Effects of pH and Oxygen on Photosynthetic Reactions of Intact Chloroplasts 1
Heber, Ulrich; Andrews, T. John; Boardman, N. Keith
1976-01-01
Oxygen inhibition of photosynthesis was studied with intact spinach (Spinacia oleracea L.) chloroplasts which exhibited very high rates of photosynthetic CO2 reduction and were insensitive to additions of photosynthetic intermediates when CO2 was available at saturating concentrations. Photosynthetic rates were measured polarographically as O2 evolution, and the extent of the reduction of substrate was estimated from the amount of O2 evolved. With CO2 as substrate, inhibition of photosynthesis by O2 was dependent on pH. At pH values above 8, rates of O2 evolution were strongly inhibited by O2 and only a fraction of the added bicarbonate was reduced before O2 evolution ceased. The extent of O2 evolution declined with increasing O2 concentration and decreasing initial bicarbonate concentration. At pH 7.2, the initial photosynthetic rate was inhibited about 30% at high O2 levels, but the extent of O2 evolution was unaffected and most of the added bicarbonate was reduced. Photosynthetic O2 evolution with 3-phosphoglycerate as substrate was similarly dependent on pH and O2 concentration. In contrast, there was little effect of O2 and pH on oxaloacetate-dependent oxygen evolution. Acid-base shift experiments with osmotically shocked chloroplasts showed that ATP formation was not affected by O2. The results are discussed in terms of a balance between photosynthetic O2 evolution and O2 consumption by the ribulose diphosphate oxygenase reaction. PMID:16659466
Co-regulation of dark and light reactions in three biochemical subtypes of C(4) species.
Kiirats, Olavi; Kramer, David M; Edwards, Gerald E
2010-08-01
Regulation of light harvesting in response to changes in light intensity, CO(2) and O(2) concentration was studied in C(4) species representing three different metabolic subtypes: Sorghum bicolor (NADP-malic enzyme), Amaranthus edulis (NAD-malic enzyme), and Panicum texanum (PEP-carboxykinase). Several photosynthetic parameters were measured on the intact leaf level including CO(2) assimilation rates, O(2) evolution, photosystem II activities, thylakoid proton circuit and dissipation of excitation energy. Gross rates of O(2) evolution (J(O)₂'), measured by analysis of chlorophyll fluorescence), net rates of O(2) evolution and CO(2) assimilation responded in parallel to changes in light and CO(2) levels. The C(4) subtypes had similar energy requirements for photosynthesis since there were no significant differences in maximal quantum efficiencies for gross rates of O(2) evolution (average value = 0.072 O(2)/quanta absorbed, approximately 14 quanta per O(2) evolved). At saturating actinic light intensities, when photosynthesis was suppressed by decreasing CO(2), ATP synthase proton conductivity (g (H) (+)) responded strongly to changes in electron flow, decreasing linearly with J(O)₂', which was previously observed in C(3) plants. It is proposed that g (H) (+) is controlled at the substrate level by inorganic phosphate availability. The results suggest development of nonphotochemical quenching in C(4) plants is controlled by a decrease in g (H) (+), which causes an increase in proton motive force by restricting proton efflux from the lumen, rather than by cyclic or pseudocyclic electron flow.
The rate of nitrite reduction in leaves as indicated by O2 and CO2 exchange during photosynthesis
Eichelmann, H.; Oja, V.; Peterson, R.B.; Laisk, A.
2011-01-01
Light response (at 300 ppm CO2 and 10–50 ppm O2 in N2) and CO2 response curves [at absorbed photon fluence rate (PAD) of 550 μmol m−2 s−1] of O2 evolution and CO2 uptake were measured in tobacco (Nicotiana tabacum L.) leaves grown on either NO3− or NH4+ as N source and in potato (Solanum tuberosum L.), sorghum (Sorghum bicolor L. Moench), and amaranth (Amaranthus cruentus L.) leaves grown on NH4NO3. Photosynthetic O2 evolution in excess of CO2 uptake was measured with a stabilized zirconia O2 electrode and an infrared CO2 analyser, respectively, and the difference assumed to represent the rate of electron flow to acceptors alternative to CO2, mainly NO2−, SO42−, and oxaloacetate. In NO3−-grown tobacco, as well as in sorghum, amaranth, and young potato, the photosynthetic O2–CO2 flux difference rapidly increased to about 1 μmol m−2 s−1 at very low PADs and the process was saturated at 50 μmol quanta m−2 s−1. At higher PADs the O2–CO2 flux difference continued to increase proportionally with the photosynthetic rate to a maximum of about 2 μmol m−2 s−1. In NH4+-grown tobacco, as well as in potato during tuber filling, the low-PAD component of surplus O2 evolution was virtually absent. The low-PAD phase was ascribed to photoreduction of NO2− which successfully competes with CO2 reduction and saturates at a rate of about 1 μmol O2 m−2 s−1 (9% of the maximum O2 evolution rate). The high-PAD component of about 1 μmol O2 m−2 s−1, superimposed on NO2− reduction, may represent oxaloacetate reduction. The roles of NO2−, oxaloacetate, and O2 reduction in the regulation of ATP/NADPH balance are discussed. PMID:21239375
Pang, Rui; Teramura, Kentaro; Tatsumi, Hiroyuki; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka, Tsunehiro
2018-01-25
A core-shell structure of Ag-Cr dual cocatalyst loaded-Ga 2 O 3 was found to significantly enhance the formation rate of CO and selectivity toward CO evolution for the photocatalytic conversion of CO 2 where H 2 O is used as an electron donor.
Bi2O3 cocatalyst improving photocatalytic hydrogen evolution performance of TiO2
NASA Astrophysics Data System (ADS)
Xu, Difa; Hai, Yang; Zhang, Xiangchao; Zhang, Shiying; He, Rongan
2017-04-01
Photocatalytic hydrogen production using water splitting is of potential importance from the viewpoint of renewable energy development. Herein, Bi2O3-TiO2 composite photocatalysts presented as Bi-Bi2O3-anatase-rutile TiO2 multijunction were first fabricated by a simple impregnation-calcination method using Bi2O3 as H2-production cocatalysts. The obtained multijunction samples exhibit an obvious enhancement in photocatalytic H2 evolution activity in the presence of glycerol. The effect of Bi2O3 amount on H2-evolution activity of TiO2 was investigated and the optimal Bi2O3 content was found to be 0.89 mol%, achieving a H2-production rate of 920 μmol h-1, exceeding that of pure TiO2 by more than 73 times. The enhanced mechanism of photocatalytic H2-evolution activity is proposed. This study will provide new insight into the design and fabrication of TiO2-based hydrogen-production photocatalysts using low-cost Bi2O3 as cocatalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berto, Tobias F.; Sanwald, Kai E.; Byers, J. Paige
Photocatalytic overall water splitting requires co-catalysts that efficiently promote the generation of H-2 but do not catalyze its reverse oxidation. We demonstrate that CO chemisorbed on metal co-catalysts (Rh, Pt, Pd) suppresses the back reaction while maintaining the rate of H-2 evolution. On Rh/GaN:ZnO, the highest H-2 production rates were obtained with 4-40 mbar of CO, the back reaction remaining suppressed below 7 mbar of O-2. The O-2 and H-2 evolution rates compete with CO oxidation and the back reaction. The rates of all reactions increased with increasing photon absorption. However, due to different dependencies on the rate of chargemore » carrier generation, the selectivities for O-2 and H-2 formation increased in comparison to CO oxidation and the back reaction with increasing photon flux and/or quantum efficiency. Under optimum conditions, the impact of CO to prevent the back reaction is identical to that of a Cr2O3 layer covering the active metal particle.« less
Wang, Qing Jun; Singh, Abhay; Li, Hong; Nedbal, Ladislav; Sherman, Louis A; Govindjee; Whitmarsh, John
2012-05-01
Oxygenic photosynthesis in cyanobacteria, algae, and plants requires photosystem II (PSII) to extract electrons from H(2)O and depends on photosystem I (PSI) to reduce NADP(+). Here we demonstrate that mixotrophically-grown mutants of the cyanobacterium Synechocystis sp. PCC 6803 that lack PSI (ΔPSI) are capable of net light-induced O(2) evolution in vivo. The net light-induced O(2) evolution requires glucose and can be sustained for more than 30 min. Utilizing electron transport inhibitors and chlorophyll a fluorescence measurements, we show that in these mutants PSII is the source of the light-induced O(2) evolution, and that the plastoquinone pool is reduced by PSII and subsequently oxidized by an unidentified electron acceptor that does not involve the plastoquinol oxidase site of the cytochrome b(6)f complex. Moreover, both O(2) evolution and chlorophyll a fluorescence kinetics of the ΔPSI mutants are highly sensitive to KCN, indicating the involvement of a KCN-sensitive enzyme(s). Experiments using (14)C-labeled bicarbonate show that the ΔPSI mutants assimilate more CO(2) in the light compared to the dark. However, the rate of the light-minus-dark CO(2) assimilation accounts for just over half of the net light-induced O(2) evolution rate, indicating the involvement of unidentified terminal electron acceptors. Based on these results we suggest that O(2) evolution in ΔPSI cells can be sustained by an alternative electron transport pathway that results in CO(2) assimilation and that includes PSII, the platoquinone pool, and a KCN-sensitive enzyme. Copyright © 2012 Elsevier B.V. All rights reserved.
Gu, Quan; Long, Jinlin; Zhuang, Huaqiang; Zhang, Chaoqiang; Zhou, Yangen; Wang, Xuxu
2014-06-28
A variety of ternary nanoheterostructures composed of Pt nanoparticles (NPs), SnOx species, and anatase TiO2 are designed elaborately to explore the effect of interfacial electron transfer on photocatalytic H2 evolution from a biofuel-water solution. Among numerous factors controlling the H2 evolution, the significance of Pt sites for the H2 evolution is highlighted by tuning the loading procedure of Pt NPs and SnOx species over TiO2. A synergistic enhancement of H2 evolution can be achieved over the Pt/SnOx/TiO2 heterostructures formed by anchoring Pt NPs at atomically-isolated Sn-oxo sites, whereas the Pt/TiO2/SnOx counterparts prepared by grafting single-site Sn-oxo species on Pt/TiO2 show a marked decrease in the rate of H2 evolution. The characterization results clearly reveal that the synergy of Pt NPs and SnOx species originates from the vectorial electron transfer of TiO2 → SnOx → Pt occurring on the former, while the latter results from the competitive electron transfer from TiO2 to SnOx and to Pt NPs.
Nitrate-Dependent O2 Evolution in Intact Leaves 1
de la Torre, Angel; Delgado, Begoña; Lara, Catalina
1991-01-01
Evolution of O2 by illuminated intact detached leaves from barley (Hordeum vulgare L. cv Athos) and pea (Pisum sativum L. cv Lincoln) in a CO2-saturating atmosphere was enhanced when KNO3 (1-2.5 millimolar) had been previously supplied through the transpiration stream. The extra O2 evolution observed after feeding KNO3 increased with the light intensity, being maximal at near saturating photon flux densities and resulting in no changes in the initial slope of the O2 versus light-intensity curve. No stimulation of O2 evolution was otherwise observed after feeding KCl or NH4Cl. The data indicate that nitrate assimilation uses photosynthetically generated reductant and stimulates the rate of non-cyclic electron flow by acting as a second electron-accepting assimilatory process in addition to CO2 fixation. PMID:16668272
NASA Technical Reports Server (NTRS)
Wrighton, M. S.; Bocarsley, A. B.; Bolts, J. M.
1978-01-01
In the present paper, some results are given for UV laser light irradiation of the photoanode (SnO2, SrTiO3, or TiO2) in a cell for the light-driven electrolysis of H2O, at radiation intensities of up to 380 W/sq cm. The properties of the anode material are found to be independent of light intensity. Conversion of UV light to stored chemical energy in the form of 2H2/O2 from H2O was driven at a rate of up to 30 W/sq cm. High O2 evolution rates at the irradiated anodes without changes in the current-voltage curves are attributed to the excess oxidizing power associated with photogenerated holes. A test for this sort of hypothesis for H2 evolution at p-type materials is proposed.
Strand, M; Lundmark, T
1995-03-01
Photosynthetic O(2) evolution and chlorophyll a fluorescence were measured in 1-year-old needles of unfertilized and fertilized trees of Norway spruce (Picea abies (L.) Karst.) during recovery of photosynthesis from winter inhibition in northern Sweden. Measurements were made under laboratory conditions at 20 degrees C. In general, the CO(2)-saturated rate of O(2) evolution was higher in needles of fertilized trees than in needles of unfertilized trees over a wide range of incident photon flux densities. Furthermore, the maximum photochemical efficiency of photosystem (PS) II, as indicated by the ratio of variable to maximum fluorescence (F(V)/F(M)) was higher in needles of fertilized trees than in needles of unfertilized trees. The largest differences in F(V)/F(M) between the two treatments occurred before the main recovery of photosynthesis from winter inhibition in late May. The rate of O(2) evolution was higher in needles of north-facing branches than in needles of south-facing branches in the middle of May. Simultaneous measurements of O(2) exchange and chlorophyll fluorescence indicated that differences in the rate of O(2) evolution between the two treatments were paralleled by differences in the rate of PS II electron transport determined by chlorophyll fluorescence. We suggest that, during recovery of photosynthesis from winter inhibition, the balance between carbon assimilation and PS II electron transport was maintained largely by adjustments in the nonphotochemical dissipation of excitation energy within PS II.
NASA Astrophysics Data System (ADS)
Li, Yanping; Wang, Baowei; Liu, Sihan; Duan, Xiaofei; Hu, Zongyuan
2015-01-01
A series of Cu2O/TiO2 photocatalysts with different molar fraction of Cu2O were prepared by a facile modified ethanol-induced approach followed by a calcination process. The chemical state of copper compound was proved to be cuprous oxide by the characterization of X-ray photoelectron spectra (XPS). Furthermore, these composite oxides were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption desorption and UV-vis techniques to study the morphologies, structures, and optical properties of the as-prepared samples. The results indicated that the photocatalytic activity of n-type TiO2 was significantly enhanced by combined with p-type Cu2O, due to the efficient p-n heterojunction. The p-n heterojunction between Cu2O and TiO2 can enhance visible-light adsorption, efficiently suppress charge recombination, improve interfacial charge transfer, and especially provide plentiful reaction active sites on the surface of photocatalyst. As a consequence, the prepared 2.5-Cu2O/TiO2 photocatalyst exhibited the highest photocatalytic activity for H2 evolution rate and reached 2048.25 μmol/(g h), which is 14.48 times larger than that of pure P25. The apparent quantum yield (AQY) of the 2.5-Cu2O/TiO2 sample at 365 nm was estimated to be 4.32%. In addition, the influence of different scavengers, namely methanol, anhydrous ethanol, ethylene glycol and glycerol, on the photocatalytic activity for H2 evolution rate was discussed.
Oja, Vello; Eichelmann, Hillar; Laisk, Agu
2011-12-01
Oxygen evolution per single-turnover flash (STF) or multiple-turnover pulse (MTP) was measured with a zirconium O(2) analyzer from sunflower leaves at 22 °C. STF were generated by Xe arc lamp, MTP by red LED light of up to 18000 μmol quanta m(-2) s(-1). Ambient O(2) concentration was 10-30 ppm, STF and MTP were superimposed on far-red background light in order to oxidize plastoquinone (PQ) and randomize S-states. Electron (e(-)) flow was calculated as 4 times O(2) evolution. Q (A) → Q (B) electron transport was investigated firing double STF with a delay of 0 to 2 ms between the two. Total O(2) evolution per two flashes equaled to that from a single flash when the delay was zero and doubled when the delay exceeded 2 ms. This trend was fitted with two exponentials with time constants of 0.25 and 0.95 ms, equal amplitudes. Illumination with MTP of increasing length resulted in increasing O(2) evolution per pulse, which was differentiated with an aim to find the time course of O(2) evolution with sub-millisecond resolution. At the highest pulse intensity of 2.9 photons ms(-1) per PSII, 3 e(-) initially accumulated inside PSII and the catalytic rate of PQ reduction was determined from the throughput rate of the fourth and fifth e(-). A light response curve for the reduction of completely oxidized PQ was a rectangular hyperbola with the initial slope of 1.2 PSII quanta per e(-) and V (m) of 0.6 e(-) ms(-1) per PSII. When PQ was gradually reduced during longer MTP, V (m) decreased proportionally with the fraction of oxidized PQ. It is suggested that the linear kinetics with respect to PQ are apparent, caused by strong product inhibition due to about equal binding constants of PQ and PQH(2) to the Q (B) site. The strong product inhibition is an appropriate mechanism for down-regulation of PSII electron transport in accordance with rate of PQH(2) oxidation by cytochrome b(6)f. © Springer Science+Business Media B.V. 2011
Gautier, Hélène; Vavasseur, Alain; Gans, Pierre; Lascève, Gérard
1991-01-01
A mass spectrometric method combining 16O/18O and 12C/13C isotopes was used to quantify the unidirectional fluxes of O2 and CO2 during a dark to light transition for guard cell protoplasts and mesophyll cell protoplasts of Commelina communis L. In darkness, O2 uptake and CO2 evolution were similar on a protein basis. Under light, guard cell protoplasts evolved O2 (61 micromoles of O2 per milligram of chlorophyll per hour) almost at the same rate as mesophyll cell protoplasts (73 micromoles of O2 per milligram of chlorophyll per hour). However, carbon assimilation was totally different. In contrast with mesophyll cell protoplasts, guard cell protoplasts were able to fix CO2 in darkness at a rate of 27 micromoles of CO2 per milligram of chlorophyll per hour, which was increased by 50% in light. At the onset of light, a delay observed for guard cell protoplasts between O2 evolution and CO2 fixation and a time lag before the rate of saturation suggested a carbon metabolism based on phosphoenolpyruvate carboxylase activity. Under light, CO2 evolution by guard cell protoplasts was sharply decreased (37%), while O2 uptake was slowly inhibited (14%). A control of mitochondrial activity by guard cell chloroplasts under light via redox equivalents and ATP transfer in the cytosol is discussed. From this study on protoplasts, we conclude that the energy produced at the chloroplast level under light is not totally used for CO2 assimilation and may be dissipated for other purposes such as ion uptake. PMID:16668030
Yu, Shan; Li, Zhi-Jun; Fan, Xiang-Bing; Li, Jia-Xin; Zhan, Fei; Li, Xu-Bing; Tao, Ye; Tung, Chen-Ho; Wu, Li-Zhu
2015-02-01
A visible-light-induced hydrogen evolution system based on a CdSe quantum dots (QDs)-TiO2 -Ni(OH)2 ternary assembly has been constructed under an ambient environment, and a bifunctional molecular linker, mercaptopropionic acid, is used to facilitate the interaction between CdSe QDs and TiO2 . This hydrogen evolution system works effectively in a basic aqueous solution (pH 11.0) to achieve a hydrogen evolution rate of 10.1 mmol g(-1) h(-1) for the assembly and a turnover frequency of 5140 h(-1) with respect to CdSe QDs (10 h); the latter is comparable with the highest value reported for QD systems in an acidic environment. X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and control experiments demonstrate that Ni(OH)2 is an efficient hydrogen evolution catalyst. In addition, inductively coupled plasma optical emission spectroscopy and the emission decay of the assembly combined with the hydrogen evolution experiments show that TiO2 functions mainly as the electron mediator; the vectorial electron transfer from CdSe QDs to TiO2 and then from TiO2 to Ni(OH)2 enhances the efficiency for hydrogen evolution. The assembly comprises light antenna CdSe QDs, electron mediator TiO2 , and catalytic Ni(OH)2 , which mimics the strategy of photosynthesis exploited in nature and takes us a step further towards artificial photosynthesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pan, Yun-xiang; Zhuang, Huaqiang; Hong, Jindui; Fang, Zheng; Liu, Hai; Liu, Bin; Huang, Yizhong; Xu, Rong
2014-09-01
In this work, CdS quantum dots (QDs) supported on Ga2O3 and In2O3 are applied for visible-light-driven H2 evolution from aqueous solutions that contain lactic acid. With Pt as the cocatalyst, the H2 evolution rates on CdS/Pt/Ga2O3 and CdS/Pt/In2O3 are as high as 995.8 and 1032.2 μmol h(-1), respectively, under visible light (λ>420 nm) with apparent quantum efficiencies of 43.6 and 45.3% obtained at 460 nm, respectively. These are much higher than those on Pt/CdS (108.09 μmol h(-1)), Pt/Ga2O3 (0.12 μmol h(-1)), and Pt/In2O3 (0.05 μmol h(-1)). The photocatalysts have been characterized thoroughly and their band structures and photocurrent responses have been measured. The band alignment between the CdS QDs and In2O3 can lead to interfacial charge separation, which cannot occur between the CdS QDs and Ga2O3. Among the various possible factors that contribute to the high H2 evolution rates on CdS/Pt/oxide, the surface properties of the metal oxides play important roles, which include (i) the anchoring of CdS QDs and Pt nanoparticles for favorable interactions and (ii) the efficient trapping of photogenerated electrons from the CdS QDs because of surface defects (such as oxygen defects) based on photoluminescence and photocurrent studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Viking gas exchange experiment results from Chryse and Utopia surface samples
NASA Technical Reports Server (NTRS)
Oyama, V. I.; Berdahl, B. J.
1977-01-01
Immediate gas changes occurred when untreated Martian surface samples were humidified and/or wet by an aqueous nutrient medium in the Viking lander gas exchange experiment. The evolutions of N2, CO2, and Ar are mainly associated with soil surface desorption caused by water vapor, while O2 evolution is primarily associated with decomposition of superoxides inferred to be present on Mars. On recharges with fresh nutrient and test gas, only CO2 was given off, and its rate of evolution decreased with each recharge. This CO2 evolution is thought to come from the oxidation of organics present in the nutrient by gamma Fe2O3 in the surface samples. Atmospheric analyses were also performed at both sites. The mean atmospheric composition from four analyses is N2, 2.3%; O2, not greater than 0.15%; Ar, 1.5% and CO2, 96.2%.
Reaction mechanism for oxygen evolution on RuO 2, IrO 2, and RuO 2@IrO 2 core-shell nanocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhong; Zhang, Yu; Liu, Shizhong
Iridium dioxide, IrO 2, is second to the most active RuO 2 catalyst for the oxygen evolution reaction (OER) in acid, and is used in proton exchange membrane water electrolyzers due to its high durability. In order to improve the activity of IrO 2-based catalysts, we prepared RuO 2@IrO 2 core-shell nanocatalysts using carbon-supported Ru as the template. At 1.48 V, the OER specific activity of RuO 2@IrO 2 is threefold that of IrO 2. While the activity volcano plots over wide range of materials have been reported, zooming into the top region to clarify the rate limiting steps ofmore » most active catalysts is important for further activity enhancement. Here, we verified theory-proposed sequential water dissociation pathway in which the O—O bond forms on a single metal site, not via coupling of two adsorbed intermediates, by fitting measured polarization curves using a kinetic equation with the free energies of adsorption and activation as the parameters. Consistent with theoretical calculations, we show that the OER activities of IrO 2 and RuO 2@IrO 2 are limited by the formation of O adsorbed phase, while the OOH formation on the adsorbed O limits the reaction rate on RuO 2.« less
Reaction mechanism for oxygen evolution on RuO 2, IrO 2, and RuO 2@IrO 2 core-shell nanocatalysts
Ma, Zhong; Zhang, Yu; Liu, Shizhong; ...
2017-10-28
Iridium dioxide, IrO 2, is second to the most active RuO 2 catalyst for the oxygen evolution reaction (OER) in acid, and is used in proton exchange membrane water electrolyzers due to its high durability. In order to improve the activity of IrO 2-based catalysts, we prepared RuO 2@IrO 2 core-shell nanocatalysts using carbon-supported Ru as the template. At 1.48 V, the OER specific activity of RuO 2@IrO 2 is threefold that of IrO 2. While the activity volcano plots over wide range of materials have been reported, zooming into the top region to clarify the rate limiting steps ofmore » most active catalysts is important for further activity enhancement. Here, we verified theory-proposed sequential water dissociation pathway in which the O—O bond forms on a single metal site, not via coupling of two adsorbed intermediates, by fitting measured polarization curves using a kinetic equation with the free energies of adsorption and activation as the parameters. Consistent with theoretical calculations, we show that the OER activities of IrO 2 and RuO 2@IrO 2 are limited by the formation of O adsorbed phase, while the OOH formation on the adsorbed O limits the reaction rate on RuO 2.« less
NASA Astrophysics Data System (ADS)
Panizza, Marco
Electrochemical oxidation is a promising method for the treatment of wastewaters containing organic compounds. As a general rule, the electrochemical incineration of organics at a given electrode can take place at satisfactory rates and without electrode deactivation only at high anodic potentials in the region of the water discharge due to the participation of the intermediates of oxygen evolution. The nature of the electrode material strongly influences both the selectivity and the efficiency of the process. In particular, anodes with low oxygen evolution overpotential (i.e., good catalysts for oxygen evolution reactions), such as graphite, IrO2, RuO2, and Pt only permit the partial oxidation of organics, while anodes with high oxygen evolution overpotential (i.e., anodes that are poor catalysts for oxygen evolution reactions), such as SnO2, PbO2, and boron-doped diamond (BDD) favor the complete oxidation of organics to CO2 and so are ideal electrodes for wastewater treatment.However, the application of SnO2 and PbO2 anodes may be limited by their short service life and the risk of lead contamination, while BDD electrodes exhibit good chemical and electrochemical stability, a long life, and a wide potential window for water discharge, and are thus promising anodes for industrial-scale wastewater treatment.
Growth and photosynthetic responses of wheat plants grown in space
NASA Technical Reports Server (NTRS)
Tripathy, B. C.; Brown, C. S.; Levine, H. G.; Krikorian, A. D.
1996-01-01
Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.
Yuan, Yong-Jun; Fang, Gaoliang; Chen, Daqin; Huang, Yanwei; Yang, Ling-Xia; Cao, Da-Peng; Wang, Jingjing; Yu, Zhen-Tao; Zou, Zhi-Gang
2018-04-24
Expanding the photoresponse range of TiO2-based photocatalysts is of great interest for photocatalytic H2 production. Herein, noble-metal-free CuInS2 quantum dots were employed as a novel inorganic dye to expand the visible light absorption of TiO2/MoS2 for solar H2 generation. The as-prepared CuInS2/TiO2/MoS2 photocatalysts exhibit broad absorption from the ultraviolet to near-infrared region. Under visible light irradiation (λ > 420 nm), the CuInS2/TiO2/MoS2 photocatalyst with 0.6 mmol g-1 CuInS2 and 0.5 wt% MoS2 showed the highest H2 evolution rate with a value of 1034 μmol h-1 g-1. Moreover, a considerable H2 evolution rate of 141 μmol h-1 g-1 was obtained under the irradiation of the optimized CuInS2/TiO2/MoS2 photocatalyst with >500 nm light. The reaction mechanism of the CuInS2/TiO2/MoS2 photocatalyst for photocatalytic H2 evolution was investigated in detail by photoluminescence decay study, and the results showed that the photoexcited electrons of CuInS2 can be transferred efficiently through TiO2 to MoS2 and then react with the absorbed protons to generate H2. The reported sensitization strategy tremendously improves the visible light absorption capacity and the photocatalytic performance of TiO2-based photocatalysts.
Ren, Xiaodong; Wang, Beizhou; Zhu, Jinzhen; Liu, Jianjun; Zhang, Wenqing; Wen, Zhaoyin
2015-06-14
A lithium-air battery as an energy storage technology can be used in electric vehicles due to its large energy density. However, its poor rate capability, low power density and large overpotential problems limit its practical usage. In this paper, the first-principles thermodynamic calculations were performed to study the catalytic activity of X-doped graphene (X = B, N, Al, Si, and P) materials as potential cathodes to enhance charge reactions in a lithium-air battery. Among these materials, P-doped graphene exhibits the highest catalytic activity in reducing the charge voltage by 0.25 V, while B-doped graphene has the highest catalytic activity in decreasing the oxygen evolution barrier by 0.12 eV. By combining these two catalytic effects, B,P-codoped graphene was demonstrated to have an enhanced catalytic activity in reducing the O2 evolution barrier by 0.70 eV and the charge voltage by 0.13 V. B-doped graphene interacts with Li2O2 by Li-sited adsorption in which the electron-withdrawing center can enhance charge transfer from Li2O2 to the substrate, facilitating reduction of O2 evolution barrier. In contrast, X-doped graphene (X = N, Al, Si, and P) prefers O-sited adsorption toward Li2O2, forming a X-O2(2-)···Li(+) interface structure between X-O2(2-) and the rich Li(+) layer. The active structure of X-O2(2-) can weaken the surrounding Li-O2 bonds and significantly reduce Li(+) desorption energy at the interface. Our investigation is helpful in developing a novel catalyst to enhance oxygen evolution reaction (OER) in Li-air batteries.
Kumar, Suneel; Reddy, Nagappagari Lakshmana; Kushwaha, Himmat Singh; Kumar, Ashish; Shankar, Muthukonda Venkatakrishnan; Bhattacharyya, Kaustava; Halder, Aditi; Krishnan, Venkata
2017-09-22
The development of noble metal-free catalysts for hydrogen evolution is required for energy applications. In this regard, ternary heterojunction nanocomposites consisting of ZnO nanoparticles anchored on MoS 2 -RGO (RGO=reduced graphene oxide) nanosheets as heterogeneous catalysts show highly efficient photocatalytic H 2 evolution. In the photocatalytic process, the catalyst dispersed in an electrolytic solution (S 2- and SO 3 2- ions) exhibits an enhanced rate of H 2 evolution, and optimization experiments reveal that ZnO with 4.0 wt % of MoS 2 -RGO nanosheets gives the highest photocatalytic H 2 production of 28.616 mmol h -1 g cat -1 under sunlight irradiation; approximately 56 times higher than that on bare ZnO and several times higher than those of other ternary photocatalysts. The superior catalytic activity can be attributed to the in situ generation of ZnS, which leads to improved interfacial charge transfer to the MoS 2 cocatalyst and RGO, which has plenty of active sites available for photocatalytic reactions. Recycling experiments also proved the stability of the optimized photocatalyst. In addition, the ternary nanocomposite displayed multifunctional properties for hydrogen evolution activity under electrocatalytic and photoelectrocatalytic conditions owing to the high electrode-electrolyte contact area. Thus, the present work provides very useful insights for the development of inexpensive, multifunctional catalysts without noble metal loading to achieve a high rate of H 2 generation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Yue; Wang, Longlu; Liang, Jian; Gao, Fengxian; Yin, Kai; Dai, Pei
2017-09-01
The rational design and preparation of hierarchical nanoarchitectures are critical for enhanced photocatalytic hydrogen evolution reaction (HER). Herein, well-integrated hollow ZnO@TiO2 heterojunctions were obtained by a simple hydrothermal method. This unique hierarchical heterostructure not only caused multiple reflections which enhances the light absorption but also improved the lifetime and transfer of photogenerated charge carriers due to the potential difference generated on the ZnO-TiO2 interface. As a result, compared to bare ZnO and TiO2, the ZnO@TiO2 composite photocatalyst exhibited higher hydrogen production rated up to 0.152 mmol h-1 g-1 under simulated solar light. In addition, highly repeated photostability was also observed on the ZnO@TiO2 composite photocatalyst even after a continuous test for 30 h. It is expected that this low-cost, nontoxic, and readily available ZnO@TiO2 catalyst could exhibit promising potential in photocatalytic H2 to meet the future fuel needs.
Dispersion and photochemical evolution of reactive pollutants in street canyons
NASA Astrophysics Data System (ADS)
Kwak, Kyung-Hwan; Baik, Jong-Jin; Lee, Kwang-Yeon
2013-05-01
Dispersion and photochemical evolution of reactive pollutants in street canyons with canyon aspect ratios of 1 and 2 are investigated using a computational fluid dynamics (CFD) model coupled with the carbon bond mechanism IV (CBM-IV). Photochemical ages of NOx and VOC are expressed as a function of the NO2-to-NOx and toluene-to-xylene ratios, respectively. These are found to be useful for analyzing the O3 and OH oxidation processes in the street canyons. The OH oxidation process (O3 oxidation process) is more pronounced in the upper (lower) region of the street canyon with a canyon aspect ratio of 2, which is characterized by more (less) aged air. In the upper region of the street canyon, O3 is chemically produced as well as transported downward across the roof level, whereas O3 is chemically reduced in the lower region of the street canyon. The O3 chemical production is generally favorable when the normalized photochemical ages of NOx and VOC are larger than 0.55 and 0.28, respectively. The sensitivities of O3 chemical characteristics to NOx and VOC emission rates, photolysis rate, and ambient wind speed are examined for the lower and upper regions of the street canyon with a canyon aspect ratio of 2. The O3 concentration and the O3 chemical production rate divided by the O3 concentration increase as the NOx emission rate decreases and the VOC emission rate and photolysis rate increase. The O3 concentration is less sensitive to the ambient wind speed than to other factors considered. The relative importance of the OH oxidation process compared to the O3 oxidation process increases with increasing NOx emission rate and photolysis rate and decreasing VOC emission rate. In this study, both O3 and OH oxidation processes are found to be important in street-canyon scale chemistry. The methodology of estimating the photochemical ages can potentially be adopted to neighborhood scale chemistry.
Effects of temperature on the gas exchange of leaves in the light and dark.
Hofstra, G; Hesketh, J D
1969-09-01
Evolution of CO2 into CO2-free air was measured in the light and in the dark over a range of temperatures from 15 to 50°. Photosynthetic rates were measured in air and O2-free air over the same range of temperatures. Respiration in the light had a different sensitivity to temperature compared with respiration in the dark. At the lower temperatures the rate of respiration in the light was higher than respiration in the dark, whereas at temperatures above 40° the reverse was observed. For any one species the maximum rates of photosynthesis and photorespiration occur at about the same temperature. The maximum rate for dark respiration generally is found at a temperature about 10° higher. Zea mays and Atriplex nummularia showed no enhancement of photosynthesis in O2-free air nor any evolution of CO2 in CO2-free air at any of the temperatures.
NASA Astrophysics Data System (ADS)
Hou, Lili; Zhang, Min; Guan, Zhongjie; Li, Qiuye; Yang, Jianjun
2018-01-01
The surface and bulk oxygen vacancy have a prominent effect on the photocatalytic performance of TiO2. In this study, TiO2 possessing different types and concentration of oxygen vacancies were prepared by annealing nanotube titanic acid (NTA) at various temperatures in air or vacuum atmosphere. TiO2 with the unitary bulk single-electron-trapped oxygen vacancies (SETOVs) formed when NTA were calcined in air. Whereas, TiO2 with both bulk and surface oxygen vacancies were obtained when NTA were annealed in vacuum. The series of TiO2 with different oxygen vacancies were systematically characterized by TEM, XRD, PL, XPS, ESR, and TGA. The PL and ESR analysis verified that surface oxygen vacancies and more bulk oxygen vacancies could form in vacuum atmosphere. Surface oxygen vacancies can trap electron and hinder the recombination of photo-generated charges, while bulk SETOVs act as the recombination center. The surface or bulk oxygen vacancies attributed different roles on the photo-absorbance and activity, leading that the sample of NTA-A400 displayed higher hydrogen evolution rate under UV light, whereas NTA-V400 displayed higher hydrogen evolution rate under visible light because bulk SETOVs can improve visible light absorption because sub-band formed by bulk SETOVs prompted the secondary transition of electron excited.
Zhou, Han; Fan, Tongxiang; Ding, Jian; Zhang, Di; Guo, Qixin
2012-03-12
A general method has been developed for the synthesis of various hollow TiO2 micro/nanostructures with bacteria as templates to further study the structural effect on photocatalytic hydrogen evolution properties. TiO2 hollow spheres and hollow tubes, served as prototypes, are obtained via a surface sol-gel process using cocci and bacillus as biotemplates, respectively. The formation mechanisms are based on absorption of metal-alkoxide molecules from solution onto functional cell wall surfaces and subsequent hydrolysis to give nanometer-thick oxide layers. The UV-Vis absorption spectrum shows that the porous TiO2 hollow spheres have enhanced light harvesting property compared with the corresponding solid counterpart. This could be attributed to their unique hollow porous micro/nanostructures with microsized hollow cavities and nanovoids which could bring about multiple scattering and rayleigh scattering of light, respectively. The hollow TiO2 structures exhibit superior photocatalytic hydrogen evolution activities under UV and visible light irradiation in the presence of sacrificial reagents. The hydrogen evolution rate of hollow structures is about 3.6 times higher than the solid counterpart and 1.5 times higher than P25-TiO2. This work demonstrates the structural effect on enhancing the photocatalytic hydrogen evolution performance which would pave a new pathway to tailor and improve catalytic properties over a broad range.
The effect of oxygen fugacity on the rheological evolution of crystallizing basaltic melts
NASA Astrophysics Data System (ADS)
Kolzenburg, S.; Di Genova, D.; Giordano, D.; Hess, K. U.; Dingwell, D. B.
2018-04-01
Storage and transport of silicate melts in the Earth's crust and their emplacement on the planet's surface occur almost exclusively at sub-liquidus temperatures. At these conditions, the melts undergo crystallization under a wide range of cooling-rates, deformation-rates, and oxygen fugacities (fO2). Oxygen fugacity is known to influence the thermodynamics and kinetics of crystallization in magmas and lavas. Yet, its influence on sub-liquidus rheology remains largely uncharted. We present the first rheological characterization of crystallizing lavas along natural cooling paths and deformation-rates and at varying fO2. Specifically, we report on apparent viscosity measurements for two crystallizing magmatic suspensions 1) at log fO2 of -9.15 (quartz-fayalite-magnetite buffer, QFM, -2.1) and 2) in air. These fugacities span a range of reduced to oxidized conditions pertinent to magma migration and lava emplacement. We find that: 1) crystallization at constant cooling-rates results in a quasi-exponential increase in the apparent viscosity of the magmatic suspensions until they achieve their rheological cut off temperature (Tcutoff), where the melt effectively solidifies 2) the rheological departure and Tcutoff increase with increasing fO2 and 3) increasing fO2 results in decreased crystallization-rates. Based on the experimental results and by comparison with previous rheological isothermal studies we propose a generalisation of the effect of fO2 on the dynamic rheological evolution of natural magmatic and volcanic suspensions. We further discuss the implications for magmatic transport in plumbing and storage systems (e.g. conduits, dikes and magma chambers) and during lava flow emplacement.
Kinetic Coupling of Water Splitting and Photoreforming on SrTiO 3 -Based Photocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanwald, Kai E.; Berto, Tobias F.; Jentys, Andreas
Coupling the anodic half-reactions of overall water splitting and oxygenate photoreforming (i.e., proton reduction and oxygenate oxidations) on Al-doped SrTiO3 decorated with a co-catalyst enables efficient photocatalytic H2 generation along with oxygenate conversion without accumulating undesired intermediates such as formaldehyde. The net H2-evolution rates result from the interplay between water oxidation, oxygenate oxidation, and the back-reaction of H2 and O2 to water. When the latter pathway is quantitatively suppressed (e.g., on RhCrOx co-catalyst or in excess of oxygenated hydrocarbons), the initial H2-evolution rates are independent of the oxygenate nature and concentration. This is a consequence of the reduction equivalents formore » H2-evolution provided by water oxidation compensating changes in the rates of oxygenate conversion. Thus, under conditions of suppressed back-reaction, water and oxygenate oxidations have equal quantum efficiencies. The selectivities to water and oxygenate oxidation depend on oxygenate nature and concentration. Transformations mediated by indirect hole transfer dominate as a result of the water oxidation at the anode and the associated intermediates generated in O2-evolution catalysis (e.g. ·OH, ·O and ·OOH). On the undecorated semiconductor, the O2 produced during overall water splitting is reductively activated to participate in glycerol oxidation without consuming evolved H2. Acknowledgements The authors would like to thank ESRF in Grenoble, France, for providing beam time at the ID26 station for XAFS experiments. K.E.S. gratefully acknowledges financial support by the Fond der Chemischen Industrie (FCI). J.A.L. and O.Y.G. acknowledge support for his contribution by the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multi-program national laboratory operated by Battelle for the U.S. Department of Energy. The authors thank Xaver Hecht for BET measurements, Martin Neukamm for SEM and AAS measurements and Dr. Udishnu Sanyal for TEM imaging. Christine Schwarz is acknowledged for technical assistance in NMR experiments.« less
NASA Astrophysics Data System (ADS)
Ji, Cong; Yin, Su-Na; Sun, Shasha; Yang, Shengyang
2018-03-01
Cu2O nanoparticles doped g-C3N4 are synthesized via an in situ method and investigated in detail by IR techniques, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet visible diffuse reflection spectroscopy, and photoluminescence spectroscopy. The as-prepared Cu2O/g-C3N4 hybrids demonstrate enhanced photocatalytic activity toward hydrogen generation compared to pure bulk g-C3N4, the effect of Cu2O content on the rate of visible light photocatalytic hydrogen evolution reveals the optimal hydrogen evolution rate can reach 33.2 μmol h-1 g-1, which is about 4 times higher that of pure g-C3N4. The enhanced photocatalytic activity can be attributed to the improved separation and transfer of photogenerated electron-hole pairs at the intimate interface between g-C3N4 and Cu2O. A possible photocatalytic mechanism of the Cu2O/g-C3N4 composite is also discussed. This mediator-free in situ chemical doping strategy developed in this work will contribute to the achievement of other multicomponent photocatalysts.
Dione and Rhea seasonal exospheres revealed by Cassini CAPS and INMS
NASA Astrophysics Data System (ADS)
Teolis, B. D.; Waite, J. H.
2016-07-01
A Dione O2 and CO2 exosphere of similar composition and density to Rhea's is confirmed by Cassini spacecraft Ion Neutral Mass Spectrometer (INMS) flyby data. INMS results from three Dione and two Rhea flybys show exospheric spatial and temporal variability indicative of seasonal exospheres, modulated by winter polar gas adsorption and desorption at the equinoxes. Cassini Plasma Spectrometer (CAPS) pickup ion fluxes also show exospheric structure and evolution at Rhea consistent with INMS, after taking into consideration the anticipated charge exchange, electron impact, and photo-ionization rates. Data-model comparisons show the exospheric evolution to be consistent with polar frost diffusion into the surface regolith, which limits surface exposure and loss of the winter frost cap by sputtering. Implied O2 source rates of ∼45(7) × 1021 s-1 at Dione(Rhea) are ∼50(300) times less than expected from known O2 radiolysis yields from ion-irradiated pure water ice measured in the laboratory, ruling out secondary sputtering as a major exospheric contributor, and implying a nanometer scale surface refractory lag layer consisting of concentrated carbonaceous impurities. We estimate ∼30:1(2:1) relative O2:CO2 source rates at Dione(Rhea), consistent with a stoichiometric bulk composition below the lag layer of 0.01(0.13) C atoms per H2O molecule, deriving from endogenic constituents, implanted micrometeoritic organics, and (in particular at Dione) exogenous H2O delivery by E-ring grains. Impact deposition, gardening and vaporization may thereby control the global O2 source rates by fresh H2O ice exposure to surface radiolysis and trapped oxidant ejection.
Zeng, Weixuan; Bian, Yuan; Cao, Sheng; Ma, Yongjin; Liu, Yi; Zhu, Anquan; Tan, Pengfei; Pan, Jun
2018-06-07
Tantalum oxynitride-based materials, which possess narrow bandgaps and sufficient band energy potentials, have been of immense interest for water splitting. However, the efficiency of photocatalytic reactions is still low due to the fast electron-hole recombination. Here, a Sr2Ta2O7-xNx/SrTaO2N heterostructured photocatalyst with well-matched band structure was in situ constructed by nitridation of hydrothermal-prepared Sr2Ta2O7 nanosheets. Compared to Sr2Ta2O7-xNx and pure SrTaO2N, the Sr2Ta2O7-xNx/SrTaO2N heterostructured photocatalyst exhibited highest rate of hydrogen evolution, which is ca. 2.0 and 76.4 times of Sr2Ta2O7-xNx and pure SrTaO2N under the similar reaction condition, respectively. The enhanced performance arises from the formation of suitable band matched heterojunction accelerated charge separation. This work provides a promising strategy for the construction of tantalum oxynitride-based heterojunction photocatalysts.
Phonon-mediated nuclear spin relaxation in H2O
NASA Astrophysics Data System (ADS)
Yamakawa, Koichiro; Azami, Shinya; Arakawa, Ichiro
2017-03-01
A theoretical model of the phonon-mediated nuclear spin relaxation in H2O trapped by cryomatrices has been established for the first time. In order to test the validity of this model, we measured infrared spectra of H2O trapped in solid Ar, which showed absorption peaks due to rovibrational transitions of ortho- and para-H2O in the spectral region of the bending vibration. We monitored the time evolution of the spectra and analyzed the rotational relaxation associated with the nuclear spin flip to obtain the relaxation rates of H2O at temperatures of 5-15 K. Temperature dependence of the rate is discussed in terms of the devised model.
Zhao, Weirong; Ai, Zhuyu; Dai, Jiusong; Zhang, Meng
2014-01-01
Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly boosting the photocatalytic activity for hydrogen production under UV-vis light.
Oxygen and hydrogen evolution reaction on oriented single crystals of ruthenium dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, L I; Pollak, F H; Canivez, Y
1979-01-01
A novel design for water electrolysis using a solid polymer electrolyte is being developed by General Electric. Ruthenium is one of the best electrocatalysts for the oxygen evolution reaction. There are problems connected with the significant loss in electrocatalytic activity with time. This performance degradation is presumably due to the gradual formation of an RuO/sub 2/ film. We have performed electrochemical measurements on (100), (110) and (111) oriented single crystals of RuO/sub 2/ in order to elucidate the mechanism of the electrocatalytic process. Large single crystals were grown by the vapor transport method. Our investigation has revealed several interesting differencesmore » for the various orientations. This study indicates that RuO/sub 3/ may be an important intermediate species prior to oxygen evolution and that the formation of the RuO/sub 3/ is the rate limiting process. Similar results were previously obtained for IrO/sub 2/.« less
NASA Astrophysics Data System (ADS)
Yan, Baolin; Zhou, Juan; Liang, Xiaoyu; Song, Kainan; Su, Xintai
2017-01-01
The production of H2 by photocatalytic water splitting has become a promising approach for clean, economical, and renewable evolution of H2 by using solar energy. In spite of tremendous efforts, the present challenge for materials scientists is to build a highly active photocatalytic system with high efficiency and low cost. Here we report a facile method for the preparation of TiO2/C nano-flakes, which was used as an efficient visible-light photocatalyst for H2 evolution. This composite material was prepared by using a phase-transfer strategy combined with salt-template calcination treatment. The results showed that anatase TiO2 nanoparticles with the diameter of ∼10 nm were uniformly dispersed on the carbon nano-flakes. In addition, the samples prepared at 600 °C (denoted as T600) endowed a larger surface area of 196 m2 g-1 and higher light absorption, resulting in enhanced photocatalytic activity. Further, the T600 product reached a high H2 production rate of 57.2 μmol h-1 under visible-light irradiation. This unusual photocatalytic activity arose from the positive synergetic effect between the TiO2 and carbon in this hybrid catalyst. This work highlights the potential of TiO2/C nano-flakes in the field of photocatalytic H2 evolution under visible-light irradiation.
Long-term evolution of denudational escarpments in southeastern Brazil
NASA Astrophysics Data System (ADS)
Cherem, Luis Felipe Soares; Varajão, Cesar Augusto C.; Braucher, Regis; Bourlés, Didier; Salgado, André Augusto R.; Varajão, Angélica C.
2012-11-01
Topographic relief in southeastern Brazil consists of a sequence of stepped surfaces that formed after the fragmentation of Gondwana during the Cretaceous, Tertiary and Quaternary tectonic pulses. This region is drained by four major rivers within four major river basins, with interfluves that contain denudational escarpments, fault escarpments and mountain ranges. This study presents an analysis of the long-term evolution of two denudational escarpments, the Cristiano Otoni and the São Geraldo steps, which divide the river basins of the São Francisco, Doce and Paraíba do Sul rivers in southeastern Brazil. Denudation rates were obtained through the measurement of mean concentrations of in situ produced cosmogenic 10Be in sand-sized fluvial quartz sediments collected from granitic terrains. The rates were calculated and compared with one another and correlated to the basin-scale mean relief, slope, area, and stream power. The mean denudation rates of the Cristiano Otoni and São Geraldo highlands are 8.77 (± 2.78) m My- 1 and 15.68 (± 4.53) m My- 1, respectively. The mean denudation rates of the Cristiano Otoni and São Geraldo escarpments are 17.50 (± 2.71) m My- 1 and 21.22 (± 4.24) m My- 1, respectively. The denudation rates of the catchments of highlands that drain toward the escarpments are similar to those of their respective highlands. The results demonstrate that relief and slope have similar positive control on the denudation rates for all of the samples despite their different geomorphic context and history of landscape evolution. The São Francisco River Basin is losing area to the Doce River Basin, which, in turn, is losing area to the Paraíba do Sul River Basin.
Studying Biological Responses to Global Change in Atmospheric Oxygen
Powell, Frank L.
2010-01-01
A popular book recently hypothesized that change in atmospheric oxygen over geological time is the most important physical factor in the evolution of many fundamental characteristics of modern terrestrial animals. This hypothesis is generated primarily using fossil data but the present paper considers how modern experimental biology can be used to test it. Comparative physiology and experimental evolution clearly show that changes in atmospheric O2 over the ages had the potential to drive evolution, assuming the physiological O2-sensitivity of animals today is similar to the past. Established methods, such as phylogenetically independent contrasts, as well new approaches, such as adding environmental history to phylogenetic analyses or modeling interactions between environmental stresses and biological responses with different rate constants, may be useful for testing (disproving) hypotheses about biological adaptations to changes in atmospheric O2. PMID:20385257
Kiss, Borbala; Didier, Christophe; Johnson, Timothy; Manning, Troy D; Dyer, Matthew S; Cowan, Alexander J; Claridge, John B; Darwent, James R; Rosseinsky, Matthew J
2014-12-22
A stable visible-light-driven photocatalyst (λ≥450 nm) for water oxidation is reported. Rhodium substitution into the pyrochlore Y2 Ti2 O7 is demonstrated by monitoring Vegard's law evolution of the unit-cell parameters with changing rhodium content, to a maximum content of 3 % dopant. Substitution renders the solid solutions visible-light active. The overall rate of oxygen evolution is comparable to WO3 but with superior light-harvesting and surface-area-normalized turnover rates, making Y2 Ti1.94 Rh0.06 O7 an excellent candidate for use in a Z-scheme water-splitting system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High pressure Raman spectroscopy of H2O-CH3OH mixtures.
Hsieh, Wen-Pin; Chien, Yu-Hsiang
2015-02-23
Complex intra-molecular interactions and the hydrogen-bonding network in H2O-volatile mixtures play critical roles in many dynamics processes in physical chemistry, biology, and Earth and planetary sciences. We used high pressure Raman spectroscopy to study the pressure evolution of vibrational frequencies and bonding behavior in H2O-CH3OH mixtures. We found that the presence of low CH3OH content in H2O increases the transition pressure where water crystallizes to ice VI, but does not significantly change the pressure where ice VI transforms to ice VII. Furthermore, the stiffening rates of C-H stretching frequencies dω/dP in CH3OH significantly decrease upon the crystallization of water, and the softening rates of the O-H stretching frequencies of ice VII are suppressed over a narrow pressure range, after which the frequencies of these modes shift with pressure in ways similar to pure CH3OH and ice VII, respectively. Such complex pressure evolution of Raman frequencies along with pronounced variations in Raman intensities of CH3OH within the sample, and the hysteresis of the water-ice VI phase transition suggest pressure-induced segregation of low content CH3OH from ice VII. These findings indicate the significant influence of volatiles on the crystallization of sub-surface ocean and thermal evolution within large icy planets and satellites.
NASA Astrophysics Data System (ADS)
Truong, Quang Duc; Le, Thanh Son; Ling, Yong-Chien
2014-12-01
C, N codoped TiO2 catalyst has been synthesized by thermal decomposition of a novel water-soluble titanium complex. The structure, morphology, and optical properties of the synthesized TiO2 catalyst were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the Pt deposited TiO2 catalysts synthesized at different temperatures was evaluated by means of hydrogen evolution reaction under both UV-vis and visible light irradiation. The investigation results reveal that the photocatalytic H2 evolution rate strongly depended on the crystalline grain size as well as specific surface area of the synthesized catalyst. Our studies successfully demonstrate a simple method for the synthesis of visible-light responsive Pt deposited TiO2 catalyst for solar hydrogen production.
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Cao, Shuang; Wu, Zhijiao; Zhao, Suling; Piao, Lingyu
2017-04-01
With the distinct electronic and optical properties, multiwall carbon nanotubes (MWCNTs) are identified as an outstanding catalyst support, which can effectively improve the performance of the TiO2 photocatalysts. Herein, the unique one dimensional TiO2@MWCNTs nanocomposites have been prepared by a facile hydrothermal method. The TiO2 coating layers are extremely uniform and the thickness is adjustable for different nanocomposites. XPS measurements confirm that intimate electronic interactions are existed between MWCNTs and TiO2 via interfacial Tisbnd Osbnd C bond and the photoluminescence intensity of the TiO2@MWCNTs nanocomposites are effectively quenched compared with pure TiO2, suggesting the fast electron transfer rates. The thickness of TiO2 coating layers of the TiO2@MWCNTs nanocomposites plays a significant role in the photocatalytic degradation of organic pollutants, such as methylene blue (MB) and Rhodamine B (RhB), and photocatalytic H2 evolution from water. Due to the formation of one dimensional heterojunction of TiO2@MWCNTs nanocomposites and the positive synergistic effect between TiO2 and carbon nanotubes, it is found that the photocatalytic activity of the system is significantly improved.
In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution
NASA Astrophysics Data System (ADS)
Chen, Feng; Luo, Wei; Mo, Yanping; Yu, Huogen; Cheng, Bei
2018-02-01
Cocatalyst modification of photocatalysts is an important strategy to enhance the photocatalytic performance by promoting effective separation of photoinduced electron-hole pairs and providing abundant active sites. In this study, a facile in situ photodeposition method was developed to prepare amorphous CoSx-modified TiO2 photocatalysts. It was found that amorphous CoSx nanoparticles were solidly loaded on the TiO2 surface, resulting in a greatly improved photocatalytic H2-evolution performance. When the amount of amorphous CoSx was 10 wt%, the hydrogen evolution rate of the CoSx/TiO2 reached 119.7 μmol h-1, which was almost 16.7 times that of the pure TiO2. According to the above experimental results, a reasonable mechanism of improved photocatalytic performance is proposed for the CoSx/TiO2 photocatalysts, namely, the photogenerated electrons of TiO2 can rapidly transfer to amorphous CoSx nanoparticles due to the solid contact between them, and then amorphous CoSx can provide plenty of sulfur active sites to rapidly adsorb protons from solution to produce hydrogen by the photogenerated electrons. Considering the facile synthesis method, the present cheap and highly efficient amorphous CoSx-modified TiO2 photocatalysts would have great potential for practical use in photocatalytic H2 production.
Chemical mechanisms and reaction rates for the initiation of hot corrosion of IN-738
NASA Technical Reports Server (NTRS)
Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.
1984-01-01
Sodium-sulfate-induced hot corrosion of preoxidized IN-738 was studied at 975 C with special emphasis placed on the processes occurring during the long induction period. Thermogravimetric tests were run for predetermined periods of time, and then one set of specimens was washed with water. Chemical analysis of the wash solutions yielded information about water soluble metal salts and residual sulfate. A second set of samples was cross sectioned dry and polished in a nonaqueous medium. Element distributions within the oxide scale were obtained from electron microprobe X-ray micrographs. Evolution of SO was monitored throughout the thermogravimetric tests. Kinetic rate studies were performed for several pertinent processes; appropriate rate constants were obtained from the following chemical reactions: Cr2O3 + 2 Na2SO4(1) + 3/2 O2 yields 2 Na2CrO4(1) + 2 SO3(g)n TiO2 + Na2SO4(1) yields Na2O(TiO2)n + SO3(g)n TiO2 + Na2CrO4(1) yields Na2O(TiO2)n + CrO3(g).
High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO4 Anode.
Wang, Yuesheng; Yang, Shi-Ze; You, Ya; Feng, Zimin; Zhu, Wen; Gariépy, Vincent; Xia, Jiexiang; Commarieu, Basile; Darwiche, Ali; Guerfi, Abdelbast; Zaghib, Karim
2018-02-28
Aqueous lithium-ion batteries are emerging as strong candidates for a great variety of energy storage applications because of their low cost, high-rate capability, and high safety. Exciting progress has been made in the search for anode materials with high capacity, low toxicity, and high conductivity; yet, most of the anode materials, because of their low equilibrium voltages, facilitate hydrogen evolution. Here, we show the application of olivine FePO 4 and amorphous FePO 4 ·2H 2 O as anode materials for aqueous lithium-ion batteries. Their capacities reached 163 and 82 mA h/g at a current rate of 0.2 C, respectively. The full cell with an amorphous FePO 4 ·2H 2 O anode maintained 92% capacity after 500 cycles at a current rate of 0.2 C. The acidic aqueous electrolyte in the full cells prevented cathodic oxygen evolution, while the higher equilibrium voltage of FePO 4 avoided hydrogen evolution as well, making them highly stable. A combination of in situ X-ray diffraction analyses and computational studies revealed that olivine FePO 4 still has the biphase reaction in the aqueous electrolyte and that the intercalation pathways in FePO 4 ·2H 2 O form a 2-D mesh. The low cost, high safety, and outstanding electrochemical performance make the full cells with olivine or amorphous hydrated FePO 4 anodes commercially viable configurations for aqueous lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Ye, Fei; Li, Houfen; Yu, Hongtao; Chen, Shuo; Quan, Xie
2017-12-01
Protons tend to bond strongly with unsaturated-coordinate S element located at the edge of nano-MoS2 and are consequently reduced to H2. Therefore, increasing the active S atoms quantity will be a feasible approach to enhance hydrogen evolution. Herein we developed a porous TiO2 derived from metal organic frameworks (MOFs) as scaffold to restrict the growth and inhibit the aggregation of MoS2 nanosheets. As a result, the thickness of the prepared MoS2 nanosheets was less than 3 nm (1-4 layers), with more edges and active S atoms being exposed. This few-layer MoS2-porous TiO2 exhibits a H2 evolution rate of 897.5 μmol h-1 g-1, which is nearly twice as much as free-stand MoS2 nanosheets and twenty times more than physical mixture of MoS2 with porous TiO2. The high performance is attributed to that more active edge sites in few-layer MoS2-porous TiO2 are exposed than pure MoS2. This work provides a new method to construct MOFs derived porous structures for controlling MoS2 to expose active sites for HER.
NASA Astrophysics Data System (ADS)
Shi, Jian-Wen; Ma, Dandan; Zou, Yajun; Fan, Zhaoyang; Shi, Jinwen; Cheng, Linhao; Ji, Xin; Niu, Chunming
2018-03-01
The design of efficient and stable photocatalyst plays a critical role in the photocatalytic hydrogen evolution from water splitting. Herein, we develop a novel ZnS/CdS/ZnO ternary heterostructure by the in-situ sulfuration of CdS/ZnO, which includes four contact interfaces: CdS-ZnS interface, ZnS-ZnO interface, CdS-ZnO interface and ZnS-CdS-ZnO ternary interface, forming three charge carrier-transfer modes (type-I, type-II and direct Z-scheme) through five carrier-transfer pathways. As a result, the separation and transfer of photoexcited electron-hole pairs are promoted significantly, resulting in a high hydrogen evolution rate of 44.70 mmol h-1 g-1, which is 2, 3.7 and 8 times higher than those of binary heterostructures, CdS/ZnO, CdS/ZnS and ZnS/ZnO, respectively, and 26.5, 280 and 298 times higher than those of single CdS, ZnO and ZnS, respectively. As a counterpart ternary heterostructure, CdS/ZnS/ZnO contains only two interfaces: CdS-ZnS interface and ZnS-ZnO interface, which form two charge carrier-transfer modes (type-I and type-II) through two carrier-transfer pathways, leading to its much lower hydrogen evolution rate (27.25 mmol h-1 g-1) than ZnS/CdS/ZnO ternary heterostructure. This work is relevant for understanding the charge-transfer pathways between multi-interfaces in multicomponent heterojunctions.
Parys, Eugeniusz; Jastrzebski, Hubert
2006-04-01
The rate of respiratory CO2 evolution from the leaves of Zea mays, Panicum miliaceum, and Panicum maximum, representing NADP-ME, NAD-ME, and PEP-CK types of C4 plants, respectively, was increased by approximately two to four times after a period of photosynthesis. This light-enhanced dark respiration (LEDR) was a function of net photosynthetic rate specific to plant species, and was depressed by 1% O2. When malate, aspartate, oxaloacetate or glycine solution at 50 mM concentration was introduced into the leaves instead of water, the rate of LEDR was enhanced, far less in Z. mays (by 10-25%) than in P. miliaceum (by 25-35%) or P. maximum (by 40-75%). The enhancement of LEDR under glycine was relatively stable over a period of 1 h, whereas the remaining metabolites caused its decrease following a transient increase. The metabolites reduced the net photosynthesis rate in the two Panicum species, but not in Z. mays, where this process was stimulated by glycine. The bundle sheath cells from P. miliaceum exhibited a higher rate of LEDR than those of Z. mays and P. maximum. Glycine had no effect on the respiration rate of the cells, but malate increased in cells of Z. mays and P. miliaceum by about 50% and 30%, respectively. With the exception of aspartate, which stimulated both the O2 evolution and O2 uptake in P. maximum, the remaining metabolites reduced photosynthetic O2 evolution from bundle sheath cells in Panicun species. The net O2 exchange in illuminated cells of Z. mays did not respond to CO2 or metabolites. Leaf mesophyll protoplasts of Z. mays and P. miliaceum, and bundle sheath protoplasts of Z. mays, which are unable to fix CO2 photosynthetically, also produced LEDR, but the mesophyll protoplasts, compared with bundle sheath protoplasts, required twice the time of illumination to obtain the maximal rate. The results suggest that the substrates for LEDR in C4 plants are generated during a period of illumination not only via the Calvin cycle reactions, but also by the conversion of endogenous compounds present in leaf cells. The stimulation of LEDR under glycine is discussed in relation to its direct or indirect effect on mitochondrial respiration.
Slurry erosion induced surface nanocrystallization of bulk metallic glass
NASA Astrophysics Data System (ADS)
Ji, Xiulin; Wu, Jili; Pi, Jinghong; Cheng, Jiangbo; Shan, Yiping; Zhang, Yingtao
2018-05-01
Microstructure evolution and phase transformation of metallic glasses (MGs) could occur under heating condition or mechanical deformation. The cross-section of as-cast Zr55Cu30Ni5Al10 MG rod was impacted by the solid particles when subjected to erosion in slurry flow. The surface microstructure was observed by XRD before and after slurry erosion. And the stress-driven de-vitrification increases with the increase of erosion time. A microstructure evolution layer with 1-2 μm thickness was formed on the topmost eroded surface. And a short range atomic ordering prevails in the microstructure evolution layer with crystalline size around 2-3 nm embedded in the amorphous matrix. The XPS analysis reveals that most of the metal elements in the MG surface, except for Cu, were oxidized. And a composite layer with ZrO2 and Al2O3 phases were formed in the topmost surface after slurry erosion. The cooling rate during solidification of MG has a strong influence on the slurry erosion induced nanocrystallization. And a lower cooling rate favors the surface nanocrystallization because of lower activation energy and thermo-stability. Finally, the slurry erosion induced surface nanocrystallization and microstructure evolution result in surface hardening and strengthening. Moreover, the microstructure evolution mechanisms were discussed and it is related to the cooling rate of solidification and the impact-induced temperature rise, as well as the combined effects of the impact-induced plastic flow, inter-diffusion and oxidation of the metal elements.
Photorespiration and carbon limitation determine productivity in temperate seagrasses.
Buapet, Pimchanok; Rasmusson, Lina M; Gullström, Martin; Björk, Mats
2013-01-01
The gross primary productivity of two seagrasses, Zostera marina and Ruppia maritima, and one green macroalga, Ulva intestinalis, was assessed in laboratory and field experiments to determine whether the photorespiratory pathway operates at a substantial level in these macrophytes and to what extent it is enhanced by naturally occurring shifts in dissolved inorganic carbon (DIC) and O2 in dense vegetation. To achieve these conditions in laboratory experiments, seawater was incubated with U. intestinalis in light to obtain a range of higher pH and O2 levels and lower DIC levels. Gross photosynthetic O2 evolution was then measured in this pretreated seawater (pH, 7.8-9.8; high to low DIC:O2 ratio) at both natural and low O2 concentrations (adjusted by N2 bubbling). The presence of photorespiration was indicated by a lower gross O2 evolution rate under natural O2 conditions than when O2 was reduced. In all three macrophytes, gross photosynthetic rates were negatively affected by higher pH and lower DIC. However, while both seagrasses exhibited significant photorespiratory activity at increasing pH values, the macroalga U. intestinalis exhibited no such activity. Rates of seagrass photosynthesis were then assessed in seawater collected from the natural habitats (i.e., shallow bays characterized by high macrophyte cover and by low DIC and high pH during daytime) and compared with open baymouth water conditions (where seawater DIC is in equilibrium with air, normal DIC, and pH). The gross photosynthetic rates of both seagrasses were significantly higher when incubated in the baymouth water, indicating that these grasses can be significantly carbon limited in shallow bays. Photorespiration was also detected in both seagrasses under shallow bay water conditions. Our findings indicate that natural carbon limitations caused by high community photosynthesis can enhance photorespiration and cause a significant decline in seagrass primary production in shallow waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yue-Feng; Chen, Yuan; Xu, Gui-Liang
RuO2 nanoparticles supported on MnO2 nanorods (denoted as np-RuO2/nr-MnO2) were synthesized via a two-step hydrothermal reaction. SEM and TEM images both illustrated that RuO2 nanoparticles are well dispersed on the surface of MnO2 nanorods in the as-prepared np-RuO2/nr-MnO2 material. Electrochemical results demonstrated that the np-RuO2/nr-MnO2 as oxygen cathode of Li-O-2 batteries could maintain a reversible capacity of 500 mA h g(-1) within 75 cycles at a rate of 50 mA g(-1), and a higher capacity of 4000 mA h g(-1) within 20 cycles at a rate as high as 200 mA g(-1). Moreover, the cell with the np-RuO2/nr-MnO2 catalyst presentedmore » much lower voltage polarization (about 0.58 V at a rate of 50 mA g(-1)) than that measured with only MnO2 nanorods during charge/discharge processes. The catalytic property of the np-RuO2/nr-MnO2 and MnO2 nanorods were further compared by conducting studies of using rotating disk electrode (RDE), chronoamperommetry and linear sweep voltammetry. The results illustrated that the np-RuO2/nr-MnO2 exhibited excellent bifunctional electrocatalytic activities towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Furthermore, in-situ high-energy X-ray diffraction was employed to trace evolution of species on the np-RuO2/nr-MnO2 cathode during the discharge processes. In-situ XRD patterns demonstrated the formation process of the discharge products that consisted of mainly Li2O2. Ex-situ SEM images were recorded to investigate the morphology and decomposition of the sphere-like Li2O2, which could be observed clearly after discharge process, while are decomposed almost after charge process. The excellent electrochemical performances of the np-RuO2/nr-MnO2 as cathode of Li-O-2 battery could be contributed to the excellent bifunctional electrocatalytic activities for both the ORR and OER, and to the one-dimensional structure which would benefit the diffusion of oxygen and the storage of Li2O2 in the discharge process of Li-O-2 battery.« less
NASA Astrophysics Data System (ADS)
Nair, Radhika V.; Gayathri, P. K.; Siva Gummaluri, Venkata; Vijayan, C.
2017-01-01
We report on an optimization strategy for macro pore evolution leading to the design of highly photocatalytic 3D hierarchical meso/macroporous TiO2 via much simpler, faster and cost effective synthesis scheme. Meso/macro porous TiO2 is an excellent candidate material for photocatalytic applications owing to the availability of internal surfaces as active sites for redox reactions. The current research scenario focuses on the design of highly efficient photocatalytic systems as well as rapid, facile and cost effective methods of synthesis and optimization of parameters. The present report is on the gradual evolution of macropores in anatase TiO2 by the effective control of pH of the solvent, reaction time, temperature, solvent ratio and reactant concentration via a facile hydrothermal method in this regard. 3D hierarchical macroporous structures are obtained at pH 7 within a comparatively short reaction time of 5 h and demonstrated to be highly photocatalytic (with rate constant four times that of P25 nanoparticles) through photodegradation of Rhodamine B dye.
Liang, Huijun; Meng, Qiuxia; Wang, Xiaobing; Zhang, Hucheng; Wang, Jianji
2018-04-25
The nanoplasmonic metal-driven photocatalytic activity depends heavily on the spacing between metal nanoparticles (NPs) and semiconductors, and this work shows that ethylene glycol (EG) is an ideal candidate for interface spacer. Controlling the synthetic systems at pH 3, the composite of Ag NPs with EG-stabilized amorphous TiO 2 (Ag/TiO 2 -3) was synthesized by the facile light-induced reduction. It is verified that EG spacers can set up suitable geometric arrangement in the composite: the twin hydroxyls act as stabilizers to bind Ag NPs and TiO 2 together and the nonconductive alkyl chains consisting only of two CH 2 are able to separate the two building blocks completely and also provide the shortest channels for an efficient transfer of radiation energies to reach TiO 2 . Employed as photocatalysts in hydrogen evolution under visible light, amorphous TiO 2 hardly exhibits the catalytic activity due to high defect density, whereas Ag/TiO 2 -3 represents a remarkably high catalytic efficiency. The enhancement mechanism of the reaction rate is proposed by the analysis of the compositional, structural, and optical properties from a series of Ag/TiO 2 composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ping, Yuan; Nielsen, Robert J.; Goddard, William A.
How to efficiently oxidize H 2O to O 2 (oxygen evolution reaction, OER) in photoelectrochemical cells (PEC) is a great challenge due to its complex charge transfer process, high overpotential, and corrosion. So far no OER mechanism has been fully explained atomistically with both thermodynamic and kinetics. IrO 2 is the only known OER catalyst with both high catalytic activity and stability in acidic conditions. This is important because PEC experiments often operate at extreme pH conditions. In this work, we performed first-principles calculations integrated with implicit solvation at constant potentials to examine the detailed atomistic reaction mechanism of OERmore » at the IrO 2 (110) surface. We determined the surface phase diagram, explored the possible reaction pathways including kinetic barriers, and computed reaction rates based on the microkinetic models. Furthermore, this allowed us to resolve several long-standing puzzles about the atomistic OER mechanism.« less
Ping, Yuan; Nielsen, Robert J.; Goddard, William A.
2016-12-09
How to efficiently oxidize H 2O to O 2 (oxygen evolution reaction, OER) in photoelectrochemical cells (PEC) is a great challenge due to its complex charge transfer process, high overpotential, and corrosion. So far no OER mechanism has been fully explained atomistically with both thermodynamic and kinetics. IrO 2 is the only known OER catalyst with both high catalytic activity and stability in acidic conditions. This is important because PEC experiments often operate at extreme pH conditions. In this work, we performed first-principles calculations integrated with implicit solvation at constant potentials to examine the detailed atomistic reaction mechanism of OERmore » at the IrO 2 (110) surface. We determined the surface phase diagram, explored the possible reaction pathways including kinetic barriers, and computed reaction rates based on the microkinetic models. Furthermore, this allowed us to resolve several long-standing puzzles about the atomistic OER mechanism.« less
NASA Astrophysics Data System (ADS)
Mori, Thiago J. A.; Mouls, Caroline L.; Morgado, Felipe F.; Schio, Pedro; Cezar, Júlio C.
2017-09-01
A series of epitaxial BiFeO3 thin films has been grown under high partial pressure in a pure O2 atmosphere, which leads to a low deposition rate. The samples grown under these conditions have presented an evolution of the quality of the epitaxy as the deposition temperature increases, however, spurious β- Bi2O3 and supertetragonal BiFeO3 phases are present in the films grown at higher temperatures. The presence of γ- Fe2O3 is reported in one growing condition, and has been attributed to the origin of hysteretic ferromagnetic behavior. A second kind of magnetism, with higher magnetic moment and anhysteretic behaviour, is attributed to the presence of mixed phases of BiFeO3.
Lowe, D J; Thorneley, R N
1984-01-01
A comprehensive model for the mechanism of nitrogenase action is used to simulate pre-steady-state kinetic data for H2 evolution in the presence and in the absence of N2, obtained by using a rapid-quench technique with nitrogenase from Klebsiella pneumoniae. These simulations use independently determined rate constants that define the model in terms of the following partial reactions: component protein association and dissociation, electron transfer from Fe protein to MoFe protein coupled to the hydrolysis of MgATP, reduction of oxidized Fe protein by Na2S2O4, reversible N2 binding by H2 displacement and H2 evolution. Two rate-limiting dissociations of oxidized Fe protein from reduced MoFe protein precede H2 evolution, which occurs from the free MoFe protein. Thus Fe protein suppresses H2 evolution by binding to the MoFe protein. This is a necessary condition for efficient N2 binding to reduced MoFe protein. PMID:6395861
NASA Astrophysics Data System (ADS)
Yang, Liting; Chen, Lin; Yang, Dawen; Yu, Xu; Xue, Huaiguo; Feng, Ligang
2018-07-01
High valence transition metal oxide is significant for anode catalyst of proton membrane water electrolysis technique. Herein, we demonstrate NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires hierarchical nanocomposite catalyst with surface rich high valence metal oxide as an efficient catalyst for oxygen evolution reaction. A low overpotential of 310 mV is needed to drive a 10 mA cm-2 with a Tafel slope of 99 mV dec-1, and a remarkable stability during 8 h is demonstrated in a chronoamperometry test. Theoretical calculation displays the change in the rate-determining step on the nanocomposite electrode in comparison to NiCo2O4 nanowires alone. It is found high valence Ni and Mn oxide in the catalyst system can efficiently facilitate the charge transport across the electrode/electrolyte interface. The enhanced electrical conductivity, more accessible active sites and synergistic effects between NiMn layered double hydroxide nanosheets and NiCo2O4 nanowires can account for the excellent oxygen evolution reaction. The catalytic performance is comparable to most of the best non-noble catalysts and IrO2 noble catalyst, indicating the promising applications in water-splitting technology. It is an important step in the development of hierarchical nanocomposites by surface valence state tuning as an alternative to noble metals for oxygen evolution reaction.
Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes
2017-01-01
The kinetics of photoelectrochemical (PEC) oxidation of methanol, as a model organic substrate, on α-Fe2O3 photoanodes are studied using photoinduced absorption spectroscopy and transient photocurrent measurements. Methanol is oxidized on α-Fe2O3 to formaldehyde with near unity Faradaic efficiency. A rate law analysis under quasi-steady-state conditions of PEC methanol oxidation indicates that rate of reaction is second order in the density of surface holes on hematite and independent of the applied potential. Analogous data on anatase TiO2 photoanodes indicate similar second-order kinetics for methanol oxidation with a second-order rate constant 2 orders of magnitude higher than that on α-Fe2O3. Kinetic isotope effect studies determine that the rate constant for methanol oxidation on α-Fe2O3 is retarded ∼20-fold by H/D substitution. Employing these data, we propose a mechanism for methanol oxidation under 1 sun irradiation on these metal oxide surfaces and discuss the implications for the efficient PEC methanol oxidation to formaldehyde and concomitant hydrogen evolution. PMID:28735533
NASA Astrophysics Data System (ADS)
Wang, Yu-Nan; Yang, Jian; Xin, Xiu-Ling; Wang, Rui-Zhi; Xu, Long-Yun
2016-04-01
In the present study, the effect of cooling conditions on the evolution of non-metallic inclusions in high manganese TWIP steels was investigated based on experiments and thermodynamic calculations. In addition, the formation and growth behavior of AlN inclusions during solidification under different cooling conditions were analyzed with the help of thermodynamics and dynamics. The inclusions formed in the high manganese TWIP steels are classified into nine types: (1) AlN; (2) MgO; (3) CaS; (4) MgAl2O4; (5) AlN + MgO; (6) MgO + MgS; (7) MgO + MgS + CaS; (8) MgO + CaS; (9) MgAl2O4 + MgS. With the increase in the cooling rate, the volume fraction and area ratio of inclusions are almost constant; the size of inclusions decreases and the number density of inclusions increases in the steels. The thermodynamic results of inclusion types calculated with FactSage are consistent with the observed results. With increasing cooling rate, the diameter of AlN decreases. When the cooling rate increases from 0.75 to 4.83 K s-1, the measured average diameter of AlN decreases from 4.49 to 2.42 μm. Under the high cooling rate of 4.83 K s-1, the calculated diameter of AlN reaches 3.59 μm at the end of solidification. However, the calculated diameter of AlN increases to approximately 5.93 μm at the end of solidification under the low cooling rate of 0.75 K s-1. The calculated diameter of AlN decreases with increasing cooling rate. The theoretical calculation results of the change in diameter of AlN under the different cooling rates have the same trend with the observed results. The existences of inclusions in the steels, especially AlN which average sizes are 2.42 and 4.49 μm, respectively, are not considered to have obvious influences on the hot ductility.
Martin, C E; McKee, J M; Schmitt, A K
1989-09-01
Past studies of the effects of varying levels of photosynthetic photon flux density (PPFD) on the morphology and physiology of the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides L. (Bromeliaceae) have resulted in two important findings: (1) CAM, measured as integrated nocturnal CO2 uptake or as nocturnal increases in tissue acidity, saturates at relatively low PPFD, and (2) this plant does not acclimate to different PPFD levels, these findings require substantiation using photosynthetic responses immediately attributable to different PPFD levels, e.g., O2 evolution, as opposed to the delayed, nocturnal responses (CO2 uptake and acid accumulation). In the present study, instantaneous responses of O2 evolution to PPFD level were measured using plants grown eight weeks at three PPFD (20-45, 200-350, and 750-800 μmol m(-2)s(-1)) in a growth chamber, and using shoots taken from the exposed upper portions (maximum PPFD of 800 μmol m(-2)s(-1)) and shaded lower portions (maximum PPFD of 140 μmol m(-2)s(-1)) of plants grown ten years in a greenhouse. In addition, nocturnal increases in acidity were measured in the growth chamber plants. Regardless of the PPFD levels during growth, O2 evolution rates saturated around 500 μmol m(-2)s(-1). Furthermore, nocturnal increases in tissue acidity saturated at much lower PPFD. Thus, previous results were confirmed: photosynthesis saturated at low PPFD, and this epiphyte does not acclimate to different levels of PPFD.
Welland, Michael J.; Lau, Kah Chun; Redfern, Paul C.; ...
2015-12-10
An atomistically informed mesoscale model is developed for the deposition of a discharge product in a Li-O 2 battery. This mescocale model includes particle growth and coarsening as well as a simplified nucleation model. The model involves LiO 2 formation through reaction of O 2 - and Li + in the electrolyte, which deposits on the cathode surface when the LiO 2 concentration reaches supersaturation in the electrolyte. A reaction-diffusion (rate-equation) model is used to describe the processes occurring in the electrolyte and a phase-field model is used to capture microstructural evolution. This model predicts that coarsening, in which largemore » particles grow and small ones disappear, has a substantial effect on the size distribution of the LiO 2 particles during the discharge process. The size evolution during discharge is the result of the interplay between this coarsening process and particle growth. The growth through continued deposition of LiO 2 has the effect of causing large particles to grow ever faster while delaying the dissolution of small particles. The predicted size evolution is consistent with experimental results for a previously reported cathode material based on activated carbon during discharge and when it is at rest, although kinetic factors need to be included. Finally, the approach described in this paper synergistically combines models on different length scales with experimental observations and should have applications in studying other related discharge processes, such as Li 2O 2 deposition, in Li-O 2 batteries and nucleation and growth in Li-S batteries.« less
Luo, Xiu-Li; He, Gang-Ling; Fang, Yue-Ping; Xu, Yue-Hua
2018-05-15
NiS/g-C 3 N 4 /SrTiO 3 (NS/CN/STO) composites were prepared using a facile hydrothermal method. The synergistic effect of g-C 3 N 4 /SrTiO 3 (CN/STO) heterojunction and NiS cocatalyst enhanced the photocatalytic hydrogen evolution activity of NS/CN/STO. A hydrogen production rate of 1722.7 μmol h -1 g -1 was obtained when the 2%NiS/20%g-C 3 N 4 /SrTiO 3 (2NS/20CN/STO) was used for the photocatalytic hydrogen evolution in the presence of methanol used as a sacrificial agent under UV-vis light irradiation; the photocatalytic hydrogen production rate of 2NS/20CN/STO is 32.8, 8.9 and 4.2 times the value of that obtained with pure g-C 3 N 4 , SrTiO 3 and 20%g-C 3 N 4 /SrTiO 3 (20CN/STO), respectively. Moreover, in photoelectrochemical investigations when compared with 20CN/STO, SrTiO 3 and g-C 3 N 4 , 2NS/20CN/STO exhibited significant photocurrent enhancement. The heterojunction and cocatalyst in NS/CN/STO improved the charge separation efficiency and the lifetime of the charge carriers, leading to the enhanced generation of electrons for photocatalytic hydrogen production. Copyright © 2018 Elsevier Inc. All rights reserved.
