Sample records for o2 thermodynamic properties

  1. Thermodynamic and transport properties of frozen and reacting pH2-oH2 mixtures

    NASA Technical Reports Server (NTRS)

    Carter, H. G.; Bullock, R. E.

    1972-01-01

    Application of experimental state data and spectroscopic term values shows that the thermodynamic and transport properties of reacting pH2-oH2 mixtures are considerably different than those of chemically frozen pH2 at temperatures below 300 R. Calculated H-S data also show that radiation-induced pH2-oH2 equilibration at constant enthalpy produces a temperature drop of at least 28 R, corresponding to an ideal shaft work loss of 15% or more for a turbine operating downstream from the point of conversion. Aside from differences in thermodynamic and transport properties, frozen pH2-oH2 mixtures may differ from pure pH2 on a purely hydrodynamical basis.

  2. Optimization of the thermodynamic properties and phase diagrams of P2O5-containing systems

    NASA Astrophysics Data System (ADS)

    Hudon, Pierre; Jung, In-Ho

    2014-05-01

    P2O5 is an important oxide component in the late stage products of numerous igneous rocks such as granites and pegmatites. Typically, P2O5 combines with CaO and crystallizes in the form of apatite, while in volatile-free conditions, Ca-whitlockite is formed. In spite of their interest, the thermodynamic properties and phase diagrams of P2O5-containg systems are not well known yet. In the case of the pure P2O5 for example, no experimental thermodynamic data are available for the liquid and the O and O' solid phases. As a result, we re-evaluated all the thermodynamic and phase diagram data of the P2O5 unary system [1]. Optimization of the thermodynamic properties and phase diagrams of the binary P2O5 systems was then performed including the Li2O-, Na2O-, MgO-, CaO-, BaO-, MnO-, FeO-, Fe2O3-, ZnO-, Al2O3-, and SiO2-P2O5 [2] systems. All available thermodynamic and phase equilibrium data were simultaneously reproduced in order to obtain a set of model equations for the Gibbs energies of all phases as functions of temperature and composition. In particular, the Gibbs energy of the liquid solution was described using the Modified Quasichemical Model [3-5] implemented in the FactSage software [6]. Thermodynamic modeling of the Li2O-Na2O-K2O-MgO-CaO-FeO-Fe2O3-Al2O3-SiO2 system, which include many granite-forming minerals such as nepheline, leucite, pyroxene, melilite, feldspar and spinel is currently in progress. [1] Jung, I.-H., Hudon, P. (2012) Thermodynamic assessment of P2O5. J. Am. Ceram. Soc., 95 (11), 3665-3672. [2] Rahman, M., Hudon, P. and Jung, I.-H. (2013) A coupled experimental study and thermodynamic modeling of the SiO2-P2O5 system. Metall. Mater. Trans. B, 44 (4), 837-852. [3] Pelton, A.D. and Blander, M. (1984) Computer-assisted analysis of the thermodynamic properties and phase diagrams of slags. Proc. AIME Symp. Metall. Slags Fluxes, TMS-AIME, 281-294. [4] Pelton, A.D. and Blander, M. (1986) Thermodynamic analysis of ordered liquid solutions by a modified

  3. Electronic and thermodynamic properties of α-Pu2O3

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Yang, Yu; Zheng, Fawei; Zhang, Ping

    2014-08-01

    Based on density functional theory+U calculations and the quasi-annealing simulation method, we obtain the ground electronic state for α-Pu2O3 and present its phonon dispersion curves as well as various thermodynamic properties, which have seldom been theoretically studied because of the huge unit cell. We find that the Pu-O chemical bonding is weaker in α-Pu2O3 than in fluorite PuO2, and subsequently a frequency gap appears between oxygen and plutonium vibration density of states. Based on the calculated Helmholtz free energies at different temperatures, we further study the reaction energies for Pu oxidation, PuO2 reduction, and transformation between PuO2 and α-Pu2O3. Our reaction energy results are in agreements with available experiment. And it is revealed that high temperature and insufficient oxygen environment are in favor of the formation of α-Pu2O3.

  4. Critical Evaluations and Thermodynamic Optimizations of the MnO-Mn2O3-SiO2 and FeO-Fe2O3-MnO-Mn2O3-SiO2 Systems

    NASA Astrophysics Data System (ADS)

    Kang, Youn-Bae; Jung, In-Ho

    2017-06-01

    A critical evaluation and thermodynamic modeling for thermodynamic properties of all oxide phases and phase diagrams in the Fe-Mn-Si-O system (MnO-Mn2O3-SiO2 and FeO-Fe2O3-MnO-Mn2O3-SiO2 systems) are presented. Optimized Gibbs energy parameters for the thermodynamic models of the oxide phases were obtained which reproduce all available and reliable experimental data within error limits from 298 K (25°C) to above the liquidus temperatures at all compositions covering from known oxide phases, and oxygen partial pressure from metal saturation to 0.21 bar. The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. Slag (molten oxide) was modeled using the modified quasichemical model in the pair approximation. Olivine (Fe2SiO4-Mn2SiO4) was modeled using two-sublattice model in the framework of the compound energy formalism (CEF), while rhodonite (MnSiO3-FeSiO3) and braunite (Mn7SiO_{12} with excess Mn2O3) were modeled as simple Henrian solutions. It is shown that the already developed models and databases of two spinel phases (cubic- and tetragonal-(Fe, Mn)3O4) using CEF [Kang and Jung, J. Phys. Chem. Solids (2016), vol. 98, pp. 237-246] can successfully be integrated into a larger thermodynamic database to be used in practically important higher order system such as silicate. The database of the model parameters can be used along with a software for Gibbs energy minimization in order to calculate any type of phase diagram section and thermodynamic properties.

  5. The thermodynamic properties of gaseous UO2(OH)2

    NASA Astrophysics Data System (ADS)

    Konings, R. J. M.; Kovács, A.; Beneš, O.

    2017-12-01

    Quantum chemical calculations of the molecular properties of the UO2(OH)2 molecule are presented. From the results the thermodynamic properties of this gaseous species have been calculated, and these have been used to re-evaluate the existing literature study on the volatilization of U3O8 in steam, allowing to derive the enthalpy of formation of the UO2(OH)2 molecule.

  6. Thermodynamic Properties of α-Fe 2O 3 and Fe 3O 4 Nanoparticles

    DOE PAGES

    Spencer, Elinor C.; Ross, Nancy L.; Olsen, Rebecca E.; ...

    2015-04-21

    Here we comprehansively assessed the thermodynamic properties of hydrated α-Fe 2O 3 (hematite) and Fe 3O 4 (magnetite) nanoparticles. In addition to 9 nm Fe 3O 4, three α-e 2O 3nanoparticles samples of different sizes (11, 14, and 25 nm) and bulk α-e 2O 3 have been evaluated by inelastic neutron scattering methods. The contribution of the two-level magnetic spin flip transition to the heat capacity of the α-e 2O 3 particles has been determined. The isochoric heat capacity of the water confined on the surface of these two types of iron oxide particles have been calculated from their INSmore » spectra, and is affected by the chemical composition of the underlying particle. Furthermore, the heat capacity and dynamics of the particle hydration layers appear to be influenced by a complex array of factors including particle size, water coverage, and possibly the magnetic state of the particle itself.« less

  7. Thermodynamic properties of Na2O-SiO2-CaO melts at 1000 to 1100 °C

    NASA Astrophysics Data System (ADS)

    Neudorf, D. A.; Elliott, J. F.

    1980-12-01

    The thermodynamic properties of Na2O-SiO2 and Na2O-SiO2-CaO melts have been measured using the galvanic cellbegin{array}{*{20}c} {O_2 (g), (Na_2 O), Pt} \\ {Na_2 O - WO_3 liq} \\ left| begin{gathered} Na^ + \\ β - alumina \\ right| begin{array}{*{20}c} {Pt,(Na_2 O), O_2 (g)} \\ {Na_2 O - SiO_2 - CaO liq} \\ Activities of Na2O were calculated from the reversible emf of the cell. This is possible because the activity of Na2O in the Na2O-WO3 liquid is known from previous work. Data for the binary Na2O-SiO2 system were obtained between 1000 and 1100 °C and for compositions ranging from 25 wt pct to 40 wt pct Na2O. At 1050 °C, Loga_{Na_2 O} varied from approximately 10.2 at 25 wt pct Na2O to approximately -8.3 at 40 wt pct Na2O, the dependence with respect to composition being nearly linear. The Gibbs-Duhem equation was used to calculate the activities of SiO2(s), and the integral mixing properties, G M, HM, and S M, were derived. At the di-silicate composition, G M = -83 kJ/mol, H M = -41 kJ mol and S M = 33 J/mol K at 1000 °C. (Standard states are pure, liquid Na2O and pure, solid tridymite.) The activity data are interpreted in terms of the polymeric nature of silicate melts. Activities of Na2O in the Na2O-CaO-SiO2 system were measured for the 25, 30 and 35 wt pct Na2O binary compositions with up to 10 wt pct CaO added. The addition of CaO caused an increase in the activity of Na2O at constantN_{Na_2 O} /N_{SiO_2 } . The experimental data agree well with the behavior predicted by Richardson’s ternary mixing model.

  8. Thermodynamic modeling of melts in the system Na 2O-NaAlO 2-SiO 2-F 2O -1

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Baker, Don R.

    2005-12-01

    Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms and thermodynamic description in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids that links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals, fluoride-silicate immiscibility in natural felsic melts, and metallurgical processes. Configurational properties of fluorosilicate melts are described by mixing on three site levels (sublattices): (1) alkali fluoride, polyhedral aluminofluoride and silicofluoride species and nonbridging terminations of the aluminosilicate network, (2) alkali-aluminate and silicate tetrahedra within the network and (3) bridging oxygen, nonbridging oxygen and terminal fluorine atoms on tetrahedral apices of the network. Abundances of individual chemical species are described by a homogeneous equilibrium representing melt depolymerization: F - (free) + O 0 (bridging) = F 0 (terminal) + O - (nonbridging) which corresponds to a replacement of an oxygen bridging two tetrahedra by a pair of terminations, one with F and the other with an O and a charge-balancing Na. In cryolite-bearing systems two additional interaction mechanisms occur: (1) the self-dissociation of octahedral aluminofluoride complexes: [AlF 6] = [AlF 4] + 2 [F], and (2) the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F. Portrayal of these equilibria in ternary Thompson reaction space allows for the decrease in the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the nonideal thermodynamic properties are represented by reaction energies of homogeneous equilibria, thus defining directly individual chemical species concentrations and configurational

  9. Thermodynamic Modeling of the YO(l.5)-ZrO2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan

    2003-01-01

    The YO1.5-ZrO2 system consists of five solid solutions, one liquid solution, and one intermediate compound. A thermodynamic description of this system is developed, which allows calculation of the phase diagram and thermodynamic properties. Two different solution models are used-a neutral species model with YO1.5 and ZrO2 as the components and a charged species model with Y(+3), Zr(+4), O(-2), and vacancies as components. For each model, regular and sub-regular solution parameters are derived fiom selected equilibrium phase and thermodynamic data.

  10. Structural, electronic, elastic and thermodynamic properties of Li2ZrO3: A comprehensive study using DFT formalism

    NASA Astrophysics Data System (ADS)

    Chattaraj, D.

    2017-12-01

    Lithium zirconate is considered to be potential tritium breeder material for fusion reactors. Here I report a comprehensive study on structural, electronic, elastic, and thermodynamic properties of Li2ZrO3 using plane wave based density functional theory. While the electron-ion interaction term has been described by projected-augmented wave method, the exchange-correlation energy was taken care of through generalized gradient approximation scheme. The optimized lattice and internal parameters of Li2ZrO3 unit cell agree well within ±1-2% from the experimental values. From the electronic structure analysis it is seen that the Fermi energy has significant contribution from the 2s, 2p and 4d orbitals of Li, O and Zr atoms, respectively. Elastic property calculation of Li2ZrO3 showed mechanical stability and anisotropy at ambient pressure. The formation energy (ΔfH) of Li2ZrO3 at 0 K, after zero point energy correction, has been estimated to be -1550 kJ/mol. The temperature dependent thermodynamic functions of Li2ZrO3 have also been calculated from the Debye-Grüneisen quasi-harmonic approximation and reported here.

  11. High-temperature mass spectrometric study of the vaporization processes and thermodynamic properties of melts in the PbO-B2O3-SiO2 system.

    PubMed

    Stolyarova, V L; Lopatin, S I; Shilov, A L; Shugurov, S M

    2013-07-15

    The unique properties of the PbO-B2O3-SiO2 system, especially its extensive range of glass-forming compositions, make it valuable for various practical applications. The thermodynamic properties and vaporization of PbO-B2O3-SiO2 melts are not well established so far and the data obtained on these will be useful for optimization of technology and thermodynamic modeling of glasses. High-temperature Knudsen effusion mass spectrometry was used to study vaporization processes and to determine the partial pressures of components of the PbO-B2O3-SiO2 melts. Measurements were performed with a MS-1301 mass spectrometer. Vaporization was carried out using two quartz effusion cells containing the sample under study and pure PbO (reference substance). Ions were produced by electron ionization at an energy of 25 eV. To facilitate interpretation of the mass spectra, the appearance energies of ions were also measured. Pb, PbO and O2 were found to be the main vapor species over the samples studied at 1100 K. The PbO activities as a function of the composition of the system were derived from the measured PbO partial pressures. The B2O3 and SiO2 activities, the Gibbs energy of formation, the excess Gibbs energy of formation and mass losses in the samples studied were calculated. Partial pressures of the vapor species over PbO-B2O3-SiO2 melts were measured at 1100 K in the wide range of compositions using the Knudsen mass spectrometric method. The data enabled the PbO, B2O3, and SiO2 activities in these melts to be derived and provided evidence of their negative deviations from ideal behavior. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2 as substitutes for SF6 to reduce global warming potential

    NASA Astrophysics Data System (ADS)

    Zhong, Linlin; Rong, Mingzhe; Wang, Xiaohua; Wu, Junhui; Han, Guiquan; Han, Guohui; Lu, Yanhui; Yang, Aijun; Wu, Yi

    2017-07-01

    C5F10O has recently been found to be a very promising alternative to SF6. This paper is devoted to the investigation of compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2. Firstly, the partition functions and enthalpies of formation for a few molecules (CxFy and CxFyO) which are likely to exist in the mixtures, are calculated based on the G4(MP2) theory. The isomers of the above molecules are selected according to their Gibbs energy. The compositions of C5F10O-CO2-O2 mixtures are then determined using the minimization of the Gibbs free energy. Next, the thermodynamic properties (mass density, specific enthalpy, and specific heat) are derived from the previously calculated compositions. Lastly, the transport coefficients (electrical conductivity, viscosity, and thermal conductivity) are calculated based on Chapman-Enskog method. It is found that, as an arc quenching gas, C5F10O could not recombine into itself with the temperature decreasing down to room temperature after the arc extinction. Besides, the key species at room temperature are always CF4, CO2, and C4F6 if graphite is not considered. When taken into account, graphite will replace C4F6 as one of the dominate particles. The mixing of CO2 with C5F10O plasma significantly affects the thermodynamic properties (e.g. vanishing and/or shifting of the peaks in specific heat) and transport coefficients (e.g. reducing viscosity and changing the number of peaks in thermal conductivity), while the addition of O2 with C5F10O-CO2 mixtures has no remarkable influence on both thermodynamic and transport properties.

  13. Thermodynamics of Boron Removal from Silicon Using CaO-MgO-Al2O3-SiO2 Slags

    NASA Astrophysics Data System (ADS)

    Jakobsson, Lars Klemet; Tangstad, Merete

    2018-04-01

    Slag refining is one of few metallurgical methods for removal of boron from silicon. It is important to know the thermodynamic properties of boron in slags to understand the refining process. The relation of the distribution coefficient of boron to the activity of silica, partial pressure of oxygen, and capacity of slags for boron oxide was investigated. The link between these parameters explains why the distribution coefficient of boron does not change much with changing slag composition. In addition, the thermodynamic properties of dilute boron oxide in CaO-MgO-Al2O3-SiO2 slags was determined. The ratio of the activity coefficient of boron oxide and silica was found to be the most important parameter for understanding changes in the distribution coefficient of boron for different slags. Finally, the relation between the activity coefficient of boron oxide and slag structure was investigated. It was found that the structure can explain how the distribution coefficient of boron changes depending on slag composition.

  14. Thermodynamic Effects on Phase Stabilities and Structural Properties of TiO2 from the First-principles

    NASA Astrophysics Data System (ADS)

    Aoki, Yuta; Saito, Susumu

    2013-03-01

    Titanium dioxide (TiO2) is one of the most representative photocatalytic materials and much attention is focused on understanding and improvement of its photocatalytic activity. At the same time, TiO2 is known to be a highly polymorphic material and as many as eleven crystal phases have been identified so far. It is expected that TiO2 show various photocatalytic properties depending on crystal phases. However, relative stabilities of these identified phases are still controversial. In order to clarify the thermodynamic phase stabilities of TiO2, we obtain the free energies of its several representative phases, rutile, anatase, brookite, and TiO2-II within the framework of the density-functional theory using the pseudopotential method. We calculate both the static energy and the contribution of phonons to the free energy through the quasiharmonic approximation for each phase. It is found that treatment of semicore electrons in constructing the pseudopotential of the Ti atom significantly affects the relative phase stabilities. From the phase diagram obtained, we find that the anatase phase is the most stable at lower temperature and pressure. We also discuss the thermodynamic effects on structural properties such as thermal expansion. We acknowledge the financial supports from the Global Center-of-Excellence Program by MEXT, Japan through the Nanoscience and Quantum Physics Project of Tokyo Institute of Technology, and the Elements Science and Technology Project by MEXT.

  15. Temperature dependence of strain energy and thermodynamic properties of V2 O5 -based single-walled nanotubes: Zone-folding approach.

    PubMed

    Porsev, Vitaly V; Bandura, Andrei V; Evarestov, Robert A

    2016-06-15

    A zone-folding approach is applied to estimate the thermodynamic properties of V2 O5 -based nanotubes. The results obtained are compared with those from the direct calculations. It is shown that the zone-folding approximation allows an accurate estimation of nanotube thermodynamic properties and gives a gain in computation time compared to their direct calculations. Both approaches show that temperature effects do not change the relative stability of V2 O5 free layers and nanotubes derived from the α- and γ-phase. The internal energy thermal contributions into the strain energy of nanotubes are small and can be ignored. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Ideal gas thermodynamic properties for the phenyl, phenoxy, and o-biphenyl radicals

    NASA Technical Reports Server (NTRS)

    Burcat, A.; Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    Ideal gas thermodynamic properties of the phenyl and o-biphenyl radicals, their deuterated analogs and the phenoxy radical were calculated to 5000 K using estimated vibrational frequencies and structures. The ideal gas thermodynamic properties of benzene, biphenyl, their deuterated analogs and phenyl were also calculated.

  17. First-Principles Study of the Structural, Optical, Dynamical and Thermodynamic Properties of BaZnO2 Under Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Xian; Hu, Cui-E.; Chen, Yang-Mei; Cheng, Yan; Ji, Guang-Fu

    2016-11-01

    The structural, optical, dynamical, and thermodynamic properties of BaZnO2 under pressure are studied based on the density functional theory. The calculated structural parameters are consistent with the available experimental data. In the ground state, the electronic band structure and density of states indicate that BaZnO2 is an insulator with a direct gap of 2.2 eV. The Mulliken charges are also analyzed to characterize the bonding property. After the structural relaxation, the optical properties are studied. It is found that the dielectric function of E Vert x and EVert y are isotropic, whereas the EVert x and EVert z are anisotropic. The effect of pressure on the energy-loss function in the ultraviolet region becomes more obvious as the pressure increases. Furthermore, the dynamical properties under different pressures are investigated using the finite displacement method. We find that the P3121 phase of BaZnO2 is dynamically stable under the pressure ranging from 0 GPa to 30 GPa. The phonon dispersion curves, phonon density of states, vibrational modes and atoms that contribute to these vibrations at {{\\varvec{Γ }}} point under different pressures are also reported in this work. Finally, by employing the quasi-harmonic approximation, the thermodynamic properties such as the temperature dependence of the thermal expansion coefficient, specific heat, entropy and Gibbs free energy under different pressures are investigated. It is found that the influences of the temperature on the heat capacity are much more significant than that of the pressure on it.

  18. Thermodynamic Evaluation and Optimization of the MnO-B2O3 and MnO-B2O3-SiO2 Systems and Its Application to Oxidation of High-Strength Steels Containing Boron

    NASA Astrophysics Data System (ADS)

    Kim, Young-Min; Jung, In-Ho

    2015-06-01

    A complete literature review, critical evaluation, and thermodynamic optimization of phase equilibrium and thermodynamic properties of all available oxide phases in the MnO-B2O3 and MnO-B2O3-SiO2 systems at 1 bar pressure are presented. Due to the lack of the experimental data in these systems, the systematic trend of CaO- and MgO-containing systems were taken into account in the optimization. The molten oxide phase is described by the Modified Quasichemical Model. A set of optimized model parameters of all phases is obtained which reproduces all available and reliable thermodynamic and phase equilibrium data. The unexplored binary and ternary phase diagrams of the MnO-B2O3 and MnO-B2O3-SiO2 systems have been predicted for the first time. The thermodynamic calculations relevant to the oxidation of advanced high-strength steels containing boron were performed to find that B can form liquid B2O3-SiO2-rich phase in the annealing furnace under reducing N2-H2 atmosphere, which can significantly influence the wetting behavior of liquid Zn in Zn galvanizing process.

  19. Calculation of thermodynamic properties and transport coefficients of C5F10O-CO2 thermal plasmas

    NASA Astrophysics Data System (ADS)

    Li, Xingwen; Guo, Xiaoxue; Murphy, Anthony B.; Zhao, Hu; Wu, Jian; Guo, Ze

    2017-10-01

    The thermodynamic properties and transport coefficients of C5F10O-CO2 gas mixtures, which are being considered as substitutes for SF6 in circuit breaker applications, are calculated for the temperature range from 300 K to 30 000 K and the pressure range from 0.05 MPa to 1.6 MPa. Special attention is paid on investigating the evolution of thermophysical properties of C5F10O-CO2 mixtures with different mixing ratios and with different pressures; both the mixing ratio and pressure significantly affect the properties. This is explained mainly in terms of the changes in the temperatures at which the dissociation and ionization reactions take place. Comparisons of different thermophysical properties of C5F10O-CO2 mixtures with those of SF6 are also carried out. It is found that most of the thermophysical properties of the C5F10O-CO2 mixtures, such as thermal conductivity, viscosity, and electrical conductivity, become closer to those of SF6 as the C5F10O concentration increases. The composition and thermophysical properties of pure C5F10O in the temperature range from 300 K to 2000 K based on the decomposition pathway are also given. The calculation results provide a basis for further study of the insulation and arc-quenching capability of C5F10O-CO2 gas mixtures as substitutes for SF6.

  20. Electronic, structural, and thermodynamic properties of mixed actinide dioxides (U, Pu, Am) O2 from hybrid density functional theory

    NASA Astrophysics Data System (ADS)

    Ma, Li; Ray, Asok K.

    2010-03-01

    As a continuation of our studies of pure actinide metals using hybrid density functional theory,footnotetextR. Atta-Fynn and A. K. Ray, Europhysics Letters, 85, 27008-p1- p6 (2009); Chemical Physics Letters, 482, 223-227 (2009). we present here a systematic study of the electronic and geometric structure properties of mixed actinide dioxides, U0.5Pu0.5O2, U0.5Am0.5O2, Pu0.5Am0.5 O2 and U0.8Pu0.2O2. The fraction of exact Hartree-Fock exchange used was 40%. To investigate the effect of spin-orbit coupling on the ground state electronic and geometric structure properties, computations have been carried out at two theoretical levels, one at the scalar-relativistic level with no spin-orbit coupling and one at the fully relativistic level with spin-orbit coupling. Thermodynamic properties have been calculated by a coupling of first-principles calculation and lattice dynamics.

  1. Role of basicity and tetrahedral speciation in controlling the thermodynamic properties of silicate liquids, part 1: the system CaO-MgO-Al 2O 3-SiO 2

    NASA Astrophysics Data System (ADS)

    Beckett, John R.

    2002-01-01

    Activity coefficients of oxide components in the system CaO-MgO-Al2O3-SiO2 (CMAS) were calculated with the model of Berman (Berman R. G., ;A thermodynamic model for multicomponent melts with application to the system CaO-MgO-Al2O3-SiO2,; Ph.D. dissertation, University of British Columbia, 1983) and used to explore large-scale relationships among these variables and between them and the liquid composition. On the basis of Berman's model, the natural logarithm of the activity coefficient of MgO, ln(γMgOLiq), and ln(γMgOLiq/γSiO2Liq) are nearly linear functions of ln(γCaOLiq). All three of these variables are simple functions of the optical basicity Λ with which they display minima near Λ ∼ 0.54 that are generated by liquids with low ratios of nonbridging to tetrahedral oxygens (NBO/T) (<0.3) and a mole fraction ratio, XSiO2Liq/XAl2O3Liq, in the range 4 to 20. Variations in ln(γCaOLiq) at constant Λ near the minimum are due mostly to liquids with (XCaOLiq + XMgOLiq)/XAl2O3Liq < 1. The correlations with optical basicity imply that the electron donor power is an important factor in determining the thermodynamic properties of aluminosilicate liquids. For a constant NBO/T, ln(γCaOLiq/γAl2O3Liq) and ln(γMgOLiqγAl2O3Liq) form curves in terms of XSiO2Liq/XAl2O3Liq. The same liquids that generate minima in the Λ plots are also associated with minima in ln(γCaOLiqγAl2O3Liq) and ln(γMgOLiqγAl2O3Liq) as a function of XSiO2Liq/XAl2O3Liq. In addition, there are maxima or sharp changes in slope for NBO/T > 0.3, which occur for XSiO2Liq/XAl2O3Liq ranging from ∼0 to ∼6 and increase with increasing NBO/T. The systematic variations in activity coefficients as a function of composition and optical basicity reflect underlying shifts in speciation as the composition of the liquid is changed. On the basis of correlations among the activity coefficients, it is likely that the use of CaO, an exchange component such as SiMg-1 and two of MgO, CaAl2O4, or MgAl2O4 would

  2. Comparing the Thermodynamic Behaviour of Al(1)+ZrO2(s) to Al(1)+Al2O3(s)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2004-01-01

    In an effort to better determine the thermodynamic properties of Al(g) and Al2O(g). the vapor in equilibrium with Al(l)+ZrO2(s) was compared to the vapor in equilibrium with Al(l)+Al2O3(s) over temperature range 1197-to-1509K. The comparison was made directly by Knudsen effusion-cell mass spectrometry with an instrument configured for a multiple effusion-cell vapor source (multi-cell KEMS). Second law enthalpies of vaporization of Al(g) and Al2O(g) together with activity measurements show that Al(l)+ZrO2(s) is thermodynamically equivalent to Al(l)+Al2O3(s), indicating Al(l) remained pure and Al2O3(s) was present in the ZrO2-cell. Subsequent observation of the Al(l)/ZrO2 and vapor/ZrO2 interfaces revealed a thin Al2O3-layer had formed, separating the ZrO2-cell from Al(l) and Al(g)+Al2O(g), effectively transforming it into an Al2O3 effusion-cell. This behavior agrees with recent observations made for Beta-NiAl(Pt) alloys measured in ZrO2 effusion-cell.

  3. Thermodynamic, electronic, and magnetic properties of intrinsic vacancy defects in antiperovskite Ca3SnO

    NASA Astrophysics Data System (ADS)

    Batool, Javaria; Alay-e-Abbas, Syed Muhammad; Amin, Nasir

    2018-04-01

    The density functional theory based total energy calculations are performed to examine the effect of charge neutral and fully charged intrinsic vacancy defects on the thermodynamic, electronic, and magnetic properties of Ca3SnO antiperovskite. The chemical stability of Ca3SnO is evaluated with respect to binary compounds CaO, CaSn, and Ca2Sn, and the limits of atomic chemical potentials of Ca, Sn, and O atoms for stable synthesis of Ca3SnO are determined within the generalized gradient approximation parametrization scheme. The electronic properties of the pristine and the non-stoichiometric forms of this compound have been explored and the influence of isolated intrinsic vacancy defects (Ca, Sn, and O) on the structural, bonding, and electronic properties of non-stoichiometric Ca3SnO are analyzed. We also predict the possibility of achieving stable ferromagnetism in non-stoichiometric Ca3SnO by means of charge neutral tin vacancies. From the calculated total energies and the valid ranges of atomic chemical potentials, the formation energetics of intrinsic vacancy defects in Ca3SnO are evaluated for various growth conditions. Our results indicate that the fully charged calcium vacancies are thermodynamically stable under the permissible Sn-rich condition of stable synthesis of Ca3SnO, while tin and oxygen vacancies are found to be stable under the extreme Ca-rich condition.

  4. Electronic structure, mechanical and thermodynamic properties of BaPaO3 under pressure.

    PubMed

    Khandy, Shakeel Ahmad; Islam, Ishtihadah; Gupta, Dinesh C; Laref, Amel

    2018-05-07

    Density functional theory (DFT)-based investigations have been put forward on the elastic, mechanical, and thermo-dynamical properties of BaPaO 3 . The pressure dependence of electronic band structure and other physical properties has been carefully analyzed. The increase in Bulk modulus and decrease in lattice constant is seen on going from 0 to 30 GPa. The predicted lattice constants describe this material as anisotropic and ductile in nature at ambient conditions. Post-DFT calculations using quasi-harmonic Debye model are employed to envisage the pressure-dependent thermodynamic properties like Debye temperature, specific heat capacity, Grüneisen parameter, thermal expansion, etc. Also, the computed Debye temperature and melting temperature of BaPaO 3 at 0 K are 523 K and 1764.75 K, respectively.

  5. Vapor pressures, thermodynamic stability, and fluorescence properties of three 2,6-alkyl naphthalenes.

    PubMed

    Santos, Ana Filipa L O M; Oliveira, Juliana A S A; Ribeiro da Silva, Maria D M C; Monte, Manuel J S

    2016-03-01

    This work reports the experimental determination of relevant thermodynamic properties and the characterization of luminescence properties of the following polycyclic aromatic hydrocarbons (PAHs): 2,6-diethylnaphthalene, 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene. The standard (p(o) = 0.1 MPa) molar enthalpies of combustion, ΔcHm(o), of the three compounds were determined using static bomb combustion calorimetry. The vapor pressures of the crystalline phase of 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene were measured at different temperatures using the Knudsen effusion method and the vapor pressures of both liquid and crystalline phases of 2,6-diethylnaphthalene were measured by means of a static method. The temperatures and the molar enthalpies of fusion of the three compounds were determined using differential scanning calorimetry. The gas-phase molar heat capacities and absolute entropies of the three 2,6-dialkylnaphthalenes studied were determined computationally. The thermodynamic stability of the compounds in both the crystalline and gaseous phases was evaluated by the determination of the Gibbs energies of formation and compared with the ones reported in the literature for 2,6-dimethylnaphthalene. From fluorescence spectroscopy measurements, the optical properties of the compounds studied and of naphthalene were evaluated in solution and in the solid state. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Oxygen potentials and phase equilibria in the system Ca–Co–O and thermodynamic properties of Ca{sub 3}Co{sub 2}O{sub 6} and Ca{sub 3}Co{sub 4}O{sub 9.163}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, K.T., E-mail: katob@materials.iisc.ernet.in; Gupta, Preeti

    2015-01-15

    Oxygen potentials established by the equilibrium between three condensed phases, CaO{sub ss}+CoO{sub ss}+Ca{sub 3}Co{sub 2}O{sub 6} and CoO{sub ss}+Ca{sub 3}Co{sub 2}O{sub 6}+Ca{sub 3}Co{sub 3.93+α}O{sub 9.36−δ}, are measured as a function of temperature using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen as the reference electrode. Cation non-stoichiometry and oxygen non-stoichiometry in Ca{sub 3}Co{sub 3.93+α}O{sub 9.36−δ} are determined using different techniques under defined conditions. Decomposition temperatures and thermodynamic properties of Ca{sub 3}Co{sub 2}O{sub 6} and Ca{sub 3}Co{sub 4}O{sub 9.163} are calculated from the results. The standard entropy and enthalpy of formation of Ca{sub 3}Co{sub 2}O{sub 6} atmore » 298.15 K are evaluated. Using thermodynamic data from this study and auxiliary information from the literature, phase diagram for the ternary system Ca–Co–O is computed. Isothermal sections at representative temperatures are displayed to demonstrate the evolution of phase relations with temperature. - Graphical abstract: Isothermal section of the phase diagram of the system Ca–Co–O at 1250 K. - Highlights: • Improved definition of cation and oxygen nonstoichiometry of Ca{sub 3}Co{sub 3.93+α}O{sub 9.36−δ}. • Measurement of Δμ{sub O{sub 2}} associated with two 3-phase fields as a function of temperature. • Use of solid-state electrochemical cells for accurate measurement of Δμ{sub O{sub 2}}. • Decomposition temperatures and thermodynamic properties for ternary oxides. • Characterization of ternary phase diagram of the system Ca–Co–O.« less

  7. First-principles calculations of dynamical and thermodynamic properties of cuprite doped with silver (Cu2(1‑x)Ag2xO)

    NASA Astrophysics Data System (ADS)

    Musari, A. A.; Joubert, D. P.; Adebayo, G. A.

    2018-04-01

    Cuprite (Cu2O) is a solid mineral and a compound whose simplicity of preparation, non toxic nature, low band gap and its abundance has made it a prospective candidate for the realisation of low cost photovoltaic applications. The present work successfully dopes Cuprite with Ag ({{{Cu}}}2(1-{{x})}{{{Ag}}}2{{x}}{{O}}) at different concentrations x = 0, 0.25, 0.5, 0.75 and 1, their first-principle calculations of their electronic, dynamical and thermodynamic properties have been investigated extensively within the generalised gradient approximation. Direct band gap energies at {{Γ }} are predicted for all the studied systems. A small bowing parameter for lattice constants ba and bulk modulus bB of 0.4245 \\mathring{{A}} and 0.8747 GPa were obtained when compared to Vegard’s law. The results of phonon dispersion when x = 0 and 1 indicate stability, these agree with available theoretical and experimental results while negative frequencies observed along the Brillouin zone for the doped systems when x = 0.25, 0.5 and 0.75 imply that they are dynamically unstable. The thermodynamic properties between 0 to 800 K were determined using the calculated phonon density of states within the harmonic approximation and the values of the specific heat capacity at constant volume at ambient temperature and the temperature at which lattice vibrations and thermal motion of electrons contribute to the constant volume specific heat capacity are presented for all the systems.

  8. Thermodynamic Properties of CO{sub 2} Capture Reaction by Solid Sorbents: Theoretical Predictions and Experimental Validations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua; Luebke, David; Pennline, Henry

    2012-01-01

    It is generally accepted that current technologies for capturing CO{sub 2} are still too energy intensive. Hence, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculatedmore » thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. These CO{sub 2} sorbent candidates were further considered for experimental validations. In this presentation, we first introduce our screening methodology with validating by solid dataset of alkali and alkaline metal oxides, hydroxides and bicarbonates which thermodynamic properties are available. Then, by studying a series of lithium silicates, we found that by increasing the Li{sub 2}O/SiO{sub 2} ratio in the lithium silicates their corresponding turnover temperatures for CO{sub 2} capture reactions can be increased. Compared to anhydrous K{sub 2}CO{sub 3}, the dehydrated K{sub 2}CO{sub 3}1.5H{sub 2}O can only be applied for post-combustion CO{sub 2} capture technology at temperatures lower than its phase

  9. The Effect of Microstructure on Mechanical Properties of Directionally Solidified Al2O3/ZrO2(Y2O3) Eutectic

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Farmer, Serene C.

    1999-01-01

    The eutectic architecture of a continuous reinforcing phase within a higher volume fraction phase or matrix can be described as a naturally occurring in-situ composite. Here we report the results of experiments aimed at identifying the sources of high temperature creep resistance and high levels of strength in a two phase Al2O3/ZrO2(Y2O3) system. The mechanical properties of two phase Al2O3/ZrO2(Y2O3) eutectic are superior to those of either constituent alone due to strong constraining effects provided by the coherent interfaces and microstructure. The AlO3/ZrO2(Y2O3) eutectic maintains a low energy interface resulting from directional solidification and can produce strong and stable reinforcing phase/matrix bonding. The phases comprising a eutectic are thermodynamically compatible at higher homologous temperatures than man-made composites and as such offer the potential for superior high temperature properties.

  10. Melting and thermodynamic properties of pyrope (Mg3Al2Si3O12)

    USGS Publications Warehouse

    Tequi, C.; Robie, R.A.; Hemingway, B.S.; Neuville, D.R.; Richet, P.

    1991-01-01

    The heat capacity of Mg3Al2Si3O12 glass has been measured from 10 to 1000 K by adiabatic and differential scanning calorimetry. The heat capacity of crystalline pyrope has been determined from drop-calorimetry measurements between 820 and 1300 K. From these and previously published results a consistent set of thermodynamic data is presented for pyrope and Mg3Al2Si3O12 glass and liquid for the interval 0-2000 K. The enthalpy of fusion at 1570 ?? 30 K, the metastable congruent 1-bar melting point, is 241 ?? 12 kJ/mol. ?? 1991.

  11. Influence of particle size and water coverage on the thermodynamic properties of water confined on the surface of SnO2 cassiterite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Elinor; Ross, Dr. Nancy; Parker, Stewart F.

    2011-01-01

    Inelastic neutron scattering (INS) data for SnO2 nanoparticles of three different sizes and varying hydration levels are presented. Data were recorded on five nanoparticle samples that had the following compositions: 2 nm SnO2*0.82H2O, 6 nm SnO2*0.055H2O, 6 nm SnO2*0.095H2O, 20 nm SnO2*0.072H2O, and 20 nm SnO2*0.092H2O. The isochoric heat capacity and vibrational entropy values at 298 K for the water confined on the surface of these nanoparticles were calculated from the vibrational density of states that were extracted from the INS data. This study has shown that the hydration level of the SnO2 nanoparticles influences the thermodynamic properties of themore » water layers and, most importantly, that there appears to be a critical size limit for SnO2 between 2 and 6 nm below which the particle size also affects these properties and above which it does not. These results have been compared with those for isostructural rutile-TiO2 nanoparticles [TiO2*0.22H2O and TiO2*0.37H2O], which indicated that water on the surface of TiO2 nanoparticles is more tightly bound and experiences a greater degree of restricted motion with respect to water on the surface of SnO2 nanoparticles. This is believed to be a consequence of the difference in chemical composition, and hence surface properties, of these metal oxide nanoparticles.« less

  12. Bulk properties and near-critical behaviour of SiO2 fluid

    NASA Astrophysics Data System (ADS)

    Green, Eleanor C. R.; Artacho, Emilio; Connolly, James A. D.

    2018-06-01

    Rocky planets and satellites form through impact and accretion processes that often involve silicate fluids at extreme temperatures. First-principles molecular dynamics (FPMD) simulations have been used to investigate the bulk thermodynamic properties of SiO2 fluid at high temperatures (4000-6000 K) and low densities (500-2240 kg m-3), conditions which are relevant to protoplanetary disc condensation. Liquid SiO2 is highly networked at the upper end of this density range, but depolymerises with increasing temperature and volume, in a process characterised by the formation of oxygen-oxygen (Odbnd O) pairs. The onset of vaporisation is closely associated with the depolymerisation process, and is likely to be non-stoichiometric at high temperature, initiated via the exsolution of O2 molecules to leave a Si-enriched fluid. By 6000 K the simulated fluid is supercritical. A large anomaly in the constant-volume heat capacity occurs near the critical temperature. We present tabulated thermodynamic properties for silica fluid that reconcile observations from FPMD simulations with current knowledge of the SiO2 melting curve and experimental Hugoniot curves.

  13. First-principles study of the elastic and thermodynamic properties of CaSiO(3) perovskite.

    PubMed

    Liu, Z J; Sun, X W; Chen, Q F; Cai, L C; Wu, H Y; Ge, S H

    2007-06-20

    The thermodynamic and elastic properties of CaSiO(3) perovskite are investigated at high pressures and temperatures using the plane wave pseudopotential method within the local density approximation. The athermal elastic moduli of CaSiO(3) perovskite are calculated as a function of pressure up to 200 GPa. The calculated results are in excellent agreement with available experimental data at high pressure, and compare favourably with other pseudopotential predictions over the pressure regime studied. It is also found that the elastic anisotropy drops rapidly with the increase of pressure initially, and then decreases more slowly at higher pressures. The thermodynamic properties of CaSiO(3) perovskite are predicted using the quasi-harmonic Debye model for the first time; the heat capacity and the thermal expansion coefficient agree with the observed values at ambient conditions and the other calculations at high pressures and temperatures.

  14. Thermodynamic calculations in the system CH4-H2O and methane hydrate phase equilibria

    USGS Publications Warehouse

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2006-01-01

    Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H 2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within ??2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol-1 K-1 for 1/n CH4??H 2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled. ?? 2006 American Chemical Society.

  15. Phase equilibria investigations and thermodynamic modeling of the system Bi2O3-Al2O3

    NASA Astrophysics Data System (ADS)

    Oudich, F.; David, N.; Mathieu, S.; Vilasi, M.

    2015-02-01

    The system Bi2O3-Al2O3 has been experimentally investigated above 600 °C by DTA, XRD and EPMA under air and low oxygen pressure. Only two compounds were found to exist in equilibrium, which are Bi2Al4O9(1Bi2O3:2Al2O3) and Bi25AlO39(25:1). The latter exhibits a sillenite structure and does not contain pentavalent bismuth. A peritectoid decomposition of (25:1) and a peritectic melting of (1:2) occur at 775 °C and 1075 °C respectively, while an eutectic transformation was observed at 815 °C for 97 mol% Bi2O3. On the basis of the results obtained within the present work as well as experimental data provided from literature, a thermodynamic modeling where the liquid phase is described by the two-sublattice ionic liquid model was performed according to the Calphad approach. The resulting thermodynamic optimization yielded good agreement with experimental results in the investigated region.

  16. Experimental and thermodynamic study of heterogeneous and homogeneous equilibria in the system NaAlSiO4-SiO2

    NASA Astrophysics Data System (ADS)

    Waterwiese, Tanja; Chatterjee, Niranjan D.; Dierdorf, Ivana; Göttlicher, Jörg; Kroll, Herbert

    1995-08-01

    Internally consistent thermodynamic datasets available at present call for a further improvement of the data for nepheline (Holland and Powell 1988; Berman 1991). Because nepheline is a common rock-forming mineral, an attempt has been made to improve on the present state of knowledge of its thermodynamic properties. To achieve that goal, two heterogeneous reactions involving nepheline, albite, jadeite and a-quartz in the system NaAlSiO4-SiO2 have been reversed by long duration runs in the range 460 ≤ T(°C) ≤ 960 and 10 ≤ P(kbar) ≤ 22. Given sufficiently long run times, the albite run products approach internal equilibrium with respect to their Al,Si order-disorder states. Using appropriate thermochemical, thermophysical, and volumetric data, Landau expansion for albite, and the relevant reaction reversals, a refined thermodynamic dataset (ΔfH{i/0} and S{i/0}) has been derived for nepheline, jadeite, a-quartz, albite, and monalbite. Our refined data agree very well with their calorimetric counterparts, but have smaller uncertainties. The refined dataset for ΔfH{i/0} and S{i/0}, including their uncertainties and correlation, help generate the NaAlSiO4-SiO2 phase diagram including 2a confidence interval for each P-T curve (Fig. 5).

  17. Temperature and pressure dependent thermodynamic behavior of 2H-CuInO2

    NASA Astrophysics Data System (ADS)

    Bhamu, K. C.

    2018-05-01

    Density functional theory and quasi-harmonic Debye model has been used to study the thermodynamic properties of 2H-CuInO2. At the optimized structural parameters, pressure (0 to 80 GPa) dependent variation in the various thermodynamic properties, i.e. unit cell volume (V), bulk modulus (B), specific heat (Cv), Debye temperature (θD), Grüneisen parameter (γ) and thermal expansion coefficient (α) are calculated for various temperature values. The results predict that the pressure has significant effect on unit cell volume and bulk modulus while the temperature shows negligible effect on both parameters. With increasing temperature thermal expansion coefficient increase while with increasing pressure it decreases. The specific heat remains close to zero for ambient pressure and temperature values and it increases with increasing temperature. It is observed that the pressure has high impact on Debye temperature and Grüneisen parameter instead of temperature. Debye temperature and Grüneisen parameter both remains almost constant for the temperature range (0-300K) while Grüneisen parameter decrease with increasing pressure at constant temperature and Debye temperature increases rapidly with increasing pressure. An increase in Debye temperature with respect to pressure shows that the thermal vibration frequency changes rapidly.

  18. Investigation of oxygen self-diffusion in PuO 2 by combining molecular dynamics with thermodynamic calculations

    DOE PAGES

    Saltas, V.; Chroneos, A.; Cooper, Michael William D.; ...

    2016-01-01

    In the present work, the defect properties of oxygen self-diffusion in PuO 2 are investigated over a wide temperature (300–1900 K) and pressure (0–10 GPa) range, by combining molecular dynamics simulations and thermodynamic calculations. Based on the well-established cBΩ thermodynamic model which connects the activation Gibbs free energy of diffusion with the bulk elastic and expansion properties, various point defect parameters such as activation enthalpy, activation entropy, and activation volume were calculated as a function of T and P. Molecular dynamics calculations provided the necessary bulk properties for the proper implementation of the thermodynamic model, in the lack of anymore » relevant experimental data. The estimated compressibility and the thermal expansion coefficient of activation volume are found to be more than one order of magnitude greater than the corresponding values of the bulk plutonia. As a result, the diffusion mechanism is discussed in the context of the temperature and pressure dependence of the activation volume.« less

  19. Thermodynamic and kinetic analyses of the CO2 chemisorption mechanism on Na2TiO3: Experimental and theoretical evidences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua

    2014-01-01

    ABSTRACT: Sodium metatitanate (Na2TiO3) was successfully synthesized via a solid-state reaction. The Na2TiO3 structure and microstructure were characterized using X-ray diffraction, scanning and transmission electron microscopy, and N2 adsorption. Then, the CO2 chemisorption mechanism on Na2TiO3 was systematically analyzed to determine the influence of temperature. The CO2 chemisorption capacity of Na2TiO3 was evaluated both dynamically and isothermally, and the products were reanalyzed to elucidate the Na2TiO3-CO2 reaction mechanism. Different chemical species (Na2CO3, Na2O, and Na4Ti5O12 or Na16Ti10O28) were identified during the CO2 capture process in Na2TiO3. In addition, some CO2 chemisorption kinetic parameters were determined. The ΔH‡ was found tomore » be 140.9 kJ/mol, to the Na2TiO3-CO2 system, between 600 and 780 °C. Results evidenced that CO2 chemisorption on Na2TiO3 highly depends on the reaction temperature. Furthermore, the experiments were theoretically supported by different thermodynamic calculations. The calculated thermodynamic properties of CO2 capture reactions by (Na2TiO3, Na4Ti5O12, and Na16Ti10O28) sodium titanates were fully investigated.« less

  20. An internally consistent set of thermodynamic data for twentyone CaO-Al2O3-SiO2- H2O phases by linear parametric programming

    NASA Astrophysics Data System (ADS)

    Halbach, Heiner; Chatterjee, Niranjan D.

    1984-11-01

    The technique of linear parametric programming has been applied to derive sets of internally consistent thermodynamic data for 21 condensed phases of the quaternary system CaO-Al2O3-SiO2-H2O (CASH) (Table 4). This was achieved by simultaneously processing: a) calorimetric data for 16 of these phases (Table 1), and b) experimental phase equilibria reversal brackets for 27 reactions (Table 3) involving these phases. Calculation of equilibrium P-T curves of several arbitrarily picked reactions employing the preferred set of internally consistent thermodynamic data from Table 4 shows that the input brackets are invariably satisfied by the calculations (Fig. 2a). By contrast, the same equilibria calculated on the basis of a set of thermodynamic data derived by applying statistical methods to a large body of comparable input data (Haas et al. 1981; Hemingway et al. 1982) do not necessarily agree with the experimental reversal brackets. Prediction of some experimentally investigated phase relations not included into the linear programming input database also appears to be remarkably successful. Indications are, therefore, that the thermodynamic data listed in Table 4 may be used with confidence to predict geologic phase relations in the CASH system with considerable accuracy. For such calculated phase diagrams and their petrological implications, the reader's attention is drawn to the paper by Chatterjee et al. (1984).

  1. First-principles calculations of the structural, elastic and thermodynamic properties of mackinawite (FeS) and pyrite (FeS2)

    NASA Astrophysics Data System (ADS)

    Wen, Xiangli; Liang, Yuxuan; Bai, Pengpeng; Luo, Bingwei; Fang, Teng; Yue, Luo; An, Teng; Song, Weiyu; Zheng, Shuqi

    2017-11-01

    The thermodynamic properties of Fe-S compounds with different crystal structure are very different. In this study, the structural, elastic and thermodynamic properties of mackinawite (FeS) and pyrite (FeS2) were investigated by first-principles calculations. Examination of the electronic density of states shows that mackinawite (FeS) is metallic and that pyrite (FeS2) is a semiconductor with a band gap of Eg = 1.02 eV. Using the stress-strain method, the elastic properties including the bulk modulus and shear modulus were derived from the elastic Cij data. Density functional perturbation theory (DFPT) calculations within the quasi-harmonic approximation (QHA) were used to calculate the thermodynamic properties, and the two Fe-S compounds are found to be dynamically stable. The isothermal bulk modulus, thermal expansion coefficient, heat capacities, Gibbs free energy and entropy of the Fe-S compounds are obtained by first-principles phonon calculations. Furthermore, the temperature of the mackinawite (FeS) ⟶ pyrite (FeS2) phase transition at 0 GPa was predicted. Based on the calculation results, the model for prediction of Fe-S compounds in the Fe-H2S-H2O system was improved.

  2. Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5

    USGS Publications Warehouse

    Majzlan, J.; Navrotsky, A.; McCleskey, R. Blaine; Alpers, Charles N.

    2006-01-01

    Enthalpies of formation of ferricopiapite [nominally Fe4.67(SO4)6(OH)2 (H2O)20]. coquimbite [Fe2(SO4)3(H2O)9], rhomboclase [(H3O)Fe(SO4)2 (H2O)3], and Fe2(SO4)3(H2O)5 were measured by acid (5 N HCl) solution calorimetry. The samples were characterized by wet chemical analyses and synchrotron powder X-ray diffraction (XRD). The refinement of XRD patterns gave lattice parameters, atomic positions, thermal factors, and occupancies of the sites. The calculated formulae differ slightly from the nominal compositions: Fe4.78(SO4)6 (OH)2.34(H2O)20.71 (ferricopiapite), (Fe1.47Al0.53)(SO4)3 (H2O)9.65 (coquimbite), (H3O)1.34Fe(SO4)2.17 (H2O)3.06 (rhomboclase), and Fe2(SO4)3 (H2O)5.03. All thermodynamic data are given per mole of these formulae. The measured standard enthalpies (in kJ/mol) of formation from the elements (crystalline Fe, Al, S, and ideal gases O2 and H2) at T = 298.15 K are -4115.8??4.1 [Fe2(SO4)3 (H2O)5.03], -12045.1??9.2 (ferricopiapite), -5738.4??3.3 (coquimbite), and -3201.1??2.6 (rhomboclase). Standard entropy (S??) was estimated as a sum of entropies of oxide, hydroxide, and sulfate components. The estimated S?? (in J/mol.K) values for the iron sulfates are 488.2 [Fe2(SO4)3 (H2O)5.03], 1449.2 (ferricopiapite), 638.3 (coquimbite), and 380.1 (rhomboclase). The calculated Gibbs free energies of formation (in kJ/mol) are -3499.7??4.2 [Fe2(SO4)3 (H2O)5.03], -10089.8??9.3 (ferricopiapite), -4845.6??3.3 (coquimbite), and -2688.0??2.7 (rhomboclase). These results combined with other available thermodynamic data allow construction of mineral stability diagrams in the FeIII2(SO4)3-FeII SO4-H2O system. One such diagram is provided, indicating that the order of stability of ferric sulfate minerals with decreasing pH in the range of 1.5 to -0.5 is: hydronium jarosite, ferricopiapite, and rhomboclase. ?? 2006 E. Schweizerbart'sche Verlagsbuchhandlung.

