Sample records for o2 flow ratio

  1. High/variable mixture ratio O2/H2 engine

    NASA Technical Reports Server (NTRS)

    Adams, A.; Parsley, R. C.

    1988-01-01

    Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.

  2. Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags

    NASA Astrophysics Data System (ADS)

    Lü, Jian-fang; Jin, Zhe-nan; Yang, Hong-ying; Tong, Lin-lin; Chen, Guo-bao; Xiao, Fa-xin

    2017-07-01

    An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The [FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.

  3. OH-LIF measurement of H2/O2/N2 flames in a micro flow reactor with a controlled temperature profile

    NASA Astrophysics Data System (ADS)

    Shimizu, T.; Nakamura, H.; Tezuka, T.; Hasegawa, S.; Maruta, K.

    2014-11-01

    This paper presents combustion and ignition characteristic of H2/O2/N2 flames in a micro flow reactor with a controlled temperature profile. OH-LIF measurement was conducted to capture flame images. Flame responses were investigated for variable inlet flow velocity, U, and equivalence ratio, phi. Three kinds of flame responses were experimentally observed for the inlet flow velocities: stable flat flames (normal flames) in the high inlet flow velocity regime; unstable flames called Flames with Repetitive Extinction and Ignition (FREI) in the intermediate flow velocity regime; and stable weak flames in the low flow velocity regime, at phi = 0.6, 1.0 and 1.2. On the other hand, weak flame was not observed at phi = 3.0 by OH-LIF measurement. Computational OH mole fractions showed lower level at the rich conditions than those at stoichiometric and lean conditions. To examine this response of OH signal to equivalence ratio, rate of production analysis was conducted and four kinds of major contributed reaction for OH production: R3(O + H2 <=> H + OH); R38(H + O2 <=> O + OH); R46(H + HO2 <=> 2OH); and R86(2OH <=> O + H2O), were found. Three reactions among them, R3, R38 and R46, did not showed significant difference in rate of OH production for different equivalence ratios. On the other hand, rate of OH production from R86 at phi = 3.0 was extremely lower than those at phi = 0.6 and 1.0. Therefore, R86 was considered to be a key reaction for the reduction of the OH production at phi = 3.0.

  4. Effect of coolant flow ejection on aerodynamic performance of low-aspect-ratio vanes. 2: Performance with coolant flow ejection at temperature ratios up to 2

    NASA Technical Reports Server (NTRS)

    Hass, J. E.; Kofskey, M. G.

    1977-01-01

    The aerodynamic performance of a 0.5 aspect ratio turbine vane configuration with coolant flow ejection was experimentally determined in a full annular cascade. The vanes were tested at a nominal mean section ideal critical velocity ratio of 0.890 over a range of primary to coolant total temperature ratio from 1.0 to 2.08 and a range of coolant to primary total pressure ratio from 1.0 to 1.4 which corresponded to coolant flows from 3.0 to 10.7 percent of the primary flow. The variations in primary and thermodynamic efficiency and exit flow conditions with circumferential and radial position were obtained.

  5. Organic-Free, ZnO-Assisted Synthesis of Zeolite FAU with Tunable SiO2 /Al2 O3 Molar Ratio.

    PubMed

    Guo, Ya; Sun, Tianjun; Gu, Yiming; Liu, Xiaowei; Ke, Quanli; Wang, Shudong

    2018-05-04

    Zeolite FAU with tunable SiO 2 /Al 2 O 3 molar ratio has been successfully synthesized in the absence of organic structure-directing agents (OSDA). Specifically, the addition of zinc species contributes to the feasible and effective adjustment of the framework SiO 2 /Al 2 O 3 molar ratio between about 4 and 6 depending on the amount of zinc species added in the batch composition. In contrast, a typical OSDA such as tetramethylammonium hydroxide (TMAOH) has a limited effect on the SiO 2 /Al 2 O 3 molar ratio of the zeolite. The role of zinc species is essential for the crystallization of zeolite FAU with a higher SiO 2 /Al 2 O 3 molar ratio under the particular synthesis conditions. It is speculated that zinc species may suppress the incorporation of aluminum into the aluminosilicate framework, which is due to the Coulombic repulsive interaction. A higher SiO 2 /Al 2 O 3 molar ratio is also found to be accompanied by a lower CO 2 adsorption heat for CO 2 /CH 4 separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High-precision determination of 18O/16O ratios of silver phosphate by EA-pyrolysis-IRMS continuous flow technique.

    PubMed

    Lécuyer, Christophe; Fourel, François; Martineau, François; Amiot, Romain; Bernard, Aurélien; Daux, Valérie; Escarguel, Gilles; Morrison, John

    2007-01-01

    A high-precision, and rapid on-line method for oxygen isotope analysis of silver phosphate is presented. The technique uses high-temperature elemental analyzer (EA)-pyrolysis interfaced in continuous flow (CF) mode to an isotopic ratio mass spectrometer (IRMS). Calibration curves were generated by synthesizing silver phosphate with a 13 per thousand spread in delta(18)O values. Calibration materials were obtained by reacting dissolved potassium dihydrogen phosphate (KH(2)PO(4)) with water samples of various oxygen isotope compositions at 373 K. Validity of the method was tested by comparing the on-line results with those obtained by classical off-line sample preparation and dual inlet isotope measurement. In addition, silver phosphate precipitates were prepared from a collection of biogenic apatites with known delta(18)O values ranging from 12.8 to 29.9 per thousand (V-SMOW). Reproducibility of +/- 0.2 per thousand was obtained by the EA-Py-CF-IRMS method for sample sizes in the range 400-500 microg. Both natural and synthetic samples are remarkably well correlated with conventional (18)O/(16)O determinations. Silver phosphate is a very stable material and easy to degas and, thus, could be considered as a good candidate to become a reference material for the determination of (18)O/(16)O ratios of phosphate by high-temperature pyrolysis. Copyright 2006 John Wiley & Sons, Ltd.

  7. Phase Equilibria in the System "FeO"-CaO-SiO2-Al2O3-MgO at Different CaO/SiO2 Ratios

    NASA Astrophysics Data System (ADS)

    Jang, Kyoung-oh; Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Zhao, Baojun

    2017-06-01

    The "FeO"-containing slags play an important role in the operation of an ironmaking blast furnace (BF), in particular the primary slags such as the system "FeO"-CaO-SiO2-Al2O3-2 mass pct MgO with CaO/SiO2 weight ratios of 1.3, 1.5, and 1.8 saturated with metallic iron. To investigate the characteristics of such a slag system and its behavior in BF, the phase equilibria and liquidus temperatures in the slag system have been experimentally determined using the high-temperature equilibration and quenching technique followed by an electron probe X-ray microanalysis (EPMA). Isotherms between 1553 K and 1603 K (1280 °C and 1330 °C) were determined in the primary phase fields of dicalcium silicate, melilite, spinel, and monoxide [(Mg,Fe2+)O]. Pseudo-ternary phase diagrams of (CaO + SiO2)-Al2O3-"FeO" with a fixed MgO concentration at 2 mass pct and at CaO/SiO2 ratios of 1.3, 1.5, and 1.8 have been discussed, respectively, simplifying the complexity of the slag system for easy understanding and applying in BF operation. It was found that the liquidus temperatures increase in melilite and spinel primary phase fields, but decrease in dicalcium silicate and monoxide primary phase fields with increasing Al2O3/(CaO + SiO2) ratio. In addition, the liquidus temperatures decrease with increasing "FeO" concentration in dicalcium silicate and melilite primary phase fields, while showing an increasing trend in the spinel and monoxide primary phase fields. The data resulted from this study can be used to improve and optimize currently available database of thermodynamic models used in FactSage.

  8. Lateral variation of H2O/K2O ratios in Quaternary Magma of the Northeastern Japan arc

    NASA Astrophysics Data System (ADS)

    Miyagi, I.

    2012-12-01

    Water plays a fundamental role in the magma genesis beneath subduction zones. In order to estimate a spatial distribution of the density of water flux in the wedge mantle of the Northeastern Japan arc, this study examines a lateral variation of pre-eruptive bulk rock H2O/K2O contents among volcanoes located both in the frontal and in back arc settings. The analytical targets are the frontal volcanoes Nigorikawa (N42.12 E140.45), Zenikame (N41.74 E140.85), Adachi (N38.22 E140.65), and Nanashigure (N40.07 E141.11), and the back arc ones Hijiori (N38.61 E140.17) and Kanpu (N39.93 E139.88). The bulk magmatic H2O content (TH2O) is calculated from a mass balance of hydrogen isotopic ratios among three phases in a batch of magma; dissolved water in melt, excess H2O vapor, and hydrous phenocrysts such as amphiboles (Miyagi and Matsubaya, 2003). Since the amount of H2O in hydrous phenocryst is negligible, the bulk magmatic H2O content can be written as TH2O = (30 XD CD) / (15 - dT + dMW), where dMW is the measured hydrogen isotopic ratio of hydrous phenocrysts, XD is a melt fraction of magma, CD is a water concentration of the melt, and dT is hydrogen isotopic ratios of a bulk magma (assumed to be -50 per-mil). Both XD and CD are estimated from bulk rock chemistry of the sample using the MELTS program (Ghiorso and Sack, 1995). Hydrogen isotopic fractionation factors are assumed to be -15 and -30 per-mil for vapor and hydrous mineral, and vapor and silicate melt, respectively. There observed a clear difference among the H2O/K2O ratios of bulk magmas from the frontal and back arc volcanoes. For instance higher H2O/K2O wt ratios was observed in the frontal volcanoes (Nigorikawa 5.3, Zenikame 11-12, Adachi 8-10, and Nanashigure 4-18), while lower H2O/K2O wt ratios was observed in the back arc ones (Kanpu 0-2.5 and Hijiori 1.4). The lateral variation of H2O/K2O ratios infer the higher water flux through the frontal side of wedge mantle, which can be a potential cause of the

  9. Blood flow/pump rotation ratio as an artificial lung performance monitoring tool during extracorporeal respiratory support using centrifugal pumps

    PubMed Central

    Park, Marcelo; Mendes, Pedro Vitale; Hirota, Adriana Sayuri; dos Santos, Edzangela Vasconcelos; Costa, Eduardo Leite Vieira; Azevedo, Luciano Cesar Pontes

    2015-01-01

    Objective To analyze the correlations of the blood flow/pump rotation ratio and the transmembrane pressure, CO2 and O2 transfer during the extracorporeal respiratory support. Methods Five animals were instrumented and submitted to extracorporeal membrane oxygenation in a five-step protocol, including abdominal sepsis and lung injury. Results This study showed that blood flow/pump rotations ratio variations are dependent on extracorporeal membrane oxygenation blood flow in a positive logarithmic fashion. Blood flow/pump rotation ratio variations are negatively associated with transmembrane pressure (R2 = 0.5 for blood flow = 1500mL/minute and R2 = 0.4 for blood flow = 3500mL/minute, both with p < 0.001) and positively associated with CO2 transfer variations (R2 = 0.2 for sweep gas flow ≤ 6L/minute, p < 0.001, and R2 = 0.1 for sweep gas flow > 6L/minute, p = 0.006), and the blood flow/pump rotation ratio is not associated with O2 transfer variations (R2 = 0.01 for blood flow = 1500mL/minute, p = 0.19, and R2 = - 0.01 for blood flow = 3500 mL/minute, p = 0.46). Conclusion Blood flow/pump rotation ratio variation is negatively associated with transmembrane pressure and positively associated with CO2 transfer in this animal model. According to the clinical situation, a decrease in the blood flow/pump rotation ratio can indicate artificial lung dysfunction without the occurrence of hypoxemia. PMID:26340159

  10. Blood flow/pump rotation ratio as an artificial lung performance monitoring tool during extracorporeal respiratory support using centrifugal pumps.

    PubMed

    Park, Marcelo; Mendes, Pedro Vitale; Hirota, Adriana Sayuri; dos Santos, Edzangela Vasconcelos; Costa, Eduardo Leite Vieira; Azevedo, Luciano Cesar Pontes

    2015-01-01

    To analyze the correlations of the blood flow/pump rotation ratio and the transmembrane pressure, CO2 and O2 transfer during the extracorporeal respiratory support. Five animals were instrumented and submitted to extracorporeal membrane oxygenation in a five-step protocol, including abdominal sepsis and lung injury. This study showed that blood flow/pump rotations ratio variations are dependent on extracorporeal membrane oxygenation blood flow in a positive logarithmic fashion. Blood flow/pump rotation ratio variations are negatively associated with transmembrane pressure (R2 = 0.5 for blood flow = 1500mL/minute and R2 = 0.4 for blood flow = 3500mL/minute, both with p < 0.001) and positively associated with CO2 transfer variations (R2 = 0.2 for sweep gas flow ≤ 6L/minute, p < 0.001, and R2 = 0.1 for sweep gas flow > 6L/minute, p = 0.006), and the blood flow/pump rotation ratio is not associated with O2 transfer variations (R2 = 0.01 for blood flow = 1500mL/minute, p = 0.19, and R2 = - 0.01 for blood flow = 3500 mL/minute, p = 0.46). Blood flow/pump rotation ratio variation is negatively associated with transmembrane pressure and positively associated with CO2 transfer in this animal model. According to the clinical situation, a decrease in the blood flow/pump rotation ratio can indicate artificial lung dysfunction without the occurrence of hypoxemia.

  11. Effects of Al2O3 and CaO/SiO2 Ratio on Phase Equilbria in the ZnO-"FeO"-Al2O3-CaO-SiO2 System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-02-01

    The phase equilibria and liquidus temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2 system in equilibrium with metallic iron have been determined experimentally in the temperature range 1383 K to 1573 K (1150 °C to 1300 °C). The experimental conditions were selected to characterize lead blast furnace and imperial smelting furnace slags. The results are presented in a form of pseudoternary sections ZnO-"FeO"-(Al2O3 + CaO + SiO2) with fixed CaO/SiO2 and (CaO + SiO2)/Al2O3 ratios. It was found that wustite and spinel are the major primary phases in the composition range investigated. Effects of Al2O3 concentration as well as the CaO/SiO2 ratio on the primary phase field, the liquidus temperature, and the partitioning of ZnO between liquid and solid phases have been discussed for zinc-containing slags.

  12. Reconstructing the history of water ice formation from HDO/H2O and D2O/HDO ratios in protostellar cores

    NASA Astrophysics Data System (ADS)

    Furuya, K.; van Dishoeck, E. F.; Aikawa, Y.

    2016-02-01

    Recent interferometer observations have found that the D2O/HDO abundance ratio is higher than that of HDO/H2O by about one order of magnitude in the vicinity of low-mass protostar NGC 1333-IRAS 2A, where water ice has sublimated. Previous laboratory and theoretical studies show that the D2O/HDO ice ratio should be lower than the HDO/H2O ice ratio, if HDO and D2O ices are formed simultaneously with H2O ice. In this work, we propose that the observed feature, D2O/HDO > HDO/H2O, is a natural consequence of chemical evolution in the early cold stages of low-mass star formation as follows: 1) majority of oxygen is locked up in water ice and other molecules in molecular clouds, where water deuteration is not efficient; and 2) water ice formation continues with much reduced efficiency in cold prestellar/protostellar cores, where deuteration processes are highly enhanced as a result of the drop of the ortho-para ratio of H2, the weaker UV radiation field, etc. Using a simple analytical model and gas-ice astrochemical simulations, which traces the evolution from the formation of molecular clouds to protostellar cores, we show that the proposed scenario can quantitatively explain the observed HDO/H2O and D2O/HDO ratios. We also find that the majority of HDO and D2O ices are likely formed in cold prestellar/protostellar cores rather than in molecular clouds, where the majority of H2O ice is formed. This work demonstrates the power of the combination of the HDO/H2O and D2O/HDO ratios as a tool to reveal the past history of water ice formation in the early cold stages of star formation, and when the enrichment of deuterium in the bulk of water occurred. Further observations are needed to explore if the relation, D2O/HDO > HDO/H2O, is common in low-mass protostellar sources.

  13. Evaluation of the PaO2/FiO2 ratio after cardiac surgery as a predictor of outcome during hospital stay.

    PubMed

    Esteve, Francisco; Lopez-Delgado, Juan C; Javierre, Casimiro; Skaltsa, Konstantina; Carrio, Maria Ll; Rodríguez-Castro, David; Torrado, Herminia; Farrero, Elisabet; Diaz-Prieto, Antonio; Ventura, Josep Ll; Mañez, Rafael

    2014-09-26

    The arterial partial pressure of O2 and the fraction of inspired oxygen (PaO2/FiO2) ratio is widely used in ICUs as an indicator of oxygenation status. Although cardiac surgery and ICU scores can predict mortality, during the first hours after cardiac surgery few instruments are available to assess outcome. The aim of this study was to evaluate the usefulness of PaO2/FIO2 ratio to predict mortality in patients immediately after cardiac surgery. We prospectively studied 2725 consecutive cardiac surgery patients between 2004 and 2009. PaO2/FiO2 ratio was measured on admission and at 3 h, 6 h, 12 h and 24 h after ICU admission, together with clinical data and outcomes. All PaO2/FIO2 ratio measurements differed between survivors and non-survivors (p < 0.001). The PaO2/FIO2 at 3 h after ICU admission was the best predictor of mortality based on area under the curve (p < 0.001) and the optimum threshold estimation gave an optimal cut-off of 222 (95% Confidence interval (CI): 202-242), yielding three groups of patients: Group 1, with PaO2/FIO2 > 242; Group 2, with PaO2/FIO2 from 202 to 242; and Group 3, with PaO2/FIO2 < 202. Group 3 showed higher in-ICU mortality and ICU length of stay and Groups 2 and 3 also showed higher respiratory complication rates. The presence of a PaO2/FIO2 ratio < 202 at 3 h after admission was shown to be a predictor of in-ICU mortality (OR:1.364; 95% CI:1.212-1.625, p < 0.001) and of worse long-term survival (88.8% vs. 95.8%; Log rank p = 0.002. Adjusted Hazard ratio: 1.48; 95% CI:1.293-1.786; p = 0.004). A simple determination of PaO2/FIO2 at 3 h after ICU admission may be useful to identify patients at risk immediately after cardiac surgery.

  14. Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William

    2017-06-01

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O2NO, followed by the reaction NO + O3 → NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  15. Controlled Nitric Oxide Production via O(1D) + N2O Reactions for Use in Oxidation Flow Reactor Studies

    NASA Technical Reports Server (NTRS)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; hide

    2017-01-01

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO+NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D)+N2O->2NO, followed by the reaction NO+O3->NO2+O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D)+N2O reactions can be used to systematically vary the relative branching ratio of RO2 +NO reactions relative to RO2 +HO2 and/or RO2+RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO-3 ) reagent ion to detect gas-phase oxidation products of isoprene and -pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  16. Luminal flow regulates NO and O2− along the nephron

    PubMed Central

    Cabral, Pablo D.

    2011-01-01

    Urinary flow is not constant but in fact highly variable, altering the mechanical forces (shear stress, stretch, and pressure) exerted on the epithelial cells of the nephron as well as solute delivery. Nitric oxide (NO) and superoxide (O2−) play important roles in various processes within the kidney. Reductions in NO and increases in O2− lead to abnormal NaCl and water absorption and hypertension. In the last few years, luminal flow has been shown to be a regulator of NO and O2− production along the nephron. Increases in luminal flow enhance fluid, Na, and bicarbonate transport in the proximal tubule. However, we know of no reports directly addressing flow regulation of NO and O2− in this segment. In the thick ascending limb, flow-stimulated NO and O2− formation has been extensively studied. Luminal flow stimulates NO production by nitric oxide synthase type 3 and its translocation to the apical membrane in medullary thick ascending limbs. These effects are mediated by flow-induced shear stress. In contrast, flow-induced stretch and NaCl delivery stimulate O2− production by NADPH oxidase in this segment. The interaction between flow-induced NO and O2− is complex and involves more than one simply scavenging the other. Flow-induced NO prevents flow from increasing O2− production via cGMP-dependent protein kinase in thick ascending limbs. In macula densa cells, shear stress increases NO production and this requires that the primary cilia be intact. The role of luminal flow in NO and O2− production in the distal tubule is not known. In cultured inner medullary collecting duct cells, shear stress enhances nitrite accumulation, a measure of NO production. Although much progress has been made on this subject in the last few years, there are still many unanswered questions. PMID:21345976

  17. Effect of Initial FeO Content and CaO:SiO2 Ratio on the Reduction Smelting Kinetics of the CaO-SiO2-MgOsatd.-FeO Slag System

    NASA Astrophysics Data System (ADS)

    Kim, Jong Bae; Sohn, Il

    2018-02-01

    The effect of the initial FeO content and CaO:SiO2 ratio (CaO mass pct/SiO2 mass pct) on the reduction smelting of FeO with carbon flake addition is investigated in the CaO-MgOsatd.-SiO2-FeO slag system at 1823 K (1550 °C). Carbon rapidly reacted with FeO in the molten slag, causing both foaming and compositional changes in the slag. As FeO is reduced, the MgO saturation is modified, and solid precipitants, including MgO and other complex oxides, were observed, which significantly affected the slag properties, including the viscosity and foaming behavior. The solid-phase fraction and viscosity were estimated from changes in the measured FeO content over time using the thermochemical software FactSage. The iron recovery, which is distinguished from the amount of reduced Fe droplets, showed opposite behavior to the measured maximum foaming height and modified foaming index. According to the FeO mass transfer coefficient considering slag foaming at various initial FeO contents and CaO:SiO2 ratios, the reduction rate was optimal at higher initial FeO contents and a CaO:SiO2 ratio of 2.0, which did not correspond to the optimal iron recovery at an initial FeO content of 44 mass pct and above and a CaO:SiO2 ratio of 1.2. The results showed that slag foaming may increase the reduction kinetics, but the slag composition needs to be optimized for greater iron recovery.

  18. Controlled nitric oxide production via O( 1D)+N 2O reactions for use in oxidation flow reactor studies

    DOE PAGES

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; ...

    2017-06-22

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O 3) is photolyzed at 254 nm to produce O( 1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O 3 hinders the ability of oxidation flow reactors to simulate NO x-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NO x (NO+NO 2) to nitric acid (HNO 3), making it impossible to sustain NOmore » x at levels that are sufficient to compete with hydroperoxy (HO 2) radicals as a sink for organic peroxy (RO 2) radicals. We developed a new method that is well suited to the characterization of NO x-dependent SOA formation pathways in oxidation flow reactors. NO and NO 2 are produced via the reaction O( 1D) + N 2O2NO, followed by the reaction NO + O 3 → NO 2+O 2. Laboratory measurements coupled with photochemical model simulations suggest that O( 1D) + N 2O reactions can be used to systematically vary the relative branching ratio of RO 2 + NO reactions relative to RO 2 + HO 2 and/or RO 2 + RO 2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO 3 -) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NO x-influenced environments and in laboratory chamber experiments.« less

  19. Controlled nitric oxide production via O( 1D)+N 2O reactions for use in oxidation flow reactor studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O 3) is photolyzed at 254 nm to produce O( 1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O 3 hinders the ability of oxidation flow reactors to simulate NO x-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NO x (NO+NO 2) to nitric acid (HNO 3), making it impossible to sustain NOmore » x at levels that are sufficient to compete with hydroperoxy (HO 2) radicals as a sink for organic peroxy (RO 2) radicals. We developed a new method that is well suited to the characterization of NO x-dependent SOA formation pathways in oxidation flow reactors. NO and NO 2 are produced via the reaction O( 1D) + N 2O2NO, followed by the reaction NO + O 3 → NO 2+O 2. Laboratory measurements coupled with photochemical model simulations suggest that O( 1D) + N 2O reactions can be used to systematically vary the relative branching ratio of RO 2 + NO reactions relative to RO 2 + HO 2 and/or RO 2 + RO 2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO 3 -) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NO x-influenced environments and in laboratory chamber experiments.« less

  20. Remote sensing of potential lunar resources. 2: High spatial resolution mapping of spectral reflectance ratios and implications for nearside mare TiO2 content`

    NASA Technical Reports Server (NTRS)

    Melendrez, David E.; Johnson, Jeffrey R.; Larson, Stephen M.; Singer, Robert B.

    1994-01-01

    High spatial resolution maps illustrating variations in spectral reflectance 400/560 nm ratio values have been generated for the following mare regions: (1) the border between southern Mare Serenitatis and northern Mare Tranquillitatis (including the MS-2 standard area and Apollo 17 landing site), (2) central Mare Tranquillitatis, (3) Oceanus Procellarum near Seleucus, and (4) southern Oceanus Procellarum and Flamsteed. We have also obtained 320-1000 nm reflectance spectra of several sites relative to MS-2 to facilitate scaling of the images and provide additional information on surface composition. Inferred TiO2 abundances for these mare regions have been determined using an empirical calibration which relates the weight percent TiO2 in mature mare regolith to the observed 400/560 nm ratio. Mare areas with high TiO2 abundances are probably rich in ilmenite (FeTiO3) a potential lunar resource. The highest potential TiO2 concentrations we have identified in the nearside maria occur in central Mare Tranquillitatis. Inferred TiO2 contents for these areas are greater than 9 wt% and are spatially consistent with the highest-TiO2 regions mapped previously at lower spatial resolution. We note that the morphology of surface units with high 400/560 nm ratio values increases in complexity at higher spatial resolutions. Comparisons have been made with previously published geologic maps, Lunar Orbiter IV, and ground-based images, and some possible morphologic correlatins have been found between our mapped 400/560 nm ratio values and volcanic landforms such as lava flows, mare domes, and collapse pits.

  1. The influence of the Ar/O2 ratio on the electron density and electron temperature in microwave discharges

    NASA Astrophysics Data System (ADS)

    Espinho, S.; Hofmann, S.; Palomares, J. M.; Nijdam, S.

    2017-10-01

    The aim of this work is to study the properties of Ar-O2 microwave driven surfatron plasmas as a function of the Ar/O2 ratio in the gas mixture. The key parameters are the plasma electron density and electron temperature, which are estimated with Thomson scattering (TS) for O2 contents up to 50% of the total gas flow. A sharp drop in the electron density from {10}20 {{{m}}}-3 to approximately {10}18 {{{m}}}-3 is estimated as the O2 content in the gas mixture is increased up to 15%. For percentages of O2 lower than 10%, the electron temperature is estimated to be about 2-3 times higher than in the case of a pure argon discharge in the same conditions ({T}{{e}}≈ 1 eV) and gradually decreases as the O2 percentage is raised to 50%. However, for O2 percentages above 30%, the scattering spectra become Raman dominated, resulting in large uncertainties in the estimated electron densities and temperatures. The influence of photo-detached electrons from negative ions caused by the typical TS laser fluences is also likely to contribute to the uncertainty in the measured electron densities for high O2 percentages. Moreover, the detection limit of the system is reached for percentages of O2 higher than 25%. Additionally, both the electron density and temperature of microwave discharges with large Ar/O2 ratios are more sensitive to gas pressure variations.

  2. Effects of carbon sources and COD/N ratio on N2O emissions in subsurface flow constructed wetlands.

    PubMed

    Lyu, Wanlin; Huang, Lei; Xiao, Guangquan; Chen, Yucheng

    2017-12-01

    A set of constructed wetlands under two different carbon sources, namely, glucose (CW) and sodium acetate (YW), was established at a laboratory scale with influent COD/N ratios of 20:1, 10:1, 7:1, 4:1, and 0 to analyze the influence of carbon supply on nitrous oxide emissions. Results showed that the glucose systems generated higher N 2 O emissions than those of the sodium acetate systems. The higher amount of N 2 O-releasing fluxes in the CWs than in the YWs was consistent with the higher NO 2 - -N accumulation in the former than in the latter. Moreover, electron competition was tighter in the CWs and contributed to the incomplete denitrification with poor N 2 O production performance. Illumina MiSeq sequencing demonstrated that some denitrifying bacteria, such as Denitratisoma, Bacillus, and Zoogloea, were higher in the YWs than in the CWs. This result indicated that the carbon source is important in controlling N 2 O emissions in microbial communities. Copyright © 2017. Published by Elsevier Ltd.

  3. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere.

    PubMed

    Webster, Chris R; Mahaffy, Paul R; Flesch, Gregory J; Niles, Paul B; Jones, John H; Leshin, Laurie A; Atreya, Sushil K; Stern, Jennifer C; Christensen, Lance E; Owen, Tobias; Franz, Heather; Pepin, Robert O; Steele, Andrew; Achilles, Cherie; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F; Blanco Avalos, Juan J; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John; Cantor, Bruce; Caplinger, Michael; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie; de la Torre Juarez, Manuel; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette Malvitte, Alain; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F Javier; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Molina Jurado, Antonio; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Navarro López, Sara; Navarro-González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Nixon, Brian; Noe Dobrea, Eldar; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; de Pablo Hernández, Miguel Ángel; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Robertson, Kevin; Rodriguez Manfredi, José Antonio; Romeral-Planelló, Julio J; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne; Sebastian Martinez, Eduardo; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sobrón Sánchez, Pablo; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Stein, Thomas; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Stolper, Ed; Sucharski, Bob; Sullivan, Rob; Summons, Roger; Sumner, Dawn; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Torres Redondo, Josefina; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2013-07-19

    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

  4. Nafion-coating of the electrodes improves the flow-stability of the Ag/SiO2/Ag2O electroosmotic pump.

    PubMed

    Shin, Woonsup; Zhu, Enhua; Nagarale, Rajaram Krishna; Kim, Chang Hwan; Lee, Jong Myung; Shin, Samuel Jaeho; Heller, Adam

    2011-06-15

    When a current or a voltage is applied across the ceramic membrane of the nongassing Ag/Ag(2)O-SiO(2)-Ag/Ag(2)O pump, protons produced in the anodic reaction 2Ag(s) + H(2)O → Ag(2)O(s) + 2H(+) + 2e(-) are driven to the cathode, where they are consumed by the reaction Ag(2)O(s) + H(2)O + 2e(-) → 2Ag(s) + 2 OH(-). The flow of water is induced by momentum transfer from the electric field-driven proton-sheet at the surface of the ceramic membrane. About 10(4) water molecules flowed per reacted electron. Because dissolved ions decrease the field at the membrane surface, the flow decreases upon increasing the ionic strength. For this reason Ag(+) ions introduced through the anodic reaction and by dissolution of Ag(2)O decrease the flow. Their accumulation is reduced by applying Nafion-films to the electrodes. The 20 μL min(-1) flow rate of 6 mm i.d. pumps with Nafion coated electrodes operate daily for 5 min at 1 V for 1 month, for 70 h when the pump is pulsed for 30 s every 30 min, and for 2 h when operating continuously.

  5. Antimicrobial activity of ZnO-TiO2 nanomaterials synthesized from three different precursors of ZnO: influence of ZnO/TiO2 weight ratio.

    PubMed

    Daou, Ikram; Moukrad, Najia; Zegaoui, Omar; Rhazi Filali, Fouzia

    2018-03-01

    In this study, ZnO-TiO 2 nanoparticles were synthesized from three different precursors for ZnO (zinc acetate di-hydrate, zinc nitrate hexahydrate and zinc sulfate heptahydrate) and titanium (IV) isopropoxide for TiO 2 . The prepared nanomaterials were calcined at 500 °C for 3 h and characterized by various physicochemical techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy, combined with energy dispersive X-ray spectroscopy (TEM-EDS). The obtained results showed that the crystalline structure, size and morphology of the ZnO-TiO 2 nanoparticles are strongly influenced by the nature of the precursor of ZnO, as well as the ZnO/TiO 2 weight ratio. The antibacterial and antifungal activities of the synthesized nanomaterials were evaluated, in the dark, against five multi-resistant of Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella Paratyphi A) bacteria and a fungus (Candida albicans), which are pathogenic for humans. The obtained results showed that pure TiO 2 anatase is inactive against the tested strains, while the addition of ZnO to TiO 2 improves noticeably the effectiveness of TiO 2 nanoparticles, depending on the nature of the precursor of ZnO and the ZnO/TiO 2 weight ratio.

  6. Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO2/Al2O3 ratio.

    PubMed

    Cheng, Zhi-Lin; Li, Yan-Xiang; Liu, Zan

    2018-02-01

    The exploration of the relationship between zeolite composition and adsorption performance favored to facilitate its better application in removal of the hazardous substances from water. The adsorption capacity of rhodamine B (RB) onto Beta zeolite from aqueous solution was reported. The relationship between SiO 2 /Al 2 O 3 ratio and adsorption capacity of Beta zeolite for RB was explored. The structure and physical properties of Beta zeolites with various SiO 2 /Al 2 O 3 ratios were determined by XRD, FTIR, TEM, BET, UV-vis and so on characterizations. The adsorption behavior of rhodamine B onto Beta zeolite matched to Langmuir adsorption isotherm and more suitable description for the adsorption kinetics was a pseudo-second-order reaction model. The maximum adsorption capacity of the as-prepared Beta zeolite with SiO 2 /Al 2 O 3 = 18.4 was up to 27.97mg/g. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Alterations in airway microbiota in patients with PaO2/FiO2 ratio ≤ 300 after burn and inhalation injury.

    PubMed

    Walsh, Dana M; McCullough, Shaun D; Yourstone, Scott; Jones, Samuel W; Cairns, Bruce A; Jones, Corbin D; Jaspers, Ilona; Diaz-Sanchez, David

    2017-01-01

    Injury to the airways after smoke inhalation is a major mortality risk factor in victims of burn injuries, resulting in a 15-45% increase in patient deaths. Damage to the airways by smoke may induce acute respiratory distress syndrome (ARDS), which is partly characterized by hypoxemia in the airways. While ARDS has been associated with bacterial infection, the impact of hypoxemia on airway microbiota is unknown. Our objective was to identify differences in microbiota within the airways of burn patients who develop hypoxemia early after inhalation injury and those that do not using next-generation sequencing of bacterial 16S rRNA genes. DNA was extracted from therapeutic bronchial washings of 48 patients performed within 72 hours of hospitalization for burn and inhalation injury at the North Carolina Jaycee Burn Center. DNA was prepared for sequencing using a novel molecule tagging method and sequenced on the Illumina MiSeq platform. Bacterial species were identified using the MTToolbox pipeline. Patients with hypoxemia, as indicated by a PaO2/FiO2 ratio ≤ 300, had a 30% increase in abundance of Streptococcaceae and Enterobacteriaceae and 84% increase in Staphylococcaceae as compared to patients with a PaO2/FiO2 ratio > 300. Wilcoxon rank-sum test identified significant enrichment in abundance of OTUs identified as Prevotella melaninogenica (p = 0.042), Corynebacterium (p = 0.037) and Mogibacterium (p = 0.048). Linear discriminant effect size analysis (LefSe) confirmed significant enrichment of Prevotella melaninognica among patients with a PaO2/FiO2 ratio ≤ 300 (p<0.05). These results could not be explained by differences in antibiotic treatment. The airway microbiota following burn and inhalation injury is altered in patients with a PaO2/FiO2 ratio ≤ 300 early after injury. Enrichment of specific taxa in patients with a PaO2/FiO2 ratio ≤ 300 may indicate airway environment and patient changes that favor these microbes. Longitudinal studies are necessary to

  8. CFD Assessment of Orifice Aspect Ratio and Mass Flow Ratio on Jet Mixing in Rectangular Ducts

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Holdeman, J. D.

    1994-01-01

    Isothermal CFD analysis was performed on axially opposed rows of jets mixing with cross flow in a rectangular duct. Laterally, the jets' centerlines were aligned with each other on the top and bottom walls. The focus of this study was to characterize the effects of orifice aspect ratio and jet-to-mainstream mass flow ratio on jet penetration and mixing. Orifice aspect ratios (L/W) of 4-to-1, 2-to-1, and 1-to-1, along with circular holes, were parametrically analyzed. Likewise, jet-to-mainstream mass flow ratios (MR) of 2.0, 0.5, and 0.25 were systematically investigated. The jet-to-mainstream momentum-flux ratio (J) was maintained at 36 for all cases, and the orifice spacing-to-duct height (S/H) was varied until optimum mixing was attained for each configuration. The numerical results showed that orifice aspect ratio (and likewise orifice blockage) had little effect on jet penetration and mixing. Based on mixing characteristics alone, the 4-to-1 slot was comparable to the circular orifice. The 4-to-1 slot has a smaller jet wake which may be advantageous for reducing emissions. However, the axial length of a 4-to-1 slot may be prohibitively long for practical application, especially for MR of 2.0. The jet-to-mainstream mass flow ratio had a more significant effect on jet penetration and mixing. For a 4-to-1 aspect ratio orifice, the design correlating parameter for optimum mixing (C = (S/H)(sq. root J)) varied from 2.25 for a mass flow ratio of 2.0 to 1.5 for a mass flow ratio of 0.25.

  9. Systematic Variations in CO2/H2O Ice Abundance Ratios in Nearby Galaxies Found with AKARI Near-infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamagishi, M.; Kaneda, H.; Ishihara, D.; Oyabu, S.; Onaka, T.; Shimonishi, T.; Suzuki, T.

    2015-07-01

    We report CO2/H2O ice abundance ratios in seven nearby star-forming galaxies based on the AKARI near-infrared (2.5-5.0 μm) spectra. The CO2/H2O ice abundance ratios show clear variations between 0.05 and 0.2 with the averaged value of 0.14 ± 0.01. The previous study on M82 revealed that the CO2/H2O ice abundance ratios strongly correlate with the intensity ratios of the hydrogen recombination Brα line to the polycyclic aromatic hydrocarbon (PAH) 3.3 μm feature. In the present study, however, we find no correlation for the seven galaxies as a whole due to systematic differences in the relation between CO2/H2O ice abundance and Brα/PAH 3.3 μm intensity ratios from galaxy to galaxy. This result suggests that there is another parameter that determines the CO2/H2O ice abundance ratios in a galaxy in addition to the Brα/PAH 3.3 μm ratios. We find that the CO2/H2O ice abundance ratios positively correlate with the specific star formation rates of the galaxies. From these results, we conclude that CO2/H2O ice abundance ratios tend to be high in young star-forming galaxies.

  10. An improved CeO2 method for high-precision measurements of 17O/16O ratios for atmospheric carbon dioxide.

    PubMed

    Mahata, Sasadhar; Bhattacharya, Sourandra K; Wang, Chung-Ho; Liang, Mao-Chang

    2012-09-15

    The oxygen isotopic composition of carbon dioxide originating at the Earth's surface is modified in the stratosphere by interaction with ozone which has anomalous oxygen isotope ratio (Δ(17)O = 1000 * ln(1 + δ(17)O/1000) - 0.522 * 1000 * ln (1 + δ(18)O/1000) >0). The inherited anomaly provides a powerful tracer for studying biogeochemical cycles involving CO(2). However, the existing methods are either too imprecise or have difficulty in determining the small Δ(17)O variations found in the tropospheric CO(2). In this study an earlier published CeO(2) and CO(2) exchange method has been modified and improved for measuring the Δ(17)O values of atmospheric carbon dioxide with high precision. The CO(2) fraction from air samples was separated by cryogenic means and purified using gas chromatography. This CO(2) was first analyzed in an isotope ratio mass spectrometer, then artificially equilibrated with hot CeO(2) to alter its oxygen isotopes mass-dependently and re-analyzed. From these data the (17)O/(16)O and (18)O/(16)O ratios were calculated and the Δ(17)O value was determined. The validity of the method was established in several tests by using artificially prepared CO(2) with zero and non-zero Δ(17)O values. The published value of the CO(2)-H(2) O equilibrium slope was also reproduced. The CO(2)-CeO(2) equilibration method has been improved to measure the oxygen isotope anomaly (Δ(17)O value) of atmospheric CO(2) with an analytical precision of ±0.12‰ (2σ). Copyright © 2012 John Wiley & Sons, Ltd.

  11. Effect of the Molar Ratio of B2O3 to Bi2O3 in Al Paste with Bi2O3-B2O3-ZnO Glass on Screen Printed Contact Formation and Si Solar Cell Performance

    NASA Astrophysics Data System (ADS)

    Kim, Bit-Na; Kim, Hyeong Jun; Chang, Hyo Sik; Hong, Hyun Seon; Ryu, Sung-Soo; Lee, Heon

    2013-10-01

    In this study, eco-friendly Pb-free Bi2O3-B2O3-ZnO glass frits were chosen as an inorganic additive for the Al paste used in Si solar cells. The effects of the molar ratio of Bi2O3 to B2O3 in the glass composition on the electrical resistance of the Al electrode and on the cell performance were investigated. The results showed that as the molar ratio of Bi2O3 to B2O3 increased, the glass transition temperature and softening temperature decreased because of the reduced glass viscosity. In Al screen-printed Si solar cells, as the molar ratio of Bi2O3 to B2O3 increased, the sheet electrical resistance of the Al electrode decreased and the cell efficiency increased. The uniformity and thickness of the back-surface field was significantly influenced by the glass composition.

  12. Alterations in airway microbiota in patients with PaO2/FiO2 ratio ≤ 300 after burn and inhalation injury

    PubMed Central

    McCullough, Shaun D.; Yourstone, Scott; Jones, Samuel W.; Cairns, Bruce A.; Jones, Corbin D.; Jaspers, Ilona; Diaz-Sanchez, David

    2017-01-01

    Background Injury to the airways after smoke inhalation is a major mortality risk factor in victims of burn injuries, resulting in a 15–45% increase in patient deaths. Damage to the airways by smoke may induce acute respiratory distress syndrome (ARDS), which is partly characterized by hypoxemia in the airways. While ARDS has been associated with bacterial infection, the impact of hypoxemia on airway microbiota is unknown. Our objective was to identify differences in microbiota within the airways of burn patients who develop hypoxemia early after inhalation injury and those that do not using next-generation sequencing of bacterial 16S rRNA genes. Results DNA was extracted from therapeutic bronchial washings of 48 patients performed within 72 hours of hospitalization for burn and inhalation injury at the North Carolina Jaycee Burn Center. DNA was prepared for sequencing using a novel molecule tagging method and sequenced on the Illumina MiSeq platform. Bacterial species were identified using the MTToolbox pipeline. Patients with hypoxemia, as indicated by a PaO2/FiO2 ratio ≤ 300, had a 30% increase in abundance of Streptococcaceae and Enterobacteriaceae and 84% increase in Staphylococcaceae as compared to patients with a PaO2/FiO2 ratio > 300. Wilcoxon rank-sum test identified significant enrichment in abundance of OTUs identified as Prevotella melaninogenica (p = 0.042), Corynebacterium (p = 0.037) and Mogibacterium (p = 0.048). Linear discriminant effect size analysis (LefSe) confirmed significant enrichment of Prevotella melaninognica among patients with a PaO2/FiO2 ratio ≤ 300 (p<0.05). These results could not be explained by differences in antibiotic treatment. Conclusions The airway microbiota following burn and inhalation injury is altered in patients with a PaO2/FiO2 ratio ≤ 300 early after injury. Enrichment of specific taxa in patients with a PaO2/FiO2 ratio ≤ 300 may indicate airway environment and patient changes that favor these microbes

  13. Determination of the ortho to para ratio of H2Cl+ and H2O+ from submillimeter observations.

    PubMed

    Gerin, Maryvonne; de Luca, Massimo; Lis, Dariusz C; Kramer, Carsten; Navarro, Santiago; Neufeld, David; Indriolo, Nick; Godard, Benjamin; Le Petit, Franck; Peng, Ruisheng; Phillips, Thomas G; Roueff, Evelyne

    2013-10-03

    The opening of the submillimeter sky with the Herschel Space Observatory has led to the detection of new interstellar molecular ions, H2O(+), H2Cl(+), and HCl(+), which are important intermediates in the synthesis of water vapor and hydrogen chloride. In this paper, we report new observations of H2O(+) and H2Cl(+) performed with both Herschel and ground-based telescopes, to determine the abundances of their ortho and para forms separately and derive the ortho-to-para ratio. At the achieved signal-to-noise ratio, the observations are consistent with an ortho-to-para ratios of 3 for both H2O(+) and H2Cl(+), in all velocity components detected along the lines-of-sight to the massive star-forming regions W31C and W49N. We discuss the mechanisms that contribute to establishing the observed ortho-to-para ratio and point to the need for a better understanding of chemical reactions, which are important for establishing the H2O(+) and H2Cl(+) ortho-to-para ratios.

  14. Annual mean mixing ratios of N2, Ar, O2, and CO in the martian atmosphere

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2017-09-01

    The precise mixing ratios of N2, Ar, O2, and CO measured by the MSL Curiosity quadrupole mass spectrometer must be corrected for the seasonal variations of the atmospheric pressure to reproduce annual mean mixing ratios on Mars. The corrections are made using measurements for the first year of the Viking Landers 1 and 2 and the Mars Climate Database data. The mean correction factor is 0.899 ± 0.006 resulting in annual mean mixing ratios of (1.83 ± 0.03)% for N2, (1.86 ± 0.02)% for Ar, (1.56 ± 0.06) × 10-3 for O2, and 673 ± 2.6 ppm for CO. The O2 mixing ratio agrees with the Herschel value within its uncertainty, the ground-based observations corrected for the dust extinction, and photochemical models by Nair et al. (1994) and Krasnopolsky (2010). The CO mixing ratio is in excellent agreement with the MRO/CRISM value of 700 ppm and with 667, 693, and 684 ppm recently observed at LS = 60, 89, and 110° and corrected to the annual mean conditions. Lifetimes of N2 and Ar are very long in the martian atmosphere, and differences between the MSL and Viking data on these species cannot be attributed to their variations.

  15. A reevaluation of spectral ratios for lunar mare TiO2 mapping

    NASA Technical Reports Server (NTRS)

    Johnson, Jeffrey R.; Larson, Stephen M.; Singer, Robert B.

    1991-01-01

    The empirical relation established by Charette et al. (1974) between the 400/560-nm spectral ratio of mature mare soils and weight percent TiO2 has been used extensively to map titanium content in the lunar maria. Relative reflectance spectra of mare regions show that a reference wavelength further into the near-IR, e.g., above 700 nm, could be used in place of the 560-nm band to provide greater contrast (a greater range of ratio values) and hence a more sensitive indicator of titanium content. An analysis of 400/730-nm ratio values derived from both laboratory and telescopic relative reflectance spectra suggests that this ratio provides greater sensitivity to TiO2 content than the 400/560-nm ratio. The increased range of ratio values is manifested in higher contrast 400/730-nm ratio images compared to 400/560-nm ratio images. This potential improvement in sensivity encourages a reevaluation of the original Charette et al. (1974) relation using the 400/730-nm ratio.

  16. The effect of CaO/SiO2 molar ratio of CaO-Al2O3-SiO2 glasses on their structure and reactivity in alkali activated system

    NASA Astrophysics Data System (ADS)

    Kucharczyk, Sylwia; Sitarz, Maciej; Zajac, Maciej; Deja, Jan

    2018-04-01

    The influence of CaO/SiO2 molar ratio of calcium aluminosilicate glasses on resulting structure and reactivity was investigated. Chemical compositions of glasses were chosen to mimic the composition of the fly ash and slag amorphous phase. Understanding the reactivity of these materials is of high importance allowing further development of the composite cements to limit the environmental footprint of cement industry. Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy were employed to examine the structure of glasses. Reactivity of the glasses was analyzed on paste samples after 1, 2, 7, 28 and 90 days of curing by means of thermogravimetry (TGA), X-ray diffraction (XRD) and FTIR. Spectroscopic results emphasize dependence of the structure on the chemical composition of the glasses. The higher CaO/SiO2 the more depolymerized the glass network is, though there is no direct correlation with the reactivity. Significant differences in reactivity is observed primarily between the glasses of peraluminous (CaO/Al2O3 < 1) and percalcic region (CaO/Al2O3 > 1). Amongst the pastes made of glasses of percalcic region a higher degree of reaction at later ages is observed for the paste containing glass of lower CaO/SiO2 molar ratio. This is due to both degree of depolimerization and the nature of these glasses (pozzolanic and hydraulic materials). No difference of degree of reaction has been observed within the glasses of CaO/SiO2 lower than 1.

  17. The effect of CaO/SiO2 molar ratio of CaO-Al2O3-SiO2 glasses on their structure and reactivity in alkali activated system.

    PubMed

    Kucharczyk, Sylwia; Sitarz, Maciej; Zajac, Maciej; Deja, Jan

    2018-04-05

    The influence of CaO/SiO 2 molar ratio of calcium aluminosilicate glasses on resulting structure and reactivity was investigated. Chemical compositions of glasses were chosen to mimic the composition of the fly ash and slag amorphous phase. Understanding the reactivity of these materials is of high importance allowing further development of the composite cements to limit the environmental footprint of cement industry. Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy were employed to examine the structure of glasses. Reactivity of the glasses was analyzed on paste samples after 1, 2, 7, 28 and 90days of curing by means of thermogravimetry (TGA), X-ray diffraction (XRD) and FTIR. Spectroscopic results emphasize dependence of the structure on the chemical composition of the glasses. The higher CaO/SiO 2 the more depolymerized the glass network is, though there is no direct correlation with the reactivity. Significant differences in reactivity is observed primarily between the glasses of peraluminous (CaO/Al 2 O 3 <1) and percalcic region (CaO/Al 2 O 3 >1). Amongst the pastes made of glasses of percalcic region a higher degree of reaction at later ages is observed for the paste containing glass of lower CaO/SiO 2 molar ratio. This is due to both degree of depolimerization and the nature of these glasses (pozzolanic and hydraulic materials). No difference of degree of reaction has been observed within the glasses of CaO/SiO 2 lower than 1. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Annual mean mixing ratios of N2, Ar, O2, and CO in the martian atmosphere

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V.

    2017-09-01

    The precise mixing ratios of N2, Ar, O2, and CO measured by the MSL Curiosity quadrupole mass spectrometer must be corrected for the seasonal variations of the atmospheric pressure to reproduce annual mean mixing ratios on Mars. The corrections are made using measurements the Viking Landers and the Mars Climate Database data. The mean correction factor is 0.899 ± 0.006 resulting in annual mean mixing ratios of (1.83 ± 0.03)% for N2, (1.86 ± 0.02)% for Ar, (1.56 ± 0.06)×10-3 for O2, and 673 ± 2.6 ppm for CO. The O2 mixing ratio agrees with the Herschel value within its uncertainty, the ground-based observations corrected for the dust extinction, and photochemical models by Nair et al. (1994) and Krasnopolsky (2010). The CO mixing ratio is in excellent agreement with the MRO/CRISM value of 700 ppm and with 667, 693, and 684 ppm recently observed at LS = 60, 89, and 110° and corrected to the annual mean conditions. Lifetimes of N2 and Ar are very long in the martian atmosphere, and differences between the MSL and Viking data on these species cannot be attributed to their variations.

  19. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils

    PubMed Central

    Qu, Zhi; Wang, Jingguo; Almøy, Trygve; Bakken, Lars R

    2014-01-01

    China is the world's largest producer and consumer of fertilizer N, and decades of overuse has caused nitrate leaching and possibly soil acidification. We hypothesized that this would enhance the soils' propensity to emit N2O from denitrification by reducing the expression of the enzyme N2O reductase. We investigated this by standardized oxic/anoxic incubations of soils from five long-term fertilization experiments in different regions of China. After adjusting the nitrate concentration to 2 mM, we measured oxic respiration (R), potential denitrification (D), substrate-induced denitrification, and the denitrification product stoichiometry (NO, N2O, N2). Soils with a history of high fertilizer N levels had high N2O/(N2O+N2) ratios, but only in those field experiments where soil pH had been lowered by N fertilization. By comparing all soils, we found a strong negative correlation between pH and the N2O/(N2O+N2) product ratio (r2 = 0.759, P < 0.001). In contrast, the potential denitrification (D) was found to be a linear function of oxic respiration (R), and the ratio D/R was largely unaffected by soil pH. The immediate effect of liming acidified soils was lowered N2O/(N2O+N2) ratios. The results provide evidence that soil pH has a marginal direct effect on potential denitrification, but that it is the master variable controlling the percentage of denitrified N emitted as N2O. It has been known for long that low pH may result in high N2O/(N2O+N2) product ratios of denitrification, but our documentation of a pervasive pH-control of this ratio across soil types and management practices is new. The results are in good agreement with new understanding of how pH may interfere with the expression of N2O reductase. We argue that the management of soil pH should be high on the agenda for mitigating N2O emissions in the future, particularly for countries where ongoing intensification of plant production is likely to acidify the soils. PMID:24249526

  20. How shear increments affect the flow production branching ratio in CSDX

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Diamond, P. H.

    2018-06-01

    The coupling of turbulence-driven azimuthal and axial flows in a linear device absent magnetic shear (Controlled Shear Decorrelation Experiment) is investigated. In particular, we examine the apportionment of Reynolds power between azimuthal and axial flows, and how the azimuthal flow shear affects axial flow generation and saturation by drift wave turbulence. We study the response of the energy branching ratio, i.e., ratio of axial and azimuthal Reynolds powers, PzR/PyR , to incremental changes of azimuthal and axial flow shears. We show that increasing azimuthal flow shear decreases the energy branching ratio. When axial flow shear increases, this ratio first increases but then decreases to zero. The axial flow shear saturates below the threshold for parallel shear flow instability. The effects of azimuthal flow shear on the generation and saturation of intrinsic axial flows are analyzed. Azimuthal flow shear slows down the modulational growth of the seed axial flow shear, and thus reduces intrinsic axial flow production. Azimuthal flow shear reduces both the residual Reynolds stress (of axial flow, i.e., ΠxzR e s ) and turbulent viscosity ( χzDW ) by the same factor |⟨vy⟩'|-2Δx-2Ln-2ρs2cs2 , where Δx is the distance relative to the reference point where ⟨vy⟩=0 in the plasma frame. Therefore, the stationary state axial flow shear is not affected by azimuthal flow shear to leading order since ⟨vz⟩'˜ΠxzR e s/χzDW .

  1. The influence of ZnO-SnO2 nanoparticles and activated carbon on the photocatalytic degradation of toluene using continuous flow mode.

    PubMed

    Rangkooy, Hossein Ali; Tanha, Fatemeh; Jaafarzadeh, Neamat; Mohammadbeigi, Abolfazl

    2017-01-01

    The present study examined the gas-phase photocatalytic degradation of toluene using ZnO-SnO 2 nanocomposite supported on activated carbon in a photocatalytic reactor. Toluene was selected as a model pollutant from volatile organic compounds to determine the pathway of photocatalytic degradation and the factors influencing this degradation. The ZnO-SnO 2 nanocomposite was synthesized through co-precipitation method in a ratio of 2:1 and then supported on activated carbon. The immobilization of ZnO-SnO 2 nanocomposite on activated carbon was determined by the surface area and scanning electron micrograph technique proposed by Brunauer, Emmett, and Teller. The laboratory findings showed that the highest efficiency was 40% for photocatalytic degradation of toluene. The results also indicated that ZnO-SnO 2 nano-oxides immobilization on activated carbon had a synergic effect on photocatalytic degradation of toluene. Use of a hybrid photocatalytic system (ZnO/SnO 2 nano coupled oxide) and application of absorbent (activated carbon) may be efficient and effective technique for refinement of toluene from air flow.

  2. The influence of ZnO-SnO2 nanoparticles and activated carbon on the photocatalytic degradation of toluene using continuous flow mode

    PubMed Central

    Rangkooy, Hossein Ali; Tanha, Fatemeh; Jaafarzadeh, Neamat; Mohammadbeigi, Abolfazl

    2017-01-01

    The present study examined the gas-phase photocatalytic degradation of toluene using ZnO-SnO2 nanocomposite supported on activated carbon in a photocatalytic reactor. Toluene was selected as a model pollutant from volatile organic compounds to determine the pathway of photocatalytic degradation and the factors influencing this degradation. The ZnO-SnO2 nanocomposite was synthesized through co-precipitation method in a ratio of 2:1 and then supported on activated carbon. The immobilization of ZnO-SnO2 nanocomposite on activated carbon was determined by the surface area and scanning electron micrograph technique proposed by Brunauer, Emmett, and Teller. The laboratory findings showed that the highest efficiency was 40% for photocatalytic degradation of toluene. The results also indicated that ZnO-SnO2 nano-oxides immobilization on activated carbon had a synergic effect on photocatalytic degradation of toluene. Use of a hybrid photocatalytic system (ZnO/SnO2 nano coupled oxide) and application of absorbent (activated carbon) may be efficient and effective technique for refinement of toluene from air flow. PMID:29497487

  3. The effect of Cu/Zn molar ratio on CO{sub 2} hydrogenation over Cu/ZnO/ZrO{sub 2}/Al{sub 2}O{sub 3} catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaharun, Salina, E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Shaharun, Maizatul S., E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Taha, Mohd F., E-mail: faisalt@petronas.com.my

    2014-10-24

    Catalytic hydrogenation of carbon dioxide (CO{sub 2}) to methanol is an attractive way to recycle and utilize CO{sub 2}. A series of Cu/ZnO/Al{sub 2}O{sub 3}/ZrO{sub 2} catalysts (CZAZ) containing different molar ratios of Cu/Zn were prepared by the co-precipitation method and investigated in a stirred slurry autoclave system. The catalysts were characterized by temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX), X-ray diffraction (XRD) and N{sub 2} adsorption-desorption. Higher surface area, SA{sub BET} values (42.6–59.9 m{sup 2}/g) are recorded at low (1) and high (5) Cu/Zn ratios with the minimum value of 35.71 m{sup 2}/g found formore » a Cu/Zn of 3. The reducibility of the metal oxides formed after calcination of catalyst samples was also affected due to change in metal-support interaction. At a low reaction temperature of 443 K, total gas pressure of 3.0 MPa and 0.1 g/mL of the CZAZ catalyst, the selectivity to methanol decreased as the Cu/Zn molar ratio increased, and the maximum selectivity of 67.73 was achieved at Cu/Zn molar ratio of 1. With a reaction time of 3h, the best performing catalyst was CZAZ75 with Cu/Zn molar ratio of 5 giving methanol yield of 79.30%.« less

  4. SYSTEMATIC VARIATIONS IN CO{sub 2}/H{sub 2}O ICE ABUNDANCE RATIOS IN NEARBY GALAXIES FOUND WITH AKARI NEAR-INFRARED SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamagishi, M.; Kaneda, H.; Ishihara, D.

    2015-07-01

    We report CO{sub 2}/H{sub 2}O ice abundance ratios in seven nearby star-forming galaxies based on the AKARI near-infrared (2.5–5.0 μm) spectra. The CO{sub 2}/H{sub 2}O ice abundance ratios show clear variations between 0.05 and 0.2 with the averaged value of 0.14 ± 0.01. The previous study on M82 revealed that the CO{sub 2}/H{sub 2}O ice abundance ratios strongly correlate with the intensity ratios of the hydrogen recombination Brα line to the polycyclic aromatic hydrocarbon (PAH) 3.3 μm feature. In the present study, however, we find no correlation for the seven galaxies as a whole due to systematic differences in themore » relation between CO{sub 2}/H{sub 2}O ice abundance and Brα/PAH 3.3 μm intensity ratios from galaxy to galaxy. This result suggests that there is another parameter that determines the CO{sub 2}/H{sub 2}O ice abundance ratios in a galaxy in addition to the Brα/PAH 3.3 μm ratios. We find that the CO{sub 2}/H{sub 2}O ice abundance ratios positively correlate with the specific star formation rates of the galaxies. From these results, we conclude that CO{sub 2}/H{sub 2}O ice abundance ratios tend to be high in young star-forming galaxies.« less

  5. Method for measuring changes in the atmospheric O2/N2 ratio by a gas chromatograph equipped with a thermal conductivity detector

    NASA Astrophysics Data System (ADS)

    Tohjima, Yasunori

    2000-06-01

    We present a method for measuring changes in the atmospheric O2/N2 ratio based on data from a gas chromatograph (GC) equipped with a thermal conductivity detector (TCD). In this method, O2 and N2 in an air sample are separated on a column filled with molecular sieve 5A with H2 carrier gas. Since the separated O2 includes Ar, which has a retention time similar to that of O2, the (O2+Ar)/N2 ratio is actually measured. The change in the measured (O2+Ar)/N2 ratio can be easily converted to that in the O2/N2 ratio with a very small error based on the fact that the atmospheric Ar/N2 ratio is almost constant. The improvements to achieve the high-precision measurement include stabilization of the pressure at the GC column head and at the outlets of the TCD and the sample loop. Additionally, the precision is improved statistically by repeating alternate analyses of sample and a reference gas. The standard deviation of the replicate cycles of reference and sample analyses is about 18 per meg (corresponding to 3.8 parts per million (ppm) O2 in air). This means that the standard error is about 7 per meg (1.5 ppm O2 in air) for seven cycles of alternate analyses, which takes about 70 min. The response of this method is likely to have a 2% nonlinearity. Ambient air samples are collected under pressure in glass flasks equipped with two stopcocks sealed by Viton O-rings at both ends. Pressure depletion in the flask during the O2/N2 measurement does not cause any detectable change in the O2/N2 ratio, but the O2/N2 ratio in the flask was found to gradually decrease during the storage period. We also present preliminary results from air samples collected at Hateruma Island (latitude 24°03'N, longitude 123°49') from July 1997 through March 1999. The observed O2/N2 ratios clearly show a seasonal variation, increasing in spring and summer and decreasing in autumn and winter.

  6. SpO2/FiO2 ratio on hospital admission is an indicator of early acute respiratory distress syndrome development among patients at risk.

    PubMed

    Festic, Emir; Bansal, Vikas; Kor, Daryl J; Gajic, Ognjen

    2015-05-01

    Oxygen saturation to fraction of inspired oxygen ratio (SpO(2)/FiO(2)) has been validated as a surrogate marker for partial pressure of oxygen to fraction of inspired oxygen ratio among mechanically ventilated patients with acute respiratory distress syndrome (ARDS). The validity of SpO(2)/FiO(2) measurements in predicting ARDS has not been studied. Recently, a Lung Injury Prediction Score (LIPS) has been developed to help identify patients at risk of developing ARDS. This was a secondary analysis of the LIPS-1 cohort. A multivariate logistic regression included all established variables for LIPS, Acute Physiology and Chronic Health Evaluation 2, age, and comorbid conditions that could affect SpO(2)/FiO(2). The primary outcome was development of ARDS in the hospital. The secondary outcomes included hospital mortality, hospital day of ARDS development, and hospital day of death. Of the 5584 patients, we evaluated all 4646 with recorded SpO(2)/FiO(2) values. Median SpO(2)/FiO(2) in those who did and did not develop ARDS was 254 (100, 438) and 452 (329, 467), respectively. There was a significant association between SpO(2)/FiO(2) and ARDS (P ≤ .001). The SpO(2)/FiO(2) was found to be an independent predictor of ARDS in a "dose-dependent" manner; for SpO(2)/FiO(2) < 100--odds ratios (OR) 2.49 (1.69-3.64, P < .001), for SpO(2)/FiO(2) 100 < 200--OR 1.75 (1.16-2.58, P = .007), and for SpO(2)/FiO(2) 200 < 300--OR 1.62 (1.06-2.42, P = .025). The discriminatory characteristics of the multivariable model and SpO2/FiO2 as a single variable demonstrated area under the curve (AUC) of 0.81 and AUC of 0.74, respectively. The SpO2/FiO2, measured within the first 6 hours after hospital admission, is an independent indicator of ARDS development among patients at risk. © The Author(s) 2013.

  7. Effect of inhalation of different mixtures of O2 and CO2 on retinal blood flow

    PubMed Central

    Luksch, A; Garhöfer, G; Imhof, A; Polak, K; Polska, E; Dorner, G T; Anzenhofer, S; Wolzt, M; Schmetterer, L

    2002-01-01

    Aim: To determine the effects of various mixtures of O2 and CO2 on retinal blood flow in healthy subjects. Methods: A randomised, double masked, four way crossover trial was carried out in 12 healthy male non-smoking subjects. Gas mixtures (100% O2, 97.5% O2 + 2.5% CO2, 95% O2 + 5% CO2, and 92% O2 + 8% CO2) were administered for 10 minutes each. Two non-invasive methods were used: laser Doppler velocimetry (LDV) for measurement of retinal blood velocity and fundus imaging with the Zeiss retinal vessel analyser (RVA) for the assessment of retinal vessel diameters. Arterial pH, pCO2, and pO2 were determined with an automatic blood gas analysis system. Retinal blood flow through a major temporal vein was calculated. Results: Retinal blood velocity, retinal vessel diameter, and retinal blood flow decreased during all breathing periods (p <0.001 each). Administration of 92% O2 + 8% CO2 significantly increased SBP, MAP, and PR (p <0.001 each, versus baseline), whereas the other gas mixtures had little effect on systemic haemodynamics. Addition of 2.5%, 5%, and 8% CO2 to oxygen caused a marked decrease in pH and an increase in pCO2 (p <0.001 versus pure oxygen). Conclusions: Breathing of pure oxygen and oxygen in combination with carbon dioxide significantly decreases retinal blood flow. Based on these data the authors speculate that hyperoxia induced vasoconstriction is not due to changes in intravascular pH and cannot be counteracted by an intravascular increase in pCO2. PMID:12234896

  8. Controlling Gas-Flow Mass Ratios

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.

    1990-01-01

    Proposed system automatically controls proportions of gases flowing in supply lines. Conceived for control of oxidizer-to-fuel ratio in new gaseous-propellant rocket engines. Gas-flow control system measures temperatures and pressures at various points. From data, calculates control voltages for electronic pressure regulators for oxygen and hydrogen. System includes commercially available components. Applicable to control of mass ratios in such gaseous industrial processes as chemical-vapor depostion of semiconductor materials and in automotive engines operating on compressed natural gas.

  9. Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: Effect of C/N ratios.

    PubMed

    Li, Ming; Wu, Haiming; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Kong, Qiang

    2017-09-01

    In order to design treatment wetlands with maximal nitrogen removal and minimal nitrous oxide (N 2 O) emission, the effect of influent C/N ratios on nitrogen removal and N 2 O emission in surface flow constructed wetlands (SF CWs) for sewage treatment plant effluent treatment was investigated in this study. The results showed that nitrogen removal and N 2 O emission in CWs were significantly affected by C/N ratio of influent. Much higher removal efficiency of NH 4 + -N (98%) and TN (90%) was obtained simultaneously in SF CWs at C/N ratios of 12:1, and low N 2 O emission (8.2mg/m 2 /d) and the percentage of N 2 O-N emission in TN removal (1.44%) were also observed. These results obtained in this study would be utilized to determine how N 2 O fluxes respond to variations in C/N ratios and to improve the sustainability of CWs for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. C/O Ratios in Exoplanetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Madhusudhan, N.

    2012-04-01

    Recent observations are allowing unprecedented constraints on the carbon-to-oxygen (C/O) ratios of giant exoplanetary atmospheres. Elemental abundance ratios, such as the C/O ratio, of planetary atmospheres provide important constraints on planetary interior compositions and formation conditions, and on the chemical and dynamical processes in the atmospheres. In addition, for super-Earths, the potential availability of water and oxygen, and hence the notion of `habitability', is contingent on the C/O ratio. Typically, an oxygen-rich composition, motivated by the solar nebula C/O of 0.5, is assumed in models of exoplanetary formation, interiors, and atmospheres. However, recent observations of exoplanetary atmospheres are suggesting the possibility of C/O ratios of 1.0 or higher, motivating the new class of Carbon-rich Planets (CRPs). In this talk, we will present observational constraints on atmospheric C/O ratios for an ensemble of transiting exoplanets and discuss their implications on the various aspects of exoplanetary characterization described above. Motivated by these results, we propose a two-dimensional classification scheme for irradiated giant exoplanets in which the incident irradiation and the atmospheric C/O ratio are the two dimensions. We demonstrate that some of the extreme anomalies reported in the literature for hot Jupiter atmospheres can be explained based on this 2-D scheme. An overview of new theoretical avenues and observational efforts underway for chemical characterization of extrasolar planets, from hot Jupiters to super-Earths, will be presented.

  11. The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system.

    PubMed

    Domeignoz-Horta, Luiz A; Spor, Aymé; Bru, David; Breuil, Marie-Christine; Bizouard, Florian; Léonard, Joël; Philippot, Laurent

    2015-01-01

    Agriculture is the main source of terrestrial emissions of N2O, a potent greenhouse gas and the main cause of ozone layer depletion. The reduction of N2O into N2 by microorganisms carrying the nitrous oxide reductase gene (nosZ) is the only biological process known to eliminate this greenhouse gas. Recent studies showed that a previously unknown clade of N2O-reducers was related to the capacity of the soil to act as an N2O sink, opening the way for new strategies to mitigate emissions. Here, we investigated whether the agricultural practices could differently influence the two N2O reducer clades with consequences for denitrification end-products. The abundance of N2O-reducers and producers was quantified by real-time PCR, and the diversity of both nosZ clades was determined by 454 pyrosequencing. Potential N2O production and potential denitrification activity were used to calculate the denitrification gaseous end-product ratio. Overall, the results showed limited differences between management practices but there were significant differences between cropping systems in both the abundance and structure of the nosZII community, as well as in the [rN2O/r(N2O+N2)] ratio. More limited differences were observed in the nosZI community, suggesting that the newly identified nosZII clade is more sensitive than nosZI to environmental changes. Potential denitrification activity and potential N2O production were explained mainly by the soil properties while the diversity of the nosZII clade on its own explained 26% of the denitrification end-product ratio, which highlights the importance of understanding the ecology of this newly identified clade of N2O reducers for mitigation strategies.

  12. D and 18O enrichment measurements in biological fluids in a continuous-flow elemental analyser with an isotope-ratio mass spectrometer using two configurations.

    PubMed

    Ripoche, N; Ferchaud-Roucher, V; Krempf, M; Ritz, P

    2006-09-01

    In doubly labelled water studies, biological sample enrichments are mainly measured using off-line techniques (equilibration followed by dual-inlet introduction) or high-temperature elemental analysis (HT-EA), coupled with an isotope-ratio mass spectrometer (IRMS). Here another continuous-flow method, (CF-EA/IRMS), initially dedicated to water, is tested for plasma and urine analyses. The elemental analyser configuration is adapted for each stable isotope: chromium tube for deuterium reduction and glassy carbon reactor for 18O pyrolysis. Before on-line conversion of water into gas, each matrix is submitted to a short and easy treatment, which is the same for the analysis of the two isotopes. Plasma is passed through centrifugal filters. Urine is cleaned with black carbon and filtered (0.45 microm diameter). Tested between 150 and 300 ppm in these fluids, the D/H ratio response is linear with good repeatability (SD<0.2 ppm) and reproducibility (SD<0.5 ppm). For 18O/16O ratios (from 2000 to 2200 ppm), the same repeatability is obtained with a between-day precision lower than 1.4 ppm. The accuracy on biological samples is validated by comparison to classical dual-inlet methods: 18O analyses give more accurate results. The data show that enriched physiological fluids can be successfully analysed in CF-EA/IRMS. Copyright (c) 2006 John Wiley & Sons, Ltd.

  13. Degradation of nitrobenzene wastewater in an acidic environment by Ti(IV)/H2O2/O3 in a rotating packed bed.

    PubMed

    Yang, Peizhen; Luo, Shuai; Liu, Youzhi; Jiao, Weizhou

    2018-06-23

    The rotating packed bed (RPB) as a continuous flow reactor performs very well in degradation of nitrobenzene wastewater. In this study, acidic nitrobenzene wastewater was degraded using ozone (O 3 ) combined with hydrogen peroxide and titanium ions (Ti(IV)/H 2 O 2 /O 3 ) or using only H 2 O 2 /O 3 in a RPB. The degradation efficiency of nitrobenzene by Ti(IV)/H 2 O 2 /O 3 is roughly 16.84% higher than that by H 2 O 2 /O 3 , and it reaches as high as 94.64% in 30 min at a H 2 O 2 /O 3 molar ratio of 0.48. It is also found that the degradation efficiency of nitrobenzene is significantly affected by the high gravity factor, H 2 O 2 /O 3 molar ratio, and Ti(IV) concentration, and it reaches a maximum at a high gravity factor of 40, a Ti(IV) concentration of 0.50 mmol/L, a pH of 4.0, a H 2 O 2 /O 3 molar ratio of 0.48, a liquid flow rate of 120 L/h, and an initial nitrobenzene concentration of 1.22 mmol/L. Both direct ozonation and indirect ozonation are involved in the reaction of O 3 with organic pollutants. The indirect ozonation due to the addition of different amounts of tert-butanol (·OH scavenger) in the system accounts for 84.31% of the degradation efficiency of nitrobenzene, indicating that the nitrobenzene is dominantly oxidized by ·OH generated in the RPB-Ti(IV)/H 2 O 2 /O 3 process. Furthermore, the possible oxidative degradation mechanisms are also proposed to better understand the role of RPB in the removal of pollutants. Graphical abstract ᅟ.

  14. New insights into the column CH2O/NO2 ratio as an indicator of near-surface ozone sensitivity

    NASA Astrophysics Data System (ADS)

    Schroeder, Jason R.; Crawford, James H.; Fried, Alan; Walega, James; Weinheimer, Andrew; Wisthaler, Armin; Müller, Markus; Mikoviny, Tomas; Chen, Gao; Shook, Michael; Blake, Donald R.; Tonnesen, Gail S.

    2017-08-01

    Satellite-based measurements of the column CH2O/NO2 ratio have previously been used to estimate near-surface ozone (O3) sensitivity (i.e., NOx or VOC limited), and the forthcoming launch of air quality-focused geostationary satellites provides a catalyst for reevaluating the ability of satellite-measured CH2O/NO2 to be used in this manner. In this study, we use a 0-D photochemical box model to evaluate O3 sensitivity and find that the relative rate of radical termination from radical-radical interactions to radical-NOx interactions (referred to as LROx/LNOx) provides a good indicator of maximum O3 production along NOx ridgelines. Using airborne measurements from NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relative to Air Quality (DISCOVER-AQ) deployments in Colorado, Maryland, and Houston, we show that in situ measurements of CH2O/NO2 can be used to indicate O3 sensitivity, but there is an important "transition/ambiguous" range whereby CH2O/NO2 fails to categorize O3 sensitivity, and the range and span of this transition/ambiguous range varies regionally. Then, we apply these findings to aircraft-derived column density measurements from DISCOVER-AQ and find that inhomogeneities in vertical mixing in the lower troposphere further degrades the ability of column CH2O/NO2 to indicate near-surface O3 sensitivity (i.e., the transition/ambiguous range is much larger than indicated by in situ data alone), and we hypothesize that the global transition/ambiguous range is sufficiently large to make the column CH2O/NO2 ratio unuseful for classifying near-surface O3 sensitivity. Lastly, we present a case study from DISCOVER-AQ-Houston that suggests that O3 sensitivity on exceedance days may be substantially different than on nonexceedance days (which may be observable from space) and explore the diurnal evolution of O3 sensitivity, O3 production, and the column CH2O/NO2 ratio. The results of these studies suggest that

  15. Fabrication of high aspect ratio TiO{sub 2} and Al{sub 2}O{sub 3} nanogratings by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkondin, Evgeniy, E-mail: eves@fotonik.dtu.dk; Takayama, Osamu; Lavrinenko, Andrei V.

    The authors report on the fabrication of TiO{sub 2} and Al{sub 2}O{sub 3} nanostructured gratings with an aspect ratio of up to 50. The gratings were made by a combination of atomic layer deposition (ALD) and dry etch techniques. The workflow included fabrication of a Si template using deep reactive ion etching followed by ALD of TiO{sub 2} or Al{sub 2}O{sub 3}. Then, the template was etched away using SF{sub 6} in an inductively coupled plasma tool, which resulted in the formation of isolated ALD coatings, thereby achieving high aspect ratio grating structures. SF{sub 6} plasma removes silicon selectively withoutmore » any observable influence on TiO{sub 2} or Al{sub 2}O{sub 3}, thus revealing high selectivity throughout the fabrication. Scanning electron microscopy was used to analyze every fabrication step. Due to nonreleased stress in the ALD coatings, the top parts of the gratings were observed to bend inward as the Si template was removed, thus resulting in a gradual change in the pitch value of the structures. The pitch on top of the gratings is 400 nm, and it gradually reduces to 200 nm at the bottom. The form of the bending can be reshaped by Ar{sup +} ion beam etching. The chemical purity of the ALD grown materials was analyzed by x-ray photoelectron spectroscopy. The approach presented opens the possibility to fabricate high quality optical metamaterials and functional nanostructures.« less

  16. Effect of Argon/Oxygen Flow Rate Ratios on DC Magnetron Sputtered Nano Crystalline Zirconium Titanate Thin Films

    NASA Astrophysics Data System (ADS)

    Rani, D. Jhansi; Kumar, A. GuruSampath; Sarmash, T. Sofi; Chandra Babu Naidu, K.; Maddaiah, M.; Rao, T. Subba

    2016-06-01

    High transmitting, non absorbent, nano crystalline zirconium titanate (ZT) thin films suitable for anti reflection coatings (ARC) were deposited on to glass substrates by direct current (DC) magnetron reactive sputtering technique, under distinct Argon to Oxygen (Ar/O2) gas flow rate ratios of 31/1, 30/2, 29/3 and 28/4, with a net gas flow (Ar + O2) of 32sccm, at an optimum substrate temperature of 250°C. The influence of the gas mixture ratio on the film properties has been investigated by employing x-ray diffraction (XRD), ultra violet visible (UV-vis) spectroscopy, atomic force microscopy (AFM), energy dispersive x-ray analysis (EDX) and four point probe methods. The films showed a predominant peak at 30.85° with (111) orientation. The crystallite size reduced from 22.94 nm to 13.5 nm and the surface roughness increased from 11.53 nm to 50.58 nm with increase in oxygen content respectively. The films deposited at 31/1 and 30/2 showed almost similar chemical composition. Increased oxygen content results an increase in electrical resistivity from 3.59 × 103 to 2.1 × 106 Ωm. The film deposited at Ar/O2 of 28/4 exhibited higher average optical transmittance of 91%, but its refractive index is higher than that of what is required for ARC. The films deposited at 31/1 and 30/2 of Ar/O2 possess higher transmittance (low absorbance) apart from suitable refractive index. Thus, these films are preferable candidates for ARC.

  17. Ground-based remote sensing of HDO/H2O ratio profiles: introduction and validation of an innovative retrieval approach

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Hase, F.; Blumenstock, T.

    2006-10-01

    We propose an innovative approach for analysing ground-based FTIR spectra which allows us to detect variabilities of lower and middle/upper tropospheric HDO/H2O ratios. We show that the proposed method is superior to common approaches. We estimate that lower tropospheric HDO/H2O ratios can be detected with a noise to signal ratio of 15% and middle/upper tropospheric ratios with a noise to signal ratio of 50%. The method requires the inversion to be performed on a logarithmic scale and to introduce an inter-species constraint. While common methods calculate the isotope ratio posterior to an independent, optimal estimation of the HDO and H2O profile, the proposed approach is an optimal estimator for the ratio itself. We apply the innovative approach to spectra measured continuously during 15 months and present, for the first time, an annual cycle of tropospheric HDO/H2O ratio profiles as detected by ground-based measurements. Outliers in the detected middle/upper tropospheric ratios are interpreted by backward trajectories.

  18. Ground-based remote sensing of HDO/H2O ratio profiles: introduction and validation of an innovative retrieval approach

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Hase, F.; Blumenstock, T.

    2006-06-01

    We propose an innovative approach for analysing ground-based FTIR spectra which allows us to detect variabilities of lower and middle/upper tropospheric HDO/H2O ratios. We show that the proposed method is superior to common approaches. We estimate that lower tropospheric HDO/H2O ratios can be detected with a noise to signal ratio of 15% and middle/upper tropospheric ratios with a noise to signal ratio of 50%. The method requires the inversion to be performed on a logarithmic scale and to introduce an inter-species constraint. While common methods calculate the isotope ratio posterior to an independent, optimal estimation of the HDO and H2O profile, the proposed approach is an optimal estimator for the ratio itself. We apply the innovative approach to spectra measured continuously during 15 months and present, for the first time, an annual cycle of tropospheric HDO/H2O ratio profiles as detected by ground-based measurements. Outliers in the detected middle/upper tropospheric ratios are interpreted by backward trajectories.

  19. Designed Synthesis of CeO2 Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials

    PubMed Central

    Ji, Zhaoxia; Wang, Xiang; Zhang, Haiyuan; Lin, Sijie; Meng, Huan; Sun, Bingbing; George, Saji; Xia, Tian; Nel, André E.; Zink, Jeffrey I.