Yang, Guorui; Wang, Ling; Peng, Shengjie; Wang, Jianan; Ji, Dongxiao; Yan, Wei; Ramakrishna, Seeram
2017-12-01
1D branched TiO 2 nanomaterials play a significant role in efficient photocatalysis and high-performance lithium ion batteries. In contrast to the typical methods which generally have to employ epitaxial growth, the direct in situ growth of hierarchically branched TiO 2 nanofibers by a combination of the electrospinning technique and the alkali-hydrothermal process is presented in this work. Such the branched nanofibers exhibit improvement in terms of photocatalytic hydrogen evolution (0.41 mmol g -1 h -1 ), in comparison to the conventional TiO 2 nanofibers (0.11 mmol g -1 h -1 ) and P25 (0.082 mmol g -1 h -1 ). Furthermore, these nanofibers also deliver higher lithium specific capacity at different current densities, and the specific capacity at the rate of 2 C is as high as 201. 0 mAh g -1 , roughly two times higher than that of the pristine TiO 2 nanofibers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Visible light driven multifunctional photocatalysis in TeO2-based semiconductor glass ceramics
NASA Astrophysics Data System (ADS)
Kushwaha, Himmat Singh; Thomas, Paramanandam; Vaish, Rahul
2017-01-01
Photocatalytic xCaCu3Ti4O12-(100-x)TeO2 (x=0.25 mol% to 3 mol%), glass nanocomposites were fabricated and investigated for wastewater treatment, self-cleaning surfaces, and photocatalytic hydrogen evolution. Visible light active crystals of Cu-doped TiO2 and TiTe3O8 were grown by optimized crystallization of as-quenched glasses. The visible light photocatalytic activity of glass samples was investigated for estrogenic pharmaceutical pollutants, and the degradation rate was obtained as 168.56 min-1 m-2. A higher photocatalytic H2 production rate was observed (135 μmole h-1 g-1) for the crystallized CaCu3Ti4O12-TeO2 (x=3. 0) glass plate under visible light. The self-cleaning performance was observed using contact angle measurements for water under dark and light conditions. These visible light active glass ceramics are a cost effective sustainable solution for water treatment and self-cleaning applications.
Review: correlations between oxygen affinity and sequence classifications of plant hemoglobins.
Smagghe, Benoit J; Hoy, Julie A; Percifield, Ryan; Kundu, Suman; Hargrove, Mark S; Sarath, Gautam; Hilbert, Jean-Louis; Watts, Richard A; Dennis, Elizabeth S; Peacock, W James; Dewilde, Sylvia; Moens, Luc; Blouin, George C; Olson, John S; Appleby, Cyril A
2009-12-01
Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full-length globins with the classical eight helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobins, the physiological functions of these plant hemoglobins remain unknown. We have reviewed and, in some cases, measured new oxygen binding properties of a large number of Class 1 and 2 plant nonsymbiotic Hbs and leghemoglobins. We found that sequence classification correlates with distinct extents of hexacoordination with the distal histidine and markedly different overall oxygen affinities and association and dissociation rate constants. These results suggest strong selective pressure for the evolution of distinct physiological functions. The leghemoglobins evolved from the Class 2 globins and show no hexacoordination, very high rates of O(2) binding ( approximately 250 muM(-1) s(-1)), moderately high rates of O(2) dissociation ( approximately 5-15 s(-1)), and high oxygen affinity (K(d) or P(50) approximately 50 nM). These properties both facilitate O(2) diffusion to respiring N(2) fixing bacteria and reduce O(2) tension in the root nodules of legumes. The Class 1 plant Hbs show weak hexacoordination (K(HisE7) approximately 2), moderate rates of O(2) binding ( approximately 25 muM(-1) s(-1)), very small rates of O(2) dissociation ( approximately 0.16 s(-1)), and remarkably high O(2) affinities (P(50) approximately 2 nM), suggesting a function involving O(2) and nitric oxide (NO) scavenging. The Class 2 Hbs exhibit strong hexacoordination (K(HisE7) approximately 100), low rates of O(2) binding ( approximately 1 muM(-1) s(-1)), moderately low O(2) dissociation rate constants ( approximately 1 s(-1)), and moderate, Mb-like O(2) affinities (P(50) approximately 340 nM), perhaps suggesting a sensing role for sustained low, micromolar levels of oxygen.
NASA Astrophysics Data System (ADS)
Fields, C. E.; Timmes, F. X.; Farmer, R.; Petermann, I.; Wolf, William M.; Couch, S. M.
2018-02-01
We explore properties of core-collapse supernova progenitors with respect to the composite uncertainties in the thermonuclear reaction rates by coupling the probability density functions of the reaction rates provided by the STARLIB reaction rate library with MESA stellar models. We evolve 1000 models of 15{M}ȯ from the pre-main sequence to core O-depletion at solar and subsolar metallicities for a total of 2000 Monte Carlo stellar models. For each stellar model, we independently and simultaneously sample 665 thermonuclear reaction rates and use them in a MESA in situ reaction network that follows 127 isotopes from 1H to 64Zn. With this framework we survey the core mass, burning lifetime, composition, and structural properties at five different evolutionary epochs. At each epoch we measure the probability distribution function of the variations of each property and calculate Spearman rank-order correlation coefficients for each sampled reaction rate to identify which reaction rate has the largest impact on the variations on each property. We find that uncertainties in the reaction rates of {}14{{N}}{({{p}},γ )}15{{O}}, triple-α, {}12{{C}}{(α ,γ )}16{{O}}, 12C(12C,p)23Na, 12C(16O, p)27Al, 16O(16O,n)31S, 16O(16O, p)31P, and 16O(16O,α)28Si dominate the variations of the properties surveyed. We find that variations induced by uncertainties in nuclear reaction rates grow with each passing phase of evolution, and at core H-, He-depletion they are of comparable magnitude to the variations induced by choices of mass resolution and network resolution. However, at core C-, Ne-, and O-depletion, the reaction rate uncertainties can dominate the variation, causing uncertainty in various properties of the stellar model in the evolution toward iron core-collapse.
Chemical evolution in spiral and irregular galaxies
NASA Technical Reports Server (NTRS)
Torres-Peimbert, S.
1986-01-01
A brief review of models of chemical evolution of the interstellar medium in our galaxy and other galaxies is presented. These models predict the time variation and radial dependence of chemical composition in the gas as function of the input parameters; initial mass function, stellar birth rate, chemical composition of mass lost by stars during their evolution (yields), and the existence of large scale mass flows, like infall from the halo, outflow to the intergalactic medium or radial flows within a galaxy. At present there is a considerable wealth of observational data on the composition of HII regions in spiral and irregular galaxies to constrain the models. Comparisons are made between theory and the observed physical conditions. In particular, studies of helium, carbon, nitrogen and oxygen abundances are reviewed. In many molecular clouds the information we have on the amount of H2 is derived from the observed CO column density, and a standard CO/H2 ratio derived for the solar neighborhood. Chemical evolution models and the observed variations in O/H and N/O values, point out the need to include these results in a CO/H2 relation that should be, at least, a function of the O/H ratio. This aspect is also discussed.
Smith, Paul F; Kaplan, Christopher; Sheats, John E; Robinson, David M; McCool, Nicholas S; Mezle, Nicholas; Dismukes, G Charles
2014-02-17
The metal-oxo M4O4 "cubane" topology is of special significance to the field of water oxidation as it represents the merging of bioinspired structural principles derived from natural photosynthesis with successful artificial catalysts known to date. Herein, we directly compare the rates of water oxidation/O2 evolution catalyzed by six cobalt-oxo clusters including the Co4O4 cubanes, Co4O4(OAc)4(py)4 and [Co4O4(OAc)2(bpy)4](2+), using the common Ru(bpy)3(2+)/S2O8(2-) photo-oxidant assay. At pH 8, the first-order rate constants for these cubanes differ by 2-fold, 0.030 and 0.015 s(-1), respectively, reflecting the number of labile carboxylate sites that allow substrate water binding in a pre-equilibrium step before O2 release. Kinetic results reveal a deprotonation step occurs on this pathway and that two electrons are removed before O2 evolution occurs. The Co4O4 cubane core is shown to be the smallest catalytic unit for the intramolecular water oxidation pathway, as neither "incomplete cubane" trimers [Co3O(OH)3(OAc)2(bpy)3](2+) and [Co3O(OH)2(OAc)3(py)5](2+) nor "half cubane" dimers [Co2(OH)2(OAc)3(bpy)2](+) and [Co2(OH)2(OAc)3(py)4](+) were found capable of evolving O2, despite having the same ligand sets as their cubane counterparts. Electrochemical studies reveal that oxidation of both cubanes to formally Co4(3III,IV) (0.7 V vs Ag/AgCl) occurs readily, while neither dimers nor trimers are oxidized below 1.5 V, pointing to appreciably greater charge delocalization in the [Co4O4](5+) core. The origin of catalytic activity by Co4O4 cubanes illustrates three key features for water oxidation: (1) four one-electron redox metals, (2) efficient charge delocalization of the first oxidation step across the Co4O4 cluster, allowing for stabilization of higher oxidizing equivalents, and (3) terminal coordination site for substrate aquo/oxo formation.
2017-01-01
Photoelectrochemical hydrogen evolution is a promising avenue to store the energy of sunlight in the form of chemical bonds. The recent rapid development of new synthetic approaches enables the nanoscale engineering of semiconductor photoelectrodes, thus tailoring their physicochemical properties toward efficient H2 formation. In this work, we carried out the parallel optimization of the morphological features of the semiconductor light absorber (NiO) and the cocatalyst (Pt). While nanoporous NiO films were obtained by electrochemical anodization, the monodisperse Pt nanoparticles were synthesized using wet chemical methods. The Pt/NiO nanocomposites were characterized by XRD, XPS, SEM, ED, TEM, cyclic voltammetry, photovoltammetry, EIS, etc. The relative enhancement of the photocurrent was demonstrated as a function of the nanoparticle size and loading. For mass-specific surface activity the smallest nanoparticles (2.0 and 4.8 nm) showed the best performance. After deconvoluting the trivial geometrical effects (stemming from the variation of Pt particle size and thus the electroactive surface area), however, the intermediate particle sizes (4.8 and 7.2 nm) were found to be optimal. Under optimized conditions, a 20-fold increase in the photocurrent (and thus the H2 evolution rates) was observed for the nanostructured Pt/NiO composite, compared to the benchmark nanoparticulate NiO film. PMID:28620447
Zhang, Ning; Chen, Chen; Mei, Zongwei; Liu, Xiaohe; Qu, Xiaolei; Li, Yunxiang; Li, Siqi; Qi, Weihong; Zhang, Yuanjian; Ye, Jinhua; Roy, Vellaisamy A L; Ma, Renzhi
2016-04-27
Exploring surface-exposed highly active crystal facets for photocatalytic oxidations is promising in utilizing monoclinic WO3 semiconductor. However, the previously reported highly active facets for monoclinic WO3 were mainly toward enhancing photocatalytic reductions. Here we report that the WO3 with {100} facet orientation and tuned surface electronic band structure can effectively enhance photocatalytic oxidation properties. The {100} faceted WO3 single crystals are synthesized via a facile hydrothermal method. The UV-visible diffuse reflectance, X-ray photoelectron spectroscopy valence band spectra, and photoelectrochemical measurements suggest that the {100} faceted WO3 has a much higher energy level of valence band maximum compared with the normal WO3 crystals without preferred orientation of the crystal face. The density functional theory calculations reveal that the shift of O 2p and W 5d states in {100} face induce a unique band structure. In comparison with the normal WO3, the {100} faceted WO3 exhibits an O2 evolution rate about 5.1 times in water splitting, and also shows an acetone evolution rate of 4.2 times as well as CO2 evolution rate of 3.8 times in gaseous degradation of 2-propanol. This study demonstrates an efficient crystal face engineering route to tune the surface electronic band structure for enhanced photocatalytic oxidations.
Enhanced photocatalytic H2-production activity of C-dots modified g-C3N4/TiO2 nanosheets composites.
Li, Yang; Feng, Xionghan; Lu, Zhexue; Yin, Hui; Liu, Fan; Xiang, Quanjun
2018-03-01
As a new carbon-based material, carbon dots (C-dots) have got widely preference because of its excellent electronic transfer capability. In this work, a novel ternary layered C-dots/g-C 3 N 4 /TiO 2 nanosheets (CGT) composite photocatalysts were prepared by impregnation precipitation methods. The optimal ternary CGT composite samples revealed high photocatalytic hydrogen evolution rate in triethanolamine aqueous solutions, which exceeded the rate of the optimal g-C 3 N 4 /TiO 2 composite sample by a factor of 5 times. The improved photocatalytic activity is owed to the positive effects of C-dots and layered heterojunction structure of TiO 2 nanosheets and g-C 3 N 4 sheets. C-dots in the CGT composites can serve as electron reservoirs to capture the photo-induced electrons. The well-defined layered heterojunction structure of CGT provides the intimate contact and the strong interaction of anatase TiO 2 nanosheets and g-C 3 N 4 sheets via face-to-face orientation, which restrains the recombination of photogenerated charge carriers, and thus enhances the photocatalytic H 2 -production activity. Electron paramagnetic resonance and transient photocurrent response proved the strong interaction and improved interfacial charge transfer of TiO 2 nanosheets and g-C 3 N 4 sheets, respectively. The mechanism of improving the photocatalytic H 2 -evolution activity was further confirmed by time-resolved fluorescence, electron paramagnetic resonance, transient photocurrent response and electrochemical impedance spectroscopy. Copyright © 2017 Elsevier Inc. All rights reserved.
Yoon, Ki Ro; Lee, Gil Yong; Jung, Ji-Won; Kim, Nam-Hoon; Kim, Sang Ouk; Kim, Il-Doo
2016-03-09
Rational design and massive production of bifunctional catalysts with fast oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics are critical to the realization of highly efficient lithium-oxygen (Li-O2) batteries. Here, we first exploit two types of double-walled RuO2 and Mn2O3 composite fibers, i.e., (i) phase separated RuO2/Mn2O3 fiber-in-tube (RM-FIT) and (ii) multicomposite RuO2/Mn2O3 tube-in-tube (RM-TIT), by controlling ramping rate during electrospinning process. Both RM-FIT and RM-TIT exhibited excellent bifunctional electrocatalytic activities in alkaline media. The air electrodes using RM-FIT and RM-TIT showed enhanced overpotential characteristics and stable cyclability over 100 cycles in the Li-O2 cells, demonstrating high potential as efficient OER and ORR catalysts.
Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O8(2-).
Hong, Dachao; Yamada, Yusuke; Nagatomi, Takaharu; Takai, Yoshizo; Fukuzumi, Shunichi
2012-12-05
Single or mixed oxides of iron and nickel have been examined as catalysts in photocatalytic water oxidation using [Ru(bpy)(3)](2+) as a photosensitizer and S(2)O(8)(2-) as a sacrificial oxidant. The catalytic activity of nickel ferrite (NiFe(2)O(4)) is comparable to that of a catalyst containing Ir, Ru, or Co in terms of O(2) yield and O(2) evolution rate under ambient reaction conditions. NiFe(2)O(4) also possesses robustness and ferromagnetic properties, which are beneficial for easy recovery from the solution after reaction. Water oxidation catalysis achieved by a composite of earth-abundant elements will contribute to a new approach to the design of catalysts for artificial photosynthesis.
NASA Astrophysics Data System (ADS)
Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng
2016-10-01
Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm-2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting.
NASA Astrophysics Data System (ADS)
El-Bery, Haitham M.; Matsushita, Yoshihisa; Abdel-moneim, Ahmed
2017-11-01
A facile one-step synthesis approach of M/TiO2/RGO (M = Au or Pt) ternary composite by hydrothermal treatment for hydrogen generation via water-splitting was investigated. Photocurrent response measurements revealed that TiO2 (P25) nanoparticles anchored on the reduced graphene oxide (RGO) surface exhibited a p-n heterojunction interface by changing the photocurrent direction with the applied bias from reverse to forward potential. H2 evolution rate of TiO2/RGO (5 wt.%) composite was substantially enhanced by 12-fold in comparison to bare TiO2 under simulated solar light irradiation. Cyclic volatmmetry measurements manifested, that the optimized 0.3 wt.% of platinum metal loaded on TiO2/RGO composite was the most active catalytic reduction sites for hydrogen generation reaction with an initial hydrogen rate of 670 μmol h-1. This study sheds the light on the tunable semiconductor type of TiO2/RGO composite fabricated by solution mixing pathway and its merits to improve the photocatalytic activity.
NASA Astrophysics Data System (ADS)
Lundin, D.; Gudmundsson, J. T.; Brenning, N.; Raadu, M. A.; Minea, T. M.
2017-05-01
The oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge has been studied using a new reactive ionization region model. The aim has been to identify the dominating physical and chemical reactions in the plasma and on the surfaces of the reactor affecting the oxygen plasma chemistry. We explore the temporal evolution of the density of the ground state oxygen molecule O 2 ( X 1 Σg - ) , the singlet metastable oxygen molecules O 2 ( a 1 Δ g ) and O 2 ( b 1 Σ g ) , the oxygen atom in the ground state O(3P), the metastable oxygen atom O(1D), the positive ions O2 + and O+, and the negative ion O-. We furthermore investigate the reaction rates for the gain and loss of these species. The density of atomic oxygen increases significantly as we move from the metal mode to the transition mode, and finally into the compound (poisoned) mode. The main gain rate responsible for the increase is sputtering of atomic oxygen from the oxidized target. Both in the poisoned mode and in the transition mode, sputtering makes up more than 80% of the total gain rate for atomic oxygen. We also investigate the possibility of depositing stoichiometric TiO2 in the transition mode.
Synthesis of Ordered Mesoporous CuO/CeO2 Composite Frameworks as Anode Catalysts for Water Oxidation
Markoulaki, Vassiliki Ι.; Papadas, Ioannis T.; Kornarakis, Ioannis; Armatas, Gerasimos S.
2015-01-01
Cerium-rich metal oxide materials have recently emerged as promising candidates for the photocatalytic oxygen evolution reaction (OER). In this article, we report the synthesis of ordered mesoporous CuO/CeO2 composite frameworks with different contents of copper(II) oxide and demonstrate their activity for photocatalytic O2 production via UV-Vis light-driven oxidation of water. Mesoporous CuO/CeO2 materials have been successfully prepared by a nanocasting route, using mesoporous silica as a rigid template. X-ray diffraction, electron transmission microscopy and N2 porosimetry characterization of the as-prepared products reveal a mesoporous structure composed of parallel arranged nanorods, with a large surface area and a narrow pore size distribution. The molecular structure and optical properties of the composite materials were investigated with Raman and UV-Vis/NIR diffuse reflectance spectroscopy. Catalytic results indicated that incorporation of CuO clusters in the CeO2 lattice improved the photochemical properties. As a result, the CuO/CeO2 composite catalyst containing ~38 wt % CuO reaches a high O2 evolution rate of ~19.6 µmol·h−1 (or 392 µmol·h−1·g−1) with an apparent quantum efficiency of 17.6% at λ = 365 ± 10 nm. This OER activity compares favorably with that obtained from the non-porous CuO/CeO2 counterpart (~1.3 µmol·h−1) and pure mesoporous CeO2 (~1 µmol·h−1). PMID:28347106
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xixian; Huang, Hongyu, E-mail: huanghy@ms.giec.ac.cn; Kubota, Mitsuhiro
Highlights: • A hydrogen evolution reaction of g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} photocatalyst was synthesized. • g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} presents highly efficient H{sub 2} evolution without noble metals. • The effect of g-C{sub 3}N{sub 4} and MoS{sub 2} co-catalyst content in the composites was studied. • The mechanism of g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} photocatalyst under UV–vis light was discussed. - Abstract: In this paper, we report a new g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} composite material as a high-performance photocatalyst for H{sub 2} evolution. Without a noble-metal cocatalyst, the g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} composite reaches a highmore » H{sub 2} production rate of 125 μmol h{sup −1} when the content of the g-C{sub 3}N{sub 4}/MoS{sub 2} cocatalyst is 1.0 wt.% and the content of g-C{sub 3}N{sub 4} in this cocatalyst is 10 wt.%. This unusual photocatalytic activity is attributed to the positive synergetic effect between the MoS{sub 2} and g-C{sub 3}N{sub 4} components in this cocatalyst, which serve as an electron collector and a source of active adsorption sites, respectively.« less
NASA Astrophysics Data System (ADS)
Li, Jie; Zhan, Guangming; Yu, Ying; Zhang, Lizhi
2016-05-01
Although photocatalytic hydrogen evolution (PHE) is ideal for solar-to-fuel conversion, it remains challenging to construct a highly efficient PHE system by steering the charge flow in a precise manner. Here we tackle this challenge by assembling 1T MoS2 monolayers selectively and chemically onto (Bi12O17) end-faces of Bi12O17Cl2 monolayers to craft two-dimensional (2D) Janus (Cl2)-(Bi12O17)-(MoS2) bilayer junctions, a new 2D motif different from van der Waals heterostructure. Electrons and holes from visible light-irradiated Bi12O17Cl2 are directionally separated by the internal electric field to (Bi12O17) and (Cl2) end-faces, respectively. The separated electrons can further migrate to MoS2 via Bi-S bonds formed between (Bi12O17) and MoS2 monolayers. This atomic-level directional charge separation endows the Janus bilayers with ultralong carrier lifetime of 3,446 ns and hence a superior visible-light PHE rate of 33 mmol h-1 g-1. Our delineated Janus bilayer junctions on the basis of the oriented assembly of monolayers presents a new design concept to effectively steer the charge flow for PHE.
NASA Astrophysics Data System (ADS)
Kang, Youn-Bae; Kim, Min-Su; Lee, Su-Wan; Cho, Jung-Wook; Park, Min-Seok; Lee, Hae-Geon
2013-04-01
Following a series of laboratory-scale experiments, the mechanism of a chemical reaction 4[{Al}] + 3({SiO}_2) = 3[{Si}] + 2({Al}_2{O}_3) between high-alloyed TWIP (TWin-Induced Plasticity) steel containing Mn and Al and molten mold flux composed mainly of CaO-SiO2 during the continuous casting process is discussed in the present article in the context of kinetic analysis, morphological evolution at the reaction interface. By the kinetic analysis using a two-film theory, a rate-controlling step of the chemical reaction at the interface between the molten steel and the molten flux is found to be mass transport of Al in a boundary layer of the molten steel, as long as the molten steel and the molten flux phases are concerned. Mass transfer coefficient of the Al in the boundary layer (k_{{Al}}) is estimated to be 0.9 to 1.2 × 10-4 m/s at 1773 K (1500 ^{circ}C). By utilizing experimental data at various temperatures, the following equation is obtained for the k_{{Al}}; ln k_{{Al}} = -14,290/T - 1.1107. Activation energy for the mass transfer of Al in the boundary layer is 119 kJ/mol, which is close to a value of activation energy for mass transfer in metal phase. The composition evolution of Al in the molten steel was well explained by the mechanism of Al mass transfer. On the other hand, when the concentration of Al in the steel was high, a significant deviation of the composition evolution of Al in the molten steel was observed. By observing reaction interface between the molten steel and the molten flux, it is thought that the chemical reaction controlled by the mass transfer of Al seemed to be disturbed by formation of a solid product layer of MgAl2O4. A model based on a dynamic mass balance and the reaction mechanism of mass transfer of Al in the boundary layer for the low Al steel was developed to predict (pct Al2O3) accumulation rate in the molten mold flux.
Influence of antimycin A and uncouplers on anaerobic photosynthesis in isolated chloroplasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slovacek, R.E.; Hind, G.
1977-10-01
Anaerobiosis depresses the light- and bicarbonate-saturated rates of O/sub 2/ evolution in intact spinach (Spinacia oleracea) chloroplasts by as much as 3-fold from those observed under aerobic conditions. These lower rates are accelerated 2-fold or more by the addition of 1 ..mu..m antimycin A or by low concentrations of the uncouplers 0.3 mM NH/sub 4/Cl or 0.25 ..mu..m carbonyl cyanide m-chlorophenylhydrazone. Oxaloacetate and glycerate 3-phosphate reduction rates are also increased by antimycin A or an uncoupler under anaerobic conditions. At intermediate light intensities, the rate accelerations by either antimycin A or uncoupler are inversely proportional to the adenosine 5'-triphosphate demandmore » of the reduction process for the acceptors HCO/sub 3//sup -/, glycerate 3-phosphate, and oxaloacetate. The acceleration of bicarbonate-supported O/sub 2/ evolution may also be produced by adding an adenosine 5'-triphosphate sink (ribose 5-phosphate) to anaerobic chloroplasts. The above results suggest that a proton gradient back pressure resulting from antimycin A-sensitive cyclic electron flow is responsible for the depression of light-saturated photosynthesis under anaerobiosis.« less
Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming
2016-06-29
High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively.
Collisional Removal of OH (X (sup 2)Pi, nu=7) by O2, N2, CO2, and N2O
NASA Technical Reports Server (NTRS)
Knutsen, Karen; Dyer, Mark J.; Copeland, Richard A.
1996-01-01
Collisional removal rate constants for the OH (X 2PI, nu = 7) radical are measured for the colliders O2, CO2, and N2O, and an upper limit is established for N2. OH(nu = 4) molecules, generated in a microwave discharge flow cell by the reaction of hydrogen atoms with ozone, are excited to v = 7 by the output of a pulsed infrared laser via direct vibrational overtone excitation. The temporal evolution of the P = 7 population is probed as a function of the collider gas partial pressure by a time-delayed pulsed ultraviolet laser. Fluorescence from the B 21 + state is detected in the visible spectral region.
NASA Astrophysics Data System (ADS)
Pejaković, Dušan A.; Campbell, Zachary; Kalogerakis, Konstantinos S.; Copeland, Richard A.; Slanger, Tom G.
2011-09-01
Laboratory measurements are reported of the rate coefficient for collisional removal of O2(X^3Σ _g^ -, υ = 1) by O(3P), and the rate coefficients for removal of O2(a1Δg, υ = 1) by O2, CO2, and O(3P). A two-laser method is employed, in which the pulsed output of the first laser at 285 nm photolyzes ozone to produce oxygen atoms and O2(a1Δg, υ = 1), and the output of the second laser detects O2(a1Δg, υ = 1) via resonance-enhanced multiphoton ionization. The kinetics of O2(X^3Σ _g^ -, υ = 1) + O(3P) relaxation is inferred from the temporal evolution of O2(a1Δg, υ = 1), an approach enabled by the rapid collision-induced equilibration of the O2(X^3Σ _g^ -, υ = 1) and O2(a1Δg, υ = 1) populations in the system. The measured O2(X^3Σ _g^ -, υ = 1) + O(3P) rate coefficient is (2.9 ± 0.6) × 10-12 cm3 s-1 at 295 K and (3.4 ± 0.6) × 10-12 cm3 s-1 at 240 K. These values are consistent with the previously reported result of (3.2 ± 1.0) × 10-12 cm3 s-1, which was obtained at 315 K using a different experimental approach [K. S. Kalogerakis, R. A. Copeland, and T. G. Slanger, J. Chem. Phys. 123, 194303 (2005)]. For removal of O2(a1Δg, υ = 1) by O(3P), the upper limits for the rate coefficient are 4 × 10-13 cm3 s-1 at 295 K and 6 × 10-13 cm3 s-1 at 240 K. The rate coefficient for removal of O2(a1Δg, υ = 1) by O2 is (5.6 ± 0.6) × 10-11 cm3 s-1 at 295 K and (5.9 ± 0.5) × 10-11 cm3 s-1 at 240 K. The O2(a1Δg, υ = 1) + CO2 rate coefficient is (1.5 ± 0.2) × 10-14 cm3 s-1 at 295 K and (1.2 ± 0.1) × 10-14 cm3 s-1 at 240 K. The implications of the measured rate coefficients for modeling of atmospheric emissions are discussed.
A new oxyfluorinated titanium phosphate anode for a high-energy lithium-ion battery.
Ma, Zhaohui; Sun, Chunwen; Lyu, Yingchun; Wang, Yuesheng; Kim, Youngsik; Chen, Liquan
2015-01-21
Na3[Ti2P2O10F] was synthesized by a hydrothermal method. It has an open framework structure consisting of TiFO5 octahedra and PO4 tetrahedra. The feasibility of Na3[Ti2P2O10F] as an anode material for lithium-ion batteries was first studied. Na3[Ti2P2O10F] exhibits a reversible capacity of more than 200 mAh g(-1) at a discharge/charge current rate of 20 mA g(-1) (∼0.1 C) and 105 mA g(-1) at a discharge/charge current rate of 400 mA g(-1) (∼2 C) with a lower intercalation voltage. The result of in situ X-ray diffraction test shows the structural evolution during the first discharge/charge cycle. The structure of Na3[Ti2P2O10F] was kept during discharge/charge with a slight change of the lattice parameters, which indicates a lithium solid solution behavior.
Alagappan, Azhagammai; Ballingall, Iain; Costen, Matthew L; McKendrick, Kenneth G; Paterson, Grant
2007-02-14
Polarized laser photolysis of ICN is combined with saturated optical pumping to prepare state-selected CN Alpha(2)Pi (nu' = 4, J = 0.5, F(2), f) with a well-defined anisotropic superthermal speed distribution. The collisional evolution of the prepared state is observed by Doppler-resolved Frequency Modulated (FM) spectroscopy via stimulated emission on the CN Alpha(2)Pi-Chi(2)Sigma(+) (4,2) band. The phenomenological rate constants for removal of the prepared state in collisions with He, Ar, N(2) and O(2) are reported. The observed collision cross-sections are consistent with attractive forces contributing significantly for all the colliders with the exception of He. The collisional evolution of the prepared velocity distribution demonstrates that no significant back-transfer into the prepared level occurs, and that any elastic scattering is strongly in the forward hemisphere.
Ze, Yuguan; Liu, Chao; Wang, Ling; Hong, Mengmeng; Hong, Fashui
2011-11-01
Recent studies demonstrated that titanium dioxide nanoparticles (TiO2 NPs) could significantly promote photosynthesis and plant growth, but its mechanism is still unclear. In this article, we studied the mechanism of light absorption and transfer of chloroplasts of Arabidopsis thaliana caused by TiO2 NPs treated. The results showed that TiO2 NPs could induce significant increases of light-harvesting complex II (LHCII) b gene expression and LHCII II content on the thylakoid membrane in A. thaliana, and the increases in LHCII were higher than the non-nano TiO2 (bulk-TiO2) treatment. Meanwhile, spectroscopy assays indicated that TiO2 NPs obviously increased the absorption peak intensity of the chloroplast in red and blue region, the fluorescence quantum yield near 680 nm, the excitation peak intensity near 440 and 480 nm and/or near 650 and 680 nm of the chloroplast. TiO2 NPs treatment could reduce F480/F440 ratio and increase F650/F680 ratio and accelerate the rate of whole chain electron transport and oxygen evolution of the chloroplast. However, the photosynthesis improvement of the non-nanoTiO2 treatment was far less effective than TiO2 NPs treatment. Taken together, TiO2 NPs could promote the light absorption of chloroplast, regulate the distribution of light energy from PS I to PS II by increasing LHCII and accelerate the transformation from light energy to electronic energy, water photolysis, and oxygen evolution.
NASA Astrophysics Data System (ADS)
Fougere, Nicolas; Altwegg, K.; Berthelier, J.-J.; Bieler, A.; Bockelée-Morvan, D.; Calmonte, U.; Capaccioni, F.; Combi, M. R.; De Keyser, J.; Debout, V.; Erard, S.; Fiethe, B.; Filacchione, G.; Fink, U.; Fuselier, S. A.; Gombosi, T. I.; Hansen, K. C.; Hässig, M.; Huang, Z.; Le Roy, L.; Leyrat, C.; Migliorini, A.; Piccioni, G.; Rinaldi, G.; Rubin, M.; Shou, Y.; Tenishev, V.; Toth, G.; Tzou, C.-Y.
2016-11-01
We analyse the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) - the Double Focusing Mass Spectrometer data between 2014 August and 2016 February to examine the effect of seasonal variations on the four major species within the coma of 67P/Churyumov-Gerasimenko (H2O, CO2, CO, and O2), resulting from the tilt in the orientation of the comet's spin axis. Using a numerical data inversion, we derive the non-uniform activity distribution at the surface of the nucleus for these species, suggesting that the activity distribution at the surface of the nucleus has not significantly been changed and that the differences observed in the coma are solely due to the variations in illumination conditions. A three-dimensional Direct Simulation Monte Carlo model is applied where the boundary conditions are computed with a coupling of the surface activity distributions and the local illumination. The model is able to reproduce the evolution of the densities observed by ROSINA including the changes happening at equinox. While O2 stays correlated with H2O as it was before equinox, CO2 and CO, which had a poor correlation with respect to H2O pre-equinox, also became well correlated with H2O post-equinox. The integration of the densities from the model along the line of sight results in column densities directly comparable to the VIRTIS-H observations. Also, the evolution of the volatiles' production rates is derived from the coma model showing a steepening in the production rate curves after equinox. The model/data comparison suggests that the seasonal effects result in the Northern hemisphere of 67P's nucleus being more processed with a layered structure while the Southern hemisphere constantly exposes new material.
Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng
2016-01-01
Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm−2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting. PMID:27748380
Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution
Rao, Reshma R.; Kolb, Manuel J.; Halck, Niels Bendtsen; ...
2017-11-17
While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO2(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of –H 2O on the coordinatively unsaturated Ru sites (CUS)more » and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an –OO species on the Ru CUS sites was detected, which was stabilized by a neighboring –OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the –OH group used to stabilize –OO was found to be rate-limiting.« less
Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Reshma R.; Kolb, Manuel J.; Halck, Niels Bendtsen
While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO2(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of –H 2O on the coordinatively unsaturated Ru sites (CUS)more » and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an –OO species on the Ru CUS sites was detected, which was stabilized by a neighboring –OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the –OH group used to stabilize –OO was found to be rate-limiting.« less
Salari, M; Aboutalebi, S H; Aghassi, A; Wagner, P; Mozer, A J; Wallace, G G
2015-02-28
The trade-off between performance and complexity of the device manufacturing process should be balanced to enable the economic harvest of solar energy. Here, we demonstrate a conceptual, yet practical and well-regulated strategy to achieve efficient solar photocatalytic activity in TiO2 through controlled phase transformation and disorder engineering in the surface layers of TiO2 nanotubes. This approach enabled us to fine-tune the bandgap structure of undoped TiO2 according to our needs while simultaneously obtaining robust separation of photo-excited charge carriers. Introduction of specific surface defects also assisted in utilization of the visible part of sunlight to split water molecules for the production of oxygen. The strategy proposed here can serve as a guideline to overcome the practical limitation in the realization of efficient, non-toxic, chemically stable photoelectrochemical systems with high catalytic activity at neutral pH under visible illumination conditions. We also successfully incorporated TiO2 nanotube arrays (TNTAs) with free-based porphyrin affording a pathway with an overall 140% enhanced efficiency, an oxygen evolution rate of 436 μL h(-1) and faradic efficiencies over 100%.
Are H and O Being Lost From the Mars Atmosphere in the H2O Stoichiometric Ratio of 2:1?
NASA Astrophysics Data System (ADS)
Jakosky, B. M.; Chaffin, M.; Deighan, J.; Brain, D.; Halekas, J. S.
2017-12-01
Loss of gas from the Mars upper atmosphere to space has been a significant process in the evolution of the Mars atmosphere through time. H is derived from photodissociation of H2O, and is lost by Jeans (thermal) escape. O comes from photodissociation of either H2O or CO2, and is lost by non-thermal processes including dissociative recombination, ion pickup, or sputtering by pick-up ions impacting the atmosphere (in order of importance today). McElroy (1972) proposed that H and O are lost in the ratio of 2:1 that comes from photodissociation of H2O; any imbalance would result in build-up of the lesser-escaping atom that increases its loss rate until the rates were in balance. For the Mars year observed by MAVEN, the large seasonal variation in H loss rate makes this hypothesis difficult to evaluate; however, current best estimates of loss rates suggest that they could be in balance, given the observational uncertainties and seasonal variations (both of which are significant). Even if they are in balance over longer timescales, they still might not be during the "MAVEN" year due to: (i) complications resulting from the interplay between multiple loss processes for O beyond only photochemical loss as considered by McElroy, (ii) interannual and longer-term variations in the lower-atmosphere dust and water cycles that can change the escape rate, (iii) the variation in loss rate expected throughout the 11-year solar cycle, (iv) changes in lower-atmosphere forcing due to the changing orbital elements, or (v) loss of C, H, or O to the crust via reaction with surface minerals. The higher (and unequal) loss rates for all species early in history are likely to have kept H and O from being in balance over the 4-billion-year timescale.
USDA-ARS?s Scientific Manuscript database
Differential scanning calorimetry and microrespiration were used to determine the effects of the biopesticide, Bt toxin, on the metabolism of infected Pandemis leafroller, Pandemis purusana (Kearfott). The metabolic heat rate, CO2 evolution, O2 consumption of 2nd and 3rd instars following a 2 h expo...
Puig Giribets, Marta; García Guerreiro, María Pilar; Santos, Mauro; Ayala, Francisco J; Tarrío, Rosa; Rodríguez-Trelles, Francisco
2018-02-07
Heat-shock (HS) assays to understand the connection between standing inversion variation and evolutionary response to climate change in Drosophila subobscura found that "warm-climate" inversion O 3+4 exhibits non-HS levels of Hsp70 protein like those of "cold-climate" O ST after HS induction. This was unexpected, as overexpression of Hsp70 can incur multiple fitness costs. To understand the genetic basis of this finding, we have determined the genomic sequence organization of the Hsp70 family in four different inversions, including O ST , O 3+4 , O 3+4+8 and O 3+4+16 , using as outgroups the remainder of the subobscura species subgroup, namely Drosophila madeirensis and Drosophila guanche. We found (i) in all the assayed lines, the Hsp70 family resides in cytological locus 94A and consists of only two genes, each with four HS elements (HSEs) and three GAGA sites on its promoter. Yet, in O ST , the family is comparatively more compact; (ii) the two Hsp70 copies evolve in concert through gene conversion, except in D. guanche; (iii) within D. subobscura, the rate of concerted evolution is strongly structured by inversion, being higher in O ST than in O 3+4 ; and (iv) in D. guanche, the two copies accumulated multiple differences, including a newly evolved "gap-type" HSE2. The absence of concerted evolution in this species may be related to a long-gone-unnoticed observation that it lacks Hsp70 HS response, perhaps because it has evolved within a narrow thermal range in an oceanic island. Our results point to a previously unrealized link between inversions and concerted evolution, with potentially major implications for understanding genome evolution. © 2018 John Wiley & Sons Ltd.
André, Marcel J
2013-08-01
Photosynthetic assimilation of CO2 in plants results in the balance between the photochemical energy developed by light in chloroplasts, and the consumption of that energy by the oxygenation processes, mainly the photorespiration in C3 plants. The analysis of classical biological models shows the difficulties to bring to fore the oxygenation rate due to the photorespiration pathway. As for other parameters, the most important key point is the estimation of the electron transport rate (ETR or J), i.e. the flux of biochemical energy, which is shared between the reductive and oxidative cycles of carbon. The only reliable method to quantify the linear electron flux responsible for the production of reductive energy is to directly measure the O2 evolution by (18)O2 labelling and mass spectrometry. The hypothesis that the respective rates of reductive and oxidative cycles of carbon are only determined by the kinetic parameters of Rubisco, the respective concentrations of CO2 and O2 at the Rubisco site and the available electron transport rate, ultimately leads to propose new expressions of biochemical model equations. The modelling of (18)O2 and (16)O2 unidirectional fluxes in plants shows that a simple model can fit the photosynthetic and photorespiration exchanges for a wide range of environmental conditions. Its originality is to express the carboxylation and the oxygenation as a function of external gas concentrations, by the definition of a plant specificity factor Sp that mimics the internal reactions of Rubisco in plants. The difference between the specificity factors of plant (Sp) and of Rubisco (Sr) is directly related to the conductance values to CO2 transfer between the atmosphere and the Rubisco site. This clearly illustrates that the values and the variation of conductance are much more important, in higher C3 plants, than the small variations of the Rubisco specificity factor. The simple model systematically expresses the reciprocal variations of carboxylation and oxygenation exchanges illustrated by a "mirror effect". It explains the protective sink effect of photorespiration, e.g. during water stress. The importance of the CO2 compensation point, in classical models, is reduced at the benefit of the crossing points Cx and Ox, concentration values where carboxylation and oxygenation are equal or where the gross O2 uptake is half of the gross O2 evolution. This concept is useful to illustrate the feedback effects of photorespiration in the atmosphere regulation. The constancy of Sp and of Cx for a great variation of P under several irradiance levels shows that the regulation of the conductance maintains constant the internal CO2 and the ratio of photorespiration to photosynthesis (PR/P). The maintenance of the ratio PR/P, in conditions of which PR could be reduced and the carboxylation increased, reinforces the hypothesis of a positive role of photorespiration and its involvement in the plant-atmosphere co-evolution. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min
2016-12-01
Core-shell nano-ring α-Fe2O3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe2O3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe2O3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe2O3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g-1 and retains 920/897 mAh g-1 after 200 cycles at 500 mA g-1 (0.5C). Even at 2000 mA g-1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g-1, and still maintains 630/610 mAh g-1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe2O3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe2O3 and facilitate the transportation of electrons and Li+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe2O3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.
In-situ luminescence monitoring of ion-induced damage evolution in SiO 2 and Al 2O 3
Crespillo, Miguel L.; Graham, Joseph T.; Zhang, Yanwen; ...
2015-12-17
Real-time, in-situ ionoluminescence measurements provide information of evolution of emission bands with ion fluence, and thereby establish a correlation between point defect kinetics and phase stability. Using fast light ions (2 MeV H and 3.5 He MeV) and medium mass-high energy ions (8 MeV O, E=0.5 MeV/amu), scintillation materials of a-SiO 2, crystalline quartz, and Al 2O 3 are comparatively investigated at room temperature with the aim of obtaining a further insight on the structural defects induced by ion irradiation and understand the role of electronic energy loss on the damage processes. For more energetic heavy ions, the electronic energymore » deposition pattern offers higher rates of excitation deeper into the material and allows to evaluate the competing mechanisms between the radiative and non-radiative de-excitation processes. Irradiations with 8 MeV O ions have been selected corresponding to the electronic stopping regime, where the electronic stopping power is dominant, and above the critical amorphization threshold for quartz. Lastly, the usefulness of IBIL and its specific capabilities as a sensitive tool to investigate the material characterization and evaluation of radiation effects are demonstrated.« less
Shao, Dan; Yan, Wei; Cao, Lu; Li, Xiaoliang; Xu, Hao
2014-02-28
Chlorine evolution via electrochemical approach has wide application prospects in drinking water disinfection and wastewater treatment fields. Dimensional stable anodes used for chlorine evolution should have high stability and adequate chlorine evolution efficiency. Thus a novel and cost-effective Ti/Sb-SnO(2)/Pb(3)O(4)electrode was developed. The physicochemical and electrochemical properties as well as the chlorine evolution performances of the electrodes were investigated. The electrocatalytic activity and deactivation course of the electrodes were also explored. Results showed that this novel electrode had strong chlorine evolution ability with high current efficiency ranging from 87.3% to 93.4% depending on the operational conditions. The accelerated service life of Ti/Sb-SnO(2)/Pb(3)O(4) electrode could reach 180 h at a current density of 10,000 A m(-2) in 0.5 molL(-1) H(2)SO(4). During the electrolysis process, it was found that the conversion of Pb(3)O(4) into β-PbO(2) happened gradually on the electrode surface, which not only inhibited the leakage of hazardous Pb(2+) ion but also increased the anti-corrosion capacity of the electrode effectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Effects of oxygen partial pressure on Li-air battery performance
NASA Astrophysics Data System (ADS)
Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin
2017-10-01
For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.
Green, Christopher T.; Jurgens, Bryant; Zhang, Yong; Starn, Jeffrey; Singleton, Michael J.; Esser, Bradley K.
2016-01-01
Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O2 reduction and denitrification (NO3− reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, 3H, He from 3H (tritiogenic He),14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO3− and dissolved gas data to estimate zero order and first order rates of O2 reduction and denitrification. Results indicated that O2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O2 and NO3− reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O2 reduction rates. Estimated historical NO3− trends were similar to historical measurements. Results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Christopher T.; Jurgens, Bryant C.; Zhang, Yong
Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O 2 reduction and denitrification (NO 3 – reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwatermore » age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF 6, CFCs, 3H, He from 3H (tritiogenic He), 14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO 3 – and dissolved gas data to estimate zero order and first order rates of O 2 reduction and denitrification. Results indicated that O 2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O 2 and NO 3 – reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O 2 reduction rates. Estimated historical NO 3 – trends were similar to historical measurements. Here, results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O 2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.« less
Green, Christopher T.; Jurgens, Bryant C.; Zhang, Yong; ...
2016-05-14
Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O 2 reduction and denitrification (NO 3 – reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwatermore » age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF 6, CFCs, 3H, He from 3H (tritiogenic He), 14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO 3 – and dissolved gas data to estimate zero order and first order rates of O 2 reduction and denitrification. Results indicated that O 2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O 2 and NO 3 – reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O 2 reduction rates. Estimated historical NO 3 – trends were similar to historical measurements. Here, results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O 2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.« less
Vibrational energy transfer in OH X 2Pi(i), v = 2 and 1
NASA Technical Reports Server (NTRS)
Raiche, George A.; Jeffries, Jay B.; Rensberger, Karen J.; Crosley, David R.
1990-01-01
Using an IR-pump/UV-probe method in a flow discharge cell, vibrational energy transfer in OH X 2Pi(i) has been studied. OH is prepared in v = 2 by overtone excitation, and the time evolution of population in v = 2 and 1 monitored by laser-induced fluorescence. Rate constants for vibrational relaxation by the colliders H2O, NH3, CO2, and CH4 were measured. Ratios of rate constants for removal from the two states, k2/k1, range from two to five.
Yu, Shan; Zhong, Yun-Qian; Yu, Bao-Quan; Cai, Shi-Yi; Wu, Li-Zhu; Zhou, Ying
2016-07-27
Hydrogen evolution through photocatalysis is promising with respect to the environmental problems and challenges of energy shortage that we encounter today. In this paper, we have combined graphene quantum dots (GQDs) and {001} faceted anatase TiO2 (with an exposed percentage of 65-75%) together for effective photocatalytic hydrogen evolution. A series of characterizations including X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and UV-visible absorption spectroscopy have been carried out to study the structure of the as-prepared GQDs/{001}TiO2 composite. It turns out that GQDs could be effectively decorated on {001}TiO2 sheet without changing its intrinsic structure. With an optimum loading amount of GQDs (0.5 wt% to {001}TiO2), GQDs/{001}TiO2 exhibits a hydrogen evolution efficiency 8 times higher than that of bare {001}TiO2, which is a significantly more obvious improvement than many other photocatalytic systems relevant to GQDs and TiO2 hybrids. In addition, GQDs/{001}TiO2 could stand long-term photocatalytic experiments. Photocurrent tests show that such an improvement of the photocatalytic efficiency over GQDs/{001}TiO2 may originate from a higher charge separation efficiency. The present study could offer reference for the construction of photocatalytic hydrogen evolution systems with low cost and long term stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, L.; Yang, Z.; Marcus, K.
In this study, we report a nonmetal plasmonic MoS2@TiO2 heterostructure for highly efficient photocatalytic H2 generation. Large area laminated Z-scheme MoS2 in conjunction with TiO2 nanocavity arrays are achieved via carefully controlled anodization, physical vapor deposition, and chemical vapor deposition processes. Broad spectral response ranging from ultraviolet (UV)-visible (vis) to near-infrared (NIR) wavelengths and finite element frequency-domain simulation suggest that this MoS2@TiO2 heterostructured photocatalyst possesses an enhanced activity for H+ reduction. A high H2 yield rate of 580 mmol h-1 g-1 is achieved using a low catalyst loading mass of 10.2 μg. The spatially uniform heterostructure, correlated to plasmon-resonance throughmore » conformal coating MoS2 that effectively regulated charge transfer pathways, is proven to be vitally important for the unique solar energy harvesting and photocatalytic H2 production. As an innovative exploration, our study demonstrates that the photocatalytic activities of nonmetal, earth-abundant materials can be enhanced with plasmonic effects, which may serve as an excellent catalytic agent for solar energy conversion to chemical fuel. Periodically patterned MoS 2/TiO 2heterostructures were rationally designed as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution.« less
Dissolution behavior of MgO based inert matrix fuel for the transmutation of minor actinides
NASA Astrophysics Data System (ADS)
Mühr-Ebert, E. L.; Lichte, E.; Bukaemskiy, A.; Finkeldei, S.; Klinkenberg, M.; Brandt, F.; Bosbach, D.; Modolo, G.
2018-07-01
This study explores the dissolution properties of magnesia-based inert matrix nuclear fuel (IMF) containing transuranium elements (TRU). Pure MgO pellets as well as MgO pellets containing CeO2, as surrogate for TRU oxides, and are considered as model systems for genuine magnesia based inert matrix fuel were fabricated. The aim of this study is to identify conditions at which the matrix material can be selectively dissolved during the head-end reprocessing step, allowing a separation of MgO from the actinides, whereas the actinides remain undissolved. The dissolution behavior was studied in macroscopic batch experiments as a function of nitric acid concentration, dissolution medium volume, temperature, stirring velocity, and pellet density (85, 90, 96, and 99%TD). To mimic pellets with various burn-ups the density of the here fabricated pellets was varied. MgO is soluble even under mild conditions (RT, 2.5 mol/L HNO3). The dissolution rates of MgO at different acid concentrations are rather similar, whereas the dissolution rate is strongly dependent on the temperature. Via a microscopic approach, a model was developed to describe the evolution of the pellet surface area during dissolution and determine a surface normalized dissolution rate. Moreover, dissolution rates of the inert matrix fuel containing CeO2 were determined as a function of the acid concentration and temperature. During the dissolution of MgO/CeO2 pellets the MgO dissolves completely, while CeO2 (>99%) remains undissolved. This study intends to provide a profound understanding of the chemical performance of magnesia based IMF containing fissile material. The feasibility of the dissolution of magnesia based IMF with nitric acid is discussed.
A Stable Plasmonic Cu@Cu2 O/ZnO Heterojunction for Enhanced Photocatalytic Hydrogen Generation.
Lou, Yongbing; Zhang, Yake; Cheng, Lin; Chen, Jinxi; Zhao, Yixin
2018-05-09
The localized surface plasmon resonance (LSPR) effect has been widely utilized in photocatalysis, but most reported LSPR materials are based on noble metals of gold or silver with high chemical stability. Plasmonic copper nanoparticles that exhibit an LSPR absorbance at 600 nm are promising for many applications, such as photocatalysis. Unfortunately, plasmonic copper nanoparticles are affected by serious surface oxidation in air. Herein, a novel lollipop-shaped Cu@Cu 2 O/ZnO heterojunction nanostructure was designed, for the first time, to stabilize the plasmonic Cu core by decorating Cu@Cu 2 O core-shell structures with ZnO nanorods. This Cu@Cu 2 O/ZnO nanostructure exhibited significantly enhanced stability than that of regular Cu@Cu 2 O, which accounted for the remarkably enhanced photocatalytic H 2 evolution rate through water splitting, relative to pristine ZnO nanorods, over an extended wavelength range due to the plasmonic Cu core. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Huang, Shushu; Wang, Chunyan; Sun, Hao; Wang, Xiaojing; Su, Yiguo
2018-05-01
Tin niobate photocatalysts with the phase structures of froodite (SnNb2O6) and pyrochlore (Sn2Nb2O7) were obtained by a facile solvothermal method in order to explore the impact of phase structure and electronic structure on the charge kinetics and photocatalytic performance. By employing tin niobate as a model compound, the effects of phase structure over electronic structure, photocatalytic activity toward methyl orange solution and hydrogen evolution were systematically investigated. It is found that the variation of phase structure from SnNb2O6 to Sn2Nb2O7 accompanied with modulation of particle size and band edge potentials that has great consequences on photocatalytic performance. In combination with the electrochemical impedance spectroscopy (EIS), transient photocurrent responses, transient absorption spectroscopy (TAS), and the analysis of the charge-carrier dynamics suggested that variation of electronic structure has great impacts on the charge separation and transfer rate of tin niobate photocatalysts and the subsequent photocatalytic performance. Moreover, the results of the X-ray photoelectron spectroscopy (XPS) indicated that the existent of Sn4+ species in Sn2Nb2O7 could result in a decrease in photocatalytic activity. Photocatalytic test demonstrated that the SnNb2O6 (froodite) catalyst possesses a higher photocatalytic activity toward MO degradation and H2 evolution compared with the sample of Sn2Nb2O7 (pyrochlore). On the basis of spin resonance measurement and trapping experiment, it is expected that photogenerated holes, O2 -•, and OH• active species dominate the photodegradation of methyl orange.
Huang, Shushu; Wang, Chunyan; Sun, Hao; Wang, Xiaojing; Su, Yiguo
2018-05-23
Tin niobate photocatalysts with the phase structures of froodite (SnNb 2 O 6 ) and pyrochlore (Sn 2 Nb 2 O 7 ) were obtained by a facile solvothermal method in order to explore the impact of phase structure and electronic structure on the charge kinetics and photocatalytic performance. By employing tin niobate as a model compound, the effects of phase structure over electronic structure, photocatalytic activity toward methyl orange solution and hydrogen evolution were systematically investigated. It is found that the variation of phase structure from SnNb 2 O 6 to Sn 2 Nb 2 O 7 accompanied with modulation of particle size and band edge potentials that has great consequences on photocatalytic performance. In combination with the electrochemical impedance spectroscopy (EIS), transient photocurrent responses, transient absorption spectroscopy (TAS), and the analysis of the charge-carrier dynamics suggested that variation of electronic structure has great impacts on the charge separation and transfer rate of tin niobate photocatalysts and the subsequent photocatalytic performance. Moreover, the results of the X-ray photoelectron spectroscopy (XPS) indicated that the existent of Sn 4+ species in Sn 2 Nb 2 O 7 could result in a decrease in photocatalytic activity. Photocatalytic test demonstrated that the SnNb 2 O 6 (froodite) catalyst possesses a higher photocatalytic activity toward MO degradation and H 2 evolution compared with the sample of Sn 2 Nb 2 O 7 (pyrochlore). On the basis of spin resonance measurement and trapping experiment, it is expected that photogenerated holes, O 2 -• , and OH • active species dominate the photodegradation of methyl orange.
NASA Astrophysics Data System (ADS)
Abouaf-Marguin, L.; Vasserot, A.-M.
2011-04-01
Double doping of solid normal hydrogen with CH3F and O2 at about 4.2 K gives evidence of (ortho-H2)n:CH3F clusters and of O2:CH3F complex formation. FTIR analysis of the time evolution of the spectra in the region of the v3 C-F stretching mode indicates that these clusters behave very differently from (ortho-H2)n:H2O clusters. The main point is the observed migration of CH3F molecules in solid para-H2 at 4.2 K which differs from that of H2O under identical experimental conditions. This is confirmed by an increase over time of the integrated intensity of the CH3F:O2 complex with a rate constant K = 2.7(2) . 10-4 s-1.
NASA Astrophysics Data System (ADS)
Zhao, Jiangtao; Zhang, Peng; Fan, Jiajie; Hu, Junhua; Shao, Guosheng
2018-02-01
Advanced materials for photoelectrochemical H2 production are important to the field of renewable energy. Despite great efforts have been made, the present challenge in materials science is to explore highly active photocatalysts for splitting of water at low cost. In this work, we report a new composite material consisting of 2D layered MoS2 nanosheets grown on the presence of TiO2/WO3 nanofibers (TW) as a high-performance photocatalyst for H2 evolution. This composite material was prepared by a two-step simple process of electrospinning and hydrothermal. We found that the as-prepared TiO2/WO3@MoS2 (TWM) hybrid exhibited superior photocatalytic activity in the hydrogen evolution reaction (HER) even without the noble metal-cocatalyst. Importantly, the TiO2/WO3@MoS2 heterostructure with 60 wt% of MoS2 exhibits the highest hydrogen production rate. This great improvement is attributed to the positive synergetic effect between the WO3 and MoS2 components in this hybrid cocatalyst, which serve as hole collector and electron collector, respectively. Moreover, the effective charge separation was directly proved by ultraviolet photoelectron spectroscopy, electrochemical impedance spectroscopy, and photocurrent analysis.
Chandra, Moumita; Bhunia, Kousik; Pradhan, Debabrata
2018-04-16
Photocatalytic hydrogen (H 2 ) generation through water splitting has attracted substantial attention as a clean and renewable energy generation process that has enormous potential in converting solar-to-chemical energy using suitable photocatalysts. The major bottleneck in the development of semiconductor-based photocatalysts lies in poor light absorption and fast recombination of photogenerated electron-hole pairs. Herein we report the synthesis of CuS/TiO 2 heterostructured nanocomposites with varied TiO 2 contents via simple hydrothermal and solution-based process. The morphology, crystal structure, composition, and optical properties of the as-synthesized CuS/TiO 2 hybrids are evaluated in detail. Controlling the CuS/TiO 2 ratio to an optimum value leads to the highest photocatalytic H 2 production rate of 1262 μmol h -1 g -1 , which is 9.7 and 9.3 times higher than that of pristine TiO 2 nanospindles and CuS nanoflakes under irradiation, respectively. The enhancement in the H 2 evolution rate is attributed to increased light absorption and efficient charge separation with an optimum CuS coverage on TiO 2 . The photoluminescence and photoelectrochemical measurements further confirm the efficient separation of charge carriers in the CuS/TiO 2 hybrid. The mechanism and synergistic role of CuS and TiO 2 semiconductors for enhanced photoactivity is further delineated.
Evolution of basal metabolic rate in bank voles from a multidirectional selection experiment.
Sadowska, Edyta T; Stawski, Clare; Rudolf, Agata; Dheyongera, Geoffrey; Chrząścik, Katarzyna M; Baliga-Klimczyk, Katarzyna; Koteja, Paweł
2015-05-07
A major theme in evolutionary and ecological physiology of terrestrial vertebrates encompasses the factors underlying the evolution of endothermy in birds and mammals and interspecific variation of basal metabolic rate (BMR). Here, we applied the experimental evolution approach and compared BMR in lines of a wild rodent, the bank vole (Myodes glareolus), selected for 11 generations for: high swim-induced aerobic metabolism (A), ability to maintain body mass on a low-quality herbivorous diet (H) and intensity of predatory behaviour towards crickets (P). Four replicate lines were maintained for each of the selection directions and an unselected control (C). In comparison to C lines, A lines achieved a 49% higher maximum rate of oxygen consumption during swimming, H lines lost 1.3 g less mass in the test with low-quality diet and P lines attacked crickets five times more frequently. BMR was significantly higher in A lines than in C or H lines (60.8, 56.6 and 54.4 ml O2 h(-1), respectively), and the values were intermediate in P lines (59.0 ml O2 h(-1)). Results of the selection experiment provide support for the hypothesis of a positive association between BMR and aerobic exercise performance, but not for the association of adaptation to herbivorous diet with either a high or low BMR. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Collisional Removal of O2 (c(sup 1) Sigma(sup-)(sub u), nu=9) by O2, N2, and He
NASA Technical Reports Server (NTRS)
Copeland, Richard A.; Knutsen, Karen; Onishi, Marc E.; Yalcin, Talat
1996-01-01
The collisional removal Of 02 molecules in selected vibrational levels of the c state is studied using a two-laser double-resonance technique. The output of the first laser excites the 02 to nu = 9 or 10 of the c Sigma - state, and the ultraviolet output of the second laser monitors specific rovibrational levels via resonance-enhanced ionization. The temporal evolution of the c Sigma u state vibrational level is observed by scanning the time delay between the two pulsed lasers. As the rate constants for 02 and N2 are similar in magnitude, N2 collisions dominate the removal rate in the earth's atmosphere. For v= 10 colliding with 02, we find a removal rate constant that is 2-5 times that for v=9 and that single quantum collision cascade is an important pathway for removal.
Jain, S; Qiao, L
2018-06-21
This work explored the mechanism of spontaneous combustion of hydrogen-oxygen mixtures inside nanobubbles (which were generated by water electrolysis) using reactive molecular dynamic simulations based on the first-principles derived reactive force field ReaxFF. The effects of surface-assisted dissociation of H 2 and O 2 gases that produced H and O radicals were examined. Additionally, the ignition outcome and species evolution as a function of the initial system pressure (or bubble size) were studied. A significant amount of hydrogen peroxide (H 2 O 2 ), 6-140 times water (H 2 O), was observed in the combustion products. This was attributed to the low-temperature (∼300 K) and high-pressure (2-80 atm) conditions at which the chemical reactions were taking place. In addition, the rate of consumption of H 2 and O 2 molecules was found to increase with an increase in added H and O radical concentrations and initial system pressure. The rate at which heat was being lost from the combustion chamber (nanobubbles) was also compared to the rate at which heat was being released from the chemical reactions. Only a slight rise in the reaction temperature was observed (∼68 K), signifying that, at such small scales, heat losses dominate. The resulting chemistry was quite different from macroscopic combustion, which usually takes place at a much higher temperatures of above 1000 K.
NASA Astrophysics Data System (ADS)
Vinod, M. P.; Vijayamohanan, K.; Joshi, S. N.
Effect of sodium silicate and phosphoric acid additives on the kinetics of oxygen evolution on PbO 2 electrodes in sulfuric acid has been studied in gelled and flooded electrolytes with relevance to valve-regulated lead/acid batteries. A comparison of the open-circuit potential versus time transients, with and without these additives, indicates that the additives suppress self-discharge of the electrodes. Tafel polarization studies also suggest that the addition of phosphoric acid attenuates the rate of oxygen evolution reaction. These findings have been supported with cyclic voltammetric data.
Shi, Jian; Li, Zhaodong; Kvit, Alexander; Krylyuk, Sergiy; Davydov, Albert V; Wang, Xudong
2013-01-01
Understanding the evolution of amorphous and crystalline phases during atomic layer deposition (ALD) is essential for creating high quality dielectrics, multifunctional films/coatings, and predictable surface functionalization. Through comprehensive atomistic electron microscopy study of ALD TiO2 nanostructures at designed growth cycles, we revealed the transformation process and sequence of atom arrangement during TiO2 ALD growth. Evolution of TiO2 nanostructures in ALD was found following a path from amorphous layers to amorphous particles to metastable crystallites and ultimately to stable crystalline forms. Such a phase evolution is a manifestation of the Ostwald-Lussac Law, which governs the advent sequence and amount ratio of different phases in high-temperature TiO2 ALD nanostructures. The amorphous-crystalline mixture also enables a unique anisotropic crystal growth behavior at high temperature forming TiO2 nanorods via the principle of vapor-phase oriented attachment.
Early evolution of the earth - Accretion, atmosphere formation, and thermal history
NASA Technical Reports Server (NTRS)
Abe, Yutaka; Matsui, Takafumi
1986-01-01
The thermal and atmospheric evolution of the earth growing planetesimal impacts are studied. The generation of an H2O protoatmosphere is examined, and the surface temperatures are estimated. The evolution of an impact-induced H2O atmosphere is analyzed. Consideration is given to the formation time of a 'magma ocean'and internal water budgets. The thermal history of an accreting earth is reviewed. The wet convection and greenhouse effects are discussed, and the role of Fe oxidation on the evolution of an impact-induced H2O atmopshere is described. The relationship between differentiation processes and core segregation, the H2O and FeO content of the mantle, and the origin of the hydrosphere is also examined.
Shimakawa, Ginga; Matsuda, Yusuke; Nakajima, Kensuke; Tamoi, Masahiro; Shigeoka, Shigeru; Miyake, Chikahiro
2017-01-20
Photosynthesis produces chemical energy from photon energy in the photosynthetic electron transport and assimilates CO 2 using the chemical energy. Thus, CO 2 limitation causes an accumulation of excess energy, resulting in reactive oxygen species (ROS) which can cause oxidative damage to cells. O 2 can be used as an alternative energy sink when oxygenic phototrophs are exposed to high light. Here, we examined the responses to CO 2 limitation and O 2 dependency of two secondary algae, Euglena gracilis and Phaeodactylum tricornutum. In E. gracilis, approximately half of the relative electron transport rate (ETR) of CO 2 -saturated photosynthesis was maintained and was uncoupled from photosynthesis under CO 2 limitation. The ETR showed biphasic dependencies on O 2 at high and low O 2 concentrations. Conversely, in P. tricornutum, most relative ETR decreased in parallel with the photosynthetic O 2 evolution rate in response to CO 2 limitation. Instead, non-photochemical quenching was strongly activated under CO 2 limitation in P. tricornutum. The results indicate that these secondary algae adopt different strategies to acclimatize to CO 2 limitation, and that both strategies differ from those utilized by cyanobacteria and green algae. We summarize the diversity of strategies for prevention of photo-oxidative damage under CO 2 limitation in cyanobacterial and algal photosynthesis.
Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study.
Zazo, J A; Casas, J A; Mohedano, A F; Rodriguez, J J
2009-09-01
This work investigates the Fenton oxidation of phenol in a semicontinuous reactor where the overall amount of H(2)O(2) is distributed as a continuous feed upon the reaction time. The experiments were carried out at 25 degrees C and atmospheric pressure, with 100mg/L initial phenol concentration and iron dosages from 1 to 100 mg/L. H(2)O(2) aqueous solution was continuously fed during 4h reaction time up to an overall dose varying within the range of 500-5000 mg/L. The results in terms of evolution of phenol, H(2)O(2) and intermediates, as well as TOC abatement were compared with those obtained in conventional batch operation. It was found that the oxidation rates for phenol and intermediates were lower when adding the H(2)O(2) continuously. However, a higher abatement of TOC was reached at the end of the 4-h reaction time, in spite of a similar overall H(2)O(2) consumption. This is the result of a more efficient OH generation throughout the semicontinuous process, favouring the reaction with the organic species and reducing the occurrence of competitive scavenging reactions involving Fe(2+), H(2)O(2) and OH. Two kinetic models were proposed, one for describing the evolution of phenol, aromatics and H(2)O(2) and the other for TOC. The influence of the operating conditions on the kinetic constants was also studied, looking for the optimal conditions in terms of both, environmental and economic points of view.
Evolution of soils on quaternary reef terraces of Barbados, West Indies
Muhs, D.R.
2001-01-01
Soils on uplifted Quaternary reef terraces of Barbados, ???125,000 to ???700,000 yr old, form a climo-chronosequence and show changes in physical, chemical, and mineralogical properties with terrace age. Parent materials are dust derived from the Sahara, volcanic ash from the Lesser Antilles island arc, and detrital carbonate from the underlying reef limestone. Although some terrace soils are probably eroded, soils or their remnants are redder and more clay-rich with increasing terrace age. Profile-average Al2O3 and Fe2O3 content increases with terrace age, which partially reflects the increasing clay content, but dithionite-extractable Fe also increases with terrace age. Profile-average K2O/TiO2, Na2O/TiO2, and P2O5/TiO2 values decrease with terrace age, reflecting the depletion of primary minerals. Average SiO2/Al2O3 values also decrease with terrace age and reflect not only loss of primary minerals but also evolution of secondary clay minerals. Although they are not present in any of the parent materials, the youngest terrace soils are dominated by smectite and interstratified kaolinite-smectite, which gradually alter to relatively pure kaolinite over ???700,000 yr. Comparisons with other tropical islands, where precipitation is higher and rates of dust fall may be lower, show that Barbados soils are less weathered than soils of comparable age. It is concluded that many soil properties in tropical regions can be potentially useful relative-age indicators in Quaternary stratigraphic studies, even when soils are eroded or changes in soil morphology are not dramatic. ?? 2001 University of Washington.
Multicomponent Diffusion in Experimentally Cooled Melt Inclusions
NASA Astrophysics Data System (ADS)
Saper, L.; Stolper, E.
2017-12-01
Glassy olivine-hosted melt inclusions are compositionally zoned, characterized by a boundary layer depleted in olivine-compatible components that extends into the melt inclusion from its wall. The boundary layer forms in response to crystallization of olivine and relaxes with time due to diffusive exchange with the interior of the inclusion. At magmatic temperatures, the time scale for homogenization of inclusions is minutes to hours. Preservation of compositional gradients in natural inclusions results from rapid cooling upon eruption. A model of MgO concentration profiles that couples crystal growth and diffusive relaxation of a boundary layer can be used to solve for eruptive cooling rates [1]. Controlled cooling-rate experiments were conducted to test the accuracy of the model. Mauna Loa olivine containing >80 µm melt inclusions were equilibrated at 1225°C in a 1-atm furnace for 24 hours, followed by linear cooling at rates of 102 - 105 °C/hr. High-resolution concentration profiles of 40 inclusions were obtained using an electron microprobe. The model of [1] fits the experimental data with low residuals and the best-fit cooling rates are within 30% of experimental values. The initial temperature of 1225 °C is underestimated by 65°C. The model was modified using (i) MELTS to calculate the interface melt composition as a function of temperature, and (ii) a concentration-dependent MgO diffusion coefficient using the functional form of [2]. With this calibration the best-fit starting temperatures are within 5°C of the experimental values and the best-fit cooling rates are within 20% of experimental rates. The evolution of the CaO profile during cooling is evidence for strong diffusive coupling between melt components. Because CaO is incompatible in olivine, CaO concentrations are expected to be elevated in the boundary layer adjacent to the growing olivine. Although this is observed at short time scales, as the profile evolves the CaO concentration near the crystal interface becomes increasingly depleted. The drawdown in CaO can be explained by non-ideal mixing that leads to increases in the CaO activity coefficient in the melt. A regular solution model [3] can be used to describe the evolution of the CaO profiles. [1]Newcombe et al (2014) CMP 168 [2] Zhang (2010) RevMineralGeochem 72 [3] Ghiorso & Sack (1995) CMP 119
A comparative study of fibrinogen adsorption onto metal oxide thin films
NASA Astrophysics Data System (ADS)
Silva-Bermudez, P.; Muhl, S.; Rodil, S. E.
2013-10-01
One of the first events occurring upon foreign material-biological medium contact is the adsorption of proteins, which evolution greatly determines the cells response to the material. Protein-surface interactions are a complex phenomenon driven by the physicochemical properties of the surface, protein(s) and liquid medium involve in the interaction. In this article the adsorption of fibrinogen (Fbg) onto Ta2O5, Nb2O5, TiO2 and ZrO2 thin films is reported. The adsorption kinetics and characteristics of the adsorbed fibrinogen layer were studied in situ using dynamic and spectroscopic ellipsometry. The films wettability, surface energy (γLW/AB) and roughness were characterized aiming to elucidate their correlations with Fbg adsorption. The adsorption rate changed accordingly to the film; the fastest adsorption rate and highest Fbg surface mass concentration (Γ) was observed on ZrO2. The hydrophobic/hydrophilic character of the oxide highly influenced Fbg adsorption. On Ta2O5, Nb2O5 and TiO2, which were either hydrophilic or in the breaking-point between hydrophilicity and hydrophobicity, Γ was correlated to the polar component of γLW/AB and roughness of the surface. On ZrO2, clearly hydrophobic, Γ increased significantly off the correlation observed for the other films. The results indicated different adsorption dynamics and orientations of the Fbg molecules dependent on the surface hydrophobic/hydrophilic character.
NASA Astrophysics Data System (ADS)
Zhuo, Yi; Chen, Zimin; Tu, Wenbin; Ma, Xuejin; Pei, Yanli; Wang, Gang
2017-10-01
Gallium oxide thin films of β and ε phase were grown on c-plane sapphire using metal-organic chemical vapor deposition and the phase compositions were analyzed using X-ray diffraction. The epitaxial phase diagram was constructed as a function of the growth temperature and VI/III ratio. A low growth temperature and low VI/III ratio were beneficial for the formation of hexagonal-type ε-Ga2O3. Further structure analysis revealed that the epitaxial relationship between ε-Ga2O3 and c-plane sapphire is ε-Ga2O3 (0001) || Al2O3 (0001) and ε-Ga2O3 || Al2O3 . The structural evolution of the mixed-phase sample during film thickening was investigated. By reducing the growth rate, the film evolved from a mixed phase to the energetically favored ε phase. Based on these results, a Ga2O3 thin film with a phase-pure ε-Ga2O3 upper layer was successfully obtained.
Tracer-Based Determination of Vortex Descent in the 1999-2000 Arctic Winter
NASA Technical Reports Server (NTRS)
Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Hurst, Dale F.; Elkins, James W.; Schauffler, Sue M.; Atlas, Elliot L.; Herman, Robert L.; Webster, Christopher R.
2001-01-01
A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999-2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for November 26, 1999, whose error bars encompassed the observed variability. High-latitude, extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences, we inferred descent prior to November 26: 397+/-15 K (1sigma) at 30 ppbv N2O and 640 ppbv CH4, and 28+/-13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from November 26 through March 12, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between November 26 and January 27: 0.82+/-0.20 K/day averaged over 50-250 ppbv N2O. By late winter (February 26-March 12), the average rate had decreased to 0.10+/-0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (November 26-March 5) descent rate varied from 0.75+/-0.10 K/day at 50 ppbv to 0.40+/-0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999-2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very favorably with the inferred rates from observation.
THE EFFECTS OF ELEVATED METALS ON BENTHIC COMMUNITY METABOLISM IN A ROCKY MOUNTAIN STREAM
The effects of elevated metals (dissolved Zn, Mn and/or Fe) in a Rocky Mountain stream were assessed using measures of primary productivity, community respiration and water-column toxicity. Primary productivity was measured as rates of O2 evolution from natural substrates incubat...
NASA Astrophysics Data System (ADS)
Bui, Duc-Nguyen; Mu, Jin; Wang, Lei; Kang, Shi-Zhao; Li, Xiangqing
2013-06-01
Cu-loaded SrTiO3 nanoparticles (Cu-SrTiO3) were prepared using a simple in situ photo-deposition method and their photocatalytic activity for hydrogen evolution from methanol aqueous solution was evaluated. The results characterized with XRD, TEM, XPS and EDX indicated that the as-synthesized sample was composed of metallic Cu and cubic SrTiO3, and the metallic Cu was homogeneously loaded on the surface of SrTiO3 nanoparticles. Under UV light irradiation, Cu-SrTiO3 displayed much higher photocatalytic activity for hydrogen evolution and excellent stability in comparison with pure SrTiO3 nanoparticles. The results further confirmed that the efficient separation of photogenerated electron/hole pairs was critical for the enhanced photocatalytic activity of Cu-SrTiO3. Moreover, the rate of hydrogen evolution of 0.5 wt.% Cu-SrTiO3 is comparable with that of 0.5 wt.% Pt-SrTiO3 photocatalyst under optimum conditions, implying that the metallic Cu is an efficient alternative to Pt as a co-catalyst on SrTiO3. The high photocatalytic activity, low cost and chemical stability mean that the Cu-loaded SrTiO3 is a potential catalyst for the photocatalytic hydrogen evolution from methanol aqueous solution.
NASA Astrophysics Data System (ADS)
Ma, Jian; Zhou, Wei; Tan, Xin; Yu, Tao
2018-05-01
Solar-to-chemical energy conversion is a challenging photochemical reaction for renewable energy storage. In recent decades, photocatalytic H2 evolution has been studied extensively. TiO2 is a well-established semiconductor in the field of photocatalytic H2 production; however, its low efficiency for solar energy utilization, and high photocarrier recombination rate, restrict its photocatalytic efficiency. Here, a series of K-intercalated g-C3N4-modified TiO2 nanobelts (TCN–Kx) with different dosages of K atoms were fabricated using a hydrothermal method followed by a calcination process. XRD, TEM and XPS tests indicate that a tight interfacial connection is formed between K–g-C3N4 and the TiO2 nanobelts. DFT calculations indicated that K dopants prefer to be at the interlayer sites of g-C3N4, suggesting increased charge transfer efficiency. The H2 production efficiency of the TCN–Kx composite materials from water splitting under visible-light irradiation was clearly improved. Steady fluorescence spectroscopy and photocurrent measurements confirmed that the improvement in photocatalytic H2 production activity was due to the superior charge separation and electron transfer efficiency of TCN–Kx composite materials.
Ma, Jian; Zhou, Wei; Tan, Xin; Yu, Tao
2018-05-25
Solar-to-chemical energy conversion is a challenging photochemical reaction for renewable energy storage. In recent decades, photocatalytic H 2 evolution has been studied extensively. TiO 2 is a well-established semiconductor in the field of photocatalytic H 2 production; however, its low efficiency for solar energy utilization, and high photocarrier recombination rate, restrict its photocatalytic efficiency. Here, a series of K-intercalated g-C 3 N 4 -modified TiO 2 nanobelts (TCN-Kx) with different dosages of K atoms were fabricated using a hydrothermal method followed by a calcination process. XRD, TEM and XPS tests indicate that a tight interfacial connection is formed between K-g-C 3 N 4 and the TiO 2 nanobelts. DFT calculations indicated that K dopants prefer to be at the interlayer sites of g-C 3 N 4 , suggesting increased charge transfer efficiency. The H 2 production efficiency of the TCN-Kx composite materials from water splitting under visible-light irradiation was clearly improved. Steady fluorescence spectroscopy and photocurrent measurements confirmed that the improvement in photocatalytic H 2 production activity was due to the superior charge separation and electron transfer efficiency of TCN-Kx composite materials.
NASA Astrophysics Data System (ADS)
Stippich, Christian; Krob, Florian; Glasmacher, Ulrich A.; Hackspacher, Peter C.
2016-04-01
The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate published1 and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones1 are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE2,3 and FastScape4). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates. References 1. Karl, M., Glasmacher, U.A., Kollenz, S., Franco-Magalhaes, A.O.B., Stockli, D.F., Hackspacher, P., 2013. Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data. Tectonophysics, Volume 604, Pages 224-244. 2. Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. 3. Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. 4. Braun, J. and Willett, S.D., 2013. A very efficient, O(n), implicit and parallel method to solve the basic stream power law equation governing fluvial incision and landscape evolution. Geomorphology, v.180-181, 170-179.
Chen, Dejian; Zou, Liling; Li, Shunxing; Zheng, Fengying
2016-02-01
Modification of titanium dioxide (TiO2) for H2 generation is a grand challenge due to its high chemical inertness, large bandgap, narrow light-response range and rapid recombination of electrons and holes. Herein, we report a simple process to prepare nanospherical like reduced graphene oxide (NS-rGO) decorated TiO2 nanoparticles (NS-rGO/TiO2) as photocatalysts. This modified TiO2 sample exhibits remarkably significant improvement on visible light absorption, narrow band gap and efficient charge collection and separation. The photocatalytic H2 production rate of NS-rGO/TiO2 is high as 13996 μmol g(-1) h(-1), which exceeds that obtained on TiO2 alone and TiO2 with parallel graphene sheets by 3.45 and 3.05 times, respectively. This improvement is due to the presence of NS-rGO as an electron collector and transporter. The geometry of NS-rGO should be effective in the design of a graphene/TiO2 composite for photocatalytic applications.
NASA Astrophysics Data System (ADS)
Chen, Dejian; Zou, Liling; Li, Shunxing; Zheng, Fengying
2016-02-01
Modification of titanium dioxide (TiO2) for H2 generation is a grand challenge due to its high chemical inertness, large bandgap, narrow light-response range and rapid recombination of electrons and holes. Herein, we report a simple process to prepare nanospherical like reduced graphene oxide (NS-rGO) decorated TiO2 nanoparticles (NS-rGO/TiO2) as photocatalysts. This modified TiO2 sample exhibits remarkably significant improvement on visible light absorption, narrow band gap and efficient charge collection and separation. The photocatalytic H2 production rate of NS-rGO/TiO2 is high as 13996 μmol g-1 h-1, which exceeds that obtained on TiO2 alone and TiO2 with parallel graphene sheets by 3.45 and 3.05 times, respectively. This improvement is due to the presence of NS-rGO as an electron collector and transporter. The geometry of NS-rGO should be effective in the design of a graphene/TiO2 composite for photocatalytic applications.
Chen, Dejian; Zou, Liling; Li, Shunxing; Zheng, Fengying
2016-01-01
Modification of titanium dioxide (TiO2) for H2 generation is a grand challenge due to its high chemical inertness, large bandgap, narrow light-response range and rapid recombination of electrons and holes. Herein, we report a simple process to prepare nanospherical like reduced graphene oxide (NS-rGO) decorated TiO2 nanoparticles (NS-rGO/TiO2) as photocatalysts. This modified TiO2 sample exhibits remarkably significant improvement on visible light absorption, narrow band gap and efficient charge collection and separation. The photocatalytic H2 production rate of NS-rGO/TiO2 is high as 13996 μmol g−1 h−1, which exceeds that obtained on TiO2 alone and TiO2 with parallel graphene sheets by 3.45 and 3.05 times, respectively. This improvement is due to the presence of NS-rGO as an electron collector and transporter. The geometry of NS-rGO should be effective in the design of a graphene/TiO2 composite for photocatalytic applications. PMID:26828853
One-Pot Solvothermal Synthesis of Bi4V2O11 as A New Solar Water Oxidation Photocatalyst
Jiang, Zaiyong; Liu, Yuanyuan; Li, Mengmeng; Jing, Tao; Huang, Baibiao; Zhang, Xiaoyang; Qin, Xiaoyan; Dai, Ying
2016-01-01
Bi4V2O11 was prepared via a one-pot solvothermal method and characterized via XRD, Raman, XPS, Electrochemical impedance spectroscopy. The as-prepared Bi4V2O11 sample displays excellent photocatalytic activity towards oxygen evolution under light irradiation. The hierarchical structure is in favour of the spatial separation of photogenerated electrons and holes. Furthermore, the internal polar field also plays a role in improving the charge separation. Both of the two results are responsible for excellent activity of O2 evolution. The resulting hierarchical Bi4V2O11 sample should be very promising photocatalyst for the application of photocatalytic O2 evolution in the future. PMID:26947126
Using TiO2 as a conductive protective layer for photocathodic H2 evolution.
