell H 2 O 2 levels are better monitored with roGFP2-Orp1 than HyPer/SypHer. Nutrients acutely lower mitochondrial H 2 O 2 levels in β cells and promote degradation of exogenously supplied H 2 O 2 in both cytosolic and mitochondrial compartments. The GSIS occurs independently of a detectable increase in β cell cytosolic or mitochondrial H 2 O 2 levels. Antioxid. Redox Signal. 00

  20. Practice on improving fattening local cattle production in Vietnam by increasing crude protein level in concentrate and concentrate level.

    PubMed

    Van Dung, Dinh; Ba, Nguyen Xuan; Van, Nguyen Huu; Phung, Le Dinh; Ngoan, Le Duc; Cuong, Vu Chi; Yao, Wen

    2013-10-01

    Two experiments were conducted to determine the effects of crude protein (CP) level in concentrate (experiment 1) and concentrate level (experiment 2) on feed intake, nutrient digestibility, nitrogen (N) retention, ruminal pH and NH3-N concentration and average daily gain (ADG) of Vietnamese local fattening cattle. Animals (24 cattle, initial live weight (LW) 150.3 ± 11.8 kg in experiment 1 and 145.1 ± 9.8 kg in experiment 2) were allotted based on LW to one of four treatments in a randomised complete block design. In experiment 1, concentrate with four levels of CP (10, 13, 16 and 19 %) was fed at 1.5 % of LW. In experiment 2, concentrate was fed at 1.0, 1.4, 1.8 and 2.2 % of LW. In both experiments, roughage was 5 kg/day native grass and ad libitum rice straw (fresh basis). Results showed that the CP level in concentrate significantly affected dry matter (DM) intake (P < 0.05), N retention, ADG and ruminal NH3-N concentration (P < 0.01), but it had no significant effect on DM, organic matter (OM) and neutral detergent fibre (NDF) digestibility (P > 0.05), whereas CP digestibility increased (P < 0.001) along with the CP level. DM intake, N retention and ADG increased (P < 0.001) linearly with concentrate intake. DM and CP digestibility were not significantly affected by concentrate intake (P > 0.05). OM digestibility and NH3-N concentration increased linearly (P < 0.05), whereas NDF digestibility and ruminal pH declined linearly with increased concentrate consumption (P < 0.01). These results indicate that 16 % CP in concentrate and feeding concentrate at the rate of 2.2 % of LW are recommendable for fattening local cattle in Vietnam.

  1. Activation of Nrf2 by H2O2: de novo synthesis versus nuclear translocation.

    PubMed

    Covas, Gonçalo; Marinho, H Susana; Cyrne, Luísa; Antunes, Fernando

    2013-01-01

    The most common mechanism described for the activation of the transcription factor Nrf2 is based on the inhibition of its degradation in the cytosol followed by its translocation to the nucleus. Recently, Nrf2 de novo synthesis was proposed as an additional mechanism for the rapid upregulation of Nrf2 by hydrogen peroxide (H2O2). Here, we describe a detailed protocol, including solutions, pilot experiments, and experimental setups, which allows exploring the role of H2O2, delivered either as a bolus or as a steady state, in endogenous Nrf2 translocation and synthesis. We also show experimental data, illustrating that H2O2 effects on Nrf2 activation in HeLa cells are strongly dependent both on the H2O2 concentration and on the method of H2O2 delivery. The de novo synthesis of Nrf2 is triggered within 5min of exposure to low concentrations of H2O2, preceding Nrf2 translocation to the nucleus which is slower. Evidence of de novo synthesis of Nrf2 is observed only for low H2O2 steady-state concentrations, a condition that is prevalent in vivo. This study illustrates the applicability of the steady-state delivery of H2O2 to uncover subtle regulatory effects elicited by H2O2 in narrow concentration and time ranges. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Annealing effect on the structural, morphological and electrical properties of TiO2/ZnO bilayer thin films

    NASA Astrophysics Data System (ADS)

    Khan, M. I.; Imran, S.; Shahnawaz; Saleem, Muhammad; Ur Rehman, Saif

    2018-03-01

    The effect of annealing temperature on the structural, morphological and electrical properties of TiO2/ZnO (TZ) thin films has been observed. Bilayer thin films of TiO2/ZnO are deposited on FTO glass substrate by spray pyrolysis method. After deposition, these films are annealed at 573 K, 723 K and 873 K. XRD shows that TiO2 is present in anatase phase only and ZnO is present in hexagonal phase. No other phases of TiO2 and ZnO are present. Also, there is no evidence of other compounds like Zn-Ti etc. It also shows that the average grain size of TiO2/ZnO films is increased by increasing annealing temperature. AFM (Atomic force microscope) showed that the average roughness of TiO2/ZnO films is decreased at temperature 573-723 K and then increased at 873 K. The calculated average sheet resistivity of thin films annealed at 573 K, 723 K and 873 K is 152.28 × 102, 75.29 × 102 and 63.34 × 102 ohm-m respectively. This decrease in sheet resistivity might be due to the increment of electron concentration with increasing thickness and the temperature of thin films.

  3. Bacterial Ice Nucleation in Monodisperse D2O and H2O-in-Oil Emulsions.

    PubMed

    Weng, Lindong; Tessier, Shannon N; Smith, Kyle; Edd, Jon F; Stott, Shannon L; Toner, Mehmet

    2016-09-13

    Ice nucleation is of fundamental significance in many areas, including atmospheric science, food technology, and cryobiology. In this study, we investigated the ice-nucleation characteristics of picoliter-sized drops consisting of different D2O and H2O mixtures with and without the ice-nucleating bacteria Pseudomonas syringae. We also studied the effects of commonly used cryoprotectants such as ethylene glycol, propylene glycol, and trehalose on the nucleation characteristics of D2O and H2O mixtures. The results show that the median freezing temperature of the suspension containing 1 mg/mL of a lyophilized preparation of P. syringae is as high as -4.6 °C for 100% D2O, compared to -8.9 °C for 100% H2O. As the D2O concentration increases every 25% (v/v), the profile of the ice-nucleation kinetics of D2O + H2O mixtures containing 1 mg/mL Snomax shifts by about 1 °C, suggesting an ideal mixing behavior of D2O and H2O. Furthermore, all of the cryoprotectants investigated in this study are found to depress the freezing phenomenon. Both the homogeneous and heterogeneous freezing temperatures of these aqueous solutions depend on the water activity and are independent of the nature of the solute. These findings enrich our fundamental knowledge of D2O-related ice nucleation and suggest that the combination of D2O and ice-nucleating agents could be a potential self-ice-nucleating formulation. The implications of self-nucleation include a higher, precisely controlled ice seeding temperature for slow freezing that would significantly improve the viability of many ice-assisted cryopreservation protocols.

  4. OPTICAL AND SPECTROSCOPIC STUDIES OF Fe2O3-Bi2O3-B2O3:V2O5 GLASSES

    NASA Astrophysics Data System (ADS)

    Sanjay; Kishore, N.; Agarwal, A.; Dahiya, S.; Pal, Inder; Kumar, Navin

    2013-11-01

    The glasses of compositions xFe2O3ṡ (40 - x)Bi2O3ṡ60B2O3ṡ2V2O5 have been prepared by the standard melt-quenching technique. Amorphous nature of these samples is ascertained by XRD patterns. The presence of BO3 and BO4 units is identified by IR spectra of glass samples. The absorption edge (λcut-off) shifts toward longer wavelengths with an increase in Fe2O3 content in the glass matrix. The values of optical band gap energy for indirect allowed and forbidden transitions have been determined and it is found to decrease with increase in transition metal ions. The Urbach's energy is used to characterize the degree of disorder in amorphous solids.

  5. Chemically synthesized TiO2 and PANI/TiO2 thin films for ethanol sensing applications

    NASA Astrophysics Data System (ADS)

    Gawri, Isha; Ridhi, R.; Singh, K. P.; Tripathi, S. K.

    2018-02-01

    Ethanol sensing properties of chemically synthesized titanium dioxide (TiO2) and polyaniline/titanium dioxide nanocomposites (PANI/TiO2) had been performed at room temperature. In-situ oxidative polymerization process had been employed with aniline as a monomer in presence of anatase titanium dioxide nanoparticles. The prepared samples were structurally and morphologically characterized by x-ray diffraction, fourier transform infrared spectra, high resolution-transmission electron microscopy and field emission-scanning electron microscopy. The crystallinity of PANI/TiO2 nanocomposite was revealed by XRD and FTIR spectra confirmed the presence of chemical bonding between the polymer chains and metal oxide nanoparticles. HR-TEM micrographs depicted that TiO2 particles were embedded in polymer matrix, which provides an advantage over pure TiO2 nanoparticles in efficient adsorption of vapours. These images also revealed that the TiO2 nanoparticles were irregular in shape with size around 17 nm. FE-SEM studies revealed that in the porous structure of PANI/TiO2 film, the intercalation of TiO2 in PANI chains provides an advantage over pure TiO2 film for uniform interaction with ethanol vapors. The sensitivity values of prepared samples were examined towards ethanol vapours at room temperature. The PANI/TiO2 nanocomposite exhibited better sensing response and faster response-recovery examined at different ethanol concentrations ranging from 5 ppm to 20 ppm in comparison to pure TiO2 nanoparticles. The increase in vapour sensing of PANI/TiO2 sensing film as compared to pure TiO2 film had been explained in detail with the help of gas sensing mechanism of TiO2 and PANI/TiO2. This provides strong evidence that gas sensing properties of TiO2 had been considerably improved and enhanced with the addition of polymer matrix.

  6. Study of concentration-dependent cobalt ion doping of TiO2 and TiO(2-x)Nx at the nanoscale.

    PubMed

    Gole, James L; Prokes, Sharka M; Glembocki, O J; Wang, Junwei; Qiu, Xiaofeng; Burda, Clemens

    2010-07-01

    Experiments with a porous sol-gel generated TiO(2) nanocolloid and its corresponding oxynitride TiO(2-x)N(x) are carried out to evaluate those transformations which accompany additional doping with transition metals. In this study, doping with cobalt (Co(ii)) ions is evaluated using a combination of core level and VB-photoelectron and optical spectroscopy, complementing data obtained from Raman spectroscopy. Raman spectroscopy suggests that cobalt doping of porous sol-gel generated anatase TiO(2) and nitridated TiO(2-x)N(x) introduces a spinel-like structure into the TiO(2) and TiO(2-x)N(x) lattices. TEM and XPS data complemented by valence band-photoelectron spectra demonstrate that metallic cobalt clusters are not formed even at high doping levels. As evidenced by Raman spectroscopy, the creation of a spinel-like structure is commensurate with the room temperature conversion of the oxide and its oxynitride from the anatase to the rutile form. The onset of this kinetically driven process correlates with the formation of spinel sites within the TiO(2) and TiO(2-x)N(x) particles. Despite their visible light absorption, the photocatalytic activity of these cobalt seeded systems is diminished relative to the oxynitride TiO(2-x)N(x).

  7. Effects of exposure to nano and bulk sized TiO2 and CuO in Lemna minor.

    PubMed

    Dolenc Koce, Jasna

    2017-10-01

    Nanoparticles of TiO 2 and CuO are among most commonly used nanoparticles, and elevated concentrations of them are expected to be found in all environments, including aquatic. A standard growth inhibition test ISO/CD 20079 was used to determine the toxicity of nano sized and larger micro sized (bulk) particles in the concentrations of 0.1, 1, 10, 100 and 1000 μM CuO and TiO 2 on common duckweed (Lemna minor L.). Both nano and bulk CuO particles caused changes in the structure and function of treated plants. The number of fronds and colonies decreased by as much as 78%, the length of roots and fronds decreased by 99% and 14%, respectively. Furthermore, photochemical efficiency was reduced by up to 35%, and the activities of antioxidative enzymes guaiacol peroxidase, ascorbate peroxidase and glutathione reductase increased by more than 240%. The altered physiological state of the CuO exposed plants was also reflected in the elevated occurrence of necrosis and bleaching in the duckweed colonies. Nano sized particles of CuO proved more phytotoxic than bulk particles, and the effects of both studied CuO sizes were concentration dependent. On the other hand, both bulk and nano sized particles of TiO 2 caused no severe phytotoxic effects, there was no concentration dependence and they could be considered as non-harmful to common duckweed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Study of different 3-aminopropyl triethoxysilane (APTES) concentration on TiO2 particles based IDE for cervical cancer detection

    NASA Astrophysics Data System (ADS)

    Raqeema, S.; Hashim, U.; Azizah, N.; Nadzirah, Sh.; Arshad, M. K. Md; Ruslinda, A. R.; Gopinath, Subash C. B.

    2017-03-01

    HPV that also called Human Papillomaviruses is the major cause of the cervical cancer. HPV 16 and HPV 18 are the two types of HPV are the most HPV-associated cancers and responsible as a high-risk HPV. Cervical cancer taken about 70 percent of all cases due HPV infections. Cervical malignancy for the most part development on a lady's cervix and its was developed slowly as cancer disease. TiO2 particles give better performance and low cost of the biosensor. The used of 3-aminopropyl triethoxysilane (APTES) will be more efficient for DNA nanochip. APTES used as absorption reaction to immobilize organic biomolecules on the inorganic surface. Besides, APTES give better functionalization of the adsorption mechanism on IDE. The surface functionalized for immobilizing the DNA, which is the combination of the DNA probe and the HPV target produce high sensitivity andfast detection of the IDE. The Current-Voltage (IV) characteristic proved the sensitivity of the DNA nanochip increase as the concentration varied from 0% concentration to 24% of APTES concentration.

  9. Super-bright and short-lived photoluminescence of textured Zn2SiO4:Mn2+ phosphor film on quartz glass

    NASA Astrophysics Data System (ADS)

    Park, Jehong; Park, Kwangwon; Lee, Jaebum; Kim, Jongsu; Seo, Kwangil; Kwon, Kevin; Kung, Patrick; Kim, Seongsin M.

    2010-02-01

    Green-emissive textured Zn2SiO4:Mn2+ phosphor film was fabricated by a thermal diffusion of ZnO:Mn on quartz glass. The characterization has been performed in terms of Mn2+ ions concentration (Mn/Zn=1~9 mol %). As an increase of Mn2+ ions concentration in the Zn2SiO4:Mn2+ phosphor film, the emission peak was red shifted from 519 nm to 526 nm, and the decay time to 10% of the maximum intensity was shorter from 20 ms to 0.5 ms. All annealed Zn2SiO4:Mn2+ phosphor films became textured along some hexagonal directions on the amorphous quartz glass. The brightest Zn2SiO4:Mn2+ film at optimal Mn2+ concentration of 5 % showed the photoluminescence brightness of 65 % and the shortened decay time of 4.4 ms in comparison with a commercially Zn2SiO4: Mn2+ powder phosphor screen. The excellencies can be attributed to a unique textured structure.