    2012-01-01

    While it has been shown that high aspect ratio nanomaterials like carbon nanotubes and TiO2 nanowires can induce toxicity by acting as fiber-like substances that damage the lysosome, it is not clear what the critical lengths and aspect ratios are that induce this type of toxicity. To answer this question, we synthesized a series of cerium oxide (CeO2) nanorods and nanowires with precisely controlled lengths and aspect ratios. Both phosphate and chloride ions were shown to play critical roles in obtaining these high aspect ratio nanostructures. High resolution TEM analysis shows that single crystalline CeO2 nanorods/nanowires were formed along the [211] direction by an “oriented attachment” mechanism, followed by Ostwald ripening. The successful creation of a comprehensive CeO2 nanorod/nanowire combinatorial library allows, for the first time, the systematic study of the effect of aspect ratio on lysosomal damage, cytoxicity and IL-1β production by the human myeloid cell line (THP-1). This in vitro toxicity study demonstrated that at lengths ≥200 nm and aspect ratios ≥ 22, CeO2 nanorods induced progressive cytotoxicity and pro-inflammatory effects. The relatively low “critical” length and aspect ratio were associated with small nanorod/nanowire diameters (6–10 nm), which facilitates the formation of stacking bundles due to strong van der Waals and dipole-dipole attractions. Our results suggest that both length and diameter components of aspect ratio should be considered when addressing the cytotoxic effects of long aspect ratio materials. PMID:22564147

  20. An Experimental Study on What Controls the Ratios of 18O/16O and 17O/16O of O2 During Microbial Respiration

    NASA Astrophysics Data System (ADS)

    Stolper, D. A.; Ward, B. B.; Fischer, W. W.; Bender, M. L.

    2015-12-01

    18O/16O and 17O/16O ratios of atmospheric and dissolved oceanic O2 are key biogeochemical tracers of total photosynthesis and respiration on global to local length scales and glacial/interglacial time scales (Luz et al., 1999). Critical to the use of these ratios as biogeochemical tracers is knowledge of how they are affected by production, consumption, and transport of O2. We present new measurements of O2 respiration by E. coli and N. oceanus, an ammonia oxidizing bacterium, to test three assumptions of isotopically enabled models of the O2 cycle: (i) laboratory-measured respiratory 18O/16O isotope effects (18α) of microorganisms are constant under all experimental and natural conditions (e.g., temperature and growth rate); (ii) the respiratory 'mass law' relationship between 18O/16O and 17O/16O [17α = (18α)β] is universal; and (iii) 18α and β for aerobic ammonia and organic carbon oxidation are identical. For E. coli, we find that both 18α and β are variable. From 37°C to 15°C, 18α varies linearly with temperature from 17 to 14‰, and β varies linearly from 0.513 to 0.508. 18α and β do not appear to vary with growth rate (as tested using different carbon sources). Both 18α and β are lower than previous observations for bacteria: 18α = 17-20‰ (Kiddon et al., 1993) and β = 0.515 (Luz and Barkan, 2005). We were able to simulate the observed temperature dependence of 18α and β using a model of respiration with two isotopically discriminating steps: O2 binding to cytochrome bo oxidase (the respiratory enzyme) and reduction of O2 to H2O. Finally, initial results on N. oceanus suggest it has similar values for 18α and β as previously studied aerobic bacteria that consume organic carbon, providing the first support for assumption (iii). Based on these results, isotopically constrained biogeochemical models of O2 cycling may need to consider a temperature dependence for 18α and β for microbial respiration. For example, these results may

  1. Atmospheric test of the J(BrONO2)/kBrO+NO2 ratio: implications for total stratospheric Bry and bromine-mediated ozone loss

    NASA Astrophysics Data System (ADS)

    Kreycy, S.; Camy-Peyret, C.; Chipperfield, M. P.; Dorf, M.; Feng, W.; Hossaini, R.; Kritten, L.; Werner, B.; Pfeilsticker, K.

    2013-07-01

    We report on time-dependent O3, NO2 and BrO profiles measured by limb observations of scattered skylight in the stratosphere over Kiruna (67.9° N, 22.1° E) on 7 and 8 September 2009 during the autumn circulation turn-over. The observations are complemented by simultaneous direct solar occultation measurements around sunset and sunrise performed aboard the same stratospheric balloon payload. Supporting radiative transfer and photochemical modelling indicate that the measurements can be used to constrain the ratio J(BrONO2)/kBrO+NO2, for which at T = 220 ± 5 K an overall 1.7 (+0.4 -0.2) larger ratio is found than recommended by the most recent Jet Propulsion Laboratory (JPL) compilation (Sander et al., 2011). Sensitivity studies reveal the major reasons are likely to be (1) a larger BrONO2 absorption cross-section σBrONO2, primarily for wavelengths larger than 300 nm, and (2) a smaller kBrO+NO2 at 220 K than given by Sander et al. (2011). Other factors, e.g. the actinic flux and quantum yield for the dissociation of BrONO2, can be ruled out. The observations also have consequences for total inorganic stratospheric bromine (Bry) estimated from stratospheric BrO measurements at high NOx loadings, since the ratio J(BrONO2)/kBrO+NO2 largely determines the stratospheric BrO/Bry ratio during daylight. Using the revised J(BrONO2)/kBrO+NO2 ratio, total stratospheric Bry is likely to be 1.4 ppt smaller than previously estimated from BrO profile measurements at high NOx loadings. This would bring estimates of Bry inferred from organic source gas measurements (e.g. CH3Br, the halons, CH2Br2, CHBr3, etc.) into closer agreement with estimates based on BrO observations (inorganic method). The consequences for stratospheric ozone due to the revised J(BrONO2)/kBrO+NO2 ratio are small (maximum -0.8%), since at high NOx (for which most Bry assessments are made) the enhanced ozone loss by overestimating Bry is compensated for by the suppressed ozone loss due to the underestimation

  2. Controllable synthesis of high aspect ratio Mg2B2O5 nanowires and their applications in reinforced polyhydroxyalkanoate composites

    NASA Astrophysics Data System (ADS)

    Mo, Zhao-Jun; Chen, Jin-Peng; Lin, Jing; Fan, Ying; Liang, Chun-Yong; Wang, Hong-Shui; Xu, Xue-Wen; Hu, Long; Tang, Cheng-Chun

    2014-05-01

    Highly pure magnesium borate (Mg2B2O5) nanowires with an average diameter of ~ 30 nm, an average length of ~ 15 μm, and a high aspect ratio of ~ 500 have been synthesized on a large scale via a two-step method. MgBO2(OH) nanowires with high aspect ratios were first prepared via a PVP-assisted hydrothermal technique. Using these nanowires as precursors, single crystalline Mg2B2O5 nanowires were synthesized by post-annealing treatment at a relatively low temperature of 700 °C. The important effect of the MgBO2(OH)—Mg2B2O5 conversion process on the morphology of the Mg2B2O5 nanowires was investigated and it was indicated that the recrystallization process plays an important role in the protection of the one-dimensional (1D) nanostructure. Moreover, the rigidity and the toughness of the Mg2B2O5 nanowire-reinforced PHA composites were tremendously improved compared to those of the pure PHA. Our results demonstrate the effectiveness of Mg2B2O5 nanowires for reinforcement applications in polymer composites.

  3. Measurement of the D/H, 18O/16O, and 17O/16O Isotope Ratios in Water by Laser Absorption Spectroscopy at 2.73 μm

    PubMed Central

    Wu, Tao; Chen, Weidong; Fertein, Eric; Masselin, Pascal; Gao, Xiaoming; Zhang, Weijun; Wang, Yingjian; Koeth, Johannes; Brückner, Daniela; He, Xingdao

    2014-01-01

    A compact isotope ratio laser spectrometry (IRLS) instrument was developed for simultaneous measurements of the D/H, 18O/16O and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm. Special attention is paid to the spectral data processing and implementation of a Kalman adaptive filtering to improve the measurement precision. Reduction of up to 3-fold in standard deviation in isotope ratio determination was obtained by the use of a Fourier filtering to remove undulation structure from spectrum baseline. Application of Kalman filtering enables isotope ratio measurement at 1 s time intervals with a precision (<1‰) better than that obtained by conventional 30 s averaging, while maintaining a fast system response. The implementation of the filter is described in detail and its effects on the accuracy and the precision of the isotope ratio measurements are investigated. PMID:24854363

  4. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  5. U3Si2 behavior in H2O: Part I, flowing steam and the effect of hydrogen

    NASA Astrophysics Data System (ADS)

    Wood, E. Sooby; White, J. T.; Grote, C. J.; Nelson, A. T.

    2018-04-01

    Recent interest in U3Si2 as an advanced light water reactor fuel has driven assessment of numerous properties, but characterization of its response to H2O environments is absent from the literature. The behavior of U3Si2 in H2O containing atmospheres is investigated and presented in a two-part series of articles aimed to understand the degradation mechanism of U3Si2 in H2O. Reported here are thermogravimetric data for U3Si2 exposed to flowing steam at 250-470 °C. Additionally the response of U3Si2 to flowing Ar-6% H2 from 350 to 400 °C is presented. Microstructural degradation is observed following hours of exposure at 350 °C in steam. U3Si2 undergoes pulverization on the timescale of minutes when temperatures are increased above 400 °C. This mechanism is accelerated in flowing Ar-H2 at the same temperatures.

  6. Thermochromic VO2 Films Deposited by RF Magnetron Sputtering Using V2O3 or V2O5 Targets

    NASA Astrophysics Data System (ADS)

    Shigesato, Yuzo; Enomoto, Mikiko; Odaka, Hidehumi

    2000-10-01

    Thermochromic monoclinic-tetragonal VO2 films were successfully deposited on glass substrates with high reproducibility by rf magnetron sputtering using V2O3 or V2O5 targets. In the case of reactive sputtering using a V-metal target, the VO2 films could be obtained only under the very narrow deposition conditions of the “transition region” where the deposition rate decreases drastically with increasing oxygen gas flow rate. In the case of a V2O3 target, polycrystalline VO2 films with a thickness of 400 to 500 nm were obtained by the introduction of oxygen gas [O2/(Ar+O2)=1--1.5%], whereas hydrogen gas [H2/(Ar+H2)=2.5--10%] was introduced in the case of a V2O5 target. Furthermore, the VO2 films were successfully grown heteroepitaxially on a single-crystal sapphire [α-Al2O3(001)] substrate, where the epitaxial relationship was confirmed to be VO2(010)[100]\\parallelAl2O3(001)[100], [010], [\\bar{1}\\bar{1}0] by an X-ray diffraction pole figure measurement. The resistivity ratio between semiconductor and metal phases for the heteroepitaxial VO2 films was much larger than the ratio of the polycrystalline films on glass substrates under the same deposition conditions.

  7. Influences of H2O mass fraction and chemical kinetics mechanism on the turbulent diffusion combustion of H2-O2 in supersonic flows

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Wang, Zhen-guo; Li, Shi-bin; Liu, Wei-dong

    2012-07-01

    Hydrogen is one of the most promising fuels for the airbreathing hypersonic propulsion system, and it attracts an increasing attention of the researchers worldwide. In this study, a typical hydrogen-fueled supersonic combustor was investigated numerically, and the predicted results were compared with the available experimental data in the open literature. Two different chemical reaction mechanisms were employed to evaluate their effects on the combustion of H2-O2, namely the two-step and the seven-step mechanisms, and the vitiation effect was analyzed by varying the H2O mass fraction. The obtained results show that the predicted mole fraction profiles for different components show very good agreement with the available experimental data under the supersonic mixing and combustion conditions, and the chemical reaction mechanism has only a slight impact on the overall performance of the turbulent diffusion combustion. The simple mechanism of H2-O2 can be employed to evaluate the performance of the combustor in order to reduce the computational cost. The H2O flow vitiation makes a great difference to the combustion of H2-O2, and there is an optimal H2O mass fraction existing to enhance the intensity of the turbulent combustion. In the range considered in this paper, its optimal value is 0.15. The initiated location of the reaction appears far away from the bottom wall with the increase of the H2O mass fraction, and the H2O flow vitiation quickens the transition from subsonic to supersonic mode at the exit of the combustor.

  8. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    PubMed Central

    Yang, Jingbin; Li, Dongxu; Fang, Yuan

    2017-01-01

    C-A-S-H (CaO-Al2O3-SiO2-H2O) and N-A-S-H (Na2O-Al2O3-SiO2-H2O) have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O)/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH)2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH)2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali-activated materials. PMID

  9. 40 CFR 1065.280 - Paramagnetic and magnetopneumatic O2 detection analyzers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments O2 Measurements § 1065... diluted exhaust for batch or continuous sampling. You may use O2 measurements with intake air or fuel flow.... 15, 2011] Air-to-Fuel Ratio Measurements ...

  10. 40 CFR 1065.280 - Paramagnetic and magnetopneumatic O2 detection analyzers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments O2 Measurements § 1065... diluted exhaust for batch or continuous sampling. You may use O2 measurements with intake air or fuel flow.... 15, 2011] Air-to-Fuel Ratio Measurements ...

  11. Flow structure at low momentum ratio river confluences

    NASA Astrophysics Data System (ADS)

    Moradi, Gelare; Rennie, Colin. D.; Cardot, Romain; Mettra, François; Lane, Stuart. N.

    2017-04-01

    The flow structure at river confluences is a complex pattern of fluid motion and can be characterized by the formation of secondary circulation. As river confluences play an essential role on flow hydrodynamics and control the movement of sediment through river networks, there has been substantial attention given to this subject in recent decades. However, there is still much debate over how momentum ratio and sediment transport can control secondary circulation and mixing processes. In particular, studies have tended to assume that there is some equilibrium between the bed morphology present and the flow structures that form in the junction region. However, this overlooks the fact that tributaries may be associated with highly varying sediment supply regimes, especially for shorter and steeper tributaries, with temporal changes in sediment delivery ratios (between the main stem and the tributary) that do not follow exactly changes in momentum ratio. This may lead to bed morphologies that are a function of rates of historical sediment supply during sediment transporting events and not the momentum ratio associated with the junction during its measurement. It is quite possible that tributaries with low flow momentum ratio have a relatively higher sediment delivery ratio, such that the tributary is still able to influence significantly secondary circulation in the main channel, long after the sediment transport event, and despite its low flow momentum during measurement. The focus of this paper is low momentum ratio junctions where it is possible that the tributary can deliver large amounts of sediment. Secondary circulation at junctions is thought to be dominated by streamwise-oriented vortical cells. These cells are produced by the convergence of surface flow towards the centre of the main channel, with descending motion in the zone of maximum flow convergence. Once flow arrives at the bed, it diverges and completes its rotation by an upwelling motion through the

  12. Cultivation of the photosynthesis microorganism in a Taylor-Couette Vortex Flow with a small aspect ratio

    NASA Astrophysics Data System (ADS)

    Kawai, H.; Yasui, S.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    This study focuses on the dynamics of the Taylor-Couette Vortex Flow (TVF) in a photo-bioreactor in which CO2 is changed to O2 with high efficiency by the photosynthesis ability of micro algae. Stirring by means of a screw propeller is generally used for a simple agitation. However, the problem is that there exists a very high shearing flow region just near the propeller, which causes the destruction of the alga cell by the shearing force. In contrast, the TVF mixing is expected to reduce such a local and random shearing force because of their column of steady and orderly vortices. In this study, the relationship between the microorganism growth rate and the flow structures in dilute suspensions of a TVF is investigated and the flow characteristics are measured by using an ultrasonic velocity profiler with a small aspect ratio of 3.

  13. C/O Ratio as a Dimension for Characterizing Exoplanetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku

    2012-10-01

    Until recently, infrared observations of exoplanetary atmospheres have typically been interpreted using models that assumed solar elemental abundances. With the chemical composition fixed, attempts have been made to classify hot Jupiter atmospheres on the basis of stellar irradiation. However, recent observations have revealed deviations from predictions based on such classification schemes, and chemical compositions retrieved from some data sets have also indicated non-solar abundances. The data require a two-dimensional (2D) characterization scheme with dependence on both irradiation and chemistry. In this work, we suggest the carbon-to-oxygen (C/O) ratio as an important second dimension for characterizing exoplanetary atmospheres. In hot-hydrogen-dominated atmospheres, the C/O ratio critically influences the relative concentrations of several spectroscopically dominant species. Between a C/O of 0.5 (solar value) and 2, the H2O and CH4 abundances can vary by several orders of magnitude in the observable atmosphere, and new hydrocarbon species such as HCN and C2H2 become prominent for C/O >= 1, while the CO abundance remains almost unchanged. Furthermore, a C/O >= 1 can preclude a strong thermal inversion due to TiO and VO in a hot Jupiter atmosphere, since TiO and VO are naturally underabundant for C/O >= 1. We, therefore, suggest a new 2D classification scheme for hydrogen-dominated exoplanetary atmospheres with irradiation (or temperature) and C/O ratio as the two dimensions. We define four classes in this 2D space (O1, O2, C1, and C2) with distinct chemical, thermal, and spectral properties. Based on the most recent observations, we characterize the thermal structure and C/O ratios of six hot Jupiters (XO-1b, CoRoT-2b, WASP-14b, WASP-19b, WASP-33b, and WASP-12b) in the framework of our proposed 2D classification scheme. While the data for several systems in our sample are consistent with C-rich atmospheres, new observations are required to conclusively

  14. HF/H2O2 treated graphite felt as the positive electrode for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    He, Zhangxing; Jiang, Yingqiao; Meng, Wei; Jiang, Fengyun; Zhou, Huizhu; Li, Yuehua; Zhu, Jing; Wang, Ling; Dai, Lei

    2017-11-01

    In order to improve the electrochemical performance of the positive graphite felt electrode in vanadium flow redox battery, a novel method is developed to effectively modify the graphite felt by combination of etching of HF and oxidation of H2O2. After the etching of HF for the graphite felt at ambient temperature, abundant oxygen-containing functional groups were further introduced on the surface of graphite felt by hydrothermal treatment using H2O2 as oxidant. Benefiting from the surface etching and introduction of functional groups, mass transfer and electrode process can be improved significantly on the surface of graphite felt. VO2+/VO2+ redox reaction on the graphite felt modified by HF and H2O2 jointly (denote: GF-HF/H2O2) exhibits superior electrochemical kinetics in comparison with the graphite felt modified by single HF or H2O2 treatment. The cell using GF-HF/H2O2 as the positive electrode was assembled and its electrochemical properties were evaluated. The increase of energy efficiency of 4.1% for GF-HF/H2O2 at a current density of 50 mA cm-2 was obtained compared with the pristine graphite felt. The cell using GF-HF/H2O2 also demonstrated higher discharge capacity. Our study revealed that HF/H2O2 treatment is an efficient method to enhance the electrochemical performance of graphite felt, further improving the comprehensive energy storage performance of the vanadium flow redox battery.

  15. Hydrothermal synthesis and enhanced photocatalytic activity of mixed-phase TiO2 powders with controllable anatase/rutile ratio

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Qiao, Zhi; Jiang, Peng; Kuang, Jianlei; Liu, Wenxiu; Cao, Wenbin

    2018-03-01

    In this study, mixed-phase TiO2 powders were novelly synthesized via a facile and mild hydrothermal method without any post-heat treatment. TiOSO4 and peroxide titanic acid (PTA) were used as inorganic titanium sources, while no special solvent or additive were introduced. The XRD and TEM results showed the mixed-phase TiO2 powders were composed of anatase and rutile phases, and the PTA sol played an important role on forming the rutile nucleus. The proportion of rutile in the mixed-phase TiO2 could be easily controlled in the range of 0%-70.5% by changing the amount of PTA sol used in the synthesis process. The UV-Visible absorption spectra indicated the prepared mixed-phase TiO2 showed enhanced visible light absorption with the increase of rutile ratio. The photodegradation experiments revealed the mixed-phase TiO2 exhibited the best photocatalytic activity at the rutile ratio of 41.5%, while a higher or lower rutile ratio both resulted in the decrease of photocatalytic activity.

  16. U 3Si 2 behavior in H 2O: Part I, flowing steam and the effect of hydrogen

    DOE PAGES

    Wood, Elizabeth Sooby; White, Joshua Taylor; Grote, Christopher John; ...

    2018-01-17

    Recent interest in U 3Si 2 as an advanced light water reactor fuel has driven assessment of numerous properties, but characterization of its response to H 2O environments is absent from the literature. The behavior of U 3Si 2 in H 2O containing atmospheres is investigated and presented in a two-part series of articles aimed to understand the degradation mechanism of U 3Si 2 in H 2O. Reported here are thermogravimetric data for U 3Si 2 exposed to flowing steam at 250–470 °C. Additionally the response of U 3Si 2 to flowing Ar-6% H 2 from 350 to 400 °Cmore » is presented. Microstructural degradation is observed following hours of exposure at 350 °C in steam. U 3Si 2 undergoes pulverization on the timescale of minutes when temperatures are increased above 400 °C. In conclusion, this mechanism is accelerated in flowing Ar-H 2 at the same temperatures.« less

  17. U 3Si 2 behavior in H 2O: Part I, flowing steam and the effect of hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Elizabeth Sooby; White, Joshua Taylor; Grote, Christopher John

    Recent interest in U 3Si 2 as an advanced light water reactor fuel has driven assessment of numerous properties, but characterization of its response to H 2O environments is absent from the literature. The behavior of U 3Si 2 in H 2O containing atmospheres is investigated and presented in a two-part series of articles aimed to understand the degradation mechanism of U 3Si 2 in H 2O. Reported here are thermogravimetric data for U 3Si 2 exposed to flowing steam at 250–470 °C. Additionally the response of U 3Si 2 to flowing Ar-6% H 2 from 350 to 400 °Cmore » is presented. Microstructural degradation is observed following hours of exposure at 350 °C in steam. U 3Si 2 undergoes pulverization on the timescale of minutes when temperatures are increased above 400 °C. In conclusion, this mechanism is accelerated in flowing Ar-H 2 at the same temperatures.« less

  18. Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions.

    PubMed

    Wang, Yan; Nowack, Bernd

    2018-04-01

    Static environmental exposure assessment models based on material flow analysis (MFA) have previously been used to estimate flows of engineered nanomaterials (ENMs) to the environment. However, such models do not account for changes in the system behavior over time. Dynamic MFA used in this study includes the time-dependent development of the modelling system by considering accumulation of ENMs in stocks and the environment, and the dynamic release of ENMs from nano-products. In addition, this study also included regional variations in population, waste management systems, and environmental compartments, which subsequently influence the environmental release and concentrations of ENMs. We have estimated the flows and release concentrations of nano-SiO 2 , nano-iron oxides, nano-CeO 2 , nano-Al 2 O 3 , and quantum dots in the EU and six geographical sub-regions in Europe (Central Europe, Northern Europe, Southern Europe, Eastern Europe, South-eastern Europe, and Switzerland). The model predicts that a large amount of ENMs are accumulated in stocks (not considering further transformation). For example, in the EU 2040 Mt of nano-SiO 2 are stored in the in-use stock, 80,400 tonnes have been accumulated in sediments and 65,600 tonnes in natural and urban soil from 1990 to 2014. The magnitude of flows in waste management processes in different regions varies because of differences in waste handling. For example, concentrations in landfilled waste are lowest in South-eastern Europe due to dilution by the high amount of landfilled waste in the region. The flows predicted in this work can serve as improved input data for mechanistic environmental fate models and risk assessment studies compared to previous estimates using static models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Measuring the ratio of CO2 efflux to O2 influx in tree stem respiration.

    PubMed

    Hilman, Boaz; Angert, Alon

    2016-11-01

    In recent studies, the ratio of tree stem CO 2 efflux to O 2 influx has been defined as the apparent respiratory quotient (ARQ). The metabolism of carbohydrates, the putative respiratory substrate in trees, is expected to yield an ARQ of 1.0. However, previous studies have reported ARQ values ranging between 0.23 and 0.90. These interesting results may indicate internal transport of respired CO 2 within stems; yet no simple field applicable methods for ARQ measurement have been available. Here, we report on the assembly of a closed circulating system called 'Hampadah', which uses CO 2 and O 2 analyzers to measure air samples from stem chambers. We tested the performance of the Hampadah with samples from 36 trees (Tetragastris panamensis (Engl.) Kuntze). Additionally, we showed the feasibility of measuring ARQ directly from stem chambers, using portable CO 2 and O 2 sensors, in both discrete and continuous modes of operation. The Hampadah measurement proved to be consistent with CO 2 gas standards (R 2 = 0.999) and with O 2 determined by O 2 /Ar measurements with a mass spectrometer (R 2 = 0.998). The Hampadah gave highly reproducible results for ARQ determination of field samples (±0.01 for duplicates). The portable sensors measurement showed good correlation with the Hampadah in measuring CO 2 , O 2 and ARQ (n = 5, R 2 = 0.97, 0.98 and 0.91, respectively). We have demonstrated here that the Hampadah and the sensors' methods enable accurate ARQ measurements for both laboratory and field research. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Effect of COD/N ratio on N2O production during nitrogen removal by aerobic granular sludge.

    PubMed

    Velho, V F; Magnus, B S; Daudt, G C; Xavier, J A; Guimarães, L B; Costa, R H R

    2017-12-01

    N 2 O-production was investigated during nitrogen removal using aerobic granular sludge (AGS) technology. A pilot sequencing batch reactor (SBR) with AGS achieved an effluent in accordance with national discharge limits, although presented a nitrite accumulation rate of 95.79% with no simultaneous nitrification-denitrification. N 2 O production was 2.06 mg L -1 during the anoxic phase, with N 2 O emission during air pulses and the aeration phase of 1.6% of the nitrogen loading rate. Batch tests with AGS from the pilot reactor verified that at the greatest COD/N ratio (1.55), the N 2 O production (1.08 mgN 2 O-N L -1 ) and consumption (up to 0.05 mgN 2 O-N L -1 ), resulted in the lowest remaining dissolved N 2 O (0.03 mgN 2 O-N L -1 ), stripping the minimum N 2 O gas (0.018 mgN 2 O-N L -1 ). Conversely, the carbon supply shortage, under low C/N ratios, increased N 2 O emission (0.040 mgN 2 O-N L -1 ), due to incomplete denitrification. High abundance of ammonia-oxidizing and low abundance of nitrite-oxidizing bacteria were found, corroborating the fact of partial nitrification. A denitrifying heterotrophic community, represented mainly by Pseudoxanthomonas, was predominant in the AGS. Overall, the AGS showed stable partial nitrification ability representing capital and operating cost savings. The SBR operation flexibility could be advantageous for controlling N 2 O emissions, and extending the anoxic phase would benefit complete denitrification in cases of low C/N influents.

  1. Optimization of Al2O3/TiO2 nanolaminate thin films prepared with different oxide ratios, for use in organic light-emitting diode encapsulation, via plasma-enhanced atomic layer deposition.

    PubMed

    Kim, Lae Ho; Jeong, Yong Jin; An, Tae Kyu; Park, Seonuk; Jang, Jin Hyuk; Nam, Sooji; Jang, Jaeyoung; Kim, Se Hyun; Park, Chan Eon

    2016-01-14

    Encapsulation is essential for protecting the air-sensitive components of organic light-emitting diodes (OLEDs), such as the active layers and cathode electrodes. Thin film encapsulation approaches based on an oxide layer are suitable for flexible electronics, including OLEDs, because they provide mechanical flexibility, the layers are thin, and they are easy to prepare. This study examined the effects of the oxide ratio on the water permeation barrier properties of Al2O3/TiO2 nanolaminate films prepared by plasma-enhanced atomic layer deposition. We found that the Al2O3/TiO2 nanolaminate film exhibited optimal properties for a 1 : 1 atomic ratio of Al2O3/TiO2 with the lowest water vapor transmission rate of 9.16 × 10(-5) g m(-2) day(-1) at 60 °C and 90% RH. OLED devices that incorporated Al2O3/TiO2 nanolaminate films prepared with a 1 : 1 atomic ratio showed the longest shelf-life, in excess of 2000 hours under 60 °C and 90% RH conditions, without forming dark spots or displaying edge shrinkage.

  2. Heterogeneous interaction of SiO2 with N2O5: aerosol flow tube and single particle optical levitation-Raman spectroscopy studies.

    PubMed

    Tang, M J; Camp, J C J; Rkiouak, L; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D

    2014-09-25

    Silica (SiO2) is an important mineral present in atmospheric mineral dust particles, and the heterogeneous reaction of N2O5 on atmospheric aerosol is one of the major pathways to remove nitrogen oxides from the atmosphere. The heterogeneous reaction of N2O5 with SiO2 has only been investigated by two studies previously, and the reported uptake coefficients differ by a factor of >10. In this work two complementary laboratory techniques were used to study the heterogeneous reaction of SiO2 particles with N2O5 at room temperature and at different relative humidities (RHs). The uptake coefficients of N2O5, γ(N2O5), were determined to be (7.2 ± 0.6) × 10(-3) (1σ) at 7% RH and (5.3 ± 0.8) × 10(-3) (1σ) at 40% RH for SiO2 particles, using the aerosol flow tube technique. We show that γ(N2O5) determined in this work can be reconciled with the two previous studies by accounting for the difference in geometric and BET derived aerosol surface areas. To probe the particle phase chemistry, individual micrometer sized SiO2 particles were optically levitated and exposed to a continuous flow of N2O5 at different RHs, and the composition of levitated particles was monitored online using Raman spectroscopy. This study represents the first investigation into the heterogeneous reactions of levitated individual SiO2 particles as a surrogate for mineral dust. Relative humidity was found to play a critical role: while no significant change of particle composition was observed by Raman spectroscopy during exposure to N2O5 at RH of <2%, increasing the RH led to the formation of nitrate species on the particle surface which could be completely removed after decreasing the RH back to <2%. This can be explained by the partitioning of HNO3 between the gas and adsorbed phases. The atmospheric implications of this work are discussed.

  3. C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhusudhan, Nikku, E-mail: Nikku.Madhusudhan@yale.edu; Department of Astronomy, Yale University, New Haven, CT 06511

    2012-10-10

    Until recently, infrared observations of exoplanetary atmospheres have typically been interpreted using models that assumed solar elemental abundances. With the chemical composition fixed, attempts have been made to classify hot Jupiter atmospheres on the basis of stellar irradiation. However, recent observations have revealed deviations from predictions based on such classification schemes, and chemical compositions retrieved from some data sets have also indicated non-solar abundances. The data require a two-dimensional (2D) characterization scheme with dependence on both irradiation and chemistry. In this work, we suggest the carbon-to-oxygen (C/O) ratio as an important second dimension for characterizing exoplanetary atmospheres. In hot-hydrogen-dominated atmospheres,more » the C/O ratio critically influences the relative concentrations of several spectroscopically dominant species. Between a C/O of 0.5 (solar value) and 2, the H{sub 2}O and CH{sub 4} abundances can vary by several orders of magnitude in the observable atmosphere, and new hydrocarbon species such as HCN and C{sub 2}H{sub 2} become prominent for C/O {>=} 1, while the CO abundance remains almost unchanged. Furthermore, a C/O {>=} 1 can preclude a strong thermal inversion due to TiO and VO in a hot Jupiter atmosphere, since TiO and VO are naturally underabundant for C/O {>=} 1. We, therefore, suggest a new 2D classification scheme for hydrogen-dominated exoplanetary atmospheres with irradiation (or temperature) and C/O ratio as the two dimensions. We define four classes in this 2D space (O1, O2, C1, and C2) with distinct chemical, thermal, and spectral properties. Based on the most recent observations, we characterize the thermal structure and C/O ratios of six hot Jupiters (XO-1b, CoRoT-2b, WASP-14b, WASP-19b, WASP-33b, and WASP-12b) in the framework of our proposed 2D classification scheme. While the data for several systems in our sample are consistent with C-rich atmospheres, new

  4. The correlation between HCN/H2O flux ratios and disk mass: evidence for protoplanet formation

    NASA Astrophysics Data System (ADS)

    Rose, Caitlin; Salyk, Colette

    2017-01-01

    We analyze hydrogen cyanide (HCN) and water vapor flux ratios in protoplanetary disks as a way to trace planet formation. Analyzing only disks in the Taurus molecular cloud, Najita et al. (2013) found a tentative correlation between protoplanetary disk mass and the HCN/H2O line flux ratio in Spitzer-IRS emission spectra. They interpret this correlation to be a consequence of more massive disks forming planetesimals more efficiently than smaller disks, as the formation of large planetesimals may lock up water ice in the cool outer disk region and prevent it from migrating, drying out the inner disk. The sequestering of water (and therefore oxygen) in the outer disk may also increase the carbon-to- oxygen ratio in the inner disk, leading to enhanced organic molecule (e.g. HCN) emission. To confirm this trend, we expand the Najita et al. sample by calculating HCN/H2O line flux ratios for 8 more sources with known disk masses from clusters besides Taurus. We find agreement with the Najita et al. trend, suggesting that this is a widespread phenomenon. In addition, we find HCN/H2O line flux ratios for 17 more sources that await disk mass measurements, which should become commonplace in the ALMA era. Finally, we investigate linear fits and outliers to this trend, and discuss possible causes.

  5. Effect of N2 flow during deposition on p-type ZnO film

    NASA Astrophysics Data System (ADS)

    Lin, Chiung-Wei; Liu, Bor-Chang

    2017-01-01

    In this study, the influence of a nitrogen source on p-type conductive ZnO films was studied. Rapid thermal oxidation was conducted to oxidize ZnN films and convert them to ZnO films. When an as-deposited ZnN film was prepared at a high nitrogen gas flow rate, the converted ZnO film possessed many acceptors and showed stable p-type conduction. This p-type conduction was attributed to the nitrogen gas flow providing many “No” states, which act as acceptors within the processed ZnO film. It was found that the as-deposited ZnN film prepared at a high nitrogen gas flow rate is oxidized slightly so that only a few nitrogen atoms were replaced by oxygen. The carrier concentration and mobility of the optimized oxidized ZnN film were 9.76 × 1017 cm-3 and 62.78 cm2 V-1 s-1, respectively. A good rectified current-voltage characteristic with a turn-on voltage of 3.65 V was achieved for the optimized ZnO:N/ZnO junction.

  6. Improving the Efficiency of DASC by Adding CeO2/CuO Hybrid Nanoparticles in Water

    NASA Astrophysics Data System (ADS)

    Midhun Mohan, V.; Sajeeb, A. M.

    Solar energy is the abundantly available source of renewable energy with least impact on environment. Direct absorption solar collector (DASC) is the commonly used device to absorb heat directly from sun and make use of it for different heating applications. In the past, many experiments have been done to increase the efficiency of DASC using nanofluids. In this paper, an examination of solar collector efficiency for hybrid CeO2/CuO-water (0.1% by volume) nanofluid under various flow rates and proportions of CeO2/CuO nanoparticles is investigated. The experiments were conducted at flow rates spanning from 20cc/min to 100cc/min and with CeO2/CuO nanoparticles proportions of 1:0, 1:0.5, 1:1, 0.5:1 and 0:1. The efficiency increases from 16.5% to 51.6% when the flow rate is increased from 20cc/min to 100cc/min for hybrid CeO2/CuO (1:1)-water nanofluid. The results also showed an increase in efficiency of 13.8%, 18.1%, 24.3%, 24.9% and 26.1% with hybrid combination of CeO2/CuO at ratios 1:0, 1:0.5, 1:1, 0.5:1 and 0:1, respectively, in comparison with water at a flow rate of 100cc/min.

  7. 40 CFR 1065.280 - Paramagnetic and magnetopneumatic O2 detection analyzers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments O2 Measurements § 1065... diluted exhaust for batch or continuous sampling. You may use O2 measurements with intake air or fuel flow... 57443, Sept. 15, 2011;79 FR 23762, Apr. 28, 2014] Air-to-Fuel Ratio Measurements ...

  8. LPG sensing characteristics of electrospray deposited SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Gürbüz, Mevlüt; Günkaya, Göktuğ; Doğan, Aydın

    2014-11-01

    In this study, SnO2 films were fabricated on conductive substrate such as aluminum and platinum coated alumina using electro-spray deposition (ESD) method for gas sensor applications. Solution flow rate, coating time, substrate-nozzle distance and solid/alcohol ratio were studied to optimize SnO2 film structure. The morphology of the deposited films was characterized by stereo and scanning electron microscopy (SEM). The gas sensing properties of tin oxide films were investigated using liquid petroleum gas (LPG) for various lower explosive limit (LEL). The results obtained from microscopic analyses show that optimum SnO2 films were evaluated at flow rate of 0.05 ml/min, at distance of 6 cm, for 10 min deposition time, for 20 gSnO2/Lethanol ratio and at 7 kV DC electric field. By the results obtained from the gas sensing behavior, the sensitivity of the films was increased with operating temperature. The films showed better sensitivity for 20 LEL LPG concentration at 450 °C operating temperature.

  9. Hydrogen production by tailoring the brookite and Cu2O ratio of sol-gel Cu-TiO2 photocatalysts.

    PubMed

    Hinojosa-Reyes, Mariana; Camposeco-Solís, Roberto; Zanella, Rodolfo; Rodríguez González, Vicente

    2017-10-01

    Cu-TiO 2 photocatalysts were prepared by the sol-gel method. Copper loadings from, 1.0 to 5.0 wt % were used. The materials were annealed at different temperatures (from 400 to 600 °C) to study the formation of brookite and copper ionic species. The photocatalysts were characterized by X-ray diffraction, UV-vis, Raman and XPS spectroscopies, H 2 -temperature programmed reduction (TPR), N 2 physisorption, and SEM-EDS to quantify the actual copper loadings and characterize morphology. The photocatalysts were evaluated during the hydrogen photocatalytic production using an ethanolic solution (50% v/v) under UV and visible radiation. The best hydrogen production was performed by Ti-Cu 1.0 with an overall hydrogen production that was five times higher than that obtained with photolysis. This sample had an optimal thermal treatment at 500 °C, and at this temperature, the Cu 2 O and brookite/anatase ratio boosted the photocatalytic production of hydrogen. In addition, a deactivation test was carried out for the most active sample (TiO 2 -Cu 1.0), showing unchanged H 2 production for three cycles with negligible Cu lixiviation. The activity of hydrogen-through-copper production reported in this research work is comparable with the one featured by noble metals and that reported in the literature for doped TiO 2 materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The effect of bulk/surface defects ratio change on the photocatalysis of TiO2 nanosheet film

    NASA Astrophysics Data System (ADS)

    Wang, Fangfang; Ge, Wenna; Shen, Tong; Ye, Bangjiao; Fu, Zhengping; Lu, Yalin

    2017-07-01

    The photocatalysis behavior of TiO2 nanosheet array films was studied, in which the ratio of bulk/surface defects were adjusted by annealing at different temperature. Combining positron annihilation spectroscopy, EPR and XPS, we concluded that the bulk defects belonged to Ti3+ related vacancy defects. The results show that the separation efficiency of photogenerated electrons and holes could be significantly improved by optimizing the bulk/surface defects ratio of TiO2 nanosheet films, and in turn enhancing the photocatalysis behaviors.

  11. Electrical Conducting and Mechanism of Oxygen-Deficient Tin Oxide Films Deposited by RF Magnetron Sputtering at Various O2/Ar Ratios

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wang, Chengbiao; Lv, Changchun; Wang, Yang; Peng, Zhijian; Fu, Xiuli

    Oxygen-deficient tin oxide thin films were prepared by radiofrequency magnetron sputtering with a sintered non-stoichiometric tin oxide ceramic target under an atmosphere of various ratios of O2/Ar from pure Ar to 1:1. X-ray diffraction analysis showed that the thin films were polycrystalline with relatively strong (1 1 0), (1 0 1) and (2 1 1) diffraction peaks. Scanning electron microscopy observation revealed that the thin films prepared at different O2/Ar ratios were all of relatively dense and homogeneous structure. With increasing O2/Ar ratio, the grain size of the films decreased slightly, and their chemical composition became close to the stoichiometric SnO2; but the deposition rate as well as film thickness increased first and then decreased sharply. It was revealed that the main defect in obtained films was oxygen vacancy (VO), and as the O2/Ar ratio increased, the concentration of VO fell down monotonously, which would lead to an increased electrical resistivity.

  12. Self-encapsulation of [MII(phen)2(H2O)2]2+ (M=Co, Zn) in one-dimensional nanochannels of [MII(H2O)6(BTC)2]4- (M=Co, Cu, Mn): a high HQ/CAT ratio catalyst for hydroxylation of phenols.

    PubMed

    Bi, Jianhong; Kong, Lingtao; Huang, Zixiang; Liu, Jinhuai

    2008-06-02

    Four novel three-dimensional (3D) microporous supramolecular compounds containing nanosized channels, namely, [Co(phen)2(H2O)2]2[Co(H2O)6].2BTC.21.5H2O (1), [Co(phen)2(H2O)2]2[Cu(H2O)6].2BTC.21.5H2O (2), [Co(phen)2(H2O)2]2[Mn(H2O)6].2BTC.18H2O (3), and [Zn(phen)2(H2O)2]2[Mn(H2O)6].2BTC.22.5H2O (4), were synthesized from 1,3,5-benzenetricarboxylate (BTC), 1,10-phenanthroline (phen), and the transition-metal salt(s) by self-assembly. Single-crystal X-ray structural analysis showed that the resulting 3D microporous supramolecular frameworks consist of a two-dimensional (2D) hydrogen-bonded host framework of [MII(H2O)6(BTC)2]4- (M=Co for 1, Cu for 2, Mn for 3, 4) with rectangular-shaped cavities containing [MII(phen)2(H2O)2]2+ (M=Co for 1-3, Zn for 4) guests. The guest complex is encapsulated in the 2D hydrogen-bonded host framework by hydrogen bonding and aromatic pi-pi stacking interactions, forming the 3D hydrogen-bonded framework. The catalytic activities of 1, 2, 3, and 4 were studied using hydroxylation of phenols with 30% aqueous H2O2 as a test reaction. The compounds displayed a good phenol conversion ratio and excellent channel selectivity in the hydroxylation reaction, with a maximum hydroquinone (HQ)/catechol (CAT) ratio of 3.9.

  13. Influence of the urine flow rate on some caffeine metabolite ratios used to assess CYP1A2 activity.

    PubMed

    Sinués, Blanca; Fanlo, Ana; Bernal, María Luisa; Mayayo, Esteban; Soriano, María Antonia; Martínez-Ballarin, Enrique

    2002-12-01

    Five established metabolite ratios (MRs) to measure P450 CYP1A2 activity--MR1 (17X + 17U)/137X, MR2 (AFMU + 1X + 1U)/17U, MR3 (17X/137X), MR4 (AFMU + 1X + 1U + 17X + 17U)/137X, and MR5 (AFMU + 1X + 1U)/17X--were calculated in urine 4-5 hours after caffeine intake. First, to assess the potential of omeprazole to induce CYP1A2 activity, a caffeine test was performed in 27 subjects on two occasions: before and after 14 days on omeprazole (20 mg/day). Samples of urine were analyzed by high-performance liquid chromatography (HPLC) to quantify caffeine and metabolites used to calculate the different caffeine MRs. MR1, MR3, and MR4 were enhanced after treatment; the percentage of change was inversely associated with that of the urine flow, with r values of -0.48, -0.49, and -0.47, respectively. However, MR2 or MR5 were not modified. To determine the reason for these contradictory results, the authors analyzed data of metabolites, ratios, and their components (numerators and denominators) from 152 subjects (who underwent one caffeine test) and their relationship with the urinary flow. Caffeine concentration in urine was the only compound nondependent on the urine flow. Consistently, ratios containing caffeine (MR1, MR3, and MR4) were highly influenced by the rate of urine excretion, since the flow dependence of their numerators is not canceled out by that of caffeine in their denominators. The dependency of the caffeine excretion on renal factors may explain the opposite results found with the different ratios in the aforementioned prospective study of drug interaction, the absence of closer correlations of the five MRs to each other, the discrepancies about the type of frequency distribution of the different MRs (either normal or multimodal), and the higher sensitivity of MR2 to detect gender differences in CYP1A2 activity found in this study. In summary, the data clearly emphasize the need for a strict control of the liquid intake to avoid high urine flows when MRs

  14. 40 CFR 1065.280 - Paramagnetic and magnetopneumatic O2 detection analyzers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments O2 Measurements § 1065... diluted exhaust for batch or continuous sampling. You may use O2 measurements with intake air or fuel flow...), regardless of the uncompensated signal's bias. [73 FR 37300, June 30, 2008] Air-to-Fuel Ratio Measurements ...

  15. Defects in the Expression of Chloroplast Proteins Leads to H2O2 Accumulation and Activation of Cyclic Electron Flow around Photosystem I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strand, Deserah D.; Livingston, Aaron K.; Satoh-Cruz, Mio

    We describe a new member of the class of mutants in Arabidopsis exhibiting high rates of cyclic electron flow around photosystem I (CEF), a light-driven process that produces ATP but not NADPH. High cyclic electron flow 2 (hcef2) shows strongly increased CEF activity through the NADPH dehydrogenase complex (NDH), accompanied by increases in thylakoid proton motive force (pmf), activation of the photoprotective qE response, and the accumulation of H 2O 2 . Surprisingly, hcef2 was mapped to a nonsense mutation in the TADA1 (tRNA adenosine deaminase arginine) locus, coding for a plastid targeted tRNA editing enzyme required for efficient codonmore » recognition. Comparison of protein content from representative thylakoid complexes, the cytochrome bf complex and the ATP synthase, suggests that inefficient translation of hcef2 leads to compromised complex assembly or stability leading to alterations in stoichiometries of major thylakoid complexes as well as their constituent subunits. Altered subunit stoichiometries for photosystem I, ratios and properties of cytochrome bf hemes, and the decay kinetics of the flash induced thylakoid electric field suggest that these defect lead to accumulation of H 2O 2 in hcef2, which we have previously shown leads to activation of NDHrelated CEF. We observed similar increases in CEF and H 2O 2 accumulation in other translation defective mutants, suggesting that loss of coordination in plastid protein levels lead to imbalances in the photosynthetic energy balance that leads to increased CEF. These results, together with a large body of previous observations, support a general model in which processes that imbalances in chloroplast energetics result in the production of H 2O 2 , which activates CEF, either as a redox signal or by inducing deficits in ATP levels.« less

  16. Characterization and production and consumption processes of N2O emitted from temperate agricultural soils determined via isotopomer ratio analysis

    NASA Astrophysics Data System (ADS)

    Toyoda, Sakae; Yano, Midori; Nishimura, Sei-Ichi; Akiyama, Hiroko; Hayakawa, Atsushi; Koba, Keisuke; Sudo, Shigeto; Yagi, Kazuyuki; Makabe, Akiko; Tobari, Yoshifumi; Ogawa, Nanako O.; Ohkouchi, Naohiko; Yamada, Keita; Yoshida, Naohiro

    2011-06-01

    Isotopomer ratios of N2O (bulk nitrogen and oxygen isotope ratios, δ15Nbulk and δ18O, and intramolecular 15N site preference, SP) are useful parameters that characterize sources of this greenhouse gas and also provide insight into production and consumption mechanisms. We measured isotopomer ratios of N2O emitted from typical Japanese agricultural soils (Fluvisols and Andisols) planted with rice, wheat, soybean, and vegetables, and treated with synthetic (urea or ammonium) and organic (poultry manure) fertilizers. The results were analyzed using a previously reported isotopomeric N2O signature produced by nitrifying/denitrifying bacteria and a characteristic relationship between δ15Nbulk and SP during N2O reduction by denitrifying bacteria. Relative contributions from nitrification (hydroxylamine oxidation) and denitrification (nitrite reduction) to gross N2O production deduced from the analysis depended on soil type and fertilizer. The contribution from nitrification was relatively high (40%-70%) in Andisols amended with synthetic ammonium fertilizer, while denitrification was dominant (50%-90%) in the same soils amended with poultry manure during the period when N2O production occurred in the surface layer. This information on production processes is in accordance with that obtained from flux/concentration analysis of N2O and soil inorganic nitrogen. However, isotopomer analysis further revealed that partial reduction of N2O was pronounced in high-bulk density, alluvial soil (Fluvisol) compared to low-bulk density, volcanic ash soil (Andisol), and that the observed difference in N2O flux between normal and pelleted manure could have resulted from a similar mechanism with different rates of gross production and gross consumption. The isotopomeric analysis is based on data from pure culture bacteria and would be improved by further studies on in situ biological processes in soils including those by fungi. When flux/concentration-weighted average isotopomer

  17. Effect of Mass Flow on Stack Eductor Performance.

    DTIC Science & Technology

    1984-06-01

    absolute viscosity, lbf-sec/ft2 - density, Ibm/ft 3 "function of" ENGLISH LETTER SYMBOLS 2 A - area, in , ft B - atmospheric pressure, in Hg c - sonic... absolute temperature ratio T* - tertiary flow to primary flow absolute temperature t ratio - secondary -o primary mass flow rate ratio W* - tertiary to...secondary to primary absolute Tp temperature ratio TiL tertiary to primary absolute -TE temperature ratio secondary to primary flow density ratio

  18. Effect of rapid thermal annealing on the electrical, optical and structural properties of ZnO-doped In2O3 films grown by linear facing target sputtering.

    PubMed

    Cho, Chung-Ki; Kim, Han-Ki

    2012-04-01

    We investigated the effect of rapid thermal annealing on the electrical, optical, and structural properties of ZnO-doped In2O3 (ZIO) films grown at different Ar/O2 flow ratios (15/0 and 15/1 sccm) by using linear facing target sputtering. It was found that the ZIO films grown at different Ar/O2, flow ratios showed different electrical and optical behavior with increasing rapid thermal annealing temperature. Synchrotron X-ray scattering examination showed that the different electrical and optical properties of the ZIO films could be attributed to the difference in preferred orientation with an increase in rapid thermal annealing temperature.

  19. Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26 respectively, and with design pressure ratio of 2.05

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Reid, L.

    1980-01-01

    The overall and blade-element performances of a low-aspect-ratio transonic compressor stage are presented over the stable operating flow range for speeds from 50 to 100 percent of design. At design speed the rotor and stage achieved peak efficiencies of 0.876 and 0.840 at pressure ratios of 2.056 and 2.000, respectively. The stage stall margin at design speed was 10 percent.

  20. ISOTOPIC RATIOS OF {sup 18}O/{sup 17}O IN THE GALACTIC CENTRAL REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J. S.; Sun, L. L.; Riquelme, D.

    The {sup 18}O/{sup 17}O isotopic ratio of oxygen is a crucial measure of the secular enrichment of the interstellar medium by ejecta from high-mass versus intermediate-mass stars. So far, however, there is a lack of data, particularly from the Galactic center (GC) region. Therefore, we have mapped typical molecular clouds in this region in the J = 1–0 lines of C{sup 18}O and C{sup 17}O with the Delingha 13.7 m telescope (DLH). Complementary pointed observations toward selected positions throughout the GC region were obtained with the IRAM 30 m and Mopra 22 m telescopes. C{sup 18}O/C{sup 17}O abundance ratios reflectingmore » the {sup 18}O/{sup 17}O isotope ratios were obtained from integrated intensity ratios of C{sup 18}O and C{sup 17}O. For the first time, C{sup 18}O/C{sup 17}O abundance ratios are determined for Sgr C (V ∼ −58 km s{sup −1}), Sgr D (V ∼ 80 km s{sup −1}), and the 1.°3 complex (V ∼ 80 km s{sup −1}). Through our mapping observations, abundance ratios are also obtained for Sgr A (∼0 and ∼50 km s{sup −1} component) and Sgr B2 (∼60 km s{sup −1}), which are consistent with the results from previous single-point observations. Our frequency-corrected abundance ratios of the GC clouds range from 2.58 ± 0.07 (Sgr D, V ∼ 80 km s{sup −1}, DLH) to 3.54 ± 0.12 (Sgr A, ∼50 km s{sup −1}). In addition, strong narrow components (line width less than 5 km s{sup −1}) from the foreground clouds are detected toward Sgr D (−18 km s{sup −1}), the 1.°3 complex (−18 km s{sup −1}), and M+5.3−0.3 (22 km s{sup −1}), with a larger abundance ratio around 4.0. Our results show a clear trend of lower C{sup 18}O/C{sup 17}O abundance ratios toward the GC region relative to molecular clouds in the Galactic disk. Furthermore, even inside the GC region, ratios appear not to be uniform. The low GC values are consistent with an inside-out formation scenario for our Galaxy.« less

  1. Are H and O Being Lost From the Mars Atmosphere in the H2O Stoichiometric Ratio of 2:1?

    NASA Astrophysics Data System (ADS)

    Jakosky, B. M.; Chaffin, M.; Deighan, J.; Brain, D.; Halekas, J. S.

    2017-12-01

    Loss of gas from the Mars upper atmosphere to space has been a significant process in the evolution of the Mars atmosphere through time. H is derived from photodissociation of H2O, and is lost by Jeans (thermal) escape. O comes from photodissociation of either H2O or CO2, and is lost by non-thermal processes including dissociative recombination, ion pickup, or sputtering by pick-up ions impacting the atmosphere (in order of importance today). McElroy (1972) proposed that H and O are lost in the ratio of 2:1 that comes from photodissociation of H2O; any imbalance would result in build-up of the lesser-escaping atom that increases its loss rate until the rates were in balance. For the Mars year observed by MAVEN, the large seasonal variation in H loss rate makes this hypothesis difficult to evaluate; however, current best estimates of loss rates suggest that they could be in balance, given the observational uncertainties and seasonal variations (both of which are significant). Even if they are in balance over longer timescales, they still might not be during the "MAVEN" year due to: (i) complications resulting from the interplay between multiple loss processes for O beyond only photochemical loss as considered by McElroy, (ii) interannual and longer-term variations in the lower-atmosphere dust and water cycles that can change the escape rate, (iii) the variation in loss rate expected throughout the 11-year solar cycle, (iv) changes in lower-atmosphere forcing due to the changing orbital elements, or (v) loss of C, H, or O to the crust via reaction with surface minerals. The higher (and unequal) loss rates for all species early in history are likely to have kept H and O from being in balance over the 4-billion-year timescale.

  2. Renormalizability of the gradient flow in the 2D O(N) non-linear sigma model

    NASA Astrophysics Data System (ADS)

    Makino, Hiroki; Suzuki, Hiroshi

    2015-03-01

    It is known that the gauge field and its composite operators evolved by the Yang-Mills gradient flow are ultraviolet (UV) finite without any multiplicative wave function renormalization. In this paper, we prove that the gradient flow in the 2D O(N) non-linear sigma model possesses a similar property: The flowed N-vector field and its composite operators are UV finite without multiplicative wave function renormalization. Our proof in all orders of perturbation theory uses a (2+1)-dimensional field theoretical representation of the gradient flow, which possesses local gauge invariance without gauge field. As an application of the UV finiteness of the gradient flow, we construct the energy-momentum tensor in the lattice formulation of the O(N) non-linear sigma model that automatically restores the correct normalization and the conservation law in the continuum limit.

  3. The effect of rock particles and D2O replacement on the flow behaviour of ice.

    PubMed

    Middleton, Ceri A; Grindrod, Peter M; Sammonds, Peter R

    2017-02-13

    Ice-rock mixtures are found in a range of natural terrestrial and planetary environments. To understand how flow processes occur in these environments, laboratory-derived properties can be extrapolated to natural conditions through flow laws. Here, deformation experiments have been carried out on polycrystalline samples of pure ice, ice-rock and D 2 O-ice-rock mixtures at temperatures of 263, 253 and 233 K, confining pressure of 0 and 48 MPa, rock fraction of 0-50 vol.% and strain-rates of 5 × 10 -7 to 5 × 10 -5  s -1 Both the presence of rock particles and replacement of H 2 O by D 2 O increase bulk strength. Calculated flow law parameters for ice and H 2 O-ice-rock are similar to literature values at equivalent conditions, except for the value of the rock fraction exponent, here found to be 1. D 2 O samples are 1.8 times stronger than H 2 O samples, probably due to the higher mass of deuterons when compared with protons. A gradual transition between dislocation creep and grain-size-sensitive deformation at the lowest strain-rates in ice and ice-rock samples is suggested. These results demonstrate that flow laws can be found to describe ice-rock behaviour, and should be used in modelling of natural processes, but that further work is required to constrain parameters and mechanisms for the observed strength enhancement.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  4. The effect of rock particles and D2O replacement on the flow behaviour of ice

    PubMed Central

    Grindrod, Peter M.

    2017-01-01

    Ice–rock mixtures are found in a range of natural terrestrial and planetary environments. To understand how flow processes occur in these environments, laboratory-derived properties can be extrapolated to natural conditions through flow laws. Here, deformation experiments have been carried out on polycrystalline samples of pure ice, ice–rock and D2O-ice–rock mixtures at temperatures of 263, 253 and 233 K, confining pressure of 0 and 48 MPa, rock fraction of 0–50 vol.% and strain-rates of 5 × 10−7 to 5 × 10−5 s−1. Both the presence of rock particles and replacement of H2O by D2O increase bulk strength. Calculated flow law parameters for ice and H2O-ice–rock are similar to literature values at equivalent conditions, except for the value of the rock fraction exponent, here found to be 1. D2O samples are 1.8 times stronger than H2O samples, probably due to the higher mass of deuterons when compared with protons. A gradual transition between dislocation creep and grain-size-sensitive deformation at the lowest strain-rates in ice and ice–rock samples is suggested. These results demonstrate that flow laws can be found to describe ice–rock behaviour, and should be used in modelling of natural processes, but that further work is required to constrain parameters and mechanisms for the observed strength enhancement. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025298

  5. Noninvasive parametric blood flow imaging of head and neck tumours using [15O]H2O and PET/CT.

    PubMed

    Komar, Gaber; Oikonen, Vesa; Sipilä, Hannu; Seppänen, Marko; Minn, Heikki

    2012-11-01

    The aim of this study was to develop a simple noninvasive method for measuring blood flow using [15O]H2O PET/CT for the head and neck area applicable in daily clinical practice. Fifteen dynamic [15O]H2O PET emission scans with simultaneous online radioactivity measurements of radial arterial blood [Blood-input functions (IFs)] were performed. Two noninvasively obtained population-based input functions were calculated by averaging all Blood-IF curves corrected for patients' body mass and injected dose [standardized uptake value (SUV)-IF] and for body surface area (BSA-IF) and injected dose. Parametric perfusion images were calculated for each set of IFs using a linearized two-compartment model, and values for several tissues were compared using Blood-IF as the gold standard. On comparing all tissues, the correlation between blood flow obtained with the invasive Blood-IF and both SUV-IF and BSA-IF was significant (R2=0.785 with P<0.001 and R2=0.813 with P<0.001, respectively). In individual tissues, the performance of the two noninvasive methods was most reliable in resting muscle and slightly less reliable in tumour and cerebellar regions. In these two tissues, only BSA-IF showed a significant correlation with Blood-IF (R2=0.307 with P=0.032 in tumours and R2=0.398 with P<0.007 in the cerebellum). The BSA-based noninvasive method enables clinically relevant delineation between areas of low and high blood flow in tumours. The blood flow of low-perfusion tissues can be reliably quantified using either of the evaluated noninvasive methods.

  6. N loss to drain flow and N2O emissions from a corn-soybean rotation with winter rye.

    PubMed

    Gillette, K; Malone, R W; Kaspar, T C; Ma, L; Parkin, T B; Jaynes, D B; Fang, Q X; Hatfield, J L; Feyereisen, G W; Kersebaum, K C

    2018-03-15

    Anthropogenic perturbation of the global nitrogen cycle and its effects on the environment such as hypoxia in coastal regions and increased N 2 O emissions is of increasing, multi-disciplinary, worldwide concern, and agricultural production is a major contributor. Only limited studies, however, have simultaneously investigated NO 3 - losses to subsurface drain flow and N 2 O emissions under corn-soybean production. We used the Root Zone Water Quality Model (RZWQM) to evaluate NO 3 - losses to drain flow and N 2 O emissions in a corn-soybean system with a winter rye cover crop (CC) in central Iowa over a nine year period. The observed and simulated average drain flow N concentration reductions from CC were 60% and 54% compared to the no cover crop system (NCC). Average annual April through October cumulative observed and simulated N 2 O emissions (2004-2010) were 6.7 and 6.0kgN 2 O-Nha -1 yr -1 for NCC, and 6.2 and 7.2kgNha -1 for CC. In contrast to previous research, monthly N 2 O emissions were generally greatest when N loss to leaching were greatest, mostly because relatively high rainfall occurred during the months fertilizer was applied. N 2 O emission factors of 0.032 and 0.041 were estimated for NCC and CC using the tested model, which are similar to field results in the region. A local sensitivity analysis suggests that lower soil field capacity affects RZWQM simulations, which includes increased drain flow nitrate concentrations, increased N mineralization, and reduced soil water content. The results suggest that 1) RZWQM is a promising tool to estimate N 2 O emissions from subsurface drained corn-soybean rotations and to estimate the relative effects of a winter rye cover crop over a nine year period on nitrate loss to drain flow and 2) soil field capacity is an important parameter to model N mineralization and N loss to drain flow. Published by Elsevier B.V.

  7. Actinide Oxidation State and O/M Ratio in Hypostoichiometric Uranium-Plutonium-Americium U0.750Pu0.246Am0.004O2-x Mixed Oxides.

    PubMed

    Vauchy, Romain; Belin, Renaud C; Robisson, Anne-Charlotte; Lebreton, Florent; Aufore, Laurence; Scheinost, Andreas C; Martin, Philippe M

    2016-03-07

    Innovative americium-bearing uranium-plutonium mixed oxides U1-yPuyO2-x are envisioned as nuclear fuel for sodium-cooled fast neutron reactors (SFRs). The oxygen-to-metal (O/M) ratio, directly related to the oxidation state of cations, affects many of the fuel properties. Thus, a thorough knowledge of its variation with the sintering conditions is essential. The aim of this work is to follow the oxidation state of uranium, plutonium, and americium, and so the O/M ratio, in U0.750Pu0.246Am0.004O2-x samples sintered for 4 h at 2023 K in various Ar + 5% H2 + z vpm H2O (z = ∼ 15, ∼ 90, and ∼ 200) gas mixtures. The O/M ratios were determined by gravimetry, XAS, and XRD and evidenced a partial oxidation of the samples at room temperature. Finally, by comparing XANES and EXAFS results to that of a previous study, we demonstrate that the presence of uranium does not influence the interactions between americium and plutonium and that the differences in the O/M ratio between the investigated conditions is controlled by the reduction of plutonium. We also discuss the role of the homogeneity of cation distribution, as determined by EPMA, on the mechanisms involved in the reduction process.

  8. Recirculation zone length in renal artery is affected by flow spirality and renal-to-aorta flow ratio.

    PubMed

    Javadzadegan, Ashkan; Fulker, David; Barber, Tracie

    2017-07-01

    Haemodynamic perturbations such as flow recirculation zones play a key role in progression and development of renal artery stenosis, which typically originate at the aorta-renal bifurcation. The spiral nature of aortic blood flow, division of aortic blood flow in renal artery as well as the exercise conditions have been shown to alter the haemodynamics in both positive and negative ways. This study focuses on the combinative effects of spiral component of blood flow, renal-to-aorta flow ratio and the exercise conditions on the size and distribution of recirculation zones in renal branches using computational fluid dynamics technique. Our findings show that the recirculation length was longest when the renal-to-aorta flow ratio was smallest. Spiral flow and exercise conditions were found to be effective in reducing the recirculation length in particular in small renal-to-aorta flow ratios. These results support the hypothesis that in renal arteries with small flow ratios where a stenosis is already developed an artificially induced spiral flow within the aorta may decelerate the progression of stenosis and thereby help preserve kidney function.

  9. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Li, Xian-Xiang; Britter, Rex E.; Norford, Leslie K.; Koh, Tieh-Yong; Entekhabi, Dara

    2012-02-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.

  10. Direct evaluation of electrical dipole moment and oxygen density ratio at high-k dielectrics/SiO2 interface by X-ray photoelectron spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Fujimura, Nobuyuki; Ohta, Akio; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-04-01

    The electrical dipole moment at an ultrathin high-k (HfO2, Al2O3, TiO2, Y2O3, and SrO)/SiO2 interface and its correlation with the oxygen density ratio at the interface have been directly evaluated by X-ray photoelectron spectroscopy (XPS) under monochromatized Al Kα radiation. The electrical dipole moment at the high-k/SiO2 interface has been measured from the change in the cut-off energy of secondary photoelectrons. Moreover, the oxygen density ratio at the interface between high-k and SiO2 has been estimated from cation core-line signals, such as Hf 4f, Al 2p, Y 3d, Ti 2p, Sr 3d, and Si 2p. We have experimentally clarified the relationship between the measured electrical dipole moment and the oxygen density ratio at the high-k/SiO2 interface.

  11. Physical and thermal behaviour of Sr-La-Al-B-Si based SOFC glass sealants as function of SrO content and B2O3/SiO2 ratio in the matrix

    NASA Astrophysics Data System (ADS)

    Ojha, Prasanta Kumar; Rath, S. K.; Chongdar, T. K.; Gokhale, N. M.; Kulkarni, A. R.

    2011-05-01

    A series of SOFC glass sealants with composition SrO (x), La2O3 (15), Al2O3 (15), B2O3 (40 - x), and SiO2 (30) [x = 10, 15, 20, 25 and 30] (wt.%) [SLABS] are investigated for their structure property correlations at different compositions. Quantitative Fourier transform infrared spectroscopy shows structural rigidity with increasing SrO content, as demonstrate by an increase in the Si-O-Si/O-Si-O bending and B-O-B stretching frequencies. The role of SrO as a modifier dominates the control of the structure and behaviour of glasses compared with the effect of network formers, i.e., the B2O3/SiO2 ratio. Consequent to the structural changes, increasing substitution of B2O3 by SrO the glasses causes increases in the density, glass transition temperature and dilatometric softening point. On the other hand, the crystallization temperatures show a decreasing trend and the coefficient of thermal expansion increases with increase in substitution.

  12. Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers

    PubMed Central

    2016-01-01

    We present an optimized approach for the deposition of Al2O3 (as a model secondary material) coating into high aspect ratio (≈180) anodic TiO2 nanotube layers using the atomic layer deposition (ALD) process. In order to study the influence of the diffusion of the Al2O3 precursors on the resulting coating thickness, ALD processes with different exposure times (i.e., 0.5, 2, 5, and 10 s) of the trimethylaluminum (TMA) precursor were performed. Uniform coating of the nanotube interiors was achieved with longer exposure times (5 and 10 s), as verified by detailed scanning electron microscopy analysis. Quartz crystal microbalance measurements were used to monitor the deposition process and its particular features due to the tube diameter gradient. Finally, theoretical calculations were performed to calculate the minimum precursor exposure time to attain uniform coating. Theoretical values on the diffusion regime matched with the experimental results and helped to obtain valuable information for further optimization of ALD coating processes. The presented approach provides a straightforward solution toward the development of many novel devices, based on a high surface area interface between TiO2 nanotubes and a secondary material (such as Al2O3). PMID:27643411

  13. ZrO2-Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries.

    PubMed

    Zhou, Haipeng; Shen, Yi; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2016-06-22

    To improve the electrochemical performance of graphite felt (GF) electrodes in vanadium flow batteries (VFBs), we synthesize a series of ZrO2-modified GF (ZrO2/GF) electrodes with varying ZrO2 contents via a facile immersion-precipitation approach. It is found that the uniform immobilization of ZrO2 nanoparticles on the GF not only significantly promotes the accessibility of vanadium electrolyte, but also provides more active sites for the redox reactions, thereby resulting in better electrochemical activity and reversibility toward the VO(2+)/VO2(+) and V(2+)/V(3+) redox reactions as compared with those of GF. In particular, The ZrO2/GF composite with 0.3 wt % ZrO2 displays the best electrochemical performance with voltage and energy efficiencies of 71.9% and 67.4%, respectively, which are much higher than those of 57.3% and 53.8% as obtained from the GF electrode at 200 mA cm(-2). The cycle life tests demonstrate that the ZrO2/GF electrodes exhibit outstanding stability. The ZrO2/GF-based VFB battery shows negligible activity decay after 200 cycles.

  14. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry.

    PubMed

    Cassar, Nicolas; Barnett, Bruce A; Bender, Michael L; Kaiser, Jan; Hamme, Roberta C; Tilbrook, Bronte

    2009-03-01

    The oxygen (O(2)) concentration in the surface ocean is influenced by biological and physical processes. With concurrent measurements of argon (Ar), which has similar solubility properties as oxygen, we can remove the physical contribution to O(2) supersaturation and determine the biological oxygen supersaturation. Biological O(2) supersaturation in the surface ocean reflects the net metabolic balance between photosynthesis and respiration, i.e., the net community productivity (NCP). We present a new method for continuous shipboard measurements of O(2)/Ar by equilibrator inlet mass spectrometry (EIMS). From these measurements and an appropriate gas exchange parametrization, NCP can be estimated at high spatial and temporal resolution. In the EIMS configuration, seawater from the ship's continuous intake flows through a cartridge enclosing a gas-permeable microporous membrane contactor. Gases in the headspace of the cartridge equilibrate with dissolved gases in the flowing seawater. A fused-silica capillary continuously samples headspace gases, and the O(2)/Ar ratio is measured by mass spectrometry. The ion current measurements on the mass spectrometer reflect the partial pressures of dissolved gases in the water flowing through the equilibrator. Calibration of the O(2)/Ar ion current ratio (32/40) is performed automatically every 2 h by sampling ambient air through a second capillary. A conceptual model demonstrates that the ratio of gases reaching the mass spectrometer is dependent on several parameters, such as the differences in molecular diffusivities and solubilities of the gases. Laboratory experiments and field observations performed by EIMS are discussed. We also present preliminary evidence that other gas measurements, such as N(2)/Ar and pCO(2) measurements, may potentially be performed with EIMS. Finally, we compare the characteristics of the EIMS with the previously described membrane inlet mass spectrometry (MIMS) approach.

  15. Investigation of local environments in Nafion-SiO(2) composite membranes used in vanadium redox flow batteries.

    PubMed

    Vijayakumar, M; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Thevuthasan, S; Liu, Jun; Graff, Gordon L; Hu, Jianzhi

    2012-04-01

    Proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, polymer composite membranes, such as SiO(2) incorporated Nafion membranes, are recently reported as highly promising for the use in redox flow batteries. However, there is conflicting reports regarding the performance of this type of Nafion-SiO(2) composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO(2) composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infra Red (FTIR) spectroscopy, and ultraviolet-visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the (19)F and (29)Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The (29)Si NMR shows that the silica particles interact via hydrogen bonds with the sulfonic groups of Nafion and the diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO(2) composite membrane materials in vanadium redox flow batteries. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Investigation of Local Environments in Nafion-SiO2 Composite Membranes used in Vanadium Redox Flow Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, M.; Schwenzer, Birgit; Kim, Soowhan

    2012-04-01

    The proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, the polymer composite membranes such as SiO2 incorporated Nafion membranes are recently reported as highly promising for the redox flow batteries. However, there is conflicting reports regarding the performance of this Nafion-SiO2 composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO2 composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transformed Infra Red (FTIR) spectroscopy, and ultravioletmore » visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the 19F and 29Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The 29Si NMR shows that the silica particles interaction via hydrogen bonds to the sulfonic groups of Nafion and diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO2 composite membrane materials in vanadium redox flow batteries.« less

  17. Dean Flow Dynamics in Low-Aspect Ratio Spiral Microchannels

    PubMed Central

    Nivedita, Nivedita; Ligrani, Phillip; Papautsky, Ian

    2017-01-01

    A wide range of microfluidic cell-sorting devices has emerged in recent years, based on both passive and active methods of separation. Curvilinear channel geometries are often used in these systems due to presence of secondary flows, which can provide high throughput and sorting efficiency. Most of these devices are designed on the assumption of two counter rotating Dean vortices present in the curved rectangular channels and existing in the state of steady rotation and amplitude. In this work, we investigate these secondary flows in low aspect ratio spiral rectangular microchannels and define their development with respect to the channel aspect ratio and Dean number. This work is the first to experimentally and numerically investigate Dean flows in microchannels for Re > 100, and show presence of secondary Dean vortices beyond a critical Dean number. We further demonstrate the impact of these multiple vortices on particle and cell focusing. Ultimately, this work offers new insights into secondary flow instabilities for low-aspect ratio, spiral microchannels, with improved flow models for design of more precise and efficient microfluidic devices for applications such as cell sorting and micromixing. PMID:28281579

  18. Flow of High Internal Phase Ratio Emulsions through Pipes

    NASA Astrophysics Data System (ADS)

    Kostak, K.; Özsaygı, R.; Gündüz, I.; Yorgancıoǧlu, E.; Tekden, E.; Güzel, O.; Sadıklar, D.; Peker, S.; Helvacı, Ş. Ş.

    2015-04-01

    The flow behavior of W/O type of HIPRE stabilized by hydrogen bonds with a sugar (sorbitol) in the aqueous phase, was studied. Two groups of experiments were done in this work: The effect of wall shear stresses were investigated in flow through pipes of different diameters. For this end, HIPREs prestirred at constant rate for the same duration were used to obtain similar drop size distributions. Existence and extent of elongational viscosity were used as a probe to elucidate the effect of drop size distribution on the flow behavior: HIPREs prestirred for the same duration at different rates were subjected to flow through converging pipes. The experimental flow curves for flow through small cylindrical pipes indicated four different stages: 1) initial increase in the flow rate at low pressure difference, 2) subsequent decrease in the flow rate due to capillary flow, 3) pressure increase after reaching the minimum flow rate and 4) slip flow after a critical pressure difference. HIPREs with sufficient external liquid phase in the plateau borders can elongate during passage through converging pipes. In the absence of liquid stored in the plateau borders, the drops rupture during extension and slip flow takes place without elongation.

  19. Results of duct area ratio changes in the NASA Lewis H2-O2 combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1979-01-01

    MHD power generation experiments utilizing a cesium-seeded H2-O2 working fluid were carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments were conducted in a high field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, generator loading B field strength, and electrode breakdown voltage were investigated. The effect of area ratio, multiple loading of the duct, and duct location within the magnetic field are considered.

  20. Effect of CaO on the selectivity of N2O decomposition products: A combined experimental and DFT study

    NASA Astrophysics Data System (ADS)

    Wu, Lingnan; Hu, Xiaoying; Qin, Wu; Gao, Pan; Dong, Changqing; Yang, Yongping

    2016-09-01

    The effect of CaO on N2O decomposition and the selectivity of its decomposition products (NO and N2) was investigated using a fixed-bed flow reactor with varying temperatures from 317 °C to 947 °C. The selectivity of NO from CaO-catalyzed N2O decomposition is much lower than the N2 selectivity with the N2/NO products ratio greater than 12.1. Compared to N2O homogeneous decomposition with the minimum N2/NO products ratio of 6.2 at 718 °C, CaO also decreases the NO selectivity from 718 °C to 947 °C. Density functional theory calculations provide possible N2O decomposition routes on the CaO (1 0 0) surface considering both N2 and NO as N2O decomposition products. The N2 formation route is more favorable than the NO formation route in terms of energy barrier and reaction energy, and NO formation on the CaO (1 0 0) surface is likely to proceed via N2O + Osurf2- → N2 + O2 , surf2- and N2O + O2 , surf2- → 2NO + Osurf2-.

  1. Effects of Zr/Ce molar ratio and water content on thermal stability and structure of ZrO{sub 2}–CeO{sub 2} mixed oxides prepared via sol–gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Wenzhi; Yang, Jili; Wang, Chunjie

    2012-09-15

    Highlights: ► Tetragonal t″ phase was stabilized in Zr{sub 0.5}Ce{sub 0.5}O{sub 2} solid solution at temperature as high as 1000 °C. ► Specific surface area of powders decreased with the increase of water addition and the Ce content. ► The single stable phase was controlled by adjusting the volume ratio of water and ethanol. ► Tetragonal (t″) phase dissociated into cubic and tetragonal (t′) phases at 1200 °C. -- Abstract: ZrO{sub 2}–CeO{sub 2} mixed oxides were synthesized via sol–gel process. Thermal stability, structure and morphology of samples were investigated by powder X-ray diffraction, FT-Raman spectroscopy, X-ray photoelectron spectroscopy and scanningmore » electron microscopy. In this approach, the solvent composition and Zr/Ce molar ratio have great influences on the structure and morphology of final products. With decreasing water content in the mixed solvent, specific surface area of powders increased and the single tetragonal phase was obtained. Only when the volume ratio of water and ethanol and the Zr/Ce molar ratio were 1:1, tetragonal t″-Zr{sub 0.5}Ce{sub 0.5}O{sub 2} could be stabilized in powders at temperature as high as 1000 °C. Meanwhile, tetragonal (t′) and (t″) phases coexisted in Zr{sub 0.5}Ce{sub 0.5}O{sub 2} solid solution without peak splitting after calcination at 1100 °C, further transforming into cubic and tetragonal (t′) phases at 1200 °C. The effective activation energy for Zr{sub 0.5}Ce{sub 0.5}O{sub 2} nanocrystallite growth during annealing is about 5.24 ± 0.15 kJ/mol.« less

  2. Effect of EtOH/MgCl(2) molar ratios on the catalytic properties of MgCl(2)-SiO(2)/TiCl(4) Ziegler-Natta catalyst for ethylene polymerization.

    PubMed

    Patthamasang, Supanan; Jongsomjit, Bunjerd; Praserthdam, Piyasan

    2011-09-29

    MgCl(2)-SiO(2)/TiCl(4) Ziegler-Natta catalysts for ethylene polymerization were prepared by impregnation of MgCl(2) on SiO(2) in heptane and further treatment with TiCl(4). MgCl(2)·nEtOH adduct solutions were prepared with various EtOH/MgCl(2) molar ratios for preparation of the MgCl(2)-supported and MgCl(2)-SiO(2)-supported catalysts in order to investigate the effect on polymerization performance of both catalyst systems. The catalytic activities for ethylene polymerization decreased markedly with increased molar ratios of [EtOH]/[MgCl(2)] for the MgCl(2)-supported catalysts, while for the bi-supported catalysts, the activities only decreased slightly. The MgCl(2)-SiO(2)-supported catalyst had relatively constant activity, independent of the [EtOH]/[MgCl(2)] ratio. The lower [EtOH]/[MgCl(2)] in MgCl(2)-supported catalyst exhibited better catalytic activity. However, for the MgCl(2)-SiO(2)-supported catalyst, MgCl(2) can agglomerate on the SiO(2) surface at low [EtOH]/[MgCl(2)] thus not being not suitable for TiCl(4) loading. It was found that the optimized [EtOH]/[MgCl(2)] value for preparation of bi-supported catalysts having high activity and good spherical morphology with little agglomerated MgCl(2) was 7. Morphological studies indicated that MgCl(2)-SiO(2)-supported catalysts have good morphology with spherical shapes that retain the morphology of SiO(2). The BET measurement revealed that pore size is the key parameter dictating polymerization activity. The TGA profiles of the bi-supported catalyst also confirmed that it was more stable than the mono-supported catalyst, especially in the ethanol removal region.

  3. Net Community and Gross Photosynthetic Production Rates in the Eastern Tropical South Pacific, as Determined from O2/AR Ratios and Triple Oxygen Isotopic Composition of Dissolved O2

    NASA Astrophysics Data System (ADS)

    Prokopenko, M. G.; Yeung, L. Y.; Berelson, W.; Fleming, J.; Rollins, N.; Young, E. D.; Haskell, W. Z.; Hammond, D. E.; Capone, D. G.