Seger, Brian; Pedersen, Thomas; Laursen, Anders B; Vesborg, Peter C K; Hansen, Ole; Chorkendorff, Ib
2013-01-23
Surface passivation is a general issue for Si-based photoelectrodes because it progressively hinders electron conduction at the semiconductor/electrolyte interface. In this work, we show that a sputtered 100 nm TiO(2) layer on top of a thin Ti metal layer may be used to protect an n(+)p Si photocathode during photocatalytic H(2) evolution. Although TiO(2) is a semiconductor, we show that it behaves like a metallic conductor would under photocathodic H(2) evolution conditions. This behavior is due to the fortunate alignment of the TiO(2) conduction band with respect to the hydrogen evolution potential, which allows it to conduct electrons from the Si while simultaneously protecting the Si from surface passivation. By using a Pt catalyst the electrode achieves an H(2) evolution onset of 520 mV vs NHE and a Tafel slope of 30 mV when illuminated by the red part (λ > 635 nm) of the AM 1.5 spectrum. The saturation photocurrent (H(2) evolution) was also significantly enhanced by the antireflective properties of the TiO(2) layer. It was shown that with proper annealing conditions these electrodes could run 72 h without significant degradation. An Fe(2+)/Fe(3+) redox couple was used to help elucidate details of the band diagram.
Production of NO2/-/ and N2O by nitrifying bacteria at reduced concentrations of oxygen
NASA Technical Reports Server (NTRS)
Goreau, T. J.; Kaplan, W. A.; Wofsy, S. C.; Mcelroy, M. B.; Valois, F. W.; Watson, S. W.
1980-01-01
The influence of oxygen concentration on the production of NO2(-) and N2O by nitrifying marine bacteria of the genus Nitrosomonas is investigated. Pure cultures of the ammonium-oxiding bacteria isolated from the Western Tropical Atlantic Ocean were grown at oxygen partial pressures from 0.005 to 0.2 atm, and concentrations of N2O in the air above the growth medium and dissolved NO2(-) were determined. Decreasing oxygen concentrations are observed to induce a marked decrease in NO2(-) production rates and increase in N2O evolution, leading to an increase of the relative yield of N2O with respect to NO2(-) from 0.3% to nearly 10%. Similar yields of N2O at atmospheric oxygen levels are found for nitrifying bacteria of the genera Nitrosomonas, Nitrosolobus, Nitrosospira and Nitrosococcus, while nitrite-oxydizing bacteria and a dinoflagellate did not produce detectable quantities of N2O. Results support the view that nitrification is a major source of N2O in the environment.
NASA Astrophysics Data System (ADS)
Arshadi, M.; Rajaram, H.; Detwiler, R. L.; Jones, T.
2012-12-01
Permanganate oxidation of DNAPL- contaminated fractured rock is an effective remediation technology. Permanganate ion reacts with dissolved DNAPL in a bi-molecular oxidation-reduction reaction. The consumption of dissolved DNAPL in this reaction results in increased concentration gradients away from the free-phase DNAPL, resulting in reaction-enhanced mass transfer, which accelerates contaminant removal. The specific objective of our research was to perform high-resolution non-intrusive experimental studies of permanganate oxidation in a 15.24 × 15.24 cm, transparent, analog, variable-aperture fracture with complex initial TCE entrapped phase geometry. Our experimental system uses light-transmission techniques to accurately measure both fracture aperture and the evolution of individual entrapped DNAPL blobs during the remediation experiments at high resolution (pixel size : 6.2×10-3 cm). Three experiments were performed with different flow rates and permanganate inflow concentrations to observe DNAPL-permanganate interactions across a broader range of conditions. Prior to initiating each experiment, the aperture field within the fracture was measured. The oxidation experiment was initiated by TCE injection into the water saturated fracture till the TCE reached the outflow end, followed by water re-injection through the fracture. The flowing water mobilized some TCE. We continued injection of water till TCE mobilization ceased, leaving behind the residual TCE entrapped within the variable-aperture fracture. Subsequently, permanganate injection through the fracture resulted in propagation of a fingered reaction front into the fracture. We developed image processing algorithms to analyze the evolution of DNAPL phase geometry over the duration of the experiment. The permanganate consumption rate varied significantly within the fracture due to the complex flow and DNAPL concentration fields. Precipitated MnO2 was clearly evident on the downstream side of DNAPL blobs near the inflow boundary indicating high reaction rates in these regions. This behavior is explained by the diversion of permanganate around entrapped DNAPL blobs and downstream advection of dissolved DNAPL. Our results indicate that the total rate of mass transfer from the DNAPL blobs is higher at early times, when not much MnO2 has formed and precipitated. With time, MnO2 precipitation in the fracture leads to changes the aperture field and flow field. Precipitated MnO2 around TCE blobs also decreases the DNAPL accessible surface area. By comparing the results of three experiments, we conclude that low permanganate concentrations and high flow rates lead to more efficient DNAPL remediation, resulting from the fact that under these conditions there would be slower MnO2 formation and less precipitation within the fracture. We also present results on the time-evolution of fracture-scale permanganate consumption and DNAPL removal rates. The experimental observations are being used to develop improved high-resolution numerical models of reactive transport in variable-aperture fractures. The overall goal is to relate the coupled processes of DNAPL removal, permanganate consumption, MnO2 formation and associated changes in aperture and interface area; to derive fracture-scale effective representations of these processes.
NASA Astrophysics Data System (ADS)
Mitchell, Robert Revell, III
Carbon nanotubes have been actively investigated for integration in a wide variety of applications since their discovery over 20 years ago. Their myriad desirable material properties including exceptional mechanical strength, high thermal conductivities, large surface-to-volume ratios, and considerable electrical conductivities, which are attributable to a quantum mechanical ability to conduct electrons ballistically, have continued to motivate interest in this material system. While a variety of synthesis techniques exist, carbon nanotubes and nanofibers are most often conveniently synthesized using chemical vapor deposition (CVD), which involves their catalyzed growth from transition metal nanoparticles. Vertically-aligned nanotube and nanofiber carpets produced using CVD have been utilized in a variety of applications including those related to energy storage. Li-air (Li-O2) batteries have received much interest recently because of their very high theoretical energy densities (3200 Wh/kgLi2O2 ). which make them ideal candidates for energy storage devices for future fully-electric vehicles. During operation of a Li-air battery O2 is reduced on the surface a porous air cathode, reacting with Li-ions to form lithium peroxide (Li-O2). Unlike the intercalation reactions of Li-ion batteries, discharge in a Li-air cell is analogous to an electrodeposition process involving the nucleation and growth of the depositing species on a foreign substrate. Carbon nanofiber electrodes were synthesized on porous substrates using a chemical vapor deposition process and then assembled into Li-O2 cells. The large surface to volume ratio and low density of carbon nanofiber electrodes were found to yield a very high gravimetric energy density in Li-O 2 cells, approaching 75% of the theoretical energy density for Li 2O2. Further, the carbon nanofiber electrodes were found to be excellent platforms for conducting ex situ electron microscopy investigations of the deposition Li2O2 phase, which was found to have unique disc and toroid morphologies. Subsequent studies were conducted using freestanding carpets of multi-walled CNT arrays, which were synthesized using a modified CVD process. The freestanding CNT arrays were used as a platform for studying the morphological evolution of Li2O2 discharge product as a function of rate and electrode capacity. SEM imaging investigations found that the Li2O 2 particles underwent a shape evolution from discs to toroids as their size increased. TEM imaging and diffraction studies showed that the microscale Li2O2 particles are composed of stacks of thin Li 2O2 crystallites and that splaying of the stacked crystallite array drives the observed disc to toroid transition. Modeling was performed to gain insights into the nucleation and growth processes involved during discharge in Li-O2 cells. The modeling study suggests that poor electronic conductivity of the depositing phase limits the rate capability obtainable in Li-O2 cells. Modeling can provide substantial insights into paths toward electrode optimization. Understanding the size and shape evolution of Li2O2 particles and engineering improved electrode architectures is critical to efficiently filling the electrode void volume during discharge thereby improving the volumetric energy density of Li-O2 batteries. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
NASA Astrophysics Data System (ADS)
Ly, Chun; Malkan, Matt A.; Kashikawa, Nobunari; Shimasaku, Kazuhiro; Doi, Mamoru; Nagao, Tohru; Iye, Masanori; Kodama, Tadayuki; Morokuma, Tomoki; Motohara, Kentaro
2007-03-01
SDF line-emitting galaxies in four narrowband filters at low and intermediate redshifts are presented. Broadband colors, follow-up optical spectroscopy, and multiple NB filters are used to distinguish Hα, [O II], and [O III] emitters at z=0.07-1.47 to construct their LFs. These LFs are derived down to faint magnitudes, allowing for an accurate determination of the faint-end slope. With a large (N~200-900) sample for each redshift interval, a Schechter profile is fitted to each LF. Prior to dust extinction corrections, the [O III] and [O II] LFs agree reasonably well with those of Hippelein et al. The z=0.08 Hα LF, which reaches 2 orders of magnitude fainter than Gallego et al., is steeper by 25%. This indicates that there are more low-luminosity star-forming galaxies for z<0.1. The faint-end slope α and φ* show a strong redshift evolution, while L* shows little evolution. The evolution in α indicates that low-luminosity galaxies have a stronger evolution compared to brighter ones. Integrated SFR densities are derived via Hα, [O III], and [O II] for 0.07
Vázquez-Galván, Javier; Flox, Cristina; Fàbrega, Cristian; Ventosa, Edgar; Parra, Andres; Andreu, Teresa; Morante, Joan Ramón
2017-05-09
Hydrogen-treated TiO 2 as an electrocatalyst has shown to boost the capacity of high-performance all-vanadium redox flow batteries (VRFBs) as a simple and eco-friendly strategy. The graphite felt-based GF@TiO 2 :H electrode is able to inhibit the hydrogen evolution reaction (HER), which is a critical barrier for operating at high rate for long-term cycling in VRFBs. Significant improvements in charge/discharge and electron-transfer processes for the V 3+ /V 2+ reaction on the surface of reduced TiO 2 were achieved as a consequence of the formation of oxygen functional groups and oxygen vacancies in the lattice structure. Key performance indicators of VRFB have been improved, such as high capability rates and electrolyte-utilization ratios (82 % at 200 mA cm -2 ). Additionally, high coulombic efficiencies (ca. 100 % up to the 96th cycle, afterwards >97 %) were obtained, demonstrating the feasibility of achieving long-term stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy-driven surface evolution in beta-MnO2 structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Wentao; Yuan, Yifei; Asayesh-Ardakani, Hasti
Exposed crystal facets directly affect the electrochemical/catalytic performance of MnO2 materials during their applications in supercapacitors, rechargeable batteries, and fuel cells. Currently, the facet-controlled synthesis of MnO2 is facing serious challenges due to the lack of an in-depth understanding of their surface evolution mechanisms. Here, combining aberration-corrected scanning transmission electron microscopy (STEM) and high-resolution TEM, we revealed a mutual energy-driven mechanism between beta-MnO2 nanowires and microstructures that dominated the evolution of the lateral facets in both structures. The evolution of the lateral surfaces followed the elimination of the {100} facets and increased the occupancy of {110} facets with the increasemore » in hydrothermal retention time. Both self-growth and oriented attachment along their {100} facets were observed as two different ways to reduce the surface energies of the beta-MnO2 structures. High-density screw dislocations with the 1/2 < 100 > Burgers vector were generated consequently. The observed surface evolution phenomenon offers guidance for the facet-controlled growth of beta-MnO2 materials with high performances for its application in metal-air batteries, fuel cells, supercapacitors, etc.« less
NASA Astrophysics Data System (ADS)
You, Daotong; Pan, Bao; Jiang, Fan; Zhou, Yangen; Su, Wenyue
2016-02-01
Different mole ratios of CdS nanoparticles (NPs)/CeO2 nanorods (NRs) composites with effective contacts were synthesized through a two-step hydrothermal method. The crystal phase, microstructure, optical absorption properties, electrochemical properties and photocatalytic H2 production activity of these composites were investigated. It was concluded that the photogenerated charge carriers in the CdS NPs/CeO2 NRs composite with a proper mole ratio (1:1) exhibited the longest lifetime and highest separation efficiency, which was responsible for the highest H2-production rate of 8.4 mmol h-1 g-1 under visible-light irradiation (λ > 420 nm). The superior photocatalytic H2 evolution properties are attributed to the transfer of visible-excited electrons of CdS NPs to CeO2 NRs, which can effectively extend the light absorption range of wide-band gap CeO2 NRs. This work provides feasible routes to develop visible-light responsive CeO2-based nanomaterial for efficient solar utilization.
Long-term evolution of biodegradation and volatilization rates in a crude oil-contaminated aquifer
Chaplin, B.P.; Delin, G.N.; Baker, R.J.; Lahvis, M.A.
2002-01-01
Volatilization and subsequent biodegradation near the water Table make up a coupled natural attenuation pathway that results in significant mass loss of hydrocarbons. Rates of biodegradation and volatilization were documented twice 12 years apart at a crude-oil spill site near Bemidji, Minnesota. Biodegradation rates were determined by calibrating a gas transport model to O2, CO2, and CH4 gas-concentration data in the unsaturated zone. Reaction stoichiometry was assumed in converting O2 and CO2 gas-flux estimates to rates of aerobic biodegradation and CH4 gas-flux estimates to rates of methanogenesis. Model results indicate that the coupled pathway has resulted in significant hydrocarbon mass loss at the site, and it was estimated that approximately 10.52 kg/day were lost in 1985 and 1.99 kg/day in 1997. In 1985 3% of total volatile hydrocarbons diffusing from the floating oil were biodegraded in the lower 1 m of the unsaturated zone and increased to 52% by 1997. Rates of hydrocarbon biodegradation above the center of the floating oil were relatively stable from 1985 to 1997, as the primary metabolic pathway shifted from aerobic to methanogenic biodegradation. Model results indicate that in 1997 biodegradation under methanogenenic conditions represented approximately one-half of total hydrocarbon biodegradation in the lower 1 m of the unsaturated zone. Further downgradient, where substrate concentrations have greatly increased, total biodegradation rates increased by greater than an order of magnitude from 0.04 to 0.43 g/m2-day. It appears that volatilization is the primary mechanism for attenuation in early stages of plume evolution, while biodegradation dominates in later stages.
Crossover from impurity-controlled to granular superconductivity in (TMTSF) 2ClO4
NASA Astrophysics Data System (ADS)
Yonezawa, Shingo; Marrache-Kikuchi, Claire A.; Bechgaard, Klaus; Jérome, Denis
2018-01-01
Using a proper cooling procedure, a controllable amount of nonmagnetic structural disorder can be introduced at low temperature in (TMTSF) 2ClO4 . Here we performed simultaneous measurements of transport and magnetic properties of (TMTSF) 2ClO4 in its normal and superconducting states, while finely covering three orders of magnitude of the cooling rate around the anion ordering temperature. Our result reveals, with increasing density of disorder, the existence of a crossover between homogeneous defect-controlled d -wave superconductivity and granular superconductivity. At slow cooling rates, with small amount of disorder, the evolution of superconducting properties is well described with the Abrikosov-Gorkov theory, providing further confirmation of non-s -wave pairing in this compound. In contrast, at fast cooling rates, zero resistance and diamagnetic shielding are achieved through a randomly distributed network of superconducting puddles embedded in a normal conducting background and interconnected by proximity effect coupling. The temperature dependence of the ac complex susceptibility reveals features typical for a network of granular superconductors. This makes (TMTSF) 2ClO4 a model system for granular superconductivity where the grain size and their concentration are tunable within the same sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Langli; Liu, Bin; Song, Shidong
The capacity, Coulombic efficiency, rate, and cyclability of a Li-O2 battery critically depend on the electrode reaction mechanism and the structure/morphology of the reaction product as well as their spatial and temporal evolution1-8, which are all further complicated by the choice of different electrolyte. For the case of aprotic cell, the discharge product, Li2O2, is formed through solution and surface mechanisms9,10, but little is known on the formation mechanism of the perplexing morphology of the reaction product11-15. For the case of Li-O2 battery using solid electrolyte, neither electrode reaction mechanism nor the nature of the reaction production is known. Herein,more » we reveal the full cycle reaction pathway for Li-O2 batteries and its correlation with the nature of the reaction product. Using an aberration-corrected environmental TEM under oxygen environment, we captured, for the first time, the morphology and phase evolution on the carbon nanotube (CNT) cathode of a working solid-state Li-O2 nano-battery16 and directly correlated these features with electrochemical reaction. We found that the oxygen reduction reaction on CNTs initially produces LiO2, which subsequently evolves to Li2O2 and O2 through disproportionation reaction. Surprisingly it is just the releasing of O2 that inflates the particles to a hollow structure with a Li2O outer surface layer and Li2O2 inner-shell, demonstrating that, in general, accommodation of the released O2 coupled with the Li+ ion diffusion and electron transport paths across both spatial and temporal scales critically governs the morphology of the discharging/charging product in Li-O2 system. We anticipate that the direct observation of Li-O2 reaction mechanisms and their correlation with the morphology of the reaction product set foundation for quantitative understanding/modeling of the electrochemical processes in the Li-O2 system, enabling rational design of both solid-state and aprotic Li-O2 batteries.« less
NASA Astrophysics Data System (ADS)
Jianu, A.; Stanciu, L.; Groza, J. R.; Lathe, Ch.; Burkel, E.
2003-01-01
Aluminium titanate (Al 2TiO 5) has been selected for study due to its high melting point and thermal shock resistance. In situ analysis of phase transformation and of transformation kinetics of sol-gel powder mixture of alumina and titania cogelified samples was performed using high-temperature synchrotron radiation X-ray diffraction experiments. The high reactivity and molecular mixing of sol-gel cogelified precursor powders contributed to the evolution of the reaction. The stability of the TiO 2-tetragonal structure (anatase) increases due to Al 2O 3 presence. The temperature of the aluminium titanate endothermic reaction decreases when heating rate increases. The results obtained by in situ analysis have been used to establish the sintering parameters in order to obtain fully transformed, dense aluminium titanate bulk ceramics.
Role of Short-Range Chemical Ordering in (GaN) 1–x (ZnO) x for Photodriven Oxygen Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dennis P.; Neuefeind, Joerg C.; Koczkur, Kallum M.
(GaN)1–x(ZnO)x (GZNO) is capable of visible-light driven water splitting, but its bandgap at x ≤ 0.15 (>2.7 eV) results in poor visible-light absorption. Unfortunately, methods to narrow its bandgap by incorporating higher ZnO concentrations are accompanied by extensive Urbach tailing near the absorption-edge, which is indicative of structural disorder or chemical inhomogeneities. We evaluated whether this disorder is intrinsic to the bond-length distribution in GZNO or is a result of defects introduced from the loss of Zn during nitridation. Here, the synthesis of GZNO derived from layered double hydroxide (LDH) precursors is described which minimizes Zn loss and chemical inhomogeneitiesmore » and enhances visible-light absorption. The average and local atomic structures of LDH-derived GZNO were investigated using X-ray and neutron scattering and are correlated with their oxygen evolution rates. An isotope-contrasted neutron-scattering experiment was conducted in conjunction with reverse Monte Carlo (RMC) simulations. We showed that a bond-valence bias in the RMC refinements reproduces the short-range ordering (SRO) observed in structure refinements using isotope-contrasted neutron data. The findings suggest that positional disorder of cation–anion pairs in GZNO partially arises from SRO and influences local bond relaxations. Furthermore, particle-based oxygen evolution reactions (OERs) in AgNO3 solution reveal that the crystallite size of GZNO correlates more than positional disorder with oxygen evolution rate. These findings illustrate the importance of examining the local structure of multinary photocatalysts to identify dominant factors in particulate-based photodriven oxygen evolution.« less
The Heavy Links between Geological Events and Vascular Plants Evolution: A Brief Outline
Piombino, Aldo
2016-01-01
Since the rise of photosynthesis, life has influenced terrestrial atmosphere, particularly the O2 and the CO2 content (the latter being originally more than 95%), changing the chemistry of waters, atmosphere, and soils. Billions of years after, a far offspring of these first unicellular forms conquered emerging lands, not only completely changing landscape, but also modifying geological cycles of deposition and erosion, many chemical and physical characteristics of soils and fresh waters, and, more, the cycle of various elements. So, there are no doubts that vascular plants modified geology; but it is true that also geology has affected (and, more, has driven) plant evolution. New software, PyRate, has determined vascular plant origin and diversification through a Bayesian analysis of fossil record from Silurian to today, particularly observing their origination and extinction rate. A comparison between PyRate data and geological history suggests that geological events massively influenced plant evolution and that also the rise of nonflowering seed plants and the fast diffusion of flowering plants can be explained, almost partly, with the environmental condition changes induced by geological phenomena. PMID:26966609
The Heavy Links between Geological Events and Vascular Plants Evolution: A Brief Outline.
Piombino, Aldo
2016-01-01
Since the rise of photosynthesis, life has influenced terrestrial atmosphere, particularly the O2 and the CO2 content (the latter being originally more than 95%), changing the chemistry of waters, atmosphere, and soils. Billions of years after, a far offspring of these first unicellular forms conquered emerging lands, not only completely changing landscape, but also modifying geological cycles of deposition and erosion, many chemical and physical characteristics of soils and fresh waters, and, more, the cycle of various elements. So, there are no doubts that vascular plants modified geology; but it is true that also geology has affected (and, more, has driven) plant evolution. New software, PyRate, has determined vascular plant origin and diversification through a Bayesian analysis of fossil record from Silurian to today, particularly observing their origination and extinction rate. A comparison between PyRate data and geological history suggests that geological events massively influenced plant evolution and that also the rise of nonflowering seed plants and the fast diffusion of flowering plants can be explained, almost partly, with the environmental condition changes induced by geological phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlov, D. N., E-mail: dnk@kapella.gpi.ru; Kobtsev, V. D.; Stel'makh, O. M.
2013-07-15
Collisional deactivation of O{sub 2}(b{sup 1}{Sigma}{sub g}{sup +}) molecules resonantly excited by a 10 ns pulse of laser radiation with a wavelength of 762 nm in H{sub 2}/O{sub 2} mixtures is experimentally studied. The radiation intensity and hence the molecule excitation efficiency have a spatially periodic modulation that leads to the formation of laser-induced gratings (LIGs) of the refractive index. The study of LIG temporal evolution allows collisional relaxation rates of molecular excited states and gas temperature to be determined. In this work, the b{sup 1}{Sigma}{sub g}{sup +} state of O{sub 2} molecules deactivation rates are measured in a 4.3more » vol % H{sub 2} mixture at the number density of 2 amg in the temperature range 291-850 K. The physical deactivation is shown to dominate in the collisions of H{sub 2} with O{sub 2}(b{sup 1}{Sigma}{sub g}{sup +}) and O{sub 2}(a{sup 1}{Delta}{sub g}) up to temperatures of 780-790 K at time delays up to 10 {mu}s after the excitation pulse. The parameters of the obtained temperature dependence of the (b{sup 1}{Sigma}{sub g}{sup +} state deactivation rate agree well with the data of independent measurements performed earlier at lower temperatures (200-400 K). Tunable diode laser absorption spectroscopy is used to measure the temperature dependence of the number density of the H{sub 2}O molecules which appear as the mixture, as the result of the dark gross reaction with O{sub 2} molecules in the ground state, O{sub 2} + 2H{sub 2} {yields} 2H{sub 2}O. The measurements show that this reaction results in complete transformation of H{sub 2} into H{sub 2}O at temperatures of 790-810 K.« less
Modeling the Time-dependent Changes in Electrical Conductivity of Basaltic Melts With Redox State
NASA Astrophysics Data System (ADS)
Pommier, A.; Gaillard, F.; Pichavant, M.
2008-12-01
The electrical conductivity σ is an efficient probe of mass transfer processes within silicate melts and magmas. Little attention has been given to the influence of redox state (fO2) on the melts conductivity. We present an experimental setup allowing electrical conductivity measurements for basaltic melts under variable fO2. We demonstrate a significant dependence of σ with fO2, allowing to characterize in situ the mechanisms and kinetics of redox changes in the melt. Experiments were conducted on basalts from Pu'u 'O'o, Hawaii, and Mt.Vesuvius, Italy. Measurements were performed cylindrical glass samples (OD: 6mm, ID: 1mm, L: 8mm) using an impedance spectrometer. Experiments were conducted in a 1atm vertical furnace, from 1200°C to 1400°C. Variable gas atmosphere (air, CO2 or CO-CO2 gas mixtures) were used, imposing ΔNNO from -1 to +7. Electrical conductivities were determined for the two melts at constant fO2, different T (constant fO2) and constant T, different fO2 (variable fO2) obtained by changing the gas composition. Isothermal reduction and oxidation cycles were performed. Glasses quenched from different T and fO2 conditions were analyzed by electron microprobe, the FeO concentration was determined by wet chemistry. In constant fO2 experiments, a small but detectable effect of fO2 on σ is evidenced. At 1300°C, the difference in the Kilauea sample conductivity between reduced (ΔNNO=-1) and oxidized (ΔNNO=+7) fO2 is <1(ohm.m)-1, the sample being more conductive when reduced. The temperature dependence of σ was fitted using Arrhenian equations, the activation energy Ea being 100kJ/mol. Sodium was identified as the main charge carrier in the melts. The fO2-effect on σ can thus be attributed to the influence of the Fe2+/Fe3+ ratio on sodium mobility. The fO2-dependence of σ was included in the model of Pommier et al.(2008), allowing the conductivity of natural melts to be calculated as a function of T, P, H2O, and fO2. Variable fO2 experiments confirmed the increase in σ when reducing the melt. At 1200°C, for both reduction-oxidation cycles, a stable value of σ following a change in fO2 is reached in 15hours, while 2hours are needed at 1400°C. The real-time changes in σ of basaltic melts following fO2 step changes were monitored. The time-dependent changes in σ are interpreted in terms of kinetics processes due to redox reequilibration between melt and gas. The evolution of σ with time can be fitted using a diffusion-limited process for reduction in CO-CO2 gas mixtures and oxidation in air. However, a reaction at the gas-melt interface probably rate limits oxidation in CO2. Reduction and oxidation rates are similar and increase with T. Oxidation-reduction rates calculated from the analysis of the conductivity evolution with time range from 10-9 to 10-8m2/s for the T range 1200-1400°C. These reaction rates are in agreement with typical alkali diffusion coefficients in basaltic melts. However, the high value of Ea (230kJ/mol) calculated from the T dependence of the oxidation-reduction rates agrees with the Ea for alkali-Earth elements. Furthermore, microprobe analyses document the existence of alkali-Earth cation fluxes during oxidations and reductions. Such cation migration probably occurs to charge-balance electron fluxes in the melt, in agreement with the study of Cooper et al. (1996). Our results suggest that the migration of alkali and alkali-Earth elements rate-limits the redox state changes in basaltic melts, and that redox mechanisms are not restricted to oxygen chemical diffusion. A discussion of chemical vs tracer oxygen diffusion studies is proposed.
Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weissman, J.C.; Benemann, J.R.
Nitrogen-starved cultures of the alga Anabaena cylindrica 629 produced hydrogen and oxygen continuously for 7 to 19 days. Hydrogen production attained a maximum level after 1 to 2 days of starvation and was followed by a slow decline. The maximum rates were 30 ml of H/sub 2/ evolved per liter of culture per h or 32 ..mu..l of H/sub 2/ per mg of dry weight per h. In 5 to 7 days the rate of H/sub 2/ evolution by the more productive cultures fell to one-half its maximum value. The addition of 10/sup -4/ to 5 x 10/sup -4/ Mmore » ammonium increased the rate of oxygen evolution and the total hydrogen production of the cultures. H/sub 2/-O/sub 2/ ratios were 4:1 under conditions of complete nitrogen starvation and about 1.7:1 after the addition of ammonium. Thus, oxygen evolution was affected by the extent of the nitrogen starvation. Thermodynamic efficiencies of converting incident light energy to free energy of hydrogen via algal photosynthesis were 0.4 percent. Possible factors limiting hydrogen production were decline of reductant supply and filament breakage. Hydrogen production by filamentous, heterocystous blue-green algae could be used for development of a biophotolysis system.« less
Hao, Hongchang; Zhang, Ling; Wang, Wenzhong; Zeng, Shuwen
2018-06-19
Photocatalytic cellulose reformation is regarded as a potential and affordable route for sustainable H2 evolution. However, the direct photoreformation still suffers from challenges such as the limited solubility of cellulose and dependence on catalytic activity of noble-metals. Herein, we reported a novel photoreformation of cellulose into H2 over TiO2 which is synchronously modified with nickel sulfide (NixSy) and chemisorbed sulfate species (SO42-) by a one-pot approach. A significant elevation in photocatalytic hydrogen evolution rate is achieved, with the maximal value of 3.02 mmol/g/h during the first three hours, almost 76-fold higher than that of P25 and comparable to Pt-P25. Aided by systematic investigation, it is proposed that nickel sulfide and sulfate modification synergistically contribute to the remarkably raised efficiency of biomass transformation. Specifically, NixSy serves as co-catalyst for photocatalytic H2 production, while SO42- ions are inferred to promote cellulose hydrolyzation and consequent accessibility of biomass to catalysts. Further, the accumulated formate intermediates are found to have a poison effect on catalysts, desorption of which can be controlled by tuning aqueous alkalinity. Overall, our strategy for modifying TiO2 with SO42- and NixSy provides a novel perspective of concurrently accelerating cellulose hydrolyzation process and supplementing hydrogen evolution sites, for efficient photocatalytic reformation of cellulose into H2. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoigne, J.
1995-12-31
Research performed during the last two decades has led to a significant evolution of reaction kinetic concepts to estimate the role of reactive oxidants and photooxidants in natural waters and for water treatment. Although many reaction-rate data for oxidants such as OH and HO{sub 2}/O{sub 2}{sup -} radicals, O{sub 2} and O{sub 3} or ClO{sub 2} had been compiled before, these were rather selected to elucidate other areas of research and applications. Their critical applications for describing reactions of interest for aqueous chemistry has then required to extend the compilations of rate data: (1) to include more reactions of relevancemore » in aqueous media, (2) to critically account for the aqueous speciations, (3) to experimentally characterise the environmental factors controlling the steady-state concentration of different oxidants, (4) to formulate models useful for computing predictions and allowing for critical experimental tests, and (5) to allow for a unified concept for teaching environmental chemistry that better approaches the concepts of classical chemistry.« less
Synoptic and chemical evolution of the Antarctic vortex in winter and spring, 1987
NASA Technical Reports Server (NTRS)
Tuck, A. F.
1988-01-01
The dynamical evolution of the vortex at least up to 50 mb is dominated by synoptic scales in the troposphere. In particular, there is a clear response when poleward extension of tropospheric anticyclones from latitudes of 40 and 50 S to 70 and 80 S occurs. This response is evident in isentropic potential vorticity maps, TOMS ozone fields and SAM II polar stratospheric clouds. An important feature of the high latitude Southern Hemisphere lower stratosphere is a transition at potential temperatures in the 390 to 400 K range. This transition, the vortopause, is clearly marked in aircraft profiles of O3, H2O, N2O and ClO at latitudes 68 to 72 S near the Antarctic peninsula, and also cross-sections of potential vorticity and potential temperature; above it, the isopleths are more closely spaced than below it. The aircraft measurements of H2O, O3, NO sub y, N2O, ClO, and whole air data are examined in material coordinates, theta and P sub theta, backed up by trajectory analysis. The evolution of the chemical mixing ratios is examined in these coordinates as a function of time from mid-August to late September. Conclusions are drawn about the rates of change and their causes. The meteorological and aircraft data are examined for evidence of the following kinds of motion with respect to the vortex: ingress of air aloft, subsidence, peeling off of air to lower latitudes, and folding of the vortopause. Conclusions are presented regarding the evidence for a chemical sink of ozone above and below theta = 400 K, and whether the vortex has a mass flow through it, or if the chemical sink operates on a fixed mass of air. Implications for mid-latitudes are briefly considered in the light of the conclusions.
Gryszel, Maciej; Sytnyk, Mykhailo; Jakešová, Marie; Romanazzi, Giuseppe; Gabrielsson, Roger; Heiss, Wolfgang; Głowacki, Eric Daniel
2018-04-25
Low-cost semiconductor photocatalysts offer unique possibilities for industrial chemical transformations and energy conversion applications. We report that a range of organic semiconductors are capable of efficient photocatalytic oxygen reduction to H 2 O 2 in aqueous conditions. These semiconductors, in the form of thin films, support a 2-electron/2-proton redox cycle involving photoreduction of dissolved O 2 to H 2 O 2 , with the concurrent photooxidation of organic substrates: formate, oxalate, and phenol. Photochemical oxygen reduction is observed in a pH range from 2 to 12. In cases where valence band energy of the semiconductor is energetically high, autoxidation competes with oxidation of the donors, and thus turnover numbers are low. Materials with deeper valence band energies afford higher stability and also oxidation of H 2 O to O 2 . We found increased H 2 O 2 evolution rate for surfactant-stabilized nanoparticles versus planar thin films. These results evidence that photochemical O 2 reduction may be a widespread feature of organic semiconductors, and open potential avenues for organic semiconductors for catalytic applications.
Disintegration of Meatball Electrodes for LiNi x Mn y Co z O 2 Cathode Materials
Xu, R.; de Vasconcelos, L. S.; Shi, J.; ...
2017-05-12
Mechanical degradation of Li-ion batteries caused by the repetitive swelling and shrinking of electrodes upon electrochemical cycles is now well recognized. Structural disintegration of the state-of-art cathode materials of a hierarchical structure is relatively less studied. In this paper, we track the microstructural evolution of different marked regimes in LiNi x Mn y Co z O 2 (NMC) electrodes after lithiation cycles. Decohesion of primary particles constitutes the major mechanical degradation in the NMC materials, which results in the loss of connectivity of the conductive network and impedance increase. We find that the structural disintegration is largely dependent on themore » charging rate – slow charging causes more damage, and is relatively insensitive to the cyclic voltage window. We use finite element modeling to study the evolution of Li concentration and stresses in a NMC secondary particle and employ the cohesive zone model to simulate the interfacial fracture between primary particles. Finally, we reveal that microcracks accumulate and propagate during the cyclic lithiation and delithiation at a slow charging rate.« less
Xu, Yahong; Hu, Enyuan; Zhang, Kai; ...
2017-05-05
For designing new battery systems with higher energy density and longer cycle life, it is important to understand the degradation mechanism of the electrode material, especially at the individual particle level. Using in situ transmission X-ray microscopy (TXM) coupled to a pouch cell setup, the inhomogeneous Li distribution as well as the formation, population, and evolution of inactive domains in a single LiCoO 2 particle were visualized in this paper as it was cycled for many times. It is found that the percentage of the particle that fully recovered to the pristine state is strongly related to the cycling rate.more » Interestingly, we also observed the evolution of the inactive region within the particle during long-term cycling. The relationship between morphological degradation and chemical inhomogeneity, including the formation of unanticipated Co metal phase, is also observed. Finally, our work highlights the capability of in situ TXM for studying the degradation mechanism of materials in LIBs.« less
Heating rate effects in simulated liquid Al2O_3
NASA Astrophysics Data System (ADS)
van Hoang, Vo
2006-01-01
The heating rate effects in simulated liquid Al{2}O{3} have been investigated by Molecular Dynamics (MD) method. Simulations were done in the basic cube under periodic boundary conditions containing 3000 ions with Born-Mayer type pair potentials. The temperature of the system was increasing linearly in time from the zero temperature as T(t)=T0 +γ t, where γ is the heating rate. The heating rate dependence of density and enthalpy of the system was found. Calculations show that static properties of the system such as the coordination number distributions and bond-angle distributions slightly depend on γ . Structure of simulated amorphous Al{2}O{3} model with the real density at the ambient pressure is in good agreement with Lamparter's experimental data. The heating rate dependence of dynamics of the system has been studied through the diffusion constant, mean-squared atomic displacement and comparison of partial radial distribution functions (PRDFs) for 10% most mobile and immobile particles with the corresponding mean ones. Finally, the evolution of diffusion constant of Al and O particles and structure of the system upon heating for the smallest heating rate was studied and presented. And we find that the temperature dependence of self-diffusion constant in the high temperature region shows a crossover to one which can be described well by a power law, D∝ (T-Tc )^γ . The critical temperature Tc is about 3500 K and the exponent γ is close to 0.941 for Al and to 0.925 for O particles. The glass phase transition temperature Tg for the Al{2}O{3} system is at anywhere around 2000 K.
Qiu, Bocheng; Zhou, Yi; Ma, Yunfei; Yang, Xiaolong; Sheng, Weiqin; Xing, Mingyang; Zhang, Jinlong
2015-02-26
This study developed a facile approach for preparing Ti(3+) self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti(3+) doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti(3+) in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation. The facile vacuum activation method can provide an effective and practical approach to improve the performance of TiO2-graphene and other metal oxides-graphene towards their practical photocatalytic applications.
NASA Astrophysics Data System (ADS)
Qiu, Bocheng; Zhou, Yi; Ma, Yunfei; Yang, Xiaolong; Sheng, Weiqin; Xing, Mingyang; Zhang, Jinlong
2015-02-01
This study developed a facile approach for preparing Ti3+ self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti3+ doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti3+ in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation. The facile vacuum activation method can provide an effective and practical approach to improve the performance of TiO2-graphene and other metal oxides-graphene towards their practical photocatalytic applications.
Dehydration-driven evolution of topological complexity in ethylamonium uranyl selenates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurzhiy, Vladislav V., E-mail: vladgeo17@mail.ru; Krivovichev, Sergey V.; Tananaev, Ivan G.
Single crystals of four novel uranyl selenate and selenite-selenate oxysalts with protonated ethylamine molecules, (C{sub 2}H{sub 8}N){sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)](H{sub 2}O) (I), (C{sub 2}H{sub 8}N){sub 3}[(UO{sub 2})(SeO{sub 4}){sub 2}(HSeO{sub 4})] (II), (C{sub 2}H{sub 8}N)[(UO{sub 2})(SeO{sub 4})(HSeO{sub 3})] (III), and (C{sub 2}H{sub 8}N)(H{sub 3}O)[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)] (IV) have been prepared by isothermal evaporation from aqueous solutions. Uranyl-containing 1D and 2D units have been investigated using topological approach and information-based complexity measurements that demonstrate the evolution of structural units and the increase of topological complexity with the decrease of H{sub 2}O content. - Graphical abstract: Single crystals ofmore » four novel uranyl selenate and selenite-selenate oxysalts with protonated ethylamine molecules have been prepared by isothermal evaporation from aqueous solutions. Structural analysis and information-based topological complexity calculations points to the possible sequence of crystalline phases formation, showing both topological and structural branches of evolution. - Highlights: • Single crystals of four novel uranyl oxysalts were prepared by evaporation method. • The graph theory was used for investigation of topologies of structural units. • Dehydration processes drives the evolution of topological complexity of 1D and 2D structural units.« less
NASA Astrophysics Data System (ADS)
Liu, Li; Zhang, Huijuan; Mu, Yanping; Bai, Yuanjuan; Wang, Yu
2016-09-01
The porous CoFe2O4nanomesh arrays are successfully synthesized on nickel foam substrate through a high temperature and pressure hydrothermal method, following by the thermal post-treatment in air. The CoFe2O4 nanomesh arrays own numerous pores and large specific surface area, which is in favor of exposing more active sites. In consideration of the structural preponderances and versatility of the materials, the CoFe2O4 nanomesh arrays have been researched as the binder-free electrode materials for electrocatalysis and supercapacitors. When the CoFe2O4nanomesh arrays on nickel foam (CoFe2O4 NM-As/Ni) directly act as the free-binder catalyst toward catalyzing the oxygen evolution reaction (OER) of electrochemical water splitting, CoFe2O4 NM-As/Ni exhibits an admirable OER property with a low onset potential of 1.47 V(corresponding to the onset overpotential of 240 mV), a minimal overpotential (η10 = 253 mV), a small Tafel slope (44 mV dec-1), large anodic currents and long-term durability for 35 h in alkaline media. In addition, as an electrode of supercapacitors, CoFe2O4 NM-As/Ni obtains a desired specific capacitance (1426 F/g at the current density of 1 A/g), remarkable rate capability (1024 F/g at the current density of 20 A/g) and eminent capacitance retention (92.6% after 3000 cycles). The above results demonstrate the CoFe2O4 NM-As/Ni possesses great potential application in electrocatalysis and supercapacitors.
Samuni, Amram; Maimon, Eric; Goldstein, Sara
2017-08-01
Horseradish peroxidase (HRP) catalyzes H 2 O 2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H 2 O 2 -induced inactivation, have been investigated. HRP reaction with H 2 O 2 was studied by following H 2 O 2 depletion, O 2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow. Nitroxide protects HRP against H 2 O 2 -induced inactivation. The rate of H 2 O 2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H 2 O 2 . The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO)>4-OH-TPO>3-carbamoyl proxyl>4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III. Nitroxide catalytically protects HRP against inactivation induced by H 2 O 2 while modulating its catalase-like activity. The protective role of nitroxide at μM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex. Nitroxides catalytically protect heme proteins against inactivation induced by H 2 O 2 revealing an additional role played by nitroxide antioxidants in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.
Zheng, Dong; Zhang, Xuran; Qu, Deyu; ...
2015-04-21
Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O 2/O 2 •- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O 2 reduction reaction is from mass diffusion. Li 2O 2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O 2 2- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings revealmore » an opportunity for recharging Li-air batteries efficiently and a new strategy of developing the catalyst for oxygen evolution reaction.« less
NASA Astrophysics Data System (ADS)
Xue, Hairong; Yu, Hongjie; Li, Yinghao; Deng, Kai; Xu, You; Li, Xiaonian; Wang, Hongjing; Wang, Liang
2018-07-01
Control of structures and components of the nanoarray catalysts is very important for electrochemical energy conversion. Herein, unique NiCo2O4@MnO2 core–shell nanoarray with hollow NiCo2O4 Cores and MnO2 flake shells is in situ fabricated on carbon textile via a two-step hydrothermal treatment followed by a subsequent annealing. The as-made nanoarray is highly active and durable catalyst for oxygen evolution reaction in alkaline media attribute to the synergetic effect derived from spatially separated nanoarray with favorable NiCo2O4 and MnO2 compositions.
Xue, Hairong; Yu, Hongjie; Li, Yinghao; Deng, Kai; Xu, You; Li, Xiaonian; Wang, Hongjing; Wang, Liang
2018-07-13
Control of structures and components of the nanoarray catalysts is very important for electrochemical energy conversion. Herein, unique NiCo 2 O 4 @MnO 2 core-shell nanoarray with hollow NiCo 2 O 4 Cores and MnO 2 flake shells is in situ fabricated on carbon textile via a two-step hydrothermal treatment followed by a subsequent annealing. The as-made nanoarray is highly active and durable catalyst for oxygen evolution reaction in alkaline media attribute to the synergetic effect derived from spatially separated nanoarray with favorable NiCo 2 O 4 and MnO 2 compositions.
Development of Inorganic Nanomaterials as Photocatalysts for the Water Splitting Reaction
NASA Astrophysics Data System (ADS)
Frame, Fredrick Andrew
The photochemical water splitting reaction is of great interest for converting solar energy into usable fuels. This dissertation focuses on the development of inorganic nanoparticle catalysts for solar energy driven conversion of water into hydrogen and oxygen. The results from these selected studies have allowed greater insight into nanoparticle chemistry and the role of nanoparticles in photochemical conversion of water in to hydrogen and oxygen. Chapter 2 shows that CdSe nanoribbons have photocatalytic activity for hydrogen production from water in the presence of Na2S/Na2SO 3 as sacrificial electron donors in both UV and visible light. Quantum confinement of this material leads to an extended bandgap of 2.7 eV and enables the photocatalytic activity of this material. We report on the photocatalytic H2 evolution, and its dependence on platinum co-catalysts, the concentration of the electron donor, and the wavelength of incident radiation. Transient absorption measurements reveal decay of the excited state on multiple timescales, and an increase of lifetimes of trapped electrons due to the sacrificial electron donors. In chapter 3, we explore the catalytic activity of citrate-capped CdSe quantum dots. We show that the process is indeed catalytic for these dots in aqueous 0.1 M Na2S:Na2SO3, but not in pure water. Furthermore, optical spectroscopy was used to report electronic transitions in the dots and electron microscopy was used to obtain morphology of the catalyst. Interestingly, an increasing catalytic rate is noted for undialyzed catalyst. Dynamic light scattering experiments show an increased hydrodynamic radius in the case of undialyzed CdSe dots in donor solution. In chapter 4 we show that CdSe:MoS2 nanoparticle composites with improved catalytic activity can be assembled from CdSe and MoS2 nanoparticle building units. We report on the photocatalytic H 2 evolution, quantum efficiency using LED irriadiation, and its dependence on the co-catalyst loading. Furthermore, optical spectroscopy, cyclic voltammetry, and electron microscopy were used to obtain morphology, optical properties, and electronic structure of the catalysts. In chapter 5, illumination with visible light (lambda > 400 nm) photoconverts a red V2O5 gel in aqueous methanol solution into a green VO2 gel. The presence of V(4+) in the green VO2 gel is supported by Electron Energy Loss Spectra. High-resolution electron micrographs, powder X-ray diffraction, and selective area electron diffraction (SAED) data show that the crystalline structure of the V2O5 gel is retained upon reduction. After attachment of colloidal Pt nanoparticles, H2 evolution proceeds catalytically on the VO2 gel. The Pt nanoparticles reduce the H2 evolution overpotential. However, the activity of the new photocatalyst remains limited by the VO2 conduction band edge just below the proton reduction potential. Chapter 6 studies the ability of IrO2 to evolve oxygen from aqueous solutions under UV irradiation. We show that visible illumination (lambda > 400 nm) of iridium dioxide (IrO2) nanocrystals capped in succinic acid in aqueous sodium persulfate solution leads to catalytic oxygen evolution. While the majority of catalytic hydrogen evolution comes from UV light, the process can still be driven with visible light. Morphology, optical properties, surface photovoltage measurements, and oxygen evolution rates are discussed.
NASA Astrophysics Data System (ADS)
Kang, Kyoung Eun; Kim, Chi Ho; Lee, Myung Sup; Jung, Chang Wook; Kim, Yang Do; Lee, Jae Ho
2018-01-01
The electrode materials for oxygen evolution, especially non-platinum group metal oxides, have attracted increasing attention. Among the spinel-type transition metal oxides, Cu0.7Co2.3O4 powders were evaluated as a potential replacement for expensive dimensionally stabilized anode materials. Cu0.7Co2.3O4 powder for use as an electrode material for oxygen evolution in an alkaline anion-exchange membrane water electrolyzer was prepared using a thermal decomposition method. The Cu0.7Co2.3O4 powders heat-treated at 250 °C exhibited the same X-ray diffraction patterns without any secondary phases as the Co3O4 spinel structure did. The Cu0.7Co2.3O4 powders heat-treated at 250 °C for 30 minutes showed the smallest mean particle size of approximately 376 nm with the powders having a homogeneous shape and size distribution. The fine powders with a relatively homogeneous size distribution showed a higher current density during the oxygen evolution reaction. The lifetime of the Cu0.7Co2.3O4 electrode was relatively long at a low current density, but was quickly shortened due to physical detachment of the Cu0.7Co2.3O4 powders as the current density was increased. This study showed that the efficiency and the stability of Cu0.7Co2.3O4 powders during the oxygen evolution reaction were related directly to the active electrode area.
Groundwater hydrochemistry evolution in cyclone driven hydrological regimes, NW Australia
NASA Astrophysics Data System (ADS)
Skrzypek, G.; Dogramaci, S.; Grierson, P.
2013-12-01
Groundwater reserves supply the water needs of many arid regions around the world. Aquifer recharge in these regions is primarily depended on the amount and distribution of rainfall, coupled with exceedingly high rates of evaporation and interactions with both local and regional geomorphology and geology. In semi-arid northwest Australia, the majority of rainfall is delivered by large but infrequent cyclonic events and relatively more frequent but low intensity frontal systems. Changes to rainfall patterns due to global climate change may impact hydrological regimes, recharge rates and groundwater hydrochemistry. These changes may significantly restrict freshwater resources in the future. Between 2008 and 2012, we analysed >400 groundwater, surface and rainwater samples for stable isotope composition (δ2H and δ18O) and major ion chemistry. We then developed conceptual geochemical models of groundwater evolution for the Hamersley Basin (>100,000 km2) and a salt inventory for the Fortescue Marsh (the largest wetland in NW Australia) [1,2]. Fresh groundwater from the alluvium (-8.02 × 0.83‰) and fractured aquifers (-8.22 × 0.70‰) were hydrochemically similar and characterised by a very narrow range of δ18O [1]. In contrast, δ18O of saline and brine groundwater (TDS >10 g L-1) varies in wide range from +2.5 to -7.2‰ [2]. Most of the fresh and brackish groundwater reflects modern recharge and is evaporated by <20% prior to recharge. In contrast, highly saline and brine groundwater reflects mixing between modern rainfall, brackish water and older deep groundwater. The Fortescue Marsh primarily acts as a terminal basin for surface water from the upper Fortescue River catchment [2]. The stable isotope composition of the deep brine groundwater under the Marsh suggests a complex evolution, which cannot be explained by evaporation under current climatic conditions. The observed salinity and δ18O values may result from progressive evaporation from highly saline lake that existed in the past, as the dynamic fractionation from brine is much different compared to that in fresh and brackish waters. Therefore, deeper brine groundwater under the Marsh developed under a different climatic regime and that the current salt in the Marsh has accumulated over at least 40,000 years but could have been as long as 700,000 years [2]. Our combined chemical and stable isotope analyses confirm the general dominance of vertical over horizontal flow in the region and decoupling of processes that control water evolution from those that control salt evolution in groundwater. [1] Dogramaci S., Skrzypek G., Dodson W., Grierson P.F., 2012, Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of sub-tropical northwest Australia. Journal of Hydrology 475: 281-293. [2] Skrzypek G., Dogramaci S., Grierson P.F., 2013, Geochemical and hydrological processes controlling groundwater salinity of a large inland wetland of northwest Australia. Chemical Geology (in press).
Size effects in MgO cube dissolution.
Baumann, Stefan O; Schneider, Johannes; Sternig, Andreas; Thomele, Daniel; Stankic, Slavica; Berger, Thomas; Grönbeck, Henrik; Diwald, Oliver
2015-03-10
Stability parameters and dissolution behavior of engineered nanomaterials in aqueous systems are critical to assess their functionality and fate under environmental conditions. Using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, we investigated the stability of cubic MgO particles in water. MgO dissolution proceeding via water dissociation at the oxide surface, disintegration of Mg(2+)-O(2-) surface elements, and their subsequent solvation ultimately leads to precipitation of Mg(OH)2 nanosheets. At a pH ≥ 10, MgO nanocubes with a size distribution below 10 nm quantitatively dissolve within few minutes and convert into Mg(OH)2 nanosheets. This effect is different from MgO cubes originating from magnesium combustion in air. With a size distribution in the range 10 nm ≤ d ≤ 1000 nm they dissolve with a significantly smaller dissolution rate in water. On these particles water induced etching generates (110) faces which, above a certain face area, dissolve at a rate equal to that of (100) planes.1 The delayed solubility of microcrystalline MgO is attributed to surface hydroxide induced self-inhibition effects occurring at the (100) and (110) microplanes. The present work underlines the importance of morphology evolution and surface faceting of engineered nanomaterials particles during their dissolution.
Visible light active photocatalyst from recycled disposable heating pads
NASA Astrophysics Data System (ADS)
Lee, Meng-Chien; Wang, Chun-Yu; Chen, Che-Chin; Wang, Chih-Ming; Hsiao, Ta-Chih; Tsai, Din Ping
2016-01-01
Alpha-Fe2O3 (α-Fe2O3) is cheap and abundant and has potential to be a highly efficient photocatalyst for water splitting. According to the report, there are a huge amount of disposable heating pads being created every year, and the pads are used one time then thrown away. We found that the main product of used heating pads is α-Fe2O3. Here, we collect and purify the α-Fe2O3 powder in the used heating pads using low power consumption processes. It is shown that the recycled heating pads can be used as a cost-effective photocatalyst for H2 energy and for decomposition of organic pollutants as well. Additionally, the plasmonic enhanced photocatalysis reaction of α-Fe2O3 is also investigated. It is found that H2 evolution rate can be enhanced 15% using α-Fe2O3 nanoparticles coated with a thin Au layer. The degradation of methylene blue can also enhance 12% compared to photocatalyst α-Fe2O3 nanoparticles coated without Au layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumazawa, S.; Mitsui, A.
Heterocystous filamentous cyanobacterium Anabaena cylindrica B629 and nonheterocystous filamentous cyanobacterium Oscillatoria sp. strain Miami BG7 were cultured in media with N/sub 2/ as the sole nitrogen source; and activities of oxygen-dependent hydrogen uptake, photohydrogen production photooxygen evolution, and respiration were compared amperometrically under the same or similar experimental conditions for both strains. Distinct differences in these activities were observed in both strains. The rates of hydrogen photoproduction and hydrogen accumulation were significantly higher in Oscillatoria sp. strain BG7 than in A. cylindrica B629 at every light intensity tested. The major reason for the difference was attributable to the fact thatmore » the heterocystous cyanobacterium had a high rate of oxygen-dependent hydrogen consumption activity and the nonheterocystous cyanobacterium did not. The activity of oxygen photoevolution and respiration also contributed to the difference. Oscillatoria sp. strain BG7 had lower O/sub 2/ evolution and higher respiration than did A. cylindrica B629. Thus, the effect of O/sub 2/ on hydrogen photoproduction was minimized in Oscillatoria sp. strain BG7. 32 references, 5 figures.« less
Babu, Sundaram Ganesh; Vinoth, Ramalingam; Kumar, Dharani Praveen; Shankar, Muthukonda V; Chou, Hung-Lung; Vinodgopal, Kizhanipuram; Neppolian, Bernaurdshaw
2015-05-07
Herein we report simple, low-cost and scalable preparation of reduced graphene oxide (rGO) supported surfactant-free Cu2O-TiO2 nanocomposite photocatalysts by an ultrasound assisted wet impregnation method. Unlike the conventional preparation techniques, simultaneous reduction of Cu(2+) (in the precursor) to Cu(+) (Cu2O), and graphene oxide (GO) to rGO is achieved by an ultrasonic method without the addition of any external reducing agent; this is ascertained by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. UV-visible diffused reflectance spectroscopy (DRS) studies (Tauc plots) provide evidence for the loading of Cu2O tailoring the optical band gap of the photocatalyst from 3.21 eV to 2.87 eV. The photoreactivity of the as-prepared Cu2O-TiO2/rGO samples is determined via H2 evolution from water in the presence of glycerol as a hole (h(+)) scavenger under visible light irradiation. Very interestingly, the addition of rGO augments the carrier mobility at the Cu2O-TiO2 p-n heterojunction, which is evidenced by the significantly reduced luminescence intensity of the Cu2O-TiO2/rGO photocatalyst. Hence rGO astonishingly enhances the photocatalytic activity compared with pristine TiO2 nanoparticles (NPs) and Cu2O-TiO2, by factors of ∼14 and ∼7, respectively. A maximum H2 production rate of 110 968 μmol h(-1) gcat(-1) is obtained with a 1.0% Cu and 3.0% GO photocatalyst composition; this is significantly higher than previously reported graphene based photocatalysts. Additionally, the present H2 production rate is much higher than those of precious/noble metal (especially Pt) assisted (as co-catalysts) graphene based photocatalysts. Moreover, to the best of our knowledge, this is the highest H2 production rate (110 968 μmol h(-1) gcat(-1)) achieved by a graphene based photocatalyst through the splitting of water under visible light irradiation.
NASA Astrophysics Data System (ADS)
Babu, Sundaram Ganesh; Vinoth, Ramalingam; Praveen Kumar, Dharani; Shankar, Muthukonda V.; Chou, Hung-Lung; Vinodgopal, Kizhanipuram; Neppolian, Bernaurdshaw
2015-04-01
Herein we report simple, low-cost and scalable preparation of reduced graphene oxide (rGO) supported surfactant-free Cu2O-TiO2 nanocomposite photocatalysts by an ultrasound assisted wet impregnation method. Unlike the conventional preparation techniques, simultaneous reduction of Cu2+ (in the precursor) to Cu+ (Cu2O), and graphene oxide (GO) to rGO is achieved by an ultrasonic method without the addition of any external reducing agent; this is ascertained by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. UV-visible diffused reflectance spectroscopy (DRS) studies (Tauc plots) provide evidence for the loading of Cu2O tailoring the optical band gap of the photocatalyst from 3.21 eV to 2.87 eV. The photoreactivity of the as-prepared Cu2O-TiO2/rGO samples is determined via H2 evolution from water in the presence of glycerol as a hole (h+) scavenger under visible light irradiation. Very interestingly, the addition of rGO augments the carrier mobility at the Cu2O-TiO2 p-n heterojunction, which is evidenced by the significantly reduced luminescence intensity of the Cu2O-TiO2/rGO photocatalyst. Hence rGO astonishingly enhances the photocatalytic activity compared with pristine TiO2 nanoparticles (NPs) and Cu2O-TiO2, by factors of ~14 and ~7, respectively. A maximum H2 production rate of 110 968 μmol h-1 gcat-1 is obtained with a 1.0% Cu and 3.0% GO photocatalyst composition; this is significantly higher than previously reported graphene based photocatalysts. Additionally, the present H2 production rate is much higher than those of precious/noble metal (especially Pt) assisted (as co-catalysts) graphene based photocatalysts. Moreover, to the best of our knowledge, this is the highest H2 production rate (110 968 μmol h-1 gcat-1) achieved by a graphene based photocatalyst through the splitting of water under visible light irradiation.
Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars
NASA Astrophysics Data System (ADS)
McAdam, A.; Franz, H.; Mahaffy, P. R.; Eigenbrode, J. L.; Stern, J. C.; Brunner, A.; Sutter, B.; Archer, P. D.; Ming, D. W.; Morris, R. V.; Atreya, S. K.; Team, M.
2013-12-01
Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise ~20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000oC and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures <500oC, and an evolution peak at higher temperatures near ~750oC. The low temperature H2O evolution has many potential contributors, including adsorbed H2O, smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the ~20% observed in the mudstone samples. This potential detection underscores the complementary nature of the MSL CheMin and SAM instruments for investigations of martian sample mineralogy. Information on the nature of Yellowknife Bay clay minerals may also be available from the detection of H2 evolved during SAM EGA-MS at high temperature. A likely source of at least some of this H2 is H2O evolved from the smectite clays at high temperature, and it is possible these evolutions can be used in a similar fashion to high temperature H2O releases to provide constraints on the clay minerals in a sample. In addition, the D/H of this high temperature H2, as well as the H2O, can be derived from SAM MS and Tunable Laser Spectrometer (TLS) data, respectively. These D/H values may help to inform the provenance of high and low temperature water evolved from martian samples (Mahaffy et al., this meeting).
Vernon, Leo P.; Cardon, Stephan
1982-01-01
Vesicles prepared with the French press from membranes of cyanelles of Cyanophora paradoxa retain O2 evolution activity with rates up to 500 micromoles 2,6-dichlorophenolindophenol reduced per hour per milligram chlorophyll. This activity is immediately lost when the vesicles are transferred from the sucrose-phosphate-citrate preparation buffer into dilute phosphate buffer. Similar preparations from Phormidium laminosum, a thermophilic cyanobacterium retain activity under such conditions. Photosystem I activities of both cyanobacterial vesicle preparations were determined by direct spectrophotometric measurement of N,N,N′,N′-tetramethyl-p-phenylenediamine photooxidation in the presence of anthraquinone-2-sulfonate. The rates so determined were compared with rates of O2 taken up in the presence of methyl viologen or anthraquinone-2-sulfonate as electron acceptors. The predicted stoichiometry of two was observed for moles of N,N,N′,N′-tetramethyl-p-phenylenediamine oxidized per mole of oxygen taken up. Anthraquinone-2-sulfonate was the better electron acceptor, and maximal rates of 943 micromoles per hour per milligram chlorophyll for O2 uptake were observed for Phormidium laminosum preparations in the presence of superoxide dismutase. For purposes of comparison, spinach chloroplasts were assayed for similar activities. All preparations were readily assayed for photosystem I activity by the direct spectrophotometric method, which has advantages of simplicity and freedom from errors introduced by photoxidation of other substrates by photosystem I when O2 uptake is measured. PMID:16662512
Patterned solid state growth of barium titanate crystals
NASA Astrophysics Data System (ADS)
Ugorek, Michael Stephen
An understanding of microstructure evolution in ceramic materials, including single crystal development and abnormal/enhanced grain growth should enable more controlled final ceramic element structures. In this study, two different approaches were used to control single crystal development in a patterned array. These two methods are: (1) patterned solid state growth in BaTiO 3 ceramics, and (2) metal-mediated single crystal growth in BaTiO 3. With the patterned solid state growth technique, optical photolithography was used to pattern dopants as well as [001] and [110] BaTiO3 single crystal template arrays with a 1000 microm line pattern array with 1000 microm spacings. These patterns were subsequently used to control the matrix grain growth evolution and single crystal development in BaTiO3. It was shown that the growth kinetics can be controlled by a small initial grain size, atmosphere conditions, and the introduction of a dopant at selective areas/interfaces. By using a PO2 of 1x10-5 atm during high temperature heat treatment, the matrix coarsening has been limited (to roughly 2 times the initial grain size), while retaining single crystal boundary motion up to 0.5 mm during growth for dwell times up to 9 h at 1300°C. The longitudinal and lateral growth rates were optimized at 10--15 microm/h at 1300°C in a PO2 of 1x10 -5 atm for single crystal growth with limited matrix coarsening. Using these conditions, a patterned microstructure in BaTiO3 was obtained. With the metal-mediated single crystal growth technique, a novel approach for fabricating 2-2 single crystal/polymer composites with a kerf < 5 microns was demonstrated. Surface templated grain growth was used to propagate a single crystal interface into a polycrystalline BaTiO3 or Ba(Zr0.05 Ti0.95)O3 matrix with lamellar nickel layers. The grain growth evolution and texture development were studied using both [001] and [110] BaTiO3 single crystals templates. By using a PO 2 of 1x10-11 atm during high temperature heat treatment, matrix coarsening was limited while enabling single crystal boundary motion up to 0.35 mm during growth between 1250°C and 1300°C with growth rates ˜ 3--4 microm/h for both single crystal orientations. By removing the inner electrodes, 2-2 single crystal (or ceramic) composites were prepared. The piezoelectric and dielectric properties of the composites of the two compositions were measured. The d33 and d31 of the composites were similar to the polycrystalline ceramic of the same composition.
Tracer-based Determination of Vortex Descent in the 1999/2000 Arctic Winter
NASA Technical Reports Server (NTRS)
Greenblatt, Jeffrey B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Hurst, Dale F.; Elkins, James W.; Schauffler, Sue M.; Atlas, Elliot L.; Herman, Robert L.; Webster, Chrisotopher R.
2002-01-01
A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999/2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for 26 November 1999, whose error bars encompassed the observed variability. High-latitude extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences we inferred descent prior to 26 November: as much as 397 plus or minus 15 K (lsigma) at 30 ppbv N2O and 640 ppbv CH4, and falling to 28 plus or minus 13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from 26 November through 12 March, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between 26 November and 27 January: 0.82 plus or minus 0.20 K/day averaged over 50- 250 ppbv N2O. By late winter (26 February to 12 March), the average rate had decreased to 0.10 plus or minus 0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (26 November to 5 March) descent rate varied from 0.75 plus or minus 0.10 K/day at 50 ppbv to 0.40 plus or minus 0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999/2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very favorably with the inferred rates from observation.
NASA Astrophysics Data System (ADS)
Lim, Sung Nam; Song, Shin Ae; Jeong, Yong-Cheol; Kang, Hyun Woo; Park, Seung Bin; Kim, Ki Young
2017-10-01
Perovskite-type photocatalysts of CaCu x Ti1- x O3 (0 ≤ x ≤ 0.02) powder were prepared by spray pyrolysis of aqueous solution or aqueous solution with polymeric additive. The effects of the amount of copper ions doped in the photocatalyst and the precursor type on the photocatalytic activity under visible-light irradiation were investigated. The crystal structure, oxidation state, and light adsorption properties of the prepared photocatalysts were analyzed using x-ray diffraction, x-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy, respectively. The doping of copper ions in CaTiO3 allowed visible-light absorption owing to a narrowing of the band gap energy of the host material through the formation of a new donor level for copper ions. Among the doped samples prepared from the aqueous precursor, CaTiO3 doped with 1 mol.% copper ions had the highest hydrogen evolution rate (140.7 μmol g-1 h-1). Notably, the hydrogen evolution rate of the photocatalyst doped with 1 mol.% copper ions prepared from the aqueous precursor with polymeric additive (295.0 μmol g-1 h-1) was two times greater than that prepared from the aqueous precursor, due to the morphology effect.
Liu, Yunpeng; Li, Yuhang; Yang, Siyuan; Lin, Yuan; Zuo, Jianliang; Liang, Hong; Peng, Feng
2018-06-04
The hydrogenation (reduction) has been considered as an effective method to improve the photocatalytic activity of TiO2, however, the underlying relationship between structure and photocatalytic performance has still not been adequately unveiled so far. Herein, to obtain insight into the effect of structure on photocatalytic activity, two types of reduced TiO2 were prepared by CO (CO-TiO2) and H2 (H-TiO2), respectively. For H-TiO2, Ti-H bonds and oxygen vacancies are formed on the surface of H-TiO2, resulting in a more disorder surface lattice. However, for CO-TiO2, the more Ti-OH bonds are formed on the surface and the more bulk oxygen vacancies are introduced, the disorder layer of CO-TiO2 is relatively thin owing to the most of surface vacancies repaired by Ti-OH bonds. Under the simulated solar irradiation, the photocatalytic H2 evolution rate of CO-TiO2 reaches 7.17 mmol g-1 h-1, which is 4.14 and 1.50 times those of TiO2 and H-TiO2, respectively. The photocatalytic degradation rate constant of methyl orange on CO-TiO2 is 2.45 and 6.39 times those on H-TiO2 and TiO2. The superior photocatalytic activity of CO-TiO2 is attributed to the effective separation and transfer of the photo-generated electron-hole pairs, due to the synergistic effects of oxygen vacancies and surface Ti-OH bonds. This study reveals the relation between the photocatalytic property and structure, and provides a new method to prepare highly active TiO2 for H2 production and environmental treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A study of Na(x)Pt3O4 as an O2 electrode bifunctional electrocatalyst
NASA Technical Reports Server (NTRS)
Fielder, William L.; Singer, Joseph
1991-01-01
The present study suggests that polytetrafluoroethylene (PTFE) bonded Na(X)Pt3O4 gas porous diffusion electrodes may be a viable candidate for bifunctional O2 reduction and evolution activity. The electrodes exhibited Tafel slopes of about 0.06 V/decade for both O2 reduction an evolution. For O2 reduction, the 0.06 slope doubled to 0.12 V/decade at larger current densities. Preliminary stability testing at 24 C suggest that the Na(x)Pt3O4 electrodes were relatively stable at reducing and oxidizing potentials typically encountered at the O2 electrodes in a regenerative fuel cell.
NASA Astrophysics Data System (ADS)
Wang, Ying; Liu, Qing; Hu, Tianjun; Zhang, Limin; Deng, Youquan
2017-05-01
The catalyst MnO2-CoFe2O4/C was firstly synthesized via a two-step process and applied as a bifunctional electrocatalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media. The composite exhibits better bifunctional activity than CoFe2O4/C and MnO2/C. Moreover, superior durability and high methanol tolerance in alkaline media outperforms the commercial Pt/C electrocatalyst, which signifying its excellent potential for applications in metal-air batteries and alkaline fuel cells.
Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars
NASA Technical Reports Server (NTRS)
McAdam, Amy; Franz, Heather; Mahaffy, Paul R.; Eigenbrode, Jennifer L.; Stern, Jennifer C.; Brunner, Anna; Archer, Paul Douglas; Ming, Douglas W.; Morris, Richard V.; Atreya, Sushil K.
2013-01-01
Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise approx 20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000 C and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures < 500 C, and an evolution peak at higher temperatures near approx 750 C. The low temperature H2O evolution has many potential contributors, including adsorbed H2O, smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the approx 20% observed in the mudstone samples. This potential detection underscores the complementary nature of the MSL CheMin and SAM instruments for investigations of martian sample mineralogy. Information on the nature of Yellowknife Bay clay minerals may also be available from the detection of H2 evolved during SAM EGA-MS at high temperature. A likely source of at least some of this H2 is H2O evolved from the smectite clays at high temperature, and it is possible these evolutions can be used in a similar fashion to high temperature H2O releases to provide constraints on the clay minerals in a sample. In addition, the D/H of this high temperature H2, as well as the H2O, can be derived from SAM MS and Tunable Laser Spectrometer (TLS) data, respectively. These D/H values may help to inform the provenance of high and low temperature water evolved from martian samples
NASA Astrophysics Data System (ADS)
Borda, Michael J.; Elsetinow, Alicia R.; Schoonen, Martin A.; Strongin, Daniel R.
2001-09-01
The remarkable discovery of pyrite-induced hydrogen peroxide (H2O2) provides a key step in the evolution of oxygenic photosynthesis. Here we show that H2O2 can be generated rapidly via a reaction between pyrite and H2O in the absence of dissolved oxygen. The reaction proceeds in the dark, and H2O2 levels increase upon illumination with visible light. Since pyrite was stable in most photic environments prior to the rise of O2 levels, this finding represents an important mechanism for the formation of H2O2 on early Earth.
Schipper, Desmond E; Zhao, Zhenhuan; Leitner, Andrew P; Xie, Lixin; Qin, Fan; Alam, Md Kamrul; Chen, Shuo; Wang, Dezhi; Ren, Zhifeng; Wang, Zhiming; Bao, Jiming; Whitmire, Kenton H
2017-04-25
A variety of catalysts have recently been developed for electrocatalytic oxygen evolution, but very few of them can be readily integrated with semiconducting light absorbers for photoelectrochemical or photocatalytic water splitting. Here, we demonstrate an efficient core/shell photoanode with a highly active oxygen evolution electrocatalyst shell (FeMnP) and semiconductor core (rutile TiO 2 ) for photoelectrochemical oxygen evolution reaction. Metal-organic chemical vapor deposition from a single-source precursor was used to ensure good contact between the FeMnP and the TiO 2 . The TiO 2 /FeMnP core/shell photoanode reaches the theoretical photocurrent density for rutile TiO 2 of 1.8 mA cm -2 at 1.23 V vs reversible hydrogen electrode under simulated 100 mW cm -2 (1 sun) irradiation. The dramatic enhancement is a result of the synergistic effects of the high oxygen evolution reaction activity of FeMnP (delivering an overpotential of 300 mV with a Tafel slope of 65 mV dec -1 in 1 M KOH) and the conductive interlayer between the surface active sites and semiconductor core which boosts the interfacial charge transfer and photocarrier collection. The facile fabrication of the TiO 2 /FeMnP core/shell nanorod array photoanode offers a compelling strategy for preparing highly efficient photoelectrochemical solar energy conversion devices.
Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo
2016-01-01
We report a reaction apparatus developed to monitor singlet oxygen ((1)O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. (1)O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. (1)O2 concentrations in solution were linearly related to the emission intensities of airborne (1)O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an (1)O2 trapping agent. Products from (1)O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of (1)O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. (1)O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with (1)O2, evolution of methionine oxidation pathways at different ionization states and in different media is described.
NASA Astrophysics Data System (ADS)
Guo, B.; Su, J.; Li, Z. H.; Wang, Y. B.; Yan, S. Q.; Li, Y. J.; Shu, N. C.; Han, Y. L.; Bai, X. X.; Chen, Y. S.; Liu, W. P.; Yamaguchi, H.; Binh, D. N.; Hashimoto, T.; Hayakawa, S.; Kahl, D.; Kubono, S.; He, J. J.; Hu, J.; Xu, S. W.; Iwasa, N.; Kume, N.; Li, Z. H.
2013-01-01
The evolution of massive stars with very low-metallicities depends critically on the amount of CNO nuclides which they produce. The 12N(p,γ)13O reaction is an important branching point in the rap processes, which are believed to be alternative paths to the slow 3α process for producing CNO seed nuclei and thus could change the fate of massive stars. In the present work, the angular distribution of the 2H(12N, 13O)n proton transfer reaction at Ec.m.=8.4 MeV has been measured for the first time. Based on the Johnson-Soper approach, the square of the asymptotic normalization coefficient (ANC) for the virtual decay of 13Og.s. → 12N+p was extracted to be 3.92±1.47 fm-1 from the measured angular distribution and utilized to compute the direct component in the 12N(p,γ)13O reaction. The direct astrophysical S factor at zero energy was then found to be 0.39±0.15 keV b. By considering the direct capture into the ground state of 13O, the resonant capture via the first excited state of 13O and their interference, we determined the total astrophysical S factors and rates of the 12N(p,γ)13O reaction. The new rate is two orders of magnitude slower than that from the REACLIB compilation. Our reaction network calculations with the present rate imply that 12N(p,γ)13O will only compete successfully with the β+ decay of 12N at higher (˜2 orders of magnitude) densities than initially predicted.
NASA Astrophysics Data System (ADS)
Xie, Ying Peng; Liu, Gang; Lu, Gao Qing (Max); Cheng, Hui-Ming
2012-02-01
Here we show that B2O3-xNx nanoclusters can be formed on the surface of WO3 particles by a combination of thermal oxidation of tungsten boride (WB) in air and the subsequent nitriding process in gaseous ammonia. The resultant nanoclusters are found to play an apparent role in improving the photocatalytic oxygen evolution of WO3 by promoting the surface separation of photoexcited charge-carriers.Here we show that B2O3-xNx nanoclusters can be formed on the surface of WO3 particles by a combination of thermal oxidation of tungsten boride (WB) in air and the subsequent nitriding process in gaseous ammonia. The resultant nanoclusters are found to play an apparent role in improving the photocatalytic oxygen evolution of WO3 by promoting the surface separation of photoexcited charge-carriers. Electronic supplementary information (ESI) available: (1) Experimental section. (2) XRD patterns, FT-IR and Raman spectra of B2O3@WO3 and B2O3-xNx@WO3. (3) Time course of O2 evolution from water splitting using B2O3@WO3 and B2O3-xNx@WO3. (4) XRD pattern and SEM image of pure WO3, UV-visible absorption spectra of pure WO3 and N-WO3. (5) UV-visible absorption spectra of bulk B2O3 and schematic of band edges of WO3, bulk B2O3, and B2O3-xNx nanocluster. See DOI: 10.1039/c2nr11846g
NASA Astrophysics Data System (ADS)
Amano, Fumiaki; Tosaki, Ryosuke; Sato, Kyosuke; Higuchi, Yamato
2018-02-01
Crystalline defects of photocatalyst particles may be considered to be the recombination center of photoexcited electrons and holes. In this study, we investigated the photocatalytic activity of cation-doped rutile TiO2 photocatalysts for O2 evolution from an aqueous silver nitrate solution under ultraviolet light irradiation. The photocatalytic activity of rutile TiO2 was enhanced by donor doping of Ta5+ and Nb5+ with a valence higher than that of Ti4+, regardless of increased density of electrons and Ti3+ species (an electron trapped in Ti4+ sites). Conversely, acceptor doping of lower valence cations such as In3+ and Ga3+ decreased photocatalytic activity for O2 evolution by water oxidation. The doping of equal valence cations such as Sn4+ and Ge4+ hardly changed the activity of non-doped TiO2. This study demonstrates that Ti3+ species, which is a crystalline defect, enhanced the photocatalytic activity of semiconductor oxides, for example rutile TiO2 with large crystalline size.
Characterization and evaluation of cadmium indate photocatalysts for solar hydrogen conversion
NASA Astrophysics Data System (ADS)
Thornton, Jason M.
Alternative energy sources are needed to respond to the continued increase in the global energy needs and a potential decrease in the future supplies of fossil fuels. Solar hydrogen conversion in which sunlight is harnessed to split water into H2 fuel and O2 is a promising source of energy because it is renewable and produces no CO2. A number of semiconducting oxide materials have shown promise for overall water splitting for the generation of hydrogen over the years. In this work we focus on the synthesis and analysis of undoped and C-doped cadmium indate (CdIn2O 4) thin films and nanoparticle powders, and their evaluation for hydrogen evolution via water splitting. The catalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis, scanning electron microscopy (SEM), and BET surface adsorption measurements. Spray and sol-gel pyrolysis methods were used for the synthesis of the materials. Doping C into CdIn 2O4 leads to enhancement in light absorption and the band gap was determined to be 2.3 eV in the nanoparticle powders. Carbon doping improves the photocurrent density by 33% and the H2 evolution rate by a factor of two. The performance of C-doped CdIn2O4 were optimized with respect to several synthetic parameters, including the In:Cd molar ratio and glucose concentration, calcination temperature, and the film thickness while the nanoparticles were additionally optimized to F127 concentration and platinum cocatalyst loading. Hydrogen generation activity was evaluated under UV-visible irradiation without the use of a sacrificial reagent and using bandpass filters the quantum efficiency was determined. Compared to platinized TiO2 in methanol C-CdIn2O4 showed a 4-fold increase in hydrogen production. The material was capable of hydrogen generation using visible light only and with good efficiency even at 510 nm. Using natural sunlight illumination, the material evolved hydrogen at a rate of 17 micromol h-1. These studies show carbon-doped cadmium indate to be a promising catalyst for solar hydrogen conversion.
Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures
NASA Astrophysics Data System (ADS)
Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.
2015-12-01
The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.
NASA Astrophysics Data System (ADS)
Hu, Qianqian; Huang, Jiquan; Li, Guojing; Jiang, Yabin; Lan, Hai; Guo, Wang; Cao, Yongge
2016-09-01
Cu incorporated TiO2 has been regarded as a low-cost photocatalyst with excellent photocatalytic performance for water splitting. Here we try to exploit the origin of its high reactivity by fabricating a series of Cu incorporated TiO2 films with the same Cu content under different atmosphere. Based on the comprehensive structure and surface characterizations, it is found that CuO is unstable and will be reduced to Cu2O or even to metallic Cu under light irradiation during the photocatalytic reaction, and Cu2O is an efficient co-catalyst that promotes the separation of photogenerated carriers while metallic Cu can further boost the photocatalytic activity. Besides, it is also noticed that the chemisorbed oxygen on the particle surface blocks the water splitting. By depositing TiO2 films under oxygen rich condition, oxygen vacancy is decreased greatly, which facilitates the removal of chemisorbed oxygen and the formation of metallic Cu during photocatalytic reaction, resulting in an ultra-high H2 evolution rate of 2.80 μmol cm-2 h-1, which is about 55 times higher than that of pure TiO2.
Mechanisms and evolution of hypoxia tolerance in fish
Mandic, Milica; Todgham, Anne E.; Richards, Jeffrey G.
2008-01-01
The ability of an organism to acquire O2 from its environment is key to survival and can play an important role in dictating a species' ecological distribution. This study is the first, to our knowledge, to show a tight, phylogenetically independent correlation between hypoxia tolerance, traits involved in dictating O2 extraction capacity and the distribution of a group of closely related fish species, sculpins from the family Cottidae, along the nearshore marine environment. Sculpins with higher hypoxia tolerance, measured as low critical O2 tensions (Pcrit), inhabit the O2 variable intertidal zones, while species with lower hypoxia tolerance inhabit the more O2 stable subtidal zone or freshwater. Hypoxia tolerance is phylogenetically independently associated with an enhanced O2 extraction capacity, with three principal components accounting for 75 per cent of the variation in Pcrit: routine O2 consumption rate; mass-specific gill surface area; and whole blood haemoglobin (Hb)–O2-binding affinity (P50). Variation in whole blood Hb–O2 P50 is strongly correlated with the intrinsic O2-binding properties of the purified Hb while the differences in the concentration of the allosteric Hb modulators, ATP and GTP, provide a Hb system with substantial plasticity for survival in a highly O2 variable environment. PMID:18996831
Photochemical escape of oxygen from Mars: First results from MAVEN in situ data
NASA Astrophysics Data System (ADS)
Lillis, Robert J.; Deighan, Justin; Fox, Jane L.; Bougher, Stephen W.; Lee, Yuni; Combi, Michael R.; Cravens, Thomas E.; Rahmati, Ali; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; McFadden, James P.; Ergun, Robert. E.; Andersson, Laila; Fowler, Christopher M.; Jakosky, Bruce M.; Thiemann, Ed; Eparvier, Frank; Halekas, Jasper S.; Leblanc, François; Chaufray, Jean-Yves
2017-03-01
Photochemical escape of atomic oxygen is thought to be one of the dominant channels for Martian atmospheric loss today and played a potentially major role in climate evolution. Mars Atmosphere and Volatile Evolution Mission (MAVEN) is the first mission capable of measuring, in situ, the relevant quantities necessary to calculate photochemical escape fluxes. We utilize 18 months of data from three MAVEN instruments: Langmuir Probe and Waves, Neutral Gas and Ion Mass Spectrometer, and SupraThermal And Thermal Ion Composition. From these data, we calculate altitude profiles of the production rate of hot oxygen atoms from the dissociative recombination of O2+ and the probability that such atoms will escape the Mars atmosphere. From this, we determine escape fluxes for 815 periapsis passes. Derived average dayside hot O escape rates range from 1.2 to 5.5 × 1025 s-1, depending on season and EUV flux, consistent with several pre-MAVEN predictions and in broad agreement with estimates made with other MAVEN measurements. Hot O escape fluxes do not vary significantly with dayside solar zenith angle or crustal magnetic field strength but depend on CO2 photoionization frequency with a power law whose exponent is 2.6 ± 0.6, an unexpectedly high value which may be partially due to seasonal and geographic sampling. From this dependence and historical EUV measurements over 70 years, we estimate a modern-era average escape rate of 4.3 × 1025 s-1. Extrapolating this dependence to early solar system, EUV conditions gives total losses of 13, 49, 189, and 483 mbar of oxygen over 1-3 and 3.5 Gyr, respectively, with uncertainties significantly increasing with time in the past.