  3. First principles and Debye model study of the thermodynamic, electronic and optical properties of MgO under high-temperature and pressure

    NASA Astrophysics Data System (ADS)

    Miao, Yurun; Li, Huayang; Wang, Hongjuan; He, Kaihua; Wang, Qingbo

    2018-02-01

    First principles and quasi-harmonic Debye model have been used to study the thermodynamic properties, enthalpies, electronic and optical properties of MgO up to the core-mantle boundary (CMB) condition (137 GPa and 3700 K). Thermodynamic properties calculation includes thermal expansion coefficient and capacity, which have been studied up to the CMB pressure (137 GPa) and temperature (3700 K) by the Debye model with generalized gradient approximation (GGA) and local-density approximation (LDA). First principles with hybrid functional method (PBE0) has been used to calculate the electronic and optical properties under pressure up to 137 GPa and 0 K. Our results show the Debye model with LDA and first principles with PBE0 can provide accurate thermodynamic properties, enthalpies, electronic and optical properties. Calculated enthalpies show that MgO keep NaCl (B1) structure up to 137 GPa. And MgO is a direct bandgap insulator with a 7.23 eV calculated bandgap. The bandgap increased with increasing pressure, which will induce a blue shift of optical properties. We also calculated the density of states (DOS) and discussed the relation between DOS and band, optical properties. Equations were used to fit the relations between pressure and bandgaps, absorption coefficient (α(ω)) of MgO. The equations can be used to evaluate pressure after careful calibration. Our calculations can not only be used to identify some geological processes, but also offer a reference to the applications of MgO in the future.

  4. Lithiation Thermodynamics and Kinetics of the TiO 2 (B) Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Xiao; Liu, Zheng; Fischer, Michael G.

    TiO2 (B) has attracted a lot of attention in recent years because it exhibits the largest capacity among all studied titania polymorphs with high rate performance for Li intercalation achieved when this material is nanostructured. However, due to the complex nature of its lithiation mechanism and practical challenges in probing Li local environments in nanostructured materials, a definitive understanding of the lithiation thermodynamics has yet to be established. A comprehensive mechanistic investigation of the TiO2 (B) nanoparticles is therefore presented using a combination of in situ / operando X-ray pair distribution function (PDF) and electrochemical techniques. The discharge begins withmore » surface reactions involving surface hydroxyl groups. Such reactions contribute to the capacity loss and take place in parallel with Li insertion into the near-surface region of the nanoparticles. The Li bulk insertion starts with a single-phase reaction into the A2 site, a position adjacent to the b channel. A change of the Li diffusion pathway from that along this open channel to that along the c-direction is likely to occur at the composition of Li0.25TiO2 until Li0.5TiO2 is attained, leading to a two-step A2-site incorporation with one step kinetically distinct from the other. Subsequent Li insertion involves C’ site, a position situated inside the channel, and follows a rapid two-phase reaction to form Li0.75TiO2. Due to the high diffusion barrier associated with the further lithiation, Li insertion into the A1 site, another position adjacent to the channel neighboring the A2 sites, is kinetically restricted. It can be promoted by either nanostructuring or raising the operating temperature, the latter however triggering concurrent electrolyte decomposition giving rise to additional capacity loss. This study not only provides compelling experimental evidence for the unresolved reaction thermodynamics of nanoparticulate TiO2 (B), but also serves as a strong

  5. Structural, vibrational and thermodynamic properties of Mg2SiO4 and MgSiO3 minerals from first-principles simulations

    NASA Astrophysics Data System (ADS)

    Hernández, E. R.; Brodholt, J.; Alfè, D.

    2015-03-01

    In this paper we report a computational study of the structural and vibrational properties of the Mg-end members forsterite, wadsleyite and ringwoodite of Mg2SiO4 , and akimotoite, majorite and the perovskite phase of MgSiO3 . Our calculations have been carried out in the framework of Density Functional Theory (DFT) using a plane wave basis set and the Projector-augmented Wave (PAW) method to account for the core electrons. All structures have been fully relaxed at a series of volumes corresponding to the pressure range relevant to the transition zone in the Earth's mantle, and at each volume the phonon frequencies have been obtained and classified. Using the quasi-harmonic approximation, we have estimated a series of thermodynamic properties for each structure, including the Gibbs free energy, from which we have computed approximate phase diagrams for Mg2SiO4 and MgSiO3 . In spite of our reliance on the quasi-harmonic approximation, which is expected to break down at high temperatures, our calculated phase diagrams qualitatively reproduce the main features expected from diagrams fitted to experimental data. For example, from the computed phase diagram for Mg2SiO4 we obtain a post-spinel boundary at P = 22.1 GPa at T = 1873 K, with a slope of -3.4 MPa/K.This supports experimental results suggesting a relatively large slope rather than those favouring a much flatter one. It also suggests that vertical deflections of the 660 km discontinuity due to thermal signatures from plumes and slabs should be similar to those at the 410 km, and that a deflection of 35 km as seen in recent seismic studies could be caused by a thermal anomaly as small as 330 K. We also identify the triple point between the ringwoodite, ilmenite (plus periclase) and perovskite (plus periclase) phases to be at P = 22.9 GPa and T = 1565 K. Our results clearly illustrate the stringent requirements made on theoretical models in order to extract predictions compatible with the available experimental

  6. Magnetic, thermodynamic and optical properties of Sb-substituted Ba2PrBiO6 double perovskite oxides

    NASA Astrophysics Data System (ADS)

    Onodera, K.; Kogawa, T.; Matsukawa, M.; Taniguchi, H.; Nishidate, K.; Matsushita, A.; Shimoda, M.

    2018-03-01

    We demonstrated crystal structures, magnetic, thermodynamic and optical properties of the B-site substituted perovskite oxides Ba2Pr(Bi1 ‑ x,Sbx ) O6 (x=0, 0.1 and 0.2). Polycrystalline samples of Sb-substituted Ba2PrBiO6 were prepared with the conventional solid-state reaction technique. The X-ray diffraction data revealed that the polycrystalline samples are an almost single phase with a monoclinic structure (C2 /m). Substitution of smaller Sb ion at Bi site causes a monotonic decrease in both the lattice parameters and volume. Magnetization measurements at high temperatures above 200 K show that the effective magnetic moment is estimated to be around 3.15 µB , which is close to that for Pr3+ion. The X-ray photoemission spectroscopy analysis revealed that a prominent peak of Pr3+ is dominant with a smaller shoulder structure of Pr4+. A Schottky-like anomaly observed in the low-temperature specific heat measurement is explained by low-lying splitting of Pr ions under the crystal field effect. Optical spectra were measured using a diffuse-reflectance method. The band gaps were estimated from the optical data to be 0.977 eV and 1.073 eV, at x = 0 and 0.2, respectively. The effect of band gap opening due to Sb substitution is examined by using the density functional theory.

  7. Investigation of thermodynamic properties of metal-oxide catalysts

    NASA Astrophysics Data System (ADS)

    Shah, Parag Rasiklal

    An apparatus for Coulometric Titration was developed and used to measure the redox isotherms (i.e. oxygen fugacity P(O2) vs oxygen stoichiometry) of ceria-zirconia solid solutions, mixed oxides of vanadia, and vanadia supported on ZrO2. This data was used to correlate the redox thermodynamics of these oxides to their structure and catalytic properties. From the redox isotherms measured between 873 K and 973 K, the differential enthalpies of oxidation (DeltaH) for Ce0.81Zr0.19O 2.0 and Ce0.25Zr0.75O2.0 were determined, and they were found to be independent of extent of reduction or composition of the solid solution. They were also lower than DeltaH for ceria, which explains the better redox properties of ceria-zirconia solid solutions. The oxidation was driven by entropy in the low reduction region, and a structural model was proposed to explain the observed entropy effects. Redox isotherms were also measured for a number of bulk vanadates between 823 K and 973 K. DeltaG, DeltaH and DeltaS were reported for V 2O5, Mg3(VO4)2, CeVO 4 and ZrV2O7 along with DeltaG values for AlVO 4, LaVO4, CrVO4. V2O5 and ZrV2O7, which were the only oxides having V-O-V bonds, showed a two-step transition of vanadium for V+3↔V +4 and V+4↔V+5 equilibrium in the redox isotherms. The other oxides, all of which have only M-O-V (M=cation other than V), showed a direct one-step transition, V+3↔V +5. The nature of the M-atom also influenced the P(O2) at which the V+3↔V+5 transition occurs. Redox isotherms at 748 K were measured for vanadia supported on ZrO 2; with two different vanadia loadings corresponding to isolated vanadyls and polymeric vanadyls. The isotherm for the sample with isolated vanadyls showed a single-step transition, similar to the one seen in bulk vanadates with M-O-V linkages, while no such one-step transition was observed in the isotherm of the other sample. To study the affect of the varying redox properties of the vanadium-based catalysts on oxidation rates

  8. Experimentally determined standard thermodynamic properties of synthetic MgSO(4)·4H(2)O (Starkeyite) and MgSO(4)·3H(2)O: a revised internally consistent thermodynamic data set for magnesium sulfate hydrates.

    PubMed

    Grevel, Klaus-Dieter; Majzlan, Juraj; Benisek, Artur; Dachs, Edgar; Steiger, Michael; Fortes, A Dominic; Marler, Bernd

    2012-11-01

    The enthalpies of formation of synthetic MgSO(4)·4H(2)O (starkeyite) and MgSO(4)·3H(2)O were obtained by solution calorimetry at T=298.15 K. The resulting enthalpies of formation from the elements are [Formula: see text] (starkeyite)=-2498.7±1.1 kJ·mol(-1) and [Formula: see text] (MgSO(4)·3H(2)O)=-2210.3±1.3 kJ·mol(-1). The standard entropy of starkeyite was derived from low-temperature heat capacity measurements acquired with a physical property measurement system (PPMS) in the temperature range 5 K2.0 J·K(-1)·mol(-1). Additionally, differential scanning calorimetry (DSC) measurements with a Perkin Elmer Diamond DSC in the temperature range 270 K2). The hydration state of all Mg sulfate hydrates changes in response to local temperature and humidity conditions. Based on recently reported equilibrium relative humidities and the new standard properties described above, the internally consistent thermodynamic database for the MgSO(4)·nH(2)O system was refined by a mathematical programming (MAP) analysis. As can be seen from the resulting phase diagrams, starkeyite is metastable in the entire T-%RH range. Due to kinetic limitations of kieserite formation, metastable occurrence of starkeyite might be possible under martian conditions.

  9. Low temperature heat capacity and thermodynamic functions of anion bearing sodalites Na 8Al 6Si 6O 24X 2 (X = SO 4, ReO 4, Cl, I)

    DOE PAGES

    Schliesser, Jacob; Lilova, Kristina; Pierce, Eric M.; ...

    2017-06-01

    Heat capacities of sulfate, perrhenate, chloride, and iodide sodalites with the ideal formula Na 8Al 6Si 6O 24X 2 (X = SO 4, ReO 4, Cl, I) were measured from 2 K to 300 K using a Quantum Design Physical Property Measurement System (PPMS). From the heat capacity data, the standard thermodynamic functions were determined. All four sodalites undergo a phase transition below room temperature for which thermodynamic parameters were determined. Additionally, the heat capacity of one of the constituent compounds (NaReO 4) was measured.

  10. Experimentally Determined Standard Thermodynamic Properties of Synthetic MgSO4·4H2O (Starkeyite) and MgSO4·3H2O: A Revised Internally Consistent Thermodynamic Data Set for Magnesium Sulfate Hydrates

    PubMed Central

    Majzlan, Juraj; Benisek, Artur; Dachs, Edgar; Steiger, Michael; Fortes, A. Dominic; Marler, Bernd

    2012-01-01

    . The hydration state of all Mg sulfate hydrates changes in response to local temperature and humidity conditions. Based on recently reported equilibrium relative humidities and the new standard properties described above, the internally consistent thermodynamic database for the MgSO4·nH2O system was refined by a mathematical programming (MAP) analysis. As can be seen from the resulting phase diagrams, starkeyite is metastable in the entire T-%RH range. Due to kinetic limitations of kieserite formation, metastable occurrence of starkeyite might be possible under martian conditions. Key Words: Mg sulfates—Starkeyite—Thermodynamic data—Entropy—Enthalpy—Calorimetry. Astrobiology 12, 1042–1054. PMID:23095098

  11. Thermodynamic Simulation of Viscosity of TiO2-Ti2O3-CaO Ternary Slag

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Ma, W. H.; Zhang, S. J.; Lei, Y.; Wen, J. H.

    2017-12-01

    The viscosity of high titanium slag at high temperature is one of the key factors of slag-iron separation. Based on the Einstein-Roscoe equation, thermodynamic simulation of viscosity of TiO2-Ti2O3-CaO ternary slag is studied by using FactSage® software, and the effects of temperature, CaO content and solid-phase particles on the viscosity of slag were studied. The results show that the increase of CaO content has the effect of reducing melting temperature and viscosity of TiO2-Ti2O3-CaO ternary slag. After the TiO2-Ti2O3-CaO ternary slag is completely melted, the increase of temperature has little effect on viscosity of slag, and the viscosity is about 110~125mPa·s. When the temperature is lower than melting temperature, TiO2-Ti2O3-CaO ternary slag will precipitate solid-phase particles, and the precipitation process is carried out in stages, and with the decrease of temperature, the precipitation will increase and the viscosity will sharply increase. TiO2-Ti2O3-CaO ternary titanium slag has obvious characteristics of short slag.

  12. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species

    NASA Technical Reports Server (NTRS)

    McBride, Bonnie J.; Zehe, Michael J.; Gordon, Sanford

    2002-01-01

    This report documents the library of thermodynamic data used with the NASA Glenn computer program CEA (Chemical Equilibrium with Applications). This library, containing data for over 2000 solid, liquid, and gaseous chemical species for temperatures ranging from 200 to 20,000 K, is available for use with other computer codes as well. The data are expressed as least-squares coefficients to a seven-term functional form for C((sup o)(sub p)) (T) / R with integration constants for H (sup o) (T) / RT and S(sup o) (T) / R. The NASA Glenn computer program PAC (Properties and Coefficients) was used to calculate thermodynamic functions and to generate the least-squares coefficients. PAC input was taken from a variety of sources. A complete listing of the database is given along with a summary of thermodynamic properties at 0 and 298.15 K.

  13. Theoretical calculating the thermodynamic properties of solid sorbents for CO{sub 2} capture applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua

    2012-11-02

    Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculatedmore » thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we first introduce our screening methodology and the results on a testing set of solids with known thermodynamic properties to validate our methodology. Then, by applying our computational

  14. Chemical thermodynamic representation of (U, Pu, Am)O 2- x

    NASA Astrophysics Data System (ADS)

    Osaka, Masahiko; Namekawa, Takashi; Kurosaki, Ken; Yamanaka, Shinsuke

    2005-09-01

    The oxygen potential isotherms of (U, Pu, Am)O 2- x were represented by a chemical thermodynamic model proposed by Lindemer et al. It was assumed in the present model that (U, Pu, Am)O 2- x consisted of the chemical species [UO 2], [PuO 2], [Pu 4/3O 2], [AmO 2] and [Am 5/4O 2] in a pseudo-quaternary system by treating the reduction rates of Pu and Am as identical; furthermore an interaction between [Am 5/4O 2] and [UO 2] was introduced. The agreement between analytical and experimental isotherms was good, but the analytical values slightly overestimated the experimental values especially in the case of lower Am content. Adding an interaction between [Am 5/4O 2] and [PuO 2] to the model resulted in a better representation.

  15. PVTx properties of the CO2-H2O and CO2-H2O-NaCl systems below 647 K: assessment of experimental data and thermodynamic models

    USGS Publications Warehouse

    Hu, Jiawen; Duan, Zhenhao; Zhu, Chen; Chou, I.-Ming

    2007-01-01

    Evaluation of CO2 sequestration in formation brine or in seawater needs highly accurate experimental data or models of pressure–volume–temperature-composition (PVTx) properties for the CO2–H2O and CO2–H2O–NaCl systems. This paper presents a comprehensive review of the experimental PVTx properties and the thermodynamic models of these two systems. The following conclusions are drawn from the review: (1) About two-thirds of experimental data are consistent with each other, where the uncertainty in liquid volumes is within 0.5%, and that in gas volumes within 2%. However, this accuracy is not sufficient for assessing CO2 sequestration. Among the data sets for liquids, only a few are available for accurate modeling of CO2 sequestration. These data have an error of about 0.1% on average, roughly covering from 273 to 642 K and from 1 to 35 MPa; (2) There is a shortage of volumetric data of saturated vapor phase. (3) There are only a few data sets for the ternary liquids, and they are inconsistent with each other, where only a couple of data sets can be used to test a predictive density model for CO2 sequestration; (4) Although there are a few models with accuracy close to that of experiments, none of them is accurate enough for CO2 sequestration modeling, which normally needs an accuracy of density better than 0.1%. Some calculations are made available on www.geochem-model.org.

  16. Thermodynamic model for the regeneration of sulfur-poisoned nickel catalyst. 1. Using thermodynamic properties of bulk nickel compounds only

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chughtai, A.R.; Riter, J.R. Jr.

    1979-10-18

    By the use of the modified computer programs of Gordon and McBride for the determination of heterogeneous phase and chemical equilibria at preassigned temperatures (300-1100 K) and atmospheric pressure (101 325 N m/sup -2/), the oxidation with O/sub 2/ of sulfur-poisoned Raney nickel catalyst and subsequent reduction with H/sub 2/ have been modeled thermodynamically by using the properties of bulk nickel compounds. An alternate process, the direct reduction with H/sub 2/ of the sulfidized nickel, has also been modeled and arguments are advanced for the further investigation of this thermodynamically favored second process. In both processes the mole ratios ofmore » reactants, H/sub 2//NiSO/sub 4/ and H/sub 2//Ni/sub 3/S/sub 2/, respectively, for complete disappearance of the last product to be reduced, Ni/sub 3/S/sub 2/, increase markedly as the desired temperature for complete thermodynamic reduction decreases. These ratios and the equilibrium activity quotient P/sub H/sub 2///P/sub H/sub 2/S/ have been determined as quantitative functions of this critical reduction temperature. A complete thermodynamic hierarchy of oxidation processes for the reaction of O/sub 2/ with mixtures of Ni and Ni/sub 3/S/sub 2/ is developed. From the equilibrium calculations it is brought out that Ni/sub 3/S/sub 2/ is relatively more stable both to oxidation with O/sub 2/ than is Ni and to reduction with H/sub 2/ than is NiO. One point of modest connection with experiment is presented for the reduction processes. 1 figure, 1 table.« less

  17. Free energy of formation of Mo2C and the thermodynamic properties of carbon in solid molybdenum

    NASA Technical Reports Server (NTRS)

    Seigle, L. L.; Chang, C. L.; Sharma, T. P.

    1979-01-01

    As part of a study of the thermodynamical properties of interstitial elements in refractory metals, the free energy of formation of Mo2C is determined, and the thermodynamical properties of C in solution in solid Mo evaluated. The activity of C in the two-phase region Mo + Mo2C is obtained from the C content of iron rods equilibrated with metal + carbide powder mixtures. The free energy of formation of alpha-Mo2C is determined from the activity data. The thermodynamic properties of C in the terminal solid solution are calculated from available data on the solid solubility of C in Mo. Lattice distortion due to misfit of the C atoms in the interstitial sites appears to play a significant role in determining the thermodynamic properties of C in solid Mo.

  18. Influences on the H2-sorption properties of Mg of Co (with various sizes) and CoO addition by reactive grinding and their thermodynamic stabilities

    NASA Astrophysics Data System (ADS)

    Song, Myoung Youp; Lee, DongSub; Kwon, IkHyun

    2004-02-01

    We attempted to improve the H2-sorption properties of Mg by mechanical grinding under H2 (reactive grinding) with Co (with various particle sizes) and with CoO. The thermodynamic stabilities of the added Co and CoO were also investigated. CoO addition has the best influence and addition of smaller particles of Co (0.5-1.5 μm) has a better effect than the addition of larger particles of Co on the H2-sorption properties of Mg. The activated Mg+10 wt.% CoO sample has about 5.54 wt% hydrogen-storage capacity at 598 K and the highest hydriding rate, showing an Ha value of 2.39 wt.% after 60 min at 598 K, 11.2 bar H2. The order of the hydriding rates after activation is the same as that of the specific surface areas of the samples. The reactive grinding of Mg with Co or CoO and hydriding-dehydriding cycling increase the H2-sorption rates by facilitating nucleation of magnesium hydride or α solid solution of Mg and H (by creating defects on the surface of the Mg particles and by the additive), and by making cracks on the surface of Mg particles and reducing the particle size of Mg, thus shortening the diffusion distances of hydrogen atoms. The cobalt oxide is stable even after 14 hydriding cycles at 598 K under 11.2 bar H2. Discharge capacities are measured for the sampple Mg+10 wt.%CoO and Mg+10wt.%Co (0.5-1.5 μm) with good hydrogen-storage properties.

  19. Electronic and elastic properties of new semiconducting oP(12)-type RuB(2) and OsB(2).

    PubMed

    Hao, Xianfeng; Xu, Yuanhui; Gao, Faming

    2011-03-30

    Using first-principles total energy calculations we investigate the structural, elastic and electronic properties of new hypothetical oP(12)-type phase RuB(2) and OsB(2). The calculations indicate that the oP(12)-type phase RuB(2) and OsB(2) are thermodynamically and mechanically stable. Remarkably, the new phases RuB(2) and OsB(2) are predicted to be semiconductors, and the appearance of band gaps is ascribed to the enhanced B-B covalent hybridization. Compared to metallic oP(6)-type RuB(2) and OsB(2) phases, the new phases possess similar mechanical properties and hardness. The combination of the probability of tunable electronic properties, strong stiffness and high hardness make RuB(2) and OsB(2) attractive and interesting for advanced applications. © 2011 IOP Publishing Ltd

  20. Thermodynamic investigation of the phase equilibrium boundary between TiO2 rutile and its α-PbO2-type high-pressure polymorph

    NASA Astrophysics Data System (ADS)

    Kojitani, Hiroshi; Yamazaki, Monami; Kojima, Meiko; Inaguma, Yoshiyuki; Mori, Daisuke; Akaogi, Masaki

    2018-06-01

    Heat capacity (C P) of rutile and α-PbO2 type TiO2 (TiO2-II) were measured by the differential scanning calorimetry and thermal relaxation method. Using the results, standard entropies at 1 atm and 298.15 K of rutile and TiO2-II were determined to be 50.04(4) and 46.54(2) J/mol K, respectively. Furthermore, thermal expansivity (α) determined by high-temperature X-ray diffraction measurement and mode Grüneisen parameters obtained by high-pressure Raman spectroscopy suggested the thermal Grüneisen parameter (γ th) for TiO2-II of 1.7(1). By applying the obtained low-temperature C P and γ th, the measured C P and α data of TiO2-II were extrapolated to higher temperature region using a lattice vibrational model calculation, as well as rutile. Internally consistent thermodynamic data sets of both rutile and TiO2-II assessed in this study were used to thermodynamically calculate the rutile‒TiO2-II phase equilibrium boundary. The most plausible boundary was obtained to be P (GPa) = 0.0074T (K) - 1.7. Our boundary suggests that the crystal growth of TiO2-II observed below 5.5 GPa and 900 K in previous studies advanced in its stability field. The phase boundary calculation also suggested small, exothermic phase transition enthalpy from rutile to TiO2-II at 1 atm and 298.15 K of - 0.5 to - 1.1 kJ/mol. This implies that the thermodynamic stability of rutile at 1 atm above room temperature is due to larger contribution of entropy term.

  1. The Thermodynamic Properties of Cubanite

    NASA Technical Reports Server (NTRS)

    Berger, E. L.; Lauretta, D. S.; Keller, L. P.

    2012-01-01

    CuFe2S3 exists in two polymorphs, a low-temperature orthorhombic form (cubanite) and a high-temperature cubic form (isocubanite). Cubanite has been identified in the CI-chondrite and Stardust collections. However, the thermodynamic properties of cubanite have neither been measured nor estimated. Our derivation of a thermodynamic model for cubanite allows constraints to be placed on the formation conditions. This data, along with the temperature constraint afforded by the crystal structure, can be used to assess the environments in which cubanite formation is (or is not) thermodynamically favored.

  2. Thermodynamic properties for bunsenite, NiO, magnetite, Fe3O4, and hematite, Fe2O3, with comments on selected oxygen buffer reactions

    USGS Publications Warehouse

    Hemingway, B.S.

    1990-01-01

    Smoothed values of the heat capacities and derived thermodynamic functions are given for bunsenite, magnetite, and hematite for the temperature interval 298.15 to 1800 K. The Gibbs free energy for the reaction Ni + 0.5O2 = NiO is given by the equation ??rG0T = -238.39 + 0.1146T - 3.72 ?? 10-3T ln T and is valid from 298.15 K to 1700 K. The Gibbs free energy (in kJ) of the reaction 2 magnetite + 3 quartz = 3 fayalite + O2 may be calculated from the equation ??rG0T = 474.155 - 0.16120 T in kJ and between 800 and 1400 K. The Gibbs free energy (in kJ) of the reaction 6 hematite = 4 magnetite + O2 may be calculated from the following equations: ??rG0T = 496.215 - 0.27114T, ??rG0T = 514.690 - 0.29753T, ??rG0T = 501.348 - 0.2854T. -from Author

  3. Thermodynamics of Silicon-Hydroxide Formation in H2O Containing Atmospheres

    NASA Technical Reports Server (NTRS)

    Copland, Evan; Myers, Dwight; Opila, Elizabeth J.; Jacobson, Nathan S.

    2001-01-01

    The formation of volatile silicon-hydroxide species from SiO2 in water containing atmospheres has been identified as a potentially important mode of degradation of Si-based ceramics. Availability of thermodynamic data for these species is a major problem. This study is part of an ongoing effort to obtain reliable, experimentally determined thermodynamic data for these species. The transpiration method was used to measure the pressure of Si-containing vapor in equilibrium with SiO2 (cristobalite) and Ar + H2O(g) with various mole fractions of water vapor, X(sub H2O), at temperatures ranging from 1000 to 1780 K. Enthalpies and entropies for the reaction, SiO2(s) + 2H2O(g) = Si(OH)4(g), were obtained, at X(sub H2O) = 0.15 and 0.37, from the variation of lnK with 1/T according to the 'second law method'. The following data were obtained: delta(H)deg = 52.9 +/- 3.7 kJ/mole and delta(S)deg = -68.6 +/- 2.5 J/mole K at an average temperature of 1550 K, and delta(H)deg = 52.5+/-2.0 kJ/mole and delta(S)deg= -69.7 +/- 1.5 J/moleK at an average temperature of 1384 K, for X(sub H2O)= 0.15 and 0.37, respectively. These data agree with results from the literature obtained at an average temperature of 1600 K, and strongly suggest Si(OH)4(g) is the dominant vapor species. Contradictory results were obtained with the determination of the dependence of Si-containing vapor pressure on the partial pressure of water vapor at 1187 and 1722 K. These results suggested the Si-containing vapor could be a mixture of Si(OH)4 + SiO(OH)2. Further pressure dependent studies are in progress to resolve these issues.

  4. Assessing exchange-correlation functionals for elasticity and thermodynamics of α - ZrW 2 O 8 : A density functional perturbation theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weck, Philippe F.; Kim, Eunja; Greathouse, Jeffery A.

    Elastic and thermodynamic properties of negative thermal expansion (NTE) αα-ZrW2O8 have been calculated using PBEsol and PBE exchange-correlation functionals within the framework of density functional perturbation theory (DFPT). Measured elastic constants are reproduced within ~2% with PBEsol and 6% with PBE. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with observation. The standard molar heat capacity is predicted to be Cmore » $$O\\atop{P}$$=192.2 and 193.8 J mol -1K -1 with PBEsol and PBE, respectively. These results suggest superior accuracy of DFPT/PBEsol for studying the lattice dynamics, elasticity and thermodynamics of NTE materials.« less

  5. Assessing exchange-correlation functionals for elasticity and thermodynamics of α - ZrW 2 O 8 : A density functional perturbation theory study

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja; Greathouse, Jeffery A.; ...

    2018-03-15

    Elastic and thermodynamic properties of negative thermal expansion (NTE) αα-ZrW2O8 have been calculated using PBEsol and PBE exchange-correlation functionals within the framework of density functional perturbation theory (DFPT). Measured elastic constants are reproduced within ~2% with PBEsol and 6% with PBE. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with observation. The standard molar heat capacity is predicted to be Cmore » $$O\\atop{P}$$=192.2 and 193.8 J mol -1K -1 with PBEsol and PBE, respectively. These results suggest superior accuracy of DFPT/PBEsol for studying the lattice dynamics, elasticity and thermodynamics of NTE materials.« less

  6. Thermodynamic properties and equations of state for Ag, Al, Au, Cu and MgO using a lattice vibrational method

    NASA Astrophysics Data System (ADS)

    Jacobs, M.; Schmid-Fetzer, R.

    2012-04-01

    , when coupled to a thermodynamic computation program, the calculation and prediction of phase equilibria and thermo-physical properties of phase equilibrium assemblages in pressure-temperature-composition space. In Jacobs and van den Berg (2011) the vibrational method, together with a thermodynamic data base, was successfully applied to mantle convection of materials in the Earth. These works demonstrate that the vibrational method has the advantages of (1) computational speed, (2) coupling or making comparisons with ab initio methods and (3) making reliable extrapolations to extreme conditions. We present results of thermodynamic analyses, using lattice vibrational methods, of Ag, Al, Au, Cu and MgO covering the pressure and temperature regime of the Earth's interior. We show results on consistency of the pressure scales for these materials using different equations of state, under the constraint that thermodynamic properties in the low-pressure regime are accurately represented.

  7. First-principles calculations on thermodynamic properties of BaTiO3 rhombohedral phase.

    PubMed

    Bandura, Andrei V; Evarestov, Robert A

    2012-07-05

    The calculations based on the linear combination of atomic orbitals have been performed for the low-temperature phase of BaTiO(3) crystal. Structural and electronic properties, as well as phonon frequencies were obtained using hybrid PBE0 exchange-correlation functional. The calculated frequencies and total energies at different volumes have been used to determine the equation of state and thermal contribution to the Helmholtz free energy within the quasiharmonic approximation. For the first time, the bulk modulus, volume thermal expansion coefficient, heat capacity, and Grüneisen parameters in BaTiO(3) rhombohedral phase have been estimated at zero pressure and temperatures form 0 to 200 K, based on the results of first-principles calculations. Empirical equation has been proposed to reproduce the temperature dependence of the calculated quantities. The agreement between the theoretical and experimental thermodynamic properties was found to be satisfactory. Copyright © 2012 Wiley Periodicals, Inc.

  8. Ferromagnetic Phase Stability, Magnetic, Electronic, Elasto-Mechanical and Thermodynamic Properties of BaCmO3 Perovskite Oxide

    NASA Astrophysics Data System (ADS)

    Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar; Parey, Vanshree

    2018-04-01

    The structural, electronic, elasto-mechanical and thermodynamic properties of cubic ABO3 perovskites BaCmO3 has been successfully calculated within density functional theory via full potential linearized augmented plane wave. The structural study divulges ferromagnetic stability for the compound. For the precise calculation of electronic and magnetic properties a generalized gradient approximation (GGA), and a Hubbard approximation (GGA + U), (modified Becke Johnson approximation) mBJ have been incorporated. The electronic study portrays the half-metallic nature for the compound in all the approximations. The calculated magnetic moment with different approximations was found to be large and with an integer value of 6 μ b, this integer value of magnetic moment also proves the half-metallic nature for BaCmO3. The calculated elastic constants have been used to predict mechanical properties like the Young modulus (Y), the Shear modulus (G) and the Poisson ratio (ν). The calculated B/G and Cauchy pressure (C12-C44) present the brittle nature for BaCmO3. The thermodynamic parameters like heat capacity, thermal expansion, and Debye temperature have been calculated and examined in the temperature range of 0 K to 700 K and pressure between 0 GPa and 40 GPa. The melting temperature was also calculated and was found to be 1847 ± 300 K.

  9. Thermodynamic assessment of the Pr-O system

    DOE PAGES

    McMurray, Jake W.

    2015-12-24

    We found that the Calphad method was used to perform a thermodynamic assessment of the Pr–O system. Compound energy formalism representations were developed for the fluorite α-PrO 2–x and bixbyite σ-Pr 3 O 5 ± x solid solutions while the two-sublattice liquid model was used to describe the binary melt. The series of phases between Pr 2 O 3 and PrO 2 were taken to be stoichiometric. Moreover, the equilibrium oxygen pressure, phase equilibria, and enthalpy data were used to optimize the adjustable parameters of the models for a self-consistent representation of the thermodynamic behavior of the Pr–O system frommore » 298 K to melting.« less

  10. Solubility-product constant and thermodynamic properties for synthetic otavite, CdCO3(s), and aqueous association constants for the Cd(II)-CO2-H2O system

    USGS Publications Warehouse

    Stipp, S.L.S.; Parks, George A.; Nordstrom, D. Kirk; Leckie, J.O.

    1993-01-01

    Considerable disparity exists in the published thermodynamic data for selected species in the Cd(II)-CO2-H2O system near 25??C and 1 atm pressure. Evaluation of published experimental and estimated data for aqueous cadmium-carbonate species suggests an association constant, pK, of -3.0 ?? 0.4 for CdCO30, about -1.5 for CdHCO3+, and -6.4 ?? 0.1 for Cd(CO3)22- (T = 298.15 K; P = 1 atm; I = 0). Examination of all available data for cadmium-hydrolysis species and ??-Cd(OH)2(s)) confirms that the consistent set of constants presented by Baes and Mesmer (Hydrolysis of Cations, 1976) is the best available. The solubility of synthetic otavite, CdCO3(s), has been measured in KClO4 solutions where I ??? 0.1 M. We calculated pKsp = 12.1 ?? 0.1 (T = 25.0??C; P = 1 atm; I = 0) from measured concentrations of Cd2+, measured PC02 and pH, our selected set of equilibrium constants, and activity corrections estimated using the Davies equation. Values at 5 and 50??C were 12.4 ?? 0.1 and 12.2 ?? 0.1, respectively. Based on the new solubility data and the CODATA key values for Cd2+ and CO32-, a new set of thermodynamic properties is recommended for otavite: ??Gf0 = -674.7 ?? 0.6 kJ/mol; ??Hf0 = -751.9 ?? 10 kJ/mol; S0 = 106 ?? 30 J/mol K; and ??Gr0 for the reaction Cd2+ + CO32- ??? CdCO3(s) is -69.08 ?? 0.57 kJ/m. ?? 1993.

  11. Thermodynamic characterization of Ni3TeO6, Ni2Te3O8 and NiTe2O5

    NASA Astrophysics Data System (ADS)

    Dawar, Rimpi; Babu, R.; Ananthasivan, K.; Anthonysamy, S.

    2017-09-01

    Measurement of vapour pressure of TeO2(g) over the biphasic mixture Ni3TeO6 (s) + NiO(s) in the temperature range 1143-1272 K was carried out using transpiration-thermogravimetric technique (TTG). Gibbs energy of formation of Ni3TeO6 was obtained from the temperature dependence of vapour pressure of TeO2 (g) generated by the incongruent vapourisation reaction, Ni3TeO6 (s) → NiO(s) + TeO2 (g) + 1/2 O2 in the temperature range 1143-1272 K. An isoperibol type drop calorimeter was used to measure the enthalpy increments of Ni3TeO6, Ni2Te3O8 and NiTe2O5. Thermodynamic functions viz., heat capacity, entropy and Gibbs energy functions of these compounds were derived from the experimentally measured enthalpy increment values. Third-law analysis was carried out to ascertain absence of temperature dependent systematic errors in the measurement of vapour pressure of TeO2 (g). A value of -1265.1 ± 1.5 kJ mol-1 was obtained for Δ Hf,298K o (Ni3TeO6) using third-law analysis.

  12. ms2: A molecular simulation tool for thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Deublein, Stephan; Eckl, Bernhard; Stoll, Jürgen; Lishchuk, Sergey V.; Guevara-Carrion, Gabriela; Glass, Colin W.; Merker, Thorsten; Bernreuther, Martin; Hasse, Hans; Vrabec, Jadran

    2011-11-01

    This work presents the molecular simulation program ms2 that is designed for the calculation of thermodynamic properties of bulk fluids in equilibrium consisting of small electro-neutral molecules. ms2 features the two main molecular simulation techniques, molecular dynamics (MD) and Monte-Carlo. It supports the calculation of vapor-liquid equilibria of pure fluids and multi-component mixtures described by rigid molecular models on the basis of the grand equilibrium method. Furthermore, it is capable of sampling various classical ensembles and yields numerous thermodynamic properties. To evaluate the chemical potential, Widom's test molecule method and gradual insertion are implemented. Transport properties are determined by equilibrium MD simulations following the Green-Kubo formalism. ms2 is designed to meet the requirements of academia and industry, particularly achieving short response times and straightforward handling. It is written in Fortran90 and optimized for a fast execution on a broad range of computer architectures, spanning from single processor PCs over PC-clusters and vector computers to high-end parallel machines. The standard Message Passing Interface (MPI) is used for parallelization and ms2 is therefore easily portable to different computing platforms. Feature tools facilitate the interaction with the code and the interpretation of input and output files. The accuracy and reliability of ms2 has been shown for a large variety of fluids in preceding work. Program summaryProgram title:ms2 Catalogue identifier: AEJF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Special Licence supplied by the authors No. of lines in distributed program, including test data, etc.: 82 794 No. of bytes in distributed program, including test data, etc.: 793 705 Distribution format: tar.gz Programming language: Fortran90 Computer: The

  13. Molecular simulation of thermodynamic and transport properties for the H{sub 2}O+NaCl system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orozco, Gustavo A.; Jiang, Hao; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu

    Molecular dynamics and Monte Carlo simulations have been carried out to obtain thermodynamic and transport properties of the binary mixture H{sub 2}O+NaCl at temperatures from T = 298 to 473 K. In particular, vapor pressures, liquid densities, viscosities, and vapor-liquid interfacial tensions have been obtained as functions of pressure and salt concentration. Several previously proposed fixed-point-charge models that include either Lennard-Jones (LJ) 12-6 or exponential-6 (Exp6) functional forms to describe non-Coulombic interactions were studied. In particular, for water we used the SPC and SPC/E (LJ) models in their rigid forms, a semiflexible version of the SPC/E (LJ) model, and themore » Errington-Panagiotopoulos Exp6 model; for NaCl, we used the Smith-Dang and Joung-Cheatham (LJ) parameterizations as well as the Tosi-Fumi (Exp6) model. While none of the model combinations are able to reproduce simultaneously all target properties, vapor pressures are well represented using the SPC plus Joung-Cheathem model combination, and all LJ models do well for the liquid density, with the semiflexible SPC/E plus Joung-Cheatham combination being the most accurate. For viscosities, the combination of rigid SPC/E plus Smith-Dang is the best alternative. For interfacial tensions, the combination of the semiflexible SPC/E plus Smith-Dang or Joung-Cheatham gives the best results. Inclusion of water flexibility improves the mixture densities and interfacial tensions, at the cost of larger deviations for the vapor pressures and viscosities. The Exp6 water plus Tosi-Fumi salt model combination was found to perform poorly for most of the properties of interest, in particular being unable to describe the experimental trend for the vapor pressure as a function of salt concentration.« less

  14. Thermoelectric Properties of Self Assembled TiO2/SnO2 Nanocomposites

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp

    2008-01-01

    Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 W/mK2 at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.

  15. Thermoelectric Properties of Self Assemble TiO2/SnO2 Nanocomposites

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp

    2008-01-01

    Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 (mu)W/m sq K at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.

  16. Thermoelectric Properties in the TiO2/SnO2 System

    NASA Technical Reports Server (NTRS)

    Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.

    2009-01-01

    Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.

  17. Effects of configurational disorder on the elastic properties of icosahedral boron-rich alloys based on B6O, B13C2, and B4C, and their mixing thermodynamics

    NASA Astrophysics Data System (ADS)

    Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Tasnádi, F.; Wang, F.; Alling, B.

    2016-04-01

    The elastic properties of alloys between boron suboxide (B6O) and boron carbide (B13C2), denoted by (B6O)1-x(B13C2)x, as well as boron carbide with variable carbon content, ranging from B13C2 to B4C are calculated from first-principles. Furthermore, the mixing thermodynamics of (B6O)1-x(B13C2)x is studied. A superatom-special quasirandom structure approach is used for modeling different atomic configurations, in which effects of configurational disorder between the carbide and suboxide structural units, as well as between boron and carbon atoms within the units, are taken into account. Elastic properties calculations demonstrate that configurational disorder in B13C2, where a part of the C atoms in the CBC chains substitute for B atoms in the B12 icosahedra, drastically increase the Young's and shear modulus, as compared to an atomically ordered state, B12(CBC). These calculated elastic moduli of the disordered state are in excellent agreement with experiments. Configurational disorder between boron and carbon can also explain the experimentally observed almost constant elastic moduli of boron carbide as the carbon content is changed from B4C to B13C2. The elastic moduli of the (B6O)1-x(B13C2)x system are also practically unchanged with composition if boron-carbon disorder is taken into account. By investigating the mixing thermodynamics of the alloys, in which the Gibbs free energy is determined within the mean-field approximation for the configurational entropy, we outline the pseudo-binary phase diagram of (B6O)1-x(B13C2)x. The phase diagram reveals the existence of a miscibility gap at all temperatures up to the melting point. Also, the coexistence of B6O-rich as well as ordered or disordered B13C2-rich domains in the material prepared through equilibrium routes is predicted.

  18. First-Principles Thermodynamics Study of Spinel MgAl 2 O 4 Surface Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Qiuxia; Wang, Jian-guo; Wang, Yong

    The surface stability of all possible terminations for three low-index (111, 110, 100) structures of the spinel MgAl2O4 has been studied using first-principles based thermodynamic approach. The surface Gibbs free energy results indicate that the 100_AlO2 termination is the most stable surface structure under ultra-high vacuum at T=1100 K regardless of Al-poor or Al-rich environment. With increasing oxygen pressure, the 111_O2(Al) termination becomes the most stable surface in the Al-rich environment. The oxygen vacancy formation is thermodynamically favorable over the 100_AlO2, 111_O2(Al) and the (111) structure with Mg/O connected terminations. On the basis of surface Gibbs free energies for bothmore » perfect and defective surface terminations, the 100_AlO2 and 111_O2(Al) are the most dominant surfaces in Al-rich environment under atmospheric condition. This is also consistent with our previously reported experimental observation. This work was supported by a Laboratory Directed Research and Development (LDRD) project of the Pacific Northwest National Laboratory (PNNL). The computing time was granted by the National Energy Research Scientific Computing Center (NERSC). Part of computing time was also granted by a scientific theme user proposal in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at PNNL in Richland, Washington.« less

  19. A new Ca3MgSi2O8 compound and some of its thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Bao, Xinjian; Zhang, Yanyao; Zhang, Zhigang; Zhang, Lifei; Liu, Xiaoyang; Dong, Jianjun; Liu, Xi

    2017-11-01

    A new calcium magnesium orthosilicate with the composition Ca3MgSi2O8 was synthesized by a solid-state reaction process at 1.2 GPa and 1373 K for 7 days. We refined the crystallographic structure of this new compound using single-crystal X-ray data, and obtained some of its thermodynamic properties by performing some first-principles simulations. Our single-crystal X-ray analysis has shown that this new compound is monoclinic with the space group C2/c, and its unit-cell parameters are a = 9.344(4) Å, b = 5.3308(3) Å, c = 13.290(6) Å, α = 90°, β = 92.072(7)°, γ = 90°, and V = 658.7(6) Å3. The compressibility of this new compound was studied with the CASTEP code using density functional theory and planewave pseudopotential technique, which led to an isothermal bulk modulus B0 of 99(2) GPa with a pressure derivative B0‧ of 3.5(5). The phonon dispersions and vibrational density of the states (VDoS) of this new compound were calculated by using density functional perturbation theory. Subsequently, the VDoS was combined with a quasi-harmonic approximation to compute the isobaric heat capacity (Cp) and standard vibrational entropy (S298SUP>0), yielding Cp = 3.927(2) × 102 - 1.159(6) × 103T-0.5 - 1.054(4) × 107T-2 + 1.362(8) × 109T-3 J mol-1 K-1 for the T range of 298-1000 K and S2980 = 270.5(60) J mol-1 K-1.

  20. Thermodynamic Assessment of the Y2o3-yb2o3-zro2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan

    2002-01-01

    Yttria-zirconia (Y2O3-ZrO2) is the most widely used of the rare earth oxide-zirconia systems. There are numerous experimental studies of the phase boundaries in this system. In this paper, we assess these data and derive parameters for the solution models in this system. There is current interest in other rare earth oxide-zirconia systems as well as systems with several rare earth oxides and zirconia, which may offer improved properties over the Y2O3-ZrO2 system. For this reason, we also assess the ytterbia-zirconia (Yb2O3-ZrO2) and Y2O3-Yb2O3-ZrO2 system.

  1. Assessing exchange-correlation functionals for elasticity and thermodynamics of α -ZrW2O8 : A density functional perturbation theory study

    NASA Astrophysics Data System (ADS)

    Weck, Philippe F.; Kim, Eunja; Greathouse, Jeffery A.; Gordon, Margaret E.; Bryan, Charles R.

    2018-04-01

    Elastic and thermodynamic properties of negative thermal expansion (NTE) α -ZrW2O8 have been calculated using PBEsol and PBE exchange-correlation functionals within the framework of density functional perturbation theory (DFPT). Measured elastic constants are reproduced within ∼ 2 % with PBEsol and ∼ 6 % with PBE. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with observation. The standard molar heat capacity is predicted to be CP0 = 192.2 and 193.8 J mol-1K-1 with PBEsol and PBE, respectively. These results suggest superior accuracy of DFPT/PBEsol for studying the lattice dynamics, elasticity and thermodynamics of NTE materials.

  2. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    NASA Astrophysics Data System (ADS)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  3. Nanoscale effects of silica particle supports on the formation and properties of TiO2 nanocatalysts

    NASA Astrophysics Data System (ADS)

    Li, Aize; Jin, Yuhui; Muggli, Darrin; Pierce, David T.; Aranwela, Hemantha; Marasinghe, Gaya K.; Knutson, Theodore; Brockman, Greg; Zhao, Julia Xiaojun

    2013-06-01

    Small TiO2 crystals in the anatase phase are in high demand as photocatalysts. Stable TiO2 crystals in the anatase phase were obtained using a silica nanoparticle as a support. The focus of this study was to investigate the nanoscale effect of the silica support on the formation and properties of small anatase crystals. The experiments were carried out using powder X-ray diffraction, differential thermal analysis, transmission electron microscopy, and energy dispersion spectroscopy. The results showed that the size of the silica support played a crucial role in crystallization of TiO2 and regulation of TiO2 properties, including phase transition, crystal size, thermodynamic property and catalytic activity. A nanoscale curvature model of the spherical silica support was proposed to explain these size effects. Finally, the developed TiO2 catalysts were applied to the oxidation of methanol using a high-throughput photochemical reactor. The size effect of the silica supports on the TiO2 catalytic efficiency was demonstrated using this system.

  4. The thermodynamic properties of 2-ethylhexyl acrylate over the temperature range from T → 0 to 350 K

    NASA Astrophysics Data System (ADS)

    Kulagina, T. G.; Samosudova, Ya. S.; Letyanina, I. A.; Sevast'yanov, E. V.; Smirnova, N. N.; Smirnova, L. A.; Mochalova, A. E.

    2012-05-01

    The temperature dependence of the heat capacity C {/p o}= f( T) 2 of 2-ethylhexyl acrylate was studied in an adiabatic vacuum calorimeter over the temperature range 6-350 K. Measurement errors were mainly of 0.2%. Glass formation and vitreous state parameters were determined. An isothermic shell calorimeter with a static bomb was used to measure the energy of combustion of 2-ethylhexyl acrylate. The experimental data were used to calculate the standard thermodynamic functions C {/p o}( T), H o( T)- H o(0), S o( T)- S o(0), and G o( T)- H o(0) of the compound in the vitreous and liquid states over the temperature range from T → 0 to 350 K, the standard enthalpies of combustion Δc H o, and the thermodynamic characteristics of formation Δf H o, Δf S o, and Δf G o at 298.15 K and p = 0.1 MPa.

  5. Structural, vibrational and thermodynamic properties of Mg2 FeH6 complex hydride

    NASA Astrophysics Data System (ADS)

    Zhou, H. L.; Yu, Y.; Zhang, H. F.; Gao, T.

    2011-02-01

    Mg2FeH6, which has one of the highest hydrogen storage capacities among Mg based 3d-transitional metal hydrides, is considered as an attractive material for hydrogen storage. Within density-functional perturbation theory (DFPT), we have investigated the structural, vibrational and thermodynamic properties of Mg2FeH6. The band structure calculation shows that this compound is a semiconductor with a direct X-X energy gap of 1.96 eV. The calculated phonon frequencies for the Raman-active and the infrared-active modes are assigned. The phonon dispersion curves together with the corresponding phonon density of states and longitudinal-transverse optical (LO-TO) splitting are also calculated. Findings are also presented for the temperature-dependent behaviors of some thermodynamic properties such as free energy, internal energy, entropy and heat capacity within the quasi-harmonic approximation based on the calculated phonon density of states.

  6. Thermodynamic approach to the stability of multi-phase systems. Application to the Y 2O 3–Fe system

    DOE PAGES

    Samolyuk, German D.; Osetskiy, Yury N.

    2015-07-07

    Oxide-metal systems (OMSs) are important in many practical applications, and therefore, are under extensive studies using a wide range of techniques. The most accurate theoretical approaches are based on density functional theory (DFT), which are limited to ~10 2 atoms. Multi-scale approaches, e.g., DFT+Monte Carlo, are often used to model OMSs at the atomic level. These approaches can describe qualitatively the kinetics of some processes but not the overall stability of OMSs. In this paper, we propose a thermodynamic approach to study equilibrium in multiphase systems, which can be sequentially enhanced by considering different defects and microstructures. We estimate themore » thermodynamic equilibrium by minimization the free energy of the whole multiphase system using a limited set of defects and microstructural objects for which the properties are calculated by DFT. As an example, we consider Y 2O 3+bcc Fe with vacancies in both the Y 2O 3 and bcc Fe phases, Y substitutions and O interstitials in Fe, Fe impurities and antisite defects in Y 2O 3. The output of these calculations is the thermal equilibrium concentration of all the defects for a particular temperature and composition. The results obtained confirmed the high temperature stability of yttria in iron. As a result, model development towards more accurate calculations is discussed.« less

  7. Evaluation of the thermodynamic properties of hydrated metal oxide nanoparticles by INS techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Elinor; Ross, Dr. Nancy; Parker, Stewart F.

    2013-01-01

    In this contribution we will present a detailed methodology for the elucidation of the following aspects of the thermodynamic properties of hydrated metal oxide nanoparticles from high-resolution, low-temperature inelastic neutron scattering (INS) data: (i) the isochoric heat capacity and entropy of the hydration layers both chemi- and physisorbed to the particle surface; (ii) the magnetic contribution to the heat capacity of the nanoparticles. This will include the calculation of the vibrational density of states (VDOS) from the raw INS spectra, and the subsequent extraction of the thermodynamic data from the VDOS. This technique will be described in terms of amore » worked example namely, cobalt oxide (Co3O4 and CoO). To complement this evaluation of the physical properties of metal oxide nanoparticle systems, we will emphasise the importance of high-resolution, high-energy INS for the determination of the structure and dynamics of the water species, namely molecular (H2O) and dissociated water (OH, hydroxyl), confined to the oxide surfaces. For this component of the chapter we will focus on INS investigations of hydrated isostructural rutile (a-TiO2) and cassiterite (SnO2) nanoparticles. We will complete this discussion of nanoparticle analysis by including an appraisal of the INS instrumentation employed in such studies with particular focus on TOSCA [ISIS, Rutherford Appleton Laboratory (RAL), U.K.] and the newly developed spectrometer SEQUOIA [SNS, Oak Ridge National Laboratory (ORNL), U.S.A].« less

  8. Thermodynamic properties of pressurized PH3 superconductor

    NASA Astrophysics Data System (ADS)

    Koka, S.; Rao, G. Venugopal

    2018-05-01

    The paper presents the superconducting thermodynamic functions determined for pressurized phosphorus trihydride (PH3). In particular, free energy difference ΔF, thermodynamic critical field Hc, specific heat etc. have been calculated using analytical expressions. The calculations were performed in the frame work of the strong-coupling formalism. The obtained dimensionless parameters: RΔ ≡ 2Δ(0)/kBTc, RC ≡ ΔC(Tc)/CN(Tc) and RH≡TcCN(Tc)/Hc2(0) are 4.05, 1.96 and 0.156 respectively, which significantly differ from the values arising from the BCS theory of superconductivity. The thermodynamic properties strongly depend on the depairing electron correlations and retardation effects.

  9. Equation of State for the Thermodynamic Properties of 1,1,2,2,3-Pentafluoropropane (R-245ca)

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Lemmon, Eric W.

    2016-03-01

    An equation of state for the calculation of the thermodynamic properties of 1,1,2,2,3-pentafluoropropane (R-245ca), which is a hydrofluorocarbon refrigerant, is presented. The equation of state (EOS) is expressed in terms of the Helmholtz energy as a function of temperature and density, and can calculate all thermodynamic properties through the use of derivatives of the Helmholtz energy. The equation is valid for all liquid, vapor, and supercritical states of the fluid, and is valid from the triple point to 450 K, with pressures up to 10 MPa. Comparisons to experimental data are given to verify the stated uncertainties in the EOS. The estimated uncertainty for density is 0.1 % in the liquid phase between 243 K and 373 K with pressures up to 6.5 MPa; the uncertainties increase outside this range, and are unknown. The uncertainty in vapor-phase speed of sound is 0.1 %. The uncertainty in vapor pressure is 0.2 % between 270 K and 393 K. The uncertainties in other regions and properties are unknown due to a lack of experimental data.