  10. Organic Contaminant Abatement in Reclaimed Water by UV/H2O2 and a Combined Process Consisting of O3/H2O2 Followed by UV/H2O2: Prediction of Abatement Efficiency, Energy Consumption, and Byproduct Formation.

    PubMed

    Lee, Yunho; Gerrity, Daniel; Lee, Minju; Gamage, Sujanie; Pisarenko, Aleksey; Trenholm, Rebecca A; Canonica, Silvio; Snyder, Shane A; von Gunten, Urs

    2016-04-05

    UV/H2O2 processes can be applied to improve the quality of effluents from municipal wastewater treatment plants by attenuating trace organic contaminants (micropollutants). This study presents a kinetic model based on UV photolysis parameters, including UV absorption rate and quantum yield, and hydroxyl radical (·OH) oxidation parameters, including second-order rate constants for ·OH reactions and steady-state ·OH concentrations, that can be used to predict micropollutant abatement in wastewater. The UV/H2O2 kinetic model successfully predicted the abatement efficiencies of 16 target micropollutants in bench-scale UV and UV/H2O2 experiments in 10 secondary wastewater effluents. The model was then used to calculate the electric energies required to achieve specific levels of micropollutant abatement in several advanced wastewater treatment scenarios using various combinations of ozone, UV, and H2O2. UV/H2O2 is more energy-intensive than ozonation for abatement of most micropollutants. Nevertheless, UV/H2O2 is not limited by the formation of N-nitrosodimethylamine (NDMA) and bromate whereas ozonation may produce significant concentrations of these oxidation byproducts, as observed in some of the tested wastewater effluents. The combined process of O3/H2O2 followed by UV/H2O2, which may be warranted in some potable reuse applications, can achieve superior micropollutant abatement with reduced energy consumption compared to UV/H2O2 and reduced oxidation byproduct formation (i.e., NDMA and/or bromate) compared to conventional ozonation.

  11. Nitrous Oxide Emissions in a Managed Grassland are Strongly Influenced by CO2 Concentrations Across a Range of Soil Moisture Levels

    NASA Astrophysics Data System (ADS)

    Brown, Z. A.; Hovenden, M. J.; Hunt, M.

    2017-12-01

    Though the atmosphere contains less nitrous oxide (N2O, 324 ppb) than carbon dioxide (CO2, 400 ppm­), N2O has 298 times the global warming potential of CO2 on a 100-year horizon. Nitrous oxide emissions tend to be greater in moist soils because denitrification is an anaerobic process. The rising concentration of CO2 in the atmosphere reduces plant stomatal aperture, thereby slowing transpiration and water use and leading to higher soil moisture levels. Thus, the rising CO2 concentration could stimulate N2O emissions indirectly via increasing soil moisture. Further, results from field experiments in which CO2 is elevated have demonstrated nitrification is accelerated at elevated CO2 concentrations (eCO2). Hence, N2O emissions could be substantially increased by the impacts of rising CO2 concentrations on plant and ecosystem physiology. However, the scale of this impact could be influenced by the amount of water supplied through irrigation or rainfall since both nitrification and denitrification are sensitive to soil moisture. Here, we use measurements of CO2 and N2O emissions from the TasFACE2 experiment to explore the ways in which the impact of CO2 concentration on greenhouse gas emissions is influenced by water supply in a managed temperate pasture. TasFACE2 is the world's only experiment that explicitly controls soil water availability at three different CO2 concentrations. Application of chemical nitrification inhibitor severely reduces N2O flux from soils regardless of CO2 level, water treatment and time following urea application. This inhibitor reduced soil respiration in plots exposed to ambient CO2 plots but not in eCO2 plots. N2O flux is stimulated by eCO2 but not consistently among watering treatments or seasons. Soil respiration is strongly enhanced by CO2 effect regardless of watering treatment. The results demonstrate that CO2 concentration has a sustained impact on CO2 and N2O flux across a range of water availabilities in this fertilised, ryegrass

  12. Determining H2O Vapor Temperature and Concentration in Particle-Free and Particle-Laden Combustion Flows Using Spectral Line Emission Measurements

    NASA Astrophysics Data System (ADS)

    Tobiasson, John Robert

    2017-07-01

    There is a growing need for the clean generation of electricity in the world, and increased efficiency is one way to achieve cleaner generation. Increased efficiency may be achieved through an improved understanding of the heat flux of participating media in combustion environments. Real-time in-situ optical measurements of gas temperature and concentrations in combustion environments is needed. Optical methods do not disturb the flow characteristics and are not subject to the temperature limitation of current methods. Simpler, less-costly optical measurements than current methods would increase the ability to apply them in more circumstances. This work explores the ability to simultaneously measure gas temperature and H2O concentration via integrated spectral intensity ratios in regions where H2O is the dominant participating gas. This work considered combustion flows with and without fuel and soot particles, and is an extension of work previously performed by Ellis et al. [1]. Five different combustion regimes were used to investigate the robustness of the infrared intensity integral method first presented by Ellis et al. [1]. These included Post-Flame Natural Gas (PFNG), Post-Flame Medium Wood (PFMW), Post-Flame Fine Wood (PFFW), In-Flame Natural Gas (IFNG), and In-Flame Fine Wood (IFFW). Optical spectra were collected as a function of path length for each regime. Methods for processing the spectra to obtain gas temperature, gas concentration, broadband temperature, and broadband emissivity were developed. A one-dimensional spectral intensity model that allowed for specular reflection, and investigated differences between measured and modeled spectral intensities was created. It was concluded that excellent agreement (within 2.5%) was achieved between optical and suction pyrometer gas temperatures as long as 1) the optical probe and cold target used were well-aligned 2) the path length was greater than 0.3 m and 3) the intensity from broadband emitters within

  13. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    NASA Astrophysics Data System (ADS)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  14. Effect of B2O3 on luminescence of erbium doped tellurite glasses.

    PubMed

    Shen, Xiang; Nie, Qiuhua; Xu, Tiefeng; Dai, Shixun; Wang, Xunsi

    2007-02-01

    The B2O3 was introduced into the Er3+ doped TeO2-ZnO-Na2O glass to increase the phonon energy of the host. The effect of B2O3 on the non-radiative rate of the 4I11/2-->4I13/2 transition of Er3+, the lifetime of the 4I11/2 and 4I13/2 levels, the green and red upconversion emissions intensity, and the 4I13/2-->4I15/2 emission intensity was discussed. The results show that the phonon energy of boro-tellurite glass is close to that of germanate glass and is quite smaller than that of borate glass. The lifetime of 4I11/2 level and the upconversion emissions decrease with increasing B2O3 concentration. The higher OH group concentration presented in the boro-tellurite glass may shorten the lifetime of 4I13/2 level and also reduce the quantum efficiency of 4I13/2-->4I15/2 emission. The future dehydrating procedures are suggested to enhance the efficiency of amplification at 1.5 microm band.

  15. Modulation-Doped In2 O3 /ZnO Heterojunction Transistors Processed from Solution.

    PubMed

    Khim, Dongyoon; Lin, Yen-Hung; Nam, Sungho; Faber, Hendrik; Tetzner, Kornelius; Li, Ruipeng; Zhang, Qiang; Li, Jun; Zhang, Xixiang; Anthopoulos, Thomas D

    2017-05-01

    This paper reports the controlled growth of atomically sharp In 2 O 3 /ZnO and In 2 O 3 /Li-doped ZnO (In 2 O 3 /Li-ZnO) heterojunctions via spin-coating at 200 °C and assesses their application in n-channel thin-film transistors (TFTs). It is shown that addition of Li in ZnO leads to n-type doping and allows for the accurate tuning of its Fermi energy. In the case of In 2 O 3 /ZnO heterojunctions, presence of the n-doped ZnO layer results in an increased amount of electrons being transferred from its conduction band minimum to that of In 2 O 3 over the interface, in a process similar to modulation doping. Electrical characterization reveals the profound impact of the presence of the n-doped ZnO layer on the charge transport properties of the isotype In 2 O 3 /Li-ZnO heterojunctions as well as on the operating characteristics of the resulting TFTs. By judicious optimization of the In 2 O 3 /Li-ZnO interface microstructure, and Li concentration, significant enhancement in both the electron mobility and TFT bias stability is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A novel synthesis method for TiO2 particles with magnetic Fe3O4 cores.

    PubMed

    Dong, Qi; Zhang, Keqiang; An, Yi

    2014-01-01

    TiO2@(AC/Fe3O4) (AC is activated carbon) was prepared by using AC and Fe3O4 as joint support. The morphological features, crystal structure, and magnetism of the final product were characterized. The results indicate that TiO2 particles formed on the surface of AC and Fe3O4; the sizes of TiO2 and Fe3O4 were 0.5 and 0.7 μm respectively, and that of AC fell within a wide range. The highly crystalline cubic structures of the TiO2 particles was in accord with the standard X-ray diffractometry spectrum of magnetite and anatase. The maximum saturation magnetization of TiO2@(AC/Fe3O4) was 75 emu g(-1), which was enough to support magnetic recovery. The rate of methylene blue (MB) removal photocatalyzed by TiO2@(AC/Fe3O4) was higher by 50% than that achieved with AC/Fe3O4 photocatalysis, and similar to that achieved with TiO2@AC. The removal rate (kobs) decreased drastically from 1.77 × 10(-2) to 9.36 × 10(-3)min(-1) when the initial concentration of MB solution increased from 2.0 to 5.0 mg L(-1). The kobs value increased from 9.41 × 10(-3) to 1.34 × 10(-2)min(-1) with increasing photocatalyst dosage from 0.2 to 1.0 g, then slightly decreased to 1.33 × 10(-2)min(-1) at 2.0 g dosage.

  17. Evaluation of the impact of H2O, O2, and SO2 on postcombustion CO2 capture in metal-organic frameworks.

    PubMed

    Yu, Jiamei; Ma, Yuguang; Balbuena, Perla B

    2012-05-29

    Molecular modeling methods are used to estimate the influence of impurity species: water, O(2), and SO(2) in flue gas mixtures present in postcombustion CO(2) capture using a metal organic framework, HKUST-1, as a model sorbent material. Coordinated and uncoordinated water effects on CO(2) capture are analyzed. Increase of CO(2) adsorption is observed for both cases, which can be attributed to the enhanced binding energy between CO(2) and HKUST-1 due to the introduction of a small amount of water. Density functional theory calculations indicate that the binding energy between CO(2) and HKUST-1 with coordinated water is ~1 kcal/mol higher than that without coordinated water. It is found that the improvement of CO(2)/N(2) selectivity induced by coordinated water may mainly be attributed to the increased CO(2) adsorption on the hydrated HKUST-1. On the other hand, the enhanced selectivity induced by uncoordinated water in the flue gas mixture can be explained on the basis of the competition of adsorption sites between water and CO(2) (N(2)). At low pressures, a significant CO(2)/N(2) selectivity increase is due to the increase of CO(2) adsorption and decrease of N(2) adsorption as a consequence of competition of adsorption sites between water and N(2). However, with more water molecules adsorbed at higher pressures, the competition between water and CO(2) leads to the decrease of CO(2) adsorption capacity. Therefore, high pressure operation should be avoided in HKUST-1 sorbents for CO(2) capture. In addition, the effects of O(2) and SO(2) on CO(2) capture in HKUST-1 are investigated: The CO(2)/N(2) selectivity does not change much even with relatively high concentrations of O(2) in the flue gas (up to 8%). A slightly lower CO(2)/N(2) selectivity of a CO(2)/N(2)/H(2)O/SO(2) mixture is observed compared with that in a CO(2)/N(2)/H(2)O mixture, especially at high pressures, due to the strong SO(2) binding with HKUST-1.

  18. Oxygen vacancies enabled enhancement of catalytic property of Al reduced anatase TiO{sub 2} in the decomposition of high concentration ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Yanhua; Zhang, Xiaolei; Chen, Li

    The catalytic decomposition of gaseous ozone (O{sub 3}) is investigated using anatase TiO{sub 2} (A-TiO{sub 2}) and Aluminum-reduced A-TiO{sub 2} (ARA-TiO{sub 2}) at high concentration and high relative humidity (RH) without light illumination. Compared with the pristine A-TiO{sub 2}, the ARA-TiO{sub 2} sample possesses a unique crystalline core-amorphous shell structure. It is proved to be an excellent solar energy “capture” for solar thermal collectors due to lots of oxygen vacancies. The results indicate that the overall decomposition efficiency of O{sub 3} without any light irradiation has been greatly improved from 4.8% on A-TiO{sub 2} to 100% on ARA-TiO{sub 2} undermore » the RH=100% condition. The ozone conversion over T500/ARA-TiO{sub 2} catalyst is still maintained at 95% after a 72 h test under the reaction condition of 18.5 g/m{sup 3} ozone initial concentration, and RH=90%. The results can be explained that T500/ARA-TiO{sub 2} possesses the largest amorphous contour, the lowest crystallinity, the most surface-active Ti{sup 3+}/T{sup i4+}couples, and the most oxygen vacancies. This result opens a new door to widen the application of TiO{sub 2} in the thermal-catalytic field. - Graphical abstract: The anatase-TiO{sub 2} with various oxidation states and oxygen vacancies have been obtained by aluminum-reduction, and the decomposition efficiency of O{sub 3} has been greatly improved from 4.8% to 100% without irradiation under the RH=100% condition. - Highlights: • The decomposition of gaseous ozone over Al reduced TiO2 (ARA-TiO{sub 2}) is firstly reported. • The decomposition efficiency is up to 100% without any light irradiation on ARA-TiO{sub 2} under RH=100% condition. • The ozone conversion is maintained at 95% after a 72 h test, when C{sub inlet}=18.5 g/m{sup 3} and RH=90%.« less

  19. Detonation re-initiation in a concentric tube arrangement for C_2H_2/O_2/Ar mixtures

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Lee, J. H. S.; Weng, C.

    2017-05-01

    Re-initiation of detonation in a concentric tube arrangement where a detonation exiting from a small diameter inner tube to a large diameter outer tube has been investigated. The outer tube diameter D is 50.8 mm and inner tube diameters d are 38, 25.4, and 12.7 mm giving diameter ratios D/d=1.34, 2, and 4. Stoichiometric C_2H_2-O_2 mixtures with argon dilution of 0, 25, 50, and 70% are used in the present study. Velocity measurements are made using photodiodes, and smoked foils downstream of the exit of the inner tube are also used to record the re-initiation process. Upon exit from the inner tube, the detonation suffers an abrupt decrease in velocity and at critical conditions, the velocity downstream of the exit is of the order of 50% of the Chapman-Jouguet velocity. It is found that re-initiation generally occurs within 10 tube diameters downstream of the exit. If re-initiation is not successful, the detonation continues to propagate at a low velocity for distances of the order of 30 tube diameters without any indication of flame acceleration of deflagration-to-detonation transition (DDT). Thus, the re-initiation process is clearly defined and distinct from the usual DDT in a smooth tube. The critical d/λ value ratio in the concentric tube is significantly lower than the usual unconfined case of d/λ =13 where λ is the detonation cell size. Thus, it is a result of re-initiation at the Mach stem of the reflected shock from the wall of the outer concentric tube. If re-initiation is not successful upon the first reflection, then subsequent multiple reflections at the tube axis and wall of the outer tube can also result in re-initiation. However, this is only observed for undiluted mixtures. For high-argon-diluted mixtures, re-initiation only occurs at the Mach stem of the first reflection.