NASA Astrophysics Data System (ADS)
Hu, Shunxin; Wang, You; Wang, Ying; Zhao, Yan; Zhang, Xinxin; Zhang, Yongsheng; Jiang, Ming; Tang, Xuexi
2018-03-01
The present study was conducted to determine the effects of elevated pCO2 on growth, photosynthesis, dark respiration and inorganic carbon acquisition in the marine microalga Dunaliella salina. To accomplish this, D. salina was incubated in semi-continuous cultures under present-day CO2 levels (390 μatm, pHNBS: 8.10), predicted year 2100 CO2 levels (1 000 μatm, pHNBS: 7.78) and predicted year 2300 CO2 levels (2 000 μatm, pHNBS: 7.49). Elevated pCO2 significantly enhanced photosynthesis (in terms of gross photosynthetic O2 evolution, effective quantum yield (Δ F/ F' m ), photosynthetic efficiency ( α), maximum relative electron transport rate (rETRmax) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity) and dark respiration of D. salina, but had insignificant effects on growth. The photosynthetic O2 evolution of D. salina was significantly inhibited by the inhibitors acetazolamide (AZ), ethoxyzolamide (EZ) and 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), indicating that D. salina is capable of acquiring HCOˉ 3 via extracellular carbonic anhydrase and anion-exchange proteins. Furthermore, the lower inhibition of the photosynthetic O2 evolution at high pCO2 levels by AZ, EZ and DIDS and the decreased carbonic anhydrase showed that carbon concentrating mechanisms were down-regulated at high pCO2. In conclusion, our results show that photosynthesis, dark respiration and CCMs will be affected by the increased pCO2/low pH conditions predicted for the future, but that the responses of D. salina to high pCO2/low pH might be modulated by other environmental factors such as light, nutrients and temperature. Therefore, further studies are needed to determine the interactive effects of pCO2, temperature, light and nutrients on marine microalgae.
NASA Astrophysics Data System (ADS)
Hu, Shunxin; Wang, You; Wang, Ying; Zhao, Yan; Zhang, Xinxin; Zhang, Yongsheng; Jiang, Ming; Tang, Xuexi
2017-06-01
The present study was conducted to determine the effects of elevated pCO2 on growth, photosynthesis, dark respiration and inorganic carbon acquisition in the marine microalga Dunaliella salina. To accomplish this, D. salina was incubated in semi-continuous cultures under present-day CO2 levels (390 μatm, pHNBS: 8.10), predicted year 2100 CO2 levels (1 000 μatm, pHNBS: 7.78) and predicted year 2300 CO2 levels (2 000 μatm, pHNBS: 7.49). Elevated pCO2 significantly enhanced photosynthesis (in terms of gross photosynthetic O2 evolution, effective quantum yield (ΔF/F' m ), photosynthetic efficiency (α), maximum relative electron transport rate (rETRmax) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity) and dark respiration of D. salina, but had insignificant effects on growth. The photosynthetic O2 evolution of D. salina was significantly inhibited by the inhibitors acetazolamide (AZ), ethoxyzolamide (EZ) and 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), indicating that D. salina is capable of acquiring HCO3 - via extracellular carbonic anhydrase and anion-exchange proteins. Furthermore, the lower inhibition of the photosynthetic O2 evolution at high pCO2 levels by AZ, EZ and DIDS and the decreased carbonic anhydrase showed that carbon concentrating mechanisms were down-regulated at high pCO2. In conclusion, our results show that photosynthesis, dark respiration and CCMs will be affected by the increased pCO2/low pH conditions predicted for the future, but that the responses of D. salina to high pCO2/low pH might be modulated by other environmental factors such as light, nutrients and temperature. Therefore, further studies are needed to determine the interactive effects of pCO2, temperature, light and nutrients on marine microalgae.
A kinetic and thermodynamic understanding of O2 tolerance in [NiFe]-hydrogenases
Cracknell, James A.; Wait, Annemarie F.; Lenz, Oliver; Friedrich, Bärbel; Armstrong, Fraser A.
2009-01-01
In biology, rapid oxidation and evolution of H2 is catalyzed by metalloenzymes known as hydrogenases. These enzymes have unusual active sites, consisting of iron complexed by carbonyl, cyanide, and thiolate ligands, often together with nickel, and are typically inhibited or irreversibly damaged by O2. The Knallgas bacterium Ralstonia eutropha H16 (Re) uses H2 as an energy source with O2 as a terminal electron acceptor, and its membrane-bound uptake [NiFe]-hydrogenase (MBH) is an important example of an “O2-tolerant” hydrogenase. The mechanism of O2 tolerance of Re MBH has been probed by measuring H2 oxidation activity in the presence of O2 over a range of potential, pH and temperature, and comparing with the same dependencies for individual processes involved in the attack by O2 and subsequent reactivation of the active site. Most significantly, O2 tolerance increases with increasing temperature and decreasing potentials. These trends correlate with the trends observed for reactivation kinetics but not for H2 affinity or the kinetics of O2 attack. Clearly, the rate of recovery is a crucial factor. We present a kinetic and thermodynamic model to account for O2 tolerance in Re MBH that may be more widely applied to other [NiFe]-hydrogenases. PMID:19934053
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Sooyeon; Jo, Eunmi; Chung, Kyung Yoon
Ni-rich lithium transition metal oxides have received significant attention due to their high capacities and rate capabilities determined via theoretical calculations. Although the structural properties of these materials are strongly correlated with the electrochemical performance, their structural stability during the high-rate electrochemical reactions has not been fully evaluated yet. In this work, transmission electron microscopy is used to investigate the crystallographic and electronic structural modifications of Ni-based cathode materials at a high charge/discharge rate of 10 C. It is found that the high-rate electrochemical reactions induce structural inhomogeneity near the surface of Ni-rich cathode materials, which limits Li transport andmore » reduces their capacities. Furthermore, this study establishes a correlation between the high-rate electrochemical performance of the Ni-based materials and their structural evolution, which can provide profound insights for designing novel cathode materials having both high energy and power densities.« less
Hwang, Sooyeon; Jo, Eunmi; Chung, Kyung Yoon; ...
2017-11-08
Ni-rich lithium transition metal oxides have received significant attention due to their high capacities and rate capabilities determined via theoretical calculations. Although the structural properties of these materials are strongly correlated with the electrochemical performance, their structural stability during the high-rate electrochemical reactions has not been fully evaluated yet. In this work, transmission electron microscopy is used to investigate the crystallographic and electronic structural modifications of Ni-based cathode materials at a high charge/discharge rate of 10 C. It is found that the high-rate electrochemical reactions induce structural inhomogeneity near the surface of Ni-rich cathode materials, which limits Li transport andmore » reduces their capacities. Furthermore, this study establishes a correlation between the high-rate electrochemical performance of the Ni-based materials and their structural evolution, which can provide profound insights for designing novel cathode materials having both high energy and power densities.« less
Desulfurization kinetics of molten copper by gas bubbling
NASA Astrophysics Data System (ADS)
Fukunaka, Y.; Nishikawa, K.; Sohn, H. S.; Asaki, Z.
1991-02-01
Molten copper with 0.74 wt pct sulfur content was desulfurized at 1523 K by bubbling Ar-O2 gas through a submerged nozzle. The reaction rate was significantly influenced not only by the oxygen partial pressure but also by the gas flow rate. Little evolution of SO2 gas was observed in the initial 10 seconds of the oxidation; however, this was followed by a period of high evolution rate of SO2 gas. The partial pressure of SO2 gas decreased with further progress of the desulfurization. The effect of the immersion depth of the submerged nozzle was negligible. The overall reaction is decomposed to two elementary reactions: the desulfurization and the dissolution rate of oxygen. The assumptions were made that these reactions are at equilibrium and that the reaction rates are controlled by mass transfer rates within and around the gas bubble. The time variations of sulfur and oxygen contents in the melt and the SO2 partial pressure in the off-gas under various bubbling conditions were well explained by the mathematical model combined with the reported thermodynamic data of these reactions. Based on the present model, it was anticipated that the oxidation rate around a single gas bubble was mainly determined by the rate of gas-phase mass transfer, but all oxygen gas blown into the melt was virtually consumed to the desulfurization and dissolution reactions before it escaped from the melt surface.
NASA Astrophysics Data System (ADS)
He, Qinrong; Sun, Hang; Shang, Yinxing; Tang, Yanan; She, Ping; Zeng, Shan; Xu, Kongliang; Lu, Guolong; Liang, Song; Yin, Shengyan; Liu, Zhenning
2018-05-01
Solar energy conversion is an important field gaining increasing interest. Herein, bio-inspired Au@TiO2 yolk-shell nanoparticles (NPs) have been prepared via a facial one-pot hydrothermal approach. The Au@TiO2 yolk-shell NPs can self-assemble into 3D-structure to form photoelectrode for photoelectric conversion. The obtained photoelectrode demonstrates a swift and stable photocurrent of 3.5 μA/cm2, which is 4.2 and 1.6 times higher than those of the photocurrents generated by the counterparts of commercial TiO2 and Au@TiO2 core-shell NPs, respectively. Moreover, compared to the commercial TiO2 and Au@TiO2 core-shell NPs, the Au@TiO2 yolk-shell NPs also exhibit superior photocatalytic activity, delivering a H2 evolution rate of 4.92 mmol/g h. The performance improvement observed for the Au@TiO2 yolk-shell NPs is likely contributed by two synergistic factors, i.e. the incorporation of AuNPs and the unique hollow structure, which benefit the activity by simultaneously enhancing light utilization, charge separation and reaction site accessibility. The rational design and fabrication of Au@TiO2 yolk-shell NPs hold great promise for future application in efficient solar energy conversion.
Feng, Ningning; Mu, Xiaowei; Zheng, Mingbo; Wang, Chaoqiang; Lin, Zixia; Zhang, Xueping; Shi, Yi; He, Ping; Zhou, Haoshen
2016-09-09
Aprotic Li-O2 batteries have attracted a huge amount of interest in the past decade owing to their extremely high energy density. However, identifying a desirable cathodic catalyst for this promising battery system is one of the biggest challenges at present. In this work, a multi-layered Fe2O3/graphene nanosheets (Fe2O3/GNS) composite with sandwich structure was synthesized using an easy thermal casting method, and served as a cathodic catalyst for aprotic Li-O2 batteries. The aprotic Li-O2 cell with the Fe2O3/GNS catalyst demonstrated a better reversibility, lower overpotential for oxygen evolution, and a higher Coulombic efficiency (close to 100%) than those of pure GNS. An excellent rate performance and good cycle stability were also confirmed. The results, characterized by ex and in situ methods, revealed that the dominant discharge product Li2O2 was decomposed below 4.35 V. This superior electrochemical performance is mainly attributed to the unique sandwich structure of the Fe2O3/GNS catalyst with mesopores, which can provide substantially more catalytic sites and prevent direct contact between carbon and Li2O2.
Ye, Lin; Wen, Zhenhai
2018-06-14
We report the fabrication of self-supported Cu/Cu2O-CuO/rGO nanowire arrays on commercial porous copper foam, which exhibit excellent activity and durability for electrochemical hydrogen evolution, presenting a small onset potential of 84 mV and a low overpotential of 105 mV at a current density of 10 mA cm-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Ailan, E-mail: elainqal@163.com; Xu, Xinmei; Xie, Haolong
Highlights: • TiO{sub 2} promotes melon to form at 400 °C, whereas it forms at 500 °C for only melamine. • The highest photocatalytic activity was achieved when calcination was performed at 400 °C. • Coordinated N−Ti−N bonds were formed in MA/TiO{sub 2} (400) and disappeared at high temperature. • The surface area decreased and the pore size increased with increasing of temperature. • Only MA/TiO{sub 2} (400) has a narrower band gap than pure g-C{sub 3}N{sub 4}. - Abstract: A composite of graphitic carbon nitride and TiO{sub 2} (g-C{sub 3}N{sub 4}/TiO{sub 2}) with enhanced photocatalytic hydrogen evolution capacity wasmore » achieved by calcining melamine and TiO{sub 2} sol-gel precursor. Characterization results reveal that heating temperature had a great influence on the structure, surface area and properties of the composites. Compared with the polycondensation of pure melamine, the presence of TiO{sub 2} precursor can promote the formation of melon at a low temperature. The highest photocatalytic activity of g-C{sub 3}N{sub 4}/TiO{sub 2}(400) was achieved when the calcination was performed at 400 °C, exhibiting H{sub 2} production rate of 76.25 μmol/h under UV–vis light irradiation (λ > 320 nm) and 35.44 μmol/h under visible light irradiation (λ > 420 nm). The highest photocatalytic performance of g-C{sub 3}N{sub 4}/TiO{sub 2}(400) can be attributed to: (1) the strong UV–vis light absorption due to the narrow bandgap caused by synergic effect of TiO{sub 2} and g-C{sub 3}N{sub 4}, (2) high surface area and porosity, (3) the effective separation of photo-generated electron-holes owing to the favorable heterojunction between TiO{sub 2} and g-C{sub 3}N{sub 4}.« less
Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution
NASA Astrophysics Data System (ADS)
Amirfakhri, Seyed Javad; Meunier, Jean-Luc; Berk, Dimitrios
2014-12-01
The catalytic activity of LaNiO3 toward H2O2 reduction reaction (HPRR), with a potential application in the cathode side of fuel cells, is studied in alkaline, neutral and acidic solutions by rotating disk electrode. The LaNiO3 particles synthesised by citrate-based sol-gel method have sizes between 30 and 70 nm with an active specific surface area of 1.26 ± 0.05 m2 g-1. LaNiO3 shows high catalytic activity toward HPRR in 0.1 M KOH solution with an exchange current density based on the active surface area (j0A) of (7.4 ± 1) × 10-6 A cm-2 which is noticeably higher than the j0A of N-doped graphene. The analysis of kinetic parameters suggests that the direct reduction of H2O2, H2O2 decomposition, O2 reduction and O2 desorption occur through HPRR on this catalyst. In order to control and minimize oxygen evolution from the electrode surface, the effects of catalyst loading, bulk concentration of H2O2, and using a mixture of LaNiO3 and N-doped graphene are studied. Although the mechanism of HPRR is independent of the aforementioned operating conditions, gas evolution decreases by increasing the catalyst loading, decreasing the bulk concentration of H2O2, and addition of N-doped graphene to LaNiO3.
Riisgård, Frederik Kier; Gunther, William Stuart; Lønsmann Iversen, Jens Jørgen
2006-01-01
Growth of the green algae Chlamydomonas reinhardtii and Chlorella sp. in batch cultures was investigated in a novel gas-tight photobioreactor, in which CO2, H2, and N2 were titrated into the gas phase to control medium pH, dissolved oxygen partial pressure, and headspace pressure, respectively. The exit gas from the reactor was circulated through a loop of tubing and re-introduced into the culture. CO2 uptake was estimated from the addition of CO2 as acidic titrant and O2 evolution was estimated from titration by H2, which was used to reduce O2 over a Pd catalyst. The photosynthetic quotient, PQ, was estimated as the ratio between O2 evolution and CO2 up-take rates. NH4+, NO2−, or NO3− was the final cell density limiting nutrient. Cultures of both algae were, in general, characterised by a nitrogen sufficient growth phase followed by a nitrogen depleted phase in which starch was the major product. The estimated PQ values were dependent on the level of oxidation of the nitrogen source. The PQ was 1 with NH4+ as the nitrogen source and 1.3 when NO3− was the nitrogen source. In cultures grown on all nitrogen sources, the PQ value approached 1 when the nitrogen source was depleted and starch synthesis became dominant, to further increase towards 1.3 over a period of 3–4 days. This latter increase in PQ, which was indicative of production of reduced compounds like lipids, correlated with a simultaneous increase in the degree of reduction of the biomass. When using the titrations of CO2 and H2 into the reactor headspace to estimate the up-take of CO2, the production of O2, and the PQ, the rate of biomass production could be followed, the stoichiometrical composition of the produced algal biomass could be estimated, and different growth phases could be identified. PMID:19396354
Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Malisch, Jessica L; Garland, Theodore
2005-06-01
Selective breeding for high wheel-running activity has generated four lines of laboratory house mice (S lines) that run about 170% more than their control counterparts (C lines) on a daily basis, mostly because they run faster. We tested whether maximum aerobic metabolic rates (V(O2max)) have evolved in concert with wheel-running, using 48 females from generation 35. Voluntary activity and metabolic rates were measured on days 5+6 of wheel access (mimicking conditions during selection), using wheels enclosed in metabolic chambers. Following this, V(O2max) was measured twice on a motorized treadmill and twice during cold-exposure in a heliox atmosphere (HeO2). Almost all measurements, except heliox V(O2max), were significantly repeatable. After accounting for differences in body mass (S < C) and variation in age at testing, S and C did not differ in V(O2max) during forced exercise or in heliox, nor in maximal running speeds on the treadmill. However, running speeds and V(O2max) during voluntary exercise were significantly higher in S lines. Nevertheless, S mice never voluntarily achieved the V(O2max) elicited during their forced treadmill trials, suggesting that aerobic capacity per se is not limiting the evolution of even higher wheel-running speeds in these lines. Our results support the hypothesis that S mice have genetically higher motivation for wheel-running and they demonstrate that behavior can sometimes evolve independently of performance capacities. We also discuss the possible importance of domestication as a confounding factor to extrapolate results from this animal model to natural populations.
Raven, John A.; Giordano, Mario; Beardall, John; Maberly, Stephen C.
2012-01-01
Oxygenic photosynthesis evolved at least 2.4 Ga; all oxygenic organisms use the ribulose bisphosphate carboxylase-oxygenase (Rubisco)–photosynthetic carbon reduction cycle (PCRC) rather than one of the five other known pathways of autotrophic CO2 assimilation. The high CO2 and (initially) O2-free conditions permitted the use of a Rubisco with a high maximum specific reaction rate. As CO2 decreased and O2 increased, Rubisco oxygenase activity increased and 2-phosphoglycolate was produced, with the evolution of pathways recycling this inhibitory product to sugar phosphates. Changed atmospheric composition also selected for Rubiscos with higher CO2 affinity and CO2/O2 selectivity correlated with decreased CO2-saturated catalytic capacity and/or for CO2-concentrating mechanisms (CCMs). These changes increase the energy, nitrogen, phosphorus, iron, zinc and manganese cost of producing and operating Rubisco–PCRC, while biosphere oxygenation decreased the availability of nitrogen, phosphorus and iron. The majority of algae today have CCMs; the timing of their origins is unclear. If CCMs evolved in a low-CO2 episode followed by one or more lengthy high-CO2 episodes, CCM retention could involve a combination of environmental factors known to favour CCM retention in extant organisms that also occur in a warmer high-CO2 ocean. More investigations, including studies of genetic adaptation, are needed. PMID:22232762
Dasmeh, Pouria; Kepp, Kasper P
2012-01-01
This work merges a large set of previously reported thermochemical data for myoglobin (Mb) mutants with a physiological model of O(2)-transport and -storage. The model allows a quantification of the functional proficiency of myoglobin (Mb) mutants under various physiological conditions, i.e. O(2)-consumption rate resembling workload, O(2) partial pressure resembling hypoxic stress, muscle cell size, and Mb concentration, resembling different organism-specific and compensatory variables. We find that O(2)-storage and -transport are distinct functions that rank mutants and wild type differently depending on O(2) partial pressure. Specifically, the wild type is near-optimal for storage at all conditions, but for transport only at severely hypoxic conditions. At normoxic conditions, low-affinity mutants are in fact better O(2)-transporters because they still have empty sites for O(2), giving rise to a larger [MbO(2)] gradient (more varying saturation curve). The distributions of functionality reveal that many mutants are near-neutral with respect to function, whereas only a few are strongly affected, and the variation in functionality increases dramatically at lower O(2) pressure. These results together show that conserved residues in wild type (WT) Mb were fixated under a selection pressure of low P(O2). Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xiaoyun; Hu, Haihua; Xu, Lingbo; Cui, Can; Qian, Degui; Li, Shuang; Zhu, Wenzhe; Wang, Peng; Lin, Ping; Pan, Jiaqi; Li, Chaorong
2018-05-01
Artificial Z-scheme system inspired by the natural photosynthesis in green plants has attracted extensive attention owing to its advantages such as simultaneously wide range light absorption, highly efficient charge separation and strong redox ability. In this paper, we report the synthesis of a novel all-solid-state direct Z-scheme photocatalyst of Ag3PO4/CeO2/TiO2 by depositing Ag3PO4 nanoparticles (NPs) on CeO2/TiO2 hierarchical branched nanowires (BNWs), where the CeO2/TiO2 BNWs act as a novel substrate for the well dispersed nano-size Ag3PO4. The Ag3PO4/CeO2/TiO2 photocatalyst exhibits excellent ability of photocatalytic oxygen evolution from pure water splitting. It is suggested that the Z-scheme charge transfer route between CeO2/TiO2 and Ag3PO4 improves the redox ability. On the other hand, the cascade energy level alignment in CeO2/TiO2 BNWs expedites the spatial charge separation, and hence suppresses photocatalytic backward reaction. However, it is difficult to realize a perfect excitation balance in Ag3PO4/CeO2/TiO2 and the composite still surfers photo-corrosion in photocatalysis reaction. Nevertheless, our results provide an innovative strategy of constructing a Z-scheme system from a type-II heterostructure and a highly efficient oxygen evolution catalyst.
Calcium manganese(IV) oxides: biomimetic and efficient catalysts for water oxidation.
Najafpour, Mohammad Mahdi; Pashaei, Babak; Nayeri, Sara
2012-04-28
CaMnO(3) and Ca(2)Mn(3)O(8) were synthesized and characterized by SEM, XRD, FTIR and BET. Both oxides showed oxygen evolution activity in the presence of oxone, cerium(IV) ammonium nitrate and H(2)O(2). Oxygen evolution from water during irradiation with visible light (λ > 400 nm) was also observed upon adding these manganese oxides to an aqueous solution containing tris(2,2'-bipyridyl) ruthenium(II), as photosensitizer, and chloro pentaammine cobalt(III) chloride, as electron acceptor, in an acetate buffer. The amounts of dissolved manganese and calcium from CaMnO(3) and Ca(2)Mn(3)O(8) in the oxygen evolving reactions were reported and compared with other (calcium) manganese oxides. Proposed mechanisms of oxygen evolution and proposed roles for the calcium ions are also considered. This journal is © The Royal Society of Chemistry 2012
Volcanologic and petrologic evolution of Antuco-Sierra Velluda, Southern Andes, Chile
NASA Astrophysics Data System (ADS)
Martínez, Paola; Singer, Brad S.; Roa, Hugo Moreno; Jicha, Brian R.
2018-01-01
The Andean Southern Volcanic Zone comprises > 30 active arc front volcanoes that grew over periods of hundreds of thousands of years. Quantifying the rates at which these volcanoes grow is key to appreciating geological hazards, clarifying petrologic evolution, and exploring possible relationships between volcanism, ice loading, and climate. The integration of precise geochronology and geologic mapping, together with new lava compositions and volume estimates, reveal the evolution of the Antuco-Sierra Velluda volcanic complex at 37.2°S. Thirty-one new 40Ar/39Ar age determinations illuminate a punctuated eruptive history that spans at least 430 kyr. Sierra Velluda comprises 130 km3 and began to grow prior to 426.8 ka. A lacuna in the volcanic record between 343.5 and 150.4 ka coincides with glaciations associated with marine isotope stages (MIS) 10 and 8, although shallow intrusions were emplaced at 207.0 and 190.0 ka. Antuco began to grow rapidly on the northeast flank of Sierra Velluda, erupting > 60 km3 of lava during three phases: (1) an early phase that began at 150.4 ka, (2) a post-MIS 2 phase between 16.3 and 6.2 ka, and (3) a post-sector collapse phase after 6.2 ka. Volcanism has been continuous during the last 100 kyr, with an average rate of cone growth during this period of 0.46 km3/kyr that has accelerated by about 50% during the past 6 kyr. Whereas Sierra Velluda erupted basaltic andesitic to andesitic (53.5 to 58.7 wt% SiO2) lavas, during the last expansion of glaciers between 130 and 17 ka, Early Antuco erupted a wider spectrum of lavas, ranging from basaltic andesite to dacite (52.0 to 64.5 wt% SiO2). Notably, eruptions following the last glacial termination at 17 ka produced basalts and basaltic andesites (50.9-53.7% SiO2), and following the 6.2 ka cone collapse they have been exclusively olivine basalt (50.9-53.0% SiO2) with > 5 wt% MgO. Thermodynamic and trace element modeling suggests that lavas from Sierra Velluda and Early Antuco reflect extensive fractional crystallization of parental basaltic magmas with low water content ( 1 wt%) at pressures between 0.9 and 1.5 kbar. In contrast, eruptions following rapid deglaciation tapped asthenospheric mantle-derived basalt that has been extensively modified by assimilation of partial melts of lower crustal rocks. A-2 Geochemical data (XRF-Replicates). A-3 Geochemical data (ICP-MS: International Standards).
One- or two-electron water oxidation, hydroxyl radical, or H 2O 2 evolution
Siahrostami, Samira; Li, Guo -Ling; Viswanathan, Venkatasubramanian; ...
2017-02-23
Electrochemical or photoelectrochemcial oxidation of water to form hydrogen peroxide (H 2O 2) or hydroxyl radicals (•OH) offers a very attractive route to water disinfection, and the first process could be the basis for a clean way to produce hydrogen peroxide. A major obstacle in the development of effective catalysts for these reactions is that the electrocatalyst must suppress the thermodynamically favored four-electron pathway leading to O 2 evolution. Here, we develop a thermochemical picture of the catalyst properties that determine selectivity toward the one, two, and four electron processes leading to •OH, H 2O 2, and O 2.
Rate Coefficient for Collisional Removal of O2(X3Σ ^-g, v = 1) with O Atoms at 240 K
NASA Astrophysics Data System (ADS)
Pejaković, D. A.; Campbell, Z.; Kalogerakis, K. S.; Copeland, R. A.; Slanger, T. G.
2004-12-01
Knowledge of the water concentration profile is key to understanding of the chemistry and energy flow in the stratosphere and mesosphere. One of the tasks of the SABER instrument in NASA's TIMED mission is to measure water vapor concentration by detecting H2O(ν 2) emission in the 6.8 μ m region. An important source of the H2O(ν 2) emission is the collisional deactivation of vibrationally excited O2: O2(X3Σ ^-g, v = 1) + H2O <-> O2(X3Σ ^-g, v = 0) + H2O(ν 2). For reliable interpretation of the SABER data it is crucial to determine rate coefficient for the competing process: O2(X3Σ ^-g, v = 1) + O(3P) -> O2(X3Σ ^-g, v = 0) + O(3P) [1]. Laboratory measurements are reported of the rate coefficient for collisional removal of O2(X3Σ ^-g, v = 1) by O(3P) at a temperature of 240 K, relevant to the upper mesosphere. Instead of directly detecting the O2(X3Σ ^-g, v = 1) population, a novel, technically simpler, approach is used in which the v = 1 level of the O2(a1Δ g) state is monitored. With ground-state O2 present, owing to the rapid equilibration of the O2(X3Σ ^-g, v = 1) and O2(a1Δ g, v = 1) populations via the processes O2(a1Δ g, v = 1) + O2(X3Σ ^-g, v = 0) <-> O2(a1Δ g, v = 0) + O2(X3Σ ^-g, v = 1), the information on the O2(X3Σ ^-g, v = 1) kinetics is extracted from the O2(a1Δ g, v = 1) temporal evolution. A two-laser method is employed, in which the pulsed output of the first laser near 285 nm photodissociates ozone to produce atomic oxygen and O2(a1Δ g, v = 1), and the pulsed output of the second laser detects O2(a1Δ g, v = 1) via the resonance-enhanced multiphoton ionization. In the same experiment, rate coefficients for removal of O2(a1Δ g, v = 1) with the atmospherically relevant colliders O2, CO2, and O also were measured at room temperature and 240 K. The measured rate coefficient for O2(X3Σ ^-g, v = 1) removal by O(3P) is in the range 2--3 × 10-12 cm3s-1 at 240 K, compared to the recently measured room temperature value of about 3 × 10-12 cm3s-1 [2]. Interestingly, removal of O2(a1Δ g, v = 1) by O(3P) is about five times less efficient than removal of O2(X3Σ ^-g, v = 1). The rate coefficient for O2(a1Δ g, v = 1) removal by O2 is in the range 5--6 × 10-11 cm3s-1 and is nearly temperature independent in the region 296--240 K. The removal by CO2 is about 3000 times slower than removal by O2 and nearly independent on temperature. Implications of the results for atmospheric modeling will be discussed. This work is supported by the NASA Geospace Sciences Program under grant NAG5-13002. Participation of Z. Campbell was made possible through the NSF Research Experience for Undergraduates Program under grant PHY-0353745. [1] M. G. Mlynczak, D. K. Zhou, M. Lopez-Puertas, G. Zaragoza, and J. M. Russell, Geophys. Res. Lett. 26, 63 (1999). [2] Konstantinos S. Kalogerakis, Richard A. Copeland, and Tom G. Slanger, Eos. Trans. AGU 82(47), Fall Meet. Suppl., Abstract SA41B-0728, 2001.
Tatsumi, Hiroyuki; Teramura, Kentaro; Huang, Zeai; Wang, Zheng; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka, Tsunehiro
2017-12-12
Modification of the surface of Ga 2 O 3 with rare-earth elements enhanced the evolution of CO as a reduction product in the photocatalytic conversion of CO 2 using H 2 O as an electron donor under UV irradiation in aqueous NaHCO 3 as a pH buffer, with the rare-earth species functioning as a CO 2 capture and storage material. Isotope experiments using 13 CO 2 as a substrate clearly revealed that CO was generated from the introduced gaseous CO 2 . In the presence of the NaHCO 3 additive, the rare-earth (RE) species on the Ga 2 O 3 surface are transformed into carbonate hydrates (RE 2 (CO 3 ) 3 ·nH 2 O) and/or hydroxycarbonates (RE 2 (OH) 2(3-x) (CO 3 ) x ) which are decomposed upon photoirradiation. Consequently, Ag-loaded Yb-modified Ga 2 O 3 exhibits much higher activity (209 μmol h -1 of CO) than the pristine Ag-loaded Ga 2 O 3 . The further modification of the surface of the Yb-modified Ga 2 O 3 with Zn afforded a selectivity toward CO evolution of 80%. Thus, we successfully achieved an efficient Ag-loaded Yb- and Zn-modified Ga 2 O 3 photocatalyst with high activity and controllable selectivity, suitable for use in artificial photosynthesis.
Space-time patterns of trends in stratospheric constituents derived from UARS measurements
NASA Astrophysics Data System (ADS)
Randel, William J.; Wu, Fei; Russell, James M.; Waters, Joe
1999-02-01
The spatial and temporal behavior of low-frequency changes (trends) in stratospheric constituents measured by instruments on the Upper Atmosphere Research Satellite (UARS) during 1991-98 is investigated. The data include CH4, H2O, HF, HCl, O3, and NO2 from the Halogen Occultation Experiment (HALOE), and O3, ClO, and HNO3 from the Microwave Limb Sounder (MLS). Time series of global anomalies are analyzed by linear regression and empirical orthogonal function analysis. Each of the constituents show significant linear trends over at least some region of the stratosphere, and the spatial patterns exhibit coupling between the different species. Several of the constituents (namely CH4, H2O, HF, HCl, O3, and NO2) exhibit a temporal change in trend rates, with strong changes prior to 1996 and weaker (or reversed) trends thereafter. Positive trends are observed in upper stratospheric ClO, with a percentage rate during 1993-97 consistent with stratospheric HCl increases and with tropospheric chlorine emission rates. Significant negative trends in ozone in the tropical middle stratosphere are found in both HALOE and MLS data during 1993-97, together with positive trends in the tropics near 25 km. These trends are very different from the decadal-scale ozone trends observed since 1979, and this demonstrates the variability of trends calculated over short time periods. Positive trends in NO2 are found in the tropical middle stratosphere, and spatial coincidence to the observed ozone decreases suggests the ozone is responding to the NO2 increase. Significant negative trends in HNO3 are found in the lower stratosphere of both hemispheres. These coupled signatures offer a fingerprint of chemical evolution in the stratosphere for the UARS time frame.
NASA Astrophysics Data System (ADS)
Li, Songzhan; Chen, Tian; Wen, Jian; Gui, Pengbin; Fang, Guojia
2017-11-01
Transition metal sulfide nanostructure composites have received significant attention as energy conversion and storage devices. In this work, we report a three-dimension (3D) nanostructure with the Ni9S8 nanorods embedded in oxygen-incorporated MoS2 (O-MoS2) nanosheets for supercapacitors and hydrogen evolution catalysts. The in situ grown Ni9S8/O-MoS2 nanocomposite on carbon cloth can be used as a free binder supercapacitor electrode and hydrogen evolution catalyst. The Ni9S8/O-MoS2 nanocomposite exhibits electrochemical behaviors with a specific capacitance of 907 F g-1 (at 2 A g-1) and good cycle stability after 1200 cycles due to its unique mutual embedding 3D nanostructure. Furthermore, the Ni9S8/O-MoS2 nanocomposite also shows highly electrocatalytic features for hydrogen production with an onset overpotential of ˜150 mV and a low Tafel slope of ˜81 mV dec-1. The oxygen incorporation of MoS2 provides more active sites to participate in the catalytic process for the hydrogen evolution reaction.
Enhanced, robust light-driven H 2 generation by gallium-doped titania nanoparticles
Luo, Si; Nguyen-Phan, Thuy-Duong; Vovchok, Dimitriy; ...
2017-12-14
The splitting of water into molecular hydrogen and oxygen with the use of renewable solar energy is considered one of the most promising routes to yield sustainable fuel. In this paper, we report the H 2 evolution performance of gallium doped TiO 2 photocatalysts with varying degrees of Ga dopant. The gallium(III) ions induced significant changes in the structural, textural and electronic properties of TiO 2 nanoparticles, resulting in remarkably enhanced photocatalytic activity and good stability for H 2 production. Ga 3+ ions can act as hole traps that enable a large number of excited electrons to migrate towards themore » TiO 2 surface, thereby facilitating electron transfer and charge separation. Additionally, the cationic dopant and its induced defects might introduce a mid-gap state, promoting electron migration and prolonging the lifetime of charge carrier pairs. We have discovered that the optimal Ga dopant concentration was 3.125 at% and that the incorporation of platinum (0.5 wt%) as a co-catalyst further improved the H 2 evolution rate up to 5722 μmol g -1 h -1. Pt not only acts as an electron sink, drastically increasing the electron/hole pair lifetime, but it also creates an intimate contact at the heterojunction between Pt and Ga-TiO 2, thus improving the interfacial electron transfer process. Finally, these catalyst design strategies provide new ways of designing transition metal photocatalysts that improve green fuel production from renewable solar energy and water.« less
NASA Astrophysics Data System (ADS)
Rekhila, G.; Trari, M.; Bessekhouad, Y.
2017-06-01
The spinel ZnFe2O4 prepared by nitrate route is used as dispersed photons collector capable to sensitize TiO2 under visible light and to reduce Cr(VI) into trivalent state. The transport properties, optical and photo-electrochemical characterizations are correlated, to build the energetic diagram of the hetero-system ZnFe2O4/TiO2/CrO4 - solution. A gap of 1.97 eV is obtained for the spinel from the diffuse reflectance. The conduction band of ZnFe2O4 (-1.47 V SCE) favors the electrons injection into TiO2, permitting a physical separation of the charge carriers. The oxidation of oxalic acid by photoholes prevents the corrosion of the spinel. The best configuration ZnFe2O4 (75 %)/TiO2 (25 %) is used to catalyze the downhill reaction (2HCrO4 - + 3C2H4O4 + 1.5O2 + 8H+ → 2Cr3+ + 6CO2 + 11 H2O, Δ G° = -557 kcal mol-1). 60 % of Cr(VI) are reduced after 3 h of visible light illumination and the photoactivity follows a first-order kinetic with a half-life of 70 min. The water reduction competes with the HCrO4 - reduction which is the reason in the regression of the photoactivity; a hydrogen evolution rate of 24 µmol mg-1 h-1 is obtained.
Slesak, Ireneusz; Slesak, Halina; Kruk, Jerzy
2012-08-01
In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O(2), reactive oxygen species (ROS), among them hydrogen peroxide (H(2)O(2)), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O(2) appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O(2) and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O(2)-and H(2)O(2)-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O(2)-and H(2)O(2)-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H(2)O(2) and O(2) should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O(2)/H(2)O(2) was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment.
NASA Astrophysics Data System (ADS)
Sun, Hui; Dong, Bohua; Su, Ge; Gao, Rongjie; Liu, Wei; Song, Liang; Cao, Lixin
2015-09-01
TiO2 nanotubes (TNT) crystallized at different temperatures were loaded with WO3 hydrate through the reaction between (NH4)6W7O24·6H2O and an aqueous solution of HCl. The photocatalytic activities of nanocomposites firstly increase and then decrease as a function of the crystallized temperature of the TNT precursor. The structural, morphologic and optical properties of WO3/TiO2 nanocomposites were also investigated in this study. The samples, initially anatase titania (573 K-773 K), presented phase transition to rutile titania at 873 K. With the crystallized temperature increasing, an evolution of samples morphology changing from nanotube-like structure to nanorod-like structure was observed. Meanwhile, the absorption edge of samples exhibited a red shift, and correspondingly their band gap decreased. Consistent with x-ray diffraction diffractograms, the existence of rutile titania as an impurity in the precursor TNT, crystallized at higher than 873 K, depressed photocatalytic activity evidently. As a result, the degradation rate of methyl orange (MO) increased with the samples crystallinity firstly, and then reduced due to the appearance of rutile titania. In our experimental conditions, the optimal photocatalytic activity was achieved for the sample crystalized at 773 K. Its degradation rate could reach 98.76% after 90 min UV light irradiation.
The Kinetics of Oxygen Atom Recombination in the Presence of Carbon Dioxide
NASA Astrophysics Data System (ADS)
Jamieson, C. S.; Garcia, R. M.; Pejakovic, D.; Kalogerakis, K.
2009-12-01
Understanding processes involving atomic oxygen is crucial for the study and modeling of composition, energy transfer, airglow, and transport dynamics in planetary atmospheres. Significant gaps and uncertainties exist in the understanding of these processes and often the relevant input from laboratory measurements is missing or outdated. We are conducting laboratory experiments to measure the rate coefficient for O + O + CO2 recombination and investigating the O2 excited states produced following the recombination. These measurements will provide key input for a quantitative understanding and reliable modeling of the atmospheres of the CO2 planets and their airglow. An excimer laser providing pulsed output at either 193 nm or 248 nm is employed to produce O atoms by dissociating carbon dioxide, nitrous oxide, or ozone. In an ambient-pressure background of CO2, O atoms recombine in a time scale of a few milliseconds. Detection of laser-induced fluorescence at 845 nm following two-photon excitation near 226 nm monitors the decay of the oxygen atom population. From the temporal evolution of the signal the recombination rate coefficient is extracted. Fluorescence spectroscopy is used to detect the products of O-atom recombination and subsequent relaxation in CO2. This work is supported by the US National Science Foundation’s (NSF) Planetary Astronomy Program. Rosanne Garcia’s participation was funded by the NSF Research Experiences for Undergraduates (REU) Program.
NASA Technical Reports Server (NTRS)
Archer, P. D., Jr.; Franc, H. B.; Sutter, B.; McAdam, A.; Ming, D. W.; Morris, R. V.; Mahaffy, P. R.
2013-01-01
The Sample Analysis at Mars (SAM) instrument suite on board the Mars Science Laboratory (MSL) recently ran four samples from an aeolian bedform named Rocknest. SAM detected the evolution of H2O, CO2, O2, and SO2, indicative of the presence of multiple volatile bearing species (Fig 1). The Rocknest bedform is a windblown deposit selected as representative of both the windblown material in Gale crater as well as the globally-distributed martian dust. Four samples of Rocknest material were analyzed by SAM, all from the fifth scoop taken at this location. The material delivered to SAM passed through a 150 m sieve and is assumed to have been well mixed during the sample acquisition/preparation/handoff process. SAM heated the Rocknest samples to approx.835 C at a ramp rate of 35 C/min with a He carrier gas flow rate of apprx.1.5 standard cubic centimeters per minute and at an oven pressure of 30 mbar [1]. Evolved gases were detected by a quadrupole mass spectrometer (QMS). This abstract presents the molar abundances of H2O, CO2, O2, and SO2 as well as their concentration in rocknest samples using an estimated sample mass.
The evolution of C/O in dwarf galaxies from Hubble Space Telescope FOS observations
NASA Technical Reports Server (NTRS)
Garnett, D. R.; Skillman, E. D.; Dufour, R. J.; Peimbert, M.; Torres-Peimbert, S.; Terlevich, R.; Terlevich, E.; Shields, G. A.
1995-01-01
We present UV observations of seven H II regions in low-luminosity dwarf irregular galaxies and the Magellanic Clouds obtained with the Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST) in order to measure the C/O abundance ratio in the interstellar medium (ISM) of those galaxies. We measure both O III 1666 A and C III 1909 A in our spectra, enabling us to determine C(+2)/O(+2) with relatively small uncertainties. The results from our HST observations show a continuous increase in C/O with increasing O/H, consistent with a power law having an index of 0.43 +/- 0.09 over the range -4.7 to -3.6 in log (O/H). One possible interpretation of this trend is that the most metal-poor galaxies are the youngest and dominated by the products of early enrichment by massive stars, while more metal-rich galaxies show increasing, delayed contributions of carbon from intermediate-mass stars. Our results also suggest that it may not be appropiate to combine abundances in irregular galaxies with those in spiral galaxies to study the evolution of chemical abundances. Our measured C/O ratios in the most metal-poor galaxies are consistent with predictions of nucleosynthesis from massive stars for Weaver & Woosley's best estimate for the 12C(alpha, gamma) 16O nuclear reaction rate, assuming negligible contanmination from carbon produced in intermediate-mass stars in these galaxies. We detect a weak N III 1750 A multiplet in SMC N88A and obtain interesting upper limits for two other objects. Our 2 sigma uppr limits on the 1750 A feature indicate that the N(+2)/O(+2) ratios in these objects are not significantly larger than the N(+)/O(+) ratios measured from optical spectra. This behavior is consistent with predictions of photionization models, although better detections of N III are needed to confirm the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Si; Nguyen-Phan, Thuy-Duong; Vovchok, Dimitriy
The splitting of water into molecular hydrogen and oxygen with the use of renewable solar energy is considered one of the most promising routes to yield sustainable fuel. In this paper, we report the H 2 evolution performance of gallium doped TiO 2 photocatalysts with varying degrees of Ga dopant. The gallium(III) ions induced significant changes in the structural, textural and electronic properties of TiO 2 nanoparticles, resulting in remarkably enhanced photocatalytic activity and good stability for H 2 production. Ga 3+ ions can act as hole traps that enable a large number of excited electrons to migrate towards themore » TiO 2 surface, thereby facilitating electron transfer and charge separation. Additionally, the cationic dopant and its induced defects might introduce a mid-gap state, promoting electron migration and prolonging the lifetime of charge carrier pairs. We have discovered that the optimal Ga dopant concentration was 3.125 at% and that the incorporation of platinum (0.5 wt%) as a co-catalyst further improved the H 2 evolution rate up to 5722 μmol g -1 h -1. Pt not only acts as an electron sink, drastically increasing the electron/hole pair lifetime, but it also creates an intimate contact at the heterojunction between Pt and Ga-TiO 2, thus improving the interfacial electron transfer process. Finally, these catalyst design strategies provide new ways of designing transition metal photocatalysts that improve green fuel production from renewable solar energy and water.« less
Ngaw, Chee Keong; Wang, Victor Bochuan; Liu, Zhengyi; Zhou, Yi; Kjelleberg, Staffan; Zhang, Qichun; Tan, Timothy Thatt Yang; Loo, Say Chye Joachim
2015-01-01
Objective: Although photoelectrochemical (PEC) water splitting heralds the emergence of the hydrogen economy, the need for external bias and low efficiency stymies the widespread application of this technology. By coupling water splitting (in a PEC cell) to a microbial fuel cell (MFC) using Escherichia coli as the biocatalyst, this work aims to successfully demonstrate a sustainable hybrid PEC–MFC platform functioning solely by biocatalysis and solar energy, at zero bias. Through further chemical modification of the photo-anode (in the PEC cell) and biofilm (in the MFC), the performance of the hybrid system is expected to improve in terms of the photocurrent generated and hydrogen evolved. Methods: The hybrid system constitutes the interconnected PEC cell with the MFC. Both PEC cell and MFC are typical two-chambered systems housing the anode and cathode. Au-TiO2 hollow spheres and conjugated oligoelectrolytes were synthesised chemically and introduced to the PEC cell and MFC, respectively. Hydrogen evolution measurements were performed in triplicates. Results: The hybrid PEC–MFC platform generated a photocurrent density of 0.35 mA/cm2 (~70× enhancement) as compared with the stand-alone P25 standard PEC cell (0.005 mA/cm2) under one-sun illumination (100 mW/cm2) at zero bias (0 V vs. Pt). This increase in photocurrent density was accompanied by continuous H2 production. No H2 was observed in the P25 standard PEC cell whereas H2 evolution rate was ~3.4 μmol/h in the hybrid system. The remarkable performance is attributed to the chemical modification of E. coli through the incorporation of novel conjugated oligoelectrolytes in the MFC as well as the lower recombination rate and higher photoabsorption capabilities in the Au-TiO2 hollow spheres electrode. Conclusions: The combined strategy of photo-anode modification in PEC cells and chemically modified MFCs shows great promise for future exploitation of such synergistic effects between MFCs and semiconductor-based PEC water splitting. PMID:28721235
NASA Astrophysics Data System (ADS)
Zhang, Jian; Luan, Yanping; Lyu, Zhiyang; Wang, Liangjun; Xu, Leilei; Yuan, Kaidi; Pan, Feng; Lai, Min; Liu, Zhaolin; Chen, Wei
2015-09-01
A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery cathode. Here, we report a controllable approach to synthesize hierarchical porous δ-MnO2 nanoboxes by using Prussian blue analogues as the precursors. The obtained products possess hierarchical pore size and an extremely large surface area (249.3 m2 g-1), which would favour oxygen transportation and provide more catalytically active sites to promote ORR and OER as the Li-O2 battery cathode. The battery shows enhanced discharge capacity (4368 mA h g-1@0.08 mA cm-2), reduced overpotential (270 mV), improved rate performance and excellent cycle stability (248 cycles@500 mA h g-1 and 112 cycles@1000 mA h g-1), in comparison with the battery with a VX-72 carbon cathode. The superb performance of the hierarchical porous δ-MnO2 nanoboxes, together with a convenient fabrication method, presents an alternative to develop advanced cathode catalysts for the Li-O2 battery.A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery cathode. Here, we report a controllable approach to synthesize hierarchical porous δ-MnO2 nanoboxes by using Prussian blue analogues as the precursors. The obtained products possess hierarchical pore size and an extremely large surface area (249.3 m2 g-1), which would favour oxygen transportation and provide more catalytically active sites to promote ORR and OER as the Li-O2 battery cathode. The battery shows enhanced discharge capacity (4368 mA h g-1@0.08 mA cm-2), reduced overpotential (270 mV), improved rate performance and excellent cycle stability (248 cycles@500 mA h g-1 and 112 cycles@1000 mA h g-1), in comparison with the battery with a VX-72 carbon cathode. The superb performance of the hierarchical porous δ-MnO2 nanoboxes, together with a convenient fabrication method, presents an alternative to develop advanced cathode catalysts for the Li-O2 battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02983j
NASA Astrophysics Data System (ADS)
Chen, Shang-Min; Lin, Yow-Jon
2018-01-01
In order to get a physical/chemical insight into the formation of nanoscale semiconductor heterojunctions, MoS2 flakes are deposited on the silicon nanowire (SiNW) array by chemical vapor deposition (CVD). In this study, H2O2 treatment provides a favorable place where the formation of Sisbnd O bonds on the SiNW surfaces that play important roles (i.e., the nucleation centers, catalyst control centers or ;seeds;) can dominate the growth of MoS2 on the SiNWs. Using this configuration, the effect of a change in the S/MoO3 mass ratio (MS/MMoO3) on the surface morphology of MoS2 is studied. It is shown that an increase in the value of MS/MMoO3 leads to the increased nucleation rate, increasing the size of MoS2 nanopetals. This study provides valuable scientific information for directly CVD-grown edge-oriented MoS2/SiNWs heterojunctions for various nanoscale applications, including hydrogen evolution reaction and electronic and optoelectronic devices.
A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes.
Randall, D J; Rummer, J L; Wilson, J M; Wang, S; Brauner, C J
2014-04-15
Teleost fishes constitute 95% of extant aquatic vertebrates, and we suggest that this is related in part to their unique mode of tissue oxygenation. We propose the following sequence of events in the evolution of their oxygen delivery system. First, loss of plasma-accessible carbonic anhydrase (CA) in the gill and venous circulations slowed the Jacobs-Stewart cycle and the transfer of acid between the plasma and the red blood cells (RBCs). This ameliorated the effects of a generalised acidosis (associated with an increased capacity for burst swimming) on haemoglobin (Hb)-O2 binding. Because RBC pH was uncoupled from plasma pH, the importance of Hb as a buffer was reduced. The decrease in buffering was mediated by a reduction in the number of histidine residues on the Hb molecule and resulted in enhanced coupling of O2 and CO2 transfer through the RBCs. In the absence of plasma CA, nearly all plasma bicarbonate ultimately dehydrated to CO2 occurred via the RBCs, and chloride/bicarbonate exchange was the rate-limiting step in CO2 excretion. This pattern of CO2 excretion across the gills resulted in disequilibrium states for CO2 hydration/dehydration reactions and thus elevated arterial and venous plasma bicarbonate levels. Plasma-accessible CA embedded in arterial endothelia was retained, which eliminated the localized bicarbonate disequilibrium forming CO2 that then moved into the RBCs. Consequently, RBC pH decreased which, in conjunction with pH-sensitive Bohr/Root Hbs, elevated arterial oxygen tensions and thus enhanced tissue oxygenation. Counter-current arrangement of capillaries (retia) at the eye and later the swim bladder evolved along with the gas gland at the swim bladder. Both arrangements enhanced and magnified CO2 and acid production and, therefore, oxygen secretion to those specialised tissues. The evolution of β-adrenergically stimulated RBC Na(+)/H(+) exchange protected gill O2 uptake during stress and further augmented plasma disequilibrium states for CO2 hydration/dehydration. Finally, RBC organophosphates (e.g. NTP) could be reduced during hypoxia to further increase Hb-O2 affinity without compromising tissue O2 delivery because high-affinity Hbs could still adequately deliver O2 to the tissues via Bohr/Root shifts. We suggest that the evolution of this unique mode of tissue O2 transfer evolved in the Triassic/Jurassic Period, when O2 levels were low, ultimately giving rise to the most extensive adaptive radiation of extant vertebrates, the teleost fishes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xiangyi; Amine, Rachid; Lau, Kah Chun
2017-05-26
The discharge and charge mechanisms of rechargeable Li-O-2 batteries have been the subject of extensive investigation recently. However, they are not fully understood yet. Here we report a systematic study of the morphological transition of Li2O2 from a single crystalline structure to a toroid like particle during the discharge-charge cycle, with the help of a theoretical model to explain the evolution of the Li2O2 at different stages of this process. The model suggests that the transition starts in the first monolayer of Li2O2, and is subsequently followed by a transition from particle growth to film growth if the applied currentmore » exceeds the exchange current for the oxygen reduction reaction in a Li-O-2 cell. Furthermore, a sustainable mass transport of the diffusive active species (e.g., O-2 and Li+) and evolution of the underlying interfaces are critical to dictate desirable oxygen reduction (discharge) and evolution (charge) reactions in the porous carbon electrode of a Li-O-2 cell.« less
Gomez-Mingot, Maria; Porcher, Jean-Philippe; Todorova, Tanya K; Fogeron, Thibault; Mellot-Draznieks, Caroline; Li, Yun; Fontecave, Marc
2015-10-29
Bis(dithiolene)tungsten complexes, W(VI)O2 (L = dithiolene)2 and W(IV)O (L = dithiolene)2, which mimic the active site of formate dehydrogenases, have been characterized by cyclic voltammetry and controlled potential electrolysis in acetonitrile. They are shown to be able to catalyze the electroreduction of protons into hydrogen in acidic organic media, with good Faradaic yields (75-95%) and good activity (rate constants of 100 s(-1)), with relatively high overpotentials (700 mV). They also catalyze proton reduction into hydrogen upon visible light irradiation, in combination with [Ru(bipyridine)3](2+) as a photosensitizer and ascorbic acid as a sacrificial electron donor. On the basis of detailed DFT calculations, a reaction mechanism is proposed in which the starting W(VI)O2 (L = dithiolene)2 complex acts as a precatalyst and hydrogen is further formed from a key reduced W-hydroxo-hydride intermediate.
Serpentinization as a reactive transport process: The brucite silicification reaction
NASA Astrophysics Data System (ADS)
Tutolo, Benjamin M.; Luhmann, Andrew J.; Tosca, Nicholas J.; Seyfried, William E.
2018-02-01
Serpentinization plays a fundamental role in the biogeochemical and tectonic evolution of the Earth and perhaps many other rocky planetary bodies. Yet, geochemical models still fail to produce accurate predictions of the various modes of serpentinization, which limits our ability to predict a variety of related geological phenomena over many spatial and temporal scales. Here, we use kinetic and reactive transport experiments to parameterize the brucite silicification reaction and provide fundamental constraints on SiO2 transport during serpentinization. We show that, at temperatures characteristic of the sub-seafloor at the serpentinite-hosted Lost City Hydrothermal Field (150 °C), the assembly of Si tetrahedra onto MgOH2 (i.e., brucite) surfaces is a rate-limiting elementary reaction in the production of serpentine and/or talc from olivine. Moreover, this reaction is exponentially dependent on the activity of aqueous silica (a SiO2 (aq)), such that it can be calculated according to the rate law:
Luan, Jingfei; Xu, Yong
2013-01-01
Gd2InSbO7 and Gd2FeSbO7 were synthesized first, and their structural and photocatalytic properties were studied. The lattice parameters and the band gaps for Gd2InSbO7 and Gd2FeSbO7 were 10.449546 Å, 10.276026 Å, 2.897 eV and 2.151 eV. The photocatalytic degradation of rhodamine B was performed with Gd2InSbO7 and Gd2FeSbO7 under visible light irradiation. Gd2InSbO7 and Gd2FeSbO7 had higher catalytic activity compared with Bi2InTaO7. Gd2FeSbO7 exhibited higher catalytic activity than Gd2InSbO7. The photocatalytic degradation of rhodamine B followed with the first-order reaction kinetics, and the first-order rate constant k was 0.01606, 0.02220 or 0.00329 min−1 with Gd2InSbO7, Gd2FeSbO7 or Bi2InTaO7 as photocatalyst. Complete removal of rhodamine B was observed after visible light irradiation for 225 min or 260 min with Gd2FeSbO7 or Gd2InSbO7 as photocatalyst. The evolution of CO2 was realized, and it indicated continuous mineralization of rhodamine B during the photocatalytic process. The possible photocatalytic degradation pathway of rhodamine B was proposed. PMID:23296275
NASA Astrophysics Data System (ADS)
Blackman, Eric G.; Owen, James E.
2016-05-01
Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| < 0.2 for {tilde{R}o} < 0.13. Saturated stars are younger than unsaturated stars and show a broader spread of rotation rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.
Bioelectrochemical oxidation of water.
Pita, Marcos; Mate, Diana M; Gonzalez-Perez, David; Shleev, Sergey; Fernandez, Victor M; Alcalde, Miguel; De Lacey, Antonio L
2014-04-23
The electrolysis of water provides a link between electrical energy and hydrogen, a high energy density fuel and a versatile energy carrier, but the process is very expensive. Indeed, the main challenge is to reduce energy consumption for large-scale applications using efficient renewable catalysts that can be produced at low cost. Here we present for the first time that laccase can catalyze electrooxidation of H2O to molecular oxygen. Native and laboratory-evolved laccases immobilized onto electrodes serve as bioelectrocatalytic systems with low overpotential and a high O2 evolution ratio against H2O2 production during H2O electrolysis. Our results open new research ground on H2O splitting, as they overcome serious practical limitations associated with artificial electrocatalysts currently used for O2 evolution.
2 years with comet 67P/Churyumov-Gerasimenko: H2O, CO2, CO as seen by ROSINA RTOF
NASA Astrophysics Data System (ADS)
Hoang, M.; Garnier, P.; Lasue, J.; Reme, H.; Altwegg, K.; Balsiger, H. R.; Bieler, A. M.; Calmonte, U.; Capria, M. T.; Combi, M. R.; De Keyser, J. M.; Fiethe, B.; Fougere, N.; Fuselier, S. A.; Galli, A.; Gasc, S.; Gombosi, T. I.; Hansen, K. C.; Jäckel, A.; Korth, A.; Mall, U.; Migliorini, A.; Rubin, M.; Sémon, T.; Tzou, C. Y.; Waite, J. H., Jr.; Wurz, P.
2017-12-01
The Rosetta space mission investigated comet 67P/Churyumov-Gerasimenko (67P) over two years from August 2014 to September 2016. Onboard the spacecraft, the ROSINA experiment included two mass spectrometers to derive the composition of neutrals and ions, and a COmet Pressure Sensor (COPS) to monitor the density and velocity of the neutrals in the coma. We will here analyse and discuss data from the Reflectron-type Time-Of-Flight instrument during the comet escort phase. The RTOF mass spectrometer possessed a wide mass range and a high temporal resolution (Balsiger et al., 2007). The analysis of 67P/C-G's coma major molecules over the mission showed strong variability of the comet coma's main volatiles concentrations (H2O, CO2, CO) and their relative abundances. The 2 years long Rosetta mission allowed us to observe the seasonal evolution in the atmosphere of 67P, in particular the change occurring during the equinoxes and at perihelion. In this work, we analyze the asymmetry in the outgassing rate before and after the perihelion (13/08/2015), the evolution of abundance ratios through the whole mission, and in particular the behavior of the very volatile CO molecules. Density maps projected on the surface of 67P demonstrate the evolution of the three main coma species after the outbound equinox. We will present first results of our comet nucleus thermal modelling used to simulate the internal structure and temperature evolution of 67P at characteristic surface areas. These results will be compared with the coma composition measurements obtained by ROSINA.
McClure, Beth Anne; Mockus, Nicholas V; Butcher, Dennis P; Lutterman, Daniel A; Turro, Claudia; Petersen, Jeffrey L; Rack, Jeffrey J
2009-09-07
The complexes [Ru(bpy)(2)(OS)](PF(6)) and [Ru(bpy)(2)(OSO)](PF(6)), where bpy is 2,2'-bipyridine, OS is 2-methylthiobenzoate, and OSO is 2-methylsulfinylbenzoate, have been studied. The electrochemical and photochemical reactivity of [Ru(bpy)(2)(OSO)](+) is consistent with an isomerization of the bound sulfoxide from S-bonded (S-) to O-bonded (O-) following irradiation or electrochemical oxidation. Charge transfer excitation of [Ru(bpy)(2)(OSO)](+) in MeOH results in the appearance of two new metal-to-ligand charge transfer (MLCT) maxima at 355 and 496 nm, while the peak at 396 nm diminishes in intensity. The isomerization is reversible at room temperature in alcohol or propylene carbonate solution. In the absence of light, solutions of O-[Ru(bpy)(2)(OSO)](+) revert to S-[Ru(bpy)(2)(OSO)](+). Kinetic analysis reveals a biexponential decay with rate constants of 5.66(3) x 10(-4) s(-1) and 3.1(1) x 10(-5) s(-1). Cyclic voltammograms of S-[Ru(bpy)(2)(OSO)](+) are consistent with electron-transfer-triggered isomerization of the sulfoxide. Analysis of these voltammograms reveal E(S)(o)' = 0.86 V and E(O)(o)' = 0.49 V versus Ag/Ag(+) for the S- and O-bonded Ru(3+/2+) couples, respectively, in propylene carbonate. We found k(S-->O) = 0.090(15) s(-1) in propylene carbonate and k(S-->O) = 0.11(3) s(-1) in acetonitrile on Ru(III), which is considerably slower than has been reported for other sulfoxide isomerizations on ruthenium polypyridyl complexes following oxidation. The photoisomerization quantum yield (Phi(S-->O) = 0.45, methanol) is quite large, indicating a rapid excited state isomerization rate constant. The kinetic trace at 500 nm is monoexponential with tau = 150 ps, which is assigned to the excited S-->O isomerization rate. There is no spectroscopic or kinetic evidence for an O-bonded (3)MLCT excited state in the spectral evolution of S-[Ru(bpy)(2)(OSO)](+) to O-[Ru(bpy)(2)(OSO)](+). Thus, isomerization occurs nonadiabatically from an S-bonded (or eta(2)-sulfoxide) (3)MLCT excited state to an O-bonded ground state. Density functional theory calculations support the assigned spectroscopy and provide insight into ruthenium ligand bonding.
NASA Astrophysics Data System (ADS)
Sun, Ho-Hyun; Choi, Wonchang; Lee, Joong Kee; Oh, In-Hwan; Jung, Hun-Gi
2015-02-01
Various Ni-rich layered oxide cathodes (above 0.80 Ni content), such as LiNi1-y-zCoyAlzO2 (NCA), are used in electric vehicles (EVs) due to their high capacity (∼200 mAh g-1 for NCA). However, to improve cycle performance and thermal stability and to ensure longer and safer usage, numerous studies have investigated surface modification, coating, and doping of cathode materials. In this study, we have investigated the characteristics of Li[Ni0.85CoxMn0.15-x]O2 with various Mn to Co ratios (x = 0-0.15) synthesized by a coprecipitation method. The discharge capacities of the Li[Ni0.85CoxMn0.15-x]O2 cathodes are similar at around 206 mAh g-1 at room temperature and 213.8 mAh g-1 at 55 °C between 2.7 and 4.3 V at a 0.2C rate, while the cyclability, thermal stability, and rate capability of all samples differ according to the Mn and Co ratio. The Li[Ni0.85Co0.05Mn0.10]O2 cathode shows the most promising electrochemical properties under different conditions among the various cathodes evaluated; it displays a high rate capacity (approximately 163 mAh g-1 at 5C rate) at 25 °C and good thermal stability (main exothermic temperature of 233.7 °C and relatively low heat evolution of 857.3 J g-1).
[NiFeSe]-hydrogenase chemistry.
Wombwell, Claire; Caputo, Christine A; Reisner, Erwin
2015-11-17
The development of technology for the inexpensive generation of the renewable energy vector H2 through water splitting is of immediate economic, ecological, and humanitarian interest. Recent interest in hydrogenases has been fueled by their exceptionally high catalytic rates for H2 production at a marginal overpotential, which is presently only matched by the nonscalable noble metal platinum. The mechanistic understanding of hydrogenase function guides the design of synthetic catalysts, and selection of a suitable hydrogenase enables direct applications in electro- and photocatalysis. [FeFe]-hydrogenases display excellent H2 evolution activity, but they are irreversibly damaged upon exposure to O2, which currently prevents their use in full water splitting systems. O2-tolerant [NiFe]-hydrogenases are known, but they are typically strongly biased toward H2 oxidation, while H2 production by [NiFe]-hydrogenases is often product (H2) inhibited. [NiFeSe]-hydrogenases are a subclass of [NiFe]-hydrogenases with a selenocysteine residue coordinated to the active site nickel center in place of a cysteine. They exhibit a combination of unique properties that are highly advantageous for applications in water splitting compared with other hydrogenases. They display a high H2 evolution rate with marginal inhibition by H2 and tolerance to O2. [NiFeSe]-hydrogenases are therefore one of the most active molecular H2 evolution catalysts applicable in water splitting. Herein, we summarize our recent progress in exploring the unique chemistry of [NiFeSe]-hydrogenases through biomimetic model chemistry and the chemistry with [NiFeSe]-hydrogenases in semiartificial photosynthetic systems. We gain perspective from the structural, spectroscopic, and electrochemical properties of the [NiFeSe]-hydrogenases and compare them with the chemistry of synthetic models of this hydrogenase active site. Our synthetic models give insight into the effects on the electronic properties and reactivity of the active site upon the introduction of selenium. We have utilized the exceptional properties of the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum in a number of photocatalytic H2 production schemes, which are benchmark systems in terms of single site activity, tolerance toward O2, and in vitro water splitting with biological molecules. Each system comprises a light-harvesting component, which allows for light-driven electron transfer to the hydrogenase in order for it to catalyze H2 production. A system with [NiFeSe]-hydrogenase on a dye-sensitized TiO2 nanoparticle gives an enzyme-semiconductor hybrid for visible light-driven generation of H2 with an enzyme-based turnover frequency of 50 s(-1). A stable and inexpensive polymeric carbon nitride as a photosensitizer in combination with the [NiFeSe]-hydrogenase shows good activity for more than 2 days. Light-driven H2 evolution with the enzyme and an organic dye under high O2 levels demonstrates the excellent robustness and feasibility of water splitting with a hydrogenase-based scheme. This has led, most recently, to the development of a light-driven full water splitting system with a [NiFeSe]-hydrogenase wired to the water oxidation enzyme photosystem II in a photoelectrochemical cell. In contrast to the other systems, this photoelectrochemical system does not rely on a sacrificial electron donor and allowed us to establish the long sought after light-driven water splitting with an isolated hydrogenase.
Sinela, André; Rawat, Nadirah; Mertz, Christian; Achir, Nawel; Fulcrand, Hélène; Dornier, Manuel
2017-01-01
Degradation parameters of two main anthocyanins from roselle extract (Hibiscus sabdariffa L.) stored at different temperatures (4-37°C) over 60days were determined. Anthocyanins and some of their degradation products were monitored and quantified using HPLC-MS and DAD. Degradation of anthocyanins followed first-order kinetics and reaction rate constants (k values), which were obtained by non-linear regression, showed that the degradation rate of delphinidin 3-O-sambubioside was higher than that of cyanidin 3-O-sambubioside with k values of 9.2·10(-7)s(-1) and 8.4·10(-7)s(-1) at 37°C respectively. The temperature dependence of the rate of anthocyanin degradation was modeled by the Arrhenius equation. Degradation of delphinidin 3-O-sambubioside (Ea=90kJmol(-1)) tended to be significantly more sensitive to an increase in temperature than cyanidin 3-O-sambubioside (Ea=80kJmol(-1)). Degradation of these anthocyanins formed scission products (gallic and protocatechuic acids respectively) and was accompanied by an increase in polymeric color index. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evolution of chemically processed air parcels in the lower stratosphere
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.; Douglass, Anne R.; Schoeberl, Mark R.
1994-01-01
Aircraft, ground-based, and satellite measurements indicate large concentrations of ClO in the lower stratosphere in and near the polar vortex. The amount of local ozone depletion caused by these large ClO concentrations will depend on the relative rates of ozone loss and ClO recovery. ClO recovery occurs when NO(x), from HNO3 photolysis, reacts with ClO to form ClONO2. We show that air parcels with large amounts of ClO will experience a subsequent ozone depletion that depends on the solar zenith angle. When the solar zenith angle is large in the middle of winter, the recovery of the ClO concentration in the parcel is slow relative to ozone depletion. In the spring, when the solar zenith angle is smaller, the ClO recovery is much faster. After ClO recovery, the chlorine chemistry has not returned to normal. The ClO has been converted to ClONO2. ClO production from further encounters with PSCs will be limited by the heterogeneous reaction of ClONO2 with water. Large ozone depletions, of the type seen in the Antarctic, occur only if there is significant irreversible denitrification in the air parcel.
Exner, Kai S; Anton, Josef; Jacob, Timo; Over, Herbert
2016-06-20
Current progress in modern electrocatalysis research is spurred by theory, frequently based on ab initio thermodynamics, where the stable reaction intermediates at the electrode surface are identified, while the actual energy barriers are ignored. This approach is popular in that a simple tool is available for searching for promising electrode materials. However, thermodynamics alone may be misleading to assess the catalytic activity of an electrochemical reaction as we exemplify with the chlorine evolution reaction (CER) over a RuO2 (110) model electrode. The full procedure is introduced, starting from the stable reaction intermediates, computing the energy barriers, and finally performing microkinetic simulations, all performed under the influence of the solvent and the electrode potential. Full kinetics from first-principles allows the rate-determining step in the CER to be identified and the experimentally observed change in the Tafel slope to be explained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MSL SAM-Like Evolved Gas Analyses of Si-rich Amorphous Materials
NASA Technical Reports Server (NTRS)
McAdam, Amy; Knudson, Christine; Sutter, Brad; Andrejkovicova, Slavka; Archer, P. Douglas; Franz, Heather; Eigenbrode, Jennifer; Morris, Richard; Ming, Douglas; Sun, Vivian;
2016-01-01
Chemical and mineralogical analyses of several samples from Murray Formation mudstones and Stimson Formation sandstones by the Mars Science Laboratory (MSL) revealed the presence of Si-rich amorphous or poorly ordered materials. It is possible to identify the presence of high-SiO2 vs. lower SiO2 amorphous materials (e.g., basaltic glasses), based on the position of the resulting wide diffraction features in XRD patterns from the Chemistry and Mineralogy (CheMin) instrument, but it is not possible to distinguish between several candidate high-SiO2 amorphous materials such as opal-A or rhyolitic glass. In the Buckskin (BS) sample from the upper Murray Formation, and the Big Sky (BY) and Greenhorn (GH) samples from the Stimson Formation, analyses by the Sample Analysis at Mars (SAM) instrument showed very broad H2O evolutions during sample heating at temperatures >450-500degC which had not been observed from previous samples. BS also had a significant broad evolution <450-500degC. We have undertaken a laboratory study targeted at understanding if the data from SAM can be used to place constraints on the nature of the amorphous phases. SAM-like evolved gas analyses have been performed on several opal and rhyolitic glass samples. Opal-A samples exhibited wide <500degC H2O evolutions, with lesser H2O evolved above 500degC. H2O evolution traces from rhyolitic glasses varied, having either two broad H2O peaks, <300degC and >500degC, or a broad peak centered around 400degC. For samples that produced two evolutions, the lower temperature peak is more intense than the higher temperature peak, a trend also exhibited by opal-A. This trend is consistent with data from BS, but does not seem consistent with data from BY and GH which evolved most of their H2O >500degC. It may be that dehydration of opal-A and/or rhyolitic glass can result in some preferential loss of lower temperature H2O, to produce traces that more closely resemble BY and GH. This is currently under investigation and results will be reported.
Effect of aqueous Si/Mg ratio and pH on the nucleation and growth of sepiolite at 25 °C
NASA Astrophysics Data System (ADS)
Baldermann, Andre; Mavromatis, Vasileios; Frick, Paula M.; Dietzel, Martin
2018-04-01
Sepiolite [Mg4Si6O15(OH)2·6H2O] is a trioctahedral 2:1 Mg-silicate that has been often used to reconstruct the evolution of sedimentary environments and facies in the geological record. To date, however, the reaction paths underlying sepiolite formation are poorly constrained and most of the existing models are based on empirical observations. In order to shed light on the mechanisms controlling the formation of this mineral phase, in the present study, sepiolite was precipitated at 25 ± 1 °C from modified seawater and MgCl2 solutions undersaturated with respect to brucite and amorphous silica. Although a suite of hydrous Mg-silicates, such as kerolite, saponite, stevensite and talc, were oversaturated in the solutions at a higher level relative to sepiolite at any time of reaction, poorly crystallized, aluminous sepiolite was the only precipitate after 91 days. The precipitated sepiolite [Mg3.4-3.8Al0.1-0.4)∑3.8-3.9(Si5.9-6.0Al0-0.1)O15(OH)2·nH2O] shares a number of structural and chemical similarities with natural sepiolite, such as a fibrous crystal shape and an atomic Si/(Si + Mg+Al) ratio of ∼0.61. The proposed reaction path for the formation of sepiolite is based on the temporal evolution of the chemical compositions of the experimental solution and solids: (i) Nucleation and growth of Al-sepiolite occurred during the first 8 days of the experimental runs via condensation and polymerization of Sisbnd OH tetrahedra onto Mg-Al-O-OH template sheets at a precipitation rate of ∼2.19 ± 0.01 × 10-10 mol s-1. (ii) At decreasing pH and in the absence of [Al]aq this intermediate phase transformed into aluminous sepiolite at a slower crystal growth rate of ∼1.08 ± 0.02 × 10-12 mol s-1. This finding explains the high abundances of sepiolite in highly alkaline, evaporitic, lacustrine and soil environments, where the growth rates of sepiolite are considered faster (10-11 to 10-10 mol s-1, Brady, 1992). We propose that (i) low rates of Mg2+ ion dehydration and silica condensation and polymerization at the surface of the initial precipitate, (ii) the formation of MgS 040 aquo-complexes and (iii) the reduced sorption rates of [Si]aq and [Mg]aq at the active growth sites on sepiolite surfaces at pH ≤ 8.3 retard the precipitation of sepiolite in marine-diagenetic environments.
Teramura, Kentaro; Wang, Zheng; Hosokawa, Saburo; Sakata, Yoshihisa; Tanaka, Tsunehiro
2014-08-04
Photocatalytic conversion of CO2 to reduction products, such as CO, HCOOH, HCHO, CH3OH, and CH4, is one of the most attractive propositions for producing green energy by artificial photosynthesis. Herein, we found that Ga2O3 photocatalysts exhibit high conversion of CO2. Doping of Zn species into Ga2O3 suppresses the H2 evolution derived from overall water splitting and, consequently, Zn-doped, Ag-modified Ga2O3 exhibits higher selectivity toward CO evolution than bare, Ag-modified Ga2O3. We observed stoichiometric amounts of evolved O2 together with CO. Mass spectrometry clarified that the carbon source of the evolved CO is not the residual carbon species on the photocatalyst surface, but the CO2 introduced in the gas phase. Doping of the photocatalyst with Zn is expected to ease the adsorption of CO2 on the catalyst surface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tian, Fengyu; Hou, Dongfang; Hu, Fuchao; Xie, Kui; Qiao, Xiuqing; Li, Dongsheng
2017-01-01
1D porous CdS nanoparticles/TiO2 nanofibers heterostructure has been fabricated via simple electrospinning and a successive ionic layer adsorption and reaction (SILAR) process. The morphology, composition, and optical properties of the resulting CdS/TiO2 heterostructures can be rationally tailored through changing the SILAR cycles. The photocatalytic hydrogen evolution and decomposition of rhodamine B (RhB) of the as-synthesized heterostructured photocatalysts were investigated under visible light irradiation. Compared to TiO2 nanofibers,the as-obtained CdS/TiO2 heterostructures exhibit enhanced photocatalytic activity for hydrogen production and decomposition of RhB under visible-light irradiation. The heterojunction system performs best with H2 generation rates of 678.61 μmol h-1 g-1 under visible light irradiation which benefits from the two effects: (a) the 1D porous nanofibrous morphology contributes to not only more active sites but also more efficient transfer of the photogenerated charges (b) the synergetic effect of heterojunction and photosensitization reducing the recombination of photogenerated electrons and holes.
Dhanalaxmi, Karnekanti; Yadav, Rajkumar; Kundu, Sudipta K; Reddy, Benjaram Mahipal; Amoli, Vipin; Sinha, Anil Kumar; Mondal, John
2016-10-24
A novel MnFe 2 O 4 -porous organic polymer (POP) nanocomposite was synthesized by a facile hydrothermal method and using the highly cross-linked N-rich benzene-benzylamine POP. The nanocomposite presented highly efficient photocatalytic performance in the hydrogen evolution reaction (HER) from pure water without addition of any sacrificial agent under one AM 1.5 G sunlight illumination. A photocatalytic activity of 6.12 mmol h -1 g -1 was achieved in the absence of any noble metal cocatalyst, which is the highest H 2 production rate reported for nonprecious metal catalysts. The photocatalytic performance of MnFe 2 O 4 -POP could be attributed to the intrinsic synergistic effects of manganese ferrite (MnFe 2 O 4 ) nanoclusters interacting with the nitrogen dopant POP with a unique mesoporous nanoarchitecture and spatially confined growth of MnFe 2 O 4 in the interconnected POP network, leading to high visible-light absorption with fast electron transport. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
André, Marcel J
2013-08-01
Numerous studies focus on the measurement of conductances for CO2 transfer in plants and especially on their regulatory effects on photosynthesis. Measurement accuracy is strongly dependent on the model used and on the knowledge of the flow of photochemical energy generated by light in chloroplasts. The only accurate and precise method to quantify the linear electron flux (responsible for the production of reductive energy) is the direct measurement of O2 evolution, by (18)O2 labelling and mass spectrometry. The sharing of this energy between the carboxylation (P) and the oxygenation of photorespiration (PR) depends on the plant specificity factor (Sp) and on the corresponding atmospheric concentrations of CO2 and O2 (André, 2013). The concept of plant specificity factor simplifies the equations of the model. It gives a new expression of the effect of the conductance (g) between atmosphere and chloroplasts. Its quantitative effect on photosynthesis is easy to understand because it intervenes in the ratio of the plant specificity factor (Sp) to the specificity of Rubisco (Sr). Using this 'simple' model with the data of (18)O2 experiments, the calculation of conductance variations in response to CO2 and light was carried out. The good fitting of experimental data of O2 and CO2 exchanges confirms the validity of the simple model. The calculation of conductance variation during the increase of external CO2 concentration reveals a linear law of regulation between external and internal CO2 concentrations. During CO2 variations, the effects of g regulation tend to maintain a higher level of oxygenation (PR) in expense of a better carboxylation (P). Contrary to CO2, the variation of O2 creates a negative feedback effect compatible with a stabilization of atmospheric O2. The regulation of g amplifies this result. The effect of light in combination with CO2 is more complex. Below 800μmolquantam(-2)s(-1) the ratio PR/P is maintained unchangeable in expense of carboxylation efficiency. Above that irradiance value, PR/P increases dramatically. It appears that the saturation curves of photosynthesis under high light could be simply due to the regulation by the conductance g and not by any biochemical or biophysical limitation. In conclusion, the regulatory effect of conductance operates in a way that it preserves the rate of photorespiration. This confirms a positive and protective role of photorespiration at the biochemical, whole plant and atmosphere levels. Since the effects of photorespiration are linked to the properties of Rubisco, they add new arguments for a co-evolution of plant and atmosphere, including the evolution of CO2 conductance. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Ragghianti, Carla P; Martínez, Rosa; Martins, Jorge; Gallo, Juan E
2006-01-01
The study aimed to measure the scientific production in Ophthalmology and Vision (O&V) in Argentina, Brazil, Chile, Paraguay and Uruguay over a period of 10 years (1995-2004), in order to find out temporal evolution and variations in this field of research. PubMed / Medline was used to retrieve records on O&V research literature. The search strategy included keywords, country in the affiliation field and publication date. Data were extracted from each citation and recorded in a spreadsheet. Subsequent analysis focused on type and main topic of publication, journals where articles had been published, and evolution of research done on animals and humans. A total of 1,216 citations were retrieved. Brazil had the largest number of authored publications with an average annual production of 82.4, followed by Argentina with 31.0, Chile 6.4, Uruguay 1.6, and Paraguay 0.2. The ratio of articles on O&V relative to publications involving Health Science ranged from 1.0 to 2.3. The frequency of publications almost tripled from 1995 to 2004. Research on humans showed a significant increase in Argentina and Brazil. Results provide initial benchmarks on O&V publication rates in countries in South America that may be useful to follow research trends.
Effects of Main-Sequence Mass Loss on Stellar and Galactic Chemical Evolution.
NASA Astrophysics Data System (ADS)
Guzik, Joyce Ann
1988-06-01
L. A. Willson, G. H. Bowen and C. Struck -Marcell have proposed that 1 to 3 solar mass stars may experience evolutionarily significant mass loss during the early part of their main-sequence phase. The suggested mass-loss mechanism is pulsation, facilitated by rapid rotation. Initial mass-loss rates may be as large as several times 10^{-9}M o/yr, diminishing over several times 10^8 years. We attempted to test this hypothesis by comparing some theoretical implications with observations. Three areas are addressed: Solar models, cluster HR diagrams, and galactic chemical evolution. Mass-losing solar models were evolved that match the Sun's luminosity and radius at its present age. The most extreme viable models have initial mass 2.0 M o, and mass-loss rates decreasing exponentially over 2-3 times 10^8 years. Compared to a constant -mass model, these models require a reduced initial ^4He abundance, have deeper envelope convection zones and higher ^8B neutrino fluxes. Early processing of present surface layers at higher interior temperatures increases the surface ^3He abundance, destroys Li, Be and B, and decreases the surface C/N ratio following first dredge-up. Evolution calculations incorporating main-sequence mass loss were completed for a grid of models with initial masses 1.25 to 2.0 Mo and mass loss timescales 0.2 to 2.0 Gyr. Cluster HR diagrams synthesized with these models confirm the potential for the hypothesis to explain observed spreads or bifurcations in the upper main sequence, blue stragglers, anomalous giants, and poor fits of main-sequence turnoffs by standard isochrones. Simple closed galactic chemical evolution models were used to test the effects of main-sequence mass loss on the F and G dwarf distribution. Stars between 3.0 M o and a metallicity -dependent lower mass are assumed to lose mass. The models produce a 30 to 60% increase in the stars to stars-plus -remnants ratio, with fewer early-F dwarfs and many more late-F dwarfs remaining on the main sequence to the present. The ratio of stars to stellar remnants and the white dwarf age distribution may prove valuable in distinguishing between explanations for the observed bimodal present-day stellar mass function.