    2010-12-01

    This study assesses the rates of ocean carbon production and its fate with respect to recycling or export in the Eastern Tropical South Pacific (ETSP). ETSP has been previously identified as a region where N2 fixation and denitrification may be spatially coupled; this is also a region of localized CO2 outgassing. Using an Equilibrated Inlet Mass Spectrometer (EIMS) system, we obtained continuous measurements of the biological O2 supersaturation in the mixed layer along the ship track encompassing a region bounded by 10-20° S and 80-100° W in January - March, 2010. Vertical profiles were also taken at selected stations and analyzed for dissolved O2/Ar ratios on EIMS and triple oxygen isotope composition (17O excess) on a multi-collector IRMS (Isotope Ratio Mass Spectrometer) at UCLA. Gas exchange rates were estimated using two approaches: the Rn-222 deficit method and the wind parameterization method, which utilized wind speeds extracted from ASCAT satellite database. Oxygen Net Community Production (O-NCP) rates calculated based on biological O2 supersaturation ranged from slightly negative to ~ 0.3 - 15 mmol/m2d, with higher rates along the northern part of the transect. Oxygen Gross Community Production (O-GPP) rates calculated from 17O excess were between 50 ± 20 and 200 ± 40 mmol/m2d, with higher rates observed along the northern cruise transect as well. Notably, the NCP/GPP ratios along the northern transect were higher by the factor of 2 to 3 than their southern counterparts. The O2/Ar-based NCP rates were comparable to POC flux measured with floating traps deployed at the southern stations, but exceeded by a factor of 5-10 the trap POC fluxes obtained at the northern stations. A one-dimensional box model has been constructed to quantify the magnitude of oxygen primary production below the mixed layer. The results of this work will be integrated with measurements of 15-N2 uptake that are in progress, to constrain the potential contribution of N2 fixation

  4. Multiplexed Lateral Flow Test for Detection and Differentiation of Cronobacter sakazakii Serotypes O1 and O2

    PubMed Central

    Scharinger, Eva J.; Dietrich, Richard; Wittwer, Tobias; Märtlbauer, Erwin; Schauer, Kristina

    2017-01-01

    The ubiquitous and opportunistic pathogen Cronobacter sakazakii is responsible for severe meningitis, sepsis, and necrotizing enterocolitis in neonates and infants associated with ingestion of contaminated powdered infant formula (PIF). The current ISO method for isolation and detection of Cronobacter spp. is laborious, time-consuming and expensive. In this study, a multiplexed lateral flow test strip was developed to rapidly detect and simultaneously serotype O1 and O2 C. sakazakii serotypes. The assay is based on two monoclonal antibodies (MAb) that specifically bind to the lipopolysaccharides (LPS) of these pathogens. The test strip provides results very quickly; C. sakazakii could be detected in pure culture within 15 min with a sensitivity of 107 CFU/ml. After non-selective enrichment for 18 h as low as one Cronobacter cell per g PIF could be detected. Moreover, the established lateral flow assay (LFA) offers excellent specificity showing no cross-reactivity with other C. sakazakii serotypes, Cronobacter species or Enterobacteriaceae tested. These characteristics, together with several advantages such as speed, simplicity in performance, low analysis cost, and no requirement of specialized skills or sophisticated equipment make the developed multiplexed LFA suitable for reliable detection and serotyping of C. sakazakii serotypes O1 and O2. PMID:28979257

  5. Multiplexed Lateral Flow Test for Detection and Differentiation of Cronobacter sakazakii Serotypes O1 and O2.

    PubMed

    Scharinger, Eva J; Dietrich, Richard; Wittwer, Tobias; Märtlbauer, Erwin; Schauer, Kristina

    2017-01-01

    The ubiquitous and opportunistic pathogen Cronobacter sakazakii is responsible for severe meningitis, sepsis, and necrotizing enterocolitis in neonates and infants associated with ingestion of contaminated powdered infant formula (PIF). The current ISO method for isolation and detection of Cronobacter spp. is laborious, time-consuming and expensive. In this study, a multiplexed lateral flow test strip was developed to rapidly detect and simultaneously serotype O1 and O2 C. sakazakii serotypes. The assay is based on two monoclonal antibodies (MAb) that specifically bind to the lipopolysaccharides (LPS) of these pathogens. The test strip provides results very quickly; C. sakazakii could be detected in pure culture within 15 min with a sensitivity of 10 7 CFU/ml. After non-selective enrichment for 18 h as low as one Cronobacter cell per g PIF could be detected. Moreover, the established lateral flow assay (LFA) offers excellent specificity showing no cross-reactivity with other C. sakazakii serotypes, Cronobacter species or Enterobacteriaceae tested. These characteristics, together with several advantages such as speed, simplicity in performance, low analysis cost, and no requirement of specialized skills or sophisticated equipment make the developed multiplexed LFA suitable for reliable detection and serotyping of C. sakazakii serotypes O1 and O2.

  6. Fabrication of Coaxial Si1−xGex Heterostructure Nanowires by O2 Flow-Induced Bifurcate Reactions

    PubMed Central

    2010-01-01

    We report on bifurcate reactions on the surface of well-aligned Si1−xGex nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si1−xGex nanowires were grown in a chemical vapor transport process using SiCl4 gas and Ge powder as a source. After the growth of nanowires, SiCl4 flow was terminated while O2 gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO2 by the O2 gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O2 pressure without any intermediate region and enables selectively fabricated Ge/Si1−xGex or SiO2/Si1−xGex coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively. PMID:21076699

  7. Fabrication of Coaxial Si1- x Ge x Heterostructure Nanowires by O2 Flow-Induced Bifurcate Reactions

    NASA Astrophysics Data System (ADS)

    Kim, Ilsoo; Lee, Ki-Young; Kim, Ungkil; Park, Yong-Hee; Park, Tae-Eon; Choi, Heon-Jin

    2010-10-01

    We report on bifurcate reactions on the surface of well-aligned Si1- x Ge x nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si1- x Ge x nanowires were grown in a chemical vapor transport process using SiCl4 gas and Ge powder as a source. After the growth of nanowires, SiCl4 flow was terminated while O2 gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO2 by the O2 gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O2 pressure without any intermediate region and enables selectively fabricated Ge/Si1- x Ge x or SiO2/Si1- x Ge x coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively.

  8. Fabrication of Coaxial Si(1-x)Ge(x) Heterostructure Nanowires by O(2) Flow-Induced Bifurcate Reactions.

    PubMed

    Kim, Ilsoo; Lee, Ki-Young; Kim, Ungkil; Park, Yong-Hee; Park, Tae-Eon; Choi, Heon-Jin

    2010-06-17

    We report on bifurcate reactions on the surface of well-aligned Si(1-x)Ge(x) nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si(1-x)Ge(x) nanowires were grown in a chemical vapor transport process using SiCl(4) gas and Ge powder as a source. After the growth of nanowires, SiCl(4) flow was terminated while O(2) gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO(2) by the O(2) gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O(2) pressure without any intermediate region and enables selectively fabricated Ge/Si(1-x)Ge(x) or SiO(2)/Si(1-x)Ge(x) coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively.

  9. Effect of SiO2/Al2O3 Ratio on Micro-Mesopore Formation for Pt/Beta-MCM-41 via NaOH Treatment and the Catalytic Performance in N-heptane Hydro isomerization

    NASA Astrophysics Data System (ADS)

    Gao, Li; Shi, Zhiyuan; Liu, Yingming; Zhao, Yuanshou; Liu, Qinghua; Xu, Chengguo; Bai, Peng; Yan, Zifeng

    2018-01-01

    Micro-mesoporous composite material Beta-MCM-41(BM) were hydrothermally synthesized by treating parent beta with molar SiO2/Al2O3 ratios of 12.5, 20 and 30 as precursors. The influence of SiO2/Al2O3 ratio of zeolite beta on effective micro-mesoporous composite formation was studied by investigating the crystallinity, morphology, chemical composition, acidity and textural property of Beta-MCM-41 through XRD, nitrogen adsorption, SEM, TEM, NH3-TPD, FTIR and Pyridine-FTIR. The catalytic performance was evaluated in terms of n-heptane hydro isomerization. The results demonstrated that Beta-MCM-41 supported Pt catalysts showed higher selectivity to isoheptanes than Pt/Beta. It was attributed to the superiorities of the pore structure and mesoporous accelerated the diffusion of larger molecules of isoheptanes.

  10. Modification of FN tunneling provoking gate-leakage current in ZTO (zinc-tin oxide) TFT by regulating the ZTO/SiO2 area ratio

    NASA Astrophysics Data System (ADS)

    Li, Jeng-Ting; Tsai, Ho-Lin; Lai, Wei-Yao; Hwang, Weng-Sing; Chen, In-Gann; Chen, Jen-Sue

    2018-04-01

    This study addresses the variation in gate-leakage current due to the Fowler-Nordheim (FN) tunneling of electrons through a SiO2 dielectric layer in zinc-tin oxide (ZTO) thin film transistors. It is shown that the gate-leakage current is not related to the absolute area of the ZTO active layer, but it is reduced by reducing the ZTO/SiO2 area ratio. The ZTO/SiO2 area ratio modulates the ZTO-SiO2 interface dipole strength as well as the ZTO-SiO2 conduction band offset and subsequently affects the FN tunneling current through the SiO2 layer, which provides a route that modifies the gate-leakage current.

  11. Sol-gel preparation of self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective coating for solar glass

    NASA Astrophysics Data System (ADS)

    Lin, Wensheng; Zheng, Jiaxian; Yan, Lianghong; Zhang, Xinxiang

    2018-03-01

    Self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective (AR) coating is prepared by sol-gel process. SiO2 sol is prepared by using tetraethyl orthosilicate (TEOS) as precursor and ammonia as catalyst, while TiO2 sol was prepared by using tetrabutyl orthotitanate (TBOT) as precursor and hydrochloric acid as catalyst. The effect of TiO2 content on refractive index, abrasion-resistance and photo-catalytic activity of SiO2-TiO2 hybrid thin films or powders is systematically investigated. It is found that the refractive index of SiO2-TiO2 hybrid thin films increases gradually from 1.18 to 1.53 as the weight ratio of TiO2 to SiO2 increased from 0 to 1.0. The SiO2-TiO2 hybrid thin film and powder possesses good abrasion-resistance and photo-catalytic activity, respectively, as the weight ratio of TiO2 to SiO2 is 0.4. The degradation degree of Rhodamine B by SiO2-TiO2 hybrid powder is 88.3%. Finally, SiO2-TiO2/SiO2-TiO2 double-layer AR coating with high transmittance, abrasion-resistance and self-cleaning property is realized.

  12. Visualization of Secondary Flow Development in High Aspect Ratio Channels with Curvature

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Giuliani, James E.

    1994-01-01

    The results of an experimental project to visually examine the secondary flow structure that develops in curved, high aspect-ratio rectangular channels are presented. The results provide insight into the fluid dynamics within high aspect ratio channels. A water flow test rig constructed out of plexiglass, with an adjustable aspect ratio, was used for these experiments. Results were obtained for a channel geometry with a hydraulic diameter of 10.6 mm (0.417 in.), an aspect ratio of 5.0, and a hydraulic radius to curvature radius ratio of 0.0417. Flow conditions were varied to achieve Reynolds numbers up to 5,100. A new particle imaging velocimetry technique was developed which could resolve velocity information from particles entering and leaving the field of view. Time averaged secondary flow velocity vectors, obtained using this velocimetry technique, are presented for 30 degrees, 60 degrees, and 90 degrees into a 180 degrees bend and at a Reynolds number of 5,100. The secondary flow results suggest the coexistence of both the classical curvature induced vortex pair flow structure and the eddies seen in straight turbulent channel flow.

  13. Secondary flow in turbulent ducts with increasing aspect ratio

    NASA Astrophysics Data System (ADS)

    Vinuesa, R.; Schlatter, P.; Nagib, H. M.

    2018-05-01

    Direct numerical simulations of turbulent duct flows with aspect ratios 1, 3, 5, 7, 10, and 14.4 at a center-plane friction Reynolds number Reτ,c≃180 , and aspect ratios 1 and 3 at Reτ,c≃360 , were carried out with the spectral-element code nek5000. The aim of these simulations is to gain insight into the kinematics and dynamics of Prandtl's secondary flow of the second kind and its impact on the flow physics of wall-bounded turbulence. The secondary flow is characterized in terms of the cross-plane component of the mean kinetic energy, and its variation in the spanwise direction of the flow. Our results show that averaging times of around 3000 convective time units (based on duct half-height h ) are required to reach a converged state of the secondary flow, which extends up to a spanwise distance of around ≃5 h measured from the side walls. We also show that if the duct is not wide enough to accommodate the whole extent of the secondary flow, then its structure is modified as reflected through a different spanwise distribution of energy. Another confirmation of the extent of the secondary flow is the decay rate of kinetic energy of any remnant secondary motions for zc/h >5 (where zc is the spanwise distance from the corner) in aspect ratios 7, 10, and 14.4, which exhibits a decreasing level of energy with increasing averaging time ta, and in its rapid rate of decay given by ˜ta-1 . This is the same rate of decay observed in a spanwise-periodic channel simulation, which suggests that at the core, the kinetic energy of the secondary flow integrated over the cross-sectional area, , behaves as a random variable with zero mean, with rate of decay consistent with central limit theorem. Long-time averages of statistics in a region of rectangular ducts extending about the width of a well-designed channel simulation (i.e., extending about ≃3 h on each side of the center plane) indicate that ducts or experimental facilities with aspect ratios larger than 10

  14. New Insight into SO2 Poisoning and Regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 Catalysts for Low-Temperature NH3-SCR.

    PubMed

    Xu, Liwen; Wang, Chizhong; Chang, Huazhen; Wu, Qingru; Zhang, Tao; Li, Junhua

    2018-06-19

    In this study, the poisoning effects of SO 2 on the V 2 O 5 -WO 3 /TiO 2 (1%VWTi) and CeO 2 -WO 3 /TiO 2 (5%CeWTi) selective catalytic reduction (SCR) catalysts were investigated in the presence of steam, and also the regeneration of deactivated catalysts was studied. After pretreating the catalysts in a flow of NH 3 + SO 2 + H 2 O + O 2 at 200 °C for 24 h, it was observed that the low-temperature SCR (LT-SCR) activity decreased significantly over the 1%VWTi and 5%CeWTi catalysts. For 1%VWTi, NH 4 HSO 4 (ABS) was the main product detected after the poisoning process. Both of NH 4 HSO 4 and cerium sulfate species were formed on the poisoned 5%CeWTi catalyst, indicating that SO 2 reacted with Ce 3+ /Ce 4+ , even in the presence of high concentration of NH 3 . The decrease of BET specific surface area, NO x adsorption capacity, the ratio of chemisorbed oxygen, and reducibility were responsible for the irreversible deactivation of the poisoned 5%CeWTi catalyst. Meanwhile, the LT-SCR activity could be recovered over the poisoned 1%VWTi after regeneration at 400 °C, but not for the 5%CeWTi catalyst. For industrial application, it is suggested that the regeneration process can be utilized for 1%VWTi catalysts after a period of time after NH 4 HSO 4 accumulated on the catalysts.

  15. Highly active catalytic Ru/TiO2 nanomaterials for continuous flow production of γ-valerolactone.

    PubMed

    Ouyang, Weiyi; Munoz-Batista, Mario; Fernandez-Garcia, Marcos; Luque, Rafael

    2018-05-29

    Green energy production from renewable sources is an attractive but challenging topic to face the likely energy crisis scenario in the future. In the current work, a series of versatile Ru/TiO2 catalysts were simply synthesized and employed in continuous flow catalytic transfer hydrogenation of industrially derived methyl levulinate biowaste (from Avantium Chemicals B.V.) to γ-valerolactone. Different analytical techniques were applied in the characterization of the as-synthesized catalysts, including XRD, SEM, EDX, TEM and XPS etc. The effects of various reaction conditions (e.g. temperature, concentration and flow rate) were investigated. Results suggested that optimum dispersion and distribution of Ru on the TiO2 surface could efficiently promote production of γ-valerolactone, with 5% Ru/TiO2 catalyst providing excelling catalytic performance and stability as compared to commercial Ru catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of metal cation ratio on chemical properties of ZnFe2O4/AC composite and adsorption of organic contaminant

    NASA Astrophysics Data System (ADS)

    Meilia, Demara; Misbah Khunur, Mochamad; Setianingsih, Tutik

    2018-01-01

    Porous woody char is biochar prepared through pyrolisis. The biochar can be used as adsorbent. In this research, ZnFe2O4/AC composite was synthesized through imregnation of the woody biochar with ZnFe2O4 to study effect of mol ratio of Fe(III) and Zn(II) toward their physicochemistry and adsorption of drug wastewater. Paracetamol was used as adsorbate model. This research was conducted in several steps, including activation of the woody biochar using KOH activator at temperatur 500 °C for 15 min to produce the activated carbon, fungsionalization of the carbon using H2SO4 oxidator (6M) at temperature of 80 °C for 3 h, impregnation of the oxidized activated carbon with Zn-Fe-LDH (Layered Double Hydroxide) at various mol ratio of Fe(III) and Zn(III), including 1:2, 1:3 and 1:4 using NaOH solution (5M) for coprecipitation, and calcination of Zn-Fe-LDH/AC at 950 °C for 5 min to produce ZnFe2O4/AC. FTIR diffraction characterization indicated existence of M-O (M = Zn(II), Fe(III)) and OH functional groups. FTIR spectra showed increasing of bands connected to -OH by increasing of the ratio till the ratio was achieved at 1:4, then decreased again. The ratio mol showed effect on the adsorption of paracetamol. Profile of adsorption value was fit with changing of functional groups. The highest adsorption was achieved at the ratio of 1:4. After calcination it gave the adsorption value of 17,66 mg/g.

  17. Probe measures gas and liquid mass flux in high mass flow ratio two-phase flows

    NASA Technical Reports Server (NTRS)

    Burick, R. J.

    1972-01-01

    Deceleration probe constructed of two concentric tubes with separator inlet operates successfully in flow fields where ratio of droplet flow rate to gas flow rate ranges from 1.0 to 20, and eliminates problems of local flow field disturbances and flooding. Probe is effective tool for characterization of liquid droplet/gas spray fields.

  18. Impact of oxygen precursor flow on the forward bias behavior of MOCVD-Al2O3 dielectrics grown on GaN

    NASA Astrophysics Data System (ADS)

    Chan, Silvia H.; Bisi, Davide; Liu, Xiang; Yeluri, Ramya; Tahhan, Maher; Keller, Stacia; DenBaars, Steven P.; Meneghini, Matteo; Mishra, Umesh K.

    2017-11-01

    This paper investigates the effects of the oxygen precursor flow supplied during metalorganic chemical vapor deposition (MOCVD) of Al2O3 films on the forward bias behavior of Al2O3/GaN metal-oxide-semiconductor capacitors. The low oxygen flow (100 sccm) delivered during the in situ growth of Al2O3 on GaN resulted in films that exhibited a stable capacitance under forward stress, a lower density of stress-generated negative fixed charges, and a higher dielectric breakdown strength compared to Al2O3 films grown under high oxygen flow (480 sccm). The low oxygen grown Al2O3 dielectrics exhibited lower gate current transients in stress/recovery measurements, providing evidence of a reduced density of trap states near the GaN conduction band and an enhanced robustness under accumulated gate stress. This work reveals oxygen flow variance in MOCVD to be a strategy for controlling the dielectric properties and performance.

  19. Linking Annual N2O Emission in Organic Soils to Mineral Nitrogen Input as Estimated by Heterotrophic Respiration and Soil C/N Ratio

    PubMed Central

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted. PMID:24798347

  20. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    PubMed

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  1. In-situ synthesis of hydrogen peroxide in a novel Zn-CNTs-O2 system

    NASA Astrophysics Data System (ADS)

    Gong, Xiao-bo; Yang, Zhao; Peng, Lin; Zhou, An-lan; Liu, Yan-lan; Liu, Yong

    2018-02-01

    A novel strategy of in-situ synthesis of hydrogen peroxide (H2O2) was formulated and evaluated. Oxygen was selectively reduced to H2O2 combined with electrochemical corrosion of zinc in the Zn-CNTs-O2 system. The ratio of zinc and CNTs, heat treatment temperature, and operational parameters such as composite dosage, initial pH, solution temperature, oxygen flow rate were systematically investigated to improve the efficiency of H2O2 generation. The Zn-CNTs composite (weight ratio of 2.5:1) prepared at 500 °C showed the maximum H2O2 accumulation concentration of 293.51 mg L-1 within 60 min at the initial pH value of 3.0, Zn-CNTs dosage of 0.4 g and oxygen flow rate of 400 mL min-1. The oxygen was reduced through two-electron pathway to hydrogen peroxide on CNTs while the zinc was oxidized in the system and the dissolved zinc ions convert to zinc hydroxide and depositing on the surface of CNTs. It was proposed that the increment of direct H2O2 production was caused by the improvement of the formed Zn/CNTs corrosion cell. This provides promising strategy for in-situ synthesis and utilization of hydrogen peroxide in the novel Zn-CNTs-O2 system, which enhances the environmental and economic attractiveness of the use of H2O2 as green oxidant for wastewater treatments.

  2. Hydrogen-Treated Rutile TiO2 Shell in Graphite-Core Structure as a Negative Electrode for High-Performance Vanadium Redox Flow Batteries.

    PubMed

    Vázquez-Galván, Javier; Flox, Cristina; Fàbrega, Cristian; Ventosa, Edgar; Parra, Andres; Andreu, Teresa; Morante, Joan Ramón

    2017-05-09

    Hydrogen-treated TiO 2 as an electrocatalyst has shown to boost the capacity of high-performance all-vanadium redox flow batteries (VRFBs) as a simple and eco-friendly strategy. The graphite felt-based GF@TiO 2 :H electrode is able to inhibit the hydrogen evolution reaction (HER), which is a critical barrier for operating at high rate for long-term cycling in VRFBs. Significant improvements in charge/discharge and electron-transfer processes for the V 3+ /V 2+ reaction on the surface of reduced TiO 2 were achieved as a consequence of the formation of oxygen functional groups and oxygen vacancies in the lattice structure. Key performance indicators of VRFB have been improved, such as high capability rates and electrolyte-utilization ratios (82 % at 200 mA cm -2 ). Additionally, high coulombic efficiencies (ca. 100 % up to the 96th cycle, afterwards >97 %) were obtained, demonstrating the feasibility of achieving long-term stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis of Copper-Based Nanostructured Catalysts on SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 Supports for NO Reduction.

    PubMed

    Namkhang, Pornpan; Kongkachuichay, Paisan

    2015-07-01

    The selective catalytic reduction of NO over a series of Cu-based catalysts supported on modified silica including SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 prepared via a sol-gel process and a flame spray pyrolysis (FSP) was studied. The prepared catalysts were characterized by means of TEM, XRD, XRF, TPR, and nitrogen physisorption measurement techniques, to determine particle diameter, morphology, crystallinity, phase composition, copper reducibility, surface area, and pore size of catalysts. The particles obtained from sol-gel method were almost spherical while the particles obtained from the FSP were clearly spherical and non-porous nanosized particles. The effects of Si:Al, Si:Ti, and Si:Zr molar ratio of precursor were identified as the domain for different crystalline phase of materials. It was clearly seen that a high SiO2 content inhibited the crystallization of materials. The BET surface area of catalysts obtained from sol-gel method was higher than that from the FSP and it shows that surface area increased with increasing SiO2 molar ratio due to high surface area from SiO2. The catalyst performances were tested for the selective catalytic reduction of NO with H2. It was found that the catalyst prepared over 7 wt% Cu on Si02-Al2O3 support was the most active compared with the others which converted NO as more than 70%. Moreover, the excess copper decreased the performance of NO reduction, due to the formation of CuO agglomeration covered on the porous silica as well as the alumina surface, preventing the direct contact of CO2 and AL2O3.

  4. The ratio of N(C18O) and AV in Chamaeleon I and III-B. Using 2MASS and SEST

    NASA Astrophysics Data System (ADS)

    Kainulainen, J.; Lehtinen, K.; Harju, J.

    2006-02-01

    We investigate the relationship between the C18O column density and the visual extinction in Chamaeleon I and in a part of the Chamaeleon III molecular cloud. The C18O column densities, N(C18O), are calculated from J=1{-}0 rotational line data observed with the SEST telescope. The visual extinctions, A_V, are derived using {JHK} photometry from the 2MASS survey and the NICER color excess technique. In contrast with the previous results of Hayakawa et al. (2001, PASJ, 53, 1109), we find that the average N(C18O)/AV ratios are similar in Cha I and Cha III, and lie close to values derived for other clouds, i.e. N(C18O) ≈ 2 × 1014 cm-2 ( AV - 2 ). We find, however, clear deviations from this average relationship towards individual clumps. Larger than average N(C18O)/AV ratios can be found in clumps associated with the active star forming region in the northern part of Cha I. On the other hand, some regions in the relatively quiescent southern part of Cha I show smaller than average N(C18O)/AV ratios and also very shallow proportionality between N(C18O) and A_V. The shallow proportionality suggests that C18O is heavily depleted in these regions. As the degree of depletion is proportional to the gas density, these regions probably contain very dense, cold cores, which do not stand out in CO mappings. A comparison with the dust temperature map derived from the ISO data shows that the most prominent of the potentially depleted cores indeed coincides with a dust temperature minimum. It seems therefore feasible to use N(C18O) and AV data together for identifying cold, dense cores in large scale mappings.

  5. Alkali injection system with controlled CO.sub.2 /O.sub.2 ratios for combustion of coal

    DOEpatents

    Berry, Gregory F.

    1988-01-01

    A high temperature combustion process for an organic fuel containing sulfur n which the nitrogen of air is replaced by carbon dioxide for combination with oxygen with the ratio of CO.sub.2 /O.sub.2 being controlled to generate combustion temperatures above 2000 K. for a gas-gas reaction with SO.sub.2 and an alkali metal compound to produce a sulfate and in which a portion of the carbon-dioxide rich gas is recycled for mixing with oxygen and/or for injection as a cooling gas upstream from heating exchangers to limit fouling of the exchangers, with the remaining carbon-dioxide rich gas being available as a source of CO.sub.2 for oil recovery and other purposes.

  6. Direct Dynamics Simulation of the Thermal 3CH2 + 3O2 Reaction. Rate Constant and Product Branching Ratios.

    PubMed

    Lakshmanan, Sandhiya; Pratihar, Subha; Machado, Francisco B C; Hase, William L

    2018-05-31

    The reaction of 3 CH 2 with 3 O 2 is of fundamental importance in combustion, and the reaction is complex as a result of multiple extremely exothermic product channels. In the present study, direct dynamics simulations were performed to study the reaction on both the singlet and triplet potential energy surfaces (PESs). The simulations were performed at the UM06/6-311++G(d,p) level of theory. Trajectories were calculated at a temperature of 300 K, and all reactive trajectories proceeded through the carbonyl oxide Criegee intermediate, CH 2 OO, on both the singlet and triplet PESs. The triplet surface leads to only one product channel, H 2 CO + O( 3 P), while the singlet surface leads to eight product channels with their relative importance as CO + H 2 O > CO + OH + H ∼ H 2 CO + O( 1 D) > HCO + OH ∼ CO 2 + H 2 ∼ CO + H 2 + O( 1 D) > CO 2 + H + H > HCO + O( 1 D) + H. The reaction on the singlet PES is barrierless, consistent with experiment, and the total rate constant on the singlet surface is (0.93 ± 0.22) × 10 -12 cm 3 molecule -1 s -1 in comparison to the recommended experimental rate constant of 3.3 × 10 -12 cm 3 molecule -1 s -1 . The simulation product yields for the singlet PES are compared with experiment, and the most significant differences are for H, CO 2 , and H 2 O. The reaction on the triplet surface is also barrierless, inconsistent with experiment. A discussion is given of the need for future calculations to address (1) the barrier on the triplet PES for 3 CH 2 + 3 O 2 → 3 CH 2 OO, (2) the temperature dependence of the 3 CH 2 + 3 O 2 reaction rate constant and product branching ratios, and (3) the possible non-RRKM dynamics of the 1 CH 2 OO Criegee intermediate.

  7. Multiscale modeling for SiO2 atomic layer deposition for high-aspect-ratio hole patterns

    NASA Astrophysics Data System (ADS)

    Miyano, Yumiko; Narasaki, Ryota; Ichikawa, Takashi; Fukumoto, Atsushi; Aiso, Fumiki; Tamaoki, Naoki

    2018-06-01

    A multiscale simulation model is developed for optimizing the parameters of SiO2 plasma-enhanced atomic layer deposition of high-aspect-ratio hole patterns in three-dimensional (3D) stacked memory. This model takes into account the diffusion of a precursor in a reactor, that in holes, and the adsorption onto the wafer. It is found that the change in the aperture ratio of the holes on the wafer affects the concentration of the precursor near the top of the wafer surface, hence the deposition profile in the hole. The simulation results reproduced well the experimental results of the deposition thickness for the various hole aperture ratios. By this multiscale simulation, we can predict the deposition profile in a high-aspect-ratio hole pattern in 3D stacked memory. The atomic layer deposition parameters for conformal deposition such as precursor feeding time and partial pressure of precursor for wafers with various hole aperture ratios can be estimated.

  8. Aerodynamic performance of a 1.25-pressure-ratio axial-flow fan stage

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Steinke, R. J.

    1974-01-01

    Aerodynamic design parameters and overall and blade-element performances of a 1.25-pressure-ratio fan stage are reported. Detailed radial surveys were made over the stable operating flow range at rotative speeds from 70 to 120 percent of design speed. At design speed, the measured stage peak efficiency of 0.872 occurred at a weight flow of 34.92 kilograms per second and a pressure ratio of 1.242. Stage stall margin is about 20 percent based on the peak efficiency and stall conditions. The overall peak efficiency for the rotor was 0.911. The overall stage performance showed no significant change when the stators were positioned at 1, 2, or 4 chords downstream of the rotor.

  9. Breakdown of the Bardeen-Stephen law for free flux flow in Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Pallinger, Á.; Sas, B.; Pethes, I.; Vad, K.; Williams, F. I. B.; Kriza, G.

    2008-09-01

    Pulsed high-current experiments in single crystals of the high- Tc superconductor Bi2Sr2CaCu2O8+δ in a c -axis-directed magnetic field H reveal that the ab -face resistance in the free flux flow regime is a solely logarithmic function of H , devoid of any power-law component. Reanalysis of published data confirms this result and leads to empirical analytical forms for the ab plane and c axis resistivities, ρab∝H3/4 , which does not obey the expected Bardeen-Stephen result for free flux flow and ρc∝H-3/4log2H .

  10. Influence of exercise intensity on skeletal muscle blood flow, O2 extraction and O2 uptake on-kinetics

    PubMed Central

    Jones, Andrew M; Krustrup, Peter; Wilkerson, Daryl P; Berger, Nicolas J; Calbet, José A; Bangsbo, Jens

    2012-01-01

    Following the start of low-intensity exercise in healthy humans, it has been established that the kinetics of skeletal muscle O2 delivery is faster than, and does not limit, the kinetics of muscle O2 uptake (). Direct data are lacking, however, on the question of whether O2 delivery might limit kinetics during high-intensity exercise. Using multiple exercise transitions to enhance confidence in parameter estimation, we therefore investigated the kinetics of, and inter-relationships between, muscle blood flow (), a– difference and following the onset of low-intensity (LI) and high-intensity (HI) exercise. Seven healthy males completed four 6 min bouts of LI and four 6 min bouts of HI single-legged knee-extension exercise. Blood was frequently drawn from the femoral artery and vein during exercise and , a– difference and were calculated and subsequently modelled using non-linear regression techniques. For LI, the fundamental component mean response time (MRTp) for kinetics was significantly shorter than kinetics (mean ± SEM, 18 ± 4 vs. 30 ± 4 s; P < 0.05), whereas for HI, the MRTp for and was not significantly different (27 ± 5 vs. 29 ± 4 s, respectively). There was no difference in the MRTp for either or between the two exercise intensities; however, the MRTp for a– difference was significantly shorter for HI compared with LI (17 ± 3 vs. 28 ± 4 s; P < 0.05). Excess O2, i.e. oxygen not taken up (×), was significantly elevated within the first 5 s of exercise and remained unaltered thereafter, with no differences between LI and HI. These results indicate that bulk O2 delivery does not limit kinetics following the onset of LI or HI knee-extension exercise. PMID:22711961

  11. The renal blood flow reserve in healthy humans and patients with atherosclerotic renovascular disease measured by positron emission tomography using [15O]H2O.

    PubMed

    Päivärinta, Johanna; Koivuviita, Niina; Oikonen, Vesa; Iida, Hidehiro; Liukko, Kaisa; Manner, Ilkka; Löyttyniemi, Eliisa; Nuutila, Pirjo; Metsärinne, Kaj

    2018-06-11

    Microvascular function plays an important role in ARVD (atherosclerotic renovascular disease). RFR (renal flow reserve), the capacity of renal vasculature to dilate, is known to reflect renal microvascular function. In this pilot study, we assessed PET (positron emission tomography)-based RFR values of healthy persons and renal artery stenosis patients. Seventeen patients with ARVD and eight healthy subjects were included in the study. Intravenous enalapril 1 mg was used as a vasodilatant, and the maximum response (blood pressure and RFR) to it was measured at 40 min. Renal perfusion was measured by means of oxygen-15-labeled water PET. RFR was calculated as a difference of stress flow and basal flow and was expressed as percent [(stress blood flow - basal blood flow)/basal blood flow] × 100%. RFR of the healthy was 22%. RFR of the stenosed kidneys of bilateral stenosis patients (27%) was higher than that of the stenosed kidneys of unilateral stenosis patients (15%). RFR of the contralateral kidneys of unilateral stenosis patients was 21%. There was no difference of statistical significance between RFR values of ARVD subgroups or between ARVD subgroups and the healthy. In the stenosed kidneys of unilateral ARVD patients, stenosis grade of the renal artery correlated negatively with basal (p = 0.04) and stress flow (p = 0.02). Dispersion of RFR values was high. This study is the first to report [ 15 O]H 2 O PET-based RFR values of healthy subjects and ARVD patients in humans. The difference between RFR values of ARVD patients and the healthy did not reach statistical significance perhaps because of high dispersion of RFR values. [ 15 O]H 2 O PET is a valuable non-invasive and quantitative method to evaluate renal blood flow though high dispersion makes imaging challenging. Larger studies are needed to get more information about [ 15 O]H 2 O PET method in evaluation of renal blood flow.

  12. Photocatalytic quartz fiber felts with carbon-connected TiO2 nanoparticles for capillarity-driven continuous-flow water treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofei; Su, Xiaowen; Gao, Wenqiang; Wang, Fulei; Liu, Zhihe; Zhan, Jie; Liu, Baishan; Wang, Ruosong; Liu, Hong; Sang, Yuanhua

    2018-06-01

    Immobility of photocatalysts on substrates is a vital factor for the practical application of photocatalysis in polluted water/air treatment. In this study, TiO2 homogenously loaded quartz fiber felt was prepared by assembling of carboxyl-contained organic molecules functionalized TiO2 nanoparticles on the surface of amino group-modified quartz fiber by electrostatic adsorption between them and followed by an anneal process. The immobilization of TiO2 nanoparticles overcomes one main obstacle of the photocatalysts recycling in photocatalysis application. In addition, a plasma treatment endowed the hybrid photocatalyst a high hydrophilic property. Due to the homogeneous distribution of TiO2, charge carriers' separation by carbon, and full contact between water and the photocatalyst derived from the high hydrophilia, the TiO2/quartz fiber felt shows excellent photocatalytic performance. Based on the stable loading and the capillarity effect of the contacted fibers photocatalyst, a demo capillarity-driven continuous-flow water treatment photocatalysis reactor was designed and built up. The TiO2 nanoparticle/quartz fiber hybrid photocatalyst can disposal organic contaminants in actual industrial waste water from a dyeing factory in the continuous-flow reactor. The chemical oxygen demand (COD) of the industrial waste water was decreased from 104 to 45 mg/L, overcoming the problem of deep water treatment which is difficult to solve by other methods. This study provides a new photocatalyst and reaction mode for the continuous-flow photocatalysis application.

  13. The Temperature and Structure Dependence of Surface Tension of CaO-SiO2-Na2O-CaF2 Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Gao, Qiang; Min, Yi; Jiang, Maofa

    2018-06-01

    The surface tension of mold flux is one of the most important properties and varies with the temperature from the top to the bottom of the mold, which influences the adhesion and lubrication between the liquid mold flux and the solidified shell, further influencing the quality of the continuous billet. In the present paper, the effect of temperature on the surface tension of CaO-SiO2-Na2O-CaF2 mold-flux melts with different CaO/SiO2 mass ratios was investigated using the maximum-pull method. Furthermore, the microstructure of mold fluxes was analyzed using FT-IR and Raman spectra to discuss the change mechanism of surface tension. The results indicated that the temperature dependence of surface tension was different with different CaO/SiO2 mass ratios, and agreed with the modification of melt structure. When the CaO/SiO2 mass ratio was 0.67 and 0.85, the change of surface tension with temperature was relatively stable, and the influence of temperature on the structure was small. When the CaO/SiO2 mass ratio was 1.03 and 1.16, with an increase of temperature, the surface tension decreased linearly and the changing amplitude was large; the degree of polymerization of melts and average radii of silicon-oxygen anions also decreased, which intensified the molecular thermal motion and weakened the intermolecular interaction, resulting in a decrease of surface tension of melts.

  14. The Temperature and Structure Dependence of Surface Tension of CaO-SiO2-Na2O-CaF2 Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Gao, Qiang; Min, Yi; Jiang, Maofa

    2018-02-01

    The surface tension of mold flux is one of the most important properties and varies with the temperature from the top to the bottom of the mold, which influences the adhesion and lubrication between the liquid mold flux and the solidified shell, further influencing the quality of the continuous billet. In the present paper, the effect of temperature on the surface tension of CaO-SiO2-Na2O-CaF2 mold-flux melts with different CaO/SiO2 mass ratios was investigated using the maximum-pull method. Furthermore, the microstructure of mold fluxes was analyzed using FT-IR and Raman spectra to discuss the change mechanism of surface tension. The results indicated that the temperature dependence of surface tension was different with different CaO/SiO2 mass ratios, and agreed with the modification of melt structure. When the CaO/SiO2 mass ratio was 0.67 and 0.85, the change of surface tension with temperature was relatively stable, and the influence of temperature on the structure was small. When the CaO/SiO2 mass ratio was 1.03 and 1.16, with an increase of temperature, the surface tension decreased linearly and the changing amplitude was large; the degree of polymerization of melts and average radii of silicon-oxygen anions also decreased, which intensified the molecular thermal motion and weakened the intermolecular interaction, resulting in a decrease of surface tension of melts.

  15. Structural isomers of C2N(+) - A selected-ion flow tube study

    NASA Technical Reports Server (NTRS)

    Knight, J. S.; Petrie, S. A. H.; Freeman, C. G.; Mcewan, M. J.; Mclean, A. D.

    1988-01-01

    Reactivities of the structural isomers CCN(+) and CNC(+) were examined in a selected-ion flow tube at 300 + or - 5 K. The less reactive CNC(+) isomer was identified as the product of the reactions of C(+) + HCN and C(+) + C2N2; in these reactions only CNC(+) can be produced because of energy constraints. Rate coefficients and branching ratios are reported for the reactions of each isomer with H2, CH4, NH3, H2O, C2H2, HCN, N2, O2, N2O, and CO2. Ab initio calculations are presented for CCN(+) and CNC(+); a saddle point for the reaction CCN(+) yielding CNC(+) is calculated to be 195 kJ/mol above CNC(+). The results provide evidence that the more reactive CCN(+) isomer is unlikely to be present in measurable densities in interstellar clouds.

  16. Semi-quantitative estimation of cellular SiO2 nanoparticles using flow cytometry combined with X-ray fluorescence measurements.

    PubMed

    Choi, Seo Yeon; Yang, Nuri; Jeon, Soo Kyung; Yoon, Tae Hyun

    2014-09-01

    In this study, we have demonstrated feasibility of a semi-quantitative approach for the estimation of cellular SiO2 nanoparticles (NPs), which is based on the flow cytometry measurements of their normalized side scattering intensity. In order to improve our understanding on the quantitative aspects of cell-nanoparticle interactions, flow cytometry, transmission electron microscopy, and X-ray fluorescence experiments were carefully performed for the HeLa cells exposed to SiO2 NPs with different core diameters, hydrodynamic sizes, and surface charges. Based on the observed relationships among the experimental data, a semi-quantitative cellular SiO2 NPs estimation method from their normalized side scattering and core diameters was proposed, which can be applied for the determination of cellular SiO2 NPs within their size-dependent linear ranges. © 2014 International Society for Advancement of Cytometry.

  17. UV-driven microvalve based on a micro-nano TiO2/SiO2 composite surface for microscale flow control

    NASA Astrophysics Data System (ADS)

    Guo, Ting; Meng, Tao; Li, Wei; Qin, Jilong; Tong, Zhiping; Zhang, Qing; Li, Xueru

    2014-03-01

    This paper presents a novel ultraviolet (UV)-driven microvalve based on the concept of inserting a trimethyl chlorosilane (CTMS) modified TiO2/SiO2 composite patch of switchable wettability in a microfluidic system. A unique micro-nano hierarchical structure was designed and used to enhance the overall wetting contrast with the aim of improving the wetting-based valve performances. Field-emission scanning electron microscopy (FE-SEM) and x-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and chemical composition of the surface. UV-driven wettability conversion on the patched microchannel was investigated using water column relative height tests, and the results confirmed the significant improvement of the hierarchical structure with the surface hydrophobic/hydrophilic conversion, which produced enhancements of 276% and 95% of the water-repellent and water-sucking pressures, respectively, compared with those of the single-scale TiO2 nanopatterned structure. Accordingly, a good reversible and repeated on-off performance was identified by the valve tests, highlighting the potential application of the novel microvalve in the efficient control of microscale flow.

  18. Acidic Peptizing Agent Effect on Anatase-Rutile Ratio and Photocatalytic Performance of TiO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahmoud, Hatem A.; Narasimharao, Katabathini; Ali, Tarek T.; Khalil, Kamal M. S.

    2018-02-01

    TiO2 nanoparticles were synthesized from titanium isopropoxide by a simple peptization method using sulfuric, nitric, and acetic acids. The effect of peptizing acid on physicochemical and photocatalytic properties of TiO2 powders was studied. The structural properties of synthesized TiO2 powders were analyzed by using XRD, TEM, N2-physisorption, Raman, DR UV- vis, FTIR, and X-ray photoelectron spectroscopy techniques. The characterization results showed that acetic acid peptization facilitated the formation of pure anatase phase after thermal treatment at 500 °C; in contrast, nitric acid peptization led to a major rutile phase formation (67%). Interestingly, the sample peptized using sulfuric acid yielded 95% anatase and 5% rutile phases. The photocatalytic activity of synthesized TiO2 nanoparticles was evaluated for degradation of selected organic dyes (crystal violet, methylene blue, and p-nitrophenol) in aqueous solution. The results confirmed that the TiO2 sample peptized using nitric acid (with rutile and anatase phases in 3:1 ratio) offered the highest activity for degradation of organic dyes, although, TiO2 samples peptized using sulfuric acid and acetic acid possessed smaller particle size, higher band gap energy, and high surface area. Interestingly, TiO2 sample peptized with nitric acid possessed relatively high theoretical photocurrent density (0.545 mAcm-2) and pore diameter (150 Å), which are responsible for high electron-hole separation efficiency and diffusion and mass transportation of organic reactants during the photochemical degradation process. The superior activity of TiO2 sample peptized with nitric acid is due to the effective transfer of photogenerated electrons between rutile and anatase phases.

  19. C/O Ratios In Exoplanetary Atmospheres - New Results And Major Implications

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku

    2012-01-01

    Recent observations are allowing unprecedented constraints on the carbon-to-oxygen (C/O) ratios of giant exoplanetary atmospheres. Atmospheric C/O ratios provide important constraints on chemical and dynamical processes in the atmospheres, and on the planetary interior compositions and formation scenarios. In addition, for super-Earths, the potential availability of water and oxygen, and hence the notion of `habitability', is contingent on the C/O ratio assumed. Typically, an oxygen-rich composition, motivated by the solar nebula C/O of 0.5, is assumed in models of exoplanetary formation, interiors, and atmospheres. However, recent observations of exoplanetary atmospheres are suggesting the possibility of C/O ratios of 1.0 or higher, motivating the new class of Carbon-rich Planets (CRPs). In this talk, we will present observational constraints on atmospheric C/O ratios for an ensemble of transiting exoplanets and discuss their implications on the various aspects of exoplanetary characterization described above. Motivated by these results, we propose a two-dimensional classification scheme for irradiated giant exoplanets in which the incident irradiation and the atmospheric C/O ratio are the two dimensions. We demonstrate that some of the extreme anomalies reported in the literature for hot Jupiter atmospheres can be explained based on this 2-D scheme. An overview of new theoretical avenues and observational efforts underway for chemical characterization of extrasolar planets, from hot Jupiters to super-Earths, will be presented.

  20. A tabulation of pipe length to diameter ratios as a function of Mach number and pressure ratios for compressible flow

    NASA Technical Reports Server (NTRS)

    Dixon, G. V.; Barringer, S. R.; Gray, C. E.; Leatherman, A. D.

    1975-01-01

    Computer programs and resulting tabulations are presented of pipeline length-to-diameter ratios as a function of Mach number and pressure ratios for compressible flow. The tabulations are applicable to air, nitrogen, oxygen, and hydrogen for compressible isothermal flow with friction and compressible adiabatic flow with friction. Also included are equations for the determination of weight flow. The tabulations presented cover a wider range of Mach numbers for choked, adiabatic flow than available from commonly used engineering literature. Additional information presented, but which is not available from this literature, is unchoked, adiabatic flow over a wide range of Mach numbers, and choked and unchoked, isothermal flow for a wide range of Mach numbers.

  1. Effect of KOH to Na2SiO3 Ratio on Microstructure and Hardness of Plasma Electrolytic Oxidation Coatings on AA 6061 Alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Jang, Yong-Joo; Jung, Jae Pil

    2017-10-01

    In this study, plasma electrolytic oxidation (PEO) process has been employed to fabricate alumina coatings on AA 6061 aluminum alloy from an electrolyte containing water glass (Na2SiO3) and alkali (KOH). The effect of deposition time and the alkali to water glass (KOH: Na2SiO3) composition ratio on the coating morphology and properties are studied. The different phases of the oxide layer and microstructure are investigated by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. The results indicate that initially γ-Al2O3 forms in the coating, and as the processing time is increased from 5 to 60 minutes, α-Al2O3 phase becomes prominent. Further, higher the content of Na2SiO3, higher is the hardness and coating growth rate due to the formation of stable α-Al2O3 and Al-Si-O phase. It has been reported that the optimum properties of the PEO coatings can be obtained at a ratio of KOH: Na2SiO3 ≈ 15:10 followed by 10:10.

  2. Rapid synthesis of Fe-doped CuO-Ce0.8Zr0.2O2 catalysts for CO preferential oxidation in H2-rich streams: Effect of iron source and the ratio of Fe/Cu

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Han, Caiyun; Gao, Xiaoya; Lu, Jichang; Wan, Gengpin; He, Dedong; Chen, Ran; Chen, Kezhen; He, Sufang; Luo, Yongming

    2017-03-01

    A facile route (urea grind combustion method) is described for the rapid synthesis of Fe-doped Cu-Ce-Zr catalysts within 30 min through simple grinding and combustion. The effects of iron source and Fe/Cu mass ratio on the performances of the catalysts for CO preferential oxidation (CO-PROX) are evaluated. The influences of H2O, CO2, and their mixture on the activity as well as stability of the catalysts are also investigated. The samples are characterized by XRD, N2 adsorption-desorption, H2-TPR, TEM, Raman and XPS. Fe(NO3)3 is found to be superior to FeCl3 and Fe2(SO4)3 as the iron source for Fe-CuCZ catalyst. Among the different synthesized catalysts, 1/10Fe(N)-CuCZ is found to be the most active catalyst, indicating that the optimal Fe/Cu mass ratio is 1/10. The influences of H2O, CO2, and H2O + CO2 on the catalytic performance of 1/10Fe(N)-CuCZ are in the order of CO2 < CO2 + H2O < H2O. 1/10Fe(N)-CuCZ exhibits excellent stability during a 228 h time-on-stream test. 1/10Fe(N)-CuCZ shows the highest catalytic activity and excellent stability even in the presence of H2O and CO2. The excellent catalytic performance can be attributed to the synergy between the highly dispersed copper species and ceria, as well as the formation of more oxygen vacancies and reduced copper species.

  3. Composition-Property Correlation in B2O3-SiO2 Preform Rods Produced Using Modified Chemical Vapor Deposition Technique

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad; Saleem, Muhammad Rizwan

    2012-02-01

    Due to unique optical properties of high birefringent (Hi-Bi) fibers for sensing and coherent optical communications, there is a strong interest in process optimization at preform fabrication and fiber drawing stages. Boron-doped silica cladding acts as stress-applying part resulting in polarization properties of Hi-Bi fibers that are strongly dependent on chemical composition. Using modified chemical vapor deposition (MCVD) technique, B2O3-doped silica preform rods were synthesized under different precursor gas flow conditions. Qualitative information about B2O3-SiO2 system composition was derived from etching behavior in nonbuffered HF solution and subsequent microstructural examination using scanning electron microscope. Significant degree of B2O3 incorporation was seen in case of high BCl3:SiCl4 ratio and mild oxygen-deficient processing conditions. Increasing the B2O3 content to ~26 mol% led to a corresponding increase in coefficient of thermal expansion (CTE) to a maximum value of 2.35 ppm/K. The value of refractive index (RI), on the other hand, was found to decrease with increased B2O3 incorporation. A qualitative correlation between B2O3 and SiO2 system composition and physical properties such as CTE and RI was established.

  4. Measurements of the O+ plus N2 and O+ plus O2 reaction rates from 300 to 900 K

    NASA Technical Reports Server (NTRS)

    Chen, A.; Johnsen, R.; Biondi, M. A.

    1977-01-01

    Rate coefficients for the O(+) + N2 atom transfer and O(+) + O2 charge transfer reactions are determined at thermal energies between 300 K and 900 K difference in a heated drift tube mass spectrometer apparatus. At 300 K the values K(O(+) + N2) = (1.2 plus or minus 0.1) x 10 to the negative 12 power cubic cm/sec and k(O(+) + O2) = (2.1 plus or minus 0.2) x 10 to the negative 11 power cubic cm/sec were obtained, with a 50% difference decrease in the reaction rates upon heating to 700 K. These results are in good agreement with heated flowing afterglow results, but the O(+) + O2 thermal rate coefficients are systematically lower than equivalent Maxwellian rates inferred by conversion of nonthermal drift tube and flow drift data.

  5. Heat Transfer Enhancement in a Helically Coiled Tube with Al2O3/WATER Nanofluid Under Laminar Flow Condition

    NASA Astrophysics Data System (ADS)

    Kumar, P. C. Mukesh; Kumar, J.; Suresh, S.; Babu, K. Praveen

    2012-10-01

    In this experimental investigation, the heat transfer coefficients of a shell and helically coiled tube heat exchanger using Al2O3/water nanofluid under laminar flow condition were studied. The Al2O3 nanoparticles were characterized by X-Ray diffraction (XRD). The Al2O3/water nanofluid at 0.1%, 0.4% and 0.8% particle volume concentration were prepared by using two step method. The prepared nanofluid was characterized by scanning electron microscope (SEM). It is observed that the overall heat transfer coefficient, inner heat transfer coefficient and experimental inner Nusselt number increase while increasing particle volume concentration and increasing inner Dean number. The enhancement of overall heat transfer coefficient was found to be 7%, 16.9% and 24.2% at 0.1%, 0.4% and 0.8% Al2O3/water nanofluid respectively when compared with water. The enhancement of tube side experimental Nusselt number was found to be 17%, 22.9% and 28% at 0.1%, 0.4% and 0.8% particle volume concentration of Al2O3/water nanofluid respectively when compared with water at fixed Dean number. The tests were conducted in the range of 1600 < De < 2700, and 5200 < Re < 8600 under laminar flow condition and counter flow configuration. These enhancements are due to higher thermal conductivity of nanofluid while increasing particle volume concentration and Brownian motion of nanoparticles. It is studied that there is no negative impact on formation of secondary flow and mixing of fluid when nanofluid passes through the helically coiled tube.

  6. Upconversion properties of Er3+/Yb3+ co-doped TeO2-TiO2-K2O glasses.

    PubMed

    Su, Fangning; Deng, Zaide

    2006-01-01

    The Er3+/Yb3+ co-doped TeO2-TiO2-K2O glasses were prepared by conventional melting procedures, and their upconversion spectra were performed. The dependence of luminescence intensity on the ratio of Yb3+/Er3+ was studied, and the relationship between green upconversion luminescence intensity and Er3+ concentration is discussed in detail. The 546 nm green upconversion luminescence intensity is optimised in the studied glasses either when the Yb3+/Er3+ ratio is 25/1 and Er3+ concentration is 0.1 mol%, or when the Yb3+/Er3+ ratio is 10/1 and Er3+ concentration is 0.15 mol%. These glasses could be one of the potential candidates for LD pumping microchip solid-state lasers.

  7. Flow Structure and Force Variation with Aspect Ratio for a Two-Degree-of-Freedom Flapping Wing

    NASA Astrophysics Data System (ADS)

    Burge, Matthew; Favale, James; Ringuette, Matthew

    2014-11-01

    We investigate experimentally the effect of aspect ratio (AR) on the flow structure and forces of a two-degree-of-freedom flapping wing. Flapping wings are known to produce complex and unsteady vortex loop structures, and the objective is to characterize their variation with AR and how this influences the lift force. Previous results on rotating wings demonstrated that changes in AR significantly affect the three-dimensional flow structure and lift coefficient. This is primarily due to the relatively greater influence of the tip vortex for lower AR. At Reynolds number of order O(103) we test wings of AR = 2-4, values typically found in nature, with simplified planform shapes. The lift force is measured using a submersible transducer at the base of the wing in a glycerin-water mixture. The qualitative, three-dimensional vortex loop structure for different ARs is obtained using multi-color dye flow visualization. Guided by this, quantitative three-component flow information, namely vorticity, the Q-criterion, and circulation, is acquired from stereoscopic particle image velocimetry in key planes. Of interest is how these parameters and the vortex loop topology vary with AR, and their connection to features in the unsteady force signal. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Dimitrios Papavassiliou.

  8. The Influence of Layer Thickness-Ratio on Magnetoresistance in La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 Exchange Biased System

    NASA Astrophysics Data System (ADS)

    Gomez, Maria Elena; Milena Diez, Sandra; Cuartas, Lina Maria; Marin, Lorena; Prieto, Pedro

    2012-02-01

    Isothermal magnetic field dependence of the resistance in La2/3Ca1/3MnO3 (F-LCMO)/ La1/3Ca2/3MnO3(AF-LCMO) bilayer and AF-LCMO/F-LCMO/AF-LCMO trilayer at temperatures below N'eel temperature of the antiferromagnetic layer were carried out to study the thickness layers influence on magneto transport properties. We grew multilayers using a high oxygen pressure sputtering technique. We systematically varied the thickness of the F-LCMO layer, tF, maintaining constant the thickness of the AF-LCMO layer, tAF. We studied the influence of the thickness ratio tF/tAF on the ZFC and FC magnetoresistance (MR) loops. HFC was varied from 100 Oe to 400 Oe. We found that MR has hysteretic behavior as observed in [La2/3Ca1/3MnO3/La1/3Ca2/3MnO3]N superlattices, where MR increases with the increasing field from H=0 to a maximum and then it decreases continuously. The position and magnitude of the maximum is not symmetric with respect to the axis H=0 for both FC and ZFC loops. We found that magnetoresistance behavior of the bilayer and trilayer is thickness-ratio dependent for both ZFC and FC loops.

  9. First In-situ Measurements of the HDO/H2O Isotopic Ratio in the Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Clouser, B.; Sarkozy, L.; Gaeta, D. C.; Singer, C. E.; Moyer, E. J.

    2017-12-01

    The Asian monsoon is one of the world's largest weather systems, and forms one of the main pathways by which water vapor enters the UT/LS. Satellite measurements of the HDO/H2O ratio of UT/LS water, a strong tracer of convective origin, have suggested significant differences in transport behavior between the Asian and North American monsoons, with strong UT/LS enhancement occurring only over North America. We report here the first in-situ measurements of the HDO/H2O ratio in the Asian monsoon, that help resolve this discrepancy. The Chicago Water Isotope Spectrometer (Chi-WIS) participated in the July/August 2017 StratoClim campaign, measuring water vapor and its isotopic composition between 12 and 20 kilometers. We use these measurements to diagnose the importance of overshooting convection in water transport by the Asian monsoon, and to characterize the extent to which convection-driven water vapor perturbations propagate to higher altitudes and contribute to the overall stratospheric water budget.

  10. Photodesorption of H2O, HDO, and D2O ice and its impact on fractionation

    NASA Astrophysics Data System (ADS)

    Arasa, Carina; Koning, Jesper; Kroes, Geert-Jan; Walsh, Catherine; van Dishoeck, Ewine F.

    2015-03-01

    The HDO/H2O ratio measured in interstellar gas is often used to draw conclusions on the formation and evolution of water in star-forming regions and, by comparison with cometary data, on the origin of water on Earth. In cold cores and in the outer regions of protoplanetary disks, an important source of gas-phase water comes from photodesorption of water ice. This research note presents fitting formulae for implementation in astrochemical models using previously computed photodesorption efficiencies for all water ice isotopologues obtained with classical molecular dynamics simulations. The results are used to investigate to what extent the gas-phase HDO/H2O ratio reflects that present in the ice or whether fractionation can occur during the photodesorption process. Probabilities for the top four monolayers are presented for photodesorption of X (X = H, D) atoms, OX radicals, and X2O and HDO molecules following photodissociation of H2O, D2O, and HDO in H2O amorphous ice at ice temperatures from 10-100 K. Significant isotope effects are found for all possible products: (1) H atom photodesorption probabilities from H2O ice are larger than those for D atom photodesorption from D2O ice by a factor of 1.1; the ratio of H and D photodesorbed upon HDO photodissociation is a factor of 2. This process will enrich the ice in deuterium atoms over time; (2) the OD/OH photodesorption ratio upon D2O and H2O photodissociation is on average a factor of 2, but the OD/OH photodesorption ratio upon HDO photodissociation is almost constant at unity for all ice temperatures; (3) D atoms are more effective in kicking out neighbouring water molecules than H atoms. However, the ratio of the photodesorbed HDO and H2O molecules is equal to the HDO/H2O ratio in the ice, therefore, there is no isotope fractionation when HDO and H2O photodesorb from the ice. Nevertheless, the enrichment of the ice in D atoms due to photodesorption can over time lead to an enhanced HDO/H2O ratio in the ice, and

  11. CO and NO2 pollution in a long two-way traffic road tunnel: investigation of NO2/NOx ratio and modelling of NO2 concentration.

    PubMed

    Indrehus, O; Vassbotn, P

    2001-02-01

    The CO, NO and NO2 concentrations, visibility and air flow velocity were measured using continuous analysers in a long Norwegian road tunnel (7.5 km) with traffic in both directions in April 1994 and 1995. The traffic density was monitored at the same time. The NO2 concentration exceeded Norwegian air quality limits for road tunnels 17% of the time in 1994. The traffic through the tunnel decreased from 1994 to 1995, and the mean NO2 concentration was reduced from 0.73 to 0.22 ppm. The ventilation fan control, based on the CO concentration only, was unsatisfactory and the air flow was sometimes low for hours. Models for NO2 concentration based on CO concentration and absolute air flow velocity were developed and tested. The NO2/NOx ratio showed an increase for NOx levels above 2 ppm; a likely explanation for this phenomenon is NO oxidation by O2. Exposure to high NO2 concentrations may represent a health risk for people with respiratory and cardiac diseases. In long road tunnels with two-way traffic, this study indicates that ventilation fan control based on CO concentration should be adjusted for changes in vehicle CO emission and should be supplemented by air flow monitoring to limit the NO2 concentration.

  12. [Mechanism and performance of styrene oxidation by O3/H2O2].

    PubMed

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  13. THE PERIOD RATIO FOR STANDING KINK AND SAUSAGE MODES IN SOLAR STRUCTURES WITH SIPHON FLOW. I. MAGNETIZED SLABS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Bo; Habbal, Shadia Rifai; Chen Yanjun, E-mail: bbl@sdu.edu.cn

    2013-04-20

    In the applications of solar magneto-seismology, the ratio of the period of the fundamental mode to twice the period of its first overtone, P{sub 1}/2P{sub 2}, plays an important role. We examine how field-aligned flows affect the dispersion properties, and hence the period ratios, of standing modes supported by magnetic slabs in the solar atmosphere. We numerically solve the dispersion relations and devise a graphic means to construct standing modes. For coronal slabs, we find that the flow effects are significant for the fast kink and sausage modes alike. For the kink ones, they may reduce P{sub 1}/2P{sub 2} bymore » up to 23% compared with the static case, and the minimum allowed P{sub 1}/2P{sub 2} can fall below the lower limit analytically derived for static slabs. For the sausage modes, while introducing the flow reduces P{sub 1}/2P{sub 2} by typically {approx}< 5% relative to the static case, it significantly increases the threshold aspect ratio only above which standing sausage modes can be supported, meaning that their detectability is restricted to even wider slabs. In the case of photospheric slabs, the flow effect is not as strong. However, standing modes are distinct from the coronal case in that standing kink modes show a P{sub 1}/2P{sub 2} that deviates from unity even for a zero-width slab, while standing sausage modes no longer suffer from a threshold aspect ratio. We conclude that transverse structuring in plasma density and flow speed should be considered in seismological applications of multiple periodicities to solar atmospheric structures.« less

  14. Natural convection of Al2O3-water nanofluid in a wavy enclosure

    NASA Astrophysics Data System (ADS)

    Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.

    2017-06-01

    Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat

  15. Influence of microstructure and chemical composition of sputter deposited TiO2 thin films on in vitro bioactivity.

    PubMed

    Lilja, Mirjam; Genvad, Axel; Astrand, Maria; Strømme, Maria; Enqvist, Håkan

    2011-12-01

    Functionalisation of biomedical implants via surface modifications for tailored tissue response is a growing field of research. Crystalline TiO(2) has been proven to be a bone bioactive, non-resorbable material. In contact with body fluids a hydroxyapaptite (HA) layer forms on its surface facilitating the bone contact. Thus, the path of improving biomedical implants via deposition of crystalline TiO(2) on the surface is interesting to follow. In this study we have evaluated the influence of microstructure and chemical composition of sputter deposited titanium oxide thin films on the in vitro bioactivity. We find that both substrate bias, topography and the flow ratio of the gases used during sputtering affect the HA layer formed on the films after immersion in simulated body fluid at 37°C. A random distribution of anatase and rutile crystals, formed at negative substrate bias and low Ar to O(2) gas flow ratios, are shown to favor the growth of flat HA crystal structures whereas higher flow ratios and positive substrate bias induced growth of more spherical HA structures. These findings should provide valuable information when optimizing the bioactivity of titanium oxide coatings as well as for tailoring process parameters for sputtered-based production of bioactive titanium oxide implant surfaces.

  16. Measured Fluid Flow in an Active H2O-CO2 Geothermal Well as an Analog to Fluid Flow in Fractures on Mars: Preliminary Report

    NASA Technical Reports Server (NTRS)

    Kieffer, Susan W.; Brown, K. L.; Simmons, Stuart F.; Watson, Arnold

    2004-01-01

    Water in the Earth's crust generally contains dissolved gases such as CO2. Models for both 'Blue Mars' (H2O-driven processes) and 'White Mars' (CO2-driven processes) predict liquid H2O with dissolved CO2 at depth. The fate of dissolved CO2 as this mixture rises toward the surface has not been quantitatively explored. Our approach is a variation on NASA's 'Follow the Water' as we 'Follow the Fluid' from depth to the surface in hydrothermal areas on Earth and extrapolate our results to Mars. This is a preliminary report on a field study of fluid flow in a producing geothermal well. For proprietary reasons, the name and location of this well cannot be revealed, so we have named it 'Earth1' for this study.

  17. Conversion of nitrogen oxides in N2:O2:CO2 and N2:O2:CO2:NO2 mixtures subjected to a dc corona discharge

    NASA Astrophysics Data System (ADS)

    Dors, Mirosław; Mizeraczyk, Jerzy

    1996-10-01

    This paper concerns the influence of a direct current (dc) corona discharge on production and reduction of NO, NO2 and N2O in N2:O2:CO2 and N2:O2:CO2:NO2 mixtures. The corona discharge was generated in a needle-to-plate reactor. The positively polarized electrode consisted of 7 needles. The grounded electrode was a stainless steel plate. The gas flow rate through the reactor was varied from 28 to 110 cm3/s. The time-averaged discharge current ranged from 0 to 6 mA. It was found that in the N2:O2:CO2 mixture the corona discharge produced NO, NO2 and N2O. In the N2:O2:CO2:NO2 mixture the reduction of NO2 was between 6-56%, depending on the concentration of O2, gas flow rate and corona discharge current. The NO2 reduction was accompanied by production of NO and N2O. The results show that efficient reduction of nitrogen oxides by a corona discharge cannot be expected in the mixtures containing N2 and O2 if reducing additives are not employed.

  18. Electrical characterization of the flowing afterglow of N{sub 2} and N{sub 2}/O{sub 2} microwave plasmas at reduced pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonso Ferreira, J.; Stafford, L., E-mail: luc.stafford@umontreal.ca; Leonelli, R.

    2014-04-28

    A cylindrical Langmuir probe was used to analyze the spatial distribution of the number density of positive ions and electrons as well as the electron energy distribution function (EEDF) in the flowing afterglow of a 6 Torr N{sub 2} and N{sub 2}/O{sub 2} plasma sustained by a propagating electromagnetic surface wave in the microwave regime. In pure N{sub 2} discharges, ion densities were in the mid 10{sup 14} m{sup −3} in the pink afterglow and in the mid 10{sup 12} m{sup −3} early in the late afterglow. In both pink and late afterglows, the ion population was much higher than the electron population,more » indicating non-macroscopically neutral media. The EEDF was close to a Maxwellian with an electron temperature of 0.5 ± 0.1 eV, except in the pink afterglow where the temperature rose to 1.1 ± 0.2 eV. This latter behavior is ascribed to N{sub 2} vibration-vibration pumping in the pink afterglow that increases the concentration of high N{sub 2} vibrational states and thus rises the electron temperature by vibration-electron collisions. After addition of small amounts of O{sub 2} in the nominally pure N{sub 2} discharge, the charged particles densities and average electron energy first strongly increased and then decreased with increasing O{sub 2} concentration. Based on these data and the evolution of the N{sub 2}{sup +}(B) band emission intensities, it is concluded that a significant change in the positive ion composition of the flowing afterglow occurs, going from N{sub 2}{sup +} in nominally pure N{sub 2} discharges to NO{sup +} after addition of trace amounts of O{sub 2} in N{sub 2}.« less

  19. Single-ended mid-infrared laser-absorption sensor for simultaneous in situ measurements of H2O, CO2, CO, and temperature in combustion flows.

    PubMed

    Peng, Wen Yu; Goldenstein, Christopher S; Mitchell Spearrin, R; Jeffries, Jay B; Hanson, Ronald K

    2016-11-20

    The development and demonstration of a four-color single-ended mid-infrared tunable laser-absorption sensor for simultaneous measurements of H2O, CO2, CO, and temperature in combustion flows is described. This sensor operates by transmitting laser light through a single optical port and measuring the backscattered radiation from within the combustion device. Scanned-wavelength-modulation spectroscopy with second-harmonic detection and first-harmonic normalization (scanned-WMS-2f/1f) was used to account for variable signal collection and nonabsorption losses in the harsh environment. Two tunable diode lasers operating near 2551 and 2482 nm were utilized to measure H2O concentration and temperature, while an interband cascade laser near 4176 nm and a quantum cascade laser near 4865 nm were used for measuring CO2 and CO, respectively. The lasers were modulated at either 90 or 112 kHz and scanned across the peaks of their respective absorption features at 1 kHz, leading to a measurement rate of 2 kHz. A hybrid demultiplexing strategy involving both spectral filtering and frequency-domain demodulation was used to decouple the backscattered radiation into its constituent signals. Demonstration measurements were made in the exhaust of a laboratory-scale laminar methane-air flat-flame burner at atmospheric pressure and equivalence ratios ranging from 0.7 to 1.2. A stainless steel reflective plate was placed 0.78 cm away from the sensor head within the combustion exhaust, leading to a total absorption path length of 1.56 cm. Detection limits of 1.4% H2O, 0.6% CO2, and 0.4% CO by mole were reported. To the best of the authors' knowledge, this work represents the first demonstration of a mid-infrared laser-absorption sensor using a single-ended architecture in combustion flows.

  20. Exploring the possibility to store the mixed oxygen-hydrogen cluster in clathrate hydrate in molar ratio 1:2 (O2+2H2).

    PubMed

    Qin, Yan; Du, Qi-Shi; Xie, Neng-Zhong; Li, Jian-Xiu; Huang, Ri-Bo

    2017-05-01

    An interesting possibility is explored: storing the mixture of oxygen and hydrogen in clathrate hydrate in molar ratio 1:2. The interaction energies between oxygen, hydrogen, and clathrate hydrate are calculated using high level quantum chemical methods. The useful conclusion points from this study are summarized as follows. (1) The interaction energies of oxygen-hydrogen mixed cluster are larger than the energies of pure hydrogen molecular cluster. (2) The affinity of oxygen molecules with water molecules is larger than that of the hydrogen molecules with water molecules. (3) The dimension of O 2 -2H 2 interaction structure is smaller than the dimension of CO 2 -2H 2 interaction structure. (4) The escaping energy of oxygen molecules from the hydrate cell is larger than that of the hydrogen molecules. (5) The high affinity of the oxygen molecules with both the water molecules and the hydrogen molecules may promote the stability of oxygen-hydrogen mixture in the clathrate hydrate. Therefore it is possible to store the mixed (O 2 +2H 2 ) cluster in clathrate hydrate. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The study of the influence of the diameter ratio and blade number to the performance of the cross flow wind turbine by using 2D computational fluid dynamics modeling

    NASA Astrophysics Data System (ADS)

    Tjahjana, Dominicus Danardono Dwi Prija; Purbaningrum, Pradityasari; Hadi, Syamsul; Wicaksono, Yoga Arob; Adiputra, Dimas

    2018-02-01

    Cross flow turbine can be one of the alternative energies for regions with low wind speed. Collision between wind and the blades which happened two times caused the cross flow turbine to have high power coefficient. Some factors that influence the turbine power coefficient are diameter ratio and blade number. The objective of the research was to study the effect of the diameter ratio and the blade number to the cross flow wind turbine performance. The study was done in two dimensional (2D) computational fluid dynamics (CFD) simulation method using the ANSYS-Fluent software. The turbine diameter ratio were 0.58, 0.63, 0.68 and 0.73. The diameter ratio resulting in the highest power coefficient value was then simulated by varying the number of blades, namely 16, 20 and 24. Each variation was tested on the wind speed of 2 m/s and at the tip speed ratio (TSR) of 0.1 to 0.4 with the interval of 0.1. The wind turbine with the ratio diameter of 0.68 and the number of blades of 20 generated the highest power coefficient of 0.5 at the TSR of 0.3.

  2. Effect of SiO2/B2O3 Ratio on the Crystallization Behavior and Dielectric Properties of Barium Strontium Titanate Glass-Ceramics Prepared by Sol-Gel Process

    NASA Astrophysics Data System (ADS)

    Chen, Yongzhou; Zhang, Yong; Song, Xiaozhen; Shen, Ziqin; Zhang, Tianyuan

    2018-05-01

    Ferroelectric glass-ceramics, with a basic composition 90 wt.% (Ba0.65Sr0.35)TiO3-10 wt.% (B2O3-nSiO2) (n = 0.5, 1, 3, 5) were synthesized by the sol-gel method and their phase development and dielectric properties were investigated by differential thermal analysis, x-ray diffraction, field emission scanning electron microscopy, dielectric temperature curves and impedance spectroscopy. From the differential thermal analysis, glass transition and crystallization behavior can be observed. From the x-ray diffraction study, two crystalline phases (Ba,Sr)TiO3 and Ba2TiSi2O8 were formed over the entire composition range of the glass-ceramics. In addition, the main crystal phase has undergone a transformation from (Ba,Sr)TiO3 to Ba2TiSi2O8 with the increase of n. A typical structure in which the crystal phase was surrounded by a glassy matrix has been observed in the scanning electron microscope images. As a result of temperature dependent dielectric property measurements, the dielectric constant increased obviously with the increase of n from 0.5 to 1. Further increasing n led to a reduction of the dielectric constant, which is in coincidence with the variation of the intensity of (Ba,Sr)TiO3 phase with n. According to the impedance spectroscopy analysis and the activation energy calculation, the relaxation peak in both Z″ and M″ data should be attributed to the crystal-glass interface, and the change of conduction mechanism with the increase of SiO2/B2O3 ratio may be attributed to the corresponding transition of the main crystal phase.

  3. Mechanical properties investigation on single-wall ZrO2 nanotubes: A finite element method with equivalent Poisson's ratio for chemical bonds

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei

    2018-04-01

    A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.

  4. Role of CeO2 promoter in NiO/α-Al2O3 catalyst for dry reforming of methane

    NASA Astrophysics Data System (ADS)

    Loc, Luu Cam; Phuong, Phan Hong; Tri, Nguyen

    2017-09-01

    A series of Ni/α-Al2O3 (NiAl) catalysts promoted by CeO2 was prepared by co-impregnation methods with content of (NiO+CeO2) being in the range of 10-30 wt%. The NiO:CeO2 weight ratio was fluctuated at 1:1, 1:2 and 1:3. Several techniques, including X-ray powder diffraction (XRD), Hydrogen temperature-programmed reduction (H2-TPR), and transmission electron microscopy (TEM) were used to investigate catalysts' physico-chemical properties. The activity of these catalysts in dry reforming of CH4 was investigated at temperature range of 550-800 °C. The results revealed that the most suitable CeO2 promoted Ni catalyst contained 20 wt% of (NiO+CeO2) and NiO:CeO2 weight ratio of 1:2. The best catalytic performance of catalyst [20(1Ni2Ce)Al] due to a better reducibility resulted in a higher amount of free small particle NiO. At 700 °C and CH4:CO2 molar ratio of 1:1, the conversion of CH4 and CO2 on the most suitable CeO2 promoted Ni catalyst reached 86% and 67%, respectively; H2 and CO selectivity of 90% and H2:CO molar ratio of 1.15 were obtained. Being similar to MgO [1], promoter CeO2 could improve catalytic activity of Ni/α-Al2O3 catalyst at a lower range of temperature. Besides, both MgO and CeO2 had a great impact on improving coke resistance of Ni catalysts. At higher temperature, the role of CeO2 as well as MgO in preventing coke formation on catalyst was clarified by temperature-programmed oxidation (TPO) technique. Coke amount formed after 30-h TOS on 20(1Ni2Ce) catalyst was found to be 22.18 mgC/gcat, being less than on non-promoted catalyst (36.75 mgC/gcat), but more than on 20(1Ni2Mg)Al one (5.25 mgC/gcat).

  5. Flow testing of the Newberry 2 research drillhole, Newberry volcano, Oregon

    USGS Publications Warehouse

    Ingebritsen, S.E.; Carothers, W.W.; Mariner, R.H.; Gudmundsson, J.S.; Sammel, E.A.

    1986-01-01

    A 20 hour flow test of the Newberry 2 research drillhole at Newberry Volcano produced about 33,000 kilograms of fluid. The flow rate declined from about 0.8 kilograms per sec to less than 0.3 kilograms per sec during the course of the test. The mass ratio of liquid water to vapor was about 3:2 at the separator and stayed fairly constant throughout the test. The vapor phase was about half steam and half CO2 by weight. The average enthalpy of the steam/water mixture at the separator was about 1 ,200 kilojoules per kilogram. Because of the low flow rate and the large temperature gradient into the surrounding rocks, heat loss from the wellbore was high; a simple conductive model gives overall losses of about 1,200 kilojoules per kilogram of H2O produced. The actual heat loss may have been even higher due to convective effects, and it is likely that the fluid entering the bottom of the wellbore was largely or entirely steam and CO2. (Author 's abstract)

  6. Fabrication and electrical properties of p-CuAlO2/(n-, p-)Si heterojunctions

    NASA Astrophysics Data System (ADS)

    Suzhen, Wu; Zanhong, Deng; Weiwei, Dong; Jingzhen, Shao; Xiaodong, Fang

    2014-04-01

    CuAlO2 thin films have been prepared by the chemical solution deposition method on both n-Si and p-Si substrates. X-ray diffraction analysis indicates that the obtained CuAlO2 films have a single delafossite structure. The current transport properties of the resultant p-CuAlO2/n-Si and p-CuAlO2/p-Si heterojunctions are investigated by current-voltage measurements. The p-CuAlO2/n-Si has a rectifying ratio of ~35 within the applied voltages of -3.0 to +3.0 V, while the p-CuAlO2/p-Si shows Schottky diode-like characteristics, dominated in forward bias by the flow of space-charge-limited current.

  7. Two-layer displacement flow of miscible fluids with viscosity ratio: Experiments

    NASA Astrophysics Data System (ADS)

    Etrati, Ali; Alba, Kamran; Frigaard, Ian A.

    2018-05-01

    We investigate experimentally the density-unstable displacement flow of two miscible fluids along an inclined pipe. This means that the flow is from the top to bottom of the pipe (downwards), with the more dense fluid above the less dense. Whereas past studies have focused on iso-viscous displacements, here we consider viscosity ratios in the range 1/10-10. Our focus is on displacements where the degree of transverse mixing is low-moderate, and thus a two-layer, stratified flow is observed. A wide range of parameters is covered in order to observe the resulting flow regimes and to understand the effect of the viscosity contrast. The inclination of the pipe (β) is varied from near horizontal β = 85° to near vertical β = 10°. At each angle, the flow rate and viscosity ratio are varied at fixed density contrast. Flow regimes are mapped in the (Fr, Re cos β/Fr)-plane, delineated in terms of interfacial instability, front dynamics, and front velocity. Amongst the many observations, we find that viscosifying the less dense fluid tends to significantly destabilize the flow. Different instabilities develop at the interface and in the wall-layers.

  8. Characteristics of flow and reactive pollutant dispersion in urban street canyons

    NASA Astrophysics Data System (ADS)

    Park, Soo-Jin; Kim, Jae-Jin; Kim, Minjoong J.; Park, Rokjin J.; Cheong, Hyeong-Bin

    2015-05-01

    In this study, the effects of aspect ratio defined as the ratio of building height to street width on the dispersion of reactive pollutants in street canyons were investigated using a coupled CFD-chemistry model. Flow characteristics for different aspect ratios were analyzed first. For each aspect ratio, six emission scenarios with different VOC-NOX ratios were considered. One vortex was generated when the aspect ratio was less than 1.6 (shallow street canyon). When the aspect ratio was greater than 1.6 (deep street canyon), two vortices were formed in the street canyons. Comparing to previous studies on two-dimensional street canyons, the vortex center is slanted toward the upwind building and reverse and downward flows are dominant in street canyons. Near the street bottom, there is a marked difference in flow pattern between in shallow and deep street canyons. Near the street bottom, reverse and downward flows are dominant in shallow street canyon and flow convergence exists near the center of the deep street canyons, which induces a large difference in the NOX and O3 dispersion patterns in the street canyons. NOX concentrations are high near the street bottom and decreases with height. The O3 concentrations are low at high NO concentrations near the street bottom because of NO titration. At a low VOC-NOX ratio, the NO concentrations are sufficiently high to destroy large amount of O3 by titration, resulting in an O3 concentration in the street canyon much lower than the background concentration. At high VOC-NOX ratios, a small amount of O3 is destroyed by NO titration in the lower layer of the street canyons. However, in the upper layer, O3 is formed through the photolysis of NO2 by VOC degradation reactions. As the aspect ratio increases, NOX (O3) concentrations averaged over the street canyons decrease (increase) in the shallow street canyons. This is because outward flow becomes strong and NOX flux toward the outsides of the street canyons increases

  9. Effect of Thickness-to-Chord Ratio on Flow Structure of Low Swept Delta Wing

    NASA Astrophysics Data System (ADS)

    Gulsacan, Burak; Sencan, Gizem; Yavuz, Mehmet Metin

    2017-11-01

    The effect of thickness-to-chord (t/C) ratio on flow structure of a delta wing with sweep angle of 35 degree is characterized in a low speed wind tunnel using laser illuminated smoke visualization, particle image velocimetry, and surface pressure measurements. Four different t/C ratio varying from 4.75% to 19% are tested at angles of attack 4, 6, 8, and 10 degrees for Reynolds numbers Re =10,000 and 35,000. The results indicate that the effect of thickness-to-chord ratio on flow structure is quite substantial, such that, as the wing thickness increases, the flow structure transforms from leading edge vortex to three-dimensional separated flow regime. The wing with low t/C ratio of 4.75% experiences pronounced surface separation at significantly higher angle of attack compared to the wing with high t/C ratio. The results might explain some of the discrepancies reported in previously conducted studies related to delta wings. In addition, it is observed that the thickness of the shear layer separated from windward side of the wing is directly correlated with the thickness of the wing. To conclude, the flow structure on low swept delta wing is highly affected by t/C ratio, which in turn might indicate the potential usage of wing thickness as an effective flow control parameter.

  10. Evolutionary differences in Δ13C detected between spore and seed bearing plants following exposure to a range of atmospheric O2:CO2 ratios; implications for paleoatmosphere reconstruction

    NASA Astrophysics Data System (ADS)

    Porter, Amanda S.; Yiotis, Charilaos; Montañez, Isabel P.; McElwain, Jennifer C.

    2017-09-01

    The stable carbon isotopes of fossil plants are a reflection of the atmosphere and environment in which they grew. Fossil plant remains have thus stored information about the isotopic composition and concentration of atmospheric carbon dioxide (pCO2) and possibly pO2 through time. Studies to date, utilizing extant plants, have linked changes in plant stable carbon isotopes (δ13Cp) or carbon isotope discrimination (Δ13C) to changes in pCO2 and/or pO2. These studies have relied heavily on angiosperm representatives, a phylogenetic group only present in the fossil record post-Early Cretaceous (∼140 million years ago (mya)), whereas gymnosperms, monilophytes and lycophytes dominated terrestrial ecosystems prior to this time. The aim of this study was to expand our understanding of carbon isotope discrimination in all vascular plant groups of C3 plants including lycophytes, monilophytes, gymnosperms and angiosperms, under elevated CO2 and sub-ambient O2 to explore their utility as paleo-atmospheric proxies. To achieve this goal, plants were grown in controlled environment chambers under a range of O2:CO2 ratio treatments. Results reveal a strong phylogenetic dependency on Δ13C, where spore-bearing (lycophytes and monilophytes) have significantly higher 13C discrimination than seed plants (gymnosperms and angiosperms) by ∼5‰. We attribute this strong phylogenetic signal to differences in Ci/Ca likely mediated by fundamental differences in how spore and seed bearing plants control stomatal aperture. Decreasing O2:CO2 ratio in general resulted in increased carbon isotope discrimination in all plant groups. Notably, while all plant groups respond unidirectionally to elevated atmospheric CO2 (1900 ppm and ambient O2), they do not respond equally to sub-ambient O2 (16%). We conclude that (1) Δ13C has a strong phylogenetic or 'reproductive grade' bias, whereby Δ13C of spore reproducing plants is significantly different to seed reproducing taxa. (2) Δ13C increases

  11. Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst

    PubMed Central

    2015-01-01

    Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869

  12. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    Treesearch

    W.C. Hockaday; C.A. Masiello; J.T. Randerson; R.J. Smernik; J.A. Baldock; O. A. Chadwick; J.W. Harden

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2...