  10. Mechanical, electronic and thermodynamic properties of full Heusler compounds Fe2VX(X = Al, Ga)

    NASA Astrophysics Data System (ADS)

    Khalfa, M.; Khachai, H.; Chiker, F.; Baki, N.; Bougherara, K.; Yakoubi, A.; Murtaza, G.; Harmel, M.; Abu-Jafar, M. S.; Omran, S. Bin; Khenata, R.

    2015-11-01

    The electronic structure, mechanical and thermodynamic properties of Fe2VX, (with X = Al and Ga), have been studied self consistently by employing state-of-the-art full-potential linearized approach of augmented plane wave plus local orbitals (FP-LAPW + lo) method. The exchange-correlation potential is treated with the local density and generalized gradient approximations (LDA and GGA). Our predicted ground state properties such as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA, and these results are in very good agreement with the available experimental and theoretical data. Further, thermodynamic properties of Fe2VAl and Fe2VGa are predicted with pressure and temperature in the ranges of 0-40 GPa and 0-1500 K using the quasi-harmonic Debye model. We have obtained successfully the variations of the heat capacities, primitive cell volume and volume expansion coefficient.

  11. Thermodynamic properties of 5(nitrophenyl) furan-2-carbaldehyde isomers.

    PubMed

    Dibrivnyi, Volodymyr; Sobechko, Iryna; Puniak, Marian; Horak, Yuriy; Obushak, Mykola; Van-Chin-Syan, Yuriy; Andriy, Marshalek; Velychkivska, Nadiia

    2015-01-01

    The aim of the current work was to determine thermo dynamical properties of 5(2-nitro phenyl)-furan-2-carbaldehyde, 5(3-nitro phenyl)-furan-2-carbaldehyde and 5(4-nitro phenyl)-furan-2-carbaldehyde. The temperature dependence of saturated vapor pressure of 5(2-nitro phenyl)-furan-2-carbaldehyde, 5(3-nitro phenyl)-furan-2-carbaldehyde and 5(4-nitro phenyl)-furan-2-carbaldehyde was determined by Knudsen's effusion method. The results are presented by the Clapeyron-Clausius equation in linear form, and via this form, the standard enthalpies, entropies and Gibbs energies of sublimation and evaporation of compounds were calculated at 298.15 K. The standard molar formation enthalpies of compounds in crystalline state at 298.15 K were determined indirectly by the corresponding standard molar combustion enthalpy, obtained using bomb calorimetry combustion. Determination of the thermodynamic properties for these compounds may contribute to solving practical problems pertaining optimization processes of their synthesis, purification and application and it will also provide a more thorough insight regarding the theoretical knowledge of their nature.Graphical abstract:Generalized structural formula of investigated compounds and their formation enthalpy determination scheme in the gaseous state.

  12. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  13. Phonon spectra, electronic, and thermodynamic properties of WS2 nanotubes.

    PubMed

    Evarestov, Robert A; Bandura, Andrei V; Porsev, Vitaly V; Kovalenko, Alexey V

    2017-11-15

    Hybrid density functional theory calculations are performed for the first time on the phonon dispersion and thermodynamic properties of WS 2 -based single-wall nanotubes. Symmetry analysis is presented for phonon modes in nanotubes using the standard (crystallographic) factorization for line groups. Symmetry and the number of infra-red and Raman active modes in achiral WS 2 nanotubes are given for armchair and zigzag chiralities. It is demonstrated that a number of infrared and Raman active modes is independent on the nanotube diameter. The zone-folding approach is applied to find out an impact of curvature on electron and phonon band structure of nanotubes rolled up from the monolayer. Phonon frequencies obtained both for layers and nanotubes are used to compute the thermal contributions to their thermodynamic functions. The temperature dependences of energy, entropy, and heat capacity of nanotubes are estimated with respect to those of the monolayer. The role of phonons in the stability estimation of nanotubes is discussed based on Helmholtz free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Electronic and thermodynamic properties of layered Hf2Sfrom first-principles calculations

    NASA Astrophysics Data System (ADS)

    Nandadasa, Chandani; Yoon, Mina; Kim, Seong-Gon; Erwin, Steve; Kim, Sungho; Kim, Sung Wng; Lee, Kimoon

    Theoretically we explored two stable phases of inorganic fullerene-like structure of the layered dihafnium sulfide (Hf2 S) . We investigated structural and electronic properties of the two phases of Hf2 S by using first-principles calculations. Our calculation identifies experimentally observed anti-NbS2 structure of Hf2 S . Our electronic calculation results indicate that the density of states of anti- NbS2 structure of Hf2 S at fermi level is less than that of the other phase of Hf2 S . To study the relative stability of different phases at finite temperature Helmholtz free energies of two phases are obtained using density functional theory and density functional perturbation theory. The free energy of the anti-NbS2 structure of Hf2 S always lies below the free energy of the other phase by confirming the most stable structure of Hf2 S . The phonon dispersion, phonon density of states including partial density of states and total density of states are obtained within density functional perturbation theory. Our calculated zero-pressure phonon dispersion curves confirm that the thermodynamic stability of Hf2 S structures. For further investigation of thermodynamic properties, the temperature dependency of thermal expansion, heat capacities at constant pressure and volume are evaluated within the quasiharmonic approximations (QHA).

  15. Influence of metallic vapours on thermodynamic and transport properties of two-temperature air plasma

    NASA Astrophysics Data System (ADS)

    Zhong, Linlin; Wang, Xiaohua; Cressault, Yann; Teulet, Philippe; Rong, Mingzhe

    2016-09-01

    The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg-Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.

  16. Comparison of O2 and H2O as oxygen source for homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Konishi, Keita; Goto, Ken; Togashi, Rie; Murakami, Hisashi; Higashiwaki, Masataka; Kuramata, Akito; Yamakoshi, Shigenobu; Monemar, Bo; Kumagai, Yoshinao

    2018-06-01

    Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy (HVPE) using O2 or H2O as an oxygen source was investigated by thermodynamic analysis, and compared with measured properties after growth. The thermodynamic analysis revealed that Ga2O3 growth is expected even at 1000 °C using both oxygen sources due to positive driving forces for Ga2O3 deposition. The experimental results for homoepitaxial growth on (0 0 1) β-Ga2O3 substrates showed that the surfaces of the layers grown with H2O were smoother than those grown with O2, although the growth rate with H2O was approximately half that with O2. However, in the homoepitaxial layer grown using H2O, incorporation of Si impurities with a concentration almost equal to the effective donor concentration (2 × 1016 cm-3) was confirmed, which was caused by decomposition of the quartz glass reactor due to the presence of hydrogen in the system.

  17. Influence of ɣ and ultrasonic irradiations on the physicochemical properties of CeO2-Fe2O3-Al2O3 for textile dyes removal applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Marwa M.; El-Molla, Sahar A.; Ismail, Sahar A.

    2018-04-01

    In this study highly effective adsorbent ternary mixed oxide CeO2-Fe2O3-Al2O3 was prepared by precipitation method. Various methods used to treat the mixed hydroxide like calcination, ultrasonic, hydrothermal and ɣ radiation with different doses to obtain the ternary mixed oxide. XRD, TEM, EDX, FTIR and SBET are used to study the physicochemical properties of nanoparticles. The CFAH and CFAɣ0.8 have the different morphologies and high surface area. Batch adsorption experiments were performed to remove anionic Remazol Red RB-133 dye. The experimental data showed that The CFAH and CFAɣ0.8 have high adsorption rate for removing of dye. The removal of dye is enhanced by ultrasonic radiation and high temperature. The adsorption process was fitted well for pseudo second order kinetics and followed the Freundlich isotherm model. In addition to, Thermodynamic results of adsorption process displayed that, the adsorption of dye on adsorbent was spontaneous, endothermic and chemisorptions process.

  18. Thermodynamic properties of chlorite and berthierine derived from calorimetric measurements

    NASA Astrophysics Data System (ADS)

    Blanc, Philippe; Gailhanou, Hélène; Rogez, Jacques; Mikaelian, Georges; Kawaji, Hitoshi; Warmont, Fabienne; Gaboreau, Stéphane; Grangeon, Sylvain; Grenèche, Jean-Marc; Vieillard, Philippe; Fialips, Claire I.; Giffaut, Eric; Gaucher, Eric C.; Claret, F.

    2014-09-01

    In the context of the deep waste disposal, we have investigated the respective stabilities of two iron-bearing clay minerals: berthierine ISGS from Illinois [USA; (Al0.975FeIII0.182FeII1.422Mg0.157Li0.035Mn0.002)(Si1.332Al0.668)O5(OH)4] and chlorite CCa-2 from Flagstaff Hill, California [USA; (Si2.633Al1.367)(Al1.116FeIII0.215Mg2.952FeII1.712Mn0.012Ca0.011)O10(OH)8]. For berthierine, the complete thermodynamic dataset was determined at 1 bar and from 2 to 310 K, using calorimetric methods. The standard enthalpies of formation were obtained by solution-reaction calorimetry at 298.15 K, and the heat capacities were measured by heat-pulse calorimetry. For chlorite, the standard enthalpy of formation is measured by solution-reaction calorimetry at 298.15 K. This is completing the entropy and heat capacity obtained previously by Gailhanou et al. (Geochim Cosmochim Acta 73:4738-4749, 2009) between 2 and 520 K, by using low-temperature adiabatic calorimetry and differential scanning calorimetry. For both minerals, the standard entropies and the Gibbs free energies of formation at 298.15 K were then calculated. An assessment of the measured properties could be carried out with respect to literature data. Eventually, the thermodynamic dataset allowed realizing theoretical calculations concerning the berthierine to chlorite transition. The latter showed that, from a thermodynamic viewpoint, the main factor controlling this transition is probably the composition of the berthierine and chlorite minerals and the nature of the secondary minerals rather than temperature.

  19. Structural, electronic, and thermodynamic properties of curium dioxide: Density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Hou, Ling; Li, Wei-Dong; Wang, Fangwei; Eriksson, Olle; Wang, Bao-Tian

    2017-12-01

    We present a systematic investigation of the structural, magnetic, electronic, mechanical, and thermodynamic properties of CmO2 with the local density approximation (LDA)+U and the generalized gradient approximation (GGA)+U approaches. The strong Coulomb repulsion and the spin-orbit coupling (SOC) effects on the lattice structures, electronic density of states, and band gaps are carefully studied, and compared with other A O2 (A =U , Np, Pu, and Am). The ferromagnetic configuration with half-metallic character is predicted to be energetically stable while a charge-transfer semiconductor is predicted for the antiferromagnetic configuration. The elastic constants and phonon spectra show that the fluorite structure is mechanically and dynamically stable. Based on the first-principles phonon density of states, the lattice vibrational energy is calculated using the quasiharmonic approximation. Then, the Gibbs free energy, thermal expansion coefficient, specific heat, and entropy are obtained and compared with experimental data. The mode Grüneisen parameters are presented to analyze the anharmonic properties. The Slack relation is applied to obtain the lattice thermal conductivity in temperature range of 300-1600 K. The phonon group velocities are also calculated to investigate the heat transfer. For all these properties, if available, we compare the results of CmO2 with other A O2 .

  20. Comparing contribution of flexural and planar modes to thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Mann, Sarita; Rani, Pooja; Jindal, V. K.

    2017-05-01

    Graphene, the most studied and explored 2D structure has unusual thermal properties such as negative thermal expansion, high thermal conductivity etc. We have already studied the thermal expansion behavior and various thermodynamic properties of pure graphene like heat capacity, entropy and free energy. The results of thermal expansion and various thermodynamic properties match well with available theoretical studies. For a deeper understanding of these properties, we analyzed the contribution of each phonon branch towards the total value of the individual property. To compute these properties, the dynamical matrix was calculated using VASP code where the density functional perturbation theory (DFPT) is employed under quasi-harmonic approximation in interface with phonopy code. It is noticed that transverse mode has major contribution to negative thermal expansion and all branches have almost same contribution towards the various thermodynamic properties with the contribution of ZA mode being the highest.

  1. Structural and thermodynamic study of dicesium molybdate Cs2Mo2O7: Implications for fast neutron reactors

    NASA Astrophysics Data System (ADS)

    Smith, A. L.; Kauric, G.; van Eijck, L.; Goubitz, K.; Wallez, G.; Griveau, J.-C.; Colineau, E.; Clavier, N.; Konings, R. J. M.

    2017-09-01

    The structure of α-Cs2Mo2O7 (monoclinic in space group P21 / c), which can form during irradiation in fast breeder reactors in the space between nuclear fuel and cladding, has been refined in this work at room temperature from neutron diffraction data. Furthermore, the compounds' thermal expansion and polymorphism have been investigated using high temperature X-ray diffraction combined with high temperature Raman spectroscopy. A phase transition has been observed at Ttr(α → β)=(621.9±0.8) K using Differential Scanning Calorimetry, and the structure of the β-Cs2Mo2O7 phase, orthorhombic in space group Pbcm, has been solved ab initio from the high temperature X-ray diffraction data. Furthermore, the low temperature heat capacity of α-Cs2Mo2O7 has been measured in the temperature range T=(1.9-313.2) K using a Quantum Design PPMS (Physical Property Measurement System) calorimeter. The heat capacity and entropy values at T=298.15 K have been derived as Cp,mo (Cs2Mo2O7 , cr , 298.15 K) = (211.9 ± 2.1) J K-1mol-1 and Smo (Cs2Mo2O7 , cr , 298.15 K) = (317.4 ± 4.3) J K-1mol-1 . When combined with the enthalpy of formation reported in the literature, these data yield standard entropy and Gibbs energy of formation as Δf Smo (Cs2Mo2O7 , cr , 298.15 K) = - (628.2 ± 4.4) J K-1mol-1 and Δf Gmo (Cs2Mo2O7 , cr , 298.15 K) = - (2115.1 ± 2.5) kJmol-1 . Finally, the cesium partial pressure expected in the gap between fuel and cladding following the disproportionation reaction 2Cs2MoO4=Cs2Mo2O7+2Cs(g)+ 1/2 O2(g) has been calculated from the newly determined thermodynamic functions.

  2. Thermodynamic Properties of HCFC142b

    NASA Astrophysics Data System (ADS)

    Fukushima, Masato; Watanabe, Naohiro

    Thermodynamic properties of HCFC142b,namely saturated densities,vapor pressures and PVT properties,were measured and the critical parameters were determined through those experimental results. The correlations for vpor pressure, saturated liquid density and PVT properties deduced from those experimental results were compared with the measured data and also with the estimates of the other correlations published in literatures. The thermodynamic functions,such as enthalpy,entropy,heat capacity and etc.,could be considered to be reasonab1y estimatedby the expression reported in this paper.

  3. Structure, stability, and thermomechanical properties of Ca-substituted Pr2NiO4 + δ

    NASA Astrophysics Data System (ADS)

    Pikalova, E. Yu.; Medvedev, D. A.; Khasanov, A. F.

    2017-04-01

    Ca-substituted layered nickelates with a general Pr2- x Ca x NiO4 + δ composition ( x = 0-0.7, Δ x = 0.1) were prepared in the present work and their structural and physic-chemical properties were investigated in order to select the most optimal materials, which can be used as cathodes for solid oxide fuel cells. With an increase in Ca content in Pr2- x Ca x NiO4 + δ the following tendencies were observed: (i) a decrease in the concentration of nonstoichiometric oxygen (δ), (ii) a decrease in the unit cell parameters and volume, (iii) stabilization of the tetragonal structure, (iv) a decrease of the thermal expansion coefficients, and (v) enchancement of thermodynamic stability and compatibility with selected oxygen- and proton-conducting electrolytes. The Pr1.9Ca0.1NiO4 + δ material, having highest δ value, departs from the general "properties-composition" dependences ascertained. This indicates that oxygen non-stoichiometry has determining influence on the functional properties of layered nickelates.

  4. Thermodynamic and Kinetic Properties of Shocks in Two-Dimensional Yukawa Systems [Thermodynamic and Kinetic Properties of Shocks in 2D Yukawa Systems

    DOE PAGES

    Marciante, Mathieu; Murillo, Michael Sean

    2017-01-10

    Particle-level simulations of shocked plasmas are carried out to examine kinetic properties not captured by hydrodynamic models. In particular, molecular dynamics simulations of 2D Yukawa plasmas with variable couplings and screening lengths are used to examine shock features unique to plasmas, including the presence of dispersive shock structures for weak shocks. A phase-space analysis reveals several kinetic properties, including anisotropic velocity distributions, non-Maxwellian tails, and the presence of fast particles ahead of the shock, even for moderately low Mach numbers. As a result, we also examine the thermodynamics (Rankine-Hugoniot relations) of recent experiments and find no anomalies in their equationsmore » of state.« less

  5. Thermodynamic and Kinetic Properties of Shocks in Two-Dimensional Yukawa Systems [Thermodynamic and Kinetic Properties of Shocks in 2D Yukawa Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marciante, Mathieu; Murillo, Michael Sean

    Particle-level simulations of shocked plasmas are carried out to examine kinetic properties not captured by hydrodynamic models. In particular, molecular dynamics simulations of 2D Yukawa plasmas with variable couplings and screening lengths are used to examine shock features unique to plasmas, including the presence of dispersive shock structures for weak shocks. A phase-space analysis reveals several kinetic properties, including anisotropic velocity distributions, non-Maxwellian tails, and the presence of fast particles ahead of the shock, even for moderately low Mach numbers. As a result, we also examine the thermodynamics (Rankine-Hugoniot relations) of recent experiments and find no anomalies in their equationsmore » of state.« less

  6. Thermodynamic assessment of the rhodium-ruthenium-oxygen (Rh-Ru-O) system

    NASA Astrophysics Data System (ADS)

    Gossé, S.; Bordier, S.; Guéneau, C.; Brackx, E.; Domenger, R.; Rogez, J.

    2018-03-01

    Ruthenium (Ru) and rhodium (Rh) are abundant platinum-group metals formed during burn-up of nuclear fuels. Under normal operating conditions, Rh and Ru accumulate and predominantly form metallic precipitates with other fission products like Mo, Pd and Tc. In the framework of vitrification of high-level nuclear waste, these fission products are poorly soluble in molten glasses. They precipitate as metallic particles and oxide phases. Moreover, these Ru and Rh rich phases strongly depend on temperature and the oxygen fugacity of the glass melt. In case of severe accidental conditions with air ingress, oxidation of the Ru and Rh is possible. At low temperatures (T < 1422 K for rhodium sesquioxide and T < 1815 K for ruthenium dioxide), the formed oxides are relatively stable. On the other hand, at high temperatures (T > 1422 K for rhodium sesquioxide and T > 1815 K for ruthenium dioxide), they may decompose into (Rh)-FCC or (Ru)-HCP metallic phases and radiotoxic volatile gaseous species. A thermodynamic assessment of the Rh-Ru-O system will enable the prediction of: (1) the metallic and oxide phases that form during the vitrification of high-level nuclear wastes and (2) the release of volatile gaseous species during a severe accident. The Calphad method developed herein employs a thermodynamic approach in the investigation of the thermochemistry of rhodium and ruthenium at high temperatures. Current literature on the thermodynamic properties and phase diagram data enables preliminary thermodynamic assessments of the Rh-O and Ru-O systems. Additionally, select compositions in the ternary Rh-Ru-O system underwent experimental tests to complement data found in literature and to establish the phase equilibria in the ternary system.

  7. Thermodynamic Database for the NdO(1.5)-YO(1.5)-YbO(1.5)-ScO(1.5)-ZrO2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Copland, Evan H.; Kaufman, Larry

    2001-01-01

    A database for YO(1.5)-NdO(1.5)-YbO(1.5)-ScO(1.5)-ZrO2 for ThermoCalc (ThermoCalc AB, Stockholm, Sweden) has been developed. The basis of this work is the YO(1.5)-ZrO2 assessment by Y. Du, Z. Jin, and P. Huang, 'Thermodynamic Assessment of the ZrO2-YO(1.5) System'. Experimentally only the YO(1.5)-ZrO2 system has been well-studied. All other systems are only approximately known. The major simplification in this work is the treatment of each single cation unit as a component. The pure liquid oxides are taken as reference states and two term lattice stability descriptions are used for each of the components. The limited experimental phase diagrams are reproduced.

  8. Thermodynamic properties of some metal oxide-zirconia systems

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1989-01-01

    Metal oxide-zirconia systems are a potential class of materials for use as structural materials at temperatures above 1900 K. These materials must have no destructive phase changes and low vapor pressures. Both alkaline earth oxide (MgO, CaO, SrO, and BaO)-zirconia and some rare earth oxide (Y2O3, Sc2O3, La2O3, CeO2, Sm2O3, Gd2O3, Yb2O3, Dy2O3, Ho2O3, and Er2O3)-zirconia system are examined. For each system, the phase diagram is discussed and the vapor pressure for each vapor species is calculated via a free energy minimization procedure. The available thermodynamic literature on each system is also surveyed. Some of the systems look promising for high temperature structural materials.

  9. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  10. Theoretical prediction of Grüneisen parameter for SiO{sub 2}.TiO{sub 2} bulk metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Chandra K.; Pandey, Brijesh K., E-mail: bkpmmmec11@gmail.com; Pandey, Anjani K.

    2016-05-23

    The Grüneisen parameter (γ) is very important to decide the limitations for the prediction of thermoelastic properties of bulk metallic glasses. It can be defined in terms of microscopic and macroscopic parameters of the material in which former is based on vibrational frequencies of atoms in the material while later is closely related to its thermodynamic properties. Different formulation and equation of states are used by the pioneer researchers of this field to predict the true sense of Gruneisen parameter for BMG but for SiO{sub 2}.TiO{sub 2} very few and insufficient information is available till now. In the present workmore » we have tested the validity of two different isothermal EOS viz. Poirrior-Tarantola EOS and Usual-Tait EOS to predict the true value of Gruneisen parameter for SiO{sub 2}.TiO{sub 2} as a function of compression. Using different thermodynamic limitations related to the material constraints and analyzing obtained result it is concluded that the Poirrior-Tarantola EOS gives better numeric values of Grüneisen parameter (γ) for SiO{sub 2}.TiO{sub 2} BMG.« less

  11. Thermodynamic properties of potassium chloride aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  12. Structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 phases from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, X. D.; Li, K.; Wei, C. H.; Han, W. D.; Zhou, N. G.

    2018-06-01

    The structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 are systematically investigated by using first-principles calculations method based on density functional theory (DFT). The calculated formation enthalpies and cohesive energies show that CaSi2 possesses the greatest structural stability and CaSi has the strongest alloying ability. The structural stability of the three phases is compared according to electronic structures. Further analysis on electronic structures indicates that the bonding of these phases exhibits the combinations of metallic, covalent, and ionic bonds. The elastic constants are calculated, and the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor of polycrystalline materials are deduced. Additionally, the thermodynamic properties were theoretically predicted and discussed.

  13. A Thermodynamic Model for Predicting Mineral Reactivity in Supercritical Carbon Dioxide: I. Phase Behavior of Carbon Dioxide - Water - Chloride Salt Systems Across the H2O-Rich to the CO2-Rich Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, Ronald D.; Wang, Zheming; Anderko, Andre

    Phase equilibria in mixtures containing carbon dioxide, water, and chloride salts have been investigated using a combination of solubility measurements and thermodynamic modeling. The solubility of water in the CO2-rich phase of ternary mixtures of CO2, H2O and NaCl or CaCl2 was determined, using near infrared spectroscopy, at 90 atm and 40 to 100 °C. These measurements fill a gap in the experimental database for CO2 water salt systems, for which phase composition data have been available only for the H2O-rich phases. A thermodynamic model for CO2 water salt systems has been constructed on the basis of the previously developedmore » Mixed-Solvent Electrolyte (MSE) framework, which is capable of modeling aqueous solutions over broad ranges of temperature and pressure, is valid to high electrolyte concentrations, treats mixed-phase systems (with both scCO2 and water present) and can predict the thermodynamic properties of dry and partially water-saturated supercritical CO2 over broad ranges of temperature and pressure. Within the MSE framework the standard-state properties are calculated from the Helgeson-Kirkham-Flowers equation of state whereas the excess Gibbs energy includes a long-range electrostatic interaction term expressed by a Pitzer-Debye-Hückel equation, a virial coefficient-type term for interactions between ions and a short-range term for interactions involving neutral molecules. The parameters of the MSE model have been evaluated using literature data for both the H2O-rich and CO2-rich phases in the CO2 - H2O binary and for the H2O-rich phase in the CO2 - H2O - NaCl / KCl / CaCl2 / MgCl2 ternary and multicompontent systems. The model accurately represents the properties of these systems at temperatures from 0°C to 300 °C and pressures up to ~4000 atm. Further, the solubilities of H2O in CO2-rich phases that are predicted by the model are in agreement with the new measurements for the CO2 - H2O - NaCl and CO2 - H2O - CaCl2 systems. Thus, the model

  14. First-principles study on the electronic, optical and thermodynamic properties of ABO 3 (A = La,Sr, B = Fe,Co) perovskites

    DOE PAGES

    Jia, Ting; Zeng, Zhi; Lin, H. Q.; ...

    2017-08-08

    The electronic, optical and thermodynamic properties of ABO 3 (A = La,Sr, B = Fe,Co) perovskites are investigated using first-principles calculations. The obtained results indicate that SrCoO 3 and SrFeO 3 are metals, while LaCoO 3 and LaFeO 3 are insulators and all of them exhibit strong hybridization of the Fe/Co-3d and O-2p orbitals. By correlating the energy band structures with the peaks of the imaginary part of the dielectric function, we obtained the origin of each electron excitation to provide information about the active bands for the corresponding optical transitions observed in the experiment. Moreover, the Debye temperatures θmore » D obtained from the phonon frequencies are comparable to the available data. In conclusion, the thermodynamic properties of the Helmholtz free energy F, entropy S, and constant-volume heat capacity C v are investigated based on the phonon spectra.« less

  15. Thermodynamics of formation of coffinite, USiO4

    PubMed Central

    Guo, Xiaofeng; Szenknect, Stéphanie; Mesbah, Adel; Labs, Sabrina; Clavier, Nicolas; Poinssot, Christophe; Ushakov, Sergey V.; Curtius, Hildegard; Bosbach, Dirk; Ewing, Rodney C.; Burns, Peter C.; Dacheux, Nicolas; Navrotsky, Alexandra

    2015-01-01

    Coffinite, USiO4, is an important U(IV) mineral, but its thermodynamic properties are not well-constrained. In this work, two different coffinite samples were synthesized under hydrothermal conditions and purified from a mixture of products. The enthalpy of formation was obtained by high-temperature oxide melt solution calorimetry. Coffinite is energetically metastable with respect to a mixture of UO2 (uraninite) and SiO2 (quartz) by 25.6 ± 3.9 kJ/mol. Its standard enthalpy of formation from the elements at 25 °C is −1,970.0 ± 4.2 kJ/mol. Decomposition of the two samples was characterized by X-ray diffraction and by thermogravimetry and differential scanning calorimetry coupled with mass spectrometric analysis of evolved gases. Coffinite slowly decomposes to U3O8 and SiO2 starting around 450 °C in air and thus has poor thermal stability in the ambient environment. The energetic metastability explains why coffinite cannot be synthesized directly from uraninite and quartz but can be made by low-temperature precipitation in aqueous and hydrothermal environments. These thermochemical constraints are in accord with observations of the occurrence of coffinite in nature and are relevant to spent nuclear fuel corrosion. PMID:25964321

  16. Thermodynamic properties of water solvating biomolecular surfaces

    NASA Astrophysics Data System (ADS)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  17. A first-principles density functional theory study of the electronic structural and thermodynamic properties of M2ZrO3 and M2CO3 (M=Na, K) and their capabilities for CO2 capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhua Duan

    2012-01-01

    Alkali metal zirconates could be used as solid sorbents for CO{sub 2} capture. The structural, electronic, and phonon properties of Na{sub 2}ZrO{sub 3}, K{sub 2}ZrO{sub 3}, Na{sub 2}CO{sub 3}, and K{sub 2}CO{sub 3} are investigated by combining the density functional theory with lattice phonon dynamics. The thermodynamics of CO{sub 2} absorption/desorption reactions of these two zirconates are analyzed. The calculated results show that their optimized structures are in a good agreement with experimental measurements. The calculated band gaps are 4.339 eV (indirect), 3.641 eV (direct), 3.935 eV (indirect), and 3.697 eV (direct) for Na{sub 2}ZrO{sub 3}, K{sub 2}ZrO{sub 3}, Na{submore » 2}CO{sub 3}, and K{sub 2}CO{sub 3}, respectively.The calculated phonon dispersions and phonon density of states for M{sub 2}ZrO{sub 3} and M{sub 2}CO{sub 3} (M = K, Na, Li) revealed that from K to Na to Li, their frequency peaks are shifted to high frequencies due to the molecular weight decreased from K to Li. From the calculated reaction heats and relationships of free energy change versus temperatures and CO{sub 2} pressures of the M{sub 2}ZrO{sub 3} (M = K, Na, Li) reacting with CO{sub 2}, we found that the performance of Na{sub 2}ZrO{sub 3} capturing CO{sub 2} is similar to that of Li{sub 2}ZrO{sub 3} and is better than that of K{sub 2}ZrO{sub 3}. Therefore, Na{sub 2}ZrO{sub 3} and Li{sub 2}ZrO{sub 3} are good candidates of high temperature CO{sub 2} sorbents and could be used for post combustion CO{sub 2} capture technologies.« less

  18. Development of a critically evaluated thermodynamic database for the systems containing alkaline-earth oxides

    NASA Astrophysics Data System (ADS)

    Shukla, Adarsh

    In a thermodynamic system which contains several elements, the phase relationships among the components are usually very complex. Especially, systems containing oxides are generally very difficult to investigate owing to the very high experimental temperatures and corrosive action of slags. Due to such difficulties, large inconsistencies are often observed among the available experimental data. In order to investigate and understand the complex phase relationships effectively, it is very useful to develop thermodynamic databases containing optimized model parameters giving the thermodynamic properties of all phases as functions of temperature and composition. In a thermodynamic optimization, adjustable model parameters are calculated using, simultaneously, all available thermodynamic and phase-equilibrium data in order to obtain one set of model equations as functions of temperature and composition. Thermodynamic data, such as activities, can aid in the evaluation of the phase diagrams, and information on phase equilibria can be used to deduce thermodynamic properties. Thus, it is frequently possible to resolve discrepancies in the available data. From the model equations, all the thermodynamic properties and phase diagrams can be back-calculated, and interpolations and extrapolations can be made in a thermodynamically correct manner. The data are thereby rendered self-consistent and consistent with thermodynamic principles, and the available data are distilled into a small set of model parameters, ideal for computer storage. As part of a broader research project at the Centre de Recherche en Calcul Thermochimique (CRCT), Ecole Polytechnique to develop a thermodynamic database for multicomponent oxide systems, this thesis deals with the addition of components SrO and BaO to the existing multicomponent database of the SiO2-B2O3-Al2O 3-CaO-MgO system. Over the years, in collaboration with many industrial companies, a thermodynamic database for the SiO2-B2O 3-Al2O3-CaO-MgO

  19. Insight into the Am-O Phase Equilibria: A Thermodynamic Study Coupling High-Temperature XRD and CALPHAD Modeling.

    PubMed

    Epifano, Enrica; Guéneau, Christine; Belin, Renaud C; Vauchy, Romain; Lebreton, Florent; Richaud, Jean-Christophe; Joly, Alexis; Valot, Christophe; Martin, Philippe M

    2017-07-03

    In the frame of minor actinide transmutation, americium can be diluted in UO 2 and (U, Pu)O 2 fuels burned in fast neutron reactors. The first mandatory step to foresee the influence of Am on the in-reactor behavior of transmutation targets or fuel is to have fundamental knowledge of the Am-O binary system and, in particular, of the AmO 2-x phase. In this study, we coupled HT-XRD (high-temperature X-ray diffraction) experiments with CALPHAD thermodynamic modeling to provide new insights into the structural properties and phase equilibria in the AmO 2-x -AmO 1.61+x -Am 2 O 3 domain. Because of this approach, we were able for the first time to assess the relationships between temperature, lattice parameter, and hypostoichiometry for fcc AmO 2-x . We showed the presence of a hyperstoichiometric existence domain for the bcc AmO 1.61+x phase and the absence of a miscibility gap in the fcc AmO 2-x phase, contrary to previous representations of the phase diagram. Finally, with the new experimental data, a new CALPHAD thermodynamic model of the Am-O system was developed, and an improved version of the phase diagram is presented.

  20. Highly efficient removal of chlorotetracycline from aqueous solution using graphene oxide/TiO2 composite: Properties and mechanism

    NASA Astrophysics Data System (ADS)

    Li, Zhaoqian; Qi, Mengyu; Tu, Chunyan; Wang, Weiping; Chen, Jianrong; Wang, Ai-Jun

    2017-12-01

    The extensive usage of chlorotetracycline (CTC) has caused the persistence of antibiotic residues in aquatic environments, resulting in serious threat to human health and ecosystems. In this study, graphene oxide/titanium dioxide (GO/TiO2) nanocomposite was successfully synthesized via in situ hydrolysis of tetra-n-butyl titanate (Ti(BuO)4) to TiO2 particles on GO sheets and used as adsorbent for efficient adsorptive removal of CTC from aqueous solution. The prepared GO/TiO2 was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), Raman spectroscopy and X-ray photoelectron (XPS). Adsorption kinetics, isotherms and thermodynamics were systematically investigated to evaluate the adsorption properties of GO/TiO2. Adsorption mechanism was further analyzed by FT-IR, UV-vis and XPS. The results indicated that adsorption kinetics closely followed the pseudo-second order model; the maximum adsorption capacity determined by Langmuir model was 261.10 mg g-1 at 298 K and the thermodynamic studies revealed that the adsorption of CTC onto the GO/TiO2 was a spontaneous and endothermic process. Moreover, the interactions between CTC and GO/TiO2 were presumed to be ligand exchange between CTC and TiO2, while the π-π electron donor-acceptor interaction, hydrogen bond and cation-π bonding were constructed between CTC and GO. Finally, the prepared GO/TiO2 was successfully applied for the efficient removal of CTC from Wu River water.

  1. Thermodynamic properties of gaseous ruthenium species.

    PubMed

    Miradji, Faoulat; Souvi, Sidi; Cantrel, Laurent; Louis, Florent; Vallet, Valérie

    2015-05-21

    The review of thermodynamic data of ruthenium oxides reveals large uncertainties in some of the standard enthalpies of formation, motivating the use of high-level relativistic correlated quantum chemical methods to reduce the level of discrepancies. The reaction energies leading to the formation of ruthenium oxides RuO, RuO2, RuO3, and RuO4 have been calculated for a series of reactions. The combination of different quantum chemical methods has been investigated [DFT, CASSCF, MRCI, CASPT2, CCSD(T)] in order to predict the geometrical parameters, the energetics including electronic correlation and spin-orbit coupling. The most suitable method for ruthenium compounds is the use of TPSSh-5%HF for geometry optimization, followed by CCSD(T) with complete basis set (CBS) extrapolations for the calculation of the total electronic energies. SO-CASSCF seems to be accurate enough to estimate spin-orbit coupling contributions to the ground-state electronic energies. This methodology yields very accurate standard enthalpies of formations of all species, which are either in excellent agreement with the most reliable experimental data or provide an improved estimate for the others. These new data will be implemented in the thermodynamical databases that are used by the ASTEC code (accident source term evaluation code) to build models of ruthenium chemistry behavior in severe nuclear accident conditions. The paper also discusses the nature of the chemical bonds both from molecular orbital and topological view points.

  2. A kinetic and thermodynamic understanding of O2 tolerance in [NiFe]-hydrogenases

    PubMed Central

    Cracknell, James A.; Wait, Annemarie F.; Lenz, Oliver; Friedrich, Bärbel; Armstrong, Fraser A.

    2009-01-01

    In biology, rapid oxidation and evolution of H2 is catalyzed by metalloenzymes known as hydrogenases. These enzymes have unusual active sites, consisting of iron complexed by carbonyl, cyanide, and thiolate ligands, often together with nickel, and are typically inhibited or irreversibly damaged by O2. The Knallgas bacterium Ralstonia eutropha H16 (Re) uses H2 as an energy source with O2 as a terminal electron acceptor, and its membrane-bound uptake [NiFe]-hydrogenase (MBH) is an important example of an “O2-tolerant” hydrogenase. The mechanism of O2 tolerance of Re MBH has been probed by measuring H2 oxidation activity in the presence of O2 over a range of potential, pH and temperature, and comparing with the same dependencies for individual processes involved in the attack by O2 and subsequent reactivation of the active site. Most significantly, O2 tolerance increases with increasing temperature and decreasing potentials. These trends correlate with the trends observed for reactivation kinetics but not for H2 affinity or the kinetics of O2 attack. Clearly, the rate of recovery is a crucial factor. We present a kinetic and thermodynamic model to account for O2 tolerance in Re MBH that may be more widely applied to other [NiFe]-hydrogenases. PMID:19934053

  3. First-principles investigations into the thermodynamics of cation disorder and its impact on electronic structure and magnetic properties of spinel Co(Cr1-x Mn x )2O4

    NASA Astrophysics Data System (ADS)

    Das, Debashish; Ghosh, Subhradip

    2017-02-01

    Cation disorder over different crystallographic sites in spinel oxides is known to affect their properties. Recent experiments on Mn doped multiferroic \\text{CoC}{{\\text{r}}2}{{\\text{O}}4} indicate that a possible distribution of Mn atoms among tetrahedrally and octahedrally coordinated sites in the spinel lattice give rise to different variations in the structural parameters and saturation magnetisations in different concentration regimes of Mn atoms substituting the Cr. A composition dependent magnetic compensation behaviour points to the role conversions of the magnetic constituents. In this work, we have investigated the thermodynamics of cation disorder in \\text{Co}{{≤ft(\\text{C}{{\\text{r}}1-x}\\text{M}{{\\text{n}}x}\\right)}2}{{\\text{O}}4} system and its consequences on the structural, electronic and magnetic properties, using results from first-principles electronic structure calculations. We have computed the variations in the cation-disorder as a function of Mn concentration and the temperature and found that at the annealing temperature of the experiment many of the systems exhibit cation disorder. Our results support the interpretations of the experimental results regarding the qualitative variations in the sub-lattice occupancies and the associated magnetisation behaviour, with composition. We have analysed the variations in structural, magnetic and electronic properties of this system with variations in the compositions and the degree of cation disorder from the variations in their electronic structures and by using the ideas from crystal field theory. Our study provides a complete microscopic picture of the effects that are responsible for composition dependent behavioural differences of the properties of this system. This work lays down a general framework, based upon results from first-principles calculations, to understand and analyse the substitutional magnetic spinel oxides A{{≤ft({{B}1-x}{{C}x}\\right)}2}{{\\text{O}}4} in presence of

  4. Interfacial engineering of solution-processed Ni nanochain-SiO x (x< 2) cermets towards thermodynamically stable, anti-oxidation solar selective absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiaobai; Wang, Xiaoxin; Zhang, Qinglin

    Here, cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO x cermet system compared to conventional Ni-Al 2O 3 system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in thismore » paper, we demonstrate that pre-operation annealing of Ni nanochain-SiO x cermets at 900 °C in N 2 forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO x interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N 2 (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO x interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO x saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any interfacial changes due to the localized surface plasmon

  5. Interfacial engineering of solution-processed Ni nanochain-SiO x (x< 2) cermets towards thermodynamically stable, anti-oxidation solar selective absorbers

    DOE PAGES

    Yu, Xiaobai; Wang, Xiaoxin; Zhang, Qinglin; ...

    2016-04-01

    Here, cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO x cermet system compared to conventional Ni-Al 2O 3 system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in thismore » paper, we demonstrate that pre-operation annealing of Ni nanochain-SiO x cermets at 900 °C in N 2 forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO x interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N 2 (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO x interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO x saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any interfacial changes due to the localized surface plasmon

  6. Properties of C4F7N–CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients

    NASA Astrophysics Data System (ADS)

    Wu, Yi; Wang, Chunlin; Sun, Hao; Murphy, Anthony B.; Rong, Mingzhe; Yang, Fei; Chen, Zhexin; Niu, Chunpin; Wang, Xiaohua

    2018-04-01

    The thermophysical properties, including composition, thermodynamic properties, transport coefficients and net emission coefficients, of thermal plasmas formed from pure iso-C4 perfluoronitrile C4F7N and C4F7N–CO2 mixtures are calculated for temperatures from 300 to 30 000 K and pressures from 0.1 to 20 atm. These gases have received much attention as alternatives to SF6 for use in circuit breakers, due to the low global warming potential and good dielectric properties of C4F7N. Since the parameters of the large molecules formed in the dissociation of C4F7N are unavailable, the partition function and enthalpy of formation were calculated using computational chemistry methods. From the equilibrium composition calculations, it was found that when C4F7N is mixed with CO2, CO2 can capture C atoms from C4F7N, producing CO, since the system consisting of small molecules such as CF4 and CO has lower energy at room temperature. This is in agreement with previous experimental results, which show that CO dominates the decomposition products of C4F7N–CO2 mixtures; it could limit the repeated breaking performance of C4F7N. From the point of view of chemical stability, the mixing ratio of CO2 should therefore be chosen carefully. Through comparison with common arc quenching gases (including SF6, CF3I and C5F10O), it is found that for the temperature range for which electrical conductivity remains low, pure C4F7N has similar ρC p (product of mass density and specific heat) properties to SF6, and higher radiative emission coefficient, properties that are correlated with good arc extinguishing capability. For C4F7N–CO2 mixtures, the electrical conductivity is very close to that of SF6 while the ρC p peak at 7000 K caused by decomposition of CO implies inferior interruption capability to that of SF6. The calculated properties will be useful in arc simulations.

  7. Thermodynamics of open networks: Ordering and entropy in NaAlSiO4 glass, liquid, and polymorphs

    USGS Publications Warehouse

    Richet, P.; Robie, R.A.; Rogez, J.; Hemingway, B.S.; Courtial, P.; Tequi, C.

    1990-01-01

    The thermodynamic properties of carnegieite and NaAlSiO4 glass and liquid have been investigated through Cp determinations from 10 to 1800 K and solution-calorimetry measurements. The relative entropies S298-S0 of carnegieite and NaAlSiO4 glass are 118.7 and 124.8 J/mol K, respectively. The low-high carnegieite transition has been observed at 966 K with an enthalpy of transition of 8.1??0.3 kJ/mol, and the enthalpy of fusion of carnegieite at the congruent melting point of 1799 K is 21.7??3 kJ/mol. These results are consistent with the reported temperature of the nepheline-carnegieite transition and available thermodynamic data for nepheline. The entropy of quenched NaAlSiO4 glass at 0 K is 9.7??2 J/mol K and indicates considerable ordering among AlO4 and SiO4 tetrahedra. In the liquid state, progressive, temperature-induced Si, Al disordering could account for the high configurational heat capacity. Finally, the differences between the entropies and heat capacities of nepheline and carnegieite do not seem to conform to current polyhedral modeling of these properties ?? 1990 Springer-Verlag.

  8. Thermodynamics, Diffusion, and Structure of Mg2SiO4 forsterite grain boundaries from atomistic modeling

    NASA Astrophysics Data System (ADS)

    Adjaoud, O.; Marquardt, K.; Jahn, S.

    2011-12-01

    Most materials are not single crystals but consist of crystalline grains of various sizes, misorientated with respect to each other and joint by grain boundaries. The latter influence many of the material properties. For instance, grain boundaries are short circuits for diffusion and thus they strongly influence transport properties of materials such as electrical conductivity, or mineral growth rates, creep, or phase transform. Olivine is a major component of the Earth's upper mantle and therefore it is of considerable importance to study its physical and thermodynamic polycrystalline properties. In the present study, we have used molecular dynamics simulations to model thermodynamics, self-diffusion and structure of a series of [100] symmetric tilt grain boundaries in forsterite. The interactions between the atoms are modeled by an advanced ionic interaction potential (Jahn and Madden, 2007). The parameters of the potential are fitted to ab initio results. The model was optimized for the Ca-Mg-Al-Si-O system and shows good transferability in a wide range of pressures, temperatures, and compositions. Thermodynamics and structure were simulated at ambient conditions, and self-diffusion coefficients were determined at ambient pressure and temperatures of 1250, 1500, 1750, and 2000 K. We find that the energy and excess free volume of the grain boundaries in forsterite depend significantly on the misorientation angle of the grain boundary. One of our modeled structures is compared with an high-resolution transmission electron micrograph (HRTEM) (Heinemann et al., 2005). We relate our findings to previous studies of grain boundaries in ionic materials and in metals. For small misorientation angles (up to 22.1°), grain boundary structures consist of an array of c-edge dislocations as suggested by Heinemann et al. (2005) and their energies can be readily fit with the Read-Shockley dislocation model for grain boundaries. For high misorientation angles (32.1° and 60.8

  9. Molecular dynamics studies of CaAl 2Si 2O 8 liquid. Part II: Equation of state and a thermodynamic model

    NASA Astrophysics Data System (ADS)

    Ghiorso, Mark S.; Nevins, Dean; Cutler, Ian; Spera, Frank J.

    2009-11-01

    A thermodynamic model and equation of state (EOS) is developed from the molecular dynamics simulation experiments of Spera et al. (2009) for CaAl 2Si 2O 8 liquid over the temperature range 3500-6000 K and pressure interval 0-125 GPa. The model is constructed utilizing the isothermal Universal EOS of Vinet et al. (1986) combined with an expression for the temperature-dependence of the internal energy derived from density functional theory ( Rosenfeld and Tarazona, 1998). It is demonstrated that this model is more successful at reproducing the data than the temperature-dependent Universal EOS ( Vinet et al., 1987) or the volume-explicit EOS of Ghiorso (2004a). Distinct parameterizations are required to model low (<20 GPa) and high (>20 GPa) pressure regimes. This result is ascribed to the affect of liquid structure on macroscopic thermodynamic properties, specifically the interdependence of average cation-oxygen coordination number on the bulk modulus. The thermodynamic transition between the high- and low-pressure parameterizations is modeled as second order, although the nature of the transition is open to question and may well be first order or lambda-like in character. Analysis of the thermodynamic model reveals a predicted region of liquid-liquid un-mixing at low-temperatures (<1624 K) and pressures (<1.257 GPa). These pressure-temperature conditions are above the glass transition temperature but within the metastable liquid region. They represent the highest temperatures yet suggested for liquid-liquid un-mixing in a silicate bulk composition. A shock wave Hugoniot curve is calculated for comparison with the experimental data of Rigden et al. (1989) and of Asimow and Ahrens (2008). The comparison suggests that the model developed in this paper underestimates the density of the liquid by roughly 10% at pressures greater than ˜20 GPa.

  10. First-principles calculation of the structure and electronic properties of Fe-substituted Bi2Ti2O7

    NASA Astrophysics Data System (ADS)

    Huang, Jin-Dou; Zhang, Zhenyi; Lin, Feng; Dong, Bin

    2017-12-01

    We performed first-principles calculations to investigate the formation energy, geometry structure, and electronic property of Fe-doped Bi2Ti2O7 systems with different Fe doping content. The calculated formation energies indicate that the substitutional configurations of Fe-doping Bi2Ti2O7 are easy to obtain under O-rich growth condition, but their thermodynamic stability decreases with the increase of Fe content. The calculated spin-resolved density of states and band structures indicate that the introduction of Fe into Bi2Ti2O7 brings high spin polarization. The spin-down impurity levels in Fe x Bi2-x Ti2O7 and spin-up impurity levels in Fe x Bi2Ti2-x O7 systems locate in the bottom of conduction band and narrow the band gap significantly, thus leading to the absorption of visible light. Interestingly, the impurity states in Fe x Bi2-x Ti2O7 are the efficient separation center of photogenerated electron and hole, and less affected by Fe doping content, in comparison, the levels of impurity band in Fe x Bi2Ti2-x O7 systems are largely effected by the Fe doping content, and high Fe doping content is the key factor to improve the separating rate of photogenerated electron and hole.

  11. Theoretical study of isostructural compounds MTe2 (M = Ni, Pd and Pt) on structure and thermodynamic properties under high pressures

    NASA Astrophysics Data System (ADS)

    Lei, Jin-Qiao; Liu, Ke; Huang, Sha; Mao, Xiao-Chun; Hou, Bao-Sen; Tan, Jiao; Zhou, Xiao-Lin

    2017-11-01

    The mechanical, electronic and thermodynamic properties of MTe2 (M = Ni, Pd and Pt) under high pressure were investigated via the first-principles calculations. According to our calculations of these trigonal crystals (space group of P3M1, No: 164), we found that all of them are fulfilled by the mechanical stability criteria under 31 GPa (for NiTe2), 37 GPa (for PdTe2) and 73 GPa (for PtTe2). The study on their structures revealed the elastic anisotropy of these isostructural compounds. Electronic structure calculations show that MTe2 are semi-metal. On the basis of the quasi-harmonic Debye model, we also researches their thermodynamic properties.

  12. Optical and vibrational properties of (ZnO){sub k} In{sub 2}O{sub 3} natural superlattice nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margueron, Samuel; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Maryland 02138; Pokorny, Jan

    2016-05-21

    A thermodynamically stable series of superlattices, (ZnO){sub k}In{sub 2}O{sub 3}, form in the ZnO-In{sub 2}O{sub 3} binary oxide system for InO{sub 1.5} concentrations from about 13 up to about 33 mole percent (m/o). These natural superlattices, which consist of a periodic stacking of single, two-dimensional sheets of InO{sub 6} octahedra, are found to give rise to systematic changes in the optical and vibrational properties of the superlattices. Low-frequency Raman scattering provides the evidence for the activation of acoustic phonons due to the folding of Brillouin zone. New vibrational modes at 520 and 620 cm{sup −1}, not present in either ZnO ormore » In{sub 2}O{sub 3}, become Raman active. These new modes are attributed to collective plasmon oscillations localized at the two-dimensional InO{sub 1.5} sheets. Infrared reflectivity experiments, and simulations taking into account a negative dielectric susceptibility due to electron carriers in ZnO and interface modes of the dielectric layer of InO{sub 2}, explain the occurrence of these new modes. We postulate that a localized electron gas forms at the ZnO/InO{sub 2} interface due to the electron band alignment and polarization effects. All our observations suggest that there are quantum contributions to the thermal and electrical conductivity in these natural superlattices.« less

  13. Thermodynamic data of lawsonite and zoisite in the system CaO-Al2O3-SiO2-H2O based on experimental phase equilibria and calorimetric work

    NASA Astrophysics Data System (ADS)

    Grevel, Klaus-Dieter; Schoenitz, Mirko; Skrok, Volker; Navrotsky, Alexandra; Schreyer, Werner

    2001-08-01

    The enthalpy of drop-solution in molten 2PbO.B2O3 of synthetic and natural lawsonite, CaAl2(Si2O7)(OH)2.H2O, was measured by high-temperature oxide melt calorimetry. The enthalpy of formation determined for the synthetic material is ΔfHOxides=-168.7+/-3.4 kJ mol-1, or ΔfH0298=-4,872.5+/-4.0 kJ mol-1. These values are in reasonable agreement with previously published data, although previous calorimetric work yielded slightly more exothermic data and optimisation methods resulted in slightly less exothermic values. The equilibrium conditions for the dehydration of lawsonite to zoisite, kyanite and quartz/coesite at pressures and temperatures up to 5 GPa and 850 °C were determined by piston cylinder experiments. These results, other recent phase equilibrium data, and new calorimetric and thermophysical data for lawsonite and zoisite, Ca2Al3(SiO4)(Si2O7)O(OH), were used to constrain a mathematical programming analysis of the thermodynamic data for these two minerals in the chemical system CaO-Al2O3-SiO2-H2O (CASH). The following data for lawsonite and zoisite were obtained: ΔfH0298 (lawsonite)=-4,865.68 kJ mol-1 , S0298 (lawsonite)=229.27 J K-1 mol-1 , ΔfH0298 (zoisite)=-6,888.99 kJ mol-1 , S0298 (zoisite)=297.71 J K-1 mol-1 . Additionally, a recalculation of the bulk modulus of lawsonite yielded K=120.7 GPa, which is in good agreement with recent experimental work.

  14. Stability and Elastic, Electronic, and Thermodynamic Properties of Fe2TiSi1- x Sn x Compounds

    NASA Astrophysics Data System (ADS)

    Jong, Ju-Yong; Yan, Jihong; Zhu, Jingchuan; Kim, Chol-Jin

    2017-10-01

    We have systematically studied the structural, phase, and mechanical stability and elastic, electronic, and thermodynamic properties of Fe2TiSi1- x Sn x ( x = 0, 0.25, 0.5, 0.75, 1) compounds using first-principles calculations. The structural and phase stability and elastic properties of Fe2TiSi1- x Sn x ( x = 0, 0.25, 0.5, 0.75, 1) indicated that all of the compounds are thermodynamically and mechanically stable. The shear modulus, bulk modulus, Young's modulus, Poisson's ratio, electronic band structure, density of states, Debye temperature, and Grüneisen parameter of all the substituted compounds were studied. The results show that Sn substitution in Fe2TiSi enhances its stability and mechanical and thermoelectric properties. The Fe2TiSi1- x Sn x compounds have narrow bandgap from 0.144 eV and 0.472 eV for Sn substitution from 0 to 1. The calculated band structure and density of states (DOS) of Fe2TiSi1- x Sn x show that the thermoelectric properties can be improved at substituent concentration x of 0.75. The lattice thermal conductivity was significantly decreased in the Sn-substituted compounds, and all the results indicate that Fe2TiSi0.25Sn0.75 could be a new candidate high-performance thermoelectric material.