NASA Astrophysics Data System (ADS)
Zhang, Li; Lüttge, Andreas
2009-11-01
With previous two-dimensional (2D) simulations based on surface-specific feldspar dissolution succeeding in relating the macroscopic feldspar kinetics to the molecular-scale surface reactions of Si and Al atoms ( Zhang and Lüttge, 2008, 2009), we extended our modeling effort to three-dimensional (3D) feldspar particle dissolution simulations. Bearing on the same theoretical basis, the 3D feldspar particle dissolution simulations have verified the anisotropic surface kinetics observed in the 2D surface-specific simulations. The combined effect of saturation state, pH, and temperature on the surface kinetics anisotropy has been subsequently evaluated, found offering diverse options for morphological evolution of dissolving feldspar nanoparticles with varying grain sizes and starting shapes. Among the three primary faces on the simulated feldspar surface, the (1 0 0) face has the biggest dissolution rate across an extensively wide saturation state range and thus acquires a higher percentage of the surface area upon dissolution. The slowest dissolution occurs to either (0 0 1) or (0 1 0) faces depending on the bond energies of Si-(O)-Si ( ΦSi-O-Si/ kT) and Al-(O)-Si ( ΦAl-O-Si/ kT). When the ratio of ΦSi-O-Si/ kT to ΦAl-O-Si/ kT changes from 6:3 to 7:5, the dissolution rates of three primary faces change from the trend of (1 0 0) > (0 1 0) > (0 0 1) to the trend of (1 0 0) > (0 0 1) > (0 1 0). The rate difference between faces becomes more distinct and accordingly edge rounding becomes more significant. Feldspar nanoparticles also experience an increasing degree of edge rounding from far-from-equilibrium to close-to-equilibrium. Furthermore, we assessed the connection between the continuous morphological modification and the variation in the bulk dissolution rate during the dissolution of a single feldspar particle. Different normalization treatments equivalent to the commonly used mass, cube assumption, sphere assumption, geometric surface area, and reactive surface area normalizations have been used to normalize the bulk dissolution rate. For each of the treatments, time consistence and grain size dependence of the normalized dissolution rate have been evaluated and the results revealed significant dependences on the magnitude of surface kinetic anisotropy under differing environmental conditions. In general, the normalized dissolution rates are strongly dependent on grain size. Time-consistent normalization treatment varies with the investigated condition. The modeling results suggest that the sphere-, cube-, and BET-normalized dissolution rates are appropriate under the far-from-equilibrium conditions at low pH where these normalizations are time-consistent and are slightly dependent on grain size.
Chua, Chun Kiang; Sofer, Zdeněk; Jankovský, Ondřej; Pumera, Martin
2015-03-16
Recent research on stable 2D nanomaterials has led to the discovery of new materials for energy-conversion and energy-storage applications. A class of layered heterostructures known as misfit-layered chalcogenides consists of well-defined atomic layers and has previously been applied as thermoelectric materials for use as high-temperature thermoelectric batteries. The performance of such misfit-layered chalcogenides in electrochemical applications, specifically the hydrogen evolution reaction, is currently unexplored. Herein, a misfit-layered chalcogenide consisting of CoO2 layers interleaved with an SrO-BiO-BiO-SrO rock-salt block and having the formula Bi1.85 Sr2 Co1.85 O7.7-δ is synthesized and examined for its structural and electrochemical properties. The hydrogen-evolution performance of misfit-layered Bi1.85 Sr2 Co1.85 O7.7-δ , which has an overpotential of 589 mV and a Tafel slope of 51 mV per decade, demonstrates the promising potential of misfit-layered chalcogenides as electrocatalysts instead of classical carbon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular Dynamics Studies of Thermal Induced Chemistry in Tatb
NASA Astrophysics Data System (ADS)
Quenneville, J.; Germann, T. C.; Thompson, A. P.; Kober, E. M.
2007-12-01
A reactive force field (ReaxFF) is used with molecular dynamics to probe the chemistry induced by intense heating (`accelerated cook-off') of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Large-system simulations are desired for TATB because of the high degree of carbon clustering expected in this material. Using small, 32-molecule simulations, we calculate the reaction rate as a function of temperature and compare the Arrhenius-predicted activation energy with experiment. Decomposition product evolution (mainly N2, H2O, CO2 and graphitic carbon clusters) is followed using a 576-molecule larger simulation, which also illustrates the effect of system size on both carbon clustering and reaction rate.
XRD monitoring of α self-irradiation in uranium-americium mixed oxides.
Horlait, Denis; Lebreton, Florent; Roussel, Pascal; Delahaye, Thibaud
2013-12-16
The structural evolution under (241)Am self-irradiation of U(1-x)Am(x)O(2±δ) transmutation fuels (with x ≤ 0.5) was studied by X-ray diffraction (XRD). Samples first underwent a preliminary heat treatment performed under a reducing atmosphere (Ar/H2(4%)) aiming to recover the previously accumulated structural defects. Over all measurements (carried out over up to a full year and for integrated doses up to 1.5 × 10(18) α-decay events·g(-1)), only fluorite U(1-x)Am(x)O(2±δ) solid solutions were observed. Within a few days after the end of the heat treatment, each of the five studied samples was slowly oxidized as a consequence of their move to air atmosphere, which is evidenced by XRD by an initial sharp decrease of the unit cell parameter. For the compounds with x ≤ 0.15, this oxidation occurred without any phase transitions, but for U0.6Am0.4O(2±δ) and U0.5Am0.5O(2±δ), this process is accompanied by a transition from a first fluorite solid solution to a second oxidized one, as the latter is thermodynamically stable in ambient conditions. In the meantime and after the oxidation process, (241)Am α self-irradiation caused a structural swelling up to ∼0.8 vol %, independently of the sample composition. The kinetic constants of swelling were also determined by regression of experimental data and are, as expected, dependent on x and thus on the dose rate. The normalization of these kinetic constants by sample α-activity, however, leads to very close swelling rates among the samples. Finally, evolutions of microstrain and crystallite size were also monitored, but for the considered dose rates and cumulated doses, α self-irradiation was found, within the limits of the diffractometer used, to have almost no impact on these characteristics. Microstrain was found to be influenced instead by the americium content in the materials (i.e., by the impurities associated with americium starting material and the increase of cationic charge heterogeneity with increasing americium content).
NASA Astrophysics Data System (ADS)
Cui, Jiashan; Sun, Jianbo; Liu, Xin; Li, Jinwei; Ma, Xinzhi; Chen, Tingting
2014-07-01
ZnO materials with porous and hierarchical flower-like structure were synthesized through mild hydrothermal and simple calcination approach, in which the flower-like layered zinc oxalate hydroxide (ZnC2O4·3Zn(OH)2) precursor was first synthesized and then calcined at 600 °C. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopic (TEM), Brunauer-Emmett-Teller (BET) and thermogravimetric (TG) analysis. We proposed the possible growth mechanism of the material via studying the time evolution experiment results. In the process of reaction, oxalic acid as a structure-directing agent hydrolyzed and then formed primarily sheets-like intermediate ZnC2O4·2H2O. Hexamethylenetetramine (HMT) as surfactant, with directional adsorption, leads to the formation of layered zinc oxalate hydroxide precursor. Furthermore, the gas sensitivity also can be characterized, whose results indicated that the synthesized materials had a preferable selectivity to ethanol gas. The fast response rate and reversible performance can be attributed to the produced greater specific surface area produced, which was caused by the porous and hierarchical flower-like structure.
Looking through the Zircon Kaleidoscope: Durations, Rates, and Fluxes in Silicic Magmatic System
NASA Astrophysics Data System (ADS)
Schaltegger, U.; Wotzlaw, J. F.
2014-12-01
The crystallization rate of zircon in a cooling magma depends on the cooling rate through the saturation interval in addition to compositional and kinetic factors. Repeated influx of hot magma over 10-20 ka leads to short-amplitude temperature oscillations, which are recorded by resorption/crystallization cycles of zircon. Plotting the number of dated zircons versus their high-precision U-Pb date results in curves that qualitatively relate to the evolution of magma temperature over time [1], [2]. The trace elemental, O and Hf isotopic composition of zircon gives indications about the degree of magma homogenization and thermal evolution. Zircons from systems with small volumes and magma fluxes record non-systematic chemical and Hf isotopic heterogeneity, suggesting crystallization in non-homogenized ephemeral magma batches. Such systems typically lead to small, mid-upper crustal plutons [3]. Zircons from large-volume crystal-poor rhyolites record initial heterogeneities and rapid amalgamation of smaller magma batches over 10 ka [4], while zircons from monotonous intermediates record magma evolution over several 100 ka with coherent fractionation trends suggesting homogenization and a coherent thermal evolution [2]. In both cases, volumes and flux rates were sufficient to produce large volumes of eruptible magma on very contrasting time scales. Zircon is therefore recording cyclic crystallization-rejuvenation processes during temperature fluctuations in intermediate to upper crustal magma reservoirs but may not relate to the physical pluton emplacement or eruption. We can quantify volumes, rates of magma influx, rates of cooling and crystallization, and the degree of convective homogenization from zircon data, and infer reservoir assembly and eruption trigger mechanisms. These parameters largely control the evolution of long-lived, low-flux silicic magmatic system typical for mid-to-upper crustal plutons, monotonous intermediates are characterized by intermediate durations and fluxes while short-lived, high-flux systems preferentially produce crystal-poor rhyolites. References: [1] Caricchi et al. (2014) Nature 511, 457-461; [2] Wotzlaw et al. (2013) Geology 41, 867-870; [3] Broderick (2013) PhD thesis, Univ. of Geneva; [3] Wotzlaw et al. (2014) Geology, doi:10.1130/G35979.1
Heptanuclear CoII5CoIII2 Cluster as Efficient Water Oxidation Catalyst.
Xu, Jia-Heng; Guo, Ling-Yu; Su, Hai-Feng; Gao, Xiang; Wu, Xiao-Fan; Wang, Wen-Guang; Tung, Chen-Ho; Sun, Di
2017-02-06
Inspired by the transition-metal-oxo cubical Mn 4 CaO 5 in photosystem II, we herein report a disc-like heptanuclear mixed-valent cobalt cluster, [Co II 5 Co III 2 (mdea) 4 (N 3 ) 2 (CH 3 CN) 6 (OH) 2 (H 2 O) 2 ·4ClO 4 ] (1, H 2 mdea = N-methyldiethanolamine), for photocatalytic oxygen evolution. The topology of the Co 7 core resembles a small piece of cobaltate protected by terminal H 2 O, N 3 - , CH 3 CN, and multidentate N-methyldiethanolamine at the periphery. Under the optimal photocatalytic conditions, 1 exhibits water oxidation activity with a turnover number (TON) of 210 and a turnover frequency (TOF initial ) of 0.23 s -1 . Importantly, electrospray mass spectrometry (ESI-MS) was used to not only identify the possible main active species in the water oxidation reaction but also monitor the evolutions of oxidation states of cobalt during the photocatalytic reactions. These results shed light on the design concept of new water oxidation catalysts and mechanism-related issues such as the key active intermediate and oxidation state evolution in the oxygen evolution process. The magnetic properties of 1 were also discussed in detail.
Xu, Xingsheng; Li, Xingyun
2015-01-01
We investigate the photoluminescence (PL) spectra and the time-resolved PL decay process from colloidal quantum dots on SiN/SiO2 wet etched via BOE (HF:NH4F:H2O). The spectrum displays multi-peak shapes that vary with irradiation time. The evolution of the spectral peaks with irradiation time and collection angle demonstrates that the strong coupling of the charged-exciton emission to the leaky modes of the SiN/SiO2 slab waveguide predominantly produces short-wavelength spectral peaks, resulting in multi-peak spectra. We conclude that BOE etching enhances the charged-exciton emission efficiency and its contribution to the total emission compared with the unetched case. BOE etching smoothes the electron confinement potential, thus decreasing the Auger recombination rate. Therefore, the charged-exciton emission efficiency is high, and the charged-exciton-polariton emission can be further enhanced through strong coupling to the leaky mode of the slab waveguide. PMID:25988709
NASA Astrophysics Data System (ADS)
Vequizo, Junie Jhon M.; Yokoyama, Masanori; Ichimura, Masaya; Yamakata, Akira
2016-06-01
Tin sulfide (SnS) fine photoelectrodes fabricated by three-step pulsed electrodeposition were active for H2 evolution. The incident-photon-conversion-efficiency increases from 900 nm and offers a good fit with the absorption spectrum. The activity was enhanced by 3.4, 3.0, and 1.8 times compared to bare SnS by loading Nb2O5, TiO2, and Ta2O5, respectively. Nb2O5 was most efficient because its conduction band is low enough to facilitate effective electron transfer from SnS; it also has sufficiently high potential for H2 evolution. The overall activity is determined by the competitive interfacial electron transfer between SnS/metal-oxide and metal-oxide/water. Therefore, constructing appropriate heterojunctions is necessary for further improving photoelectrochemical systems.
Valverde, Jose Manuel; Medina, Santiago
2017-03-15
This work reports an in situ XRD analysis of whether the calcination/carbonation behavior of natural limestone (CaCO 3 ) is affected by the addition of H 2 O to the calciner at a very low concentration under relevant Calcium-Looping (CaL) conditions for CO 2 capture in coal fired power plants (CFPP) and Thermochemical Energy Storage (TCES) in Concentrated Solar Power plants (CSP). Previous studies have demonstrated that the presence of steam in the calciner at a high concentration yields a significant increase in the reaction rate. However, a further undesired consequence is the serious deterioration of the CaO mechanical strength, which would lead to particle attrition and mass loss in any CaL process based on the use of circulating fluidized beds. The results presented in this manuscript on the time evolution of the wt% and crystallite size of the phases involved in the calcination/carbonation reactions indicate that the calcination rate is still notably increased by the presence of H 2 O at very low concentrations whereas the reactivity toward carbonation and crystal structure of the formed CaO are not essentially affected, which suggests that the CaO mechanical strength is not impaired. Thus, the benefit of using steam for calcination in the CaL process could be still retained while at the same time particle attrition would not be promoted.
In situ evolution of highly dispersed amorphous CoO x clusters for oxygen evolution reaction
Chen, Dawei; Dong, Chung-Li; Zou, Yuqin; ...
2017-07-24
Electrocatalytic water splitting is a key technique to produce hydrogen fuels, which can be considered as an efficient strategy to store renewable energy. Oxygen evolution reaction (OER) that occurs at the anode side requires a four-electron transfer under highly oxidizing conditions. OER has a large overpotential and therefore determines the overall efficiency. Certain electrocatalysts can efficiently help to improve the reaction kinetics. Owing to the high cost of precious metals such as Pt, Ru, and Ir, non-precious metal oxide catalysts have been vigorously investigated under alkaline conditions. Herein, we synthesized novel highly dispersed amorphous CoO x for the first timemore » in the form of a cluster favorable to enhance the OER activity using a facile method via the air dielectric barrier discharge (DBD) plasma. Compared with the pristine biopolymer–cobalt complex, the amorphous CoO x cluster exhibits a much higher current density and a lower overpotential for OER, e.g., the overpotential of 290 mV at 10 mA cm -2 and the overpotential of only 350 mV at 300 mA cm -1. The excellent electrocatalytic OER activity was attributed to the unsaturated catalytic sites on the amorphous CoO x cluster. In addition, we studied the reaction mechanism, and it was observed that pure O 2 DBD plasma could lead to the evolution of crystalline CoO x; however, the presence of N 2 and O 2 in DBD plasma could ensure the facile evolution of amorphous CoO x clusters. This study provides a new strategy, therefore, to design amorphous materials for electrocatalysis and beyond.« less
In situ evolution of highly dispersed amorphous CoO x clusters for oxygen evolution reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dawei; Dong, Chung-Li; Zou, Yuqin
Electrocatalytic water splitting is a key technique to produce hydrogen fuels, which can be considered as an efficient strategy to store renewable energy. Oxygen evolution reaction (OER) that occurs at the anode side requires a four-electron transfer under highly oxidizing conditions. OER has a large overpotential and therefore determines the overall efficiency. Certain electrocatalysts can efficiently help to improve the reaction kinetics. Owing to the high cost of precious metals such as Pt, Ru, and Ir, non-precious metal oxide catalysts have been vigorously investigated under alkaline conditions. Herein, we synthesized novel highly dispersed amorphous CoO x for the first timemore » in the form of a cluster favorable to enhance the OER activity using a facile method via the air dielectric barrier discharge (DBD) plasma. Compared with the pristine biopolymer–cobalt complex, the amorphous CoO x cluster exhibits a much higher current density and a lower overpotential for OER, e.g., the overpotential of 290 mV at 10 mA cm -2 and the overpotential of only 350 mV at 300 mA cm -1. The excellent electrocatalytic OER activity was attributed to the unsaturated catalytic sites on the amorphous CoO x cluster. In addition, we studied the reaction mechanism, and it was observed that pure O 2 DBD plasma could lead to the evolution of crystalline CoO x; however, the presence of N 2 and O 2 in DBD plasma could ensure the facile evolution of amorphous CoO x clusters. This study provides a new strategy, therefore, to design amorphous materials for electrocatalysis and beyond.« less
Photocatalytic degradation of E. coliform in water.
Sun, Darren Delai; Tay, Joo Hwa; Tan, Koh Min
2003-08-01
This study aims to further investigate the total mineralization of the bacteria to the extent of death and cell-mass inactivation using a TiO2-Fe2O3 membrane photocatalytic oxidation reactor. Experimental results clearly indicated that dissolved oxygen (DO), hydraulic retention time (HRT) and concentration of the model bacteria (Escherichia coliform) affected the removal efficiency. It was found that the ultimate removal efficiency was 99% at DO level of 21.34 mg/l, HRT at 60s and high concentration of E. coli at 10(9)CFU/ml. The morphologic studies also showed that E. coliform could be further mineralized into CO2 and H2O. Dissolved organic carbon, pH and gas chromatograph analysis had justified most importantly the evolution of CO2. Experimental results revealed that the photomineralization rate of E. coliform followed pseudo-first-order kinetics by the role of DO. The derived empirical models were found consistent with the proposed reaction pathways of a combined UV breakdown on mass cell and a dual-site Langmuir-Hinshelwood mechanism where the rate-controlling step is the surface interaction between the adsorbed cleavage bacterial cells and hydroxyl radicals.
Melis, Anastasios; Zhang, Liping; Forestier, Marc; Ghirardi, Maria L.; Seibert, Michael
2000-01-01
The work describes a novel approach for sustained photobiological production of H2 gas via the reversible hydrogenase pathway in the green alga Chlamydomonas reinhardtii. This single-organism, two-stage H2 production method circumvents the severe O2 sensitivity of the reversible hydrogenase by temporally separating photosynthetic O2 evolution and carbon accumulation (stage 1) from the consumption of cellular metabolites and concomitant H2 production (stage 2). A transition from stage 1 to stage 2 was effected upon S deprivation of the culture, which reversibly inactivated photosystem II (PSII) and O2 evolution. Under these conditions, oxidative respiration by the cells in the light depleted O2 and caused anaerobiosis in the culture, which was necessary and sufficient for the induction of the reversible hydrogenase. Subsequently, sustained cellular H2 gas production was observed in the light but not in the dark. The mechanism of H2 production entailed protein consumption and electron transport from endogenous substrate to the cytochrome b6-f and PSI complexes in the chloroplast thylakoids. Light absorption by PSI was required for H2 evolution, suggesting that photoreduction of ferredoxin is followed by electron donation to the reversible hydrogenase. The latter catalyzes the reduction of protons to molecular H2 in the chloroplast stroma. PMID:10631256
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Zhu
2006-06-15
High-Resolution Mineralogical Characterization and Biogeochemical Modeling of Uranium Reduction Pathways at the Oak Ridge Field-Research Center (FRC) Chen Zhu, Indiana University, David R. Veblen, Johns Hopkins University We have successfully completed a proof-of-concept, one-year grant on a three-year proposal from the former NABIR program, and here we seek additional two-year funding to complete and publish the research. Using a state-of-the-art 300-kV, atomic resolution, Field Emission Gun Transmission Electron Microscope (TEM), we have successfully identified three categories of mineral hosts for uranium in contaminated soils: (1) iron oxides; (2) mixed manganese-iron oxides; and (3) uranium phosphates. Method development using parallel electronmore » energy loss spectroscopy (EELS) associated with the TEM shows great promise for characterizing the valence states of immobilized U during bioremediation. We have also collected 27 groundwater samples from two push-pull field biostimulation tests, which form two time series from zero to approximately 600 hours. The temporal evolution in major cations, anions, trace elements, and the stable isotopes 34S, 18O in sulfate, 15N in nitrate, and 13C in dissolved inorganic carbon (DIC) clearly show that biostimulation resulted in reduction of nitrate, Mn(IV), Fe(III), U(VI), sulfate, and Tc(VII), and these reduction reactions were intimately coupled with a complex network of inorganic reactions evident from alkalinity, pH, Na, K, Mg, and Ca concentrations. From these temporal trends, apparent zero order rates were regressed. However, our extensive suite of chemical and isotopic data sets, perhaps the first and only comprehensive data set available at the FRC, show that the derived rates from these field biostimulation experiments are composite and lump-sum rates. There were several reactions that were occurring at the same time but were masked by these pseudo-zero order rates. A reaction-path model comprising a total of nine redox couples (NO3–/NH4+, MnO2(s)/Mn2+, Fe(OH)3(s) /Fe2+, TcO4–/TcO2(s), UO22+/UO2(s), SO42–/HS–, CO2/CH4, ethanol/acetate, and H+/H2.) is used to simulate the temporal biogeochemical evolution observed in the field tests. Preliminary results show that the models based on thermodynamics and more complex rate laws can generate the apparent zero order rates when several concurrent or competing reactions occur. Professor Alex Halliday of Oxford University, UK, and his postdoctoral associates are measuring the uranium isotopes in our groundwater samples. Newly developed state-of-the-art analytical techniques in measuring variability in 235U/238U offer the potential to distinguish biotic and abiotic uranium reductive mechanisms.« less
Surface Segregation in Ag/TiOx 3D Nanocomposite Prepared by Physical Vapor Deposition
NASA Astrophysics Data System (ADS)
Xiong, J.; He, L. Y.
2018-05-01
The antimicrobial activities of silver based nanocomposites are usually studied in terms of Ag content and ion release rate. Under this condition, controllable silver ions release with high antibacterial activity is the basis for silver based nanocomposite. The goal is to investigate the influence of O2 content and titanium oxide barrier thickness on the evolution in morphology. The SEM/TEM results showed that the size of Ag nanoparticles has a clear dependence on O2 concentration in reactive sputtering process; increased oxygen implies larger Ag nanoparticles in the matrix. In addition, a clear suppressing effect and better size distribution is obtained after the thickness of coated titanium oxide barrier is verified.
Panagiotopoulos, Athanassios; Douvas, Antonios M; Argitis, Panagiotis; Coutsolelos, Athanassios G
2016-11-23
Hydrogen evolution using photocatalytic systems based on artificial photosynthesis is a major approach toward solar energy conversion and storage. In the polyoxometalate-based photocatalytic systems proposed in the past, middle/near UV light irradiation and noble-metal catalysts were mainly used. Although recently polyoxometalates were sensitized in visible light, photosensitizers or catalysts based on noble metals, and/or poor activity of polyoxometalates were generally obtained. Here we show the highly efficient [turnover number (TON)=215] hydrogen evolution induced by the zinc(II) mesotetrakis(N-methyl-pyridinium-4-yl)porphyrin (ZnTMPyP 4+ ) sensitization of a series of polyoxometalate catalysts (two Dawson type, P 2 Mo 18 O 62 6- and P 2 W 18 O 62 6- anions, and one Keplerate {Mo 132 } cluster) in a visible-light-driven, noble-metal-free, and fully water-soluble system. We attributed the high efficiency for hydrogen evolution to the multi-electron reduction of polyoxometalates and found that: (a) both Dawson polyoxometalates exhibit higher hydrogen evolution efficiency upon ZnTMPyP 4+ sensitization in relation to the direct photoreduction of those compounds; (b) the P 2 Mo 18 O 62 6- anion is more efficient (TON=65 vs. 38, respectively) for hydrogen evolution than the P 2 W 18 O 62 6- anion; and (c) the high nuclearity Keplerate {Mo 132 } cluster exhibits the highest efficiency (TON=215) for hydrogen evolution compared with the polyoxometalates studied. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-Speed Linear Raman Spectroscopy for Instability Analysis of a Bluff Body Flame
NASA Technical Reports Server (NTRS)
Kojima, Jun; Fischer, David
2013-01-01
We report a high-speed laser diagnostics technique based on point-wise linear Raman spectroscopy for measuring the frequency content of a CH4-air premixed flame stabilized behind a circular bluff body. The technique, which primarily employs a Nd:YLF pulsed laser and a fast image-intensified CCD camera, successfully measures the time evolution of scalar parameters (N2, O2, CH4, and H2O) in the vortex-induced flame instability at a data rate of 1 kHz. Oscillation of the V-shaped flame front is quantified through frequency analysis of the combustion species data and their correlations. This technique promises to be a useful diagnostics tool for combustion instability studies.
Shi, Zhengtao; Niu, Jie; Su, Huai
2016-01-01
Lacustrine deposits at the margin of the southeastern Tibetan Plateau (SETP) are sensitive indicators for the evolution of the southwest Asian monsoon (SWAM) during the Quaternary. Thus, they can provide insight into the Quaternary climatic history and their relationship with global climatic changes. The results of the geochemical analysis of the Xiaozhongdian Basin section at the SETP suggest that SiO2 had the highest content of the major elements followed by Al2O3. The order of the abundance of the major elements was generally as follows: SiO2>Al2O3>Fe2O3>CaO>MgO>K2O>TiO2>Na2O>MnO2. The geochemical proxies, such as chemical index of alteration (CIA), the index of compositional variability (ICV) and (CaO+K2O+Na2O)/Al2O3, indicate the weak chemical weathering and the aridification of the margin of the SETP during the Heinrich events. In addition, the aridification of the SETP during the Heinrich events may be closely related to the cold signals transmitted from the high latitudes of the North Atlantic to the TP, and the effect caused the cooling effect to be very strong on the TP as a result of the upper-level westerly jet stream and then reduced the suction action associated with the SWAM, thus accelerating the drying rate of Xiaozhongdian Basin, which was amplifying the degree of drought in Heinrich events. PMID:28033377
Zhou, Xuemei; Shen, Xuetao; Xia, Zhaoming; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan
2015-09-16
Nano-/micrometer multiscale hierarchical structures not only provide large surface areas for surface redox reactions but also ensure efficient charge conductivity, which is of benefit for utilization in areas of electrochemical energy conversion and storage. Herein, hollow fluffy cages (HFC) of Co3O4, constructed of ultrathin nanosheets, were synthesized by the formation of Co(OH)2 hollow cages and subsequent calcination at 250 °C. The large surface area (245.5 m2 g(-1)) of HFC Co3O4 annealed at 250 °C ensures the efficient interaction between electrolytes and electroactive components and provides more active sites for the surface redox reactions. The hierarchical structures minimize amount of the grain boundaries and facilitate the charge transfer process. Thin thickness of nanosheets (2-3 nm) ensures the highly active sites for the surface redox reactions. As a consequence, HFC Co3O4 as the supercapacitor electrode exhibits a superior rate capability, shows an excellent cycliability of 10,000 cycles at 10 A g(-1), and delivers large specific capacitances of 948.9 and 536.8 F g(-1) at 1 and 40 A g(-1), respectively. Catalytic studies of HFC Co3O4 for oxygen evolution reaction display a much higher turnover frequency of 1.67×10(-2) s(-1) in pH 14.0 KOH electrolyte at 400 mV overpotential and a lower Tafel slope of 70 mV dec(-1). HFC Co3O4 with the efficient electrochemical activity and good stability can remain a promising candidate for the electrochemical energy conversion and storage.
NASA Astrophysics Data System (ADS)
Kato, Zenta; Kashima, Ryo; Tatsumi, Kohei; Fukuyama, Shinnosuke; Izumiya, Koichi; Kumagai, Naokazu; Hashimoto, Koji
2016-12-01
For oxygen formation without forming chlorine in seawater electrolysis for hydrogen production we have been using the anode consisting of three layers of MnO2-type multiple oxide catalyst, intermediate layer and titanium substrate. The intermediate layer was used for prevention of oxidation of the titanium substrate during anodic polarization for oxygen evolution and was prepared by calcination of butanol solutions of H2IrCl6 and SnCl4 coated on titanium. The protectiveness of Ir1-xSnxO2 layer formed was directly examined using Ir1-xSnxO2/Ti anodes in H2SO4 solution changing the preparation conditions of the layer. When the sum of Ir4+ and Sn4+ was 0.1 M, the highest protectiveness was observed at 0.06 M Sn4+. Although an increase in calcination temperature led to the formation of Ir1-x-ySnxTiyO2 triple oxide with a slightly lower catalytic activity for oxygen evolution, the anode calcined at 450 °C showed the highest protectiveness.
NASA Astrophysics Data System (ADS)
Peng, Tianyou; Dai, Ke; Yi, Huabing; Ke, Dingning; Cai, Ping; Zan, Ling
2008-07-01
Hydrogen production over dye-sensitized Pt/P25 under visible-light irradiation was investigated by using methanol or TEOA as an electron donor. Ru 2(bpy) 4L 1-PF 6 shows the best photosensitization due to its largest conjugation system, widest range of visible-light and 'antenna effect' among the used three Ru(II)-bipyridyl dyes. Ru 2(bpy) 4L 1-PF 6 loosely linked with TiO 2 also exhibit more steady and higher increases in H 2 evolution upon prolonging the irradiation time than the tightly linked N719. The dynamic equilibrium between the linkage of ground dye and divorce of oxidized dye from TiO 2 can enhance the electron-injection and hinder the backward transfer, and then improve the H 2 evolution efficiency.
Wang, Lei; Zhang, Yiman; Scofield, Megan E; Yue, Shiyu; McBean, Coray; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S; Wong, Stanislaus S
2015-10-12
"Flower-like" motifs of Li4Ti5O12 were synthesized by using a facile and large-scale hydrothermal process involving unique Ti foil precursors followed by a short, relatively low-temperature calcination in air. Moreover, a detailed time-dependent growth mechanism and a reasonable reaction scheme were proposed to clearly illustrate and highlight the structural evolution and subsequent formation of this material. Specifically, the resulting "flower-like" Li4Ti5O12 microspheres consisting of thin nanosheets provide for an enhanced surface area and a reduced lithium-ion diffusion distance. The high surface areas of the exposed roughened, thin petal-like component nanosheets are beneficial for the interaction of the electrolyte with Li4Ti5O12 , which thereby ultimately provides for improved high-rate performance and favorable charge/discharge dynamics. Electrochemical studies of the as-prepared nanostructured Li4Ti5O12 clearly revealed their promising potential as an enhanced anode material for lithium-ion batteries, as they present both excellent rate capabilities (delivering 148, 141, 137, 123, and 60 mAh g(-1) under discharge rates of 0.2, 10, 20, 50, and 100 C, at cycles of 50, 55, 60, 65, and 70, respectively) and stable cycling performance (exhibiting a capacity retention of ≈97 % from cycles 10-100, under a discharge rate of 0.2 C, and an impressive capacity retention of ≈87 % by using a more rigorous discharge rate of 20 C from cycles 101-300). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yan, Pengfei; Zheng, Jianming; Xiao, Jie; ...
2015-06-08
Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li 0.2Ni 0.2Mn 0.6O 2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processingmore » history, cycling induced structural degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.« less
Cheng, Zhongzhou; Wang, Fengmei; Shifa, Tofik Ahmed; Jiang, Chao; Liu, Quanlin; He, Jun
2017-11-01
Considering the sizable band gap and wide spectrum response of tin disulfide (SnS 2 ), ultrathin SnS 2 nanosheets are utilized as solar-driven photocatalyst for water splitting. Designing a heterostructure based on SnS 2 is believed to boost their catalytic performance. Unfortunately, it has been quite challenging to explore a material with suitable band alignment using SnS 2 nanomaterials for photocatalytic hydrogen generation. Herein, a new strategy is used to systematically tailor the band alignment in SnS 2 based heterostructure to realize efficient H 2 production under sunlight. A Type-I to Type-II band alignment transition is demonstrated via introducing an interlayer of Ce 2 S 3 , a potential photocatalyst for H 2 evolution, between SnS 2 and CeO 2 . Subsequently, this heterostructure demonstrates tunability in light absorption, charge transfer kinetics, and material stability. The optimized heterostructure (SnS 2 -Ce 2 S 3 -CeO 2 ) exhibits an incredibly strong light absorption ranging from deep UV to infrared light. Significantly, it also shows superior hydrogen generation with the rate of 240 µmol g -1 h -1 under the illumination of simulated sunlight with a very good stability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms.
Zhang, Wei; Qi, Weihong; Albert, Thomas J; Motiwala, Alifiya S; Alland, David; Hyytia-Trees, Eija K; Ribot, Efrain M; Fields, Patricia I; Whittam, Thomas S; Swaminathan, Bala
2006-06-01
Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7x10(-9) per site per year), we estimate that the most recent common ancestor of the contemporary beta-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens.
Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms
Zhang, Wei; Qi, Weihong; Albert, Thomas J.; Motiwala, Alifiya S.; Alland, David; Hyytia-Trees, Eija K.; Ribot, Efrain M.; Fields, Patricia I.; Whittam, Thomas S.; Swaminathan, Bala
2006-01-01
Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7 × 10−9 per site per year), we estimate that the most recent common ancestor of the contemporary β-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens. PMID:16606700
NASA Astrophysics Data System (ADS)
Stippich, Christian; Glasmacher, Ulrich Anton; Hackspacher, Peter
2015-04-01
The aim of the research is to quantify the long-term landscape evolution of the South Atlantic passive continental margin (SAPCM) in SE-Brazil and NW-Namibia. Excellent onshore outcrop conditions and complete rift to post-rift archives between Sao Paulo and Porto Alegre and in the transition from Namibia to Angola (onshore Walvis ridge) allow a high precision quantification of exhumation, and uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate the published and partly published thermochronological data from Brazil and Namibia, and test lately published new concepts on causes of long-term landscape evolution at rifted margins. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE1,2 and FastScape3). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates. References 1. Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. 2. Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. 3. Braun, J. and Willett, S.D., 2013. A very efficient, O(n), implicit and parallel method to solve the basic stream power law equation governing fluvial incision and landscape evolution. Geomorphology, v.180-181, 170-179.
NASA Astrophysics Data System (ADS)
Landais, Amaelle; Casado, Mathieu; Prié, Frédéric; Magand, Olivier; Arnaud, Laurent; Ekaykin, Alexey; Petit, Jean-Robert; Picard, Ghislain; Fily, Michel; Minster, Bénédicte; Touzeau, Alexandra; Goursaud, Sentia; Masson-Delmotte, Valérie; Jouzel, Jean; Orsi, Anaïs
2017-07-01
Polar ice cores are unique climate archives. Indeed, most of them have a continuous stratigraphy and present high temporal resolution of many climate variables in a single archive. While water isotopic records (δD or δ18O) in ice cores are often taken as references for past atmospheric temperature variations, their relationship to temperature is associated with a large uncertainty. Several reasons are invoked to explain the limitation of such an approach; in particular, post-deposition effects are important in East Antarctica because of the low accumulation rates. The strong influence of post-deposition processes highlights the need for surface polar research programs in addition to deep drilling programs. We present here new results on water isotopes from several recent surface programs, mostly over East Antarctica. Together with previously published data, the new data presented in this study have several implications for the climatic reconstructions based on ice core isotopic data: (1) The spatial relationship between surface mean temperature and mean snow isotopic composition over the first meters in depth can be explained quite straightforwardly using simple isotopic models tuned to d-excess vs. δ18O evolution in transects on the East Antarctic sector. The observed spatial slopes are significantly higher (∼ 0.7-0.8‰·°C-1 for δ18O vs. temperature) than seasonal slopes inferred from precipitation data at Vostok and Dome C (0.35 to 0.46‰·°C-1). We explain these differences by changes in condensation versus surface temperature between summer and winter in the central East Antarctic plateau, where the inversion layer vanishes in summer. (2) Post-deposition effects linked to exchanges between the snow surface and the atmospheric water vapor lead to an evolution of δ18O in the surface snow, even in the absence of any precipitation event. This evolution preserves the positive correlation between the δ18O of snow and surface temperature, but is associated with a much slower δ18O-vs-temperature slope than the slope observed in the seasonal precipitation. (3) Post-deposition effects clearly limit the archiving of high-resolution (seasonal) climatic variability in the polar snow, but we suggest that sites with an accumulation rate of the order of 40 kg.m-2.yr-1 may record a seasonal cycle at shallow depths.
Investigation into the disparate origin of CO 2 and H 2O outgassing for comet 67P
NASA Astrophysics Data System (ADS)
Fink, Uwe; Doose, Lyn; Rinaldi, Giovanna; Capaccioni, Fabrizio; Bockelee-Morvan, Dominique; VIRTIS Team
2016-10-01
We present an investigation of the emission intensity of CO2 and H2O and their distribution in the coma of 67P/ Churyumov-Gerasimenko obtained by the VIRTIS-M imaging spectrometer on the Rosetta mission. We analyze 4 data cubes from Feb. 28, and 7 data cubes from April 27, 2015. For both data sets the spacecraft was at a sufficiently large distance from the comet to allow images of the whole nucleus and the surrounding coma.We find that unlike water which has a reasonably predictable behavior and correlates well with the solar illumination, CO2 outgasses mostly in local regions or spots. Furthermore for the data on April 27, the CO2 evolves almost exclusively from the southern hemisphere, a region of the comet that has not received solar illumination since the comet's last perihelion passage. Because CO2 and H2O have such disparate origins, deriving mixing ratios from local column density measurements cannot provide a meaningful measurement of the CO2/H2O ratio in the coma of the comet. We obtain total production rates of H2O and CO2 by integrating the band intensity in an annulus surrounding the nucleus and obtain pro-forma production rate CO2/H2O mixing ratios of ~5.0% and ~2.5% for Feb. 28 and April 27 respectively. Because of the highly variable nature of the CO2 evolution we do not believe that these numbers are diagnostic of the comets bulk CO2/H2O composition. We believe that our investigation provides an explanation for the large observed variations reported in the literature for the CO2/H2O production rate ratios. Our mixing ratio maps indicate that, besides the difference in vapor pressure of the two gases, this ratio depends on the comet's geometric shape, illumination and past orbital history.Our annulus measurement for the total water production for Feb. 28 at 2.21AU from the sun is 2.5x1026 molecules/s while for April 27 at 1.76 AU it is 4.65x1026. We find that about 83% of the H2O resides in the illuminated portion of our annulus and about 17% on the night side. A rough estimate of the water surface evaporation rate of the illuminated nucleus for April 27 yields about 5x1019 molecules/s m2.
NASA Astrophysics Data System (ADS)
Harada, M.; Furukawa, R.; Yokobori, S. I.; Tajika, E.; Yamagishi, A.
2016-12-01
A significant rise in atmospheric O2 levels during the GOE (Great Oxidation Event), ca. 2.45-2.0 Ga, must have caused a great stress to biosphere, enforcing life to adapt to oxic conditions. Cyanobacteria, oxygenic photosynthetic bacteria that had been responsible for the GOE, are at the same time one of the organisms that would have been greatly affected by the rise of O2 level in the surface environments. Knowledge on the evolution of cyanobacteria is not only important to elucidate the cause of the GOE, but also helps us to better understand the adaptive evolution of life in response to the GOE. Here we performed phylogenetic analysis of an anti-oxidant enzyme Fe-SOD (iron superoxide dismutase) of cyanobacteria, to assess the adaptive evolution of life under the GOE. The rise of O2 level must have increased the level of toxic reactive oxygen species in cyanobacterial cells, thus forced them to change activities or the gene expression levels of Fe-SOD. In the present study, we focus on the change in the gene expression levels of the enzyme, which can be estimated from the promoter sequences of the gene. Promoters are DNA sequences found upstream of protein encoding regions, where RNA polymerase binds and initiates transcription. "Strong" promoters that efficiently interact with RNA polymerase induce high rates of transcription, leading to high levels of gene expression. Thus, from the temporal changes in the promoter sequences, we can estimate the variations in the gene expression levels during the geological time. Promoter sequences of Fe-SOD at each ancestral node of cyanobacteria were predicted from phylogenetic analysis, and the ancestral promoter sequences were compared to the promoters of known highly expressed genes. The similarity was low at the time of the emergence of cyanobacteria; however, increased at the branching nodes diverged 2.4 billon years ago. This roughly coincided with the onset of the GOE, implying that the transition from low to high gene expression levels of Fe-SOD occurred in response to the GOE. We propose that this is the first direct evidence of the evolution of cyanobacteria related to the rise of O2, and that the methodologies of ancestral promoter analysis used in this study can be a novel tools to reveal the biological adaptation to such a significant geologic event.
Takagi, Daisuke; Inoue, Hironori; Odawara, Mizue; Shimakawa, Ginga; Miyake, Chikahiro
2014-01-01
Sugar-derived reactive carbonyls (RCs), including methylglyoxal (MG), are aggressive by-products of oxidative stress known to impair the functions of multiple proteins. These advanced glycation end-products accumulate in patients with diabetes mellitus and cause major complications, including arteriosclerosis and cardiac insufficiency. In the glycolytic pathway, the equilibration reactions between dihydroxyacetone phosphate and glyceraldehyde 3-phosphate (GAP) have recently been shown to generate MG as a by-product. Because plants produce vast amounts of sugars and support the same reaction in the Calvin cycle, we hypothesized that MG also accumulates in chloroplasts. Incubating isolated chloroplasts with excess 3-phosphoglycerate (3-PGA) as the GAP precursor drove the equilibration reaction toward MG production. The rate of oxygen (O2) evolution was used as an index of 3-PGA-mediated photosynthesis. The 3-PGA- and time-dependent accumulation of MG in chloroplasts was confirmed by HPLC. In addition, MG production increased with an increase in light intensity. We also observed a positive linear relationship between the rates of MG production and O2 evolution (R = 0.88; P < 0.0001). These data provide evidence that MG is produced by the Calvin cycle and that sugar-derived RC production is inevitable during photosynthesis. Furthermore, we found that MG production is enhanced under high-CO2 conditions in illuminated wheat leaves. PMID:24406631
Initial stages of ion beam-induced phase transformations in Gd2O3 and Lu2O3
NASA Astrophysics Data System (ADS)
Chen, Chien-Hung; Tracy, Cameron L.; Wang, Chenxu; Lang, Maik; Ewing, Rodney C.
2018-02-01
The atomic-scale evolution of lanthanide sesquioxides Gd2O3 and Lu2O3 irradiated with 1 MeV Kr ions at room temperature and 120 K, up to fluences of 1 × 1016 ions/cm2 (˜20 dpa), has been characterized by in situ transmission electron microscopy. At room temperature, both oxides exhibited high radiation tolerance. Irradiation did not cause any observable structural change in either material, likely due to the mobility of irradiation-induced point defects, causing efficient defect annihilation. For Gd2O3, having the larger cation ionic radius of the two materials, an irradiation-induced stacking fault structure appeared at low fluences in the low temperature irradiation. As compared with the cubic-to-monoclinic phase transformations known to result from higher energy (˜GeV) ion irradiation, Kr ions of lower energies (˜MeV) yield much lower rates of damage accumulation and thus less extensive structural modification. At a fluence of 2.5 × 1015 ions/cm2, only the initial stages of the cubic-to-monoclinic (C to B) phase transformation process, consisting of the formation and aggregation of defects, have been observed.
Long-term product consistency test of simulated 90-19/Nd HLW glass
NASA Astrophysics Data System (ADS)
Gan, X. Y.; Zhang, Z. T.; Yuan, W. Y.; Wang, L.; Bai, Y.; Ma, H.
2011-01-01
Chemical durability of 90-19/Nd glass, a simulated high-level waste (HLW) glass in contact with the groundwater was investigated with a long-term product consistency test (PCT). Generally, it is difficult to observe the long term property of HLW glass due to the slow corrosion rate in a mild condition. In order to overcome this problem, increased contacting surface ( S/ V = 6000 m -1) and elevated temperature (150 °C) were employed to accelerate the glass corrosion evolution. The micro-morphological characteristics of the glass surface and the secondary minerals formed after the glass alteration were analyzed by SEM-EDS and XRD, and concentrations of elements in the leaching solution were determined by ICP-AES. In our experiments, two types of minerals, which have great impact on glass dissolution, were found to form on 90-19/Nd HLW glass surface when it was subjected to a long-term leaching in the groundwater. One is Mg-Fe-rich phyllosilicates with honeycomb structure; the other is aluminosilicates (zeolites). Mg and Fe in the leaching solution participated in the formation of phyllosilicates. The main components of phyllosilicates in alteration products of 90-19/Nd HLW glass are nontronite (Na 0.3Fe 2Si 4O 10(OH) 2·4H 2O) and montmorillonite (Ca 0.2(Al,Mg) 2Si 4O 10(OH) 2·4H 2O), and those of aluminosilicates are mordenite ((Na 2,K 2,Ca)Al 2Si 10O 24·7H 2O)) and clinoptilolite ((Na,K,Ca) 5Al 6Si 30O 72·18H 2O). Minerals like Ca(Mg)SO 4 and CaCO 3 with low solubility limits are prone to form precipitant on the glass surface. Appearance of the phyllosilicates and aluminosilicates result in the dissolution rate of 90-19/Nd HLW glass resumed, which is increased by several times over the stable rate. As further dissolution of the glass, both B and Na in the glass were found to leach out in borax form.
A Model Study of the Thermal Evolution of Astrophysical Ices
NASA Technical Reports Server (NTRS)
Loeffler, M. J.; Teolis, B. D.; Baragiola, R. A.
2006-01-01
We address the question of the evolution of ices that have been exposed to radiation from stellar sources and cosmic rays. We studied in the laboratory the thermal evolution of a model ice sample: a mixture of water, hydrogen peroxide, dioxygen, and ozone produced by irradiating solid H2O2 with 50 keV H(+) at 17 K. The changes in composition and release of volatiles during warming to 200 K were monitored by infrared spectroscopy, mass spectrometry, and microbalance techniques. We find evidence for voids in the water component from the infrared bands due to dangling H bonds. The absorption from these bands increases during heating and can be observed at temperatures as high as approx. 155 K. More O2 is stored in the radiolyzed film than can be retained by codeposition of O2 and H2O. This O2 remains trapped until approx. 155 K, where it desorbs in an outburst as water ice crystallizes. Warming of the ice also drastically decreases the intrinsic absorbance of O2 by annealing defects in the ice. We also observe loss of O3 in two stages during heating, which correlates with desorption and possibly chemical reactions with radicals stored in the ice, triggered by the temperature increase.
NASA Astrophysics Data System (ADS)
Kressall, R.; Fedortchouk, Y.; McCammon, C. A.
2015-12-01
Composition of kimberlites is ambiguous due to assimilation and fractional crystallization. We propose that the evolution history of minerals can be used to decipher the magmatic history of kimberlites. We use Fe-Ti oxides (chromite and ilmenite) from six kimberlites from the Ekati Diamond Mine and dissolution experiments to elucidate the petrogenesis of kimberlites. Experiments at 0.1 MPa and variable ƒO2s in a diopside-anorthite melt show that the dissolution rate of ilmenite is highly sensitive to ƒO2. No significant difference was observed in chromite. Zoning in chromite is related to the Fe-content and oxidation state of the melt. Experiments at 1 GPa explore the development of chromite surface resorption features in the system Ca-Mg-Si-H-C-O. Five kimberlites contain a low abundance of ilmenite, owing to a relatively high ƒO2, though ilmenite constituted 65% of oxide macocrysts in one kimberlite. Chromite compositions evolve from Mg-chromite to magnesio-ulvöspinel-magnetite (MUM) in all but one kimberlite where chromite evolves to a pleonaste composition perhaps as a result of rapid emplacement. The high abundance of MUM spinel and low abundance of ilmenite in the matrix could be related to the change in the stable Ti-phase with increasing ƒO2. Core compositions of macrocrysts vary for different mantle sources but rims converge to a composition slightly more oxidized and Mg-rich than chromite from depleted peridotite. Ilmenite commonly has rims composed of perovskite, titanite and MUM. We suggest a model where the kimberlite melt composition is controlled by the co-dissolution and co-precipitation of silicates (predominantly orthopyroxene and olivine) to explain chromite evolution in kimberlites. Resorption-related surface features on chromite macrocrysts show trigon protrusions-depressions on {111} faces and step-like features along the crystal edges resembling products of experiments in H2O fluid. We propose predominantly H2O magmatic fluid in Ekati kimberlites.
Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Yu; Romano, D.; Ivison, R. J.; Papadopoulos, Padelis P.; Matteucci, F.
2018-06-01
All measurements of cosmic star formation must assume an initial distribution of stellar masses—the stellar initial mass function—in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum1. The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time2. Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies2,3, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths4,5. The 13C/18O isotope abundance ratio in the cold molecular gas—which can be probed via the rotational transitions of the 13CO and C18O isotopologues—is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13CO and C18O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13CO/C18O ratio for all our targets—alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way6—implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the `main sequence' of star-forming galaxies7, although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.
Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time.
Zhang, Zhi-Yu; Romano, D; Ivison, R J; Papadopoulos, Padelis P; Matteucci, F
2018-06-01
All measurements of cosmic star formation must assume an initial distribution of stellar masses-the stellar initial mass function-in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum 1 . The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time 2 . Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies 2,3 , especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths 4,5 . The 13 C/ 18 O isotope abundance ratio in the cold molecular gas-which can be probed via the rotational transitions of the 13 CO and C 18 O isotopologues-is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13 CO and C 18 O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13 CO/C 18 O ratio for all our targets-alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way 6 -implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the 'main sequence' of star-forming galaxies 7 , although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Neil R.; Grant, J. T.; Sun, L.
2014-03-18
Germanium oxide (GeO x) films were grown on (1 0 0) Si substrates by reactive Direct-Current (DC) magnetron sputter-deposition using an elemental Ge target. The effects of oxygen gas fraction, Г = O 2/(Ar + O 2), on the deposition rate, structure, chemical composition and optical properties of GeOx films have been investigated. The chemistry of the films exhibits an evolution from pure Ge to mixed Ge + GeO + GeO 2 and then finally to GeO 2 upon increasing Г from 0.00 to 1.00. Grazing incidence X-ray analysis indicates that the GeO x films grown were amorphous. The opticalmore » properties probed by spectroscopic ellipsometry indicate that the effect of Г is significant on the optical constants of the GeO x films. The measured index of refraction (n) at a wavelength (λ) of 550 nm is 4.67 for films grown without any oxygen, indicating behavior characteristic of semiconducting Ge. The transition from germanium to mixed Ge + GeO + GeO 2 composition is associated with a characteristic decrease in n (λ = 550 nm) to 2.62 and occurs at Г = 0.25. Finally n drops to 1.60 for Г = 0.50–1.00, where the films become GeO 2. A detailed correlation between Г, n, k and stoichiometry in DC sputtered GeO x films is presented and discussed.« less
Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO3.
Li, Guoqiang; Yan, Shicheng; Wang, Zhiqiang; Wang, Xiangyan; Li, Zhaosheng; Ye, Jinhua; Zou, Zhigang
2009-10-28
Polyhedron-shaped AgNbO3 photocatalysts were synthesized by solvothermal and liquid-solid methods. Their photocatalytic properties were evaluated from the photocatalytic O2 evolution under visible light irradiation. The polyhedron-shaped AgNbO3 was induced to grow by shaped silver particles followed by the free-growth model. The photocatalytic results indicate that the polyhedron-shaped morphology is favourable for the photocatalytic O2 evolution under visible light irradiation in comparison with the spherical one. Furthermore, the Cu doping on the surface would enhance the visible light photocatalytic activity significantly.
Atomic scale study of ball milled Ni-Fe{sub 2}O{sub 3} using Mössbauer spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Ravi Kumar; Govindaraj, R., E-mail: govind@igcar.gov.in; Vinod, K.
Evolution of hyperfine fields at Fe atoms has been studied in a detailed manner in a mixture of Ni and α-Fe{sub 2}O{sub 3} subjected to high energy ball milling using Mossbauer spectroscopy. Mossbauer results indicate the dispersion of α-Fe{sub 2}O{sub 3} particles in Ni matrix in the as ball milled condition. Evolution of α-Fe{sub 2}O{sub 3} due to ball milling, reduction of the valence of associated Fe and possible interaction between the oxide particles with Ni in the matrix due to annealing treatments has been elucidated in the present study.
Feature Profile Evolution of SiO2 Trenches In Fluorocarbon Plasmas
NASA Technical Reports Server (NTRS)
Hwang, Helen; Govindan, T. R.; Meyyappan, M.; Arunachalam, Valli; Rauf, Shahid; Coronell, Dan; Carroll, Carol W. (Technical Monitor)
1999-01-01
Etching of silicon microstructures for semiconductor manufacturing in chlorine plasmas has been well characterized. The etching proceeds in a two-part process, where the chlorine neutrals passivate the Si surface and then the ions etch away SiClx. However, etching in more complicated gas mixtures and materials, such as etching of SiO2 in Ar/C4F8, requires knowledge of the ion and neutral distribution functions as a function of angle and velocity, in addition to modeling the gas surface reactions. In order to address these needs, we have developed and integrated a suite of models to simulate the etching process from the plasma reactor level to the feature profile evolution level. This arrangement allows for a better understanding, control, and prediction of the influence of equipment level process parameters on feature profile evolution. We are currently using the HPEM (Hybrid Plasma Equipment Model) and PCMCM (Plasma Chemistry Monte Carlo Model) to generate plasma properties and ion and neutral distribution functions for argon/fluorocarbon discharges in a GEC Reference Cell. These quantities are then input to the feature scale model, Simulation of Profile Evolution by Level Sets (SPELS). A surface chemistry model is used to determine the interaction of the incoming species with the substrate material and simulate the evolution of the trench profile. The impact of change of gas pressure and inductive power on the relative flux of CFx and F to the wafer, the etch and polymerization rates, and feature profiles will be examined. Comparisons to experimental profiles will also be presented.
NASA Astrophysics Data System (ADS)
Fowler, S.; Spera, F.; Bohrson, W.; Belkin, H.; Devivo, B.
2005-12-01
The eruption and deposition of the ~39.3 ka Campanian Ignimbrite (CI), a large volume (~200 km3 DRE) trachytic to phonolitic ignimbrite, is the dominant event in the history of the Campi Flegrei volcanic field near Naples, Italy. In an effort to comprehend its petrological evolution, we have conducted ~~110 MELTS (Ghiorso, 1997) phase equilibria simulations of the major element evolution of parental CI magma. The goals of this work are to approximate oxygen fugacity (fO2), initial dissolved water content and pressure at which isobaric closed system fractional crystallization of parental melt most accurately captures the observed liquid line of descent and to study the implications of heat extraction from parental CI magma with respect to the origin of compositional zonation and the probability of explosive eruption. Although the CI magma body did not evolve as a perfectly closed system, this assumption allows quantitative insight into magma-host rock mass exchange using trace element and isotopic data (see companion contribution by Bohrson et al.). The parental melt composition was reconstructed using data for melt inclusions trapped within CI clinopyroxene phenocrysts reported by Webster et al. (2003), while allowing for reaction between parental melt and clinopyroxene host. The inferred parental melt is a basaltic trachyandesite. The search space for pressure, (fO2) and initial dissolved H2O was 0.1-0.5 in 0.05 GPa increments, QFM-1 to QFM+3 and 1, 2 and 3 wt. % H2O, respectively. The criteria used to judge the quality of a simulation include correspondence of the MELTS prediction with CI liquid and phenocryst compositions. Results indicate that a good first-order model involves evolution from a basaltic trachyandesite parent by isobaric (~0.15 GPa) crystal fractionation initially containing ~3 wt% dissolved H2O along the QFM+1 buffer. H2O first saturates at 1127°C at 0.15 GPa when the dissolved water content is ~4 wt %. A striking result is the discovery of a pseudo-invariant point at ~883°C (Tip) and 0.15 GPa. The fraction of melt changes abruptly from ~0.5 to ~0.1 at Tip due to the simultaneous crystallization of alkali feldspar, plagioclase, spinel, biotite and apatite. At Tip, there is a dramatic decrease in the viscosity of melt (by a factor of four) and magma density (~5%) and an increase in the dissolved H2O content of the melt (from 4.4-5.1 wt%) and in the volume fraction,θ, of supercritical fluid in the multiphase system. In particular, θ increases from ~0.05 at 885°C to ~0.6 at 882°C. The liquid composition also changes discontinuously at Tip with Si, Na, and H2O increasing and K and Al decreasing as temperature falls below Tip. The marked variations in composition and properties of volatile-saturated melt and magma were the trigger that led to the catastrophic eruption and formation of the compositionally-zoned CI magma. Because phase equilibria modeling provides information on the enthalpy changes associated with fractional crystallization and because the dimensions of the CI magma chamber and heat extraction rate can be approximated, a time scale for CI magmatic evolution can be derived. The estimated crystallization duration (τ) is10-100 ka and 75% of τ is spent at or near Tip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Won -Jin; Luo, Langli; Jung, Hun -Gi
Due to its high energy efficiency, sodium-oxygen (Na-O 2) batteries have been extensively studied recently. One of the critical challenges for the development of the Na-O 2 battery is the elucidation of the reaction mechanism, the reaction products, and thestructural and chemical evolution of reaction product as well as their correlation with the battery performance. Herein, in-situ TEM was employed to probe the reaction mechanism and the structural evolution of the discharge products in Na-O 2 batteries. The discharge product is featured by the formation of both cubic and conformal NaO 2. It has been noticed that the impingement ofmore » reaction product (NaO 2) can lead to the coarsening of the particle through coalescence. We also investigated the stability of the discharge product, noticing that the reaction product NaO 2 is stable in the case of solid electrolyte. Here, the present work provide unprecedented insight for the development of the Na-O 2 batteries.« less
Kwak, Won -Jin; Luo, Langli; Jung, Hun -Gi; ...
2018-01-15
Due to its high energy efficiency, sodium-oxygen (Na-O 2) batteries have been extensively studied recently. One of the critical challenges for the development of the Na-O 2 battery is the elucidation of the reaction mechanism, the reaction products, and thestructural and chemical evolution of reaction product as well as their correlation with the battery performance. Herein, in-situ TEM was employed to probe the reaction mechanism and the structural evolution of the discharge products in Na-O 2 batteries. The discharge product is featured by the formation of both cubic and conformal NaO 2. It has been noticed that the impingement ofmore » reaction product (NaO 2) can lead to the coarsening of the particle through coalescence. We also investigated the stability of the discharge product, noticing that the reaction product NaO 2 is stable in the case of solid electrolyte. Here, the present work provide unprecedented insight for the development of the Na-O 2 batteries.« less
NASA Astrophysics Data System (ADS)
Hwang, Soo Min; Lee, Seung Muk; Park, Kyung; Lee, Myung Soo; Joo, Jinho; Lim, Jun Hyung; Kim, Hyoungsub; Yoon, Jae Jin; Kim, Young Dong
2011-01-01
High-permittivity (k) ZrO2/Si(100) films were fabricated by a sol-gel technique and the microstructural evolution with the annealing temperature (Ta) was correlated with the variation of their electrical performance. With increasing Ta, the ZrO2 films crystallized into a tetragonal (t) phase which was maintained until 700 °C at nanoscale thicknesses. Although the formation of the t-ZrO2 phase obviously enhanced the k value of the ZrO2 dielectric layer, the maximum capacitance in accumulation was decreased by the growth of a low-k interfacial layer (IL) between ZrO2 and Si with increasing Ta. On the other hand, the gate leakage current was remarkably depressed with increasing Ta probably due to the combined effects of the increased IL thickness, optical band gap of ZrO2, and density of ZrO2 and decreased remnant organic components.
Irradiation-induced defect formation and damage accumulation in single crystal CeO 2
Graham, Joseph T.; Zhang, Yanwen; Weber, William J.
2017-11-15
Here, the accumulation of irradiation-induced disorder in single crystal CeO 2 has been investigated over a wide range of ion fluences. Room temperature irradiations of epitaxial CeO 2 thin films using 2 MeV Au 2+ ions were carried out up to a total fluence of 1.3 x 10 16 cm –2 Post-irradiation disorder was characterized using ion channeling Rutherford backscattering spectrometry (RBS/C) and confocal Raman spectroscopy. The Raman measurements were interpreted by means of a phonon confinement model, which employed rigid ion calculations to determine the phonon correlation length in the irradiated material. Comparison between the dose dependent changes inmore » correlation length of the Raman measurements and the Ce disorder fraction from RBS/C provides complementary quantitative details on the rate of point and extended defect formation on the Ce and O sub-lattices over a broad range of ion fluences. Raman measurements, which are significantly more sensitive than RBS/C at low doses, reveal that the nucleation rate of defects is highest below 0.1 displacements per atom (dpa). Comparison between Raman and RBS/C measurements suggests that between 0.1 and 10 dpa the damage evolution is characterized by modest growth of point defects and/or small clusters, while above 10 dpa the preexisting defects rapidly grow into extended clusters and/or loops.« less
Irradiation-induced defect formation and damage accumulation in single crystal CeO2
NASA Astrophysics Data System (ADS)
Graham, Joseph T.; Zhang, Yanwen; Weber, William J.
2018-01-01
The accumulation of irradiation-induced disorder in single crystal CeO2 has been investigated over a wide range of ion fluences. Room temperature irradiations of epitaxial CeO2 thin films using 2 MeV Au2+ ions were carried out up to a total fluence of 1.3 ×1016 cm-2 Post-irradiation disorder was characterized using ion channeling Rutherford backscattering spectrometry (RBS/C) and confocal Raman spectroscopy. The Raman measurements were interpreted by means of a phonon confinement model, which employed rigid ion calculations to determine the phonon correlation length in the irradiated material. Comparison between the dose dependent changes in correlation length of the Raman measurements and the Ce disorder fraction from RBS/C provides complementary quantitative details on the rate of point and extended defect formation on the Ce and O sub-lattices over a broad range of ion fluences. Raman measurements, which are significantly more sensitive than RBS/C at low doses, reveal that the nucleation rate of defects is highest below 0.1 displacements per atom (dpa). Comparison between Raman and RBS/C measurements suggests that between 0.1 and 10 dpa the damage evolution is characterized by modest growth of point defects and/or small clusters, while above 10 dpa the preexisting defects rapidly grow into extended clusters and/or loops.
Irradiation-induced defect formation and damage accumulation in single crystal CeO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Joseph T.; Zhang, Yanwen; Weber, William J.
Here, the accumulation of irradiation-induced disorder in single crystal CeO 2 has been investigated over a wide range of ion fluences. Room temperature irradiations of epitaxial CeO 2 thin films using 2 MeV Au 2+ ions were carried out up to a total fluence of 1.3 x 10 16 cm –2 Post-irradiation disorder was characterized using ion channeling Rutherford backscattering spectrometry (RBS/C) and confocal Raman spectroscopy. The Raman measurements were interpreted by means of a phonon confinement model, which employed rigid ion calculations to determine the phonon correlation length in the irradiated material. Comparison between the dose dependent changes inmore » correlation length of the Raman measurements and the Ce disorder fraction from RBS/C provides complementary quantitative details on the rate of point and extended defect formation on the Ce and O sub-lattices over a broad range of ion fluences. Raman measurements, which are significantly more sensitive than RBS/C at low doses, reveal that the nucleation rate of defects is highest below 0.1 displacements per atom (dpa). Comparison between Raman and RBS/C measurements suggests that between 0.1 and 10 dpa the damage evolution is characterized by modest growth of point defects and/or small clusters, while above 10 dpa the preexisting defects rapidly grow into extended clusters and/or loops.« less
Self-assembly of core-shell structure PtO2@Pt nanodots and their formation evolution
NASA Astrophysics Data System (ADS)
Yang, Weijia; Liu, Junjie; Liu, Mingquan; Zhao, Zhicheng; Song, Yapeng; Tang, Xiufeng; Luo, Jianyi; Zeng, Qingguang; He, Xin
2018-05-01
Core-shell structure PtO2@Pt nanodots have been self-assembly by vacuum sputtering and high temperature annealing. First, Pt thin films with a small amount of PtO2 are grown on the sapphire substrates by vacuum sputtering. And then high temperature annealing on the thin films is carried out at 800 °C for 2 min to form Pt nanodots. During the cooling process, the atmosphere is deployed to supplant the nitrogen. Finally, even distributed core-shell structure PtO2@Pt nanodots with a diameter from 100 to 300 nm are achieved. Furthermore, the formation evolution of core-shell structure PtO2@Pt nanodots is also proposed. This work open up a new approach for fabricating core-shell structure nanodots.
Rivera, Carmen Susana; Blanco, Domingo; Salvador, María Luisa; Venturini, María Eugenia
2010-05-01
The aim of this study was to design a modified atmosphere packaging suitable for Tuber melanosporum and Tuber aestivum truffles that extend their shelf life and their availability as a fresh product. Their respiration rates were determined by O(2) depletion and CO(2) formation in closed systems performed at different temperatures: 4, 10, and 23 degrees C. The results were fitted by exponential equations and derivatives of these equations were used to obtain the experimental respiration rates. Our results revealed high respiration rates in both species of truffles and respiratory quotients (RQ) higher than 1 in all the cases studied. A linear dependence of respiration rate, both R(O2) and R(CO2), on O(2) concentration was revealed. A mathematical model was used to predict the evolution of the gaseous composition at 4 degrees C in the interior of polypropylene trays (250 mL) heat sealed with 4 microperforated films of different transmission rates. A microperforated film with 2 holes (90 x 50 microm) was selected to produce an internal atmosphere of 15%CO(2)/7%O(2) at 4 degrees C. The predicted atmosphere composition was confirmed by the experimental results. The quality and microbiological characteristics of fresh truffles, packaged in these conditions, revealed that the microbial counts of pseudomonads and Enterobacteriaceae were decreased, the weight loss was reduced, the typical hard texture was maintained, and the development of mycelium growth was delayed, enabling good scores for aroma and flavor, and therefore prolonging the shelf life of T. melanosporum and T. aestivum truffles to 28 and 21 d, respectively. Practical Application: This study describes the benefits of using MAP with microperforated films in the postharvest storage of Tuber melanosporum and Tuber aestivum fresh truffles. The shelf life of T. aestivum is prolonged to 21 d and of T. melanosporum to beyond 28 d increasing the possibilities for a foreign market.
NASA Astrophysics Data System (ADS)
Vines, L.; Bhoodoo, C.; von Wenckstern, H.; Grundmann, M.
2018-01-01
The evolution of sheet resistance of n-type In2O3 and Ga2O3 exposed to bombardment with MeV 12C and 28Si ions at 35 K is studied in situ. While the sheet resistance of Ga2O3 increased by more than eight orders of magnitude as a result of ion irradiation, In2O3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga2O3 remained highly resistive, while In2O3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to 2 × 1012 cm-2. A model where larger defect complexes preferentially produce donor like defects in In2O3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed.
NASA Astrophysics Data System (ADS)
Reeder, W. J.; Quick, A. M.; Farrell, T. B.; Benner, S. G.; Feris, K. P.; Tonina, D.
2013-12-01
The hyporheic zone (HZ) is a potentially important source of the potent greenhouse gas, nitrous oxide (N2O); stream processes may account for up to 10% of global anthropogenic N2O emissions. However, mechanistic understanding and predictive quantification of this gas flux is hampered by complex temporally and spatially variable interactions between flow dynamics and biogeochemical processes. Reactive inorganic nitrogen (Nr) is typically present at low concentrations in natural stream waters, but many rural and urban streams suffer from an excess of Nr, typically in the form of ammonium (NH4+) and nitrate (NO3-). These reactive species are either assimilated by living biomass or transformed by microbial processes. The two primary microbial transformations of Nr are nitrification (NH4+ to NO3-) and denitrification (NO3- to N2). Denitrification, which occurs almost exclusively in the anoxic zone of the HZ, permanently removes between 30-70% of all Nr entering streams, other mechanisms may retain nitrogen. The mass transport of reactive species (i.e. O2, NO3- and N2O) by hyporheic flow strongly influences reaction rates, residence times, and subsequent N2O flux. By extension, stream flow and channel morphology presumably control, and may be effective predictors of, N2O generation rates. By recreating the stream processes in the University of Idaho flume, we are able to control the bed morphology, fluxes and residence times through the HZ and concentrations of Nr from exogenous (stream water) and endogenous (organic material in the streambed) sources. For the present experiment, the flume was divided into three streams, each with different morphologies (3, 6 and 9cm dunes) and all using the same source water. Stream water for this first experimental phase had no significant loading of Nr. As such, all reaction products were the result of endogenous sources of Nr. To measure dissolved oxygen (DO) concentrations we deployed 120 channels of a novel, fiber-optic optode system which was coupled with an advanced optical multiplexer that allowed us to cycle continuously through all 120 channels. Using this approach, we were able to accurately map the evolution and extent of the anoxic regions within the HZ and demonstrate that bed morphology exhibits significant control over residence times and the spatial temporal evolution of the anoxic region. In addition to the DO measurements, we deployed 240 Rhizon water samplers to extract pore water, which we used to measure Nr and N2O concentrations, and an ion Clark-type electrode sensor to measure N2O concentrations at the streambed surface (results discussed separately). Integrating these various results will allow us to refine the existing models for N2O emissions from urban and rural streams.
Cousins, Asaph B.; Pracharoenwattana, Itsara; Zhou, Wenxu; Smith, Steven M.; Badger, Murray R.
2008-01-01
Peroxisomes are important for recycling carbon and nitrogen that would otherwise be lost during photorespiration. The reduction of hydroxypyruvate to glycerate catalyzed by hydroxypyruvate reductase (HPR) in the peroxisomes is thought to be facilitated by the production of NADH by peroxisomal malate dehydrogenase (PMDH). PMDH, which is encoded by two genes in Arabidopsis (Arabidopsis thaliana), reduces NAD+ to NADH via the oxidation of malate supplied from the cytoplasm to oxaloacetate. A double mutant lacking the expression of both PMDH genes was viable in air and had rates of photosynthesis only slightly lower than in the wild type. This is in contrast to other photorespiratory mutants, which have severely reduced rates of photosynthesis and require high CO2 to grow. The pmdh mutant had a higher O2-dependent CO2 compensation point than the wild type, implying that either Rubisco specificity had changed or that the rate of CO2 released per Rubisco oxygenation was increased in the pmdh plants. Rates of gross O2 evolution and uptake were similar in the pmdh and wild-type plants, indicating that chloroplast linear electron transport and photorespiratory O2 uptake were similar between genotypes. The CO2 postillumination burst and the rate of CO2 released during photorespiration were both greater in the pmdh mutant compared with the wild type, suggesting that the ratio of photorespiratory CO2 release to Rubisco oxygenation was altered in the pmdh mutant. Without PMDH in the peroxisome, the CO2 released per Rubisco oxygenation reaction can be increased by over 50%. In summary, PMDH is essential for maintaining optimal rates of photorespiration in air; however, in its absence, significant rates of photorespiration are still possible, indicating that there are additional mechanisms for supplying reductant to the peroxisomal HPR reaction or that the HPR reaction is altogether circumvented. PMID:18685043
Synthesis, characterization and electrocatalytic properties of delafossite CuGaO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Jahangeer; Department of Chemistry, College of Science, King Saud University, Riyadh 11451; Mao, Yuanbing, E-mail: yuanbing.mao@utrgv.edu
2016-10-15
Delafossite CuGaO{sub 2} has been employed as photocatalysts for solar cells, but their electrocatalytic properties have not been extensively studied, especially no comparison among samples made by different synthesis routes. Herein, we first reported the successful synthesis of delafossite CuGaO{sub 2} particles with three different morphologies, i.e. nanocrystalline hexagons, sub-micron sized plates and micron–sized particles by a modified hydrothermal method at 190 °C for 60 h [1–3], a sono-chemical method followed by firing at 850 °C for 48 h, and a solid state route at 1150 °C, respectively. Morphology, composition and phase purity of the synthesized samples was confirmed bymore » powder X-ray diffraction and Raman spectroscopic studies, and then their electrocatalytic performance as active and cost effective electrode materials to the oxygen and hydrogen evolution reactions in 0.5 M KOH electrolyte versus Ag/AgCl was investigated and compared under the same conditions for the first time. The nanocrystalline CuGaO{sub 2} hexagons show enhanced electrocatalytic activity than the counterpart sub-micron sized plates and micron-sized particles. - Graphical abstract: Representative delafossite CuGaO2 samples with sub-micron sized plate and nanocrystalline hexagon morphologies accompanying with chronoamperometric voltammograms for oxygen evolution reaction and hydrogen evolution reaction in 0.5 M KOH electrolyte after purged with N{sub 2} gas. - Highlights: • Delafossite CuGaO{sub 2} with three morphologies has been synthesized. • Phase purity of the synthesized samples was confirmed. • Comparison on their electrocatalytic properties was made for the first time. • Their use as electrodes for oxygen and hydrogen evolution reactions was evaluated. • Nanocrystalline CuGaO{sub 2} hexagons show highest electrocatalytic activity.« less
Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method
NASA Astrophysics Data System (ADS)
Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei
2016-11-01
We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.
Vines, L; Bhoodoo, C; von Wenckstern, H; Grundmann, M
2017-12-13
The evolution of sheet resistance of n-type In 2 O 3 and Ga 2 O 3 exposed to bombardment with MeV 12 C and 28 Si ions at 35 K is studied in situ. While the sheet resistance of Ga 2 O 3 increased by more than eight orders of magnitude as a result of ion irradiation, In 2 O 3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga 2 O 3 remained highly resistive, while In 2 O 3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to [Formula: see text] cm -2 . A model where larger defect complexes preferentially produce donor like defects in In 2 O 3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed.
Design of Plant Gas Exchange Experiments in a Variable Pressure Growth Chamber
NASA Technical Reports Server (NTRS)
Corey, Kenneth A.
1996-01-01
Sustainable human presence in extreme environments such as lunar and martian bases will require bioregenerative components to human life support systems where plants are used for generation of oxygen, food, and water. Reduced atmospheric pressures will be used to minimize mass and engineering requirements. Few studies have assessed the metabolic and developmental responses of plants to reduced pressure and varied oxygen atmospheres. The first tests of hypobaric pressures on plant gas exchange and biomass production at the Johnson Space Center will be initiated in January 1996 in the Variable Pressure Growth Chamber (VPGC), a large, closed plant growth chamber rated for 10.2 psi. Experiments were designed and protocols detailed for two complete growouts each of lettuce and wheat to generate a general database for human life support requirements and to answer questions about plant growth processes in reduced pressure and varied oxygen environments. The central objective of crop growth studies in the VPGC is to determine the influence of reduced pressure and reduced oxygen on the rates of photosynthesis, dark respiration, evapotranspiration and biomass production of lettuce and wheat. Due to the constraint of one experimental unit, internal controls, called pressure transients, will be used to evaluate rates of CO2 uptake, O2 evolution, and H2O generation. Pressure transients will give interpretive power to the results of repeated growouts at both reduced and ambient pressures. Other experiments involve the generation of response functions to partial pressures of O2 and CO2 and to light intensity. Protocol for determining and calculating rates of gas exchange have been detailed. In order to build these databases and implement the necessary treatment combinations in short time periods, specific requirements for gas injections and removals have been defined. A set of system capability checks will include determination of leakage rates conducted prior to the actual crop growouts. Schedules of experimental events for lettuce and wheat are outlined and include replications in time of diurnal routines, pressure transients, variable pO2, pO2/pCO2 ratio, and light intensity responses.
Kim, Hyejung; Kim, Min Gyu; Jeong, Hu Young; Nam, Haisol; Cho, Jaephil
2015-03-11
Structural degradation of Ni-rich cathode materials (LiNi(x)M(1-x)O2; M = Mn, Co, and Al; x > 0.5) during cycling at both high voltage (>4.3 V) and high temperature (>50 °C) led to the continuous generation of microcracks in a secondary particle that consisted of aggregated micrometer-sized primary particles. These microcracks caused deterioration of the electrochemical properties by disconnecting the electrical pathway between the primary particles and creating thermal instability owing to oxygen evolution during phase transformation. Here, we report a new concept to overcome those problems of the Ni-rich cathode material via nanoscale surface treatment of the primary particles. The resultant primary particles' surfaces had a higher cobalt content and a cation-mixing phase (Fm3̅m) with nanoscale thickness in the LiNi0.6Co0.2Mn0.2O2 cathode, leading to mitigation of the microcracks by suppressing the structural change from a layered to rock-salt phase. Furthermore, the higher oxidation state of Mn(4+) at the surface minimized the oxygen evolution at high temperatures. This approach resulted in improved structural and thermal stability in the severe cycling-test environment at 60 °C between 3.0 and 4.45 V and at elevated temperatures, showing a rate capability that was comparable to that of the pristine sample.
NASA Astrophysics Data System (ADS)
McAdam, A.; Knudson, C. A.; Sutter, B.; Andrejkovicova, S. C.; Archer, P. D., Jr.; Franz, H. B.; Eigenbrode, J. L.; Morris, R. V.; Ming, D. W.; Sun, V. Z.; Milliken, R.; Wilhelm, M. B.; Mahaffy, P. R.; Navarro-Gonzalez, R.
2016-12-01
The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Science Laboratory (MSL) rover detected Si-rich amorphous or poorly ordered materials in several samples from Murray Formation mudstones and Stimson Formation sandstones. High-SiO2 amorphous materials such as opal-A or rhyolitic glass are candidate phases, but CheMin data cannot be used to distinguish between these possibilities. In the Buckskin (BS) sample from the upper Murray Formation, and the Big Sky (BY) and Greenhorn (GH) samples from the Stimson Formation, evolved gas analyses by the Sample Analysis at Mars (SAM) instrument showed very broad H2O evolutions during sample heating at temperatures >450-500°C, which had not been observed from previous samples. BS also had a significant broad evolution <450-500°C. We have undertaken a laboratory study targeted at understanding if the data from SAM analyses can be used to place constraints on the nature of the amorphous phases. SAM-like evolved gas analyses have been performed on several opal and rhyolitic glass samples. Opal-A samples exhibited wide <500°C H2O evolutions, with lesser H2O evolved above 500°C. H2O evolution traces from rhyolitic glasses varied, having either two broad H2O peaks, <300°C and >500°C, or a broad peak centered around 400°C. For samples that produced two evolutions, the lower temperature peak was more intense than the higher temperature peak, a trend also exhibited by opal-A. This trend is consistent with data from BS, but does not seem consistent with data from BY and GH which evolved most of their H2O >500°C. It may be that dehydration of opal-A and/or rhyolitic glass can result in some preferential loss of lower temperature H2O, to produce traces that more closely resemble BY and GH. This is currently under investigation and results will be reported.
Wijten, Jochem H J; Jong, Ronald P H; Mul, Guido; Weckhuysen, Bert M
2018-04-25
Photocathodes for hydrogen evolution from water were made by electrodeposition of Ni-Mo layers on NiFe 2 O 4 substrates, deposited by spin coating on F:SnO 2 -glass. Analysis confirmed the formation of two separate layers, without significant reduction of NiFe 2 O 4 . Bare NiFe 2 O 4 was found to be unstable under alkaline conditions during (photo)electrochemistry. To improve the stability significantly, the deposition of a bifunctional Ni-Mo layer through a facile electrodeposition process was performed and the composite electrodes showed stable operation for at least 1 h. Moreover, photocurrents up to -2.1 mA cm -2 at -0.3 V vs. RHE were obtained for Ni-Mo/NiFe 2 O 4 under ambient conditions, showing that the new combination functions as both a stabilizing and catalytic layer for the photoelectrochemical evolution of hydrogen. The photoelectrochemical response of these composite electrodes decreased with increasing NiFe 2 O 4 layer thickness. Transient absorption spectroscopy showed that the lifetime of excited states is short and on the ns timescale. An increase in lifetime was observed for NiFe 2 O 4 of large layer thickness, likely explained by decreasing the defect density in the primary layer(s), as a result of repetitive annealing at elevated temperature. The photoelectrochemical and transient absorption spectroscopy results indicated that a short charge carrier lifetime limits the performance of Ni-Mo/NiFe 2 O 4 photocathodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Shiying; Xiu, Xiangqian; Xu, Qingjun; Li, Yuewen; Hua, Xuemei; Chen, Peng; Xie, Zili; Liu, Bin; Zhou, Yugang; Han, Ping; Zhang, Rong; Zheng, Youdou
2016-12-01
GaN pyramid arrays have been successfully synthesized by selective photo-assisted chemical etching in a K2S2O8/KOH solution. A detailed analysis of time evolution of surface morphology has been conducted, which describes an etching process of GaN pyramids. Room temperature cathodoluminescence images indicate that these pyramids are composed of crystalline GaN surrounding dislocations, which is caused by the greater recombination rate of electrons and holes at dislocation than that of crystalline GaN. The Raman results show a stress relaxation in GaN pyramids compared with unetched GaN. The optical property of both unetched GaN and GaN pyramids has been studied by photoluminescence. The formation mechanism and feature of GaN pyramids are also rationally explained.
NASA Astrophysics Data System (ADS)
Gelman, Danny; Lasman, Itay; Elfimchev, Sergey; Starosvetsky, David; Ein-Eli, Yair
2015-07-01
The severe corrosion accompanied with hydrogen evolution process is the main obstacle preventing the implementation of Al as an anode in alkaline batteries. It impairs the functionality of alkaline battery, due to a drastic capacity loss and a short shelf life. The possibility to reduce Al corrosion rate in alkaline solution with the use of hybrid organic∖inorganic inhibitor based on poly (ethylene glycol) di-acid (PEG di-acid) and zinc oxide (ZnO) was examined in this work. A correlation between an Al corrosion rates and the concentrations of both PEG di-acid and ZnO in alkaline is shown. Selecting 5000 ppm PEG di-acid and 16 gr/l ZnO provides substantial corrosion protection of Al, reducing the corrosion rate in a strong alkaline solution by more than one order of magnitude. Moreover, utilizing the same formulation results in increase in Al-air battery discharge capacity, from 44.5 (for a battery utilizing only KOH in the electrolyte) to 70 mhA/cm2 (for a battery utilizing ZnO/PEG di-acid hybrid inhibitor in the electrolyte). The morphology and composition of the Al electrode surface (studied by SEM, EDS, and XRD) depend on PEG di-acid and ZnO concentrations.
Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery
NASA Astrophysics Data System (ADS)
Wang, Yuesheng; Feng, Zimin; Laul, Dharminder; Zhu, Wen; Provencher, Manon; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim
2018-01-01
The growing demands for large-scale energy storage devices have put a spotlight on aqueous sodium-ion batteries, which possess a number of highly desirable features, such as sodium abundance, low cost and safety over organic electrolytes. While lots of cathode materials were reported, only few candidate materials like active carbon and NaTi2(PO4)3 were proposed as anodes. It is a long-standing common knowledge that the low cost, non-toxicity, and highly reversible FePO4·2H2O is known as an attractive cathode material for non-aqueous lithium- and sodium-ion batteries, but we demonstrate for the first time that nano-size non-carbon coated amorphous FePO4·2H2O can be used as the anode for an aqueous sodium-ion battery. Its optimum operating voltage (∼2.75 V vs. Na+/Na) avoids hydrogen evolution. The capacity is as high as 80 mAh/g at a rate of 0.5 C in a three-electrode system. The full cell, using the Na0.44MnO2 as cathode, maintained 90% of the capacity at 300 cycles at a rate of 3 C. The calculations also show that its volume change during the intercalation of Na ions is below 2%. Its low cost, high safety, along with its outstanding electrochemical performance makes amorphous FePO4·2H2O a promising anode material for aqueous sodium-ion batteries.
NASA Astrophysics Data System (ADS)
Choi, Hakkyum; Kim, Seung-Sep; Dyment, Jérôme; Granot, Roi; Park, Sung-Hyun; Hong, Jong Kuk
2017-11-01
The tectonic evolution of the Southeast Indian Ridge (SEIR), and in particular of its easternmost edge, has not been constrained by high-resolution shipboard data and therefore the kinematic details of its behavior are uncertain. Using new shipboard magnetic data obtained by R/VIB Araon and M/V L'Astrolabe along the easternmost SEIR and available archived magnetic data, we estimated the finite rotation parameters of the Macquarie-Antarctic and Australian-Antarctic motions for eight anomalies (1o, 2, 2Ay, 2Ao, 3y, 3o, 3Ay, and 3Ao). These new finite rotations indicate that the Macquarie Plate since its creation ∼6.24 million years ago behaved as an independent and rigid plate, confirming previous estimates. The change in the Australian-Antarctic spreading direction from N-S to NW-SE appears to coincide with the formation of the Macquarie Plate at ∼6.24 Ma. Analysis of the estimated plate motions indicates that the initiation and growth stages of the Macquarie Plate resemble the kinematic evolution of other microplates and continental breakup, whereby a rapid acceleration in angular velocity took place after its initial formation, followed by a slow decay, suggesting that a decrease in the resistive strength force might have played a significant role in the kinematic evolution of the microplate. The motions of the Macquarie Plate during its growth stages may have been further enhanced by the increased subducting rates along the Hjort Trench, while the Macquarie Plate has exhibited constant growth by seafloor spreading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinson, A. B. F.; DeVries, M. J.; Libera, J. A.
Growing interest in Fe{sub 2}O{sub 3} as a light harvesting layer in solar energy conversion devices stems from its unique combination of stability, nontoxicity, and exceptionally low material cost. Unfortunately, the known methods for conformally coating high aspect ratio structures with Fe{sub 2}O{sub 3} leave a glaring gap in the technologically relevant temperature range of 170-350 C. Here, we elucidate a self-limiting atomic layer deposition (ALD) process for the growth of hematite, {alpha}-Fe{sub 2}O{sub 3}, over a moderate temperature window using ferrocene and ozone. At 200 C, the self-limiting growth of Fe{sub 2}O{sub 3} is observed at rates up tomore » 1.4 {angstrom}/cycle. Dense and robust thin films grown on both fused quartz and silicon exhibit the expected optical bandgap (2.1 eV). In situ mass spectrometric analysis reveals the evolution of two distinct cyclic reaction products during the layer-by-layer growth. The readily available and relatively high vapor pressure iron precursor is utilized to uniformly coat a high surface area template with aspect ratio 150.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinson, Alex B.F.; DeVries, Michael J.; Libera, J. A.
Growing interest in Fe 2O 3 as a light harvesting layer in solar energy conversion devices stems from its unique combination of stability, nontoxicity, and exceptionally low material cost. Unfortunately, the known methods for conformally coating high aspect ratio structures with Fe 2O 3 leave a glaring gap in the technologically relevant temperature range of 170-350 °C. Here, we elucidate a self-limiting atomic layer deposition (ALD) process for the growth of hematite, α-Fe 2O 3, over a moderate temperature window using ferrocene and ozone. At 200 °C, the self-limiting growth of Fe 2O 3 is observed at rates up tomore » 1.4 Å/cycle. Dense and robust thin films grown on both fused quartz and silicon exhibit the expected optical bandgap (2.1 eV). In situ mass spectrometric analysis reveals the evolution of two distinct cyclic reaction products during the layer-by-layer growth. The readily available and relatively high vapor pressure iron precursor is utilized to uniformly coat a high surface area template with aspect ratio ~150.« less
Facile synthesis and shape evolution of oleic acid decorated Cu2O microcrystals
NASA Astrophysics Data System (ADS)
Xu, Bin; Cao, Xiaohai; Zhu, Bingchun; Lou, Baiyang; Ma, Xiaocun; Li, Xiao; Wang, Yuguang
2015-11-01
A facile synthetic method of oleic acid decorated Cu2O microcrystals has been developed by thermal decomposition of copper formate-octylamine complexes in paraffin using oleic acid as dispersing agent. This new method showed many advantages, which include free-reducing agent, enhancing antioxidant properties of Cu2O and good dispersity in paraffin, etc. The phase structure and morphology were investigated by means of XRD, SEM and TEM. It is found that the reaction time and temperature play the important roles in the crystallite morphology. With the increase of the reaction time, the Cu2O rhombic dodecahedron is gradually transformed into the spherical particle by intraparticle ripening. The shape evolution of Cu2O microcrystals can be accelerated with the increase of temperature.
Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier.
Wang, Baowen; Gao, Chuchang; Wang, Weishu; Zhao, Haibo; Zheng, Chuguang
2014-05-01
Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operational or environmental perspective. In this research, a combined MnFe2O4 oxygen carrier (OC) was synthesized and its reaction with a typical Chinese high sulfur coal, Liuzhi (LZ) bituminous coal, was performed in a thermogravimetric analyzer (TGA)-Fourier transform infrared (FT-IR) spectrometer. Evolution of sulfur species during reaction of LZ coal with MnFe2O4 OC was systematically investigated through experimental means combined with thermodynamic simulation. TGA-FTIR analysis of the LZ reaction with MnFe2O4 indicated MnFe2O4 exhibited the desired superior reactivity compared to the single reference oxides Mn3O4 or Fe2O3, and SO2 produced was mainly related to oxidization of H2S by MnFe2O4. Experimental analysis of the LZ coal reaction with MnFe2O4, including X-ray diffraction and X-ray photoelectron spectroscopy analysis, verified that the main reduced counterparts of MnFe2O4 were Fe3O4 and MnO, in good agreement with the related thermodynamic simulation. The obtained MnO was beneficial to stabilize the reduced MnFe2O4 and avoid serious sintering, although the oxygen in MnO was not fully utilized. Meanwhile, most sulfur present in LZ coal was converted to solid MnS during LZ reaction with MnFe2O4, which was further oxidized to MnSO4. Finally, the formation of both MnS and such manganese silicates as Mn2SiO4 and MnSiO3 should be addressed to ensure the full regeneration of the reduced MnFe2O4. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Murphy, N. R.; Grant, J. T.; Sun, L.; Jones, J. G.; Jakubiak, R.; Shutthanandan, V.; Ramana, C. V.
2014-05-01
Germanium oxide (GeOx) films were grown on (1 0 0) Si substrates by reactive Direct-Current (DC) magnetron sputter-deposition using an elemental Ge target. The effects of oxygen gas fraction, Г = O2/(Ar + O2), on the deposition rate, structure, chemical composition and optical properties of GeOx films have been investigated. The chemistry of the films exhibits an evolution from pure Ge to mixed Ge + GeO + GeO2 and then finally to GeO2 upon increasing Г from 0.00 to 1.00. Grazing incidence X-ray analysis indicates that the GeOx films grown were amorphous. The optical properties probed by spectroscopic ellipsometry indicate that the effect of Г is significant on the optical constants of the GeOx films. The measured index of refraction (n) at a wavelength (λ) of 550 nm is 4.67 for films grown without any oxygen, indicating behavior characteristic of semiconducting Ge. The transition from germanium to mixed Ge + GeO + GeO2 composition is associated with a characteristic decrease in n (λ = 550 nm) to 2.62 and occurs at Г = 0.25. Finally n drops to 1.60 for Г = 0.50-1.00, where the films become GeO2. A detailed correlation between Г, n, k and stoichiometry in DC sputtered GeOx films is presented and discussed.
Climatic response of annual tree-rings
NASA Astrophysics Data System (ADS)
Ageev, Boris G.; Gruzdev, Aleksandr N.; Ponomarev, Yurii N.; Sapozhnikova, Valeria A.
2014-11-01
Extensive literature devoted to investigations into the influence of environmental conditions on the plant respiration and respiration rate. It is generally accepted that the respired CO2 generated in a stem completely diffuses into the atmosphere. Results obtained from explorations into the CO2 content in disc tree rings by the method proposed in this work shows that a major part of CO2 remains in tree stems and exhibits inter-annual variability. Different methods are used to describe of CO2 and H2O distributions in disc tree rings. The relation of CO2 and H2O variations in a Siberian stone pine disc to meteorological parameters are analyzed with use of wavelet, spectral and cross-spectral techniques. According to a multiple linear regression model, the time evolution of the width of Siberian stone pine rings can be partly explained by a combined influence of air temperature, precipitation, cloudiness and solar activity. Conclusions are made regarding the response of the CO2 and H2O content in coniferous tree disc rings to various climatic factors. Suggested method of CO2, (CO2+H2O) detection can be used for studying of a stem respiration in ecological risk areas.
NASA Astrophysics Data System (ADS)
Wu, Ming-Chung; Wu, Po-Yeh; Lin, Ting-Han; Lin, Tz-Feng
2018-02-01
Series of transition metal-doped TiO2 (metal/TiO2) is prepared by combining the hydrothermal synthesis and air-thermal treatment without any reduction process. The selected transition metal precursors, including Ag, Au, Co, Cr, Cu, Fe, Ni, Pd, Pt, Y, and Zn, were individually doped into TiO2 nanofibers to evaluate the photocatalytic degradation activity and photocatalytic hydrogen generation. Consider the photocatalytic performance of these synthesized metal/TiO2 under UV-A irradiation, copper doped TiO2 nanofibers (Cu/TiO2 NFs) was chosen for further study due to its extraordinary reactivity. Systematical studies were spread to optimize the doping concentration and the calcination condition for much higher photocatalytic activity Cu/TiO2 NFs. In the photocatalytic degradation test, 0.5 mol%-Cu/TiO2 NFs calcined at 650 °C exhibits the highest activity, which is even higher than commercial TiO2-AEROXIDE® TiO2 P25 under UV-A irradiation. The synthesized 0.5 mol%-Cu/TiO2-650 NFs also have the capability in the photocatalytic hydrogen production. The hydrogen evolution rates are 200 μmol/g·h under UV-A irradiation and 280 μmol/g·h under UV-B irradiation. The density of state calculated by CASTEP for Cu/TiO2 indicates that Cu doping contributes to the states near valence band edge and narrows the band gap. The disclosed process in this study is industrial safe, convenient and cost-effective. We further produce a significant amount of TiO2-based catalysts without any hydrogen reduction treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Bing; Sherman, Benjamin D.; Klug, Christina M.
2017-08-31
We report here a new photocathode composed of a bi-layered doped NiO film topped by a macro-mesoporous ITO (ioITO) layer with molecular assemblies attached to the ioITO surface. The NiO film containing a 2% K+ doped NiO inner layer and a 2% Cu2+ doped NiO outer layer provides sufficient driving force for hole transport after injection to NiO by the molecular assembly. The tri-layered oxide, NiK0.02O | NiCu0.02O | ioITO, sensitized by a ruthenium polypyridyl dye and functionalized with a nickel-based hydrogen evolution catalyst, outperforms its counterpart, NiO | NiO | ioITO, in photocatalytic hydrogen evolution from water over amore » period of several hours with a Faradaic yield of ~90%.« less
Determining rates of chemical weathering in soils - Solute transport versus profile evolution
Stonestrom, David A.; White, A.F.; Akstin, K.C.
1998-01-01
SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses that have occurred during regolith development. Climates at the three profiles range from Mediterranean to humid to tropical. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. This allows current SiO2 fluxes below the zone of seasonal variations to be estimated from pore-water concentrations and average hydraulic flux densities. Mean-annual SiO2 concentrations were 0.1-1.5 mM. Hydraulic conductivities for the investigated range of soil-moisture saturations ranged from 10-6 m s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6 x 10-9 to 14 x 10-9 m s-1 based on Darcy's law and field measurements of moisture saturations and pressure heads. Corresponding fluid-residence times in the profiles ranged from 10 to 44 years. Total SiO2 losses, based on chemical and volumetric changes in the respective profiles, ranged from 19 to 110 kmoles SiO2 m-2 of land surface as a result of 0.2-0.4 Ma of chemical weathering. Extrapolation of contemporary solute fluxes to comparable time periods reproduced these SiO2 losses to about an order of magnitude. Despite the large range and non-linearity of measured hydraulic conductivities, solute transport rates in weathering regoliths can be estimated from characterization of hydrologic conditions at sufficiently large depths. The agreement suggests that current weathering rates are representative of long-term average weathering rates in the regoliths.SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses during regolith development. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. Hydraulic conductivities for the investigated range of soil-moisture saturations of 10-6 m/s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6??10-9 to 14??10-9 m/s based on Darcy's law and field measurements of moisture saturations and pressure heads.
Exploring the Atmosphere of Neoproterozoic Earth: The Effect of O2 on Haze Formation and Composition
NASA Astrophysics Data System (ADS)
Hörst, Sarah M.; He, Chao; Ugelow, Melissa S.; Jellinek, A. Mark; Pierrehumbert, Raymond T.; Tolbert, Margaret A.
2018-05-01
Previous studies of haze formation in the atmosphere of the early Earth have focused on N2/CO2/CH4 atmospheres. Here, we experimentally investigate the effect of O2 on the formation and composition of aerosols to improve our understanding of haze formation on the Neoproterozoic Earth. We obtained in situ size, particle density, and composition measurements of aerosol particles produced from N2/CO2/CH4/O2 gas mixtures subjected to FUV radiation (115–400 nm) for a range of initial CO2/CH4/O2 mixing ratios (O2 ranging from 2 ppm to 0.2%). At the lowest O2 concentration (2 ppm), the addition increased particle production for all but one gas mixture. At higher oxygen concentrations (20 ppm and greater), particles are still produced, but the addition of O2 decreases the production rate. Both the particle size and number density decrease with increasing O2, indicating that O2 affects particle nucleation and growth. The particle density increases with increasing O2. The addition of CO2 and O2 not only increases the amount of oxygen in the aerosol, but it also increases the degree of nitrogen incorporation. In particular, the addition of O2 results in the formation of nitrate-bearing molecules. The fact that the presence of oxygen-bearing molecules increases the efficiency of nitrogen fixation has implications for the role of haze as a source of molecules required for the origin and evolution of life. The composition changes also likely affect the absorption and scattering behavior of these particles but optical property measurements are required to fully understand the implications for the effect on the planetary radiative energy balance and climate.
NO versus N2O emissions from an NH4 +-amended Bermuda grass pasture
NASA Astrophysics Data System (ADS)
Hutchinson, G. L.; Brams, E. A.
1992-06-01
We used an enclosure technique to monitor soil NO and N2O emissions during early summer regrowth of Bermuda grass (Cynodon dactylon) on sandy loam in a humid, subtropical region of southern Texas. The evolution of both gases was substantially higher from plots harvested at the beginning of the experiment and fertilized 5 days later with 52 kg N ha-1 as (NH4)2SO4 than from plots not harvested or fertilized. Emission of NO, but not N2O, was stimulated by clipping and removing the grass, probably because eliminating the shading provided by the dense grass canopy changed these plots from cooler to warmer than unharvested plots, thereby stimulating the activity of soil microorganisms responsible for NO production. Neither gas flux was significantly affected by application of N until the next rainfall dissolved and moved the surface-applied fertilizer into the soil. Immediately thereafter, emissions of NO and N2O increased dramatically to peaks of 160 and 12 g N ha-1 d-1, respectively, and then declined at rates that closely paralleled the nitrification rate of added NH4+, indicating that the gases resulted from the activity of nitrifying microorganisms, rather than denitrifiers. Nitric oxide emissions during the 9-week measurement period averaged 7.2 times greater than N2O emissions and accounted for 3.2% of the added N. The data indicate that humid, subtropical grasslands, which not only have large geographical extent but also have been subject to intense anthropogenic disturbance, contribute significantly to the global atmospheric NOx budget.
NO versus N2O emissions from an NH4(+)-amended Bermuda grass pasture
NASA Technical Reports Server (NTRS)
Hutchinson, G. L.; Brams, E. A.
1992-01-01
An enclosure technique is used to monitor soil NO and N2O emissions during early summer regrowth of Bermuda grass (Cynodon dactylon) on sandy loam in a humid, subtropical region of southern Texas. The evolution of both gases was substantially higher from plots harvested at the beginning of the experiment and fertilized five days later with 52 kg N/ha as (NH4)2SO4 than from plots not harvested or fertilized. Emission of NO, but not N2O, was stimulated by clipping and removing the grass, probably because eliminating the shading provided by the dense grass canopy changed these plots from cooler to warmer than unharvested plots, thereby stimulating the activity of soil microorganisms responsible for NO production. Neither gas flux was significantly affected by application of N until the next rainfall dissolved and moved the surface-applied fertilizer into the soil. Immediately thereafter, emissions of NO and N2O increased dramatically to peaks of 160 and 12 g N/ha/d, respectively, and then declined at rates that closely parallel the nitrification rate of added NH4(+), indicating that the gases resulted from the activity of nitrifying microorganisms, rather than denitrifiers. Nitric oxide emissions during the nine-week measurement period averaged 7.2 times greater than N2O emissions and accounted for 3.2 percent of the added N. The data indicate that humid, subtropical grasslands, which not only have large geographical extent but also have been subject to intense anthropogenic disturbance, contribute significantly to the global atmospheric NO(x) budget.
High School Students Watching Stars Evolve
NASA Astrophysics Data System (ADS)
Percy, J. R.; MacNeil, D.; Meema-Coleman, L.; Morenz, K.
2012-06-01
(Abstract only) Some stars pulsate (vibrate). Their pulsation period depends primarily on their radius. The pulsation period changes if the radius changes, due to evolution, for instance. Even though the evolution is slow, the period change is measurable because it is cumulative. The observed time of maximum brightness (O) minus the calculated time (C), assuming that the period is constant, is plotted against time to produce an (O-C) diagram. If there is a uniform period change, this diagram will be a parabola, whose curvature - positive or negative - is proportional to the rate of period change. In this project, we study the period changes of RR Lyrae stars, old sun-like stars which are in the yellow giant phase, generating energy by thermonuclear fusion of helium into carbon. We chose 59 well-studied stars in the GEOS database, which consists of times of maximum measured by AAVSO and other observers. We included about a dozen RRc (first overtone pulsator) stars, since these have not been as well studied as the RRab (fundamental mode) stars because the maxima in their light curves are not as sharp. We will describe our results: about 2/3 of the stars showed parabolic (O-C) diagrams with period changes of up to 1.0 s/century, some with increasing periods and some with decreasing periods. The characteristic times for period changes (i.e. period divided by rate of change of period) were mostly 5-30 million years. These numbers are consistent with evolutionary models. Some stars showed too much scatter for analysis; we will discuss why. A few stars showed unusual (O-C) diagrams which cannot be explained simply by evolution. This project was carried out by coauthors MacNeil, Meema-Coleman, and Morenz, who were participants in the prestigious University of Toronto Mentorship Program, which enables outstanding senior high school students to participate in research at the university. We thank the AAVSO and other observers who made the measurements which were used in our project.
NASA Astrophysics Data System (ADS)
Zhao, Xiaona; Liu, Xinzhao; Lu, Dingze; Wu, Pei; Yan, Qiuyang; Liu, Min; Fang, Pengfei
2017-01-01
TiO2-based nanosheets (TNSs) co-modified by Fe2O3 and Ho2O3 were synthesized by one-pot hydrothermal method using Fe(NO3)3 and Ho(NO3)3 as precursors compositing with TiO2. The Fe2O3/Ho2O3-TNSs heterojunctions possessed a thickness of approximately 3-4 nm, large specific surface area of 210-310 cm2/g, with Fe2O3 and Ho2O3 nanoparticles highly dispersed over the surface of the nanosheets. The crystallization of the samples gradually increased with the amount of Fe2O3 nanoparticles, which was confirmed by the XRD, BET and Raman spectra, indicating that Ho2O3 and Fe2O3 influenced the crystallinity and structure evolution of the TNSs, besides, led to an improved the visible-light absorption. Surface photocurrent and fluorescence spectral studies revealed that the photo-generated charge carrier separation efficiency could be efficiently improved by an appropriate amount of modification. The Fe2O3/Ho2O3-TNSs exhibited synergistic effect on photocatalytic degradation of RhB as well as MO under visible light. The highest efficiency was obtained by 0.05%-Fe2O3/Ho2O3-TNSs (Fe:Ho:Ti = 0.05:1:100), which was 8.86 and 6.72 times than that of individual 1.0%-Ho2O3-TNSs (Ho:Ti = 1:100) and 0.05%-Fe2O3-TNSs (Fe:Ti = 0.05:100), respectively. The possible mechanism for enhanced visible-light-induced photocatalytic activity was proposed. Ho2O3 introduced in the photocatalysts may act as the hole capture while Fe2O3 may share the same Fermi levels with TNSs and serve as the electron capture center in the n-n-p system, which reduced the recombination rate of photo-induced electron-hole pairs.
Trapping of hydrogen atoms in X-irradiated salts at room temperature and the decay kinetics
NASA Technical Reports Server (NTRS)
May, C. E.; Philipp, W. H.; Marsik, S. J.
1974-01-01
The salts (hypophosphites, formates, a phosphite, a phosphate, and an oxalate) were X-irradiated, whereby hydrogen formed chemically by a radiolytic process becomes trapped in the solid. By room temperature vacuum extraction, the kinetics for the evolution of this trapped hydrogen was studied mass spectrometrically. All salts except two exhibited second-order kinetics. The two exceptions (NaH2PO2(H2O) and K2HPO4) showed first-order kinetics. Based on experimental results, the escape of hydrogen involves three steps: the diffusion of hydrogen atoms from the bulk to the surface, association of these atoms on the surface (rate controlling step for second-order hydrogen evolution), and the desorption of molecular hydrogen from the surface. The hydrogen does not escape if the irradiated salt is stored in air, apparently because adsorbed air molecules occupy surface sites required in the escape mechanism.
Synthesis, Structure, and Electrochemical Performance of High Capacity Li 2Cu 0.5Ni 0.5O 2 Cathodes
Ruther, Rose E; Zhou, Hui; Dhital, Chetan; ...
2015-09-08
Orthorhombic Li 2NiO 2, Li 2CuO 2, and solid solutions thereof have been studied as potential cathode materials for lithium-ion batteries due to their high theoretical capacity and relatively low cost. While neither endmember shows good cycling stability, the intermediate composition, Li 2Cu 0.5Ni 0.5O 2, yields reasonably high reversible capacities. A new synthetic approach and detailed characterization of this phase and the parent Li 2CuO 2 are presented. The cycle life of Li 2Cu 0.5Ni 0.5O 2 is shown to depend critically on the voltage window. The formation of Cu 1+ at low voltage and oxygen evolution at highmore » voltage limit the electrochemical reversibility. In situ X-ray absorption spectroscopy (XAS), in situ Raman spectroscopy, and gas evolution measurements are used to follow the chemical and structural changes that occur as a function of cell voltage.« less
Transition regime from step-flow to step-bunching in the growth of epitaxial SrRuO3 on (001) SrTiO3
NASA Astrophysics Data System (ADS)
Gura, Anna; Bertino, Giulia; Bein, Benjamin; Dawber, Matthew
2018-04-01
We present a study of the surface morphology of SrRuO3 thin films grown on TiO2 terminated (001) SrTiO3 substrates using an off-axis RF magnetron sputtering deposition technique. We investigated the step bunching formation and the evolution of the films by varying deposition parameters. The thin films were characterized using atomic force microscopy methods, allowing us to study the various growth regimes of SrRuO3 as a function of the growth parameters. We observe a strong influence of both the miscut angle and growth temperature on the evolution of the SrRuO3 surface morphology. In addition, a thickness dependence is present. Remarkably, the formation of a smooth, regular, and uniform "fish-skin" structure at the step-bunch transition is observed. The fish-skin morphology results from the merging of 2D flat islands predicted by previous models. The direct observation of surface evolution allows us to better understand the different growth regimes of SrRuO3 thin films.
Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity
NASA Astrophysics Data System (ADS)
Wang, Xiangdong; Fu, Rong; Yin, Qianqian; Wu, Han; Guo, Xiaoling; Xu, Ruohan; Zhong, Qianyun
2018-04-01
Utilizing solar energy for hydrogen evolution is a great challenge for its insufficient visible-light power conversion. In this paper, we report a facile magnesiothermic reduction of commercial TiO2 nanoparticles under Ar atmosphere and at 550 °C followed by acid treatment to synthesize reduced black TiO2 powders, which possesses a unique crystalline core-amorphous shell structure composed of disordered surface and oxygen vacancies and shows significantly improved optical absorption in the visible region. The unique core-shell structure and high absorption enable the reduced black TiO2 powders to exhibit enhanced photocatalytic activity, including splitting of water in the presence of Pt as a cocatalyst and degradation of methyl blue (MB) under visible light irradiation. Photocatalytic evaluations indicate that the oxygen vacancies play key roles in the catalytic process. The maximum hydrogen production rates are 16.1 and 163 μmol h-1 g-1 under the full solar wavelength range of light and visible light, respectively. This facile and versatile method could be potentially used for large scale production of colored TiO2 with remarkable enhancement in the visible light absorption and solar-driven hydrogen production.
Shevela, Dmitriy; Koroidov, Sergey; Najafpour, M Mahdi; Messinger, Johannes; Kurz, Philipp
2011-05-02
Oxygen evolution catalysed by calcium manganese and manganese-only oxides was studied in (18)O-enriched water. Using membrane-inlet mass spectrometry, we monitored the formation of the different O(2) isotopologues (16)O(2), (16)O(18)O and (18)O(2) in such reactions simultaneously with good time resolution. From the analysis of the data, we conclude that entirely different pathways of dioxygen formation catalysis exist for reactions involving hydrogen peroxide (H(2)O(2)), hydrogen persulfate (HSO(5)(-)) or single-electron oxidants such as Ce(IV) and [Ru(III) (bipy)(3)](3+) . Like the studied oxide catalysts, the active sites of manganese catalase and the oxygen-evolving complex (OEC) of photosystem II (PSII) consist of μ-oxido manganese or μ-oxido calcium manganese sites. The studied processes show very similar (18)O-labelling behaviour to the natural enzymes and are therefore interesting model systems for in vivo oxygen formation by manganese metalloenzymes such as PSII. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luan, Jingfei; Shen, Yue; Li, Yanyan; Paz, Yaron
2016-01-01
In order to develop original and efficient visible light response photocatalysts for degrading organic pollutants in wastewater, new photocatalysts Bi2GaSbO7 and Bi2InSbO7 were firstly synthesized by a solid-state reaction method and their chemical, physical and structural properties were characterized. Bi2GaSbO7 and Bi2InSbO7 were crystallized with a pyrochlore-type structure and the lattice parameter of Bi2GaSbO7 or Bi2InSbO7 was 10.356497 Å or 10.666031 Å. The band gap of Bi2GaSbO7 or Bi2InSbO7 was estimated to be 2.59 eV or 2.54 eV. Compared with nitrogen doped TiO2, Bi2GaSbO7 and Bi2InSbO7, both showed excellent photocatalytic activities for degrading methylene blue during visible light irradiation due to their narrower band gaps and higher crystallization perfection. Bi2GaSbO7 showed higher catalytic activity compared with Bi2InSbO7. The photocatalytic degradation of methylene blue followed by the first-order reaction kinetics and the first-order rate constant was 0.01470 min−1, 0.00967 min−1 or 0.00259 min−1 with Bi2GaSbO7, Bi2InSbO7 or nitrogen doped TiO2 as a catalyst. The evolution of CO2 and the removal of total organic carbon were successfully measured and these results indicated continuous mineralization of methylene blue during the photocatalytic process. The possible degradation scheme and pathway of methylene blue was also analyzed. Bi2GaSbO7 and Bi2InSbO7 photocatalysts both had great potential to purify textile industry wastewater. PMID:28773922
Song, Chengjie; Wang, Liping; Ren, Jie; Lv, Bo; Sun, Zhonghao; Yan, Jing; Li, Xinying; Liu, Jingjing
2016-02-01
The photodegradation of diethyl phthalate (DEP) by UV/H2O2 and UV/TiO2 is studied. The DEP degradation kinetics and multiple crucial factors effecting the clearance of DEP are investigated, including initial DEP concentration ([DEP]0), initial pH values (pH0), UV light intensity, anions (Cl(-), NO(3-), SO4 (2-), HCO3 (-), and CO3 (2-)), cations (Mg(2+), Ca(2+), Mn(2+), and Fe(3+)), and humic acid (HA). Total organic carbon (TOC) removal is tested by two treatments. And, cytotoxicity evolution of DEP degradation intermediates is detected. The relationship between molar ratio ([H2O2]/[DEP] or [TiO2]/[DEP]) and degradation kinetic constant (K) is also studied. And, the cytotoxicity tests of DEP and its degradation intermediates in UV/H2O2 and UV/TiO2 treatments are researched. The DEP removal efficiency of UV/H2O2 treatment is higher than UV/TiO2 treatment. The DEP degradation fitted a pseudo-first-order kinetic pattern under experimental conditions. The K linearly related with molar ratio in UV/H2O2 treatment while nature exponential relationship is observed in the case of UV/TiO2. However, K fitted corresponding trends better in H2O2 treatment than in TiO2 treatment. The Cl(-) is in favor of the DEP degradation in UV/H2O2 treatment; in contrast, it is disadvantageous to the DEP degradation in UV/TiO2 treatment. Other anions are all disadvantageous to the DEP degradation in two treatments. Fe(3+) promotes the degradation rates significantly. And, all other cations in question inhibit the degradation of DEP. HA hinders DEP degradation in two treatments. The intermediates of DEP degradation in UV/TiO2 treatment are less toxic to biological cell than that in UV/H2O2 treatment.
Huang, Jinhua; Ran, Guang; Lin, Jianxin; Shen, Qiang; Lei, Penghui; Wang, Xina; Li, Ning
2016-01-01
The microstructural evolution of Dy2O3-TiO2 powder mixtures during ball milling and post-milled annealing was investigated using XRD, SEM, TEM, and DSC. At high ball-milling rotation speeds, the mixtures were fined, homogenized, nanocrystallized, and later completely amorphized, and the transformation of Dy2O3 from the cubic to the monoclinic crystal structure was observed. The amorphous transformation resulted from monoclinic Dy2O3, not from cubic Dy2O3. However, at low ball-milling rotation speeds, the mixtures were only fined and homogenized. An intermediate phase with a similar crystal structure to that of cubic Dy2TiO5 was detected in the amorphous mixtures annealed from 800 to 1000 °C, which was a metastable phase that transformed to orthorhombic Dy2TiO5 when the annealing temperature was above 1050 °C. However, at the same annealing temperatures, pyrochlore Dy2Ti2O7 initially formed and subsequently reacted with the remaining Dy2O3 to form orthorhombic Dy2TiO5 in the homogenous mixtures. The evolutionary mechanism of powder mixtures during ball milling and subsequent annealing was analyzed. PMID:28772375
NASA Astrophysics Data System (ADS)
Groh, Jose H.; Meynet, Georges; Ekström, Sylvia; Georgy, Cyril
2014-04-01
For the first time, the interior and spectroscopic evolution of a massive star is analyzed from the zero-age main sequence (ZAMS) to the pre-supernova (SN) stage. For this purpose, we combined stellar evolution models using the Geneva code and stellar atmospheric/wind models using CMFGEN. With our approach, we were able to produce observables, such as a synthetic high-resolution spectrum and photometry, thereby aiding the comparison between evolution models and observed data. Here we analyze the evolution of a non-rotating 60 M⊙ star and its spectrum throughout its lifetime. Interestingly, the star has a supergiant appearance (luminosity class I) even at the ZAMS. We find the following evolutionary sequence of spectral types: O3 I (at the ZAMS), O4 I (middle of the H-core burning phase), B supergiant (BSG), B hypergiant (BHG), hot luminous blue variable (LBV; end of H-core burning), cool LBV (H-shell burning through the beginning of the He-core burning phase), rapid evolution through late WN and early WN, early WC (middle of He-core burning), and WO (end of He-core burning until core collapse). We find the following spectroscopic phase lifetimes: 3.22 × 106 yr for the O-type, 0.34 × 105 yr (BSG), 0.79 × 105 yr (BHG), 2.35 × 105 yr (LBV), 1.05 × 105 yr (WN), 2.57 × 105 yr (WC), and 3.80 × 104 yr (WO). Compared to previous studies, we find a much longer (shorter) duration for the early WN (late WN) phase, as well as a long-lived LBV phase. We show that LBVs arise naturally in single-star evolution models at the end of the MS when the mass-loss rate increases as a consequence of crossing the bistability limit. We discuss the evolution of the spectra, magnitudes, colors, and ionizing flux across the star's lifetime, and the way they are related to the evolution of the interior. We find that the absolute magnitude of the star typically changes by ~6 mag in optical filters across the evolution, with the star becoming significantly fainter in optical filters at the end of the evolution, when it becomes a WO just a few 104 years before the SN explosion. We also discuss the origin of the different spectroscopic phases (i.e., O-type, LBV, WR) and how they are related to evolutionary phases (H-core burning, H-shell burning, He-core burning). Tables 1, 4 and 5 are available in electronic form at http://www.aanda.orgSynthetic spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A30
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.
Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H 2O 2 and the 4e– oxidation to O 2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO 2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H 2O 2 evolution selectively.« less
Selective electrochemical generation of hydrogen peroxide from water oxidation
Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.
2015-10-08
Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H 2O 2 and the 4e– oxidation to O 2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO 2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H 2O 2 evolution selectively.« less
Casadevall, Carla; Codolà, Zoel; Costas, Miquel; Lloret-Fillol, Julio
2016-07-11
A new family of ruthenium complexes based on the N-pentadentate ligand Py2 (Me) tacn (N-methyl-N',N''-bis(2-picolyl)-1,4,7-triazacyclononane) has been synthesised and its catalytic activity has been studied in the water-oxidation (WO) reaction. We have used chemical oxidants (ceric ammonium nitrate and NaIO4 ) to generate the WO intermediates [Ru(II) (OH2 )(Py2 (Me) tacn)](2+) , [Ru(III) (OH2 )(Py2 (Me) tacn)](3+) , [Ru(III) (OH)(Py2 (Me) tacn)](2+) and [Ru(IV) (O)(Py2 (Me) tacn)](2+) , which have been characterised spectroscopically. Their relative redox and pH stability in water has been studied by using UV/Vis and NMR spectroscopies, HRMS and spectroelectrochemistry. [Ru(IV) (O)(Py2 (Me) tacn)](2+) has a long half-life (>48 h) in water. The catalytic cycle of WO has been elucidated by using kinetic, spectroscopic, (18) O-labelling and theoretical studies, and the conclusion is that the rate-determining step is a single-site water nucleophilic attack on a metal-oxo species. Moreover, [Ru(IV) (O)(Py2 (Me) tacn)](2+) is proposed to be the resting state under catalytic conditions. By monitoring Ce(IV) consumption, we found that the O2 evolution rate is redox-controlled and independent of the initial concentration of Ce(IV) . Based on these facts, we propose herein that [Ru(IV) (O)(Py2 (Me) tacn)](2+) is oxidised to [Ru(V) (O)(Py2 (Me) tacn)](2+) prior to attack by a water molecule to give [Ru(III) (OOH)(Py2 (Me) tacn)](2+) . Finally, it is shown that the difference in WO reactivity between the homologous iron and ruthenium [M(OH2 )(Py2 (Me) tacn)](2+) (M=Ru, Fe) complexes is due to the difference in the redox stability of the key M(V) (O) intermediate. These results contribute to a better understanding of the WO mechanism and the differences between iron and ruthenium complexes in WO reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kong, Decheng; Dong, Chaofang; Zheng, Zhaoran; Mao, Feixiong; Xu, Aoni; Ni, Xiaoqing; Man, Cheng; Yao, Jizheng; Xiao, Kui; Li, Xiaogang
2018-05-01
The evolution of the corrosion process on Cu-Ni-Zn alloy in alkaline chloride solution was investigated by in-situ scanning electrochemical microscopy, X-ray photoelectron spectroscopy, and ex-situ laser confocal microscopy, and the effects of ambient temperature and polarization time were also discussed. The results demonstrated a higher pitting nucleation rate and lower pit growth rate at low temperature. The ratio of pit depth to mouth diameter decreased with increasing pit volume and temperature, indicating that pits preferentially propagate in the horizontal direction rather than the vertical direction owing to the presence of corrosion products and deposited copper. The surface current was uniform and stabilized at approximately 2.2 nA during the passive stage, whereas the current increased after the pits were formed with the maximum approaching 3 nA. Increasing the temperature led to an increase in porous corrosion products (CuO, Zn(OH)2, and Ni(OH)2) and significantly increased the rate of transition from pitting to uniform corrosion. Dezincification corrosion was detected by energy dispersive spectrometry, and a mechanism for pitting transition into uniform corrosion induced by dezincification at the grain boundaries is proposed.
The influence of oxygen concentration on the combustion of a fuel/oxidizer mixture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biteau, H.; Institut National de l'Environnement Industriel et des Risques, Parc Technologique Alata, Verneuil en Halatte; Fuentes, A.
2010-04-15
The aim of the present study is to investigate the influence of the O{sub 2} concentration on the combustion behaviour of a fuel/oxidizer mixture. The material tested is a ternary mixture of lactose, starch, and potassium nitrate, which has already been used in an attempt to estimate heat release rate using the FM-Global Fire Propagation Apparatus. It provides a well-controlled combustion chamber to study the evolution of the combustion products when varying the O{sub 2} concentration, between air and low oxidizer conditions. Different chemical behaviours have been exhibited. When the O{sub 2} concentration was reduced beyond 18%, large variations weremore » observed in the CO{sub 2} and CO concentrations. This critical O{sub 2} concentration seems to be the limit before which the material only uses its own oxidizer to react. On the other hand, mass loss did not highlight this change in chemical reactions and remained similar whatever the test conditions. This presumes that the oxidation of CO into CO{sub 2} are due to reactions occurring in the gas phase especially for large O{sub 2} concentrations. This actual behaviour can be verified using a simplified flammability limit model adapted for the current work. Finally, a sensitivity analysis has been carried out to underline the influence of CO concentration in the evaluation of heat release rate using typical calorimetric methods. The results of this study provide a critical basis for the investigation of the combustion of a fuel/oxidizer mixture and for the validation of future numerical models. (author)« less
Oxygen electrode bifunctional electrocatalyst NiCo2O4 spinel
NASA Technical Reports Server (NTRS)
Fielder, William L.; Singer, Joseph
1988-01-01
A significant increase in energy density may be possible if a two-unit alkaline regenerative H2-O2 fuel cell is replaced with a single-unit system that uses passive means for H2O transfer and thermal control. For this single-unit system, new electrocatalysts for the O2 electrode will be required which are not only bifunctionally active but also chemically and electrochemically stable between the voltage range of about 0.7 and 1.5 V. NiCo2O4 spinel is reported to have certain characteristics that make it useful for a study of electrode fabrication techniques. High surface area NiCo2O4 powder was fabricated into unsupported, bifunctional, PTFE-bonded, porous gas fuel cell electrodes by commercial sources using varying PTFE contents and sintering temperatures. The object of this study is to measure the bifunctional activities of these electrodes and to observe what performance differences might result from different commercial electrode fabricators. O2 evolution and O2 reduction data were obtained at 80 C (31 percent KOH). An irreversible reaction (i.e., aging) occurred during O2 evolution at potentials greater than about 1.5 V. Anodic Tafel slopes of 0.06 and 0.12 V/decade were obtained for the aged electrodes. Within the range of 15 to 25 percent, the PTFE content was not a critical parameter for optimizing the electrode for O2 evolution activity. Sintering temperatures between 300 and 340 C may be adequate but heating at 275 C may not be sufficient to properly sinter the PTFE-NiCo2O4 mixture. Electrode disintegration was observed during O2 reduction. Transport of O2 to the NiCo2O4 surface became prohibitive at greater than about -0.02 A/sq cm. Cathodic Tafel slopes of -0.6 and -0.12 V/decade were assumed for the O2 reduction process. A PTFE content of 25 percent (or greater) appears to be preferable for sintering the PTFE-NiCo2O4 mixture.
Meteoric Metal Chemistry in the Martian Atmosphere
NASA Astrophysics Data System (ADS)
Plane, J. M. C.; Carrillo-Sanchez, J. D.; Mangan, T. P.; Crismani, M. M. J.; Schneider, N. M.; Määttänen, A.
2018-03-01
Recent measurements by the Imaging Ultraviolet Spectrograph (IUVS) instrument on NASA's Mars Atmosphere and Volatile EvolutioN mission show that a persistent layer of Mg+ ions occurs around 90 km in the Martian atmosphere but that neutral Mg atoms are not detectable. These observations can be satisfactorily modeled with a global meteoric ablation rate of 0.06 t sol-1, out of a cosmic dust input of 2.7 ± 1.6 t sol-1. The absence of detectable Mg at 90 km requires that at least 50% of the ablating Mg atoms ionize through hyperthermal collisions with CO2 molecules. Dissociative recombination of MgO+.(CO2)n cluster ions with electrons to produce MgCO3 directly, rather than MgO, also avoids a buildup of Mg to detectable levels. The meteoric injection rate of Mg, Fe, and other metals—constrained by the IUVS measurements—enables the production rate of metal carbonate molecules (principally MgCO3 and FeCO3) to be determined. These molecules have very large electric dipole moments (11.6 and 9.2 Debye, respectively) and thus form clusters with up to six H2O molecules at temperatures below 150 K. These clusters should then coagulate efficiently, building up metal carbonate-rich ice particles which can act as nucleating particles for the formation of CO2-ice clouds. Observable mesospheric clouds are predicted to occur between 65 and 80 km at temperatures below 95 K and above 85 km at temperatures about 5 K colder.
NASA Astrophysics Data System (ADS)
Xiao, Qi-Ling; Shao, Sriu-Ying; He, Hong-Bo; Shao, Jian-Da; Fan, Zheng-Xiu
2008-09-01
Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 molar contents (0, 3, 7, and 12mol%) are deposited on BK7 substrates by electron-beam evaporation technique. The effects of different Y2O3 contents on residual stresses and structures of YSZ thin films are studied. Residual stresses are investigated by means of two different techniques: the curvature measurement and x-ray diffraction method. It is found that the evolution of residual stresses of YSZ thin films by the two different methods is consistent. Residual stresses of films transform from compressive stress into tensile stress and the tensile stress incre ases monotonically with the increase of Y2O3 content. At the same time, the structures of these films change from the mixture of amorphous and monoclinic phases into high temperature cubic phase. The variations of residual stress correspond to the evolution of structures induced by adding of Y2O3 content.
The self-setting properties and in vitro bioactivity of tricalcium silicate.
Zhao, Wenyuan; Wang, Junying; Zhai, Wanyin; Wang, Zheng; Chang, Jiang
2005-11-01
In this study, tricalcium silicate (Ca(3)SiO(5)), as a new promising injectable bioactive material, was employed to investigate its physical and chemical properties for an injectable bioactive cement filler. The workable Ca(3)SiO(5) pastes with a liquid to powder (L/P) ratio of 0.8--.2 mlg(-1)could be injected for 15--60 min (nozzle diameter 2.0mm). The setting process yielded cellular structures with compressive strength of 6.4--20.2 MPa after 2--28 days. The in vitro bioactivity of Ca(3)SiO(5) paste was investigated by soaking in simulated body fluid (SBF) for various periods. The result showed that the Ca(3)SiO(5) paste could induce hydroxyapatite (HA) formation and dissolve slowly in SBF. The result of indirect cytotoxicity evaluation indicated that Ca(3)SiO(5) paste had a stimulatory effect on cell growth in a certain concentration range. The exothermic process showed that Ca(3)SiO(5) had lower heat evolution rate during the hydration as compared to calcium phosphate cement (CPC). Our results indicated that Ca(3)SiO(5) paste was bioactive and dissolvable, and it is a progressive candidate for further investigation as injectable tissue repairing substitute.
Qiu, Jingjing; Hajibabaei, Hamed; Nellist, Michael R.; ...
2017-08-17
Electrocatalysts improve the efficiency of light-absorbing semiconductor photoanodes driving the oxygen evolution reaction, but the precise function(s) of the electrocatalysts remains unclear. We directly measure, for the first time, the interface carrier transport properties of a prototypical visible-light-absorbing semiconductor, α-Fe 2O 3, in contact with one of the fastest known water oxidation catalysts, Ni 0.8Fe 0.2O x, by directly measuring/controlling the current and/or voltage at the Ni 0.8Fe 0.2O x catalyst layer using a second working electrode. The measurements demonstrate that the majority of photogenerated holes in α-Fe 2O 3 directly transfer to the catalyst film over a wide rangemore » of conditions and that the Ni 0.8Fe 0.2O x is oxidized by photoholes to an operating potential sufficient to drive water oxidation at rates that match the photocurrent generated by the α-Fe 2O 3. The Ni 0.8Fe 0.2O x therefore acts as both a hole-collecting contact and a catalyst for the photoelectrochemical water oxidation process. Separate measurements show that the illuminated junction photovoltage across the α-Fe 2O 3|Ni 0.8Fe 0.2O x interface is significantly decreased by the oxidation of Ni 2+ to Ni 3+ and the associated increase in the Ni 0.8Fe 0.2O x electrical conductivity. Finally, in sum, the results illustrate the underlying operative charge-transfer and photovoltage generation mechanisms of catalyzed photoelectrodes, thus guiding their continued improvement.« less
Shen, Liyan; Xing, Zipeng; Zou, Jinlong; Li, Zhenzi; Wu, Xiaoyan; Zhang, Yuchi; Zhu, Qi; Yang, Shilin; Zhou, Wei
2017-01-01
Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption, and UV-visible diffuse reflectance spectroscopy, respectively. The results show that special laminated heterojunctions are formed between black TiO2 nanobelts and g-C3N4 nanosheets, which favor the separation of photogenerated electron-hole pairs. Furthermore, the presence of Ti3+ and g-C3N4 greatly enhance the absorption of visible light. The resultant b-TiO2/g-C3N4 materials exhibit higher photocatalytic activity than that of g-C3N4, TiO2, b-TiO2 and TiO2/g-C3N4 for degradation of methyl orange (95%) and hydrogen evolution (555.8 μmol h−1 g−1) under visible light irradiation. The apparent reaction rate constant (k) of b-TiO2/g-C3N4 is ~9 times higher than that of pristine TiO2. Therefore, the high-efficient laminated heterojunction composites will have potential applications in fields of environment and energy. PMID:28165021
Ganbaatar, Narangerel; Imai, Kanae; Yano, Taka-Aki; Hara, Masahiko
2017-01-01
Surface force analysis with atomic force microscope (AFM) in which a single amino acid residue was mounted on the tip apex of AFM probe was carried out for the first time at the molecular level on titanium dioxide (TiO 2 ) as a representative mineral surface for prebiotic chemical evolution reactions. The force analyses on surfaces with three different crystal orientations revealed that the TiO 2 (110) surface has unique characteristics for adsorbing glycine molecules showing different features compared to those on TiO 2 (001) and (100). To examine this difference, we investigated thermal desorption spectroscopy (TDS) and the interaction between the PEG cross-linker and the three TiO 2 surfaces. Our data suggest that the different single crystal surfaces would provide different chemical evolution field for amino acid molecules.
T. Weller, Mark
2018-01-01
Photoanodes fabricated by the electrophoretic deposition of a thermally prepared zinc tantalum oxynitride (ZnTaO2N) catalyst onto indium tin oxide (ITO) substrates show photoactivation for the oxygen evolution reaction (OER) in alkaline solutions. The photoactivity of the OER is further boosted by the photodeposition of cobalt phosphate (CoPi) layers onto the surface of the ZnTaO2N photoanodes. Structural, morphological, and photoelectrochemical (PEC) properties of the modified ZnTaO2N photoanodes are studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet visible (UV−Vis) diffuse reflectance spectroscopy, and electrochemical techniques. The presence of the CoPi layer significantly improved the PEC performance of water oxidation in an alkaline sulphate solution. The photocurrent-voltage behavior of the CoPi-modified ZnTaO2N anodes was improved, with the influence being more prominent at lower oxidation potentials. A stable photocurrent density of about 2.3 mA·cm−2 at 1.23 V vs. RHE was attained upon visible light illumination. Relative to the ZnTaO2N photoanodes, an almost three-fold photocurrent increase was achieved at the CoPi/ZnTaO2N photoelectrode. Perovskite-based oxynitrides are modified using an oxygen-evolution co-catalyst of CoPi, and provide a new dimension for enhancing the photoactivity of oxygen evolution in solar-assisted water-splitting reactions. PMID:29346306
Synthesis of PZT powder by conventional method at various conditions
NASA Astrophysics Data System (ADS)
Necira, Z.; Boutarfaia, A.; Abba, M.; Abdessalem, N.
2012-06-01
In this work, the formation of Pb(Zr1-xTix)O3 solid solutions with composition near the morphotropic phase boundary (MPB) using the conventional ceramic method have been studied by changing the thermal conditions such as temperature ramp rate and isothermal times during the calcination treatment performed between 700 and 900 °C. The perovskite phase formation and morphology of undoped Pb(Zr0.52Ti0.48)O3 (abbreviated PZT) and doped new material Pb0.98Gd0.02[(Zr0.52Ti0.48)0.98 (Mg1/3Nb2/3)0.01 (Ni1/3Sb2/3)0.01]O3 (abbreviated PZT-PGMNNS) specimens have been examined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) while the thermal evolution of the initial precursor was followed by TG-DTA. So the results of these studies have been discussed.
Scoma, Alberto; Tóth, Szilvia Z
2017-01-01
Under low O 2 concentration (hypoxia) and low light, Chlamydomonas cells can produce H 2 gas in nutrient-replete conditions. This process is hindered by the presence of O 2 , which inactivates the [FeFe]-hydrogenase enzyme responsible for H 2 gas production shifting algal cultures back to normal growth. The main pathways accounting for H 2 production in hypoxia are not entirely understood, as much as culture conditions setting the optimal redox state in the chloroplast supporting long-lasting H 2 production. The reducing power for H 2 production can be provided by photosystem II (PSII) and photofermentative processes during which proteins are degraded via yet unknown pathways. In hetero- or mixotrophic conditions, acetate respiration was proposed to indirectly contribute to H 2 evolution, although this pathway has not been described in detail. Recently, Jurado-Oller et al. (Biotechnol Biofuels 8: 149, 7) proposed that acetate respiration may substantially support H 2 production in nutrient-replete hypoxic conditions. Addition of low amounts of O 2 enhanced acetate respiration rate, particularly in the light, resulting in improved H 2 production. The authors surmised that acetate oxidation through the glyoxylate pathway generates intermediates such as succinate and malate, which would be in turn oxidized in the chloroplast generating FADH 2 and NADH. The latter would enter a PSII-independent pathway at the level of the plastoquinone pool, consistent with the light dependence of H 2 production. The authors concluded that the water-splitting activity of PSII has a minor role in H 2 evolution in nutrient-replete, mixotrophic cultures under hypoxia. However, their results with the PSII inhibitor DCMU also reveal that O 2 or acetate additions promoted acetate respiration over the usually dominant PSII-dependent pathway. The more oxidized state experienced by these cultures in combination with the relatively short experimental time prevented acclimation to hypoxia, thus precluding the PSII-dependent pathway from contributing to H 2 production. In Chlamydomonas , continuous H 2 gas evolution is expected once low O 2 partial pressure and optimal reducing conditions are set. Under nutrient-replete conditions, the electrogenic processes involved in H 2 photoproduction may rely on various electron transport pathways. Understanding how physiological conditions select for specific metabolic routes is key to achieve economic viability of this renewable energy source.
NASA Astrophysics Data System (ADS)
Huang, Chunmei; Zhao, Zhidan; Li, Guangming; Zhu, Di-Cheng; Liu, Dong; Shi, Qingshang
2017-12-01
Petrogenesis of the Himalayan leucogranite is strongly influenced by conditions which are associated with the tectonic evolution of Himalayan orogen. In this article, we present petrological, geochronological and geochemical results of the Lhozag leucogranites that crop out alongside the South Tibetan Detachment System (STDS) in the east of Himalaya. Zircon U-Pb dating revealed three episodes of leucogranitic magmatism in Lhozag at 17.8 ± 0.1 Ma, 15.1 ± 0.1 Ma, and 12.0 ± 0.1 Ma, respectively. The Lhozag leucogranites show relatively low εNd(t), low zircon εHf(t) and high initial 87Sr/86Sr ratios, which are similar to the High Himalayan Crystalline Series (HHCS), indicating that they were derived from the HHCS. The characteristics of relatively high Na2O and Rb contents, high Rb/Sr ratios and low CaO, MgO, TFe2O3, TiO2, and Sr contents indicate that both the ca. 18 Ma Lhozag tourmaline leucogranites and the ca. 15 Ma Lhozag two-mica granites were derived from fluid-absent muscovite-dehydration melting of metasediments. The opposite geochemistry characteristics of the ca. 12 Ma Khula Kangri two-mica granites imply that these granites are derived from fluid-present melting of metasediments. Four Khula Kangri two-mica granite samples with relatively lower TiO2, TFe2O3, MgO, and CaO contents, higher Rb concentrations and Rb/Sr ratios could be evolved from the Khula Kangri two-mica granites with relatively lower Rb/Sr ratios. The melting behaviors of the Lhozag leucogranites varied from fluid-absent melting to fluid-present melting, implying that there were P-T-XH2O variations in the deep crust. The tectonic evolution would give rise to variation of P-T-XH2O variation, and subsequent transformation of melting behavior. Our new results display the transformation of melting behavior of the Lhozag leucogranites, which implies the tectonic evolution from earlier N-S extension to later E-W extension in the eastern Himalaya at ca. 12 Ma.
O Star Wind Mass-Loss Rates and Shock Physics from X-ray Line Profiles in Archival XMM RGS Data
NASA Astrophysics Data System (ADS)
Cohen, David
O stars are characterized by their dense, supersonic stellar winds. These winds are the site of X-ray emission from shock-heated plasma. By analyzing high-resolution X-ray spectra of these O stars, we can learn about the wind-shock heating and X-ray production mechanism. But in addition, the X-rays can also be used to measure the mass-loss rate of the stellar wind, which is a key observational quantity whose value affects stellar evolution and energy, momentum, and mass input to the Galactic interstellar medium. We make this X-ray based mass-loss measurement by analyzing the profile shapes of the X-ray emission lines observed at high resolution with the Chandra and XMM-Newton grating spectrometers. One advantage of our method is that it is insensitive to small-scale clumping that affects density-squared diagnostics. We are applying this analysis technique to O stars in the Chandra archive, and are finding mass-loss rates lower than those traditionally assumed for these O stars, and in line with more recent independent determinations that do account for clumping. By extending this analysis to the XMM RGS data archive, we will make significant contributions to the understanding of both X-ray production in O stars and to addressing the issue of the actual mass-loss rates of O stars. The XMM RGS data archive provides several extensions and advantages over the smaller Chandra HETGS archive: (1) there are roughly twice as many O and early B stars in the XMM archive; (2) the longer wavelength response of the RGS provides access to diagnostically important lines of nitrogen and carbon; (3) the very long, multiple exposures of zeta Pup provide the opportunity to study this canonical O supergiant's X-ray spectrum in unprecedented detail, including looking at the time variability of X-ray line profiles. Our research team has developed a sophisticated empirical line profile model as well as a computational infrastructure for fitting the model to high-resolution X-ray spectra in order to determine the values of physically meaningful model parameters, and to place confidence limits on them. We have incorporated second-order effects into our models, including resonance scattering. We have also developed tools for modeling the X-ray opacity of the cold, X-ray absorbing wind component, which is a crucial ingredient of the technique we have developed for determining wind mass-loss rates from analyzing the ensemble of emission lines from a given star's X-ray spectrum. In addition to testing state-of-the-art wind shock models and measuring O star mass-loss rates, an important component of our proposed research program is the education of talented undergraduates. Swarthmore undergraduates have made significant contributions to the development of our line profile modeling, the wind opacity modeling, and related research topics such as laboratory astrophysics before going on to PhD programs. Two have been named as finalists for the APS's Apker prize. The research we propose here will involve two undergraduates and will likely lead to honors theses, refereed papers, and the opportunity to present their research results at national and international meetings. By measuring mass-loss rates for all the O stars for which high-resolution X-ray spectra exist and by constraining X-ray production mechanisms, we will address issues important to our understanding of stellar and galactic evolution: including the frequency of core collapse supernovae, the energetics of the Galactic interstellar medium, and the radiation conditions in star formation regions where not only new, solar-type stars form, but also where their planetary systems form and are subject to effects of high-energy emission from nearby stars. In this way, the work we are proposing in this project will make a contribution to NASA's mission to understand cosmic evolution and the conditions for generating and sustaining life in the Universe.
Preliminary conceptual model for mineral evolution in Yucca Mountain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffy, C.J.
1993-12-01
A model is presented for mineral alteration in Yucca Mountain, Nevada, that suggests that the mineral transformations observed there are primarily controlled by the activity of aqueous silica. The rate of these reactions is related to the rate of evolution of the metastable silica polymorphs opal-CT and cristobalite assuming that a{sub SiO{sub 2(aq)}} is fixed at the equilibrium solubility of the most soluble silica polymorph present. The rate equations accurately predict the present depths of disappearance of opal-CT and cristobalite. The rate equations have also been used to predict the extent of future mineral alteration that may result from emplacementmore » of a high-level nuclear waste repository in Yucca Mountain. Relatively small changes in mineralogy are predicted, but these predictions are based on the assumption that emplacement of a repository would not increase the pH of water in Yucca Mountain nor increase its carbonate content. Such changes may significantly increase mineral alteration. Some of the reactions currently occurring in Yucca Mountain consume H{sup +} and CO{sub 3}{sup 2{minus}}. Combining reaction rate models for these reactions with water chemistry data may make it possible to estimate water flux through the basal vitrophyre of the Topopah Spring Member and to help confirm the direction and rate of flow of groundwater in Yucca Mountain.« less
Kobayashi, Ryoya; Takashima, Toshihiro; Tanigawa, Satoshi; Takeuchi, Shugo; Ohtani, Bunsho; Irie, Hiroshi
2016-10-12
We recently reported the synthesis of a solid-state heterojunction photocatalyst consisting of zinc rhodium oxide (ZnRh 2 O 4 ) and bismuth vanadium oxide (Bi 4 V 2 O 11 ), which functioned as hydrogen (H 2 ) and oxygen (O 2 ) evolution photocatalysts, respectively, connected with silver (Ag). Polycrystalline Bi 4 V 2 O 11 (p-Bi 4 V 2 O 11 ) powders were utilized to form ZnRh 2 O 4 /Ag/p-Bi 4 V 2 O 11 , which was able to photocatalyze overall pure-water splitting under red-light irradiation with a wavelength of 700 nm (R. Kobayashi et al., J. Mater. Chem. A, 2016, 4, 3061). In the present study, we replaced p-Bi 4 V 2 O 11 with a powder obtained by pulverizing single crystals of Bi 4 V 2 O 11 (s-Bi 4 V 2 O 11 ) to form ZnRh 2 O 4 /Ag/s-Bi 4 V 2 O 11 , and demonstrated that this heterojunction photocatalyst had enhanced water-splitting activity. In addition, ZnRh 2 O 4 /Ag/s-Bi 4 V 2 O 11 was able to utilize nearly the entire range of visible light up to a wavelength of 740 nm. These properties were attributable to the higher O 2 evolution activity of s-Bi 4 V 2 O 11 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Changjiang; Xi, Zhenhao; Fang, Wenzhang
2015-03-15
In this paper, p–n type CuInS{sub 2}/TiO{sub 2} particles were prepared in ethylenediamine by the solvothermal method. The microstructural properties of the synthesized p–n type catalysts were characterized by X-ray diffraction (XRD) in order to confirm the existence of crystalline CuInS{sub 2} on the surface of TiO{sub 2}, which was also confirmed by X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) images provided the detailed morphological properties about the CuInS{sub 2}/TiO{sub 2} heterostructure. UV–vis diffuse reflectance spectroscopy (UV–vis DRS) was used to investigate the optical properties of the CuInS{sub 2}/TiO{sub 2} particles. The DRS results indicated that both the p–nmore » type structure and CuInS{sub 2} acting as a sensitizer can enhance significantly the absorption of UV and visible light. The photocatalytic activities of the CuInS{sub 2}/TiO{sub 2} particles were evaluated by hydrogen evolution reactions using Xe-lamp irradiation as a simulated solar light source. The greatly enhanced photocatalytic activity of hydrogen evolution under simulated solar light is about ~7 fold higher than that of pure commercial TiO{sub 2} (Degussa P25). - Graphical abstract: The heterojunction structure of CuInS{sub 2}/TiO{sub 2} promoted the efficiency of photoinduced charge carrier transfer and highly inherited the recombination of activated electrons and holes. - Highlight: • CuInS{sub 2}/TiO{sub 2} was prepared by a one-step solvothermal method. • 2.5% CuInS{sub 2}/TiO{sub 2} has the highest activity and keeps the activity stable. • Heterojunction structure of sample promoted the separation of electrons and holes.« less
Oxygen evolution from BF3/MnO4-.
Yiu, Shek-Man; Man, Wai-Lun; Wang, Xin; Lam, William W Y; Ng, Siu-Mui; Kwong, Hoi-Ki; Lau, Kai-Chung; Lau, Tai-Chu
2011-04-14
MnO(4)(-) is activated by BF(3) to undergo intramolecular coupling of two oxo ligands to generate O(2). DFT calculations suggest that there should be a spin intercrossing between the singlet and triplet potential energy surfaces on going from the active intermediate [MnO(2)(OBF(3))(2)](-) to the O···O coupling transition state.
Heterogeneous reactions in aircraft gas turbine engines
NASA Astrophysics Data System (ADS)
Brown, R. C.; Miake-Lye, R. C.; Lukachko, S. P.; Waitz, I. A.
2002-05-01
One-dimensional flow models and unity probability heterogeneous rate parameters are used to estimate the maximum effect of heterogeneous reactions on trace species evolution in aircraft gas turbines. The analysis includes reactions on soot particulates and turbine/nozzle material surfaces. Results for a representative advanced subsonic engine indicate the net change in reactant mixing ratios due to heterogeneous reactions is <10-6 for O2, CO2, and H2O, and <10-10 for minor combustion products such as SO2 and NO2. The change in the mixing ratios relative to the initial values is <0.01%. Since these estimates are based on heterogeneous reaction probabilities of unity, the actual changes will be even lower. Thus, heterogeneous chemistry within the engine cannot explain the high conversion of SO2 to SO3 which some wake models require to explain the observed levels of volatile aerosols. Furthermore, turbine heterogeneous processes will not effect exhaust NOx or NOy levels.
Natali, Mirco; Berardi, Serena; Sartorel, Andrea; Bonchio, Marcella; Campagna, Sebastiano; Scandola, Franco
2012-09-11
Water oxidation catalysts: evolution of [Co(4)(H(2)O)(2)(α-PW(9)O(34))(2)](10-) to catalytically active species is assessed by laser flash photolysis in sacrificial photocatalytic cycles with Ru(bpy)(3)(2+) as a photosensitizer.
Microstructural Evolution of Nanocrystalline ZrO2 in a Fe Matrix During High-Temperature Exposure
NASA Astrophysics Data System (ADS)
Raghavendra, K. G.; Dasgupta, Arup; Athreya, C. N.; Jayasankar, K.; Saroja, S.; Subramanya Sarma, V.
2018-06-01
The current study examines the evolution of nanocrystallites of ZrO2 with time and temperature in a Fe-ZrO2 composite. The crystallite sizes were determined through X-ray peak broadening analysis by the Williamson-Hall method together with dark field transmission electron microscopy. The ZrO2 crystallites were found to be stable and retained their sizes at 973 K and 1073 K for hold durations up to 600 minutes. On the other hand, the crystallites were seen to grow at 1173 K and reached up to 200 nm for a hold time of 600 minutes. The Ostwald ripening model was adopted to understand crystallite growth while a dislocation-driven pipe diffusion was adopted for understanding the kinetics of grain growth. The activation energy of grain growth was calculated as 379 kJ mol-1. The modeled and experimentally calculated size evolutions with time and temperature were shown to be in good agreement with each other. A detailed discussion on the kinetics and activation energy of grain growth of ZrO2 crystallites in a Fe matrix is presented in this manuscript.
The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective
Ducluzeau, Anne-Lise; Schoepp-Cothenet, Barbara; van Lis, Robert; Baymann, Frauke; Russell, Michael J.; Nitschke, Wolfgang
2014-01-01
Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes. PMID:24968694
Numerical Solution of Dyson Brownian Motion and a Sampling Scheme for Invariant Matrix Ensembles
NASA Astrophysics Data System (ADS)
Li, Xingjie Helen; Menon, Govind
2013-12-01
The Dyson Brownian Motion (DBM) describes the stochastic evolution of N points on the line driven by an applied potential, a Coulombic repulsion and identical, independent Brownian forcing at each point. We use an explicit tamed Euler scheme to numerically solve the Dyson Brownian motion and sample the equilibrium measure for non-quadratic potentials. The Coulomb repulsion is too singular for the SDE to satisfy the hypotheses of rigorous convergence proofs for tamed Euler schemes (Hutzenthaler et al. in Ann. Appl. Probab. 22(4):1611-1641, 2012). Nevertheless, in practice the scheme is observed to be stable for time steps of O(1/ N 2) and to relax exponentially fast to the equilibrium measure with a rate constant of O(1) independent of N. Further, this convergence rate appears to improve with N in accordance with O(1/ N) relaxation of local statistics of the Dyson Brownian motion. This allows us to use the Dyson Brownian motion to sample N× N Hermitian matrices from the invariant ensembles. The computational cost of generating M independent samples is O( MN 4) with a naive scheme, and O( MN 3log N) when a fast multipole method is used to evaluate the Coulomb interaction.
Stress Induced Charge-Ordering Process in LiMn 2O 4
Chen, Yan; Yu, Dunji; An, Ke
2016-07-25
In this letter we report the stress-induced Mn charge-ordering process in the LiMn 2O 4 spinel, evidenced by the lattice strain evolutions due to the Jahn–Teller effects. In situ neutron diffraction reveals the initial stage of this process at low stress, indicating the eg electron localization at the preferential Mn sites during the early phase transition as an underlying charge-ordering mechanism in the charge-frustrated LiMn 2O 4. The initial stage of this transition exhibits as a progressive lattice and charge evolution, without showing a first-order behavior.
NASA Astrophysics Data System (ADS)
Fang, Zhiqiang; Hao, Zhaomin; Dong, Qingsong; Cui, Yong
2018-04-01
Transition metal oxides that derived from metal-organic framework (MOF) precursor have intensively received attention because of their numerous electrochemical applications. Bimetallic Ni-Fe oxides have been rarely reported on the basis of MOF-related strategy. Herein, a bimetallic NiFe2O4 was successfully synthesized via confined carburization in NiFe-MOF precursors and characterized by XRD, XPS, SEM, and TEM. After conducting an investigation of oxygen evolution reaction (OER), the as-synthesized NiFe2O4 material exhibited good catalytic efficiency and high stability and durability in alkaline media. The as-synthesized NiFe2O4 material would promote the development of MOFs in non-noble-metal OER catalyst.
Two steps hydrothermal growth and characterisations of BaTiO3 films composed of nanowires
NASA Astrophysics Data System (ADS)
Zawawi, Che Zaheerah Najeehah Che Mohd; Salleh, Shahril; Oon Jew, Lee; Tufail Chaudhary, Kashif; Helmi, Mohamad; Safwan Aziz, Muhammad; Haider, Zuhaib; Ali, Jalil
2018-05-01
Barium titanate (BaTiO3) films composed of nanowires have gained considerable research interest due to their lead-free composition and strong energy conversion efficiency. BaTiO3 films can be developed with a simple two steps hydrothermal reactions, which are low cost effective. In this research, BaTiO3 films were fabricated on titanium foil through two steps hydrothermal method namely, the growth of TiO2 and followed by BaTiO3 films. The structural evolutions and the dielectric properties of the films were investigated as well. The structural evolutions of titanium dioxide (TiO2) and BaTiO3 nanowires were characterized using X-ray diffraction and scanning electron microscopy. First step of hydrothermal reaction, TiO2 nanowires were prepared in varied temperatures of 160 °C, 200 °C and 250 °C respectively. Second step of hydrothermal reaction was performed to produce a layer of BaTiO3 films.
NASA Astrophysics Data System (ADS)
Schmid, M.; Willert-Porada, M.
2017-05-01
Silica coatings on zinc particles as anode material for alkaline zinc air batteries are expected to reduce early formation of irreversible ZnO passivation layers during discharge by controlling zinc dissolution and precipitation of supersaturated zincates, Zn(OH)42-. Zinc particles were coated with SiO2 (thickness: 15 nm) by chemical solution deposition and with Zn2SiO4 (thickness: 20 nm) by chemical vapor deposition. These coatings formed a Si(OH)4 gel in aqueous KOH and retarded hydrogen evolution by 40%. By treatment in aqueous KOH and drying afterwards, the silica coatings were changed into ZnO-K2O·SiO2 layers. In this work, the electrochemical performance of such coated zinc particles is investigated by different electrochemical methods in order to gain a deeper understanding of the mechanisms of the coatings, which reduce zinc passivation. In particular, zinc utilization and changes in internal resistance are investigated. Moreover, methods for determination of diffusion coefficients, charge carrier numbers and activation energies for electrochemical oxidation are determined. SiO2-coated zinc particles show improved discharge capacity (CVD-coated zinc: 69% zinc utilization, CSD-coated zinc: 62% zinc utilization) as compared to as-received zinc (57% zinc utilization) at C/20 rate, by reducing supersaturation of zincates. Additionally, KOH-modified SiO2-coated zinc particles enhance rechargeability after 100% depth-of-discharge.
Zhuang, Yan
2018-01-01
A novel photocatalyst ZnBiErO4 was firstly synthesized by solid-state reaction method and its structural and photocatalytic properties were analyzed by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV-Vis diffuse reflectance. The results demonstrated that ZnBiErO4 crystallized with tetragonal crystal structure with space group I41/A. The lattice parameters for ZnBiErO4 were proved to be a = b = 10.255738 Å and c = 9.938888 Å. The band gap of ZnBiErO4 was estimated to be about 1.69 eV. Compared with nitrogen doped TiO2, ZnBiErO4 showed excellent photocatalytic activities for degrading methyl blue during visible light irradiation. The photocatalytic degradation of methyl blue with ZnBiErO4 or N-doped TiO2 as catalyst followed the first-order reaction kinetics. Moreover, the apparent first-order rate constant of ZnBiErO4 or N-doped TiO2 was 0.01607 min−1 or 0.00435 min−1. The reduction of total organic carbon, formation of inorganic products, such as SO42− and NO3− and the evolution of CO2 revealed the continuous mineralization of methyl blue during the photocatalytic process. ZnBiErO4 photocatalyst had great potential to purify textile industry wastewater. PMID:29463016
Raman spectra of Hg-based superconductors: Effect of oxygen defects
NASA Astrophysics Data System (ADS)
Zhou, Xingjiang; Cardona, M.; Chu, C. W.; Lin, Q. M.; Loureiro, S. M.; Marezio, M.
1996-09-01
Polarized micro-Raman scattering measurements have been performed on the five members of the HgBa2Can-1CunO2n+2+δ (n=1, 2, 3, 4, and 5) high-Tc superconductor family. A systematic evolution of the spectrum, which mainly involves oxygen-related phonons around 590, 570, 540, and 470 cm-1, with an increasing number of CuO2 layers, has been observed. Local laser annealing measurements clearly demonstrate that all these phonons are closely related to interstitial oxygen in the HgOδ planes. The origin of the spectrum evolution with the number of CuO2 layers lies in the variation of interstitial oxygen content.
Water oxidation chemistry of photosystem II.
Vrettos, John S; Brudvig, Gary W
2002-01-01
The O(2)-evolving complex of photosystem II catalyses the light-driven four-electron oxidation of water to dioxygen in photosynthesis. In this article, the steps leading to photosynthetic O(2) evolution are discussed. Emphasis is given to the proton-coupled electron-transfer steps involved in oxidation of the manganese cluster by oxidized tyrosine Z (Y(*)(Z)), the function of Ca(2+) and the mechanism by which water is activated for formation of an O-O bond. Based on a consideration of the biophysical studies of photosystem II and inorganic manganese model chemistry, a mechanism for photosynthetic O(2) evolution is presented in which the O-O bond-forming step occurs via nucleophilic attack on an electron-deficient Mn(V)=O species by a calcium-bound water molecule. The proposed mechanism includes specific roles for the tetranuclear manganese cluster, calcium, chloride, Y(Z) and His190 of the D1 polypeptide. Recent studies of the ion selectivity of the calcium site in the O(2)-evolving complex and of a functional inorganic manganese model system that test key aspects of this mechanism are also discussed. PMID:12437878
Rojas-Hernandez, Rocío Estefanía; Rubio-Marcos, Fernando; Gonçalves, Ricardo Henrique; Rodriguez, Miguel Ángel; Véron, Emmanuel; Allix, Mathieu; Bessada, Catherine; Fernandez, José Francisco
2015-10-19
SrAl2O4:Eu(2+), Dy(3+) has been extensively studied for industrial applications in the luminescent materials field, because of its excellent persistent luminescence properties and chemical stability. Traditionally, this strontium aluminate material is synthesized in bulk form and/or fine powder by the classic solid-state method. Here, we report an original synthetic route, a molten salt assisted process, to obtain highly crystalline SrAl2O4 powder with nanometer-scale crystals. The main advantages of salt addition are the increase of the reaction rate and the significant reduction of the synthesis temperature because of much higher mobility of reactants in the liquid medium than in the solid-state method. In particular, the formation mechanism of SrAl2O4, the role of the salt, and the phase's evolution have been explored as a function of temperature and time. Phosphorescent powders based on SrAl2O4:Eu(2+), Dy(3+) with high crystallinity are obtained after 1 h treatment at 900 °C. This work could promote further interest in adopting the molten salt strategy to process high-crystallinity materials with enhanced luminescence to design technologically relevant phosphors.
The geochemical evolution of riparian ground water in a forested piedmont catchment
Burns, Douglas A.; Plummer, Niel; McDonnell, Jeffrey J.; Busenberg, Eurybiades; Casile, Gerolamo C.; Kendall, Carol; Hooper, Richard P.; Freer, James E.; Peters, Norman E.; Beven, Keith; Schlosser, Peter
2003-01-01
The principal weathering reactions and their rates in riparian ground water were determined at the Panola Mountain Research Watershed (PMRW) near Atlanta, Georgia. Concentrations of major solutes were measured in ground water samples from 19 shallow wells completed in the riparian (saprolite) aquifer and in one borehole completed in granite, and the apparent age of each sample was calculated from chloroflourocarbons and tritium/helium-3 data. Concentrations of SiO2, Na+, and Ca2+ generally increased downvalley and were highest in the borehole near the watershed outlet. Strong positive correlations were found between the concentrations of these solutes and the apparent age of ground water that was modern (zero to one year) in the headwaters, six to seven years midway down the valley, and 26 to 27 years in the borehole, located ∼500 m downstream from the headwaters. Mass-balance modeling of chemical evolution showed that the downstream changes in ground water chemistry could be largely explained by weathering of plagioclase to kaolinite, with possible contributions from weathering of K-feldspar, biotite, hornblende, and calcite. The in situ rates of weathering reactions were estimated by combining the ground water age dates with geochemical mass-balance modeling results. The weathering rate was highest for plagioclase (∼6.4 μmol/L/year), but could not be easily compared with most other published results for feldspar weathering at PMRW and elsewhere because the mineral-surface area to which ground water was exposed during geochemical evolution could not be estimated. However, a preliminary estimate of the mineral-surface area that would have contacted the ground water to provide the observed solute concentrations suggests that the plagioclase weathering rate calculated in this study is similar to the rate calculated in a previous study at PMRW, and three to four orders of magnitude slower than those published in previous laboratory studies of feldspar weathering. An accurate model of the geochemical evolution of riparian ground water is necessary to accurately model the geochemical evolution of stream water at PMRW.
Blending Cr 2O 3 into a NiO-Ni electrocatalyst for sustained water splitting
Gong, Ming; Zhou, Wu; Kenney, Michael James; ...
2015-08-24
The rising H 2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr 2O 3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr 2O 3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr 2O 3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalystmore » enables an alkaline electrolyzer operating at 20 mA cm –2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.« less
Yoon, Ki Ro; Kim, Dae Sik; Ryu, Won-Hee; Song, Sung Ho; Youn, Doo-Young; Jung, Ji-Won; Jeon, Seokwoo; Park, Yong Joon; Kim, Il-Doo
2016-08-23
The development of efficient bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is a key issue pertaining high performance Li-O2 batteries. Here, we propose a heterogeneous electrocatalyst consisting of LaMnO3 nanofibers (NFs) functionalized with RuO2 nanoparticles (NPs) and non-oxidized graphene nanoflakes (GNFs). The Li-O2 cell employing the tailored catalysts delivers an excellent electrochemical performance, affording significantly reduced discharge/charge voltage gaps (1.0 V at 400 mA g(-1) ), and superior cyclability for over 320 cycles. The outstanding performance arises from (1) the networked LaMnO3 NFs providing ORR/OER sites without severe aggregation, (2) the synergistic coupling of RuO2 NPs for further improving the OER activity and the electrical conductivity on the surface of the LaMnO3 NFs, and (3) the use of GNFs providing a fast electronic pathway as well as improved ORR kinetics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tao, Shasha; Yang, Florent; Schuch, Jona; Jaegermann, Wolfram; Kaiser, Bernhard
2018-03-09
Ni nanoparticles (NPs) consisting of Ni, NiO, and Ni(OH) 2 were formed on Ti substrates by electrodeposition as electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solution. Additionally, the deposition parameters including the potential range and the scan rate were varied, and the resulting NPs were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. The chemical composition of the NPs changed upon using different conditions, and it was found that the catalytic activity increased with an increase in the amount of NiO. From these data, optimized NPs were synthesized; the best sample showed an onset potential of approximately 0 V and an overpotential of 197 mV at a cathodic current density of 10 mA cm -2 as well as a small Tafel slope of 88 mV dec -1 in 1 m KOH, values that are comparable to those of Pt foil. These NPs consist of approximately 25 % Ni and Ni(OH) 2 each, as well as approximately 50 % NiO. This implies that to obtain a successful HER electrocatalyst, active sites with differing compositions have to be close to each other to promote the different reaction steps. Long-time measurements (30 h) showed almost complete transformation of the highly active catalyst compound consisting of Ni 0 , NiO, and Ni(OH) 2 into the less active Ni(OH) 2 phase. Nevertheless, the here-employed electrodeposition of nonprecious metal/metal-oxide combination compounds represents a promising alternative to Pt-based electrocatalysts for water reduction to hydrogen. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Earth’s oxygen cycle and the evolution of animal life
Reinhard, Christopher T.; Planavsky, Noah J.; Olson, Stephanie L.; Lyons, Timothy W.; Erwin, Douglas H.
2016-01-01
The emergence and expansion of complex eukaryotic life on Earth is linked at a basic level to the secular evolution of surface oxygen levels. However, the role that planetary redox evolution has played in controlling the timing of metazoan (animal) emergence and diversification, if any, has been intensely debated. Discussion has gravitated toward threshold levels of environmental free oxygen (O2) necessary for early evolving animals to survive under controlled conditions. However, defining such thresholds in practice is not straightforward, and environmental O2 levels can potentially constrain animal life in ways distinct from threshold O2 tolerance. Herein, we quantitatively explore one aspect of the evolutionary coupling between animal life and Earth’s oxygen cycle—the influence of spatial and temporal variability in surface ocean O2 levels on the ecology of early metazoan organisms. Through the application of a series of quantitative biogeochemical models, we find that large spatiotemporal variations in surface ocean O2 levels and pervasive benthic anoxia are expected in a world with much lower atmospheric pO2 than at present, resulting in severe ecological constraints and a challenging evolutionary landscape for early metazoan life. We argue that these effects, when considered in the light of synergistic interactions with other environmental parameters and variable O2 demand throughout an organism’s life history, would have resulted in long-term evolutionary and ecological inhibition of animal life on Earth for much of Middle Proterozoic time (∼1.8–0.8 billion years ago). PMID:27457943
Earth's oxygen cycle and the evolution of animal life.