  20. Dielectric properties of (CuO, CaO2, and BaO)y/CuTl-1223 composites

    NASA Astrophysics Data System (ADS)

    Mumtaz, M.; Kamran, M.; Nadeem, K.; Jabbar, Abdul; Khan, Nawazish A.; Saleem, Abida; Tajammul Hussain, S.; Kamran, M.

    2013-07-01

    We synthesized (CuO, CaO2, and BaO)y/Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (y = 0, 5%, 10%, 15%) composites by solid-state reaction and characterized them by x-ray diffraction, scanning electron microscopy, dc-resistivity, and Fourier transform infrared spectroscopy. Frequency and temperature dependent dielectric properties, such as real and imaginary parts of the dielectric constant, dielectric loss, and ac-conductivity of these composites were studied by capacitance and conductance measurements as a function of frequency (10 kHz to 10 MHz) and temperature (78 to 300 K). X-ray diffraction analysis reveals that the characteristic behavior of the superconductor phase and the structure of Cu0.5Tl0.5Ba2Ca2Cu3O10-δ are nearly undisturbed by doping with nanoparticles. Scanning electron microscopy images show the improvement in the intergranular linking between the superconducting grains occurring with increasing nanoparticle concentration. Microcracks are healed up with these nanoparticles, and superconducting volume fraction is also increased. Dielectric properties of these composites strongly depend on the frequency and temperature. Zero resistivity critical temperature and dielectric properties show opposite trends with the addition of nanoparticles to the Cu0.5Tl0.5Ba2Ca2Cu3O10-δ superconductor matrix.

  1. [Preparation and photoluminescence study of Er3+ : Y2O3 transparent ceramics].

    PubMed

    Luo, Jun-ming; Li, Yong-xiu; Deng, Li-ping

    2008-10-01

    Y2O3 acted as the matrix material, which was doped with different concentrations of Er3+, Er3+ : Y2O3 nanocrystalline powder was prepared by co-precipitation method, and Er3+ : Y2O3 transparent ceramics was fabricated by vacuum sintering at 1700 degrees C, 1 x 10(-3) Pa for 8 h. By using the X-ray diffraction (D/MAX-RB), transmission electron microscopy(Philips EM420), automatic logging spectrophotometer(DMR-22), fluorescence analyzer (F-4500) and 980 nm diode laser, the structural, morphological and luminescence properties of the sample were investigated. The results show that Er3+ dissolved completely in the Y2O3 cubic phase, the precursor was amorphous, weak diffraction peaks appeared after calcination at 400 degrees C, and if calcined at 700 degrees C, the precursor turned to pure cubic phase. With increasing the calcining temperature, the diffraction peaks became sharp quickly, and when the calcining temperature reached 1100 degrees C, the diffraction peaks became very sharp, indicating that the grains were very large. The particles of Er+ : Y2O3 is homogeneous and nearly spherical, the average diameter of the particles is in the range of 40-60 nm after being calcined at 1000 degrees C for 2 h. The relative density of Er3+ : Y2O3 transparent ceramics is 99.8%, the transmittance of the Er2+ : Y2O3 transparent ceramics is markedly lower than the single crystal at the short wavelength, but the transmittance is improved noticeably with increasing the wavelength, and the transmittance exceeds 60% at the wavelength of 1200 nm. Excited under the 980 nm diode laser, there are two main up-conversion emission bands, green emission centers at 562 nm and red emission centers at 660 nm, which correspond to (4)S(3/2) / (2)H(11/2) - (4)I(15/2) and (4)F(9/2) - (4)I(15/2) radiative transitions respectively. By changing the doping concentrations of Er3+, the color of up-conversion luminescence can be tuned from green to red gradually. The luminescence intensity is not reinforce

  2. Photodegradation of microcystin-LR catalyzed by metal phthalocyanines immobilized on TiO2-SiO2 under visible-light irradiation.

    PubMed

    Peng, Guotao; Fan, Zhengqiu; Wang, Xiangrong; Sui, Xin; Chen, Chen

    2015-01-01

    Microcystins (MCs) are a group of monocyclic heptapeptide toxins produced by species of cyanobacteria. Since MCs exhibit acute and chronic effects on humans and wildlife by damaging the liver, they are of increasing concern worldwide. In this study, we investigated the ability of the phthalocyanine compound (ZnPc-TiO2-SiO2) to degrade microcystin-LR (MC-LR) in the presence of visible light. X-ray diffraction (XRD) and UV-Visible diffuse reflectance spectra (UV-Vis DRS) were utilized to characterize the crystalline phase and the absorption behavior of this catalyst. According to the results, XRD spectra of ZnPc-TiO2-SiO2 powders taken in the 2θ configuration exhibited the peaks characteristic of the anatase phase. UV-Vis DRS showed that the absorption band wavelength shifted to the visible range when ZnPc was supported on the surface of TiO2-SiO2. Subsequently, several parameters including catalyst dose, MC-LR concentrations and pH were investigated. The MC-LR was quantified in each sample through high-performance liquid chromatography (HPLC). The maximum MC-LR degradation rate of 80.2% can be obtained within 300 minutes under the following conditions: catalyst dose of 7.50 g/L, initial MC-LR concentration of 17.35 mg/L, pH 6.76 and the first cycling run of the photocatalytic reaction. Moreover, the degradation process fitted well with the pseudo-first-order kinetic model.

  3. Molecular dynamics simulation of fast particle irradiation to the Gd2O3-doped CeO2

    NASA Astrophysics Data System (ADS)

    Sasajima, Y.; Ajima, N.; Osada, T.; Ishikawa, N.; Iwase, A.

    2013-12-01

    The structural relaxation caused by the high-energy-ion irradiation of CeO2 with Gd2O3 addition was simulated by the molecular dynamics method. The amount of Gd2O3 was changed from 0 to 25 mol% by 5 mol%. As the initial condition, high thermal energy was supplied to the individual atoms within a cylindrical region of nanometer-order radius located in the center of the specimen. The potential proposed by Inaba et al. was utilized to calculate interaction between atoms [H. Inaba, R. Sagawa, H. Hayashi, K. Kawamura, Solid State Ionics 122 (1999) 95-103]. The supplied thermal energy was first spent to change the crystal structure into an amorphous one within a short period of about 0.3 ps, then it dissipated in the specimen. By increasing the concentration of Gd2O3, more structural disorder was observed in the sample, which is consistent to the actual experiment.

  4. Disruption of Autolysis in Bacillus subtilis using TiO2 Nanoparticles

    PubMed Central

    McGivney, Eric; Han, Linchen; Avellan, Astrid; VanBriesen, Jeanne; Gregory, Kelvin B.

    2017-01-01

    In contrast to many nanotoxicity studies where nanoparticles (NPs) are observed to be toxic or reduce viable cells in a population of bacteria, we observed that increasing concentration of TiO2 NPs increased the cell survival of Bacillus subtilis in autolysis-inducing buffer by 0.5 to 5 orders of magnitude over an 8 hour exposure. Molecular investigations revealed that TiO2 NPs prevent or delay cell autolysis, an important survival and growth-regulating process in bacterial populations. Overall, the results suggest two potential mechanisms for the disruption of autolysis by TiO2 NPs in a concentration dependent manner: (i) directly, through TiO2 NP deposition on the cell wall, delaying the collapse of the protonmotive-force and preventing the onset of autolysis; and (ii) indirectly, through adsorption of autolysins on TiO2 NP, limiting the activity of released autolysins and preventing further lytic activity. Enhanced darkfield microscopy coupled to hyperspectral analysis was used to map TiO2 deposition on B. subtilis cell walls and released enzymes, supporting both mechanisms of autolysis interference. The disruption of autolysis in B. subtilis cultures by TiO2 NPs suggests the mechanisms and kinetics of cell death may be influenced by nano-scale metal oxide materials, which are abundant in natural systems. PMID:28303908

  5. Impact of the excess sludge modification with selected chemical reagents on the increase of dissolved organic substances concentration compounds transformations in activated sludge.

    PubMed

    Zawieja, Iwona; Lidia, Wolny; Marta, Próba

    2017-07-01

    Submission of excess sludge initial disintegration process significantly affects the efficiency of anaerobic stabilization process. Expression of increasing the concentration of organic matter in dissolved form is to increase sludge disintegration. As a result of chemical modification is an increase of the chemical oxygen demand and the concentration of volatile fatty acids. The aim of this study was to determine the impact of the disintegration process with selected chemical reagents to increase the concentration of organic substances in dissolved form. The process of chemical disintegration of excess sludge was treated using the following reagents: Mg(OH) 2 , Ca(OH) 2 , HCl, H 2 SO 4 , H 2 O 2 . The modification was carried out at ambient temperature for 2, 6 and 24h. During sludge disintegration it was noticed the growth of indicators values that confirmed the susceptibility of prepared sludge to biodegradation. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Simultaneous retrieval of daytime O(3P) and O3 concentrations in the altitude interval 80 - 100 km.

    NASA Astrophysics Data System (ADS)

    Yankovsky, Valentine; Manuilova, Rada; Koval, Andrey

    2017-04-01

    We propose methods of simultaneously independent retrievals of the key components of Mesosphere and Lower Thermosphere (MLT) [O3] and [O(3P)]. The altitude profile of ozone concentration, [O3], can be measured by direct method of the measurement of absorbing radiation from the Sun or the stars in the UV range of the spectrum. However, this method is most often realized in twilight. Retrieval of daytime [O3] depends on a prior information about the O(3P) altitude profile. Vice versa, atomic oxygen concentration, [O(3P)], is usually retrieved from the measured values of [O3]. The problem of independent and simultaneous retrieval of [O3] and [O(3P)] can be solved by using individual proxy for each of the target component. Using a sensitivity study and uncertainty analysis of the contemporary model of O3 and O2 photolysis in the MLT, YM2011, we determined that populations of three excited electronic-vibrational levels O2(b1, v = 0, 1, 2) and of metastable O(1D) atom depend on [O(3P)] and [O3] concentrations. For [O(3P)] retrieval the following transitions should be used: O2(b1, v') -> O2(X3, v") which produce emissions: (a) at 780.4 nm in the band (v' = 2, v" = 2) and at 697.0 nm in the band (2, 1) with the uncertainty of retrieval smaller than 30% for the whole altitude range 80 - 100 km; (b) at 771.0 nm in the band (1, 1), 688.4 nm in the band (1, 0) and at 874.4 nm in the band (1, 2) with the uncertainty of retrieval about 30% above 90 km. For [O3] retrieval the following transitions should be used: O2(b1, v') -> O2(X3, v") which produce emissions: (c) at 762.1 nm in the band (0, 0) and at 864.7 nm in the band (0, 1) with the uncertainty of retrieval 20 - 25% for the altitude range 80 - 85 km and smaller than 20% in the interval 85 - 95 km; (d) in the line of O(1D) 630.0 nm with the uncertainty of retrieval 10 - 15% in the interval 80 - 95 km. Above 95 km the uncertainty of [O3] retrieval grows and reaches up to 80% at 100 km for all suggested proxies. For

  7. Detection of pH and Enzyme-Free H2O2 Sensing Mechanism by Using GdO x Membrane in Electrolyte-Insulator-Semiconductor Structure.

    PubMed

    Kumar, Pankaj; Maikap, Siddheswar; Qiu, Jian-Tai; Jana, Surajit; Roy, Anisha; Singh, Kanishk; Cheng, Hsin-Ming; Chang, Mu-Tung; Mahapatra, Rajat; Chiu, Hsien-Chin; Yang, Jer-Ren

    2016-12-01

    A 15-nm-thick GdO x membrane in an electrolyte-insulator-semiconductor (EIS) structure shows a higher pH sensitivity of 54.2 mV/pH and enzyme-free hydrogen peroxide (H2O2) detection than those of the bare SiO2 and 3-nm-thick GdO x membranes for the first time. Polycrystalline grain and higher Gd content of the thicker GdO x films are confirmed by transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS), respectively. In a thicker GdO x membrane, polycrystalline grain has lower energy gap and Gd(2+) oxidation states lead to change Gd(3+) states in the presence of H2O2, which are confirmed by electron energy loss spectroscopy (EELS). The oxidation/reduction (redox) properties of thicker GdO x membrane with higher Gd content are responsible for detecting H2O2 whereas both bare SiO2 and thinner GdO x membranes do not show sensing. A low detection limit of 1 μM is obtained due to strong catalytic activity of Gd. The reference voltage shift increases with increase of the H2O2 concentration from 1 to 200 μM owing to more generation of Gd(3+) ions, and the H2O2 sensing mechanism has been explained as well.

  8. Preparation, characterization, and application of ZnO@SiO2 core-shell structured catalyst for photocatalytic degradation of phenol.

    PubMed

    Galedari, Naghmeh Abuali; Rahmani, Mohammad; Tasbihi, Minoo

    2017-05-01

    In the current study, ZnO@SiO 2 core-shell structured catalyst was synthesized for photocatalytic degradation of phenol from aqueous samples. The synthesized catalyst was characterized by Fourier transform infrared spectra, X-ray diffraction, energy-dispersive X-ray spectroscopy, UV-Vis-NIR diffuse reflectance spectroscopy, transmission electron microscopy, BET surface area, zeta potential, and field emission scanning electron microscopy. The effect of catalyst loading, initial phenol concentration, pH, UV light intensity and weight ratio of ZnO/(SiO 2  + ZnO) were studied towards photocatalytic degradation of phenol. Moreover, photocatalytic activities of bare ZnO and ZnO@SiO 2 were compared. The results advocated that ZnO@SiO 2 catalyst showed high photocatalytic performance for degradation of phenol (96 % after 120 min) at an initial pH of 5.9, catalyst loading of 0.5 g/L and initial phenol concentration of 25 mg/L. Increase in the weight ratio of ZnO/(SiO 2  + ZnO) from 0.2 to 0.33 significantly enhanced the photodegradation of phenol from 84 to 94 %. It was also found that photocatalytic activity of ZnO@SiO 2 was higher than bare ZnO nanoparticles. Graphical abstract ᅟ.

  9. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability

    PubMed Central

    Zhu, Xia; Burger, Martin; Doane, Timothy A.; Horwath, William R.