  15. Thermodynamic Properties of Dimethyl Carbonatea)

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Wu, Jiangtao; Lemmon, Eric W.

    2011-12-01

    A thermodynamic property formulation for dimethyl carbonate has been developed with the use of available experimental thermodynamic property data. The equation of state was developed with multiproperty fitting methods involving pressure-density-temperature (pρT), heat capacity, vapor pressure, and saturated-liquid density data. The equation of state conforms to the Maxwell criterion for two-phase liquid-vapor equilibrium states, and is valid for temperatures from the triple-point temperature (277.06 ± 0.63) K to 600 K, for pressures up to 60 MPa, and for densities up to 12.12 mol dm-3. The extrapolation behavior of the equation of state at low and high temperatures and pressures is reasonable. The uncertainties (k = 2, indicating a 95% confidence level) of the equation of state in density are 0.05% for saturated-liquid states below 350 K, rising to 0.1% in the single phase between 278 K and 400 K at pressures up to 60 MPa. Due to the lack of reliable data outside this region, the estimated uncertainties increase to 0.5% to 1% in the vapor and critical regions. The uncertainties in vapor pressure are 0.6% from 310 K to 400 K, and increase to 1% at higher temperatures and to 2% at lower temperatures due to a lack of experimental data. The uncertainty in isobaric heat capacity and speed of sound in the liquid phase at saturation or atmospheric pressure is 0.5% from 280 K to 335 K. The uncertainties are higher for all properties in the critical region. Detailed comparisons between experimental and calculated data, and an analysis of the equation, have been performed.

  16. Oxygen self-diffusion in ThO 2 under pressure: Connecting point defect parameters with bulk properties

    DOE PAGES

    Cooper, Michael William D.; Fitzpatrick, M. E.; Tsoukalas, L. H.; ...

    2016-06-06

    ThO 2 is a candidate material for use in nuclear fuel applications and as such it is important to investigate its materials properties over a range of temperatures and pressures. In the present study molecular dynamics calculations are used to calculate elastic and expansivity data. These are used in the framework of a thermodynamic model, the cBΩ model, to calculate the oxygen self-diffusion coefficient in ThO 2 over a range of pressures (–10–10 GPa) and temperatures (300–1900 K). As a result, increasing the hydrostatic pressure leads to a significant reduction in oxygen self-diffusion. Conversely, negative hydrostatic pressure significantly enhances oxygenmore » self-diffusion.« less

  17. Thermodynamic and Thermoelastic properties of the NAL Phase

    NASA Astrophysics Data System (ADS)

    Marcondes, M. L.; Yao, C.; Wu, Z.; Wentzcovitch, R.

    2017-12-01

    Subduction of Mid Ocean Ridge Basalt (MORB) transports crust elements to the deep Earth. Therefore, it is important to study MORB in order to understand geophysical processes in the mantle. The high Al2O3 content of the MORB gives rise to a new aluminous phase (NAL) that constitutes up to 25% of its composition [1]. Phase equilibrium study of MgAl2O4-CaAl2O4 generated the mineral CaMg2Al6O12 with hexagonal symmetry, which was proposed for the NAL phase [2,3]. The NAL chemical composition, however, shows significantly less calcium [1,4] and several compositions have been considered in previous studies of this phase [5,6]. Here we present an ab initio study of NAL phases at high temperatures with several possible compositions. We used the quasiharmonic approximation to address thermodynamic and thermoelastic properties and seismic velocities of this phase as function of composition. References[1] T. Irifune and A. E. Ringwood, Earth Planet. Sci. Lett. 117, 101 (1993). [2] H. Miura, Y. Hamada, T. Suzuki, M. Akaogi, N. Miyajima, and K. Fujino, Am. Mineral. 85, 1799 (2000). [3] M. Akaogi, Y. Hamada, T. Suzuki, M. Kobayashi, and M. Okada, Phys. Earth Planet. Inter. 115, 67 (1999). [4] A. Ricolleau, J. P. Perrillat, G. Fiquet, I. Daniel, J. Matas, A. Addad, N. Menguy, H. Cardon, M. Mezouar, and N. Guignot, J. Geophys. Res. Solid Earth 115, B08202 (2010). [5] M. Mookherjee, B. B. Karki, L. Stixrude, and C. Lithgow-Bertelloni, Geophys. Res. Lett. 39, L19306 (2012). [6] K. Kawai and T. Tsuchiya, Geophys. Res. Lett. 37, L17302 (2010).

  18. Thermodynamic properties of diamond and wurtzite model fluids from computer simulation and thermodynamic perturbation theory

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Solana, J. R.

    2018-03-01

    Monte Carlo NVT simulations have been performed to obtain the thermodynamic and structural properties and perturbation coefficients up to third order in the inverse temperature expansion of the Helmholtz free energy of fluids with potential models proposed in the literature for diamond and wurtzite lattices. These data are used to analyze performance of a coupling parameter series expansion (CPSE). The main findings are summarized as follows, (1) The CPSE provides accurate predictions of the first three coefficient in the inverse temperature expansion of Helmholtz free energy for the potential models considered and the thermodynamic properties of these fluids are predicted more accurately when the CPSE is truncated at second or third order. (2) The Barker-Henderson (BH) recipe is appropriate for determining the effective hard sphere diameter for strongly repulsive potential cores, but its performance worsens with increasing the softness of the potential core. (3) For some thermodynamic properties the first-order CPSE works better for the diamond potential, whose tail is dominated by repulsive interactions, than for the potential, whose tail is dominated by attractive interactions. However, the first-order CPSE provides unsatisfactory results for the excess internal energy and constant-volume excess heat capacity for the two potential models.

  19. Thermodynamic properties of sea air

    NASA Astrophysics Data System (ADS)

    Feistel, R.; Wright, D. G.; Kretzschmar, H.-J.; Hagen, E.; Herrmann, S.; Span, R.

    2010-02-01

    Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS), and have been adopted in 2009 for oceanography by IOC/UNESCO. In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well. The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  20. Thermodynamic properties of sea air

    NASA Astrophysics Data System (ADS)

    Feistel, R.; Kretzschmar, H.-J.; Span, R.; Hagen, E.; Wright, D. G.; Herrmann, S.

    2009-10-01

    Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS), and have been adopted in 2009 for oceanography by IOC/UNESCO. In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as ''sea air'' here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well. The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  1. Standard state thermodynamic properties of Ba2+(aq), Co2+(aq), and Cu2+(aq) up to 598.15 K, and temperature effect on ligand field.

    PubMed

    Djamali, Essmaiil; Chen, Keith; Murray, Richard C; Turner, Peter J; Cobble, James W

    2009-02-26

    Integral heat of solution measurements of barium chloride to 619.81 K, copper oxide in an excess of perrhenic acid to 585 K, and cobalt perrhenate in perrhenic acid to 573 K were measured in a high dilution calorimeter (< or =10(-3) m) at psat, from which the high temperature thermodynamic properties of aqueous barium chloride, copper perrhenate, and cobalt perrhenate were obtained. From the known differences between the corresponding properties for aqueous perrhenate and chloride ions, the thermodynamic properties of completely ionized aqueous copper and cobalt chloride were obtained from ionic additivity. The enthalpy and derived heat capacity data at higher temperatures (T > 473.15 K) suggest that the ligand field stabilization energy of Co2+(aq) may be disappearing.

  2. Thermodynamic properties of Ba{sub 1-x}La{sub x}CoO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaur, N. K., E-mail: srl-nkgaur@yahoo.co.in; Thakur, Rasna, E-mail: rasnathakur@yahoo.com; Thakur, Rajesh K., E-mail: thakur.rajesh2009@gmail.com

    2016-05-06

    We have predicted the thermodynamic behavior of Ba{sub 1-x}La{sub x}CoO{sub 3} family at temperature 1K≤T≤300K using the Modified Rigid Ion Model (MRIM). The specific heat of BaCoO{sub 3} with La doping in the perovskite structure at A-site has been reported. Also, the cohesive energy (ϕ), molecular force constant (f), Reststrahlen frequency (υ), Debye temperature (θ{sub D}), specific heat (C) and Gruneisen parameter (γ) of Ba{sub 1-x}La{sub x}CoO{sub 3} compounds are discussed.

  3. SnO2/TiO2 bilayer thin films exhibiting superhydrophilic properties

    NASA Astrophysics Data System (ADS)

    Talinungsang, Nibedita Paul; Purkayastha, Debarun Dhar

    2017-05-01

    Nanostructured thin films of TiO2, SnO2, and SnO2/TiO2 have been deposited by sol-gel method. The films are characterized by X-ray diffraction, wettability and optical properties. In the present work, we have achieved a way of converting hydrophilic to super-hydrophilic state by incorporating TiO2 buffer layer in between substrate and SnO2 film, which has its utility in anti-fogging surfaces. The decrease in contact angle of water over SnO2/TiO2 bilayer is attributed to the increase in roughness of the film as well as surface energy of the substrate.

  4. Thermodynamic Stability of Low- and High-Index Spinel LiMn 2 O 4 Surface Terminations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warburton, Robert E.; Iddir, Hakim; Curtiss, Larry A.

    2016-05-04

    Density functional theory calculations are performed within the generalized gradient approximation (GGA+U) to determine stable terminations of both low- and high-index spinel LiMn2O4 (LMO) surfaces. A grand canonical thermodynamic approach is employed, permitting a direct comparison of offstoichiometric surfaces with previously reported stoichiometric surface terminations at various environmental conditions. Within this formalism, we have identified trends in the structure of the low-index surfaces as a function of the Li and O chemical potentials. The results suggest that, under a range of chemical potentials for which bulk LMO is stable, Li/O and Li-rich (111) surface terminations are favored, neither of whichmore » adopts an inverse spinel structure in the subsurface region. This thermodynamic analysis is extended to identify stable structures for certain high-index surfaces, including (311), (331), (511), and (531), which constitute simple models for steps or defects that may be present on real LMO particles. The low- and high-index results are combined to determine the relative stability of each surface facet under a range of environmental conditions. The relative surface energies are further employed to predict LMO particle shapes through a Wulff construction approach, which suggests that LMO particles will adopt either an octahedron or a truncated octahedron shape at conditions in which LMO is thermodynamically stable. These results are in agreement with the experimental observations of LMO particle shapes.« less

  5. Experimental study of phase equilibria and thermodynamic optimization of the Fe-Zn-O system

    NASA Astrophysics Data System (ADS)

    Degterov, Sergei A.; Pelton, Arthur D.; Jak, Evgueni; Hayes, Peter C.

    2001-08-01

    The Fe-Zn-O phase diagram in air was studied over the temperature range from 900 °C to 1500 °C. The compositions of the phases in quenched samples were obtained by electron probe X-ray microanalysis (EPMA). This experimental technique is not affected by zinc losses resulting from vaporization of zinc at high temperatures. The model for the spinel solid solution was developed within the framework of the compound-energy formalism (CEF). The choice of parameters of the CEF and the sequence of their optimization can have a major influence on the predictions in multicomponent phases. These choices can only be made rationally by reference to the specific model being represented in the CEF. This is discussed for the case of the two-sublattice spinel model. In the limiting case, the proposed model reduces to the model by O’Neill and Navrotsky for spinels. When the CEF is used in combination with the equation of Hillert and Jarl to describe the magnetic contribution to thermodynamic functions of a solution, it is necessary to assign certain values of magnetic properties to all pseudocomponents and to magnetic interaction parameters to obtain the most reasonable approximation of the magnetic properties of a solution. It was shown how this can be done based on very limited experimental data. The same equations can be used when the Murnaghan or the Birch-Murnaghan equation is combined with the CEF to describe the pressure dependence of thermodynamic functions. The polynomial model was used to describe the properties of wustite and zincite, and the modified quasichemical model was used for the liquid slag. All thermodynamic and phase-equilibria data on the Fe-O and Fe-Zn-O systems were critically evaluated, and parameters of the models were optimized to give a self-consistent set of thermodynamic functions of the phases in these systems. All experimental data are reproduced within experimental error limits. These include the thermodynamic properties of phases (such as

  6. Tables of thermodynamic properties of helium magnet coolant, revision A

    NASA Astrophysics Data System (ADS)

    McAshan, M.

    1992-07-01

    The most complete treatment of the thermodynamic properties of helium at the present time is the monograph by McCarty: 'Thermodynamic Properties of Helium 4 from 2 to 1500 K at Pressures to 10(exp 8) Pa', Robert D. McCarty, Journal of Physical and Chemical Reference Data, Vol. 2, page 923-1040 (1973). In this work the complete range of data on helium is examined and the P-V-T surface is described by an equation of state consisting of three functions P(r,T) covering different regions together with rules for making the transition from one region to another. From this thermodynamic compilation together with correlations of the transport properties of helium was published the well-known NBS Technical Note: 'Thermophysical Properties of Helium 4 from 2 to 1500 K with pressures to 1000 Atmospheres', Robert D. McCarty, US Department of Commerce, National Bureau of Standards Technical Note 631 (1972). This is the standard reference for helium cryogenics. The NBS 631 tables cover a wide range of temperature and pressure, and as a consequence, the number of points tabulated in the region of the single phase coolant for the SSC magnets are relatively few. The present work sets out to cover the range of interest in more detail in a way that is consistent with NBS 631. This new table is essentially identical to the older one and can be used as an auxiliary to it.

  7. Thermodynamic properties of oxygen and nitrogen III

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Jacobsen, R. T.; Myers, A. F.

    1972-01-01

    The final equation for nitrogen was determined. In the work on the equation of state for nitrogen, coefficients were determined by constraining the critical point to selected critical point parameters. Comparisons of this equation with all the P-density-T data were made, as well as comparisons to all other thermodynamic data reported in the literature. The extrapolation of the equation of state was studied for vapor to higher temperatures and lower temperatures, and for the liquid surface to the saturated liquid and the fusion lines. A new vapor pressure equation was also determined which was constrained to the same critical temperature, pressure, and slope (dP/dT) as the equation of state. Work on the equation of state for oxygen included studies for improving the equation at the critical point. Comparisons of velocity of sound data for oxygen were also made between values calculated with a preliminary equation of state and experimental data. Functions for the calculation of the derived thermodynamic properties using the equation of state are given, together with the derivative and integral functions for the calculation of the thermodynamic properties using the equations of state. Summary tables of the thermodynamic properties of nitrogen and oxygen are also included to serve as a check for those preparing computer programs using the equations of state.

  8. Gas Sensing Properties of ZnO-SnO2 Nanostructures.

    PubMed

    Chen, Weigen; Li, Qianzhu; Xu, Lingna; Zeng, Wen

    2015-02-01

    One-dimensional (1D) semiconductor metal oxide nanostructures have attracted increasing attention in electrochemistry, optics, magnetic, and gas sensing fields for the good properties. N-type low dimensional semiconducting oxides such as SnO2 and ZnO have been known for the detection of inflammable or toxic gases. In this paper, we fabricated the ZnO-SnO2 and SnO2 nanoparticles by hydrothermal synthesis. Microstructure characterization was performed using X-ray diffraction (XRD) and surface morphologies for both the pristine and doped samples were observed using field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Then we made thin film gas sensor to study the gas sensing properties of ZnO-SnO2 and SnO2 gas sensor to H2 and CO. A systematic comparison study reveals an enhanced gas sensing performance for the sensor made of SnO2 and ZnO toward H2 and CO over that of the commonly applied undecorated SnO2 nanoparticles. The improved gas sensing properties are attributed to the size of grains and pronounced electron transfer between the compound nanostructures and the absorbed oxygen species as well as to the heterojunctions of the ZnO nanoparticles to the SnO2 nanoparticles, which provide additional reaction rooms. The results represent an advance of compound nanostructures in further enhancing the functionality of gas sensors, and this facile method could be applicable to many sensing materials, offering a new avenue and direction to detect gases of interest based on composite tin oxide nanoparticles.

  9. FORTRAN 4 computer program for calculation of thermodynamic and transport properties of complex chemical systems

    NASA Technical Reports Server (NTRS)

    Svehla, R. A.; Mcbride, B. J.

    1973-01-01

    A FORTRAN IV computer program for the calculation of the thermodynamic and transport properties of complex mixtures is described. The program has the capability of performing calculations such as:(1) chemical equilibrium for assigned thermodynamic states, (2) theoretical rocket performance for both equilibrium and frozen compositions during expansion, (3) incident and reflected shock properties, and (4) Chapman-Jouguet detonation properties. Condensed species, as well as gaseous species, are considered in the thermodynamic calculation; but only the gaseous species are considered in the transport calculations.

  10. Thermodynamic assessment of the U–La–O system

    DOE PAGES

    McMurray, J. W.; Shin, D.; Besmann, T. M.

    2014-10-03

    The CALPHAD methodology was used to develop a thermodynamic assessment of the U-La-O system. The solid solution and liquid phases are described with the compound energy formalism and the partially ionic two-sublattice liquid model respectively. A density functional theory (DFT) calculation for the lattice stability of the fictive lanthanum oxide fluorite structure compound is used to determine the Gibbs energies for the La containing end-members in the CEF model for U 1-yLa yO 2+x. Experimental thermodynamic and phase equilibria data were then used in optimizations to develop representations of the phases in the system that can be extended to includemore » other actinide and fission products to develop multi-component models. The models that comprise this assessment very well reproduce experimentally determined oxygen potentials and the observed phase relations for the U-La-O system.« less

  11. Experimental studies on equilibrium adsorption isosteres and determination of the thermodynamic quantities of polar media on alumina Al2O3

    NASA Astrophysics Data System (ADS)

    Yonova, Albena

    2017-03-01

    The present work is a revieif of theoretical and experimental study on the adsorption performance of the adsorbent Alumina (Al2O3) used in the adsorption system. An experimental investigation on the equilibrium adsorption isosteres at low pressure (< 1 atm) of working pairs Al2O3/H2O and Al2O3/C2H6O2 is carried out. The isovolume measurement method is adopted in the test setup to directly measure the saturated vapor pressures of working pairs at vapor-liquid equilibrium (dG=0 and dμi=0). Quantity adsorbed is determined from pressure, volume and temperature using gas law. The isosteric heat of adsorption is calculated from the slope of the plot of lnP versus 1/T different amounts of adsorbate onto adsorbent as follows: 0,01 vol% Al2O3/H2O; 0,03 vol% Al2O3/H2O; 0,1 vol% Al2O3/H2O; 0,01 vol% Al2O3/C2H6O2; 0,03 vol% Al2O3/C2H6O2; 0,1 vol% Al2O3/C2H6O2. This study shows that adsorption working pair Al2O3 C2H6O2 has better adsorption performances than those of the A2O3/H2O. Surface acidity! is a most important property! far both adsorption and catalysis and therefore is examined structure of active sites of alumina surface. Thermodynamic parameters such as isosteric heat of adsorption, isosteric enthalpy and entropy of adsorption are critical design variables in estimating the performance and predicting the mechanism of an adsorption process and are also one of the basic requirements for the characterization and optimization of an adsorption process

  12. Theoretical investigation of thermodynamic stability and mobility of the oxygen vacancy in ThO 2 –UO 2 solid solutions

    DOE PAGES

    Liu, B.; Aidhy, D. S.; Zhang, Y.; ...

    2014-10-16

    The thermodynamic stability and the migration energy barriers of oxygen vacancies in ThO 2 –UO 2 solid solutions are investigated by density functional theory calculations. In pure ThO 2, the formation energy of oxygen vacancy is 7.58 eV and 1.46 eV under O rich and O poor conditions, respectively, while its migration energy barrier is 1.97 eV. The addition of UO 2 into ThO 2 significantly decreases the energetics of formation and migration of the oxygen vacancy. Among the range of UO 2-ThO 2 solid solutions studied in this work, UO 2 exhibits the lowest formation energy (5.99 eV andmore » -0.13 eV under O rich and O poor conditions, respectively) and Th 0.25U0 .75O 2 exhibits the lowest migration energy barrier (~ 1 eV). Moreover, by considering chemical potential, the phase diagram of oxygen vacancy as a function of both temperature and oxygen partial pressure is shown, which could help to gain experimental control over oxygen vacancy concentration.« less

  13. Assessment of the thermodynamic properties of poly(2,2,2-trifluoroethyl methacrylate) by inverse gas chromatography.

    PubMed

    Papadopoulou, Stella K; Panayiotou, Costas

    2014-01-10

    The thermodynamic properties of poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) were determined by the aid of the inverse gas chromatography technique (IGC), at infinite dilution. The interactions between the polymer and 15 solvents were examined in the temperature range of 120-150 °C via the estimation of the thermodynamic sorption parameters, the parameters of mixing at infinite dilution, the weight fraction activity coefficients and the Flory-Huggins interaction parameters. Additionally, the total and the partial solubility parameters of PTFEMA were estimated. The findings of this work indicate that the type and strength of the intermolecular interactions between the polymer and the solvents are strongly depended on the functional groups of the polymer and the solvents. The proton acceptor character of the polymer is responsible for the preferential solubility of PTFEMA in chloroform which acts as a proton donor solvent. The results also reveal that the polymer is insoluble in alkanes and alcohols whereas it presents good miscibility with polar solvents, especially with 2-butanone, 2-pentanone and 1,4-dioxane. Furthermore, the total and dispersive solubility parameters appear diminishing upon temperature rise, whereas the opposite behavior is noticed for the polar and hydrogen bonding solubility parameters. The latter increase with temperature, probably, due to conformational changes of the polymer on the solid support. Finally, comparison of the solubilization profiles of fluorinated methacrylic polymers studied by IGC, leads to the conclusion that PTFEMA is more soluble compared to polymers with higher fluorine content. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. High-pressure phase relations and thermodynamic properties of CaAl 4Si 2O 11 CAS phase

    NASA Astrophysics Data System (ADS)

    Akaogi, M.; Haraguchi, M.; Yaguchi, M.; Kojitani, H.

    2009-03-01

    Phase relations in CaAl4Si2O11 were examined at 12-23 GPa and 1000-1800 °C by multianvil experiments. A three-phase mixture of grossular, kyanite and corundum is stable below about 13 GPa at 1000-1800 °C. At higher pressure and at temperature below about 1200 °C, a mixture of grossular, stishovite and corundum is stable, indicating the decomposition of kyanite. Above about 1200 °C, CaAl4Si2O11 CAS phase is stable at pressure higher than about 13 GPa. The triple point is placed at 14.7 GPa and 1280 °C. The equilibrium boundary of formation of CAS phase from the mixture of grossular, kyanite and corundum has a small negative slope, and that from the mixture of grossular, stishovite and corundum has a strongly negative slope, while the decomposition boundary of kyanite has a small positive slope. Enthalpies of the transitions were measured by high-temperature drop-solution calorimetry. The enthalpy of formation of CaAl4Si2O11 CAS phase from the mixture of grossular, kyanite and corundum was 139.5 ± 15.6 kJ/mol, and that from the mixture of grossular, stishovite and corundum was 94.2 ± 15.4 kJ/mol. The transition boundaries calculated using the measured enthalpy data were consistent with those determined by the high-pressure experiments. The boundaries in this study are placed about 3 GPa higher in pressure and about 200 °C lower in temperature than those by Zhai and Ito [Zhai, S., Ito, E., 2008. Phase relations of CaAl4Si2O11 at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle. Phys. Earth Planet. Inter. 167, 161-167]. Combining the thermodynamic data measured in this study with those in the literature, dissociation boundary of CAS phase into a mixture of Ca-perovskite, corundum and stishovite and that of grossular into Ca-perovskite plus corundum were calculated to further constrain the stability field of CAS phase. The result suggests that the stability of CAS phase would be limited at the bottom of

  15. Microwave dielectric properties of BaO-2CeO{sub 2}-nTiO{sub 2} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreemoolanadhan, H.; Sebastian, M.T.; Ratheesh, R.

    2004-11-01

    The BaO-2CeO{sub 2}-nTiO{sub 2} ceramics with n=3, 4 and 5 have been prepared with CeO{sub 2} as starting material. The ceramics have been characterized using scanning electron microscopy, X-ray diffraction, Raman and X-ray photoelectron spectroscopy techniques. The microwave dielectric properties have been measured using standard dielectric resonator techniques. BaO-2CeO{sub 2}-3TiO{sub 2} (123), BaO-2CeO{sub 2}-4TiO{sub 2} (124) and BaO-2CeO{sub 2}-5TiO{sub 2} (125) ceramics showed dielectric constants of 38, 27 and 32, respectively. All the ceramics showed fairly good unloaded Q-factors. 124 and 125 compounds exhibited low {tau}f values, while 123 showed a high {tau}f value.

  16. First-principles study of the phonon, mechanical and thermodynamic properties of B2-phase AlY under high pressures

    NASA Astrophysics Data System (ADS)

    Wang, Leini; Jian, Zhang; Ning, Wei

    2017-12-01

    We have investigated the phonon, mechanical and thermodynamic properties of B2-phase AlY under high pressure by performing density functional theory (DFT). The result of phonon band structure shows B2-phase AlY exhibits dynamical stability. Then, the elastic properties of AlY under high pressure have been discussed. The elastic constants of AlY increase monotonically with the increase of the pressure and all the elastic constants meet the mechanical stability standard under high pressure. By analyzing the Poisson’s ratio ν and the value of B/G of AlY, we first predicted that AlY undergoes transformation from brittleness to ductility at 30 GPa and high pressure can improve the ductility. To obtain the thermodynamic properties of B2-phase AlY, the quasi-harmonic Debye model has been employed. Debye temperature ΘD, thermal expansion coefficient α, heat capacity Cp and Grüneisen parameter γ of B2-phase AlY are systematically explored at pressure of 0-75 GPa and temperature of 0-700 K.

  17. Thermodynamic properties of gaseous fluorocarbons and isentropic equilibrium expansions of two binary mixtures of fluorocarbons and argon

    NASA Technical Reports Server (NTRS)

    Talcott, N. A., Jr.

    1977-01-01

    Equations and computer code are given for the thermodynamic properties of gaseous fluorocarbons in chemical equilibrium. In addition, isentropic equilibrium expansions of two binary mixtures of fluorocarbons and argon are included. The computer code calculates the equilibrium thermodynamic properties and, in some cases, the transport properties for the following fluorocarbons: CCl2F, CCl2F2, CBrF3, CF4, CHCl2F, CHF3, CCL2F-CCl2F, CCLF2-CClF2, CF3-CF3, and C4F8. Equilibrium thermodynamic properties are tabulated for six of the fluorocarbons(CCl3F, CCL2F2, CBrF3, CF4, CF3-CF3, and C4F8) and pressure-enthalpy diagrams are presented for CBrF3.

  18. Thermodynamics of the Si-O-H System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Opila, Elizabeth J.; Myers, Dwight; Copland, Evan

    2004-01-01

    Thermodynamic functions for Si(OH)4(g) and SiO(OH)2(g) have been measured using the transpiration method. A second law enthalpy of formation and entropy and a third law enthalpy of formation has been calculated for Si(OH)4. The results are in very good agreement with previous experimental measurements, ab-initio calculations, and estimates.

  19. Large effect of columnar defects on the thermodynamic properties of Bi2Sr2CaCu2O8 single crystals

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Konczykowski, M.; Li, T. W.; Kes, P. H.; Benoit, W.

    1996-07-01

    The introduction of columnar defects by irradiation with 5.8-GeV Pb ions is shown to affect significantly the reversible magnetic properties of Bi2Sr2CaCu2O8+δ single crystals. Notably, the suppression of superconducting fluctuations on length scales greater than the separation between columns leads to the disappearance of the ``crossing point'' in the critical fluctuation regime. At lower temperatures, the strong modification of the vortex energy due to pinning leads to an important change of the reversible magnetization. The analysis of the latter permits the direct determination of the pinning energy.

  20. Thermodynamic Model of the Na-Al-Si-O-F Melts

    NASA Astrophysics Data System (ADS)

    Dolejs, D.; Baker, D. R.

    2004-05-01

    Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids which links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals or fluoride-silicate immiscibility in natural felsic melts. Configurational properties of the liquid are defined by mixing of alkali fluoride, polyhedral aluminofluoride and silicofluoride species and non-bridging terminations of the silicate network. Abundances of individual structural species are described by a homogeneous equilibrium, representing melt depolymerization: F- (free) + O0 (bridging) = F0 (terminal) + O- (non-bridging), which is a replacement of one oxygen bridge, Si-O-Si, by two terminations, Si-F | Na-O-Si. In cryolite-bearing systems, the self-dissociation of octahedral aluminofluoride complexes: Na3[AlF6] = Na[AlF4] + 2 NaF, and the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F, represent two additional interaction mechanisms. Portrayal of these equilibria in ternary Thompson reaction space allows to decrease the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the interaction parameters are incorporated directly in configurational properties, thus the complete melt speciation can be calculated, and the activities of any macroscopic species are readily derived. The model has been applied to subsystems of the Na2O-NaAlO2-SiO2-F2O-1 compositional space. Activity-composition relationships in the villiaumite-sodium silicate binaries require clustering of silicate tetrahedra in fluoride solvent. Phase-equilibria in cryolite-nepheline and cryolite-albite systems illustrate an overall increase of Na3AlF6 self

  1. A combined experimental and computational thermodynamic investigation of the U-Th-O system

    DOE PAGES

    McMurray, Jake Wesley; Voit, Stewart L.; Besmann, Theodore M.

    2016-03-21

    Here, the thermodynamics of the U–Th–O system have been assessed using the Calphad method. The compound energy formalism (CEF) and a partially ionic two-sublattice liquid model (TSLM) were used for the fluorite U 1–yTh yO 2±x, γ-(U,Th) 4O 9, and the U–Th–O melt. The O 2 activity of fluorite U 1–yTh yO 2±x with temperature and composition was determined by thermogravimetric analysis. Thermodynamic studies for the Th–O binary and U–Th–O ternary available in the open literature were critically reviewed. A self-consistent data set was selected and compiled with the equilibrium oxygen pressures determined by thermogravimetry in order to optimize themore » adjustable parameters of models selected to represent the phases in the Th–O and U–Th–O systems.« less

  2. Thermodynamics of feldspathoid solutions

    NASA Astrophysics Data System (ADS)

    Sack, Richard O.; Ghiorso, Mark S.

    We have developed models for the thermody-namic properties of nephelines, kalsilites, and leucites in the simple system NaAlSiO4-KAlSiO4-Ca0.5AlSiO4-SiO2-H2O that are consistent with all known constraints on subsolidus equilibria and thermodynamic properties, and have integrated them into the existing MELTS software package. The model for nepheline is formulated for the simplifying assumptions that (1) a molecular mixing-type approximation describes changes in the configurational entropy associated with the coupled exchange substitutions □Si?NaAl and □Ca? Na2 and that (2) Na+ and K+ display long-range non-convergent ordering between a large cation and the three small cation sites in the Na4Al4Si4O16 formula unit. Notable features of the model include the prediction that the mineral tetrakalsilite (``panunzite'', sensu stricto) results from anti-ordering of Na and K between the large cation and the three small cation sites in the nepheline structure at high temperatures, an average dT/dP slope of about 55°/kbar for the reaction over the temperature and pressure ranges 800-1050 °C and 500-5000 bars, roughly symmetric (i.e. quadratic) solution behavior of the K-Na substitution along joins between fully ordered components in nepheline, and large positive Gibbs energies for the nepheline reciprocal reactions and and for the leucite reciprocal reaction

  3. Experimental and Ab-Initio Studies of High Temperature Reactions in Vapor above Sio2/Al2O3 and SiO2/CaO Melts

    NASA Astrophysics Data System (ADS)

    Cornelison, Dave; Bulak, Michal

    2017-06-01

    The study of solid-liquid equilibrium is well established for alloys likely to be found on hot, rocky extra-solar planets. However, in atmospheres established above these magmas, molecules released from the components of the melt can react to form adducts; new molecules containing fragments of these precursors. These adducts are not predicted from equilibrium modeling codes unless their thermodynamic properties are input prior to simulation. In addition, the spectroscopic properties and vapor pressures relative to their melt conditions may be poorly known. Using a Knudsen cell heated in a custom e-beam evaporator, the binary systems of SiO2/Al2O3 and SiO2/CaO were synthesized at temperatures above 2000 K. The molecules evaporated from the melts were deposited into an Argon matrix held at 15 K and studied using mass spectrometry and FTIR. The results were then compared to molecular stability calculations derived from ab-initio molecular dynamics simulations using VASP©, and to IR spectra obtained using Gaussian©. Based on this analysis, a set of molecular adducts was found for each of the two alloy systems. The thermodynamic properties of each adduct were then simulated and used as input parameters for equilibrium calculations of vapor pressures as a function of temperature. The applications of these results to exoplanet observations is also discussed. This work was supported by NASA EPSCoR (Experimental Program to Stimulate Competitive Research). NNX13AE52A , “Understanding the Atmospheres of Hot Earths and the Impact on Solar System Formation”with NASA Glenn Research Center, Missouri State University and Washington University, St. Louis

  4. Thermodynamical properties of liquid lanthanides-A variational approach

    NASA Astrophysics Data System (ADS)

    Patel, H. P.; Thakor, P. B.; Sonvane, Y. A.

    2015-06-01

    Thermodynamical properties like Entropy (S), Internal energy (E) and Helmholtz free energy (F) of liquid lanthanides using a variation principle based on the Gibbs-Bogoliubuv (GB) inequality with Percus Yevick hard sphere reference system have been reported in the present investigation. To describe electron-ion interaction we have used our newly constructed parameter free model potential along with Sarkar et al. local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermodynamical properties of liquid lanthanides.

  5. Thermodynamical properties of liquid lanthanides-A variational approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, H. P.; Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat; Thakor, P. B., E-mail: pbthakor@rediffmail.com

    2015-06-24

    Thermodynamical properties like Entropy (S), Internal energy (E) and Helmholtz free energy (F) of liquid lanthanides using a variation principle based on the Gibbs-Bogoliubuv (GB) inequality with Percus Yevick hard sphere reference system have been reported in the present investigation. To describe electron-ion interaction we have used our newly constructed parameter free model potential along with Sarkar et al. local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermodynamical properties of liquid lanthanides.

  6. Microstructure, Thermal, Mechanical, and Dielectric Properties of BaO-CaO-Al2O3-B2O3-SiO2 Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Bo; Bian, Haibo; Fang, Yi

    2017-12-01

    BaO-CaO-Al2O3-B2O3-SiO2 (BCABS) glass-ceramics were prepared via the method of controlled crystallization. The effect of CaO modification on the microstructure, phase evolution, as well as thermal, mechanical, and dielectric properties was investigated. XRD identified that quartz is the major crystal phase; cristobalite and bazirite are the minor crystal phases. Moreover, the increase of CaO could inhibit the phase transformation from quartz to cristobalite, but excessive CaO would increase the porosity of the ceramics. Additionally, with increasing the amount of CaO, the thermal expansion curve tends to be linear, and subsequently the CTE value decreases gradually, which is attributed to the decrease of cristobalite with high CTE and the formation of CaSiO3 with low CTE. The results indicated that a moderate amount of CaO helps attaining excellent mechanical, thermal, and dielectric properties, that is, the specimen with 9 wt% CaO sintered at 950 °C has a high CTE value (11.5 × 10-6/°C), a high flexural strength (165.7 MPa), and good dielectric properties (ɛr = 6.2, tanδ = 1.8 × 10-4, ρ = 4.6 × 1011 Ω•cm).

  7. Ab initio investigation of the thermodynamics of cation distribution and of the electronic and magnetic structures in the LiMn2O4 spinel

    NASA Astrophysics Data System (ADS)

    Santos-Carballal, David; Ngoepe, Phuti E.; de Leeuw, Nora H.

    2018-02-01

    The spinel-structured lithium manganese oxide (LiMn2O4 ) is a material currently used as cathode for secondary lithium-ion batteries, but whose properties are not yet fully understood. Here, we report a computational investigation of the inversion thermodynamics and electronic behavior of LiMn2O4 derived from spin-polarized density functional theory calculations with a Hubbard Hamiltonian and long-range dispersion corrections (DFT+U-D3). Based on the analysis of the configurational free energy, we have elucidated a partially inverse equilibrium cation distribution for the LiMn2O4 spinel. This equilibrium degree of inversion is rationalized in terms of the crystal field stabilization effects and the difference between the size of the cations. We compare the atomic charges with the oxidation numbers for each degree of inversion. We found segregation of the Mn charge once these ions occupy the tetrahedral and octahedral sites of the spinel. We have obtained the atomic projections of the electronic band structure and density of states, showing that the normal LiMn2O4 has half-metallic properties, while the fully inverse spinel is an insulator. This material is in the ferrimagnetic state for the inverse and partially inverse cation arrangement. The optimized lattice and oxygen parameters, as well as the equilibrium degree of inversion, are in agreement with the available experimental data. The partial equilibrium degree of inversion is important in the interpretation of the lithium ion migration and surface properties of the LiMn2O4 spinel.

  8. Effects of configurational disorder on the elastic properties of icosahedral boron-rich alloys based on B{sub 6}O, B{sub 13}C{sub 2}, and B{sub 4}C, and their mixing thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ektarawong, A., E-mail: anekt@ifm.liu.se; Hultman, L.; Birch, J.

    The elastic properties of alloys between boron suboxide (B{sub 6}O) and boron carbide (B{sub 13}C{sub 2}), denoted by (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x}, as well as boron carbide with variable carbon content, ranging from B{sub 13}C{sub 2} to B{sub 4}C are calculated from first-principles. Furthermore, the mixing thermodynamics of (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x} is studied. A superatom-special quasirandom structure approach is used for modeling different atomic configurations, in which effects of configurational disorder between the carbide and suboxide structural units, as well as between boron and carbon atoms within the units, are taken into account. Elastic propertiesmore » calculations demonstrate that configurational disorder in B{sub 13}C{sub 2}, where a part of the C atoms in the CBC chains substitute for B atoms in the B{sub 12} icosahedra, drastically increase the Young’s and shear modulus, as compared to an atomically ordered state, B{sub 12}(CBC). These calculated elastic moduli of the disordered state are in excellent agreement with experiments. Configurational disorder between boron and carbon can also explain the experimentally observed almost constant elastic moduli of boron carbide as the carbon content is changed from B{sub 4}C to B{sub 13}C{sub 2}. The elastic moduli of the (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x} system are also practically unchanged with composition if boron-carbon disorder is taken into account. By investigating the mixing thermodynamics of the alloys, in which the Gibbs free energy is determined within the mean-field approximation for the configurational entropy, we outline the pseudo-binary phase diagram of (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x}. The phase diagram reveals the existence of a miscibility gap at all temperatures up to the melting point. Also, the coexistence of B{sub 6}O-rich as well as ordered or disordered B{sub 13}C{sub 2}-rich domains in the material

  9. Heat capacities and thermodynamic functions for beryl, Be3Al2Si6O18, phenakite, Be2SiO4, euclase, BeAlSiO4(OH), bertrandite, Be4Si2O7(OH)2, and chrysoberyl, BeAl2O4.

    USGS Publications Warehouse

    Hemingway, B.S.; Barton, M.D.; Robie, R.A.; Haselton, H.T.

    1986-01-01

    The heat capacities of beryl, phenakite, euclase and bertrandite have been measured between approx 5 and 800 K by combined quasi-adiabatic cryogenic calorimetry and differential scanning calorimetry. The heat capacities of chrysoberyl have been measured from 340 to 800 K. The resulting data have been combined with solution and phase-equilibrium experimental data and simultaneously adjusted using the programme PHAS20 to provide an internally consistent set of thermodynamic properties for several important beryllium phases. The experimental heat capacities and tables of derived thermodynamic properties are presented.-J.A.Z.

  10. Thermodynamics, Diffusion, and Structure of Liquid NaAlSi3O8 at Elevated Temperature and Pressure from Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Neilson, R.; Spera, F. J.; Ghiorso, M. S.

    2014-12-01

    Thermodynamic properties of silicate melts at high temperature (T) and pressure (P) are crucial to understanding Earth accretion, magma oceans, petrogenesis, and crustal growth. However, equations of state for silicate liquids at mantle conditions are scarce, due to experimental challenges. Molecular Dynamics (MD) simulations allow investigation of thermodynamic and transport properties of silicate melts at high P and T and enable the correlation of liquid structure with computed properties. Using classical MD, we studied liquid NaAlSi3O8 in the range 0-42 GPa and 3000-5137 K. Density ranged from 2.2 to 3.6 g/cm3, and all simulations were performed in the microcanonical (NEV) ensemble using the potential from Matsui (1998). An equation of state with internal energy E(V,T) was developed using the RT scaling-Vinet formulation (Ghiorso et al., 2009). From thermodynamic relationships, the Grüneisen parameter, isobaric expansivity, isothermal compressibility, heat capacity, and other functions are computed over the P-T range of the MD simulations. Diffusion coefficients (D) range from 1.5×10-9 to 5.9×10-8 m2/s and typically order Na>Al>O>Si at a given state point. Generally, D decreases with P and increases with T except for a low P anomalous region along the 3065 K isotherm. Anomalous diffusion for Al, Si, and O is congruent with laboratory experiments at P<10 GPa (e.g., Shimizu and Kushiro, 1984; Poe et al., 1997; Tinker and Lesher, 2001; Tinker et al., 2003). Activation energy for Na is on the order of -75.3 kJ/mol with activation volume -1.74 cm3/mol. The anomalous peak in diffusivity for Si and O occurs at ~3 GPa, which marks a subtle increase in the average coordination number (CN) for O around O from 9.35 to 10.31. The average CN for O around O generally increases with P, but it systematically drops at 8, 15, and 20 GPa for 3065, 3944, and 5137 K, respectively. The concentrations of AlO5 and SiO5 polyhedra maximize near 16 and 35 GPa, respectively.

  11. Experimental verification of the thermodynamic properties for a jet-A fuel

    NASA Technical Reports Server (NTRS)

    Graciasalcedo, Carmen M.; Brabbs, Theodore A.; Mcbride, Bonnie J.

    1988-01-01

    Thermodynamic properties for a Jet-A fuel were determined by Shell Development Company in 1970 under a contract for NASA Lewis Research Center. The polynomial fit necessary to include Jet-A fuel (liquid and gaseous phases) in the library of thermodynamic properties of the NASA Lewis Chemical Equilibrium Program is calculated. To verify the thermodynamic data, the temperatures of mixtures of liquid Jet-A injected into a hot nitrogen stream were experimentally measured and compared to those calculated by the program. Iso-octane, a fuel for which the thermodynamic properties are well known, was used as a standard to calibrate the apparatus. The measured temperatures for the iso-octane/nitrogen mixtures reproduced the calculated temperatures except for a small loss due to the non-adiabatic behavior of the apparatus. The measurements for Jet-A were corrected for this heat loss and showed excellent agreement with the calculated temperatures. These experiments show that this process can be adequately described by the thermodynamic properties fitted for the Chemical Equilibrium Program.

  12. The thermodynamic properties of benzothiazole and benzoxazole

    NASA Astrophysics Data System (ADS)

    Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A.

    1991-08-01

    This research program, funded by the Department of Energy, Office of Fossil Energy, Advanced Extraction and Process Technology, provides accurate experimental thermochemical and thermophysical properties for key organic diheteroatom-containing compounds present in heavy petroleum feedstocks, and applies the experimental information to thermodynamic analyses of key hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation reaction networks. Thermodynamic analyses, based on accurate information, provide insights for the design of cost-effective methods of heteroatom removal. The results reported here, and in a companion report to be completed, will point the way to the development of new methods of heteroatom removal from heavy petroleum. Measurements leading to the calculation of the ideal-gas thermodynamic properties are reported for benzothiazole and benzoxazole. Experimental methods included combustion calorimetry, adiabatic heat-capacity calorimetry, comparative ebulliometry, inclinded-piston gauge manometry, and differential-scanning calorimetry (d.s.c). Critical property estimates are made for both compounds. Entropies, enthalpies, and Gibbs energies of formation were derived for the ideal gas for both compounds for selected temperatures between 280 K and near 650 K. The Gibbs energies of formation will be used in a subsequent report in thermodynamic calculations to study the reaction pathways for the removal of the heteratoms by hydrogenolysis. The results obtained in this research are compared with values present in the literature. The failure of a previous adiabatic heat capacity study to see the phase transition in benzothiazole is noted. Literature vibrational frequency assignments were used to calculate ideal gas entropies in the temperature range reported here for both compounds. Resulting large deviations show the need for a revision of those assignments.

  13. Interfacial engineering of solution-processed Ni nanochain-SiO{sub x} (x < 2) cermets towards thermodynamically stable, anti-oxidation solar selective absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiaobai; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu

    Cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO{sub x} cermet system compared to conventional Ni-Al{sub 2}O{sub 3} system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in this paper, wemore » demonstrate that pre-operation annealing of Ni nanochain-SiO{sub x} cermets at 900 °C in N{sub 2} forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO{sub x} interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N{sub 2} (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO{sub x} interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO{sub x} saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any

  14. Tribological Properties of TiO2/SiO2 Double Layer Coatings Deposited on CP-Ti

    NASA Astrophysics Data System (ADS)

    Çomakli, O.; Yazici, M.; Yetim, T.; Yetim, A. F.; Çelik, A.

    In the present paper, the influences of different double layer on wear and scratch performances of commercially pure Titanium (CP-Ti) were investigated. TiO2/SiO2 and SiO2/TiO2 double layer coatings were deposited on CP-Ti by sol-gel dip coating process and calcined at 750∘C. The phase structure, cross-sectional morphology, composition, wear track morphologies, adhesion properties, hardness and roughness of uncoated and coated samples were characterized with X-ray diffraction, scanning electron microscopy (SEM), nano-indentation technique, scratch tester and 3D profilometer. Also, the tribological performances of all samples were investigated by a pin-on-disc tribo-tester against Al2O3 ball. Results showed that hardness, elastic modulus and adhesion resistance of double layer coated samples were higher than untreated CP-Ti. It was found that these properties of TiO2/SiO2 double layer coatings have higher than SiO2/TiO2 double layer coating. Additionally, the lowest friction coefficient and wear rates were obtained from TiO2/SiO2 double layer coatings. Therefore, it was seen that phase structure, hardness and film adhesion are important factors on the tribological properties of double layer coatings.

  15. Photoelectrochemical Properties and Photostabilities of High Surface Area CuBi 2O 4 and Ag-Doped CuBi 2O 4 Photocathodes

    DOE PAGES

    Kang, Donghyeon; Hill, James C.; Park, Yiseul; ...

    2016-06-09

    Here, electrochemical synthesis methods were developed to produce CuBi 2O 4, a promising p-type oxide for use in solar water splitting, as high surface area electrodes with uniform coverage. These methods involved electrodepositing nanoporous Cu/Bi films with a Cu:Bi ratio of 1:2 from dimethyl sulfoxide or ethylene glycol solutions, and thermally oxidizing them to CuBi 2O 4 at 450°C in air. Ag-doped CuBi 2O 4 electrodes were also prepared by adding a trace amount of Ag+ in the plating medium and codepositing Ag with the Cu/Bi films. In the Ag-doped CuBi 2O 4, Ag+ ions substitutionally replaced Bi3+ ions andmore » increased the hole concentration in CuBi 2O 4. As a result, photocurrent enhancements for both O 2 reduction and water reduction were achieved. Furthermore, while undoped CuBi 2O 4 electrodes suffered from anodic photocorrosion during O 2 reduction due to poor hole transport, Ag-doped CuBiO 4 effectively suppressed anodic photocorrosion. The flat-band potentials of CuBi 2O 4 and Ag-doped CuBi 2O 4 electrodes prepared in this study were found to be more positive than 1.3 V vs RHE in a 0.1 M NaOH solution (pH 12.8), which make these photocathodes highly attractive for use in solar hydrogen production. The optimized CuBi 2O 4/Ag-doped CuBi 2O 4 photocathode showed a photocurrent onset for water reduction at 1.1 V vs RHE, achieving a photovoltage higher than 1 V for water reduction. The thermodynamic feasibility of photoexcited electrons in the conduction band of CuBi 2O 4 to reduce water was also confirmed by detection of H 2 during photocurrent generation. This study provides new understanding for constructing improved CuBi 2O 4 photocathodes by systematically investigating photocorrosion as well as photoelectrochemical properties of high-quality CuBi 2O 4 and Ag-doped CuBi 2O 4 photoelectrodes for photoreduction of both O 2 and water.« less

  16. Photoelectrochemical Properties and Photostabilities of High Surface Area CuBi 2O 4 and Ag-Doped CuBi 2O 4 Photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Donghyeon; Hill, James C.; Park, Yiseul

    Here, electrochemical synthesis methods were developed to produce CuBi 2O 4, a promising p-type oxide for use in solar water splitting, as high surface area electrodes with uniform coverage. These methods involved electrodepositing nanoporous Cu/Bi films with a Cu:Bi ratio of 1:2 from dimethyl sulfoxide or ethylene glycol solutions, and thermally oxidizing them to CuBi 2O 4 at 450°C in air. Ag-doped CuBi 2O 4 electrodes were also prepared by adding a trace amount of Ag+ in the plating medium and codepositing Ag with the Cu/Bi films. In the Ag-doped CuBi 2O 4, Ag+ ions substitutionally replaced Bi3+ ions andmore » increased the hole concentration in CuBi 2O 4. As a result, photocurrent enhancements for both O 2 reduction and water reduction were achieved. Furthermore, while undoped CuBi 2O 4 electrodes suffered from anodic photocorrosion during O 2 reduction due to poor hole transport, Ag-doped CuBiO 4 effectively suppressed anodic photocorrosion. The flat-band potentials of CuBi 2O 4 and Ag-doped CuBi 2O 4 electrodes prepared in this study were found to be more positive than 1.3 V vs RHE in a 0.1 M NaOH solution (pH 12.8), which make these photocathodes highly attractive for use in solar hydrogen production. The optimized CuBi 2O 4/Ag-doped CuBi 2O 4 photocathode showed a photocurrent onset for water reduction at 1.1 V vs RHE, achieving a photovoltage higher than 1 V for water reduction. The thermodynamic feasibility of photoexcited electrons in the conduction band of CuBi 2O 4 to reduce water was also confirmed by detection of H 2 during photocurrent generation. This study provides new understanding for constructing improved CuBi 2O 4 photocathodes by systematically investigating photocorrosion as well as photoelectrochemical properties of high-quality CuBi 2O 4 and Ag-doped CuBi 2O 4 photoelectrodes for photoreduction of both O 2 and water.« less

  17. Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O

    NASA Astrophysics Data System (ADS)

    Pabalan, Roberto T.; Pitzer, Kenneth S.

    1987-09-01

    Mineral solubilities in binary and ternary electrolyte mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O are calculated to high temperatures using available thermodynamic data for solids and for aqueous electrolyte solutions. Activity and osmotic coefficients are derived from the ion-interaction model of Pitzer (1973, 1979) and co-workers, the parameters of which are evaluated from experimentally determined solution properties or from solubility data in binary and ternary mixtures. Excellent to good agreement with experimental solubilities for binary and ternary mixtures indicate that the model can be successfully used to predict mineral-solution equilibria to high temperatures. Although there are currently no theoretical forms for the temperature dependencies of the various model parameters, the solubility data in ternary mixtures can be adequately represented by constant values of the mixing term θ ij and values of ψ ijk which are either constant or have a simple temperature dependence. Since no additional parameters are needed to describe the thermodynamic properties of more complex electrolyte mixtures, the calculations can be extended to equilibrium studies relevant to natural systems. Examples of predicted solubilities are given for the quaternary system NaCl-KCl-MgCl 2-H 2O.

  18. Complexation of NpO2+ with (2-Hydroxyethyl)ethylenediaminetriacetic Acid (HEDTA) in Aqueous Solutions: Thermodynamic Studies and Structural Analysis

    DOE PAGES

    Li, Xingliang; Zhang, Zhicheng; Martin, Leigh R; ...