  13. Estimates of atmospheric O2 in the Paleoproterozoic from paleosols

    NASA Astrophysics Data System (ADS)

    Kanzaki, Yoshiki; Murakami, Takashi

    2016-02-01

    A weathering model was developed to constrain the partial pressure of atmospheric O2 (PO2) in the Paleoproterozoic from the Fe records in paleosols. The model describes the Fe behavior in a weathering profile by dissolution/precipitation of Fe-bearing minerals, oxidation of dissolved Fe(II) to Fe(III) by oxygen and transport of dissolved Fe by water flow, in steady state. The model calculates the ratio of the precipitated Fe(III)-(oxyhydr)oxides from the dissolved Fe(II) to the dissolved Fe(II) during weathering (ϕ), as a function of PO2 . An advanced kinetic expression for Fe(II) oxidation by O2 was introduced into the model from the literature to calculate accurate ϕ-PO2 relationships. The model's validity is supported by the consistency of the calculated ϕ-PO2 relationships with those in the literature. The model can calculate PO2 for a given paleosol, once a ϕ value and values of the other parameters relevant to weathering, namely, pH of porewater, partial pressure of carbon dioxide (PCO2), water flow, temperature and O2 diffusion into soil, are obtained for the paleosol. The above weathering-relevant parameters were scrutinized for individual Paleoproterozoic paleosols. The values of ϕ, temperature, pH and PCO2 were obtained from the literature on the Paleoproterozoic paleosols. The parameter value of water flow was constrained for each paleosol from the mass balance of Si between water and rock phases and the relationships between water saturation ratio and hydraulic conductivity. The parameter value of O2 diffusion into soil was calculated for each paleosol based on the equation for soil O2 concentration with the O2 transport parameters in the literature. Then, we conducted comprehensive PO2 calculations for individual Paleoproterozoic paleosols which reflect all uncertainties in the weathering-relevant parameters. Consequently, robust estimates of PO2 in the Paleoproterozoic were obtained: 10-7.1-10-5.4 atm at ∼2.46 Ga, 10-5.0-10-2.5 atm at ∼2

  14. Methodology update for estimating volume to service flow ratio.

    DOT National Transportation Integrated Search

    2015-12-01

    Volume/service flow ratio (VSF) is calculated by the Highway Performance Monitoring System (HPMS) software as an indicator of peak hour congestion. It is an essential input to the Kentucky Transportation Cabinets (KYTC) key planning applications, ...

  15. Sterilization/disinfection of medical devices using plasma: the flowing afterglow of the reduced-pressure N2-O2 discharge as the inactivating medium

    NASA Astrophysics Data System (ADS)

    Moisan, Michel; Boudam, Karim; Carignan, Denis; Kéroack, Danielle; Levif, Pierre; Barbeau, Jean; Séguin, Jacynthe; Kutasi, Kinga; Elmoualij, Benaïssa; Thellin, Olivier; Zorzi, Willy

    2013-07-01

    Potential sterilization/disinfection of medical devices (MDs) is investigated using a specific plasma process developed at the Université de Montréal over the last decade. The inactivating medium of the microorganisms is the flowing afterglow of a reduced-pressure N2-O2 discharge, which provides, as the main biocidal agent, photons over a broad ultraviolet (UV) wavelength range. The flowing afterglow is considered less damaging to MDs than the discharge itself. Working at gas pressures in the 400—700 Pa range (a few torr) ensures, through species diffusion, the uniform filling of large volume chambers with the species outflowing from the discharge, possibly allowing batch processing within them. As a rule, bacterial endospores are used as bio-indicators (BI) to validate sterilization processes. Under the present operating conditions, Bacillus atrophaeus is found to be the most resistant one and is therefore utilized as BI. The current paper reviews the main experimental results concerning the operation and characterization of this sterilizer/disinfector, updating and completing some of our previously published papers. It uses modeling results as guidelines, which are particularly useful when the corresponding experimental data are not (yet) available, hopefully leading to more insight into this plasma afterglow system. The species flowing out of the N2-O2 discharge can be divided into two groups, depending on the time elapsed after they left the discharge zone as they move toward the chamber, namely the early afterglow and the late afterglow. The early flowing afterglow from a pure N2 discharge (also called pink afterglow) is known to be comprised of N2+ and N4+ ions. In the present N2-O2 mixture discharge, NO+ ions are additionally generated, with a lifetime that extends over a longer period than that of the nitrogen molecular ions. We shall suppose that the disappearance of the NO+ ions marks the end of the early afterglow regime, thereby stressing our intent

  16. A kinetic study of the reactions FeO+ + O, Fe+.N2 + O, Fe+.O2 + O and FeO+ + CO: implications for sporadic E layers in the upper atmosphere.

    PubMed

    Woodcock, K R S; Vondrak, T; Meech, S R; Plane, J M C

    2006-04-21

    These gas-phase reactions were studied by pulsed laser ablation of an iron target to produce Fe(+) in a fast flow tube, with detection of the ions by quadrupole mass spectrometry. Fe(+).N(2) and Fe(+).O(2) were produced by injecting N(2) and O(2), respectively, into the flow tube. FeO(+) was produced from Fe(+) by addition of N(2)O, or by ligand-switching from Fe(+).N(2) following the addition of atomic O. The following rate coefficients were measured: k(FeO(+) + O --> Fe(+) + O(2), 186-294 K) = (3.2 +/- 1.5) x 10(-11); k(Fe(+).N(2) + O --> FeO(+)+ N(2), 294 K) = (4.6 +/- 2.5) x 10(-10); k(Fe(+).O(2) + O --> FeO(+) + O(2), 294 K) = (6.3 +/- 2.7) x 10(-11); and k(FeO(+) + CO --> Fe(+) + CO(2), 294 K) = (1.59 +/- 0.34) x 10(-10) cm(3) molecule(-1) s(-1), where the quoted uncertainties are a combination of the 1sigma standard errors in the kinetic data and the systematic experimental errors. The surprisingly slow reaction between FeO(+) and O is examined using ab initio quantum calculations of the relevant potential energy surfaces. The importance of this reaction for controlling the lifetime of sporadic E layers is then demonstrated using a model of the upper mesosphere and lower thermosphere.

  17. Atomic layer deposition and properties of ZrO2/Fe2O3 thin films

    PubMed Central

    Seemen, Helina; Ritslaid, Peeter; Rähn, Mihkel; Tamm, Aile; Kukli, Kaupo; Kasikov, Aarne; Link, Joosep; Stern, Raivo; Dueñas, Salvador; Castán, Helena; García, Héctor

    2018-01-01

    Thin solid films consisting of ZrO2 and Fe2O3 were grown by atomic layer deposition (ALD) at 400 °C. Metastable phases of ZrO2 were stabilized by Fe2O3 doping. The number of alternating ZrO2 and Fe2O3 deposition cycles were varied in order to achieve films with different cation ratios. The influence of annealing on the composition and structure of the thin films was investigated. Additionally, the influence of composition and structure on electrical and magnetic properties was studied. Several samples exhibited a measurable saturation magnetization and most of the samples exhibited a charge polarization. Both phenomena were observed in the sample with a Zr/Fe atomic ratio of 2.0. PMID:29441257

  18. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    PubMed

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  19. A novel combined solar pasteurizer/TiO2 continuous-flow reactor for decontamination and disinfection of drinking water.

    PubMed

    Monteagudo, José María; Durán, Antonio; Martín, Israel San; Acevedo, Alba María

    2017-02-01

    A new combined solar plant including an annular continuous-flow compound parabolic collector (CPC) reactor and a pasteurization system was designed, built, and tested for simultaneous drinking water disinfection and chemical decontamination. The plant did not use pumps and had no electricity costs. First, water continuously flowed through the CPC reactor and then entered the pasteurizer. The temperature and water flow from the plant effluent were controlled by a thermostatic valve located at the pasteurizer outlet that opened at 80 °C. The pasteurization process was simulated by studying the effect of heat treatment on the death kinetic parameters (D and z values) of Escherichia coli K12 (CECT 4624). 99.1% bacteria photo-inactivation was reached in the TiO 2 -CPC system (0.60 mg cm -2 TiO 2 ), and chemical decontamination in terms of antipyrine degradation increased with increasing residence time in the TiO 2 -CPC system, reaching 70% degradation. The generation of hydroxyl radicals (between 100 and 400 nmol L -1 ) was a key factor in the CPC system efficiency. Total thermal bacteria inactivation was attained after pasteurization in all cases. Chemical degradation and bacterial photo-inactivation in the TiO 2 -CPC system were improved with the addition of 150 mg L -1 of H 2 O 2 , which generated approximately 2000-2300 nmol L -1 of HO ● radicals. Finally, chemical degradation and bacterial photo-inactivation kinetic modelling in the annular CPC photoreactor were evaluated. The effect of the superficial liquid velocity on the overall rate constant was also studied. Both antipyrine degradation and E. coli photo-inactivation were found to be controlled by the catalyst surface reaction rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Tuning the resistive switching properties of TiO2-x films

    NASA Astrophysics Data System (ADS)

    Ghenzi, N.; Rozenberg, M. J.; Llopis, R.; Levy, P.; Hueso, L. E.; Stoliar, P.

    2015-03-01

    We study the electrical characteristics of TiO2-x-based resistive switching devices fabricated with different oxygen/argon flow ratio during the oxide thin film sputtering deposition. Upon minute changes in this fabrication parameter, three qualitatively different device characteristics were accessed in the same system, namely, standard bipolar resistive switching, electroforming-free devices, and devices with multi-step breakdown. We propose that small variations in the oxygen/ argon flow ratio result in relevant changes of the oxygen vacancy concentration, which is the key parameter determining the resistive switching behavior. The coexistence of percolative or non-percolative conductive filaments is also discussed. Finally, the hypothesis is verified by means of the temperature dependence of the devices in low resistance state.

  1. H2O Paradox and its Implications on H2O in Moon

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue

    2017-04-01

    The concentration of H2O in the mantle of a planetary body plays a significant role in the viscosity and partial melting and hence the convection and evolution of the planetary body. Even though the composition of the primitive terrestrial mantle (PTM) is thought to be well known [1-2], the concentration of H2O in PTM remains paradoxial because different methods of estimation give different results [3]: Using H2O/Ce ratio in MORB and OIB and Ce concentration in PTM, the H2O concentration in PTM would be (300÷×1.5) ppm; using mass balance by adding surface water to the mantle [3-4], H2O concentration in PTM would be (900÷×1.3) ppm [2-3]. The inconsistency based on these two seemingly reliable methods is referred to as the H2O paradox [3]. For Moon, H2O contents in the primitive lunar mantle (PLM) estimated from H2O in plagioclase in lunar anorthosite and that from H2O/Ce ratio in melt inclusions are roughly consistent at ˜110 ppm [5-6] even though there is still debate about the volatile depletion trend [7]. One possible solution to the H2O paradox in PTM is to assume that early Earth experienced whole mantle degassing, which lowered the H2O/Ce ratio in the whole mantle but without depleting Ce in the mantle. The second possible solution is that some deep Earth reservoirs with high H2O/Ce ratios have not been sampled by MORB and OIB. Candidates include the transition zone [8] and the D" layer. The third possible solution is that ocean water only partially originated from mantle degassing, but partially from extraterrestrial sources such as comets [9-10]. At present, there is not enough information to determine which scenario is the answer to the H2O paradox. On the other hand, each scenario would have its own implications to H2O in PLM. If the first scenario applies to Moon, because degassed H2O or H2 would have escaped from the lunar surface, the very early lunar mantle could have much higher H2O [11] than that obtained using the H2O/Ce ratio method. The

  2. Towards absolute laser spectroscopic CO2 isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Anyangwe Nwaboh, Javis; Werhahn, Olav; Ebert, Volker

    2017-04-01

    Knowledge of isotope composition of carbon dioxide (CO2) in the atmosphere is necessary to identify sources and sinks of this key greenhouse gas. In the last years, laser spectroscopic techniques such as cavity ring-down spectroscopy (CRDS) and tunable diode laser absorption spectroscopy (TDLAS) have been shown to perform accurate isotope ratio measurements for CO2 and other gases like water vapour (H2O) [1,2]. Typically, isotope ratios are reported in literature referring to reference materials provided by e.g. the International Atomic Energy Agency (IAEA). However, there could be some benefit if field deployable absolute isotope ratio measurement methods were developed to address issues such as exhausted reference material like the Pee Dee Belemnite (PDB) standard. Absolute isotope ratio measurements would be particularly important for situations where reference materials do not even exist. Here, we present CRDS and TDLAS-based absolute isotope ratios (13C/12C ) in atmospheric CO2. We demonstrate the capabilities of the used methods by measuring CO2 isotope ratios in gas standards. We compare our results to values reported for the isotope certified gas standards. Guide to the expression of uncertainty in measurement (GUM) compliant uncertainty budgets on the CRDS and TDLAS absolute isotope ratio measurements are presented, and traceability is addressed. We outline the current impediments in realizing high accuracy absolute isotope ratio measurements using laser spectroscopic methods, propose solutions and the way forward. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] B. Kühnreich, S. Wagner, J. C. Habig,·O. Möhler, H. Saathoff, V. Ebert, Appl. Phys. B 119:177-187 (2015). [2] E. Kerstel, L. Gianfrani, Appl. Phys. B 92, 439-449 (2008).

  3. Effect of addition of nanoparticle TiO 2/SiO 2 on the superconducting properties of MgB 2

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zhou, S. H.; Wang, X. L.; Dou, S. X.

    2008-09-01

    In this paper, bulk MgB 2 was prepared by doping with nanoparticle TiO 2 surface-modified by 5-10% SiO 2. The doping ratio of TiO 2/SiO 2 to MgB 2 was 0, 5, 10, and 15 wt%. The sintering temperature varied from 650 °C to 950 °C. Quantitative X-ray diffraction (XRD) analysis was performed to obtain the lattice constants and the weight fraction of impurities using the Rietveld method. It was found that the critical temperature ( Tc) increases with the lattice constants. The critical current density ( Jc) is affected by the doping ratio and the sintering temperature. The Jc exhibited the highest value at the doping ratio of 10 wt% for 5 K and 20 K and at the doping ratio of 5 wt% for 30 K, when the sintering temperature was fixed at 750 °C. When the doping ratio was fixed at 5 wt%, the samples with the sintering temperature of 750 °C had the best Jc for 5 K and 20 K, while the sample with the sintering temperature of 850 °C exhibited the highest Jc at 30 K.

  4. Visible-Light Upconversion Carbon Quantum Dots Decorated TiO2 for the Photodegradation of Flowing Gaseous Acetaldehyde

    NASA Astrophysics Data System (ADS)

    Hu, Yidan; Xie, Xiaofeng; Wang, Xiao; Wang, Yan; Zeng, Yi; Pui, David Y. H.; Sun, Jing

    2018-05-01

    Carbon-modified photocatalyst has attracted extensive attentions in the field of gaseous pollutant removal, mainly due to the improved adsorption properties and electronic transport of carbon matrix, such as carbon nanotubes, graphene, and fullerene, etc. In this work, carbon quantum dots (CQDs) were employed to enhance the photocatalytic performance of TiO2-based composites for flowing gaseous acetaldehyde removal. Besides the aforementioned advantages of carbon materials, the unique up-converted photoluminescence property of CQDs is capable of extending the optical absorption to visible-light range. Moreover, the electron spin resonance (ESR) results firstly verified a stable existence of Ti3+ defect in the CQDs/TiO2 composite, which is possibly induced by the electron migration from CQDs to TiO2. And the formed Ti3+ donor energy level in the band gap could further help with the visible-light harvesting. During the photodegradation experiments, with two-hour continuous flowing gaseous acetaldehyde injection (500 ppm, 20 sccm), the CQDs/TiO2 composite remained 99% removal efficiency under fluorescent lamp irradiation (λ > 380 nm). The optimized CQDs content was obtained as 3 wt%, and the underlying mechanism was further analyzed by temperature programmed desorption (TPD) methods. This work will push forward the air purification researches by providing new insights of CQDs sensitized photocatalyst.

  5. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles

    NASA Astrophysics Data System (ADS)

    Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping

    2017-09-01

    A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84 % , and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density

  6. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles.

    PubMed

    Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping

    2017-09-01

    A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84%, and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density

  7. Reactions of small negative ions with O2(a 1[Delta]g) and O2(X 3[Sigma]g-)

    NASA Astrophysics Data System (ADS)

    Midey, Anthony; Dotan, Itzhak; Seeley, J. V.; Viggiano, A. A.

    2009-02-01

    The rate constants and product ion branching ratios were measured for the reactions of various small negative ions with O2(X 3[Sigma]g-) and O2(a 1[Delta]g) in a selected ion flow tube (SIFT). Only NH2- and CH3O- were found to react with O2(X) and both reactions were slow. CH3O- reacted by hydride transfer, both with and without electron detachment. NH2- formed both OH-, as observed previously, and O2-, the latter via endothermic charge transfer. A temperature study revealed a negative temperature dependence for the former channel and Arrhenius behavior for the endothermic channel, resulting in an overall rate constant with a minimum at 500 K. SF6-, SF4-, SO3- and CO3- were found to react with O2(a 1[Delta]g) with rate constants less than 10-11 cm3 s-1. NH2- reacted rapidly with O2(a 1[Delta]g) by charge transfer. The reactions of HO2- and SO2- proceeded moderately with competition between Penning detachment and charge transfer. SO2- produced a SO4- cluster product in 2% of reactions and HO2- produced O3- in 13% of the reactions. CH3O- proceeded essentially at the collision rate by hydride transfer, again both with and without electron detachment. These results show that charge transfer to O2(a 1[Delta]g) occurs readily if the there are no restrictions on the ion beyond the reaction thermodynamics. The SO2- and HO2- reactions with O2(a) are the only known reactions involving Penning detachment besides the reaction with O2- studied previously [R.S. Berry, Phys. Chem. Chem. Phys., 7 (2005) 289-290].

  8. Evaluation of the incorporation ratio of ZnO, PbO and CdO into cement clinker.

    PubMed

    Barros, A M; Tenório, J A S; Espinosa, D C R

    2004-08-09

    Zinc, lead, and cadmium are minor elements that might be brought by wastes to the cement kilns. This work studies the incorporation ratio of ZnO, PbO, and CdO when they are added to the clinker raw material. The cement raw material used in this work was prepared by mixing pure compounds, this choice was made to avoid the effect of other elements and provide a better understanding of the behavior of these metals during the clinkering process. The samples contained additions of 0.05, 0.10, 0.30, 0.50, 0.80 and 1.00 wt.% of a specific oxide (ZnO, PbO, or CdO) to the clinker raw-meal. The chlorine influence in the ZnO incorporation ratio was also evaluated. A device to simulate the thermal cycle imposed on the charge during the clinker production was used to evaluate the incorporation ratio of these oxides as well as thermogravimetric tests. The products of the tests in the simulator device were submitted to X-ray fluorescence chemical analysis or energy disperse scanning (EDS) microprobe analysis. The results led to the conclusions that the evaporation of Zn in cements kilns is due to the chlorine content and the Pb and Cd incorporation ratio stands around 50 wt.%.

  9. Detection of transient infrared absorption of SO3 and 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH2)O(SO2)O] in the reaction CH2OO+SO2

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Ying; Dash, Manas Ranjan; Chung, Chao-Yu; Lee, Yuan-Pern

    2018-02-01

    We recorded time-resolved infrared absorption spectra of transient species produced on irradiation at 308 nm of a flowing mixture of CH2I2/O2/N2/SO2 at 298 K. Bands of CH2OO were observed initially upon irradiation; their decrease in intensity was accompanied by the appearance of an intense band at 1391.5 cm-1 that is associated with the degenerate SO-stretching mode of SO3, two major bands of HCHO at 1502 and 1745 cm-1, and five new bands near >1340, 1225, 1100, 940, and 880 cm-1. The band near 1340 cm-1 was interfered by absorption of SO2 and SO3, so its band maximum might be greater than 1340 cm-1. SO3 in its internally excited states was produced initially and became thermalized at a later period. The rotational contour of the band of thermalized SO3 agrees satisfactorily with the reported spectrum of SO3. These five new bands are tentatively assigned to an intermediate 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH2)O(SO2)O] according to comparison with anharmonic vibrational wavenumbers and relative IR intensities predicted for this intermediate. Observation of a small amount of cyc-(CH2)O(SO2)O is consistent with the expected reaction according to the potential energy scheme predicted previously. SO3+HCHO are the major products of the title reaction. The other predicted product channel HCOOH+SO2 was unobserved and its branching ratio was estimated to be <5%.

  10. Detection of transient infrared absorption of SO3 and 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH2)O(SO2)O] in the reaction CH2OO+SO2.

    PubMed

    Wang, Yi-Ying; Dash, Manas Ranjan; Chung, Chao-Yu; Lee, Yuan-Pern

    2018-02-14

    We recorded time-resolved infrared absorption spectra of transient species produced on irradiation at 308 nm of a flowing mixture of CH 2 I 2 /O 2 /N 2 /SO 2 at 298 K. Bands of CH 2 OO were observed initially upon irradiation; their decrease in intensity was accompanied by the appearance of an intense band at 1391.5 cm -1 that is associated with the degenerate SO-stretching mode of SO 3 , two major bands of HCHO at 1502 and 1745 cm -1 , and five new bands near >1340, 1225, 1100, 940, and 880 cm -1 . The band near 1340 cm -1 was interfered by absorption of SO 2 and SO 3 , so its band maximum might be greater than 1340 cm -1 . SO 3 in its internally excited states was produced initially and became thermalized at a later period. The rotational contour of the band of thermalized SO 3 agrees satisfactorily with the reported spectrum of SO 3 . These five new bands are tentatively assigned to an intermediate 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH 2 )O(SO 2 )O] according to comparison with anharmonic vibrational wavenumbers and relative IR intensities predicted for this intermediate. Observation of a small amount of cyc-(CH 2 )O(SO 2 )O is consistent with the expected reaction according to the potential energy scheme predicted previously. SO 3 +HCHO are the major products of the title reaction. The other predicted product channel HCOOH+SO 2 was unobserved and its branching ratio was estimated to be <5%.

  11. Using Ag/Ag2O/SnO2 Nanocomposites to Remove Malachite Green by a Photocatalytic Process

    NASA Astrophysics Data System (ADS)

    Taufik, A.; Paramarta, V.; Prakoso, S. P.; Saleh, R.

    2017-03-01

    Silver/silver oxide/tin oxide nanocomposites of various weight ratios were synthesized using a microwave-assisted method. The Ag/Ag2O:SnO2 nanoparticle weight ratios used were 25:75, 50:50, and 75:25. All samples were characterized using X-ray diffraction, UV-Vis spectroscopy, Differential Scanning Calorimetry and Thermogravimetric Analysis (TGA). The Ag/Ag2O/SnO2 nanocomposites contained cubic structures provided by the Ag and Ag2O and tetragonal structures provided by the SnO2. The silver resulted in surface plasmon resonance (SPR) at a wavelength of about 435 nm. The silver oxide material was transformed into pure Ag at a temperature of about 370 °C The photocatalytic activity was tested on the degradation of malachite green (MG) from an aqueous solution. The results showed that Ag/Ag2O/SnO2 at a ratio of 50:50 exhibited the best photocatalytic performance for degrading MG under visible-light irradiation. The degradation of MG using Ag/Ag2O/SnO2 nanocomposites followed pseudo first-order kinetic reactions, and electron holes were found to be the main species acting on the degradation process.

  12. The effects of preparation conditions for a BaNbO2 N photocatalyst on its physical properties.

    PubMed

    Hisatomi, Takashi; Katayama, Chisato; Teramura, Kentaro; Takata, Tsuyoshi; Moriya, Yosuke; Minegishi, Tsutomu; Katayama, Masao; Nishiyama, Hiroshi; Yamada, Taro; Domen, Kazunari

    2014-07-01

    BaNbO2 N is a semiconductor photocatalyst active for water oxidation under visible-light irradiation up to λ=740 nm. It is important to understand the nitridation processes of precursor materials to form BaNbO2 N to tune the physical properties and improve the photocatalytic activity. Comprehensive experiments and analyses of temperatures, durations, ammonia flow rates, and barium/niobium ratios in the precursor during the nitridation process reveals that faster ammonia flow rates and higher barium/niobium ratios in the precursors help to suppress reduction of pentavalent niobium ions in the nitridation products and that the use of a precursor prepared by a soft-chemistry route allows the production of BaNbO2 N at lower temperatures in shorter times than the use of physical mixtures of BaCO3 and Nb2 O5 because the niobium species is dispersed among the barium species. BaNbO2 N prepared by the soft-chemistry route exhibits comparatively higher activity than that prepared from physical mixtures of BaCO3 and Nb2 O5 , probably because of lower nitridation temperatures, which suppress excessive dissociation of ammonia, and thereby reduce pentavalent niobium ions, and intimate interaction of niobium and barium sources, which lowers the densities of mid-gap states associated with defects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development of N_2O-MTV for low-speed flow and in-situ deployment to an integral effect test facility

    NASA Astrophysics Data System (ADS)

    André, Matthieu A.; Burns, Ross A.; Danehy, Paul M.; Cadell, Seth R.; Woods, Brian G.; Bardet, Philippe M.

    2018-01-01

    A molecular tagging velocity (MTV) technique is developed to non-intrusively measure velocity in an integral effect test (IET) facility simulating a high-temperature helium-cooled nuclear reactor in accident scenarios. In these scenarios, the velocities are expected to be low, on the order of 1 m/s or less, which forces special requirements on the MTV tracer selection. Nitrous oxide (N_2O) is identified as a suitable seed gas to generate NO tracers capable of probing the flow over a large range of pressure, temperature, and flow velocity. The performance of N_2O-MTV is assessed in the laboratory at temperature and pressure ranging from 295 to 781 K and 1 to 3 atm. MTV signal improves with a temperature increase, but decreases with a pressure increase. Velocity precision down to 0.004 m/s is achieved with a probe time of 40 ms at ambient pressure and temperature. Measurement precision is limited by tracer diffusion, and absorption of the tag laser beam by the seed gas. Processing by cross-correlation of single-shot images with high signal-to-noise ratio reference images improves the precision by about 10% compared to traditional single-shot image correlations. The instrument is then deployed to the IET facility. Challenges associated with heat, vibrations, safety, beam delivery, and imaging are addressed in order to successfully operate this sensitive instrument in-situ. Data are presented for an isothermal depressurized conduction cooldown. Velocity profiles from MTV reveal a complex flow transient driven by buoyancy, diffusion, and instability taking place over short (<1 s) and long (>30 min) time scales at sub-meter per second speed. The precision of the in-situ results is estimated at 0.027, 0.0095, and 0.006 m/s for a probe time of 5, 15, and 35 ms, respectively.

  14. Kinetics of NH3 -oxidation, NO-turnover, N2 O-production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers.

    PubMed

    Hink, Linda; Lycus, Pawel; Gubry-Rangin, Cécile; Frostegård, Åsa; Nicol, Graeme W; Prosser, James I; Bakken, Lars R

    2017-12-01

    Ammonia oxidising bacteria (AOB) are thought to emit more nitrous oxide (N 2 O) than ammonia oxidising archaea (AOA), due to their higher N 2 O yield under oxic conditions and denitrification in response to oxygen (O 2 ) limitation. We determined the kinetics of growth and turnover of nitric oxide (NO) and N 2 O at low cell densities of Nitrosomonas europaea (AOB) and Nitrosopumilus maritimus (AOA) during gradual depletion of TAN (NH 3  + NH4+) and O 2 . Half-saturation constants for O 2 and TAN were similar to those determined by others, except for the half-saturation constant for ammonium in N. maritimus (0.2 mM), which is orders of magnitudes higher than previously reported. For both strains, cell-specific rates of NO turnover and N 2 O production reached maxima near O 2 half-saturation constant concentration (2-10 μM O 2 ) and decreased to zero in response to complete O 2 -depletion. Modelling of the electron flow in N. europaea demonstrated low electron flow to denitrification (≤1.2% of the total electron flow), even at sub-micromolar O 2 concentrations. The results corroborate current understanding of the role of NO in the metabolism of AOA and suggest that denitrification is inconsequential for the energy metabolism of AOB, but possibly important as a route for dissipation of electrons at high ammonium concentration. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Isotope ratio mass spectrometry in nutrition research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke, A.H.

    Many of the biochemical pathways and processes that form the foundation of modern nutrition research was elucidated using stable isotopes as physiological tracers. Since the discovery of stable isotopes, improvements and innovations in mass spectrometry and chromatography have led to greatly expanded applications. This research project was designed to evaluate gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as a tool for isotopic tracer studies and to delineate the operational parameters for the analysis of {sup 13}C-labeled cholesterol, leucine and {alpha}-ketoisocaproate. The same isotope ratio mass spectrometer was then used as the base instrument for the ratio mass spectrometer was then usedmore » as the base instrument for the development of two additional inlet systems: a continuous-flow inlet for the analyses of {sup 13}C and {sup 18}O as CO{sub 2} and a filament inlet for on-line combustion and isotopic analysis of non-volatile organic compounds. Each of these three inlets was evaluated and their utility in nutrition research illustrated. GC/C/IRMS was used to analyze cholesterol, leucine and {alpha}-ketoisocaproate with good accuracy, precision and little isotopic memory. For all three compounds the detection limits achieved well surpassed currently used technologies. For compounds that can be well separated by GC, GC/C/IRMS is a valuable analytical tool. The continuous-flow inlet provided good accuracy and precision for measurements of {sup 13}CO{sub 2} from breath tests and {sup 18}O as CO{sub 2} from total energy expenditure tests. Most importantly, the continuous-flow inlet increased sample throughput by at least a factor of three over conventional analytical techniques. The filament inlet provided accurate and precise {sup 13}C ratio measurements of both natural abundance and enriched standards of non-volatile organic compounds of physiological interest.« less

  16. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    NASA Astrophysics Data System (ADS)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  17. Effect of alkali earth oxides on hydroxy-carbonated apatite nano layer formation for SiO2-BaO-CaO-Na2O-P2O5 glass system

    NASA Astrophysics Data System (ADS)

    Kiran, P.; Ramakrishna, V.; Shashikala, H. D.; Udayashankar, N. K.

    2017-11-01

    Barium soda lime phosphosilicate [(58SiO2-(32 - x)BaO- xCao-6Na2O-4P2O5 (where x = 15, 20, 25 and 30 mol%)] samples were synthesised using conventional sol-gel method at 700 °C sintering temperature. Thermal, structural properties were studied using thermo gravimetric analysis and differential thermal analysis, X-ray diffraction, scanning electron microscopy, fourier transform infrared and Raman spectroscopy. Using Raman spectra non-bridging oxygen concentrations were estimated. The hydroxy-carbonated apatite (HCA) layer formation on samples was analysed for 7 days using simulated body fluid (SBF) soaked samples. The growth of HCA layers self-assembled on the sample surface was discussed as a function of NBO/BO ratio. Results indicated that the number of Ca2+ ions released into SBF solution in dissolution process and weight loss of SB-treated samples vary with NBO/BO ratio. The changes in NBO/BO ratios were observed to be proportional to HCA forming ability of barium soda lime phosphosilicate glasses.

  18. High resistance ratio of bipolar resistive switching in a multiferroic/high-K Bi(Fe0.95Cr0.05)O3/ZrO2/Pt heterostructure

    NASA Astrophysics Data System (ADS)

    Dong, B. W.; Miao, Jun; Han, J. Z.; Shao, F.; Yuan, J.; Meng, K. K.; Wu, Y.; Xu, X. G.; Jiang, Y.

    2018-03-01

    An novel heterostructure composed of multiferroic Bi(Fe0.95Cr0.05)O3 (BFCO) and high-K ZrO2 (ZO) layers is investigated. Ferroelectric and electrical properties of the BFZO/ZO heterostructure have been investigated. A pronounced bipolar ferroelectric resistive switching characteristic was achieved in the heterostructure at room temperature. Interestingly, the BFCO/ZO structures exhibit a reproducible resistive switching with a high On/Off resistance ratio2×103 and long retention time. The relationship between polarization and band structure at the interface of BFCO/ZO bilayer under the positive and negative sweepings has been discussed. As a result, the BFCO/ZO multiferroic/high-K heterostructure with high On/Off resistance ratio and long retention characterizes, exhibits a potential in future nonvolatile memory application.

  19. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Lyons, M.; Siegel, E.

    2010-03-01

    ``Water water everywhere; ne'er a drop to drink''[Coleridg(1798)]; now:``Hydrogen hydrogen everywhere;STILL ne'er a drop to drink'': ONLY H2 can be ``FLYING-WATER''/``chemical-rain-in-pipelines''/ ``Hindenberg-effect (H2-UP;H2O-DOWN): atomic-weights ratio: O/H2O=[16]/[18]˜90%; O already in air uphill; NO H2O pumping need! In water-starved glacial-melting world, rescue ONLY by Siegel[3rd Intl.Conf.Alt.Energy,Hemisphere/Springer(1980)- vol.5/ p.459]Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating- system. Rosenfeld[Sci.315,1396(3/9/2007)]-Biello[Sci.Am.(3/9/ 2007)]crucial geomorphology which ONLY maximal-buoyancy light- est-element H2 can exploit, to again make ``Mountains into Fount- ains": Siegel ``terra-forming''(and ocean-rebasificaton!!!) long pre-``Holdren''-``Ciccerine" ``geo-enginering'', only via Siegel proprietary magnetic-hydrogen-valve permits H2 flow in already in-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Sci.300,1740(03)]global-pandemics (cancers/blindness/famine)dire-warning about H2-(ALONE)economy CATASTROPHIC H2 ozone-layer destruction sobering cavat to dangerous H2-automotion-economy panacea hype!

  20. Crystallization kinetic of Sb-V2O5-TeO2 glasses investigated by DSC and their elastic moduli and Poisson's ratio

    NASA Astrophysics Data System (ADS)

    Souri, Dariush

    2015-01-01

    Ternary tellurate glasses of the form xSb-(60-x)V2O5-40TeO2 (0≤x≤15 in mol%) were prepared by using the usual melt quenching method. Differential scanning calorimetry (DSC) at different heating rates (φ) was used to thermal analyze and to gain more insight in to the thermal stability, glass forming tendency and so calorimetric behavior of the present glasses. The glass transition temperature (Tg), the temperature corresponding to the onset of crystallization (Tx) and also the crystallization temperature (TCr) were obtained at different heating rates, to estimate the key kinetic parameter of activation energy of crystallization (ΔE) by using different empirical formulas. Also some other thermal parameters such as thermal stability and glass forming tendency were determined. It was found that Tg, Tx and TCr increase with increase in Sb content and also with increase in heating rate. Moreover, Makishima-Makenzie's theory was employed to evaluate the Poisson's ratio and elastic moduli, indicating a strong relation between elastic properties and the structure of glass. From the mechanical and thermal data and also the values of oxygen molar volume ( V O *), it was founded that the glass systems can be divided in to "two compositional regions"; so, results indicate that glasses with 10≤x≤15 (especially for x=12) are more thermal stable and strong glasses, which make them as more useful and promising materials in technological advantages and device manufacturing.

  1. Influence of the Oxygen Electrode Open Ratio and Electrolyte Evaporation on the Performance of Li-O2 Batteries.

    PubMed

    Mohazabrad, Farhad; Wang, Fangzhou; Li, Xianglin

    2017-05-10

    This study experimentally investigates and numerically simulates the influence of the cathode electrode open ratio (ratio of oxygen-opening area to the total electrode surface area) on the performance of Li-O 2 batteries at various discharge current densities. At the current density of 0.1 mA/cm 2 , the maximum discharge capacity is achieved at 25% open ratio among the tested open ratios (0-100%). As the open ratio increases from 25% to 100%, the specific discharge capacity decreases from 995 to 397 mA h/g carbon . A similar trend is observed at 0.3 mA/cm 2 , while the maximum discharge capacity is obtained at 3% open ratio among the tested open ratios. The model that assumes the electrode is always fully saturated by the electrolyte does not obtain similar trends with experimental results, while the model that considers electrolyte loss by evaporation and the volume change of the solid obtains the same trend with experimental observations. The open ratio governs not only availability of oxygen but also the evaporation of the electrolyte and the contact resistance. The faster evaporation of the electrolyte at a higher open ratio can be the main reason for the decrease of the discharge capacity, especially when the open ratio is relatively high (above 25%). Meanwhile, the contact resistance of the battery, measured by the electrochemical impedance spectroscopy (EIS), increases from 3.97 to 7.02 Ω when the open ratio increased from 3% to 95%. The increase of the Ohmic overpotential, however, is negligible (on the order of millivolts) because of the low discharge and charge current rates (on the order of 0.1 mA).

  2. Observations of D/H ratios in H2O, HCl, and HF on Venus and new DCl and DF line strengths

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.; Belyaev, D. A.; Gordon, I. E.; Li, G.; Rothman, L. S.

    2013-05-01

    Intensities of the spectral lines in the fundamental bands of D35Cl and DF were calculated using the semi-empirical dipole moment functions derived from the most accurate and precise measurements of intensities of the ro-vibrational lines of H35Cl and HF. Values obtained in this way for the deuterated species are superior to any available measured or calculated data to date. Our study of the D/H ratios in H2O, HCl, and HF on Venus is based on spatially-resolved high-resolution spectroscopy using the CSHELL spectrograph at NASA IRTF. Search for DF on Venus using its R5 (1-0) line at 3024.054 cm-1 results in a DF mixing ratio of 0.23 ± 0.11 ppb that corresponds to (D/H)HF = 420 ± 200 times that in the Standard Mean Ocean Water (SMOW). H2O abundances on Venus were retrieved using lines at 3022.366 and 3025.761 cm-1 that were observed at an exceptionally low overhead telluric water abundance of 0.3 pr. mm. The measured H2O mixing ratios at 74 km vary insignificantly between 55°S and 55°N with a mean value of 3.2 ppm. When compared with simultaneous observations of HDO near 2722 cm-1, this results in (D/H)H2O = 95 ± 15 times SMOW. Reanalysis of the observation of the D35Cl R4 (1-0) line at 2141.540 cm-1 (Krasnopolsky, V.A. [2012b]. Icarus 219, 244-249) using the improved line strength and more thorough averaging of the spectra gives (D/H)HCl = 190 ± 50 times SMOW. The similarity of the measured (D/H)H2O = 95 ± 15 at 74 km with 120 ± 40 observed by De Bergh et al. (De Bergh, C., Bezard, B., Owen, T., Crisp, D., Maillard, J.P., Lutz, B.L. [1991]. Science 251, 547-549) below the clouds favors the constant (D/H)H2O from the surface to the mesosphere, in accord with the prediction by theory. D/H ≈ 100 removes a difference of a factor of 2 between H2O abundances in the observations by Krasnopolsky (Krasnopolsky, V.A. [2010b]. Icarus 209, 314-322) and the Venus Express nadir observations (Cottini, V., Ignatiev, N.I., Piccioni, G., Drossart, P., Grassi, D., Markiewicz

  3. Base-line O sub 2 extraction influences cerebral blood flow response to hematocrit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudak, M.L.; Tang, Yuilin; Massik, J.

    1988-01-01

    The authors have shown that the fall in cerebral blood flow (CBF) as hematocrit (Hct) rises is due to the independent effects of increasing red blood cell (RBC) concentration and arterial O{sub 2} content (Ca{sub O{sub 2}}). In the present study, they tested the hypothesis that the magnitude of the effect of RBC concentration depends on the base-line cerebral fractional oxygen extraction (E). Pentobarbital-anesthetized 1- to 7-day-old sheep were first exchange transfused with plasma to lower Hct to 20%. Base-line E was set to either high or low levels by induction of hypocarbia, or hypercarbia. A second isovolemic exchange transfusionmore » with pure methemoglobin-containing adult sheep red cells then raised Hct with no significant increase in Ca{sub O{sub 2}}. Pa{sub CO{sub 2}} was maintained and other variables with potential effect on CBF did not change. CBF corrected for any individual alteration in CMRo{sub 2}. This study supports the hypothesis that the magnitude of the decline in CBF secondary to an increase in RBC concentration depends on the initial E. The effect of RBC concentration on CBF is greatest when E is low.« less

  4. Desflurane usage during anesthesia with and without N2O using FLOW-i Automatic Gas Control with three different wash-in speeds.

    PubMed

    De Medts, Robrecht; Carette, Rik; De Wolf, Andre M; Hendrickx, Jan F A

    2017-06-09

    AGC ® (Automatic Gas Control) is the FLOW-i's automated low flow tool (Maquet, Solna, Sweden) that target controls the inspired O 2 (F I O 2 ) and end-expired desflurane concentration (F A des) while (by design) exponentially decreasing fresh gas flow (FGF) during wash-in to a maintenance default FGF of 300 mL min -1 . It also offers a choice of wash-in speeds for the inhaled agents. We examined AGC performance and hypothesized that the use of lower wash-in speeds and N 2 O both reduce desflurane usage (Vdes). After obtaining IRB approval and patient consent, 78 ASA I-II patients undergoing abdominal surgery were randomly assigned to 1 of 6 groups (n = 13 each), depending on carrier gas (O 2 /air or O 2 /N 2 O) and wash-in speed (AGC speed 2, 4, or 6) of desflurane, resulting in groups air/2, air/4, air/6, N 2 O/2, N 2 O/4, and N 2 O/6. The target for F I O 2 was set at 35%, while the F A des target was selected so that the AGC displayed 1.3 MAC (corrected for the additive affect of N 2 O if used). AGC was activated upon starting mechanical ventilation. Varvel's criteria were used to describe performance of achieving the targets. Patient demographics, end-expired N 2 O concentration, MAC, FGF, and Vdes were compared using ANOVA. Data are presented as mean ± standard deviation, except for Varvel's criteria (median ± quartiles). Patient demographics did not differ among the groups. Median performance error was -2-0% for F I O 2 and -3-1% for F A des; median absolute performance error was 1-2% for F I O 2 and 0-3% for F A des. MAC increased faster in N 2 O groups, but total MAC decreased 0.1-0.25 MAC below that in the O 2 /air groups after 60 min. The effect of wash-in speed on Vdes faded over time. N 2 O decreased Vdes by 62%. AGC performance for O 2 and desflurane targeting is excellent. After 1 h, the wash-in speeds tested are unlikely to affect desflurane usage. N 2 O usage decreases Vdes proportionally with its reduction in F A tdes.

  5. Electrochemical properties of TiO2-V2O5 nanocomposites as a high performance supercapacitors electrode material

    NASA Astrophysics Data System (ADS)

    Ray, Apurba; Roy, Atanu; Sadhukhan, Priyabrata; Chowdhury, Sreya Roy; Maji, Prasenjit; Bhattachrya, Swapan Kumar; Das, Sachindranath

    2018-06-01

    The individual components being ample, inexpensive and non-toxic material, TiO2-V2O5 has drawn more attention compared to other metal oxides. The cost-effective, non-toxic TiO2-V2O5 nanocomposites with various molar ratios of Ti and V have been synthesized through wet chemical method. Microstructure studies have been performed using X-ray diffraction (XRD), FESEM, HRTTEM and other spectroscopic (XPS, FTIR) techniques. The synthesized TiO2-V2O5 nanocomposite with molar ratio 10:20 exhibits 3D, mesoporous interlinked tube-like structure with excellent electrochemical properties by delivering highest specific capacitance of 310 F g-1 at 2 mV s-1 scan rate compared to individual TiO2 and V2O5 material. Increase in vanadium ratio plays a leading role to the chemical properties. The synergistic effects between TiO2 and V2O5 have also been observed in this work. Due to the excellent electrochemical as well as other acceptable performance, the porous interconnected tube like nanocomposite can be used for energy storage application mainly for pseudocapacitor electrode material.

  6. A study on electrical conductivity of chemosynthetic Al 2O 3-2SiO 2 geoploymer materials

    NASA Astrophysics Data System (ADS)

    Cui, Xue-Min; Zheng, Guang-Jian; Han, Yao-Cong; Su, Feng; Zhou, Ji

    Al 2O 3-2SiO 2 amorphous powders are synthesized by sol-gel method with tetraethoxysilane (TEOS) and aluminum nitrate (ANN) as the starting materials. The microstructure and phase structure of the powders are investigated by SEM and XRD analysis. Geopolymer materials samples are prepared by mechanically mixing stoichiometric amounts of calcined Al 2O 3-2SiO 2 powders and sodium silicate solutions to allow a mass ratio of Na 2O/Al 2O 3 = 0.4, 0.375, 0.35, 0.325, 0.288, 0.26, 0.23 or 0.2 separately, and finally to form a homogenous slurry at a fixed H 2O/Na 2O mole ratio = 11.7. The results show that the synthetic Al 2O 3-2SiO 2 powders have polycondensed property and their compressive strengthes are similar to that of nature metakaolin geopolymer materials. The results also show that the water consumption is not the main influencing factor on electrical conductivity of harden geopolymer materials but it can intensively affect the microstructure of geopolymer materials. In addition, the electrical conductivity of harden geopolymer sample is investigated, and the results show that the geopolymer materials have a high ionic electrical conductivity of about 1.5 × 10 -6 S cm -1 in air at room temperature.

  7. Kinetics of O{sub 2}({sup 1{Sigma}}) formation in the reaction O{sub 2}({sup 1{Delta}}) + O{sub 2}({sup 1{Delta}}) {yields} O{sub 2}({sup 1{Sigma}}) + O{sub 2}({sup 3{Sigma}})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagidullin, M V; Khvatov, N A; Nyagashkin, A Yu

    2011-02-28

    The dependence of the ratio of specific powers of dimole radiation of singlet oxygen in the 634 nm band and in the b - X band of the O{sub 2}({sup 1{Sigma}}) molecule in the O{sub 2}(X) - O{sub 2}({sup 1{Delta}}) - O{sub 2}({sup 1{Sigma}}) - H{sub 2}O - CO{sub 2} mixture on the CO{sub 2} concentration is measured. As a result, the rate constant of the reaction O{sub 2}({sup 1{Delta}}) + O{sub 2}({sup 1{Delta}}) {yields} O{sub 2}({sup 1{Sigma}}) + O{sub 2}({sup 3{Sigma}}) at the temperature {approx}330 K is found to equal (4.5 {+-} 1.1) 10{sup -17} cm{sup 3} s{sup -1}.more » (active media)« less

  8. The Predictive Ability of PV-ACO2 Gap and PV-ACO2/CA-VO2 Ratio in Shock: A Prospective, Cohort Study.

    PubMed

    Shaban, Mohammad; Salahuddin, Nawal; Kolko, Mohammad Raed; Sharshir, Moh'd; AbuRageila, Mohannad; AlHussain, Ahmed

    2017-04-01

    Compromised tissue oxygenation leads to anaerobiosis, leading to organ failure and death. This study attempts to demonstrate the predictive abilities of the Pv-aCO2 gap and Pv-aCO2/Ca-vO2 ratio in shock patients undergoing resuscitation. In a prospective study, consecutive patients with shock were included. Timed measurements of Pv-aCO2 gap, ScvO2, lactate, and Pv-aCO2/ Ca-vO2 ratio were obtained. The association between the mortality and each variable at all intervals was analyzed. Receiver operating characteristics curves were built. Fifty patients were enrolled. Intensive care unit survivors had a higher Pv-aCO2/ Ca-vO2 ratio at time 0 (0.21, interquartile range [IQR] 0.14 vs. 0.27, IQR 0.38, P = 0.032) and at 3 h (0.27, IQR 0.08 vs. 0.21, IQR 0.12, P = 0.035).Twenty-eight day survival was higher in patients with a low Pv-aCO2 gap at time 0 (7.5, IQR 7 vs. 4.8, IQR 5, P = 0.007).Baseline Pv-aCO2 gap and Pv-aCO2/Ca-vO2 ratio showed good ability to predict 28-day mortality as seen by AUC 0.728 (95% CI 0.578-0.877, P = 0.007) and 0.711 (95% CI 0.563-0.860, P = 0.013). A cut-off point of Pv-aCO2 gap ≥6 mm Hg identified 28-day mortality (75% vs. 45.5%, P = 0.034). The best cutoff values, at baseline, to predict 28-day mortality were 0.25 for the Pv-aCO2/Ca-vO2 ratio (sensitivity 58%, specificity 85%, LR+ 3.86, LR- 0.49) and 6.3 for the Pv-aCO2 gap (sensitivity 58%, specificity 79%, LR+ 2.76, LR- 0.53). This study suggests that Pv-aCO2 gap and Pv-aCO2/Ca-vO2 ratio are discriminating predictors of 28-day mortality and can be used to provide supplementary information during resuscitation in shock.

  9. Quantitative agreement between [(15)O]H2O PET and model free QUASAR MRI-derived cerebral blood flow and arterial blood volume.

    PubMed

    Heijtel, D F R; Petersen, E T; Mutsaerts, H J M M; Bakker, E; Schober, P; Stevens, M F; van Berckel, B N M; Majoie, C B L M; Booij, J; van Osch, M J P; van Bavel, E T; Boellaard, R; Lammertsma, A A; Nederveen, A J

    2016-04-01

    The purpose of this study was to assess whether there was an agreement between quantitative cerebral blood flow (CBF) and arterial cerebral blood volume (CBVA) measurements by [(15)O]H2O positron emission tomography (PET) and model-free QUASAR MRI. Twelve healthy subjects were scanned within a week in separate MRI and PET imaging sessions, after which quantitative and qualitative agreement between both modalities was assessed for gray matter, white matter and whole brain region of interests (ROI). The correlation between CBF measurements obtained with both modalities was moderate to high (r(2): 0.28-0.60, P < 0.05), although QUASAR significantly underestimated CBF by 30% (P < 0.001). CBVA was moderately correlated (r(2): 0.28-0.43, P < 0.05), with QUASAR yielding values that were only 27% of the [(15)O]H2O-derived values (P < 0.001). Group-wise voxel statistics identified minor areas with significant contrast differences between [(15)O]H2O PET and QUASAR MRI, indicating similar qualitative CBVA and CBF information by both modalities. In conclusion, the results of this study demonstrate that QUASAR MRI and [(15)O]H2O PET provide similar CBF and CBVA information, but with systematic quantitative discrepancies. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency.

    PubMed

    Kong, Ming; Li, Yuanzhi; Chen, Xiong; Tian, Tingting; Fang, Pengfei; Zheng, Feng; Zhao, Xiujian

    2011-10-19

    TiO(2) nanocrystals with tunable bulk/surface defects were synthesized and characterized with TEM, XRD, BET, positron annihilation, and photocurrent measurements. The effect of defects on photocatalytic activity was studied. It was found for the first time that decreasing the relative concentration ratio of bulk defects to surface defects in TiO(2) nanocrystals could significantly improve the separation efficiency of photogenerated electrons and holes, thus significantly enhancing the photocatalytic efficiency.

  11. Evaluation of Tp-Te Interval and Tp-Te/QT Ratio in Patients with Coronary Slow Flow Tp-Te/QT Ratio and Coronary Slow Flow.

    PubMed

    Tenekecioglu, Erhan; Karaagac, Kemal; Yontar, Osman Can; Agca, Fahriye Vatansever; Ozluk, Ozlem Arican; Tutuncu, Ahmet; Arslan, Burhan; Yilmaz, Mustafa

    2015-06-01

    Coronary slow flow (CSF) phenomenon is described by angiographically normal coronary arteries with delayed opacification of the distal vasculature. Several studies have suggested that the interval from the peak to the end of the electrocardiographic T wave (Tp-Te) may correspond to the transmural dispersion of the repolarization and that increased Tp-Te interval and Tp-Te/QT ratio are associated with malignant ventricular arrhythmias. The aim of this study was to evaluate the ventricular repolarization by using Tp-Te interval and Tp-Te/QT ratio in patients with CSF. This study included 50 CSF patients (40 male, mean age 48.6±12.5 years) and 40 control individuals (23 male, mean age 47.8±12.5 years). Tp-Te interval and Tp-Te/QT ratio were measured from the 12-lead electrocardiogram. These parameters were compared in groups. Baseline characteristics of the study groups were comparable. In electrocardiographic parameters analysis, QT and corrected QT were similar in CSF patients compared to the controls (357±35.2 vs 362±38.0 milliseconds and 419±25.8 vs 430±44.2 milliseconds, all p value >0.05). Tp-Te interval, Tp-Te/QT and Tp-Te/QTc ratio were significantly higher in CSF patients (85±13.7 vs 74±9.9 milliseconds and 0.24±0.03 vs 0.20±0.02 and 0.20±0.03 vs 0.17±0.02 all p value <0.001). Our study revealed that QTd, Tp-Te interval and Tp-Te/QT ratio are prolonged in patients with CSF.

  12. Kinetic Studies of Iron Deposition in Horse Spleen Ferritin Using H2O2 and O2 as Oxidants

    NASA Technical Reports Server (NTRS)

    Lowery, Thomas J., Jr.; Bunker, Jared; Zhang, Bo; Costen, Robert; Watt, Gerald D.

    2004-01-01

    The reaction of horse spleen ferritin (HoSF) with Fe(2+) at pH 6.5 and 7.5 using O2, H2O2 and 1:1 a mixture of both showed that the iron deposition reaction using H2O2 is approx. 20- to 50-fold faster than the reaction with O2 alone. When H2O2 was added during the iron deposition reaction initiated with O2 as oxidant, Fe(2+) was preferentially oxidized by H2O2, consistent with the above kinetic measurements. Both the O2 and H202 reactions were well defined from 15 to 40 C from which activation parameters were determined. The iron deposition reaction was also studied using O2 as oxidant in the presence and absence of catalase using both stopped-flow and pumped-flow measurements. The presence of catalase decreased the rate of iron deposition by approx. 1.5-fold, and gave slightly smaller absorbance changes than in its absence. From the rate constants for the O2 (0.044 per second) and H2O2 (0.67 per second) iron-deposition reactions at pH 7.5, simulations of steady-state H2O2 concentrations were computed to be 0.45 micromolar. This low value and reported Fe2(+)/O2 values of 2.0-2.5 are consistent with H2O2 rapidly reacting by an alternate but unidentified pathway involving a system component such as the protein shell or the mineral core as previously postulated.

  13. A pressure tuned stop-flow atomic layer deposition process for MoS2 on high porous nanostructure and fabrication of TiO2/MoS2 core/shell inverse opal structure

    NASA Astrophysics Data System (ADS)

    Li, Xianglin; Puttaswamy, Manjunath; Wang, Zhiwei; Kei Tan, Chiew; Grimsdale, Andrew C.; Kherani, Nazir P.; Tok, Alfred Iing Yoong

    2017-11-01

    MoS2 thin films are obtained by atomic layer deposition (ALD) in the temperature range of 120-150 °C using Mo(CO)6 and dimethyl disulfide (DMDS) as precursors. A pressure tuned stop-flow ALD process facilitates the precursor adsorption and enables the deposition of MoS2 on high porous three dimensional (3D) nanostructures. As a demonstration, a TiO2/MoS2 core/shell inverse opal (TiO2/MoS2-IO) structure has been fabricated through ALD of TiO2 and MoS2 on a self-assembled multilayer polystyrene (PS) structure template. Due to the self-limiting surface reaction mechanism of ALD and the utilization of pressure tuned stop-flow ALD processes, the as fabricated TiO2/MoS2-IO structure has a high uniformity, reflected by FESEM and FIB-SEM characterization. A crystallized TiO2/MoS2-IO structure can be obtained through a post annealing process. As a 3D photonic crystal, the TiO2/MoS2-IO exhibits obvious stopband reflecting peaks, which can be adjusted through changing the opal diameters as well as the thickness of MoS2 layer.

  14. Comparison of secondary ion mass spectrometry and micromilling/continuous flow isotope ratio mass spectrometry techniques used to acquire intra-otolith delta18O values of wild Atlantic salmon (Salmo salar).

    PubMed

    Hanson, N N; Wurster, C M; Todd, C D

    2010-09-15

    The chemical signals in the sequential layers of fish otoliths have the potential to provide fisheries biologists with temporal and spatial details of migration which are difficult to obtain without expensive tracking methods. Signal resolution depends, however, on the extraction technique used. We compared the use of mechanical micromilling and continuous flow isotope ratio mass spectrometry (CF-IRMS) methods with secondary ion mass spectrometry (SIMS) to obtain delta(18)O profiles from otoliths of wild Atlantic salmon (Salmo salar) and used these to corroborate the time of freshwater emigration of the juvenile with macroscopic patterns within the otolith. Both techniques showed the transition occurring at the same visible feature on the otolith, allowing future analyses to easily identify the juvenile (freshwater) versus adult (marine) life-stages. However, SIMS showed a rapid and abrupt transition whereas micromilling provided a less distinct signal. The number of samples that could be obtained per unit area sampled using SIMS was 2 to 3 times greater than that when using micromilling/CF-IRMS although the delta(18)O values and analytical precisions (approximately 0.2 per thousand) of the two methods were comparable. In addition, SIMS delta(18)O results were used to compare otolith aragonite values with predicted values calculated using various isotope fractionation equations. Copyright 2010 John Wiley & Sons, Ltd.

  15. Isotopic Ratios of H, C, N, O, and S in Comets C2012 F6 (lemmon) and C2014 Q2 (lovejoy) * ** ***

    NASA Technical Reports Server (NTRS)

    Biver, N.; Moreno, R.; Sandqvist, Aa.; Bockelee-Morvan, D.; Colom, P.; Crovisier, J.; Lis, D. C.; Bossier, J.; Debout, V.; Paubert, G.; hide

    2016-01-01

    The apparition of bright comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) in March-April 2013 and January 2015, combined with the improved observational capabilities of submillimeter facilities, offered an opportunity to carry out sensitive compositional and isotopic studies of the volatiles in their coma. We observed comet Lovejoy with the IRAM 30 meter telescope between 13 and 26 January 2015, and with the Odin submillimeter space observatory on 29 January - 3 February 2015. We detected 22 molecules and several isotopologues. The H2 O-16 and H2 O-18 production rates measured with Odin follow a periodic pattern with a period of 0.94 days and an amplitude of approximately 25 percent. The inferred isotope ratios in comet Lovejoy are O-16/O-18 = 499 +/- 24 and D/H equals 1.4 +/- 0.4 x 10(exp -4) in water, S-32/S-34 = equals 24.7 +/- 3.5 in CS, all compatible with terrestrial values. The ratio C-12/C-13 equals 109 +/- 14 in HCN is marginally higher than terrestrial and 14 N/ 15/N equals 145 +/- 12 in HCN is half the Earth ratio. Several upper limits for D/H or C-12/ C-13 in other molecules are reported. From our observation of HDO in comet C/2014 Q2 (Lovejoy), we report the first D/H ratio in an Oort Cloud comet that is not larger than the terrestrial value. On the other hand, the observation of the same HDO line in the other Oort-cloud comet, C/2012 F6 (Lemmon), suggests a D/H value four times higher. Given the previous measurements of D/H in cometary water, this illustrates that a diversity in the D/H ratio and in the chemical composition, is present even within the same dynamical group of comets, suggesting that current dynamical groups contain comets formed at very different places or times in the early solar system.

  16. A laser flash photolysis kinetics study of the reaction OH + H2O2 yields HO2 + H2O

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Semmes, D. H.; Ravishankara, A. R.

    1981-01-01

    Absolute rate constants for the reaction are reported as a function of temperature over the range 273-410 K. OH radicals are produced by 266 nm laser photolysis of H2O2 and detected by resonance fluorescence. H2O2 concentrations are determined in situ in the slow flow system by UV photometry. The results confirm the findings of two recent discharge flow-resonance fluorescence studies that the title reaction is considerably faster, particularly at temperatures below 300 K, than all earlier studies had indicated. A table giving kinetic data from the reaction is included.

  17. Luminescence and energy transfer of Tb3+-doped BaO-Gd2O3-Al2O3-B2O3-SiO2 glasses.

    PubMed

    Zuo, Chenggang; Huang, Jinze; Liu, Shaoyou; Xiao, Anguo; Shen, Youming; Zhang, Xiangyang; Zhou, Zhihua; Zhu, Ligang

    2017-12-05

    Transparent Tb 3+ -doped BaO-Gd 2 O 3 -Al 2 O 3 -B 2 O 3 -SiO 2 glasses with the greater than 4g/cm 3 were prepared by high temperature melting method and its luminescent properties have been investigated by measured UV-vis transmission, excitation, emission and luminescence decay spectra. The transmission spectrum shows there are three weak absorption bands locate at about 312, 378 and 484nm in the glasses and it has good transmittance in the visible spectrum region. Intense green emission can be observed under UV excitation. The effective energy transfer from Gd 3+ ion to Tb 3+ ion could occur and sensitize the luminescence of Tb 3+ ion. The green emission intensity of Tb 3+ ion could change with the increasing SiO 2 /B 2 O 3 ratio in the borosilicate glass matrix. With the increasing concentration of Tb 3+ ion, 5 D 4 → 7 F J transitions could be enhanced through the cross relaxation between the two nearby Tb 3+ ions. Luminescence decay time of 2.12ms from 546nm emission is obtained. The results indicate that Tb 3+ -doped BaO-Gd 2 O 3 -Al 2 O 3 -B 2 O 3 -SiO 2 glasses would be potential scintillating material for applications in X-ray imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. N2O molecular tagging velocimetry

    NASA Astrophysics Data System (ADS)

    ElBaz, A. M.; Pitz, R. W.

    2012-03-01

    A new seeded velocity measurement technique, N2O molecular tagging velocimetry (MTV), is developed to measure velocity in wind tunnels by photochemically creating an NO tag line. Nitrous oxide "laughing gas" is seeded into the air flow. A 193 nm ArF excimer laser dissociates the N2O to O(1D) that subsequently reacts with N2O to form NO. O2 fluorescence induced by the ArF laser "writes" the original position of the NO line. After a time delay, the shifted NO line is "read" by a 226-nm laser sheet and the velocity is determined by time-of-flight. At standard atmospheric conditions with 4% N2O in air, ˜1000 ppm of NO is photochemically created in an air jet based on experiment and simulation. Chemical kinetic simulations predict 800-1200 ppm of NO for 190-750 K at 1 atm and 850-1000 ppm of NO for 0.25-1 atm at 190 K. Decreasing the gas pressure (or increasing the temperature) increases the NO ppm level. The presence of humid air has no significant effect on NO formation. The very short NO formation time (<10 ns) makes the N2O MTV method amenable to low- and high-speed air flow measurements. The N2O MTV technique is demonstrated in air jet to measure its velocity profile. The N2O MTV method should work in other gas flows as well (e.g., helium) since the NO tag line is created by chemical reaction of N2O with O(1D) from N2O photodissociation and thus does not depend on the bulk gas composition.

  19. Model Implementation of Boron Removal Using CaCl2-CaO-SiO2 Slag System for Solar-Grade Silicon

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Wang, Ye; Zheng, Wenjia; Li, Qincan; Yuan, Xizhi; Morita, Kazuki

    2017-12-01

    A new CaCl2-CaO-SiO2 slag system was recently proposed to remove boron from metallurgy-grade silicon by oxidized chlorination and evaporation. To further investigate the boron transformation process at a high temperature, a model implementation to present the transfer of boron from molten silicon to the gas phase via slag is introduced. Heat transfer, fluid flow, the chemical reactions at the interface and surface, the mass transfer and diffusion of boron in the molten silicon and slag, and the evaporation of BOCl and CaCl2 were coupled in this model. After the confirmation of the thermal field, other critical parameters, including the boron partition ratios ( L B) for this slag from 1723 K to 1823 K (1450 °C to 1550 °C), the thicknesses of the velocity boundary layer at the surface and interface, the mass transfer coefficients of the boundary layer at the surface and interface, and partial pressure of BOCl in the gas phase were analyzed to determine the rate-limiting step. To verify this model implementation, boron removal experiments were carried out at various temperatures and with various initial mass ratios of slag to silicon ( μ). The evaporation rate of CaCl2 was also measured by thermogravimetry analysis (TGA).

  20. Ignition and Combustion of Pulverized Coal and Biomass under Different Oxy-fuel O2/N2 and O2/CO2 Environments

    NASA Astrophysics Data System (ADS)

    Khatami Firoozabadi, Seyed Reza

    This work studied the ignition and combustion of burning pulverized coals and biomasses particles under either conventional combustion in air or oxy-fuel combustion conditions. Oxy-fuel combustion is a 'clean-coal' process that takes place in O2/CO2 environments, which are achieved by removing nitrogen from the intake gases and recirculating large amounts of flue gases to the boiler. Removal of nitrogen from the combustion gases generates a high CO2-content, sequestration-ready gas at the boiler effluent. Flue gas recirculation moderates the high temperatures caused by the elevated oxygen partial pressure in the boiler. In this study, combustion of the fuels took place in a laboratory laminar-flow drop-tube furnace (DTF), electrically-heated to 1400 K, in environments containing various mole fractions of oxygen in either nitrogen or carbon-dioxide background gases. The experiments were conducted at two different gas conditions inside the furnace: (a) quiescent gas condition (i.e., no flow or inactive flow) and, (b) an active gas flow condition in both the injector and furnace. Eight coals from different ranks (anthracite, semi-snthracite, three bituminous, subbituminous and two lignites) and four biomasses from different sources were utilized in this work to study the ignition and combustion characteristics of solid fuels in O2/N2 or O2/CO2 environments. The main objective is to study the effect of replacing background N2 with CO2, increasing O2 mole fraction and fuel type and rank on a number of qualitative and quantitative parameters such as ignition/combustion mode, ignition temperature, ignition delay time, combustion temperatures, burnout times and envelope flame soot volume fractions. Regarding ignition, in the quiescent gas condition, bituminous and sub-bituminous coal particles experienced homogeneous ignition in both O2/N 2 and O2/CO2 atmospheres, while in the active gas flow condition, heterogeneous ignition was evident in O2/CO 2. Anthracite, semi

  1. Dissociation cross section for high energy O2-O2 collisions

    NASA Astrophysics Data System (ADS)

    Mankodi, T. K.; Bhandarkar, U. V.; Puranik, B. P.

    2018-04-01

    Collision-induced dissociation cross section database for high energy O2-O2 collisions (up to 30 eV) is generated and published using the quasiclassical trajectory method on the singlet, triplet, and quintet spin ground state O4 potential energy surfaces. At equilibrium conditions, these cross sections predict reaction rate coefficients that match those obtained experimentally. The main advantage of the cross section database based on ab initio computations is in the study of complex flows with high degree of non-equilibrium. Direct simulation Monte Carlo simulations using the reactive cross section databases are carried out for high enthalpy hypersonic oxygen flow over a cylinder at rarefied ambient conditions. A comparative study with the phenomenological total collision energy chemical model is also undertaken to point out the difference and advantage of the reported ab initio reaction model.

  2. Molecular abundances and C/O ratios in chemically evolving planet-forming disk midplanes

    NASA Astrophysics Data System (ADS)

    Eistrup, Christian; Walsh, Catherine; van Dishoeck, Ewine F.

    2018-05-01

    Context. Exoplanet atmospheres are thought be built up from accretion of gas as well as pebbles and planetesimals in the midplanes of planet-forming disks. The chemical composition of this material is usually assumed to be unchanged during the disk lifetime. However, chemistry can alter the relative abundances of molecules in this planet-building material. Aims: We aim to assess the impact of disk chemistry during the era of planet formation. This is done by investigating the chemical changes to volatile gases and ices in a protoplanetary disk midplane out to 30 AU for up to 7 Myr, considering a variety of different conditions, including a physical midplane structure that is evolving in time, and also considering two disks with different masses. Methods: An extensive kinetic chemistry gas-grain reaction network was utilised to evolve the abundances of chemical species over time. Two disk midplane ionisation levels (low and high) were explored, as well as two different makeups of the initial abundances ("inheritance" or "reset"). Results: Given a high level of ionisation, chemical evolution in protoplanetary disk midplanes becomes significant after a few times 105 yr, and is still ongoing by 7 Myr between the H2O and the O2 icelines. Inside the H2O iceline, and in the outer, colder regions of the disk midplane outside the O2 iceline, the relative abundances of the species reach (close to) steady state by 7 Myr. Importantly, the changes in the abundances of the major elemental carbon and oxygen-bearing molecules imply that the traditional "stepfunction" for the C/O ratios in gas and ice in the disk midplane (as defined by sharp changes at icelines of H2O, CO2 and CO) evolves over time, and cannot be assumed fixed, with the C/O ratio in the gas even becoming smaller than the C/O ratio in the ice. In addition, at lower temperatures (<29 K), gaseous CO colliding with the grains gets converted into CO2 and other more complex ices, lowering the CO gas abundance between

  3. Determination of O2(a1Delta g) and O2(b1Sigma + g) yields in the reaction O + ClO yields Cl + O2 - Implications for photochemistry in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun; Yung, Yuk L.

    1987-01-01

    A discharge flow apparatus with a chemiluminescence detector was used to investigate the reaction O + ClO yields Cl + O2(asterisk), where O2(asterisk) = O2(a1Delta g) or O2(b1Sigma + g). It is found that the observed O2(a1Delta g) airglow of Venus cannot be explained in the framework of standard photochemistry using the experimental results obtained here and those reported in the recent literature. The possibility of an alternative source of O atoms derived from SO2 photolysis in the Venus mesosphere is suggested.

  4. C/O ratios of stars with transiting hot Jupiter exoplanets ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teske, Johanna K.; Cunha, Katia; Smith, Verne V.

    The relative abundances of carbon and oxygen have long been recognized as fundamental diagnostics of stellar chemical evolution. Now, the growing number of exoplanet observations enable estimation of these elements in exoplanetary atmospheres. In hot Jupiters, the C/O ratio affects the partitioning of carbon in the major observable molecules, making these elements diagnostic of temperature structure and composition. Here we present measurements of carbon and oxygen abundances in 16 stars that host transiting hot Jupiter exoplanets, and we compare our C/O ratios to those measured in larger samples of host stars, as well as those estimated for the corresponding exoplanetmore » atmospheres. With standard stellar abundance analysis we derive stellar parameters as well as [C/H] and [O/H] from multiple abundance indicators, including synthesis fitting of the [O I] λ6300 line and non-LTE corrections for the O I triplet. Our results, in agreement with recent suggestions, indicate that previously measured exoplanet host star C/O ratios may have been overestimated. The mean transiting exoplanet host star C/O ratio from this sample is 0.54 (C/O{sub ☉} = 0.54), versus previously measured C/O{sub host} {sub star} means of ∼0.65-0.75. We also observe the increase in C/O with [Fe/H] expected for all stars based on Galactic chemical evolution; a linear fit to our results falls slightly below that of other exoplanet host star studies but has a similar slope. Though the C/O ratios of even the most-observed exoplanets are still uncertain, the more precise abundance analysis possible right now for their host stars can help constrain these planets' formation environments and current compositions.« less

  5. Experimental Investigation of Eccentricity Ratio, Friction, and Oil Flow of Short Journal Bearings

    NASA Technical Reports Server (NTRS)

    Dubois, G B; Ocvirk, F W

    1952-01-01

    An experimental investigation was conducted to obtain performance data on bearings of length-diameter ratios of 1, 1/2, and 1/4 for comparison with theoretical curves. A 1.375-inch-diameter bearing was tested at speeds up to 6000 rpm and with unit loads from 0 to 900 pounds per square inch. Experimental data for eccentricity ratio and friction followed single lines when plotted against a theoretically derived capacity number, which is equal to Sommerfeld number times the square of the length-diameter ratio. The form of the capacity number indicates that under certain conditions the eccentricity ratio is theoretically independent of bearing diameter. A method of plotting oil flow data as a single line is shown. Methods are also discussed for approximating a maximum bearing temperature and evaluating the effect of deflection or misalignment on the eccentricity ratio at the ends of the bearings.

  6. Influence of argon and oxygen pressure ratio on bipolar-resistive switching characteristics of CeO2- x thin films deposited at room temperature

    NASA Astrophysics Data System (ADS)

    Ismail, Muhammad; Ullah, Rehmat; Hussain, Riaz; Talib, Ijaz; Rana, Anwar Manzoor; Hussain, Muhammad; Mahmood, Khalid; Hussain, Fayyaz; Ahmed, Ejaz; Bao, Dinghua

    2018-02-01

    Cerium oxide (CeO2-x) film was deposited on Pt/Ti/SiO2/Si substrate by rf magnetron sputtering at room temperature. Resistive switching characteristics of these ceria films have been improved by increasing oxygen content during deposition process. Endurance and statistical analyses indicate that the operating stability of CeO2-x-based memory is highly dependent on the oxygen content. Results indicate that CeO2-x film-based RRAM devices exhibit optimum performance when fabricated at an argon/oxygen ratio of 6:24. An increase in the oxygen content introduced during CeO2-x film deposition not only stabilizes the conventional bipolar RS but also improves excellent switching uniformity such as large ON/OFF ratio (102), excellent switching device-to-device uniformity and good sweep endurance over 500 repeated RS cycles. Conduction in the low-resistance state (LRS) as well as in the low bias field region in the high-resistance state (HRS) is found to be Ohmic and thus supports the conductive filament (CF) theory. In the high voltage region of HRS, space charge limited conduction (SCLC) and Schottky emission are found to be the dominant conduction mechanisms. A feasible filamentary RS mechanism based on the movement of oxygen ions/vacancies under the bias voltage has been discussed.

  7. Degradation of 2,4-dichlorophenol with a novel TiO2/Ti-Fe-graphite felt photoelectrocatalytic oxidation process.

    PubMed

    Zhao, Bao-xiu; Li, Xiang-zhong; Wang, Peng

    2007-01-01

    Degradation of 2,4-dichlorophenol (2,4-DCP) was studied in a novel three-electrode photoelectrocatalytic (PEC) integrative oxidation process, and the factors influencing the degradation rate, such as applied current, flow speed of O2, pH, adscititious voltage and initial 2,4-DCP concentration were investigated and optimized. H2O2 was produced nearby cathode and Fe2+ continuously generated from Fe anode in solution when current and O2 were applied, so, main reactions, H2O2-assisted TiO2 PEC oxidation and E-Fenton reaction, occurred during degradation of 2,4-DCP in this integrative system. The degradation ratio of 2,4-DCP was 93% in this integrative oxidation process, while it was only 31% in E-Fenton process and 46% in H2O2-assisted TiO2 PEC process. So, it revealed that the degradation of 2,4-DCP was improved greatly by photoelectrical cooperation effect. By the investigation of pH, it showed that this integrative process could work well in a wide pH range from pH 3 to pH 9.

  8. Oxidation behaviour of ferritic stainless steel grade Crofer 22 APU at 700 °C in flowing Ar-75%CO2-12%H2O

    NASA Astrophysics Data System (ADS)

    Shariff, Nurul Atikah; Othman, Norinsan Kamil; Jalar, Azman

    2013-11-01

    The oxidation of Ferritic Stainless Steel (FSS) grade Crofer 22 APU has been investigated. FSS alloys were exposed to isothermal conditions in a horizontal tube furnace at a 700 °C in flowing Ar-75%CO2-12%H2O at a pressure of approximately 1 atm. The results showed that the growth of non protective Fe2O3 and spinel was observed after 50 h exposure in the presence of 12% H2O. The weight was increased significantly with time of exposure. The formation of different oxides is presented on the interface of the specimen such as MnCr2O4, Fe3O4 and Fe2O3 were revealed by X-ray diffraction and supported by EDAX analysis. FSS did not form a protective Cr2O3 layer due to water vapour accelerates the kinetics oxidation. Data of microstructure observation is presented and discussed in this paper in term of water vapour effects.

  9. Fractionation of Oxygen Isotopes by Thermal Ionization Mass Spectrometry Inferred from Simultaneous Measurement of (17)O/(16)O and (18)O/(16)O Ratios and Implications for the (182)Hf-(182)W Systematics.

    PubMed

    Trinquier, Anne

    2016-06-07

    Accurate (182)Hf-(182)W chronology of early planetary differentiation relies on highly precise and accurate tungsten isotope measurements. WO3(-) analysis by negative thermal ionization mass spectrometry requires W(17)O(16)O2(-), W(17)O2(16)O(-), W(18)O(16)O2(-), W(17)O3(-), W(17)O(18)O(16)O(-), and W(18)O2(16)O(-) isotopologue interference corrections on W(16)O3(-) species ( Harper et al. Geochim. Cosmochim. Acta 1996 , 60 , 1131 ; Quitté et al. Geostandard. Newslett. 2002 , 26 , 149 ; Trinquier et al. Anal. Chem. 2016 , 88 , 1542 ; Touboul et al. Nature 2015 , 520 , 530 ; Touboul et al. Int. J. Mass Spectrom. 2012 , 309 , 109 ). In addition, low ion beam intensity counting statistics combined with Faraday cup detection noise limit the precision on the determination of (18)O/(16)O and (17)O/(16)O relative abundances. Mass dependent variability of (18)O/(16)O over the course of an analysis and between different analyses calls for oxide interference correction on a per integration basis, based on the in-run monitoring of the (18)O/(16)O ratio ( Harper et al. Geochim. Cosmochim. Acta 1996 , 60 , 1131 ; Quitté et al. Geostandard. Newslett. 2002 , 26 , 149 ; Trinquier et al. Anal. Chem. 2016 , 88 , 1542 ). Yet, the (17)O/(16)O variation is normally not being monitored and, instead, inferred from the measured (18)O/(16)O variation, assuming a δ(17)O-δ(18)O Terrestrial Fractionation Line ( Trinquier et al. Anal. Chem. 2016 , 88 , 1542 ). The purpose of the present study is to verify the validity of this assumption. Using high resistivity amplifiers, (238)U(17)O2 and (238)U(18)O2 ion beams down to 1.6 fA have been monitored simultaneously with (235,238)U(16)O2 species in a uranium certified reference material. This leads to a characterization of O isotope fractionation by thermal ionization mass spectrometry in variable loading and running conditions (additive-to-sample ratio, PO2 pressure, presence of ionized metal and oxide species). Proper determination of O

  10. Trajectory control of PbSe–γ-Fe2O3 nanoplatforms under viscous flow and an external magnetic field

    PubMed Central

    Etgar, Lioz; Nakhmani, Arie; Tannenbaum, Allen; Lifshitz, Efrat; Tannenbaum, Rina

    2010-01-01

    The flow behavior of nanostructure clusters, consisting of chemically bonded PbSe quantum dots and magnetic γ -Fe2O3 nanoparticles, has been investigated. The clusters are regarded as model nanoplatforms with multiple functionalities, where the γ -Fe2O3 magnets serve as transport vehicles, manipulated by an external magnetic field gradient, and the quantum dots act as fluorescence tags within an optical window in the near-infrared regime. The clusters’ flow was characterized by visualizing their trajectories within a viscous fluid (mimicking a blood stream), using an optical imaging method, while the trajectory pictures were analyzed by a specially developed processing package. The trajectories were examined under various flow rates, viscosities and applied magnetic field strengths. The results revealed a control of the trajectories even at low magnetic fields (<1 T), validating the use of similar nanoplatforms as active targeting constituents in personalized medicine. PMID:20368678

  11. Enhanced ozone production in a pulsed dielectric barrier discharge plasma jet with addition of argon to a He-O2 flow gas

    NASA Astrophysics Data System (ADS)

    Sands, Brian; Ganguly, Biswa; Scofield, James

    2013-09-01

    Ozone production in a plasma jet DBD driven with a 20-ns risetime unipolar pulsed voltage can be significantly enhanced using helium as the primary flow gas with an O2 coflow. The overvolted discharge can be sustained with up to a 5% O2 coflow at <20 kHz pulse repetition frequency at 13 kV applied voltage. Ozone production scales with the pulse repetition frequency up to a ``turnover frequency'' that depends on the O2 concentration, total gas flow rate, and applied voltage. For example, peak ozone densities >1016 cm-3 were measured with 3% O2 admixture and <3 W input power at a 12 kHz turnover frequency. A further increase in the repetition frequency results in increased discharge current and 777 nm O(5 P) emission, but decreased ozone production and is followed by a transition to a filamentary discharge mode. The addition of argon at concentrations >=5% reduces the channel conductivity and shifts the turnover frequency to higher frequencies. This results in increased ozone production for a given applied voltage and gas flow rate. Time-resolved Ar(1s5) and He(23S1) metastable densities were acquired along with discharge current and ozone density measurements to gain insight into the mechanisms of optimum ozone production.