    2013-01-01

    The continuous increase of nitrous oxide (N2O) abundance in the atmosphere is a global concern. Multiple pathways of N2O production occur in soil, but their significance and dependence on oxygen (O2) availability and nitrogen (N) fertilizer source are poorly understood. We examined N2O and nitric oxide (NO) production under 21%, 3%, 1%, 0.5%, and 0% (vol/vol) O2 concentrations following urea or ammonium sulfate [(NH4)2SO4] additions in loam, clay loam, and sandy loam soils that also contained ample nitrate. The contribution of the ammonia (NH3) oxidation pathways (nitrifier nitrification, nitrifier denitrification, and nitrification-coupled denitrification) and heterotrophic denitrification (HD) to N2O production was determined in 36-h incubations in microcosms by 15N-18O isotope and NH3 oxidation inhibition (by 0.01% acetylene) methods. Nitrous oxide and NO production via NH3 oxidation pathways increased as O2 concentrations decreased from 21% to 0.5%. At low (0.5% and 3%) O2 concentrations, nitrifier denitrification contributed between 34% and 66%, and HD between 34% and 50% of total N2O production. Heterotrophic denitrification was responsible for all N2O production at 0% O2. Nitrifier denitrification was the main source of N2O production from ammonical fertilizer under low O2 concentrations with urea producing more N2O than (NH4)2SO4 additions. These findings challenge established thought attributing N2O emissions from soils with high water content to HD due to presumably low O2 availability. Our results imply that management practices that increase soil aeration, e.g., reducing compaction and enhancing soil structure, together with careful selection of fertilizer sources and/or nitrification inhibitors, could decrease N2O production in agricultural soils. PMID:23576736

  10. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability.

    PubMed

    Zhu, Xia; Burger, Martin; Doane, Timothy A; Horwath, William R

    2013-04-16

    The continuous increase of nitrous oxide (N2O) abundance in the atmosphere is a global concern. Multiple pathways of N2O production occur in soil, but their significance and dependence on oxygen (O2) availability and nitrogen (N) fertilizer source are poorly understood. We examined N2O and nitric oxide (NO) production under 21%, 3%, 1%, 0.5%, and 0% (vol/vol) O2 concentrations following urea or ammonium sulfate [(NH4)2SO4] additions in loam, clay loam, and sandy loam soils that also contained ample nitrate. The contribution of the ammonia (NH3) oxidation pathways (nitrifier nitrification, nitrifier denitrification, and nitrification-coupled denitrification) and heterotrophic denitrification (HD) to N2O production was determined in 36-h incubations in microcosms by (15)N-(18)O isotope and NH3 oxidation inhibition (by 0.01% acetylene) methods. Nitrous oxide and NO production via NH3 oxidation pathways increased as O2 concentrations decreased from 21% to 0.5%. At low (0.5% and 3%) O2 concentrations, nitrifier denitrification contributed between 34% and 66%, and HD between 34% and 50% of total N2O production. Heterotrophic denitrification was responsible for all N2O production at 0% O2. Nitrifier denitrification was the main source of N2O production from ammonical fertilizer under low O2 concentrations with urea producing more N2O than (NH4)2SO4 additions. These findings challenge established thought attributing N2O emissions from soils with high water content to HD due to presumably low O2 availability. Our results imply that management practices that increase soil aeration, e.g., reducing compaction and enhancing soil structure, together with careful selection of fertilizer sources and/or nitrification inhibitors, could decrease N2O production in agricultural soils.

  11. Demonstration of long-term increases in tropospheric O3 levels: causes and potential impacts.

    PubMed

    Susaya, Janice; Kim, Ki-Hyun; Shon, Zang-Ho; Brown, Richard J C

    2013-09-01

    Ground-level ozone (O3) is a well-known atmospheric pollutant with its adverse impacts on the environment and human health. Here, the tropospheric O3 concentrations monitored in seven major cities in Korea at monthly intervals over a 22-year period (1989-2010) are presented, and their long-term variability examined. The analysis of annual mean values of O3 (in nmolmol(-1), or ppb) showed a noticeable increase of 118±69% in all seven cities over the two decades (p<0.01). Changes in O3 levels are closely associated with both environmental (e.g., NOx (NO+NO2), SO2, CO, and total suspended particles (TSPs) (p<0.01), temperature, and sunshine hours) and common anthropogenic variables (e.g., population density and number of vehicles). Evidence collected in this study suggests that the atmospheric conditions in most major cities of Korea should be volatile organic compounds (VOCs) sensitive or NOx saturated with respect to O3 formation. As such, establishment of a proper management strategy seems a sensible approach to control tropospheric ozone concentrations in densely populated cities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effect of SiO2, PVA and glycerol concentrations on chemical and mechanical properties of alginate-based films.

    PubMed

    Yang, Manli; Shi, Jinsheng; Xia, Yanzhi

    2018-02-01

    Sodium alginate (SA)/polyvinyl alcohol (PVA)/SiO 2 nanocomposite films were prepared by in situ polymerization through solution casting and solvent evaporation. The effect of different SA/PVA ratios, SiO 2 , and glycerol content on the mechanical properties, water content, water solubility, and water vapor permeability were studied. The nanocomposite films were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal stability (thermogravimetric analysis/differential thermogravimetry) analyses. The nanocomposites showed the highest values of mechanical properties, such as SA/PVA ratio, SiO 2 , and glycerol content was 7:3, 6wt.%, and 0.25g/g SA, respectively. The tensile strength and elongation at break (E%) of the nanocomposites increased by 525.7% and 90.7%, respectively, compared with those of the pure alginate film. The Fourier transform infrared spectra showed a new SiOC band formed in the SA/PVA/SiO 2 nanocomposite film. The scanning electron microscopy image revealed good adhesion between SiO 2 and SA/PVA matrix. After the incorporation of PVA and SiO 2 , the water resistance of the SA/PVA/SiO 2 nanocomposite film was markedly improved. Transparency decreased with increasing PVA content but was enhanced by adding SiO 2 . Copyright © 2017. Published by Elsevier B.V.

  13. Oriented epitaxial TiO2 nanowires for water splitting

    NASA Astrophysics Data System (ADS)

    Hou, Wenting; Cortez, Pablo; Wuhrer, Richard; Macartney, Sam; Bozhilov, Krassimir N.; Liu, Rong; Sheppard, Leigh R.; Kisailus, David

    2017-06-01

    Highly oriented epitaxial rutile titanium dioxide (TiO2) nanowire arrays have been hydrothermally grown on polycrystalline TiO2 templates with their orientation dependent on the underlying TiO2 grain. Both the diameter and areal density of the nanowires were tuned by controlling the precursor concentration, and the template surface energy and roughness. Nanowire tip sharpness was influenced by precursor solubility and diffusivity. A new secondary ion mass spectrometer technique has been developed to install additional nucleation sites in single crystal TiO2 templates and the effect on nanowire growth was probed. Using the acquired TiO2 nanowire synthesis knowhow, an assortment of nanowire arrays were installed upon the surface of undoped TiO2 photo-electrodes and assessed for their photo-electrochemical water splitting performance. The key result obtained was that the presence of short and dispersed nanowire arrays significantly improved the photocurrent when the illumination intensity was increased from 100 to 200 mW cm-2. This is attributed to the alignment of the homoepitaxially grown nanowires to the [001] direction, which provides the fastest charge transport in TiO2 and an improved pathway for photo-holes to find water molecules and undertake oxidation. This result lays a foundation for achieving efficient water splitting under conditions of concentrated solar illumination.

  14. Diet effects on urine composition of cattle and N2O emissions.

    PubMed

    Dijkstra, J; Oenema, O; van Groenigen, J W; Spek, J W; van Vuuren, A M; Bannink, A

    2013-06-01

    Ruminant production contributes to emissions of nitrogen (N) to the environment, principally ammonia (NH3), nitrous oxide (N2O) and di-nitrogen (N2) to air, nitrate (NO3 -) to groundwater and particulate N to surface waters. Variation in dietary N intake will particularly affect excretion of urinary N, which is much more vulnerable to losses than is faecal N. Our objective is to review dietary effects on the level and form of N excreted in cattle urine, as well as its consequences for emissions of N2O. The quantity of N excreted in urine varies widely. Urinary N excretion, in particular that of urea N, is decreased upon reduction of dietary N intake or an increase in the supply of energy to the rumen microorganisms and to the host animal itself. Most of the N in urine (from 50% to well over 90%) is present in the form of urea. Other nitrogenous components include purine derivatives (PD), hippuric acid, creatine and creatinine. Excretion of PD is related to rumen microbial protein synthesis, and that of hippuric acid to dietary concentration of degradable phenolic acids. The N concentration of cattle urine ranges from 3 to 20 g/l. High-dietary mineral levels increase urine volume and lead to reduced urinary N concentration as well as reduced urea concentration in plasma and milk. In lactating dairy cattle, variation in urine volume affects the relationship between milk urea and urinary N excretion, which hampers the use of milk urea as an accurate indicator of urinary N excretion. Following its deposition in pastures or in animal houses, ubiquitous microorganisms in soil and waters transform urinary N components into ammonium (NH4 +), and thereafter into NO3 - and ultimately in N2 accompanied with the release of N2O. Urinary hippuric acid, creatine and creatinine decompose more slowly than urea. Hippuric acid may act as a natural inhibitor of N2O emissions, but inhibition conditions have not been defined properly yet. Environmental and soil conditions at the site of

  15. Response of Gd 2 Ti 2 O 7 and La 2 Ti 2 O 7 to swift-heavy ion irradiation and annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sulgiye; Lang, Maik; Tracy, Cameron L.

    2015-07-01

    Swift heavy ion (2 GeV 181Ta) irradiation-induced amorphization and temperature-induced recrystallization of cubic pyrochlore Gd2Ti2O7 (Fd3¯m) are compared with the response of a compositionally-similar material with a monoclinic-layered perovskite-type structure, La2Ti2O7 (P21). The averaged electronic energy loss, dE/dx, was 37 keV/nm and 35 keV/nm in Gd2Ti2O7 and La2Ti2O7, respectively. Systematic analysis of the structural modifications was completed using transmission electron microscopy, synchrotron X-ray diffraction, Raman spectroscopy, and small-angle X-ray scattering. Increasing ion-induced amorphization with increasing ion fluence was evident in the X-ray diffraction patterns of both compositions by a reduction in the intensity of the diffraction maxima concurrent with themore » growth in intensity of a broad diffuse scattering halo. Transmission electron microscopy analysis showed complete amorphization within ion tracks (diameter: ~10 nm) for the perovskite-type material; whereas a concentric, core–shell morphology was evident in the ion tracks of the pyrochlore, with an outer shell of disordered yet still crystalline material with the fluorite structure surrounding an amorphous track core (diameter: ~9 nm). The radiation response of both titanate oxides with the same stoichiometry can be understood in terms of differences in their structures and compositions. While the radiation damage susceptibility of pyrochlore A2B2O7 materials decreases as a function of the cation radius ratio rA/rB, the current study correlates this behavior with the stability field of monoclinic structures, where rLa/rTi > rGd/rTi. Isochronal annealing experiments of the irradiated materials showed complete recrystallization of La2Ti2O7 at 775 °C and of Gd2Ti2O7 at 850 °C. The annealing behavior is discussed in terms of enhanced damage recovery in La2Ti2O7, compared to the pyrochlore compounds Gd2Ti2O7. The difference in the recrystallization behavior may be related to

  16. Flooding-related increases in CO2 and N2O emissions from a temperate coastal grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Gebremichael, Amanuel W.; Osborne, Bruce; Orr, Patrick

    2017-05-01

    Given their increasing trend in Europe, an understanding of the role that flooding events play in carbon (C) and nitrogen (N) cycling and greenhouse gas (GHG) emissions will be important for improved assessments of local and regional GHG budgets. This study presents the results of an analysis of the CO2 and N2O fluxes from a coastal grassland ecosystem affected by episodic flooding that was of either a relatively short (SFS) or long (LFS) duration. Compared to the SFS, the annual CO2 and N2O emissions were 1.4 and 1.3 times higher at the LFS, respectively. Mean CO2 emissions during the period of standing water were 144 ± 18.18 and 111 ± 9.51 mg CO2-C m-2 h-1, respectively, for the LFS and SFS sites. During the growing season, when there was no standing water, the CO2 emissions were significantly larger from the LFS (244 ± 24.88 mg CO2-C m-2 h-1) than the SFS (183 ± 14.90 mg CO2-C m-2 h-1). Fluxes of N2O ranged from -0.37 to 0.65 mg N2O-N m-2 h-1 at the LFS and from -0.50 to 0.55 mg N2O-N m-2 h-1 at the SFS, with the larger emissions associated with the presence of standing water at the LFS but during the growing season at the SFS. Overall, soil temperature and moisture were identified as the main drivers of the seasonal changes in CO2 fluxes, but neither adequately explained the variations in N2O fluxes. Analysis of total C, N, microbial biomass and Q10 values indicated that the higher CO2 emissions from the LFS were linked to the flooding-associated influx of nutrients and alterations in soil microbial populations. These results demonstrate that annual CO2 and N2O emissions can be higher in longer-term flooded sites that receive significant amounts of nutrients, although this may depend on the restriction of diffusional limitations due to the presence of standing water to periods of the year when the potential for gaseous emissions are low.

  17. Base-line O sub 2 extraction influences cerebral blood flow response to hematocrit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudak, M.L.; Tang, Yuilin; Massik, J.

    1988-01-01

    The authors have shown that the fall in cerebral blood flow (CBF) as hematocrit (Hct) rises is due to the independent effects of increasing red blood cell (RBC) concentration and arterial O{sub 2} content (Ca{sub O{sub 2}}). In the present study, they tested the hypothesis that the magnitude of the effect of RBC concentration depends on the base-line cerebral fractional oxygen extraction (E). Pentobarbital-anesthetized 1- to 7-day-old sheep were first exchange transfused with plasma to lower Hct to 20%. Base-line E was set to either high or low levels by induction of hypocarbia, or hypercarbia. A second isovolemic exchange transfusionmore » with pure methemoglobin-containing adult sheep red cells then raised Hct with no significant increase in Ca{sub O{sub 2}}. Pa{sub CO{sub 2}} was maintained and other variables with potential effect on CBF did not change. CBF corrected for any individual alteration in CMRo{sub 2}. This study supports the hypothesis that the magnitude of the decline in CBF secondary to an increase in RBC concentration depends on the initial E. The effect of RBC concentration on CBF is greatest when E is low.« less

  18. Optical and Physical Investigations of Lanthanum Bismuth Borate glasses doped with Ho2O3

    NASA Astrophysics Data System (ADS)

    Ramesh, P.; Jagannath, G.; Eraiah, B.; Kokila, M. K.

    2018-02-01

    Holmium doped 10La2O3-15Bi2O3-(75-x) B2O3 (Ho3+: LBB) glasses have been prepared by melt quench technique and the impact of holmium ions concentration on optical and physical properties of present glasses have been examined. Ho3+ dependent density, molar volume, refractive index, rare earth ion concentration, polaron radius, inter ionic distance, field strength and energy band gap are calculated and tabulated. Amorphous nature of the all glasses has been confirmed by XRD patterns. The room temperature (RT) Uv-Vis absorption spectrum doped with 1 mol% of Ho2O3 exhibit eight prominent bands centred at 895, 641, 537, 486, 472, 467, 451 and 416 due to transition between ground state to various excited states. The results show that, the density is increases and molar volume of the glasses is decreases with an increase in Ho2O3 concentration and consequently generate more non-bridging oxygen (NBOs) in the glass matrix. The Urbach energy is increases with holmium concentration which exemplifies the degree of disorder present in the LBB glasses. The considerable increase in field strength observed in present glasses is attributed to occurrence of strong bridge between Ho3+ and B- ions and this strong bridge is possibly due to the displacement between Ho3+ and oxygen atoms which are generated from the conversion BO3-BO4 units.