    2016-12-02

    Complexation of Np(V) with N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) was studied in aqueous solution (I = 1.0 mol L -1 NaClO 4, t = 25 °C) by spectrophotometry, microcalorimetry and Extended X-ray absorption fine structure (EXAFS) spectroscopy. Equilibrium constants for the formation of three complexes, NpO 2L 2-, NpO 2(HL) -, and (NpO 2)2(OH)2L26 -, were determined to be (6.91 ± 0.06), (4.28 ± 0.03) and -(4.93 ± 0.03), respectively. The enthalpies of complexation were determined to be -(8.0 ± 2.0) kJ mol -1 for NpO 2L 2 - and -(2.2 ± 2.0) kJ mol-1 for NpO 2(HL) -. Thermodynamic data ofmore » the complexation of Np(V) with HEDTA were compared to those of Np(V) with other aminopolycarboxylic acids, gaining insight into the possible coordination modes of the complexes. The EXAFS studies provided further structural information on those modes. In both NpO 2L 2 - and NpO 2(HL) - complexes, HEDTA coordinates to Np(V) in a tridentate mode through two oxygens of two carboxylic groups and one nitrogen of the amine group. In the (NpO 2) 2(OH) 2L 2 6- complex, two Np(V) atoms are bridged by two hydroxides and each HEDTA maintains the tridentate coordination mode.« less

  19. Complexation of NpO2+ with (2-Hydroxyethyl)ethylenediaminetriacetic Acid (HEDTA) in Aqueous Solutions: Thermodynamic Studies and Structural Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xingliang; Zhang, Zhicheng; Martin, Leigh R

    Complexation of Np(V) with N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) was studied in aqueous solution (I = 1.0 mol L -1 NaClO 4, t = 25 °C) by spectrophotometry, microcalorimetry and Extended X-ray absorption fine structure (EXAFS) spectroscopy. Equilibrium constants for the formation of three complexes, NpO 2L 2-, NpO 2(HL) -, and (NpO 2)2(OH)2L26 -, were determined to be (6.91 ± 0.06), (4.28 ± 0.03) and -(4.93 ± 0.03), respectively. The enthalpies of complexation were determined to be -(8.0 ± 2.0) kJ mol -1 for NpO 2L 2 - and -(2.2 ± 2.0) kJ mol-1 for NpO 2(HL) -. Thermodynamic data ofmore » the complexation of Np(V) with HEDTA were compared to those of Np(V) with other aminopolycarboxylic acids, gaining insight into the possible coordination modes of the complexes. The EXAFS studies provided further structural information on those modes. In both NpO 2L 2 - and NpO 2(HL) - complexes, HEDTA coordinates to Np(V) in a tridentate mode through two oxygens of two carboxylic groups and one nitrogen of the amine group. In the (NpO 2) 2(OH) 2L 2 6- complex, two Np(V) atoms are bridged by two hydroxides and each HEDTA maintains the tridentate coordination mode.« less

  20. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  1. Thermodynamic properties and atomic structure of Ca-based liquid alloys

    NASA Astrophysics Data System (ADS)

    Poizeau, Sophie

    To identify the most promising positive electrodes for Ca-based liquid metal batteries, the thermodynamic properties of diverse Ca-based liquid alloys were investigated. The thermodynamic properties of Ca-Sb alloys were determined by emf measurements. It was found that Sb as positive electrode would provide the highest voltage for Ca-based liquid metal batteries (1 V). The price of such a battery would be competitive for the grid-scale energy storage market. The impact of Pb, a natural impurity of Sb, was predicted successfully and confirmed via electrochemical measurements. It was shown that the impact on the open circuit voltage would be minor. Indeed, the interaction between Ca and Sb was demonstrated to be much stronger than between Ca and Pb using thermodynamic modeling, which explains why the partial thermodynamic properties of Ca would not vary much with the addition of Pb to Sb. However, the usage of the positive electrode would be reduced, which would limit the interest of a Pb-Sb positive electrode. Throughout this work, the molecular interaction volume model (MIVM) was used for the first time for alloys with thermodynamic properties showing strong negative deviation from ideality. This model showed that systems such as Ca-Sb have strong short-range order: Ca is most stable when its first nearest neighbors are Sb. This is consistent with what the more traditional thermodynamic model, the regular association model, would predict. The advantages of the MIVM are the absence of assumption regarding the composition of an associate, and the reduced number of fitting parameters (2 instead of 5). Based on the parameters derived from the thermodynamic modeling using the MIVM, a new potential of mixing for liquid alloys was defined to compare the strength of interaction in different Ca-based alloys. Comparing this trend with the strength of interaction in the solid state of these systems (assessed by the energy of formation of the intermetallics), the systems with

  2. Molecular Modeling of Thermodynamic and Transport Properties for CO2 and Aqueous Brines.

    PubMed

    Jiang, Hao; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2017-04-18

    Molecular simulation techniques using classical force-fields occupy the space between ab initio quantum mechanical methods and phenomenological correlations. In particular, Monte Carlo and molecular dynamics algorithms can be used to provide quantitative predictions of thermodynamic and transport properties of fluids relevant for geologic carbon sequestration at conditions for which experimental data are uncertain or not available. These methods can cover time and length scales far exceeding those of quantum chemical methods, while maintaining transferability and predictive power lacking from phenomenological correlations. The accuracy of predictions depends sensitively on the quality of the molecular models used. Many existing fixed-point-charge models for water and aqueous mixtures fail to represent accurately these fluid properties, especially when descriptions covering broad ranges of thermodynamic conditions are needed. Recent work on development of accurate models for water, CO 2 , and dissolved salts, as well as their mixtures, is summarized in this Account. Polarizable models that can respond to the different dielectric environments in aqueous versus nonaqueous phases are necessary for predictions of properties over extended ranges of temperatures and pressures. Phase compositions and densities, activity coefficients of the dissolved salts, interfacial tensions, viscosities and diffusivities can be obtained in near-quantitative agreement to available experimental data, using relatively modest computational resources. In some cases, for example, for the composition of the CO 2 -rich phase in coexistence with an aqueous phase, recent results from molecular simulations have helped discriminate among conflicting experimental data sets. The sensitivity of properties on the quality of the intermolecular interaction model varies significantly. Properties such as the phase compositions or electrolyte activity coefficients are much more sensitive than phase

  3. Thermodynamic evidence for the Bose glass transition in twinned YBa 2 Cu 3 O 7 - δ crystals

    DOE PAGES

    Pérez-Morelo, D. J.; Osquiguil, E.; Kolton, A. B.; ...

    2015-07-21

    We used a micromechanical torsional o scillator to measure the magnetic response of a twinned YBaBa2Cu3O7-δ single crystal disk near the Bose glass transition. We observe an anomaly in the temperature dependence of the magnetization consistent with the appearance of a magnetic shielding perpendicular to the correlated pinning of the twin boundaries. This effect is related to the thermodynamic transition from the vortex liquid phase to a Bose glass state.

  4. Effect of Nd doping on structural, dielectric and thermodynamic properties of PZT (65/35) ceramic

    NASA Astrophysics Data System (ADS)

    Mohiddon, Md Ahamad; Kumar, Abhishek; Yadav, K. L.

    2007-05-01

    The influence of neodymium (Nd) addition on the phase formation and dielectric properties of Pb(Zr 0.65Ti 0.35)O 3 composition prepared from mixed oxide method was analyzed. Pellets were sintered in air and PbZrO 3 (PZ) atmosphere separately. Non-perovskite ZrO 2 phase was observed in samples which were sintered in air, also grain size was found to decrease with Nd doping in non-PZ environment samples. Decrease in transition temperature by 80 °C with increasing Nd concentration was observed in both set of samples. Maximum dielectric constant and dielectric losses are found to decrease with Nd doping. Complex impedance analysis revealed that grain boundary resistance increases with Nd doping. Thermodynamic parameters such as change in enthalpy, free energy and change in entropy were studied.

  5. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria

    USGS Publications Warehouse

    Sverjensky, D.A.; Hemley, J.J.; d'Angelo, W. M.

    1991-01-01

    The thermodynamic properties of minerals retrieved from consideration of solid-solid and dehydration equilibria with calorimetric reference values, and those of aqueous species derived from studies of electrolytes, are not consistent with experimentally measured high-temperature solubilities in the systems K2O- and Na2O-Al2O3-SiO2-H2O-HCl (e.g., K-fs - Ms - Qtz - K+ - H+). This introduces major inaccuracies into the computation of ionic activity ratios and the acidities of diagenetic, metamorphic, and magmatic hydrothermal fluids buffered by alkali silicate-bearing assemblages. We report a thermodynamic analysis of revised solubility equilibria in these systems that integrates the thermodynamic properties of minerals obtained from phase equilibria studies (Berman, 1988) with the properties of aqueous species calculated from a calibrated equation of state (Shock and Helgeson, 1988). This was achieved in two separate steps. First, new values of the free energies and enthalpies of formation at 25??C and 1 bar for the alkali silicates muscovite and albite were retrieved from the experimental solubility equilibria at 300??C and Psat. Because the latter have stoichiometric reaction coefficients different from those for solid-solid and dehydration equilibria, our procedure preserves exactly the relative thermodynamic properties of the alkali-bearing silicates (Berman, 1988). Only simple arithmetic adjustments of -1,600 and -1,626 (??500) cal/mol to all the K- and Na-bearing silicates, respectively, in Berman (1988) are required. In all cases, the revised values are within ??0.2% of calorimetric values. Similar adjustments were derived for the properties of minerals from Helgeson et al. (1978). Second, new values of the dissociation constant of HCl were retrieved from the solubility equilibria at temperatures and pressures from 300-600??C and 0.5-2.0 kbars using a simple model for aqueous speciation. The results agree well with the conductance-derived dissociation

  6. Transport and thermodynamic properties of hydrous melts in the system An-Di.

    NASA Astrophysics Data System (ADS)

    Giordano, D.; Potuzak, M.; Romano, C.; Russell, J. K.; Nowak, M.; Dingwell, D. B.

    2006-12-01

    The thermodynamic and transport properties hydrous silicate melts are of fundamental importance for characterization of the dynamics and energetics associated with silicate melts in the Earth. The literature concerning the transport and calorimetric properties of hydrous silicate melts remains scarce. With few exceptions little has been effectively done in order to provide chemical models that bridge the gap between the description of both complex and simple systems. The An-Di system is of general interest to geochemists as well as petrologists because it serves as a simple analogue for basaltic compositions. It was chosen here due to the combination of its simple chemical description and the presence of an extensive database of published experimental data on both its transport and thermodynamic properties. We have measured the viscosity (η)), the glass transition temperatures (Tg) and the heat capacity (Cp) of silicate melts in the An-Di system containing up to 3 wt.% of dissolved H2O. Viscosity data were obtained by using the dilatometric method of micropenetration, whereas a differential scanning calorimeter (DSC) was employed to determine the glass transition temperatures and the heat capacities. In order to characterize the well-known cooling/heating rate dependence of the glass transition temperatures the calorimetric measurements were performed at heating/cooling rate of 5, 10, 15 and 20 K/min. These results together with those of previous experimental studies have been used to provide a compositional model capable of calculating the Newtonian viscosity of melts as well as the Tg and Cp values for the An- Di+H2O system. The non-Arrhenian T-dependence of viscosity is accounted for by the Vogel-Fulcher- Tammann (VFT) and the Adam Gibbs (AG) equations. Our optimizations assume a common, high-T limit (A) for silicate melt viscosity, consistent with values provided by both theoretical and experimental studies. In particular, we also show that glass transition

  7. Raman spectroscopy, thermal and optical properties of TeO2-ZnO-Nb2O5-Nd2O3 glasses

    NASA Astrophysics Data System (ADS)

    Kamalaker, V.; Upender, G.; Ramesh, Ch.; Chandra Mouli, V.

    2012-04-01

    The glasses with composition 75TeO2-10ZnO-(15-x)Nb2O5-xNd2O3 (0 ≤ x ≤ 9 mol%) were prepared using melt quenching method and their physical properties such as density (ρ), molar volume (VM), average crosslink density (n¯), oxygen packing density (OPD) and number of bonds per unit volume (nb) were determined. Raman spectroscopic studies showed that the glass network consists of TeO4, TeO3+1, TeO3 and NbO6 units as basic structural units. The glass transition temperature (Tg), crystallization onset (To) and thermal stability (ΔT) were determined from DSC thermograms. The Raman and DSC results were found to be correlated with the physical properties. In the optical absorption spectra six absorption bands were observed with different relative intensities at around 464, 522, 576, 742, 801 and 871 nm which are assigned to the transition of electrons from (ground state) 4I9/2 → G11/2; 4I9/22K3/2, 2G7/2; 4I9/2 → 4G5/2, 4G7/2; 4I9/2 → 4S3/2; 4F7/22H9/2, 4F5/2 and 4I9/22F3/2 respectively. From optical absorption data the energy band gap (Eopt) and Urbach energy (ΔE) were calculated.

  8. Electrical properties of crystallized 30B2O3-70V2O5 glass

    NASA Astrophysics Data System (ADS)

    Gwoo, Donggun; Kim, Taehee; Han, Kyungseok; Choi, Wongyu; Kim, Jonghwan; Ryu, Bongki

    2013-05-01

    30B2O3-70V2O5 binary-system glass was prepared, and variations in structural and electrical property were examined using crystallization. While different related research studies exist, few have evaluated the variations in the structure and properties with changes in the crystallization rate. 30B2O3-70V2O5 glass was annealed in the graphite mold above the glass transition temperature for 2 h and heat-treated at each crystallization temperature for 3 h. 30B2O3-70V2O5 glass showed predominantly electronic conductive characteristic. FTIR was preferentially used for analyzing the structural changes of B-O bond after crystallization, while XRD was utilized to verify the inferred changes in the structure array (BO3 + V2O5 ↔ BO4 + 2VO2). Structural changes induced by heat treatment were confirmed by analyzing the molecular volume determined from the sample density, and conductance was measured to correlate structural and property changes. Conductivity is discussed based on the migration of vanadate ions with different valence states because of the increase in VO2 crystallinity at 130°C, which, however, was not observed at 170°C. After VO2 structures were reinforced, a 1.8-fold increase in conductance was observed (as compared to the annealed sample) after crystallization at 130°C for 3 h.

  9. Synthesis, structural, thermal and optical properties of TeO2-Bi2O3-GeO2-Li2O glasses

    NASA Astrophysics Data System (ADS)

    Dimowa, Louiza; Piroeva, Iskra; Atanasova-Vladimirova, S.; Petrova, Nadia; Ganev, Valentin; Titorenkova, Rositsa; Yankov, Georgi; Petrov, Todor; Shivachev, Boris L.

    2016-10-01

    In this study, synthesis and characterization of novel quaternary tellurite glass system TeO2-Bi2O3-GeO2-Li2O is presented. The compositions include TeO2 and GeO2 as glass formers while different proportion of Bi2O3 and Li2O act as network modifiers. Differential thermal analysis, X-ray diffraction, scanning electron microscopy energy dispersive X-ray spectroscopy, laser ablation inductively coupled plasma mass spectrometry, UV-Vis and Raman spectroscopy are applied to study the structural, thermal and optical properties of the studied glasses. Obtained glasses possess a relatively low glass transition temperature (around 300 °C) if compared to other tellurite glasses, show good thermal transparency in the visible and near infra-red (from 2.4 to 0.4 μm) and can double the frequency of laser light from its original wavelength of 1064 nm to its second-harmonic at 532 nm (i.e. second harmonic generation).

  10. Magnetic properties and stability of Cu3V2O8 compound in the different phases

    NASA Astrophysics Data System (ADS)

    Jezierski, Andrzej

    2016-11-01

    The magnetic and thermodynamic properties of Cu3V2O8 compound in four structures (P-1, P21/c, P21/m and Cmca) are reported. The calculations are performed by using the Full-Potential Local Orbital Minimum Basis (FPLO) and Vienna ab initio Simulation Package (VASP) methods. We have applied the local density approximation (LDA) with the generalized gradient corrections (GGA). The effect of electron correlations was also included in GGA+U approximation. The thermodynamic properties were obtained in the quasi-harmonic Debye-Grüneisen model using the equation of states (EOS) in the form of Poirier-Tarantola. Our ab-intio results indicate that α (P-1) phase is stable below 1.87 GPa, β (P21/c) exists in the region 1.87

  11. Simple optimized Brenner potential for thermodynamic properties of diamond

    NASA Astrophysics Data System (ADS)

    Liu, F.; Tang, Q. H.; Shang, B. S.; Wang, T. C.

    2012-02-01

    We have examined the commonly used Brenner potentials in the context of the thermodynamic properties of diamond. A simple optimized Brenner potential is proposed that provides very good predictions of the thermodynamic properties of diamond. It is shown that, compared to the experimental data, the lattice wave theory of molecular dynamics (LWT) with this optimized Brenner potential can accurately predict the temperature dependence of specific heat, lattice constant, Grüneisen parameters and coefficient of thermal expansion (CTE) of diamond.

  12. In vitro cellular adhesion and antimicrobial property of SiO2-MgO-Al2O3-K2O-B2O3-F glass ceramic.

    PubMed

    Kalmodia, Sushma; Molla, Atiar Rahaman; Basu, Bikramjit

    2010-04-01

    The aim of the present study was to examine the cellular functionality and antimicrobial properties of SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F glass ceramics (GC) containing fluorophlogopite as major crystalline phase. The cellular morphology and cell adhesion study using human osteoblast-like Saos-2 cells and mouse fibroblast L929 cells reveals good in vitro cytocompatibility of GC. The potential use of the GC for biomedical application was also assessed by in vitro synthesis of the alkaline phosphatase (ALP) activity of Saos-2 cells. It is proposed that B(2)O(3) actively enhances the cell adhesion and supports osteoconduction process, whereas, fluorine component significantly influences cell viability. The Saos-2 and L929 cells on GC shows extensive multidirectional network of actin cytoskeleton. The in vitro results of this study illustrate how small variation in fluorine and boron in base glass composition influences significantly the biocompatibility and antimicrobial bactericidal property, as evaluated using a range of biochemical assays. Importantly, it shows that the cell viability and osteoconduction can be promoted in glass ceramics with lower fluorine content. The underlying reasons for difference in biological properties are analyzed and reported. It is suggested that oriented crystalline morphology in the lowest fluorine containing glass ceramic enhanced cellular spreading. Overall, the in vitro cell adhesion, cell flattening, cytocompatibility and antimicrobial study of the three different compositions of glass ceramic clearly reveals that microstructure and base glass composition play an important role in enhancing the cellular functionality and antimicrobial property.

  13. Thermodynamics and combustion modeling

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.

    1986-01-01

    Modeling fluid phase phenomena blends the conservation equations of continuum mechanics with the property equations of thermodynamics. The thermodynamic contribution becomes especially important when the phenomena involve chemical reactions as they do in combustion systems. The successful study of combustion processes requires (1) the availability of accurate thermodynamic properties for both the reactants and the products of reaction and (2) the computational capabilities to use the properties. A discussion is given of some aspects of the problem of estimating accurate thermodynamic properties both for reactants and products of reaction. Also, some examples of the use of thermodynamic properties for modeling chemically reacting systems are presented. These examples include one-dimensional flow systems and the internal combustion engine.

  14. Ab initio thermodynamics and seismic properties of MgSiO3 polymorphs at mantle transition zone conditions: the geodynamic role of non-olivine phases

    NASA Astrophysics Data System (ADS)

    Belmonte, Donato; Ottonello, Giulio Armando; Vetuschi Zuccolini, Marino

    2014-05-01

    MgSiO3 polymorphs with the garnet, pyroxene and ilmenite structure play a key role in controlling phase equilibria and seismic velocity gradients in the mantle transition zone (440-660 km). Despite the relative abundance of structural and thermoelastic informations, thermodynamic data are still poorly constrained and their extrapolation at high pressure and temperature conditions is affected by large uncertainties. In this work, ab initio calculations of the thermodynamic properties of MgSiO3 polymorphs stable at MTZ conditions (tetragonal majorite, Mj; akimotoite, Ak; HP-clinoenstatite, HPCEn) have been carried out with the hybrid B3LYP density functional method. The static and vibrational features of these minerals (equation of state, elastic constants, seismic velocities and anisotropy, IR and Raman spectra, mode Grüneisen parameters) have been fully characterized in a broad range of P-T conditions. The vibrational density of states (vDOS) have been reproduced in the framework of quasi-harmonic approximation through a full phonon dispersion calculation or, alternatively, a modified Kieffer's model splitting the acoustic and optic modes contribution to the thermodynamic functions. The calculated heat capacities are in good agreement with the relatively few calorimetric investigations made so far on these minerals in the low- to medium-T range. However, physical unsoundness may affect the high-temperature extrapolation of calorimetric results, so that the use in phase equilibria calculation deserves great care. The calculated Gibbs free energies allow to define phase transition boundaries in the MgSiO3 phase diagram and locate the majorite-akimotite-perovskite triple point at P = 21.09 ± 0.13 GPa and T = 2247 ± 31 K. The effect of partial structural disorder in majorite, assessed via an interchange enthalpy (ΔHint = 15 kJ/mol) and configurational entropy [Sconf = 1.9 J/(mol×K)] contribution, must be taken into account to accurately reproduce the Mj

  15. Thermodynamic properties of lanthanum in gallium-zinc alloys

    NASA Astrophysics Data System (ADS)

    Dedyukhin, A. S.; Shepin, I. E.; Kharina, E. A.; Shchetinskiy, A. V.; Volkovich, V. A.; Yamshchikov, L. F.

    2016-09-01

    Thermodynamic properties of lanthanum were determined in gallium-zinc alloys of the eutectic and over-eutectic compositions. The electromotive force measurements were used to determine thermodynamic activity and sedimentation technique to measure solubility of lanthanum in liquid metal alloys. Temperature dependencies of lanthanum activity, solubility and activity coefficients in alloys with Ga-Zn mixtures containing 3.64, 15 and 50 wt. % zinc were obtained.

  16. Inflight thermodynamic properties

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Daniels, G. E.; Johnson, D. L.; Smith, O. E.

    1973-01-01

    The inflight thermodynamic parameters (temperature, pressure, and density) of the atmosphere are presented. Mean and extreme values of the thermodynamic parameters given here can be used in application of many aerospace problems, such as: (1) research and planning and engineering design of remote earth sensing systems; (2) vehicle design and development; and (3) vehicle trajectory analysis, dealing with vehicle thrust, dynamic pressure, aerodynamic drag, aerodynamic heating, vibration, structural and guidance limitations, and reentry analysis. Atmospheric density plays a very important role in most of the above problems. A subsection on reentry is presented, giving atmospheric models to be used for reentry heating, trajectory, etc., analysis.

  17. Thermodynamics Behavior of Germanium During Equilibrium Reactions between FeOx-CaO-SiO2-MgO Slag and Molten Copper

    NASA Astrophysics Data System (ADS)

    Shuva, M. A. H.; Rhamdhani, M. A.; Brooks, G. A.; Masood, S.; Reuter, M. A.

    2016-10-01

    The distribution ratio of germanium (Ge), L_{{Ge}}^{s/m} during equilibrium reactions between magnesia-saturated FeOx-CaO-SiO2 (FCS) slag and molten copper has been measured under oxygen partial pressures from 10-10 to 10-7 atm and at temperatures 1473 to 1623 K (1200 to 1350 °C). It was observed that the Ge distribution ratio increases with increasing oxygen partial pressure, and with decreasing temperature. It was also observed that the distribution ratio is strongly dependent on slag basicity. The distribution ratio was observed to increase with increasing optical basicity. At fixed CaO concentration in the slag, the distribution ratio was found to increase with increasing Fe/SiO2 ratio, tending to a plateau at L_{{Ge}}^{s/m} = 0.8. This behavior is consistent with the assessment of ionic bond fraction carried out in this study, and suggested the acidic nature of germanium oxide (GeO2) in the slag system studied. The characterisation results of the quenched slag suggested that Ge is present in the FeOx-CaO-SiO2-MgO slag predominantly as GeO2. At 1573 K (1300 °C) and p_{{{{O}}2 }} = 10-8 atm, the activity coefficient of GeO2 in the slag was calculated to be in the range of 0.24 to 1.50. The results from the current study suggested that less-basic slag, high operating temperature, and low oxygen partial pressure promote a low Ge distribution ratio. These conditions are desired for maximizing Ge recovery, for example, during pyrometallurgical processing of Ge-containing e-waste through secondary copper smelting. Overall, the thermodynamics data generated from this study can be used for process modeling purposes for improving recovery of Ge in primary and secondary copper smelting processes.

  18. Experimental oxygen potentials of U 1-yPr yO 2± x and thermodynamic assessment of the U-Pr-O system

    DOE PAGES

    McMurray, Jake W.; Silva, Chinthaka M.

    2015-12-09

    Thermogravimetric analysis (TGA) was used to determine the oxygen potentials of fluorite urania-praseodymia (U 1-yPr yO 2± x) solid solutions for y = 0.10 and 0.20 between 1000 and 1500 °C. A thermodynamic assessment of U-Pr-O system was performed using the CALPHAD (CALculation of PHAse Diagrams) method. Furthermore, the models well reproduce the TGA measurements and the computed phase relations are in good agreement with those proposed from an X-ray diffraction investigation.

  19. Raman spectroscopy, thermal and optical properties of TeO2-ZnO-Nb2O5-Nd2O3 glasses.

    PubMed

    Kamalaker, V; Upender, G; Ramesh, Ch; Mouli, V Chandra

    2012-04-01

    The glasses with composition 75TeO2-10ZnO-(15-x)Nb2O5-xNd2O3 (0≤x≤9 mol%) were prepared using melt quenching method and their physical properties such as density (ρ), molar volume (VM), average crosslink density (nc¯), oxygen packing density (OPD) and number of bonds per unit volume (nb) were determined. Raman spectroscopic studies showed that the glass network consists of TeO4, TeO3+1, TeO3 and NbO6 units as basic structural units. The glass transition temperature (Tg), crystallization onset (To) and thermal stability (ΔT) were determined from DSC thermograms. The Raman and DSC results were found to be correlated with the physical properties. In the optical absorption spectra six absorption bands were observed with different relative intensities at around 464, 522, 576, 742, 801 and 871 nm which are assigned to the transition of electrons from (ground state) 4I9/2→G11/2; 4I9/22K3/2, 2G7/2; 4I9/2→4G5/2, 4G7/2; 4I9/2→4S3/2; 4F7/22H9/2, 4F5/2 and 4I9/22F3/2 respectively. From optical absorption data the energy band gap (Eopt) and Urbach energy (ΔE) were calculated. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Eu(2+)-Activated Phase-Pure Oxonitridosilicate Phosphor in a Ba-Si-O-N System via Facile Silicate-Assisted Routes Designed by First-Principles Thermodynamic Simulation.

    PubMed

    Yun, Young Jun; Kim, Jin Kyu; Ju, Ji Young; Choi, Seul Ki; Park, Woon Ik; Jung, Ha-Kyun; Kim, Yongseon; Choi, Sungho

    2016-09-06

    Eu(2+)-activated single phase Ba(2+)-oxonitridosilicate phosphors were prepared under a mild synthetic condition via silicate precursors, and their luminescent properties were investigated. Both the preferred oxonitridosilicate formation as for the available host compounds and thermodynamic stability within the Ba-Si-O-N system were elucidated in detail by the theoretical simulation based on the first-principles density functional theory. Those results can visualize the optimum synthetic conditions for Eu(2+)-activated highly luminescent Ba(2+)-oxonitridosilicates, especially Ba3Si6O12N2, as promising conversion phosphors for white LEDs, including Ba3Si6O9N4 and BaSi2O2N2 phases. To prove the simulated design rule, we synthesized the Ba3Si6O12N2:Eu(2+) phosphor using various silicate precursors, Ba2Si4O10, Ba2Si3O8, and BaSiO3, in a carbothermal reduction ambient and finally succeeded in obtaining a phase of pure highly luminescent oxonitridosilicate phosphor without using any solid-state nitride addition and/or high pressure synthetic procedures. Our study provides useful guidelines for robust synthetic procedures for developing thermally stable rare-earth-ion activated oxonitridosilicate phosphors and an established simulation method that can be effectively applied to other multigas systems.

  1. Calculation of the Standard Molal Thermodynamic Properties of Crystalline, Liquid, and Gas Organic Molecules at High Temperatures and Pressures

    NASA Astrophysics Data System (ADS)

    Helgeson, Harold C.; Owens, Christine E.; Knox, Annette M.; Richard, Laurent

    1998-03-01

    2), alanine (C 3H 7NO 2), valine (C 5H 11NO 2), leucine (C 6H 13NO 2), isoleucine (C 6H 13NO 2), aspartic acid (C 4H 7NO 4), glutamic acid (C 5H 9NO 4), asparagine (C 4H 8N 2O 3), glutamine (C 5H 10N 2O 3), proline (C 5H 9NO 2), phenylalanine (C 9H 11NO 2), tryptophan (C 11H 12N 2O 2), methionine (C 5H 11SNO 2), serine (C 3H 7NO 3), threonine (C 4H 9NO 3), cysteine (C 3H 7SNO 2), tyrosine (C 9H 11NO 3), lysine (C 6H 14N 2O 2), lysine:HCl (C 6H 15N 2O 2Cl), arginine (C 6H 14N 4O 2), arginine:HCl (C 6H 15N 4O 2Cl), histidine (C 6H 9N 3O 2), and histidine:HCl (C 6H 10N 3O 2Cl). The data for the latter compounds permit calculation of the standard molal thermodynamic properties of protein unfolding in biogeochemical processes (Helgeson et al 1998). The liquids and gases considered in the present study include normal alkanes (C nH 2( n+1) ) for carbon numbers ranging from 1 to 100, 2- and 3-methylalkanes (C nH 2( n+1) ) for 4 ≤ n ≤ 20 and 6 ≤ n ≤ 20, respectively, 2,3-dimethylpentane (C 7H 16), 4-methylheptane (C 8H 18), cycloalkanes (C nH 2 n) for 3 ≤ n ≤ 8, methylated benzenes (C nH 2( n-3) ) for 7 ≤ n ≤ 12, normal alkylbenzenes (C nH 2( n-3) ) for 6 ≤ n ≤ 20, normal 1-alcohols (C nH 2( n+1) O) for 1 ≤ n ≤ 20, ethylene glycol (C 2H 6O 2), glycerol (C 3H 8O 3), normal 1-alkanethiols (C nH 2( n+1) S) for 1 ≤ n ≤ 20, normal carboxylic acids (C nH 2 nO 2) for 2 ≤ n ≤ 20, and the following miscellaneous species: 2-thiabutane (C 3H 8S), thiophene (C 4H 4S), thiophenol (C 6H 6S), acetone (C 3H 6O), 2-butanone (C 4H 8O), ethyl acetate (C 4H 8O 2), pyridine (C 5H 5N), 3-methylpyridine (C 6H 7N), and quinoline (C 9H 7N). One additional liquid (2-methylthiacyclopentane (C 5H 10S)) was also considered along with crystalline and gaseous carbazole (C 12H 9N). The thermodynamic data and equations summarized below can be used together with the standard molal thermodynamic properties of high molecular weight organic compounds ( Richard and Helgeson 1995

  2. One- or two-electron water oxidation, hydroxyl radical, or H 2O 2 evolution

    DOE PAGES

    Siahrostami, Samira; Li, Guo -Ling; Viswanathan, Venkatasubramanian; ...

    2017-02-23

    Electrochemical or photoelectrochemcial oxidation of water to form hydrogen peroxide (H 2O 2) or hydroxyl radicals (•OH) offers a very attractive route to water disinfection, and the first process could be the basis for a clean way to produce hydrogen peroxide. A major obstacle in the development of effective catalysts for these reactions is that the electrocatalyst must suppress the thermodynamically favored four-electron pathway leading to O 2 evolution. Here, we develop a thermochemical picture of the catalyst properties that determine selectivity toward the one, two, and four electron processes leading to •OH, H 2O 2, and O 2.

  3. Understanding AlN Obtaining Through Computational Thermodynamics Combined with Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Florea, R. M.

    2017-06-01

    Basic material concept, technology and some results of studies on aluminum matrix composite with dispersive aluminum nitride reinforcement was shown. Studied composites were manufactured by „in situ” technique. Aluminum nitride (AlN) has attracted large interest recently, because of its high thermal conductivity, good dielectric properties, high flexural strength, thermal expansion coefficient matches that of Si and its non-toxic nature, as a suitable material for hybrid integrated circuit substrates. AlMg alloys are the best matrix for AlN obtaining. Al2O3-AlMg, AlN-Al2O3, and AlN-AlMg binary diagrams were thermodynamically modelled. The obtained Gibbs free energies of components, solution parameters and stoichiometric phases were used to build a thermodynamic database of AlN- Al2O3-AlMg system. Obtaining of AlN with Liquid-phase of AlMg as matrix has been studied and compared with the thermodynamic results. The secondary phase microstructure has a significant effect on the final thermal conductivity of the obtained AlN. Thermodynamic modelling of AlN-Al2O3-AlMg system provided an important basis for understanding the obtaining behavior and interpreting the experimental results.

  4. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel.

    PubMed

    Huang, Limao; Liu, Jingyong; He, Yao; Sun, Shuiyu; Chen, Jiacong; Sun, Jian; Chang, KenLin; Kuo, Jiahong; Ning, Xun'an

    2016-10-01

    Thermodynamics and kinetics of sewage sludge (SS) and water hyacinth (WH) co-combustion as a blend fuel (SW) for bioenergy production were studied through thermogravimetric analysis. In CO2/O2 atmosphere, the combustion performance of SS added with 10-40wt.% WH was improved 1-1.97 times as revealed by the comprehensive combustion characteristic index (CCI). The conversion of SW in different atmospheres was identified and their thermodynamic parameters (ΔH,ΔS,ΔG) were obtained. As the oxygen concentration increased from 20% to 70%, the ignition temperature of SW decreased from 243.1°C to 240.3°C, and the maximum weight loss rate and CCI increased from 5.70%·min(-1) to 7.26%·min(-1) and from 4.913%(2)·K(-3)·min(-2) to 6.327%(2)·K(-3)·min(-2), respectively, which corresponded to the variation in ΔS and ΔG. The lowest activation energy (Ea) of SW was obtained in CO2/O2=7/3 atmosphere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Advances in first-principles calculations of thermodynamic properties of planetary materials (Invited)

    NASA Astrophysics Data System (ADS)

    Wilson, H. F.

    2013-12-01

    First-principles atomistic simulation is a vital tool for understanding the properties of materials at the high-pressure high-temperature conditions prevalent in giant planet interiors, but properties such as solubility and phase boundaries are dependent on entropy, a quantity not directly accessible in simulation. Determining entropic properties from atomistic simulations is a difficult problem typically requiring a time-consuming integration over molecular dynamics trajectories. Here I will describe recent advances in first-principles thermodynamic calculations which substantially increase the simplicity and efficiency of thermodynamic integration and make entropic properties more readily accessible. I will also describe the use of first-principles thermodynamic calculations for understanding problems including core solubility in gas giants and superionic phase changes in ice giants, as well as future prospects for combining first-principles thermodynamics with planetary-scale models to help us understand the origin and consequences of compositional inhomogeneity in giant planet interiors.

  6. Application of zone-folding approach to the first-principles estimation of thermodynamic properties of carbon and ZrS2 -based nanotubes.

    PubMed

    Bandura, Andrei V; Porsev, Vitaly V; Evarestov, Robert A

    2016-03-15

    A zone-folding (ZF) approach is applied for the estimation of the phonon contributions to thermodynamic properties of carbon-and ZrS2 -based nanotubes (NTs) of hexagonal morphology with different chiralities. The results obtained are compared with those from the direct calculation of the thermodynamic properties of NTs using PBE0 hybrid exchange-correlation functional. The phonon contribution to the stability of NTs proved to be negligible for the internal energy and small for the Helmholtz free energy. It is found that the ZF approach allows us an accurate estimation of phonon contributions to internal energy, but slightly overestimates the phonon contributions to entropy. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Ab initio thermodynamic model for magnesium carbonates and hydrates.

    PubMed

    Chaka, Anne M; Felmy, Andrew R

    2014-09-04

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  8. Molecular Modeling of Thermodynamic and Transport Properties for CO 2 and Aqueous Brines

    DOE PAGES

    Jiang, Hao; Economou, Ioannis G.; Panagiotopoulos, Athanassios Z.

    2017-02-24

    Molecular simulation techniques using classical force-fields occupy the space between ab initio quantum mechanical methods and phenomenological correlations. In particular, Monte Carlo and molecular dynamics algorithms can be used to provide quantitative predictions of thermodynamic and transport properties of fluids relevant for geologic carbon sequestration at conditions for which experimental data are uncertain or not available. These methods can cover time and length scales far exceeding those of quantum chemical methods, while maintaining transferability and predictive power lacking from phenomenological correlations. The accuracy of predictions depends sensitively on the quality of the molecular models used. Many existing fixed-point-charge models formore » water and aqueous mixtures fail to represent accurately these fluid properties, especially when descriptions covering broad ranges of thermodynamic conditions are needed. Recent work on development of accurate models for water, CO 2, and dissolved salts, as well as their mixtures, is summarized in this Account. Polarizable models that can respond to the different dielectric environments in aqueous versus nonaqueous phases are necessary for predictions of properties over extended ranges of temperatures and pressures. Phase compositions and densities, activity coefficients of the dissolved salts, interfacial tensions, viscosities and diffusivities can be obtained in near-quantitative agreement to available experimental data, using relatively modest computational resources. In some cases, for example, for the composition of the CO 2-rich phase in coexistence with an aqueous phase, recent results from molecular simulations have helped discriminate among conflicting experimental data sets. The sensitivity of properties on the quality of the intermolecular interaction model varies significantly. Properties such as the phase compositions or electrolyte activity coefficients are much more sensitive than phase

  9. Molecular Modeling of Thermodynamic and Transport Properties for CO 2 and Aqueous Brines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Economou, Ioannis G.; Panagiotopoulos, Athanassios Z.

    Molecular simulation techniques using classical force-fields occupy the space between ab initio quantum mechanical methods and phenomenological correlations. In particular, Monte Carlo and molecular dynamics algorithms can be used to provide quantitative predictions of thermodynamic and transport properties of fluids relevant for geologic carbon sequestration at conditions for which experimental data are uncertain or not available. These methods can cover time and length scales far exceeding those of quantum chemical methods, while maintaining transferability and predictive power lacking from phenomenological correlations. The accuracy of predictions depends sensitively on the quality of the molecular models used. Many existing fixed-point-charge models formore » water and aqueous mixtures fail to represent accurately these fluid properties, especially when descriptions covering broad ranges of thermodynamic conditions are needed. Recent work on development of accurate models for water, CO 2, and dissolved salts, as well as their mixtures, is summarized in this Account. Polarizable models that can respond to the different dielectric environments in aqueous versus nonaqueous phases are necessary for predictions of properties over extended ranges of temperatures and pressures. Phase compositions and densities, activity coefficients of the dissolved salts, interfacial tensions, viscosities and diffusivities can be obtained in near-quantitative agreement to available experimental data, using relatively modest computational resources. In some cases, for example, for the composition of the CO 2-rich phase in coexistence with an aqueous phase, recent results from molecular simulations have helped discriminate among conflicting experimental data sets. The sensitivity of properties on the quality of the intermolecular interaction model varies significantly. Properties such as the phase compositions or electrolyte activity coefficients are much more sensitive than phase

  10. Thermodynamic properties of UF sub 6 measured with a ballistic piston compressor

    NASA Technical Reports Server (NTRS)

    Sterritt, D. E.; Lalos, G. T.; Schneider, R. T.

    1973-01-01

    From experiments performed with a ballistic piston compressor, certain thermodynamic properties of uranium hexafluoride were investigated. Difficulties presented by the nonideal processes encountered in ballistic compressors are discussed and a computer code BCCC (Ballistic Compressor Computer Code) is developed to analyze the experimental data. The BCCC unfolds the thermodynamic properties of uranium hexafluoride from the helium-uranium hexafluoride mixture used as the test gas in the ballistic compressor. The thermodynamic properties deduced include the specific heat at constant volume, the ratio of specific heats for UF6, and the viscous coupling constant of helium-uranium hexafluoride mixtures.

  11. Gamma ray shielding and structural properties of Bi2O3-PbO-B2O3-V2O5 glass system

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas

    2014-04-01

    The present work has been undertaken to evaluate the applicability of Bi2O3-PbO-B2O3-V2O5 glass system as gamma ray shielding material. Gamma ray mass attenuation coefficient has been determined theoretically using WinXcom computer software developed by National Institute of Standards and Technology. A meaningful comparison of their radiation shielding properties has been made in terms of their half value layer parameter with standard radiation shielding concrete 'barite'. Structural properties of the prepared glass system have been investigated in terms of XRD and FTIR techniques in order to check the possibility of their commercial utility as alternate to conventional concrete for gamma ray shielding applications.

  12. Effect of RuO2 growth temperature on ferroelectric properties of RuO2/Pb(Zr, Ti)O3/RuO2/Pt capacitors

    NASA Astrophysics Data System (ADS)

    Norga, G. J.; Fè, Laura; Wouters, D. J.; Maes, H. E.

    2000-03-01

    We present a promising method for obtaining Pb(Zr, Ti)O3(PZT) layers with excellent endurance and pulse-switching properties on RuO2 electrodes using the sol-gel method. As the substrate temperature during reactive sputtering of the RuO2 bottom electrode layer is reduced, the (111) PZT texture component becomes more pronounced, an effect attributed to the change from columnar to granular RuO2 film morphology. Reducing the residual PZT (100) and (101) texture components was found to be a necessary condition for obtaining optimal pulse switching and endurance properties of the layers. Highly (111)-oriented PZT layers, obtained on RuO2 grown at 150 °C exhibit a net switched charge of >60 μC/cm2 during pulse measurement and <10% degradation after 1011 fatigue cycles.

  13. Liquid-vapor phase equilibria and the thermodynamic properties of 2-methylpropanol- n-alkyl propanoate solutions

    NASA Astrophysics Data System (ADS)

    Suntsov, Yu. K.; Goryunov, V. A.; Chuikov, A. M.; Meshcheryakov, A. V.

    2016-08-01

    The boiling points of solutions of five binary systems are measured via ebulliometry in the pressure range of 2.05-103.3 kPa. Equilibrium vapor phase compositions, the values of the excess Gibbs energies, enthalpies, and entropies of solution of these systems are calculated. Patterns in the changes of phase equilibria and thermodynamic properties of solutions are established, depending on the compositions and temperatures of the systems. Liquid-vapor equilibria in the systems are described using the equations of Wilson and the NRTL (Non-Random Two-Liquid Model).

  14. Thermodynamic and mechanical properties of TiC from ab initio calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, D. Y.; Fan, J. L.; Gong, H. R., E-mail: gonghr@csu.edu.cn

    2014-07-21

    The temperature-dependent thermodynamic and mechanical properties of TiC are systematically investigated by means of a combination of density-functional theory, quasi-harmonic approximation, and thermal electronic excitation. It is found that the quasi-harmonic Debye model should be pertinent to reflect thermodynamic properties of TiC, and the elastic properties of TiC decease almost linearly with the increase of temperature. Calculations also reveal that TiC possesses a pronounced directional pseudogap across the Fermi level, mainly due to the strong hybridization of Ti 3d and C 2p states. Moreover, the strong covalent bonding of TiC would be enhanced (reduced) with the decrease (increase) of temperature,more » while the change of volume (temperature) should have negligible effect on density of states at the Fermi level. The calculated results agree well with experimental observations in the literature.« less

  15. Gamma ray shielding properties of PbO-Li2O-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok

    2017-07-01

    The mass attenuation coefficients have been measured in (0.6-x) PbO-x Li2O-0.40 B2O3 (where 0≤ x≤0.25 mol%) glasses for photon energies of 356, 662, 1173 and 1332 keV in a narrow beam geometry with an overall scatter acceptance angle of 2.31°. The experimental results are found to be within 3% of their theoretical values. These coefficients were then used to obtain the values of mean free path, effective atomic number and electron density. The shielding properties of these glasses have also been compared among themselves in terms of their mean free path and radiation protection efficiency. The shielding properties prepared glasses have also been compared with standard concretes as well as with the standard shielding glasses. It is found that the prepared glasses are the better shielding substitute to the conventional concretes as well as other standard shielding glasses. The Pb3B4O9 has been found to be the most effective shield.

  16. Molecular Dynamics Studies of CaAl2Si2O8 Liquid to 800 GPa: An Equation of State (EOS), Hugoniot Analysis, and Thermodynamic Model Over the Temperature-Range 2500-5000 K (Invited)

    NASA Astrophysics Data System (ADS)

    Ghiorso, M. S.; Cutler, I.; Nevins, D.; Spera, F. J.

    2009-12-01

    Equilibrium Molecular Dynamics (MD) simulations are applied to molten CaAl2Si2O8 using a Coulomb-Born-Mayer-van der Waals pair potential form and parameters from Matsui (1996, GRL 23:395). Experiments were performed in the microcanonical ensemble (NEV) using 8000 atoms, a 1 fs time step, and simulation durations of 50 ps. Computations were carried out every 500 K over a temperature range of 2500 - 5000 K along 21 isochores to yield a grid of 141 state points spanning the pressure range 0-800 GPa. Atomic coordination statistics are determined by counting nearest neighbor configurations up to a cutoff distance defined by the first minima of the pair correlation function. A thermodynamic model (and EOS) for this liquid is developed from the MD simulation results by combining the Rosenfeld-Tarazona (1998, Mol Phys 95:141) potential energy-temperature scaling law with the Universal EOS (1986, J Phys C, 19:L467). The resulting model is used to estimate thermodynamic properties and the sound speed of the liquid near zero pressure and these compare favorably to physical experiments. By contrast to our previous work (DOI: 10.1016/j.gca.2009.08.012), which utilized an alternate pair potential, no structural phase transition is required to thermodynamically model these results — a single parameterization describes the properties of the system over the entire range of ~4-fold compression. Our analysis indicates the existence of polyamorphism with a critical point at ~0.6 GPa and ~3000 K. A modeled Hugoniot is consistent with the low-pressure shock experiments of Rigden et al. (JGR 94:9508) but inconsistent with the more recent measurements of Asimow and Ahrens (EOS 89,MR32B-04). The latter experiments are matched with a model isentrope emanating from just above the zero pressure melting point of anorthite, which also coincides with the initial conditions of the shock. The MD simulations reveal that near zero-pressure, CaAl2Si2O8 liquid is dominated by Si in tetrahedral

  17. An Interpolation Method for Obtaining Thermodynamic Properties Near Saturated Liquid and Saturated Vapor Lines

    NASA Technical Reports Server (NTRS)

    Nguyen, Huy H.; Martin, Michael A.

    2004-01-01

    The two most common approaches used to formulate thermodynamic properties of pure substances are fundamental (or characteristic) equations of state (Helmholtz and Gibbs functions) and a piecemeal approach that is described in Adebiyi and Russell (1992). This paper neither presents a different method to formulate thermodynamic properties of pure substances nor validates the aforementioned approaches. Rather its purpose is to present a method to generate property tables from existing property packages and a method to facilitate the accurate interpretation of fluid thermodynamic property data from those tables. There are two parts to this paper. The first part of the paper shows how efficient and usable property tables were generated, with the minimum number of data points, using an aerospace industry standard property package. The second part describes an innovative interpolation technique that has been developed to properly obtain thermodynamic properties near the saturated liquid and saturated vapor lines.

  18. Ab initio thermodynamic approach to identify mixed solid sorbents for CO 2 capture technology

    DOE PAGES

    Duan, Yuhua

    2015-10-15

    Because the current technologies for capturing CO 2 are still too energy intensive, new materials must be developed that can capture CO 2 reversibly with acceptable energy costs. At a given CO 2 pressure, the turnover temperature (T t) of the reaction of an individual solid that can capture CO 2 is fixed. Such T t may be outside the operating temperature range (ΔT o) for a practical capture technology. To adjust T t to fit the practical ΔT o, in this study, three scenarios of mixing schemes are explored by combining thermodynamic database mining with first principles density functionalmore » theory and phonon lattice dynamics calculations. Our calculated results demonstrate that by mixing different types of solids, it’s possible to shift T t to the range of practical operating temperature conditions. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO 2 capture reactions by the mixed solids of interest, we were able to identify the mixing ratios of two or more solids to form new sorbent materials for which lower capture energy costs are expected at the desired pressure and temperature conditions.« less

  19. Reaction rim growth in the system MgO-Al2O3-SiO2 under uniaxial stress

    NASA Astrophysics Data System (ADS)

    Götze, Lutz Christoph; Abart, Rainer; Rybacki, Erik; Keller, Lukas M.; Petrishcheva, Elena; Dresen, Georg

    2010-07-01

    We synthesize reaction rims between thermodynamically incompatible phases in the system MgO-Al2O3-SiO2 applying uniaxial load using a creep apparatus. Synthesis experiments are done in the MgO-SiO2 and in the MgO-Al2O3 subsystems at temperatures ranging from 1150 to 1350 °C imposing vertical stresses of 1.2 to 29 MPa at ambient pressure and under a constant flow of dry argon. Single crystals of synthetic and natural quartz and forsterite, synthetic periclase and synthetic corundum polycrystals are used as starting materials. We produce enstatite rims at forsterite-quartz contacts, enstatite-forsterite double rims at periclase-quartz contacts and spinel rims at periclase-corundum contacts. We find that rim growth under the “dry” conditions of our experiments is sluggish compared to what has been found previously in nominally “dry” piston cylinder experiments. We further observe that the nature of starting material, synthetic or natural, has a major influence on rim growth rates, where natural samples are more reactive than synthetic ones. At a given temperature the effect of stress variation is larger than what is anticipated from the modification of the thermodynamic driving force for reaction due to the storage of elastic strain energy in the reactant phases. We speculate that this may be due to modification of the physical properties of the polycrystals that constitute the reaction rims or by deformation under the imposed load. In our experiments rim growth is very sluggish at forsterite-quartz interfaces. Rim growth is more rapid at periclase-quartz contacts. The spinel rims that are produced at periclase-corundum interfaces show parabolic growth indicating that reaction rim growth is essentially diffusion controlled. From the analysis of time series done in the MgO-Al2O3 subsystem we derive effective diffusivities for the Al2O3 and the MgO components in a spinel polycrystal as D_{MgO} = 1.4 ± 0.2 \\cdot 10^{-15} m2/s and D_{Al_2O_3} = 3.7 ± 0

  20. Predicting structural properties of fluids by thermodynamic extrapolation

    NASA Astrophysics Data System (ADS)

    Mahynski, Nathan A.; Jiao, Sally; Hatch, Harold W.; Blanco, Marco A.; Shen, Vincent K.

    2018-05-01

    We describe a methodology for extrapolating the structural properties of multicomponent fluids from one thermodynamic state to another. These properties generally include features of a system that may be computed from an individual configuration such as radial distribution functions, cluster size distributions, or a polymer's radius of gyration. This approach is based on the principle of using fluctuations in a system's extensive thermodynamic variables, such as energy, to construct an appropriate Taylor series expansion for these structural properties in terms of intensive conjugate variables, such as temperature. Thus, one may extrapolate these properties from one state to another when the series is truncated to some finite order. We demonstrate this extrapolation for simple and coarse-grained fluids in both the canonical and grand canonical ensembles, in terms of both temperatures and the chemical potentials of different components. The results show that this method is able to reasonably approximate structural properties of such fluids over a broad range of conditions. Consequently, this methodology may be employed to increase the computational efficiency of molecular simulations used to measure the structural properties of certain fluid systems, especially those used in high-throughput or data-driven investigations.

  1. Thermodynamic Properties of Heusler Fe2-x C ox M n S i

    NASA Astrophysics Data System (ADS)

    Ito, Masakazu; Furuta, Tatsuya; Kai, Keita; Taira, Atsushi; Onda, Keijiro; Shigeta, Iduru; Hiroi, Masahiko

    2017-04-01

    We investigated the thermodynamic properties of Heusler compounds Fe2-x C ox m n S i (0.00 ≤ x ≤ 2.00). The specific heats CP(T) for compounds with x ≤ 0.1 exhibit a λ-type anomaly arising from spin rearrangements at TR. With increasing x, TR decreases linearly and vanishes at x ∼ 0.169 . The magnetic entropy, STR, derived from the magnetic specific heat, Cm(T), released at TR decreases by increasing x. This means the canting angle of spins from the [111] direction decreases by the substitution of Fe atoms with Co atoms, based on the magnetic structure model of Fe2MnSi proposed by Miles et al. For compounds with 0.5 ≤ x , CP(T) in the low-T range can be reproduced by Debye T3 law. The electronic specific heat coefficient decreases monotonically with x.

  2. A Thermodynamic Approach for Modeling H2O-CO2 Solubility in Alkali-rich Mafic Magmas at Mid-crustal Pressures

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.

    2017-12-01

    Volatile solubility in magmas is dependent on several factors, including composition and pressure. Mafic (basaltic) magmas with high concentrations of alkali elements (Na and K) are capable of dissolving larger quantities of H2O and CO2 than low-alkali basalt. The exsolution of abundant gases dissolved in alkali-rich mafic magmas can contribute to large explosive eruptions. Existing volatile solubility models for alkali-rich mafic magmas are well calibrated below 200 MPa, but at greater pressures the experimental data is sparse. To allow for accurate interpretation of mafic magmatic systems at higher pressures, we conducted a set of mixed H2O-CO2 volatile solubility experiments between 400 and 600 MPa at 1200 °C in six mafic compositions with variable alkali contents. Compositions include magmas from volcanoes in Italy, Antarctica, and Arizona. Results from our experiments indicate that existing volatile solubility models for alkali-rich mafic magmas, if extrapolated beyond their calibrated range, over-predict CO2 solubility at mid-crustal pressures. Physically, these results suggest that volatile exsolution can occur at deeper levels than what can be resolved from the lower-pressure experimental data. Existing thermodynamic models used to calculate volatile solubility at different pressures require two experimentally derived parameters. These parameters represent the partial molar volume of the condensed volatile species in the melt and its equilibrium constant, both calculated at a standard temperature and pressure. We derived these parameters for each studied composition and the corresponding thermodynamic model shows good agreement with the CO2 solubility data of the experiments. A general alkali basalt solubility model was also constructed by establishing a relationship between magma composition and the thermodynamic parameters. We utilize cation fractions from our six compositions along with four compositions from the experimental literature in a linear

  3. Composition and Thermodynamic Properties of Air in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Moeckel, W E; Weston, Kenneth C

    1958-01-01

    Charts have been prepared relating the thermodynamic properties of air in chemical equilibrium for temperatures to 15,000 degrees k and for pressures 10(-5) to 10 (plus 4) atmospheres. Also included are charts showing the composition of air, the isentropic exponent, and the speed of sound. These charts are based on thermodynamic data calculated by the National Bureau of Standards.