  12. O2 and Muscle Deoxygenation Kinetics During Skating: Comparison Between Slide Board and Treadmill Skating.

    PubMed

    Piucco, Tatiane; Soares, Rogério; Diefenthaeler, Fernando; Millet, Guillaume; Murias, Juan

    2017-11-15

    this study aimed to compare the oxygen uptake (V̇O 2 ) kinetics during skating on a treadmill and skating on a slide board and discuss potential mechanisms that might control the V̇O 2 kinetics responses during skating. breath-by-breath pulmonary V̇O 2 and near-infrared spectroscopy-derived muscle deoxygenation ([HHbMb]) were monitored continuously in 12 well-trained young long track speed skaters. On-transient V̇O 2 and [HHbMb] responses to skating on a treadmill and skating on a slide board at 80% of the estimated gas exchange threshold were fitted as mono-exponential function. The signals were time aligned, and the individual [HHbMb]-to-V̇O 2 ratio was calculated as the average value from 20-120 s after exercise starts. the time constants for the adjustment of phase II V̇O 2 (τ V̇O 2 ) and [HHbMb] (τ[HHbMb]) were low and similar between slide board vs. treadmill skating (18.1 ± 3.4 vs. 18.9 ± 3.6 for τ V̇O 2 and 12.6 ± 4.0 vs. 12.4 ± 4.0 s for τ[HHbMb]). The [HHbMb]/V̇O 2 ratio was not different from 1.0 (p > 0.05) in both conditions. the fast V̇O 2 kinetics during skating suggest that chronical adaptation to skating might overcome any possible restriction in leg blood flow during low intensity exercise. The [HHbMb]/V̇O 2 ratio values also suggest a good matching of O 2 delivery to O 2 utilization in trained speed skaters. The similar τ V̇O 2 and τ [HHbMb] values between slide board and treadmill further reinforce the validity of using a slide board for skating testing and training purposes.

  13. Geochemical stratigraphy of lava flows sampled by the Hawaii Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Rhodes, J. M.

    1996-05-01

    Geochemical discriminants are used to place the boundary between Mauna Loa flows and underlying Mauna Kea flows at a depth of about 280 m. At a given MgO content the Mauna Kea flows are lower in SiO2 and total iron and higher in total alkali, TiO2, and incompatible elements than the Mauna Loa lavas. The uppermost Mauna Kea lavas (280 to 340 m) contain alkali basalts interlayered with tholeiites and correlate with the postshield Hamakua Volcanics. In addition to total alkalis, the alkali basalts have higher TiO2, P2O5, Sr, Ba, Ce, La, Zr, Nb, Y, and V relative to the tholeiites and lower Zr/Nb and Sr/Nb ratios. Some of the alkali basalts are extensively differentiated. Below 340 m all the flows are tholeiitic, with compositions broadly similar to the few "fresh" subaerial shield-building Mauna Kea tholeiites studied to date. High-MgO lavas are unusually abundant, although there is a wide range (7-28%) in MgO content reflecting olivine control. FeO/MgO relationships are used to infer parental picritic magmas with about 15 wt % MgO. Lavas with more MgO than this have accumulated olivine. The Mauna Loa lavas have compositional trends that are controlled by olivine crystallization and accumulation. They compare closely with trends for historical (1843-1984) flows, tending toward the depleted end of the spectrum. They are, though, much more MgO-rich (9-30%) than is typical for most historical and young (<30 ka) prehistoric lavas. The unusual abundance of high-MgO and picritic lavas is attributed to the likelihood that only large-volume, hot, mobile flows will reach Hilo Bay from the northeast rift zone. FeO/MgO relationships are used to infer parental picritic magmas with about 17 wt % MgO. Again, lavas with more MgO than this have accumulated olivine. Systematic changes in incompatible element ratios are used to argue that the magma supply rate has diminished over time. On the other hand, the relatively constant Zr/Nb and Sr/Nb ratios that compare closely with

  14. Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis

    PubMed Central

    Chin, Lisa M. K.; Heigenhauser, George J. F.; Paterson, Donald H.

    2010-01-01

    The effect of hyperventilation-induced hypocapnic alkalosis (Hypo) on the adjustment of pulmonary O2 uptake (V̇o2p) and leg femoral conduit artery (“bulk”) blood flow (LBF) during moderate-intensity exercise (Mod) was examined in eight young male adults. Subjects completed four to six repetitions of alternate-leg knee-extension exercise during normal breathing [Con; end-tidal partial pressure of CO2 (PetCO2) ∼40 mmHg] and sustained hyperventilation (Hypo; PetCO2 ∼20 mmHg). Increases in work rate were made instantaneously from baseline (3 W) to Mod (80% estimated lactate threshold). V̇o2p was measured breath by breath by mass spectrometry and volume turbine, and LBF (calculated from mean femoral artery blood velocity and femoral artery diameter) was measured simultaneously by Doppler ultrasound. Concentration changes of deoxy (Δ[HHb])-, oxy (Δ[O2Hb])-, and total hemoglobin-myoglobin (Δ[HbTot]) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). The kinetics of V̇o2p, LBF, and Δ[HHb] were modeled using a monoexponential equation by nonlinear regression. The time constants for the phase 2o2p (Hypo, 49 ± 26 s; Con, 28 ± 8 s) and LBF (Hypo, 46 ± 16 s; Con, 23 ± 6 s) were greater (P < 0.05) in Hypo compared with Con. However, the mean response time for the overall Δ[HHb] response was not different between conditions (Hypo, 23 ± 5 s; Con, 24 ± 3 s), whereas the Δ[HHb] amplitude was greater (P < 0.05) in Hypo (8.05 ± 7.47 a.u.) compared with Con (6.69 ± 6.31 a.u.). Combined, these results suggest that hyperventilation-induced hypocapnic alkalosis is associated with slower convective (i.e., slowed femoral artery and microvascular blood flow) and diffusive (i.e., greater fractional O2 extraction for a given ΔV̇o2p) O2 delivery, which may contribute to the hyperventilation-induced slowing of V̇o2p (and muscle O2 utilization) kinetics. PMID:20339012

  15. Quantification of myocardial blood flow with 11C-hydroxyephedrine dynamic PET: comparison with 15O-H2O PET.

    PubMed

    Hiroshima, Yuji; Manabe, Osamu; Naya, Masanao; Tomiyama, Yuuki; Magota, Keiichi; Obara, Masahiko; Aikawa, Tadao; Oyama-Manabe, Noriko; Yoshinaga, Keiichiro; Hirata, Kenji; Kroenke, Markus; Tamaki, Nagara; Katoh, Chietsugu

    2017-12-21

    11 C-hydroxyephedrine (HED) PET has been used to evaluate the myocardial sympathetic nervous system (SNS). Here we sought to establish a simultaneous approach for quantifying both myocardial blood flow (MBF) and the SNS from a single HED PET scan. Ten controls and 13 patients with suspected cardiac disease were enrolled. The inflow rate of 11 C-HED (K1) was obtained using a one-tissue-compartment model. We compared this rate with the MBF derived from 15 O-H 2 O PET. In the controls, the relationship between K 1 from 11 C-HED PET and the MBF from 15 O-H 2 O PET was linked by the Renkin-Crone model. The relationship between K 1 from 11 C-HED PET and the MBF from 15 O-H 2 O PET from the controls' data was approximated as follows: K 1   =  (1 - 0.891 * exp(- 0.146/MBF)) * MBF. In the validation set, the correlation coefficient demonstrated a significantly high relationship for both the whole left ventricle (r = 0.95, P < 0.001) and three coronary territories (left anterior descending artery: r = 0.96, left circumflex artery: r = 0.81, right coronary artery: r =  0.86; P < 0.001, respectively). 11 C-HED can simultaneously estimate MBF and sympathetic nervous function without requiring an additional MBF scan for assessing mismatch areas between MBF and SNS.

  16. Photoreduction of CO2 on TiO2/SrTiO3 Heterojunction Network Film

    NASA Astrophysics Data System (ADS)

    Bi, Yongsheng; Zong, Lanlan; Li, Chen; Li, Qiuye; Yang, Jianjun

    2015-08-01

    Nanotube titanic acid (NTA) network film has a porous structure and large BET surface area, which lead them to possessing high utilization of the incident light and strong adsorption ability. We used NTA as the precursor to fabricate a TiO2/ SrTiO3 heterojunction film by the hydrothermal method. In the process of the reaction, part of NTA reacted with SrCl2 to form SrTiO3 nanocubes, and the remainder dehydrated to transform to the rutile TiO2. The ratio of TiO2 and SrTiO3 varied with the hydrothermal reaction time. SEM and TEM images indicated that SrTiO3 nanocubes dispersed uniformly on TiO2 film, and the particle size and crystallinity of SrTiO3 nanocubes increased with the reaction time prolonging. The TiO2/SrTiO3 heterojunction obtained by 1 h showed the best activity for CO2 photoreduction, where the mole ratio of TiO2 and SrTiO3 was 4:1. And the photo-conversion efficiency of CO2 to CH4 improved remarkably after the foreign electron traps of Pt and Pd nanoparticles were loaded. The highest photocatalytic production rate of CH4 reached 20.83 ppm/h cm2. In addition, the selectivity of photoreduction product of CO2 was also increased apparently when Pd acted as the cocatalyst on TiO2/SrTiO3 heterojunction film.

  17. Relation between D/H ratios and 18O /16O ratios in cellulose from linen and maize - Implications for paleoclimatology and for sindonology

    NASA Astrophysics Data System (ADS)

    DeNiro, Michael J.; Sternberg, Leonel D.; Marino, Bruno D.; Druzik, James R.

    1988-09-01

    The 18O /16O ratios of cellulose and the D/H ratios of cellulose nitrate were determined for linen, a textile produced from the fibers of the flax plant Linum usitatissimum, and for maize ( Zea mays) from a variety of geographic locations in Europe, the Middle East, and North and South America. The regression lines of δD values on δ 18O values had slopes of 5.4 and 5.8 for the two species. Statistical analysis of results reported in the only other study in which samples of a single species (the silver fir Abies pindrow) that grew under a variety of climatic conditions were analyzed yielded slopes of ~6 when δD values of cellulose nitrate were regressed on δ 18O values of cellulose. The occurrence of this previously unrecognized relationship in three species suggests it may obtain in other plants as well. Determining the basis for this relationship, which is not possible given current understanding of fractionation of the isotopes of oxygen and hydrogen by plants, should lead to increased understanding of how D/H and 18O /16O ratios in cellulose isolated from fossil plants are related to paleoclimates. The separation of most linen samples from Europe from those originating in the Middle East when δD values are plotted against δ 18O values suggests it may be possible to use the isotope ratios of cellulose prepared from the Shroud of Turin to resolve the controversy concerning its geographic origin.

  18. Numerical Investigation of the Effect of C/O Mole Ratio on the Performance of Rotary Hearth Furnace Using a Combined Model

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Wen, Zhi; Lou, Guofeng; Li, Zhi; Yong, Haiquan; Feng, Xiaohong

    2014-12-01

    In a rotary hearth furnace (RHF) the direct reduction of composite pellets and processes of heat and mass transfer as well as combustion in the chamber of RHF influence each other. These mutual interactions should be considered when an accurate model of RHF is established. This paper provides a combined model that incorporates two sub-models to investigate the effects of C/O mole ratio in the feed pellets on the reduction kinetics and heat and mass transfer as well as combustion processes in the chamber of a pilot-scale RHF. One of the sub-models is established to describe the direct reduction process of composite pellets on the hearth of RHF. Heat and mass transfer within the pellet, chemical reactions, and radiative heat transfer from furnace walls and combustion gas to the surface of the pellet are considered in the model. The other sub-model is used to simulate gas flow and combustion process in the chamber of RHF by using commercial CFD software, FLUENT. The two sub-models were linked through boundary conditions and heat, mass sources. Cases for pellets with different C/O mole ratio were calculated by the combined model. The calculation results showed that the degree of metallization, the total amounts of carbon monoxide escaping from the pellet, and heat absorbed by chemical reactions within the pellet as well as CO and CO2 concentrations in the furnace increase with the increase of C/O mole ratio ranging from 0.6 to 1.0, when calculation conditions are the same except for C/O molar ratio. Carbon content in the pellet has little influence on temperature distribution in the furnace under the same calculation conditions except for C/O mole ratio in the feed pellets.

  19. Roles of K2O on the CaO-ZnO Catalyst and Its Influence on Catalyst Basicity for Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Buchori, Luqman; Istadi, I.; Purwanto; Marpaung, Louis Claudia; Safitri, Rahmatika Luthfiani

    2018-02-01

    This research aimed to study the effect of K2O impregnation on the basicity of the CaO-ZnO catalyst and its effect on biodiesel production. The effect of mole ratio of CaO to ZnO catalyst and %wt K2O were also studied. The mole ratio of CaO to ZnO catalyst was varied at 1:1, 1:1.5, 1:2, 1:3, and 3:1, while the %wt K2O was varied at 1, 3, and 5 %. The catalyst basicity was determined by titration method. The basicity of the catalyst increased after the CaO-ZnO catalyst was impregnated with K2O in all mole ratios of CaO-ZnO catalyst. The addition of K2O as a promoter also increase the basicity. The highest basicity was obtained at the CaO-ZnO mole ratio of 3:1 and 5%wt K2O. The tranesterification process was carried out in a batch reactor at a methanol to oil mole ratio of 15:1, a reaction temperature of 60°C, a reaction time of 4 h, and a catalyst loading of 5%wt oil. The FAME yields obtained were 41.33%. These results proved that K2O plays a role in enhancing the catalyst basicity. In addition, K2O also serves as a binding agent to improve the mechanical properties of the catalyst.

  20. Determination of O2(a1 delta g) and O2(b1 sigma+ g) yields in the reaction O + ClO --> Cl + O2: implications for photochemistry in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Leu, M. T.; Yung, Y. L.

    1987-01-01

    A discharge flow apparatus with chemiluminescence detector has been used to study the reaction O + ClO --> Cl + O2, where O2 = O2(a1 delta g) or O2(b1 sigma+ g). The measured quantum yields for producing O2(a1 delta g) and O2(b1 sigma+ g) in the above reaction are less than 2.5 x 10(-2) and equal to (4.4 +/- 1.1) x 10(-4), respectively. The observed O2(a1 delta g) airglow of Venus cannot be explained in the context of standard photochemistry using our experimental results and those reported in recent literature. The possibility of an alternative source of O atoms derived from SO2 photolysis in the mesosphere of Venus is suggested.

  1. A Numerical Study on the Effects of Street‒canyon Aspect‒ratio on Reactive Pollutant Dispersion

    NASA Astrophysics Data System (ADS)

    Park, S. J.; Kim, J.

    2014-12-01

    In this study, the effects of street‒canyon aspect‒ratio on reactive pollutant dispersion were investigated using the coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons with different aspect ratios and flow regimes were classified according to the building height. For each flow regime, dispersion characteristics were investigated in views of reactive pollutant concentration and VOCs‒NOX ratio. Finally, the relations between pollutant concentration and aspect ratio in urban street canyons were investigated. In the case of H/S = 1.0 (H is building height and S is street width), one clockwise‒rotating vortex appeared vertically and the reverse and outward flows were dominant near the street bottom. In the case of H/S = 2.0, two counter‒rotating vortices appeared vertically in the street canyon. The primary (secondary) vortex rotating clockwise (counterclockwise) was formed in upper (lower) layer. The flow patterns affected the reactive pollutant concentration in street canyons. As building height increased, mean concentration of NO decreased when one vortex was generated in street canyons and increased when two vortexes appeared in street canyons. O3 concentration showed almost contrasted tendency with those of NO because O3 was depleted by the NO titration.

  2. Chemically active reduced graphene oxide with tunable C/O ratios.

    PubMed

    Compton, Owen C; Jain, Bonny; Dikin, Dmitriy A; Abouimrane, Ali; Amine, Khalil; Nguyen, Sonbinh T

    2011-06-28

    Organic dispersions of graphene oxide can be thermally reduced in polar organic solvents under reflux conditions to afford electrically conductive, chemically active reduced graphene oxide (CARGO) with tunable C/O ratios, dependent on the boiling point of the solvent. The reductions are achieved after only 1 h of reflux, and the corresponding C/O ratios do not change upon further thermal treatment. Hydroxyl and carboxyl groups can be removed when the reflux is carried out above 155 °C, while epoxides are removable only when the temperature is higher than 200 °C. The increasing hydrophobic nature of CARGO, as its C/O ratio increases, improves the dispersibility of the nanosheets in a polystyrene matrix, in contrast to the aggregates formed with CARGO having lower C/O ratios. The excellent processability of the obtained CARGO dispersions is demonstrated via free-standing CARGO papers that exhibit tunable electrical conductivity/chemical activity and can be used as lithium-ion battery anodes with enhanced Coulombic efficiency.

  3. Comparison of measured and computed Strehl ratios for light propagated through a channel flow of a He N 2 mixing layer at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.; Luke, Theodore E.

    1997-04-01

    A lateral shearing interferometer was used to measure the slope of perturbed wave fronts after they propagated through a He N 2 mixing layer in a rectangular channel. Slope measurements were used to reconstruct the phase of the turbulence-corrupted wave front. The random phase fluctuations induced by the mixing layer were captured in a large ensemble of wave-front measurements. Phase structure functions, computed from the reconstructed phase surfaces, were stationary in first increments. A five-thirds power law is shown to fit streamwise and cross-stream slices of the structure function, analogous to the Kolmogorov model for isotropic turbulence, which describes the structure function with a single parameter. Strehl ratios were computed from the phase structure functions and compared with a measured experiment obtained from simultaneous point-spread function measurements. Two additional Strehl ratios were calculated by using classical estimates that assume statistical isotropy throughout the flow. The isotropic models are a reasonable estimate of the optical degradation only within a few centimeters of the initial mixing, where the Reynolds number is low. At higher Reynolds numbers, Strehl ratios calculated from the structure functions match the experiment much better than Strehl ratio calculations that assume isotropic flow.

  4. Effect of the cross sectional aspect ratio on the flow past a twisted cylinder

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hwan; Yoon, Hyun Sik

    2013-11-01

    The cross-flow around twisted cylinders of cross sectional aspect ratio (A/B) from 1 to 2.25 is investigated at a subcritical Reynolds number (Re) of 3000 using large eddy simulation (LES). The flow past a corresponding smooth and wavy cylinder is also calculated for comparison and validation against experimental data. The effect of twisted surface assessed in terms of the mean drag and root-mean-square (RMS) value of fluctuating lift. The shear layer of the twisted cylinder covering the recirculation region is more elongated than those of the smooth and the wavy cylinder. Successively, vortex shedding of the twisted cylinder is considerably suppressed, compared with those of the smooth and the wavy cylinder. The maximum drag reduction of up to 13% compared with a smooth cylinder is obtained at a certain cross sectional aspect ratio. The fluctuating lift coefficient of the twisted cylinder is also significantly suppressed. We found that the cross sectional cross sectional aspect ratio (A/B) plays an essential role in determining the vortical structures behind the twisted cylinder which has a significant effect on the reduction of the fluctuating lift and suppression of flow-induced vibration. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) through GCRC-SOP (No. 2011-0030013).

  5. Interfacial RhO{sub x}/CeO{sub 2} sites as locations for low temperature N{sub 2}O dissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, J.; Hickey, J.N.; Soria, J.

    Temperatures required for extensive N{sub 2}O dissociation to N{sub 2}, or to N{sub 2} plus O{sub 2}, over 0.5% RhO{sub x}/CeO{sub 2} materials, and over polycrystalline Rh{sub 2}O{sub 3} or CeO{sub 2}, are compared for preoxidised and for prereduced samples on the basis of conversions achieved in pulsed-reactant, continuous-flow and recirculatory microcatalytic reactors. Influences of sample prereduction or preoxidation upon those measurements and upon results from parallel ESR and FTIR studies of N{sub 2}O interactions with such materials are presented and compared. Over partially reduced 0.5% RhO{sub x}/CeO{sub 2} materials complete dissociation of N{sub 2}O pulses to N{sub 2} plusmore » O{sub 2} is obtained at temperatures 50-100{degrees} lower than those required for extensive dissociation over prereduced Rh{sub 2}O{sub 3}. Furthermore, N{sub 2} was the sole product from the latter. Higher ongoing N{sub 2}O conversions to N{sub 2} plus O{sub 2} at 623 K over 0.5% Rh/CeO{sub 2} in pulsed-reactant than in continuous-flow mode point to regeneration of active sites under helium flushing between pulses. The TPD profile for dioxygen release from Rhodia containing samples at temperatures 350-550 K is presented. ESR measurements reveal complementary effects of outgassings at temperatures, T{sub v}, {ge} 573 K upon the availability at RhO{sub x}/CeO{sub 2} surfaces of electron-excess sites reactive towards N{sub 2}O. Differences from observations over Rh{sub 2}O{sub 3} and CeO{sub 2} can be understood by attributing the low-temperature activity of RhO{sub x}/CeO{sub 2} to electron excess sites at microinterfaces between the dispersed Rhodia component and the Ceria support.« less

  6. Periodicity in the BrO/SO2 molar ratios in the volcanic gas plume of Cotopaxi and its correlation with the Earth tides during the eruption in 2015

    NASA Astrophysics Data System (ADS)

    Dinger, Florian; Bobrowski, Nicole; Warnach, Simon; Bredemeyer, Stefan; Hidalgo, Silvana; Arellano, Santiago; Galle, Bo; Platt, Ulrich; Wagner, Thomas

    2018-03-01

    We evaluated NOVAC (Network for Observation of Volcanic and Atmospheric Change) gas emission data from the 2015 eruption of the Cotopaxi volcano (Ecuador) for BrO/SO2 molar ratios. The BrO/SO2 molar ratios were very small prior to the phreatomagmatic explosions in August 2015, significantly higher after the explosions, and continuously increasing until the end of the unrest period in December 2015. These observations together with similar findings in previous studies at other volcanoes (Mt. Etna, Nevado del Ruiz, Tungurahua) suggest a possible link between a drop in BrO/SO2 and a future explosion. In addition, the observed relatively high BrO/SO2 molar ratios after December 2015 imply that bromine degassed predominately after sulfur from the magmatic melt. Furthermore, statistical analysis of the data revealed a conspicuous periodic pattern with a periodicity of about 2 weeks in a 3-month time series. While the time series is too short to rule out a chance recurrence of transient geological or meteorological events as a possible origin for the periodic signal, we nevertheless took this observation as a motivation to examine the influence of natural forcings with periodicities of around 2 weeks on volcanic gas emissions. One strong aspirant with such a periodicity are the Earth tides, which are thus central in this study. We present the BrO/SO2 data, analyse the reliability of the periodic signal, discuss a possible meteorological or eruption-induced origin of this signal, and compare the signal with the theoretical ground surface displacement pattern caused by the Earth tides. Our central result is the observation of a significant correlation between the BrO/SO2 molar ratios with the north-south and vertical components of the calculated tide-induced surface displacement with correlation coefficients of 47 and 36 %, respectively. From all other investigated parameters, only the correlation between the BrO/SO2 molar ratios and the relative humidity in the local

  7. Structural and electrical characterisation of Li(2)O : TiO(2) : SnO(2) : P(2)O(5) electrolyte glass.

    PubMed

    Abrahams, Isaac; Hadzifejzovic, Emina; Dygas, Jozef R

    2004-10-07

    Glasses of general formula 50Li(2)O : xSnO(2) : (10 -x)TiO(2) : 40P(2)O(5)(0.0 < or = x < or = 10) were investigated by differential scanning calorimetry, X-ray diffraction and ac impedance, (31)P solid-state NMR and IR spectroscopies. Three isotropic resonances can be identified in the (31)P NMR spectra, which have been assigned to various phosphate species. Analysis of the ratios of integrated intensities in the (31)P spectra leads to models for the Ti and Sn coordination environments. Both TiO(2) and SnO(2) are found to be predominantly network forming with Ti and Sn proposed to be in five- and four-coordinate environments respectively. Analysis of ac impedance spectra collected at low temperatures reveals two forms of permittivity dispersion, viz: high frequency conductivity dispersion and Cole-Cole type relaxation of permittivity. The activation energy of the relaxation frequency of the permittivity dispersion is equal to that of the dc conductivity, which is consistent with cooperative motion of lithium ions. The results also suggest that the observed increase in conductivity with temperature appears to be mainly due to an increase in mobility rather than increase in carrier concentration.

  8. The Effect of Oxygen Flow on the Transition Temperature of Hg0.75Pb0.25Sr2-yBayCa2Cu3O8+ δ Superconductors

    NASA Astrophysics Data System (ADS)

    Jasim, Kareem A.; Al-Khafaji, Raghad S.

    2018-05-01

    In this paper, there are three different high temperature superconductors which are Hg0.75Pb0.25Sr2-y BayCa2Cu3O8+δ with deferent weight fractions y = 0.10, 0.20 and 0.25 that have been prepared successfully by solid state reaction and the samples have been equipped with/without O2 flow. The optimum calcinations is 1073 K and the sintering process that has been achieved within 1128-1133 K. Transition temperature Tc has been found by using four probe technique through electrical resistivity measurements. The greatest Tc that has been found for Hg0.75Pb0.25Sr1.75 Ba0.25Ca2Cu3O8.31 is 115 oK. Oxygen content (O2) flow exhibits high-phased superconductors that is similar to the samples prepared without O2. Investigation of X-ray diffraction (XRD) is revealed (tetragonal structure) by the c-axis lattice parameter increasing of the samples substituted with Ba. It has been established, from the calculated results, that the Ba variation concentrations of all samples products a modification in the density (ρm), (c/a) and volume fraction (VPh(2223)).

  9. Effects of the dietary ratio of ruminal degraded to undegraded protein and feed intake on intestinal flows of endogenous nitrogen and amino acids in goats.

    PubMed

    Zhou, Chuanshe; Chen, Liang; Tan, Zhiliang; Tang, Shaoxun; Han, Xuefeng; Wang, Min; Kang, Jinhe; Yan, Qiongxian

    2015-01-01

    This study was conducted to evaluate the effects of the dietary ratio of ruminal degraded protein (RDP) to ruminal undegraded protein (RUP) and the dry matter intake (DMI) on the intestinal flows of endogenous nitrogen (N) and amino acids (AA) in goats. The experiment was designed as a 4×4 Latin square using four ruminally, duodenally and ileally cannulated goats. The treatments were arranged in a 2×2 factorial design; two ratios of RDP to RUP (65:35 and 45:55, RDP1 and RDP2, respectively) and two levels at 95% and 75% of voluntary feed intake (DMI1 and DMI2, respectively) were fed to the goats. There were no significant differences in the N intake, duodenal flow of total N, undegraded feed N, microbial N, endogenous N or ileal flow of endogenous N, but the duodenal and ileal flow of endogenous N numerically decreased by approximately 22% and 9%, respectively, when the feed intake changed from DMI1 (0.63 kg/d) to DMI2 (0.50 kg/d). The dietary ratio of RDP to RUP had significant effects (p<0.05) on the ileal flows of endogenous leucine, phenylalanine and cysteine. The present results implied that the duodenal flows of endogenous N and AA decreased when the dietary RDP to RUP ratio and DMI decreased, and the flow of endogenous AA at the ileum also decreased when the DMI decreased but increased with decreasing RDP to RUP ratios.

  10. Nanocrystalline CeO2-δ coated β-MnO2 nanorods with enhanced oxygen transfer property

    NASA Astrophysics Data System (ADS)

    Huang, Xiubing; Zhao, Guixia; Chang, Yueqi; Wang, Ge; Irvine, John T. S.

    2018-05-01

    In this research, β-MnO2 nanorods were synthesized by a hydrothermal method, followed by a facile precipitation method to obtain nanocrystalline CeO2-δ coated β-MnO2 nanorods. The as-prepared samples were characterized by XRD, HRTEM, FESEM, XPS and in-situ high-temperature XRD. The HRTEM results show that well dispersed CeO2-δ nanocrystals sized about 5 nm were coated on the surface of β-MnO2 nanorods. The oxygen storage and transfer property of as-synthesized materials were evaluated using TGA under various atmospheres (air, pure N2, and 5%H2/95%Ar). The TGA results indicate that CeO2-δ modification could favour the reduction of Mn4+ to Mn3+ and/or Mn2+ at lower temperature as compared with pure β-MnO2 nanorods and the physically mixed CeO2-δ-β-MnO2 under low oxygen partial pressure conditions (i.e., pure N2, 5%H2/95%Ar). Specifically, CeO2-δ@β-MnO2 sample can exhibit 7.5 wt% weight loss between 100 and 400 °C under flowing N2 and 11.4 wt% weight loss between 100 and 350 °C under flowing 5%H2/95%Ar. During the reduction process under pure N2 or 5%H2/95%Ar condition, the oxygen ions in β-MnO2 nanorods are expected to be released to the surroundings in the form of O2 or H2O with the coated CeO2-δ nanocrystals acting as mediator as inferred from the synergistic effect between the well-interacted CeO2-δ nanocrystals and β-MnO2 nanorods.

  11. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores.

    PubMed

    Pardon, Gaspard; Gatty, Hithesh K; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-11

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al(2)O(3)) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al(2)O(3) layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al(2)O(3) using ALD.

  12. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores

    NASA Astrophysics Data System (ADS)

    Pardon, Gaspard; Gatty, Hithesh K.; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-01

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al2O3) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al2O3 layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al2O3 using ALD.

  13. Abnormal resting state corticolimbic blood flow in depressed unmedicated patients with major depression: a (15)O-H(2)O PET study.

    PubMed

    Monkul, E Serap; Silva, Leandro A P; Narayana, Shalini; Peluso, Marco A M; Zamarripa, Frank; Nery, Fabiano G; Najt, Pablo; Li, John; Lancaster, Jack L; Fox, Peter T; Lafer, Beny; Soares, Jair C

    2012-02-01

    We investigated the differences in the resting state corticolimbic blood flow between 20 unmedicated depressed patients and 21 healthy comparisons. Resting state cerebral blood flow (CBF) was measured with H(2)(15)O PET. Anatomical MRI scans were performed on an Elscint 1.9 T Prestige system for PET-MRI coregistration. Significant changes in cerebral blood flow indicating neural activity were detected using an ROI-free image subtraction strategy. In addition, the resting blood flow in patients was correlated with the severity of depression as measured by HAM-D scores. Depressed patients showed decreases in blood flow in right anterior cingulate (Brodmann areas 24 and 32) and increased blood flow in left and right posterior cingulate (Brodmann areas 23, 29, 30), left parahippocampal gyrus (Brodmann area 36), and right caudate compared with healthy volunteers. The severity of depression was inversely correlated with the left middle and inferior frontal gyri (Brodmann areas 9 and 47) and right medial frontal gyrus (Brodmann area 10) and right anterior cingulate (Brodmann areas 24, 32) blood flow, and directly correlated with the right thalamus blood flow. These findings support previous reports of abnormalities in the resting state blood flow in the limbic-frontal structures in depressed patients compared to healthy volunteers. Copyright © 2011 Wiley Periodicals, Inc.

  14. TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.

    PubMed

    Ferguson, Megan A; Hering, Janet G

    2006-07-01

    Compliance with the U.S. drinking water standard for arsenic (As) of 10 microg L(-1) is required in January 2006. This will necessitate implementation of treatment technologies for As removal by thousands of water suppliers. Although a variety of such technologies is available, most require preoxidation of As(III) to As(V) for efficient performance. Previous batch studies with illuminated TiO2 slurries have demonstrated that TiO2-photocatalyzed AS(III) oxidation occurs rapidly. This study examined reaction efficiency in a flow-through, fixed-bed reactor that provides a better model for treatment in practice. Glass beads were coated with mixed P25/sol gel TiO2 and employed in an upflow reactor irradiated from above. The reactor residence time, influent As(III) concentration, number of TiO2 coatings on the beads, solution matrix, and light source were varied to characterize this reaction and determine its feasibility for water treatment. Repeated usage of the same beads in multiple experiments or extended use was found to affect effluent As(V) concentrations but not the steady-state effluent As(III) concentration, which suggests that As(III) oxidation at the TiO2 surface undergoes dynamic sorption equilibration. Catalyst poisoning was not observed either from As(V) or from competitively adsorbing anions, although the higher steady-state effluent As(III) concentrations in synthetic groundwater compared to 5 mM NaNO3 indicated that competitive sorbates in the matrix partially hinder the reaction. A reactive transport model with rate constants proportional to incident light at each bead layer fit the experimental data well despite simplifying assumptions. TiO2-photocatalyzed oxidation of As(III) was also effective under natural sunlight. Limitations to the efficiency of As(III) oxidation in the fixed-bed reactor were attributable to constraints of the reactor geometry, which could be overcome by improved design. The fixed-bed TiO2 reactor offers an environmentally

  15. A universal definition of ARDS: the PaO2/FiO2 ratio under a standard ventilatory setting--a prospective, multicenter validation study.

    PubMed

    Villar, Jesús; Pérez-Méndez, Lina; Blanco, Jesús; Añón, José Manuel; Blanch, Lluís; Belda, Javier; Santos-Bouza, Antonio; Fernández, Rosa Lidia; Kacmarek, Robert M

    2013-04-01

    The PaO2/FiO2 is an integral part of the assessment of patients with acute respiratory distress syndrome (ARDS). The American-European Consensus Conference definition does not mandate any standardization procedure. We hypothesized that the use of PaO2/FiO2 calculated under a standard ventilatory setting within 24 h of ARDS diagnosis allows a more clinically relevant ARDS classification. We studied 452 ARDS patients enrolled prospectively in two independent, multicenter cohorts treated with protective mechanical ventilation. At the time of ARDS diagnosis, patients had a PaO2/FiO2 ≤ 200. In the derivation cohort (n = 170), we measured PaO2/FiO2 with two levels of positive end-expiratory pressure (PEEP) (≥ 5 and ≥ 10 cmH2O) and two levels of FiO2 (≥ 0.5 and 1.0) at ARDS onset and 24 h later. Dependent upon PaO2 response, patients were reclassified into three groups: mild (PaO2/FiO2 > 200), moderate (PaO2/FiO2 101-200), and severe (PaO2/FiO2 ≤ 100) ARDS. The primary outcome measure was ICU mortality. The standard ventilatory setting that reached the highest significance difference in mortality among these categories was tested in a separate cohort (n = 282). The only standard ventilatory setting that identified the three PaO2/FiO2 risk categories in the derivation cohort was PEEP ≥ 10 cmH2O and FiO2 ≥ 0.5 at 24 h after ARDS onset (p = 0.0001). Using this ventilatory setting, patients in the validation cohort were reclassified as having mild ARDS (n = 47, mortality 17 %), moderate ARDS (n = 149, mortality 40.9 %), and severe ARDS (n = 86, mortality 58.1 %) (p = 0.00001). Our method for assessing PaO2/FiO2 greatly improved risk stratification of ARDS and could be used for enrolling appropriate ARDS patients into therapeutic clinical trials.

  16. Determination of product branching ratio of the ClO self-reaction at 298 K

    NASA Astrophysics Data System (ADS)

    Horowitz, A.; Bauer, D.; Crowley, J. N.; Moortgat, G. K.

    1993-07-01

    The Cl2-sensitized continuous photolysis of O3 mixtures in O2 was investigated at 298 K using time resolved single wavelength and diode array spectroscopy to monitor the decay of O3 and the formation of OClO. Φ-O3 was found to be 4.1±0.4. This value, combined with the determination of the initial rates of OClO formation, allowed the evaluation of the following branching ratios into the three bimolecular disproportionation channels of ClO reactions; k3a/k3 = 0.40 ± 0.08, k3b/k3 = 0.42 ± 0.08 and k3c/k3 = 0.18 ± 0.02 where ClO + ClO → Cl2 + O2 (3a), ClO + ClO → Cl + Cl + O2 (3b) and ClO + ClO → Cl + OClO (3c).

  17. Numerical simulation of heat transfer to separation tio2/water nanofluids flow in an asymmetric abrupt expansion

    NASA Astrophysics Data System (ADS)

    Oon, Cheen Sean; Nee Yew, Sin; Chew, Bee Teng; Salim Newaz, Kazi Md; Al-Shamma'a, Ahmed; Shaw, Andy; Amiri, Ahmad

    2015-05-01

    Flow separation and reattachment of 0.2% TiO2 nanofluid in an asymmetric abrupt expansion is studied in this paper. Such flows occur in various engineering and heat transfer applications. Computational fluid dynamics package (FLUENT) is used to investigate turbulent nanofluid flow in the horizontal double-tube heat exchanger. The meshing of this model consists of 43383 nodes and 74891 elements. Only a quarter of the annular pipe is developed and simulated as it has symmetrical geometry. Standard k-epsilon second order implicit, pressure based-solver equation is applied. Reynolds numbers between 17050 and 44545, step height ratio of 1 and 1.82 and constant heat flux of 49050 W/m2 was utilized in the simulation. Water was used as a working fluid to benchmark the study of the heat transfer enhancement in this case. Numerical simulation results show that the increase in the Reynolds number increases the heat transfer coefficient and Nusselt number of the flowing fluid. Moreover, the surface temperature will drop to its lowest value after the expansion and then gradually increase along the pipe. Finally, the chaotic movement and higher thermal conductivity of the TiO2 nanoparticles have contributed to the overall heat transfer enhancement of the nanofluid compare to the water.

  18. Association between genetic taste sensitivity, 2D:4D ratio, dental caries prevalence, and salivary flow rate in 6-14-year-old children: a cross-sectional study.

    PubMed

    Lakshmi, Chintamaneni Raja; Radhika, Doppalapudi; Prabhat, Mpv; Bhavana, Sujana Mulk; Sai Madhavi, Nallamilli

    2016-01-01

    Background. The aim of this study was to assess the relationship between genetic taste sensitivity, dietary preferences and salivary flow rate in 6‒14-year-old children for identification of individuals at higher risk of developing dental caries. Methods. A total of 500 children 6‒14 years of age, of both genders, who reported to the Department of Oral Medicine and Radiology, were included. Propylthiouracil (PROP) sensitivity test was carried out and the subjects whose perception was bitter were grouped as tasters, whereas those who were unable to perceive any taste were grouped as non-tasters. The 2D:4D ratio was obtained by measuring the length ratio of index finger to ring finger with the help of a digital Vernier caliper. Evaluation of dietary preferences was carried out using a 24-hour dietary recall and accordingly they were categorized as sweet likers and dislikers. The salivary flow rate was estimated by collecting unstimulated saliva by spitting method. Data were analyzed with Student's t-test and chi-squared test. Results. The results suggested a positive relation between low digit ratio (2D:4D), non-tasters, sweet likers and high caries index among the participants with a highly significant statistical difference (P ≤ 0.000). Tasters had high mean of USSR (0.48) than non-tasters (0.29), which was statistically significant. Conclusion. The present research revealed a positive correlation between all the parameters evaluated. Therefore an individual considered as non-taster by PROP was a sweet liker with low 2D:4D ratio, reduced salivary flow rate and high caries index.

  19. Association between genetic taste sensitivity, 2D:4D ratio, dental caries prevalence, and salivary flow rate in 6-14-year-old children: a cross-sectional study

    PubMed Central

    Lakshmi, Chintamaneni Raja; Radhika, Doppalapudi; Prabhat, Mpv; Bhavana, Sujana mulk; Sai Madhavi, Nallamilli

    2016-01-01

    Background. The aim of this study was to assess the relationship between genetic taste sensitivity, dietary preferences and salivary flow rate in 6‒14-year-old children for identification of individuals at higher risk of developing dental caries. Methods. A total of 500 children 6‒14 years of age, of both genders, who reported to the Department of Oral Medicine and Radiology, were included. Propylthiouracil (PROP) sensitivity test was carried out and the subjects whose perception was bitter were grouped as tasters, whereas those who were unable to perceive any taste were grouped as non-tasters. The 2D:4D ratio was obtained by measuring the length ratio of index finger to ring finger with the help of a digital Vernier caliper. Evaluation of dietary preferences was carried out using a 24-hour dietary recall and accordingly they were categorized as sweet likers and dislikers. The salivary flow rate was estimated by collecting unstimulated saliva by spitting method. Data were analyzed with Student’s t-test and chi-squared test. Results. The results suggested a positive relation between low digit ratio (2D:4D), non-tasters, sweet likers and high caries index among the participants with a highly significant statistical difference (P ≤ 0.000). Tasters had high mean of USSR (0.48) than non-tasters (0.29), which was statistically significant. Conclusion. The present research revealed a positive correlation between all the parameters evaluated. Therefore an individual considered as non-taster by PROP was a sweet liker with low 2D:4D ratio, reduced salivary flow rate and high caries index. PMID:27651879

  20. Photocatalytic degradation of diclofenac using TiO2-SnO2 mixed oxide catalysts.

    PubMed

    Mugunthan, E; Saidutta, M B; Jagadeeshbabu, P E

    2017-12-26

    The complex nature of diclofenac limits its biological degradation, posing a serious threat to aquatic organisms. Our present work aims to eliminate diclofenac from wastewater through photocatalytic degradation using TiO 2 -SnO 2 mixed-oxide catalysts under various operating conditions such as catalyst loading, initial diclofenac concentration and initial pH. Different molar ratios of Ti-Sn (1:1, 5:1, 10:1, 20:1 and 30:1) were prepared by the hydrothermal method and were characterized. The results indicated that addition of Sn in small quantity enhances the catalytic activity of TiO 2 . Energy Band gap of the TiO 2 -SnO 2 catalysts was found to increase with an increase in Tin content. TiO 2 -SnO 2 catalyst with a molar ratio of 20:1 was found to be the most effective when compared to other catalysts. The results suggested that initial drug concentration of 20 mg/L, catalyst loading of 0.8 g/L and pH 5 were the optimum operating conditions for complete degradation of diclofenac. Also, the TiO 2 -SnO 2 catalyst was effective in complete mineralization of diclofenac with a maximum total organic carbon removal of 90% achieved under ultraviolet irradiation. The repeatability and stability results showed that the TiO 2 -SnO 2 catalyst exhibited an excellent repeatability and better stability over the repeated reaction cycles. The photocatalytic degradation of diclofenac resulted in several photoproducts, which were identified through LC-MS.

  1. Influence of B2O3 content on sintering behaviour and dielectric properties of La2O3-B2O3-CaO/Al2O3 glass-ceramic composites for LTCC applications

    NASA Astrophysics Data System (ADS)

    Wang, F. L.; Zhang, Y. W.; Chen, X. Y.; Mao, H. J.; Zhang, W. J.

    2018-01-01

    La2O3-B2O3-CaO glasses with different B2O3 content were synthesized by melting method to produce glass/ceramic composites in this work. XRD and DSC results revealed that the diminution of B2O3 content was beneficial to increase the crystallization tendency of glass and improve the quality of crystalline phase, while decreasing the effect of glass during sintering process as sintering aids. The choice of glass/ceramic mass ratio was also influenced by the B2O3 content of glass. Dense samples sintered at 875 ºC showed good dielectric properties which meet the requirement of LTCC applications: moderate dielectric constant (7.8-9.4) and low dielectric loss (2.0×10-3).

  2. Relationship between platelet-to-lymphocyte ratio and coronary slow flow.

    PubMed

    Oylumlu, Muhammed; Doğan, Adnan; Oylumlu, Mustafa; Yıldız, Abdülkadir; Yüksel, Murat; Kayan, Fethullah; Kilit, Celal; Amasyalı, Basri

    2015-05-01

    The coronary slow flow phenomenon (CSFP), which is characterized by delayed distal vessel opacification in the absence of significant epicardial coronary disease, is an angiographic finding. The aim of this study is to investigate the association between platelet-to-lymphocyte ratio (PLR) and coronary blood flow rate. This is a retrospective observational study. It was based on two medical centers. A total of 197 patients undergoing coronary angiography were included in the study, 95 of whom were patients with coronary slow flow without stenosis in coronary angiography and 102 of whom had normal coronary arteries and normal flow. The PLR was higher in the coronary slow flow group compared with the control groups (p=0.001). In the correlation analysis, PLR showed a significant correlation with left anterior descending (LAD) artery thrombolysis in myocardial infarction (TIMI) frame count. After multiple logistic regression, high levels of PLR were independently associated with coronary slow flow, together with hemoglobin. PLR was higher in patients with CSFP, and we also showed that PLR was significantly and independently associated with CSFP.

  3. Greenhouse gas emissions from surface flow and subsurface flow constructed wetlands treating dairy wastewater.

    PubMed

    VanderZaag, A C; Gordon, R J; Burton, D L; Jamieson, R C; Stratton, G W

    2010-01-01

    Agricultural wastewater treatment is important for protecting water quality in rural ecosystems, and constructed wetlands are an effective treatment option. During treatment, however, some C and N are converted to CH(4), N(2)O, respectively, which are potent greenhouse gases (GHGs). The objective of this study was to assess CH(4), N(2)O, and CO(2) emissions from surface flow (SF) and subsurface flow (SSF) constructed wetlands. Six constructed wetlands (three SF and three SSF; 6.6 m(2) each) were loaded with dairy wastewater in Truro, Nova Scotia, Canada. From August 2005 through September 2006, GHG fluxes were measured continuously using transparent steady-state chambers that encompassed the entire wetlands. Flux densities of all gases were significantly (p < 0.01) different between SF and SSF wetlands changed significantly with time. Overall, SF wetlands had significantly (p < 0.01) higher emissions of CH(4) N(2)O than SSF wetlands and therefore had 180% higher total GHG emissions. The ratio of N(2)O to CH(4) emissions (CO(2)-equivalent) was nearly 1:1 in both wetland types. Emissions of CH(4)-C as a percentage of C removal varied seasonally from 0.2 to 27% were 2 to 3x higher in SF than SSF wetlands. The ratio of N(2)O-N emitted to N removed was between 0.1 and 1.6%, and the difference between wetland types was inconsistent. Thus, N(2)O emissions had a similar contribution to N removal in both wetland types, but SSF wetlands emitted less CH(4) while removing more C from the wastewater than SF wetlands.

  4. Ballistic magnon heat conduction and possible Poiseuille flow in the helimagnetic insulator Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Prasai, N.; Trump, B. A.; Marcus, G. G.; Akopyan, A.; Huang, S. X.; McQueen, T. M.; Cohn, J. L.

    2017-06-01

    We report on the observation of magnon thermal conductivity κm˜70 W/mK near 5 K in the helimagnetic insulator Cu2OSeO3 , exceeding that measured in any other ferromagnet by almost two orders of magnitude. Ballistic, boundary-limited transport for both magnons and phonons is established below 1 K, and Poiseuille flow of magnons is proposed to explain a magnon mean-free path substantially exceeding the specimen width for the least defective specimens in the range 2 K 2OSeO3 as a model system for studying long-wavelength magnon dynamics.

  5. Mesoporous Cu2O-CeO2 composite nanospheres with enhanced catalytic activity for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Pang, Juanjuan; Li, Wenting; Cao, Zhenhao; Xu, Jingjing; Li, Xue; Zhang, Xiaokai

    2018-05-01

    In this paper, mesoporous Cu2O-CeO2 nanospheres were fabricated via a facile, low-temperature solution route in the presence of poly(2-vinylpyridine)-b-poly(ethylene Oxide) (P2VP-b-PEO) block copolymers. The prepared mesoporous Cu2O-CeO2 nanospheres were characterized systematically by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption/desorption. The formation mechanism of mesoporous Cu2O-CeO2 nanospheres was discussed. The results show that the molar ratios of Ce3+/Cu2+ and the reaction time have an important influence on the nanostructure of Cu2O-CeO2 composite spheres. The resultant Cu2O-CeO2 nanospheres exhibit superior catalytic activities in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. The activity factor (K = k/m) for the Cu2O-CeO2 nanospheres prepared with the molar ratio of Ce3+/Cu2+ of 5/1 is 3006.6 s-1 g-1, which is much higher than reported values. This paper demonstrates a highly controllable approach to the production of mesoporous Cu2O-CeO2 nanospheres, which have potential applications in the areas of catalysis, adsorption, sensors and so on.

  6. Numerical investigation of flow on NACA4412 aerofoil with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Demir, Hacımurat; Özden, Mustafa; Genç, Mustafa Serdar; Çağdaş, Mücahit

    2016-03-01

    In this study, the flow over NACA4412 was investigated both numerically and experimentally at a different Reynolds numbers. The experiments were carried out in a low speed wind tunnel with various angles of attack and different Reynolds numbers (25000 and 50000). Airfoil was manufactured using 3D printer with a various aspect ratios (AR = 1 and AR = 3). Smoke-wire and oil flow visualization methods were used to visualize the surface flow patterns. NACA4412 aerofoil was designed by using SOLIDWORKS. The structural grid of numerical model was constructed by ANSYS ICEM CFD meshing software. Furthermore, ANSYS FLUENT™ software was used to perform numerical calculations. The numerical results were compared with experimental results. Bubble formation was shown in CFD streamlines and smoke-wire experiments at z / c = 0.4. Furthermore, bubble shrunk at z / c = 0.2 by reason of the effects of tip vortices in both numerical and experimental studies. Consequently, it was seen that there was a good agreement between numerical and experimental results.

  7. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  8. Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O2 battery.

    PubMed

    Zhu, Yun Guang; Jia, Chuankun; Yang, Jing; Pan, Feng; Huang, Qizhao; Wang, Qing

    2015-06-11

    A redox flow lithium-oxygen battery (RFLOB) by using soluble redox catalysts with good performance was demonstrated for large-scale energy storage. The new device enables the reversible formation and decomposition of Li2O2 via redox targeting reactions in a gas diffusion tank, spatially separated from the electrode, which obviates the passivation and pore clogging of the cathode.

  9. Pd-PEPPSI-IPent-SiO2 : A Supported Catalyst for Challenging Negishi Coupling Reactions in Flow.

    PubMed

    Price, Gregory A; Hassan, Abbas; Chandrasoma, Nalin; Bogdan, Andrew R; Djuric, Stevan W; Organ, Michael G

    2017-10-16

    A silica-supported precatalyst, Pd-PEPPSI-IPent-SiO 2 , has been prepared and evaluated for its proficiency in the Negishi cross-coupling of hindered and electronically deactivated coupling partners. The precatalyst Pd-PEPPSI-IPent loaded onto packed bed columns shows high catalytic activity for the room-temperature coupling of deactivated/hindered biaryl partners. Also for the first time, the flowed Csp 3 -Csp 2 coupling of secondary alkylzinc reagents to (hetero)aromatics has been achieved with high selectivity with Pd-PEPPSI-IPent-SiO 2 . These couplings required residence times as short as 3 minutes to effect completion of these challenging transformations with excellent selectivity for the nonrearranged product. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of Annealing Temperature and Oxygen Flow in the Properties of Ion Beam Sputtered SnO-₂x Thin Films.

    PubMed

    Wang, Chun-Min; Huang, Chun-Chieh; Kuo, Jui-Chao; Sahu, Dipti Ranjan; Huang, Jow-Lay

    2015-08-14

    Tin oxide (SnO 2-x ) thin films were prepared under various flow ratios of O₂/(O₂ + Ar) on unheated glass substrate using the ion beam sputtering (IBS) deposition technique. This work studied the effects of the flow ratio of O₂/(O₂ + Ar), chamber pressures and post-annealing treatment on the physical properties of SnO₂ thin films. It was found that annealing affects the crystal quality of the films as seen from both X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. In addition, the surface RMS roughness was measured with atomic force microscopy (AFM). Auger electron spectroscopy (AES) analysis was used to obtain the changes of elemental distribution between tin and oxygen atomic concentration. The electrical property is discussed with attention to the structure factor.

  11. Experimental Determination of the Effect of the Ratio of B/Al on Glass Dissolution along the Nepheline (NaAlSiO 4) – Malinkoite (NaBSiO 4) Join

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M; Reed, Lunde R; Shaw, Wendy J

    2010-03-27

    The dissolution kinetics of five glasses along the NaAlSiO 4-NaBSiO 4 join were used to evaluate how the structural variations associated with boron-aluminum substitution affect the rate of dissolution. The composition of each glass varied inversely in mol% of Al 2O 3 (5 to 25 mol%) and B 2O 3 (20 to 0 mol%) with Na 2O (25 mol%) and SiO 2 (50 mol%) making up the remaining amount, in every case Na/(Al+B) = 1.0. Single-pass flow-through experiments (SPFT) were conducted under dilute conditions as a function of solution pH (from 7.0 to 12.0) and temperature (from 23° to 90°C).more » Analysis by 27Al and 29Si MAS-NMR suggests Al (~98% [4]Al) and Si atoms (~100% [4]Si) occupy a tetrahedral coordination whereas, B atoms occupy both tetrahedral ([4]B) and trigonal ( [3]B) coordination. The distribution of [3]B fractionated between [3]B(ring) and [3]B(non-ring) moieties, with the [3]B(ring)/ [3]B(non-ring) ratio increases with the B/Al ratio. The MAS-NMR results also indicated an increase in the fraction of [4]B with an increase in the B/Al ratio. But despite the changes in the B/Al ratio and B coordination, the 29Si spectra maintain a chemical shift between -88 to -84 ppm for each glass. Unlike the 29Si spectra, the 27Al resonances shift to more positive values with an increase in the B/Al ratio which suggests mixing between the [4]Al and [3]B sites, assuming avoidance between tetrahedral trivalent cations ( [4]Al-O- [4]B avoidance). Raman spectroscopy was use to augment the results collected from MAS-NMR and demonstrated that NeB4 (glass sample with the highest B content) was glass-glass phase separated (e.g., heterogeneous glass). Results from SPFT experiments suggest a forward rate of reaction and pH power law coefficients,η, that are independent of B/Al under these neutral to alkaline test conditions for all homogeneous glasses. The temperature dependence shows an order of magnitude increase in the dissolution rate with a 67°C increase in temperature and

  12. Effect of pH and Fe/U ratio on the U(VI) removal rate by the synergistic effect of Fe(II) and O2

    NASA Astrophysics Data System (ADS)

    Fu, Yukui; Luo, Yingfeng; Fang, Qi; Xie, Yanpei; Wang, Zhihong; Zhu, Xiangyu

    2018-02-01

    As for the decommissioned uranium deposits of acid in-situ leaching, both of the concentrations of U(VI) and Fe(II) are relatively high in groundwater. In the presence of O2, the oxidation of Fe(II) into Fe(III) that forms Fe-hydroxides could effectively remove U(VI) in the forms of sorption or co-precipitation. In this process, pH condition and Fe content will have a significant effect on the U(VI) removal rate by the synergistic effect of Fe(II) and O2. In the present work, a series of batch experiments were carried out to investigate the effect of pH values and Fe/U mass ratio on the U(VI) removal rate by the synergistic effect of Fe(II) and O2. Experiment results show that the removal rate of U(VI) is mainly controlled by pH and secondly by Fe/U mass ratio. In the neutral conditions with pH at 7 and 8, the removal rate of U(VI) reaches up to 90% for all solutions with different initial Fe(II) concentrations. The optimal pH for the removal rate of U(VI) is above 7. In the acidic conditions with pH below 6, the effect of Fe/U mass ratio on the removal rate of U(VI) becomes more obvious and the optimal Fe/U mass ratio for U(VI) removal is 1:2.

  13. MAS-NMR studies of lithium aluminum silicate (LAS) glasses and glass-ceramics having different Li 2O/Al 2O 3 ratio

    NASA Astrophysics Data System (ADS)

    Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.

    2010-01-01

    Emergence of phases in lithium aluminum silicate (LAS) glasses of composition (wt%) xLi 2O-71.7SiO 2-(17.7- x)Al 2O 3-4.9K 2O-3.2B 2O 3-2.5P 2O 5 (5.1≤ x≤12.6) upon heat treatment were studied. 29Si, 27Al, 31P and 11B MAS-NMR were employed for structural characterization of both LAS glasses and glass-ceramics. In glass samples, Al is found in tetrahedral coordination, while P exists mainly in the form of orthophosphate units. B exists as BO 3 and BO 4 units. 27Al NMR spectra show no change with crystallization, ruling out the presence of any Al containing phase. Contrary to X-ray diffraction studies carried out, 11B (high field 18.8 T) and 29Si NMR spectra clearly indicate the unexpected crystallization of a borosilicate phase (Li,K)BSi 2O 6, whose structure is similar to the aluminosilicate virgilite. Also, lithium disilicate (Li 2Si 2O 5), lithium metasilicate (Li 2SiO 3) and quartz (SiO 2) were identified in the 29Si NMR spectra of the glass-ceramics. 31P NMR spectra of the glass-ceramics revealed the presence of Li 3PO 4 and a mixed phase (Li,K) 3PO 4 at low alkali concentrations.

  14. Composition and crystal structure of N doped TiO2 film deposited at different O2 flow rate by direct current sputtering.

    PubMed

    Ding, Wanyu; Ju, Dongying; Chai, Weiping

    2011-06-01

    N doped Ti02 films were deposited by direct current pulse magnetron sputtering system at room temperature. The influence of 02 flow rate on the crystal structure of deposited films was studied by Stylus profilometer, X-ray photoelectron spectroscopy, and X-ray diffractometer. The results indicate that the 02 flow rate strongly controls the growth behavior and crystal structure of N doped Ti02 film. It is found that N element mainly exists as substitutional doped state and the chemical stiochiometry is near to TiO1.68±0.06N0.11±0.01 for all film samples. N doped Ti02 film deposited with 2 sccm (standard-state cubic centimeter per minute) 02 flow rate is amorphous structure with high growth rate, which contains both anatase phase and rutile phase crystal nucleuses. In this case, the film displays the mix-phase of anatase and rutile after annealing treatment. While N doped Ti02 film deposited with 12 cm(3)/min 02 flow rate displays anatase phase before and after annealing treatment. And it should be noticed that no TiN phase appears for all samples before and after annealing treatment. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  15. Cosmetic wastewater treatment by the ZVI/H2O2 process.

    PubMed

    Bogacki, Jan; Marcinowski, Piotr; Zapałowska, Ewa; Maksymiec, Justyna; Naumczyk, Jeremi

    2017-10-01

    The ZVI/H 2 O 2 process was applied for cosmetic wastewater treatment. Two commercial zero-valent iron (ZVI) types with different granulations were chosen: Hepure Ferrox PRB and Hepure Ferrox Target. In addition, the pH and stirring method influence on ZVI/H 2 O 2 process efficiency was studied. During the ZVI and ZVI/H 2 O 2 processes, linear Fe ions concentration increase was observed. The addition of H 2 O 2 significantly accelerated the iron dissolution process. The highest COD removal was obtained using finer ZVI (Hepure Ferrox Target) for doses of reagents ZVI/H 2 O 2 1500/1600 mg/L, in a H 2 O 2 /COD weight ratio 2:1, at pH 3.0 with stirring on a magnetic stirrer. After 120 min of the process, 84.0% COD removal (from 796 to 127 mg/L) was achieved. It was found that the efficiency of the process depends, as in the case of the Fenton process, on the ratio of the reagents (ZVI/H 2 O 2 ) and their dose in relation to the COD (H 2 O 2 /COD) but does not depend on the dose of the iron itself. Statistical analysis confirms that COD removal efficiency depends primarily on H 2 O 2 /COD ratio and ZVI granulation, but ZVI dose influence is not statistically significant. The head space, solid-phase microextraction, gas chromatography, mass spectrometry results confirm high efficiency of the ZVI/H 2 O 2 process.

  16. Comparative Analysis of Alternative Spectral Bands of CO2 and O2 for the Sensing of CO2 Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S.

    2013-01-01

    We performed comparative studies to establish favorable spectral regions and measurement wavelength combinations in alternative bands of CO2 and O2, for the sensing of CO2 mixing ratios (XCO2) in missions such as ASCENDS. The analysis employed several simulation approaches including separate layers calculations based on pre-analyzed atmospheric data from the modern-era retrospective analysis for research and applications (MERRA), and the line-byline radiative transfer model (LBLRTM) to obtain achievable accuracy estimates as a function of altitude and for the total path over an annual span of variations in atmospheric parameters. Separate layer error estimates also allowed investigation of the uncertainties in the weighting functions at varying altitudes and atmospheric conditions. The parameters influencing the measurement accuracy were analyzed independently and included temperature sensitivity, water vapor interferences, selection of favorable weighting functions, excitations wavelength stabilities and other factors. The results were used to identify favorable spectral regions and combinations of on / off line wavelengths leading to reductions in interferences and the improved total accuracy.

  17. Cu/Cu2O nanocomposite films as a p-type modified layer for efficient perovskite solar cells.

    PubMed

    Chen, You-Jyun; Li, Ming-Hsien; Huang, Jung-Chun-Andrew; Chen, Peter

    2018-05-16

    Cu/Cu 2 O films grown by ion beam sputtering were used as p-type modified layers to improve the efficiency and stability of perovskite solar cells (PSCs) with an n-i-p heterojunction structure. The ratio of Cu to Cu 2 O in the films can be tuned by the oxygen flow ratio (O 2 /(O 2  + Ar)) during the sputtering of copper. Auger electron spectroscopy was performed to determine the elemental composition and chemical state of Cu in the films. Ultraviolet photoelectron spectroscopy and photoluminescence spectroscopy revealed that the valence band maximum of the p-type Cu/Cu 2 O matches well with the perovskite. The Cu/Cu 2 O film not only acts as a p-type modified layer but also plays the role of an electron blocking buffer layer. By introducing the p-type Cu/Cu 2 O films between the low-mobility hole transport material, spiro-OMeTAD, and the Ag electrode in the PSCs, the device durability and power conversion efficiency (PCE) were effectively improved as compared to the reference devices without the Cu/Cu 2 O interlayer. The enhanced PCE is mainly attributed to the high hole mobility of the p-type Cu/Cu 2 O film. Additionally, the Cu/Cu 2 O film serves as a protective layer against the penetration of humidity and Ag into the perovskite active layer.

  18. Preparation of Fe2O3-TiO2 composite from Sukabumi iron sand through magnetic separation, pyrometallurgy, and hydrometallurgy

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Pranata, H. P.; Hanif, Q. A.; Ismoyo, Y. A.; Ichsan, K. F.

    2016-11-01

    Preparation of Fe2O3/TiO2 composite from Sukabumi iron sand by magnetic separation, roasting, leaching and precipitation treatment has been carried out. Magnetic separation can separate magnetic particles and non-magnetic particles of iron sand content, while the non-magnetic particles (wustite (FeO), hematite (α-Fe2O3), maghemite (γ-Fe2O3) and magnetite (Fe3O4)) was washing with oxalic acid 1 M. The result product then was roasted at 800 °C treated by sodium carbonate (Na2CO3) addition of 1:1; 2:1 and 1:2 (w/w) of iron sand to Na2CO3 weight ratio, respectively. The X-Ray Fluorescence (XRF) analysis result shown that Sukabumi iron sand have hematite (Fe2O3) and titanium dioxide (TiO2) content about 72.17% dan 14.42%. XRD analysis of roasted iron sand shown the rutile (TiO2), Hematite (Fe2O3), NaFeO2, FeO, and Na2TiO3. Leaching of roasted iron sand using sulphuric acid (H2SO4) have influenced by concentrations of the H2SO4 solution. The optimum iron sand dissolution occurred in H2SO4 9 M, which condensation product of the leachant have a weight ratio of Fe:Ti = 1:1 (w/w). Meanwhile, the settling back-filtrate result of second condensation was obtained a ratio of Fe2O3: TiO2 of 3: 1 (w/w).

  19. The Black Hole Masses and Eddington Ratios of Type 2 Quasars

    NASA Astrophysics Data System (ADS)

    Kong, Minzhi; Ho, Luis C.

    2018-06-01

    Type 2 quasars are an important constituent of active galaxies, possibly representing the evolutionary precursors of traditionally studied type 1 quasars. We characterize the black hole (BH) mass (M BH) and Eddington ratio (L bol/L Edd) for 669 type 2 quasars selected from the Sloan Digital Sky Survey, using BH masses estimated from the M BH–σ * relation and bolometric corrections scaled from the extinction-corrected [O III] λ5007 luminosity. When stellar velocity dispersions cannot be measured directly from the spectra, we estimate them from the core velocity dispersions of the narrow emission lines [O II] λλ3726, 3729, [S II] λλ6716, 6731, and [O III] λ5007, which are shown to trace the gravitational potential of the stars. Energy input from the active nucleus still imparts significant perturbations to the gas kinematics, especially to high-velocity, blueshifted wings. Nonvirial motions in the gas become most noticeable in systems with high Eddington ratios. The BH masses of our sample of type 2 quasars range from M BH ≈ 106.5 to 1010.4 M ⊙ (median 108.2 M ⊙). Type 2 quasars have characteristically large Eddington ratios (L bol/L Edd ≈ 10‑2.9–101.8 median 10‑0.7), slightly higher than in type 1 quasars of similar redshift; the luminosities of ∼20% of the sample formally exceed the Eddington limit. The high Eddington ratios may be consistent with the notion that obscured quasars evolve into unobscured quasars.

  20. C/O Ratios of Stars with Transiting Hot Jupiter Exoplanets

    NASA Astrophysics Data System (ADS)

    Teske, Johanna K.; Cunha, Katia; Smith, Verne V.; Schuler, Simon C.; Griffith, Caitlin A.

    2014-06-01

    The relative abundances of carbon and oxygen have long been recognized as fundamental diagnostics of stellar chemical evolution. Now, the growing number of exoplanet observations enable estimation of these elements in exoplanetary atmospheres. In hot Jupiters, the C/O ratio affects the partitioning of carbon in the major observable molecules, making these elements diagnostic of temperature structure and composition. Here we present measurements of carbon and oxygen abundances in 16 stars that host transiting hot Jupiter exoplanets, and we compare our C/O ratios to those measured in larger samples of host stars, as well as those estimated for the corresponding exoplanet atmospheres. With standard stellar abundance analysis we derive stellar parameters as well as [C/H] and [O/H] from multiple abundance indicators, including synthesis fitting of the [O I] λ6300 line and non-LTE corrections for the O I triplet. Our results, in agreement with recent suggestions, indicate that previously measured exoplanet host star C/O ratios may have been overestimated. The mean transiting exoplanet host star C/O ratio from this sample is 0.54 (C/O⊙ = 0.54), versus previously measured C/Ohost star means of ~0.65-0.75. We also observe the increase in C/O with [Fe/H] expected for all stars based on Galactic chemical evolution; a linear fit to our results falls slightly below that of other exoplanet host star studies but has a similar slope. Though the C/O ratios of even the most-observed exoplanets are still uncertain, the more precise abundance analysis possible right now for their host stars can help constrain these planets' formation environments and current compositions. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California

  1. Performance of a tandem-rotor/tandem-stator conical-flow compressor designed for a pressure ratio of 3

    NASA Technical Reports Server (NTRS)

    Wood, J. R.; Owen, A. K.; Schumann, L. F.

    1982-01-01

    A conical-flow compressor stage with a large radius change through the rotor was tested at three values of rotor tip clearance. The stage had a tandem rotor and a tandem stator. Peak efficiency at design speed was 0.774 at a pressure ratio of 2.613. The rotor was tested without the stator, and detailed survey data were obtained for each rotor blade row. Overall peak rotor efficiency was 0.871 at a pressure ratio of 2.952.

  2. Gas emission strength and evolution of the molar ratio of BrO/SO2 in the plume of Nyiragongo in comparison to Etna

    NASA Astrophysics Data System (ADS)

    Bobrowski, N.; von Glasow, R.; Giuffrida, G. B.; Tedesco, D.; Aiuppa, A.; Yalire, M.; Arellano, S.; Johansson, M.; Galle, B.

    2015-01-01

    Airborne and ground-based differential optical absorption spectroscopy observations have been carried out at the volcano Nyiragongo (Democratic Republic of Congo) to measure SO2 and bromine monoxide (BrO) in the plume in March 2004 and June 2007, respectively. Additionally filter pack and multicomponent gas analyzer system (Multi-GAS) measurements were carried out in June 2007. Our measurements provide valuable information on the chemical composition of the volcanic plume emitted from the lava lake of Nyiragongo. The main interest of this study has been to investigate for the first time the bromine emission flux of Nyiragongo (a rift volcano) and the BrO formation in its volcanic plume. Measurement data and results from a numerical model of the evolution of BrO in Nyiragongo volcanic plume are compared with earlier studies of the volcanic plume of Etna (Italy). Even though the bromine flux from Nyiragongo (2.6 t/d) is slightly greater than that from Etna (1.9 t/d), the BrO/SO2 ratio (maximum 7 × 10-5) is smaller than in the plume of Etna (maximum 2.1 × 10-4). A one-dimensional photochemical model to investigate halogen chemistry in the volcanic plumes of Etna and Nyiragongo was initialized using data from Multi-GAS and filter pack measurements. Model runs showed that the differences in the composition of volcanic volatiles led to a smaller fraction of total bromine being present as BrO in the Nyiragongo plume and to a smaller BrO/SO2 ratio.

  3. Symmetry-breaking Hopf bifurcations to 1-, 2-, and 3-tori in small-aspect-ratio counterrotating Taylor-Couette flow.

    PubMed

    Altmeyer, S; Do, Y; Marques, F; Lopez, J M

    2012-10-01

    The nonlinear dynamics of Taylor-Couette flow in a small-aspect-ratio wide-gap annulus in the counterrotating regime is investigated by solving the full three-dimensional Navier-Stokes equations. The system is invariant under arbitrary rotations about the axis, reflection about the annulus midplane, and time translations. A systematic investigation is presented both in terms of the flow physics elucidated from the numerical simulations and from a dynamical system perspective provided by equivariant normal form theory. The dynamics are primarily associated with the behavior of the jet of angular momentum that emerges from the inner cylinder boundary layer at about the midplane. The sequence of bifurcations as the differential rotation is increased consists of an axisymmetric Hopf bifurcation breaking the reflection symmetry of the basic state leading to an axisymmetric limit cycle with a half-period-flip spatiotemporal symmetry. This undergoes a Hopf bifurcation breaking axisymmetry, leading to quasiperiodic solutions evolving on a 2-torus that is setwise symmetric. These undergo a further Hopf bifurcation, introducing a third incommensurate frequency leading to a 3-torus that is also setwise symmetric. On the 3-torus, as the differential rotation is further increased, a saddle-node-invariant-circle bifurcation takes place, destroying the 3-torus and leaving a pair of symmetrically related 2-tori states on which all symmetries of the system have been broken.

  4. Study of low resistivity and high work function ITO films prepared by oxygen flow rates and N2O plasma treatment for amorphous/crystalline silicon heterojunction solar cells.

    PubMed

    Hussain, Shahzada Qamar; Oh, Woong-Kyo; Kim, Sunbo; Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Lee, Youngseok; Dao, Vinh Ai; Velumani, S; Yi, Junsin

    2014-12-01

    Pulsed DC magnetron sputtered indium tin oxide (ITO) films deposited on glass substrates with lowest resistivity of 2.62 x 10(-4) Ω x cm and high transmittance of about 89% in the visible wavelength region. We report the enhancement of ITO work function (Φ(ITO)) by the variation of oxygen (O2) flow rate and N2O surface plasma treatment. The Φ(ITO) increased from 4.43 to 4.56 eV with the increase in O2 flow rate from 0 to 4 sccm while surface treatment of N2O plasma further enhanced the ITO work function to 4.65 eV. The crystallinity of the ITO films improved with increasing O2 flow rate, as revealed by XRD analysis. The ITO work function was increased by the interfacial dipole resulting from the surface rich in O- ions and by the dipole moment formed at the ITO surface during N2O plasma treatment. The ITO films with high work functions can be used to modify the front barrier height in heterojunction with intrinsic thin layer (HIT) solar cells.

  5. Optimization of NO oxidation by H2O2 thermal decomposition at moderate temperatures.

    PubMed

    Zhao, Hai-Qian; Wang, Zhong-Hua; Gao, Xing-Cun; Liu, Cheng-Hao; Qi, Han-Bing

    2018-01-01

    H2O2 was adopted to oxidize NO in simulated flue gas at 100-500°C. The effects of the H2O2 evaporation conditions, gas temperature, initial NO concentration, H2O2 concentration, and H2O2:NO molar ratio on the oxidation efficiency of NO were investigated. The reason for the narrow NO oxidation temperature range near 500°C was determined. The NO oxidation products were analyzed. The removal of NOx using NaOH solution at a moderate oxidation ratio was studied. It was proven that rapid evaporation of the H2O2 solution was critical to increase the NO oxidation efficiency and broaden the oxidation temperature range. the NO oxidation efficiency was above 50% at 300-500°C by contacting the outlet of the syringe needle and the stainless-steel gas pipe together to spread H2O2 solution into a thin film on the surface of the stainless-steel gas pipe, which greatly accelerated the evaporation of H2O2. The NO oxidation efficiency and the NO oxidation rate increased with increasing initial NO concentration. This method was more effective for the oxidation of NO at high concentrations. H2O2 solution with a concentration higher than 15% was more efficient in oxidizing NO. High temperatures decreased the influence of the H2O2 concentration on the NO oxidation efficiency. The oxidation efficiency of NO increased with an increase in the H2O2:NO molar ratio, but the ratio of H2O2 to oxidized NO decreased. Over 80% of the NO oxidation product was NO2, which indicated that the oxidation ratio of NO did not need to be very high. An 86.7% NO removal efficiency was obtained at an oxidation ratio of only 53.8% when combined with alkali absorption.

  6. Optimization of NO oxidation by H2O2 thermal decomposition at moderate temperatures

    PubMed Central

    Wang, Zhong-hua; Gao, Xing-cun; Liu, Cheng-hao; Qi, Han-bing

    2018-01-01

    H2O2 was adopted to oxidize NO in simulated flue gas at 100–500°C. The effects of the H2O2 evaporation conditions, gas temperature, initial NO concentration, H2O2 concentration, and H2O2:NO molar ratio on the oxidation efficiency of NO were investigated. The reason for the narrow NO oxidation temperature range near 500°C was determined. The NO oxidation products were analyzed. The removal of NOx using NaOH solution at a moderate oxidation ratio was studied. It was proven that rapid evaporation of the H2O2 solution was critical to increase the NO oxidation efficiency and broaden the oxidation temperature range. the NO oxidation efficiency was above 50% at 300–500°C by contacting the outlet of the syringe needle and the stainless-steel gas pipe together to spread H2O2 solution into a thin film on the surface of the stainless-steel gas pipe, which greatly accelerated the evaporation of H2O2. The NO oxidation efficiency and the NO oxidation rate increased with increasing initial NO concentration. This method was more effective for the oxidation of NO at high concentrations. H2O2 solution with a concentration higher than 15% was more efficient in oxidizing NO. High temperatures decreased the influence of the H2O2 concentration on the NO oxidation efficiency. The oxidation efficiency of NO increased with an increase in the H2O2:NO molar ratio, but the ratio of H2O2 to oxidized NO decreased. Over 80% of the NO oxidation product was NO2, which indicated that the oxidation ratio of NO did not need to be very high. An 86.7% NO removal efficiency was obtained at an oxidation ratio of only 53.8% when combined with alkali absorption. PMID:29668672

  7. Optimisation of asymmetric flow field-flow fractionation for the characterisation of nanoparticles in coated polydisperse TiO2 with applications in food and feed.

    PubMed

    Omar, J; Boix, A; Kerckhove, G; von Holst, C

    2016-12-01

    Titanium dioxide (TiO 2 ) has various applications in consumer products and is also used as an additive in food and feeding stuffs. For the characterisation of this product, including the determination of nanoparticles, there is a strong need for the availability of corresponding methods of analysis. This paper presents an optimisation process for the characterisation of polydisperse-coated TiO 2 nanoparticles. As a first step, probe ultrasonication was optimised using a central composite design in which the amplitude and time were the selected variables to disperse, i.e., to break up agglomerates and/or aggregates of the material. The results showed that high amplitudes (60%) favoured a better dispersion and time was fixed in mid-values (5 min). In a next step, key factors of asymmetric flow field-flow fraction (AF4), namely cross-flow (CF), detector flow (DF), exponential decay of the cross-flow (CF exp ) and focus time (Ft), were studied through experimental design. Firstly, a full-factorial design was employed to establish the statistically significant factors (p < 0.05). Then, the information obtained from the full-factorial design was utilised by applying a central composite design to obtain the following optimum conditions of the system: CF, 1.6 ml min -1 ; DF, 0.4 ml min -1 ; Ft, 5 min; and CF exp , 0.6. Once the optimum conditions were obtained, the stability of the dispersed sample was measured for 24 h by analysing 10 replicates with AF4 in order to assess the performance of the optimised dispersion protocol. Finally, the recovery of the optimised method, particle shape and particle size distribution were estimated.

  8. Optimisation of asymmetric flow field-flow fractionation for the characterisation of nanoparticles in coated polydisperse TiO2 with applications in food and feed

    PubMed Central

    Omar, J.; Boix, A.; Kerckhove, G.; von Holst, C.

    2016-01-01

    ABSTRACT Titanium dioxide (TiO2) has various applications in consumer products and is also used as an additive in food and feeding stuffs. For the characterisation of this product, including the determination of nanoparticles, there is a strong need for the availability of corresponding methods of analysis. This paper presents an optimisation process for the characterisation of polydisperse-coated TiO2 nanoparticles. As a first step, probe ultrasonication was optimised using a central composite design in which the amplitude and time were the selected variables to disperse, i.e., to break up agglomerates and/or aggregates of the material. The results showed that high amplitudes (60%) favoured a better dispersion and time was fixed in mid-values (5 min). In a next step, key factors of asymmetric flow field-flow fraction (AF4), namely cross-flow (CF), detector flow (DF), exponential decay of the cross-flow (CFexp) and focus time (Ft), were studied through experimental design. Firstly, a full-factorial design was employed to establish the statistically significant factors (p < 0.05). Then, the information obtained from the full-factorial design was utilised by applying a central composite design to obtain the following optimum conditions of the system: CF, 1.6 ml min–1; DF, 0.4 ml min–1; Ft, 5 min; and CFexp, 0.6. Once the optimum conditions were obtained, the stability of the dispersed sample was measured for 24 h by analysing 10 replicates with AF4 in order to assess the performance of the optimised dispersion protocol. Finally, the recovery of the optimised method, particle shape and particle size distribution were estimated. PMID:27650879

  9. Crystal structures of Ca(ClO4)2·4H2O and Ca(ClO4)2·6H2O

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    The title compounds, calcium perchlorate tetra­hydrate and calcium perchlorate hexa­hydrate, were crystallized at low temperatures according to the solid–liquid phase diagram. The structure of the tetra­hydrate consists of one Ca2+ cation eightfold coordinated in a square-anti­prismatic fashion by four water mol­ecules and four O atoms of four perchlorate tetra­hedra, forming chains parallel to [01-1] by sharing corners of the ClO4 tetra­hedra. The structure of the hexa­hydrate contains two different Ca2+ cations, each coordinated by six water mol­ecules and two O atoms of two perchlorate tetra­hedra, forming [Ca(H2O)6(ClO4)]2 dimers by sharing two ClO4 tetra­hedra. The dimers are arranged in sheets parallel (001) and alternate with layers of non-coordinating ClO4 tetra­hedra. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ClO4 tetra­hedra and water mol­ecules as acceptor groups lead to the formation of a three-dimensional network in the two structures. Ca(ClO4)2·6H2O was refined as a two-component inversion twin, with an approximate twin component ratio of 1:1 in each of the two structures. PMID:25552974

  10. Determination of K-shell absorption jump factors and jump ratios for La2O3, Ce and Gd using two different methods

    NASA Astrophysics Data System (ADS)

    Akman, Ferdi; Durak, Rıdvan; Kaçal, Mustafa Recep; Turhan, Mehmet Fatih; Akdemir, Fatma

    2015-02-01

    The K shell absorption jump factors and jump ratios for La2O3, Ce and Gd samples have been determined using the gamma or X-ray attenuation and EDXRF methods. It is the first time that the K shell absorption jump factor and jump ratio have been discussed for present elements using two different methods. To detect K X-rays, a high resolution Si(Li) detector was used. The experimental results of K shell absorption jump factors and jump ratios were compared with the theoretically calculated ones.

  11. Biofilm development during the start-up of a sulfate-reducing down-flow fluidized bed reactor at different COD/SO4(2-) ratios and HRT.

    PubMed

    Piña-Salazar, E Z; Cervantes, F J; Meraz, M; Celis, L B

    2011-01-01

    In sulfate-reducing reactors, it has been reported that the sulfate removal efficiency increases when the COD/SO4(2-) ratio is increased. The start-up of a down-flow fluidized bed reactor constitutes an important step to establish a microbial community in the biofilm able to survive under the operational bioreactor conditions in order to achieve effective removal of both sulfate and organic matter. In this work the influence of COD/SO4(2-) ratio and HRT in the development of a biofilm during reactor start-up (35 days) was studied. The reactor was inoculated with 1.6 g VSS/L of granular sludge, ground low density polyethylene was used as support material; the feed consisted of mineral medium at pH 5.5 containing 1 g COD/L (acetate:lactate, 70:30) and sodium sulfate. Four experiments were conducted at HRT of 1 or 2 days and COD/SO4(2-) ratio of 0.67 or 2.5. The results obtained indicated that a COD/SO4(2-) ratio of 2.5 and HRT 2 days allowed high sulfate and COD removal (66.1 and 69.8%, respectively), whereas maximum amount of attached biomass (1.9 g SVI/L support) and highest sulfate reducing biofilm activity (10.1 g COD-H2S/g VSS-d) was achieved at HRT of 1 day and at COD/sulfate ratios of 0.67 and 2.5, respectively, which suggests that suspended biomass also played a key role in the performance of the reactors.