  19. Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2-BAC treatment.

    PubMed

    Pradhan, Shovana; Fan, Linhua; Roddick, Felicity A

    2015-10-01

    Reverse osmosis (RO) concentrate (ROC) streams generated from RO-based municipal wastewater reclamation processes pose potential health and environmental risks on their disposal to confined water bodies such as bays. A UV/H2O2 advanced oxidation process followed by a biological activated carbon (BAC) treatment was evaluated at lab-scale for the removal of organic and nutrient content from a highly saline ROC (TDS 16 g L(-1), EC 23.5 mS cm(-1)) for its safe disposal to the receiving environment. Over the 230-day operation of the UV/H2O2-BAC process, the colour and UV absorbance (254 nm) of the ROC were reduced to well below those of the influent to the reclamation process. The concentrations of DOC and total nitrogen (TN) were reduced by approximately 60% at an empty bed contact time (EBCT) of 60 min. The reduction in ammonia nitrogen by the BAC remained high under all conditions tested (>90%). Further investigation confirmed that the presence of residual peroxide in the UV/H2O2 treated ROC was beneficial for DOC removal, but markedly inhibited the activities of the nitrifying bacteria (i.e., nitrite oxidising bacteria) in the BAC system and hence compromised total nitrogen removal. This work demonstrated that the BAC treatment could be acclimated to the very high salinity environment, and could be used as a robust method for the removal of organic matter and nitrogen from the pre-oxidised ROC under optimised conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core-shell nanowires.

    PubMed

    Hsu, Cheng-Liang; Lu, Ying-Ching

    2012-09-21

    This study investigates the feasibility of synthesizing high-density transparent Ga(2)O(3)/SnO(2):Ga core-shell nanowires on a sapphire substrate at 1000 °C by VLS. The doping Ga concentrations are 0.46, 1.07, 2.30 and 17.53 atomic%. The XRD spectrum and HR-TEM reveal Ga(2)O(3) and SnO(2) as having monoclinic and tetragonal rutile structures, respectively. Experimental results indicate that the XRD peak shift of SnO(2) to a larger angle increases with the increasing amount of Ga doping. According to the CL spectrum, SnO(2) and Ga(2)O(3) peak at approximately 528-568 nm and 422-424 nm, respectively. The maximum quantum efficiency of Ga(2)O(3)/SnO(2):Ga core-shell nanowires is around 0.362%. The UV light on-off current contrast ratio of Ga(2)O(3)/SnO(2):Ga core-shell nanowires is around 1066.7 at a bias of 5 V. Moreover, the dynamic response of Ga(2)O(3)/SnO(2):Ga core-shell nanowires has an on-off current contrast ratio of around 16. Furthermore, the Ga(2)O(3) region functions similar to a capacitor and continues to accumulate SnO(2):Ga excited electrons under UV light exposure.

  1. NO and H2O2 contribute to SO2 toxicity via Ca2+ signaling in Vicia faba guard cells.

    PubMed

    Yi, Min; Bai, Heli; Xue, Meizhao; Yi, Huilan

    2017-04-01

    NO and H 2 O 2 have been implicated as important signals in biotic and abiotic stress responses of plants to the environment. Previously, we have shown that SO 2 exposure increased the levels of NO and H 2 O 2 in plant cells. We hypothesize that, as signaling molecules, NO and H 2 O 2 mediate SO 2 -caused toxicity. In this paper, we show that SO 2 hydrates caused guard cell death in a concentration-dependent manner in the concentration range of 0.25 to 6 mmol L -1 , which was associated with elevation of intracellular NO, H 2 O 2 , and Ca 2+ levels in Vicia faba guard cells. NO donor SNP enhanced SO 2 toxicity, while NO scavenger c-PTIO and NO synthesis inhibitors L-NAME and tungstate significantly prevented SO 2 toxicity. ROS scavenger ascorbic acid (AsA) and catalase (CAT), Ca 2+ chelating agent EGTA, and Ca 2+ channel inhibitor LaCl 3 also markedly blocked SO 2 toxicity. In addition, both c-PTIO and AsA could completely block SO 2 -induced elevation of intracellular Ca 2+ level. Moreover, c-PTIO efficiently blocked SO 2 -induced H 2 O 2 elevation, and AsA significantly blocked SO 2 -induced NO elevation. These results indicate that extra NO and H 2 O 2 are produced and accumulated in SO 2 -treated guard cells, which further activate Ca 2+ signaling to mediate SO 2 toxicity. Our findings suggest that both NO and H 2 O 2 contribute to SO 2 toxicity via Ca 2+ signaling.

  2. Combustion characteristics of fine- and micro-pulverized coal in the mixture of O{sub 2}/CO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiangyong Huang; Xiumin Jiang; Xiangxin Han

    The effects of oxygen concentration, particle size, and heating rate on the coal combustion characteristics under an O{sub 2}/CO{sub 2} atmosphere were investigated. The results indicated that the oxygen concentration played the most important role. As the oxygen concentration increases, the ignition and burnout temperatures decrease and the comprehensive combustion property index S increases. Moreover, the improvement of the oxygen concentration intensified the effects of the other factors. The ignition mechanism changes from hetero-homogeneous type to homogeneous type as the oxygen concentration increases. The ignition and burnout temperatures decrease slightly as the mean particle size decreases, and the index Smore » increases measurably as the mean particle size decreases. The heating rate has different effects on the ignition temperature, burnout temperature, and index S at different oxygen concentrations. 19 refs., 9 figs., 2 tabs.« less

  3. Manganese Recovery by Silicothermic Reduction of MnO in BaO-MnO-MgO-CaF2 (-SiO2) Slags

    NASA Astrophysics Data System (ADS)

    Heo, Jung Ho; Park, Joo Hyun

    2018-04-01

    The effects of reducing agent, CaF2 content, and reaction temperature upon the silicothermic reduction of MnO in the BaO-MnO-MgO-CaF2 (-SiO2) slags were investigated. Mn recovery was proportional to Si activity in the molten alloy. Moreover, 90 pct yield of Mn recovery was obtained under 5 mass pct CaF2 content and 1873 K (1600 °C) reaction temperature. Increasing CaF2 content above 5 pct yielded little or no further increase in Mn recovery, because it was accompanied by increased slag viscosity owing to the precipitation of high melting point compounds such as Ba2SiO4.

  4. Chemical reaction mechanisms between Y2O3 stabilized ZrO2 and Gd doped CeO2 with PH3 in coal syngas

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Kishimoto, Haruo; Yamaji, Katsuhiko; Kuramoto, Koji; Gong, Mingyang; Liu, Xingbo; Hackett, Gregory; Gerdes, Kirk; Horita, Teruhisa

    2014-12-01

    To clarify the chemical stability of the key materials exposed to coal syngas (CSG) containing PH3 contaminant atmosphere, exposure tests of Y2O3 8 mol.% stabilized ZrO2 (YSZ) and Gd doped CeO2 (GDC) are carried out in simulated CSG with different concentrations of PH3. Significant reaction between YSZ and 10 ppm PH3 in CSG atmosphere is confirmed, and no obvious reaction is detected on the surface of YSZ after exposed in CSG with 1 ppm PH3. YPO4, Zr2.25(PO4)3 and monoclinic Y partial stabilized ZrO2 (m-PSZ) are identified on the YSZ pellet surface after exposed in CSG with 10 ppm PH3. GDC reacted with PH3 even at 1 ppm concentration. A (Ce0.9Gd0.1)PO4 layer is formed on the surface of GDC pellet after exposure in CSG with 10 ppm PH3. Possible reaction mechanisms between YSZ and GDC with PH3 in CSG are clarified. Compared with GDC, YSZ exhibits sufficient phosphorus resistance for devices directly exposed to a coal syngas atmosphere containing low concentration of PH3.

  5. Muscarinic agonists and ATP increase the intracellular Ca2+ concentration in chick cochlear hair cells.

    PubMed

    Shigemoto, T; Ohmori, H

    1990-01-01

    1. Cholinergic muscarinic agonists applied by the pressure puff method increased intracellular Ca2+ concentration in Fura-2-loaded hair cells. The Ca2+ response outlasted the agonist application. 2. The Ca2+ response induced by acetylcholine (ACh) was ACh dose dependent with a KD of 200 microM. Desensitization was negligible, and almost identical Ca2+ responses were observed when two ACh puffs were separated by 150 s. The response was blocked by d-tubocurarine (dTC). The KD of dTC blocking was 500 microM when 100 microM-ACh induced the Ca2+ response. 3. The amplitude of the ACh-induced Ca2+ responses were potentiated to 3 times the control by incubation with calcitonin gene-related peptide (CGRP; 0.1-1 microM). CGRP did not affect the resting Ca2+ concentration. Glycine (100 microM) potentiated the ACh response to 1.4 times the control, and also increased the resting Ca2+ concentration slightly. 4. The ACh-induced Ca2+ response was suppressed by atropine. It was induced in Ca2(+)-free extracellular medium, and in Ca2(+)-free medium desensitization to a second ACh stimulation was significant. The amplitude of the second Ca2+ response was 44% of the first when two ACh puffs were separated by 117 s in Ca2+ free medium. 5. Muscarine and carbamylcholine induced similar Ca2+ responses, with KD values of 130 microM for muscarine and 340 microM for carbamylcholine. Desensitization of Ca2+ responses was negligible in both agonists. 6. ATP co-exists with ACh in some presynaptic nerve terminals (Burnstock, 1981). Puff-applied ATP (100 microM) generated a Ca2+ response with a rapid rising phase and a following slow phase. In Ca2(+)-free medium the rapid phase disappeared and only the slow phase was observed. The rapid phase is due to the influx of Ca2+ ions and the slow phase is due to a release of Ca2+ ions from an intracellular reservoir. Under voltage clamp ATP induced a fast inward current and a following slow outward current. 7. Nicotine, adenosine, glycine, GABA

  6. Application of V2O5/WO3/TiO2 for Resistive-Type SO2 Sensors

    PubMed Central

    Izu, Noriya; Hagen, Gunter; Schönauer, Daniela; Röder-Roith, Ulla; Moos, Ralf

    2011-01-01

    A study on the application of V2O5/WO3/TiO2 (VWT) as the sensitive material for resistive-type SO2 sensor was conducted, based on the fact that VWT is a well-known catalyst material for good selective catalytic nitrogen oxide reduction with a proven excellent durability in exhaust gases. The sensors fabricated in this study are planar ones with interdigitated electrodes of Au or Pt. The vanadium content of the utilized VWT is 1.5 or 3.0 wt%. The resistance of VWT decreases with an increasing SO2 concentration in the range from 20 ppm to 5,000 ppm. The best sensor response to SO2 occurs at 400 °C using Au electrodes. The sensor response value is independent on the amount of added vanadium but dependent on the electrode materials at 400 °C. These results are discussed and a sensing mechanism is discussed. PMID:22163780

  7. Microstructure, Thermal, Mechanical, and Dielectric Properties of BaO-CaO-Al2O3-B2O3-SiO2 Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Bo; Bian, Haibo; Fang, Yi

    2017-12-01

    BaO-CaO-Al2O3-B2O3-SiO2 (BCABS) glass-ceramics were prepared via the method of controlled crystallization. The effect of CaO modification on the microstructure, phase evolution, as well as thermal, mechanical, and dielectric properties was investigated. XRD identified that quartz is the major crystal phase; cristobalite and bazirite are the minor crystal phases. Moreover, the increase of CaO could inhibit the phase transformation from quartz to cristobalite, but excessive CaO would increase the porosity of the ceramics. Additionally, with increasing the amount of CaO, the thermal expansion curve tends to be linear, and subsequently the CTE value decreases gradually, which is attributed to the decrease of cristobalite with high CTE and the formation of CaSiO3 with low CTE. The results indicated that a moderate amount of CaO helps attaining excellent mechanical, thermal, and dielectric properties, that is, the specimen with 9 wt% CaO sintered at 950 °C has a high CTE value (11.5 × 10-6/°C), a high flexural strength (165.7 MPa), and good dielectric properties (ɛr = 6.2, tanδ = 1.8 × 10-4, ρ = 4.6 × 1011 Ω•cm).

  8. Influence of Lu2O3 on electrical and microstructural properties of CaCu3Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Xu, Dong; Wang, Biao; Lin, Yuanhua; Jiao, Lei; Yuan, Hongming; Zhao, Guoping; Cheng, Xiaonong

    2012-07-01

    In this work, the influence of Lu2O3 doped on the dielectric and electrical properties of CaCu3Ti4O12 was reported. Lu2O3-doped CCTO was prepared by a conventional solid state technique using CuO, TiO2, and CaCO3 as starting materials. The samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM); dielectric measurements were measured in the 102 Hz-107 Hz frequency range at room temperature; and the nonlinear behavior of all samples was measured. The doping of Lu2O3 resulted in an increase in the dielectric constant of CCTO, but decreased the stability of the frequency dependence. Increasing concentrations of Lu2O3 resulted in decreasing nonlinear coefficients.

  9. Tuning the formation of p-type defects by peroxidation of CuAlO2 films

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Lin, Yow-Jon; Hung, Hao-Che; Liu, Chia-Jyi; Yang, Yao-Wei

    2013-07-01

    p-type conduction of CuAlO2 thin films was realized by the rf sputtering method. Combining with Hall, X-ray photoelectron spectroscopy, energy dispersive spectrometer, and X-ray diffraction results, a direct link between the hole concentration, Cu vacancy (VCu), and interstitial oxygen (Oi) was established. It is shown that peroxidation of CuAlO2 films may lead to the increased formation probability of acceptors (VCu and Oi), thus, increasing the hole concentration. The dependence of the VCu density on growth conditions was identified for providing a guide to tune the formation of p-type defects in CuAlO2. Understanding the defect-related p-type conductivity of CuAlO2 is essential for designing optoelectronic devices and improving their performance.