  4. Molecular structures and thermodynamic properties of 12 gaseous cesium-containing species of nuclear safety interest: Cs 2, CsH, CsO, Cs 2O, CsX, and Cs 2X 2 (X = OH, Cl, Br, and I)

    NASA Astrophysics Data System (ADS)

    Badawi, Michael; Xerri, Bertrand; Canneaux, Sébastien; Cantrel, Laurent; Louis, Florent

    2012-01-01

    Ab initio electronic structure calculations at the coupled cluster level with a correction for the triples extrapolated to the complete basis set limit have been made for the estimation of the thermochemical properties of Cs 2, CsH, CsO, Cs 2O, CsX, and Cs 2X 2 (X = OH, Cl, Br, and I). The standard enthalpies of formation and standard molar entropies at 298 K, and the temperature dependence of the heat capacities at constant pressure were evaluated. The calculated thermochemical properties are in good agreement with their literature counterparts. For Cs 2, CsH, CsOH, Cs 2(OH) 2, CsCl, Cs 2Cl 2, CsBr, CsI, and Cs 2I 2, the calculated ΔfH298K∘ values are within chemical accuracy of the most recent experimental values. Based on the excellent agreement observed between our calculated ΔfH298K∘ values and their literature counterparts, the standard enthalpies of formation at 298 K are estimated to be the following: ΔfH298K∘ (CsO) = 17.0 kJ mol -1 and ΔfH298K∘ (Cs 2Br 2) = -575.4 kJ mol -1.

  5. Optical properties of Na2O-TiO2-SiO2 glass films prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Barton, Ivo; Matejec, Vlastimil; Mrazek, Jan; Predoana, Luminita; Zaharescu, Maria

    2017-12-01

    Layers based on TiO2-SiO2 systems fabricated by sol-gel method have been investigated for the preparation of planar waveguides, antireflective coatings, Bragg mirrors, etc. However, at high titania contents such materials exhibit high viscosities and tendency to phase separation. In this paper we present optical properties of films containing TiO2 which are prepared via a novel approach sol-gel on the basis of ternary Na2O-TiO2-SiO2 glasses and which can exhibit lower viscosities. Films of Na2O-TiO2-SiO2 systems were prepared from input sols mixed of silica, titania and sodium oxide sols. The silica sol was prepared from tetraethyl orthosilicate (TEOS), ethanol, hydrochloric acid and water, with a TEOS c= 2 mol/l and water/alkoxide ratio 1.75. The titania sol was mixed from titanium tetraisopropoxide (TiPr), propan-2-ol, nitric acid and water, c= 0.5 mol/l, RW= 0.42. The sodium oxide sols with c= 0.474 mol/l were prepared from sodium ethoxide and ethanol. Input sols were prepared by mixing the silica and titania sols first and then the sodium sol was added. The input sols were aged for one hour. Stable input sols were obtained. The input sols were deposited on glass and silica slides by dip-coating technique at a withdrawing speeds of 200 mm/min. Applied gel layers were thermally treated at temperatures of 450 and 900°C. Layers containing sodium oxide and titania in concentration ranges of 0-20 mol.% and 0-30 mol.% respectively have been fabricated. Optical properties of layers were determined by UV-VIS-NIR transmission and reflection spectrophotometry. Refractive indices of layers were determined by spectral ellipsometry and from transmission spectra. Optical properties were correlated with results of XRD spectroscopy, optical microscopy, and atomic force microscopy. Transparent homogenous films with a maximum refractive index of 1.61 at a wavelength of 600 nm have been obtained.

  6. Metastable Solution Thermodynamic Properties and Crystal Growth Kinetics

    NASA Technical Reports Server (NTRS)

    Kim, Soojin; Myerson, Allan S.

    1996-01-01

    The crystal growth rates of NH4H2PO4, KH2PO4, (NH4)2SO4, KAl(SO4)2 central dot 12H2O, NaCl, and glycine and the nucleation rates of KBr, KCl, NaBr central dot 2H2O, (NH4)2Cl, and (NH4)2SO4 were expressed in terms of the fundamental driving force of crystallization calculated from the activity of supersaturated solutions. The kinetic parameters were compared with those from the commonly used kinetic expression based on the concentration difference. From the viewpoint of thermodynamics, rate expressions based on the chemical potential difference provide accurate kinetic representation over a broad range of supersaturation. The rates estimated using the expression based on the concentration difference coincide with the true rates of crystallization only in the concentration range of low supersaturation and deviate from the true kinetics as the supersaturation increases.

  7. Thermodynamic properties for arsenic minerals and aqueous species

    USGS Publications Warehouse

    Nordstrom, D. Kirk; Majzlan, Juraj; Königsberger, Erich; Bowell, Robert J.; Alpers, Charles N.; Jamieson, Heather E.; Nordstrom, D. Kirk; Majzlan, Juraj

    2014-01-01

    Quantitative geochemical calculations are not possible without thermodynamic databases and considerable advances in the quantity and quality of these databases have been made since the early days of Lewis and Randall (1923), Latimer (1952), and Rossini et al. (1952). Oelkers et al. (2009) wrote, “The creation of thermodynamic databases may be one of the greatest advances in the field of geochemistry of the last century.” Thermodynamic data have been used for basic research needs and for a countless variety of applications in hazardous waste management and policy making (Zhu and Anderson 2002; Nordstrom and Archer 2003; Bethke 2008; Oelkers and Schott 2009). The challenge today is to evaluate thermodynamic data for internal consistency, to reach a better consensus of the most reliable properties, to determine the degree of certainty needed for geochemical modeling, and to agree on priorities for further measurements and evaluations.

  8. Structural properties of TiO2 nanomaterials

    NASA Astrophysics Data System (ADS)

    Kusior, Anna; Banas, Joanna; Trenczek-Zajac, Anita; Zubrzycka, Paulina; Micek-Ilnicka, Anna; Radecka, Marta

    2018-04-01

    The surface of solids is characterized by active, energy-rich sites that determine physicochemical interaction with gaseous and liquid media and possible applications in photocatalysis. The behavior of materials in such processes is related to their form and amount of various species, especially water and forms of oxygen adsorbed on the surface. The preparation of materials with controlled morphology, which includes modifications of the size, geometry, and composition, is currently an important way of optimizing properties, as many of them depend on not only the size and phase composition, but also on shape. Hydroxylated centers on the surface, which can be treated as trapping sites, are particularly significant. Water adsorbed on the surface bridging hydroxyl groups can distinctly modulate the properties of the surface of titania. The saturation of the surface with hydroxyl groups may improve the photocatalytic properties. TiO2 nanomaterials were obtained via different methods. SEM and TEM analysis were performed to study the morphology. The analysis of XRD and Raman data revealed a phase composition of obtained materials. To examine the surface properties, FTIR absorption spectra of TiO2 nanomaterials were recorded. The photocatalytic activity of titanium dioxide nanoparticles was investigated through the decomposition of methylene blue. It was demonstrated that each surface modification affects the amount of adsorbed hydroxyl groups. The different contributions of the two species to the ν(H2O) FTIR bands for different nanostructures result from the preparation conditions. It was noted that pre-adsorbed water (the surface-bridging hydroxyl) might significantly modulate the surface properties of the material. The increase in hydroxyl group density on the titanium dioxide surface enhances the effectiveness of the photocatalytic processes. It was demonstrated that flower-like titania obtained via hydrothermal synthesis exhibits the weakest catalytic activity, in

  9. Thermodynamic properties of an emerging chemical disinfectant, peracetic acid.

    PubMed

    Zhang, Chiqian; Brown, Pamela J B; Hu, Zhiqiang

    2018-04-15

    Peracetic acid (PAA or CH 3 COOOH) is an emerging disinfectant with a low potential to form carcinogenic disinfection by-products (DBPs). Basic thermodynamic properties of PAA are, however, absent or inconsistently reported in the literature. This review aimed to summarize important thermodynamic properties of PAA, including standard Gibbs energy of formation and oxidation-reduction (redox) potential. The standard Gibbs energies of formation of CH 3 COOOH (aq) , CH 3 COOOH (g) , CH 3 COOOH (l) , and CH 3 COOO (aq) - are -299.41kJ·mol -1 , -283.02kJ·mol -1 , -276.10kJ·mol -1 , and -252.60kJ·mol -1 , respectively. The standard redox potentials of PAA are 1.748V and 1.005V vs. standard hydrogen electrode (SHE) at pH 0 and pH 14, respectively. Under biochemical standard state conditions (pH 7, 25°C, 101,325Pa), PAA has a redox potential of 1.385V vs. SHE, higher than many disinfectants. Finally, the environmental implications of the thermodynamic properties of PAA were systematically discussed. Those properties can be used to predict the physicochemical and biological behavior of aquatic systems exposed to PAA. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fabrication and Properties of Plasma-Sprayed Al2O3/ZrO2 Composite Coatings

    NASA Astrophysics Data System (ADS)

    Dejang, N.; Limpichaipanit, A.; Watcharapasorn, A.; Wirojanupatump, S.; Niranatlumpong, P.; Jiansirisomboon, S.

    2011-12-01

    Al2O3 /xZrO2 (where x = 0, 3, 13, and 20 wt.%) composite coatings were deposited onto mild steel substrates by atmospheric plasma spraying of mixed α-Al2O3 and nano-sized monoclinic-ZrO2 powders. Microstructural investigation showed that the coatings comprised well-separated Al2O3 and ZrO2 lamellae, pores, and partially molten particles. The coating comprised mainly of metastable γ-Al2O3 and tetragonal-ZrO2 with trace of original α-Al2O3 and monoclinic-ZrO2 phases. The effect of ZrO2 addition on the properties of coatings were investigated in terms of microhardness, fracture toughness, and wear behavior. It was found that ZrO2 improved the fracture toughness, reduced friction coefficient, and wear rate of the coatings.

  11. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    NASA Astrophysics Data System (ADS)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  12. Thermal, structural and optical properties of new TeO2sbnd Sb2O3sbnd GeO2 ternary glasses

    NASA Astrophysics Data System (ADS)

    Pereira, C.; Barbosa, J.; Cassanjes, F. C.; Gonçalves, R. R.; Ribeiro, S. J. L.; Poirier, G.

    2016-12-01

    In this work the novel glass system TeO2sbnd Sb2O3sbnd GeO2 was investigated and promising glass compositions were selected for further specific studies. Glass samples in the (80-0.8x)TeO2-(20-0.2x)Sb2O3-xGeO2 molar composition were prepared by the melt-quenching method with a glass-forming domain from x = 10 to x = 90. Samples were investigated by XRD, DSC, FTIR, Raman spectroscopy and UV-visible absorption. The XRD and DSC results bring informations about the non-crystalline state and thermal properties of these materials. It has been observed that higher GeO2 contents lead to higher glass transition temperatures and thermal stabilities against crystallization. FTIR and Raman spectroscopies suggest a progressive incorporation of GeO2 in the covalent network of TeO2 with conversion of structural units TeO4 to TeO3. Absorption spectra revealed the high visible transparency of these samples and an increase of the optical band gap with GeO2 addition, in agreement with a decreasing polarizability of the glass network. Er3+ doped and Er3+/Yb3+ codoped samples were also studied with respect to their infrared emission properties and higher GeO2 contents lead to an increase in IR emission intensity at 1,5 μm as well as longer radiative lifetimes. Finally, upconversion emission in the visible were also recorded and were shown to be strongly dependent of the composition.

  13. Correlation between structural and thermodynamic properties of some selenium based phase-change materials

    NASA Astrophysics Data System (ADS)

    Chandel, Namrata; Mehta, Neeraj

    2018-04-01

    In this study, we prepared novel selenium rich multi-component glasses by incorporating In, Cd and Sb as foreign elements in an Sn containing Sesbnd Te system in order to study their metal-induced effects on the thermal properties of the parent ternary glass. In particular, we determined the thermodynamic parameters of Se80Te18Sn2 and Se80Te8Sn2M10 (M = Cd, In, Sb) glassy semiconductors in a non-isothermal environment using the differential scanning calorimetry. Calorimetric measurements were obtained in the glass transition regions for Se80Te18Sn2 and Se80Te8Sn2M10 (M = Cd, In, Sb) glasses to determine their thermodynamic parameters such as the specific heat, enthalpy, and entropy during glass transition. We analyzed the variation in the specific heat before and after the heat capacity jump in these alloys. The metal-induced effects of foreign elements on the thermodynamic properties of the parent glass were also investigated in terms of the influence of the elemental specific heat of the added elemental metal as well as the thermal stability and glass-forming ability of the glasses.

  14. Electronic and Optical Properties of Atomic Layer-Deposited ZnO and TiO2

    NASA Astrophysics Data System (ADS)

    Ates, H.; Bolat, S.; Oruc, F.; Okyay, A. K.

    2018-05-01

    Metal oxides are attractive for thin film optoelectronic applications. Due to their wide energy bandgaps, ZnO and TiO2 are being investigated by many researchers. Here, we have studied the electrical and optical properties of ZnO and TiO2 as a function of deposition and post-annealing conditions. Atomic layer deposition (ALD) is a novel thin film deposition technique where the growth conditions can be controlled down to atomic precision. ALD-grown ZnO films are shown to exhibit tunable optical absorption properties in the visible and infrared region. Furthermore, the growth temperature and post-annealing conditions of ZnO and TiO2 affect the electrical properties which are investigated using ALD-grown metal oxide as the electron transport channel on thin film field-effect devices.

  15. Water in Basaltic Melts: an Experimental and Thermodynamic Study of the Effect of H2O on Liquidus Temperatures.

    NASA Astrophysics Data System (ADS)

    Medard, E.; Grove, T. L.

    2006-12-01

    We present a thermodynamic model for the influence of H2O on liquidus temperatures of olivine-saturated primitive basaltic and andesitic melts. The thermodynamic model has been fitted to a suite of H2O-saturated liquidus experiments carried out on a primitive high-alumina basalt from Medicine Lake Volcano (82-72f) over a pressure range of 10 to 1000 MPa. The model of Silver and Stolper (S+S, 1985, J.Geol. 93:161) has been applied to the experimental data. This model uses the assumption of simple ideal mixing between water species and the anionic matrix in the melt. Water in the melt dissolves as molecular H2O, or dissociates to hydroxyl groups and an oxygen atomic network. For 82-72f, the liquidus olivine shows little compositional variability (Fo87.4 to Fo88.4) over the broad range of pressures and temperatures investigated that is not correlated with H2O content of the melt. This observation supports our assumption that major effect of H2O is on the anionic species in the melt and not on the cation equilibria (e.g. Mg and Si). The model reproduces the experimental data well. We find that there is a large influence of H2O addition on melting point for small amounts of H2O, resulting in a concave-down curvature when liquidus depression is plotted against the amount of H2O added. For addition of 0.8 and 5 wt% H2O to 82-72f, the liquidus is depressed by 35 K and 130 K, respectively. The best fits are obtained by assuming partial water dissociation to OH and H2O species, using the equilibrium constant measured by Stolper (1982). S+S applied their model to simple systems (diopside/H2O, albite/H2O, silica/H2O), and recovered the melting behavior extremely well. They also suggested that melt structure/composition influences the amount of liquidus depression caused by H2O addition. We have investigated the influence of bulk composition by performing complementary experiments on a high-magnesian andesite from Mount Shasta, and on a K, Na, and P rich alkali basalt from

  16. Thermodynamics of Titanium-Aluminum-Oxygen Alloys Studied

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Titanium-aluminum alloys are promising intermediate-temperature alloys for possible compressor applications in gas-turbine engines. These materials are based on the a2-Ti3Al + g-TiAl phases. The major issue with these materials is high oxygen solubility in a2-Ti3Al, and oxidation of unsaturated alloys generally leads to mixed non-protective TiO2+Al2O3 scales. From phase diagram studies, oxygen saturated a2-Ti3Al(O) is in equilibrium with Al2O3; however, oxygen dissolution has a detrimental effect on mechanical properties and cannot be accepted. To better understand the effect of oxygen dissolution, we examined the thermodynamics of titanium-aluminum-oxygen alloys.

  17. Electrical and dielectric properties of ZnO and CeO{sub 2} doped ZrTi{sub 2}O{sub 6} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Aneesh; Thomas, Jijimon K.; John, Annamma

    2014-01-28

    Zirconium oxide (ZrO{sub 2}) and titanium dioxide (TiO{sub 2}) are the important catalyst supports, since it has acidic and basic properties. The intermediate phase zirconium titanate ZrTi{sub 2}O{sub 6}, which is a solid solution with Zr:Ti ratio 1:2 has outstanding dielectric properties. The effects of doping of ZnO and CeO{sub 2} on the dielectric and electrical properties of ZrTi{sub 2}O{sub 6} ceramic are investigated. On adding 0.5 wt% ZnO, the dielectric constant is increased but, on adding CeO{sub 2}, the dielectric constant is decreased. The bulk density of pure sample sintered at 1530 °C is 91% of theoretical density whilemore » that of the doped samples sintered at 1450 °C is more than 94% of theoretical density. Scanning electron micrographs reveal that the samples are well sintered with minimum porosity. The semicircle behavior in the Cole-Cole plots at room temperature reveals that the samples are good ionic conductor. The induced impedance is reduced for doped samples and this can be used as a material for electrolyte in Solid Oxide Fuel Cell.« less

  18. Dielectric Properties of BST/(Y 2O 3) x(ZrO 2) 1-x/BST Trilayer Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Santosh K.; Misra, D.

    2011-01-31

    Thin films of Ba1-xSrxTiO3 (BST) are being actively investigated for applications in dynamic random access memories (DRAM) because of their properties such as high dielectric constant, low leakage current, and high dielectric breakdown strength. Various approaches have been used to improve the dielectric properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO2 layer in between two BST layers results in a significant reduction in dielectric constant as well as dielectric loss. In this work the effect of Y2O3 doped ZrO2 on the dielectric properties of BST/ZrO2/BST trilayer structure ismore » studied. The structure Ba0.8Sr0.2TiO3/(Y2O3)x(ZrO2)1-x/Ba0.8Sr0.2TiO3 is deposited by a sol-gel process on platinized Si substrate. The composition (x) of the middle layer is varied while keeping the total thickness of the trilayer film constant. The dielectric constant of the multilayer film decreases with the increase of Y2O3 amount in the film whereas there is a slight variation in dielectric loss. In Y2O3 doped multilayer thin films, the dielectric loss is lower in comparison to other films and also there is good frequency stability in the loss in the measured frequency range and hence very suitable for microwave device applications.« less

  19. Calorimetric determination of energetics of solid solutions of UO 2+ x with CaO and Y 2O 3

    NASA Astrophysics Data System (ADS)

    Mazeina, Lena; Navrotsky, Alexandra; Greenblatt, Martha

    2008-02-01

    Quantitative study of thermodynamic properties of solid solutions of UO 2+ x with divalent and trivalent oxides is important for predicting the behavior of oxide fuel. Although early literature work measured vapor pressure in some of these solid solutions, direct calorimetric measurements of enthalpies of formation have been hampered by the refractory nature of such oxides. First measurements of the enthalpies of formation in the systems UO 2+ x-CaO and UO 2+ x-YO 1.5, obtained by high-temperature oxide melt solution calorimetry, are reported. Both systems show significantly negative (exothermic) heats of formation from binary oxides (UO 2, plus O 2 and CaO or YO 1.5, as well as from UO 2 plus UO 3 and CaO or YO 1.5), consistent with reported free energy measurements in the urania-yttria system. The energetic contributions of oxygen content (oxidation of U 4+) and of charge balanced ionic substitution as well as defect clustering are discussed. Behavior of urania-yttria is compared to that of corresponding systems in which the tetravalent ion is Ce, Zr, or Hf. The substantial additional stability in the solid solutions compared to pure UO 2+ x may retard, in both thermodynamic and kinetic sense, the oxidation and leaching of spent fuel to form aqueous U 6+ and solid uranyl phases.

  20. Thermodynamic properties of a hard/soft-magnetic bilayer model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taaev, T. A., E-mail: taaev89@mail.ru; Khizriev, K. Sh.; Murtazaev, A. K.

    2016-05-15

    A model for describing the thermodynamic properties of a hard/soft-magnetic bilayer is proposed and thoroughly studied using the Monte Carlo method. Temperature dependences of the heat capacity, total magnetization, magnetizations of the hard- and soft-magnetic layers, total magnetic susceptibility, and susceptibilities of the hard- and soft-magnetic layers have been calculated by this method in the framework of the proposed model. The obtained temperature dependences of the heat capacity and magnetic susceptibility display double maxima that result from the two phase transitions that take place in the system. The influence of system dimensions on the thermodynamic properties of the model hasmore » been considered.« less

  1. Influence of SiO2 Addition on Properties of PTFE/TiO2 Microwave Composites

    NASA Astrophysics Data System (ADS)

    Yuan, Ying; Wang, Jie; Yao, Minghao; Tang, Bin; Li, Enzhu; Zhang, Shuren

    2018-01-01

    Composite substrates for microwave circuit applications have been fabricated by filling polytetrafluoroethylene (PTFE) polymer matrix with ceramic powder consisting of rutile TiO2 ( D 50 ≈ 5 μm) partially substituted with fused amorphous SiO2 ( D 50 ≈ 8 μm) with composition x vol.% SiO2 + (50 - x) vol.% TiO2 ( x = 0, 3, 6, 9, 12), and the effects of SiO2 addition on characteristics such as the density, moisture absorption, microwave dielectric properties, and thermal properties systematically investigated. The results show that the filler was well distributed throughout the matrix. High dielectric constant ( ɛ r > 7.19) and extremely low moisture absorption (<0.02%) were obtained, resulting from the relatively high density of the composites. The ceramic particles served as barriers and improved the thermal stability of the PTFE polymer, retarding its decomposition. The temperature coefficient of dielectric constant ( τ ɛ ) of the composites shifted toward the positive direction (from - 309 ppm/°C to - 179 ppm/°C) as the SiO2 content was increased, while the coefficient of thermal expansion remained almost unchanged (˜ 35 ppm/°C).

  2. WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1979-01-01

    A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.

  3. Thermodynamics of radiation induced amorphization and thermal annealing of Dy 2Sn 2O 7 pyrochlore

    DOE PAGES

    Chung, Cheng-Kai; Lang, Maik; Xu, Hongwu; ...

    2018-06-14

    Thermodynamics and annealing behavior of swift heavy ion amorphized Dy 2Sn 2O 7 pyrochlore were studied. Its amorphization enthalpy, defined as the total energetic difference between the irradiation amorphized and undamaged Dy 2Sn 2O 7 states, was determined to be 283.6 ± 6.5 kJ/mol by high temperature oxide melt drop solution calorimetry. It has been an enigma that stannate and some other pyrochlores do not follow the general r A/r B-radiation resistance relation seen in most pyrochlore systems. In this paper, we use the amorphization enthalpy, which reflects all the complex chemical and structural characteristics, as a more effective parametermore » to correlate the radiation damage resistance of pyrochlores with their compositions. It successfully explains the superior radiation damage resistance of the stannate pyrochlores compared with titanate pyrochlores. Differential scanning calorimetry (DSC) reveals a strong exothermic event starting at 978 K, which is attributed to long-range recrystallization based on X-ray diffraction (XRD) analysis, similar to the effect previously observed in Dy 2Ti 2O 7. A second pronounced heat event beginning at ~1148 K, which results from local structural rearrangement, is clearly decoupled from the first event for irradiated Dy 2Sn 2O 7. Both the heat releases measured by DSC on heating to 1023 and 1473 K, and the excess enthalpies of the annealed samples indicate that the recovery to the original, ordered state was not fully achieved up to even 1473 K, despite XRD showing the apparent restoration of crystalline pyrochlore structure. The remaining metastability may be attributed to local disorder in the form of weberite-like short-range domains in the recrystallized material. Intriguingly, the second event for different pyrochlores generally starts at similar temperatures while the onset of the long range recrystallization is compositionally dependent. Finally, the amorphization and thermal annealing behavior observed in

  4. On the thermodynamic properties of thermal plasma in the flame kernel of hydrocarbon/air premixed gases

    NASA Astrophysics Data System (ADS)

    Askari, Omid; Beretta, Gian Paolo; Eisazadeh-Far, Kian; Metghalchi, Hameed

    2016-07-01

    Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the complete chemical equilibrium assumption is developed to calculate the ultra-high temperature plasma composition and thermodynamic properties, including enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The method is applied to compute the thermodynamic properties of H2/air and CH4/air plasma mixtures for different temperatures (1000-100 000 K), different pressures (10-6-100 atm), and different fuel/air equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species needed to compute the complete equilibrium composition, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function so as to capture the reduction of the ionization potential due to pressure and the intense connection between the electronic partition function and the thermodynamic properties of the atomic species and the number of energy levels taken into account. Partition functions have been calculated using tabulated data for available atomic energy levels. The Rydberg and Ritz extrapolation and interpolation laws have been used for energy levels which are not observed. The calculated plasma properties are then presented as functions of temperature, pressure and equivalence ratio, in terms of a new set of thermodynamically self-consistent correlations that are shown to provide very accurate fits suitable for efficient use in CFD simulations. Comparisons with existing data for air plasma show excellent agreement.

  5. Characterization and electrical properties of V 2O 5-CuO-P 2O 5 glasses

    NASA Astrophysics Data System (ADS)

    Al-Assiri, M. S.

    2008-08-01

    Characterization and electrical properties of vanadium-copper-phosphate glasses of compositions xV 2O 5-(40- x)CuO-60P 2O 5 have been reported. X-ray diffraction (XRD) confirms the amorphous nature of these glasses. It was observed that, the density ( d) decreases gradually while the molar volume ( Vm) increases with the increase of the vanadium oxide content in such glasses. This may be due to the effect of the polarizing power strength, PPS, which is a measure of ratio of the cation valance to its diameter. The dc conductivity increases while the activation energy decreases with the increase of the V 2O 5 content. The dc conductivity in the present glasses is electronic and depends strongly upon the average distance, R, between the vanadium ions. Analysis of the electrical properties has been made in the light of small polaron hopping model. The parameters obtained from the fits of the experimental data to this model are reasonable and consistent with glass composition. The conduction is attributed to non-adiabatic hopping of small polaron.

  6. Data of chemical analysis and electrical properties of SnO2-TiO2 composite nanofibers.

    PubMed

    Bakr, Zinab H; Wali, Qamar; Ismail, Jamil; Elumalai, Naveen Kumar; Uddin, Ashraf; Jose, Rajan

    2018-06-01

    In this data article, we provide energy dispersive X-ray spectroscopy (EDX) spectra of the electrospun composite (SnO 2 -TiO 2 ) nanowires with the elemental values measured in atomic and weight%. The linear sweep voltammetry data of composite and its component nanofibers are provided. The data collected in this article is directly related to our research article "Synergistic combination of electronic and electrical properties of SnO 2 and TiO 2 in a single SnO 2 -TiO 2 composite nanowire for dye-sensitized solar cells" [1].

  7. A thermodynamic model for the solubility of HfO2(am) in the aqueous K +– HCO 3 -– CO 3 2-–O -–H 2O system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Dhanpat; Kitamura, Akira; Rosso, Kevin M.

    Solubility of HfO2(am) was determined as a function of KHCO3 concentrations ranging from 0.001 mol·kg-1 to 0.1 mol·kg-1. The solubility of HfO2(am) increased dramatically with the increase in KHCO3 concentrations, indicating that Hf(IV) makes strong complexes with carbonate. Thermodynamic equilibrium constants for the formation of Hf-carbonate complexes were determined using both the Pitzer and SIT models. The dramatic increase in Hf concentrations with the increase in KHCO3 concentrations can best be described by the formation of Hf(OH-)2(CO3)22- and Hf(CO3)56-. The log10 K0 values for the reactions [Hf4++2CO32-+2OH-⇌Hf(OH)2(CO3)22-] and [Hf4++5CO32-⇌Hf(CO3)56-], based on the SIT model, were determined to be 44.53±0.46 andmore » 41.53±0.46, respectively, and based on the Pitzer model they were 44.56±0.48 and 40.20±0.48, respectively.« less

  8. Coupling geodynamic with thermodynamic modelling for reconstructions of magmatic systems

    NASA Astrophysics Data System (ADS)

    Rummel, Lisa; Kaus, Boris J. P.; White, Richard

    2016-04-01

    Coupling geodynamic with petrological models is fundamental for understanding magmatic systems from the melting source in the mantle to the point of magma crystallisation in the upper crust. Most geodynamic codes use very simplified petrological models consisting of a single, fixed, chemistry. Here, we develop a method to better track the petrological evolution of the source rock and corresponding volcanic and plutonic rocks by combining a geodynamic code with a thermodynamic model for magma generation and evolution. For the geodynamic modelling a finite element code (MVEP2) solves the conservation of mass, momentum and energy equations. The thermodynamic modelling of phase equilibria in magmatic systems is performed with pMELTS for mantle-like bulk compositions. The thermodynamic dependent properties calculated by pMELTS are density, melt fraction and the composition of the liquid and solid phase in the chemical system: SiO2-TiO2-Al2O3-Fe2O3-Cr2O3-FeO-MgO-CaO-Na2O-K2O-P2O5-H2O. In order to take into account the chemical depletion of the source rock with increasing melt extraction events, calculation of phase diagrams is performed in two steps: 1) With an initial rock composition density, melt fraction as well as liquid and solid composition are computed over the full upper mantle P-T range. 2) Once the residual rock composition (equivalent to the solid composition after melt extraction) is significantly different from the initial rock composition and the melt fraction is lower than a critical value, the residual composition is used for next calculations with pMELTS. The implementation of several melt extraction events take the change in chemistry into account until the solidus is shifted to such high temperatures that the rock cannot be molten anymore under upper mantle conditions. An advantage of this approach is that we can track the change of melt chemistry with time, which can be compared with natural constraints. In the thermo-mechanical code the

  9. Intermolecular interactions and the thermodynamic properties of supercritical fluids.

    PubMed

    Yigzawe, Tesfaye M; Sadus, Richard J

    2013-05-21

    The role of different contributions to intermolecular interactions on the thermodynamic properties of supercritical fluids is investigated. Molecular dynamics simulation results are reported for the energy, pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound of fluids interacting via both the Lennard-Jones and Weeks-Chandler-Andersen potentials. These properties were obtained for a wide range of temperatures, pressures, and densities. For each thermodynamic property, an excess value is determined to distinguish between attraction and repulsion. It is found that the contributions of intermolecular interactions have varying effects depending on the thermodynamic property. The maxima exhibited by the isochoric and isobaric heat capacities, isothermal compressibilities, and thermal expansion coefficient are attributed to interactions in the Lennard-Jones well. Repulsion is required to obtain physically realistic speeds of sound and both repulsion and attraction are necessary to observe a Joule-Thomson inversion curve. Significantly, both maxima and minima are observed for the isobaric and isochoric heat capacities of the supercritical Lennard-Jones fluid. It is postulated that the loci of these maxima and minima converge to a common point via the same power law relationship as the phase coexistence curve with an exponent of β = 0.32. This provides an explanation for the terminal isobaric heat capacity maximum in supercritical fluids.

  10. Synthesis and Thermodynamic Stability of Ba2B‧B″O6 and Ba3B*B″2O9 Perovskites Using the Molten Salt Method

    NASA Astrophysics Data System (ADS)

    Meng, Wei; Virkar, Anil V.

    1999-12-01

    A number of mixed perovskites of the types Ba2B‧B″O6 (BaB‧1/2B″1/2O3) and Ba3B*B″2O9 (BaB*1/3B″2/3O3) where B‧=Gd, La, Nd, Sm, or Y; B″=Nb and B*=Ca were synthesized by a conventional calcination process, as well as by the molten salt method. The former consists of calcining appropriate mixtures of oxide or carbonate precursors in air at elevated temperatures (∼1250°C). The latter method consists of adding appropriate mixtures of oxide or carbonate precursors to a molten salt bath at relatively low temperatures (on the order of 300 to 500°C) so that the requisite compound is formed by dissolution-reprecipitation. X-ray diffraction confirmed the formation of a single-phase perovskite in each case with calcination at 1250°C. In a molten salt bath, however, all except Ba2LaNbO6 and Ba2NdNbO6 formed the perovskite structure. On the contrary, powders of Ba2LaNbO6 and Ba2NdNbO6 formed by a high-temperature calcination process readily decomposed when introduced into the molten salt bath. The formation of the requisite perovskite at a temperature as low as 350°C in a molten salt suggests that: (a) The perovskite is stable at 350°C. (b) The molten salt exhibits sufficient precursor solubility for the dissolution-reprecipitation process to occur in a reasonable time. Similarly, the decomposition of Ba2LaNbO6 and Ba2NdNbO6 in a molten salt bath shows that these materials are thermodynamically unstable at the temperature of the molten salt bath.

  11. Magnetic and thermodynamic properties of a ferromagnetic mixed-spin (1/2, 1, 3/2) three-layer film superlattice

    NASA Astrophysics Data System (ADS)

    Lv, Dan; Ma, Ye; Jiang, Wei; Si, Xiu-li; Gao, Wei-chun

    2018-07-01

    Using the Monte Carlo simulation, we have studied the magnetic and thermodynamic properties of a ferromagnetic three-layer film mixed-spin (1/2, 1, 3/2) system. We have discussed the influence of intralayer and interfacial exchange couplings, film thickness, magnetic atom concentration and temperature on the magnetization of the superlattice system, magnetic susceptibility, internal energy and specific heat of the system. The phase diagrams in various parameters planes are obtained. Loads of interesting magnetic behaviors have been found, such as double-peak and triple-peak phenomena in the susceptibility and specific heat curves as well as obvious finite size effects for small layer thickness. Through a comparison, there is qualitatively a good agreement between our results and those of other theoretical and experimental studies.

  12. Thermal characteristics, Raman spectra, optical and structural properties of TiO2-Bi2O3-B2O3-TeO2 glasses

    NASA Astrophysics Data System (ADS)

    Gupta, Nupur; Khanna, Atul; Gonzàlez, Fernando; Iordanova, Reni

    2017-05-01

    Tellurite and borotellurite glasses containing Bi2O3 and TiO2 were prepared and structure-property correlations were carried out by density measurements, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Raman and UV-visible spectroscopy. Titanium tellurite glasses require high melt-cooling rates and were fabricated by splat quenching. On adding B2O3, the glass forming ability (GFA) enhances, and glasses could be synthesized at lower quenching rates. The density of glasses shows a direct correlation with molecular mass of the constituents. UV-visible studies were used to determine the optical band gap and refractive index. Raman studies found that the co-ordination number of tellurium ions with oxygen (NTe-O) decreases with the increase in B2O3 as well as Bi2O3 content while, TiO2 produce only a small decrease in NTe-O, which explains the lower GFA of titanium tellurite glasses that do not contain Bi2O3 and B2O3. DSC studies show that the glass transition temperature (Tg) increases with B2O3 and TiO2 concentrations and that Tg correlates well with bond enthalpy of the metal oxides.

  13. Thermodynamic transport properties of nitrogen tetroxide in hypercritical conditions for regenerative cooling of a rocket engine. Volume 1: Tests

    NASA Astrophysics Data System (ADS)

    Saccoccia, Giorgio

    The thermodynamical and transport properties are studied for nitrogen tetroxide (N2O4), which is utilized in hypercritical conditions as oxidants and cooling fluids in rocket propulsion with regenerative cooling systems. An equation of state was performed in the varied zone of the state diagram, taking into account the phase change and two dissociation reactions. The study of the transport properties and state effects is based on the results of the fluid molecular theory. In addition to the state effects, the simple application results obtained for a case of thermal exchange in a cooling channel was studied through the behavior of the substance.

  14. An Interpolation Method for Obtaining Thermodynamic Properties Near Saturated Liquid and Saturated Vapor Lines

    NASA Technical Reports Server (NTRS)

    Nguyen, Huy H.; Martin, Michael A.

    2003-01-01

    The availability and proper utilization of fluid properties is of fundamental importance in the process of mathematical modeling of propulsion systems. Real fluid properties provide the bridge between the realm of pure analytiis and empirical reality. The two most common approaches used to formulate thermodynamic properties of pure substances are fundamental (or characteristic) equations of state (Helmholtz and Gibbs functions) and a piecemeal approach that is described, for example, in Adebiyi and Russell (1992). This paper neither presents a different method to formulate thermodynamic properties of pure substances nor validates the aforementioned approaches. Rather its purpose is to present a method to be used to facilitate the accurate interpretation of fluid thermodynamic property data generated by existing property packages. There are two parts to this paper. The first part of the paper shows how efficient and usable property tables were generated, with the minimum number of data points, using an aerospace industry standard property package (based on fundamental equations of state approach). The second part describes an innovative interpolation technique that has been developed to properly obtain thermodynamic properties near the saturated liquid and saturated vapor lines.

  15. Structural and optical properties of Bi2O3-B2O3-CdO-Na2O glass system for gamma ray shielding applications

    NASA Astrophysics Data System (ADS)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder

    2018-05-01

    Quaternary system of the composition (0.15+x) Bi2O3-(0.55-x) B2O3-0.15CdO-0.15Na2O (where x=0, 0.1, 0.3 and 0.5 mole fraction) has been synthesized using melt-quenching technique. Gamma ray shielding properties are measured in terms of mass attenuation coefficient and half value layer at photon energies 662, 1173 and 1332 keV. These parameters are compared with standard nuclear radiation shielding `barite and ferrite' concretes. The results reflect better radiation shielding properties as compared to barite and ferrite concretes. Effective atomic number is calculated at photon energies 662 and 1173 keV. Density, molar volume and XRD studies are analyzed to know physical and structural properties of the glass system. Optical band gap, refractive index and molar refraction are calculated from UV-Visible measurements. Decrease in optical band gap and increase in molar refraction have been observed indicating the increase of non-bridging oxygens in the structure.

  16. Thermodynamic effects of calcium and iron oxides on crystal phase formation in synthetic gasifier slags containing from 0 to 27wt.% V 2O 3

    DOE PAGES

    Nakano, Jinichiro; Duchesne, Marc; Bennett, James; ...

    2014-11-15

    Thermodynamic phase equilibria in synthetic slags (Al 2O 3–CaO–FeO–SiO 2–V 2O 3) were investigated with 0–27 wt.% vanadium oxide corresponding to industrial coal–petroleum coke (petcoke) feedstock blends in a simulated gasifier environment. Samples encompassing coal–petcoke mixed slag compositions were equilibrated at 1500 °C in a 64 vol.% CO/36 vol.% CO 2 atmosphere (Po 2 ≈ 10 –8 atm at 1500 °C) for 72 h, followed by rapid water quench, then analyzed by inductively coupled plasma optical emission spectrometry, X-ray diffractometry, and scanning electron microscopy with wavelength dispersive spectroscopy. With increasing CaO content, FeO content, or both; the slag homogeneity regionmore » expanded and a composition range exhibiting crystals was reduced. The mullite (Al 6Si 2O 13) crystalline phase was not present in the slags above 9 wt.% FeO while the karelianite (V 2O 3) crystalline phase was always present in compositions studied if a sufficient amount of vanadium existed in the slag. Furthermore, based on the present experimental equilibrium evaluation, a set of isothermal phase diagrams showing effects of CaO and FeO on thermodynamic phase stabilities in the vanadium-bearing slags is proposed. Some uses of the diagrams for potential industrial practice are discussed.« less

  17. Atomic layer deposition and properties of ZrO2/Fe2O3 thin films

    PubMed Central

    Seemen, Helina; Ritslaid, Peeter; Rähn, Mihkel; Tamm, Aile; Kukli, Kaupo; Kasikov, Aarne; Link, Joosep; Stern, Raivo; Dueñas, Salvador; Castán, Helena; García, Héctor

    2018-01-01

    Thin solid films consisting of ZrO2 and Fe2O3 were grown by atomic layer deposition (ALD) at 400 °C. Metastable phases of ZrO2 were stabilized by Fe2O3 doping. The number of alternating ZrO2 and Fe2O3 deposition cycles were varied in order to achieve films with different cation ratios. The influence of annealing on the composition and structure of the thin films was investigated. Additionally, the influence of composition and structure on electrical and magnetic properties was studied. Several samples exhibited a measurable saturation magnetization and most of the samples exhibited a charge polarization. Both phenomena were observed in the sample with a Zr/Fe atomic ratio of 2.0. PMID:29441257

  18. Synthesis and properties of γ-Ga2O3-Al2O3 solid solutions

    NASA Astrophysics Data System (ADS)

    Afonasenko, T. N.; Leont'eva, N. N.; Talzi, V. P.; Smirnova, N. S.; Savel'eva, G. G.; Shilova, A. V.; Tsyrul'nikov, P. G.

    2017-10-01

    The textural and structural properties of mixed oxides Ga2O3-Al2O3, obtained via impregnating γ-Al2O3 with a solution of Ga(NO3)3 and subsequent heat treatment, are studied. According to the results from X-ray powder diffraction, gallium ions are incorporated into the structure of aluminum oxide to form a solid solution of spinel-type γ-Ga2O3-Al2O3 up to a Ga2O3 content of 50 wt % of the total weight of the sample, accompanied by a reduction in the specific surface area, volume, and average pore diameter. It is concluded that when the Ga2O3 content exceeds 50 wt %, the β-Ga2O3 phase is observed along with γ-Ga2O3-Al2O3 solid solution. 71Ga and 27Al NMR spectroscopy shows that gallium replaces aluminum atoms from the tetrahedral position to the octahedral coordination in the structure of γ-Ga2O3-Al2O3.

  19. ZrO2 Layer Thickness Dependent Electrical and Dielectric Properties of BST/ZrO2/BST Multilayer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, S. K.; Misra, D.; Agrawal, D. C.

    2011-01-01

    Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less

  20. B2O3/SiO2 substitution effect on structure and properties of Na2O-CaO-SrO-P2O5-SiO2 bioactive glasses from molecular dynamics simulations.

    PubMed

    Ren, Mengguo; Lu, Xiaonan; Deng, Lu; Kuo, Po-Hsuen; Du, Jincheng

    2018-05-23

    The effect of B2O3/SiO2 substitution in SrO-containing 55S4.3 bioactive glasses on glass structure and properties, such as ionic diffusion and glass transition temperature, was investigated by combining experiments and molecular dynamics simulations with newly developed potentials. Both short-range (such as bond length and bond angle) and medium-range (such as polyhedral connection and ring size distribution) structures were determined as a function of glass composition. The simulation results were used to explain the experimental results for glass properties such as glass transition temperature and bioactivity. The fraction of bridging oxygen increased linearly with increasing B2O3 content, resulting in an increase in overall glass network connectivity. Ion diffusion behavior was found to be sensitive to changes in glass composition and the trend of the change with the level of substitution is also temperature dependent. The differential scanning calorimetry (DSC) results show a decrease in glass transition temperature (Tg) with increasing B2O3 content. This is explained by the increase in ion diffusion coefficient and decrease in ion diffusion energy barrier in glass melts, as suggested by high-temperature range (above Tg) ion diffusion calculations as B2O3/SiO2 substitution increases. In the low-temperature range (below Tg), the Ea for modifier ions increased with B2O3/SiO2 substitution, which can be explained by the increase in glass network connectivity. Vibrational density of states (VDOS) were calculated and show spectral feature changes as a result of the substitution. The change in bioactivity with B2O3/SiO2 substitution is discussed with the change in pH value and release of boric acid into the solution.

  1. Thermodynamic Properties of Actinides and Actinide Compounds

    NASA Astrophysics Data System (ADS)

    Konings, Rudy J. M.; Morss, Lester R.; Fuger, Jean

    The necessity of obtaining accurate thermodynamic quantities for the actinide elements and their compounds was recognized at the outset of the Manhattan Project, when a dedicated team of scientists and engineers initiated the program to exploit nuclear energy for military purposes. Since the end of World War II, both fundamental and applied objectives have motivated a great deal of further study of actinide thermodynamics. This chapter brings together many research papers and critical reviews on this subject. It also seeks to assess, to systematize, and to predict important properties of the actinide elements, ions, and compounds, especially for species in which there is significant interest and for which there is an experimental basis for the prediction.

  2. Doping Li and K into Na2ZrO3 Sorbent to Improve Its CO2 Capture Capability

    NASA Astrophysics Data System (ADS)

    Duan, Yuhua

    Carbon dioxide is one of the major combustion products which once released into the air can contribute to global climate change. Solid sorbents have been reported in several previous studies to be promising candidates for CO2 sorbent applications due to their high CO2 absorption capacities at moderate working temperatures. However, at a given CO2 pressure, the turnover temperature (Tt) of an individual solid capture CO2 reaction is fixed and may be outside the operating temperature range (ΔTo) for a particularly capture technology. In order to shift such Tt for a solid into the range of ΔTo, its corresponding thermodynamic property must be changed by changing its structure by reacting (mixing) with other materials or doping with other elements. As an example, by combining thermodynamic database searching with ab initio thermodynamics calculations, in this work, we explored the Li- and K-doping effects on the Tt shifts of Na2ZrO3 at different doping levels. The obtained results showed that compared to pure Na2ZrO3, the Li- and K-doped mixtures Na2-αMαZrO3 (M =Li, K) have lower Tt and higher CO2 capture capacities.

  3. Thermodynamic and kinetic studies of As2O3 toxicological effects on human insulin in generation diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Mohsennia, Mohsen; Motaharinejad, Atieh; Rafiee-Pour, Hossain-Ali; Torabbeigi, Marzieh

    2017-12-01

    The interaction of arsenic trioxide with human insulin was investigated by circular dichroism (CD), cyclic voltammetry and electrophoresis techniques. The interfacial behavior of insulin in presence of As2O3 onto the Ag electrode surface was studied at 310 K in phosphate buffer solution (PBS). According to Far-UV CD spectroscopy results, As2O3 caused to decrease in structural compactness and variety of alpha helix into beta structures. Near-UV CD indicated that As2O3 dissociates disulfide linkage in insulin structure. The kinetic parameters, including charge-transfer coefficient and apparent heterogeneous electron transfer rate constant were also determined. The thermodynamic parameters of insulin denaturation in presence of arsenic trioxide were calculated and reported. The obtained results indicated strong adsorption of insulin in presence of arsenic trioxide onto the Ag surface via chemisorptions.

  4. Anomalous physical properties of Heusler-type Co2Cr (Ga,Si) alloys and thermodynamic study on reentrant martensitic transformation

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Nagasako, Makoto; Kataoka, Mitsuo; Umetsu, Rie Y.; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2015-03-01

    Electronic, magnetic, and thermodynamic properties of Co2Cr(Ga,Si) -based shape-memory alloys, which exhibit reentrant martensitic transformation (RMT) behavior, were studied experimentally. For electric resistivity (ER), an inverse (semiconductor-like) temperature dependence in the parent phase was found, along with anomalous behavior below its Curie temperature. A pseudobinary phase diagram was determined, which gives a "martensite loop" clearly showing the reentrant behavior. Differential scanning calorimetry and specific-heat measurements were used to derive the entropy change Δ S between martensite and parent phases. The temperature dependence of the derived Δ S was analyzed thermodynamically to confirm the appearances of both the RMT and normal martensitic transformation. Detailed studies on the specific heat in martensite and parent phases at low temperatures were also conducted.

  5. Effects of TiO2 addition on microwave dielectric properties of Li2MgSiO4 ceramics

    NASA Astrophysics Data System (ADS)

    Rose, Aleena; Masin, B.; Sreemoolanadhan, H.; Ashok, K.; Vijayakumar, T.

    2018-03-01

    Silicates have been widely studied for substrate applications in microwave integrated circuits owing to their low dielectric constant and low tangent loss values. Li2MgSiO4 (LMS) ceramics are synthesized through solid-state reaction route using TiO2 as an additive to the pure ceramics. Variations in dielectric properties of LMS upon TiO2 addition in different weight percentages (0.5, 1.5, 2) are studied by keeping the sintering parameters constant. Crystalline structure, phase composition, and microstructure of LMS and LMS-TiO2 ceramics were studied using x-ray diffraction spectrometer and High Resolution Scanning electron microscope. Density was measured through Archimedes method and the microwave dielectric properties were examined by Cavity perturbation technique. LMS achieved relative permittivity (ε r) of 5.73 and dielectric loss (tan δ) of 5.897 × 10‑4 at 8 GHz. In LMS-TiO2 ceramics, 0.5 wt% TiO2 added LMS showed comparatively better dielectric properties than other weight percentages where ε r = 5.67, tan δ = 7.737 × 10‑4 at 8 GHz.

  6. Magnetic properties of nitrogen-doped ZrO2: Theoretical evidence of absence of room temperature ferromagnetism

    PubMed Central

    Albanese, Elisa; Leccese, Mirko; Di Valentin, Cristiana; Pacchioni, Gianfranco

    2016-01-01

    N-dopants in bulk monoclinic ZrO2 and their magnetic interactions have been investigated by DFT calculations, using the B3LYP hybrid functional. The electronic and magnetic properties of the paramagnetic N species, substitutionals and interstitials, are discussed. Their thermodynamic stability has been estimated as a function of the oxygen partial pressure. At 300 K, N prefers interstitial sites at any range of oxygen pressure, while at higher temperatures (700–1000 K), oxygen poor-conditions facilitate substitutional dopants. We have considered the interaction of two N defects in various positions in order to investigate the possible occurrence of ferromagnetic ordering. A very small magnetic coupling constant has been calculated for several 2N-ZrO2 configurations, thus demonstrating that magnetic ordering can be achieved only at very low temperatures, well below liquid nitrogen. Furthermore, when N atoms replace O at different sites, resulting in slightly different positions of the corresponding N 2p levels, a direct charge transfer can occur between the two dopants with consequent quenching of the magnetic moment. Another mechanism that contributes to the quenching of the N magnetic moments is the interplay with oxygen vacancies. These effects contribute to reduce the concentration of magnetic impurities, thus limiting the possibility to establish magnetic ordering. PMID:27527493

  7. Low temperature thermodynamic investigation of the phase diagram of Sr3Ru2O7

    NASA Astrophysics Data System (ADS)

    Sun, D.; Rost, A. W.; Perry, R. S.; Mackenzie, A. P.; Brando, M.

    2018-03-01

    We studied the phase diagram of Sr3Ru2O7 by means of heat capacity and magnetocaloric effect measurements at temperatures as low as 0.06 K and fields up to 12 T. We confirm the presence of a new quantum critical point at 7.5 T which is characterized by a strong non-Fermi-liquid behavior of the electronic specific heat coefficient Δ C /T ˜-logT over more than a decade in temperature, placing strong constraints on theories of its criticality. In particular logarithmic corrections are found when the dimension d is equal to the dynamic critical exponent z , in contrast to the conclusion of a two-dimensional metamagnetic quantum critical end point, recently proposed. Moreover, we achieved a clear determination of the new second thermodynamic phase adjoining the first one at lower temperatures. Its thermodynamic features differ significantly from those of the dominant phase and characteristics expected of classical equilibrium phase transitions are not observed, indicating fundamental differences in the phase formation.

  8. Experimental thermochemistry of neptunium oxides: Np2O5 and NpO2

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Dzik, Ewa A.; Sigmon, Ginger E.; Szymanowski, Jennifer E. S.; Navrotsky, Alexandra; Burns, Peter C.

    2018-04-01

    Neptunium (Np) compounds are important in the nuclear fuel cycle because of the buildup and long half-life (2.14 Ma) of Np-237 in nuclear waste, especially during long-term disposal in a geological repository. Neptunium in environmental conditions exists mainly in two oxidation states (+5 and + 4) and can substitute for uranium and/or rare earths in solid phases. Yet thermochemical data for solid neptunium compounds are scarce, despite being critical for evaluating the environmental transport of this radioactive and toxic element. Although high temperature oxide melt solution calorimetry has proven very useful in obtaining thermodynamic data for the formation of uranium and thorium oxide materials, it has not yet been applied to transuranium compounds. Continuing a program at Notre Dame to study the thermodynamics of transuranium compounds, we report the first determination of the enthalpies of drop solution of well-characterized neptunium oxides (Np2O5 and NpO2) using oxide melt solution calorimetry in molten sodium molybdate solvent at 973 K. The enthalpy of the decomposition reaction, Np2O5(cr) = 2NpO2(cr) + 1/2O2(g) at 298 K, is determined to be 7.70 ± 5.86 kJ/mol, and this direct measurement is consistent with existing thermodynamic data. The calorimetric methodology is straightforward and produces reliable data using milligram quantities of radioactive materials, and can be applied to many other transuranium compounds.