  12. Fourier Transform IR Spectroscopic Study of Nano-ZrO2 + Nano-SiO2 + Nano-H2O Systems Upon the Action of Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Agayev, T. N.; Gadzhieva, N. N.; Melikova, S. Z.

    2018-05-01

    The radiation decomposition of water in a nano-ZrO2 + nano-SiO2 + H2O system at 300 K by the action of gamma radiation has been studied by Fourier transform IR spectroscopy. Water adsorption in the zirconium and silicon nanooxides is attributed to molecular and dissociative mechanisms. Active intermediates in this radiation-induced heterogeneous decomposition of water were detected including zirconium and silicon hydrides and hydroxyl groups. Variation in the ratio of ZrO2 and SiO2 nanopowders was shown to lead to change in their radiation catalytic activity compared to initial ZrO2.

  13. Are dual isotope and isotopomer ratios of N2O useful indicators for N2O turnover during denitrification in nitrate-contaminated aquifers?

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Eschenbach, Wolfram; Flessa, Heinz; von der Heide, Carolin; Weymann, Daniel

    2012-08-01

    Denitrifying aquifers are sources of the greenhouse gas N2O. Isotopic signatures reflect processes of production and reduction of N2O, but it is not clear to which extent these can be used to quantify those processes. We investigated the spatial distribution of isotopologue values of N2O (δ18O, average δ15N, and 15N site preference, SP) in two denitrifying sandy aquifers to study N2O production and reduction and associated isotope effects in groundwater. For the first time, we combined this approach with direct estimation of N2O reduction from excess-N2 analysis. Groundwater samples were collected from 15 monitoring wells and four multilevel sampling wells and analysed for NO3-, dissolved N2O, dissolved O2, excess N2 from denitrification and isotopic signatures of NO3- and N2O. Both aquifers exhibited high NO3- concentrations with average concentrations of 22 and 15 mg N L-1, respectively. Evidence of intense denitrification with associated N2O formation was obtained from mean excess-N2 of 3.5 and 4.3 mg N L-1, respectively. Isotopic signatures of N2O were highly variable with ranges of 17.6-113.2‰ (δ18O), -55.4 to 89.4‰ (δ15Nbulk) and 1.8-97.9‰ (SP). δ15N and δ18O of NO3- ranged from -2.1‰ to 65.5‰ and from -5‰ to 33.5‰, respectively. The relationships between δ15N of NO3-, δ15Nbulk and SP were not in good agreement with the distribution predicted by a Rayleigh-model of isotope fractionation. The large ranges of δ18O and SP of N2O as well as the close correlation between these values could be explained by the fact that N2O reduction to N2 was strongly progressed but variable. We confirm and explain that a large range in SP and δ18O is typical for N2O from denitrifying aquifers, showing that this source signature can be distinguished from the isotopic fingerprint of N2O emitted from soils without water-logging. We conclude that isotopologue values of N2O in our sites were not suitable to quantify production or reduction of N2O or the

  14. Influence of the Organic Species and Oxoanion in the Synthesis of two Uranyl Sulfate Hydrates, (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 ­(H 2 O)]·7H 2 O and (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 (H 2 O)]·4H 2 O, and a Uranyl Selenate-Selenite [C 5 H 6 N][(UO 2 )(SeO 4 )(HSeO 3 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2012-08-08

    Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less

  15. Microwave synthesis and photocatalytic activities of ZnO bipods with different aspect ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Fazhe; Zhao, Zengdian; Qiao, Xueliang, E-mail: xuelqiao@163.com

    2016-02-15

    Highlights: • We synthesized linked ZnO nanorods by a facile microwave method. • The effect of reaction parameters on ZnO was investigated. • ZnO bipods with different aspect ratios were prepared. • The photocatalytic performance of ZnO bipods was evaluated. - Abstract: Linked ZnO nanorods have been successfully prepared via a facile microwave method without any post-synthesis treatment. The X-ray diffraction (XRD) patterns indicated the precursor had completely transformed into the pure ZnO crystal. The images of field emitting scanning electron microscope (FESEM) and transmission electron microscope (TEM) showed that linked ZnO nanorods consisted predominantly of ZnO bipods. The formationmore » process of the ZnO bipods was clearly discussed. ZnO bipods with different aspect ratios have been obtained by tuning the concentrations of reagents and microwave power. Moreover, the photocatalytic performance of ZnO bipods with different aspect ratios for degradation of methylene blue was systematically evaluated. The results of photocatalytic experiments showed that the photocatalytic activity increased with the aspect ratios of ZnO bipods increased. The reason is that ZnO bipods with larger aspect ratio have higher surface area, which can absorb more MB molecules to react with ·OH radicals.« less

  16. Steady-state studies of the reactions of H2O-CO and CO2-H2 mixtures with liquid iron

    NASA Astrophysics Data System (ADS)

    Sasaki, Y.; Belton, G. R.

    1998-08-01

    Studies have been made of the steady-stata composition of liquid iron exposed to high flow rates of H2O-CO mixtures at 1550 °C to 1700 °C and CO2-H2 mixtures at 1600 °C. Values of the steady-state activity of oxygen have been established by measurement of either the carbon concentration or the silicon concentration when the iron was held in a silica crucible. Additions of sulfur or selenium to the iron have been found to result in steady-state oxygen activities, which differ significantly from those expected from water-gas equilibrium. The results are interpreted to show that the ratio of the apparent first-order rate constants for the reactions of H2O and CO2 with liquid iron is about 3 at 1600 °C. It is shown that the dependencies of the rate constants on the activities of sulfur, oxygen, and selenium must, even if complex, be similar for the H2O and CO2 reactions with liquid iron, to a good approximation.

  17. Performance of 1.15-pressure-ratio fan stage at several rotor blade setting angles with reverse flow

    NASA Technical Reports Server (NTRS)

    Kovich, G.; Moore, R. D.

    1976-01-01

    A 51 cm diameter low pressure ratio fan stage was tested in reverse flow. Survey flow data were taken over the range of rotative speed from 50 percent to 100 percent design speed at several rotor blade setting angles through both flat and feather pitch. Normal flow design values of pressure ratio and weight flow were 1.15 and 29.9 kg/sec with a rotor tip speed of 243.8 m/sec. The maximum thrust in reverse flow was 52.5 percent of design thrust in normal flow.

  18. Collective Flows of 16O+16O Collisions with α-Clustering Configurations

    NASA Astrophysics Data System (ADS)

    Guo, Chen-Chen; He, Wan-Bing; Ma, Yu-Gang

    2017-08-01

    The main purpose of the present paper is to discuss whether or not the collective flows in heavy-ion collision at Fermi energy can be taken as a tool to investigate the cluster configuration in light nuclei. In practice, within an Extended Quantum Molecular Dynamics model, four $\\alpha$-clustering (linear chain, kite, square, and tetrahedron) configurations of $^{16}$O are employed in the initialization, $^{16}$O+$^{16}$O around Fermi energy (40 - 60 MeV$/$nucleon) with impact parameter 1 - 3 fm are simulated, the directed and elliptic flows are analyzed. It is found that collective flows are influenced by the different $\\alpha$-clustering configurations, and the directed flow of free protons is more sensitive to the initial cluster configuration than the elliptic flow. Nuclear reaction at Fermi energy can be taken a useful way to study cluster configuration in light nuclei.

  19. Effect of Na2SiO3/NaOH on mechanical properties and microstructure of geopolymer mortar using fly ash and rice husk ash as precursor

    NASA Astrophysics Data System (ADS)

    Saloma, Hanafiah, Elysandi, Debby Orjina; Meykan, Della Garnesia

    2017-11-01

    Geopolymer concrete is an eco-friendly concrete that can reduce carbon emissions on the earth surface because it used industrial waste material such as fly ash, rice husk ash, bagasse ash, and palm oil fuel. Geopolymer is semi-crystalline amorphous materials which has irregular chemical bonds structure. The material is produced by geosynthesis of aluminosilicates and alkali-silicates which produce the Si-O-Al polymer structure. This research used the ratio of fly ash and rice husk ash as precursors e.g. 100:0, 75:25, 50:50, and 25:75. NaOH solutions of 14 M and Na2SiO3 solutions with the variation e.g. 2.5, 2.75, 3.00, and 3.25 were used as activators on mortar geopolymer mixture. The tests of fresh mortar were slump flow and setting time. The optimum compressive strength is 68.36 MPa for 28 days resulted from mixture using 100% fly ash and Na2SiO3 and NaOH with ratio 2.75. The largest value of slump flow test resulted from mixture using Na2SiO3 and NaOH with ratio 2.50 is 17.25 cm. Based on SEM test results, mortar geopolymer microstructure with mixture RHA 0% has less pores and denser CSH structure.

  20. Improvement of performance in low temperature solid oxide fuel cells operated on ethanol and air mixtures using Cu-ZnO-Al2O3 catalyst layer

    NASA Astrophysics Data System (ADS)

    Morales, M.; Espiell, F.; Segarra, M.

    2015-10-01

    Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.

  1. Thermal and fragility studies on microwave synthesized K2O-B2O3-V2O5 glasses

    NASA Astrophysics Data System (ADS)

    Harikamalasree, Reddy, M. Sudhakara; Viswanatha, R.; Reddy, C. Narayana

    2016-05-01

    Glasses with composition xK2O-60B2O3-(40-x) V2O5 (15 ≤ x ≤ 39 mol %) was prepared by an energy efficient microwave method. The heat capacity change (ΔCp) at glass transition (Tg), width of glass transition (ΔTg), heat capacities in the glassy (Cpg) and liquid (Cpl) state for the investigated glasses were extracted from Modulated Differential Scanning Calorimetry (MDSC) thermograms. The width of glass transition is less than 30°C, indicating that these glasses belongs to fragile category. Fragility functions [NBO]/(Vm3Tg) and (ΔCp/Cpl)increases with increasing modifier oxide concentration. Increase in fragility is attributed to the increasing coordination of boron. Further, addition of K2O creates NBOs and the flow mechanism involves bond switching between BOs and NBOs. Physical properties exhibit compositional dependence and these properties increase with increasing K2O concentration. The observed variations are qualitatively analyzed.

  2. Isotopomer analysis of production and consumption mechanisms of N2O and CH4 in an advanced wastewater treatment system.

    PubMed

    Toyoda, Sakae; Suzuki, Yuuri; Hattori, Shohei; Yamada, Keita; Fujii, Ayako; Yoshida, Naohiro; Kouno, Rina; Murayama, Kouki; Shiomi, Hiroshi

    2011-02-01

    Wastewater treatment processes are believed to be anthropogenic sources of nitrous oxide (N(2)O) and methane (CH(4)). However, few studies have examined the mechanisms and controlling factors in production of these greenhouse gases in complex bacterial systems. To elucidate production and consumption mechanisms of N(2)O and CH(4) in microbial consortia during wastewater treatment and to characterize human waste sources, we measured their concentrations and isotopomer ratios (elemental isotope ratios and site-specific N isotope ratios in asymmetric molecules of NNO) in water and gas samples collected by an advanced treatment system in Tokyo. Although the estimated emissions of N(2)O and CH(4) from the system were found to be lower than those from the typical treatment systems reported before, water in biological reaction tanks was supersaturated with both gases. The concentration of N(2)O, produced mainly by nitrifier-denitrification as indicated by isotopomer ratios, was highest in the oxic tank (ca. 4000% saturation). The dissolved CH(4) concentration was highest in in-flow water (ca. 3000% saturation). It decreased gradually during treatment. Its carbon isotope ratio indicated that the decrease resulted from bacterial CH(4) oxidation and that microbial CH(4) production can occur in anaerobic and settling tanks.

  3. Efficient H2O2/CH3COOH oxidative desulfurization/denitrification of liquid fuels in sonochemical flow-reactors.

    PubMed

    Calcio Gaudino, Emanuela; Carnaroglio, Diego; Boffa, Luisa; Cravotto, Giancarlo; Moreira, Elizabeth M; Nunes, Matheus A G; Dressler, Valderi L; Flores, Erico M M

    2014-01-01

    The oxidative desulfurization/denitrification of liquid fuels has been widely investigated as an alternative or complement to common catalytic hydrorefining. In this process, all oxidation reactions occur in the heterogeneous phase (the oil and the polar phase containing the oxidant) and therefore the optimization of mass and heat transfer is of crucial importance to enhancing the oxidation rate. This goal can be achieved by performing the reaction in suitable ultrasound (US) reactors. In fact, flow and loop US reactors stand out above classic batch US reactors thanks to their greater efficiency and flexibility as well as lower energy consumption. This paper describes an efficient sonochemical oxidation with H2O2/CH3COOH at flow rates ranging from 60 to 800 ml/min of both a model compound, dibenzotiophene (DBT), and of a mild hydro-treated diesel feedstock. Four different commercially available US loop reactors (single and multi-probe) were tested, two of which were developed in the authors' laboratory. Full DBT oxidation and efficient diesel feedstock desulfurization/denitrification were observed after the separation of the polar oxidized S/N-containing compounds (S≤5 ppmw, N≤1 ppmw). Our studies confirm that high-throughput US applications benefit greatly from flow-reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Thermodynamics Behavior of Germanium During Equilibrium Reactions between FeOx-CaO-SiO2-MgO Slag and Molten Copper

    NASA Astrophysics Data System (ADS)

    Shuva, M. A. H.; Rhamdhani, M. A.; Brooks, G. A.; Masood, S.; Reuter, M. A.

    2016-10-01

    The distribution ratio of germanium (Ge), L_{{Ge}}^{s/m} during equilibrium reactions between magnesia-saturated FeOx-CaO-SiO2 (FCS) slag and molten copper has been measured under oxygen partial pressures from 10-10 to 10-7 atm and at temperatures 1473 to 1623 K (1200 to 1350 °C). It was observed that the Ge distribution ratio increases with increasing oxygen partial pressure, and with decreasing temperature. It was also observed that the distribution ratio is strongly dependent on slag basicity. The distribution ratio was observed to increase with increasing optical basicity. At fixed CaO concentration in the slag, the distribution ratio was found to increase with increasing Fe/SiO2 ratio, tending to a plateau at L_{{Ge}}^{s/m} = 0.8. This behavior is consistent with the assessment of ionic bond fraction carried out in this study, and suggested the acidic nature of germanium oxide (GeO2) in the slag system studied. The characterisation results of the quenched slag suggested that Ge is present in the FeOx-CaO-SiO2-MgO slag predominantly as GeO2. At 1573 K (1300 °C) and p_{{{{O}}2 }} = 10-8 atm, the activity coefficient of GeO2 in the slag was calculated to be in the range of 0.24 to 1.50. The results from the current study suggested that less-basic slag, high operating temperature, and low oxygen partial pressure promote a low Ge distribution ratio. These conditions are desired for maximizing Ge recovery, for example, during pyrometallurgical processing of Ge-containing e-waste through secondary copper smelting. Overall, the thermodynamics data generated from this study can be used for process modeling purposes for improving recovery of Ge in primary and secondary copper smelting processes.

  5. Development of a TDLAS sensor for temperature and concentration of H2 O in high speed and high temperature flows

    NASA Astrophysics Data System (ADS)

    Sheehe, Suzanne; O'Byrne, Sean

    2017-06-01

    The development of a sensor for simultaneous temperature concentration of H2 O and temperature in high speed flows is presented. H2 O is a desirable target sensing species because it is a primary product in combustion systems; both temperature and concentration profiles can be used to assess both the extent of the combustion and the flow field characteristics. Accurate measurements are therefore highly desirable. The sensor uses a vertical-cavity surface emitting laser (VCSEL) scanned at 50 kHz from 7172 to 7186 cm-1. Temperatures and concentrations are extracted from the spectra by fitting theoretical spectra to the experimental data. The theoretical spectra are generated using GENSPECT in conjunction with line parameters from the HITRAN 2012 database. To validate the theoretical spectra, experimental spectra of H2 O were obtained at known temperatures (290-550 K) and pressures (30 torr) in a heated static gas cell. The results show that some theoretical lines deviate from the experimental lines. New line-strengths are calculated assuming that the line assignments and broadening parameters in HITRAN are correct. This data is essential for accurate H2 O concentration and temperature measurements at low pressure and high temperature conditions. US Air Force Asian Office of Aerospace Research and Development Grant FA2386-16-1-4092.

  6. Evaluation of the 34S/32S ratio of Soufre de Lacq elemental sulfur isotopic reference material by continuous flow isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Qi, H.P.; Coplen, T.B.

    2003-01-01

    Soufre de Lacq elemental sulfur reference material (IAEA-S-4) isotopically is homogeneous in amounts as small as 41 ??g as determined by continuous flow isotope-ratio mass spectrometry. The ??34S value for this reference material is +16.90 ?? 0.12??? (1??) on a scale (Vienna Can??on Diablo troilite, VCDT) where IAEA-S-1 Ag2S is -0.3??? and IAEA-S-2 Ag2S is +22.67???. Published by Elsevier Science B.V.

  7. Investigation of luminescence and laser transition of Dy3+ ion in P2O5sbnd PbOsbnd Bi2O3sbnd R2O3 (R = Al, Ga, In) glasses

    NASA Astrophysics Data System (ADS)

    Ram, G. Chinna; Narendrudu, T.; Suresh, S.; Kumar, A. Suneel; Rao, M. V. Sambasiva; Kumar, V. Ravi; Rao, D. Krishna

    2017-04-01

    P2O5sbnd PbOsbnd Bi2O3sbnd R2O3 (R = Al, Ga, In) glasses doped with Dy2O3 were prepared by melt quenching technique. The prepared glasses were characterized by XRD, optical absorption, FTIR, luminescence studies. Judd-Ofelt parameters have been evaluated for three glass systems from optical absorption spectra and in turn radiative parameters for excited luminescent levels of Dy3+ ion are also calculated. Emission cross section and branching ratio values are observed to high for 6H13/2 level for Dy3+ ion. The yellow to blue intensity ratios and CIE chromaticity coordinates were calculated. Decay curves exhibit non exponential behavior. Quantum efficiency of prepared glasses was measured by using radiative and calculated life times. IR studies, J-O parameters and Y/B ratio values indicate that more asymmetry around Dy3+ ions in Ga2O3 mixed glass was observed. Chromaticity coordinates lie near ideal white light region. These coordinates and CCT values have revealed that all the prepared glasses emit quality white light especially the glasses mixed with Ga2O3 are suitable for development of white LEDs.

  8. Structural characterization of hydrothermally synthesized MnO2 nanorods

    NASA Astrophysics Data System (ADS)

    A'yuni, D. Q.; Alkian, I.; Sya'diyah, F. K.; Kadarisman; Darari, A.; Gunawan, V.; Subagio, A.

    2017-11-01

    We prepared the hydrothermal method to synthesize MnO2 nanorods with controlled structure. KMnO4 and HCl with the various molar ratio (1:2,1:6,1:8) reacted at 160°C for three hours to form MnO2 nanorods. The study found that changing the molar ratio can control the structure and morphology of MnO2. The result revealed that MnO2 formed in nanorod microstructures with different crystallographic structure and phase composition of each molar ratio. The diffraction peaks observed at 2θ values of 28.9°, 37.8°, 40.9°, 49.7° and 60.5° respectively indexed to (110), (101), (200), (411) and (521) plane reflections of a tetragonal phase of β-MnO2 and α-MnO2. The characterization of the morphology showed that the diameters of nanorod microstructures of MnO2 ranging from 30 to 145 nm with length ranging from 0.5 to 3 μm. These MnO2 nanorods product would be potentially used in energy storage devices.

  9. Exploring the 13CO/C18O abundance ratio towards Galactic young stellar objects and HII regions

    NASA Astrophysics Data System (ADS)

    Areal, M. B.; Paron, S.; Celis Peña, M.; Ortega, M. E.

    2018-05-01

    Aims: Determining molecular abundance ratios is important not only for the study of Galactic chemistry, but also because they are useful to estimate physical parameters in a large variety of interstellar medium environments. One of the most important molecules for tracing the molecular gas in the interstellar medium is CO, and the 13CO/C18O abundance ratio is usually used to estimate molecular masses and densities of regions with moderate to high densities. Nowadays isotope ratios are in general indirectly derived from elemental abundances ratios. We present the first 13CO/C18O abundance ratio study performed from CO isotope observations towards a large sample of Galactic sources of different natures at different locations. Methods: To study the 13CO/C18O abundance ratio, we used 12CO J = 3 - 2 data obtained from the CO High-Resolution Survey, 13CO and C18O J = 3 - 2 data from the 13CO/C18O (J = 3 - 2) Heterodyne Inner Milky Way Plane Survey, and some complementary data extracted from the James Clerk Maxwell Telescope database. We analyzed a sample of 198 sources composed of young stellar objects (YSOs), and HII and diffuse HII regions as catalogued in the Red MSX Source Survey in 27.°5 ≤ l ≤ 46.°5 and |b|0.°5. Results: Most of the analyzed sources are located in the galactocentric distance range 4.0-6.5 kpc. We found that YSOs have, on average, lower 13CO/C18O abundance ratios than HII and diffuse HII regions. Taking into account that the gas associated with YSOs should be less affected by the radiation than in the case of the others sources, selective far-UV photodissociation of C18O is confirmed. The 13CO/C18O abundance ratios obtained in this work are systematically lower than those predicted from the known elemental abundance relations. These results will be useful in future studies of molecular gas related to YSOs and HII regions based on the observation of these isotopes.

  10. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion.

    PubMed

    Zhang, Zhiping; Sun, Weikang; Liu, Hongfei; Xie, Guanhua; Chen, Xiaobing; Zeng, Xianghua

    2017-01-01

    Zr 2 WP 2 O 12 /ZrO 2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr 2 WP 2 O 12 /ZrO 2 composites with different mass ratio. Relative densities of all the resulting Zr 2 WP 2 O 12 /ZrO 2 samples were also tested by Archimedes' methods. The obtained Zr 2 WP 2 O 12 /ZrO 2 composites were comprised of orthorhombic Zr 2 WP 2 O 12 and monoclinic ZrO 2 . As the increase of the Zr 2 WP 2 O 12 , the relative densities of Zr 2 WP 2 O 12 /ZrO 2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr 2 WP 2 O 12 /ZrO 2 composites can be tailored from 4.1 × 10 -6 K -1 to -3.3 × 10 -6 K -1 by changing the content of Zr 2 WP 2 O 12 . The 2:1 Zr 2 WP 2 O 12 /ZrO 2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of -0.09 × 10 -6 K -1 . These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  11. The relationship of coronary flow to neutrophil/lymphocyte ratio in patients undergoing primary percutaneous coronary intervention

    PubMed Central

    Yuksel, Serkan; Gulel, Okan; Erbay, Ali Riza; Meric, Murat; Zengin, Halit; Museyibov, Muhtar; Yasar, Erdogan; Demircan, Sabri

    2013-01-01

    Purpose It has been known that inflammatory mechanisms play an important role in the coronary artery disease. Our aim in this study was to investigate the relationship between the neutrophil/lymphocyte (N/L) ratio and coronary flow velocity after primary percutaneous coronary intervention (PCI) in patients presenting with ST-segment elevation myocardial infarction (STEMI). Methods Two hundred and ten patients who had undergone primary PCI were included. The coronary flow velocities were evaluated using the recorded PCI procedures by Thrombolysis in Myocardial Infarction (TIMI) flow grades and corrected TIMI frame counts (cTFC) values. A value of >40 for the final cTFC was accepted as an index of insufficient coronary blood flow. The white blood cell subtypes and counts were determined in the blood samples obtained at the clinics. Results In 165 (78%) of the investigated patients, reperfusion was found to be sufficient (Group I) while in 45 (22%) of them (Group II) insufficient reperfusion was observed (Group II). In-hospital mortality was 7.2% (n=12) in Group I, whereas it was 17.7% (n=8) in Group II (P=0.033). Similarly, one-year mortality was higher in Group II (26.6%, n=12) than in Group I (13.3%, n=22) (P=0.031). N/L ratio was determined to be higher in Group I than in Group II (8.3±6.1 vs. 6.2±5.0; P=0.034). Also, N/L ratio was found as an independent predictor of severe no-reflow development (TIMI 0-1) and of one-year mortality (P=0.01 and P=0.047, respectively). Conclusions N/L ratio has been found to be an independent indicator for no-reflow development in patients who have undergone PCI for acute STEMI. This simple and low-cost parameter can provide useful information for the relevant risk evaluation in these patients. PMID:23825756

  12. On the structure of cellular solutions in Rayleigh-Benard-Marangoni flows in small-aspect-ratio containers

    NASA Technical Reports Server (NTRS)

    Dijkstra, Henk A.

    1992-01-01

    Multiple steady flow patterns occur in surface-tension/buoyancy-driven convection in a liquid layer heated from below (Rayleigh-Benard-Marangoni flows). Techniques of numerical bifurcation theory are used to study the multiplicity and stability of two-dimensional steady flow patterns (rolls) in rectangular small-aspect-ratio containers as the aspect ratio is varied. For pure Marangoni flows at moderate Biot and Prandtl number, the transitions occurring when paths of codimension 1 singularities intersect determine to a large extent the multiplicity of stable patterns. These transitions also lead, for example, to Hopf bifurcations and stable periodic flows for a small range in aspect ratio. The influence of the type of lateral walls on the multiplicity of steady states is considered. 'No-slip' lateral walls lead to hysteresis effects and typically restrict the number of stable flow patterns (with respect to 'slippery' sidewalls) through the occurrence of saddle node bifurcations. In this way 'no-slip' sidewalls induce a selection of certain patterns, which typically have the largest Nusselt number, through secondary bifurcation.

  13. Adsorption, Desorption, and Displacement Kinetics of H2O and CO2 on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; Li, Zhenjun; Chen, Long

    The adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110) are investigated using temperature programmed desorption (TPD) and molecular beam techniques. The TPD spectra for both H2O and CO2 have well-resolved peaks corresponding to desorption from bridge-bonded oxygen (BBO), Ti, and oxygen vacancies (VO) sites in order of increasing peak temperature. Analysis of the saturated monolayer peak for both species reveals that the corresponding adsorption energies on all sites are greater for H2O and for CO2. Sequential dosing of H2O and CO2 reveals that, independent of the dose order, H2O molecules will displace CO2 in order to occupymore » the highest energy binding sites available. Isothermal experiments show that the displacement of CO2 by H2O occurs between 75 and 80 K. Further analysis shows that a ratio of 4 H2O to 3 CO2 molecules is needed to displace CO2 from the TiO2(110) surface.« less

  14. Foaming Index of CaO-SiO2-FeO-MgO Slag System

    NASA Astrophysics Data System (ADS)

    Park, Youngjoo; Min, Dong Joon

    A study on the effect of FeO and MgO content on foaming index in EAF slag system was carried out. The height of the slag foam was measured by electric probe maintaining steady state in gas formation and escape. Foaming index, which is the measurement of gas capturing potential of the slag, is calculated from the foam height and gas flow rate. Viscosity and surface tension, which are the key properties for the foaming index, are calculated by Urbain's model and additive method, respectively. Dimensional analysis also performed to determine the dominancy of properties and resulted that the important factor was a ratio between viscosity and surface tension. The effect of each component on the viscosity, surface tension and foaming index of the slag is evaluated to be in strong relationship.

  15. Electron density diagnositc line ratios from the n = 3 lines of O v

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widing, K.G.; Doyle, J.G.; Dufton, P.L.

    New atomic physic calculations are presented for electron excitation rates for transitions between the n = 2 and n = 3 levels of O v. These are used to calculate theoretical line intensity ratios for the 192 A, 215 A, 220 A and 248 A lines of O v. These line intensity ratios are electron density sensitive and provide valuable diagnostics at T/sub e/approx.2 x 10/sup 5/ K for samll impulsive flare events in which the transition zone ions are enhanced relative to the coronal ions. Two flares observed by NRL spectroheliograph on Skylab, on 1973 December 22 and 1974more » January 21, are studied, with electron densities of approximately 3 x 10/sup 11/ cm/sup -3/ being deduced.« less

  16. Large Enhancements in the O/N2 Ratio in the Evening Sector of the Winter Hemisphere During Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Burns, A. G.; Killeen, T. L.; Carignan, G. R.; Roble, R. G.

    1995-01-01

    In this paper, we have looked for enhancements of the O/N2 ratio in data measured by the Dynamics Explorer 2 (DE 2) satellite in the middle latitudes of the winter hemisphere, based on a prediction that was made by the National Center for Atmospheric Research thermosphere/tonosphere general circulation model (NCAR-TIGCM) that such increases occur. The NCAR-TIGCM predicts that these enhancements should be seen throughout the low latitude region and in many middle latitude locations, but that the enhancements in O/N2 are particularly strong in the middle-latitude, evening-to-midnight sector of the winter hemisphere. When this prediction was used to look for these effects in DE 2 NACS (neutral atmosphere composition spectrometer) data, large enhancements in the O/N2 ratio (approx. 50 to 90%) were seen. These enhancements were observed during the main phase of a storm that occurred on November 24, 1982, and were seen in the same region of the winter hemisphere predicted by the NCAR-TIGCM. They are partially the result of the depletion of N2 and, as electron loss is dependent on dissociative recombination at F(sub 2) altitudes, they have implications for electron densities in this area. Parcel trajectories, which have been followed through the NCAR-TIGCM history file for this event, show that large O/N2 enhancements occur in this limited region in the winter hemisphere for two reasons. First, these parcels of air are decelerated by the antisunward edge of the ion convection pattern; individual parcels converge and subsidence occurs. Thus molecular-nitrogen-poor air is brought from higher to lower heights. Because neutral parcels that are found a little poleward of the equatorial edge of the eveningside convection pattern are swept inward toward the center of the auroral oval, the enhancements occur only in a very limited range of latitudes. Second, nitrogen-poor air is transported from regions close to the magnetic pole in the winter hemisphere. During geomagnetic

  17. Effect of jet-mainstream velocity ratio on flow characteristics and heat transfer enhancement of jet on flat plate flow

    NASA Astrophysics Data System (ADS)

    Puzu, N.; Prasertsan, S.; Nuntadusit, C.

    2017-09-01

    The aim of this research was to study the effect of jet-mainstream velocity ratio on flow and heat transfer characteristics of jet on flat plate flow. The jet from pipe nozzle with inner diameter of D=14 mm was injected perpendicularly to mainstream on flat plate. The flat plate was blown by mainstream with uniform velocity profile at 10 m/s. The velocity ratio (jet to mainstream velociy) was varied at VR=0.25 and 3.5 by adjusting velocity of jet flow. For heat transfer measurement, a thin foil technique was used to evaluate the heat transfer coefficient by measuring temperature distributions on heat transfer surface with constant heat flux by using infrared camera. Flow characteristics were simulated by using a computational fluid dynamics (CFD) with commercial software ANSYS Fluent (Ver.15.0). The results showed that the enhancement of heat transfer along downstream direction for the case of VR=0.25 was from the effect of jet stream whereas for the case of VR=3.5 was from the effect of mainstream.

  18. Energetic atomic and molecular ions of ionospheric origin observed in distant magnetotail flow-reversal events

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Gloeckler, G.; Williams, D. J.; Mukai, T.; Mcentire, R. W.; Jacquey, C.; Angelopoulos, V.; Lui, A. T. Y.; Kokubun, S.; Fairfield, D. H.

    1994-01-01

    Energetic atomic (O(+1) and N(+1)) and molecular (O2(+1), NO(+1), and N2(+1)) ions of ionospheric origin were observed in Earth's magnetotail at X approximately -146 R(sub E) during two plasma sheet sunward/tailward flow-reversal events measured by instruments on the GEOTAIL spacecraft. These events were associated with concurrent ground-measured geomagnetic disturbance intensification at auroral-and mid-latitudes (Kp = 7(-)). Energetic ions in the sunward-component and tailward flows were from both the solar wind and ionosphere. Plasma and energetic ions participated in the flows. During tailward flow, ionospheric origin ion abundance ratios at approximately 200-900 km/s in the rest frame were N(+1)/O(+1) = approximately 25-30% and ((O2(+1), NO(+1), and N2(+1))/O(+1) = approximately 1-2%. We argue that tailward flow most likely initiated approximately 80-100 R(sub E) tailward of Earth and molecular ions were in the plasma sheet prior to geomagnetic intensification onset.

  19. Determining the Stellar Initial Mass by Means of the 17O/18O Ratio on the AGB

    NASA Astrophysics Data System (ADS)

    De Nutte, Rutger; Decin, Leen; Olofsson, Hans; de Koter, Alex; Karakas, Amanda; Lombaert, Robin; Milam, Stefanie; Ramstedt, Sofia; Stancliffe, Richard; Homan, Ward; Van de Sande, Marie

    2016-07-01

    This poster presentsnewly obtainedcircumstellar 12C17O and 12C18O line observations, from which theline intensity are then related directly tothe 17O/18O surface abundance ratiofor a sample of nine AGB stars covering the three spectral types ().These ratios are evaluated in relation to a fundamental stellar evolution parameters: the stellar initial mass. The17O/18O ratio is shown to function as an effective method of determining the initial stellar mass. Through comparison with predictions bystellar evolution models, accurate initial mass estimates are calculated for all nine sources.

  20. Vanadium Flow Battery Electrolyte Synthesis via Chemical Reduction of V2O5 in Aqueous HCl and H2SO4.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, Leo J.; Pratt, Harry; Staiger, Chad

    We report a simple method to synthesize V 4+ (VO 2+ ) electrolytes as feedstock for all- vanadium redox flow batteries (RFB). By dissolving V 2 O 5 in aqueous HCl and H 2 SO 4 , subsequently adding glycerol as a reducing agent, we have demonstrated an inexpensive route for electrolyte synthesis to concentrations >2.5 M V 4+ (VO 2+ ). Electrochemical analysis and testing of laboratory scale RFB demonstrate improved thermal stability across a wider temperature range (-10-65 degC) for V 4+ (VO 2+ ) electrolytes in HCl compared to in H 2 SO 4 electrolytes.

  1. Mineral sulphide-lime reactions and effect of CaO/C mole ratio during carbothermic reduction of complex mineral sulphides

    NASA Astrophysics Data System (ADS)

    Hara, Yotamu Stephen Rainford

    2014-01-01

    Mineral sulphide (MS)-lime (CaO) ion exchange reactions (MS + CaO = MO + CaS) and the effect of CaO/C mole ratio during carbothermic reduction (MS + CaO + C = M + CaS + CO(g)) were investigated for complex froth flotation mineral sulphide concentrates. Phases in the partially and fully reacted samples were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The primary phases during mineral sulphide-lime ion exchange reactions are Fe3O4, CaSO4 Cu2S, and CaS. A complex liquid phase of Ca2CuFeO3S forms during mineral sulphide-lime exchange reactions above 1173 K. The formation mechanisms of Ca2CuFeO3S liquid phase are determined by characterising the partially reacted samples. The reduction rate and extent of mineral sulphides in the presence of CaO and C increase with the increase in CaO/C ratio. The metallic phases are surrounded by the CaS rich phase at CaO/C > 1, but the metallic phases and CaS are found as separate phases at CaO/C < 1. Experimental results show that the stoichiometric ratio of carbon should be slightly higher than that of CaO. The reactions between CaO and gangue minerals (SiO2 and Al2O3) are only observed at CaO/C > 1 and the reacted samples are excessively sintered.

  2. STUDY ON LITHIUM FAST ION CONDUCTORS OF Li2O SiO2 V2O5 SYSTEM

    NASA Astrophysics Data System (ADS)

    Huang, Geng; Wang, Wenji

    Fast ion conductors of Li2O SiO2 V2O5 system have been prepared by using Li2O, SiO2 and V2O5 as starting materials. The optimal ratio of starting materials was designed by Uniform Design. The conductivities of both electric and ionic were investigated. The highest ion conductivity is 1.5 × 10-4S/cm at ambient temperature for the above lithium fast ion conductor system, the electronic conductivity is 4 orders of magnitude lower than the ionic conductivity.

  3. A note on flow reversal in a wavy channel filled with anisotropic porous material

    NASA Astrophysics Data System (ADS)

    Karmakar, Timir; Raja Sekhar, G. P.

    2017-07-01

    Viscous flow through a symmetric wavy channel filled with anisotropic porous material is investigated analytically. Flow inside the porous bed is assumed to be governed by the anisotropic Brinkman equation. It is assumed that the ratio of the channel width to the wavelength is small (i.e. δ2≪1). The problem is solved up to O2) assuming that δ2λ2≪1, where λ is the anisotropic ratio. The key purpose of this paper is to study the effect of anisotropic permeability on flow near the crests of the wavy channel which causes flow reversal. We present a detailed analysis of the flow reversal at the crests. The ratio of the permeabilities (anisotropic ratio) is responsible for the flow separation near the crests of the wall where viscous forces are effective. For a flow configuration (say, low amplitude parameter) in which there is no separation if the porous media is isotropic, introducing anisotropy causes flow separation. On the other hand, interestingly, flow separation occurs even in the case of isotropic porous medium if the amplitude parameter a is large.

  4. Method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H (tritium) concentrations of xylem waters and subsurface waters using time series sampling

    DOEpatents

    Smith, Brian; Menchaca, Leticia

    1999-01-01

    A method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H concentrations of xylem and subsurface waters using time series sampling, insulating sampling chambers, and combined .sup.18 O/.sup.16 O, .sup.2 H/.sup.1 H and .sup.3 H concentration data on transpired water. The method involves collecting water samples transpired from living plants and correcting the measured isotopic compositions of oxygen (.sup.18 O/.sup.16 O) and hydrogen (.sup.2 H/.sup.1 H and/or .sup.3 H concentrations) to account for evaporative isotopic fractionation in the leafy material of the plant.

  5. Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis.

    PubMed

    Chin, Lisa M K; Heigenhauser, George J F; Paterson, Donald H; Kowalchuk, John M

    2010-06-01

    The effect of hyperventilation-induced hypocapnic alkalosis (Hypo) on the adjustment of pulmonary O2 uptake (VO2p) and leg femoral conduit artery ("bulk") blood flow (LBF) during moderate-intensity exercise (Mod) was examined in eight young male adults. Subjects completed four to six repetitions of alternate-leg knee-extension exercise during normal breathing [Con; end-tidal partial pressure of CO2 (PetCO2) approximately 40 mmHg] and sustained hyperventilation (Hypo; PetCO2 approximately 20 mmHg). Increases in work rate were made instantaneously from baseline (3 W) to Mod (80% estimated lactate threshold). VO2p was measured breath by breath by mass spectrometry and volume turbine, and LBF (calculated from mean femoral artery blood velocity and femoral artery diameter) was measured simultaneously by Doppler ultrasound. Concentration changes of deoxy (Delta[HHb])-, oxy (Delta[O2Hb])-, and total hemoglobin-myoglobin (Delta[HbTot]) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). The kinetics of VO2p, LBF, and Delta[HHb] were modeled using a monoexponential equation by nonlinear regression. The time constants for the phase 2 VO2p (Hypo, 49+/-26 s; Con, 28+/-8 s) and LBF (Hypo, 46+/-16 s; Con, 23+/-6 s) were greater (P<0.05) in Hypo compared with Con. However, the mean response time for the overall Delta[HHb] response was not different between conditions (Hypo, 23+/-5 s; Con, 24+/-3 s), whereas the Delta[HHb] amplitude was greater (P<0.05) in Hypo (8.05+/-7.47 a.u.) compared with Con (6.69+/-6.31 a.u.). Combined, these results suggest that hyperventilation-induced hypocapnic alkalosis is associated with slower convective (i.e., slowed femoral artery and microvascular blood flow) and diffusive (i.e., greater fractional O2 extraction for a given DeltaVO2p) O2 delivery, which may contribute to the hyperventilation-induced slowing of VO2p (and muscle O2 utilization) kinetics.

  6. Observation of Isotope Ratios2H, δ18O, 87Sr/86Sr) of Tap Water in Urban Environments

    NASA Astrophysics Data System (ADS)

    Mancuso, C. J.; Tipple, B. J.; Ehleringer, J. R.

    2014-12-01

    Urban environments are centers for rapidly growing populations. In order to meet the culinary water needs of these areas, municipal water departments use water from multiple locations and/or sources, often piped differentially to different locations within a municipality. This practice creates isotopically distinct locations within an urban area and therefore provides insight to urban water management practices. In our study we selected urban locations in the Salt Lake Valley, UT (SLV) and San Francisco Bay Area, CA (SFB) where we hypothesized geographically distinct water isotopic ratio differences existed. Within the SLV, municipal waters come from the same mountainous region, but are derived from different geologically distinct watersheds. In contrast, SFB waters are derived from regionally distinct water sources. We hypothesized that the isotope ratios of tap waters would differ based upon known municipal sources. To test this, tap water samples were collected throughout the urban regions in SLV and SFB and analyzed for δ2H, δ18O and 87Sr/86Sr isotope ratios. Seasonal collections were also made to assess if isotope ratios differed throughout the year. Within SLV and SFB, different regions were characterized by distinct paired δ18O and 87Sr/86Sr values. These different realms also agreed with known differences in municipal water supplies within the general geographic region. Waters from different cities within Marin County showed isotopic differences, consistent with water derived from different local reservoirs. Seasonal variation was observed in paired δ18O and 87Sr/86Sr values of tap water for some locations within SLV and SFB, indicating management decisions to shift from one water source to another depending on demand and available resources. Our study revealed that the δ18O and 87Sr/86Sr values of tap waters in an urban region can exhibit significant differences despite close spatial proximity if districts differ in their use of local versus

  7. Experimental studies on BrO/Br ratios at Stromboli, Etna, Masaya, Gorely and Nyiragongo

    NASA Astrophysics Data System (ADS)

    Bobrowski, Nicole; Wittmer, Julian; Liotta, Marcello; Calabrese, Sergio; Giuffrida, Giovanni; Brusca, Lorenzo; Platt, Ulrich

    2014-05-01

    Since the discovery of BrO in a volcanic plume (Bobrowski et al. 2003) many measurements have been performed as well as modelling to understand the radical chemistry in volcanic plumes, in particular, the interaction between volcanic gas species, released under strongly reduced conditions, and the oxidizing atmosphere. Besides the goal in atmospheric chemistry to better determine the impact of volcanic emission (e.g. reactive bromine) on the local (and maybe global) scale, volcanologists also have an interest to understand if the BrO/SO2 ratios can be used as a monitoring parameter giving further insides in dynamic processes of volcanoes. One of the major advantages when utilizing BrO/SO2 ratios is the relatively easiness of the measurements, which can be taken in a safe distance from volcanic activity accompanied by a good temporal resolution partly even during explosive eruptions. Recently, it has been shown (Lübcke et al., 2013) that already existing automatically running measurement networks can now be used to gain long-term data sets of BrO/SO2 ratios. However, one of the arguments which potentially makes volcanological interpretations difficult is the reactivity of BrO. Therefore it is, of great importance to link the measurements of BrO and gaseous hydrogen bromide to the total emission flux of bromine in order to estimate the pristine gas composition released from magmas. In particular, meteorological influences, trace gas composition of the surrounding atmosphere and the volcanic gas composition can all potentially effect the formation of BrO and might have to be considered. Some of these factors potentially also influence near source in-situ measurement. We need to answer the question: Can we correlate BrO measurements to the total bromine outgassing? Only with this knowledge we can relate changes of the measured gas ratios (BrO/SO2) to the volcanic fluids emitted by the underlying magma and can interpret data as signals from depth, which provide insight

  8. Fully patterned p-channel SnO TFTs using transparent Al2O3 gate insulator and ITO as source and drain contacts

    NASA Astrophysics Data System (ADS)

    Guzmán-Caballero, D. E.; Quevedo-López, M. A.; De la Cruz, W.; Ramírez-Bon, R.

    2018-03-01

    SnO p-type was used as active layer to fabricate thin film transistors (TFTs) through photolithography and dry etching processes. The SnO p-type thin films (25 nm) were deposited by DC reactive sputtering with variable oxygen (O2) flow rate to then be annealed in air at 250 ◦C. Al2O3 gate dielectric (15 nm) was deposited by atomic layer deposition. Hall measurements showed p-type carrier concentration (N h ) of around 1 × 1018 cm-3 and Hall mobilities (μ Hall) between 0.35 and 2.64 cm2 V-1 s-1, depending on the O2 flow rate during deposition. The hole transport was dominated by variable-range hopping conduction. A change in the preferred crystalline orientation in the SnO films from (101) to (110) was associated with the increase in μ Hall. In addition, Raman vibrational modes at 110 and 209 cm-1 of polycrystalline SnO films showed certain dependence with the grain orientation. The SnO-based TFTs showed p-type behavior with low threshold voltages (V T ) and low sub threshold swing (SS) in the range from 1.76 to 3.50 V and 1.63 to 3.24 V/dec., respectively. The TFTs mobilities in the saturation regime (μ sat) were in the range of 0.12 and 1.32 cm2 V-1 s-1. The current on/off ratio (I ON/I OFF) was in the order of 102, approximately. The large values of the interface trap density (D IT) contributed to the high I OFF and the low I ON/I OFF of the TFTs.

  9. Waiting for O2

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.; Catling, D. C.; Claire, M.

    2011-12-01

    Oxygenic photosynthesis appears to be a necessary condition for the creation of an oxygen-rich atmosphere like Earth's. But available geological and geochemical evidence suggests that oxygenic photosynthesis appeared hundreds of millions of years before the oxygen-rich atmosphere was fully established. The interregnum implies that at least one other necessary condition for O2 had to be met. Here we argue that the second condition was the irreversible oxidation of the surface and crust by hydrogen escape. This is the same cause as it is for other planets with oxidized surfaces, such as Mars. The link between hydrogen escape and oxygen is direct because the primary process in oxygenic photosynthesis is splitting H2O into hydrogen and O2. Gradual oxidation of the surface and crust eventually brought Earth to a tipping point where free O2 became more stable than competing reduced gases such as CH4; or put another way, the system evolved to the point where surface oxidation under a reducing atmosphere could not keep pace with hydrogen escape. Because hydrogen escape is no faster than other geological processes that govern the long-term redox budget of the atmosphere, the approach to oxygen's final triumph would have been fitful and punctuated by episodes of oxygenation, as the record suggests was the case. The duration of the interregnum was determined by the rate of hydrogen escape and by the size of the reduced reservoir that needed to be oxidized before O2 became favored. If hydrogen escape was responsible for O2, it may be possible to account for the rough constancy of del 13C as a rough constancy of the H2/CO2 ratio in volcanic gases that follows from the constancy of the mantle's oxygen fugacity and a rough constancy in the H2O/CO2 ratio in subducted materials.

  10. Crystallization Behavior of the CaO-Al2O3-MgO System Studied with a Confocal Laser Scanning Microscope

    NASA Astrophysics Data System (ADS)

    Jung, Sung Suk; Sohn, Il

    2012-12-01

    The crystallization behavior of a calcium-aluminate system with various MgO content from 2.5 to 7.5 wt pct and CaO/Al2O3 ratios between 0.8 and 1.2 has been examined using a confocal laser scanning microscope (CLSM). CCT (continuous cooling transformation) and time temperature transformation (TTT) diagrams were constructed to identify the primary crystal phase of slag at different compositions and at cooling rates between 25 and 800 K/minutes. In the slag at a CaO/Al2O3 ratio of 1.0, crystallization temperature increased during isothermal and continuous cooling with higher MgO content, and the shortest incubation time was observed at 5 wt pct MgO. When MgO content was fixed to be 5 wt pct, crystallization temperature increased with lower CaO/Al2O3 ratio. According to the slag composition, cooling rates and temperature, the primary phase could be CA, or C5A3, or C3A, or C3MA2, or MgO, and the crystal morphology changes from dendrites to faceted crystals to columnar crystals in this composition range.

  11. Reduction Mechanisms of Cu2+-Doped Na2O-Al2O3-SiO2 Glasses during Heating in H2 Gas.

    PubMed

    Nogami, Masayuki; Quang, Vu Xuan; Ohki, Shinobu; Deguchi, Kenzo; Shimizu, Tadashi

    2018-01-25

    Controlling valence state of metal ions that are doped in materials has been widely applied for turning optical properties. Even though hydrogen has been proven effective to reduce metal ions because of its strong reducing capability, few comprehensive studies focus on practical applications because of the low diffusion rate of hydrogen in solids and the limited reaction near sample surfaces. Here, we investigated the reactions of hydrogen with Cu 2+ -doped Na 2 O-Al 2 O 3 -SiO 2 glass and found that a completely different reduction from results reported so far occurs, which is dominated by the Al/Na concentration ratio. For Al/Na < 1, Cu 2+ ions were reduced via hydrogen to metallic Cu, distributing in glass body. For Al/Na > 1, on the other hand, the reduction of Cu 2+ ions occurred simultaneously with the formation of OH bonds, whereas the reduced Cu metal moved outward and formed a metallic film on glass surface. The NMR and Fourier transform infrared results indicated that the Cu 2+ ions were surrounded by Al 3+ ions that formed AlO 4 , distorted AlO 4 , and AlO 5 units. The diffused H 2 gas reacted with the Al-O - ···Cu + units, forming Al-OH and metallic Cu, the latter of which moved freely toward glass surface and in return enhanced H 2 diffusion.

  12. Alternating SiCl4/O2 passivation steps with SF6 etch steps for silicon deep etching

    NASA Astrophysics Data System (ADS)

    Duluard, C. Y.; Ranson, P.; Pichon, L. E.; Pereira, J.; Oubensaid, E. H.; Lefaucheux, P.; Puech, M.; Dussart, R.

    2011-06-01

    Deep etching of silicon has been investigated in an inductively coupled plasma etch reactor using short SiCl4/O2 plasma steps to passivate the sidewalls of the etched structures. A study was first carried out to define the appropriate parameters to create, at a substrate temperature of -20 °C, a passivation layer by SiCl4/O2 plasma that resists lateral chemical etching in SF6 plasma. The most efficient passivation layer was obtained for a SiCl4/O2 gas flow ratio of 2:1, a pressure of 1 Pa and a source power of 1000 W. Ex situ analyses on a film deposited with these parameters show that it is very rich in oxygen. Silicon etching processes that alternate SF6 plasma etch steps with SiCl4/O2 plasma passivation steps were then developed. Preliminary tests in pulsed-mode conditions have enabled etch rates greater than 2 µm min-1 with selectivities higher than 220. These results show that it is possible to develop a silicon deep etching process at substrate temperatures around -20 °C that uses low SiCl4 and O2 gas flows instead of conventional fluorocarbon gases for sidewall protection.

  13. Unconventionally prepared TiO2/g-C3N4 photocatalysts for photocatalytic decomposition of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Troppová, Ivana; Šihor, Marcel; Reli, Martin; Ritz, Michal; Praus, Petr; Kočí, Kamila

    2018-02-01

    The TiO2/g-C3N4 nanocomposites with the various TiO2:g-C3N4 weight ratios from 1:1 to 1:3 were prepared unconventionally by pressurized hot water processing in a flow regime. The parent TiO2 and g-C3N4 was prepared by thermal hydrolysis and thermal annealing, respectively. The nanocomposites as well as parent TiO2 and g-C3N4 were characterized using several complementary characterization methods and investigated in the photocatalytic decomposition of N2O under UVA (λ = 365 nm) irradiation. All the prepared TiO2/g-C3N4 nanocomposites showed higher photocatalytic activity in comparison with the pure g-C3N4 and chiefly pure TiO2. The photocatalytic activity of TiO2/g-C3N4 nanocomposites was decreasing in the following sequence: TiO2/g-C3N4 (1:3) > TiO2/g-C3N4 (1:2) > TiO2/g-C3N4 (1:1). In comparison with the parent TiO2 or g-C3N4, the TiO2/g-C3N4 nanocomposites' photocatalytic capability was significantly enhanced by coupling TiO2 with g-C3N4. The generation of TiO2/g-C3N4 Z-scheme photocatalyst mainly benefited from the effective separation of photoinduced electron-hole pairs and the extended optical absorption range. The TiO2/g-C3N4 (1:3) nanocomposite showed the best photocatalytic behavior in a consequence of the optimal weight ratio of TiO2:g-C3N4 and the lowest band gap energy from all nanocomposites. The N2O conversion in its presence was 70.6% after 20 h of UVA irradiation.

  14. Advanced natural laminar flow airfoil with high lift to drag ratio

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.; Pfenninger, Werner; Mcghee, Robert J.

    1986-01-01

    An experimental verification of a high performance natural laminar flow (NLF) airfoil for low speed and high Reynolds number applications was completed in the Langley Low Turbulence Pressure Tunnel (LTPT). Theoretical development allowed for the achievement of 0.70 chord laminar flow on both surfaces by the use of accelerated flow as long as tunnel turbulence did not cause upstream movement of transition with increasing chord Reynolds number. With such a rearward pressure recovery, a concave type deceleration was implemented. Two-dimensional theoretical analysis indicated that a minimum profile drag coefficient of 0.0026 was possible with the desired laminar flow at the design condition. With the three-foot chord two-dimensional model constructed for the LTPT experiment, a minimum profile drag coefficient of 0.0027 was measured at c sub l = 0.41 and Re sub c = 10 x 10 to the 6th power. The low drag bucket was shifted over a considerably large c sub l range by the use of the 12.5 percent chord trailing edge flap. A two-dimensional lift to drag ratio (L/D) was 245. Surprisingly high c sub l max values were obtained for an airfoil of this type. A 0.20 chort split flap with 60 deg deflection was also implemented to verify the airfoil's lift capabilities. A maximum lift coefficient of 2.70 was attained at Reynolds numbers of 3 and 6 million.

  15. Velocity measurement in rocket exhaust and general aerodynamic flows by photolysis of H2O and laser induced fluorescence of OH

    NASA Technical Reports Server (NTRS)

    Boedeker, Laurence R.

    1992-01-01

    A 'tagging' approach in which the photolysis of H2O by an excimer laser creates a zone of enhanced OH concentration, while a second, pulsed-UV laser detects tagged-zone convection via time-delayed excitation of OH fluorescence, depends on the photodissociation process and the kinetics of OH decay (relative to velocity). For application to the fuel-rich, high supersonic Mach number exhaust flow of the SSME, the detection of OH is being accomplished with either a pulsed narrowband UV dye laser or a tunable XeCl excimer laser for excitation of an OH 0-0 band transition, while the two-photon photolysis of H2O is conducted by focusing an injection-locked KrF excimer laser into the flow.

  16. Increased plasma O2 solubility improves O2 uptake of in situ dog muscle working maximally.

    PubMed

    Hogan, M C; Willford, D C; Keipert, P E; Faithfull, N S; Wagner, P D

    1992-12-01

    A perfluorocarbon emulsion [formulation containing 90% wt/vol perflubron (perfluorooctylbromide); Alliance Pharmaceutical] was used to increase O2 solubility in the plasma compartment during hyperoxic low hemoglobin concentration ([Hb]) perfusion of a maximally working dog muscle in situ. Our hypothesis was that the increased plasma O2 solubility would increase the muscle O2 diffusing capacity (DO2) by augmenting the capillary surface area in contact with high [O2]. Oxygen uptake (VO2) was measured in isolated in situ canine gastrocnemius (n = 4) while working for 6 min at a maximal stimulation rate of 1 Hz (isometric tetanic contractions) on three to four separate occasions for each muscle. On each occasion, the last 4 min of the 6-min work period was split into 2 min of a control treatment (only emulsifying agent mixed into blood) and 2 min of perflubron treatment (6 g/kg body wt), reversing the order for each subsequent work bout. Before contractions, the [Hb] of the dog was decreased to 8-9 g/100 ml and arterial PO2 was increased to 500-600 Torr by having the dog breathe 100% O2 to maximize the effect of the perflubron. Muscle blood flow was held constant between the two experimental conditions. Plasma O2 solubility was almost doubled to 0.005 ml O2 x 100 ml blood-1 x Torr-1 by the addition of the perflubron. Muscle O2 delivery and maximal VO2 were significantly improved (at the same blood flow and [Hb]) by 11 and 12.6%, respectively (P < 0.05), during the perflubron treatment compared with the control. O2 extraction by the muscle remained the same between the two treatments, as did the estimate of DO2.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. A selected ion flow tube study of the reactions of H3O+, NO+ and O2+ with some oxygenated biogenic volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Amelynck, C.; Schoon, N.; Kuppens, T.; Bultinck, P.; Arijs, E.

    2005-12-01

    The rate constants and product ion distributions of the reactions of H3O+, NO+ and O2+ with 2-methyl-3-buten-2-ol, cis-3-hexen-1-ol, cis-3-hexenyl acetate, 1,8-cineole, 6-methyl-5-hepten-2-one, camphor and linalool have been determined at 150 Pa and 297 K using a selected ion flow tube (SIFT). All reactions were found to proceed at a rate close to the collision rate, calculated with the Su and Chesnavich model, using the polarizability and electric dipole moment of the compounds derived from B3LYP/aug-cc-pVDZ quantum chemical calculations. Additionally the product ion distributions of the reactions of these three ions with the terpenoid alcohols nerol and geraniol have been obtained.

  18. Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2-TiO2-CaO-Na2O/SrO bioactive glass.

    PubMed

    Li, Y; Placek, L M; Coughlan, A; Laffir, F R; Pradhan, D; Mellott, N P; Wren, A W

    2015-02-01

    This study was conducted to determine the influence that network modifiers, sodium (Na+) and strontium (Sr2+), have on the solubility of a SiO2-TiO2-CaO-Na2O/SrO bioactive glass. Glass characterization determined each composition had a similar structure, i.e. bridging to non-bridging oxygen ratio determined by X-ray photoelectron spectroscopy. Magic angle spinning nuclear magnetic resonance (MAS-NMR) confirmed structural similarities as each glass presented spectral shifts between -84 and -85 ppm. Differential thermal analysis and hardness testing revealed higher glass transition temperatures (Tg 591-760 °C) and hardness values (2.4-6.1 GPa) for the Sr2+ containing glasses. Additionally the Sr2+ (~250 mg/L) containing glasses displayed much lower ion release rates than the Na+ (~1,200 mg/L) containing glass analogues. With the reduction in ion release there was an associated reduction in solution pH. Cytotoxicity and cell adhesion studies were conducted using MC3T3 Osteoblasts. Each glass did not significantly reduce cell numbers and osteoblasts were found to adhere to each glass surface.

  19. Testing FlowTracker2 Performance and Wading Rod Flow Disturbance in Laboratory Tow Tanks

    NASA Astrophysics Data System (ADS)

    Fan, X.; Wagenaar, D.

    2016-12-01

    The FlowTracker2 was released in February 2016 by SonTek (Xylem) to be a more feature-rich and technologically advanced replacement to the Original FlowTracker ADV. These instruments are Acoustic Doppler Velocimeters (ADVs) used for taking high-precision wading discharge and velocity measurements. The accuracy of the FlowTracker2 probe was tested in tow tanks at three different facilities: the USGS Hydrologic Instrumentation Facility (HIF), the Swiss Federal Institute for Metrology (METAS), and at the SonTek Research and Development facility. Multiple mounting configurations were examined, including mounting the ADV probe directly to the tow carts, and incorporating the two most-used wading rods for the FlowTracker (round and hex). Tow speeds ranged from 5cm/s to 1.5m/s, and different tow tank seeding schemes and wait times were examined. In addition, the performance of the FlowTracker2 probe in low Signal-to-Noise Ratio (SNR) environments was compared to the Original FlowTracker ADV. Results confirmed that the FlowTracker2 probe itself performed well within the 1%+0.25cm/s accuracy specification advertised. Tows using the wading rods created a reduced measured velocity by 1.3% of the expected velocity due to flow disturbance, a result similar to the Original FlowTracker ADV despite the change in the FlowTracker2 probe design. Finally, due to improvements in its electronics, the FlowTracker2's performance in low SNR tests exceeded that of the Original FlowTracker ADV, showing less standard error in these conditions compared to its predecessor.

  20. Interaction of ultra-depleted MORBs with plagioclase: implications for CO2/Ba ratios

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Hauri, E.; Saal, A. E.; Perfit, M. R.; Hekinian, R.

    2017-12-01

    , the trends produced by these end-member scenarios bracket those observed in the samples (trends between CO2/Ba, Nb/Ba, and Nd/Sr as well as between Al2O3, FeO, and MgO). Hence, chemical interaction with plagioclase may affect the CO2/Ba ratio in UD-MORBs, and care should be taken to evaluate this effect using Nd/Sr and Nb/Ba ratios.

  1. Influence of CYP2D6 and CYP2C19 genotypes on venlafaxine metabolic ratios and stereoselective metabolism in forensic autopsy cases.

    PubMed

    Karlsson, L; Zackrisson, A-L; Josefsson, M; Carlsson, B; Green, H; Kugelberg, F C

    2015-04-01

    We investigated whether polymorphisms in the CYP2D6 and CYP2C19 genes influence the metabolic ratios and enantiomeric S/R ratios of venlafaxine (VEN) and its metabolites O-desmethylvenlafaxine (ODV), N-desmethylvenlafaxine (NDV) and N,O-didesmethylvenlafaxine (DDV) in blood from forensic autopsy cases. In all, 94 postmortem cases found positive for VEN during toxicological screening were included. The CYP2D6 genotype was shown to significantly influence the ODV/VEN (P=0.003), DDV/NDV (P=0.010) and DDV/ODV (P=0.034) ratios. The DDV/ODV (P=0.013) and DDV/VEN (P=0.021) ratios were significantly influenced by the CYP2C19 genotype. The S/R ratios of VEN were significantly influenced by both CYP2D6 and CYP2C19 genotypes. CYP2D6 poor metabolizers (PMs) had lower S/R VEN ratios and CYP2C19 PMs had high S/R ratios of VEN in comparison. Our results show that the CYP2D6 genotype influences the O-demethylation whereas CYP2C19 influences the N-demethylation of VEN and its metabolites. In addition, we show a stereoselective metabolism where CYP2D6 favours the R-enantiomer whereas CYP2C19 favours the S-enantiomer.

  2. The dissociative recombination of O2(+) - The quantum yield of O(1S) and O(1D)

    NASA Technical Reports Server (NTRS)

    Abreu, V. J.; Solomon, S. C.; Sharp, W. E.; Hays, P. B.

    1983-01-01

    Data from the visible airglow experiment on the Atmosphere Explorer-E satellite have been used to determine the quantum yield of O(1S) and O(1D) from the dissociative recombination of O2(+). A range of values between 0.09 and 0.23 has been obtained for the quantum yield of O(1S). It is shown that the quantum yield of O(1S) depends on the ratio of electron density to atomic oxygen density. This suggests that the quantum yield of O(1S) may depend on the degree of vibrational excitation of the recombining O2(+). The quantum yield of O(1D) has been measured to be 1.23 + or - 0.42, with no dependence on the electron-oxygen ratio.

  3. Variations of High-Energy Ions during Fast Plasma Flows and Dipolarization in the Plasma Sheet: Comparison Among Different Ion Species

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Nose, M.; Miyashita, Y.; Lui, A.

    2014-12-01

    We investigate the responses of different ion species (H+, He+, He++, and O+) to fast plasma flows and local dipolarization in the plasma sheet in terms of energy density. We use energetic (9-210 keV) ion composition measurements made by the Geotail satellite at r = 10~31 RE. The results are summarized as follows: (1) whereas the O+-to-H+ ratio decreases with earthward flow velocity, it increases with tailward flow velocity with Vx dependence steeper for perpendicular flows than for parallel flows; (2) for fast earthward flows, the energy density of each ion species increases without any clear preference for heavy ions; (3) for fast tailward flows the ion energy density increases initially, then it decreases to below pre-flow levels except for O+; (4) the O+-to-H+ ratio does not increase through local dipolarization irrespective of dipolarization amplitude, background BZ, X distance, and VX; (5) in general, the H+ and He++ ions behave similarly. Result (1) can be attributed to radial transport along with the earthward increase of the background O+-to-H+ ratio. Results (2) and (4) indicate that ion energization associated with local dipolarization is not mass-dependent possibly because in the energy range of our interest the ions are not magnetized irrespective of species. In the tailward outflow region of reconnection, where the plasma sheet becomes thinner, the H+ ions escape along the field line more easily than the O+ ions, which possibly explains result (3). Result (5) suggests that the solar wind is the primary source of the high-energy H+ ions.

  4. Reagent ratio dependent physical properties and electrochemical performance of NiO nanoparticles synthesized using solvent deficient approach

    NASA Astrophysics Data System (ADS)

    Kore, R. M.; Thakur, A. V.; Fugare, B. Y.; Lokhande, B. J.

    2018-04-01

    In the present study, we report synthesis of NiO nanoparticles by varying the reagent ratio of nickel nitrate and ammonium bicarbonate using solvent deficient approach. The synthesis process involves the solid state grinding reaction of nickel nitrate and different mole ratio of ammonium bicarbonate varying from 0.5 to 4, to obtain the precursor followed by rinsing and annealing at 300°C for 2 h. The XRD and FTIR analysis is carried to confirm the formation of NiO nanoparticles. The XRD analysis confirms the cubic structure of NiO. The peaks observed in FTIR confirms the presence of Ni - O vibration mode. The FESEM images shows the particle size is larger for lower content of ammonium bicarbonate and decreases with increase in amount of bicarbonate added. Electrochemical performance clearly indicates the specific capacitance increases from 0.5 to 2 and further decreases with increase in the ammonium bicarbonate. The maximum achieved specific capacitance is 1218 Fg-1 for the reagent ratio 2 of ammonium bicarbonate.

  5. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O-H2O and δ2H-H2O values by cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer E.; Rella, Chris W.

    2017-08-01

    Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O-H2O and δ2H-H2O values based on the amplitude of water isotopologue absorption features around 7184 cm-1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by -0.50 ± 0.001 ‰ O2 %-1 and -0.57 ± 0.001 ‰ Ar %-1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %-1 and 0.42 ± 0.004 ‰ Ar %-1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  6. Optical spectroscopy of Sm(3+) doped Na2O-ZnO-La2O3-TeO2 glasses.

    PubMed

    Sobczyk, Marcin

    2015-10-05

    Telluride glasses with the composition xSm2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2 (where x=0.1, 1, 2, 5 and 7 mol%) were obtained by the melt quenching technique. Electronic absorption and fluorescence spectra as well as fluorescence dynamics of the Sm(3+)-doped title glasses are presented and analysed in detail. A Judd-Ofelt intensity analysis of the absorption spectrum at 300 K has been applied for determination of Ωλ parameters (Ω2=3.10, Ω4=3.80, Ω6=1.61×10(-20) cm(2)) which in turn have been used for calculations of the radiative transition probabilities (AT), the natural (radiative) lifetimes (τR) of the (4)G5/2 level of Sm(3+), the fluorescence branching ratios (β) and the emission cross-sections (σem). The τR value of the (4)G5/2 level amount to 1546 μs and is slightly higher than the measured decay time of 1306 μs. With the increasing of Sm2O3 concentration from 0.1 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 1306 to 41 μs. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The optical achieved results indicate that the investigated glasses are potentially applicable as an orange and/or red laser host. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The Change in Oceanic O2 Inventory Associated with Recent Global Warming

    NASA Technical Reports Server (NTRS)

    Keeling, Ralph; Garcia, Hernan

    2002-01-01

    Oceans general circulation models predict that global warming may cause a decrease in the oceanic O2 inventory and an associated O2 outgassing. An independent argument is presented here in support of this prediction based on observational evidence of the ocean's biogeochemical response to natural warming. On time scales from seasonal to centennial, natural O2 flux/heat flux ratios are shown to occur in a range of 2 to 10 nmol O2 per Joule of warming, with larger ratios typically occurring at higher latitudes and over longer time scales. The ratios are several times larger than would be expected solely from the effect of heating on the O2 solubility, indicating that most of the O2 exchange is biologically mediated through links between heating and stratification. The change in oceanic O2 inventory through the 1990's is estimated to be 0.3 - 0.4 x 10(exp 14) mol O2 per year based on scaling the observed anomalous long-term ocean warming by natural O2 flux/heating ratios and allowing for uncertainty due to decadal variability. Implications are discussed for carbon budgets based on observed changes in atmospheric O2/N2 ratio and based on observed changes in ocean dissolved inorganic carbon.

  8. Evolution of N/O ratios in galaxies from cosmological hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Vincenzo, Fiorenzo; Kobayashi, Chiaki

    2018-04-01

    We study the redshift evolution of the gas-phase O/H and N/O abundances, both (i) for individual ISM regions within single spatially-resolved galaxies and (ii) when dealing with average abundances in the whole ISM of many unresolved galaxies. We make use of a cosmological hydrodynamical simulation including detailed chemical enrichment, which properly takes into account the variety of different stellar nucleosynthetic sources of O and N in galaxies. We identify 33 galaxies in the simulation, lying within dark matter halos with virial mass in the range 1011 ≤ MDM ≤ 1013 M⊙ and reconstruct how they evolved with redshift. For the local and global measurements, the observed increasing trend of N/O at high O/H can be explained, respectively, (i) as the consequence of metallicity gradients which have settled in the galaxy interstellar medium, where the innermost galactic regions have the highest O/H abundances and the highest N/O ratios, and (ii) as the consequence of an underlying average mass-metallicity relation that galaxies obey as they evolve across cosmic epochs, where - at any redshift - less massive galaxies have lower average O/H and N/O ratios than the more massive ones. We do not find a strong dependence on the environment. For both local and global relations, the predicted N/O-O/H relation is due to the mostly secondary origin of N in stars. We also predict that the O/H and N/O gradients in the galaxy interstellar medium gradually flatten as functions of redshift, with the average N/O ratios being strictly coupled with the galaxy star formation history. Because N production strongly depends on O abundances, we obtain a universal relation for the N/O-O/H abundance diagram whether we consider average abundances of many unresolved galaxies put together or many abundance measurements within a single spatially-resolved galaxy.

  9. Evolution of N/O ratios in galaxies from cosmological hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Vincenzo, Fiorenzo; Kobayashi, Chiaki

    2018-07-01

    We study the redshift evolution of the gas-phase O/H and N/O abundances, both (i) for individual interstellar medium (ISM) regions within single spatially resolved galaxies and (ii) when dealing with average abundances in the whole ISM of many unresolved galaxies. We make use of a cosmological hydrodynamical simulation including detailed chemical enrichment, which properly takes into account the variety of different stellar nucleosynthetic sources of O and N in galaxies. We identify 33 galaxies in the simulation, lying within dark matter haloes with virial mass in the range 1011 ≤ MDM ≤ 1013 M⊙ and reconstruct how they evolved with redshift. For the local and global measurements, the observed increasing trend of N/O at high O/H can be explained, respectively, (i) as the consequence of metallicity gradients that have settled in the galaxy ISM, where the innermost galactic regions have the highest O/H abundances and the highest N/O ratios, and (ii) as the consequence of an underlying average mass-metallicity relation that galaxies obey as they evolve across cosmic epochs, where - at any redshift - less massive galaxies have lower average O/H and N/O ratios than the more massive ones. We do not find a strong dependence on the environment. For both local and global relations, the predicted N/O-O/H relation is due to the mostly secondary origin of N in stars. We also predict that the O/H and N/O gradients in the galaxy ISM gradually flatten as functions of redshift, with the average N/O ratios being strictly coupled with the galaxy star formation history. Because N production strongly depends on O abundances, we obtain a universal relation for the N/O-O/H abundance diagram whether we consider average abundances of many unresolved galaxies put together or many abundance measurements within a single spatially resolved galaxy.

  10. ZnO/(Hf,Zr)O2/ZnO-trilayered nanowire capacitor structure fabricated solely by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Fujisawa, Hironori; Kuwamoto, Kei; Nakashima, Seiji; Shimizu, Masaru

    2016-02-01

    HfO2-based thin films are one of the key dielectric and ferroelectric materials in Si-CMOS LSIs as well as in oxide electronic nanodevices. In this study, we demonstrated the fabrication of a ZnO/(Hf,Zr)O2/ZnO-trilayered nanowire (NW) capacitor structure solely by metalorganic chemical vapor deposition (MOCVD). 15-nm-thick dielectric (Hf,Zr)O2 and 40-nm-thick top ZnO electrode layers were uniformly grown by MOCVD on a ZnO NW template with average diameter, length, and aspect ratio of 110 nm, 10 µm, and ˜90, respectively. The diameter and aspect ratio of the resultant trilayerd NWs are 200-300 nm and above 30, respectively. The crystalline phase of HfO2 and stacked the structure are also discussed.

  11. Effect of gas flow ratio on the microstructure and mechanical properties of boron phosphide films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jia, Z. C.; Zhu, J. Q.; Jiang, C. Z.; Shen, W. X.; Han, J. C.; Chen, R. R.

    2011-10-01

    Boron phosphide films were grown on silicon substrate by radio frequency reactive magnetron sputtering using boron target and hydrogen phosphine at different gas flow ratios (PH 3/Ar) at lower temperature. The chemical composition, microstructure and mechanical properties were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectrum, FTIR spectrum, surface profilometer and nano-indenter. The results indicate that the atomic ratio (P/B) rises from 1.06 up to 1.52 with the gas flow ratio increasing from 3/50 to 15/50. Simultaneously, the hardness and Young's modulus decrease from 25.4 GPa to 22.5 GPa, and 250.4 GPa to 238.4 GPa, respectively. Microstructure transforms from microcrystalline state to amorphous state along with the gas flow ratio increasing. Furthermore higher gas flow ratio leads to lower stress. The BP film prepared at the gas flow ratio of 3/50 can be contributed with the best properties.

  12. Oxidation behaviour of ferritic stainless steel grade Crofer 22 APU at 700 °C in flowing Ar−75%CO{sub 2}−12%H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shariff, Nurul Atikah; Othman, Norinsan Kamil; Jalar, Azman

    2013-11-27

    The oxidation of Ferritic Stainless Steel (FSS) grade Crofer 22 APU has been investigated. FSS alloys were exposed to isothermal conditions in a horizontal tube furnace at a 700 °C in flowing Ar−75%CO{sub 2}−12%H{sub 2}O at a pressure of approximately 1 atm. The results showed that the growth of non protective Fe{sub 2}O{sub 3} and spinel was observed after 50 h exposure in the presence of 12% H{sub 2}O. The weight was increased significantly with time of exposure. The formation of different oxides is presented on the interface of the specimen such as MnCr{sub 2}O{sub 4}, Fe{sub 3}O{sub 4} andmore » Fe{sub 2}O{sub 3} were revealed by X-ray diffraction and supported by EDAX analysis. FSS did not form a protective Cr{sub 2}O{sub 3} layer due to water vapour accelerates the kinetics oxidation. Data of microstructure observation is presented and discussed in this paper in term of water vapour effects.« less

  13. Succinate modulation of H2O2 release at NADH:ubiquinone oxidoreductase (Complex I) in brain mitochondria

    PubMed Central

    Zoccarato, Franco; Cavallini, Lucia; Bortolami, Silvia; Alexandre, Adolfo

    2007-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is responsible for most of the mitochondrial H2O2 release, both during the oxidation of NAD-linked substrates and during succinate oxidation. The much faster succinate-dependent H2O2 production is ascribed to Complex I, being rotenone-sensitive. In the present paper, we report high-affinity succinate-supported H2O2 generation in the absence as well as in the presence of GM (glutamate/malate) (1 or 2 mM of each). In brain mitochondria, their only effect was to increase from 0.35 to 0.5 or to 0.65 mM the succinate concentration evoking the semi-maximal H2O2 release. GM are still oxidized in the presence of succinate, as indicated by the oxygen-consumption rates, which are intermediate between those of GM and of succinate alone when all substrates are present together. This effect is removed by rotenone, showing that it is not due to inhibition of succinate influx. Moreover, α-oxoglutarate production from GM, a measure of the activity of Complex I, is decreased, but not stopped, by succinate. It is concluded that succinate-induced H2O2 production occurs under conditions of regular downward electron flow in Complex I. Succinate concentration appears to modulate the rate of H2O2 release, probably by controlling the hydroquinone/quinone ratio. PMID:17477844

  14. Northern squawfish Ptychochelius oregonensis, O2 consumption rate: Effects of temperature and body size

    USGS Publications Warehouse

    Cech, Joseph J.; Castleberry, Daniel T.; Hopkins, Todd E.; Petersen, James H.

    1994-01-01

    Northern squawfish, Ptychocheilus oregonensis (live weight range 0.361–1.973 kg), O2consumption was measured with temperature-controlled, flow-through respirometers for >24 h. Mean standard O2 consumption rate of northern squawfish increased with acclimation temperature: 24.3, 49.1, 75.0, and 89.4 mg∙kg−0.67∙h−1 at 9, 15, 18, and 21 °C, respectively. Q10analysis showed that O2 consumption rate temperature sensitivity was greatest at the intermediate acclimation temperatures (15–18 °C, Q10 = 4.10), moderate at the lower acclimation temperatures (9–15 °C, Q10 = 3.23), and lowest at the higher acclimation temperatures (18–21 °C, Q10 = 1.80). Overall Q10 was 2.96 (9–21 °C). Body size (W, grams) and temperature (T, degrees Celcius) were related to O2 consumption (, grams per gram per day) by W−0.285∙e0.105T. Northern squawfish red to white muscle ratios significantly exceeded those of rainbow trout, Oncorhynchus mykiss, in cross sections at 50 and 75% of standard length. High metabolic rates and red to white muscle ratios argue for comparability of northern squawfish with active predators such as sympatric rainbow trout.

  15. Bimetallic Pt-Au Nanocatalysts on ZnO/Al2O3/Monolith for Air Pollution Control.

    PubMed

    Kim, Ki-Joong; Ahn, Ho-Geun

    2015-08-01

    The catalytic activity of a monolithic catalyst with nanosized Pt and Au particles on ZnO/Al2O3 (Pt-Au/ZnO/Al2O3/M) prepared by a wash-coat method was examined, specifically for toluene oxidation. Scanning electron microscopy image showed clearly the formation of a ZnO/Al2O3 layer on the monolith. Nanosized Pt-Au particles on ZnO/Al2O3/M with different sizes could be found in the Pt-Au/ZnO/Al2O3/M catalyst. The conversion of toluene decreased with increasing toluene concentration and was also largely affected by the feed flow rate. The Pt-Au/ZnO/Al2O3/M catalysts prepared in this work have almost the same activity (molecules of toluene per second) compared with a powder Pt-Au/ZnO/Al2O3 catalyst with the same loadings of Pt and Au components; thus this catalyst could be used in controlling air pollution with very low concentrations and high flow rate.

  16. Environmental risk assessment of engineered nano-SiO2 , nano iron oxides, nano-CeO2 , nano-Al2 O3 , and quantum dots.

    PubMed

    Wang, Yan; Nowack, Bernd

    2018-05-01

    Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots < nano-CeO 2  < nano iron oxides < nano-Al 2 O 3  < nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3  > nano-SiO 2  > nano iron oxides > nano-CeO 2  > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.

  17. N2/O2/H2 Dual-Pump Cars: Validation Experiments

    NASA Technical Reports Server (NTRS)

    OByrne, S.; Danehy, P. M.; Cutler, A. D.

    2003-01-01

    The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method is used to measure temperature and the relative species densities of N2, O2 and H2 in two experiments. Average values and root-mean-square (RMS) deviations are determined. Mean temperature measurements in a furnace containing air between 300 and 1800 K agreed with thermocouple measurements within 26 K on average, while mean mole fractions agree to within 1.6 % of the expected value. The temperature measurement standard deviation averaged 64 K while the standard deviation of the species mole fractions averaged 7.8% for O2 and 3.8% for N2, based on 200 single-shot measurements. Preliminary measurements have also been performed in a flat-flame burner for fuel-lean and fuel-rich flames. Temperature standard deviations of 77 K were measured, and the ratios of H2 to N2 and O2 to N2 respectively had standard deviations from the mean value of 12.3% and 10% of the measured ratio.

  18. Nd2O3-SiO2 nanocomposites: A simple sonochemical preparation, characterization and photocatalytic activity.

    PubMed

    Zinatloo-Ajabshir, Sahar; Mortazavi-Derazkola, Sobhan; Salavati-Niasari, Masoud

    2018-04-01

    Nd 2 O 3 -SiO 2 nanocomposites with enhanced photocatalytic activity have been obtained through simple and rapid sonochemical route in presence of putrescine as a new basic agent, for the first time. The influence of the mole ratio of Si:Nd, basic agent and ultrasonic power have been optimized to obtain the best Nd 2 O 3 -SiO 2 nanocomposites on shape, size and photocatalytic activity. The produced Nd 2 O 3 -SiO 2 nanocomposites have been characterized utilizing XRD, EDX, TEM, FT-IR, DRS and FESEM. Application of the as-formed Nd 2 O 3 -SiO 2 nano and bulk structures as photocatalyst with photodegradation of methyl violet contaminant under ultraviolet illumination was compared. Results demonstrated that SiO 2 has remarkable effect on catalytic performance of Nd 2 O 3 photocatalyst for decomposition. By introducing of SiO 2 to Nd 2 O 3 , decomposition efficiency of Nd 2 O 3 toward methyl violet contaminant under ultraviolet illumination was increased. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of Al2O3-Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime

    NASA Astrophysics Data System (ADS)

    Takabi, Behrouz; Shokouhmand, Hossein

    2015-09-01

    In this paper, forced convection of a turbulent flow of pure water, Al2O3/water nanofluid and Al2O3-Cu/water hybrid nanofluid (a new advanced nanofluid composited of Cu and Al2O3 nanoparticles) through a uniform heated circular tube is numerically analyzed. This paper examines the effects of these three fluids as the working fluids, a wide range of Reynolds number (10 000 ≤ Re ≤ 10 0000) and also the volume concentration (0% ≤ ϕ ≤ 2%) on heat transfer and hydrodynamic performance. The finite volume discretization method is employed to solve the set of the governing equations. The results indicate that employing hybrid nanofluid improves the heat transfer rate with respect to pure water and nanofluid, yet it reveals an adverse effect on friction factor and appears severely outweighed by pressure drop penalty. However, the average increase of the average Nusselt number (when compared to pure water) in Al2O3-Cu/water hybrid nanofluid is 32.07% and the amount for the average increase of friction factor would be 13.76%.