  10. Dielectric properties and effect of electrical aging on space charge accumulation in polyimide/TiO2 nanocomposite films

    NASA Astrophysics Data System (ADS)

    Zha, Jun-Wei; Dang, Zhi-Min; Song, Hong-Tao; Yin, Yi; Chen, George

    2010-11-01

    In situ polymerized polyimide/TiO2 (PI/TiO2) nanocomposite films with good electrical aging resistance are studied. Space charge distribution in the PI/TiO2 nanocomposite films are measured using the pulsed electroacoustic method. Dielectric properties of the films are measured in the frequency range of 102 Hz-106 Hz by an impedance analyzer (Agilent 4294A) at room temperature. These nanocomposite films are also characterized by Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). It is demonstrated that the nano-TiO2 particles strongly affect dielectric breakdown, lifetime and space charge distribution, and increase the voltage endurance of the nanocomposite films significantly. SEM analyses show that the nanocomposite films are destroyed after corona aging. The relation of space charge distribution with the concentration of the nano-TiO2 particles and the aging time is explored. Results show that an increase in dielectric permittivity of the nanocomposite films is observed with increasing filler concentration. However, the accumulation of space charge decreases with increasing nano-TiO2 particles concentration for the same corona aging time, and depends on the dielectric permittivity of the nanocomposite films.

  11. Comparison of photo-Fenton, O3/H2O2/UV and photocatalytic processes for the treatment of gray water.

    PubMed

    Hassanshahi, Nahid; Karimi-Jashni, Ayoub

    2018-06-21

    This research was carried out to compare and optimize the gray water treatment performance by the photo-Fenton, photocatalysis and ozone/H 2 O 2 /UV processes. Experimental design and optimization were carried out using Central Composite Design of Response Surface Methodology. The results of experiments showed that the most effective and influencing factors in photo-Fenton process were H 2 O 2 /Fe 2+ ratio, in ozone/H 2 O 2 /UV experiment were O 3 concentration, H 2 O 2 concentration, reaction time and pH and in photocatalytic process were TiO 2 concentration, pH and reaction time. The highest COD removal in photo-Fenton, ozone/H 2 O 2 /UV and photocatalytic process were 90%, 92% and 55%, respectively. The results were analyzed by design expert software and for all three processes second-order models were proposed to simulate the COD removal efficiency. In conclusion the ozone/H 2 O 2 /UV process is recommended for the treatment of gray water, since it was able to remove both COD and turbidity by 92% and 93%, respectively. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt - Implications for mineralizing magmatic-hydrothermal fluids in F-rich granitic systems

    USGS Publications Warehouse

    Webster, J.D.

    1990-01-01

    Fluid/melt distribution coefficients for F have been determined in experiments conducted with peraluminous topaz rhyolite melts and fluids consisting of H2O and H2O+CO2 at pressures of 0.5 to 5 kbar, temperatures of 775??-1000??C, and concentrations of F in the melt ranging from 0.5 to 6.9 wt%. The major element, F, and Cl concentrations of the starting material and run product glasses were determined by electron microprobe, and the concentration of F in the fluid was calculated by mass balance. The H2O concentrations of some run product glasses were determined by ion microprobe (SIMS). The solubility of melt in the fluid phase increases with increasing F in the system; the solubility of H2O in the melt is independent of the F concentration of the system with up to 6.3 wt% F in the melt. No evidence of immiscible silica- and fluoriderich liquids was detected in the hydrous but water-undersaturated starting material glasses (???8.5 wt% F in melt) or in the water-saturated run product glasses. F concentrates in topaz rhyolite melts relative to coexisting fluids at most conditions studied; however, DF (wt% F in fluid/wt% F in melt) increases strongly with increasing F in the system. Maximum values of DF in this study are significantly larger than those previously reported in the literature. Linear extrapolation of the data suggests that DF is greater than one for water-saturated, peraluminous granitic melts containing ???8 wt% F at 800?? C and 2 kbar. DF increases as temperature and as (H2O/H2O+CO2) of the fluid increase. For topaz rhyolite melts containing ???1 wt% F and with H2O-rich fluids, DF is independent of changes in pressure from 2 to 5 kbar at 800?? C; for melts containing ???1 wt% F and in equilibrium with CO2-bearing fluids the concentrations of F in fluid increases with increasing pressure. F-and lithophile element-enriched granites may evolve to compositions containing extreme concentrations of F during the final stages of crystallization. If F in the

  13. Bismuth doping effect on crystal structure and photodegradation activity of Bi-TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Chang, Yin-Hsuan; Lin, Ting-Han

    2017-04-01

    The bismuth precursor is adopted as dopant to synthesize bismuth doped titanium dioxide nanoparticles (Bi-TiO2 NPs) with sol-gel method following by the thermal annealing treatment. We systematically developed a series of Bi-TiO2 NPs at several calcination temperatures and discovered the corresponding crystal structure by varying the bismuth doping concentration. At a certain 650 °C calcination temperature, the crystal structure of bismuth titanate (Bi2Ti2O7) is formed when the bismuth doping concentration is as high as 10.0 mol %. The photocatalytic activity of Bi-TiO2 NPs is increased by varying the doping concentration at the particular calcination temperature. By the definition X-ray diffraction (XRD) structural identification, a phase diagram of Bi-TiO2 NPs in doping concentration versus calcination temperature is provided. It can be useful for further study in the crystal structure engineering and the development of photocatalyst.

  14. Control of interface between anatase TiO2 nanoparticles and rutile TiO2 nanorods for efficient photocatalytic H2 generation

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohong; Peng, Shuai; Bao, Yuwen; Wang, Yu; Lei, Binglong; Wang, Zhuo; Huang, Zhongbing; Gao, Yun

    2018-02-01

    In recent years, production of H2 through photocatalytic water splitting has attracted considerable attention in the chemistry and material fields. In this work, TiO2 based heterojunction photocatalyst, which is consisted of rutile nanorods and anatase nanoparticles, is systematically studied by controlling the HCl concentration in hydrothermal process. With the help of loaded Pt, an interesting two-peak feature ("M" shape) is observed in the HCl-dependent H2 production efficiency. The peak values are 54.3 mmol h-1 g-1 and 74.4 mmol h-1 g-1, corresponding to 83.9% and 12% anatase phase, respectively. A detailed analysis based on the microstructure and photoluminescence (PL) spectra indicate that the "M" shape feature is directly linked to the HCl-controlled interface area. Moreover, an unexpected zero interface area is revealed at an intermediate HCl concentration. In terms of homogeneous and heterogeneous nucleations, an interface growth mechanism is proposed to clarify its HCl-sensitive character. This work provides a route to enhance the photocatalytic activity in TiO2 based photocatalyst via increasing the interface area.

  15. The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Omri, K.; Bettaibi, A.; Khirouni, K.; El Mir, L.

    2018-05-01

    In the current study, we synthesized a Cu-doped ZnO (CZO) nanoparticles material using a sol-gel method with different doping concentrations of Cu (0, 2, 3 and 4 at.%). The control of the Cu concentration on structural, electrical and optical properties of CZO nanoparticles was investigated in detail. The XRD analysis of the CZO nanoparticles reveals the formation of ZnO hexagonal wurtzite structure for all samples which confirm the incorporation of Cu2+ ions into the ZnO lattice by substitution. Furthermore, CZO nanoparticles showed a small red shift of absorption band with the incorporation of Cu from 0 to 4 at.%; i.e. a decreased band gap value from 3.34 eV to 3.27 eV with increasing of Cu doping content. The frequency dispersion of the electric conductivity were studied using the Jonscher universal power law, according to relation σ(ω) = σDC + A ωs(T). Alternative current conductivity increases with increasing Cu content in spite of the decrease the activation energy with copper loading. It was found that the conductivity reached its maximum value for critical Cu concentration of 3 at.%. The frequency relaxation phenomenon was also investigated and all results were discussed in term of the copper doping concentration.

  16. Thermodynamics Behavior of Germanium During Equilibrium Reactions between FeOx-CaO-SiO2-MgO Slag and Molten Copper

    NASA Astrophysics Data System (ADS)

    Shuva, M. A. H.; Rhamdhani, M. A.; Brooks, G. A.; Masood, S.; Reuter, M. A.

    2016-10-01

    The distribution ratio of germanium (Ge), L_{{Ge}}^{s/m} during equilibrium reactions between magnesia-saturated FeOx-CaO-SiO2 (FCS) slag and molten copper has been measured under oxygen partial pressures from 10-10 to 10-7 atm and at temperatures 1473 to 1623 K (1200 to 1350 °C). It was observed that the Ge distribution ratio increases with increasing oxygen partial pressure, and with decreasing temperature. It was also observed that the distribution ratio is strongly dependent on slag basicity. The distribution ratio was observed to increase with increasing optical basicity. At fixed CaO concentration in the slag, the distribution ratio was found to increase with increasing Fe/SiO2 ratio, tending to a plateau at L_{{Ge}}^{s/m} = 0.8. This behavior is consistent with the assessment of ionic bond fraction carried out in this study, and suggested the acidic nature of germanium oxide (GeO2) in the slag system studied. The characterisation results of the quenched slag suggested that Ge is present in the FeOx-CaO-SiO2-MgO slag predominantly as GeO2. At 1573 K (1300 °C) and p_{{{{O}}2 }} = 10-8 atm, the activity coefficient of GeO2 in the slag was calculated to be in the range of 0.24 to 1.50. The results from the current study suggested that less-basic slag, high operating temperature, and low oxygen partial pressure promote a low Ge distribution ratio. These conditions are desired for maximizing Ge recovery, for example, during pyrometallurgical processing of Ge-containing e-waste through secondary copper smelting. Overall, the thermodynamics data generated from this study can be used for process modeling purposes for improving recovery of Ge in primary and secondary copper smelting processes.

  17. Highly visible-light-responsive Cu2O/rGO decorated with Fe3O4@SiO2 nanoparticles as a magnetically recyclable photocatalyst

    NASA Astrophysics Data System (ADS)

    Liu, Shou-Heng; Lu, Jun-Sheng; Yang, Sheng-Wei

    2018-07-01

    The rhombic dodecahedral cuprous oxide-reduced graphene oxide/core–shell Fe3O4@SiO2 composites (denoted as rCu2O-rGO/Fe3O4@SiO2) are successfully synthesized facilely via a wet-chemical route. The resulting rCu2O-rGO/Fe3O4@SiO2 combines the unique structure of Cu2O, electronic characteristics of reduced graphene oxide (rGO) and magnetic property of Fe3O4@SiO2 to be an effective and recoverable photocatalyst for the degradation of methyl orange (MO). The obtained results show that rCu2O-rGO/Fe3O4@SiO2 is capable of completely degrading MO in the presence of a very low catalyst concentration (0.125 g l‑1) within a short time (60 min) under visible light compared to the reported catalysts. The observations may be due to the distinctive interfacial structures of rhombic dodecahedral Cu2O nanoparticles connected to rGO sheets that can enhance the separation of photogenerated electron–hole pairs, stabilize the Cu2O and increase MO adsorption, as evidenced by a variety of spectroscopic analyses (transmission electron microscopy, x-ray photoelectron spectroscopy and photoluminescence). More importantly, these efficient photocatalysts can easily be recovered under a magnetic field and remain highly photoactive towards the degradation of MO after cyclic tests, and may be promising photocatalysts for practical applications in the solar-energy purification of wastewater.

  18. Highly visible-light-responsive Cu2O/rGO decorated with Fe3O4@SiO2 nanoparticles as a magnetically recyclable photocatalyst.

    PubMed

    Liu, Shou-Heng; Lu, Jun-Sheng; Yang, Sheng-Wei

    2018-07-27

    The rhombic dodecahedral cuprous oxide-reduced graphene oxide/core-shell Fe 3 O 4 @SiO 2 composites (denoted as rCu 2 O-rGO/Fe 3 O 4 @SiO 2 ) are successfully synthesized facilely via a wet-chemical route. The resulting rCu 2 O-rGO/Fe 3 O 4 @SiO 2 combines the unique structure of Cu 2 O, electronic characteristics of reduced graphene oxide (rGO) and magnetic property of Fe 3 O 4 @SiO 2 to be an effective and recoverable photocatalyst for the degradation of methyl orange (MO). The obtained results show that rCu 2 O-rGO/Fe 3 O 4 @SiO 2 is capable of completely degrading MO in the presence of a very low catalyst concentration (0.125 g l -1 ) within a short time (60 min) under visible light compared to the reported catalysts. The observations may be due to the distinctive interfacial structures of rhombic dodecahedral Cu 2 O nanoparticles connected to rGO sheets that can enhance the separation of photogenerated electron-hole pairs, stabilize the Cu 2 O and increase MO adsorption, as evidenced by a variety of spectroscopic analyses (transmission electron microscopy, x-ray photoelectron spectroscopy and photoluminescence). More importantly, these efficient photocatalysts can easily be recovered under a magnetic field and remain highly photoactive towards the degradation of MO after cyclic tests, and may be promising photocatalysts for practical applications in the solar-energy purification of wastewater.

  19. Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO 2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD.

    PubMed

    Yang, Chuanxi; Dong, Wenping; Cui, Guanwei; Zhao, Yingqiang; Shi, Xifeng; Xia, Xinyuan; Tang, Bo; Wang, Weiliang

    2017-06-21

    Poly-o-phenylenediamine modified TiO 2 nanocomposites were successfully synthesized via an 'in situ' oxidative polymerization method. The modified nanocomposites were characterized by BET, XRD, TEM, FT-IR, TGA, XPS, EA and UV-Vis DRS. The photocatalytic degradation of methylene blue was chosen as a model reaction to evaluate the photocatalytic activities of TiO 2 and PoPD/TiO 2 . The results indicated that PoPD/TiO 2 nanocomposites exhibited good photocatalytic activity and stability. The photocatalytic activity of PoPD/TiO 2 increased as the initial pH increased because of electrostatic adsorption between the photocatalyst and MB as well as the generation of ·OH, whereas it exhibited an earlier increasing and later decreasing trend as the concentration of the photocatalyst increased owing to the absorption of visible light. The photocatalytic stability of the PoPD/TiO 2 nanocomposite was dependent on the stability of its structure. Based on radical trapping experiments and ESR measurements, the origin of oxidizing ability of PoPD/TiO 2 nanocomposites on photocatalytic degradation of MB was proposed, which taking into account of ·OH and ·O 2 - were the first and second important ROS, respectively. The possible photocatalytic mechanism and photocatalytic activity enhanced mechanism has been proposed, taking into account the photosensitization effect and synergetic effect of TiO 2 with PoPD.