  9. Electrochemical properties of TiO2-V2O5 nanocomposites as a high performance supercapacitors electrode material

    NASA Astrophysics Data System (ADS)

    Ray, Apurba; Roy, Atanu; Sadhukhan, Priyabrata; Chowdhury, Sreya Roy; Maji, Prasenjit; Bhattachrya, Swapan Kumar; Das, Sachindranath

    2018-06-01

    The individual components being ample, inexpensive and non-toxic material, TiO2-V2O5 has drawn more attention compared to other metal oxides. The cost-effective, non-toxic TiO2-V2O5 nanocomposites with various molar ratios of Ti and V have been synthesized through wet chemical method. Microstructure studies have been performed using X-ray diffraction (XRD), FESEM, HRTTEM and other spectroscopic (XPS, FTIR) techniques. The synthesized TiO2-V2O5 nanocomposite with molar ratio 10:20 exhibits 3D, mesoporous interlinked tube-like structure with excellent electrochemical properties by delivering highest specific capacitance of 310 F g-1 at 2 mV s-1 scan rate compared to individual TiO2 and V2O5 material. Increase in vanadium ratio plays a leading role to the chemical properties. The synergistic effects between TiO2 and V2O5 have also been observed in this work. Due to the excellent electrochemical as well as other acceptable performance, the porous interconnected tube like nanocomposite can be used for energy storage application mainly for pseudocapacitor electrode material.

  10. Soft exfoliation of 2D SnO with size-dependent optical properties

    NASA Astrophysics Data System (ADS)

    Singh, Mandeep; Della Gaspera, Enrico; Ahmed, Taimur; Walia, Sumeet; Ramanathan, Rajesh; van Embden, Joel; Mayes, Edwin; Bansal, Vipul

    2017-06-01

    Two-dimensional (2D) materials have recently gained unprecedented attention as potential candidates for next-generation (opto)electronic devices due to their fascinating optical and electrical properties. Tin monoxide, SnO, is an important p-type semiconductor with applications across photocatalysis (water splitting) and electronics (transistors). However, despite its potential in several important technological applications, SnO remains underexplored in its 2D form. Here we present a soft exfoliation strategy to produce 2D SnO nanosheets with tunable optical and electrical properties. Our approach involves the initial synthesis of layered SnO microspheres, which are readily exfoliated through a low-power sonication step to form high quality SnO nanosheets. We demonstrate that the properties of 2D SnO are strongly dependent on its dimensions. As verified through optical absorption and photoluminescence studies, a strong size-dependent quantum confinement effect in 2D SnO leads to substantial variation in its optical and electrical properties. This results in a remarkable (>1 eV) band gap widening in atomically thin SnO. Through photoconductivity measurements, we further validate a strong correlation between the quantum-confined properties of 2D SnO and the selective photoresponse of atomically thin sheets in the high energy UV light. Such tunable semiconducting properties of 2D SnO could be exploited for a variety of applications including photocatalysis, photovoltaics and optoelectronics in general.

  11. Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Frascoli, Federico; Sadus, Richard J.

    2016-09-01

    The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using ab initio, empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one ab initio potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig's thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.

  12. Thermodynamical property of entanglement entropy for excited states.

    PubMed

    Bhattacharya, Jyotirmoy; Nozaki, Masahiro; Takayanagi, Tadashi; Ugajin, Tomonori

    2013-03-01

    We argue that the entanglement entropy for a very small subsystem obeys a property which is analogous to the first law of thermodynamics when we excite the system. In relativistic setups, its effective temperature is proportional to the inverse of the subsystem size. This provides a universal relationship between the energy and the amount of quantum information. We derive the results using holography and confirm them in two-dimensional field theories. We will also comment on an example with negative specific heat and suggest a connection between the second law of thermodynamics and the strong subadditivity of entanglement entropy.

  13. Structural and electronic properties of Ga2O3-Al2O3 alloys

    NASA Astrophysics Data System (ADS)

    Peelaers, Hartwin; Varley, Joel B.; Speck, James S.; Van de Walle, Chris G.

    2018-06-01

    Ga2O3 is emerging as an important electronic material. Alloying with Al2O3 is a viable method to achieve carrier confinement, to increase the bandgap, or to modify the lattice parameters. However, the two materials have very different ground-state crystal structures (monoclinic β-gallia for Ga2O3 and corundum for Al2O3). Here, we use hybrid density functional theory calculations to assess the alloy stabilities and electronic properties of the alloys. We find that the monoclinic phase is the preferred structure for up to 71% Al incorporation, in close agreement with experimental phase diagrams, and that the ordered monoclinic AlGaO3 alloy is exceptionally stable. We also discuss bandgap bowing, lattice constants, and band offsets that can guide future synthesis and device design efforts.

  14. Study on the enhanced adsorption properties of lysozyme on polyacrylic acid modified TiO2 nano-adsorbents

    NASA Astrophysics Data System (ADS)

    Liu, Yufeng; Jin, Zu; Meng, Hao; Zhang, Xia

    2018-01-01

    The adsorption and immobilization of enzymes onto solid carriers has been focused on due to their many advantages, such as improved stability against a thermal or organic solvent and a good cycle usability. TiO2 nanoparticles is one of excellent nano-adsorbents owing to its excellent biocompatibility, non-inflammatory, and abundant surface hydroxyl groups, which are convenient to be combined with various functional groups. In this paper polyacrylic acid (PAA) modified TiO2 nanoparticles were synthesized through an in situ light-induced polymerization of acrylic acid on the surface of TiO2 nanoparticles. The structure and surface physicochemical properties of the PAA/TiO2 nanoparticles were characterized by TEM, XRD, FT-IR, Zeta potential measurements and TG-DSC. The experimental results showed that the isoelectric point of PAA/TiO2 significantly reduced to 1.82 compared with that of pure TiO2 nanoparticles (6.08). In the adsorption tests of lysozyme (Lyz), the PAA/TiO2 nanoparticles displayed enhanced adsorption activity compared with pristine TiO2. The maximum adsorption capacity of PAA/TiO2 for Lyz was 225.9 mg g-1 under the optimum conditions where the initial concentration of Lyz was 300 mg ml-1, the addition amount of PAA/TiO2 was 6.4 mg, the adsorption time was 30 min and the pH value was 7.0. The sodium dodecyl sulfate (SDS, 0.5%) presented the best efficiency (76.86%) in the removal of adsorbed Lyz, and the PAA/TiO2 nanoparticles showed excellent adsorption stability based on five cyclic adsorption-desorption tests. The fitting calculation results of the adsorption isotherm and the thermodynamics indicated the adsorption was an exothermic, entropy increasing, spontaneous and monomolecular layer adsorption process.

  15. Synthesis and properties of 2'-O-methyl-4'-thioRNA.

    PubMed

    Takahashi, Mayumi; Inoue, Naonori; Minakawa, Noriaki; Matsuda, Akira

    2005-01-01

    In this presentation, we will discuss the synthesis and properties of 2'-O-methyl-4'-thioRNA, an RNA molecule consisting of 2'-O-methyl-4'-thionucleosides. We first synthesized 2'-O-methyl-4'-thiouridine and -cytidine derivatives via 2,2'-O-anhydro-4'-thiouridine. The RNA consisting of 2'-O-methyl-4'-thiopyrimidine nucleosides and 2'-O-methylpurine nucleosides, 2'-OMe-4'-thioRNA, was synthesized on a DNA synthesizer according to the standard phosphoramidite protocol.

  16. A Structural Molar Volume Model for Oxide Melts Part I: Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 Melts—Binary Systems

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    A structural molar volume model was developed to accurately reproduce the molar volume of molten oxides. As the non-linearity of molar volume is related to the change in structure of molten oxides, the silicate tetrahedral Q-species, calculated from the modified quasichemical model with an optimized thermodynamic database, were used as basic structural units in the present model. Experimental molar volume data for unary and binary melts in the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 system were critically evaluated. The molar volumes of unary oxide components and binary Q-species, which are model parameters of the present structural model, were determined to accurately reproduce the experimental data across the entire binary composition in a wide range of temperatures. The non-linear behavior of molar volume and thermal expansivity of binary melt depending on SiO2 content are well reproduced by the present model.

  17. Thermodynamic scaling of dynamic properties of liquid crystals: Verifying the scaling parameters using a molecular model

    NASA Astrophysics Data System (ADS)

    Satoh, Katsuhiko

    2013-08-01

    The thermodynamic scaling of molecular dynamic properties of rotation and thermodynamic parameters in a nematic phase was investigated by a molecular dynamic simulation using the Gay-Berne potential. A master curve for the relaxation time of flip-flop motion was obtained using thermodynamic scaling, and the dynamic property could be solely expressed as a function of TV^{γ _τ }, where T and V are the temperature and volume, respectively. The scaling parameter γτ was in excellent agreement with the thermodynamic parameter Γ, which is the logarithm of the slope of a line plotted for the temperature and volume at constant P2. This line was fairly linear, and as good as the line for p-azoxyanisole or using the highly ordered small cluster model. The equivalence relation between Γ and γτ was compared with results obtained from the highly ordered small cluster model. The possibility of adapting the molecular model for the thermodynamic scaling of other dynamic rotational properties was also explored. The rotational diffusion constant and rotational viscosity coefficients, which were calculated using established theoretical and experimental expressions, were rescaled onto master curves with the same scaling parameters. The simulation illustrates the universal nature of the equivalence relation for liquid crystals.

  18. Experimental determination of solubilities of magnesium borates: Solubility constants of boracite [Mg 3B 7O 13Cl(cr)] and aksaite [MgB 6O 7(OH) 6 ·2H 2O(cr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yongliang; Kirkes, Leslie Dawn; Knox, Jandi

    In this work, solubility measurements regarding boracite [Mg 3B 7O 13Cl(cr)] and aksaite [MgB 6O 7(OH) 6·2H 2O(cr)] from the direction of supersaturation were conducted at 22.5 ± 0.5 °C. The equilibrium constant (log 10K 0) for boracite in terms of the following reaction, Mg 3B 7O 13Cl(cr) + 15H 2O(l) ⇌ 3Mg 2+ + 7B(OH) 4 – + Cl – + 2H + is determined as -29.49 ± 0.39 (2σ) in this study. The equilibrium constant for aksaite according to the following reaction, MgB 6O 7(OH) 6•2H 2O(cr) + 9H 2O(l) ⇌ Mg 2+ + 6B(OH) 4 – + 4H + is determined as -44.41 ± 0.41 (2σ) in this work. This work recommends a set of thermodynamic properties for aksaite at 25 °C and 1 bar as follows: ΔHmore » $$0\\atop{f}$$ =-6063.70 ± 4.85 kJ·mol -1, ΔG =-5492.55 ± 2.32 kJ·mol -1, and S 0 = 344.62 ± 1.85 J·mol -1·K -1. Among them, ΔG$$0\\atop{f}$$ is derived from the equilibrium constant for aksaite determined by this study; ΔH$$0\\atop{f}$$ is from the literature, determined by calorimetry; and S 0 is computed in the present work from ΔG$$0\\atop{f}$$ and ΔH$$0\\atop{f}$$. This investigation also recommends a set of thermodynamic properties for boracite at 25 °C and 1 bar as follows: ΔH$$0\\atop{f}$$ =-6575.02 ± 2.25 kJ·mol -1, ΔG$$0\\atop{f}$$ =-6178.35 ± 2.25 kJ·mol -1, and S 0 = 253.6 ± 0.5 J·mol -1·K -1. Among them, ΔG$$0\\atop{f}$$ is derived from the equilibrium constant for boracite determined by this study; S 0 is from the literature, determined by calorimetry; and ΔH$$0\\atop{f}$$ is computed in this work from ΔG$$0\\atop{f}$$ and S 0. The thermodynamic properties determined in this study can find applications in many fields. For instance, in the field of material science, boracite has many useful properties including ferroelectric and ferroelastic properties. The equilibrium constant of boracite determined in this work will provide guidance for economic synthesis of boracite in an aqueous medium. Similarly, in the field of nuclear waste

  19. Experimental determination of solubilities of magnesium borates: Solubility constants of boracite [Mg 3B 7O 13Cl(cr)] and aksaite [MgB 6O 7(OH) 6 ·2H 2O(cr)

    DOE PAGES

    Xiong, Yongliang; Kirkes, Leslie Dawn; Knox, Jandi; ...

    2018-02-03

    In this work, solubility measurements regarding boracite [Mg 3B 7O 13Cl(cr)] and aksaite [MgB 6O 7(OH) 6·2H 2O(cr)] from the direction of supersaturation were conducted at 22.5 ± 0.5 °C. The equilibrium constant (log 10K 0) for boracite in terms of the following reaction, Mg 3B 7O 13Cl(cr) + 15H 2O(l) ⇌ 3Mg 2+ + 7B(OH) 4 – + Cl – + 2H + is determined as -29.49 ± 0.39 (2σ) in this study. The equilibrium constant for aksaite according to the following reaction, MgB 6O 7(OH) 6•2H 2O(cr) + 9H 2O(l) ⇌ Mg 2+ + 6B(OH) 4 – + 4H + is determined as -44.41 ± 0.41 (2σ) in this work. This work recommends a set of thermodynamic properties for aksaite at 25 °C and 1 bar as follows: ΔHmore » $$0\\atop{f}$$ =-6063.70 ± 4.85 kJ·mol -1, ΔG =-5492.55 ± 2.32 kJ·mol -1, and S 0 = 344.62 ± 1.85 J·mol -1·K -1. Among them, ΔG$$0\\atop{f}$$ is derived from the equilibrium constant for aksaite determined by this study; ΔH$$0\\atop{f}$$ is from the literature, determined by calorimetry; and S 0 is computed in the present work from ΔG$$0\\atop{f}$$ and ΔH$$0\\atop{f}$$. This investigation also recommends a set of thermodynamic properties for boracite at 25 °C and 1 bar as follows: ΔH$$0\\atop{f}$$ =-6575.02 ± 2.25 kJ·mol -1, ΔG$$0\\atop{f}$$ =-6178.35 ± 2.25 kJ·mol -1, and S 0 = 253.6 ± 0.5 J·mol -1·K -1. Among them, ΔG$$0\\atop{f}$$ is derived from the equilibrium constant for boracite determined by this study; S 0 is from the literature, determined by calorimetry; and ΔH$$0\\atop{f}$$ is computed in this work from ΔG$$0\\atop{f}$$ and S 0. The thermodynamic properties determined in this study can find applications in many fields. For instance, in the field of material science, boracite has many useful properties including ferroelectric and ferroelastic properties. The equilibrium constant of boracite determined in this work will provide guidance for economic synthesis of boracite in an aqueous medium. Similarly, in the field of nuclear waste

  20. CTserver: A Computational Thermodynamics Server for the Geoscience Community

    NASA Astrophysics Data System (ADS)

    Kress, V. C.; Ghiorso, M. S.

    2006-12-01

    The CTserver platform is an Internet-based computational resource that provides on-demand services in Computational Thermodynamics (CT) to a diverse geoscience user base. This NSF-supported resource can be accessed at ctserver.ofm-research.org. The CTserver infrastructure leverages a high-quality and rigorously tested software library of routines for computing equilibrium phase assemblages and for evaluating internally consistent thermodynamic properties of materials, e.g. mineral solid solutions and a variety of geological fluids, including magmas. Thermodynamic models are currently available for 167 phases. Recent additions include Duan, Møller and Weare's model for supercritical C-O-H-S, extended to include SO2 and S2 species, and an entirely new associated solution model for O-S-Fe-Ni sulfide liquids. This software library is accessed via the CORBA Internet protocol for client-server communication. CORBA provides a standardized, object-oriented, language and platform independent, fast, low-bandwidth interface to phase property modules running on the server cluster. Network transport, language translation and resource allocation are handled by the CORBA interface. Users access server functionality in two principal ways. Clients written as browser- based Java applets may be downloaded which provide specific functionality such as retrieval of thermodynamic properties of phases, computation of phase equilibria for systems of specified composition, or modeling the evolution of these systems along some particular reaction path. This level of user interaction requires minimal programming effort and is ideal for classroom use. A more universal and flexible mode of CTserver access involves making remote procedure calls from user programs directly to the server public interface. The CTserver infrastructure relieves the user of the burden of implementing and testing the often complex thermodynamic models of real liquids and solids. A pilot application of this distributed

  1. Calculation of Phase Equilibria in the Y2O3-Yb2O3-ZrO2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan

    2001-01-01

    Rare earth oxide stabilized zirconias find a wide range of applications. An understanding of phase equilibria is essential to all applications. In this study, the available phase boundary data and thermodynamic data is collected and assessed. Calphad-type databases are developed to completely describe the Y2O3-ZrO2, Yb2O3-ZrO2, and Y2O3-Yb2O3 systems. The oxide units are treated as components and regular and subregular solution models are used. The resultant calculated phase diagrams show good agreement with the experimental data. Then the binaries are combined to form the database for the Y2O3-Yb2O3-ZrO2 psuedo-ternary.

  2. Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies.

    PubMed

    Lin, Kun-Yi Andrew; Liu, Yu-Ting; Chen, Shen-Yi

    2016-01-01

    To provide safe drinking water, fluoride in water must be removed and adsorption processes appear to be the most widely used method. Metal organic frameworks (MOFs) represent a new class of adsorbents that have been used in various adsorption applications. To study the adsorption mechanism of fluoride to MOFs in water and obtain related adsorption parameters, we synthesized a zirconium-based MOF with a primary amine group on its ligand, named UiO-66-NH2. The kinetics, adsorption isotherm and thermodynamics of fluoride adsorption to UiO-66-NH2 were investigated. The crystalline structure of UiO-66-NH2 remained intact and the local structure of zirconium in UiO-66-NH2 did not change significantly after being exposed to fluoride. The kinetics of the fluoride adsorption in UiO-66-NH2 could be well represented by the pseudo second order rate law. The enthalpy of the adsorption indicates that the F(-) adsorption to UiO-66-NH2 was classified as a physical adsorption. However, the comparison between the adsorption capacities of UiO-66-NH2 and UiO-66 suggests that the fluoride adsorption to UiO-66-NH2 might primarily involve a strong interaction between F(-) and the metal site. The fluoride adsorption capacity of UiO-66-NH2 was found to decrease when pH>7. While the presence of chloride/bromide ions did not noticeably change the adsorption capacity of UiO-66-NH2, the ionic surfactants slightly affected the adsorption capacity of UiO-66-NH2. These findings provide insights to further optimize the adsorption process for removal of fluoride using zirconium-based MOFs. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Ab initio interatomic potentials and the thermodynamic properties of fluids

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-07-01

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  4. A thermodynamic approach to obtain materials properties for engineering applications

    NASA Technical Reports Server (NTRS)

    Chang, Y. Austin

    1993-01-01

    With the ever increases in the capabilities of computers for numerical computations, we are on the verge of using these tools to model manufacturing processes for improving the efficiency of these processes as well as the quality of the products. One such process is casting for the production of metals. However, in order to model metal casting processes in a meaningful way it is essential to have the basic properties of these materials in their molten state, solid state as well as in the mixed state of solid and liquid. Some of the properties needed may be considered as intrinsic such as the density, heat capacity or enthalpy of freezing of a pure metal, while others are not. For instance, the enthalpy of solidification of an alloy is not a defined thermodynamic quantity. Its value depends on the micro-segregation of the phases during the course of solidification. The objective of the present study is to present a thermodynamic approach to obtain some of the intrinsic properties and combining thermodynamics with kinetic models to estimate such quantities as the enthalpy of solidification of an alloy.

  5. Ab initio interatomic potentials and the thermodynamic properties of fluids.

    PubMed

    Vlasiuk, Maryna; Sadus, Richard J

    2017-07-14

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  6. Investigation of gamma ray shielding, structural and dissolution rate properties of Bi2O3-BaO-B2O3-Na2O glass system

    NASA Astrophysics Data System (ADS)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder; Anand, Vikas; Kaur, Parminder; Singh, Prabhjot; Bajwa, B. S.

    2018-03-01

    In the present study, quaternary system of the composition (0.45 + x) Bi2O3-(0.25 - x) BaO-0.15 B2O3-0.15 Na2O (where 0 ≤ x ≤ 0.2 mol fraction) has been prepared by using melt-quenching technique for investigation of gamma ray shielding properties. Mass attenuation coefficients and half value layer parameters have been determined experimentally at 662 keV by using 137Cs source. It has been found that experimental results of these parameters hold good agreement with theoretical values. The density, molar volume, XRD, FTIR, Raman and UV-visible studies have been used to determine structural properties of the prepared glass samples. Dissolution rate of the samples has also been measured to check their utility as long term durable glasses.

  7. Optical properties of BaO added bioactive Na2O-CaO-P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Edathazhe, Akhila B.; Shashikala, H. D.

    2018-04-01

    This paper deals with the effect of BaO addition on the optical properties of bioactive Na2O-CaO-P2O5 glasses for biomedical optics applications. The phosphate glasses with composition (26-x)Na2O-xBaO-29CaO-45P2O5 (x = 0, 5, 10, 15 mol%) have been prepared by melt-quenching technique at 1100°C. The refractive index of glasses increased with BaO content. The optical band gap and Urbach energy of synthesized glasses were derived from the optical absorption spectra by using UV-Visible spectrometer. The addition of 5 mol% of BaO increased the band gap energy of glasses due to the formation of ionic cross-links in the glass structure. The defect and interstitial bonds formation in theglasses decreased with BaO additions as indicated by reductions in the Urbach energy values. No such variations in the band gap and Urbach energy values of glasses were observed with BaO content from 5 to 15 mol%. The molar and oxide ion polarizability values were calculated from the band gap and molar volume of glasses. The increase in the calculated optical basicity and metallization criteria of glasses supported the rise in band gap energy values with BaO additions. As the melting temperature of glasses decreased from 1200 to 1100°C, the refractive index increased as supported by the measured density values. The band gap energy is not changed with melting temperature. The Urbach energy decreased with decrease in melting temperature in case of BaO-free Na2O-CaO-P2O5 glasses, whereas it increased in case of BaO added glasses due to the role of BaO as modifying oxide.

  8. Sc2O@Cs(126339)-C92: Di-scandium oxide cluster encapsulated into a large fullerene cage

    NASA Astrophysics Data System (ADS)

    Gu, Yong-Xin; Li, Qiao-Zhi; Li, De-Huai; Zhao, Rui-Sheng; Zhao, Xiang

    2018-04-01

    The geometric, electronic structure and thermodynamic stability of Sc2O@C92 has been characterized by using hybrid density functional theory calculations combined with statistical thermodynamic analyses. Results indicate that the isolated pentagon rule (IPR) isomers Sc2O@Cs(126339)-C92, Sc2O@C1(126367)-C92 and Sc2O@C1(126390)-C92 are favorable. Noteworthy, it is the first time to declare that fullerene isomer Cs(126339)-C92 could be considered as the suitable cage to encapsulate metallic cluster. The electronic properties of these three isomers were performed with frontier molecular orbital (HOMO and LUMO) analyses and bond order calculations. Finally, 13C NMR and UV-vis-NIR spectra were simulated to provide valuable information for future experiments.

  9. Magnetic properties of x(Fe2O3).(100-x)[P2O5.Li2O] and x(Fe2O3).(100-x)[P2O5.CaO] glass systems

    NASA Astrophysics Data System (ADS)

    Andronache, Constantin; Racolta, Dania; Ardelean, Gheorghe

    2017-12-01

    Magnetic properties of x(Fe2O3).(100-x)[P2O5 .Li2O] and x(Fe2O3).(100-x)[P2O5 .CaO] with 0 < x ≤ 50 mol % were investigated using magnetic susceptibility measurements. The both glass systems were prepared in the same condition. The valence states and the distribution of iron ions in the glass matrix depend on the Fe2O3 content. For the P2O5.CaO glass matrix with x≤35mol%, the data revealed iron ions as isolated or participating in dipole-dipole interaction. For x > 35 mol% an antiferromagnetic coupling is observed. For the P2O5.Li2O glass matrix, the iron ions behave magnetically similarly as in other oxide glasses, but concentration of Fe2O3 over which magnetic superexchange interactions occur is lower. The absolute magnitude of θp values increases when content of Fe2O3 are increased. If the content of the magnetic ions is increased in the glass, the exchange integral increased and as a result the magnitude of the θP increases.

  10. Dielectric properties of (CuO, CaO2, and BaO)y/CuTl-1223 composites

    NASA Astrophysics Data System (ADS)

    Mumtaz, M.; Kamran, M.; Nadeem, K.; Jabbar, Abdul; Khan, Nawazish A.; Saleem, Abida; Tajammul Hussain, S.; Kamran, M.

    2013-07-01

    We synthesized (CuO, CaO2, and BaO)y/Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (y = 0, 5%, 10%, 15%) composites by solid-state reaction and characterized them by x-ray diffraction, scanning electron microscopy, dc-resistivity, and Fourier transform infrared spectroscopy. Frequency and temperature dependent dielectric properties, such as real and imaginary parts of the dielectric constant, dielectric loss, and ac-conductivity of these composites were studied by capacitance and conductance measurements as a function of frequency (10 kHz to 10 MHz) and temperature (78 to 300 K). X-ray diffraction analysis reveals that the characteristic behavior of the superconductor phase and the structure of Cu0.5Tl0.5Ba2Ca2Cu3O10-δ are nearly undisturbed by doping with nanoparticles. Scanning electron microscopy images show the improvement in the intergranular linking between the superconducting grains occurring with increasing nanoparticle concentration. Microcracks are healed up with these nanoparticles, and superconducting volume fraction is also increased. Dielectric properties of these composites strongly depend on the frequency and temperature. Zero resistivity critical temperature and dielectric properties show opposite trends with the addition of nanoparticles to the Cu0.5Tl0.5Ba2Ca2Cu3O10-δ superconductor matrix.

  11. Sorption isotherms, thermodynamic properties and glass transition temperature of mucilage extracted from chia seeds (Salvia hispanica L.).

    PubMed

    Velázquez-Gutiérrez, Sandra Karina; Figueira, Ana Cristina; Rodríguez-Huezo, María Eva; Román-Guerrero, Angélica; Carrillo-Navas, Hector; Pérez-Alonso, César

    2015-05-05

    Freeze-dried chia mucilage adsorption isotherms were determined at 25, 35 and 40°C and fitted with the Guggenheim-Anderson-de Boer model. The integral thermodynamic properties (enthalpy and entropy) were estimated with the Clausius-Clapeyron equation. Pore radius of the mucilage, calculated with the Kelvin equation, varied from 0.87 to 6.44 nm in the temperature range studied. The point of maximum stability (minimum integral entropy) ranged between 7.56 and 7.63kg H2O per 100 kg of dry solids (d.s.) (water activity of 0.34-0.53). Enthalpy-entropy compensation for the mucilage showed two isokinetic temperatures: (i) one occurring at low moisture contents (0-7.56 kg H2O per 100 kg d.s.), controlled by changes in water entropy; and (ii) another happening in the moisture interval of 7.56-24 kg H2O per 100 kg d.s. and was enthalpy driven. The glass transition temperature Tg of the mucilage fluctuated between 42.93 and 57.93°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Facile synthesis and paramagnetic properties of Fe3O4@SiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Lili; Zou, Ping; Cao, Jian; Sun, Yunfei; Han, Donglai; Yang, Shuo; Chen, Gang; Kong, Xiangwang; Yang, Jinghai

    2014-12-01

    The Fe3O4@SiO2 core-shell nanoparticles (NPs) had been successfully fabricated via direct decomposition of tetraethyl orthosilicate (TEOS) in solution under the presence of as-synthesized Fe3O4 NPs prepared by chemical coprecipitation method. The structure and magnetic properties of Fe3O4@SiO2 NPs were characterized and the result indicated that Fe3O4@SiO2 NPs are about 12 nm in size with paramagnetic property. The possible growth and magnetic mechanism was discussed in detail.

  13. NO2 Gas Sensing Properties of Multiple Networked ZnGa2O4 Nanorods Coated with TiO2.

    PubMed

    An, Soyeon; Park, Sunghoon; Ko, Hyunsung; Jin, Changhyun; Lee, Chongmu

    2015-01-01

    The NO2 gas sensing properties of ZnGa2O4-TiO2 heterostructure nanorods was examined. ZnGa2O4-core/TiO2-shell nanorods were fabricated by the thermal evaporation of a mixture of Zn and GaN powders and the sputter deposition of TiO2. Multiple networked ZnGa2O4-core/TiO2-shell nanorod sensors showed the response of 876% at 10 ppm NO2 at 300 degrees C. This response value at 10 ppm NO2 is approximately 4 times larger than that of bare ZnGa2O4 nanorod sensors. The response values obtained by the ZnGa2O4-core/TiO2-shell nanorods in this study are more than 13 times higher than those obtained previously by the SnO2-core/ZnO-shell nanofibers at 5% NO2. The significant enhancement in the response of ZnGa2O4 nanorods to NO2 gas by coating them with TiO2 can be explained based on the space-charge model.

  14. Characterization and properties of TiO2-SnO2 nanocomposites, obtained by hydrolysis method

    NASA Astrophysics Data System (ADS)

    Kutuzova, Anastasiya S.; Dontsova, Tetiana A.

    2018-04-01

    The paper deals with the process of TiO2-SnO2 nanocomposites synthesis utilizing simple hydrolysis method with further calcination for photocatalytic applications. The obtained nanopowders contain 100, 90, 75, 65 and 25 wt% of TiO2. The synthesized nanocomposite samples were analyzed by X-ray diffraction method, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and N2 adsorption-desorption method. The correlation between structure and morphology of the obtained nanocrystalline composite powders and their sorption and photocatalytic activity towards methylene blue degradation was established. It was found that the presence of SnO2 in the nanocomposites stabilizes the anatase phase of TiO2. Furthermore, sorption and photocatalytic properties of the obtained composites are significantly influenced not only by specific surface area, but also by pore size distribution and mesopore volume of the samples. In our opinion, the results obtained in this study have shown that the TiO2-SnO2 composites with SnO2 content that does not exceed 10% are promising for photocatalytic applications.

  15. Polarizability, optical basicity and optical properties of SiO2B2O3Bi2O3TeO2 glass system

    NASA Astrophysics Data System (ADS)

    Kashif, I.; Ratep, A.; Adel, Gh.

    2018-07-01

    Glasses having a composition xSiO2 xB2O3 (95-2 x) Bi2O35TeO2 where x = (5, 10, 15, 20, 25) prepared by the melt-quenching technique. Thermal stability, density, optical transmittance, and the refractive index of these glasses investigated. Glass samples were transparent in the visible to near-infrared (NIR) region and had a high refractive index. A number of glass samples have high glass-forming ability. This indicates that the quarterly glasses are suitable for optical applications in the visible to the NIR region. Bi2O3 substituted by B2O3 and SiO2 on optical properties discussed. It suggested that the substitution of Bi2O3 increased the density, molar volume, the molar polarizability, optical basicity and refractive index in addition to, the oxygen packing density, the optical energy gap, and metallization decrease. These results are helpful for designing new optical glasses controlled to have a higher refractive index. All studied glass presented high nonlinearities, and the addition of network modifiers made a little contribution. Results clarified the bandgap energy reduction, which associated with the growth within the non-bridging oxygen content with the addition of the network modifier. An increase in the refractive index nonlinearity explained by the optical basicity and the high electronic polarizability of the modifier ions.

  16. Simulations of the thermodynamics and kinetics of NH3 at the RuO2 (110) surface

    NASA Astrophysics Data System (ADS)

    Erdtman, Edvin; Andersson, Mike; Lloyd Spetz, Anita; Ojamäe, Lars

    2017-02-01

    Ruthenium(IV)oxide (RuO2) is a material used for various purposes. It acts as a catalytic agent in several reactions, for example oxidation of carbon monoxide. Furthermore, it is used as gate material in gas sensors. In this work theoretical and computational studies were made on adsorbed molecules on RuO2 (110) surface, in order to follow the chemistry on the molecular level. Density functional theory calculations of the reactions on the surface have been performed. The calculated reaction and activation energies have been used as input for thermodynamic and kinetics calculations. A surface phase diagram was calculated, presenting the equilibrium composition of the surface at different temperature and gas compositions. The kinetics results are in line with the experimental studies of gas sensors, where water has been produced on the surface, and hydrogen is found at the surface which is responsible for the sensor response.

  17. Mean-field potential approach for thermodynamic properties of lanthanide: Europium as a prototype

    NASA Astrophysics Data System (ADS)

    Kumar, Priyank; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.

    2018-03-01

    In the present paper, a simple conjunction scheme [mean-field potential (MFP) + local pseudopotential] is used to study the thermodynamic properties of divalent lanthanide europium (Eu) at extreme environment. Present study has been carried out due to the fact that divalent nature of Eu arises because of stable half-filled 4f-shell at ambient condition, which has great influence on the thermodynamic properties at extreme environment. Due to such electronic structure, it is different from remaining lanthanides having incomplete 4f-shell. The presently computed results of thermodynamic properties of Eu are in good agreement with the experimental results. Looking to such success, it seems that the concept of MFP approach is successful to account contribution due to nuclear motion to the total Helmholtz free energy at finite temperatures and pressure-induced inter-band transfer of electrons for condensed state of matter. The local pseudopotential is used to evaluate cold energy and hence MFP accounts the s-p-d-f hybridization properly. Looking to the reliability and transferability along with its computational and conceptual simplicity, we would like to extend the present scheme for the study of thermodynamic properties of remaining lanthanides and actinides at extreme environment.

  18. An EQT-based cDFT approach for thermodynamic properties of confined fluid mixtures

    NASA Astrophysics Data System (ADS)

    Motevaselian, M. H.; Aluru, N. R.

    2017-04-01

    We present an empirical potential-based quasi-continuum theory (EQT) to predict the structure and thermodynamic properties of confined fluid mixtures. The central idea in the EQT is to construct potential energies that integrate important atomistic details into a continuum-based model such as the Nernst-Planck equation. The EQT potentials can be also used to construct the excess free energy functional, which is required for the grand potential in the classical density functional theory (cDFT). In this work, we use the EQT-based grand potential to predict various thermodynamic properties of a confined binary mixture of hydrogen and methane molecules inside graphene slit channels of different widths. We show that the EQT-cDFT predictions for the structure, surface tension, solvation force, and local pressure tensor profiles are in good agreement with the molecular dynamics simulations. Moreover, we study the effect of different bulk compositions and channel widths on the thermodynamic properties. Our results reveal that the composition of methane in the mixture can significantly affect the ordering of molecules and thermodynamic properties under confinement. In addition, we find that graphene is selective to methane molecules.

  19. Thermodynamic Calculations for Molecules with Asymmetric Internal Rotors. II. Application to the 1,2-Dihaloethanes

    PubMed Central

    Wong, Bryan M.; Fadri, Maria M.; Raman, Sumathy

    2012-01-01

    The thermodynamic properties of three halocarbon molecules relevant in atmospheric and public health applications are presented from ab initio calculations. Our technique makes use of a reaction path-like Hamiltonian to couple all the vibrational modes to a large-amplitude torsion for 1,2-difluoroethane, 1,2-dichloroethane, and 1,2-dibromoethane, each of which possesses a heavy asymmetric rotor. Optimized ab initio energies and Hessians were calculated at the CCSD(T) and MP2 levels of theory, respectively. In addition, to investigate the contribution of electronically excited states to thermodynamic properties, several excited singlet and triplet states for each of the halocarbons were computed at the CASSCF/MRCI level. Using the resulting potentials and projected frequencies, the couplings of all the vibrational modes to the large-amplitude torsion are calculated using the new STAR-P 2.4.0 software platform that automatically parallelizes our codes with distributed memory via a familiar MATLAB interface. Utilizing the efficient parallelization scheme of STAR-P, we obtain thermodynamic properties for each of the halocarbons, with temperatures ranging from 298.15 to 1000 K. We propose that the free energies, entropies, and heat capacities obtained from our methods be used to supplement theoretical and experimental values found in current thermodynamic tables. PMID:17663439

  20. Thermodynamic calculations for molecules with asymmetric internal rotors. II. Application to the 1,2-dihaloethanes.

    PubMed

    Wong, Bryan M; Fadri, Maria M; Raman, Sumathy

    2008-02-01

    The thermodynamic properties of three halocarbon molecules relevant in atmospheric and public health applications are presented from ab initio calculations. Our technique makes use of a reaction path-like Hamiltonian to couple all the vibrational modes to a large-amplitude torsion for 1,2-difluoroethane, 1,2-dichloroethane, and 1,2-dibromoethane, each of which possesses a heavy asymmetric rotor. Optimized ab initio energies and Hessians were calculated at the CCSD(T) and MP2 levels of theory, respectively. In addition, to investigate the contribution of electronically excited states to thermodynamic properties, several excited singlet and triplet states for each of the halocarbons were computed at the CASSCF/MRCI level. Using the resulting potentials and projected frequencies, the couplings of all the vibrational modes to the large-amplitude torsion are calculated using the new STAR-P 2.4.0 software platform that automatically parallelizes our codes with distributed memory via a familiar MATLAB interface. Utilizing the efficient parallelization scheme of STAR-P, we obtain thermodynamic properties for each of the halocarbons, with temperatures ranging from 298.15 to 1000 K. We propose that the free energies, entropies, and heat capacities obtained from our methods be used to supplement theoretical and experimental values found in current thermodynamic tables. (c) 2007 Wiley Periodicals, Inc.

  1. Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO 3, U 2O 7, and UO 4

    DOE PAGES

    Guo, Xiaofeng; Wu, Di; Xu, Hongwu; ...

    2016-09-01

    The thermal decomposition of studtite (UO 2)O 2(H 2O) 2·2H 2O results in a series of intermediate X-ray amorphous materials with general composition UO 3+x (x = 0, 0.5, 1). As an extension of a structural study on U 2O 7, this work provides detailed calorimetric data on these amorphous oxygen-rich materials since their energetics and thermal stability are unknown. These were characterized in situ by thermogravimetry, and mass spectrometry. Ex situ X-ray diffraction and infrared spectroscopy characterized their chemical bonding and local structures. This detailed characterization formed the basis for obtaining formation enthalpies by high temperature oxide melt solutionmore » calorimetry. The thermodynamic data demonstrate the metastability of the amorphous UO 3+x materials, and explain their irreversible and spontaneous reactions to generate oxygen and form metaschoepite. Thus, formation of studtite in the nuclear fuel cycle, followed by heat treatment, can produce metastable amorphous UO 3+x materials that pose the risk of significant O 2 gas. Quantitative knowledge of the energy landscape of amorphous UO 3+x was provided for stability analysis and assessment of conditions for decomposition.« less

  2. Synthesis, structure and magnetic properties ofβ-MnO2nanorods

    PubMed Central

    Kim, HaeJin; Lee, JinBae; Kim, Young-Min; Jung, Myung-Hwa; Jagličić, Z; Umek, P

    2007-01-01

    We present synthesis, structure and magnetic properties of structurally well-ordered single-crystalline β-MnO2nanorods of 50–100 nm diameter and several µm length. Thorough structural characterization shows that the basic β-MnO2material is covered by a thin surface layer (∼2.5 nm) of α-Mn2O3phase with a reduced Mn valence that adds its own magnetic signal to the total magnetization of the β-MnO2nanorods. The relatively complicated temperature-dependent magnetism of the nanorods can be explained in terms of a superposition of bulk magnetic properties of spatially segregated β-MnO2and α-Mn2O3constituent phases and the soft ferromagnetism of the thin interface layer between these two phases.

  3. Systems Ln-Fe-O ( Ln=Eu, Gd): thermodynamic properties of ternary oxides using solid-state electrochemical cells

    NASA Astrophysics Data System (ADS)

    Parida, S. C.; Rakshit, S. K.; Dash, S.; Singh, Ziley; Prasad, R.; Venugopal, V.

    2003-05-01

    The standard molar Gibbs energies of formation of LnFeO 3(s) and Ln3Fe 5O 12(s) where Ln=Eu and Gd have been determined using solid-state electrochemical technique employing different solid electrolytes. The reversible e.m.f.s of the following solid-state electrochemical cells have been measured in the temperature range from 1050 to 1255 K. Cell (I): (-)Pt / { LnFeO 3(s)+ Ln2O 3(s)+Fe(s)} // YDT/CSZ // {Fe(s)+Fe 0.95O(s)} / Pt(+); Cell (II): (-)Pt/{Fe(s)+Fe 0.95O(s)}//CSZ//{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}/Pt(+); Cell (III): (-)Pt/{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}//YSZ//{Ni(s)+NiO(s)}/Pt(+); and Cell(IV):(-)Pt/{Fe(s)+Fe 0.95O(s)}//YDT/CSZ//{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}/Pt(+). The oxygen chemical potentials corresponding to the three-phase equilibria involving the ternary oxides have been computed from the e.m.f. data. The standard Gibbs energies of formation of solid EuFeO 3, Eu 3Fe 5O 12, GdFeO 3 and Gd 3Fe 5O 12 calculated by the least-squares regression analysis of the data obtained in the present study are given by Δ fG°m(EuFeO 3, s) /kJ mol -1 (± 3.2)=-1265.5+0.2687( T/K) (1050 ⩽ T/K ⩽ 1570), Δ fG°m(Eu 3Fe 5O 12, s)/kJ mol -1 (± 3.5)=-4626.2+1.0474( T/K) (1050 ⩽ T/K ⩽ 1255), Δ fG°m(GdFeO 3, s) /kJ mol -1 (± 3.2)=-1342.5+0.2539( T/K) (1050 ⩽ T/K ⩽ 1570), and Δ fG°m(Gd 3Fe 5O 12, s)/kJ·mol -1 (± 3.5)=-4856.0+1.0021( T/K) (1050 ⩽ T/K ⩽ 1255). The uncertainty estimates for Δ fG°m include the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagrams for the systems Eu-Fe-O and Gd-Fe-O and chemical potential diagrams for the system Gd-Fe-O were computed at 1250 K.

  4. Thermodynamic properties of a liquid crystal carbosilane dendrimer

    NASA Astrophysics Data System (ADS)

    Samosudova, Ya. S.; Markin, A. V.; Smirnova, N. N.; Ogurtsov, T. G.; Boiko, N. I.; Shibaev, V. P.

    2016-11-01

    The temperature dependence of the heat capacity of a first-generation liquid crystal carbosilane dendrimer with methoxyphenyl benzoate end groups is studied for the first time in the region of 6-370 K by means of precision adiabatic vacuum calorimetry. Physical transformations are observed in this interval of temperatures, and their standard thermodynamic characteristics are determined and discussed. Standard thermodynamic functions C p ° ( T), H°( T) - H°(0), S°( T) - S°(0), and G°( T) - H°(0) are calculated from the obtained experimental data for the region of T → 0 to 370 K. The standard entropy of formation of the dendrimer in the partially crystalline state at T = 298.15 K is calculated, and the standard entropy of the hypothetic reaction of its synthesis at this temperature is estimated. The thermodynamic properties of the studied dendrimer are compared to those of second- and fourth-generation liquid crystal carbosilane dendrimers with the same end groups studied earlier.

  5. CO Oxidation and Subsequent CO 2 Chemisorption on Alkaline Zirconates: Li 2 ZrO 3 and Na 2 ZrO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcántar-Vázquez, Brenda; Duan, Yuhua; Pfeiffer, Heriberto

    Here, two different alkaline zirconates (Li 2ZrO 3 and Na 2ZrO 3) were studied as possible bifunctional catalytic-captor materials for CO oxidation and the subsequent CO 2 chemisorption process. Initially, CO oxidation reactions were analyzed in a catalytic reactor coupled to a gas chromatograph, using Li 2ZrO 3 and Na 2ZrO 3, under different O 2 partial flows. We found results clearly showed that Na 2ZrO 3 possesses much better catalytic properties than Li 2ZrO 3. After the CO-O 2 oxidation catalytic analysis, CO2 chemisorption process was analyzed by thermogravimetric analysis, only for the Na 2ZrO 3 ceramic. The resultsmore » confirmed that Na 2ZrO 3 is able to work as a bifunctional material (CO oxidation and subsequent CO 2 chemisorption), although the kinetic CO 2 capture process was not the best one under the physicochemical condition used in this case. For Na 2ZrO 3, the best CO conversions were found between 445 and 580 °C (100%), while Li 2ZrO 3 only showed a 35% of efficiency between 460 and 503 °C. However, in the Na 2ZrO 3 case, at temperatures higher than 580 °C its catalytic activity gradually decreases as a result of CO 2 capture process. Finally, all these experiments were compared and supported with theoretical thermodynamic data.« less

  6. CO Oxidation and Subsequent CO 2 Chemisorption on Alkaline Zirconates: Li 2 ZrO 3 and Na 2 ZrO 3

    DOE PAGES

    Alcántar-Vázquez, Brenda; Duan, Yuhua; Pfeiffer, Heriberto

    2016-08-26

    Here, two different alkaline zirconates (Li 2ZrO 3 and Na 2ZrO 3) were studied as possible bifunctional catalytic-captor materials for CO oxidation and the subsequent CO 2 chemisorption process. Initially, CO oxidation reactions were analyzed in a catalytic reactor coupled to a gas chromatograph, using Li 2ZrO 3 and Na 2ZrO 3, under different O 2 partial flows. We found results clearly showed that Na 2ZrO 3 possesses much better catalytic properties than Li 2ZrO 3. After the CO-O 2 oxidation catalytic analysis, CO2 chemisorption process was analyzed by thermogravimetric analysis, only for the Na 2ZrO 3 ceramic. The resultsmore » confirmed that Na 2ZrO 3 is able to work as a bifunctional material (CO oxidation and subsequent CO 2 chemisorption), although the kinetic CO 2 capture process was not the best one under the physicochemical condition used in this case. For Na 2ZrO 3, the best CO conversions were found between 445 and 580 °C (100%), while Li 2ZrO 3 only showed a 35% of efficiency between 460 and 503 °C. However, in the Na 2ZrO 3 case, at temperatures higher than 580 °C its catalytic activity gradually decreases as a result of CO 2 capture process. Finally, all these experiments were compared and supported with theoretical thermodynamic data.« less

  7. The effect of pressure on the structural, electronic, magnetic, and thermodynamic properties of the Mn2RuGe inverse Heusler alloy

    NASA Astrophysics Data System (ADS)

    Song, Ting; Sun, Xiao-Wei; Tian, Jun-Hong; Wei, Xiao-Ping; Wan, Gui-Xin; Ma, Qin

    2017-04-01

    In the frame of density functional theory, first-principles calculations based on generalized gradient approximation and quasi-harmonic Debye approximation model in which the phononic effects are taken into account have been carried out to investigate the structural, electronic, magnetic, and thermodynamic properties of full-Heusler alloy Mn2RuGe in CuHg2Ti-type structure in the pressure range of 0-50 GPa. Present calculations predict that Mn2RuGe is a ferrimagnet with an optimized lattice parameter of 5.854 Å. The calculated total magnetic moment of 2.01 μB per formula unit is very close to integer value and agree well with the Slater-Pauling rule, where the partial spin moments of Mn (A) and Mn (B) which mainly contribute to the total magnetic moment are 2.66 μB and -0.90 μB, respectively. In the study of the energy band structures and density of states, Mn2RuGe exhibits half-metallicity with an indirect gap of 0.235 eV in the spin-down channels, and the shifting of bands towards higher energies in spin-down channel under high pressure. Meanwhile, the high-pressure thermodynamic properties of Mn2RuGe, such as the pressure-volume-temperature relationship, bulk modulus, thermal expansivity, heat capacity, Debye temperature, and Grüneisen parameter are evaluated systematically in the temperature range of 0-900 K. This set of data is considered as the useful information to understand the high-pressure and high-temperature properties for the Mn2RuZ-type Heusler alloy family.

  8. Electronic Structure, Phonon Dynamical Properties, and CO 2 Capture Capability of Na 2 - x M x Zr O 3 ( M = Li ,K): Density-Functional Calculations and Experimental Validations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua; Lekse, Jonathan; Wang, Xianfeng

    2015-04-22

    The electronic structural and phonon properties of Na 2-αM αZrO 3 (M ¼ Li,K, α = ¼ 0.0,0.5,1.0,1.5,2.0) are investigated by first-principles density-functional theory and phonon dynamics. The thermodynamic properties of CO 2 absorption and desorption in these materials are also analyzed. With increasing doping level α, the binding energies of Na 2-αLi αZrO 3 are increased while the binding energies of Na 2-α K αZrO 3 are decreased to destabilize the structures. The calculated band structures and density of states also show that, at the same doping level, the doping sites play a significant role in the electronic properties.more » The phonon dispersion results show that few soft modes are found in several doped configurations, which indicates that these structures are less stable than other configurations with different doping levels. From the calculated relationships among the chemical-potential change, the CO 2 pressure, and the temperature of the CO 2 capture reactions by Na 2-αM αZrO 3, and from thermogravimetric-analysis experimental measurements, the Li- and K-doped mixtures Na 2-αM αZrO 3 have lower turnover temperatures (T t) and higher CO 2 capture capacities, compared to pure Na 2ZrO 3. The Li-doped systems have a larger T t decrease than the K-doped systems. When increasing the Li-doping level α, the T t of the corresponding mixture Na 2-αLi αZrO 3 decreases further to a low-temperature range. However, in the case of K-doped systems Na 2-αK αZrO 3, although doping K into Na 2ZrO 3 initially shifts its T t to lower temperatures, further increases of the K-doping level α causes T t to increase. Therefore, doping Li into Na 2ZrO 3 has a larger influence on its CO 2 capture performance than the K-doped Na 2ZrO 3. Compared with pure solidsM 2ZrO 3, after doping with other elements, these doped systems’ CO 2 capture performances are improved.« less

  9. Preparation of Nano-TiO2-Coated SiO2 Microsphere Composite Material and Evaluation of Its Self-Cleaning Property

    PubMed Central

    Sun, Sijia; Deng, Tongrong; Ding, Hao; Chen, Ying; Chen, Wanting

    2017-01-01

    In order to improve the dispersion of nano-TiO2 particles and enhance its self-cleaning properties, including photocatalytic degradation of pollutants and surface hydrophilicity, we prepared nano-TiO2-coated SiO2 microsphere composite self-cleaning materials (SiO2–TiO2) by co-grinding SiO2 microspheres and TiO2 soliquid and calcining the ground product. The structure, morphology, and self-cleaning properties of the SiO2–TiO2 were characterized. The characterization results showed that the degradation efficiency of methyl orange by SiO2–TiO2 was 97%, which was significantly higher than that obtained by pure nano-TiO2. The minimum water contact angle of SiO2–TiO2 was 8°, indicating strong hydrophilicity and the good self-cleaning effect. The as-prepared SiO2–TiO2 was characterized by the nano-TiO2 particles uniformly coated on the SiO2 microspheres and distributed in the gap among the microspheres. The nano-TiO2 particles were in an anatase phase with the particle size of 15–20 nm. The nano-TiO2 particles were combined with SiO2 microspheres via the dehydroxylation of hydroxyl groups on their surfaces. PMID:29099774

  10. Thermodynamic and kinetic aspects of UO 2 fuel oxidation in air at 400-2000 K

    NASA Astrophysics Data System (ADS)

    Taylor, Peter

    2005-09-01

    Most nuclear fuel oxidation research has addressed either low-temperature (<700 K) air oxidation related to fuel storage or high-temperature (>1500 K) steam oxidation linked to reactor safety. This paper attempts to unify modelling for air oxidation of UO 2 fuel over a wide range of temperature, and thus to assist future improvement of the ASTEC code, co-developed by IRSN and GRS. Phenomenological correlations for different temperature ranges distinguish between oxidation on the scale of individual grains to U 3O 7 and U 3O 8 below ˜700 K and individual fragments to U 3O 8 via UO 2+ x and/or U 4O 9 above ˜1200 K. Between about 700 and 1200 K, empirical oxidation rates slowly decline as the U 3O 8 product becomes coarser-grained and more coherent, and fragment-scale processes become important. A more mechanistic approach to high-temperature oxidation addresses questions of oxygen supply, surface reaction kinetics, thermodynamic properties, and solid-state oxygen diffusion. Experimental data are scarce, however, especially at low oxygen partial pressures and high temperatures.

  11. Composition-Property Correlation in B2O3-SiO2 Preform Rods Produced Using Modified Chemical Vapor Deposition Technique

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad; Saleem, Muhammad Rizwan

    2012-02-01

    Due to unique optical properties of high birefringent (Hi-Bi) fibers for sensing and coherent optical communications, there is a strong interest in process optimization at preform fabrication and fiber drawing stages. Boron-doped silica cladding acts as stress-applying part resulting in polarization properties of Hi-Bi fibers that are strongly dependent on chemical composition. Using modified chemical vapor deposition (MCVD) technique, B2O3-doped silica preform rods were synthesized under different precursor gas flow conditions. Qualitative information about B2O3-SiO2 system composition was derived from etching behavior in nonbuffered HF solution and subsequent microstructural examination using scanning electron microscope. Significant degree of B2O3 incorporation was seen in case of high BCl3:SiCl4 ratio and mild oxygen-deficient processing conditions. Increasing the B2O3 content to ~26 mol% led to a corresponding increase in coefficient of thermal expansion (CTE) to a maximum value of 2.35 ppm/K. The value of refractive index (RI), on the other hand, was found to decrease with increased B2O3 incorporation. A qualitative correlation between B2O3 and SiO2 system composition and physical properties such as CTE and RI was established.

  12. Coefficients for calculating thermodynamic and transport properties of individual species

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford; Reno, Martin A.