  20. Site-selective nitrogen isotopic ratio measurement of nitrous oxide using 2 microm diode lasers.

    PubMed

    Uehara, K; Yamamoto, K; Kikugawa, T; Yoshida, N

    2003-03-15

    We demonstrate a high-precision measurement of the isotopomer abundance ratio 14N(15)N(16)O/15N(14)N(16)O/14N(14)N(16)O (approximately 0.37/0.37/100) using three wavelength-modulated 2 microm diode lasers combined with a multipass cell which provides different optical pathlengths of 100 and 1 m to compensate the large abundance difference. A set of absorption lines for which the absorbances have almost the same temperature dependence are selected so that the effect of a change in gas temperature is minimized. The test experiment using pure nearly natural-abundance N(2)O samples showed that the site-selective 15N/14N ratios can be measured relative to a reference material with a precision of +/-3 x 10(-4) (+/-0.3 per thousand) in approximately 2 h. Copyright 2002 Elsevier Science B.V.

  1. Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel

    NASA Astrophysics Data System (ADS)

    Parsaiemehr, Mohammad; Pourfattah, Farzad; Akbari, Omid Ali; Toghraie, Davood; Sheikhzadeh, Ghanbarali

    2018-02-01

    In present study, the turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular channel have been numerically simulated. The main purpose of present study is investigating the effect of attack angle of inclined rectangular rib, Reynolds number and volume fraction of nanoparticles on heat transfer enhancement. For this reason, the turbulent flow of nanofluid has been simulated at Reynolds numbers ranging from 15000 to 30000 and volume fractions of nanoparticles from 0 to 4%. The changes attack angle of ribs have been investigated ranging from 0 to 180°. The results show that, the changes of attack angle of ribs, due to the changes of flow pattern and created vortexes inside the channel, have significant effect on fluid mixing. Also, the maximum rate of heat transfer enhancement accomplishes in attack angle of 60°. In Reynolds numbers of 15000, 20000 and 30000 and attack angle of 60°, comparing to the attack angle of 0°, the amount of Nusselt number enhances to 2.37, 1.96 and 2 times, respectively. Also, it can be concluded that, in high Reynolds numbers, by using ribs and nanofluid, the performance evaluation criterion improves.

  2. Apatite-forming ability and mechanical properties of PTMO-modified CaO-SiO2-TiO2 hybrids derived from sol-gel processing.

    PubMed

    Miyata, Noboru; Fuke, Ken-ichi; Chen, Qi; Kawashita, Masakazu; Kokubo, Tadashi; Nakamura, Takashi

    2004-01-01

    Hydrolysis and polycondensation of triethoxysilane end-capped Poly (tetramethylene oxide) (Si-PTMO), tetraethoxysilane (TEOS), tetraisopropyltitanate (TiPT) and calcium nitrate (Ca(NO(3))(2)) gave transparent monolithics of PTMO-modified CaO-SiO(2)-TiO(2) hybrids. The samples with (TiPT)/(TEOS+TiPT) molar ratios from 0 to 0.20 under constant ratio of (Si-PTMO)/(TEOS+TiPT) of 2/3 in weight were prepared. It was found that the incorporation of TiO(2) component into a PTMO-CaO-SiO(2) hybrid results in an increase in the apatite-forming ability in a simulated body fluid: the hybrids with (TiPT)/(TEOS+TiPT) of 0.10 and 0.20 in mol formed an apatite on their surfaces within only 0.5 day. It seemed that, within the range of compositions studied, the TiO(2) content little affects the overall mechanical properties: Young's modulus were 52-55MPa, tensile strength, 7-9MPa, and strain at failure, about 30%. Thus, the organic-inorganic hybrids exhibiting both fairly high apatite-forming ability and high capability for deformation were obtained. These hybrid materials may be useful as new kind of bioactive bone-repairing materials.

  3. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer

    PubMed Central

    Abdul Razak, Rafiza; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina

    2015-01-01

    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced. PMID:26006238

  4. A gigantically increased ratio of electrical to thermal conductivity and synergistically enhanced thermoelectric properties in interface-controlled TiO2-RGO nanocomposites.

    PubMed

    Nam, Woo Hyun; Lim, Young Soo; Kim, Woochul; Seo, Hyeon Kook; Dae, Kyun Seong; Lee, Soonil; Seo, Won-Seon; Lee, Jeong Yong

    2017-06-14

    We report synergistically enhanced thermoelectric properties through the independently controlled charge and thermal transport properties in a TiO 2 -reduced graphene oxide (RGO) nanocomposite. By the consolidation of TiO 2 -RGO hybrid powder using spark plasma sintering, we prepared an interface-controlled TiO 2 -RGO nanocomposite where its grain boundaries are covered with the RGO network. Both the enhancement in electrical conductivity and the reduction in thermal conductivity were simultaneously achieved thanks to the beneficial effects of the RGO network, and detailed mechanisms are discussed. This led to the gigantic increase in the ratio of electrical to thermal conductivity by six orders of magnitude and also the synergistic enhancement in the thermoelectric figure of merit by two orders. Our results present a strategy for the realization of 'phonon-glass electron-crystals' through interface control using graphene in graphene hybrid thermoelectric materials.

  5. Performance of a 1.57 pressure-ratio transonic fan stage with a screen-induced 90 deg circumferential inlet flow distortion

    NASA Technical Reports Server (NTRS)

    Sanger, N. L.

    1976-01-01

    A transonic fan stage having a design pressure ratio of 1.57 was tested with a 90 degree circumferential distortion imposed on the inlet flow. The rotor diameter was approximately 50.8 cm, and the design pressure ratio was 1.60 at a tip speed of 425 m/sec. Overall performance at 70 and 100 percent of design speed showed a loss of stall pressure ratio and flow range at design speed and no significant loss in stall pressure ratio at 70 percent of design speed. Detailed flow measurements are presented to show the rotor-upstream flow interactions and the attenuation and amplification properties through the stage.

  6. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, ΦX174 and PR772 using TiO2, ZnO and ruthenium based complexes in a continuous flow system.

    PubMed

    Mac Mahon, Joanne; Pillai, Suresh C; Kelly, John M; Gill, Laurence W

    2017-05-01

    The performance of photocatalytic treatment processes were assessed using different photocatalysts against E. coli and bacteriophages MS2, ΦX174 and PR772, in a recirculating continuous flow compound parabolic collector system under real sunlight conditions. Suspended TiO 2 and ZnO nanoparticle powders and Tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate in solution were tested separately, as well as in combination, using E. coli. For a 3-log reduction of E. coli in distilled water, inactivation rates in terms of cumulative dose were in the order Ru(bpy) 3 Cl 2 >(TiO 2 & Ru(bpy) 3 Cl 2 )>(ZnO & Ru(bpy) 3 Cl 2 )>ZnO>TiO 2 >photolysis. Reactivation of E. coli was observed following all trials despite the detection limit being reached, although the reactivated colonies were observed to be under stress and much slower growing when compared to original colonies. Treatment with Ru(bpy) 3 Cl 2 was also compared against standard photolysis of bacteriophages MS2, ΦX174 and PR772 with the order of photolytic inactivation for a 3-log reduction in terms of cumulative UV-A dose being ΦX174>PR772>MS2. However, MS2 was found to be the most susceptible bacteriophage to treatment with Ru(bpy) 3 Cl 2 , with complete removal of the phage observed within the first 15min of exposure. Ru(bpy) 3 Cl 2 also significantly improved inactivation rates for PR772 and ΦX174. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fe/O ratio behavior as an indicator of solar plasma state at different solar activity manifestations and in periods of their absence

    NASA Astrophysics Data System (ADS)

    Minasyants, Gennady; Minasyants, Tamara; Tomozov, Vladimir

    2018-03-01

    We report the results of the investigation into plasma physical characteristics at various solar activity manifestations and in periods of their absence. These results have been obtained from quantitative estimates of the relative abundance of Fe/O ions in different energy ranges. Maximum values of the Fe/O ratio is shown to correspond to particle fluxes from impulsive flares for ions with energies <2 MeV/n (the most significant manifestation of the FIP effect). In particle fluxes from gradual flares, the Fe/O value decreases smoothly with ion energy and is noticeably inferior to values of fluxes in impulsive events. We have established that the properties of flares of solar cosmic rays indicate their belonging to a separate subclass in the total population of gradual events. Relying on variations in the abundance of Fe/O ions, we propose an explanation of the solar plasma behavior during the development of flares of both classes. Magnetic clouds (a separate type of coronal mass ejections (CME)), which have regions of turbulent compression and are sources of strong geomagnetic storms, exhibit a relative composition of Fe ions comparable to the abundance of Fe in ion fluxes from gradual flares. We have found out that the Fe/O value can be used to detect penetration of energetic flare plasma into the CME body at the initial phase of their joint development and to estimate its relative contribution. During solar minimum with the complete absence of sunspots, the Fe/O ratio during periods of "quiet" solar wind show absolutely low values of Fe/O=0.004-0.010 in the energy range from 2-5 to 30 MeV/n. This is associated with the manifestation of the cosmic ray anomalous component, which causes an increase in the intensity of ion fluxes with a high first ionization potential, including oxygen (O), and elements with a low first ionization potential (Fe) demonstrate the weakening of the fluxes. As for particles with higher energies (Ek>30 MeV/n), the Fe/O increase is due to

  8. Critical V2O5/TeO2 Ratio Inducing Abrupt Property Changes in Vanadium Tellurite Glasses.

    PubMed

    Kjeldsen, Jonas; Rodrigues, Ana C M; Mossin, Susanne; Yue, Yuanzheng

    2014-12-26

    Transition metal containing glasses have unique electrical properties and are therefore often used for electrochemical applications, such as in batteries. Among oxide glasses, vanadium tellurite glasses exhibit the highest electronic conductivity and thus the high potential for applications. In this work, we investigate how the dynamic and physical properties vary with composition in the vanadium tellurite system. The results show that there exists a critical V(2)O(5) concentration of 45 mol %, above which the local structure is subjected to a drastic change with increasing V(2)O(5), leading to abrupt changes in both hardness and liquid fragility. Electronic conductivity does not follow the expected correlation to the valence state of the vanadium as predicted by the Mott-Austin equation but shows a linear correlation to the mean distance between vanadium ions. These findings could contribute to designing optimum vanadium tellurite compositions for electrochemical devices. The work gives insight into the mechanism of electron conduction in the vanadium tellurite systems.

  9. The new insight into the structure-activity relation of Pd/CeO2-ZrO2-Nd2O3 catalysts by Raman, in situ DRIFTS and XRD Rietveld analysis.

    PubMed

    Yang, X; Yang, L; Lin, J; Zhou, R

    2016-01-28

    Pd/CeO2-ZrO2-Nd2O3 (CZN) catalysts with different CeO2/ZrO2 molar ratios were synthesized and have been characterized by multiple techniques, e.g. XRD in combination with Rietveld refinement, UV-Raman, XPS and in situ DRIFTS. The XRD pattern of CZN with CeO2/ZrO2 molar ratios ≥1/2 can be indexed satisfactorily to the fluorite structure with a space group Fm3̄m, while the XRD patterns of CZ12 only display diffraction peaks of the tetragonal phase (S.G. P42/nmc). Nd addition can effectively stabilize the cubic structure of the CZN support and increase the enrichment of defect sites on the surface, which may be related to the better catalytic activity of Pd/CZN12 catalysts compared with Pd/CZ12. The presence of moderate ZrO2 can increase the concentration of O* active species, leading to accelerate the formation of nitrate species and thus enhance the catalytic activity of NOx and HC elimination. The Pd-dispersion decreases with the increasing Zr content, leading to the decreased CO catalytic activity, especially for the aged catalysts. The change regularity of the OSC value is almost the same with the in situ dynamic operational window, demonstrating that the in situ dynamic operational window is basically affected by the OSC value.

  10. Observed NO/NO2 Ratios in the Upper Troposphere Imply Errors in NO-NO2-O3 Cycling Kinetics or an Unaccounted NOx Reservoir

    NASA Astrophysics Data System (ADS)

    Silvern, R. F.; Jacob, D. J.; Travis, K. R.; Sherwen, T.; Evans, M. J.; Cohen, R. C.; Laughner, J. L.; Hall, S. R.; Ullmann, K.; Crounse, J. D.; Wennberg, P. O.; Peischl, J.; Pollack, I. B.

    2018-05-01

    Observations from the SEAC4RS aircraft campaign over the southeast United States in August-September 2013 show NO/NO2 concentration ratios in the upper troposphere that are approximately half of photochemical equilibrium values computed from Jet Propulsion Laboratory (JPL) kinetic data. One possible explanation is the presence of labile NOx reservoir species, presumably organic, decomposing thermally to NO2 in the instrument. The NO2 instrument corrects for this artifact from known labile HNO4 and CH3O2NO2 NOx reservoirs. To bridge the gap between measured and simulated NO2, additional unaccounted labile NOx reservoir species would have to be present at a mean concentration of 40 ppt for the SEAC4RS conditions (compared with 197 ppt for NOx). An alternative explanation is error in the low-temperature rate constant for the NO + O3 reaction (30% 1-σ uncertainty in JPL at 240 K) and/or in the spectroscopic data for NO2 photolysis (20% 1-σ uncertainty). Resolving this discrepancy is important for understanding global budgets of tropospheric oxidants and for interpreting satellite observations of tropospheric NO2 columns.

  11. Negative differential resistance and resistive switching in SnO2/ZnO interface

    NASA Astrophysics Data System (ADS)

    Pant, Rohit; Patel, Nagabhushan; Nanda, K. K.; Krupanidhi, S. B.

    2017-09-01

    We report a very stable negative differential resistance (NDR) and resistive switching (RS) behavior of highly transparent thin films of the SnO2/ZnO bilayer, deposited by magnetron sputtering. When this bilayer of SnO2/ZnO was annealed at temperatures above 400 °C, ZnO diffuses into SnO2 at the threading dislocations and gaps between the grain boundaries, leading to the formation of a ZnO nanostructure surrounded by SnO2. Such a configuration forms a resonant tunneling type structure with SnO2/ZnO/SnO2…….ZnO/SnO2 interface formation. Interestingly, the heterostructure exhibits a Gunn diode-like behavior and shows NDR and RS irrespective of the voltage sweep direction, which is the characteristic of unipolar devices. A threshold voltage of ˜1.68 V and a peak-to-valley ratio of current ˜2.5 are observed for an electrode separation of 2 mm, when the bias is swept from -5 V to +5 V. It was also observed that the threshold voltage can be tuned with changing distance between the electrodes. The device shows a very stable RS with a uniform ratio of about 3.4 between the high resistive state and the low resistive state. Overall, the results demonstrate the application of SnO2/ZnO bilayer thin films in transparent electronics.

  12. Application of chemical oxidation to remediate HCH-contaminated soil under batch and flow through conditions.

    PubMed

    Usman, Muhammad; Tascone, Oriane; Rybnikova, Victoria; Faure, Pierre; Hanna, Khalil

    2017-06-01

    This is the first study describing the chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soil under water saturated and unsaturated flow through conditions. Soil contaminated with β-HCH (45 mg kg -1 ) and γ-HCH (lindane, 25 mg kg -1 ) was sampled from former lindane waste storage site. Efficiency of following treatments was tested at circumneutral pH: H 2 O 2 alone, H 2 O 2 /Fe II , Na 2 S 2 O 8 alone, Na 2 S 2 O 8 /Fe II , and KMnO 4 . Experimental conditions (oxidant dose, liquid/solid ratio, and soil granulometry) were first optimized in batch experiments. Obtained results revealed that increasing dose of H 2 O 2 improved the oxidation efficiency while in Na 2 S 2 O 8 system, maximum HCHs were removed at 300 mM. However, oxidation efficiency was slightly improved by Fe II -activation. Increasing the solid/liquid ratio decreased HCH removal in soil samples crushed to 500 μm while an opposite trend was observed for 2-mm samples. Dynamic column experiments showed that oxidation efficiency followed the order KMnO 4  > Na 2 S 2 O 8 /Fe II  > Na 2 S 2 O 8 whatever the flow condition, whereas the removal extent declined at higher flow rate (e.g., ~50% by KMnO 4 at 0.5 mL/min as compared to ~30% at 2 mL/min). Both HCH removal and oxidant decomposition extents were found higher in saturated columns than the unsaturated ones. While no significant change in relative abundance of soil mineral constituents was observed before and after chemical oxidation, more than 60% of extractable organic matter was lost after chemical oxidation, thereby underscoring the non-selective behavior of chemical oxidation in soil. Due to the complexity of soil system, chemical oxidation has rarely been reported under flow through conditions, and therefore our findings will have promising implications in developing remediation techniques under dynamic conditions closer to field applications.

  13. Production of Cl2O2 from the self-reaction of the ClO radical

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Molina, M. J.

    1987-01-01

    The species Cl2O2 has been generated in a gaseous flow system at 220-240 K by reacting Cl atoms with one of three different ClO precursors: O3, Cl2O, or OClO. The infrared spectra of the reactive mixture indicate that at least two different dimers are produced: a predominant form with bands centered at 1225 and 1057/cm attributed to ClOOCl, and a second form with a band at 650/cm attributed to ClOClO. The UV spectrum of the predominant form shows a maximum absorption cross section of about 6.5 x 10 to the -18th sq cm/molecule around 270 nm, with a wing extending beyond 300 nm. The implications of these results for the chemistry of the stratosphere are discussed.

  14. C/O vs. Mg/Si ratios in solar type stars: The HARPS sample

    NASA Astrophysics Data System (ADS)

    Suárez-Andrés, L.; Israelian, G.; Hernández, J. I. González; Adibekyan, V. Zh.; Delgado Mena, E.; Santos, N. C.; Sousa, S. G.

    2018-06-01

    Context. Aims: We aim to present a detailed study of the magnesium-to-silicon and carbon-to-oxygen ratios (Mg/Si and C/O) and their importance in determining the mineralogy of planetary companions. Methods: Using 499 solar-like stars from the HARPS sample, we determined C/O and Mg/Si elemental abundance ratios to study the nature of the possible planets formed. We separated the planetary population in low-mass planets (<30 M⊙) and high-mass planets (>30 M⊙) to test for a possible relation with the mass. Results: We find a diversity of mineralogical ratios that reveal the different kinds of planetary systems that can be formed, most of them dissimilar to our solar system. The different values of the Mg/Si and C/O can determine different composition of planets formed. We found that 100% of our planetary sample present C/O < 0.8. 86% of stars with high-mass companions present 0.8 > C/O > 0.4, while 14% present C/O values lower than 0.4. Regarding Mg/Si, all stars with low-mass planetary companion showed values between one and two, while 85% of the high-mass companion sample does. The other 15% showed Mg/Si values below one. No stars with planets were found with Mg/Si > 2. Planet hosts with low-mass companions present C/O and Mg/Si similar to those found in the Sun, whereas stars with high-mass companions have lower C/O. The full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A84

  15. Continuous flow analysis combined with a light-absorption ratio variation approach for determination of copper at ng/ml level in natural water.

    PubMed

    Gao, Hong-Wen; Wang, Chun-Lei; Jia, Jiang-Yan; Zhang, Ya-Lei

    2007-06-01

    The complexation between Cu(II) and naphthochrome green (NG) is very sensitive at pH 4.09 with the formation of complex ion [Cu(NG)2(H2O)2](2-). It can thus used for the determination of Cu(II) by the light-absorption ratio variation approach (LARVA) with a good selectivity. Both the ordinary detection procedure and continuous flow analysis (CFA) were carried out, where the latter is fit for continuous and rapid analysis of samples. The limit of detection (LOD) of Cu(II) is only 1 ng/ml, which is favorable for direct monitoring of natural water. About 30 samples could be analyzed per hour by CFA. Cu(II) contents in Yangtze River, West Lake, Taihu Lake of China and seawater near Shanghai were determined with satisfactory results. The CFA-LARVA spectrophotometry was the first to be coupled and it will play an important role in the in-situ analysis of natural water quality.

  16. Oxygen isotope effect in YBa2Cu3O7 prepared by burning YBa2Cu3 in 16O and 18O

    NASA Astrophysics Data System (ADS)

    Yvon, Pascal J.; Schwarz, R. B.; Pierce, C. B.; Bernardez, L.; Conners, A.; Meisenheimer, R.

    1989-04-01

    We prepared YBa2Cu3 powder by ball milling a 2:1 molar mixture of the intermetallics BaCu and CuY. We synthesized YBa2Cu3(16O)7-x and YBa2Cu3(18O)7-x by oxidizing the YBa2Cu3 powder in 16O and 18O. The 16O/18O ratios were determined by laser-ionization and sputtering-ionization mass spectroscopy. The YBa2Cu3(160)7-x sample had 99.8 at. %16O, and the YBa2Cu3(18O)7-x sample had 96.5 at. %18O. Susceptibility measurements of the superconducting transition temperature (Tc=91.7 K for 16O; half-point transition at 84 K show an isotope effect of 0.4+/-0.1 K.

  17. Interactive effects of MnO2, organic matter and pH on abiotic formation of N2O from hydroxylamine in artificial soil mixtures.

    PubMed

    Liu, Shurong; Berns, Anne E; Vereecken, Harry; Wu, Di; Brüggemann, Nicolas

    2017-02-01

    Abiotic conversion of the reactive nitrification intermediate hydroxylamine (NH 2 OH) to nitrous oxide (N 2 O) is a possible mechanism of N 2 O formation during nitrification. Previous research has demonstrated that manganese dioxide (MnO 2 ) and organic matter (OM) content of soil as well as soil pH are important control variables of N 2 O formation in the soil. But until now, their combined effect on abiotic N 2 O formation from NH 2 OH has not been quantified. Here, we present results from a full-factorial experiment with artificial soil mixtures at five different levels of pH, MnO 2 and OM, respectively, and quantified the interactive effects of the three variables on the NH 2 OH-to-N 2 O conversion ratio (R NH2OH-to-N2O ). Furthermore, the effect of OM quality on R NH2OH-to-N2O was determined by the addition of four different organic materials with different C/N ratios to the artificial soil mixtures. The experiments revealed a strong interactive effect of soil pH, MnO 2 and OM on R NH2OH-to-N2O . In general, increasing MnO 2 and decreasing pH increased R NH2OH-to-N2O , while increasing OM content was associated with a decrease in R NH2OH-to-N2O . Organic matter quality also affected R NH2OH-to-N2O . However, this effect was not a function of C/N ratio, but was rather related to differences in the dominating functional groups between the different organic materials.

  18. Interactive effects of MnO2, organic matter and pH on abiotic formation of N2O from hydroxylamine in artificial soil mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Shurong; Berns, Anne E.; Vereecken, Harry; Wu, Di; Brüggemann, Nicolas

    2017-02-01

    Abiotic conversion of the reactive nitrification intermediate hydroxylamine (NH2OH) to nitrous oxide (N2O) is a possible mechanism of N2O formation during nitrification. Previous research has demonstrated that manganese dioxide (MnO2) and organic matter (OM) content of soil as well as soil pH are important control variables of N2O formation in the soil. But until now, their combined effect on abiotic N2O formation from NH2OH has not been quantified. Here, we present results from a full-factorial experiment with artificial soil mixtures at five different levels of pH, MnO2 and OM, respectively, and quantified the interactive effects of the three variables on the NH2OH-to-N2O conversion ratio (RNH2OH-to-N2O). Furthermore, the effect of OM quality on RNH2OH-to-N2O was determined by the addition of four different organic materials with different C/N ratios to the artificial soil mixtures. The experiments revealed a strong interactive effect of soil pH, MnO2 and OM on RNH2OH-to-N2O. In general, increasing MnO2 and decreasing pH increased RNH2OH-to-N2O, while increasing OM content was associated with a decrease in RNH2OH-to-N2O. Organic matter quality also affected RNH2OH-to-N2O. However, this effect was not a function of C/N ratio, but was rather related to differences in the dominating functional groups between the different organic materials.

  19. Collisional Removal of OH (X (sup 2)Pi, nu=7) by O2, N2, CO2, and N2O

    NASA Technical Reports Server (NTRS)

    Knutsen, Karen; Dyer, Mark J.; Copeland, Richard A.

    1996-01-01

    Collisional removal rate constants for the OH (X 2PI, nu = 7) radical are measured for the colliders O2, CO2, and N2O, and an upper limit is established for N2. OH(nu = 4) molecules, generated in a microwave discharge flow cell by the reaction of hydrogen atoms with ozone, are excited to v = 7 by the output of a pulsed infrared laser via direct vibrational overtone excitation. The temporal evolution of the P = 7 population is probed as a function of the collider gas partial pressure by a time-delayed pulsed ultraviolet laser. Fluorescence from the B 21 + state is detected in the visible spectral region.

  20. Influence of γ-radiation on the reactivity of montmorillonite towards H 2O 2

    NASA Astrophysics Data System (ADS)

    Holmboe, Michael; Jonsson, Mats; Wold, Susanna

    2012-02-01

    Compacted and water saturated bentonite will be used as an engineered barrier in deep geological repositories for radioactive waste in many countries. Due to the high dose rate of ionizing radiation outside the canisters holding the nuclear waste, radiolysis of the interlayer and pore water in the compacted bentonite is unavoidable. Upon reaction with the oxidizing and reducing species formed by water radiolysis (OH •, e -(aq), H •, H 2O 2, H 2, HO 2•, H 3O +), the overall redox properties in the bentonite barrier may change. In this study the influence of γ-radiation on the structural Fe(II)/Fe Tot ratio in montmorillonite and its reactivity towards hydrogen peroxide (H 2O 2) was investigated in parallel experiments. The results show that under anoxic conditions the structural Fe(II)/Fe Tot ratio of dispersed Montmorillonite increased from ≤3 to 25-30% after γ-doses comparable to repository conditions. Furthermore, a strong correlation between the structural Fe(II)/Fe Tot ratio and the H 2O 2 decomposition rate in montmorillonite dispersions was found. This correlation was further verified in experiments with consecutive H 2O 2 additions, since the structural Fe(II)/Fe Tot ratio was seen to decrease concordantly. This work shows that the structural iron in montmorillonite could be a sink for one of the major oxidants formed upon water radiolysis in the bentonite barrier, H 2O 2.

  1. Monoclinic modification of bis­(μ2-pyridine-2,6-dicarboxyl­ato)-κ4 O 2,N,O 6:O 6;κ4 O 2:O 2,N,O 6-bis­[aqua­dibutyl­tin(IV)

    PubMed Central

    Ng, Seik Weng

    2011-01-01

    The SnIV atom in the centrosymmetric dinuclear title compound, [Sn2(C4H9)4(C7H3NO4)2(H2O)2], exists in a trans-C2SnNO4 penta­gonal–bipyramidal geometry. There are two half-mol­ecules in the asymmetric unit that are completed by inversion symmetry. The crystal studied was a non-merohedral twin with a ratio of 47.3 (1)% for the minor twin component. Bond dimensions are similar to those found in the tetra­gonal polymorph [Huber et al. (1989 ▶). Acta Cryst. C45, 51–54]. O—H⋯O hydrogen-bonding interactions stabilize the crystal packing. PMID:21522924

  2. Long-term series of tropospheric water vapour amounts and HDO/H2O ratio profiles above Jungfraujoch.

    NASA Astrophysics Data System (ADS)

    Lejeune, B.; Mahieu, E.; Schneider, M.; Hase, F.; Servais, C.; Demoulin, P.

    2012-04-01

    Water vapour is a crucial climate variable involved in many processes which widely determine the energy budget of our planet. In particular, water vapour is the dominant greenhouse gas in the Earth's atmosphere and its radiative forcing is maximum in the middle and upper troposphere. Because of the extremely high variability of water vapour concentration in time and space, it is challenging for the available relevant measurement techniques to provide a consistent data set useful for trend analyses and climate studies. Schneider et al. (2006a) showed that ground-based Fourier Transform Infrared (FTIR) spectroscopy, performed from mountain observatories, allows for the detection of H2O variabilities up to the tropopause. Furthermore, the FTIR measurements allow the retrieval of HDO amounts and therefore the monitoring of HDO/H2O ratio profiles whose variations act as markers for the source and history of the atmospheric water vapour. In the framework of the MUSICA European project (Multi-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, http://www.imk-asf.kit.edu/english/musica.php), a new approach has been developed and optimized by M. Schneider and F. Hase, using the PROFFIT algorithm, to consistently retrieve tropospheric water vapour profiles from high-resolution ground-based infrared solar spectra and so taking benefit from available long-term data sets of ground-based observations. The retrieval of the water isotopologues is performed on a logarithmic scale from 14 micro-windows located in the 2600-3100 cm-1 region. Other important features of this new retrieval strategy are: a speed dependant Voigt line shape model, a joint temperature profile retrieval and an interspecies constraint for the HDO/H2O profiles. In this contribution, we will combine the quality of the MUSICA strategy and of our observations, which are recorded on a regular basis with FTIR spectrometers, under clear-sky conditions, at the NDACC site

  3. Photolysis of Pure Solid O3 and O2 Films at 193nm

    NASA Technical Reports Server (NTRS)

    Raut, U.; Loeffler, M. J.; Fama, M.; Baragiola, R. A.

    2011-01-01

    We studied quantitatively the photochemistry of solid O3 and O2 films at 193 nm and 22 K with infrared spectroscopy and microgravimetry. Photolysis of pure ozone destroyed O3, but a small amount of ozone remained in the film at high fluence. Photolysis of pure O2 produced O3 in an amount that increased with photon fluence to a stationary level. For both O2 and O3 films, the O3:O2 ratio at large fluences is ?0.07, about two orders of magnitude larger than those obtained in gas phase photolysis. This enhancement is attributed to the increased photodissociation of O2 due to photoabsorption by O2 dimers, a process significant at solid-state densities. We obtain initial quantum yield for ozone synthesis from solid oxygen, phi (O3) = 0.24 0.06, and quantum yields for destruction of O3 and O2 in their parent solids, phi(-O3) = 1.0 0.2 and phi(-O2) = 0.36 0.1. Combined with known photoabsorption cross sections, we estimate probabilities for geminate recombination of 0.5 0.1 for O3 fragments and 0.88 0.03 for oxygen atoms from O2 dissociation. Using a single parameter kinetic model, we deduce the ratio of reaction cross sections for an O atom with O2 vs. O3 to be 0.1 0.2. The general good agreement of the model with the data suggests the validity of the central assumption of efficient energy and spin relaxation of photofragments in the solid prior to their reactions with other species.

  4. Detection of interstellar N2O: A new molecule containing an N-O bond

    NASA Astrophysics Data System (ADS)

    Ziurys, L. M.; Apponi, A. J.; Hollis, J. M.; Snyder, L. E.

    1994-12-01

    A new interstellar molecule, N2O, known as nitrous oxide or 'laughing gas,' has been detected using the NRAO 12 m telescope. The J = 3 - 2, 4 - 3, 5 - 4, and 6 - 5 rotational transitions of this species at 75, 100, 125, and 150 GHz, respectively, were observed toward Sgr B2(M). The column density derived for N2O in this source is Ntot approx. 1015/sq. cm, which corresponds to a fractional abundance of approx. 10-9, relative to H2. This value implies abundance ratios of N2O/NO approx. 0.1 and N2O/HNO approx. 3 in the Galactic center. Such ratios are in excellent agreement with predictions of ion-molecule models of interstellar chemistry using early-time calculations and primarily neutral-neutral reactions. N2O is the third interstellar molecule detected thus far containing an N-O bond. Such bonds cannot be so rare as previously thought.

  5. Detection of interstellar N2O: A new molecule containing an N-O bond

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Apponi, A. J.; Hollis, J. M.; Snyder, L. E.

    1994-01-01

    A new interstellar molecule, N2O, known as nitrous oxide or 'laughing gas,' has been detected using the NRAO 12 m telescope. The J = 3 - 2, 4 - 3, 5 - 4, and 6 - 5 rotational transitions of this species at 75, 100, 125, and 150 GHz, respectively, were observed toward Sgr B2(M). The column density derived for N2O in this source is N(sub tot) approx. 10(exp 15)/sq. cm, which corresponds to a fractional abundance of approx. 10(exp -9), relative to H2. This value implies abundance ratios of N2O/NO approx. 0.1 and N2O/HNO approx. 3 in the Galactic center. Such ratios are in excellent agreement with predictions of ion-molecule models of interstellar chemistry using early-time calculations and primarily neutral-neutral reactions. N2O is the third interstellar molecule detected thus far containing an N-O bond. Such bonds cannot be so rare as previously thought.

  6. Effect of oxidizer to fuel molar ratio on particle size and DC conductivity of CeO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harish, B. M.; Rajeeva, M. P.; Naveen, C. S.

    2016-05-06

    Cerium oxide nanoparticles were synthesized by solution combustion method with varying the oxidizer (cerium nitrate hexa hydrate) to fuel (Glycine) molar ratio. The prepared samples were characterized by UV-visible spectrometer, X-ray diffractometer (XRD), Scanning electron microscope (SEM) and Energy dispersive X-Ray analysis (EDAX). XRD pattern reveals the formation of cubic fluorite structure of CeO{sub 2}. It was observed that finest crystallites were found at extreme fuel-deficient condition and it is good enough to produce favorable powder characteristics. The average crystallite size was found to be 14.46 nm to 21.57 nm. The temperature dependent dc conductivity was carried out using Keithleymore » source meter between the temperature range from 300 K to 573 K. From this study it was found that the conductivity increases with increase of temperature due to semiconducting behavior of CeO{sub 2} and it decreases with particle size due to increase in the energy band gap.« less

  7. Isotopomeric characterization of N2O produced, consumed, and emitted by automobiles.

    PubMed

    Toyoda, Sakae; Yamamoto, Sei-ichiro; Arai, Shinji; Nara, Hideki; Yoshida, Naohiro; Kashiwakura, Kiriko; Akiyama, Ken-ichi

    2008-01-01

    Fossil fuel combustion is the second largest anthropogenic source of nitrous oxide (N2O) after agriculture. The estimated global N2O flux from combustion sources, as well as from other sources, still has a large uncertainty. Herein, we characterize automobile sources using N2O isotopomer ratios (nitrogen and oxygen isotope ratios and intramolecular site preference of 15N, SP) to assess their contributions to total global sources and to deconvolute complex production/consumption processes during combustion and subsequent catalytic treatments of exhaust. Car exhaust gases were sampled under running and idling state, and N2O isotopomer ratios were measured by mass spectrometry. The N2O directly emitted from an engine of a vehicle running at constant velocity had almost constant isotopomer ratios (delta15Nbulk = -28.7 +/- 1.2 per thousand, delta18O = 28.6 +/- 3.3 per thousand, and SP = 4.2 +/- 0.8 per thousand) irrespective of the velocity. After passing through catalytic converters, the isotopomer ratios showed an increase which varied with the temperature and the aging of the catalysts. The increase suggests that both production and consumption of N2O occur on the catalyst and that their rates can be comparable. It was noticed that in the idling state, the N2O emitted from a brand new car has higher isotopomer ratios than that from used cars, which indicate that technical improvements in catalytic converters can reduce the N2O from mobile combustion sources. On average, the isotopomeric signatures of N2O finally emitted from automobiles are not sensitive to running/idling states or to aging of the catalysts. Characteristic average isotopomer ratios of N2O from automobile sources are estimated at -4.9 +/- 8.2 per thousand, 43.5 +/- 13.9 per thousand, and 12.2 +/- 9.1 per thousand for delta15Nbulk, delta18O, and SP, respectively.

  8. Optical properties of nanocrystalline potassium lithium niobate in the glass system (100-x) TeO2-x(1.5K2O-Li2O-2.5Nb2O5).

    PubMed

    Ahamad, M Niyaz; Varma, K B R

    2009-08-01

    Optically clear glasses of various compositions in the system (100-x) TeO2-x(1.5K2O-Li2O-2.5Nb2O5) (2 < or = x < or = 12, in molar ratio) were prepared by the melt-quenching technique. The glassy nature of the as-quenched samples was established via differential scanning calorimetry (DSC). The amorphous and the crystalline nature of the as-quenched and heat-treated samples were confirmed by the X-ray powder diffraction and transmission electron microscopic (TEM) studies. Transparent glasses comprising potassium lithium niobate (K3Li2Nb5O15) microcrystallites on the surface and nanocrystallites within the glass were obtained by controlled heat-treatment of the as-quenched glasses just above the glass transition temperature (T(g)). The optical transmission spectra of these glasses and glass-crystal composites of various compositions were recorded in the 200-2500 nm wavelength range. Various optical parameters such as optical band gap, Urbach energy, refractive index were determined. Second order optical non-linearity was established in the heat-treated samples by employing the Maker-Fringe method.

  9. Photo degradation of methyl orange by attapulgite-SnO2-TiO2 nanocomposites.

    PubMed

    Zhang, Lili; Lv, Fujian; Zhang, Weiguang; Li, Rongqing; Zhong, Hui; Zhao, Yijiang; Zhang, Yu; Wang, Xin

    2009-11-15

    Photocatalytic removal of methyl orange under ultraviolet radiation has been studied using attapulgite (ATT) composites, which were synthesized by depositing SnO(2)-TiO(2) hybrid oxides on the surface of ATT to form a composite photocatalyst (denoted ATT-SnO(2)-TiO(2)) using an in situ sol-gel technique. Results showed that SnO(2)-TiO(2) nanocomposite particles with average size of about 10nm were loaded successfully on to the surface of ATT fibers and were widely dispersed. Correspondingly, the photocatalytic activity of ATT was improved significantly by loading SnO(2)-TiO(2). The photoactivity of the composite photocatalyst decreased in the sequence ATT-SnO(2)-TiO(2)>ATT-SnO(2)>ATT-TiO(2)>ATT. In order to achieve the best photocatalyst, the molar ratio of SnO(2) and TiO(2) in the ATT-SnO(2)-TiO(2) composites was adjusted to give a series with proportions r=n(Ti)/(n(Ti)+n(Sn))=0.0, 0.25, 0.33, 0.50, 0.67, 0.75, 0.80, 0.82, 0.86, 1.0. Results indicated that the proportion of SnO(2) and TiO(2) had a critical effect on the photocatalytic activity, which increased as the content of TiO(2) increased to r0.82. The highest degradation rate of methyl orange was 99% within 30 min obtained by using ATT-SnO(2)-TiO(2) with r=0.82. The repeated use of the composite photocatalyst was also confirmed.

  10. Synthesis of Radioisotope Mn-56@SiO2, Sm-153@SiO2, and Dy-165@SiO2 Hybrid Nanoparticles for Use as Radiotracer.

    PubMed

    Seo, Sang-Ei; Kang, Yun Ok; Jung, Sung-Hee; Choi, Seong-Ho

    2015-09-01

    Radioisotope hybrid nanoparticles (NPs) of Mn-56@SiO2, Sm-153@SiO2, and Dy-165@SiO2 were synthesized by neutron irradiation of Mn-55@SiO2, Sm-150@SiO2, and Dy-163@SiO2 NPs respectively using the HANARO research reactor. The Mn-55@SiO2, Sm-150@SiO2, and Dy-163@SiO2 NPs were synthesized by calcination in air flow at 500 degrees C for 8 h of the hybrid NPs that has been prepared by the sol-gel reaction of tetraethyl silicate in the presence of the complex precursors. Mn-55, Sm-150, and Dy-163 were selected for use as radiotracers were selected because these elements can be easily gamma-activated by neutrons (activation limits: 1 picogram (Dy), 1-10 picogram (Mn), 10-100 picogram (Sm)). The successful synthesis of the radioisotope hybrid NPs was confirmed by Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectrometry (EDS), Scanning Electron Microscopy (SEM), and Gamma Spectroscopy analysis. The synthesized the radioisotope hybrid NPs could be used as radiotracers in the scientific, environmental, engineering, and industrial fields.

  11. Popcorn balls-like ZnFe2O4-ZrO2 microsphere for photocatalytic degradation of 2,4-dinitrophenol

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Liu, Yutang; Xia, Xinnian; Wang, Longlu

    2017-06-01

    In this paper, novel popcorn balls-like ZnFe2O4-ZrO2 composite microspheres were successfully fabricated by a simple hydrothermal method. The morphology, structure and optical property of the microspheres were characterized. The microspheres were used as the photocatalysts to degrade 2,4-dinitrophenol, and exhibited superior photocatalytic performance. Under simulated solar visible light irradiation, the degradation rate of ZnFe2O4-ZrO2 photocatalyst (mass ratio of ZnFe2O4/ZrO2 = 2:1) was almost 7.4 and 2.4 times higher than those of pure ZnFe2O4 and ZrO2. The enhancement could attribute to stronger light absorption, lower carrier recombination and multi-porous structure of the microspheres. Moreover, the popcorn balls-like photocatalysts can be easily separated, because of the magnetism of the samples. After five times runs, the photocatalyst still showed 90% of its photocatalytic degradation efficiency. This work demonstrated a good prospect for removing organic pollutants in water.

  12. First investigations on the quaternary system Na2O-K2O-CaO-SiO2: synthesis and crystal structure of the mixed alkali calcium silicate K1.08Na0.92Ca6Si4O15

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Mayerl, Michael Jean-Philippe; Schmidmair, Daniela; Krüger, Hannes; Tribus, Martina

    2018-04-01

    In the course of an exploratory study on the quaternary system Na2O-K2O-CaO-SiO2 single crystals of the first anhydrous sodium potassium calcium silicate have been obtained from slow cooling of a melt in the range between 1250 and 1050 °C. Electron probe micro analysis suggested the following idealized molar ratios of the oxides for the novel compound: K2O:Na2O:CaO:SiO2 = 1:1:12:8 (or KNaCa6Si4O15). Single-crystal diffraction measurements on a crystal with chemical composition K1.08Na0.92Ca6Si4O15 resulted in the following basic crystallographic data: monoclinic symmetry, space group P 21/ c, a = 8.9618(9) Å, b = 7.3594(6) Å, c = 11.2453(11) Å, β= 107.54(1)°, V = 707.2(1) Å3, Z = 2. Structure solution was performed using direct methods. The final least-squares refinement converged at a residual of R(|F|) = 0.0346 for 1288 independent reflections and 125 parameters. From a structural point of view, K1.08Na0.92Ca6Si4O15 belongs to the group of mixed-anion silicates containing [Si2O7]- and [SiO4]-units in the ratio 1:2. The mono- and divalent cations occupy a total of four crystallographically independent positions located in voids between the tetrahedra. Three of these sites are exclusively occupied by calcium. The fourth site is occupied by 54(1)% K and 46%(1) Na, respectively. Alternatively, the structure can be described as a heteropolyhedral framework based on corner-sharing silicate tetrahedra and [CaO6]-octahedra. The network can build up from kröhnkite-like [Ca(SiO4)2O2]-chains running along [001]. A detailed comparison with other A2B6Si4O15-compounds including topological and group-theoretical aspects is presented.

  13. Tracking the energy flow in the hydrogen exchange reaction OH + H2O → H2O + OH.

    PubMed

    Zhu, Yongfa; Ping, Leilei; Bai, Mengna; Liu, Yang; Song, Hongwei; Li, Jun; Yang, Minghui

    2018-05-09

    The prototypical hydrogen exchange reaction OH + H2O → H2O + OH has attracted considerable interest due to its importance in a wide range of chemically active environments. In this work, an accurate global potential energy surface (PES) for the ground electronic state was developed based on ∼44 000 ab initio points at the level of UCCSD(T)-F12a/aug-cc-pVTZ. The PES was fitted using the fundamental invariant-neural network method with a root mean squared error of 4.37 meV. The mode specific dynamics was then studied by the quasi-classical trajectory method on the PES. Furthermore, the normal mode analysis approach was employed to calculate the final vibrational state distribution of the product H2O, in which a new scheme to acquire the Cartesian coordinates and momenta of each atom in the product molecule from the trajectories was proposed. It was found that, on one hand, excitation of either the symmetric stretching mode or the asymmetric stretching mode of the reactant H2O promotes the reaction more than the translational energy, which can be rationalized by the sudden vector projection model. On the other hand, the relatively higher efficacy of exciting the symmetric stretching mode than that of the asymmetric stretching mode is caused by the prevalence of the indirect mechanism at low collision energies and the stripping mechanism at high collision energies. In addition, the initial collision energy turns ineffectively into the vibrational energy of the products H2O and OH while a fraction of the energy transforms into the rotational energy of the product H2O. Fundamental excitation of the stretching modes of H2O results in the product H2O having the highest population in the fundamental state of the asymmetric stretching mode, followed by the ground state and the fundamental state of the symmetric stretching mode.

  14. Magnetoresistance of oxygen concentration-modulated Co-Ti-O films

    NASA Astrophysics Data System (ADS)

    Nakano, Masatoshi; Wan, Fuxing; Wang, Jian; Sannomiya, Takumi; Muraishi, Shinji; Harumoto, Takashi; Nakamura, Yoshio; Shi, Ji

    2018-06-01

    Co-Ti-O films have been prepared by a sputtering method in an Ar- and O2-mixed atmosphere. The O2 flow rate was modulated during the deposition to optimize the oxygen concentration and the microstructure of the films. For the as-deposited film, negligible magnetization and magnetoresistance (MR) were observed. The structure of the layers with lower O2 flow rate is basically amorphous alloy with Ti-O and Co-Ti bonds. On the other hand, in the layers with high O2 flow rate, both Ti and Co are oxidized. Upon thermal annealing in a vacuum, significant enhancements in both magnetization and MR in Co-Ti-O films were observed. It is found that granular structure of Co particles embedded in insulating TiO2 matrix is formed due to the oxygen diffusion and further oxidization of Ti as a result of the heat treatment. The significantly enhanced magnetization and MR ratio have been ascribed to the formation of nano-sized Co particles and the tunneling conduction between these Co particles across the TiO2 interlayers, respectively.

  15. Drag reduction of alumina nanofluid in spiral pipe with turbulent flow conditions

    NASA Astrophysics Data System (ADS)

    Yanuar, Mau, Sealtial; Waskito, Kurniawan T.; Putra, Okky A.; Hanif, Rifqi

    2017-03-01

    This study was conducted to investigate the effects of nanofluid flows through the spiral pipe on drag reduction in turbulent flow conditions. Al2O3 nanoparticles dispersed into pure water at ratio of 100 ppm, 200 ppm and 300 ppm as well as the duration of the mixing time 30 minutes, 60 minutes and 120 minutes. A circular pipe used as a comparison to spiral pipe and both are mounted horizontally. Spiral pipe ratio is P/Di 10.8 and the inner diameter of circular pipe is 3 mm. Mixing time and composition ratio of nanoparticle in basic fluid influence drag reduction results. Nanofluid flows through the test pipe with Reynolds number between 4.0 × 103 to 2.0 × 104 showed high drag reduction occurred in the spiral pipe is 38%.

  16. Diffuse reflectance of TiO 2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio

    NASA Astrophysics Data System (ADS)

    Vargas, William E.; Amador, Alvaro; Niklasson, Gunnar A.

    2006-05-01

    Diffuse reflectance spectra of paint coatings with different pigment concentrations, normally illuminated with unpolarized radiation, have been measured. A four-flux radiative transfer approach is used to model the diffuse reflectance of TiO2 (rutile) pigmented coatings through the solar spectral range. The spectral dependence of the average pathlength parameter and of the forward scattering ratio for diffuse radiation, are explicitly incorporated into this four-flux model from two novel approximations. The size distribution of the pigments has been taken into account to obtain the averages of the four-flux parameters: scattering and absorption cross sections, forward scattering ratios for collimated and isotropic diffuse radiation, and coefficients involved in the expansion of the single particle phase function in terms of Legendre polynomials.

  17. Transport properties and c/a ratio of V{sub 2}O{sub 3} thin films grown on C- and R-plane sapphire substrates by pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Joe; Limelette, Patrice; Funakubo, Hiroshi

    2015-12-14

    We prepared V{sub 2}O{sub 3} thin films on C- or R-plane sapphire (Al{sub 2}O{sub 3}) substrates by a pulsed laser deposition method. X-ray diffraction analyses confirmed that single-phase V{sub 2}O{sub 3} films were epitaxially grown on both C- and R-planes under an Ar gas ambient of 2 × 10{sup −2} mbar at a substrate temperature of 873 K. Depending on the deposition conditions, c/a ratios at room temperature of (0001)-oriented V{sub 2}O{sub 3} films widely ranged from 2.79 to 2.88. Among them, the films of 2.81 ≤ c/a ≤ 2.84 showed complex metal (M)–insulator (I)–M transition during cooling from 300 to 10 K, while those of larger c/a ratiosmore » were accompanied by metallic properties throughout this temperature range. All the films on R-plane substrates underwent simple M-I transition at ∼150 K, which was more abrupt than the films on C-plane, whereas their c/a ratios were narrowly distributed. The distinct difference of M-I transition properties between C- and R-plane films is explained by the intrinsic a- and c-axes evolution through the transition from M to I phases.« less

  18. Structural Investigation of Phosphorus in CaO-SiO2-P2O5 Ternary Glass

    NASA Astrophysics Data System (ADS)

    Wang, Zhanjun; Cai, Shengjia; Zhang, Mei; Guo, Min; Zhang, Zuotai

    2017-04-01

    The system of CaO-SiO2-P2O5 ternary glass is not only among the major constituents of steelmaking slags in iron and steel industry, but also play a significant role in other industrial process, such as chemical engineering and glass industry. In the present study, the structure of CaO-SiO2-P2O5 ternary glass with varying P2O5 content from 0 to 15 wt pct at a fixed CaO/SiO2 = 1.4 was investigated using molecular dynamics (MD) simulation combined with X-ray photoelectron spectroscopy and Raman spectra techniques. The results indicated that P5+ ions have a higher affinity to Ca2+ ions which are then stripped away from the silicate network with the addition of P2O5, resulting in the formation of Ca-O-P and Si-O-Si linkages. In addition, almost all P5+ ions displayed as {{Q}}_{{P}}0 ( {{Q}}_{{P}}n , n is the number of bridging oxygen in one [PO4]-tetrahedra units) and a small fraction of P5+ ions behave as {{Q}}_{{P}}1 (P-O-P) and P-O-Si. The enhanced degree of polymerization can be detected from the increase of {{X}}_{{Si}}3 and X_{{P}}1 /X_{{P}}0 (mole fraction of {{Q}}_{{Si}}i or {{Q}}_{{P}}i ). Furthermore, the ratio of Raman scattering coefficients for Q_{{Si}}i /Q_{{Si}}1 and Q_{{P}}i /Q_{{P}}1 were determined by combining MD simulated result with Raman spectra, which were considered to be suitable to the present study.

  19. The Flow Field Downstream of a Dynamic Low Aspect Ratio Circular Cylinder: A Parametric Study

    NASA Astrophysics Data System (ADS)

    Gildersleeve, Samantha; Dan, Clingman; Amitay, Michael

    2015-11-01

    Flow past a static, low aspect ratio cylinder (pin) has shown the formation of vortical structures, namely the horseshoe and arch-type vortex. These vortical structures may have substantial effects in controlling flow separation over airfoils. In the present experiments, the flow field associated with a low aspect ratio cylinder as it interacts with a laminar boundary layer under static and dynamic conditions was investigated through a parametric study over a flat plate. As a result of the pin being actuated in the wall-normal direction, the structures formed in the wake of the pin were seen to be a strong function of actuation amplitude, driving frequency, and aspect ratio of the cylinder. The study was conducted at a Reynolds number of 1875, based on the local boundary layer thickness, with a free stream velocity of 10 m/s. SPIV data were collected for two aspect ratios of 0.75 and 1.125, actuation amplitudes of 6.7% and 16.7%, and driving frequencies of 175 Hz and 350 Hz. Results indicate that the presence and interactions between vortical structures are altered in comparison to the static case and suggest increased large-scale mixing when the pin is driven at the shedding frequency (350 Hz). Supported by the Boeing Company.

  20. Estimation of nocturnal CO2 and N2O soil emissions from changes in surface boundary layer mass storage

    NASA Astrophysics Data System (ADS)

    Grant, Richard H.; Omonode, Rex A.

    2018-04-01

    Annual budgets of greenhouse and other trace gases require knowledge of the emissions throughout the year. Unfortunately, emissions into the surface boundary layer during stable, calm nocturnal periods are not measurable using most micrometeorological methods due to non-stationarity and uncoupled flow. However, during nocturnal periods with very light winds, carbon dioxide (CO2) and nitrous oxide (N2O) frequently accumulate near the surface and this mass accumulation can be used to determine emissions. Gas concentrations were measured at four heights (one within and three above canopy) and turbulence was measured at three heights above a mature 2.5 m maize canopy from 23 July to 10 September 2015. Nocturnal CO2 and N2O fluxes from the canopy were determined using the accumulation of mass within a 6.3 m control volume and out the top of the control volume within the nocturnal surface boundary layer. Diffusive fluxes were estimated by flux gradient method. The total accumulative and diffusive fluxes during near-calm nights (friction velocities < 0.05 ms-1) averaged 1.16 µmol m-2 s-1 CO2 and 0.53 nmol m-2 s-1 N2O. Fluxes were also measured using chambers. Daily mean CO2 fluxes determined by the accumulation method were 90 to 130 % of those determined using soil chambers. Daily mean N2O fluxes determined by the accumulation method were 60 to 80 % of that determined using soil chambers. The better signal-to-noise ratios of the chamber method for CO2 over N2O, non-stationary flow, assumed Schmidt numbers, and anemometer tilt were likely contributing reasons for the differences in chambers versus accumulated nocturnal mass flux estimates. Near-surface N2O accumulative flux measurements in more homogeneous regions and with greater depth are needed to confirm the conclusion that mass accumulation can be effectively used to estimate soil emissions during nearly calm nights.

  1. Following 18O uptake in scCO2–H2O mixtures with Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windisch, Charles F.; Schaef, Herbert T.; Martin, Paul F.

    2012-03-01

    The kinetics of 18O/16O isotopic exchange in scCO2 containing liquid water was followed with Raman spectroscopy using a specially designed high-pressure optical cell. Characteristic bands from the C16O18O and C18O2 molecules were identified in the supercritical phase and measured in the spectra as a function of time after introducing liquid H218O into scC16O2. Temporal dependence indicated the isotopic exchange was diffusion-limited in our cell for both molecules, and that the chemical reactions within the liquid phase were comparatively rapid. However, the ratio of concentrations of the 18O-labeled CO2 molecules, C18O2/C16O18O, was much higher than expected in the supercritical phase, suggestingmore » the role of an intermediate step, possibly desorption, in moderating the concentrations of these species in the liquid water phase.« less

  2. Relationship Between Coronary Contrast-Flow Quantitative Flow Ratio and Myocardial Ischemia Assessed by SPECT MPI.

    PubMed

    Smit, Jeff M; Koning, Gerhard; van Rosendael, Alexander R; Dibbets-Schneider, Petra; Mertens, Bart J; Jukema, J Wouter; Delgado, Victoria; Reiber, Johan H C; Bax, Jeroen J; Scholte, Arthur J

    2017-10-01

    A new method has been developed to calculate fractional flow reserve (FFR) from invasive coronary angiography, the so-called "contrast-flow quantitative flow ratio (cQFR)". Recently, cQFR was compared to invasive FFR in intermediate coronary lesions showing an overall diagnostic accuracy of 85%. The purpose of this study was to investigate the relationship between cQFR and myocardial ischemia assessed by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). Patients who underwent SPECT MPI and coronary angiography within 3 months were included. The cQFR computation was performed offline, using dedicated software. The cQFR computation was based on 3-dimensional quantitative coronary angiography (QCA) and computational fluid dynamics. The standard 17-segment model was used to determine the vascular territories. Myocardial ischemia was defined as a summed difference score ≥2 in a vascular territory. A cQFR of ≤0.80 was considered abnormal. Two hundred and twenty-four coronary arteries were analysed in 85 patients. Overall accuracy of cQFR to detect ischemia on SPECT MPI was 90%. In multivariable analysis, cQFR was independently associated with ischemia on SPECT MPI (OR per 0.01 decrease of cQFR: 1.10; 95% CI 1.04-1.18, p = 0.002), whereas clinical and QCA parameters were not. Furthermore, cQFR showed incremental value for the detection of ischemia compared to clinical and QCA parameters (global chi square 48.7 to 62.6; p <0.001). A good relationship between cQFR and SPECT MPI was found. cQFR was independently associated with ischemia on SPECT MPI and showed incremental value to detect ischemia compared to clinical and QCA parameters.

  3. Electronic structure of a laterally graded ZrO2-TiO2 film on Si(100) prepared by metal-organic chemical vapor deposition in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Richter, J. H.; Karlsson, P. G.; Sandell, A.

    2008-05-01

    A TiO2-ZrO2 film with laterally graded stoichiometry has been prepared by metal-organic chemical vapor deposition in ultrahigh vacuum. The film was characterized in situ using synchrotron radiation photoelectron spectroscopy (PES) and x-ray absorption spectroscopy. PES depth profiling clearly shows that Ti ions segregate toward the surface region when mixed with ZrO2. The binding energy of the ZrO2 electronic levels is constant with respect to the local vacuum level. The binding energy of the TiO2 electronic levels is aligned to the Fermi level down to a Ti /Zr ratio of about 0.5. At a Ti /Zr ratio between 0.1 and 0.5, the TiO2 related electronic levels become aligned to the local vacuum level. The addition of small amounts of TiO2 to ZrO2 results in a ZrO2 band alignment relative to the Fermi level that is less asymmetric than for pure ZrO2. The band edge positions shift by -0.6eV for a Ti /Zr ratio of 0.03. This is explained in terms of an increase in the work function when adding TiO2, an effect that becomes emphasized by Ti surface segregation.

  4. A new method for CH3O2 and C2H5O2 radical detection and kinetic studies of the CH3O2 self-reaction in HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)

    NASA Astrophysics Data System (ADS)

    Onel, L. C.; Brennan, A.; Ingham, T.; Kirk, D.; Leggott, A.; Seakins, P. W.; Whalley, L.; Heard, D. E.

    2016-12-01

    Peroxy (RO2) radicals such as methylperoxy (CH3O2) and ethylperoxy (C2H5O2) are significant atmospheric species in the ozone formation in the presence of NO. At low concentrations of NO, the self-reaction of RO2 and RO2 + HO2 are important radical termination reactions. Despite their importance, at present typically only the sum of RO2 is measured in the atmosphere, making no distinction between different RO2 species.A new method has been developed for the direct detection of CH3O2 and C2H5O2 by FAGE (Fluorescence Assay by Gas Expansion) by titrating the peroxy radicals to RO (R = CH3 and C2H5) by reaction with NO and then detecting the resultant RO by laser induced fluorescence. The method has the potential to directly measure atmospheric levels of CH3O2 and potentially other RO2 species. The limit of detection is 3.8 × 108 molecule cm-3 for CH3O2 and 4.9 × 109 molecule cm-3 for C2H5O2 for a signal-to-noise ratio of 2 and a 4 min averaging time. The method has been used for time-resolved monitoring of CH3O2 during its self-reaction within HIRAC at 1 bar and at room temperature to determine a rate coefficient that is lower than the range of the previous results obtained by UV absorption measurements (http://iupac.pole-ether.fr/). A range of products of the CH3O2 self-reaction were also observed for the two reaction channels, (a) leading to formaldehyde and methanol and (b) forming methoxy (CH3O) radicals, over a range of temperatures from 296 - 340 K: CH3O and HO2 radicals (from reaction of CH3O + O2) were monitored by FAGE, formaldehyde was measured by FAGE and FTIR, and methanol was observed by FTIR. Good agreement was observed between the FTIR and FAGE measurements of formaldehyde. Using the concentrations of methanol and formaldehyde, the branching ratios at room temperature have been determined and are in very good agreement with the values recommended by IUPAC. Little temperature dependence of the branching ratios has been observed from 296 K to 340 K.

  5. Hydrogenation of furfural at the dynamic Cu surface of CuOCeO2/Al2O3 in vapor phase packed bed reactor

    USDA-ARS?s Scientific Manuscript database

    The hydrogenation of furfural to furfuryl alcohol over a CuOCeO2/'-Al2O3 catalyst in a flow reactor is reported. The catalyst was prepared by the wet impregnation of Cu onto a CeO2/'-Al2O3 precursor. The calcined catalyst was then treated with HNO3 to remove surface CuO resulting in a mixed CuCe oxi...

  6. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    PubMed

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  7. Effect of composition on properties of In2O3-Ga2O3 thin films

    NASA Astrophysics Data System (ADS)

    Demin, I. E.; Kozlov, A. G.

    2017-06-01

    The In2O3-Ga2O3 mixed oxide polycrystalline thin films with various ratios of components were obtained by pulsed laser deposition. The effect of films composition on surface morphology, electrophysical and gas sensing properties and energies of adsorption and desorption of combustible gases was studied. The films with50%In2O3-50%Ga2O3 composition showed maximum gas response (˜25 times) combined with minimum optimal working temperature (˜530 °C) as compared with the other films. The optical transmittance of the films in visible range was investigated. For 50%In2O3-50%Ga2O3 films, the transmittance is higher in comparison with the other films. The explanation of the dependency of films behaviors on their composition was presented.The In2O3-Ga2O3 films were assumed to have perspectives as gas sensing material for semiconducting gas sensors.

  8. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio

    NASA Astrophysics Data System (ADS)

    Ba, Yan; Liu, Haihu; Li, Qing; Kang, Qinjun; Sun, Jinju

    2016-08-01

    In this paper we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multirelaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulated with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike and bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.

  9. Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction

    NASA Astrophysics Data System (ADS)

    Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P.

    2017-02-01

    TiO2/g-C3N4 photocatalysts with the various TiO2/g-C3N4 weight ratios from 1:2 to 1:6 were fabricated by mechanical mixing in water suspension followed by calcination. Pure TiO2 was prepared by thermal hydrolysis and pure g-C3N4 was prepared from commercial melamine by thermal annealing at 620 °C. All the nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, Raman spectroscopy, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, photoelectrochemical measurements and nitrogen physisorption. The prepared mixtures along with pure TiO2 and g-C3N4 were tested for the photocatalytic decomposition of nitrous oxide under UVC (λ = 254 nm), UVA (λ = 365 nm) and Vis (λ > 400 nm) irradiation. The TiO2/g-C3N4 nanocomposites showed moderate improvement compared to pure g-C3N4 but pure TiO2 proved to be a better photocatalyst under UVC irradiation. However, under UVA irradiation conditions, the photocatalytic activity of TiO2/g-C3N4 (1:2) nanocomposite exhibited an increase compared to pure TiO2. Nevertheless, further increase of g-C3N4 amount leads/led to a decrease in reactivity. These results are suggesting the nanocomposite with the optimal weight ratio of TiO2 and g-C3N4 have shifted absorption edge energy towards longer wavelengths and decreased the recombination rate of charge carriers compared to pure g-C3N4. This is probably due to the generation of heterojunction on the TiO2/g-C3N4 interface.

  10. The effect of TiO2 on nucleation and crystallization of a Li2O-Al2O3-SiO2 glass investigated by XANES and STEM.

    PubMed

    Kleebusch, Enrico; Patzig, Christian; Krause, Michael; Hu, Yongfeng; Höche, Thomas; Rüssel, Christian

    2018-02-13

    Glass ceramics based on Li 2 O/Al 2 O 3 /SiO 2 are of high economic importance, as they often show very low coefficients of thermal expansion. This enables a number of challenging applications, such as cooktop panels, furnace windows or telescope mirror blanks. Usually, the crystallization of the desired LAS crystal phases within the glasses must be tailored by a careful choice of crystallization schedule and type of nucleation agents to be used. The present work describes the formation of nanocrystalline TiO 2 within an LAS base composition that contains solely TiO 2 as nucleating agent. Using a combination of scanning transmission electron microscopy as well as X-ray absorption spectroscopy, it is found that a mixture of four- and six-fold coordinated Ti 4+ ions exists already within the glass. Heating of the glass to 740 °C immediately changes this ratio towards a high content of six-fold coordinated Ti, which accumulates in liquid-liquid phase-separation droplets. During the course of thermal treatment, these droplets eventually evolve into nanocrystalline TiO 2 precipitations, in which Ti 4+ is six-fold coordinated. Thus, it is shown that the nucleation of nanocrystalline TiO 2 is initiated by a gradual re-arrangement of the Ti ions in the amorphous, glassy matrix, from a four-fold towards a six-fold coordination.

  11. Bioactivity and mechanical properties of polydimethylsiloxane (PDMS)-CaO-SiO2 hybrids with different calcium contents.

    PubMed

    Kamitakahara, M; Kawashita, M; Miyata, N; Kokubo, T; Nakamura, T

    2002-11-01

    Polydimethylsiloxane (PDMS)-CaO-SiO(2) hybrids with starting compositions containing PDMS/(Si(OC(2)H(5))(4)+PDMS) weight ratio=0.30, H(2)O/Si(OC(2)H(5))(4) molar ratio=2, and Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratios=0-0.2, were prepared by the sol-gel method. The apatite-forming ability of the hybrids increased with increasing calcium content in the Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratio range 0-0.1. The hybrids with a Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratio range 0.1-0.2 formed apatite on their surfaces in a simulated body fluid (SBF) within 12 h. The hybrid with a Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratio of 0.10 showed an excellent apatite-forming ability in SBF with a low release of silicon into SBF. It also showed mechanical properties analogous to those of human cancellous bones. This hybrid is expected to be useful as a new type of bioactive material.

  12. Abundances of O3 and O2 in the Martian Atmosphere Retrieved from MAVEN/IUVS Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Gröller, H.; Lefèvre, F.; Gonzalez-Galindo, F.; Yelle, R. V.; Koskinen, T.; Montmessin, F.; Schneider, N.; Deighan, J.; Jain, S.

    2017-12-01

    We present O3 and O2 abundances retrieved from stellar occultations taken with the Imaging UltraViolet Spectrometer (IUVS) on MAVEN. The IUVS instrument has two separate spectral channels, the FUV and the MUV channel from 110 to 190 nm and from 180 to 340 nm, respectively. The O3 absorption feature is present in the MUV channel, whereas the O2 absorption features are in the FUV channel. So far, 15 stellar occultation campaigns have been executed on average every two to three months; covering more than one Martian year. During these campaigns, more than 900 stellar occultations were recorded. From those 900 stellar occultations, around 50 % can be used for O2 detection and around 25 % for O3. We detect O3 in almost 40 % of the occultations that can be used for O3 retrievals. The obtained O3 profiles are between 20 and 60 km and show a maximum number density around 30 to 40 km. The peak O3 number density varies almost one order of magnitude; between a few times 108 cm-3 and 2 x 109 cm-3. Our measurements show that the most O3 is present during the first half of the Martian year (up to a solar longitude of around 140°, end of northern summer) with a maximum around 60° solar longitude (close to aphelion). In most of the cases, the retrieved O3 profiles are in agreement with the LMD-MGCM predicted values. However, in some cases a difference in altitude and pressure space can be seen. Furthermore, during the northern early spring season, higher number densities at altitudes above 40 km can be seen in the data. The retrieved density profiles of O2 cover an altitude range from around 90 km up to 150 km. The corresponding O2 mixing ratios range from 1 to 9 x 10-3, also in agreement with previous observations. Even though the O2 mixing ratio shows high variability, the mean value seems to be constant with solar longitude. The obtained O2 profiles agree with previous measurements obtained by the Mars Express SPICAM instrument and by the Viking mass spectrometer. Furthermore

  13. Spectroscopic and thermal study of a new glass from TeO2sbnd Ga2O3sbnd GeO2 system

    NASA Astrophysics Data System (ADS)

    Marczewska, Agnieszka; Środa, Marcin

    2018-07-01

    Tellurium oxide and germanium oxide based glasses are classified as the heavy metal oxide glasses, with phonon energies below 880 cm-1. These glasses transmit to longer wavelengths when compared to borate, phosphate and silicate glasses because of the heavier mass of germanium. In this paper we present a new promising TeO2sbnd Ga2O3sbnd GeO2 glasses with high thermal stability and good optical properties in the near and mid-IR regions. The glass can be easily obtained for the wide range of Te/Ge ratio, which gives opportunity to engineering desirable properties. Based on the FT-IR spectra it could be stated that the tellurite network is monotonically transformed into germanate one as the GeO2 content increases. Admixtures of GeO2 into the network of tellurite glass causes the conversion of [TeO4] to [TeO3] units. Thus, the network of the glass could be consider as a mixture of the [TeO4], [TeO3] and [GeO4] units and with Ga3+ ions playing the role of its modifier. The glasses demonstrate high transmittance in mid-IR up to 6 μm what makes these materials suitable for mid-IR applications.

  14. Diameter Tuning of β-Ga2O3 Nanowires Using Chemical Vapor Deposition Technique.

    PubMed

    Kumar, Mukesh; Kumar, Vikram; Singh, R

    2017-12-01

    Diameter tuning of [Formula: see text]-Ga 2 O 3 nanowires using chemical vapor deposition technique have been investigated under various experimental conditions. Diameter of root grown [Formula: see text]-Ga 2 O 3 nanowires having monoclinic crystal structure is tuned by varying separation distance between metal source and substrate. Effect of gas flow rate and mixer ratio on the morphology and diameter of nanowires has been studied. Nanowire diameter depends on growth temperature, and it is independent of catalyst nanoparticle size at higher growth temperature (850-900 °C) as compared to lower growth temperature (800 °C). These nanowires show changes in structural strain value with change in diameter. Band-gap of nanowires increases with decrease in the diameter.

  15. Controlling the nitrite:ammonium ratio in a SHARON reactor in view of its coupling with an Anammox process.

    PubMed

    Volcke, E I P; van Loosdrecht, M C M; Vanrolleghem, P A

    2006-01-01

    The combined SHARON-Anammox process for treating wastewater streams with high ammonia load is the focus of this paper. In particular, partial nitritation in the SHARON reactor should be performed to such an extent that a nitrite:ammonium ratio is generated which is optimal for full conversion in an Anammox process. In the simulation studies performed in this contribution, the nitrite:ammonium ratio produced in a SHARON process with fixed volume, as well as its effect on the subsequent Anammox process, is examined for realistic influent conditions and considering both direct and indirect pH effects on the SHARON process. Several possible operating modes for the SHARON reactor, differing in control strategies for O2, pH and the produced nitrite:ammonium ratio and based on regulating the air flow rate and/or acid/base addition, are systematically evaluated. The results are quantified through an operating cost index. Best results are obtained by means of cascade feedback control of the SHARON effluent nitrite:ammonium ratio through setting an O2 set-point that is tracked by adjusting the air flow rate, combined with single loop pH control through acid/base addition.

  16. Low-redshift Lyman continuum leaking galaxies with high [O III]/[O II] ratios

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Worseck, G.; Schaerer, D.; Guseva, N. G.; Thuan, T. X.; Fricke, K. J.; Verhamme, A.; Orlitová, I.

    2018-05-01

    We present observations with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope of five star-forming galaxies at redshifts z in the range 0.2993 - 0.4317 and with high emission-line flux ratios O32 = [O III]λ5007/[O II]λ3727 ˜ 8 - 27 aiming to detect the Lyman continuum (LyC) emission. We detect LyC emission in all galaxies with the escape fractions fesc(LyC) in a range of 2 - 72 per cent. A narrow Lyα emission line with two peaks in four galaxies and with three peaks in one object is seen in medium-resolution COS spectra with a velocity separation between the peaks Vsep varying from ˜153 km s-1 to ˜ 345 km s-1. We find a general increase of the LyC escape fraction with increasing O32 and decreasing stellar mass M⋆, but with a large scatter of fesc(LyC). A tight anti-correlation is found between fesc(LyC) and Vsep making Vsep a good parameter for the indirect determination of the LyC escape fraction. We argue that one possible source driving the escape of ionizing radiation is stellar winds and radiation from hot massive stars.

  17. Formation mechanism and control of MgO·Al2O3 inclusions in non-oriented silicon steel

    NASA Astrophysics Data System (ADS)

    Sun, Yan-hui; Zeng, Ya-nan; Xu, Rui; Cai, Kai-ke

    2014-11-01

    On the basis of the practical production of non-oriented silicon steel, the formation of MgO·Al2O3 inclusions was analyzed in the process of "basic oxygen furnace (BOF) → RH → compact strip production (CSP)". The thermodynamic and kinetic conditions of the formation of MgO·Al2O3 inclusions were discussed, and the behavior of slag entrapment in molten steel during RH refining was simulated by computational fluid dynamics (CFD) software. The results showed that the MgO/Al2O3 mass ratio was in the range from 0.005 to 0.017 and that MgO·Al2O3 inclusions were not observed before the RH refining process. In contrast, the MgO/Al2O3 mass ratio was in the range from 0.30 to 0.50, and the percentage of MgO·Al2O3 spinel inclusions reached 58.4% of the total inclusions after the RH refining process. The compositions of the slag were similar to those of the inclusions; furthermore, the critical velocity of slag entrapment was calculated to be 0.45 m·s-1 at an argon flow rate of 698 L·min-1, as simulated using CFD software. When the test steel was in equilibrium with the slag, [Mg] was 0.00024wt%-0.00028wt% and [Al]s was 0.31wt%-0.37wt%; these concentrations were theoretically calculated to fall within the MgO·Al2O3 formation zone, thereby leading to the formation of MgO·Al2O3 inclusions in the steel. Thus, the formation of MgO·Al2O3 inclusions would be inhibited by reducing the quantity of slag entrapment, controlling the roughing slag during casting, and controlling the composition of the slag and the MgO content in the ladle refractory.

  18. NO2/NO partitioning as a test of stratospheric ClO concentrations over Antarctica

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.

    1987-01-01

    Physical conditions in the 10-20 km region of the Antarctic stratosphere make the (NO2)/(NO) ratio particularly sensitive to high chlorine levels in the form of ClO. According to simple known photochemical relationships between NO2, NO, ClO, and O3, high ClO levels of 1 ppbv over Antarctica must be accompanied by large values of the (NO2)/(NO) ratio. At high ClO abundances, the (NO2)/(NO) ratio is approximately proportional to the ClO concentration. It is proposed that in-situ measurements of the (NO2)/(NO) ratio could be used to test the high chlorine hypothesis.

  19. Hydrothermal synthesis of Y{sub 2}O{sub 3} coated Y{sub 2}O{sub 3}:Eu{sup 3+} nanotubes for enhanced photoluminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Linhui, E-mail: gaolhui@zstu.edu.cn; Wang, Guangfa; Zhu, Hongliang

    Highlights: • Eu{sup 3+} doped Y{sub 2}O{sub 3} nanotubes. • Hydrothermal synthesis of Y{sub 2}O{sub 3} coated Y{sub 2}O{sub 3}:Eu{sup 3+} nanostructures assissted with a further heat treatment. • Tunable coating ratios of Y{sub 2}O{sub 3} coated Y{sub 2}O{sub 3}:Eu{sup 3+} nanophosphor. • Enhanced photoluminescence intensity of Y{sub 2}O{sub 3}:Eu{sup 3+} more than 60% by Y{sub 2}O{sub 3} surface coating. - Abstract: Novel Y{sub 2}O{sub 3} coated Y{sub 2}O{sub 3}:Eu{sup 3+} nanotubes with different coating ratios were synthesized successfully by a facile two-step process, including hydrothermal synthesis of Y(OH){sub 3} coated Y(OH){sub 3}:Eu{sup 3+} as precursors and then calcination ofmore » them at 1000 °C for 2 h. X-ray diffraction patterns and field emission scanning electron microscope images indicated these Y{sub 2}O{sub 3} coated Y{sub 2}O{sub 3}:Eu{sup 3+} phosphors possess tubular nanostructures. The photoluminescence properties of Y{sub 2}O{sub 3} coated Y{sub 2}O{sub 3}:Eu{sup 3+} were systematically investigated by photoluminescence spectra, and photoluminescence enhancement was observed after proper coating. In other words, the coating ratio played a crucial role in photoluminescence efficiency. When it was 1/9, the photoluminescence intensity of {sup 5}D{sub 0} → {sup 7}F{sub 2} emission (about 613 nm) was 60% higher than that of Y{sub 2}O{sub 3}: Eu{sup 3+} phosphors under 255 nm excitation. Therefore, surface coating may be an alternative route for enhanced photoluminescence properties of the Y{sub 2}O{sub 3}:Eu{sup 3+} red-emitting phosphor.« less

  20. Effects of P/Ni ratio and Ni content on performance of γ-Al2O3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhena; Tang, Mingxiao; Chen, Jixiang

    2016-01-01

    γ-Al2O3-supported nickel phosphides (mNi-Pn) were prepared by the TPR method and tested for the deoxygenation of methyl laurate to hydrocarbons. The effects of the P/Ni ratio (n = 1.0-2.5) and Ni content (m = 5-15 wt.%) in the precursors on their structure and performance were investigated. Ni/γ-Al2O3 was also studied for comparison. It was found that the formation of AlPO4 in the precursor inhibited the reduction of phosphate and so the formation of nickel phosphides. With increasing the P/Ni ratio and Ni content, the Ni, Ni3P, Ni12P5 and Ni2P phases orderly formed, accompanying with the increases of their particle size and the amount of weak acid sites (mainly due to P-OH group), while the CO uptake and the amount of medium strong acid sites (mainly related to Ni sites) reached maximum on 10%Ni-P1.5. In the deoxygenation reaction, compared with Ni/γ-Al2O3, the mNi-Pn catalysts showed much lower activities for decarbonylation, Csbnd C hydrogenolysis and methanation due to the ligand and ensemble effects of P. The conversion and the selectivity to n-C11 and n-C12 hydrocarbons achieved maximum on 10%Ni-P 2.0 for the 10%Ni-Pn catalysts and on 8%Ni-P2.0 for the mNi-P2.0 catalysts, while the turnover frequency (TOF) of methyl laurate mainly increased with the P/Ni ratio and Ni content. We propose that TOF was influenced by the nickel phosphide phases, the catalyst acidity and the particle size as well as the synergetic effect between the Ni site and acid site. Again, the hydrodeoxygenation pathway of methyl laurate was promoted with increasing P/Ni ratio and Ni content, ascribed to the phase change in the order of Ni, Ni3P, Ni12P5 and Ni2P in the prepared catalysts.

  1. A study of Pd/SO4/ZrO2/Al2O3 catalysts in n-hexane isomerization

    NASA Astrophysics Data System (ADS)

    Dzhikiya, O. V.; Smolikov, M. D.; Kazantsev, K. V.; Yablokova, S. S.; Kireeva, T. V.; Paukshtis, E. A.; Gulyaeva, T. I.; Belyi, A. S.

    2017-08-01

    The effect of palladium concentration in a range from 0.02 to 1.6 wt.% on characteristics of n-hexane isomerization was studied. The (O2-Hchem) titration and O2 chemisorption study revealed that palladium in Pd/SO4/ZrO2/Al2O3 systems adsorbs hydrogen in a ratio H/Pds = 1.13-1.65 at./at. Investigation of the charge state of the metal by IR spectroscopy of adsorbed CO showed the presence of both the metallic (Pd0) and charged palladium species. Pd/SO4/ZrO2/Al2O3 catalysts with charged palladium atoms exhibit high activity and selectivity in n-hexane isomerization.

  2. Experimental Determination of Sulfur Partition Ratio in the CaO-Al2O3-SiO2-CaF2-MgO Slag and Liquid Iron

    NASA Astrophysics Data System (ADS)

    Jinzhu, Z.; Yunsheng, Y.; Wei, F.; Jialiang, Z.; Yi, Z.

    2017-09-01

    The external desulphurization of molten iron has become an important step in the production of steel and iron. The desulfurization degree of the high calcium slag, which was mainly taken from Shougang Shuicheng Iron and Steel (Group) Co. Limited, was investigated on basis of the fundamental theory of slag metal equilibrium reaction. The initial content of sulfur in the slag was adjusted to 2.60% mass perdent by adding analytical reagent CaS. The results show that the desulfurization degree of the high calcium slag increases obviously with the increase of temperature in the range 1593-1743K, and so the sulfur partition ratio. When the holding time of the hot metal and slag at controlled temperature was extended from 120 min to 180 min in the furnace, both the sulfur partition ratio and the desulfurization degree increased markedly.