  20. Local structure in solid solutions of stabilised zirconia with actinide dioxides (UO{sub 2}, NpO{sub 2})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Marcus, E-mail: marcus.walter@vkta.d; Somers, Joseph; Bouexiere, Daniel

    2011-04-15

    The local structure of (Zr,Lu,U)O{sub 2-x} and (Zr,Y,Np)O{sub 2-x} solid solutions has been investigated by extended X-ray absorption fine structure (EXAFS). Samples were prepared by mixing reactive (Zr,Lu)O{sub 2-x} and (Zr,Y)O{sub 2-x} precursor materials with the actinide oxide powders, respectively. Sintering at 1600 {sup o}C in Ar/H{sub 2} yields a fluorite structure with U(IV) and Np(IV). As typical for stabilised zirconia the metal-oxygen and metal-metal distances are characteristic for the different metal ions. The bond lengths increase with actinide concentration, whereas highest adaptation to the bulk stabilised zirconia structure was observed for U---O and Np---O bonds. The Zr---O bond showsmore » only a slight increase from 2.14 A at 6 mol% actinide to 2.18 A at infinite dilution in UO{sub 2} and NpO{sub 2}. The short interatomic distance between Zr and the surrounding oxygen and metal atoms indicate a low relaxation of Zr with respect to the bulk structure, i.e. a strong Pauling behaviour. -- Graphical abstract: Metal-oxygen bond distances in (Zr,Lu,U)O{sub 2-x} solid solutions with different oxygen vacancy concentrations (Lu/Zr=1 and Lu/Zr=0.5). Display Omitted Research Highlights: {yields} EXAFS indicates high U and Np adaption to the bulk structure of stabilised zirconia. {yields} Zr---O bond length is 2.18 A at infinite Zr dilution in UO{sub 2} and NpO{sub 2}. {yields} Low relaxation (strong Pauling behaviour) of Zr explains its low solubility in UO{sub 2}.« less

  1. One-step fabrication of nickel nanocones by electrodeposition using CaCl2·2H2O as capping reagent

    NASA Astrophysics Data System (ADS)

    Lee, Jae Min; Jung, Kyung Kuk; Lee, Sung Ho; Ko, Jong Soo

    2016-04-01

    In this research, a method for the fabrication of nickel nanocones through the addition of CaCl2·2H2O to an electrodeposition solution was proposed. When electrodeposition was performed after CaCl2·2H2O addition, precipitation of the Ni ions onto the (2 0 0) crystal face was suppressed and anisotropic growth of the nickel electrodeposited structures was promoted. Sharper nanocones were produced with increasing concentration of CaCl2·2H2O added to the solution. Moreover, when temperature of the electrodeposition solutions approached 60 °C, the apex angle of the nanostructures decreased. In addition, the nanocones produced were applied to superhydrophobic surface modification using a plasma-polymerized fluorocarbon (PPFC) coating. When the solution temperature was maintained at 60 °C and the concentration of the added CaCl2·2H2O was 1.2 M or higher, the fabricated samples showed superhydrophobic surface properties. The proposed nickel nanocone formation method can be applied to various industrial fields that require metal nanocones, including superhydrophobic surface modification.

  2. Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: implications for removal of invasive species from ballast water.

    PubMed

    Wu, Donghai; You, Hong; Du, Jiaxuan; Chen, Chuan; Jin, Darui

    2011-01-01

    The UV/Ag-TiO2/O3 process was investigated for ballast water treatment using Dunaliella salina as an indicator. Inactivation curves were obtained, and the toxicity of effluent was determined. Compared with individual unit processes using ozone or UV/Ag-TiO2, the inactivation efficiency of D. salina by the combined UV/Ag-TiO2/O3 process was enhanced. The presence of ozone caused an immediate decrease in chlorophyll a (chl-a) concentration. Inactivation efficiency and ch1-a removal efficiency were positively correlated with ozone dose and ultraviolet intensity. The initial total residual oxidant (TRO) concentration of effluent increased with increasing ozone dose, and persistence of TRO resulted in an extended period of toxicity. The results suggest that UV/Ag-TiO2/O3 has potential for ballast water treatment.

  3. Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2013-02-01

    Increases in surface ozone (O3) and fine particulate matter (≤2.5 μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. We estimate changes in surface O3 and PM2.5 from pre-industrial (1860) to present (2000) and the global present-day (2000) premature human mortalities associated with these changes. We extend previous work to differentiate the contribution of changes in three factors: emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year) have increased by 8 ± 0.16 μg m-3 and 30 ± 0.16 ppbv (results reported as annual average ±standard deviation of 10-yr model simulations), respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global population-weighted average PM2.5 (O35) to change by +7.5 ± 0.19 μg m-3 (+25 ± 0.30 ppbv), +0.4 ± 0.17 μg m-3 (+0.5 ± 0.28 ppbv), and 0.04 ± 0.24 μg m-3 (+4.3 ± 0.33 ppbv), respectively. Total global changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.2-1.8) million cardiopulmonary mortalities and 95 (95% CI, 44-144) thousand lung cancer mortalities annually and changes in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their

  4. Synthesis and luminescence studies of Tb-doped MgO-MgAl2O4-Mg2SiO4 ceramic for use in radiation dosimetry.

    PubMed

    Gugliotti, C; Moriya, K; Tatumi, S; Mittani, J

    2018-05-01

    In the present work, MgO ceramic samples with different terbium concentrations were produced and the Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) properties analyzed and discussed, aiming the use in radiation dosimetry. The samples were produced using MgO, Mg(NO 3 ) 2 ·6H 2 O, Al 2 O 3 , SiO 2 and Tb(NO 3 ) 3 ·6H 2 O precursors in stoichiometric concentrations with five different terbium concentrations between 0.1 and 0.5 mol% and after, heat-treated at high temperature ~1500 °C. X-ray diffraction measurements on samples showed the formation of MgO as principal phase, and others in low concentration due to MgAl 2 O 4 , Mg 2 SiO 4 and Tb 4 O 7 phases. The TL glow curve of samples showed an intense and well-defined peak having the maximum at ~210 °C and other less intense at ~350 °C. The sample with 0.1 mol% of terbium concentration presented highest luminescence peak when compared to the other samples. The relationship between 210 °C TL peak intensity and dose was linear to doses between 1 and 20 Gy and the minimum detectable dose obtained by interpolation taking into account three times the standard deviation of the zero dose reading, was ~40 μGy. A fading of ~20% during the first 5 hours after irradiation of 210 °C peak was observed. TL emission spectra showed strong emission lines due to Tb 3+ ion. The OSL signal presented a linear behavior to doses between 1 and 10 Gy using 532 nm wavelength stimulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Exploring the Atmosphere of Neoproterozoic Earth: The Effect of O2 on Haze Formation and Composition

    NASA Astrophysics Data System (ADS)

    Hörst, Sarah M.; He, Chao; Ugelow, Melissa S.; Jellinek, A. Mark; Pierrehumbert, Raymond T.; Tolbert, Margaret A.

    2018-05-01

    Previous studies of haze formation in the atmosphere of the early Earth have focused on N2/CO2/CH4 atmospheres. Here, we experimentally investigate the effect of O2 on the formation and composition of aerosols to improve our understanding of haze formation on the Neoproterozoic Earth. We obtained in situ size, particle density, and composition measurements of aerosol particles produced from N2/CO2/CH4/O2 gas mixtures subjected to FUV radiation (115–400 nm) for a range of initial CO2/CH4/O2 mixing ratios (O2 ranging from 2 ppm to 0.2%). At the lowest O2 concentration (2 ppm), the addition increased particle production for all but one gas mixture. At higher oxygen concentrations (20 ppm and greater), particles are still produced, but the addition of O2 decreases the production rate. Both the particle size and number density decrease with increasing O2, indicating that O2 affects particle nucleation and growth. The particle density increases with increasing O2. The addition of CO2 and O2 not only increases the amount of oxygen in the aerosol, but it also increases the degree of nitrogen incorporation. In particular, the addition of O2 results in the formation of nitrate-bearing molecules. The fact that the presence of oxygen-bearing molecules increases the efficiency of nitrogen fixation has implications for the role of haze as a source of molecules required for the origin and evolution of life. The composition changes also likely affect the absorption and scattering behavior of these particles but optical property measurements are required to fully understand the implications for the effect on the planetary radiative energy balance and climate.

  6. Application of CaCO3, CaF2, SiO2, and TiO2 particles to silicone lens for enhancing angular color uniformity of white LED lamp

    NASA Astrophysics Data System (ADS)

    Nguyen, Anh Q. D.; Nguyen, Vinh H.

    2017-08-01

    In this study, we present an insightful investigation on optimal selection of scattering enhancement particles (SEP) to satisfy each specific optical property of white LEDs (WLEDs). The interested contenders include CaCO3, CaF2, SiO2, and TiO2, each of them is added with YAG:Ce phosphor compounding. The quality improvement on each considered property is demonstrated convincingly by applying Mie-scattering theory together with Monte Carlo simulation on a particular WLEDs which has the color temperature of 8500K. It is observed by simulation results that TiO2 particles provide the highest color uniformity among the SEP, as increasing TiO2 concentration. These results of this work can serve as a practical guideline for manufacturing high-quality WLEDs.

  7. Tuning the optical properties of ZnO nanorods by variation of precursor concentration through hydrothermal method

    NASA Astrophysics Data System (ADS)

    Kumari, Lakshmi; Kar, Asit Kumar

    2018-05-01

    ZnO nanorods with varying precursor concentration have been successfully synthesized by the hydrothermal method. The effect of the precursor concentration on the structural, morphological and optical properties of the resulting nanorods was investigated by means of X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and photoluminescence (PL) spectroscopy. The crystalline structural characterization demonstrated that the synthesized materials crystallize in pure ZnO wurtzite structure without any other secondary phase. SEM micrographs demonstrate nanorod type features in all the samples. In addition, they show that increase of precursor concentration changes the length and diameter of nanorods. The UV-Vis studies show a strong absorption band in UV region at 373 nm attributed to the band-edge absorption of wurtzite hexagonal ZnO, blue shifted relative to its bulk form (380 nm). The PL spectra of obtained nanorods excited at 360 nm present broad visible emission. Moreover, as the visible region (from 510 to 550 nm) is concerned, it is speculated that the increase of the precursor concentration affects strongly the kind of interstitial defects (Oi, Zni and Vo) formed in ZnO nanorods. The luminescence intensity decreases with the increase of precursor concentration.

  8. Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae).

    PubMed

    Zhang, Yizhi; Yin, Liyan; Jiang, Hong-Sheng; Li, Wei; Gontero, Brigitte; Maberly, Stephen C

    2014-09-01

    Two freshwater macrophytes, Ottelia alismoides and O. acuminata, were grown at low (mean 5 μmol L(-1)) and high (mean 400 μmol L(-1)) CO2 concentrations under natural conditions. The ratio of PEPC to RuBisCO activity was 1.8 in O. acuminata in both treatments. In O. alismoides, this ratio was 2.8 and 5.9 when grown at high and low CO2, respectively, as a result of a twofold increase in PEPC activity. The activity of PPDK was similar to, and changed with, PEPC (1.9-fold change). The activity of the decarboxylating NADP-malic enzyme (ME) was very low in both species, while NAD-ME activity was high and increased with PEPC activity in O. alismoides. These results suggest that O. alismoides might perform a type of C4 metabolism with NAD-ME decarboxylation, despite lacking Kranz anatomy. The C4-activity was still present at high CO2 suggesting that it could be constitutive. O. alismoides at low CO2 showed diel acidity variation of up to 34 μequiv g(-1) FW indicating that it may also operate a form of crassulacean acid metabolism (CAM). pH-drift experiments showed that both species were able to use bicarbonate. In O. acuminata, the kinetics of carbon uptake were altered by CO2 growth conditions, unlike in O. alismoides. Thus, the two species appear to regulate their carbon concentrating mechanisms differently in response to changing CO2. O. alismoides is potentially using three different concentrating mechanisms. The Hydrocharitaceae have many species with evidence for C4, CAM or some other metabolism involving organic acids, and are worthy of further study.

  9. Single and combined effects of aluminum (Al2O3) and zinc (ZnO) oxide nanoparticles in a freshwater fish, Carassius auratus.

    PubMed

    Benavides, María; Fernández-Lodeiro, Javier; Coelho, Pedro; Lodeiro, Carlos; Diniz, Mário S

    2016-12-01

    The increasing use of nanoparticles (NPs) worldwide has raised some concerns about their impact on the environment. The aim of the study was to assess the toxicity of metal oxide nanoparticles, singly or combined, in a freshwater fish (Carassius auratus). The fish were exposed for 7, 14, and 21 days to different concentrations of NPs (10 μg Al 2 O 3 .L -1 , 10 μg ZnO.L -1 , 10 μg Al 2 O 3 .L -1 plus 10 μg ZnO.L -1 , 100 μg Al 2 O 3 .L -1 , 100 μg ZnO.L -1 , and 100 μg Al 2 O 3 .L -1 plus 100 μg ZnO.L -1 ). At the end of each exposure period, antioxidant enzyme activity (catalase, glutathione-S-transferase, and superoxide dismutase), lipid peroxidation, and histopathology were assessed in the gills and livers of C. auratus. The results show an increase in catalase (CAT) and superoxide dismutase (SOD) activity in the gills and livers of fish, especially after 14 days of exposure to single and combined NPs, followed by a reduction at 21 days. An increase in glutathione S-transferase (GST) was observed in gills after 7 days for all tested NP concentrations (single and combined); while in livers, a significant increase was determined after 14 days of exposure to 100 μg.L -1 of both single ZnO and Al 2 O 3 NPs. Lipid peroxidation (LPO) significantly increased in gills after 7 days of exposure to 100 μg.L -1 Al 2 O 3 NPs (single or combined). In livers, LPO increased significantly after 7 days of exposure to all tested concentrations of both single ZnO and Al 2 O 3 (except for 10 μg Al 2 O 3 .L -1 ), and after 14 days of exposure to ZnO (10 and 100 μg.L -1 ) and Al 2 O 3 (100 μg.L -1 ) . The results from histological observations suggest that exposure to metal oxide NPs affected both livers and gills, presenting alterations such as gill hyperplasia and liver degeneration. However, the most pronounced effects were found in gills. In general, this study shows that the tested NPs, single or combined, are capable of causing sub-lethal effects

  10. The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-Ca-Cl-SO 4-H 2O system, to high temperature and concentration

    NASA Astrophysics Data System (ADS)

    Møller, Nancy

    1988-04-01

    This paper describes a chemical equilibrium model for the Na-Ca-Cl-SO 4-H 2O system which calculates solubilities from 25°C to 250°C and from zero to high concentration ( I ~ 18. m) within experimental uncertainty. The concentration and temperature dependence of the model were established by fitting available activity (solubility, osmotic and emf) data. A single ion complex, CaSO 04, which increases in strength with temperature, is included explicitly in the model. The validation of model accuracy by comparison to laboratory and field solubility data is included. Applications of the model are also given. Phase diagrams constructed for the Na-Ca-Cl-SO 4-H 2O system and predicted solubilities of anhydrite and hemihydrate in concentrated seawater at high temperature are in very good agreement with the data. Calculations of the temperature of gypsum-anhydrite coexistence as a function of water activity are compared to reported values, and are used to estimate the composition-temperature relation for gypsum-anhydrite transition in a natural brine evaporation. A preliminary model for barite solubility in sodium chloride solutions at high temperature (100°C to 250°C), based on this parameterization of the CaSO 4-NaCl-H 2O system, gives good agreement with the data.