Reinhard, Christopher T; Planavsky, Noah J; Olson, Stephanie L; Lyons, Timothy W; Erwin, Douglas H
2016-08-09
The emergence and expansion of complex eukaryotic life on Earth is linked at a basic level to the secular evolution of surface oxygen levels. However, the role that planetary redox evolution has played in controlling the timing of metazoan (animal) emergence and diversification, if any, has been intensely debated. Discussion has gravitated toward threshold levels of environmental free oxygen (O2) necessary for early evolving animals to survive under controlled conditions. However, defining such thresholds in practice is not straightforward, and environmental O2 levels can potentially constrain animal life in ways distinct from threshold O2 tolerance. Herein, we quantitatively explore one aspect of the evolutionary coupling between animal life and Earth's oxygen cycle-the influence of spatial and temporal variability in surface ocean O2 levels on the ecology of early metazoan organisms. Through the application of a series of quantitative biogeochemical models, we find that large spatiotemporal variations in surface ocean O2 levels and pervasive benthic anoxia are expected in a world with much lower atmospheric pO2 than at present, resulting in severe ecological constraints and a challenging evolutionary landscape for early metazoan life. We argue that these effects, when considered in the light of synergistic interactions with other environmental parameters and variable O2 demand throughout an organism's life history, would have resulted in long-term evolutionary and ecological inhibition of animal life on Earth for much of Middle Proterozoic time (∼1.8-0.8 billion years ago).
Highly-active oxygen evolution electrocatalyzed by an Fe-doped NiCr2O4 nanoparticle film.
Zhao, Jinxiu; Li, Xianghong; Cui, Guanwei; Sun, Xuping
2018-05-11
Alkaline water splitting offers a simple method for the mass production of hydrogen but suffers from the sluggish kinetics of the anodic oxygen evolution reaction (OER). Here, we report on the development of an Fe-doped NiCr2O4 nanoparticle film on Ni foam (Fe-NiCr2O4/NF) as a non-noble-metal OER electrocatalyst with superior catalytic activity at alkaline pH. Such Fe-NiCr2O4/NF demands overpotentials as low as 228 and 318 mV to drive current densities of 20 and 500 mA cm-2, respectively, in 1.0 M KOH. Notably, it also shows strong long-term electrochemical durability with its activity being retained for at least 60 h.
Chiang, Tzu Hsuan; Chen, Tso-Ming
2017-01-01
The study investigated photocatalytic water splitting for O2 production under visible light irradiation using neodymium vanadium oxide (NdVO4) and vanadium oxide (V2O5) hybrid powders. The results in a sacrificial agent of 0.01 M AgNO3 solution were obtained, and the highest photocatalytic O2 evolution was 2.63 μmol/h, when the hybrid powders were prepared by mixing Nd and V at a volume ratio of 1:3 at a calcination temperature of 350 °C for 1 h. The hybrid powders were synthesized by neodymium nitrate and ammonium metavanadate using the glycothermal method in ethylene glycol at 120 °C for 1 h. The hybrid powders consisted of two shapes, NdVO4 nanoparticles and the cylindrical V2O5 particles, and they possessed the ability for photocatalytic oxygen (O2) evolution during irradiation with visible light. The band gaps and structures of the hybrid powders were analyzed using UV-visible spectroscopy and transmission electron microscopy. PMID:28772692
Corotation lag limit on mass-loss rate from Io
NASA Astrophysics Data System (ADS)
Huang, T. S.; Siscoe, G. L.
1987-08-01
Considering rapid escape of H2O from Io during an early hot evolutionary epoch, an H2O plasma torus is constructed by balancing dissociation and ionization products against centrifugally driven diffusion, including for the first time the effects of corotation lag resulting from mass loading. Two fundamental limits are found as the mass injection rate increases: (1) an 'ignition' limit of 1.1 x 10 to the 6th kg/s, beyond which the torus cannot ionize itself and photoionization dominates; and (2) the ultimate mass loading limit of 1.3 x 10 to the 7th kg/s, which occurs when neutrals newly created by charge exchange and recombination cannot leave the torus, thereby bringing magnetospherically driven transport to a halt. Connecting this limit with the variations of Io's temperature in its early evolution epoch gives an estimate of the upper limit on the total mass loss from Io, about 3.0 x 10 to the 20th kg (for high-opacity nebula) and about 8.9 x 10 to the 20th kg (for low-opacity nebula). These limits correspond to eroding 8 km and 22 km of H2O from the surface. It is concluded that compared to the other Galilean satellites, Io was created basically dry.
Bobu, Maria; Yediler, Ayfer; Siminiceanu, Ilie; Zhang, Feifang; Schulte-Hostede, Sigurd
2013-01-01
In this study a comparative assessment using various advanced oxidation processes (UV/H(2)O(2), UV/H(2)O(2)/Fe(II), O(3), O(3)/UV, O(3)/UV/H(2)O(2) and O(3)/UV/H(2)O(2)/Fe(II)) was attempted to degrade efficiently two fluoroquinolone drugs ENR [enrofloxacin (1-Cyclopropyl-7-(4-ethyl-1-piperazinyl)-6-fluoro-1,4-dihydro-4-oxo-3-quinolonecarboxylic acid)] and CIP [ciprofloxacin (1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-quinoline-3-carboxylic acid)] in aqueous solutions at a concentrations of 0.15 mM for each drug. The efficiency of the applied oxidation processes (AOPs) has been estimated by the conversion of the original substrate (X(ENR) and X(CIP)) and the reduction of chemical oxygen demand (COD), total organic carbon (TOC). Special emphasis was laid on the effect of varying reaction pH as well as of the applied oxidant doses on the observed reaction kinetics for each advanced oxidation processes. High degradation efficiencies, particularly in terms of rates of TOC and COD abatement, were obtained for photo-Fenton assisted ozonation [O(3)/UV/H(2)O(2)/Fe(II)], compared to other advanced oxidation processes. At pH 3 and 25°C best results for the degradation of both investigated drugs were achieved when 10 mM H(2)O(2), 0.5 mM Fe(II) and an initial dose of 8.5 mg L(-1) ozone were applied. In addition, the evolution of toxicity of the reaction mixtures for different AOPs has been studied by the bioluminescence test (LUMIStox 300).
Orientation-Dependent Oxygen Evolution on RuO 2 without Lattice Exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoerzinger, Kelsey A.; Diaz-Morales, Oscar; Kolb, Manuel
RuO2 catalysts exhibit record activities towards the oxygen evolution reaction (OER), which is crucial to enable efficient and sustainable energy storage. Here we examine the RuO2 OER kinetics on rutile (110), (100), (101), and (111) orientations, finding (100) the most active. We assess the potential involvement of lattice oxygen in the OER mechanism with online 3 electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented RuO2 films and particles, in contrast to previous work, suggesting lattice oxygen is not exchanged in catalyzing OER onmore » crystalline RuO2 surfaces. This hypothesis is supported by the correlation of activity with the number of active Ru-sites calculated by DFT, where more active facets bind oxygen more weakly. This new understanding of the active sites provides a design strategy to enhance the OER activity of RuO2 nanoparticles by facet engineering.« less
NASA Astrophysics Data System (ADS)
Gilliot, Mickaël; Hadjadj, Aomar
2015-08-01
Nano-granular ZnO layers have been grown using a sol-gel synthesis and spin-coating deposition process. Thin films with thicknesses ranging from 15 to 150 nm have been obtained by varying the number of deposition cycles and prepared with different synthesis conditions. Morphologies and optical properties have been carefully investigated by joint spectroscopic ellipsometry and atomic force microscopy. A correlation between the evolution of optical properties and grains morphology has been observed. It is shown that both synthesis temperature and concentration similarly allow us to change the correlated growth and properties evolution rate. Thickness variation associated to choice of synthesis parameters could be a useful way to tune morphology and optical properties of the nanostructured ZnO layers.
The Habitability of a Stagnant-Lid Earth
NASA Astrophysics Data System (ADS)
Tosi, N.; Godolt, M.; Stracke, B.; Ruedas, T.; Grenfell, L.; Höning, D.; Nikolaou, A.; Plesa, A. C.; Breuer, D.; Spohn, T.
2017-12-01
Plate tectonics is a fundamental component for the habitability of the Earth. Yet whether it is a recurrent feature of terrestrial bodies orbiting other stars or unique to the Earth is unknown. The stagnant lid may rather be the most common tectonic expression on such bodies. To understand whether a stagnant-lid planet can be habitable, i.e. host liquid water at its surface, we model the thermal evolution of the mantle, volcanic outgassing of H2O and CO2, and resulting climate of an Earth-like planet lacking plate tectonics. We used a 1D model of parameterized convection to simulate the evolution of melt generation and the build-up of an atmosphere of H2O and CO2 over 4.5 Gyr. We then employed a 1D radiative-convective atmosphere model to calculate the global mean atmospheric temperature and the boundaries of the habitable zone (HZ). The evolution of the interior is characterized by the initial production of a large amount of partial melt accompanied by a rapid outgassing of H2O and CO2. At 1 au, the obtained temperatures generally allow for liquid water on the surface nearly over the entire evolution. While the outer edge of the HZ is mostly influenced by the amount of outgassed CO2, the inner edge presents a more complex behaviour that is dependent on the partial pressures of both gases. At 1 au, the stagnant-lid planet considered would be regarded as habitable. The width of the HZ at the end of the evolution, albeit influenced by the amount of outgassed CO2, can vary in a non-monotonic way depending on the extent of the outgassed H2O reservoir. Our results suggest that stagnant-lid planets can be habitable over geological timescales and that joint modelling of interior evolution, volcanic outgassing, and accompanying climate is necessary to robustly characterize planetary habitability.
Tunneling Rate Constants for H2CO+H on Amorphous Solid Water Surfaces
NASA Astrophysics Data System (ADS)
Song, Lei; Kästner, Johannes
2017-12-01
Formaldehyde (H2CO) is one of the most abundant molecules observed in the icy mantle covering interstellar grains. Studying its evolution can contribute to our understanding of the formation of complex organic molecules in various interstellar environments. In this work, we investigated the hydrogenation reactions of H2CO yielding CH3O, CH2OH, and the hydrogen abstraction resulting in H2+HCO on an amorphous solid water (ASW) surface using a quantum mechanics/molecular mechanics (QM/MM) model. The binding energies of H2CO on the ASW surface vary broadly, from 1000 to 9370 K. No correlation was found between binding energies and activation energies of hydrogenation reactions. Combining instanton theory with QM/MM modeling, we calculated rate constants for the Langmuir-Hinshelwood and the Eley-Rideal mechanisms for the three product channels of H+H2CO surface reactions down to 59 K. We found that the channel producing CH2OH can be ignored, owing to its high activation barrier leading to significantly lower rates than the other two channels. The ASW surface influences the reactivity in favor of formation of CH3O (branching ratio ˜80%) and hinders the H2CO dissociation into H2+HCO. In addition, kinetic isotope effects are strong in all reaction channels and vary strongly between the channels. Finally, we provide fits of the rate constants to be used in astrochemical models.
Brownmillerite-type Ca2 FeCoO5 as a Practicable Oxygen Evolution Reaction Catalyst.
Tsuji, Etsushi; Motohashi, Teruki; Noda, Hiroyuki; Kowalski, Damian; Aoki, Yoshitaka; Tanida, Hajime; Niikura, Junji; Koyama, Yukinori; Mori, Masahiro; Arai, Hajime; Ioroi, Tsutomu; Fujiwara, Naoko; Uchimoto, Yoshiharu; Ogumi, Zempachi; Habazaki, Hiroki
2017-07-21
Here, we report remarkable oxygen evolution reaction (OER) catalytic activity of brownmillerite (BM)-type Ca 2 FeCoO 5 . The OER activity of this oxide is comparable to or beyond those of the state-of-the-art perovskite (PV)-catalyst Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ (BSCF) and a precious-metal catalyst RuO 2 , emphasizing the importance of the characteristic BM structure with multiple coordination environments of transition metal (TM) species. Also, Ca 2 FeCoO 5 is clearly advantageous in terms of expense/laboriousness of the material synthesis. These facts make this oxide a promising OER catalyst used in many energy conversion technologies such as metal-air secondary batteries and hydrogen production from electrochemical/photocatalytic water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mavrokefalos, Christos K.; Hasan, Maksudul; Rohan, James F.; Compton, Richard G.; Foord, John S.
2017-06-01
Herein, we report a novel photocathode for the water splitting reaction. The electrochemical deposition of Cu2O particles on boron doped diamond (BDD) electrodes and the subsequent decoration with NiO nanoparticles by a dip coating method to act as co-catalyst for hydrogen evolution reaction is described. The morphology analysis by scanning electron microscope (SEM) revealed that Cu2O particles are cubic and decorated sporadically with NiO nanoparticles. X-ray photoelectron spectroscopy (XPS) confirmed the electronic interaction at the interface between Cu2O and NiO through a binding energy shift of the main Cu 2p peak. The photoelectrochemical (PEC) performance of NiO-Cu2O/BDD showed a much higher current density (-0.33 mA/cm2) and photoconversion efficiency (0.28%) compared to the unmodified Cu2O/BDD electrode, which are only -0.12 mA/cm2 and 0.06%, respectively. The enhancement in PEC performance is attributable to the synergy of NiO as an electron conduction mediator leading to the enhanced charge separation and transfer to the reaction interface for hydrogen evolution as evidenced by electrochemical impedance spectroscopy (EIS) and charge carrier density calculation. Stability tests showed that the NiO nanoparticles loading content on Cu2O surface is a crucial parameter in this regard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogdibegovic, Emir; Alabri, Nawf Saif; Wright, Christopher J.
The interest in Pr2NiO4 (PNO) electrode stems from the necessity to develop active and stable oxygen electrodes (1-6) for solid oxide fuel cells (SOFCs) (7-9). PNO is known for its highly active nature (7,8,10), originating from its superior oxygen ion diffusion, surface exchange coefficient (2,7,9-11) and structural flexibility over a wide temperature region (from 500 to 900oC) (3,12). PNO electrode, however, does undergo structural evolution to form a higher order phase (Pr3Ni2O7) and Pr6O11 (PrOx) (8). The structural change has been a major concern because it possibly links with the performance degradation over long-term operation (7,8) Conventional x-ray diffraction (XRD)more » has been extensively used to investigate the structural evolution in nickelates in the form of powders or planar electrodes (8,10). This method has two major limitations due to its low flux and low resolution: (1) it might overlook the presence of additional phases in the system, which is especially true for praseodymium nickelates where XRD diffraction patterns of higher order phase(s) (e.g. Pr3Ni2O7) may overlap with the parent PNO phase, making quantification challenging (8); and (2) the quantification of phase evolution in electrochemically operated PNO electrode may show major structural change with almost 100% of the parent phase transition from the conventional XRD analysis, while the transmission electron microscopy (TEM) studies clearly show the regions of preserved PNO phase (7).« less
In situ Studies of Phase Evolution in (Pr1-xNdx)2NiO4 Electrodes with Various Interlayer Chemistries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogdibegovic, Emir; Alabri, Nawf S.; Wright, Christopher J.
2017-07-24
The interest in Pr2NiO4 (PNO) electrode stems from the necessity to develop active and stable oxygen electrodes (1-6) for solid oxide fuel cells (SOFCs) (7-9). PNO is known for its highly active nature (7,8,10), originating from its superior oxygen ion diffusion, surface exchange coefficient (2,7,9-11) and structural flexibility over a wide temperature region (from 500 to 900oC) (3,12). PNO electrode, however, does undergo structural evolution to form a higher order phase (Pr3Ni2O7) and Pr6O11 (PrOx) (8). The structural change has been a major concern because it possibly links with the performance degradation over long-term operation (7,8) Conventional x-ray diffraction (XRD)more » has been extensively used to investigate the structural evolution in nickelates in the form of powders or planar electrodes (8,10). This method has two major limitations due to its low flux and low resolution: (1) it might overlook the presence of additional phases in the system, which is especially true for praseodymium nickelates where XRD diffraction patterns of higher order phase(s) (e.g. Pr3Ni2O7) may overlap with the parent PNO phase, making quantification challenging (8); and (2) the quantification of phase evolution in electrochemically operated PNO electrode may show major structural change with almost 100% of the parent phase transition from the conventional XRD analysis, while the transmission electron microscopy (TEM) studies clearly show the regions of preserved PNO phase (7).« less
NASA Astrophysics Data System (ADS)
Han, Y.; Chen, D. H.; Zhang, L.
2008-08-01
Novel photocatalytic coatings containing strontium hydroxyapatite (SrHA), strontium titanate (SrTiO3), and TiO2 were formed by micro-arc oxidation (MAO) in an aqueous electrolyte containing strontium acetate and β-glycerophosphate disodium at 530 V for 0.1-5 min. The structure evolution of the coatings was investigated as a function of processing time, and the photocatalytic activity of the coatings was evaluated by measuring the decomposition rate of methyl orange under ultraviolet irradiation. During the MAO processing of the coatings, it was observed that some granules appeared in the electrolyte adjacent to the anode and they increased in amount as the processing time was prolonged. The obtained results show that the granules are amorphous and poorly crystallized SrHA with negative charges. The coating prepared for 5 min presents a microporous structure of SrHA/SrHA-SrTiO3/SrTiO3-TiO2 multilayers, in which the SrHA outermost layer and the SrHA-SrTiO3 intermediate layer are nanocrystallized. It is suggested that formation of the granules, electro-migration of the granules onto the pre-formed layer, and crystallization of the adhered granules are possible mechanisms for the formation of a SrHA/SrHA-SrTiO3/SrTiO3-TiO2 multilayer coating. This coating shows much higher photocatalytic decomposition efficiency relative to the MAO-formed TiO2 coating, and is expected to have an important photocatalytic application.
Boosting effect of ortho-propenyl substituent on the antioxidant activity of natural phenols.
Marteau, Clémentine; Guitard, Romain; Penverne, Christophe; Favier, Dominique; Nardello-Rataj, Véronique; Aubry, Jean-Marie
2016-04-01
Seven new antioxidants derived from natural or synthetic phenols have been designed as alternatives to BHT and BHA antioxidants. Influence of various substituents at the ortho, meta and para positions of the aromatic core of phenols on the bond dissociation enthalpy of the ArO-H bond was evaluated using a DFT method B3LYP/6-311++G(2d,2p)//B3LYP/6-311G(d,p). This prediction highlighted the ortho-propenyl group as the best substituent to decrease the bond dissociation enthalpy (BDE) value. The rate constants of hydrogen transfer from these phenols to DPPH radical in a non-polar and non-protic solvent have been measured and were found to be in agreement with the BDE calculations. For o-propenyl derivatives from 2-tert-butyl-4-methylphenol, BHA, creosol, isoeugenol and di-o-propenyl p-cresol, fewer radicals were trapped by a single phenol molecule, i.e. a lower stoichiometric number. Reaction mechanisms involving the evolution of the primary phenoxyl radical ArO are proposed to rationalise these effects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Investigation into the disparate origin of CO2 and H2O outgassing for Comet 67/P
NASA Astrophysics Data System (ADS)
Fink, Uwe; Doose, Lyn; Rinaldi, Giovanna; Bieler, André; Capaccioni, Fabrizio; Bockelée-Morvan, Dominique; Filacchione, Gianrico; Erard, Stephane; Leyrat, Cedric; Blecka, Maria; Capria, Maria Teresa; Combi, Michael; Crovisier, Jacques; De Sanctis, Maria Cristina; Fougere, Nicolas; Taylor, Fred; Migliorini, Alessandra; Piccioni, Giuseppe
2016-10-01
We present an investigation of the emission intensity of CO2 and H2O and their distribution in the coma of 67P/ Churyumov-Gerasimenko obtained by the VIRTIS-M imaging spectrometer on the Rosetta mission. We analyze 4 data cubes from Feb. 28, and 7 data cubes from April 27, 2015. For both data sets the spacecraft was at a sufficiently large distance from the comet to allow images of the whole nucleus and the surrounding coma. We find that unlike water which has a reasonably predictable behavior and correlates well with the solar illumination, CO2 outgasses mostly in local regions or spots. Furthermore for the data on April 27, the CO2 evolves almost exclusively from the southern hemisphere, a region of the comet that has not received solar illumination since the comet's last perihelion passage. Because CO2 and H2O have such disparate origins, deriving mixing ratios from local column density measurements cannot provide a meaningful measurement of the CO2/H2O ratio in the coma of the comet. We obtain total production rates of H2O and CO2 by integrating the band intensity in an annulus surrounding the nucleus and obtain pro-forma production rate CO2/H2O mixing ratios of ∼5.0% and ∼2.5% for Feb. 28 and April 27, respectively. Because of the highly variable nature of the CO2 evolution from the surface we do not believe that these numbers are diagnostic of the comet's bulk CO2/H2O composition. We believe that our investigation provides an explanation for the large observed variations reported in the literature for the CO2/H2O production rate ratios. Our mixing ratio maps indicate that, besides the difference in vapor pressure of the two gases, this ratio depends on the comet's rotational orientation combined with its complex geometric shape which can result in quite variable rates of erosion for different surface areas such as the northern and southern hemisphere. Our annulus measurement for the total water production for Feb. 28 at 2.21AU from the Sun is 2.5 × 1026 molecules/s while for April 27 at 1.76 AU it is 4.65 × 1026. We find that about 83% of the H2O resides in the illuminated portion of our annulus and about 17% on the night side. We also make an attempt to obtain the fraction of the H2O production coming from the highly active neck of the comet versus the rest of the illuminated surface from the pole-on view of Feb. 28 and estimate that about 60% of the H2O derives from the neck area. A rough estimate of the water surface evaporation rate of the illuminated nucleus for April 27 yields about 5 × 1019 molecules/s/m2. Spatial radial profiles of H2O on April 27 on the illuminated side of the comet, extending from 1.78 to 6.47 km from the nucleus center, show that water follows model predictions quite well, with the gas accelerating as it expands into the coma. Our dayside radial profile allows us to make an empirical determination of the expansion velocity of water. On the night side the spatial profile of water follows 1/ρ. The CO2 profiles do not exhibit any acceleration into the coma but are closely matched by a 1/ρ profile.
Ritzert, Nicole L; Moffat, Thomas P
2016-12-08
The interaction between electrodeposition of Ni and electrolyte breakdown, namely the hydrogen evolution reaction (HER) via H 3 O + and H 2 O reduction, was investigated under well-defined mass transport conditions using ultramicroelectrodes (UME's) coupled with optical imaging, generation/collection scanning electrochemical microscopy (G/C-SECM), and preliminary microscale pH measurements. For 5 mmol/L NiCl 2 + 0.1 mol/L NaCl, pH 3.0, electrolytes, the voltammetric current at modest overpotentials, i.e. , between -0.6 V and -1.4 V vs. Ag/AgCl, was distributed between metal deposition and H 3 O + reduction, with both reactions reaching mass transport limited current values. At more negative potentials, an unusual sharp current spike appeared upon the onset of H 2 O reduction that was accompanied by a transient increase in H 2 production. The peak potential of the current spike was a function of both [Ni(H 2 O) 6 ] 2+ (aq) concentration and pH. The sharp rise in current was ascribed to the onset of autocatalytic H 2 O reduction, where electrochemically generated OH - species induce heterogeneous nucleation of Ni(OH) 2(ads) islands, the perimeter of which is reportedly active for H 2 O reduction. As the layer coalesces, further metal deposition is quenched while H 2 O reduction continues albeit at a decreased rate as fewer of the most reactive sites, e.g. , Ni/Ni(OH) 2 island edges, are available. At potentials below -1.5 V vs. Ag/AgCl, H 2 O reduction is accelerated, leading to homogeneous precipitation of bulk Ni(OH) 2 · x H 2 O within the nearly hemispherical diffusion layer of the UME.
Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance
NASA Astrophysics Data System (ADS)
Cravens, T. E.; Rahmati, A.; Fox, Jane L.; Lillis, R.; Bougher, S.; Luhmann, J.; Sakai, S.; Deighan, J.; Lee, Yuni; Combi, M.; Jakosky, B.
2017-01-01
The evolution of the atmosphere of Mars and the loss of volatiles over the lifetime of the solar system is a key topic in planetary science. An important loss process for atomic species, such as oxygen, is ionospheric photochemical escape. Dissociative recombination of O2+ ions (the major ion species) produces fast oxygen atoms, some of which can escape from the planet. Many theoretical hot O models have been constructed over the years, although a number of uncertainties are present in these models, particularly concerning the elastic cross sections of O atoms with CO2. Recently, the Mars Atmosphere and Volatile Evolution mission has been rapidly improving our understanding of the upper atmosphere and ionosphere of Mars and its interaction with the external environment (e.g., solar wind), allowing a new assessment of this important loss process. The purpose of the current paper is to take a simple analytical approach to the oxygen escape problem in order to (1) study the role that variations in solar radiation or solar wind fluxes could have on escape in a transparent fashion and (2) isolate the effects of uncertainties in oxygen cross sections on the derived oxygen escape rates. In agreement with several more elaborate numerical models, we find that the escape flux is directly proportional to the incident solar extreme ultraviolet irradiance and is inversely proportional to the backscatter elastic cross section. The amount of O lost due to ion transport in the topside ionosphere is found to be about 5-10% of the total.
CuCo 2O 4 ORR/OER Bi-functional catalyst: Influence of synthetic approach on performance
Serov, Alexey; Andersen, Nalin I.; Roy, Aaron J.; ...
2015-02-07
A series of CuCo 2O 4 catalysts were synthesized by pore forming, sol-gel, spray pyrolysis and sacrificial support methods. Catalysts were characterized by XRD, SEM, XPS and BET techniques. The electrochemical activity for the oxygen reduction and oxygen evolution reactions (ORR and OER) was evaluated in alkaline media by RRDE. Density Functional Theory was used to identify two different types of active sites responsible for ORR/OER activity of CuCo 2O 4 and it was found that CuCo 2O 4 can activate the O-O bond by binding molecular oxygen in bridging positions between Co or Co and Cu atoms. It wasmore » found that the sacrificial support method (SSM) catalyst has the highest performance in both ORR and OER and has the highest content of phase-pure CuCo 2O 4. It was shown that the presence of CuO significantly decreases the activity in oxygen reduction and oxygen evolution reactions. As a result, the half-wave potential (E 1/2) of CuCo 2O 4-SSM was found as 0.8 V, making this material a state-of-the-art, unsupported oxide catalyst.« less
Band alignment and charge transfer in rutile-TiO2/CH3NH3PbI3-xClx interfaces.
Nemnes, G A; Goehry, C; Mitran, T L; Nicolaev, Adela; Ion, L; Antohe, S; Plugaru, N; Manolescu, A
2015-11-11
Rutile-TiO2/hybrid halide perovskite CH3NH3PbI3-xClx interfaces are investigated by ab initio density functional theory calculations. The role of chlorine in achieving enhanced solar cell power conversion efficiencies is in the focus of recent studies, which point to increased carrier mobilities, reduced recombination rates, a driven morphology evolution of the perovskite layer and improved carrier transport across the interface. As it was recently established that chlorine is preferentially localized in the vicinity of the interface and not in the bulk of the perovskite layer, we analyze the changes introduced in the electronic properties by varying the chlorine concentration near the interface. In particular, we discuss the effects introduced in the electronic band structure and show the role of chlorine in the enhanced electron injection into the rutile-TiO2 layer. Taking into account these implications, we discuss the conditions for optimizing the solar cell efficiency in terms of interfacial chlorine concentration.
NASA Astrophysics Data System (ADS)
Wu, Ming-Chung; Hsiao, Kai-Chi; Chang, Yin-Hsuan; Chan, Shun-Hsiang
2018-02-01
Black TiO2 nanoparticles (BTN) was prepared by sol-gel derived precursor calcined in an argon atmosphere. The synthesized BTN with trivalent titanium ion, structural defect, and oxygen vacancy shows a remarkably high absorbance in the visible light spectrum. BTN thus behaves a higher visible-active nanoreactor than white TiO2 nanoparticles (WTN) in the aqueous solution for organic pollutant degradation. Moreover, palladium decoration on the BTN surface (Pd-BTN) demonstrates a fascinating clean energy application. The obtained Pd-BTN fulfills a satisfied green material demand in the photocatalytic hydrogen production application. Pd-BTN calcined at 400 °C (Pd-BTN-400) shows the high photocatalytic hydrogen generation rate of 5200 μmol/g h under UV-A irradiation and 9300 μmol/g h under UV-B irradiation, respectively. The well-developed material, Pd-BTN-400, could be one of the best solutions in the concern of clean energy and water-purification with regard to the continuous environmental issue.
Magnetic properties of Li0.5Fe2.5O4 nanoparticles synthesized by solution combustion method
NASA Astrophysics Data System (ADS)
Naderi, P.; Masoudpanah, S. M.; Alamolhoda, S.
2017-11-01
In this research, lithium ferrite (Li0.5Fe2.5O4) powders were prepared by solution combustion synthesis using glycine and citric acid fuels at various fuel to oxidant molar ratios ( ϕ = 0.5, 1 and 1.5). Phase evolution, microstructure and magnetic properties were characterized by thermal analysis, infrared spectroscopy, X-ray diffraction, electron microscopy and vibration sample magnetometry techniques. Single-phase lithium ferrite was formed using glycine fuel at all fuel to oxidant ratios, while some impurity α-Fe2O3 phase was appeared using citric acid fuel at ϕ ≥ 1. The phase and crystallite size mainly depended on the combustion rate through fuel type. Bulky microstructure observed for citric acid fuel was attributed to its slow combustion, while the fast exhausting of gaseous products led to spongy microstructure for glycine fuel. The highest saturation magnetization of 59.3 emu/g and coercivity of 157 Oe were achieved for the as-combusted powders using glycine fuel.
Plane wave density functional molecular dynamics study of exothermic reactions of Al/CuO thermites
NASA Astrophysics Data System (ADS)
Oloriegbe, Suleiman; Sewell, Thomas; Chen, Zhen; Jiang, Shan; Gan, Yong
2014-03-01
Exothermic reactions between nanosize aluminum (Al) and copper oxide (CuO) structures are of current interest because of their high reaction enthalpy and energy density which exceed those of traditional monomolecular energetic compounds such as TNT, RDX, and HMX. In this work, molecular dynamics simulations with forces obtained from plane wave density functional theory are used to investigate the atomic-scale and electronic processes that occur during the fast thermite reactions between Al and CuO nanostructures under adiabatic conditions. Aluminum surfaces in contact with O-exposed and Cu-exposed CuO surfaces are studied. Starting from initial temperature T = 800 K, we have observed: faster chemical reaction at the oxygen-rich interface during the initial 0.5 ps, linear temperature rise, and fast oxygen diffusion into the Al region with the rate 1.87 X 10-3 cm2/s. The density-derived electrostatic and chemical method is used to evaluate the net atomic charges and charge transfer during the important redox processes. High charge density around the oxygen-exposed interface may be responsible for the faster initial reactions at that interface. The overall reaction rate, determined using the time evolution of Cu-O charge orbital overlap population, is approximately first order.
Zhang, Shouwei; Yang, Hongcen; Gao, Huihui; Cao, Ruya; Huang, Jinzhao; Xu, Xijin
2017-07-19
Robust and highly active photocatalysts, CdS@MoS 2 , for hydrogen evolution were successfully fabricated by one-step growth of oxygen-incorporated defect-rich MoS 2 ultrathin nanosheets on the surfaces of CdS with irregular fissures. Under optimized experimental conditions, the CdS@MoS 2 displayed a quantum yield of ∼24.2% at 420 nm and the maximum H 2 generation rate of ∼17203.7 umol/g/h using Na 2 S-Na 2 SO 3 as sacrificial agents (λ ≥ 420 nm), which is ∼47.3 and 14.7 times higher than CdS (∼363.8 μmol/g/h) and 3 wt % Pt/CdS (∼1173.2 μmol/g/h), respectively, and far exceeds all previous hydrogen evolution reaction photocatalysts with MoS 2 as co-catalysts using Na 2 S-Na 2 SO 3 as sacrificial agents. Large volumes of hydrogen bubbles were generated within only 2 s as the photocatalysis started, as demonstrated by the photocatalytic video. The high hydrogen evolution activity is attributed to several merits: (1) the intimate heterojunctions formed between the MoS 2 and CdS can effectively enhance the charge transfer ability and retard the recombination of electron-hole pairs; and (2) the defects in the MoS 2 provide additional active S atoms on the exposed edge sites, and the incorporation of O reduces the energy barrier for H 2 evolution and increases the electric conductivity of the MoS 2 . Considering its low cost and high efficiency, this highly efficient hybrid photocatalysts would have great potential in energy-generation and environment-restoration fields.
NASA Astrophysics Data System (ADS)
Dinh, L. N.; Grant, D. M.; Schildbach, M. A.; Smith, R. A.; Siekhaus, W. J.; Balazs, B.; Leckey, J. H.; Kirkpatrick, J. R.; McLean, W.
2005-12-01
Due to the exothermic reaction of lithium hydride (LiH) salt with water during transportation and handling, there is always a thin film of lithium hydroxide (LiOH) present on the LiH surface. In dry or vacuum storage, this thin LiOH film slowly decomposes. The technique of temperature-programmed reaction/decomposition (TPR) was employed in combination with the isoconversion method of thermal analysis to determine the outgassing kinetics of H 2O from pure LiOH and H 2 and H 2O from this thin LiOH film. H 2 production via the reaction of LiH with LiOH, forming a lithium oxide (Li 2O) interlayer, is thermodynamically favored, with the rate of further reaction limited by diffusion through the Li 2O and the stability of the decomposing LiOH. Lithium hydroxide at the LiOH/vacuum interface also decomposes easily to Li 2O, releasing H 2O which subsequently reacts with LiH in a closed system to form H 2. At the onset of dry decomposition, where H 2 is the predominant product, the activation energy for outgassing from a thin LiOH film is lower than that for bulk LiOH. However, as the reactions at the LiH/Li 2O/LiOH and at the LiOH/vacuum interfaces proceed, the overall activation energy barrier for the outgassing approaches that of bulk LiOH decomposition. The kinetics developed here predict a hydrogen evolution profile in good agreement with hydrogen release observed during long term isothermal storage.
Low Masses and High Redshifts: The Evolution of the Mass-Metallicity Relation
NASA Technical Reports Server (NTRS)
Henry, Alaina; Scarlata, Claudia; Dominguez, Alberto; Malkan, Matthew; Martin, Crystal L.; Siana, Brian; Atek, Hakim; Bedregal, Alejandro G.; Colbert, James W.; Rafelski, Marc;
2013-01-01
We present the first robust measurement of the high redshift mass-metallicity (MZ) relation at 10(exp 8) < M/Stellar Mass < or approx. 10(exp 10), obtained by stacking spectra of 83 emission-line galaxies with secure redshifts between 1.3 < or approx. z < or approx. 2.3. For these redshifts, infrared grism spectroscopy with the Hubble Space Telescope Wide Field Camera 3 is sensitive to the R23 metallicity diagnostic: ([O II] (lambda)(lambda)3726, 3729 + [OIII] (lambda)(lambda)4959, 5007)/H(beta). Using spectra stacked in four mass quartiles, we find a MZ relation that declines significantly with decreasing mass, extending from 12+log(O/H) = 8.8 at M = 10(exp 9.8) Stellar Mass to 12+log(O/H)= 8.2 at M = 10(exp 8.2) Stellar Mass. After correcting for systematic offsets between metallicity indicators, we compare our MZ relation to measurements from the stacked spectra of galaxies with M > or approx. 10(exp 9.5) Stellar Mass and z approx. 2.3. Within the statistical uncertainties, our MZ relation agrees with the z approx. 2.3 result, particularly since our somewhat higher metallicities (by around 0.1 dex) are qualitatively consistent with the lower mean redshift (z = 1.76) of our sample. For the masses probed by our data, the MZ relation shows a steep slope which is suggestive of feedback from energy-driven winds, and a cosmological downsizing evolution where high mass galaxies reach the local MZ relation at earlier times. In addition, we show that our sample falls on an extrapolation of the star-forming main sequence (the SFR-M* relation) at this redshift. This result indicates that grism emission-line selected samples do not have preferentially high star formation rates (SFRs). Finally, we report no evidence for evolution of the mass-metallicity-SFR plane; our stack-averaged measurements show excellent agreement with the local relation.
Zhang, D. L.; Huang, W. C.; Chen, Z. W.; Zhao, W. B.; Feng, L.; Li, M.; Yin, Y. W.; Dong, S. N.; Li, X. G.
2017-01-01
Here, we report the structure evolution, magnetic and ferroelectric properties in Co-doped 4- and 3-layered intergrowth Aurivillius compounds Bi4NdTi3Fe1-xCoxO15-Bi3NdTi2Fe1-xCoxO12-δ. The compounds suffer a structure evolution from the parent 4-layered phase (Bi4NdTi3FeO15) to 3-layered phase (Bi3NdTi2CoO12-δ) with increasing cobalt doping level from 0 to 1. Meanwhile the remanent magnetization and polarization show opposite variation tendencies against the doping level, and the sample with x = 0.3 has the largest remanent magnetization and the smallest polarization. It is believed that the Co concentration dependent magnetic properties are related to the population of the Fe3+ -O-Co3+ bonds, while the suppressed ferroelectric polarization is due to the enhanced leakage current caused by the increasing Co concentration. Furthermore, the samples (x = 0.1–0.7) with ferromagnetism show magnetoelectric coupling effects at room temperature. The results indicate that it is an effective method to create new multiferroic materials through modifying natural superlattices. PMID:28272495
NASA Astrophysics Data System (ADS)
Baldermann, Andre; Mavromatis, Vasileios; Dietzel, Martin
2017-04-01
The spatiotemporal changes in the distribution and abundance of hydrous Mg-silicates have been frequently used to reconstruct sedimentary facies in modern and past epicontinental seas and lakes, lacustrine settings and in marine environments; albeit the physicochemical conditions and the mineral-forming processes of hydrous Mg-silicates remain questionable. In this experimental study, sepiolite [Mg4Si6O15(OH)2ṡ6H2O] was precipitated from silica-doped seawater and silica-doped synthetic MgCl2-brines over a three months period at aqueous Si/Mg molar ratios ranging from 1:27.5 to 1:110, initial pH of 8.3 ± 0.03 at 25 ± 1°C. The evolution of the solution chemistry and solid-phase composition was monitored using UV-vis spectroscopy, ICP-OES, XRD, ATR-FTIR and TEM analysis. The reactive fluids were, at any time, undersaturated in respect to amorphous silica [SiO2ṡnH2O] and brucite [Mg(OH)2]; thus, a Mg-rich phyllosilicate with a modulated, sepiolite-like structure was the only precipitates in our experiments. The crystallites were poorly crystalline, fibrous (20 to 100 nm in length) and had a (MgO+Al2O3)/SiO2 ratio of 0.44 ± 0.02, which is almost equal to that of ideal and naturally-grown sepiolite. An increase in the intensity of the striking infrared lattice vibration at ˜1205 cm-1 is in accord with an elevated Si/Mg molar ratio of the reactive solutions. This feature results from the periodic inversion of the Si tetrahedra in the evolving 2:1 layer and subsequently denotes the formation of "polysome units" in sepiolite-palygorskite group minerals. For the first time, we determined the apparent growth rate of sepiolite to be 172 ± 16 × 10-6 up to 279 ± 29 × 10-6 mole L-1ṡday-1, which mainly depended on the evolution of pH of the reactive fluids. The presence of MgSO40 aquo-complexes seems to have insignificant influence on the precipitation rate of sepiolite. Our results demonstrate that hydrous Mg-silicates can form in most (peri)marine and diagenetic environments, if sufficient time and an additional source of silicic acid is provided through, i.e. dissolution of marine silicifiers, volcanic ash and/or silicate detritus. We suppose that the low crystallinity degree of the incipient precipitates, the presence of reactive intermediates and the formation of polyphase products at low temperatures could mask the widespread precipitation of hydrous Mg-silicates in modern (marine) sediments.
NASA Technical Reports Server (NTRS)
Disanti, M. A.; Bonev, B. P.; Gibb, L. E.; Paganini, L.; Villanueva, G.; Mumma, M. J.; Keane, J. V.; Blake, G. A.; Dello Russo, N.; Meech, K. J.;
2016-01-01
We report production rates for H2O and eight trace molecules (CO, C2H6, CH4, CH3OH, NH3, H2CO, HCN, C2H2) in the dynamically new, Sun-grazing Comet C2012 S1 (ISON), using high-resolution spectroscopy at Keck II and the NASA IRTF on 10pre-perihelion dates encompassing heliocentric distances Rh1.210.34 AU. Measured water production rates spanned two orders of magnitude, consistent with a long-term heliocentric power law Q(H2O) Rh-3.10.1). Abundance ratios for CO, C2H6, and CH4 with respect to H2O remained constant with Rh and below their corresponding mean values measured among a dominant sample of Oort Cloud comets. CH3OH was also depleted for Rh 0.5 AU, but was closer to its mean value for Rh0.5 AU. The remaining four molecules exhibited higher abundance ratios within 0.5 AU: for Rh 0.8 AU, NH3 and C2H2 were consistent with their mean values while H2CO and HCN were depleted. For Rh 0.5 AU, all four were enriched, with NH3, H2CO, and HCN increasing most. Spatial profiles of gas emission in ISON consistently peaked sunward of the dust continuum, which was asymmetric antisunward and remained singly peaked for all observations. NH3 within 0.5 AU showed a broad spatial distribution, possibly indicating its release in the coma provided that optical depth effects were unimportant. The column abundance ratio NH2H2O at 0.83 AU was close to the typical NHOH from optical wavelengths, but was higher within 0.5 AU. Establishing its production rate and testing its parentage (e.g., NH3) require modeling of coma outflow.
NASA Astrophysics Data System (ADS)
Henegar, Alex J.
Device scaling has been key for creating faster and more powerful electronic devices. Integral circuit components like the metal-oxide semiconductor field-effect transistor (MOSFET) now rely on material deposition techniques, like atomic layer deposition (ALD), that possess atomic-scale thickness precision. At the heart of the archetypal MOSFET is a SiO2/Si interface which can be formed to near perfection. However when the thickness of the SiO 2 layer is shrunk down to a few nanometers several complications arise like unacceptably high leakage current and power consumption. Replacing Si with III-V semiconductors and SiO2 with high-k dielectric materials is appealing but comes with its own set of challenges. While SiO2 is practically defect-free, the native oxides of III-Vs are poor dielectrics. In this dissertation, the surface chemistry and interface evolution during the ALD of high-k metal oxides on Si(100), GaAs(100) and InAs(100) was studied. In particular, the surface chemistry and crystallization of TiO2 films grown on Si(100) was investigated using transmission Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Large, stable, and highly reactive anatase TiO2 grains were found to form during a post-deposition heat treatment after the ALD at 100 °C. The remainder of this work was focused on the evolution of the interfacial oxides during the deposition of TiO2 and Al2O3 on InAs(100) and GaAs(100) and during the deposition of Ta2O 5 on InAs(100). In summary the ALD precursor type, deposited film, and substrate had an influence in the evolution of the native oxides. Alkyl amine precursors fared better at removing the native oxides but the deposited films (TiO2 and Ta2O5) were susceptible to significant native oxide diffusion. The alkyl precursor used for the growth of Al 2O3 was relatively ineffective at removing the oxides but was a good diffusion barrier. In all cases the native oxides were more stable on GaAs compared to InAs. This project utilized a new methodology for the detection of arsenic oxide diffusion using transmission FTIR, and expanded the knowledge of the complexities of the high-k/III-V interface.
NASA Astrophysics Data System (ADS)
Meng, Fanke
Photocatalytic hydrogen generation by water splitting is a promising technique to produce clean and renewable solar fuel. The development of effective semiconductor photocatalysts to obtain efficient photocatalytic activity is the key objective. However, two critical reasons prevent wide applications of semiconductor photocatalysts: low light usage efficiency and high rates of charge recombination. In this dissertation, several low-dimensional semiconductors were synthesized with hydrothermal, hydrolysis, and chemical impregnation methods. The band structures of the low-dimensional semiconductor materials were engineered to overcome the above mentioned two shortcomings. In addition, the correlation between the photocatalytic activity of the low-dimensional semiconductor materials and their band structures were studied. First, we studied the effect of oxygen vacancies on the photocatalytic activity of one-dimensional anatase TiO2 nanobelts. Given that the oxygen vacancy plays a significant role in band structure and photocatalytic performance of semiconductors, oxygen vacancies were introduced into the anatase TiO2 nanobelts during reduction in H2 at high temperature. The oxygen vacancies of the TiO2 nanobelts boosted visible-light-responsive photocatalytic activity but weakened ultraviolet-light-responsive photocatalytic activity. As oxygen vacancies are commonly introduced by dopants, these results give insight into why doping is not always beneficial to the overall photocatalytic performance despite increases in absorption. Second, we improved the photocatalytic performance of two-dimensional lanthanum titanate (La2Ti2 O7) nanosheets, which are widely studied as an efficient photocatalyst due to the unique layered crystal structure. Nitrogen was doped into the La2Ti2O7 nanosheets and then Pt nanoparticles were loaded onto the La2Ti2O7 nanosheets. Doping nitrogen narrowed the band gap of the La2Ti 2O7 nanosheets by introducing a continuum of states by the valence band edge, unlike the mid-gap states introduced by oxygen vacancies, leading to an improvement in visible and UV photocatalysis. The Pt nanoparticles both enhanced separation of charge carriers and acted as reaction sites for hydrogen evolution. The photocatalytic hydrogen generation rate of the La 2Ti2O7 nanosheets was increased to ˜21 muM g-1 hr-1 from zero in visible light by nitrogen doping and Pt loading, showing the importance of the positioning of dopant energy levels within the band gap. Third, a hematite/reduced graphene oxide (alpha-Fe2 2O3/rGO) nanocomposite was synthesized by a hydrolysis method. The photocatalytic oxygen evolution rate of the hematite was increased from 387 to 752 muM g-1 hr-1 by incorporating rGO. Photoelectrochemical measurements showed that coupling the hematite nanoparticles with the rGO can greatly increase the photocurrent and reduce the charge recombination rate, overcoming the poor charge recombination characteristics of hematite and allowing its small band gap to be taken advantage of. Fourth, a Au/La 2Ti2O7/rGO heterostructure was synthesized to further enhance the photocatalytic hydrogen generation rate of the La 2Ti2O7 nanosheets. The enhanced performance of photocatalytic water splitting was due to plasmonic energy transfer, which resulted from the plasmonic Au nanoparticles on the La2Ti 2O7 nanosheets. This heterostructure showed doping, charge extraction, and plasmonics work synergistically. Fifth, nanoscale p-n junctions on the rGO were formed by depositing the p-type MoS 2 nanoplatelets onto the n-type nitrogen-doped rGO. The p-MoS2/n-rGO heterostructure had significant photocatalytic hydrogen generation activity under solar light irradiation. The enhanced charge generation and suppressed charge recombination due to the p-n junctions led to enhance solar hydrogen generation reaction while allowing replacement of the expensive Pt nanoparticles with an eco-friendly alternative. The research results in this dissertation are contributed to a better understanding of the relationship between the band structure tuning and photocatalytic activity of low-dimensional semiconductor nanostructures. The results lay out guidelines for the enhancement of large band gap semiconductors with poor solar utilization and small band gap semiconductors with poor charge recombination characteristics alike. Additionally, it is shown that the rare earth co-catalyst can be replaced with an earth friendly alternative, leading to a further increase in performance. The findings of this thesis can be used to guide photocatalyst selection and optimization for solar to hydrogen conversion.
High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Ruquan; Liu, Yuanyue; Peng, Zhiwei
2017-01-18
The development of catalytic materials for the hydrogen oxidation, hydrogen evolution, oxygen reduction or oxygen evolution reactions with high reaction rates and low overpotentials are key goals for the development of renewable energy. We report here Ru(0) nanoclusters supported on nitrogen-doped graphene as high-performance multifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), showing activities similar to that of commercial Pt/C in alkaline solution. For HER performance in alkaline media, sample Ru/NG-750 reaches 10 mA cm-2 at an overpotential of 8 mV with a Tafel slope of 30 mV dec-1. The high HER performance in alkalinemore » solution is advantageous because most catalysts for ORR and oxygen evolution reaction (OER) also prefer alkaline solution environment whereas degrade in acidic electrolytes. For ORR performance, Ru/NG effectively catalyzes the conversion of O2 into OH- via a 4e process at a current density comparable to that of Pt/C. The unusual catalytic activities of Ru(0) nanoclusters reported here are important discoveries for the advancement of renewable energy conversion reactions.« less
Vines, Lasse; Bhoodoo, Chidanand; von Wenckstern, Holger; Grundmann, Marius
2017-11-29
The evolution of sheet resistance of n-type In2O3 and Ga2O3 exposed to bombardment with MeV 12C and 28Si ions at 35 K is studied in situ. While the sheet resistance of Ga2O3 increased by more than 8 orders of magnitude as a result of ion irradiation, In2O3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga2O3 remained highly resistive, while In2O3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to 2 1012 cm2. A model where larger defect complexes preferentially produce donor like defects in In2O3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed. © 2017 IOP Publishing Ltd.
Winter, K; Osmond, C B; Hubick, K T
1986-01-01
Crassulacean acid metabolism (CAM) was studied in a tropical epiphytic fern, Pyrrosia longifolia, from a fully sun-exposed and from a very shaded site in Northern Queensland, Australia. Measurements of instantaneous net CO 2 exchange showed carbon gain via CO 2 dark fixation with some net CO 2 uptake also occuring during late afternoon, in both sun and shade fronds. Maximum rates of net CO 2 uptake and the nocturnal increase in titratable acidity were lower in shade than in sun fronds. δ 13 C values of sun and shade fronds were not significantly different, and ranged between-14 and-15‰ suggesting that, in the long term, carbon gain was mainly via CO 2 dark fixation. Sun fronds had a higher light compensation point of photosynthesis than shade fronds but the same quantum yield. Yet there was no acclimation of photosynthetic O 2 evolution, (measured at 5% CO 2 ) in sun and shade fronds and photosynthesis saturated at between 200 and 400 μmol quanta m -2 s -1 . Use of higher light intensities for photosynthesis of sun fronds was probably precluded by low nutrient availability. Total nitrogen was less than 1% of dry weight in fully expanded sun and shade fronds. Exposure of shade fronds to full sunlight for 6 h led to a 60% decline in the quantum yield of photosynthesis and to a decline in variable fluorescence measured at room temperature. Photoinhibition by high light was also observed in Hoya nicholsoniae, a rainforest climber growing in deep shade. This species also exhibited CAM as demonstrated by nocturnal net CO 2 uptake, nocturnal acidification and a δ 13 C value of-14‰. Photosynthetic O 2 evolution in this species was saturated at 2.5% of full sunlight. Two species of Dendrobium (Orchidaceae) from sun-exposed sites, one species exhibiting CAM and the other one exhibiting net CO 2 uptake exclusively during daytime via conventional C 3 photosynthesis, showed similar light response curves and the same quantum yield for photosynthetic O 2 evolution.
Photocatalytic hydrogen evolution over β-iron silicide under infrared-light irradiation.
Yoshimizu, Masaharu; Kobayashi, Ryoya; Saegusa, Makoto; Takashima, Toshihiro; Funakubo, Hiroshi; Akiyama, Kensuke; Matsumoto, Yoshihisa; Irie, Hiroshi
2015-02-18
We investigated the ability of β-iron silicide (β-FeSi2) to serve as a hydrogen (H2)-evolution photocatalyst due to the potential of its conduction band bottom, which may allow thermodynamically favorable H2 evolution in spite of its small band-gap of 0.80 eV. β-FeSi2 had an apparent quantum efficiency for H2 evolution of ∼24% up to 950 nm (near infrared light), in the presence of the dithionic acid ion (S2O6(2-)) as a sacrificial agent. It was also sensitive to infrared light (>1300 nm) for H2 evolution.
NASA Astrophysics Data System (ADS)
Rabie, M.; Franck, C. M.
2016-06-01
We present a freely available MATLAB code for the simulation of electron transport in arbitrary gas mixtures in the presence of uniform electric fields. For steady-state electron transport, the program provides the transport coefficients, reaction rates and the electron energy distribution function. The program uses established Monte Carlo techniques and is compatible with the electron scattering cross section files from the open-access Plasma Data Exchange Project LXCat. The code is written in object-oriented design, allowing the tracing and visualization of the spatiotemporal evolution of electron swarms and the temporal development of the mean energy and the electron number due to attachment and/or ionization processes. We benchmark our code with well-known model gases as well as the real gases argon, N2, O2, CF4, SF6 and mixtures of N2 and O2.
Strasser, Peter
2016-11-15
Nanomaterial science and electrocatalytic science have entered a successful "nanoelectrochemical" symbiosis, in which novel nanomaterials offer new frontiers for studies on electrocatalytic charge transfer, while electrocatalytic processes give meaning and often practical importance to novel nanomaterial concepts. Examples of this fruitful symbiosis are dealloyed core-shell nanoparticle electrocatalysts, which often exhibit enhanced kinetic charge transfer rates at greatly improved atom-efficiency. As such, they represent ideal electrocatalyst architectures for the acidic oxygen reduction reaction to water (ORR) and the acidic oxygen evolution reaction from water (OER) that require scarce Pt- and Ir-based catalysts. Together, these two reactions constitute the "O-cycle", a key elemental process loop in the field of electrochemical energy interconversion between electricity (free electrons) and molecular bonds (H 2 O/O 2 ), realized in the combination of water electrolyzers and hydrogen/oxygen fuel cells. In this Account, we describe our recent efforts to design, synthesize, understand, and test noble metal-poor dealloyed Pt and Ir core-shell nanoparticles for deployment in acidic polymer electrolyte membrane (PEM) electrolyzers and PEM fuel cells. Spherical dealloyed Pt core-shell particles, derived from PtNi 3 precursor alloys, showed favorable ORR activity. More detailed size-activity correlation studies further revealed that the 6-8 nm diameter range is a most desirable initial particle size range in order to maximize the particle Ni content after ORR testing and to preserve performance stability. Similarly, dealloyed and oxidized IrO x core-shell particles derived from Ni-rich Ir-Ni precursor particles proved highly efficient oxygen evolution reaction (OER) catalysts in acidic conditions. In addition to the noble metal savings in the particle cores, the Pt core-shell particles are believed to benefit in terms of their mass-based electrochemical kinetics from surface lattice strain effects that tune the adsorption energies and barriers of elementary steps. The molecular mechanism of the kinetic benefit of the dealloyed IrO x particle needs more attention, but there is mounting evidence for ligand hole effects in defect-rich IrO x shells that generate preactive oxygen centers.
Song, Zhishuang; Han, Xiaopeng; Deng, Yida; Zhao, Naiqin; Hu, Wenbin; Zhong, Cheng
2017-07-12
Cobalt-based nanomaterials have been widely studied as catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) due to their remarkable bifunctional catalytic activity, low cost, and easy availability. However, controversial results concerning OER/ORR performance exist between different types of cobalt-based catalysts, especially for Co(OH) 2 and Co 3 O 4 . To address this issue, we develop a facile electrochemical deposition method to grow Co(OH) 2 directly on the skeleton of carbon cloth, and further Co 3 O 4 was obtained by post thermal treatment. The entire synthesis strategy removes the use of any binders and also avoids the additional preparation process (e.g., transfer and slurry coating) of final electrodes. This leads to a true comparison of the ORR/OER catalytic performance between Co(OH) 2 and Co 3 O 4 , eliminating uncertainties arising from the electrode preparation procedures. The surface morphologies, microstructures, and electrochemical behaviors of prepared Co(OH) 2 and Co 3 O 4 catalysts were systemically investigated by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and electrochemical characterization methods. The results revealed that the electrochemically deposited Co(OH) 2 was in the form of vertically aligned nanosheets with average thickness of about 4.5 nm. After the thermal treatment in an air atmosphere, Co(OH) 2 nanosheets were converted into mesoporous Co 3 O 4 nanosheets with remarkably increased electrochemical active surface area (ECSA). Although the ORR/OER activity normalized by the geometric surface area of mesoporous Co 3 O 4 nanosheets is higher than that of Co(OH) 2 nanosheets, the performance normalized by the ECSA of the former is lower than that of the latter. Considering the superior apparent overall activity and durability, the Co 3 O 4 catalyst has been further evaluated by integrating it into a Zn-air battery prototype. The Co 3 O 4 nanosheets in situ supported on carbon cloth cathode enable the assembled Zn-air cells with large peak power density of 106.6 mW cm -2 , low charge and discharge overpotentials (0.67 V), high discharge rate capability (1.18 V at 20 mA cm -2 ), and long cycling stability (400 cycles), which are comparable or even superior to the mixture of state-of-the-art Pt/C and RuO 2 cathode.
Akbayrak, Serdar; Tonbul, Yalçın; Özkar, Saim
2016-07-05
Ruthenium(0) nanoparticles supported on ceria (Ru(0)/CeO2) were in situ generated from the reduction of ruthenium(iii) ions impregnated on ceria during the hydrolysis of ammonia borane. Ru(0)/CeO2 was isolated from the reaction solution by centrifugation and characterized by ICP-OES, BET, XRD, TEM, SEM-EDS and XPS techniques. All the results reveal that ruthenium(0) nanoparticles were successfully supported on ceria and the resulting Ru(0)/CeO2 is a highly active, reusable and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia borane with a turnover frequency value of 361 min(-1). The reusability tests reveal that Ru(0)/CeO2 is still active in the subsequent runs of hydrolysis of ammonia borane preserving 60% of the initial catalytic activity even after the fifth run. Ru(0)/CeO2 provides a superior catalytic lifetime (TTO = 135 100) in hydrogen generation from the hydrolysis of ammonia borane at 25.0 ± 0.1 °C before deactivation. The work reported here includes the formation kinetics of ruthenium(0) nanoparticles. The rate constants for the slow nucleation and autocatalytic surface growth of ruthenium(0) nanoparticles were obtained using hydrogen evolution as a reporter reaction. An evaluation of rate constants at various temperatures enabled the estimation of activation energies for both the reactions, Ea = 60 ± 7 kJ mol(-1) for the nucleation and Ea = 47 ± 2 kJ mol(-1) for the autocatalytic surface growth of ruthenium(0) nanoparticles, as well as the activation energy of Ea = 51 ± 2 kJ mol(-1) for the catalytic hydrolysis of ammonia borane.
Shen, Junyu; Wang, Mei; Gao, Jinsuo; Han, Hongxian; Liu, Hong; Sun, Licheng
2017-11-23
Two copper complexes, [(L1)Cu(OH 2 )](BF 4 ) 2 [1; L1=N,N'-dimethyl-N,N'-bis(pyridin-2-ylmethyl)-1,2-diaminoethane] and [(L2)Cu(OH 2 )](BF 4 ) 2 [2, L2=2,7-bis(2-pyridyl)-3,6-diaza-2,6-octadiene], were prepared as molecular water oxidation catalysts. Complex 1 displayed an overpotential (η) of 1.07 V at 1 mA cm -2 and an observed rate constant (k obs ) of 13.5 s -1 at η 1.0 V in pH 9.0 phosphate buffer solution, whereas 2 exhibited a significantly smaller η (0.70 V) to reach 1 mA cm -2 and a higher k obs (50.4 s -1 ) than 1 under identical test conditions. Additionally, 2 displayed better stability than 1 in controlled potential electrolysis experiments with a faradaic efficiency of 94 % for O 2 evolution at 1.58 V, when a casing tube was used for the Pt cathode. A possible mechanism for 1- and 2-catalyzed O 2 evolution reactions is discussed based on the experimental evidence. These comparative results indicate that fine-tuning the structures of tetradentate N 4 ligands can bring about significant change in the performance of copper complexes for electrochemical water oxidation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukerjee, S.; Thurston, T.R.; Jisrawi, N.M.
The authors describe synchrotron based X-ray diffraction techniques and issues related to in situ studies of intercalation processes in battery electrodes. They then demonstrate the utility of this technique, through a study of two batches of Li{sub x}Mn{sub 2}O{sub 4} cathode materials. The structural evolution of these spinel materials was monitored in situ during the initial charge of these electrodes in actual battery cells. Significant differences were observed in the two batches, particularly in the intercalation range of x = 0.45 to 0.20. The first-order structural transitions in this region indicated coexistence of two cubic phases in the batch 2more » material, whereas the batch 1 material showed suppressed two-phase coexistence. Batch 2 cells also indicated structural evolution in the low-potential region below 3.0 V in contrast to the batch 1 material. Differences in structural evolution between batches of Li{sub x}Mn{sub 2}O{sub 4} could have important ramifications in their cycle life and stability characteristics.« less
NASA Astrophysics Data System (ADS)
Stippich, Christian; Krob, Florian; Glasmacher, Ulrich Anton; Hackspacher, Peter Christian
2017-04-01
The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. The research integrates published (Karl et al., 2013) and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones (Karl et al., 2013) are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. Following up on our latest publication (Braun et al., 2016) regarding the effect of variability in rock thermal conductivity on exhumation rate estimates we performed a sensitivity analysis to quantify the effect of a differentiated lithospheric crust on the thermal evolution of the Florianópolis block versus exhumation rates estimated from modelling a lithospheric uniform crustal block. The long-term landscape evolution models with process rates were computed with the software code PECUBE (Braun, 2003; Braun et al., 2012). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameters, values, and rates can be constrained. References Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. Braun, J., Stippich, C., Glasmacher, U. A., 2016. The effect of variability in rock thermal conductivity on exhumation rate estimates from thermochronological data. Tectonophysics, v.690, pp.288-297 Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C., 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. Karl, M., Glasmacher, U.A., Kollenz, S., Franco-Magalhaes, A.O.B., Stockli, D.F., Hackspacher, P., 2013. Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data. Tectonophysics, Volume 604, Pages 224-244.
Driever, Steven M; Baker, Neil R
2011-05-01
Electron flux from water via photosystem II (PSII) and PSI to oxygen (water-water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO(2) assimilation is restricted. Mass spectrometry was used to measure O(2) uptake and evolution together with CO(2) uptake in leaves of French bean and maize at CO(2) concentrations saturating for photosynthesis and the CO(2) compensation point. In French bean at high CO(2) and low O(2) concentrations no significant water-water cycle activity was observed. At the CO(2) compensation point and 3% O(2) a low rate of water-water cycle activity was observed, which accounted for 30% of the linear electron flux from water. In maize leaves negligible water-water cycle activity was detected at the compensation point. During induction of photosynthesis in maize linear electron flux was considerably greater than CO(2) assimilation, but no significant water-water cycle activity was detected. Miscanthus × giganteus grown at chilling temperature also exhibited rates of linear electron transport considerably in excess of CO(2) assimilation; however, no significant water-water cycle activity was detected. Clearly the water-water cycle can operate in leaves under some conditions, but it does not act as a major sink for excess excitation energy when CO(2) assimilation is restricted. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Less, G.; Cohen, Y.; Luz, B.; Lazar, B.
2002-05-01
Hypersaline microbial mat communities (MMC) are the modern equivalents of the Archean stromatolities, the first photosynthetic organisms on Earth. An estimate of their oxygen production rate is important to the understanding of oxygen evolution on Earth ca. 2 b.y.b.p. Here we use the diurnal cycle of dissolved oxygen, O2/Ar ratio and the isotopic composition of dissolved oxygen to calculate net and gross primary productivity of MMC growing in a large scale (80 m2) experimental pan. The pan is inoculated with MMC taken from the Solar Lake, Sinai, Egypt and filled with 90\\permil evaporated Red Sea water brine up to a depth of ca. 0.25 m. It is equipped with computerized flow through system that is programmed to pump pan water at selected time intervals into a sampling cell fitted with dissolved oxygen, pH, conductivity and temperature sensors connected to a datalogger. Manual brine samples were taken for calibrating the sensors, mass spectrometric analyses and for measurements of additional relevant parameters. Dissolved oxygen concentrations fluctuate during the diurnal cycle being highly supersaturated except for the end of the night. The O2 curve varies seasonally and has a typical "shark fin" shape due to the MMC metabolic response to the shape of the diurnal light curve. The dissolved oxygen data were fitted to a smooth curve that its time derivative (dO2 /dt) is defined as: Z dO2 /dt=GP-R-k(O2(meas)- O2(sat)) where z is the depth (m); GP and R are the MMC gross production and respiration (mol m-2 d-1), respectively; k is the gas exchange coefficient (m d-1); O2(meas) and O2(sat) (mol L-1) are the measured and equilibrium dissolved oxygen concentrations, respectively. The high resolution sampling of the automated system produces O2 curves that enable the calculation of smooth and reliable time derivatives. The calculations yield net production values that vary between 1,000 10-6 to -100 10-6 mol O2 m-2 h-1 and day respiration rates between 60 10-6 to 30 10-6 mol O2 m-2 h-1 in summer and winter, respectively. Independent estimate of the gross productivity and respiration is provided by the oxygen isotopic measurements.
Xing, Xuan; Ni, Jinren; Zhu, Xiuping; Jiang, Yi; Xia, Jianxin
2018-08-01
Whereas electrochemical oxidation is noted for its ability to degrade bio-refractory organics, it has also been incorrectly criticized for excessive energy consumption. The present paper rectifies this misunderstanding by demonstrating that the energy actually consumed in the degradation process is much less than that wasted in the side reaction of oxygen evolution. To minimize the side reaction, the possible highest instantaneous current efficiency (PHICE) for electrochemical oxidation of phenol at Boron-doped Diamond (BDD), Ti/SnO 2 -Sb/PbO 2 (PbO 2 ), and Ti/SnO 2 -Sb (SnO 2 ) anodes has been investigated systematically, and found to reach almost 100% at the BDD anode compared with 23% at the PbO 2 anode and 9% at the SnO 2 anode. The significant discrepancy between PHICE values at the various anodes is interpreted in terms of different existing forms of hydroxyl radicals. For each anode system, the PHICEs are maintained experimentally using a computer-controlled exponential decay current mode throughout the electrolysis process. For applications, the minimized energy consumption is predicted by response surface methodology, and demonstrated for the BDD anode system. Consequently, almost 100% current efficiency is achieved (for a relatively meagre energy consumption of 17.2 kWh kgCOD -1 ) along with excellent COD degradation efficiency by optimizing the initial current density, flow rate, electrolysis time, and exponential decay constant. Compared with galvanostatic conditions, over 70% of the energy is saved in the present study, thus demonstrating the great potential of electrochemical oxidation for practical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production.
Zhang, Chao; Zhou, Yuming; Bao, Jiehua; Sheng, Xiaoli; Fang, Jiasheng; Zhao, Shuo; Zhang, Yiwei; Chen, Wenxia
2018-06-06
The halogen elements modification strategy of TiO 2 encounters a bottleneck in visible-light H 2 production. Herein, we have for the first time reported a hierarchical honeycomb Br-, N-codoped anatase TiO 2 catalyst (HM-Br,N/TiO 2 ) with enhanced visible-light photocatalytic H 2 production. During the synthesizing process, large amounts of meso-macroporous channels and TiO 2 nanosheets were fabricated in massive TiO 2 automatically, constructing the hierarchical honeycomb structure with large specific surface area (464 m 2 g -1 ). cetyl trimethylammonium bromide and melamine played a key role in constructing the meso-macroporous channels. Additionally, HM-Br,N/TiO 2 showed a high visible-light H 2 production rate of 2247 μmol h -1 g -1 , which is far more higher than single Br- or N-doped TiO 2 (0 or 63 μmol h -1 g -1 , respectively), thereby demonstrating the excellent synergistic effects of Br and N elements in H 2 evolution. In HM-Br,N/TiO 2 catalytic system, the codoped Br-N atoms could reduce the band gap of TiO 2 to 2.88 eV and the holes on acceptor levels (N acceptor) can passivate the electrons on donor levels (Br donor), thereby preventing charge carriers recombination significantly. Furthermore, the proposed HM-Br,N/TiO 2 fabrication strategy had a wide range of choices for N source (e.g., melamine, urea, and dicyandiamide) and it can be applied to other TiO 2 materials (e.g., P25) as well, thereby implying its great potential application in visible-light H 2 production. Finally, on the basis of experimental results, a possible photocatalytic H 2 production mechanism for HM-Br,N/TiO 2 was proposed.
Boppella, Ramireddy; Kochuveedu, Saji Thomas; Kim, Heejun; Jeong, Myung Jin; Marques Mota, Filipe; Park, Jong Hyeok; Kim, Dong Ha
2017-03-01
In this contribution we have developed TiO 2 inverse opal based photoelectrodes for photoelectrochemical (PEC) water splitting devices, in which Au nanoparticles (NPs) and reduced graphene oxide (rGO) have been strategically incorporated (TiO 2 @rGO@Au). The periodic hybrid nanostructure showed a photocurrent density of 1.29 mA cm -2 at 1.23 V vs RHE, uncovering a 2-fold enhancement compared to a pristine TiO 2 reference. The Au NPs were confirmed to extensively broaden the absorption spectrum of TiO 2 into the visible range and to reduce the onset potential of these photoelectrodes. Most importantly, TiO 2 @rGO@Au hybrid exhibited a 14-fold enhanced PEC efficiency under visible light and a 2.5-fold enrichment in the applied bias photon-to-current efficiency at much lower bias potential compared with pristine TiO 2 . Incident photon-to-electron conversion efficiency measurements highlighted a synergetic effect between Au plasmon sensitization and rGO-mediated facile charge separation/transportation, which is believed to significantly enhance the PEC activity of these nanostructures under simulated and visible light irradiation. Under the selected operating conditions the incorporation of Au NPs and rGO into TiO 2 resulted in a remarkable boost in the H 2 evolution rate (17.8 μmol/cm 2 ) compared to a pristine TiO 2 photoelectrode reference (7.6 μmol/cm 2 ). In line with these results and by showing excellent stability as a photoelectrode, these materials are herin underlined to be of promising interest in the PEC water splitting reaction.
Characterizing the discoloration of methylene blue in Fe0/H2O systems.
Noubactep, C
2009-07-15
Methylene blue (MB) was used as a model molecule to characterize the aqueous reactivity of metallic iron in Fe(0)/H(2)O systems. Likely discoloration mechanisms under used experimental conditions are: (i) adsorption onto Fe(0) and Fe(0) corrosion products (CP), (ii) co-precipitation with in situ generated iron CP, (iii) reduction to colorless leukomethylene blue (LMB). MB mineralization (oxidation to CO(2)) is not expected. The kinetics of MB discoloration by Fe(0), Fe(2)O(3), Fe(3)O(4), MnO(2), and granular activated carbon were investigated in assay tubes under mechanically non-disturbed conditions. The evolution of MB discoloration was monitored spectrophotometrically. The effect of availability of CP, Fe(0) source, shaking rate, initial pH value, and chemical properties of the solution were studied. The results present evidence supporting co-precipitation of MB with in situ generated iron CP as main discoloration mechanism. Under high shaking intensities (>150 min(-1)), increased CP generation yields a brownish solution which disturbed MB determination, showing that a too high shear stress induced the suspension of in situ generated corrosion products. The present study clearly demonstrates that comparing results from various sources is difficult even when the results are achieved under seemingly similar conditions. The appeal for an unified experimental procedure for the investigation of processes in Fe(0)/H(2)O systems is reiterated.
Tian, Min; Thind, Sapanbir S; Dondapati, Jesse S; Li, Xinyong; Chen, Aicheng
2018-06-07
In the present work, we report on a facile UV treatment approach for enhancing the electrocatalytic activity of TiO 2 nanotubes. The TiO 2 nanotubes were prepared using an anodization oxidation method by applying a voltage of 40 V for 8 h in a DMSO + 2% HF solution, and further treated under UV light irradiation. Compared with Pt and untreated TiO 2 nanotubes, the UV treated electrode exhibited a superior electrocatalytic activity toward the oxidation of 4-chlorophenol (4-ClPh). The effects of current density and temperature on the electrochemical oxidation of the 4-ClPh were also systematically investigated. The high electrocatalytic activity of the UV treated TiO 2 nanotubes was further confirmed by the electrochemical oxidation of other persistent organic pollutants including phenol, 2-, 3-, 4-nitrophenol, and 4-aminophenol. The total organic carbon (TOC) analysis revealed that over 90% 4-ClPh was removed when the UV treated TiO 2 electrode was employed and the rate constant was 16 times faster than that of the untreated TiO 2 electrode; whereas only 60% 4-ClPh was eliminated at the Pt electrode under the same conditions. This dramatically improved electrocatalytic activity might be attributed to the enhanced donor density, conductivity, and high overpotential for oxygen evolution. Our results demonstrated that the application of the UV treatment to the TiO 2 nanotubes enhanced their electrochemical activity and energy consumption efficiency significantly, which is highly desirable for the abatement of persistent organic pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.
Parra, S; Malato, S; Blanco, J; Péringer, P; Pulgari, C
2001-01-01
The photocatalytic oxidation of the non-biodegradable p-nitrotoluene-o-sulfonic acid (p-NTS) in homogeneous (photo-Fenton reactions) and heterogeneous (with TiO2) solutions has been studied at a pilot-scale under solar irradiation at the Plataforma Solar de Almeria (PSA). In this study two different reactors were tested: a medium concentrating radiation system (Heliomans, HM) and a non-concentrating radiation system (CPC). Their advantages and disadvantages for p-NTS degradation have been compared and discussed. The degradation rates obtained in the CPC collector are around three times more efficient than in the HM collectors. However, in both systems, 100% of the initial concentration of p-NTS was removed. Kinetic experiments were performed in both systems using TiO2 suspensions. During the photodegradation, the disappearance of p-NTS was followed by HPLC, the mineralization of the solution by the TOC technique, the evolution of NO3-, NO2-, and SO4(2-) concentration by ionic chromatography, the toxicity by the standard Microtox test, and the biodegradability by BOD5 and COD measurements. The obtained results demonstrated the utility of the heterogeneous catalysis (using TiO2 as catalyst) as a pretreatment method that can be followed by a biological process.
Lian, Zichao; Wang, Wenchao; Li, Guisheng; Tian, Fenghui; Schanze, Kirk S; Li, Hexing
2017-05-24
Pt-doped mesoporous Ti 3+ self-doped TiO 2 (Pt-Ti 3+ /TiO 2 ) is in situ synthesized via an ionothermal route, by treating metallic Ti in an ionic liquid containing LiOAc, HOAc, and a H 2 PtCl 6 aqueous solution under mild ionothermal conditions. Such Ti 3+ -enriched environment, as well as oxygen vacancies, is proven to be effective for allowing the in situ reduction of Pt 4+ ions uniformly located in the framework of the TiO 2 bulk. The photocatalytic H 2 evolution of Pt-Ti 3+ /TiO 2 is significantly higher than that of the photoreduced Pt loaded on the original TiO 2 and commercial P25. Such greatly enhanced activity is due to the various valence states of Pt (Pt n+ , n = 0, 2, or 3), forming Pt-O bonds embedded in the framework of TiO 2 and ultrafine Pt metal nanoparticles on the surface of TiO 2 . Such Pt n+ -O bonds could act as the bridges for facilitating the photogenerated electron transfer from the bulk to the surface of TiO 2 with a higher electron carrier density (3.11 × 10 20 cm -3 ), about 2.5 times that (1.25 × 10 20 cm -3 ) of the photoreduced Pt-Ti 3+ /TiO 2 sample. Thus, more photogenerated electrons could reach the Pt metal for reducing protons to H 2 .
NASA Astrophysics Data System (ADS)
Liu, Z. C.; Liu, D. X.; Chen, C.; Liu, Z. J.; Yang, A. J.; Rong, M. Z.; Chen, H. L.; Kong, M. G.
2018-05-01
Plasma-activated water (PAW) has been reported to sustain a bactericidal ability for months. However, many reactive species regarded as the main antibacterial agents in PAW have short lifetimes of less than one second. In order to explain the prolonged antibacterial ability of PAW and predict how to extend its effective time, we studied the post-discharge evolution of reactive species in PAW based on a system-level model reported previously. Three common storage conditions for PAW were considered within the post-discharge time of 14 d: (I) leaving the residual gas and PAW in the sealed reactor; (II) leaving PAW in the open air; (III) sealing the container of PAW. In comparison, storage condition III was the best condition to preserve the long-lived species including H2O2 and HNO2/, whereas storage condition I was the best method to preserve the short-lived species including OH, HO2 and ONOOH/ONOO‑. It suggests that the gas–liquid mass transfer plays an important role in the evolution of reactive species. We also found that O2NOOH/O2NOO‑ had an almost one order of magnitude higher concentration and a longer residue time than those of ONOOH/ONOO‑. This distinction suggests that the biological effect of O2NOOH/O2NOO‑ may be important.
NASA Astrophysics Data System (ADS)
Kumar, Manish; Kulriya, P. K.; Pivin, J. C.; Avasthi, D. K.
2011-02-01
Ag:ZrO2 nanocomposite films have been synthesized by a sol-gel dip coating process at room temperature, followed by irradiation using swift heavy ions. The effect of electronic energy loss and fluences on the evolution and consequently on the tailoring of plasmonic properties of films has been studied. The optical study exhibits that color of films converts from transparent in pristine form into shiny yellow when films are irradiated by 100 MeV Ag ions at a fluence of 3×1012 ions/cm2. However, irradiation by 120 MeV O ions up to the fluence of 1 × 1014 ions/cm2 does not induce any coloration in films. The coloration is attributed to the evolution of plasmonic feature resulting in a surface plasmon resonance (SPR) induced absorption peak in the visible region. Increase in fluence from 3 × 1012 to 6 × 1013 ions/cm2 of 100 MeV Ag ions induces a redshift in SPR induced peak position from 434 to 487 nm. Microstructural studies confirms the conversion of Ag2O3 (in pristine films) into cubic phase of metallic Ag and the increase of average size of particles with the increasing fluence up to 6 × 1013 ions/cm2. Further increase in fluence leads to the dissolution of Ag atoms in the ZrO2 matrix.
Kim, Jaemin; Shih, Pei-Chieh; Tsao, Kai-Chieh; ...
2017-07-27
Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge to produce hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y 2Ru 2O 7-δ) electrocatalyst that has significantly enhanced performance toward OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1 M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y 2Ru 2O 7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band centermore » energy for the overlap between Ru 4d and O 2p orbitals and is therefore more stable Ru–O bond than RuO 2, highlighting the effect of yttrium on the enhancement in stability. Finally, the Y 2Ru 2O 7-δ pyrochlore is also free of expensive iridium metal and thus is a cost-effective candidate for practical applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jaemin; Shih, Pei-Chieh; Tsao, Kai-Chieh
Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge for the production of hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y2Ru2O7-δ) electrocatalyst that has significantly enhanced performance towards OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1-M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y2Ru2O7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band center energy for the overlap betweenmore » Ru 4d and O 2p orbitals and therefore more stable Ru-O bond than RuO2, highlighting the effect of yttrium on the enhancement in stability. The Y2Ru2O7-δ pyrochlore is also free of expensive iridium metal, thus a cost-effective candidate for practical applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jaemin; Shih, Pei-Chieh; Tsao, Kai-Chieh
Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge to produce hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y 2Ru 2O 7-δ) electrocatalyst that has significantly enhanced performance toward OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1 M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y 2Ru 2O 7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band centermore » energy for the overlap between Ru 4d and O 2p orbitals and is therefore more stable Ru–O bond than RuO 2, highlighting the effect of yttrium on the enhancement in stability. Finally, the Y 2Ru 2O 7-δ pyrochlore is also free of expensive iridium metal and thus is a cost-effective candidate for practical applications.« less
Kuriki, Ryo; Ichibha, Tom; Hongo, Kenta; Lu, Daling; Maezono, Ryo; Kageyama, Hiroshi; Ishitani, Osamu; Oka, Kengo; Maeda, Kazuhiko
2018-05-30
Mixed anion compounds such as oxynitrides and oxychalcogenides are recognized as potential candidates of visible-light-driven photocatalysts since, as compared with oxygen 2p orbitals, p orbitals of less electronegative anion (e.g., N 3- , S 2- ) can form a valence band that has more negative potential. In this regard, oxyfluorides appear unsuitable because of the higher electronegativity of fluorine. Here we show an exceptional case, an anion-ordered pyrochlore oxyfluoride Pb 2 Ti 2 O 5.4 F 1.2 that has a small band gap (ca. 2.4 eV). With suitable modification of Pb 2 Ti 2 O 5.4 F 1.2 by promoters such as platinum nanoparticles and a binuclear ruthenium(II) complex, Pb 2 Ti 2 O 5.4 F 1.2 worked as a stable photocatalyst for visible-light-driven H 2 evolution and CO 2 reduction. Density functional theory calculations have revealed that the unprecedented visible-light-response of Pb 2 Ti 2 O 5.4 F 1.2 arises from strong interaction between Pb-6s and O-2p orbitals, which is enabled by a short Pb-O bond in the pyrochlore lattice due to the fluorine substitution.
Kurnosov, A; Cacciatore, M; Pirani, F; Laganà, A; Martí, C; Garcia, E
2017-07-13
We report in this paper an investigation on energy transfer processes from vibration to vibration and/or translation in thermal and subthermal regimes for the O 2 + N 2 system performed using quantum-classical calculations on different empirical, semiempirical, and ab initio potential energy surfaces. In particular, the paper focuses on the rationalization of the non-Arrhenius behavior (inversion of the temperature dependence) of the quasi-resonant vibration-to-vibration energy transfer transition rate coefficients at threshold. To better understand the microscopic nature of the involved processes, we pushed the calculations to the detail of the related cross sections and analyzed the impact of the medium and long-range components of the interaction on them. Furthermore, the variation with temperature of the dependence of the quasi-resonant rate coefficient on the vibrational energy gap between initial and final vibrational states and the effectiveness of quantum-classical calculations to overcome the limitations of the purely classical treatments were also investigated. These treatments, handled in an open molecular science fashion by chaining data and competencies of the various laboratories using a grid empowered molecular simulator, have allowed a rationalization of the dependence of the computed rate coefficients in terms of the distortion of the O 2 -N 2 configuration during the diatom-diatom collisions. A way of relating such distortions to a smooth and continuous progress variable, allowing a proper evolution from both long to closer range formulation of the interaction and from its entrance to exit channel (through the strong interaction region) relaxed graphical representations, is also discussed in the paper.