  3. Thermal Spray Deposition, Phase Stability and Mechanical Properties of La2Zr2O7/LaAlO3 Coatings

    NASA Astrophysics Data System (ADS)

    Lozano-Mandujano, D.; Poblano-Salas, C. A.; Ruiz-Luna, H.; Esparza-Esparza, B.; Giraldo-Betancur, A. L.; Alvarado-Orozco, J. M.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.

    2017-08-01

    This paper deals with the deposition of La2Zr2O7 (LZO) and LaAlO3 (LAO) mixtures by air plasma spray (APS). The raw material for thermal spray, single phase LZO and LAO in a 70:30 mol.% ratio mixture was prepared from commercial metallic oxides by high-energy ball milling (HEBM) and high-temperature solid-state reaction. The HEBM synthesis route, followed by a spray-drying process, successfully produced spherical agglomerates with adequate size distribution and powder-flow properties for feeding an APS system. The as-sprayed coating consisted mainly of a crystalline LZO matrix and partially crystalline LAO, which resulted from the high cooling rate experienced by the molten particles as they impact the substrate. The coatings were annealed at 1100 °C to promote recrystallization of the LAO phase. The reduced elastic modulus and hardness, measured by nanoindentation, increased from 124.1 to 174.7 GPa and from 11.3 to 14.4 GPa, respectively, after the annealing treatment. These values are higher than those reported for YSZ coatings; however, the fracture toughness ( K IC) of the annealed coating was only 1.04 MPa m0.5.

  4. Tensile Strength and Microstructure of Al2O3-ZrO2 Hypo-Eutectic Fibers Studied

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali

    2001-01-01

    Oxide eutectics offer high-temperature strength retention and creep resistance in oxidizing environments. Al2O3-ZrO2 eutectic strengths have been studied since the 1970's. Directionally solidified oxide eutectics exhibit improved resistance to slow crack growth and excellent strength retention at high temperatures up to 1400 C. Materials studied typically contain Y2O3 to metastably retain the high-temperature cubic and tetragonal polymorphs at room temperature. Al2O3-ZrO2 is of fundamental interest for creep studies because it combines a creep-resistant material, Al2O3, with a very low creep resistance material, ZrO2. Results on mechanical properties and microstructures of these materials will be used to define compositions for creep testing in future work. Substantial variations from the eutectic alumina to zirconia ratio can be tolerated without a loss in room-temperature strength. The effect of increasing Y2O3 addition on the room-temperature tensile strength of an Al2O3-ZrO2 material containing excess Al2O3 was examined at the NASA Glenn Research Center, where the materials were grown using Glenn's world-class laser growth facilities.

  5. Indium doped ZnO nano-powders prepared by RF thermal plasma treatment of In2O3 and ZnO

    NASA Astrophysics Data System (ADS)

    Lee, Mi-Yeon; Song, Min-Kyung; Seo, Jun-Ho; Kim, Min-Ho

    2015-06-01

    Indium doped ZnO nano-powders were synthesized by the RF thermal plasma treatment of In2O3 and ZnO. For this purpose, micron-sized ZnO powder was mixed with In2O3 powder at the In/Zn ratios of 0.0, 1.2, and 2.4 at. % by ball milling for 1 h, after which the mixtures were injected into RF thermal plasma generated at the plate power level of ˜140 kV A. As observed from the field emission scanning electron microscopy (FE-SEM) images of the RF plasma-treated powders, hexagonal prism-shaped nano-crystals were mainly obtained along with multi-pod type nano-particles, where the number of multi-pods decreased with increasing In/Zn ratios. In addition, the X-ray diffraction (XRD) data for the as-treated nano-powders showed the diffraction peaks for the In2O3 present in the precursor mixture to disappear, while the crystalline peaks for the single phase of ZnO structure shifted toward lower Bragg angles. In the UV-vis absorption spectra of the as-treated powders, redshifts were also observed with increases of the In/Zn ratios. Together with the FE-SEM images and the XRD data, the redshifts were indicative of the doping process of ZnO with indium, which took place during the RF thermal plasma treatment of In2O3 and ZnO.

  6. Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Jenkins, M.; Measor, P.; Leake, K.; Liu, S.; Schmidt, H.; Hawkins, A. R.

    2011-02-01

    A type of integrated hollow core waveguide with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films is demonstrated. Hollow core waveguides made with a combination of plasma-enhanced chemical vapor deposition SiO2 and sputtered Ta2O5 provide a nearly optimal structure for optofluidic biofluorescence measurements with low optical loss, high fabrication yield, and low background photoluminescence. Compared to earlier structures made using Si3N4, the photoluminescence background of Ta2O5 based hollow core waveguides is decreased by a factor of 10 and the signal-to-noise ratio for fluorescent nanobead detection is improved by a factor of 12.

  7. Influence of silica–alumina support ratio on H2 production and catalyst carbon deposition from the Ni-catalytic pyrolysis/reforming of waste tyres

    PubMed Central

    Zhang, Yeshui; Tao, Yongwen; Huang, Jun; Williams, Paul

    2017-01-01

    The influence of catalyst support alumina–silica in terms of different Al2O3 to SiO2 mole ratios containing 20 wt.% Ni on the production of hydrogen and catalyst coke formation from the pyrolysis-catalysis of waste tyres is reported. A two-stage reactor system was used with pyrolysis of the tyres followed by catalytic reaction. There was only a small difference in the total gas yield and hydrogen yield by changing the Al2O3 to SiO2 mole ratios in the Ni-Al2O3/SiO2 catalyst. The 1:1 ratio of Al2O3:SiO2 ratio produced the highest gas yield of 27.3 wt.% and a hydrogen production of 14.0 mmol g-1tyre. Catalyst coke formation decreased from 19.0 to 13.0 wt.% as the Al2O3:SiO2 ratio was changed from 1:1 to 2:1, with more than 95% of the coke being filamentous-type carbon, a large proportion of which was multi-walled carbon nanotubes. Further experiments introduced steam to the second-stage reactor to investigate hydrogen production for the pyrolysis-catalytic steam reforming of the waste tyres using the 1:1 Al2O3/SiO2 nickel catalyst. The introduction of steam produced a marked increase in total gas yield from ~27 wt. % to ~58 wt.%; in addition, hydrogen production was increased to 34.5 mmol g-1 and there was a reduction in catalyst coke formation to 4.6 wt.%. PMID:28789599

  8. Influence of silica-alumina support ratio on H2 production and catalyst carbon deposition from the Ni-catalytic pyrolysis/reforming of waste tyres.

    PubMed

    Zhang, Yeshui; Tao, Yongwen; Huang, Jun; Williams, Paul

    2017-10-01

    The influence of catalyst support alumina-silica in terms of different Al 2 O 3 to SiO 2 mole ratios containing 20 wt.% Ni on the production of hydrogen and catalyst coke formation from the pyrolysis-catalysis of waste tyres is reported. A two-stage reactor system was used with pyrolysis of the tyres followed by catalytic reaction. There was only a small difference in the total gas yield and hydrogen yield by changing the Al 2 O 3 to SiO 2 mole ratios in the Ni-Al 2 O 3 /SiO 2 catalyst. The 1:1 ratio of Al 2 O 3 :SiO 2 ratio produced the highest gas yield of 27.3 wt.% and a hydrogen production of 14.0 mmol g -1 tyre . Catalyst coke formation decreased from 19.0 to 13.0 wt.% as the Al 2 O 3 :SiO 2 ratio was changed from 1:1 to 2:1, with more than 95% of the coke being filamentous-type carbon, a large proportion of which was multi-walled carbon nanotubes. Further experiments introduced steam to the second-stage reactor to investigate hydrogen production for the pyrolysis-catalytic steam reforming of the waste tyres using the 1:1 Al 2 O 3 /SiO 2 nickel catalyst. The introduction of steam produced a marked increase in total gas yield from ~27 wt. % to ~58 wt.%; in addition, hydrogen production was increased to 34.5 mmol g -1 and there was a reduction in catalyst coke formation to 4.6 wt.%.

  9. Comparative study of diethyl phthalate degradation by UV/H2O2 and UV/TiO2: kinetics, mechanism, and effects of operational parameters.

    PubMed

    Song, Chengjie; Wang, Liping; Ren, Jie; Lv, Bo; Sun, Zhonghao; Yan, Jing; Li, Xinying; Liu, Jingjing

    2016-02-01

    The photodegradation of diethyl phthalate (DEP) by UV/H2O2 and UV/TiO2 is studied. The DEP degradation kinetics and multiple crucial factors effecting the clearance of DEP are investigated, including initial DEP concentration ([DEP]0), initial pH values (pH0), UV light intensity, anions (Cl(-), NO(3-), SO4 (2-), HCO3 (-), and CO3 (2-)), cations (Mg(2+), Ca(2+), Mn(2+), and Fe(3+)), and humic acid (HA). Total organic carbon (TOC) removal is tested by two treatments. And, cytotoxicity evolution of DEP degradation intermediates is detected. The relationship between molar ratio ([H2O2]/[DEP] or [TiO2]/[DEP]) and degradation kinetic constant (K) is also studied. And, the cytotoxicity tests of DEP and its degradation intermediates in UV/H2O2 and UV/TiO2 treatments are researched. The DEP removal efficiency of UV/H2O2 treatment is higher than UV/TiO2 treatment. The DEP degradation fitted a pseudo-first-order kinetic pattern under experimental conditions. The K linearly related with molar ratio in UV/H2O2 treatment while nature exponential relationship is observed in the case of UV/TiO2. However, K fitted corresponding trends better in H2O2 treatment than in TiO2 treatment. The Cl(-) is in favor of the DEP degradation in UV/H2O2 treatment; in contrast, it is disadvantageous to the DEP degradation in UV/TiO2 treatment. Other anions are all disadvantageous to the DEP degradation in two treatments. Fe(3+) promotes the degradation rates significantly. And, all other cations in question inhibit the degradation of DEP. HA hinders DEP degradation in two treatments. The intermediates of DEP degradation in UV/TiO2 treatment are less toxic to biological cell than that in UV/H2O2 treatment.

  10. Simultaneous Online Measurement of H2O and CO2 in the Humid CO2 Adsorption/Desorption Process.

    PubMed

    Yu, Qingni; Ye, Sha; Zhu, Jingke; Lei, Lecheng; Yang, Bin

    2015-01-01

    A dew point meter (DP) and an infrared (IR) CO2 analyzer were assembled in a humid CO2 adsorption/desorption system in series for simultaneous online measurements of H2O and CO2, respectively. The humidifier, by using surface-flushing on a saturated brine solution was self-made for the generation of humid air flow. It was found that by this method it became relatively easy to obtain a low H2O content in air flow and that its fluctuation could be reduced compared to the bubbling method. Water calibration for the DP-IR detector is necessary to be conducted for minimizing the measurement error of H2O. It demonstrated that the relative error (RA) for simultaneous online measurements H2O and CO2 in the desorption process is lower than 0.1%. The high RA in the adsorption of H2O is attributed to H2O adsorption on the transfer pipe and amplification of the measurement error. The high accuracy of simultaneous online measurements of H2O and CO2 is promising for investigating their co-adsorption/desorption behaviors, especially for direct CO2 capture from ambient air.

  11. Gold nanowire assembling architecture for H2O2 electrochemical sensor.

    PubMed

    Guo, Shaojun; Wen, Dan; Dong, Shaojun; Wang, Erkang

    2009-02-15

    Morphological control of nanomaterials is of great interest due to their size and shape-dependent chemical and physical properties and very important applications in many fields such as biomedicine, sensors, electronics and others. In this paper, we reported a simple strategy for synthesizing gold nanowire assembling architecture at room temperature. It is found that two important factors, the proper volume ratio of ethanol to water and poly(vinyl pyrrolidone) (PVP), will play important roles in synthesizing flower-like short gold nanowire assembling spheres. Furthermore, the obtained flower-like gold assembling spheres with high surface-to-volume ratio have been employed as enhancing materials for electrochemical sensing H(2)O(2). The present electrochemical sensing platform exhibited good electrocatalytic activity towards the reduction of H(2)O(2). The detection limit for H(2)O(2) was found to be 1.2 microM, which was lower than certain enzyme-based biosensors.

  12. The role of Tin Oxide Concentration on The X-ray Diffraction, Morphology and Optical Properties of In2O3:SnO2 Thin Films

    NASA Astrophysics Data System (ADS)

    Hasan, Bushra A.; Abdallah, Rusul M.

    2018-05-01

    Alloys were performed from In2O3 doped SnO2 with different doping ratio by quenching from the melt technique. Pulsed Laser Deposition PLD was used to deposit thin films of different doping ratio In2O3 : SnO2 (0, 1, 3, 5, 7 and 9 % wt.) on glass substrate at ambient temperature under vacuum of 10-3 bar thickness of ∼100nm. The structural type,grain size and morphology of the prepared alloys compounds and thin films were examined using X-ray diffraction and atomic force microscopy. The results showed that all alloys have polycrystalline structures and the peaks belonged to the preferred plane for crystal growth were identical with the ITO (Indium – Tin –Oxide) standard cards also another peaks were observed belonged to SnO2 phase. The structures of thin films was also polycrystalline, and the predominate peaks are identical with standard cards ITO. On the other side the prepared thin films declared decrease a reduction of degree of crystallinity with the increase of doping ratio. Atomic Force Microscopy AFM measurements showed the average grain size and average surface roughness exhibit to change in systematic manner with the increase of doping ratio with tin oxide. The optical measurements show that the In2O3:SnO2 thin films have a direct energy gap Eg opt in the first stage decreases with the increase of doping ratio and then get to increase with further increase of doping ration, whereas reverse to that the optical constants such as refractive index (n), extinction coefficient (k) and dielectric constant (εr, εi) have a regular increase with the doping ratio by tin oxide and then decreases.

  13. Correlates of local cerebral blood flow (CBF) in normal pressure hydrocephalus patients before and after shunting--A retrospective analysis of [(15)O]H(2)O PET-CBF studies in 65 patients.

    PubMed

    Klinge, Petra M; Brooks, David J; Samii, Amir; Weckesser, Eva; van den Hoff, Jörg; Fricke, Harald; Brinker, Thomas; Knapp, Wolfram H; Berding, Georg

    2008-04-01

    Findings in local cerebral blood flow (rCBF) in Normal pressure hydrocephalus (NPH) have always been challenged by the variable and inconsistent relation to clinical symptoms before and after shunt treatment. [(15)O]H(2)O PET data from a consecutive cohort of 65 idiopathic NPH patients were retrospectively analyzed questioning whether the functional status before and after shunt treatment might correlate with local blood flow. Using statistical parametric mapping (SPM99, Wellcome Department of Cognitive Neurology, London), the [(15)O]H(2)O uptake was correlated with the preoperative clinical scores, graded according to a modified Stein and Langfitt score. Furthermore, differences in the uptake in the pre-and post-shunt treatment study after seven to 10 days in patients with and without clinical improvement were studied. A higher clinical score significantly correlated with a reduced tracer uptake in mesial frontal (k=1,239 voxel, Z=4.41) and anterior temporal (k=469, Z=4.07) areas. In the mesial frontal areas, tracer uptake showed significant reciprocal changes in the clinically improved vs. the unimproved patients. Matched with the existing literature, the regional blood flow alterations are suggested relevant to the NPH syndrome and to post-treatment functional changes. The present rCBF findings warrant prospective studies on the accuracy of neuroimaging studies as they may provide a more specific insight into disease mechanisms.

  14. 17O excess transfer during the NO2 + O3 → NO3 + O2 reaction.

    PubMed

    Berhanu, Tesfaye Ayalneh; Savarino, Joël; Bhattacharya, S K; Vicars, Willliam C

    2012-01-28

    The ozone molecule possesses a unique and distinctive (17)O excess (Δ(17)O), which can be transferred to some of the atmospheric molecules via oxidation. This isotopic signal can be used to trace oxidation reactions in the atmosphere. However, such an approach depends on a robust and quantitative understanding of the oxygen transfer mechanism, which is currently lacking for the gas-phase NO(2) + O(3) reaction, an important step in the nocturnal production of atmospheric nitrate. In the present study, the transfer of Δ(17)O from ozone to nitrate radical (NO(3)) during the gas-phase NO(2) + O(3) → NO(3) + O(2) reaction was investigated in a series of laboratory experiments. The isotopic composition (δ(17)O, δ(18)O) of the bulk ozone and the oxygen gas produced in the reaction was determined via isotope ratio mass spectrometry. The Δ(17)O transfer function for the NO(2) + O(3) reaction was determined to be: Δ(17)O(O(3)∗) = (1.23 ± 0.19) × Δ(17)O(O(3))(bulk) + (9.02 ± 0.99). The intramolecular oxygen isotope distribution of ozone was evaluated and results suggest that the excess enrichment resides predominantly on the terminal oxygen atoms of ozone. The results obtained in this study will be useful in the interpretation of high Δ(17)O values measured for atmospheric nitrate, thus leading to a better understanding of the natural cycling of atmospheric reactive nitrogen. © 2012 American Institute of Physics

  15. Stratospheric N2O5, CH4, and N2O profiles from IR solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Camy-Peyret, C.; Flaud, J.-M.; Perrin, A.; Rinsland, C. P.; Goldman, A.; Murcray, F. J.

    1993-01-01

    Stratospheric volume mixing ratio profiles of N2O5, CH4, and N2O have been retrieved from a set of 0.052/cm resolution (FWHM) solar occultation spectra recorded at sunrise during a balloon flight from Aire sur l'Adour, France (44 N latitude) on 12 October 1990. The N2O5 results have been derived from measurements of the integrated absorption by the 1246/cm band. Assuming a total intensity of 4.32 x 10 exp -17 cm/molecule/sq cm independent of temperature, the retrieved N2O5 volume mixing ratios in ppbv, interpolated to 2 km height spacings, are 1.64 +/- 0.49 at 37.5 km, 1.92 +/- 0.56 at 35.5 km, 2.06 +/- 0.47 at 33.5 km, 1.95 +/- 0.42 at 31.5 km, 1.60 +/- 0.33 at 29.5 km, 1.26 +/- 0.28 at 27.5 km, and 0.85 +/- 0.20 at 25.5 km. Error bars indicate the estimated 1-sigma uncertainty including the error in the total band intensity. The retrieved profiles are compared with previous measurements and photochemical model results.

  16. Absorption of solar radiation by O2 - Implications for O3 and lifetimes of N2O, CFCl3, and CF2Cl2

    NASA Technical Reports Server (NTRS)

    Minschwaner, K.; Salawitch, R. J.; Mcelroy, M. B.

    1993-01-01

    An accurate line-by-line model is used to evaluate effects of absorption in the Schumann-Runge bands of O2 on transmission of UV radiation. The model is used to evaluate rates of photolysis for N2O, CFCl3, and CF2Cl2, and to infer global loss rates and instantaneous lifetimes appropriate for 1980. A parameterized version of the line-by-line model enabling rapid evaluation of transmission in the Schumann-Runge region is described. Photochemical calculations employing the parameterization and constrained by data from the Atmospheric Trace Molecule Spectroscopy experiment are used to examine the budget of odd oxygen. Consistent with previous studies, it is shown that photochemical loss of odd oxygen exceeds production by photolysis of O2 for altitudes above 40 km. The imbalance between production and loss is shown to be consistent with a source of odd oxygen proportional to the product of the mixing ratio and photolysis rate of ozone, which suggests that processes involving vibrationally excited O2 may play an important role in production of odd oxygen.

  17. A continuous [15O]H2O production and infusion system for PET imaging

    NASA Astrophysics Data System (ADS)

    Sajjad, Munawwar; Liow, Jeih-San

    1999-06-01

    A system for continuous production and infusion of [15O]H2O has been designed for PET cerebral blood flow studies. The injection system consists of a four-port-two-position valve, two Horizon Nxt infusion pumps, and a sterile 50 ml vial. The variation of the production of [15O]H2O was <1%. The variation of activity delivered measured by scanner counts during the steady state period was <2%.

  18. Ion/Ioff ratio enhancement and scalability of gate-all-around nanowire negative-capacitance FET with ferroelectric HfO2

    NASA Astrophysics Data System (ADS)

    Jang, Kyungmin; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro

    2017-10-01

    We have investigated the energy efficiency and scalability of ferroelectric HfO2 (FE:HfO2)-based negative-capacitance field-effect-transistor (NCFET) with gate-all-around (GAA) nanowire (NW) channel structure. Analytic simulation is conducted to characterize NW-NCFET by varying NW diameter and/or thickness of gate insulator as device structural parameters. Due to the negative-capacitance effect and GAA NW channel structure, NW-NCFET is found to have 5× higher Ion/Ioff ratio than classical NW-MOSFET and 2× higher than double-gate (DG) NCFET, which results in wider design window for high Ion/Ioff ratio. To analyze these obtained results from the viewpoint of the device scalability, we have considered constraints regarding very limited device structural spaces to fit by the gate insulator and NW channel for aggresively scaled gate length (Lg) and/or very tight NW pitch. NW-NCFET still has design point with very thinned gate insulator and/or narrowed NW. Therefore, FE:HfO2-based NW-NCFET is applicable to the aggressively scaled technology node of sub-10 nm Lg and to the very tight NW integration of sub-30 nm NW pitch for beyond 7 nm technology. From 2011 to 2014, he engaged in developing high-speed optical transceiver module as an alternative military service in Republic of Korea. His research interest includes the development of steep slope MOSFETs for high energy-efficient operation and ferroelectric HfO2-based semiconductor devices, and fabrication of nanostructured devices. He joined the IBM T.J. Watson Research Center, Yorktown Heights, NY, in 2010, where he worked on advanced CMOS technologies such as FinFET, nanowire FET, SiGe channel and III-V channel. He was also engaged in launching 14 nm SOI FinFET and RMG technology development. Since 2014, he has been an Associate Professor in Institute of Industrial Science, University of Tokyo, Tokyo, Japan, where he has been working on ultralow power transistor and memory technology. Dr. Kobayashi is a member of IEEE

  19. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ba, Yan; Liu, Haihu; Li, Qing

    2016-08-15

    In this paper, we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multi-relaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a new form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulatedmore » with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike/bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.« less

  20. Real-time evaluation of tissue vitality by monitoring of microcirculatory blood flow, HbO2, and mitochondrial NADH redox state

    NASA Astrophysics Data System (ADS)

    Deutsch, Assaf; Pevzner, Eliyahu; Jaronkin, Alex; Mayevsky, Avraham

    2004-06-01

    Monitoring of tissue vitality (oxygen supply/demand) in real time is very rare in clinical practice although its use as an early warning alarming system, for clinical care medicine, is very practical. In our previous communication (SPIE 2003) we described the Tissue Spectroscope - TiSpec02, by which tissue microcirculatory blood flow (TBF) and mitochondrial NADH fluorescence were measured using a single light source (390nm). In order to improve the measurement capabilities as well as to decrease dramatically the size and cost of this clinical device, we have changed the TiSpec02 into a multi-wavelength illumination system in the new TiSpec03. In order to measure microcirculatory blood flow by laser Doppler flowmetry we used a 785nm laser diode. For mitochondrial NADH fluorescence measurement we adopted the 370nm LED. For the determination of the oxygenation level of hemoglobin (HbO2) we used the 2-wavelength reflectance technique. This new monitored parameter that was added to the TiSpec03 increases the accuracy of the diagnosis of tissue vitality. The bundle of optical fibers used to connect the tissue to the TiSpec03, was integrated into a special anchoring methodology depending on the monitored tissue or organ. In order to test the performance of the improved TiSpec we have used it in experimental animals brain models exposed to various pathophysiological conditions. Rats and gerbils were anesthetized and the fiber optic probe was located epidurally used dental acrylic cement. During anoxia and ischemia the lack of O2 led to a clear decrease in TBF and HbO2 while NADH shows a large elevation. When brain activation was induced by cortical spreading depression (SD), the elevated O2 consumption was recorded as a large oxidation (decrease) of mitochondrial NADH while TBF increase dramatically. Blood HbO2 was not affected significantly by the SD wave.

  1. Effect of coolant flow ejection on aerodynamic performance of low-aspect-ratio vanes. 1: Performance with coolant ejection holes plugged

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1976-01-01

    The aerodynamic performance of a low aspect ratio turbine vane designed with coolant flow ejection holes on the vane surfaces was experimentally determined in a full-annular cascade with the coolant ejection holes plugged. The purpose was to establish a baseline for comparison with tests where flow is ejected from the vane surfaces. The vanes were tested over a mean-section ideal critical velocity ratio range of 0.64 to 0.98. This ideal critical velocity ratio corresponds to the vane inlet total to vane aftermixed static pressure ratio at the mean section. The variations in vane efficiency and aftermixed flow conditions with circumferential and radial position were obtained.

  2. Structural investigations of vanadyl doped Nb2O5·K2O·B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Anshu; Sanghi, S.; Agarwal, A.; Lather, M.; Bhatnagar, V.; Khasa, S.

    2009-07-01

    Pottasium nioborate glasses of composition xNb2O5·(30-x)K2O·69B2O3 containing 1 mol % of V2O5 were prepared by melt quench technique (1473K, 1h). The electron paramagnetic resonance spectra of VO2+ in these glasses have been recorded in X- band (v approx 9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameters, P and Fermi contact interaction parameter, K have been calculated. It is found that V4+ ions in these glasses exist as VO2+ in octahedral coordination with a tetragonal distortion. The tetragonality of V4+O6 complex decreases with increasing Nb2O5: K2O ratio and also there is an expansion of 3dXY orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400- 4000 cm-1 depicts the presence of both BO3 and BO4 structural units and Nb5+ ions are incorporated into the glass network as NbO6 octahedra, substituting BO4 groups.

  3. pO{sub 2} Fluctuation Pattern and Cycling Hypoxia in Human Cervical Carcinoma and Melanoma Xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellingsen, Christine; Ovrebo, Kirsti Marie; Galappathi, Kanthi

    2012-07-15

    Purpose: Blood perfusion in tumors is spatially and temporally heterogeneous, resulting in local fluctuations in tissue oxygen tension (pO{sub 2}) and tissue regions showing cycling hypoxia. In this study, we investigated whether the pO{sub 2} fluctuation pattern and the extent of cycling hypoxia differ between tumor types showing high (e.g., cervical carcinoma xenograft) and low (e.g., melanoma xenograft) fractions of connective tissue-associated blood vessels. Methods and Materials: Two cervical carcinoma lines (CK-160 and TS-415) and two melanoma lines (A-07 and R-18) transplanted into BALB/c nu/nu mice were included in the study. Tissue pO{sub 2} was measured simultaneously in two positionsmore » in each tumor by using a two-channel OxyLite fiber-optic oxygen-sensing device. The extent of acute and chronic hypoxia was assessed by combining a radiobiological and a pimonidazole-based immunohistochemical assay of tumor hypoxia. Results: The proportion of tumor regions showing pO{sub 2} fluctuations, the pO{sub 2} fluctuation frequency in these regions, and the relative amplitude of the pO{sub 2} fluctuations were significantly higher in the melanoma xenografts than in the cervical carcinoma xenografts. Cervical carcinoma and melanoma xenografts did not differ significantly in the fraction of acutely hypoxic cells or the fraction of chronically hypoxic cells. However, the ratio between fraction of acutely hypoxic cells and fraction of chronically hypoxic cells was significantly higher in melanoma than in cervical carcinoma xenografts. Conclusions: Temporal heterogeneity in blood flow and tissue pO{sub 2} in tumors may depend on tumor histology. Connective tissue surrounding microvessels may stabilize blood flow and pO{sub 2} and, thus, protect tumor tissue from cycling hypoxia.« less

  4. CO2-induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus

    PubMed Central

    Hu, Menghong; Lin, Daohui; Shang, Yueyong; Hu, Yi; Lu, Weiqun; Huang, Xizhi; Ning, Ke; Chen, Yimin; Wang, Youji

    2017-01-01

    The increasing usage of nanoparticles has caused their considerable release into the aquatic environment. Meanwhile, anthropogenic CO2 emissions have caused a reduction of seawater pH. However, their combined effects on marine species have not been experimentally evaluated. This study estimated the physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus under high pCO2 (2500–2600 μatm). We found that respiration rate (RR), food absorption efficiency (AE), clearance rate (CR), scope for growth (SFG) and O:N ratio were significantly reduced by nano-TiO2, whereas faecal organic weight rate and ammonia excretion rate (ER) were increased under nano-TiO2 conditions. High pCO2 exerted lower effects on CR, RR, ER and O:N ratio than nano-TiO2. Despite this, significant interactions of CO2-induced pH change and nano-TiO2 were found in RR, ER and O:N ratio. PCA showed close relationships among most test parameters, i.e., RR, CR, AE, SFG and O:N ratio. The normal physiological responses were strongly correlated to a positive SFG with normal pH and no/low nano-TiO2 conditions. Our results indicate that physiological functions of M. coruscus are more severely impaired by the combination of nano-TiO2 and high pCO2. PMID:28054631

  5. CO2-induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus

    NASA Astrophysics Data System (ADS)

    Hu, Menghong; Lin, Daohui; Shang, Yueyong; Hu, Yi; Lu, Weiqun; Huang, Xizhi; Ning, Ke; Chen, Yimin; Wang, Youji

    2017-01-01

    The increasing usage of nanoparticles has caused their considerable release into the aquatic environment. Meanwhile, anthropogenic CO2 emissions have caused a reduction of seawater pH. However, their combined effects on marine species have not been experimentally evaluated. This study estimated the physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus under high pCO2 (2500-2600 μatm). We found that respiration rate (RR), food absorption efficiency (AE), clearance rate (CR), scope for growth (SFG) and O:N ratio were significantly reduced by nano-TiO2, whereas faecal organic weight rate and ammonia excretion rate (ER) were increased under nano-TiO2 conditions. High pCO2 exerted lower effects on CR, RR, ER and O:N ratio than nano-TiO2. Despite this, significant interactions of CO2-induced pH change and nano-TiO2 were found in RR, ER and O:N ratio. PCA showed close relationships among most test parameters, i.e., RR, CR, AE, SFG and O:N ratio. The normal physiological responses were strongly correlated to a positive SFG with normal pH and no/low nano-TiO2 conditions. Our results indicate that physiological functions of M. coruscus are more severely impaired by the combination of nano-TiO2 and high pCO2.

  6. Determination of the thermal rate coefficient, products, and branching ratios for the reaction of O/+/ /D-2/ with N2

    NASA Technical Reports Server (NTRS)

    Torr, D. G.; Torr, M. R.

    1980-01-01

    Atmosphere Explorer-C satellite measurements are used to determine rate coefficients (RCs) for the following reactions: O(+)(D-2) + N2 yields N2(+) + O (reaction 1), O(+)(D-2) + N2 yields O(+)(S-4) + N2 (reaction 2), and O(+)(D-2) + N2 yields NO(+) + N (reaction 3). Results show the RC for reaction 1 to be 1 (plus 1 or minus 0.5) x 10 to the -10th cu cm per sec, for reaction 2 to be 3 (plus 1 or minus 2) x 10 to the -11th cu cm per sec, and 3 to be less than 5.5 x 10 to the -11th cu cm per sec. It is also found that the reaction of O(+)(D-2) with N2 does not constitute a detectable source of NO(+) ions in the thermosphere.

  7. Catalytic performance of V2O5-MoO3/γ-Al2O3 catalysts for partial oxidation of n-hexane1

    NASA Astrophysics Data System (ADS)

    Mahmoudian, R.; Khodadadi, Z.; Mahdavi, Vahid; Salehi, Mohammed

    2016-01-01

    In the current study, a series of V2O5-MoO3 catalyst supported on γ-Al2O3 with various V2O5 and MoO3 loadings was prepared by wet impregnation technique. The characterization of prepared catalysts includes BET surface area, powder X-ray diffraction (XRD), and oxygen chemisorptions. The partial oxidation of n-hexane by air over V2O5-MoO3/γ-Al2O3 catalysts was carried out under flow condition in a fixed bed glass reactor. The effect of V2O5 loading, temperature, MoO3 loading, and n-hexane LHSV on the n-hexane conversion and the product selectivity were investigated. The partial oxygenated products of n-hexane oxidation were ethanol, acetic anhydride, acetic acid, and acetaldehyde. The 10% V2O5-1%MoO3/γ-Al2O3 was found in most active and selective catalyst during partial oxidation of n-hexane. The results indicated that by increasing the temperature, the n-hexane conversion increases as well, although the selectivity of the products passes through a maximum by increasing the temperature.

  8. Synthesis science of SrRuO3 and CaRuO3 epitaxial films with high residual resistivity ratios

    NASA Astrophysics Data System (ADS)

    Nair, Hari P.; Liu, Yang; Ruf, Jacob P.; Schreiber, Nathaniel J.; Shang, Shun-Li; Baek, David J.; Goodge, Berit H.; Kourkoutis, Lena F.; Liu, Zi-Kui; Shen, Kyle M.; Schlom, Darrell G.

    2018-04-01

    Epitaxial SrRuO3 and CaRuO3 films were grown under an excess flux of elemental ruthenium in an adsorption-controlled regime by molecular-beam epitaxy (MBE), where the excess volatile RuOx (x = 2 or 3) desorbs from the growth front leaving behind a single-phase film. By growing in this regime, we were able to achieve SrRuO3 and CaRuO3 films with residual resistivity ratios (ρ300 K/ρ4 K) of 76 and 75, respectively. A combined phase stability diagram based on the thermodynamics of MBE (TOMBE) growth, termed a TOMBE diagram, is employed to provide improved guidance for the growth of complex materials by MBE.

  9. TiO2-based (Fe3O4, SiO2, reduced graphene oxide) magnetically recoverable photocatalysts for imazalil degradation in a synthetic wastewater.

    PubMed

    Santiago, Dunia E; Pastrana-Martínez, Luisa M; Pulido-Melián, Elisenda; Araña, Javier; Faria, Joaquim L; Silva, Adrián M T; González-Díaz, Óscar; Doña-Rodríguez, José M

    2018-03-02

    Magnetite (Fe 3 O 4 ), a core-shell material (SiO 2 @Fe 3 O 4 ), and reduced graphene oxide-Fe 3 O 4 (referred as rGO-MN) were used as supports of a specific highly active TiO 2 photocatalyst. Thermal treatments at 200 or 450 °C, different atmospheres (air or N 2 ), and TiO 2 :support weight ratios (1.0, 1.5, or 2.0) were investigated. X-ray diffractograms revealed that magnetite is not oxidized to hematite when the core-shell SiO 2 @Fe 3 O 4 material-or a N 2 atmosphere (instead of air) in the thermal treatment-was employed to prepare the TiO 2 -based catalysts (the magnetic properties being preserved). The materials treated with N 2 were first tested for degradation of imazalil (a well-known fungicide) in deionized water. The best compromise between the photocatalytic activity, magnetic separation, and Fe leached (1.61 mg L -1 , i.e., below the threshold for water reuse in irrigation) was found for the magnetic catalyst prepared with SiO 2 @Fe 3 O 4 , an intermediate TiO 2 :support ratio (1.5), and treated at 200 °C under N 2 atmosphere (i.e., SiO 2 @Fe 3 O 4 -EST-1.5-200-N 2 ). This material was then tested for the treatment of imazalil in a synthetic wastewater, SW (with a chemical composition simulating an effluent resulting from fruit postharvest activity). This SW has a pH of 4.2 and the experiments were carried out at this natural pH 0 and at neutral conditions (keeping pH at 7 along the reaction). The magnetic catalyst was more active than bare TiO 2 for the treatment of imazalil in SW at natural pH. Since Fe leaching was observed (3.53 mg L -1 ), added H 2 O 2 enhanced both imazalil degradation and mineralization. Conveniently, these catalysts can be readily recovered by using a conventional magnetic field, as demonstrated over three consecutive recycling runs. Graphical abstract % Imazalil conversion using different magnetic catalysts and comparison with bare TiO 2 .

  10. In situ quantitative analysis of individual H2O-CO2 fluid inclusions by laser Raman spectroscopy

    USGS Publications Warehouse

    Azbej, T.; Severs, M.J.; Rusk, B.G.; Bodnar, R.J.

    2007-01-01

    Raman spectral parameters for the Raman ??1 (1285??cm- 1) and 2??2 (1388??cm- 1) bands for CO2 and for the O-H stretching vibration band of H2O (3600??cm- 1) were determined in H2O-CO2 fluid inclusions. Synthetic fluid inclusions containing 2.5 to 50??mol% CO2 were analyzed at temperatures equal to or greater than the homogenization temperature. The results were used to develop an empirical relationship between composition and Raman spectral parameters. The linear peak intensity ratio (IR = ICO2/(ICO2 + IH2O)) is related to the CO2 concentration in the inclusion according to the relation:Mole % C O2 = e- 3.959 IR2 + 8.0734 IRwhere ICO2 is the intensity of the 1388 cm- 1 peak and IH2O is the intensity of the 3600 cm- 1 peak. The relationship between linear peak intensity and composition was established at 350????C for compositions ranging from 2.5 to 50??mol% CO2. The CO2-H2O linear peak intensity ratio (IR) varies with temperature and the relationship between composition and IR is strictly valid only if the inclusions are analyzed at 350????C. The peak area ratio is defined as AR = ACO2/(ACO2 + AH2O), where ACO2 is the integrated area under the 1388??cm- 1 peak and AH2O is the integrated area under the 3600??cm- 1 peak. The relationship between peak area ratio (AR) and the CO2 concentration in the inclusions is given as:Mole % C O2 = 312.5 AR. The equation relating peak area ratio and composition is valid up to 25??mol% CO2 and from 300 to 450????C. The relationship between linear peak intensity ratio and composition should be used for inclusions containing ??? 50??mol% CO2 and which can be analyzed at 350????C. The relationship between composition and peak area ratios should be used when analyzing inclusions at temperatures less than or greater than 350????C (300-450) but can only be used for compositions ??? 25??mol% CO2. Note that this latter relationship has a somewhat larger standard deviation compared to the intensity ratio relationship. Calibration

  11. [Preparation and photocatalytic activity of boron doped CeO2/TiO2 mixed oxides].

    PubMed

    Tang, Xin-hu; Wei, Chao-hai; Liang, Jie-rong; Wang, Bo-guang

    2006-07-01

    Boron doped CeO2/TiO2 mixed oxides photocatalysts were prepared by adding boric acid and cerous nitrate during the hydrolyzation of titanium trichloride and tetrabutyl titanate. XRD, UV-Vis DRS and XPS techniques were used to characterize the crystalline structure, light absorbing ability and the chemical state of Boron element in the photocatalyst sample. The photocatalytic activities were evaluated by monitoring the degradation of acid red B under UV irradiation. These results indicate that the wavelengths at adsorbing edge are affected by the content of cerous nitrate and the maximum absorption wavelength is about 481 nm when the mole ratio of Ce/Ti is 1.0. For higher dosage of Cerium, the absorbance edge shifts to blue slightly. The prepared photocatalyst is composed of anatase TiO2 and cubic CeO2 when calcined at 500 degrees C. An increase in the calcination temperature transforms the crystalline structure of the titanium oxides from anatase to rutile, and has no obvious influence on crystalline structure of CeO2 but crystallites growth up. The absorbance edge decreases drastically with the increase of calcination temperature. With a view to the stability of photocatalyst and utilization of sun energy, 500 degrees C of calcination temperature is recommended. The XP spectrum for B1s exhibits that only a few boron ions dope into titania and ceria matrix, others exist in B2O3. The photocatalytic activity increases with increase of cerous nitrate dosage, and decreases drastically due to higher dosage (the mol ratio of Ce/Ti > 0.5). After 10 min UV irradiation, 96% of acid red B is degraded completely over photocatalyst under optimum reaction condition.

  12. Experimental investigations of hybrid PV/Spiral flow thermal collector system performance using Al2O3/water nanofluid

    NASA Astrophysics Data System (ADS)

    Gangadevi, R.; Vinayagam, B. K.; Senthilraja, S.

    2017-05-01

    In this paper, the PV/T (Photovoltaic thermal unit) system is investigated experimentally to examine the thermal, electrical and overall efficiency by circulating Al2O3/water nanofluid of 1wt% and 2wt% with an optimum flow rate of 40L/H. The overall efficiency of PVT system is largely influenced by various factors such as heat due to photovoltaic action; energy radiated at the infrared wavelength of the solar spectrum, solar irradiance, mounting structure, tilt angle, wind speed direction, Ambient temperature and panel material composition. However, the major factor is considered in this study to extract the heat generated in the PV panel by using nanofluid as a coolant to increase the overall system efficiency. Therefore, the result shows that by using 2 wt% Al2O3/water nanofluid the electrical efficiency, thermal efficiency and overall efficiency of the PVT system enhanced by 13%, 45%, and 58% respectively compared with water.

  13. Cobalt–iron nano catalysts supported on TiO{sub 2}–SiO{sub 2}: Characterization and catalytic performance in Fischer–Tropsch synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feyzi, Mostafa, E-mail: Dalahoo2011@yahoo.com; Yaghobi, Nakisa; Eslamimanesh, Vahid

    2015-12-15

    Graphical abstract: The Co–Fe/TiO{sub 2}–SiO{sub 2} catalysts were prepared. The prepared catalysts were tested for light olefins and C{sub 5}–C{sub 12} production. The best operational conditions are 250 °C, H{sub 2}/CO = 1/1 under 5 bar pressure. - Highlights: • The TiO{sub 2}–SiO{sub 2} supported cobalt–iron catalysts were prepared via sol–gel method. • The best operational conditions were 250 °C, GHSV = 2000 h{sup −1}, H{sub 2}/CO = 1/1 and 5 bar. • The (Co/Fe)/TiO{sub 2}–SiO{sub 2} is efficient catalyst for light olefins and C{sub 5}–C{sub 12} production. - Abstract: A series of Co–Fe catalysts supported on TiO{sub 2}–SiO{sub 2}more » were prepared by the sol–gel method. This research investigated the effects of (Co/Fe) wt.%, the solution pH, different Co/Fe molar ratio, calcination conditions and different promoters on the catalytic performance of cobalt–iron catalysts for the Fisher–Tropsch synthesis (FTS). It was found that the catalyst containing 35 wt.% (Co–Fe)/TiO{sub 2}–SiO{sub 2} (Co/Fe molar ratio is 80/20) promoted with 1.5 wt.% Cu and calcined in air atmosphere at 600 °C for 7 h with a heating rate of 3 °C min{sup −1} is an optimal nano catalyst for converting synthesis gas to light olefins and C{sub 5}–C{sub 12} hydrocarbons. The effects of operational conditions such as the H{sub 2}/CO ratio, gas hourly space velocity (GHSV), different reaction temperature, and reaction pressure were investigated. The results showed that the best operational conditions for optimal nano catalyst are 250 °C, GHSV = 2000 h{sup −1}, H{sub 2}/CO molar ratio 1/1 under 5 bar total pressure. Catalysts and precursors were characterized by, X-ray diffraction (XRD), scanning electron microcopy (SEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), temperature program reduction (TPR) and N{sub 2} adsorption–desorption measurements.« less

  14. Attapulgite-CeO2/MoS2 ternary nanocomposite for photocatalytic oxidative desulfurization

    NASA Astrophysics Data System (ADS)

    Li, Xiazhang; Zhang, Zuosong; Yao, Chao; Lu, Xiaowang; Zhao, Xiaobing; Ni, Chaoying

    2016-02-01

    Novel attapulgite(ATP)-CeO2/MoS2 ternary nanocomposites were synthesized by microwave assisted assembly method. The structures of the nanocomposites were characterized by XRD, FT-IR, UV-vis, XPS and in situ TEM. The photocatalytic activities of ATP-CeO2/MoS2 composites were investigated by degradating dibenzothiophene (DBT) in gasoline under visible light irradiation. The effect of the mass ratio of CeO2 to MoS2 on photocatalytic activity was investigated. The results indicate that the three-dimensional network structure is firmly constructed by ATP skeleton, CeO2 particles and MoS2 nanosheet which effectively increase the surface area of the composites and promote the separation of electrons and holes by resulting electronic transmission channels of multi-channel in space. The degradation rate of DBT can reach 95% under 3 h irradiation when the mass ratio of CeO2/MoS2 is 4/10. A plausible mechanism for the photocatalytic oxidative desulfurization of this nanocomposite is put forward.

  15. INFLUENCE OF SCALE RATIO, ASPECT RATIO, AND PLANFORM ON THE PERFORMANCE OF SUPERCAVITATING HYDROFOILS.

    DTIC Science & Technology

    performance of supercavitating hydrofoils. No appreciable scale effect was found for scale ratios up to 3 in the fully-cavitating flow region. The...overall performance of the hydrofoil by increasing the aspect ratio above 3, and (2) moderate taper ratio seems to be advantageous in view of the overall performance of supercavitating hydrofoils. (Author)

  16. TiO2/water Nanofluid Heat Transfer in Heat Exchanger Equipped with Double Twisted-Tape Inserts

    NASA Astrophysics Data System (ADS)

    Eiamsa-ard, S.; Ketrain, R.; Chuwattanakul, V.

    2018-05-01

    Nowadays, heat transfer enhancement plays an important role in improving efficiency of heat transfer and thermal systems for numerous areas such as heat recovery processes, chemical reactors, air-conditioning/refrigeration system, food engineering, solar air/water heater, cooling of high power electronics etc. The present work presents the experimental results of the heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube fitted with double twisted tapes. The study covered twist ratios of twisted tapes (y/w) of 1.5, 2.0, and 2.5) while the concentration of the nanofluid was kept constant at 0.05% by volume. Observations show that heat transfer, friction loss and thermal performance increase as twist ratio (y/w) decreases. The use of the nanofluid in the tube equipped with the double twisted-tapes with the smallest twist ratio (y/w = 1.5) results in the increases of heat transfer rates and friction factor up to 224.8% and 8.98 times, respectively as compared to those of water. In addition, the experimental results performed that double twisted tapes induced dual swirling-flows which played an important role in improving fluid mixing and heat transfer enhancement. It is also observed that the TiO2/water nanofluid was responsible for low pressure loss behaviors.

  17. Numerical simulation of two-phase slug flow with liquid carryover in different diameter ratio T-junction

    NASA Astrophysics Data System (ADS)

    Pao, W.; Hon, L.; Saieed, A.; Ban, S.

    2017-10-01

    A smaller diameter conduit pointing at 12 o’clock position is typically hot-tapped to a horizontal laying production header in offshore platform to tap produced gas for downstream process train. This geometric feature is commonly known as T-junction. The nature of multiphase fluid splitting at the T-junction is a major operational challenge due to unpredictable production environment. Often, excessive liquid carryover occurs in the T-junction, leading to complete platform trip and halt production. This is because the downstream process train is not designed to handle excessive liquid. The objective of this research is to quantify the effect of different diameter ratio on phase separation efficiency in T-junction. The liquid carryover is modelled as two-phase air-water flow using Eulerian Mixture Model coupled with Volume of Fluid Method to mimic the slug flow in the main pipe. The focus in this paper is 0.0254 m (1 inch) diameter horizontal main arm and vertical branch arm with diameter ratio of 1.0, 0.5 and 0.3. The present research narrowed the investigation to only slug flow regime using Baker’s map as reference. The investigation found that, contrary to common believe, smaller diameter ratio T-junction perform worse than larger diameter ratio T-junction.

  18. Nanosized As2O3/Fe2O3 complexes combined with magnetic fluid hyperthermia selectively target liver cancer cells.

    PubMed

    Wang, Zi-Yu; Song, Jian; Zhang, Dong-Sheng

    2009-06-28

    To study the methods of preparing the magnetic nano-microspheres of Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) complexes and their therapeutic effects with magnetic fluid hyperthermia (MFH). Nanospheres were prepared by chemical co-precipitation and their shape and diameter were observed. Hemolysis, micronucleus, cell viability, and LD(50) along with other in vivo tests were performed to evaluate the Fe(2)O(3) microsphere biocompatibility. The inhibition ratio of tumors after Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) injections combined with induced hyperthermia in xenograft human hepatocarcinoma was calculated. Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) particles were round with an average diameter of 20 nm and 100 nm as observed under transmission electron microscope. Upon exposure to an alternating magnetic field (AMF), the temperature of the suspension of magnetic particles increased to 41-51 degrees C, depending on different particle concentrations, and remained stable thereafter. Nanosized Fe(2)O(3) microspheres are a new kind of biomaterial without cytotoxic effects. The LD(50) of both Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) in mice was higher than 5 g/kg. One to four weeks after Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) complex injections into healthy pig livers, no significant differences were found in serum AST, ALT, BUN and Cr levels among the pigs of all groups (P > 0.05), and no obvious pathological alterations were observed. After exposure to alternating magnetic fields, the inhibition ratio of the tumors was significantly different from controls in the Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) groups (68.74% and 82.79%, respectively; P < 0.01). Tumors of mice in treatment groups showed obvious necrosis, while normal tissues adjoining the tumor and internal organs did not. Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) complexes exerted radiofrequency-induced hyperthermia and drug toxicity on tumors without any liver or kidney damage. Therefore, nanospheres are ideal carriers for tumor-targeted therapy.

  19. Stratospheric N2O5, CH4, and N2O Profiles from IR Solar Occultation Spectra

    NASA Technical Reports Server (NTRS)

    Peyeret, C. Camy; Flaud, J.-M.; Perrin, A.; Rinsland, C. P.; Goldman, A.; Murcray, F. J.

    1993-01-01

    Stratospheric volume mixing ratio profiles of N2O5, CH4, and N2O have been retrieved from a set of 0.052/ cm resolution (FWHM) solar occultation spectra recorded at sunrise during a balloon flight from Aire sur I'Adour, France (44 deg N latitude) on 12 October 1990. The N2O5 results have been derived from measurements of the integrated absorption by the 1246/ cm band. Assuming a total intensity of 4.32 x 10(exp 17)cm(exp -1) molecule sq cm(exp -2) independent of temperature, the retrieved N2O5 volume mixing ratios in ppbv (parts per billion by volume, 10(exp -9)), interpolated to 2 km height spacings, are 1.64 +/- 0.49 at 37.5 km, 1.92 +/- 0.56 at 35.5 km, 2.06 +/- 0.47 at 33.5 km, 1.95 +/- 0.42 at 31.5 km, 1.60 +/- 0.33 at 29.5 km, 1.26 +/- 0.28 at 27.5 km, and 0.85 +/- 0.20 at 25.5 km. Error bars indicate the estimated I-sigma uncertainty including the error in the total band intensity (+/- 20% has been assumed). The retrieved profiles are compared with previous measurements and photochemical model results.

  20. Uptake properties of Ni2+ by nCaO.Al2O3.2SiO2 (n=1-4) prepared from solid-state reaction of kaolinite and calcite.

    PubMed

    Jha, Vinay Kumar; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; MacKenzie, Kenneth J D

    2005-08-31

    A series of nCaO.Al2O3.2SiO2 samples (n=1-4) were prepared by solid-state reaction of mechanochemically treated mixtures of kaolinite and calcite fired at 600-1000 degrees C for 24 h. All the samples were X-ray amorphous after firing at 600-800 degrees C but had crystallized by 900 degrees C. The main crystalline phases were anorthite (n=1), gehlenite (n=2 and 3) and larnite (n=4). The uptake of Ni2+ by nCaO.Al2O3.2SiO2 samples fired at 800 and 900 degrees C was investigated at room temperature using solutions with initial Ni2+ concentrations of 0.1-50 mmol/l. Amorphous samples (fired at 800 degrees C) showed a higher Ni2+ uptake capacity than crystalline samples (fired at 900 degrees C). Ni2+ uptake was found to increase with increasing of CaO content. Amorphous 4CaO.Al2O3.2SiO2 showed the highest Ni2+ uptake capacity (about 9 mmol/g). The Ni2+ uptake abilities of the present samples are higher than those of other materials reported in the literature. Since the sorbed Ni2+/released Ca2+ ratios of these samples are close to unity, ion replacement of Ni2+ for Ca2+ is thought to be the principal mechanism of Ni2+ uptake by the present samples.

  1. High Mid-Flow to Vital Capacity Ratio and the Response to Exercise in Children With Congenital Heart Disease.

    PubMed

    Vilozni, Daphna; Alcaneses-Ofek, Maria Rosario; Reuveny, Ronen; Rosenblum, Omer; Inbar, Omri; Katz, Uriel; Ziv-Baran, Tomer; Dubnov-Raz, Gal

    2016-12-01

    Pulmonary mechanics may play a role in exercise intolerance in patients with congenital heart disease (CHD). A reduced FVC volume could increase the ratio between mid-flow (FEF 25-75% ) and FVC, which is termed high dysanapsis. The relationship between high dysanapsis and the response to maximum-intensity exercise in children with CHD had not yet been studied. The aim of this work was to examine whether high dysanapsis is related to the cardiopulmonary response to maximum-intensity exercise in pediatric subjects with CHD. We retrospectively collected data from 42 children and adolescents with CHD who had either high dysanapsis (ratio >1.2; n = 21) or normal dysanapsis (control) (n = 21) as measured by spirometry. Data extracted from cardiopulmonary exercise test reports included peak values of heart rate, work load, V̇ O 2 , V̇ CO 2 , and ventilation parameters and submaximum values, including ventilatory threshold and ventilatory equivalents. There were no significant differences in demographic and clinical parameters between the groups. Participants with high dysanapsis differed from controls in lower median peak oxygen consumption (65.8% vs 83.0% of predicted, P = .02), peak oxygen pulse (78.6% vs 87.8% of predicted, P = .02), ventilatory threshold (73.8% vs 85.3% of predicted, P = .03), and maximum breathing frequency (106% vs 121% of predicted, P = .035). In the high dysanapsis group only, median peak ventilation and tidal volume were significantly lower than 80% of predicted values. In children and adolescents with corrected CHD, high dysanapsis was associated with a lower ventilatory capacity and reduced aerobic fitness, which may indicate respiratory muscle impairments. Copyright © 2016 by Daedalus Enterprises.

  2. Stability analysis of wall driven nanofluid flow through a tube

    NASA Astrophysics Data System (ADS)

    Hossain, M. Mainul; Khan, M. A. H.

    2017-06-01

    Wall driven incompressible viscous fluid flow with nanoparticles through a tube is considered where two different nanofluids (Cu-water, SiO2-water) are used separately. Flow becomes gradually unstable due to movement of wall and existence of nanoparticles. However, Reynolds number, volume fraction and density ratio are responsible for flow instability. The mathematical model of the problem is constructed and solved by means of series solution method. Special type Hermite-Padé approximation method is used to improve the series solution. The critical point for Reynolds number, volume fraction and density ratio are determined and described using approximation technique and bifurcation diagram for both nanofluids. Moreover, Interaction between these three numbers and their effect on velocity profile are discussed. To indicate the nanofluid which is more effective for flow stability is our major concerned.

  3. β-K3Fe(MoO4)2Mo2O7

    PubMed Central

    Souilem, Amira; Zid, Mohamed Faouzi; Driss, Ahmed

    2014-01-01

    The title compound, tripotassium iron(III) bis­(ortho­molyb­date) dimolybdate, was obtained by a solid-state reaction. The main structural building units are one FeO6 octa­hedron, two MoO4 tetra­hedra and one Mo2O7 dimolybdate group, all with point group symmetries m. These units are linked via corner-sharing to form ribbons parallel to [010]. The three K+ cations are located between the ribbons on mirror planes and have coordination numbers of 10 and 12. Two O atoms of one of the MoO4 tetra­hedra of the dimolybdate group are disordered over two positions in a 0.524 (11):0.476 (11) ratio. The structure of the title compound is compared briefly with that of Rb3FeMo4O15. PMID:25161509

  4. Field and Laboratory Measurements of Carbon Dioxide Mixing Ratios in Air Using the LI-COR LI-7000 CO2/H2O Analyzer

    NASA Astrophysics Data System (ADS)

    Murphy, P. C.; Lerner, B. M.; Williams, E. J.

    2003-12-01

    Air measurements of CO2 were made with a LI-COR LI-7000 CO2/H2O analyzer on the NOAA ship Ronald H. Brown during the New England Air Quality Study (NEAQS 2002) field campaign. This instrument is an improved version of the older model LI-6262 CO2/H2O analyzer, which uses a non-dispersive IR radiation absorption technique. During NEAQS, we operated the LI-7000 without temperature regulation, using a simple 2-point calibration scheme. An intercomparison between our measurements of atmospheric CO2 mixing ratios and those measured by a more sophisticated method, using temperature-regulation and a multipoint calibration with a LI-6252 CO2 analyzer (operated by AOML) shows generally good results ([CO2]AL = [CO2]AOML x 1.015 (0.010) - 5.7 (3.8) ppmv; R2 = 0.9889) in highly variable air masses. During subsequent laboratory studies, we evaluated the instrument for the manufacturer's claims of improvement in signal noise, sample gas temperature equilibration and zero drift with temperature. Further work examined the instrument's susceptibility to rapid temperature changes, which has been previously demonstrated to introduce error of several ppmv ° C-1 in the LI-6252. A change in the LI-7000 optical bench temperature of 12 ° C in 1 hour caused a sampling error of ˜3 ppmv CO2. Therefore, our lab investigations indicate that the LI-7000 would benefit from a temperature-controlled enclosure, as is used by the AOML group.

  5. Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica.

    PubMed

    Pakdel, Esfandiar; Daoud, Walid A

    2013-07-01

    This manuscript aims to investigate the functionalization of cotton fabrics with TiO2/SiO2. In this study, the sol-gel method was employed to prepare titania and silica sols and the functionalization was carried out using the dip-pad-dry-cure process. Titanium tetra isopropoxide (TTIP) and tetra ethyl orthosilicate (TEOS) were utilized as precursors of TiO2 and SiO2, respectively. TiO2/SiO2 composite sols were prepared in three different Ti:Si molar ratios of 1:0.43, 1:1, and 1:2.33. The self-cleaning property of cotton samples functionalized with TiO2/SiO2 was assessed based on the coffee stain removal capability and the decomposition rate of methylene blue under UV irradiation. FTIR study of the TiO2/SiO2 photocatalyst confirmed the existence of Si-O-Si and Ti-O-Si bonds. Scanning electron microscopy was employed to investigate the morphology of the functionalized cotton samples. The samples coated with TiO2/SiO2 showed greater ability of coffee stain removal and methylene blue degradation compared with samples functionalized with TiO2 demonstrating improved self-cleaning properties. The role of SiO2 in improving these properties is also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. CO Oxidation and Subsequent CO 2 Chemisorption on Alkaline Zirconates: Li 2 ZrO 3 and Na 2 ZrO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcántar-Vázquez, Brenda; Duan, Yuhua; Pfeiffer, Heriberto

    Here, two different alkaline zirconates (Li 2ZrO 3 and Na 2ZrO 3) were studied as possible bifunctional catalytic-captor materials for CO oxidation and the subsequent CO 2 chemisorption process. Initially, CO oxidation reactions were analyzed in a catalytic reactor coupled to a gas chromatograph, using Li 2ZrO 3 and Na 2ZrO 3, under different O 2 partial flows. We found results clearly showed that Na 2ZrO 3 possesses much better catalytic properties than Li 2ZrO 3. After the CO-O 2 oxidation catalytic analysis, CO2 chemisorption process was analyzed by thermogravimetric analysis, only for the Na 2ZrO 3 ceramic. The resultsmore » confirmed that Na 2ZrO 3 is able to work as a bifunctional material (CO oxidation and subsequent CO 2 chemisorption), although the kinetic CO 2 capture process was not the best one under the physicochemical condition used in this case. For Na 2ZrO 3, the best CO conversions were found between 445 and 580 °C (100%), while Li 2ZrO 3 only showed a 35% of efficiency between 460 and 503 °C. However, in the Na 2ZrO 3 case, at temperatures higher than 580 °C its catalytic activity gradually decreases as a result of CO 2 capture process. Finally, all these experiments were compared and supported with theoretical thermodynamic data.« less

  7. CO Oxidation and Subsequent CO 2 Chemisorption on Alkaline Zirconates: Li 2 ZrO 3 and Na 2 ZrO 3

    DOE PAGES

    Alcántar-Vázquez, Brenda; Duan, Yuhua; Pfeiffer, Heriberto

    2016-08-26

    Here, two different alkaline zirconates (Li 2ZrO 3 and Na 2ZrO 3) were studied as possible bifunctional catalytic-captor materials for CO oxidation and the subsequent CO 2 chemisorption process. Initially, CO oxidation reactions were analyzed in a catalytic reactor coupled to a gas chromatograph, using Li 2ZrO 3 and Na 2ZrO 3, under different O 2 partial flows. We found results clearly showed that Na 2ZrO 3 possesses much better catalytic properties than Li 2ZrO 3. After the CO-O 2 oxidation catalytic analysis, CO2 chemisorption process was analyzed by thermogravimetric analysis, only for the Na 2ZrO 3 ceramic. The resultsmore » confirmed that Na 2ZrO 3 is able to work as a bifunctional material (CO oxidation and subsequent CO 2 chemisorption), although the kinetic CO 2 capture process was not the best one under the physicochemical condition used in this case. For Na 2ZrO 3, the best CO conversions were found between 445 and 580 °C (100%), while Li 2ZrO 3 only showed a 35% of efficiency between 460 and 503 °C. However, in the Na 2ZrO 3 case, at temperatures higher than 580 °C its catalytic activity gradually decreases as a result of CO 2 capture process. Finally, all these experiments were compared and supported with theoretical thermodynamic data.« less

  8. Dynamics of ferrofluidic flow in the Taylor-Couette system with a small aspect ratio

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2017-01-01

    We investigate fundamental nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined be-tween two concentric independently rotating cylinders - consider small aspect ratio by solving the ferro-hydrodynamical equations, carrying out systematic bifurcation analysis. Without magnetic field, we find steady flow patterns, previously observed with a simple fluid, such as those containing normal one- or two vortex cells, as well as anomalous one-cell and twin-cell flow states. However, when a symmetry-breaking transverse magnetic field is present, all flow states exhibit stimulated, finite two-fold mode. Various bifurcations between steady and unsteady states can occur, corresponding to the transitions between the two-cell and one-cell states. While unsteady, axially oscillating flow states can arise, we also detect the emergence of new unsteady flow states. In particular, we uncover two new states: one contains only the azimuthally oscillating solution in the configuration of the twin-cell flow state, and an-other a rotating flow state. Topologically, these flow states are a limit cycle and a quasiperiodic solution on a two-torus, respectively. Emergence of new flow states in addition to observed ones with classical fluid, indicates that richer but potentially more controllable dynamics in ferrofluidic flows, as such flow states depend on the external magnetic field. PMID:28059129

  9. Processing and optical properties of Nd3+-doped SiO2-TiO2-Al2O3 planar waveguides

    NASA Astrophysics Data System (ADS)

    Xiang, Qing; Zhou, Yan; Ooi, Boon Siew; Lam, Yee Loy; Chan, Yuen Chuen; Kam, Chan Hin

    2000-05-01

    We report here the processing and optical characterization of Nd3+-doped SiO2-TiO2-Al2O3 planar waveguides deposited on SOS substrates by the sol-gel route combined with spin-coating and rapid thermal annealing. The recipes used for preparing the solutions by sol-gel route are in mole ratio of 93SiO2:20AlO1.5: x ErO1.5. In order to verify the residual OH content in the films, FTIR spectra were measured and the morphology of the material by the XRD analysis. Five 2-layer films annealed at a maximum temperature of 500 degrees C, 700 degrees C, 900 degrees, 1000 degrees C, 1100 degrees C respectively were fabricated on silicon. The FTIR and XRD curves show that annealing at 1050 degrees C for 15s effectively removes the OH in the materia and keeps the material amorphous. The propagation loss of the planar waveguides was measured by using the method based on scattering in measurements and the result was obtained to be 1.54dB/cm. The fluorescence spectra were measured with 514nm wavelength of Ar+ laser by directly shining the pump beam on the film instead of prism coupling. The results show that the 1 mole Nd3+ content recipe has the strongest emission efficiency among the four samples investigated.

  10. Cerebral blood flow changes induced by pedunculopontine nucleus stimulation in patients with advanced Parkinson's disease: a [(15)O] H2O PET study.

    PubMed

    Ballanger, Benedicte; Lozano, Andres M; Moro, Elena; van Eimeren, Thilo; Hamani, Clement; Chen, Robert; Cilia, Roberto; Houle, Sylvain; Poon, Yu Yan; Lang, Anthony E; Strafella, Antonio P

    2009-12-01

    Patients with advanced Parkinson's disease (PD) develop disabling axial symptoms, including gait disturbances, freezing and postural instability poorly responsive to levodopa replacement therapy. The pedunculopontine nucleus (PPN) is involved in locomotion, control of posture, and behavioral states [i.e. wakefulness, rapid eye movement sleep]. Recent reports suggested that PPN modulation with deep brain stimulation (DBS) may be beneficial in the treatment of axial symptoms. However, the mechanisms underlying these effects are still unknown. We used [(15)O] H(2)O PET to investigate regional cerebral blood flow in three patients with advanced PD who underwent a new experimental surgical procedure with implantation of unilateral PPN-DBS. Patients were studied Off-medication with stimulator Off and On, both at rest and during a self-paced alternating motor task of the lower limbs. We used SPM2 for imaging data analysis, threshold P < 0.05 corrected at the cluster level. Stimulation induced significant regional cerebral blood flow increment in subcortical regions such as the thalamus (P < 0.006), cerebellum (P < 0.001), and midbrain region (P < 0.001) as well as different cortical areas involving medial sensorimotor cortex extending into caudal supplementary motor area (BA 4/6; P < 0.001). PPN-DBS in advanced PD resulted in blood flow and presumably neuronal activity changes in subcortical and cortical areas involved in balance and motor control, including the mesencephalic locomotor region (e.g. PPN) and closely interconnected structures within the cerebello-(rubro)-thalamo-cortical circuit. Whether these findings are associated with the DBS-PPN clinical effect remains to be proven. However, they suggest that PPN modulation may induce functional changes in neural networks associated with the control of lower limb movements. 2009 Wiley-Liss, Inc.

  11. Photoinduced second-order optical susceptibilities of Er 2O 3 doped TeO 2-GeO 2-PbO glasses

    NASA Astrophysics Data System (ADS)

    Kassab, L. R. P.; Pinto, R. de A.; Kobayashi, R. A.; Piasecki, M.; Bragiel, P.; Kityk, I. V.

    2007-06-01

    Second-order optical susceptibilities were established in the optically poled erbium doped tellurite glasses near the melting temperature. The non-linear optical susceptibility was formed by bicolor coherent optical treatment performed by two coherent laser beams originated from 50 ps Nd-YAG laser ( λ = 1.32 μm) exciting the high pressure hydrogen laser cell emitting at 1907 nm. The non-centrosymmetric grating of the medium was created by coherent superposition of the fundamental laser illumination at 1907 nm and the doubled frequency one at 953.5 nm. The maximally all-optically poled SHG occurs for 2% doped Er 2O 3 (in weighting units) TeO 2-GeO 2-PbO glass. It was found that the photoinduced SHG demonstrates a saturation during the photo-treatment of 9-10 min using the two beams polarized at angle about 45° between them. During the coherent bicolor optical treatment it was achieved the value of second-order susceptibility up to 3.6 pm/V at 1907 nm. The optimal ratio between the fundamental beam with power density about 1.1 GW/cm 2 and writing doubled frequency seeding beam about 0.015 GW/cm 2 corresponds to the maximal of photoinduced SHG. For glasses with lower concentration of Er 2O 3, the relaxation of the second-order optical susceptibility is substantially longer and achieves SHG value that corresponds to 80% of the maximal ones. It is necessary to emphasize that efficient optically-poled grating exists only within the narrow temperature range near the glassing temperature. Possible physical mechanisms of the phenomenon observed are discussed. Generally the used glasses possess better parameters than early investigated germinate glasses.

  12. A TiO2 abundance map for the northern maria

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Saunders, R. S.; Matson, D. L.; Mosher, J. A.

    1977-01-01

    A map of TiO2 abundance for most of the northern maria is presented. The telescopic data base used is the 0.38/0.56-micron ratio mosaic from Johnson et at. (1977). The titanium content has been estimated using the correlation established by Charette et al. (1974). The combination of observational, processing, and calibration errors indicates that the TiO2 map is accurate to + or - 2% (wt% TiO2) for high TiO2 content (more than 5%) and + or - 1% for low values of TiO2. Analysis of the lunar sample and telescopic data suggests strongly that the spectral parameter mapped is sensitive primarily to TiO2 abundance in the range 3-9% and does not correlate directly with iron content. It is suggested, however, that for the low TiO2 mare regions (less than 2-3% TiO2) there may be a relation between the spectral ratio and iron content and that some of the reddest mare areas in the Imbrium region may have low iron contents as well as low titanium abundances.

  13. The Effect of Increased CO2 Mixing Ratio on Water Use Efficiency, Evapo-transpiration, Soil Moisture Content and Stem Flow in two Long-term Field Experiments

    NASA Astrophysics Data System (ADS)

    Drake, B.; Powell, T.; Li, J.; Hinkle, R.; Rasse, D.

    2007-12-01

    Stomatal opening in plant leaves control carbon and water exchange between vegetation and the atmosphere. Closure of these water-gates in response to increased atmospheric CO2 mixing ratio's, reduces transpiration under most laboratory and short term experimental conditions. Does this imply however, as atmospheric CO2 rises, and plant canopies expand, that evapo-transpiration (ETR), soil moisture content (SMC), and ecosystem water use efficiency (WUE) will increase? To test this question, field experiments have been and still are conducted using open top chambers. We have exposed native species in Florida Scrub to a carbon dioxide mixing ratio of nearly 700 ppmv CO2 for the past ten years and in Chesapeake Bay wetlands for 21 years. As a result of this treatment, in both ecosystems there was an increase in net ecosystem CO2 exchange and leaf area but a reduction of stomatal conductance, stem flow, transpiration, and ETR. For Florida scrub oak, these changes were also accompanied by an increase in soil moisture content as well.

  14. Densities of Active species in N2/H2 RF and HF afterglows: application to surface nitriding of TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Ricard, André; Sarrette, Jean-Philippe; Wang, Yunfei; Kim, Yu-Kwon

    2017-10-01

    N2/0-5% H2 flowing afterglows from Radio Frequency (RF) and High Frequency (HF) sources have been analyzed by optical emission spectroscopy. In similar conditions (pressure 5-6 Torr, flow rate 0.5 slm and power 100 W), it is found in pure N2 a nearly constant N-atom density from the pink to the late afterglow, which is higher in HF than in RF: (1-2) and 0.4 × 1015 cm-3, respectively. With a N2/2% H2 gas mixture, the early afterglows is changed to a late afterglow with about the same N-atom density for both RF and HF cases: (8-9) × 1014 cm-3. Anatase TiO2 nanocrystals and Atomic Layer Deposition-grown films were exposed to the RF afterglows at room temperature. XPS analysis of the samples has shown that the highest N/Ti ratio of 0.24 can be achieved with the pure N2 late afterglow. In the HF pure N2 late afterglow, however, the N/Ti coverage was limited to 0.04 in spite of higher N-atom density. Such differences in the N content between the two RF and HF cases are attributed to the presence of a high O-atom impurity of 2 × 1013 cm-3 in HF as compared to that (8 × 1011 cm-3) in RF. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea

  15. On the flow generated by rotating flat plates of low aspect ratio

    NASA Astrophysics Data System (ADS)

    DeVoria, Adam C.

    Low-aspect-ratio propulsors typically allow for high maneuverability at low-to-moderate speeds. This has made them the subject of much recent research aimed at employing such appendages on autonomous vehicles which are required to navigate tumultuous environments. This experimental investigation focuses on the fluid dynamic aspects associated with overly-simplified versions of such biologically-inspired propulsors. In doing so, fundamental contributions are made to the research area. The unsteady, three-dimensional flow of a low-aspect-ratio, trapezoidal flat plate undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103) is investigated experimentally. The objectives are to develop a straightforward protocol for vortex saturation, and to understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a glass-walled tank, and digital particle image velocimetry is used to obtain planar velocity measurements. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. The flow in the region near the tip is relatively insensitive to Reynolds number over the range studied. The component normal to the plate is unaffected by total rotational amplitude while the tangential component has dependence on this angle. Also, an estimate of the first tip-vortex pinch-off time is obtained from the near-tip velocity data and agrees very well with values estimated using circulation. The angle of incidence of the bulk root-to-tip flow relative to the plate normal becomes more oblique with increasing rotational amplitude. Accordingly, the peak magnitude of the tangential velocity is also increased and as a result advects fluid momentum away from the plate at a higher rate. The more oblique impingement of the root-to-tip flow for increasing rotational amplitude is shown to have a

  16. Flow Fields of the 3.5 Ga Komati Formation, South Africa: Geochemical, Stratigraphic, and Temporal relationships between Massive, Vesicular, and Spinifex flows

    NASA Astrophysics Data System (ADS)

    Dann, J. C.

    2007-12-01

    A challenge of Archean volcanology is to reconstruct submarine flow fields by mapping and analyzing vertically dipping sequences of lavas. Some flow fields are bound by sediments and/or seafloor alteration that mark clear gaps in volcanism. Flow fields in the Lower Komati Fm are defined by alternating layers of komatiite (26% MgO) and komatiitic basalt (15% MgO). Five komatiite flow fields (100-200m thick) repeat the same stratigraphic zoning of spinifex overlying massive komatiite, and each flow field has a distinct Al2O3/CaO, a ratio unaffected by olivine fractionation, consistent with the contention that each komatiite flow field represents a distinct batch of mantle melting. Although massive and spinifex komatiite form distinct stratigraphic units on a map scale, detailed outcrop mapping reveals that the change in flow type represents a transition within a single flow field. In one type of transition, thin massive flows alternate with spinifex flow lobes of a compound flow unit. In another, a vesicular flow along the boundary links the underlying massive komatiite and overlying spinifex flows in time. The vesicular flow has alternating spinifex and vesicular layers that form a distinctive crust above a thick massive interior. Locally, this crust is tilted, intruded by massive komatiite from the interior, and overlain by a thick breccia including a spinifex flow broken into blocks and rotated like dominoes by the tilting. These outcrop relations indicate that spinifex flow lobes were starting to flow over the vesicular flow before it had undergone differential inflation, a temporal link between the lower massive and upper spinifex komatiites consistent with their belonging to the same flow field. The transition in flow type may reflect 1) an overlap of proximal and distal facies of komatiite flows as eruption rates waned and/or 2) thermal maturation prior to eruption. Early, cooler, crystal-rich, massive lava, flowing out as thick sheet flows, was replaced by

  17. Structure disordering and thermal decomposition of manganese oxalate dihydrate, MnC2O2H2O

    NASA Astrophysics Data System (ADS)

    Puzan, Anna N.; Baumer, Vyacheslav N.; Lisovytskiy, Dmytro V.; Mateychenko, Pavel V.

    2018-04-01

    It is found that the known regular structures of MnC2O2H2O (I) do not allow to refine the powder X-ray pattern of (I) properly using the Rietveld method. Implementation of order-disorder scheme [28] via the including of appropriate displacement vector improves the refinement results. Also it is found that in the case of (I) the similar improvement may be achieved using the data on two phases of (I) obtained as result of decomposition MnC2O4·3H2O single crystal in the mother solution after growth. Thermal decomposition of (I) produce the anhydrous γ-MnC2O4 (II) the structure of which is differ from the known α- and β-modifications of VIIIb transition metal oxalates. The solved ab initio from the powder pattern structure (II) (space group Pmna, a = 7.1333 (1), b = 5.8787 (1), c = 9.0186 (2) Å, V = 378.19 (1) Å3, Z = 4 and Dx = 2.511 Mg m-3) contains seven-coordinated Mn atoms with Mn-O distances of 2.110-2.358 Å, and is not close-packed. Thermal decomposition of (II) in air flows via forming of amorphous MnO, the heating of which up to 723 K is accompanied by oxidation of MnO to Mn2O3 and further recrystallization of the latter.

  18. Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core-shell nanowires.

    PubMed

    Hsu, Cheng-Liang; Lu, Ying-Ching

    2012-09-21

    This study investigates the feasibility of synthesizing high-density transparent Ga(2)O(3)/SnO(2):Ga core-shell nanowires on a sapphire substrate at 1000 °C by VLS. The doping Ga concentrations are 0.46, 1.07, 2.30 and 17.53 atomic%. The XRD spectrum and HR-TEM reveal Ga(2)O(3) and SnO(2) as having monoclinic and tetragonal rutile structures, respectively. Experimental results indicate that the XRD peak shift of SnO(2) to a larger angle increases with the increasing amount of Ga doping. According to the CL spectrum, SnO(2) and Ga(2)O(3) peak at approximately 528-568 nm and 422-424 nm, respectively. The maximum quantum efficiency of Ga(2)O(3)/SnO(2):Ga core-shell nanowires is around 0.362%. The UV light on-off current contrast ratio of Ga(2)O(3)/SnO(2):Ga core-shell nanowires is around 1066.7 at a bias of 5 V. Moreover, the dynamic response of Ga(2)O(3)/SnO(2):Ga core-shell nanowires has an on-off current contrast ratio of around 16. Furthermore, the Ga(2)O(3) region functions similar to a capacitor and continues to accumulate SnO(2):Ga excited electrons under UV light exposure.

  19. Joint Experimental and Computational 17O and 1H Solid State NMR Study of Ba 2In 2O 4(OH) 2 Structure and Dynamics

    DOE PAGES

    Dervisoglu, Riza; Middlemiss, Derek S.; Blanc, Frederic; ...

    2015-05-01

    Here, a structural characterization of the hydrated form of the brownmillerite-type phase Ba 2In 2O 5, Ba 2In 2O 4(OH) 2, is reported using experimental multinuclear NMR spectroscopy and density functional theory (DFT) energy and GIPAW NMR calculations. When the oxygen ions from H 2O fill the inherent O vacancies of the brownmillerite structure, one of the water protons remains in the same layer (O3) while the second proton is located in the neighboring layer (O2) in sites with partial occupancies, as previously demonstrated by Jayaraman et al. (Solid State Ionics 2004, 170, 25–32) using X-ray and neutron studies. Calculationsmore » of possible proton arrangements within the partially occupied layer of Ba 2In 2O 4(OH) 2 yield a set of low energy structures; GIPAW NMR calculations on these configurations yield 1H and 17O chemical shifts and peak intensity ratios, which are then used to help assign the experimental MAS NMR spectra. Three distinct 1H resonances in a 2:1:1 ratio are obtained experimentally, the most intense resonance being assigned to the proton in the O3 layer. The two weaker signals are due to O2 layer protons, one set hydrogen bonding to the O3 layer and the other hydrogen bonding alternately toward the O3 and O1 layers. 1H magnetization exchange experiments reveal that all three resonances originate from protons in the same crystallographic phase, the protons exchanging with each other above approximately 150 °C. Three distinct types of oxygen atoms are evident from the DFT GIPAW calculations bare oxygens (O), oxygens directly bonded to a proton (H-donor O), and oxygen ions that are hydrogen bonded to a proton (H-acceptor O). The 17O calculated shifts and quadrupolar parameters are used to assign the experimental spectra, the assignments being confirmed by 1H– 17O double resonance experiments.« less

  20. Joint Experimental and Computational 17O and 1H Solid State NMR Study of Ba2In2O4(OH)2 Structure and Dynamics.

    PubMed

    Dervişoğlu, Rıza; Middlemiss, Derek S; Blanc, Frédéric; Lee, Yueh-Lin; Morgan, Dane; Grey, Clare P

    2015-06-09

    A structural characterization of the hydrated form of the brownmillerite-type phase Ba 2 In 2 O 5 , Ba 2 In 2 O 4 (OH) 2 , is reported using experimental multinuclear NMR spectroscopy and density functional theory (DFT) energy and GIPAW NMR calculations. When the oxygen ions from H 2 O fill the inherent O vacancies of the brownmillerite structure, one of the water protons remains in the same layer (O3) while the second proton is located in the neighboring layer (O2) in sites with partial occupancies, as previously demonstrated by Jayaraman et al. (Solid State Ionics2004, 170, 25-32) using X-ray and neutron studies. Calculations of possible proton arrangements within the partially occupied layer of Ba 2 In 2 O 4 (OH) 2 yield a set of low energy structures; GIPAW NMR calculations on these configurations yield 1 H and 17 O chemical shifts and peak intensity ratios, which are then used to help assign the experimental MAS NMR spectra. Three distinct 1 H resonances in a 2:1:1 ratio are obtained experimentally, the most intense resonance being assigned to the proton in the O3 layer. The two weaker signals are due to O2 layer protons, one set hydrogen bonding to the O3 layer and the other hydrogen bonding alternately toward the O3 and O1 layers. 1 H magnetization exchange experiments reveal that all three resonances originate from protons in the same crystallographic phase, the protons exchanging with each other above approximately 150 °C. Three distinct types of oxygen atoms are evident from the DFT GIPAW calculations bare oxygens (O), oxygens directly bonded to a proton (H-donor O), and oxygen ions that are hydrogen bonded to a proton (H-acceptor O). The 17 O calculated shifts and quadrupolar parameters are used to assign the experimental spectra, the assignments being confirmed by 1 H- 17 O double resonance experiments.