  11. Structural and optical characterization of p-type highly Fe-doped SnO2 thin films and tunneling transport on SnO2:Fe/p-Si heterojunction

    NASA Astrophysics Data System (ADS)

    Ben Haj Othmen, Walid; Ben Hamed, Zied; Sieber, Brigitte; Addad, Ahmed; Elhouichet, Habib; Boukherroub, Rabah

    2018-03-01

    Nanocrystalline highly Fe-doped SnO2 thin films were prepared using a new simple sol-gel method with iron amounts of 5, 10, 15 and 20%. The obtained gel offers a long durability and high quality allowing to reach a sub-5 nm nanocrystalline size with a good crystallinity. The films were structurally characterized through X-ray diffraction (XRD) that confirms the formation of rutile SnO2. High Resolution Transmission Electron Microscopy (HRTEM) images reveals the good crystallinity of the nanoparticles. Raman spectroscopy shows that the SnO2 rutile structure is maintained even for high iron concentration. The variation of the PL intensity with Fe concentration reveals that iron influences the distribution of oxygen vacancies in tin oxide. The optical transmittance results indicate a redshift of the SnO2 band gap when iron concentration increases. The above optical results lead us to assume the presence of a compensation phenomenon between oxygen vacancies and introduced holes following Fe doping. From current-voltage measurements, an inversion of the conduction type from n to p is strongly predicted to follow the iron addition. Electrical characterizations of SnO2:Fe/p-Si and SnO2:Fe/n-Si heterojunctions seem to be in accordance with this deduction. The quantum tunneling mechanism is expected to be important at high Fe doping level, which was confirmed by current-voltage measurements at different temperatures. Both optical and electrical properties of the elaborated films present a particularity for the same iron concentration and adopt similar tendencies with Fe amount, which strongly correlate the experimental observations. In order to evaluate the applicability of the elaborated films, we proceed to the fabrication of the SnO2:Fe/SnO2 homojunction for which we note a good rectifying behavior.

  12. Nitroxides protect horseradish peroxidase from H2O2-induced inactivation and modulate its catalase-like activity.

    PubMed

    Samuni, Amram; Maimon, Eric; Goldstein, Sara

    2017-08-01

    Horseradish peroxidase (HRP) catalyzes H 2 O 2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H 2 O 2 -induced inactivation, have been investigated. HRP reaction with H 2 O 2 was studied by following H 2 O 2 depletion, O 2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow. Nitroxide protects HRP against H 2 O 2 -induced inactivation. The rate of H 2 O 2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H 2 O 2 . The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO)>4-OH-TPO>3-carbamoyl proxyl>4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III. Nitroxide catalytically protects HRP against inactivation induced by H 2 O 2 while modulating its catalase-like activity. The protective role of nitroxide at μM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex. Nitroxides catalytically protect heme proteins against inactivation induced by H 2 O 2 revealing an additional role played by nitroxide antioxidants in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Photocatalytic Activity of W-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Song, Yo-Seung; Cho, Nam-Ihn; Lee, Myung-Hyun; Kim, Bae-Yeon; Lee, Deuk Yong

    2016-02-01

    Photocatalytic degradation of methylene blue (MB) in water was examined using W-doped TiO2 nanofibers prepared by a sol-gel derived electrospinning and subsequent calcination for 4 h at 550 degrees C. Different concentrations of W dopant in the range of 0 to 8 mol% were synthesized to evaluate the effect of W concentration on the photocatalytic activity of TiO2. XRD results indicated that the undoped TiO2 is composed of anatase and rutile phases. The rutile phase was transformed to anatase phase completely with the W doping. Among W-TiO2 catalysts, the 2 mol% W-TiO2 catalyst showed the highest MB degradation rate. The degradation kinetic constant increased from 1.04 x 10(-3) min(-1) to 3.54 x 10(-3) min(-1) with the increase of W doping from 0 to 2 mol%, but decreased down to 1.77 x 10(-3) min(-1) when the W content was 8 mol%. It can be concluded that the degradation of MB under UV radiation was more efficient with W-TiO2 catalysts than with pure TiO2-

  14. Aging of TiO2 Nanoparticles Transiently Increases Their Toxicity to the Pelagic Microcrustacean Daphnia magna

    PubMed Central

    Seitz, Frank; Lüderwald, Simon; Rosenfeldt, Ricki R.; Schulz, Ralf; Bundschuh, Mirco

    2015-01-01

    During their aquatic life cycle, nanoparticles are subject to environmentally driven surface modifications (e.g. agglomeration or coating) associated with aging. Although the ecotoxicological potential of nanoparticles might be affected by these processes, only limited information about the potential impact of aging is available. In this context, the present study investigated acute (96 h) and chronic (21 d) implications of systematically aged titanium dioxide nanoparticles (nTiO2; ~90 nm) on the standard test species Daphnia magna by following the respective test guidelines. The nTiO2 were aged for 0, 1, 3 and 6 d in media with varying ionic strengths (Milli-Q water: approx. 0.00 mmol/L and ASTM: 9.25 mmol/L) in the presence or absence of natural organic matter (NOM). Irrespective of the other parameters, aging in Milli-Q did not change the acute toxicity relative to an unaged control. In contrast, 6 d aged nTiO2 in ASTM without NOM caused a fourfold decreased acute toxicity. Relative to the 0 d aged particles, nTiO2 aged for 1 and 3 d in ASTM with NOM, which is the most environmentally-relevant setup used here, significantly increased acute toxicity (by approximately 30%), while a toxicity reduction (60%) was observed for 6 d aged nTiO2. Comparable patterns were observed during the chronic experiments. A likely explanation for this phenomenon is that the aging of nTiO2 increases the particle size at the start of the experiment or the time of the water exchange from <100 nm to approximately 500 nm, which is the optimal size range to be taken up by filter feeding D. magna. If subjected to further agglomeration, larger nTiO2 particles, however, cannot be retained by the daphnids’ filter apparatus ultimately reducing their ecotoxicological potential. This non-linear pattern of increasing and decreasing nTiO2 related toxicity over the aging duration, highlights the knowledge gap regarding the underlying mechanisms and processes. This understanding seems, however

  15. The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge.

    PubMed

    Peng, Lai; Ni, Bing-Jie; Ye, Liu; Yuan, Zhiguo

    2015-04-15

    Both nitrite [Formula: see text] and dissolved oxygen (DO) play important roles in nitrous oxide (N2O) production by ammonia oxidizing bacteria (AOB). However, few studies focused on the combined effect of them on N2O production by AOB as well as the corresponding mechanisms. In this study, N2O production by an enriched nitrifying sludge, consisting of both AOB and nitrite-oxidizing bacteria (NOB), was investigated under various [Formula: see text] and DO concentrations. At each investigated DO level, both the biomass specific N2O production rate and the N2O emission factor (the ratio between N2O nitrogen emitted and the ammonium nitrogen converted) increased as [Formula: see text] concentration increased from 3 mg N/L to 50 mg N/L. However, at each investigated [Formula: see text] level, the maximum biomass specific N2O production rate occurred at DO of 0.85 mg O2/L, while the N2O emission factor decreased as DO increased from 0.35 to 3.5 mg O2/L. The analysis of the process data using a mathematical N2O model incorporating both the AOB denitrification and hydroxylamine (NH2OH) oxidation pathways indicated that the contribution of AOB denitrification pathway increased as [Formula: see text] concentration increased, but decreased as DO concentration increased, accompanied by a corresponding change in the contribution of NH2OH oxidation pathway to N2O production. The AOB denitrification pathway was predominant in most cases, with the NH2OH oxidation pathway making a comparable contribution only at high DO level (e.g. 3.5 mg O2/L). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Growth of SiO 2 on InP substrate by liquid phase deposition

    NASA Astrophysics Data System (ADS)

    Lei, Po Hsun; Yang, Chyi Da

    2010-04-01

    We have grown silicon dioxide (SiO 2) on indium phosphorous (InP) substrate by liquid phase deposition (LPD) method. With inserting InP wafer in the treatment solution composed of SiO 2 saturated hydrofluorosilicic acid (H 2SiF 6), 0.1 M boric acid (H 3BO 3) and 1.74 M diluted hydrochloric acid (HCl), the maximum deposition rate and refractive index for the as-grown LPD-SiO 2 film were about 187.5 Å/h and 1.495 under the constant growth temperature of 40 °C. The secondary ion mass spectroscope (SIMS) and energy dispersive X-ray (EDX) confirmed that the elements of silicon, oxygen, and chloride were found in the as-grown LPD-SiO 2 film. On the other hand, the effects of treatment solution incorporated with the hydrogen peroxide (H 2O 2) that can regulate the concentration of OH - ion were also shown in this article. The experimental results represented that the deposition rate decreases with increasing the concentration of hydrogen peroxide due to the reduced concentration of SiO 2 saturated H 2SiF 6 in treatment solution.

  17. Effect on Electron Structure and Magneto-Optic Property of Heavy W-Doped Anatase TiO2.

    PubMed

    Hou, Qingyu; Zhao, Chunwang; Guo, Shaoqiang; Mao, Fei; Zhang, Yue

    2015-01-01

    The spin or nonspin state of electrons in W-doped anatase TiO2 is very difficult to judge experimentally because of characterization method limitations. Hence, the effect on the microscopic mechanism underlying the visible-light effect of W-doped anatase TiO2 through the consideration of electronic spin or no-spin states is still unknown. To solve this problem, we establish supercell models of W-doped anatase TiO2 at different concentrations, followed by geometry optimization and energy calculation based on the first-principle planewave norm conserving pseudo-potential method of the density functional theory. Calculation results showed that under the condition of nonspin the doping concentration of W becomes heavier, the formation energy becomes greater, and doping becomes more difficult. Meanwhile, the total energy increases, the covalent weakens and ionic bonds strengthens, the stability of the W-doped anatase TiO2 decreases, the band gap increases, and the blue-shift becomes more significant with the increase of W doping concentration. However, under the condition of spin, after the band gap correction by the GGA+U method, it is found that the semimetal diluted magnetic semiconductors can be formed by heavy W-doped anatase TiO2. Especially, a conduction electron polarizability of as high as near 100% has been found for the first time in high concentration W-doped anatase TiO2. It will be able to be a promising new type of dilute magnetic semiconductor. And the heavy W-doped anatase TiO2 make the band gap becomes narrower and absorption spectrum red-shift.

  18. Crystallization kinetics of bioactive glasses in the ZnO-Na2O-CaO-SiO2 system.

    PubMed

    Malavasi, Gianluca; Lusvardi, Gigliola; Pedone, Alfonso; Menziani, Maria Cristina; Dappiaggi, Monica; Gualtieri, Alessandro; Menabue, Ledi

    2007-08-30

    The crystallization kinetics of Na(2)O.CaO.2SiO(2) (x = 0) and 0.68ZnO.Na(2)O.CaO.2SiO(2) (x = 0.68, where x is the ZnO stoichiometric coefficient in the glass formula) bioactive glasses have been studied using both nonisothermal and isothermal methods. The results obtained from isothermal XRPD analyses have showed that the first glass crystallizes into the isochemical Na(2)CaSi(2)O(6) phase, whereas the Na(2)ZnSiO(4) crystalline phase is obtained from the Zn-rich glass, in addition to Na(2)CaSi(2)O(6). The activation energy (Ea) for the crystallization of the Na(2)O.CaO.2SiO(2) glass is 193 +/- 10 and 203 +/- 5 kJ/mol from the isothermal in situ XRPD and nonisothermal DSC experiments, respectively. The Avrami exponent n determined from the isothermal method is 1 at low temperature (530 degrees C), and its value increases linearly with temperature increase up to 2 at 607 degrees C. For the crystallization of Na(2)CaSi(2)O(6) from the Zn-containing glass, higher values of both the crystallization temperature (667 and 661 degrees C) and Ea (223 +/- 10 and 211 +/- 5 kJ/mol) have been found from the isothermal and nonisothermal methods, respectively. The Na(2)ZnSiO(4) crystalline phase crystallizes at lower temperature with respect to Na(2)CaSi(2)O(6), and the Ea value is 266 +/- 20 and 245 +/- 15 kJ/mol from the isothermal and nonisothermal methods, respectively. The results of this work show that the addition of Zn favors the crystallization from the glass at lower temperature with respect to the Zn-free glass. In fact, it causes an increase of Ea for the Na diffusion process, determined using MD simulations, and consequently an overall increase of Ea for the crystallization process of Na(2)CaSi(2)O(6). Our results show good agreement between the Ea and n values obtained with the two different methods and confirm the reliability of the nonisothermal method applied to kinetic crystallization of glassy systems. This study allows the determination of the temperature

  19. Alteration of magnetic and optical properties of ultrafine dilute magnetic semiconductor ZnO:Co2+ nanoparticles.

    PubMed

    Sharma, Prashant K; Dutta, Ranu K; Pandey, Avinash C

    2010-05-15

    Single-phase ZnO:Co(2+) nanoparticles of mean size 2-8 nm were synthesized by a simple co-precipitation technique. X-ray diffraction analysis reveals that the Co-doped ZnO nanoparticles crystallize in wurtzite structure without any impurity phase. The wurtzite structure (lattice constants) of ZnO nanoparticles decrease slightly with increasing Co doping concentration. Optical absorption spectra show an increase in the band gap with increasing Co content and also give an evidence of the presence of Co(2+) ions at tetrahedral sites of ZnO and substituted for the Zn site with no evidence of metallic Co. Initially these nanoparticles showed strong ferromagnetic behavior at room temperature, however at higher doping percentage of Co(2+), the ferromagnetic behavior was suppressed, and antiferromagnetic nature was enhanced. The enhanced antiferromagnetic interaction between neighboring Co-Co ions suppressed the ferromagnetism at higher doping concentrations of Co(2+). Photoluminescence intensity owing to the vacancies varies with the Co concentration because of the increment of oxygen vacancies. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. A novel H(2)O(2) amperometric biosensor based on gold nanoparticles/self-doped polyaniline nanofibers.

    PubMed

    Chen, Xiaojun; Chen, Zixuan; Zhu, Jinwei; Xu, Chenbin; Yan, Wei; Yao, Cheng

    2011-10-01

    A new kind of gold nanoparticles/self-doped polyaniline nanofibers (Au/SPAN) with grooves has been prepared for the immobilization of horseradish peroxidase (HRP) on the surface of glassy carbon electrode (GCE). The ratio of gold in the composite nanofibers was up to 64%, which could promote the conductivity and biocompatibility of SPAN and increase the immobilized amount of HRP molecules greatly. The electrode exhibits enhanced electrocatalytic activity in the reduction of H(2)O(2) in the presence of the mediator hydroquinone (HQ). The effects of concentration of HQ, solution pH and the working potential on the current response of the modified electrode toward H(2)O(2) were optimized to obtain the maximal sensitivity. The proposed biosensor exhibited a good linear response in the range from 10 to 2000 μM with a detection limit of 1.6 μM (S/N=3) under the optimum conditions. The response showed Michaelis-Menten behavior at larger H(2)O(2) concentrations, and the apparent Michaelis-Menten constant K(m) was estimated to be 2.21 mM. The detection of H(2)O(2) concentration in real sample showed acceptable accuracy with the traditional potassium permanganate titration. Copyright © 2011 Elsevier B.V. All rights reserved.