Meteoric Metal Chemistry in the Martian Atmosphere
Carrillo‐Sanchez, J. D.; Mangan, T. P.; Crismani, M. M. J.; Schneider, N. M.; Määttänen, A.
2018-01-01
Abstract Recent measurements by the Imaging Ultraviolet Spectrograph (IUVS) instrument on NASA's Mars Atmosphere and Volatile EvolutioN mission show that a persistent layer of Mg+ ions occurs around 90 km in the Martian atmosphere but that neutral Mg atoms are not detectable. These observations can be satisfactorily modeled with a global meteoric ablation rate of 0.06 t sol−1, out of a cosmic dust input of 2.7 ± 1.6 t sol−1. The absence of detectable Mg at 90 km requires that at least 50% of the ablating Mg atoms ionize through hyperthermal collisions with CO2 molecules. Dissociative recombination of MgO+.(CO2)n cluster ions with electrons to produce MgCO3 directly, rather than MgO, also avoids a buildup of Mg to detectable levels. The meteoric injection rate of Mg, Fe, and other metals—constrained by the IUVS measurements—enables the production rate of metal carbonate molecules (principally MgCO3 and FeCO3) to be determined. These molecules have very large electric dipole moments (11.6 and 9.2 Debye, respectively) and thus form clusters with up to six H2O molecules at temperatures below 150 K. These clusters should then coagulate efficiently, building up metal carbonate‐rich ice particles which can act as nucleating particles for the formation of CO2‐ice clouds. Observable mesospheric clouds are predicted to occur between 65 and 80 km at temperatures below 95 K and above 85 km at temperatures about 5 K colder. PMID:29780678
Scaling the universe: Gravitational lenses and the Hubble constant
Myers, Steven T.
1999-01-01
Gravitational lenses, besides being interesting in their own right, have been demonstrated to be suitable as “gravitational standard rulers” for the measurement of the rate of expansion of the Universe (Ho), as well as to constrain the values of the cosmological parameters such as Ωo and Λo that control the evolution of the volume of the Universe with cosmic time. PMID:10200245
NASA Astrophysics Data System (ADS)
Senthilkumar, Krishnan; Jeong, Seok; Lah, Myoung Soo; Sohn, Kee-Sun; Pyo, Myoungho
2016-10-01
A thermally expanded graphene oxide (EGO) electrode is electrochemically activated to simultaneously introduce electrolyte-accessible mesopores and oxygen functional groups. The former is produced via O2 evolution and the latter is incorporated by the intermediate hydroxyl radicals generated during the potentiostatic oxidation of H2O in 1 M H2SO4 at 1.2 V (vs. Ag/AgCl). When applied as a supercapacitor, the potentiostatically treated EGO (EGO-PS) shows significant enhancement in an electric-double layer (EDL) process with a noticeable Faradaic reaction and delivers high capacitance at fast charge/discharge (C/D) rates (334 F g-1 at 0.1 A g-1 and 230 F g-1 at 50 A g-1). In contrast to EGO-PS, EGO that is oxidized potentiodynamically (EGO-PD) shows negligible enhancement in EDL currents. EGO that is subjected to successive potential pulses also shows behaviors similar to EGO-PD, which indicates the importance of hydroxyl radical accumulation via a potentiostatic method for simultaneous functionalization and microstructural control of graphenes. The potentiostatic post-treatment presented here is a convenient post-treatment strategy that could be used to readily increase capacitance and simultaneously improve the high-rate performance of carbon-based electrodes.
New insights on the collisional escape of light neutrals from Mars
NASA Astrophysics Data System (ADS)
Gacesa, Marko; Zahnle, Kevin
2017-04-01
Photodissociative recombination (PDR) of atmospheric molecules on Mars is a major mechanism of production of hot (suprathermal) atoms with sufficient kinetic energy to either directly escape to space or to eject other atmospheric species. This collisional ejection mechanism is important for evaluating the escape rates of all light neutrals that are too heavy to escape via Jeans escape. In particular, it plays a role in estimating the total volume of escaped water constituents (i.e., O and H) from Mars, as well as influences evolution of the atmospheric [D]/[H] ratio1. We present revised estimates of total collisional escape rates of neutral light elements including H, He, and H2, based on recent (years 2015-2016) atmospheric density profiles obtained from the NASA Mars Atmosphere and Volatile Evolution (MAVEN) mission. We also estimate the contribution to the collisional escape from Energetic Neutral Atoms (ENAs) produced in charge-exchange of solar wind H+ and He+ ions with atmospheric gases2,3. Scattering of hot oxygen and atmospheric species of interest is modeled using fully-quantum reactive scattering formalism1,3. The escape rates are evaluated using a 1D model of the atmosphere supplemented with MAVEN measurements of the neutrals. Finally, new estimates of contributions of these non-thermal mechanisms to the estimated PDR escape rates from young Mars4 are presented. [1] M. Gacesa and V. Kharchenko, "Non-thermal escape of molecular hydrogen from Mars", Geophys. Res. Lett., 39, L10203 (2012). [2] N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere", Astroph. J., 790, 98 (2014). [3] M. Gacesa, N. Lewkow, and V. Kharchenko, "Non-thermal production and escape of OH from the upper atmosphere of Mars", Icarus 284, 90 (2017). [4] J. Zhao, F. Tian, Y. Ni, and X. Huang, "DR-induced escape of O and C from early Mars", Icarus 284, 305 (2017).
Evolution of the Blue and Far-Infrared Galaxy Luminosity Functions
NASA Technical Reports Server (NTRS)
Lonsdale, Carol J.; Chokshi, Arati
1993-01-01
The space density of blue-selected galaxies at moderate redshifts is determined here directly by deriving the luminosity function. Evidence is found for density evolution for moderate luminosity galaxies at a rate of (1+z) exp delta, with a best fit of delta + 4 +/- 2, between the current epoch and Z greater than about 0.1. At M(b) less than -22 evidence is found for about 0.5-1.5 mag of luminosity evolution in addition to the density evolution, corresponding to an evolutionary rate of about (1+z) exp gamma, with gamma = 0.5-2.5, but a redshift of about 0.4. Assuming a steeper faint end slope of alpha = -1.3 similar to that observed in the Virgo cluster, could explain the data with a luminosity evolution rate of gamma = 1-2, without need for any density evolution. Acceptable fits are found by comparing composite density and luminosity evolution models to faint IRAS 60 micron source counts, implying that the blue and far-IR evolutionary rates may be similar.
NASA Astrophysics Data System (ADS)
Le Gall, Nolwenn; Pichavant, Michel; Cai, Biao; Lee, Peter; Burton, Mike
2017-04-01
Decompression experiments were performed to simulate the ascent of basaltic magma, with the idea of approaching the textural features of volcanic rocks to provide insights into degassing processes. The experiments were conducted in an internally heated pressure vessel between NNO-1.4 and +0.9. H2O-only (4.9 wt%) and H2O-CO2-bearing (0.71-2.45 wt% H2O, 818-1094 ppm CO2) melts, prepared from Stromboli pumice, were synthesized at 1200°C and 200 MPa, continuously decompressed between 200 and 25 MPa at a rate of either 39 or 78 kPa/s (or 1.5 and 3 m/s, respectively), and rapidly quenched. Run products were characterized both texturally (by X-ray computed tomography and scanning electron microscopy) and chemically (by IR spectroscopy and electron microprobe analysis), and then compared with products from basaltic Plinian eruptions and Stromboli paroxysms (bubble textures, glass inclusions). The obtained results demonstrate that textures are controlled by the kinetics of nucleation, growth, coalescence and outgassing of the bubbles, as well as by fragmentation, which largely depend on the presence of CO2 in the melt and the achievement in chemical equilibrium. Textures of the H2O-only melts result from two nucleation events, the first at high pressure (200 < P < 150 MPa) and the second at low pressure (50 < P < 25 MPa), preceding fragmentation. Both events, restricted to narrow P intervals, are driven by melt H2O supersaturation. In contrast, textures of the H2O-CO2-bearing basaltic melts result from continuous bubble nucleation, which is driven by the generation of melts supersaturated in CO2. This persistent non-equilibrium degassing causes the bubbles to evolve through power law distributions, as small bubbles continue to form and grow. This is what is observed in Plinian products. From our results, the evolution to mixed power law-exponential distributions, as found in Stromboli products, is indicative of the prevalence of bubble coalescence and an evolution toward chemical equilibrium. In line with this, a strong correlation was found between experimental and natural bubble textures (bubble number densities, shapes, sizes and distributions), having implications for interpreting bubbles in volcanic rocks and quantifying magma ascent rates. Next step will be to perform in situ decompression experiments to simulate both degassing and crystallization of basaltic magma during ascent in the shallow volcanic conduit (P < 50 MPa), using synchrotron X-ray imaging. The obtained 4D (3D + time) data will help us refine our understanding of magma ascent processes. This experimental programme requires first technology adaptation and development, which is in progress.
Semiconductor Heterojunctions for Enhanced Visible Light Photocatalytic H 2 Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, Shiba P.; Hood, Zachary D.; Lachgar, Abdou
Semiconductor-based heterojunctions have been shown to be effective photocatalytic materials to overcome the drawbacks of low photocatalytic efficiency that results from a high rate of electron-hole recombination and narrow photo-response range. In this study, we report on the study of heterojunctions made from visible light active, graphitic carbon nitride, g-C 3N 4), and UV light active, strontium pyroniobate, Sr 2Nb 2O 7. Heterojunctions made from a combination of g-C 3N 4 and nitrogen-doped Sr 2Nb 2O 7 obtained at different temperatures were also studied to determine the effect of N doping. The photocatalytic performance was evaluated by using photocatalytic hydrogenmore » evolution reaction (HER)from water g under visible light irradiation. It was found that the photocatalytic activities of as prepared heterojunctions are significantly higher than that of individual components under similar conditions. Heterojunction formed from g-C 3N 4 and N-doped Sr 2Nb 2O 7 at 700 °C (CN/SNON-700) showed better performance than heterojunction made from g-C 3N 4 and Sr 2Nb 2O 7 (CN/SNO). Finally, a plausible mechanism for the heterojunction enhanced photocatalytic activity is proposed based on, relative band positions, and photoluminescence data.« less
Semiconductor Heterojunctions for Enhanced Visible Light Photocatalytic H 2 Production
Adhikari, Shiba P.; Hood, Zachary D.; Lachgar, Abdou
2018-04-17
Semiconductor-based heterojunctions have been shown to be effective photocatalytic materials to overcome the drawbacks of low photocatalytic efficiency that results from a high rate of electron-hole recombination and narrow photo-response range. In this study, we report on the study of heterojunctions made from visible light active, graphitic carbon nitride, g-C 3N 4), and UV light active, strontium pyroniobate, Sr 2Nb 2O 7. Heterojunctions made from a combination of g-C 3N 4 and nitrogen-doped Sr 2Nb 2O 7 obtained at different temperatures were also studied to determine the effect of N doping. The photocatalytic performance was evaluated by using photocatalytic hydrogenmore » evolution reaction (HER)from water g under visible light irradiation. It was found that the photocatalytic activities of as prepared heterojunctions are significantly higher than that of individual components under similar conditions. Heterojunction formed from g-C 3N 4 and N-doped Sr 2Nb 2O 7 at 700 °C (CN/SNON-700) showed better performance than heterojunction made from g-C 3N 4 and Sr 2Nb 2O 7 (CN/SNO). Finally, a plausible mechanism for the heterojunction enhanced photocatalytic activity is proposed based on, relative band positions, and photoluminescence data.« less
Negative impact of surface Ti3+ defects on the photocatalytic hydrogen evolution activity of SrTiO3
NASA Astrophysics Data System (ADS)
Chen, Haidong; Zhang, Feng; Zhang, Weifeng; Du, Yingge; Li, Guoqiang
2018-01-01
Defects play an important and in many cases dominant role in the physical and chemical properties of many oxide materials. In this work, we show that the surface Ti3+ defects in SrTiO3 (STO), characterized by electron paramagnetic resonance and X-ray photoelectron spectroscopy, directly impact the photocatalytic activity of STO. O2 species are found to absorb preferentially on Ti3+ defect sites. Hydrogen evolution under ambient air diminishes with the increase in the concentration of surface Ti3+. This is explained by the over-accumulation of Pt cocatalysts on the site of surface Ti3+ defects after the removal of adsorbed O2.
Jia, Xiaolong; Tang, Tianhong; Cheng, Dan; Zhang, Cuihua; Zhang, Ran; Cai, Qing; Yang, Xiaoping
2015-12-01
Bioactive glass (BG)-containing carbon nanofibers (CNFs) are promising orthopaedic biomaterials. Herein, CNF composites were produced from electrospinning of polyacrylonitrile (PAN)/BG sol-gel precursor solution, followed by carbonization. Choosing 58S-type BG (mol%: 58.0% SiO2-26.3% CaO-15.7% P2O5) as the model, micro-structural evolution of CNF/BG composites was systematically evaluated in relating to aging times of BG precursor solution. With aging time prolonging, BG precursors underwent morphological changes from small sol clusters with loosely and randomly branched structure to highly crosslinked Si-network structure, showing continuous increase in solution viscosity. BG precursor solution with low viscosity could mix well with PAN solution, resulting in CNF composite with homogeneously distributed BG component. Whereas, BG precursor gel with densely crosslinked Si-network structure led to uneven distribution of BG component along final CNFs due to its significant phase separation from PAN component. Meanwhile, BG nanoparticles in CNFs demonstrated micro-structural evolution that they transited from weak to strong crystal state along with longer aging time. Biomineralization in simulated body fluid and in vitro osteoblasts proliferation were then applied to determine the bioactivity of CNF/BG composites. CNF/BG composites prepared from shorter aging time could induce both faster apatite deposition and cell proliferation rate. It was suggested weakly crystallized BG nanoparticles along CNFs dissolved fast and was able to provide numerous nucleation sites for apatite deposition, which also favored the proliferation of osteoblasts cells. Aging time could thus be a useful tool to regulate the biological features of CNF/BG composites. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, B. H.; Teo, H. W.; Mo, Z. H.; Mai, Z. H.; Lam, J.; Xue, J. M.; Zhao, Y. Z.; Tan, P. K.
2017-01-01
Using in situ transmission electron microscopy (TEM), we studied boron diffusion and segregation in CoFeB/SiO2 nanostructured thin film stacks. We also investigated how these phenomena affected the phase and microstructure of CoFeB thin films under electron beam irradiation at 300 kV. A unique phase transformation was observed in CoFeB thin films under high-dose electron irradiation, from a polycrystalline Co3Fe to a unilateral amorphous phase of Co3Fe and nanocrystalline FexCo23-xB6. The unilateral amorphization of the Co3Fe film showed an electron-dose-rate sensitivity with a threshold dose rate. Detailed in situ TEM studies revealed that the unilateral amorphization of the Co3Fe film arose from boron segregation at the bottom of the Co3Fe thin film induced by radiation-enhanced diffusion of boron atoms that were displaced by electron knock-on effects. The radiation-induced nanocrystallization of FexCo23-xB6 was also found to be dose-rate sensitive with a higher electron beam current leading to earlier nucleation and more rapid grain growth. The nanocrystallization of FexCo23-xB6 occurred preferentially at the CoFeB/SiO2 interface. Kinetic studies by in situ TEM revealed the surface crystallization and diffusion-controlled nucleation and grain growth mechanisms. The radiation-enhanced atomic diffusivity and high-concentration of radiation-induced point defects at the Co3Fe/SiO2 interface enhanced the local short-range ordering of Fe, Co, and B atoms, favoring nucleation and grain growth of FexCo23-xB6 at the interface.
NASA Astrophysics Data System (ADS)
Pang, Shengli; Xu, Kaijie; Wang, Yonggang; Shen, Xiangqian; Wang, Wenzhi; Su, Yanjing; Zhu, Meng; Xi, Xiaoming
2017-10-01
Li-rich layered oxides are promising cathode materials for advanced Li-ion batteries because of their high specific capacity and operating potential. In this work, the Li-rich layered oxide Li1·2Mn0·54Ni0·13Co0·13O2 (LMNC), is modified via a carbonization-reduction process (yielding the corresponding reduced compound denoted LMNC-R). Compared to the pristine oxide, LMNC-R delivers significantly enhanced initial discharge capacity/columbic efficiency, remarkably improved rate performance with an accelerated Li+ diffusion rate, and significantly increased capacity/voltage retention. The specific energy density and energy retention after 100 cycles increase from 378.2 Wh kg-1 and 47.7% for LMNC to 572.0 Wh kg-1 and 71.3%, respectively, for LMNC-R. The enhancement in the electrochemical performance of LMNC-R can be attributed to the synchronous formation of the oxygen non-stoichiometric Li2MnO3-δ component and to the carbon/spinel double coating layer in the material that resulted from the post-treatment process. Thus, the carbonization-reduction modification process can be used to tailor the structural evolution procedure and to suppress the metal ion dissolution of the Li-rich layered oxide during cycling.
NASA Astrophysics Data System (ADS)
Shi, Chengbin; Wang, Hui; Li, Jing
2018-06-01
Electroslag remelting (ESR) is increasingly used to produce some varieties of special steels and alloys, mainly because of its ability to provide extreme cleanliness and an excellent solidification structure simultaneously. In the present study, the combined effects of varying SiO2 contents in slag and reoxidation of liquid steel on the chemistry evolution of inclusions and the alloying element content in steel during ESR were investigated. The inclusions in the steel before ESR refining were found to be oxysulfides of patch-type (Ca,Mn)S adhering to a CaO-Al2O3-SiO2-MgO inclusion. The oxide inclusions in both the liquid metal pool and remelted ingots are CaO-Al2O3-MgO and MgAl2O4 together with CaO-Al2O3-SiO2-MgO inclusions (slightly less than 30 pct of the total inclusions), which were confirmed to originate from the reduction of SiO2 from the original oxide inclusions by dissolved Al in liquid steel during ESR. CaO-Al2O3-MgO and MgAl2O4 are newly formed inclusions resulting from the reactions taking place inside liquid steel in the liquid metal pool caused by reoxidation of liquid steel during ESR. Increasing the SiO2 content in slag not only considerably reduced aluminum pickup in parallel with silicon loss during ESR, but also suppressed the decrease in SiO2 content in oxide inclusions. (Ca,Mn)S inclusions were fully removed before liquid metal droplets collected in the liquid metal pool.
Nitrous Oxide Emissions From a Maize/Soybean Rotation Following a Precipitation Event
NASA Astrophysics Data System (ADS)
Zheng, J.; Doskey, P. V.
2011-12-01
Agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), which is one of the major greenhouse gases. Emissions of N2O from agricultural soils are highly episodic and primarily occur in pulses of emissions following fertilization, spring thaw, and precipitation events. Anaerobic denitrification is the major source of N2O emitted from agricultural soils. During denitrification, NO3- is converted to NO, N2O or N2 by a diverse group of microorganisms. Precipitation is an important environmental factor regulating N2O emissions as soil water filled pore space (WFPS) controls the diffusivity and solubility of O2 and N2O, and thus, enzyme affinity and activity of denitrifying microorganisms. The primary objective of the study is to investigate N2O emission patterns and possible mechanisms responsible for N2O emissions following precipitation events. We measured plot level N2O fluxes by the static chamber technique in- and between-the-row of young soybean at the AmeriFlux site in Bondville, Illinois following a precipitation event. Gas samples were taken 12 h before a heavy rainfall, and 6, 12 and 24 h after the rain. Two distinct pulses were observed following the rainfall. The first pulse occurred 6 h after the rain, with a 3-fold increase in the rate of N2O emissions (73.2 μg m-2 h-1) compared with emissions 12 h before the rain (24.0 μg m-2 h-1). The N2O emission rate decreased to 48.2 μg m-2 h-1 12 h after the rain. The second pulse was observed 24 h after the rain, with an emission rate of 63.1 μg m-2 h-1. Phospholipid fatty acids (PLFAs) were extracted from soil samples taken from corresponding plots to estimate the total living microbial biomass. There were no significant changes in total living microbial biomass (in ng PLFAs g-1 soil) between samples taken 12 h before the rain and 6 h after the rain, although microbial activity apparently increased. Increases in gram negative bacteria and fungi were observed 24 h after the rain. The first pulse 6 h following the rain might be explained by displacement of air-filled pore space and exhalation of soil gases containing elevated levels of N2O caused by water infiltration. Microbial activity might also contribute to this N2O pulse since denitrification enzymes nar, nir, and nor can persist in dry soils. The decrease in N2O emissions between the pulses (12 h following the rain) might indicate increases in nitrous oxide reductase (nos) activities and evolution of denitrification gases as N2. The second pulse in N2O emissions occurred 24 h after the rain, when N2O production exceeded N2O consumption. Our observation of N2O emissions before and after a precipitation event exhibit a pattern similar to the dynamics of denitrification enzymes observed in incubated soils. The first in situ observation of a two-pulse pattern in N2O emissions following a precipitation event has widespread significance for designing N2O emission measurement strategies and estimating annual budgets.
Ta2O5 nanowires: a novel synthetic method and their solar energy utilization.
Lü, Xujie; Ding, Shangjun; Lin, Tianquan; Mou, Xinliang; Hong, Zhanglian; Huang, Fuqiang
2012-01-14
Single-crystalline uniform Ta(2)O(5) nanowires are prepared by a novel synthetic route. The formation of the nanowires involves an oriented attachment process caused by the reduction of surface energy. The nanowires are successfully applied to photocatalytic H(2) evolution, contaminant degradation, and dye-sensitized solar cells (DSCs). The Ta(2)O(5)-based DSCs reveal a significant photovoltaic response, which has not been reported. As a photocatalyst, the Ta(2)O(5) nanowires possess high H(2) evolution efficiency under Xe lamp irradiation, nearly 27-fold higher than the commercial powders. A better performance of photocatalytic contaminant degradation is also observed. Such improvements are ascribed to better charge transport ability for the single-crystalline wire and a higher potential energy of the conduction band. This new synthetic approach using a water-soluble precursor provides a versatile way to prepare nanostructured metal oxides.
NASA Technical Reports Server (NTRS)
Li, Hao; Lee, Jinil; Libera, Matthew R.; Lee, Woo Y.; Kebbede, Anteneh; Lance, Michael J.; Wang, Hongyu; Morscher, Gregory N.; Gray, Hugh R. (Technical Monitor)
2002-01-01
The phase contents and morphology of a ZrO2 fiber coating deposited at 1050 C on Hi-Nicalon(Tm) by chemical vapor deposition were examined as a function of deposition time from 5 to 120 min. The morphological evolution in the ZrO2 coating was correlated to the development of delamination within the ZrO2 coating. The delamination appears to occur as a result of: (1) continuous formation of tetragonal ZrO2 nuclei on the deposition surface; (2) martensitic transformation of the tetragonal phase to a monoclinic phase upon reaching a critical grain size; and (3) development of significant compressive hoop stresses due to the volume dilation associated with the transformation. Our observations suggest that it will be of critical importance to further understand and eventually control the nucleation and grain growth behavior of CVD ZrO2 and its phase transformation behavior for its potential applications for composites.
Pt and Pd catalyzed oxidation of Li 2O 2 and DMSO during Li–O 2 battery charging
Gittleson, Forrest S.; Ryu, Won-Hee; Schwab, Mark; ...
2016-01-01
Rechargeable Li-O 2 and Li-air batteries require electrode and electrolyte materials that synergistcally promote long-term cell operation. We investigate the role of noble metals Pt and Pd as catalysts for the Li-O 2 oxidation process and their compatibility with a dimethyl sulfoxide (DMSO) based electrolyte. Lastly, we identify a basis for low potential Li 2O 2 evolution followed by oxidative decomposition of the electrolyte to form carbonate side products.
Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir
NASA Astrophysics Data System (ADS)
Husson, Jon M.; Peters, Shanan E.
2017-02-01
Atmospheric oxygen concentration has increased over Earth history, from ∼0 before 2.5 billion years ago to its present-day concentration of 21%. The initial rise in pO2 approximately 2.3 billion years ago required oxygenic photosynthesis, but the evolution of this key metabolic pathway was not sufficient to propel atmospheric oxygen to modern levels, which were not sustained until approximately two billion years later. The protracted lag between the origin of oxygenic photosynthesis and abundant O2 in the surface environment has many implications for the evolution of animals, but the reasons for the delay remain unknown. Here we show that the history of sediment accumulation on continental crust covaries with the history of atmospheric oxygen concentration. A forward model based on the empirical record of net organic carbon burial and oxidative weathering of the crust predicts two significant rises in pO2 separated by three comparatively stable plateaus, a pattern that reproduces major biological transitions and proxy-based pO2 records. These results suggest that the two-phased oxygenation of Earth's surface environment, and the long delays between the origin of life, the evolution of metazoans, and their subsequent diversification during the Cambrian Explosion, was caused by step-wise shifts in the ability of the continents to accumulate and store sedimentary organic carbon. The geodynamic mechanisms that promote and inhibit sediment accumulation on continental crust have, therefore, exerted a first-order control on the evolution of Earth's life and environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qing; Bruck, Andrea M.; Bock, David C.
We present Li 1+nV 3O 8 (n = 0–0.2) has been extensively investigated as a cathode material for Li ion batteries because of its superior electrochemical properties including high specific energy and good rate capability. In this paper, a synchrotron based energy dispersive X-ray diffraction (EDXRD) technique was employed to profile the phase transitions and the spatial phase distribution of a Li 1.1V 3O 8 electrode during electrochemical (de)lithiation in situ and operando. As annealing temperature during the preparation of the Li 1.1V 3O 8 material has a strong influence on the morphology and crystallinity, and consequently influences the electrochemicalmore » outcomes of the material, Li 1.1V 3O 8 materials prepared at two different temperatures, 500 and 300°C (LVO500 and LVO300), were employed in this study. The EDXRD spectra of LVO500 and LVO300 cells pre-discharged at C/18, C/40 and C/150 were recorded in situ, and phase localization and relative intensity of the peaks were compared. For cells discharged at the C/18 rate, although α and β phases were distributed uniformly within the LVO500 electrode, they were localized on two sides of the LVO300 electrode. Discharging rates of C/40 and C/150 led to homogeneous β phase formation in both LVO500 and LVO300 electrodes. Furthermore, the phase distribution as a function of position and (de)lithiation extent was mapped operando as the LVO500 cell was (de)lithiated. In conclusion, the operando data indicate that (1) the lithiation reaction initiated from the side of the electrode facing the Li anode and proceeded towards the side facing the steel can, (2) during discharge the phase transformation from a Li-poor to a Li-rich α phase and the formation of a β phase can proceed simultaneously in the electrode after the first formation of a β phase, and (3) the structural evolution occurring during charging is not the reverse of that during discharge and takes place homogenously throughout the electrode.« less
Zhang, Qing; Bruck, Andrea M.; Bock, David C.; ...
2017-05-03
We present Li 1+nV 3O 8 (n = 0–0.2) has been extensively investigated as a cathode material for Li ion batteries because of its superior electrochemical properties including high specific energy and good rate capability. In this paper, a synchrotron based energy dispersive X-ray diffraction (EDXRD) technique was employed to profile the phase transitions and the spatial phase distribution of a Li 1.1V 3O 8 electrode during electrochemical (de)lithiation in situ and operando. As annealing temperature during the preparation of the Li 1.1V 3O 8 material has a strong influence on the morphology and crystallinity, and consequently influences the electrochemicalmore » outcomes of the material, Li 1.1V 3O 8 materials prepared at two different temperatures, 500 and 300°C (LVO500 and LVO300), were employed in this study. The EDXRD spectra of LVO500 and LVO300 cells pre-discharged at C/18, C/40 and C/150 were recorded in situ, and phase localization and relative intensity of the peaks were compared. For cells discharged at the C/18 rate, although α and β phases were distributed uniformly within the LVO500 electrode, they were localized on two sides of the LVO300 electrode. Discharging rates of C/40 and C/150 led to homogeneous β phase formation in both LVO500 and LVO300 electrodes. Furthermore, the phase distribution as a function of position and (de)lithiation extent was mapped operando as the LVO500 cell was (de)lithiated. In conclusion, the operando data indicate that (1) the lithiation reaction initiated from the side of the electrode facing the Li anode and proceeded towards the side facing the steel can, (2) during discharge the phase transformation from a Li-poor to a Li-rich α phase and the formation of a β phase can proceed simultaneously in the electrode after the first formation of a β phase, and (3) the structural evolution occurring during charging is not the reverse of that during discharge and takes place homogenously throughout the electrode.« less
Mineralogy and evolution of the surface of Mars: A review
NASA Astrophysics Data System (ADS)
Chevrier, V.; Mathé, P. E.
2007-02-01
We review the mineralogy of the surface of Mars, using data from various sources, including in situ characterisations performed by landers, remote observations from orbit, and studies of the SNC meteorites. We also discuss the possible alteration processes and the factor controlling them, and try to relate the mineralogical observations to the chemical evolution of the surface materials on Mars in order to identify the dominant process(es). Then we try to describe a possible chemical and mineralogical evolution of the surface materials, resulting from weathering driven by the abundance and activity of water. Even if weathering is the dominant process responsible for the surface evolution, all observations suggest that it is strongly affected locally in time and space by various other processes including hydrothermalism, volcanism, evaporites, meteoritic impacts and aeolian erosion. Nevertheless, the observed phases on the surface of Mars globally depend on the evolution of the weathering conditions. This hypothesis, if confirmed, could give a new view of the evolution of the martian surface, roughly in three steps. The first would correspond to clay-type weathering process in the Noachian, under a probable thick H 2O/CO 2-rich atmosphere. Then, during the Hesperian when water became scarcer and its activity sporadic, linked to volcanic activity, sulfate-type acidic weathering process would have been predominant. The third period would be like today, a very slow weathering by strongly oxidising agents (H 2O 2, O 2) in cold and dry conditions, through solid-gas or solid-films of water resulting frost-thaw and/or acid fog. This would favour poorly crystalline phases, mainly iron (oxy) hydroxides. But in this scenario many questions remain about the transition between these processes, and about the factors affecting the evolution of the weathering process.
Liu, Guoxue; Chen, Hongbin; Xia, Lu; Wang, Suqing; Ding, Liang-Xin; Li, Dongdong; Xiao, Kang; Dai, Sheng; Wang, Haihui
2015-10-14
Perovskites show excellent specific catalytic activity toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline solutions; however, small surface areas of the perovskites synthesized by traditional sol-gel methods lead to low utilization of catalytic sites, which gives rise to poor Li-O2 batteries performance and restricts their application. Herein, a hierarchical mesporous/macroporous perovskite La0.5Sr0.5CoO3-x (HPN-LSC) nanotube is developed to promote its application in Li-O2 batteries. The HPN-LSC nanotubes were synthesized via electrospinning technique followed by postannealing. The as-prepared HPN-LSC catalyst exhibits outstanding intrinsic ORR and OER catalytic activity. The HPN-LSC/KB electrode displays excellent performance toward both discharge and charge processes for Li-O2 batteries, which enhances the reversibility, the round-trip efficiency, and the capacity of resultant batteries. The synergy of high catalytic activity and hierarchical mesoporous/macroporous nanotubular structure results in the Li-O2 batteries with good rate capability and excellent cycle stability of sustaining 50 cycles at a current density of 0.1 mA cm(-2) with an upper-limit capacity of 500 mAh g(-1). The results will benefit for the future development of high-performance Li-O2 batteries using hierarchical mesoporous/macroporous nanostructured perovskite-type catalysts.
NASA Astrophysics Data System (ADS)
Powers, H.; McDowell, N.; Breecker, D. O.
2010-12-01
We test the hypothesis that soils collected near dead and living pinus edulous (piñon pine) trees should show a difference in their capacities to decompose complex carbon compounds. Since soils near dead trees have a large amount of cellulose and other complex carbon, the soil microbial community should be selected to metabolize cellulose. We collected soils from both live and dead piñon trees, added cellulose to half of the replicates, and placed them in microcosms for incubation. The microcosms were periodically sampled by a trace gas analyzer (TGA100, Campbell Scientific, USA) for CO2 concentration and δ13C and δ18O analysis. We found that CO2 evolution rates from live soils were significantly higher than rates from dead soils (1.1 and 0.6 ug CO2 g-1 soil s-1 respectively); soils with added cellulose displayed higher rates (1.1 and 0.8 and ug CO2 g-1 soil s-1). We did not see any significant differences in δ13C values between treatments, but there was a difference in δ18O between soils treated with cellulose and soils with no cellulose. Soils from both dead and live trees showed an increase in CO2 efflux when cellulose was added; however there was no distinguishable difference in efflux rate between live and dead soils in the cellulose added treatments.
Gao, Yazhi; Liu, Wei; Wang, Xiaoxiong; Yang, Lihua; Han, Su; Chen, Shiguo; Strasser, Reto Jörg; Valverde, Bernal E; Qiang, Sheng
2018-07-01
The effects of four phytotoxins usnic acid (UA), salicylic acid (SA), cinnamic acid (CA) and benzoic acid (BA) on photosynthesis of Chlamydomonas reinhardtii were studied in vivo to identify and localise their initial action sites on two photosystems. Our experimental evidence shows that the four phytotoxins have multiple targets in chloroplasts, which mainly lie in photosystem II (PSII), not photosystem I (PSI). They share an original action site by blocking electron transport beyond Q A (primary plastoquinone acceptor) at PSII acceptor side since a fast increase of the J-step level is the greatest change in chlorophyll a fluorescence induction kinetics OJIP in C. reinhardtii cells treated with the phytotoxins. UA decreases photosynthetic activity by reducing O 2 evolution rate, interrupting PSII electron transport at both the donor and acceptor sides, inactivating the PSII reaction centers (RCs), reducing the content of chlorophylls and carotenoids, destroying the conformation of antenna pigment assemblies, and casuing the degradation of D1/D2 proteins. SA damage to photosynthetic machinery is mainly attributed to inhibition of PSII electron transport beyond Q A at the acceptor side, inactivation of the PSII RCs, reduction of chlorophyll content, digestion of thylakoid ploypeptides and destabilization of thylakoid membranes. Both CA and BA affect the photosynthetic process by decreasing PSII electron transport efficiency at the acceptor side and the amount of active PSII RCs. Besides, the initial cause of BA-inhibiting photosynthesis is also assocaited with the O 2 evolution rate and the disconnection of some antenna molecules from PSII RCs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Mixing processes following the final stratospheric warming
NASA Technical Reports Server (NTRS)
Hess, Peter G.
1991-01-01
An investigation is made of the dynamics responsible for the mixing and dissolution of the polar vortex during the final stratospheric warmings. The dynamics and transport during a Northern Hemisphere final stratospheric warming are simulated via a GCM and an associated offline N2O transport model. The results are compared with those obtained from LIMS data for the final warming of 1979, with emphasis on the potential vorticity evolution in the two datasets, the modeled N2O evolution, and the observed O3 evolution. Following each warming, the remnants of the originally intact vortex are found to gradually homogenize with the atmosphere at large. Two processes leading to this homogenization are identified following the final warmings, namely, the potential vorticity field becomes decorrelated from that of the chemical tracer, and the vortex remnants begin to tilt dramatically in a vertical direction.
The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective.
Ducluzeau, Anne-Lise; Schoepp-Cothenet, Barbara; van Lis, Robert; Baymann, Frauke; Russell, Michael J; Nitschke, Wolfgang
2014-09-06
Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Lamy, Claude; Jaubert, Thomas; Baranton, Stève; Coutanceau, Christophe
2014-01-01
The electrocatalytic oxidation of ethanol was investigated in a Proton Exchange Membrane Electrolysis Cell (PEMEC) working at low temperature (20°C) on several Pt-based catalysts (Pt/C, PtSn/C, PtSnRu/C) in order to produce very clean hydrogen by electrolysis of a biomass compound. The electrocatalytic activity was determined by cyclic voltammetry and the rate of hydrogen evolution was measured for each catalyst at different current densities. The cell voltages UEtOH were recorded as a function of time for each current density. At 100 mA cm-2, i.e. 0.5 A with the 5 cm2 surface area PEMEC used, the cell voltage did not exceed 0.9 V for an evolution rate of about 220 cm3 of hydrogen per hour and the electrical energy consumed was less than 2.3 kWh (Nm3)-1, i.e. less than one half of the energy needed for water electrolysis (4.7 kWh (Nm3)-1 at UH2O = 2 V). This result is valid for the decomposition of any organic compound, particularly those originated from biomass resource, provided that their electro-oxidation rate is sufficient (>100 mA cm-2) at a relatively low cell voltage (Ucell < 1 V) which necessitates the development of efficient electrocatalysts for the electrochemical decomposition of this compound.
In-situ TEM on the coalescence of birnessite manganese dioxides nanosheets during lithiation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ke; Kuang, Min; Zhang, Yuxin
2016-07-15
Highlights: • Evolution of MnO{sub 2} nanosheets during lithiation was in situ observed. • MnO{sub 2} was reacted with Li to form Mn and LiO{sub 2}. • Nanosheets expanded and aggregated due to lithiation. - Abstract: Nanostructure is believed to produce great benefits for anode materials in lithium ion batteries (LIBs) by enhancing lithium ion transfer, accommodating large volume change and increasing surface area. Whether the nanostructure (especially the porous nanostructure) could be well held during charging/discharging process is one of the most commonly concerned issues in LIBs research. The dynamic evolution of birnessite manganese dioxides nanosheets during lithiation processmore » is investigated by in-situ transmission electron microscopy (TEM) for the first time. The TiO{sub 2}@MnO{sub 2} core-shell nanowires are used as the anode and Li metal as the counter electrode inside the TEM. Interestingly, the lithiation process is confirmed as MnO{sub 2} and Li converting to Li{sub 2}O and Mn. The original porous structure of the nanosheets is hard to preserve during lithiation process due to lithiation-induced contact flattening.« less
Novel catalysts and photoelectrochemical system for solar fuel production
NASA Astrophysics Data System (ADS)
Zhang, Yan
Solar fuel production from abundant raw chemicals such as CO2 and water is highly desired as a clean renewable energy solution for the future. Developing photoelectrochemical cells is viewed as a promising approach to realize this energy conversion and storage process. Efficient and robust oxygen evolution catalyst made from non-precious materials remains a major challenge for such a system. This thesis basically consists of three parts of work, including studies on enhancing the photocatalytic oxygen evolution activity of cobalt-based spinel nanoparticles by manganese3+ substitution, in situ formation of cobalt oxide nanocubanes as highly active catalyst for photocatalytic oxygen evolution reaction, and development of a photoanode-driven photoelectrochemical cell for CO2 reduction with water. The first part of this thesis work devotes efforts in the development and study on cobalt and other transition metal oxide based oxygen evolution catalyst. Photocatalytic oxygen evolution is a critical step for solar fuel production from abundant sources. It poses a significant challenge because it requires an efficient catalyst to bridge the one-electron photon capture process with the four-electron oxygen reaction. Among all the metal oxides, Co3O4 spinel exhibits a high activity as an oxygen evolution catalyst. The results of this work demonstrate that the photocatalytic oxygen evolution activity of Co3O4 spinel can be further enhanced by substituting Co with Mn in the spinel structure. Using a facile hydrothermal approach, Co3O4 spinel nanoparticles as well as Mn-substituted and Ni-substituted Co3O4 spinel nanoparticles with a typical particle size of 5-7 nm were successfully synthesized. The morphology and crystal structures of the as-synthesized nanoparticle catalysts have been carefully examined using various structural characterization techniques, including powder x-ray diffraction (PXRD), transmission electron microscope (TEM), gas adsorption, and x-ray absorption spectroscopy (XAS). The photocatalytic activities of as-made nanoparticles were investigated using a well-studied visible light driven [Ru(bpy)3]2+-persulfate system. In both Clark electrode and reactor/gas chromatography (GC) systems, Mn-substituted Co3O 4 nanoparticles exhibited the highest turnover frequency (TOF) among all the three kinds of catalysts. The data presented in this paper suggest that the photocatalytic oxygen evolution activity of Co3O 4 spinel catalyst can be further enhanced by Mn3+ substitution at the octahedral sites. The second part of this piece of work was carried out to further investigate cobalt oxide based photocatalytic oxygen evolution catalyst. A new strategy was developed to synthesize nonsupported cobalt oxide nanocubanes through an in situ phase transformation mechanism using a layered Co(OH)(OCH3) precursor. Under sonication, the precursor was exfoliated and transformed into cobalt oxide nanocubanes in the presence of NaHCO 3-Na2SiF6 buffer solution. The resulting cobalt catalyst with an average particle size less than 2 nm exhibited a turnover frequency of 0.0023 per second per cobalt in photocatalytic oxygen evolution reaction. X-ray absorption results suggested that a unique nanocubane structure, where 13 cobalt atoms fully coordinated with oxygen atoms and hydroxide groups in an octahedral arrangement to form 8 Co4O4 cubanes, may be responsible for the exceptionally high oxygen evolution catalysis activity. This thesis work is completed with the development of a photoanode-driven photoelectrochemical cell for CO2 reduction. A NiOx decorated Si photoanode and nanoporous Ag cathode were employed. With an external bias of 2.0 V, a current density at cathode of 10 mA/cm2 and Faradaic efficiency of 70% for CO2 to CO was achieved. Compared to a normal electrochemical cell, the photoelectrochemical cell saves 0.4 V electrical energy by absorbing photo-energy. In addition, post-test photoanodes were carefully characterized by SEM, XAS, and XPS analysis.
NASA Astrophysics Data System (ADS)
Li, Fuying; Gu, Quan; Niu, Yu; Wang, Renzhang; Tong, Yuecong; Zhu, Shuying; Zhang, Hualei; Zhang, Zizhong; Wang, Xuxu
2017-01-01
Pt nanoparticles were loaded on anatase TiO2 by the photodeposition method to investigate their photocatalytic activity for H2 evolution in an aqueous solution containing a certain amount of ethylene glycol (EG) as the sacrificial agent. The surface properties and chemical states of the Pt/TiO2 sample were characterized by X-ray powder diffraction analysis, Brunauer-Emmett-Teller surface area analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and electrochemical resistance. The aqueous-phase photocatalytic EG reforming using Pt/TiO2 and anatase TiO2 generated not only H2 and CO2, but also CO, CH4, C2H6, and C2H4. Moreover, the amount of formate and acetate complexes in the solution increased gradually. The EG adsorption and gas-phase intermediates during photocatalytic reaction processes were investigated by the in situ FTIR spectrum. Finally, the photocatalytic EG reforming reaction mechanism was elucidated. This helped to better understand the role of a sacrificial agent in a photocatalytic hydrogen production.
FTIR study of CO2 and H2O/CO2 nanoparticles and their temporal evolution at 80 K.
Taraschewski, M; Cammenga, H K; Tuckermann, R; Bauerecker, S
2005-04-21
Fourier transform infrared (FTIR) spectroscopy combined with a long-path collisional cooling cell was used to investigate the temporal evolution of CO2 nanoparticles and binary H2O/CO2 nanocomposites in the aerosol phase at 80 K. The experimental conditions for the formation of different CO2 particle shapes as slab, shell, sphere, cube, and needle have been studied by comparison with calculated data from the literature. The H2O/CO2 nanoparticles were generated with a newly developed multiple-pulse injection technique and with the simpler flow-in technique. The carbon dioxide nu3-vibration band at 2360 cm(-1) and the water ice OH-dangling band at 3700 cm(-1) were used to study the evolution of structure, shape, and contact area of the nanocomposites over 150 s. Different stages of binary nanocomposites with primary water ice cores were identified dependent on the injected CO2 portion: (a) disordered (amorphous) CO2 slabs on water particle surfaces, (b) globular crystalline CO2 humps sticking on the water cores, and (c) water cores being completely enclosed in bigger predominantly crystalline CO2 nanoparticles. However, regular CO2 shell structures on primary water particles showing both longitudinal (LO) and transverse (TO) optical mode features of the nu3-vibration band could not be observed. Experiments with reversed nucleation order indicate that H2O/CO2 composite particles with different initial structures evolve toward similar molecular nanocomposites with separated CO2 and H2O regions.
The effects on γ-LiAlO2 induced by nuclear energy losses during Ga ions implantation
NASA Astrophysics Data System (ADS)
Zhang, Jing; Song, Hong-Lian; Qiao, Mei; Yu, Xiao-Fei; Wang, Tie-Jun; Wang, Xue-Lin
2017-09-01
To explore the evolution of γ-LiAlO2 under ion irradiation at low energy, we implanted Ga ions of 30, 80 and 150 keV at fluences of 1 × 1014 and 1 × 1015 ions/cm2 in z-cut γ-LiAlO2 samples, respectively. The implantation resulted in damage regions dominated by nuclear energy losses at depth of 232 Å, 514 Å, and 911 Å beneath the surface, respectively, which was simulated by the Stopping and Range of Ions in Matter program. The irradiated γ-LiAlO2 were characterized with atomic force microscope, Raman spectroscopy, X-ray diffraction and Rutherford backscattering in a channeling mode for morphology evolution, structure information and damage profiles. The interesting and partly abnormal results showed the various behaviors in modification of surface by Ga ions implantation.
Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO
NASA Astrophysics Data System (ADS)
van Huis, M. A.; van Veen, A.; Schut, H.; Eijt, S. W. H.; Kooi, B. J.; De Hosson, J. Th. M.
2004-06-01
CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 × 10 16 Cd ions cm -2 and 210 keV, 1 × 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Zhang, Ming; He, Xinnong; Tang, Wenming
2016-03-01
The corrosion behavior of the liquid-phase sintered SiC (LPS-SiC) was studied by dipping in 3.53 mol/L HNO3 aqueous solution at room temperature and 70 °C, respectively. The weight loss, strength reduction and morphology evolution of the SiC specimens during corroding were revealed and also the chemical corrosion process and mechanism of the SiC specimens in the acidic solution were clarified. The results show that the corrosion of the LPS-SiC specimens in the HNO3 solution is selective. The SiC particles are almost free from corrosion, but the secondary phases of BaAl2Si2O8 (BAS) and Y2Si2O7 are corroded via an acid-alkali neutralization reaction. BAS has a higher corrosion rate than Y2Si2O7, resulting in the formation of the bamboo-leaf-like corrosion pits. As the SiC specimens etched in the HNO3 solution at room temperature for 75 days, about 80 μm thickness corrosion layer forms. The weight loss and bending strength reduction of the etched SiC specimens are 2.6 mg/cm2 and 52%, respectively. The corrosion of the SiC specimens is accelerated in the 70 °C HNO3 solution with a rate about five times bigger than that in the same corrosion medium at room temperature.
Metastable Phase Evolution in Oxide Systems
NASA Astrophysics Data System (ADS)
Levi, Carlos G.
2005-03-01
Multi-component ceramics are often synthesized by routes that facilitate mixing at the molecular scale and subsequently generate a solid product at low homologous temperatures. Examples include chemical and physical vapor deposition, thermal spray, and pyrolytic decomposition of precursor solutions. In these processes the solid evolves rapidly from a highly energized state, typically in a temperature regime wherein long-range diffusion is largely constrained and the equilibrium configuration can be kinetically suppressed. The resulting product may exhibit various forms of metastability such as amorphization, nanocrystallinity, extended solid solubility and alternate crystalline forms. The approach allows access to novel combinations of structure and composition with unprecedented defect structures that, if reasonably durable, could have properties of potential technological interest. Understanding phase selection and evolution is facilitated by having a suitable reference framework depicting the thermodynamic hierarchy of the phases available to the system under the relevant processing conditions. When transformations are partitionless the phase menu and hierarchy can be readily derived from the relative position of the T0 curves/surfaces for the different pairs of phases. The result is a phase hierarchy map, which is an analog of the phase diagram for partitionless equilibrium. Such maps can then be used to assess the kinetic effects on the selection of metastable states and their subsequent evolution. This presentation will discuss the evolution of metastable phases in oxides, with emphasis on systems involving fluorite phases and their ordered or distorted derivatives. The concepts will be illustrated primarily with zirconia-based systems, notably those of interest in thermal barrier coatings, fuel cells and ferroelectrics (ZrO2-MO3/2, where M = Y, Sc, the lanthanides and combinations thereof, as well as ZrO2-YO3/2-TiO2, ZrO2-TiO2-PbO, etc.). Of particular interest are the durabilities of metastable phases in systems that operate at high temperature, their decomposition paths and the implications to their functionality.
Wu, Qingyong; Xu, Di; Xue, Ning; Liu, Tengyi; Xiang, Min; Diao, Peng
2016-12-21
We previously reported that the hydrolysis of Ir 3+ in homogeneous solution could be triggered by irradiation with light whose energy was larger than a threshold value. In this work, we demonstrated that, by introducing Fe 2 O 3 particles into solution, the incident light energy-restriction for the photo-catalyzed hydrolysis could be broken and the hydrolysis occurred at the Fe 2 O 3 /solution interface. The photo-generated holes on the Fe 2 O 3 surface played a key role in oxidizing Ir(iii) to Ir(iv) species and triggered the deposition of IrO x . We showed that this photo-catalyzed surface hydrolysis is a universal phenomenon that takes place on the surface of many n-type semiconductors such as Fe 2 O 3 , TiO 2 , and Ag 3 PO 4 . As IrO x is an efficient catalyst for oxygen evolution reaction, surface hydrolysis is a general, facile and efficient strategy to prepare semiconductor/IrO x composites, which can be used as anodic materials for photoelectrochemical water splitting.
Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries.
Su, Dawei; Dou, Shixue; Wang, Guoxiu
2014-08-29
Single crystalline Co3O4 nanocrystals exposed with different crystal planes were synthesised, including cubic Co3O4 nanocrystals enclosed by {100} crystal planes, pseudo octahedral Co3O4 enclosed by {100} and {110} crystal planes, Co3O4 nanosheets exposed by {110} crystal planes, hexagonal Co3O4 nanoplatelets exposed with {111} crystal planes, and Co3O4 nanolaminar exposed with {112} crystal planes. Well single crystalline features of these Co3O4 nanocrystals were confirmed by FESEM and HRTEM analyses. The electrochemical performance for Li-O2 batteries shows that Co3O4 nanocrystals can significantly reduce the discharge-charge over-potential via the effect on the oxygen evolution reaction (OER). From the comparison on their catalytic performances, we found that the essential factor to promote the oxygen evolution reactions is the surface crystal planes of Co3O4 nanocrystals, namely, crystal planes-dependent process. The correlation between different Co3O4 crystal planes and their effect on reducing charge-discharge over-potential was established: {100} < {110} < {112} < {111}.
Evolution of Oxide Inclusions in Si-Mn Killed Steels During Hot-Rolling Process
NASA Astrophysics Data System (ADS)
Yang, Wen; Guo, Changbo; Zhang, Lifeng; Ling, Haitao; Li, Chao
2017-10-01
The evolution of oxide inclusions in Si-Mn killed steels refined by slags of different basicity during a four-pass industrial hot-rolling process was investigated using an automated microscopy system. High-basicity refining slag induced the formation of CaO- and Al2O3-containing inclusions, while refining slag with 0.8 basicity induced dominant inclusions of SiO2 and MnO-SiO2. CaO-SiO2-Al2O3 inclusions mainly formed endogenously during solidification and cooling of Ca-containing steels, where Ca originated from slag-steel reactions. However, the larger-sized higher-CaO inclusions originated from slag entrainment. Different inclusions presented different hot-rolling behaviors. The inclusion composition changed by deformation and new phase formation. The dominant oxide types were unchanged under refinement by low-basicity slag; however, they changed under refinement with high-basicity slag. The deformation index of inclusions decreased with increasing accumulated reduction (AR) of the steel. The difference in deformation index between different inclusion types was the largest in the first rolling stage and decreased in subsequent stages. SiO2-CaO and SiO2-MnO-CaO inclusions had larger deformation indices during hot rolling but smaller indices in the last two stages. High-basicity slag increased inclusion complexity; from the perspective of cold-drawing performance, low-basicity refining slag is better for the industrial production of tire-cord steels.
Domain structure sequence in ferroelectric Pb(Zr0.2Ti0.8)O3 thin film on MgO
NASA Astrophysics Data System (ADS)
Janolin, Pierre-Eymeric; Fraisse, Bernard; Dkhil, Brahim; Le Marrec, Françoise; Ringgaard, Erling
2007-04-01
The structural evolution of a polydomain ferroelectric Pb(Zr0.2Ti0.8)O3 film was studied by temperature-dependent x-ray diffraction. Two critical temperatures were evidenced: T*=740K, corresponding to a change in the domain structure (a /c/a/c to a1/a2/a1/a2), and TCfilm=825K, where the film undergoes a ferroelectric-paraelectric phase transition. The film remains tetragonal on the whole range of temperature investigated. The evolutions of the domain structure and lattice parameters were found to be in very good agreement with the calculated domain stability map and theoretical temperature-misfit strain phase diagram, respectively.
NASA Astrophysics Data System (ADS)
Duran, Cihangir
Sr0.53Ba0.47Nb2O6 (SBN53) ceramics were textured by the templated grain growth (TGG), in a matrix of SrNb2O6 and BaNb2O6 powders. Acicular KSr2Nb5O15 (KSN) template particles, synthesized by a molten salt process, were used to texture the samples in the c direction (i.e., [001]). Template growth was assisted by adding V2O5 as a liquid phase former for some compositions. The texture fraction also increased with higher sintering temperatures or times and with initial template concentration due to the preferential growth of the template particles. When V2O5 was present, SBN53 phase formation initiated on the KSN templates and texture development started at temperatures as low as 950°C. Phase formation in the V2O5-free samples, however, initiated in the matrix (i.e., independent of the KSN templates). The liquid phase adversely affected the template growth by favoring anisotropic grain growth in the matrix, which caused lower texture fraction and broader texture distribution in [001] at low template concentrations. Increased template-template interaction (e.g., tangling) during tape casting also resulted in broader texture distribution. Therefore, an optimum template content was found to be ˜10--15 wt%. However, a texture fraction of 0.93 to 0.98 was obtained using only 5 wt% templates when anisotropic matrix grain growth was prevented. Phase evolution was studied in the randomly oriented samples as a function of quenching temperature, heating rate, and liquid phase, using KSN powder (rather than acicular particles) as a seed material. The formation temperature for SBN53 was lowered substantially by adding more seeds, decreasing the heating rate, and introducing a liquid. The temperature decreased from 1260°C for the samples with no seeds to 1130°C for the samples with 15.4 wt% seeds + 0.8 mol% V2O5 at a heating rate of 4°C/min. For the V2O5-free samples, the activation energy was considerably lowered from 554 +/- 15 kJ/mol for the samples with no seeds to 241 +/- 17 kJ/mol for the samples with 15.4 wt% seeds. The dielectric and piezoelectric properties were enhanced in samples with better orientation (i.e., high texture fraction (f) and narrow degree of orientation parameter (r) in the texture direction). The presence of nonferroelectric phases (V2O5 or Nb2O5-based) at the grain boundaries suppressed the observed dielectric properties, especially at the transition temperature. (Abstract shortened by UMI.)
Agathopoulos, S; Tulyaganov, D U; Ventura, J M G; Kannan, S; Karakassides, M A; Ferreira, J M F
2006-03-01
New bioactive glasses with compositions based on the CaO-MgO-SiO(2) system and additives of B(2)O(3), P(2)O(5), Na(2)O, and CaF(2) were prepared. The in vitro mineralization behaviour was tested by immersion of powders or bulk glasses in simulated body fluid (SBF). Monitoring of ionic concentrations in SBF and scanning electron microscopy (SEM) observations at the surface of the glasses were conducted over immersion time. Raman and infrared (IR) spectroscopy shed light on the structural evolution occurring at the surface of the glasses that leads to formation of hydroxyapatite.
Cai, Lili; Cho, In Sun; Logar, Manca; Mehta, Apurva; He, Jiajun; Lee, Chi Hwan; Rao, Pratap M; Feng, Yunzhe; Wilcox, Jennifer; Prinz, Fritz B; Zheng, Xiaolin
2014-06-28
Doping nanowires (NWs) is of crucial importance for a range of applications due to the unique properties arising from both impurities' incorporation and nanoscale dimensions. However, existing doping methods face the challenge of simultaneous control over the morphology, crystallinity, dopant distribution and concentration at the nanometer scale. Here, we present a controllable and reliable method, which combines versatile solution phase chemistry and rapid flame annealing process (sol-flame), to dope TiO2 NWs with cobalt (Co). The sol-flame doping method not only preserves the morphology and crystallinity of the TiO2 NWs, but also allows fine control over the Co dopant profile by varying the concentration of Co precursor solution. Characterizations of the TiO2:Co NWs show that Co dopants exhibit 2+ oxidation state and substitutionally occupy Ti sites in the TiO2 lattice. The Co dopant concentration significantly affects the oxygen evolution reaction (OER) activity of TiO2:Co NWs, and the TiO2:Co NWs with 12 at% of Co on the surface show the highest OER activity with a 0.76 V reduction of the overpotential with respect to undoped TiO2 NWs. This enhancement of OER activity for TiO2:Co NWs is attributed to both improved surface charge transfer kinetics and increased bulk conductivity.
Hu, Yuan-Yuan; Zhang, Ya-Li; Luo, Hong-Hai; Li, Wei; Oguchi, Riichi; Fan, Da-Yong; Chow, Wah Soon; Zhang, Wang-Feng
2012-02-01
Non-foliar green organs are recognized as important carbon sources after leaves. However, the contribution of each organ to total yield has not been comprehensively studied in relation to the time-course of changes in surface area and photosynthetic activity of different organs at different growth stages. We studied the contribution of leaves, main stem, bracts and capsule wall in cotton by measuring their time-course of surface area development, O(2) evolution capacity and photosynthetic enzyme activity. Because of the early senescence of leaves, non-foliar organs increased their surface area up to 38.2% of total at late growth stage. Bracts and capsule wall showed less ontogenetic decrease in O(2) evolution capacity per area and photosynthetic enzyme activity than leaves at the late growth stage. The total capacity for O(2) evolution of stalks and bolls (bracts plus capsule wall) was 12.7 and 23.7% (total ca. 36.4%), respectively, as estimated by multiplying their surface area by their O(2) evolution capacity per area. We also kept the bolls (from 15 days after anthesis) or main stem (at the early full bolling stage) in darkness for comparison with non-darkened controls. Darkening the bolls and main stem reduced the boll weight by 24.1 and 9%, respectively, and the seed weight by 35.9 and 16.3%, respectively. We conclude that non-foliar organs significantly contribute to the yield at the late growth stage.
Fleck, Robert J.; Hagstrum, Jonathan T.; Calvert, Andrew T.; Evarts, Russell C.; Conrey, Richard M.
2014-01-01
The 40Ar/39Ar investigations of a large suite of fine-grained basaltic rocks of the Boring volcanic field (BVF), Oregon and Washington (USA), yielded two primary results. (1) Using age control from paleomagnetic polarity, stratigraphy, and available plateau ages, 40Ar/39Ar recoil model ages are defined that provide reliable age results in the absence of an age plateau, even in cases of significant Ar redistribution. (2) Grouping of eruptive ages either by period of activity or by composition defines a broadly northward progression of BVF volcanism during latest Pliocene and Pleistocene time that reflects rates consistent with regional plate movements. Based on the frequency distribution of measured ages, periods of greatest volcanic activity within the BVF occurred 2.7–2.2 Ma, 1.7–0.5 Ma, and 350–50 ka. Grouped by eruptive episode, geographic distributions of samples define a series of northeast-southwest–trending strips whose centers migrate from south-southeast to north-northwest at an average rate of 9.3 ± 1.6 mm/yr. Volcanic activity in the western part of the BVF migrated more rapidly than that to the east, causing trends of eruptive episodes to progress in an irregular, clockwise sense. The K2O and CaO values of dated samples exhibit well-defined temporal trends, decreasing and increasing, respectively, with age of eruption. Divided into two groups by K2O, the centers of these two distributions define a northward migration rate similar to that determined from eruptive age groups. This age and compositional migration rate of Boring volcanism is similar to the clockwise rotation rate of the Oregon Coast Range with respect to North America, and might reflect localized extension on the trailing edge of that rotating crustal block.
NASA Astrophysics Data System (ADS)
Surikov, Vad. I.; Surikov, Val. I.; Danilov, S. V.; Semenyuk, N. A.; Egorova, V. A.; Eysmont, N. G.
2018-06-01
The results of investigations of heat capacity Cp of a series of V1-xFexO2-solid solutions at the temperatures from 4.2 to 25 K are reported. It is found out that at these temperatures considerable contributions into the heat capacity come from the crystal lattice proper and crystal lattice defects formed in the course of material synthesis. The results of investigating the evolution of these materials during thermal cycling are also reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sa, Niya; Kinnibrugh, Tiffany L.; Wang, Hao
Functional multivalent intercalation cathodes represent one of the largest hurdles in the development of Mg batteries. While there are many reports of Mg cathodes, many times the evidence of intercalation chemistry is only circumstantial. In this work, direct evidence of Mg intercalation into a bilayer structure of V2O5·nH2O xerogel is confirmed, and the nature of the Mg intercalated species is reported. The interlayer spacing of V2O5·nH2O contracts upon Mg intercalation and expands for Mg deintercalation due to the strong electrostatic interaction between the divalent cation and the cathode. A combination of NMR, pair distribution function (PDF) analysis, and X-ray absorptionmore » near edge spectroscopy (XANES) confirmed reversible Mg insertion into the V2O5·nH2O material, and structural evolution of Mg intercalation leads to the formation of multiple new phases. Structures of V2O5·nH2O with Mg intercalation were further supported by the first principle simulations. A solvent cointercalated Mg in V2O5·nH2O is observed for the first time, and the 25Mg magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy was used to elucidate the structure obtained upon electrochemical cycling. Specifically, existence of a well-defined Mg–O environment is revealed for the Mg intercalated structures. Information reported here reveals the fundamental Mg ion intercalation mechanism in a bilayer structure of V2O5·nH2O material and provides insightful design metrics for future Mg cathodes.« less
Estimating Collisionally-Induced Escape Rates of Light Neutrals from Early Mars
NASA Astrophysics Data System (ADS)
Gacesa, M.; Zahnle, K. J.
2016-12-01
Collisions of atmospheric gases with hot oxygen atoms constitute an important non-thermal mechanism of escape of light atomic and molecular species at Mars. In this study, we present revised theoretical estimates of non-thermal escape rates of neutral O, H, He, and H2 based on recent atmospheric density profiles obtained from the NASA Mars Atmosphere and Volatile Evolution (MAVEN) mission and related theoretical models. As primary sources of hot oxygen, we consider dissociative recombination of O2+ and CO2+ molecular ions. We also consider hot oxygen atoms energized in primary and secondary collisions with energetic neutral atoms (ENAs) produced in charge-exchange of solar wind H+ and He+ ions with atmospheric gases1,2. Scattering of hot oxygen and atmospheric species of interest is modeled using fully-quantum reactive scattering formalism3. This approach allows us to construct distributions of vibrationally and rotationally excited states and predict the products' emission spectra. In addition, we estimate formation rates of excited, translationally hot hydroxyl molecules in the upper atmosphere of Mars. The escape rates are calculated from the kinetic energy distributions of the reaction products using an enhanced 1D model of the atmosphere for a range of orbital and solar parameters. Finally, by considering different scenarios, we estimate the influence of these escape mechanisms on the evolution of Mars's atmosphere throughout previous epochs and their impact on the atmospheric D/H ratio. M.G.'s research was supported by an appointment to the NASA Postdoctoral Program at the NASA Ames Research Center, administered by Universities Space Research Association under contract with NASA. 1N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere", Astroph. J., 790, 98 (2014) 2M. Gacesa, N. Lewkow, and V. Kharchenko, "Non-thermal production and escape of OH from the upper atmosphere of Mars", arXiv:1607.03602 (2016) 3M. Gacesa and V. Kharchenko, "Non-thermal escape of molecular hydrogen from Mars", Geophys. Res. Lett., 39, L10203 (2012).
Masudy-Panah, Saeid; Siavash Moakhar, Roozbeh; Chua, Chin Sheng; Kushwaha, Ajay; Dalapati, Goutam Kumar
2017-08-23
Enhancing stability against photocorrosion and improving photocurrent response are the main challenges toward the development of cupric oxide (CuO) based photocathodes for solar-driven hydrogen production. In this paper, stable and efficient CuO-photocathodes have been developed using in situ materials engineering and through gold-palladium (Au-Pd) nanoparticles deposition on the CuO surface. The CuO photocathode exhibits a photocurrent generation of ∼3 mA/cm 2 at 0 V v/s RHE. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis and X-ray spectroscopy (XPS) confirm the formation of oxygen-rich (O-rich) CuO film which demonstrates a highly stable photocathode with retained photocurrent of ∼90% for 20 min. The influence of chemical composition on the photocathode performance and stability has been discussed in detail. In addition, O-rich CuO photocathodes deposited with Au-Pd nanostructures have shown enhanced photoelectrochemical performance. Linear scan voltammetry characteristic shows ∼25% enhancement in photocurrent after Au-Pd deposition and reaches ∼4 mA/cm 2 at "0" V v/s RHE. Hydrogen evolution rate significantly depends on the elemental composition of CuO and metal nanostructure. The present work has demonstrated a stable photocathode with high photocurrent for visible-light-driven water splitting and hydrogen production.
NASA Astrophysics Data System (ADS)
Kabir, Humayun; Gyan, Isaiah O.; Francis Cheng, I.
2017-02-01
The vanadium redox flow battery is a promising technology for buffering renewable energies. It is recognized that negative electrode is the limitation in this device where there are problems of slow heterogeneous electron transfer (HET) of V3+/2+ and parasitic H2 evolution. Any methods aimed at addressing one of these barriers must assess the effects on the other. We examine electrochemical enhancement of a common commercially available material. Treatment of Panasonic pyrolytic graphite sheets is through oxidation at 2.1 V vs. Ag/AgCl for 1 min in 1 M H2SO4. This increases the standard HET rate for V3+/2+ from 3.2 × 10-7 to 1 × 10-3 cm/s, one of the highest in literature and shifts voltammetric reductive peak potential from -1.0 V to -0.65 V in 50 mM V3+ in 1 M H2SO4. Infrared analysis of the surfaces indicates formation of Csbnd OH, Cdbnd O, and Csbnd O functionalities. These groups catalyze HET with V3+/2+ as hypothesized by Skyllas-Kasacos. Also of significance is that electrode modification decreases the fraction of the current directed towards H2 evolution. This proportion decreases by two orders of a magnitude from 12% to 0.1% as measured at the respective voltammetric peak potentials of -1.0 V (pristine) and -0.65 V (modified).
An EPR study of the pH dependence of formate effects on Photosystem II.
Jajoo, Anjana; Katsuta, Nobuhiro; Kawamori, Asako
2006-04-01
Effects of formate on rates of O(2) evolution and electron paramagnetic resonance (EPR) signals were observed in the oxygen evolving PS II membranes as a function of pH. In formate treated PS II membranes, decrease in pH value resulted in the inhibition of the O(2) evolving activity, a decrease in the intensity of S(2) state multiline signal but an increase in the intensity of the Q(A)(-)Fe(2+) EPR signal. Time-resolved EPR study of the Y(Z)(*) decay kinetics showed that the light-induced intensity of Y(Z)(*) EPR signal was proportional to the formate concentration. The change in the pH affected both the light-induced intensities and the decay rates of Y(Z)(*), which was found to be faster at lower pH. At 253 K, t(1/e) value of Y(Z)(*) decay kinetics was found to be 8-10 s at pH 6.0 and 18-21 s at pH 5.0. The results presented here indicate that the extent of inhibition at the donor and the acceptor side of PS II due to formate is pH dependent, being more effective at lower pH.
Chen, Yong-Siou; Kamat, Prashant V
2014-04-23
Glutathione-capped metal nanoclusters (Aux-GSH NCs) which exhibit molecular-like properties are employed as a photosensitizer for hydrogen generation in a photoelectrochemical cell (PEC) and a photocatalytic slurry reactor. The reversible reduction (E(0) = -0.63 V vs RHE) and oxidation (E(0) = 0.97 and 1.51 V vs RHE) potentials of these metal nanoclusters make them suitable for driving the water-splitting reaction. When a mesoscopic TiO2 film sensitized by Aux-GSH NCs is used as the photoanode with a Pt counter electrode in aqueous buffer solution (pH = 7), we observe significant photocurrent activity under visible light (400-500 nm) excitation. Additionally, sensitizing Pt/TiO2 nanoparticles with Aux-GSH NCs in an aqueous slurry system and irradiating with visible light produce H2 at a rate of 0.3 mmol of hydrogen/h/g of Aux-GSH NCs. The rate of H2 evolution is significantly enhanced (∼5 times) when a sacrificial donor, such as EDTA, is introduced into the system. Using metal nanoclusters as a photosensitizer for hydrogen generation lays the foundation for the future exploration of other metal nanoclusters with well-controlled numbers of metal atoms and capping ligands.
Jung, Hye Jin; Nam, Kyusuk; Sung, Hong-Gye; Hyun, Hyung Soo; Sohn, Youngku; Shin, Weon Gyu
2016-01-01
TiO2-coated boron particles were prepared by a wet ball milling method, with the particle size distribution and average particle size being easily controlled by varying the milling operation time. Based on the results from X-ray photoelectron spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis, and Fourier transform infrared spectroscopy, it was confirmed that the initial oxide layer on the boron particles surface was removed by the wet milling process, and that a new B–O–Ti bond was formed on the boron surface. The uniform TiO2 layer on the 150 nm boron particles was estimated to be 10 nm thick. Based on linear sweep voltammetry, cyclic voltammetry, current-time amperometry, and electrochemical impedance analyses, the potential for the application of TiO2-coated boron particles as a photoelectrochemical catalyst was demonstrated. A current of 250 μA was obtained at a potential of 0.5 V for hydrogen evolution, with an onset potential near to 0.0 V. Finally, a current of 220 μA was obtained at a potential of 1.0 V for oxygen evolution. PMID:28774132
Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation.
You, Bo; Han, Guanqun; Sun, Yujie
2018-06-08
Renewable energy-driven hydrogen production from electrocatalytic and photocatalytic water splitting has been widely recognized as a promising approach to utilize green energy resources and hence reduces our dependence on legacy fossil fuels as well as alleviates net carbon dioxide emissions. The realization of large-scale water splitting, however, is mainly impeded by its slow kinetics, particularly because of its sluggish anodic half reaction, the oxygen evolution reaction (OER), whose product O2 is ironically not of high value. In fact, the co-production of H2 and O2 in conventional water electrolysis may result in the formation of explosive H2/O2 gas mixtures due to gas crossover and reactive oxygen species (ROS); both pose safety concerns and shorten the lifetimes of water splitting cells. With these considerations in mind, replacing the OER with thermodynamically more favorable organic oxidation reactions is much more preferred, which will not only substantially reduce the voltage input for H2 evolution from water and avoid the generation of H2/O2 gas mixtures and ROS, but also possibly lead to the co-production of value-added organic products on the anode. Indeed, such an innovative strategy for H2 production integrated with valuable organic oxidation has attracted increasing attention in both electrocatalysis and photocatalysis. This feature article showcases the most recent examples along this endeavor. As exemplified in the main text, the oxidative transformation of a variety of organic substrates, including alcohols, ammonia, urea, hydrazine, and biomass-derived intermediate chemicals, can be integrated with energy-efficient H2 evolution. We specifically highlight the importance of oxidative biomass valorization coupled with H2 production, as biomass is the only green carbon source whose scale is comparable to fossil fuels. Finally, the remaining challenges and future opportunities are also discussed.
Miyashita, Masahiro; Nakamori, Tomoko; Miyagawa, Hisashi; Akamatsu, Miki; Ueno, Tamio
2003-03-01
The effect of the host-specific phytotoxins, AM-toxins, on the photosynthetic activity of leaves from susceptible apple cultivars was investigated by using an oxygen electrode. The photosynthetic O2 evolution was inhibited by AM-toxin I in a host-specific manner. The inhibitory activity of several AM-toxin analogs against photosynthesis was also evaluated and the findings were correlated with their necrosis-inducing activity.
The role of Rubisco kinetics and pyrenoid morphology in shaping the CCM of haptophyte microalgae.
Heureux, Ana M C; Young, Jodi N; Whitney, Spencer M; Eason-Hubbard, Maeve R; Lee, Renee B Y; Sharwood, Robert E; Rickaby, Rosalind E M
2017-06-01
The haptophyte algae are a cosmopolitan group of primary producers that contribute significantly to the marine carbon cycle and play a major role in paleo-climate studies. Despite their global importance, little is known about carbon assimilation in haptophytes, in particular the kinetics of their Form 1D CO2-fixing enzyme, Rubisco. Here we examine Rubisco properties of three haptophytes with a range of pyrenoid morphologies (Pleurochrysis carterae, Tisochrysis lutea, and Pavlova lutheri) and the diatom Phaeodactylum tricornutum that exhibit contrasting sensitivities to the trade-offs between substrate affinity (Km) and turnover rate (kcat) for both CO2 and O2. The pyrenoid-containing T. lutea and P. carterae showed lower Rubisco content and carboxylation properties (KC and kCcat) comparable with those of Form 1D-containing non-green algae. In contrast, the pyrenoid-lacking P. lutheri produced Rubisco in 3-fold higher amounts, and displayed a Form 1B Rubisco kCcat-KC relationship and increased CO2/O2 specificity that, when modeled in the context of a C3 leaf, supported equivalent rates of photosynthesis to higher plant Rubisco. Correlation between the differing Rubisco properties and the occurrence and localization of pyrenoids with differing intracellular CO2:O2 microenvironments has probably influenced the divergent evolution of Form 1B and 1D Rubisco kinetics. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Nanostructured Na2Ti9O19 for Hybrid Sodium-Ion Capacitors with Excellent Rate Capability.
Bhat, Swetha S M; Babu, Binson; Feygenson, Mikhail; Neuefeind, Joerg C; Shaijumon, M M
2018-01-10
Herein, we report a new Na-insertion electrode material, Na 2 Ti 9 O 19 , as a potential candidate for Na-ion hybrid capacitors. We study the structural properties of nanostructured Na 2 Ti 9 O 19 , synthesized by a hydrothermal technique, upon electrochemical cycling vs Na. Average and local structures of Na 2 Ti 9 O 19 are elucidated from neutron Rietveld refinement and pair distribution function (PDF), respectively, to investigate the initial discharge and charge events. Rietveld refinement reveals electrochemical cycling of Na 2 Ti 9 O 19 is driven by single-phase solid solution reaction during (de)sodiation without any major structural deterioration, keeping the average structure intact. Unit cell volume and lattice evolution on discharge process is inherently related to TiO 6 distortion and Na ion perturbations, while the PDF reveals the deviation in the local structure after sodiation. Raman spectroscopy and X-ray photoelectron spectroscopy studies further corroborate the average and local structural behavior derived from neutron diffraction measurements. Also, Na 2 Ti 9 O 19 shows excellent Na-ion kinetics with a capacitve nature of 86% at 1.0 mV s -1 , indicating that the material is a good anode candidate for a sodium-ion hybrid capacitor. A full cell hybrid Na-ion capacitor is fabricated by using Na 2 Ti 9 O 19 as anode and activated porous carbon as cathode, which exhibits excellent electrochemical properties, with a maximum energy density of 54 Wh kg -1 and a maximum power density of 5 kW kg -1 . Both structural insights and electrochemical investigation suggest that Na 2 Ti 9 O 19 is a promising negative electrode for sodium-ion batteries and hybrid capacitors.
Effect of UV and UV/H2O2 in the presence of chloramines on NDMA formation potential of tramadol.
Radjenovic, Jelena; Farré, Maria José; Gernjak, Wolfgang
2012-08-07
This study evaluates the effect of UV-C and UV-C/H(2)O(2) in the presence of chloramines on the N-nitrosodimethylamine formation potential (NDMA FP) of tramadol as a model precursor. The experiments were performed at high initial concentrations of TMDL (i.e., 20 mg/L) in order to elucidate the structures of TMDL byproducts. Twenty-four byproducts were identified in UV-C, UV-C/monochloramine, and UV/H(2)O(2)/monochloramine oxidation of tramadol using MS(3) capabilities of a hybrid quadrupole-linear ion trap mass spectrometer, combined with online hydrogen/deuterium (H/D) exchange experiments. Oxidative cleavage of methoxy and methoxybenzene moiety, O-demethylation, hydroxylation, and cyclohexane ring-opening were identified as major reaction mechanisms of tramadol in UV oxidation. Addition of monochloramine decreased the degradation rates of tramadol and its byproducts and yielded several monochlorinated derivatives. The oxidation rates were significantly enhanced in the presence of H(2)O(2), and byproducts of oxidative benzene ring-opening were detected. The majority of the identified byproducts are likely to have a higher NDMA FP than the parent compound due to a reduced steric hindrance and/or insertion of electron-donating hydroxyl groups in the N,N-dimethylamine side chain. This was confirmed by the results of NDMA FP tests, which showed that the formation of NDMA was enhanced up to four times depending on the process conditions in UV alone and in UV and UV/H(2)O(2) in the presence of monochloramine. Prolonged oxidation by hydroxyl radicals in UV/H(2)O(2)/monochloramine process mineralized some of the byproducts and slightly reduced the NDMA FP at the end of the treatment. The obtained degradation pathway of tramadol allowed the correlation of changes in NDMA FP during oxidation with its major oxidative transformation reactions. This manuscript demonstrates the significance of oxidation byproducts as NDMA precursors and emphasizes the need for their consideration when evaluating the evolution of NDMA FP during oxidative treatment.
Samuilov, V D; Kiselevsky, D B
2015-04-01
Plastoquinone bound with decyltriphenylphosphonium cation (SkQ1) penetrating through the membrane in nanomolar concentrations inhibited H2O2 generation in cells of epidermis of pea seedling leaves that was detected by the fluorescence of 2',7'-dichlorofluorescein. Photosynthetic electron transfer in chloroplasts isolated from pea leaves is suppressed by SkQ1 at micromolar concentrations: the electron transfer in chloroplasts under the action of photosystem II or I (with silicomolybdate or methyl viologen as electron acceptors, respectively) is more sensitive to SkQ1 than under the action of photosystem II + I (with ferricyanide or p-benzoquinone as electron acceptors). SkQ1 reduced by borohydride is oxidized by ferricyanide, p-benzoquinone, and, to a lesser extent, by silicomolybdate, but not by methyl viologen. SkQ1 is not effective as an electron acceptor supporting O2 evolution from water in illuminated chloroplasts. The data on suppression of photosynthetic O2 evolution or consumption show that SkQ1, similarly to phenazine methosulfate, causes conversion of the chloroplast redox-chain from non-cyclic electron transfer mode to the cyclic mode without O2 evolution. Oxidation of NADH or succinate in mitochondria isolated from pea roots is stimulated by SkQ1.
Fluorine in the solar neighborhood: Chemical evolution models
NASA Astrophysics Data System (ADS)
Spitoni, E.; Matteucci, F.; Jönsson, H.; Ryde, N.; Romano, D.
2018-04-01
Context. In light of new observational data related to fluorine abundances in solar neighborhood stars, we present chemical evolution models testing various fluorine nucleosynthesis prescriptions with the aim to best fit those new data. Aim. We consider chemical evolution models in the solar neighborhood testing various nucleosynthesis prescriptions for fluorine production with the aim of reproducing the observed abundance ratios [F/O] versus [O/H] and [F/Fe] versus [Fe/H]. We study in detail the effects of various stellar yields on fluorine production. Methods: We adopted two chemical evolution models: the classical two-infall model, which follows the chemical evolution of halo-thick disk and thin disk phases; and the one-infall model, which is designed only for thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of various nucleosynthesis yield sources, that is, asymptotic giant branch (AGB) stars, Wolf-Rayet (W-R) stars, Type II and Type Ia supernovae, and novae. Results: The fluorine production is dominated by AGB stars but the W-R stars are required to reproduce the trend of the observed data in the solar neighborhood with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of 2 of the W-R yields. We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] versus [O/H] relation. Conclusions: The inclusion of the fluorine production by W-R stars seems to be essential to reproduce the new observed ratio [F/O] versus [O/H] in the solar neighborhood. Moreover, the inclusion of novae helps to reproduce the observed fluorine secondary behavior substantially.
[Effects of fertilizer application on greenhouse vegetable yield: a case study of Shouguang].
Liu, Ping; Li, Yan; Jiang, Li-Hua; Liu, Zhao-Hui; Gao, Xin-Hao; Lin, Hai-Tao; Zheng, Fu-Li; Shi, Jing
2014-06-01
Data collected from 51 representative greenhouses of Shouguang through questionnaire survey were analyzed to investigate the effect of chemical fertilizers on vegetable yield, relationship between application of organic manure and yield, and influence factors and evolution rule of fertilizer application rate. The results showed that averages of 3338 kg N x hm(-2), 1710 kg P2O5 x hm(-2) 3446 kg K2O x hm(-2) were applied to greenhouse vegetables annually in Shouguang, 6-14 times as that in the local wheat-maize rotation system. The application rates of chemical N, P, and K fertilizers accounted for about 35%, 49% and 42% of the total input. Increasing application of chemical fertilizers had no significant effect on vegetable yields, while organic manure input significantly increased the vegetable yields. With the increase of greenhouse cultivating time, no significant changes in the input of chemical N, P, and K fertilizers were observed in greenhouse vegetable production while organic manure input decreased significantly. Differences in vegetable species, planting pattern and cultivating time of greenhouses was one of the reasons for large variations in nutrient application rate. In recent more than ten years, organic manure nutrient input increased significantly, chemical N and P fertilizer input presented a downward trend, chemical K fertilizer input increased significantly, and the N/P/K ratio became more and more reasonable in greenhouse vegetable production in Shouguang.