    1993-01-01

    Libraries of thermodynamic data and transport properties are given for individual species in the form of least-squares coefficients. Values of C(sup 0)(sub p)(T), H(sup 0)(T), and S(sup 0)(T) are available for 1130 solid, liquid, and gaseous species. Viscosity and thermal conductivity data are given for 155 gases. The original C(sup 0)(sub p)(T) values were fit to a fourth-order polynomial with integration constants for H(sup 0)(T) and S(sup 0)(T). For each species the integration constant for H(sup 0)(T) includes the heat of formation. Transport properties have a different functional form. The temperature range for most of the data is 300 to 5000 K, although some of the newer thermodynamic data have a range of 200 to 6000 K. Because the species are mainly possible products of reaction, the data are useful for chemical equilibrium and kinetics computer codes. Much of the data has been distributed for several years with the NASA Lewis equilibrium program CET89. The thermodynamic properties of the reference elements were updated along with about 175 species that involve the elements carbon, hydrogen, oxygen, and nitrogen. These sets of data will be distributed with the NASA Lewis personal computer program for calculating chemical equilibria, CETPC.

  13. Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag-Te and Ag-Te-O

    NASA Astrophysics Data System (ADS)

    Voronin, Mikhail V.; Osadchii, Evgeniy G.; Brichkina, Ekaterina A.

    2017-10-01

    This study compiles original experimental and literature data on the thermodynamic properties (ΔfG°, S°, ΔfH°) of silver tellurides (α-Ag2Te, β-Ag2Te, Ag1.9Te, Ag5Te3, AgTe) obtained by the method of solid-state galvanic cell with the RbAg4I5 and AgI solid electrolytes. The thermodynamic data for empressite (AgTe, pure fraction from Empress Josephine Mine, Colorado USA) have been obtained for the first time by the electrochemical experiment with the virtual reaction Ag + Te = AgTe. The Ag-Te phase diagrams in the T - x and log fTe2 (gas) - 1/ T coordinates have been refined, and the ternary Ag-Te-O diagrams with Ag-Te-TeO2 (paratellurite) composition range have been calculated.

  14. Pressure-induced phase transition of KTa1/2Nb1/2O3 solid solutions: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Huadi; Liu, Bing; Zhang, Cong; Qiu, Chengcheng; Wang, Xuping; Zhang, Yuanyuan; Lv, Xianshun; Wei, Lei; Li, Qinggang

    2018-05-01

    The structures and electronic properties of KTa1/2Nb1/2O3 under high pressures have been investigated using the first-principles calculations. Three candidates with B site cation ordered along the [1 0 0], [1 1 0] and [1 1 1] directions are found stable under different pressures by thermodynamics, mechanics and dynamics stability criteria. Further electronic analysis indicates that three structures are semiconductors with different band-gap characteristics. The peculiar chemical bonds of Nb-O and Ta-O are expected to be related to the different electronegativity of the corresponding cations.

  15. System DyFeO: thermodynamic properties of ternary oxides using Calvet calorimetry and solid-state electrochemical cell

    NASA Astrophysics Data System (ADS)

    Parida, S. C.; Jacob, K. T.; Venugopal, V.

    2002-10-01

    The enthalpy increments and the standard molar Gibbs energies of formation of DyFeO 3(s) and Dy 3Fe 5O 12(s) have been measured using a Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. A co-operative phase transition, related to anti-ferromagnetic to paramagnetic transformation, is apparent from the heat capacity data for DyFeO 3 at ˜648 K. A similar type of phase transition has been observed for Dy 3Fe 5O 12 at ˜560 K which is related to ferrimagnetic to paramagnetic transformation. Enthalpy increment data for DyFeO 3(s) and Dy 3Fe 5O 12(s), except in the vicinity of the second-order transition, can be represented by the following polynomial expressions: {H 0m(T)-H 0m(298.15 K)} ( J mol-1) (±1.1%)=-52754+142.9×(T ( K))+2.48×10 -3×(T ( K)) 2+2.951×10 6×(T ( K)) -1;(298.15⩽ T ( K)⩽1000) for DyFeO 3(s), and {H 0m(T)-H 0m(298.15 K)} ( J mol-1) (±1.2%)=-191048+545.0×(T ( K))+2.0×10 -5×(T ( K)) 2+8.513×10 6×(T ( K)) -1;(298.15⩽T ( K)⩽1000) for Dy 3Fe 5O 12(s). The reversible emfs of the solid-state electrochemical cells: (-)Pt/{DyFeO 3(s) + Dy 2O 3(s) + Fe(s)}//YDT/CSZ//{Fe(s) + Fe 0.95O(s)}/Pt(+) and (-)Pt/{Fe(s) + Fe 0.95O(s)}//CSZ//{DyFeO 3(s) + Dy 3Fe 5O 12(s) + Fe 3O 4(s)}/Pt(+), were measured in the temperature range from 1021 to 1250 K and 1035 to 1250 K, respectively. The standard Gibbs energies of formation of solid DyFeO 3 and Dy 3Fe 5O 12 calculated by the least squares regression analysis of the data obtained in the present study, and data for Fe 0.95O and Dy 2O 3 from the literature, are given by: Δ fG 0m( DyFeO3, s) ( kJ mol-1) (±3.2)=-1339.9+0.2473×(T ( K));(1021⩽T ( K)⩽1548) and Δ fG 0m( Dy3Fe5O12, s) ( kJ mol-1) (±3.5)=-4850.4+0.9846×(T ( K));(1035⩽T ( K)⩽1250). The uncertainty estimates for Δ fG 0m include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagram and chemical potential diagrams for

  16. Effect of composition on properties of In2O3-Ga2O3 thin films

    NASA Astrophysics Data System (ADS)

    Demin, I. E.; Kozlov, A. G.

    2017-06-01

    The In2O3-Ga2O3 mixed oxide polycrystalline thin films with various ratios of components were obtained by pulsed laser deposition. The effect of films composition on surface morphology, electrophysical and gas sensing properties and energies of adsorption and desorption of combustible gases was studied. The films with50%In2O3-50%Ga2O3 composition showed maximum gas response (˜25 times) combined with minimum optimal working temperature (˜530 °C) as compared with the other films. The optical transmittance of the films in visible range was investigated. For 50%In2O3-50%Ga2O3 films, the transmittance is higher in comparison with the other films. The explanation of the dependency of films behaviors on their composition was presented.The In2O3-Ga2O3 films were assumed to have perspectives as gas sensing material for semiconducting gas sensors.

  17. The thermodynamic properties of oxygen and nitrogen

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Jacobsen, R. T.; Myers, A. F.

    1972-01-01

    The development of a single equation of state for oxygen and nitrogen based on the thermodynamic properties of the gases is described. The coefficients of the equation of state were determined by simultaneous least squares fits to values of isochoric heat capacity and saturation density values used to define the criteria for phase equilibrium. Tables of data for the conditions of both gases are included.

  18. An EQT-cDFT approach to determine thermodynamic properties of confined fluids.

    PubMed

    Mashayak, S Y; Motevaselian, M H; Aluru, N R

    2015-06-28

    We present a continuum-based approach to predict the structure and thermodynamic properties of confined fluids at multiple length-scales, ranging from a few angstroms to macro-meters. The continuum approach is based on the empirical potential-based quasi-continuum theory (EQT) and classical density functional theory (cDFT). EQT is a simple and fast approach to predict inhomogeneous density and potential profiles of confined fluids. We use EQT potentials to construct a grand potential functional for cDFT. The EQT-cDFT-based grand potential can be used to predict various thermodynamic properties of confined fluids. In this work, we demonstrate the EQT-cDFT approach by simulating Lennard-Jones fluids, namely, methane and argon, confined inside slit-like channels of graphene. We show that the EQT-cDFT can accurately predict the structure and thermodynamic properties, such as density profiles, adsorption, local pressure tensor, surface tension, and solvation force, of confined fluids as compared to the molecular dynamics simulation results.

  19. Oxyhydroxide of metallic nanowires in a molecular H2O and H2O2 environment and their effects on mechanical properties.

    PubMed

    Aral, Gurcan; Islam, Md Mahbubul; Wang, Yun-Jiang; Ogata, Shigenobu; Duin, Adri C T van

    2018-06-14

    To avoid unexpected environmental mechanical failure, there is a strong need to fully understand the details of the oxidation process and intrinsic mechanical properties of reactive metallic iron (Fe) nanowires (NWs) under various aqueous reactive environmental conditions. Herein, we employed ReaxFF reactive molecular dynamics (MD) simulations to elucidate the oxidation of Fe NWs exposed to molecular water (H2O) and hydrogen peroxide (H2O2) environment, and the influence of the oxide shell layer on the tensile mechanical deformation properties of Fe NWs. Our structural analysis shows that oxidation of Fe NWs occurs with the formation of different iron oxide and hydroxide phases in the aqueous molecular H2O and H2O2 oxidizing environments. We observe that the resulting microstructure due to pre-oxide shell layer formation reduces the mechanical stress via increasing the initial defect sites in the vicinity of the oxide region to facilitate the onset of plastic deformation during tensile loading. Specifically, the oxide layer of Fe NWs formed in the H2O2 environment has a relatively significant effect on the deterioration of the mechanical properties of Fe NWs. The weakening of the yield stress and Young modulus of H2O2 oxidized Fe NWs indicates the important role of local oxide microstructures on mechanical deformation properties of individual Fe NWs. Notably, deformation twinning is found as the primary mechanical plastic deformation mechanism of all Fe NWs, but it is initially observed at low strain and stress level for the oxidized Fe NWs.

  20. Theoretical studies of UO(2)(OH)(H(2)O)(n) (+), UO(2)(OH)(2)(H(2)O)(n), NpO(2)(OH)(H(2)O)(n), and PuO(2)(OH)(H(2)O)(n) (+) (n

    PubMed

    Cao, Zhiji; Balasubramanian, K

    2009-10-28

    Extensive ab initio calculations have been carried out to study equilibrium structures, vibrational frequencies, and the nature of chemical bonds of hydrated UO(2)(OH)(+), UO(2)(OH)(2), NpO(2)(OH), and PuO(2)(OH)(+) complexes that contain up to 21 water molecules both in first and second hydration spheres in both aqueous solution and the gas phase. The structures have been further optimized by considering long-range solvent effects through a polarizable continuum dielectric model. The hydrolysis reaction Gibbs free energy of UO(2)(H(2)O)(5) (2+) is computed to be 8.11 kcal/mol at the MP2 level in good agreement with experiments. Our results reveal that it is necessary to include water molecules bound to the complex in the first hydration sphere for proper treatment of the hydrated complex and the dielectric cavity although water molecules in the second hydration sphere do not change the coordination complex. Structural reoptimization of the complex in a dielectric cavity seems inevitable to seek subtle structural variations in the solvent and to correlate with the observed spectra and thermodynamic properties in the aqueous environment. Our computations reveal dramatically different equilibrium structures in the gas phase and solution and also confirm the observed facile exchanges between the complex and bulk solvent. Complete active space multiconfiguration self-consistent field followed by multireference singles+doubles CI (MRSDCI) computations on smaller complexes confirm predominantly single-configurational nature of these species and the validity of B3LYP and MP2 techniques for these complexes in their ground states.

  1. Thermodynamic properties of asymptotically Reissner–Nordström black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendi, S.H., E-mail: hendi@shirazu.ac.ir

    2014-07-15

    Motivated by possible relation between Born–Infeld type nonlinear electrodynamics and an effective low-energy action of open string theory, asymptotically Reissner–Nordström black holes whose electric field is described by a nonlinear electrodynamics (NLED) are studied. We take into account a four dimensional topological static black hole ansatz and solve the field equations, exactly, in terms of the NLED as a matter field. The main goal of this paper is investigation of thermodynamic properties of the obtained black holes. Moreover, we calculate the heat capacity and find that the nonlinearity affects the minimum size of stable black holes. We also use Legendre-invariantmore » metric proposed by Quevedo to obtain scalar curvature divergences. We find that the singularities of the Ricci scalar in Geometrothermodynamics (GTD) method take place at the Davies points. -- Highlights: •We examine the thermodynamical properties of black holes in Einstein gravity with nonlinear electrodynamics. •We investigate thermodynamic stability and discuss about the size of stable black holes. •We obtain analytical solutions of higher dimensional theory.« less

  2. Phase and Physicochemical Properties Diagrams of Quaternary System Li2B4O7 + Na2B4O7 + Mg2B6O11 + H2O

    NASA Astrophysics Data System (ADS)

    Wang, Shi-qiang; Du, Xue-min; Jing, Yan; Guo, Ya-fei; Deng, Tian-long

    2017-12-01

    The phase and physicochemical properties diagrams of the quaternary system (Li2B4O7 + Na2B4O7 + Mg2B6O11) at 288.15 K and 0.1 MPa were constructed using the solubilities, densities, and refractive indices measured. In the phase diagrams of the system there are one invariant point, three univariant isothermic dissolution curves, and three crystallization regions corresponding to Li2B4O7 · 3H2O, Na2B4O7 · 10H2O, and Mg2B6O11 · 15H2O, respectively. The solution density, refractive index of the quaternary system changes regularly with the increasing of Li2B4O7 concentration. The calculated values of density and refractive index using empirical equations of the quaternary system are in good agreement with the experimental values.

  3. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoyang; Yang, Min-Quan; Fu, Xianzhi; Zhang, Nan; Xu, Yi-Jun

    2013-04-01

    Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications.Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the

  4. Thermodynamic tabulations for selected phases in the system CaO-Al2O3-SiO2-H2 at 101.325 kPa (1 atm) between 273.15 and 1800 K

    USGS Publications Warehouse

    Haas, John L.; Robinson, Glipin R.; Hemingway, Bruch S.

    1981-01-01

    The standard thermodynamic properties of phases in the lime‐alumina‐silica‐ water system between 273.15 and 1800 K at 101.325 kPa (1 atm) were evalated from published experimental data. Phases included in the compilation are boehmite, diaspore, gibbsite, kaolinite, dickite, halloysite, andalusite, kyanite, sillimanite, Ca‐Al cliniopyroxene, anorthite, gehlenite, grossular, prehnite, zoisite, margarite, wollastonite, cyclowollastonite ( = pseudowollastonite), larnite, Ca olivine, hatrurite, and rankinite. The properties include heat capacity, entropy, relative enthalpy, and the Gibbs energy function of the phases and the enthalpies, Gibbs energies, and equilibrium constants for formation both from the elements and the oxides. Tabulated values are given at 50 K intervals with the 2‐sigma confidence limit at 250 K intervals. Summaries for each phase give the temperature‐ dependent functions for heat capacity, entropy, and relative enthalpy and the experimental data used in the final evaluation.

  5. Simultaneous calibration of end-member thermodynamic data and solution properties with correlated uncertainties

    NASA Astrophysics Data System (ADS)

    Antoshechkina, P. M.; Wolf, A. S.; Hamecher, E. A.; Asimow, P. D.; Ghiorso, M. S.

    2013-12-01

    Community databases such as EarthChem, LEPR, and AMCSD both increase demand for quantitative petrological tools, including thermodynamic models like the MELTS family of algorithms, and are invaluable in development of such tools. The need to extend existing solid solution models to include minor components such as Cr and Na has been evident for years but as the number of components increases it becomes impossible to completely separate derivation of end-member thermodynamic data from calibration of solution properties. In Hamecher et al. (2012; 2013) we developed a calibration scheme that directly interfaces with a MySQL database based on LEPR, with volume data from AMCSD and elsewhere. Here we combine that scheme with a Bayesian approach, where independent constraints on parameter values (e.g. existence of miscibility gaps) are combined with uncertainty propagation to give a more reliable best-fit along with associated model uncertainties. We illustrate the scheme with a new model of molar volume for (Ca,Fe,Mg,Mn,Na)3(Al,Cr,Fe3+,Fe2+,Mg,Mn,Si,Ti)2Si3O12 cubic garnets. For a garnet in this chemical system, the model molar volume is obtained by adding excess volume terms to a linear combination of nine independent end-member volumes. The model calibration is broken into three main stages: (1) estimation of individual end-member thermodynamic properties; (2) calibration of standard state volumes for all available independent and dependent end members; (3) fitting of binary and mixed composition data. For each calibration step, the goodness-of-fit includes weighted residuals as well as χ2-like penalty terms representing the (not necessarily Gaussian) prior constraints on parameter values. Using the Bayesian approach, uncertainties are correctly propagated forward to subsequent steps, allowing determination of final parameter values and correlated uncertainties that account for the entire calibration process. For the aluminosilicate garnets, optimal values of the bulk

  6. Computer programs for thermodynamic and transport properties of hydrogen

    NASA Technical Reports Server (NTRS)

    Hall, W. J.; Mc Carty, R. D.; Roder, H. M.

    1968-01-01

    Computer program subroutines provide the thermodynamic and transport properties of hydrogen in tabular form. The programs provide 18 combinations of input and output variables. This program is written in FORTRAN 4 for use on the IBM 7044 or CDC 3600 computers.

  7. Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating

    NASA Astrophysics Data System (ADS)

    Cho, Woosuk; Kim, Sang-Min; Song, Jun Ho; Yim, Taeeun; Woo, Sang-Gil; Lee, Ko-Woon; Kim, Jeom-Soo; Kim, Young-Jun

    2015-05-01

    A surface coating of SiO2 is applied to a Ni rich LiNi0.6Co0.2Mn0.2O2 cathode material in a bid to improve its electrochemical and thermal properties. A uniform coating is achieved through a wet process using nano-sized SiO2 powder, and though the coated electrode is found to exhibit a reduced rate capability, its cycle performance at a high temperature of 60 °C is greatly enhanced. The effect of this SiO2 coating is further investigated by electrochemical impedance spectroscopy, which confirms that it suppresses the growth of interfacial impedance during progressive cycles. The SiO2 coating also demonstrates good HF scavenging ability, producing a subsequent reduction in the degradation of the active core material. The thermal properties of LiNi0.6Co0.2Mn0.2O2 are also improved by the SiO2 coating due to a reduction in the direct contact between the electrode and electrolyte. On the basis of these results, SiO2 coating is considered a viable surface modification method for improving the electrochemical and thermal properties of LiNi0.6Co0.2Mn0.2O2.

  8. Effect of the dispersing agent on the structural and magnetic properties of CoFe2O4 /SiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Daboin, Viviana; Briceño, Sarah; Suárez, Jorge; Gonzalez, Gema

    2018-04-01

    Cobalt ferrite nanoparticles CoFe2O4 were synthesized using the thermal decomposition method; subsequently the NPs were functionalized using poli vinyl pyrrolidone (PVP) cetyl trimethyl ammonium bromide (CTAB) and polyethylene glycol (PEG) as dispersing agent. Surface modification with silica SiO2 was made using the Stöber method and tetraethyl orthosilicate (TEOS) as precursor. The purpose of this study is to investigate the influence of the different dispersing agents on the structure and therefore on the magnetic properties of the CoFe2O4 /SiO2 nanocomposites. Structural characterization was carried out using: X-ray diffraction (XRD), infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Magnetic properties were evaluated using a vibrating sample magnetometer (VSM) at room temperature. Our results revealed that the structural and magnetic properties of the CoFe2O4 /SiO2 nanocomposites were significantly different depending of the type of dispersing agents used before the surface modification with silica SiO2 .

  9. Environment-dependent interfacial strength using first principles thermodynamics: The example of the Pt-HfO2 interface

    NASA Astrophysics Data System (ADS)

    Cardona Quintero, Y.; Ramanath, Ganpati; Ramprasad, R.

    2013-10-01

    A parameter-free, quantitative, first-principles methodology to determine the environment-dependent interfacial strength of metal-metal oxide interfaces is presented. This approach uses the notion of the weakest link to identify the most likely cleavage plane, and first principles thermodynamics to calculate the average work of separation as a function of the environment (in this case, temperature and oxygen pressure). The method is applied to the case of the Pt-HfO2 interface, and it is shown that the computed environment-dependent work of separation is in quantitative agreement with available experimental data.

  10. On the universal behavior of some thermodynamic properties along the whole liquid-vapor coexistence curve

    NASA Astrophysics Data System (ADS)

    Román, F. L.; White, J. A.; Velasco, S.; Mulero, A.

    2005-09-01

    When thermodynamic properties of a pure substance are transformed to reduced form by using both critical- and triple-point values, the corresponding experimental data along the whole liquid-vapor coexistence curve can be correlated with a very simple analytical expression that interpolates between the behavior near the triple and the critical points. The leading terms of this expression contain only two parameters: the critical exponent and the slope at the triple point. For a given thermodynamic property, the critical exponent has a universal character but the slope at the triple point can vary significantly from one substance to another. However, for certain thermodynamic properties including the difference of coexisting densities, the enthalpy of vaporization, and the surface tension of the saturated liquid, one finds that the slope at the triple point also has a nearly universal value for a wide class of fluids. These thermodynamic properties thus show a corresponding apparently universal behavior along the whole coexistence curve.

  11. Structures of Hydrated Alkali Metal Cations, M+(H2O)nAr (m = Li, Na, K, rb and Cs, n = 3-5), Using Infrared Photodissociation Spectroscopy and Thermodynamic Analysis

    NASA Astrophysics Data System (ADS)

    Ke, Haochen; van der Linde, Christian; Lisy, James M.

    2014-06-01

    Alkali metal cations play vital roles in chemical and biochemical systems. Lithium is widely used in psychiatric treatment of manic states and bipolar disorder; Sodium and potassium are essential elements, having major biological roles as electrolytes, balancing osmotic pressure on body cells and assisting the electroneurographic signal transmission; Rubidium has seen increasing usage as a supplementation for manic depression and depression treatment; Cesium doped compounds are used as essential catalysts in chemical production and organic synthesis. Since hydrated alkali metal cations are ubiquitous and the basic form of the alkali metal cations in chemical and biochemical systems, their structural and thermodynamic properties serve as the foundation for modeling more complex chemical and biochemical processes, such as ion transport and ion size-selectivity of ionophores and protein channels. By combining mass spectrometry and infrared photodissociation spectroscopy, we have characterized the structures and thermodynamic properties of the hydrated alkali metal cations, i.e. M+(H2O)nAr, (M = Li, Na, K, Rb and Cs, n = 3-5). Ab initio calculations and RRKM-EE (evaporative ensemble) calculations were used to assist in the spectral assignments and thermodynamic analysis. Results showed that the structures of hydrated alkali metal cations were determined predominantly by the competition between non-covalent interactions, i.e. the water---water hydrogen bonding interactions and the water---cation electrostatic interactions. This balance, however, is very delicate and small changes, i.e. different cations, different levels of hydration and different effective temperatures clearly impact the balance.

  12. An Atomistic-Scale Study for Thermal Conductivity and Thermochemical Compatibility in (DyY)Zr2O7 Combining an Experimental Approach with Theoretical Calculation.

    PubMed

    Qu, Liu; Choy, Kwang-Leong; Wheatley, Richard

    2016-02-18

    Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy(3+) and Y(3+)on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke's model. This can improve the understanding of the microstructure and thermodynamic properties of (DyY)Zr2O7 (DYZ) at the atomistic level. The phonon-defect scattering and phonon-phonon scattering processes are investigated via the theoretical calculation, which provides an effective way to study thermal transport properties of ionic oxides. The measured and predicted thermal conductivity of DYZ is lower than that of 4 mol % Y2O3 stabilized ZrO2 (4YSZ). It is discovered that DYZ is thermochemically compatible with Al2O3 at 1300 °C, whereas at 1350 °C DYZ reacts with Al2O3 forming a small amount of new phases.

  13. An Atomistic-Scale Study for Thermal Conductivity and Thermochemical Compatibility in (DyY)Zr2O7 Combining an Experimental Approach with Theoretical Calculation

    PubMed Central

    Qu, Liu; Choy, Kwang-Leong; Wheatley, Richard

    2016-01-01

    Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy3+ and Y3+on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke’s model. This can improve the understanding of the microstructure and thermodynamic properties of (DyY)Zr2O7 (DYZ) at the atomistic level. The phonon-defect scattering and phonon-phonon scattering processes are investigated via the theoretical calculation, which provides an effective way to study thermal transport properties of ionic oxides. The measured and predicted thermal conductivity of DYZ is lower than that of 4 mol % Y2O3 stabilized ZrO2 (4YSZ). It is discovered that DYZ is thermochemically compatible with Al2O3 at 1300 °C, whereas at 1350 °C DYZ reacts with Al2O3 forming a small amount of new phases. PMID:26888438

  14. Dynamics, magnetic properties, and electron binding energies of H2O2 in water.

    PubMed

    C Cabral, Benedito J

    2017-06-21

    Results for the magnetic properties and electron binding energies of H 2 O 2 in liquid water are presented. The adopted methodology relies on the combination of Born-Oppenheimer molecular dynamics and electronic structure calculations. The Keal-Tozer functional was applied for predicting magnetic shieldings and H 2 O 2 intramolecular spin-spin coupling constants. Electron binding energies were calculated with electron propagator theory. In water, H 2 O 2 is a better proton donor than proton acceptor, and the present results indicate that this feature is important for understanding magnetic properties in solution. In comparison with the gas-phase, H 2 O 2 atoms are deshielded in water. For oxygen atoms, the deshielding is mainly determined by structural/conformational changes. Hydrogen-bond interactions explain the deshielding of protons in water. The predicted chemical shift for the H 2 O 2 protons in water (δ∼11.8 ppm) is in good agreement with experimental information (δ=11.2 ppm). The two lowest electron binding energies of H 2 O 2 in water (10.7±0.5 and 11.2±0.5 eV) are in reasonable agreement with experiment. In keeping with data from photoelectron spectroscopy, an ∼1.6 eV red-shift of the two first ionisation energies relative to the gas-phase is observed in water. The strong dependence of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between the σ( 17 O) magnetic shielding constant and the energy gap between the [2a] lowest valence and [1a] core orbitals of H 2 O 2 .

  15. Ferric iron partitioning between plagioclase and silicate liquid: thermodynamics and petrological applications

    NASA Astrophysics Data System (ADS)

    Sugawara, Toru

    2001-06-01

    A series of Fe and Mg partition experiments between plagioclase and silicate liquid were performed in the system SiO2-Al2O3-Fe2O3-FeO-MgO-CaO-Na2O under oxygen fugacities from below the IW buffer up to that of air. A thermodynamic model of plagioclase solid solution for the (CaAl,NaSi,KSi)(Fe3+,Al3+)Si2O8-Ca(Fe2+,Mg)Si3O8 system is proposed and is calibrated by regression analysis based on new and previously reported experimental data of Fe and Mg partitioning between plagioclase and silicate liquid, and reported thermodynamic properties of end members, ternary feldspar and silicate liquid. Using the derived thermodynamic model, FeOt, MgO content and Mg/(Fet+Mg) in plagioclase can be predicted from liquid composition with standard deviations of +/-0.34 wt% (relative error =9%) and +/-0.08 wt% (14%) and +/-0.7 (8%) respectively. Calculated Fe3+-Al exchange chemical potentials of plagioclase, $μ { Fe{ 3 + } ( {Al} ){ - 1} }{ Pl} agree with those calculated using reported thermodynamic models for multicomponent spinel, μ { Fe{ 3 + } ( {Al} ){ - 1} }{ Sp} and clinopyroxene, μ { Fe{ 3 + } ( {Al} ){ - 1} }{ Cpx} $ . The FeOt content of plagioclase coexisting with spinel or clinopyroxene is affected by Fe3+/(Fe3++Al) and Mg/(Fe+Mg) of spinel or clinopyroxene and temperature, while it is independent of the anorthite content of plagioclase. Three oxygen barometers based on the proposed model are investigated. Although the oxygen fugacities predicted by the plagioclase-liquid oxygen barometer are scattered, this study found that plagioclase-spinel-clinopyroxene-oxygen and plagioclase-olivine-oxygen equilibria can be used as practical oxygen barometers. As a petrological application, prediction of plagioclase composition and fO2 are carried out for the Upper Zone of the Skaergaard intrusion. The estimated oxygen fugacities are well below QFM buffer and consistent with the estimation of oxidization states in previous studies.

  16. Selective divalent cobalt ions detection using Ag2O3-ZnO nanocones by ICP-OES method for environmental remediation.

    PubMed

    Rahman, Mohammed M; Khan, Sher Bahadar; Marwani, Hadi M; Asiri, Abdullah M

    2014-01-01

    Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg-1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results.

  17. Physicochemical properties of precursors of Al2O3-ZrO2 oxide ceramics prepared by electrochemical method

    NASA Astrophysics Data System (ADS)

    Petrova, E. V.; Dresvyannikov, A. F.; Ahmadi Daryakenari, M.; Khairullina, A. I.

    2016-05-01

    Scanning electron microscopy, X-ray, and thermal analysis are used to examine the structure and properties of dispersive systems based on aluminum and zirconium oxides prepared electrochemically. The effect the conditions of synthesis have on the structure and morphology of Al2O3-ZrO2 particles is studied. It is shown that the effect of an electric field on the reaction medium allows us to adjust the physicochemical properties and morphology.

  18. Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor

    NASA Astrophysics Data System (ADS)

    Zhou, Xue; Cui, Xinglei; Chen, Mo; Zhai, Guofu

    2016-05-01

    Species composites of Ag-N2, Ag-H2 and Ag-He plasmas in the temperature range of 3,000-20,000 K and at 1 atmospheric pressure were calculated by using the minimization of Gibbs free energy. Thermodynamic properties and transport coefficients of nitrogen, hydrogen and helium plasmas mixed with a variety of silver vapor were then calculated based on the equilibrium composites and collision integral data. The calculation procedure was verified by comparing the results obtained in this paper with the published transport coefficients on the case of pure nitrogen plasma. The influences of the silver vapor concentration on composites, thermodynamic properties and transport coefficients were finally analyzed and summarized for all the three types of plasmas. Those physical properties were important for theoretical study and numerical calculation on arc plasma generated by silver-based electrodes in those gases in sealed electromagnetic relays and contacts. supported by National Natural Science Foundation of China (Nos. 51277038 and 51307030)

  19. Thermodynamic properties of the S =1 /2 twisted triangular spin tube

    NASA Astrophysics Data System (ADS)

    Ito, Takuya; Iino, Chihiro; Shibata, Naokazu

    2018-05-01

    Thermodynamic properties of the twisted three-leg spin tube under magnetic field are studied by the finite-T density-matrix renormalization group method. The specific heat, spin, and chiral susceptibilities of the infinite system are calculated for both the original and its low-energy effective models. The obtained results show that the presence of the chirality is observed as a clear peak in the specific heat at low temperature and the contribution of the chirality dominates the low-temperature part of the specific heat as the exchange coupling along the spin tube decreases. The peak structures in the specific heat, spin, and chiral susceptibilities are strongly modified near the quantum phase transition where the critical behaviors of the spin and chirality correlations change. These results confirm that the chirality plays a major role in characteristic low-energy behaviors of the frustrated spin systems.

  20. Effects of Ta2O5 Addition on Electrical Properties of ZnO-V2O5 Based Varistor Ceramics

    NASA Astrophysics Data System (ADS)

    Fan, J. W.; Zhao, H. J.; Zhang, X. L.

    2018-05-01

    ZnO varistors are widely used for the protection of electronic and electrical equipment against transient surges. ZnO–V2O5 based varistor system is a potential candidate which can co-fire with Ag, and avoids the use of expensive Pa and Pt as the inner electrode in making multilayer chip varistors. However, the study of ZnO–V2O5-based ceramics is still in the initial stage for practical applications. The current work reports the effects of Ta2O5 on the electrical properties of ZnO-V2O5 based varistor ceramics. It shows that within 850-925°C experimental sintering temperature, the addition of Ta2O5 (0.05-0.20 mol%) may not improve the nonlinear coefficient but reduces the breakdown field of ZnO–V2O5 varistor ceramics.

  1. Optical properties of amorphous SiO2-TiO2 multi-nanolayered coatings for 1064-nm mirror technology

    NASA Astrophysics Data System (ADS)

    Magnozzi, M.; Terreni, S.; Anghinolfi, L.; Uttiya, S.; Carnasciali, M. M.; Gemme, G.; Neri, M.; Principe, M.; Pinto, I.; Kuo, L.-C.; Chao, S.; Canepa, M.

    2018-01-01

    The use of amorphous, SiO2-TiO2 nanolayered coatings has been proposed recently for the mirrors of 3rd-generation interferometric detectors of gravitational waves, to be operated at low temperature. Coatings with a high number of low-high index sub-units pairs with nanoscale thickness were found to preserve the amorphous structure for high annealing temperatures, a key factor to improve the mechanical quality of the mirrors. The optimization of mirror designs based on such coatings requires a detailed knowledge of the optical properties of sub-units at the nm-thick scale. To this aim we have performed a Spectroscopic Ellipsometry (SE) study of amorphous SiO2-TiO2 nanolayered films deposited on Si wafers by Ion Beam Sputtering (IBS). We have analyzed films that are composed of 5 and 19 nanolayers (NL5 and NL19 samples) and have total optical thickness nominally equivalent to a quarter of wavelength at 1064 nm. A set of reference optical properties for the constituent materials was obtained by the analysis of thicker SiO2 and TiO2 homogeneous films (∼ 120 nm) deposited by the same IBS facility. By flanking SE with ancillary techniques, such as TEM and AFM, we built optical models that allowed us to retrieve the broad-band (250-1700 nm) optical properties of the nanolayers in the NL5 and NL19 composite films. In the models which provided the best agreement between simulation and data, the thickness of each sub-unit was fitted within rather narrow bounds determined by the analysis of TEM measurements on witness samples. Regarding the NL5 sample, with thickness of 19.9 nm and 27.1 nm for SiO2 and TiO2 sub-units, respectively, the optical properties presented limited variations with respect to the thin film counterparts. For the NL19 sample, which is composed of ultrathin sub-units (4.4 nm and 8.4 nm for SiO2 and TiO2, respectively) we observed a significant decrease of the IR refraction index for both types of sub-units; this points to a lesser mass density with

  2. The Study of Electrical Properties for Multilayer La2O3/Al2O3 Dielectric Stacks and LaAlO3 Dielectric Film Deposited by ALD.

    PubMed

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2017-12-01

    The capacitance and leakage current properties of multilayer La 2 O 3 /Al 2 O 3 dielectric stacks and LaAlO 3 dielectric film are investigated in this paper. A clear promotion of capacitance properties is observed for multilayer La 2 O 3 /Al 2 O 3 stacks after post-deposition annealing (PDA) at 800 °C compared with PDA at 600 °C, which indicated the recombination of defects and dangling bonds performs better at the high-k/Si substrate interface for a higher annealing temperature. For LaAlO 3 dielectric film, compared with multilayer La 2 O 3 /Al 2 O 3 dielectric stacks, a clear promotion of trapped charges density (N ot ) and a degradation of interface trap density (D it ) can be obtained simultaneously. In addition, a significant improvement about leakage current property is observed for LaAlO 3 dielectric film compared with multilayer La 2 O 3 /Al 2 O 3 stacks at the same annealing condition. We also noticed that a better breakdown behavior for multilayer La 2 O 3 /Al 2 O 3 stack is achieved after annealing at a higher temperature for its less defects.

  3. H2 gas sensing properties of a ZnO/CuO and ZnO/CuO/Cu2O Heterostructures

    NASA Astrophysics Data System (ADS)

    Ababii, N.; Postica, V.; Hoppe, M.; Adelung, R.; Lupan, O.; Railean, S.; Pauporté, T.; Viana, B.

    2017-03-01

    The most important parameters of gas sensors are sensitivity and especially high selectivity to specific chemical species. To improve these parameters we developed sensor structures based on layered semiconducting oxides, namely CuO/Cu2O, CuO:Zn/Cu2O:Zn, NiO/ZnO. In this work, the ZnO/CuxO (where x = 1, 2) bi-layer heterostructure were grown via a simple synthesis from chemical solution (SCS) at relatively low temperatures (< 95 °C), representing a combination of layered n-type and p-type semiconducting oxides which are widely used as sensing material for gas sensors. The main advantages of the developed device structures are given by simplicity of the synthesis and technological cost-efficiency. Structural investigations showed high crystallinity of synthesized layers confirming the presence of zinc oxide nanostructures on the surface of the copper oxide film deposited on glass substrate. Structural changes in morphology of grown nanostructures induced by post-grown thermal annealing were observed by scanning electron microscopy (SEM) investigations, and were studied in detail. The influence of thermal annealing type on the optical properties was also investigated. As an example of practical applications, the ZnO/CuxO bi-layer heterojunctions and ZnO/CuO/Cu2O three-layered structures were integrated into sensor structures and were tested to different types of reducing gases at different operating temperatures (OPT), showing promising results for fabrication of selective gas sensors.

  4. Thermodynamic properties and diffusion of water + methane binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methanemore » concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.« less

  5. Structural and dielectric properties of CTAB modified ZrO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sidhu, Gaganpreet Kaur; Tripathi, S. K.; Kumar, Rajesh

    2016-05-01

    Zirconia (ZrO2) has been considered as one of the most investigated materials among various metal oxides due its outstanding dielectric properties and ionic conduction properties, which is mainly due to its high oxygen ion conduction. ZrO2 nanoparticles were synthesized using surfactant (CTAB) to study the variation of its dielectric behavior at room temperature. Surfactants form a unique class of chemical compounds, because of their remarkable ability to influence the properties of surfaces and interfaces of nanostructures. The dielectric properties of prepared nanoparticles were studied using LCR meter.

  6. Luminescence properties of Eu2+ in M2MgSi2O7 (M=Ca, Sr, and Ba) phosphors

    NASA Astrophysics Data System (ADS)

    Kim, T.; Kim, Y.; Kang, S.

    2012-03-01

    The photoluminescence properties of alkali-earth magnesium silicates (M2MgSi2O7, M=Ca, Sr, and Ba) doped with Eu2+ were investigated. Solid solutions of Ba x Sr2- x Si2O7, Ca2MgSi2O7, and Sr2MgSi2O7 were prepared. Ba x Sr2- x Si2O7 retained a tetragonal crystal structure similar to the structure of the other compounds up to a stoichiometry of x=1.6, which enabled a systematic study of the common structure. Monoclinic Ba2MgSi2O7 was prepared, and the luminescence properties were compared with those of other samples. The emission and excitation spectra of tetragonal M2MgSi2O7 (M=Ca, Sr, and Ba) changed as a function of the covalency, site symmetry, and crystal field strength. The luminescence properties showed excellent agreement with theoretical predictions based on these factors. The Stokes shift differentiated the emission behaviors of the tetragonal and monoclinic structures.

  7. SPECIES - EVALUATING THERMODYNAMIC PROPERTIES, TRANSPORT PROPERTIES & EQUILIBRIUM CONSTANTS OF AN 11-SPECIES AIR MODEL

    NASA Technical Reports Server (NTRS)

    Thompson, R. A.

    1994-01-01

    Accurate numerical prediction of high-temperature, chemically reacting flowfields requires a knowledge of the physical properties and reaction kinetics for the species involved in the reacting gas mixture. Assuming an 11-species air model at temperatures below 30,000 degrees Kelvin, SPECIES (Computer Codes for the Evaluation of Thermodynamic Properties, Transport Properties, and Equilibrium Constants of an 11-Species Air Model) computes values for the species thermodynamic and transport properties, diffusion coefficients and collision cross sections for any combination of the eleven species, and reaction rates for the twenty reactions normally occurring. The species represented in the model are diatomic nitrogen, diatomic oxygen, atomic nitrogen, atomic oxygen, nitric oxide, ionized nitric oxide, the free electron, ionized atomic nitrogen, ionized atomic oxygen, ionized diatomic nitrogen, and ionized diatomic oxygen. Sixteen subroutines compute the following properties for both a single species, interaction pair, or reaction, and an array of all species, pairs, or reactions: species specific heat and static enthalpy, species viscosity, species frozen thermal conductivity, diffusion coefficient, collision cross section (OMEGA 1,1), collision cross section (OMEGA 2,2), collision cross section ratio, and equilibrium constant. The program uses least squares polynomial curve-fits of the most accurate data believed available to provide the requested values more quickly than is possible with table look-up methods. The subroutines for computing transport coefficients and collision cross sections use additional code to correct for any electron pressure when working with ionic species. SPECIES was developed on a SUN 3/280 computer running the SunOS 3.5 operating system. It is written in standard FORTRAN 77 for use on any machine, and requires roughly 92K memory. The standard distribution medium for SPECIES is a 5.25 inch 360K MS-DOS format diskette. The contents of the

  8. Dependence of catalytic properties of Al/Fe2O3 thermites on morphology of Fe2O3 particles in combustion reactions

    NASA Astrophysics Data System (ADS)

    Zhao, Ningning; He, Cuicui; Liu, Jianbing; Gong, Hujun; An, Ting; Xu, Huixiang; Zhao, Fengqi; Hu, Rongzu; Ma, Haixia; Zhang, Jinzhong

    2014-11-01

    Three Fe2O3 particle samples with the same crystal structure but different morphologies were prepared by the hydrothermal method and then combined with Al nanoparticles to produce Al/Fe2O3 thermites using ultrasonic mixing. The properties of Fe2O3 and Al/Fe2O3 were studied using a combination of experimental techniques including scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The influences of the three Al/Fe2O3 thermites on the combustion properties of the AP/HTPB (ammonium perchlorate/hydroxyl-terminated polybutadiene) composite propellant were investigated in comparison to those of Fe2O3. The results show that the Al/Fe2O3 thermites are better than Fe2O3 in enhancing the combustion performance of AP/HTPB. Furthermore, the surface area, which depends on size and mophology, of Fe2O3 particles was found to play a vital role in improving the burning rate of the thermites-containing propellant formulation, with the smallest particles with the largest surface-to-volume (S/V) ratio performing the best. The enhanced catalytic property of the granular-shape Fe2O3 and the corresponding thermite is attributed to the large specific surface area of Fe2O3. The different thermal behaviors of these three superthemites were supposed to be attributed to the surface site of Fe2O3 particles. This work provides a better understanding on the catalytic properties of thermites that are important for combustion applications.

  9. Thermodynamic Stability of Transition Metal Substituted LiMn 2-xMxO 4 (M=Cr, Fe, Co, and Ni) Spinels

    NASA Astrophysics Data System (ADS)

    Lai, Chenying

    The formation enthalpies from binary oxides of LiMn2O 4, LiMn2-xCrxO4 (x = 0.25, 0.5, 0.75 and 1), LiMn2-xFexO4 (x = 0.25 and 0.5), LiMn2-xCoxO4 (x = 0.25, 0.5, and 0.75) and LiMn1.75Ni 0.25O4 at 25 °C have been measured by high-temperature oxide-melt-solution calorimetry and were found to be strongly exothermic. Increasing Cr, Co and Ni content leads to more thermodynamically stable spinels, but increasing Fe content does not significantly affect the stability. The formation enthalpies from oxides of the fully substituted spinels, LiMnMO 4 (M = Cr, Fe and Co) become more exothermic (implying increasing stability) with decreasing ionic radius of the metal and lattice parameters of the spinel. The trend in enthalpy versus metal content is roughly linear, suggesting a close-to-zero heat of mixing in LiMn2O4 - LiMnMO 4 solid solutions. These data confirm that transition metal doping is beneficial for stabilizing these potential cathode materials for lithium-ion batteries.

  10. Reference Fluid Thermodynamic and Transport Properties Database (REFPROP)

    National Institute of Standards and Technology Data Gateway

    SRD 23 NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP) (PC database for purchase)   NIST 23 contains revised data in a Windows version of the database, including 105 pure fluids and allowing mixtures of up to 20 components. The fluids include the environmentally acceptable HFCs, traditional HFCs and CFCs and 'natural' refrigerants like ammonia

  11. On the studies of thermodynamics properties of fast neutron irradiated (LixK1-x)2SO4 crystals

    NASA Astrophysics Data System (ADS)

    El-Khatib, A. M.; Kassem, M. E.; Gomaa, N. G.; Mahmoud, S. A.

    The effect of fast neutron irradiation on the thermodynamic properties of (LixK1-x)2SO4, (x = 0.1, 0.2,˙˙˙˙˙˙˙˙0.5) has been studied. The measurements were carried out in the vicinity of phase transition. The study reveals that as the lithium content decreases the first high temperature phase Tc = 705 K disappears, while the second one is shifted to lower temperature. It is observed also that the specific heat, Cp, decreases sharply with neutron integrated fluence φ and increases once more. Both entropy and enthalpy changes increase with the increase of neutron integrated fluence.

  12. Structure, thermodynamics, and properties of hydrous aluminosilicate melt in the deep Earth

    NASA Astrophysics Data System (ADS)

    Bajgain, S. K.; Mookherjee, M.

    2017-12-01

    In this study, we use first-principles molecular dynamics (FPMD) simulations to explore the structure, thermodynamics, and transport properties of alkali bearing aluminosliciate melt (NaAlSi2O6) with 4 wt.% H2O. We explored physical properties of the hydrous jadeite melt at temperatures and pressures relevant for the Earth's mantle, i.e., 2500- 4000 K and up to 50 GPa. Our results indicate that the fundamental structural units of jadeite, i.e., one dimensional (1-D) chain with a repeat of [Si2O6]4- is well preserved in anhydrous jadeite melt at low pressures. However, the 1-D chains are nonlinear and the silicate tetrahedral units are very distorted. We also note that in the hydrous jadeite melt, the dominant hydrogen bearing species are hydroxyl (OH) and water molecules (H2O). We do not find any evidence of OH attached to the bridging oxygen atoms. However, we do find OH groups attached to the non-bridging oxygen atoms at the terminal sites of the tetrahedral units associated with the distorted 1-D chains. It is possible that these terminal OH groups were former bridging oxygen atoms. Pressure-volume-temperature results of hydrous jadeite melt could be adequately described with a finite-strain equation of state with ρ0, K0, and K'0 being 2.0 g/cm3, 13.0 GPa, and 4.0, respectively. Our FPMD results also indicate that the diffusivity of alkali (Na) ions is comparable to the hydrogen atoms at lower pressures ( 90 ×10-10 m2/s at 6 GPa and 2500 K). The self diffusion of aluminum (6.5 ×10-10 m2/s) and silicon (4.5 ×10-10 m2/s) ions are significantly lower compared to the alkali ions and proton at the similar P-T condition. At higher pressures i.e., P> 20 GPa, the diffusivity of Na reduces significantly. At P> 20 GPa, the proton diffusivity remains higher than the other cation species. Therefore, a small fraction of hydrous melt at mantle transition zone conditions may explain the observed elevated electrical conductivity in specific regions such as in Japan and in

  13. Improvement of silicone rubber properties by addition of nano-SiO2 particles.

    PubMed

    Wu, Lianfeng; Wang, Xianming; Ning, Liang; Han, Jianjun; Wan, Zhong; Lu, Min

    2016-07-04

    To improve the comprehensive performances of a one-part room temperature vulcanized silicone rubber(RTV-1 SiR), Nano-SiO2 particles are employed as the reinforcing agent. The SiO2/RTV-1 SiR composite is prepared using PDMS, ND42, D-60 and HMDS-modified SiO2 particles by mixing method. And then, the mechanical and electrical properties, including shear strength, tensile strength, hardness Shore A and volume resistivity, are investigated using experimental method. The addition of nano-SiO2 particles can improve the properties of the SiO2/RTV-1 SiR composite in different degrees. And, the incorporation of 25~30 phr nano-SiO2 particles is found to be reasonable for silicone rubber composite with the best comprehensive performances. The significant improvement of mechanical properties and electrical insulation of SiO2 may be contributed to the addition of modified nano-SiO2 particles. Additionally, the excellent comprehensive performances of SiO2/RTV-1 SiR composite guarantee a potential applications as electrical-insulating adhesives.

  14. Thermodynamically stable diatomic dications: The cases of SrO2+ and SrH2+

    NASA Astrophysics Data System (ADS)

    Gonçalves dos Santos, Levi; Franzreb, Klaus; Ornellas, Fernando R.

    2018-03-01

    A high level theoretical investigation of the low-lying electronic states of the diatomic dications SrO2+ and SrH2+ is presented for the first time along with experimental results of their mass spectra where they were detected. A global and reliable picture of the potential energy curves of the electronic states and the associated spectroscopic parameters provide quantitative results attesting to the thermodynamic stability of both species. Inclusion of spin-orbit interactions does not significantly change the energetic characterization. For SrO2+, the ground (X 3Σ-) and first excited (A 3Π, Te = 3971 cm-1) states are bound (De) by 15.94 kcal mol-1 and 4.71 kcal mol-1, respectively. Transition probabilities (Av'v″) have been evaluated and radiative lifetimes estimated for the vibrational states of A 3Π (v'), and transition probabilities are expected to be diagonally dominant and fall in the far-IR region of the spectrum. For the singlet states a 1Δ, b 1Π, c 1Σ+, and d 1Σ+, transition probabilities have also been calculated for all symmetry allowed transitions and the radiative lifetimes evaluated for selected vibrational states of the upper levels. The transitions associated with the band systems d 1Σ+-b 1Π and d 1Σ+-c 1Σ+, although falling in the yellow region of the spectrum, with overlapping bands, are expected to show quite distinct intensities since the transition moment associated with d 1Σ+-c 1Σ+ is much larger. For singlet transitions, the prediction of relative intensities using the Franck-Condon approximation fails in most of the cases. For SrH2+, only the ground state is bound (De = 6.54 kcal mol-1); with an equilibrium distance of 5.117 a0, the associated spectroscopic parameters (ωe, ωexe, Be) turned out to be (518.9, 32.77, 2.3227) in cm-1. For both species, dipole moment functions illustrate the variation of the molecular polarity with the internuclear distance.

  15. Study of the Thermodynamics of Chromium(III) and Chromium(VI) Binding to Fe3O4 and MnFe2O4 nanoparticles

    PubMed Central

    Luther, Steven; Brogfeld, Nathan; Kim, Jisoo; Parsons, J.G.

    2013-01-01

    Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4 ± 0.9 nm (Fe3O4) and 15.5 ± 0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative. PMID:23558081

  16. Influence of heat treatments upon the mechanical properties and in vitro bioactivity of ZrO2-toughened MgO-CaO-SiO2-P2O5-CaF2 glass-ceramics.

    PubMed

    Li, Huan-Cai; Wang, Dian-Gang; Meng, Xiang-Guo; Chen, Chuan-Zhong

    2014-09-01

    Zirconia-toughened MgO-CaO-SiO2-P2O5-CaF2 glass-ceramics are prepared using sintering techniques, and a series of heat treatment procedures are designed to obtain a glass-ceramic with improved properties. The crystallization behavior, phase composition, and morphology of the glass-ceramics are characterized. The bending strength, elastic modulus, fracture toughness, and microhardness of the glass-ceramics are investigated, and the effect mechanism of heat treatments upon the mechanical properties is discussed. The bioactivity of glass-ceramics is then evaluated using the in vitro simulated body fluid (SBF) soaking test, and the mechanism whereby apatite forms on the glass-ceramic surfaces in the SBF solution is discussed. The results indicate that the main crystal phase of the G-24 sample undergoing two heat treatment procedures is Ca5(PO4)3F (fluorapatite), and those of the G-2444 sample undergoing four heat treatment procedures are Ca5(PO4)3F and β-CaSiO3 (β-wollastonite). The heat treatment procedures are found to greatly influence the mechanical properties of the glass-ceramic, and an apatite layer is induced on the glass-ceramic surface after soaking in the SBF solution.

  17. Spectroscopic properties of Sm3+ and V4+ ions in Na2O-SiO2-ZrO2 glasses

    NASA Astrophysics Data System (ADS)

    Neeraja, K.; Rao, T. G. V. M.; Kumar, A. Rupesh; Uma Lakshmi, V.; Veeraiah, N.; Rami Reddy, M.

    2013-12-01

    Na2O-SiO2-ZrO2 glasses of Sm3+ ions with and without V2O5 are characterized by spectroscopic and optical properties. The XRD and EDS spectra of the glass samples reveal an amorphous nature with different compositions within the glass matrix. The Infrared and Raman spectral studies are carried out and the existence of conventional structural units are analyzed in the glass network. The ESR spectra of the glass samples have indicating that a considerable proportion of vanadium ion exists in V4+ state. The optical absorption spectra of these glasses are recorded at room temperature, from the measured intensities of various absorption bands the Judd-Ofelt parameters Ω2, Ω4 and Ω6 are calculated. The photo-luminescence spectra recorded with excited wavelength 400 nm, five emission bands are observed; in this the energy transfer probability takes place between Sm3+ and V4+ ions.

  18. Preparation and electrical properties of ultrafine Ga2O3 nanowires.

    PubMed

    Huang, Yang; Yue, Shuanglin; Wang, Zhongli; Wang, Qiang; Shi, Chengying; Xu, Z; Bai, X D; Tang, Chengcun; Gu, Changzhi

    2006-01-19

    Uniform and well-crystallized beta-Ga2O3 nanowires are prepared by reacting metal Ga with water vapor based on the vapor-liquid-solid (VLS) mechanism. Electron microscopy studies show that the nanowires have diameters ranging from 10 to 40 nm and lengths up to tens of micrometers. The contact properties of individual Ga2O3 nanowires with Pt or Au/Ti electrodes are studied, respectively, finding that Pt can form Schottky-barrier junctions and Au/Ti is advantageous to fabricate ohmic contacts with individual Ga2O3 nanowires. In ambient air, the conductivity of the Ga2O3 nanowires is about 1 (Omega.m)-1, while with adsorption of NH3 (or NO2) molecules, the conductivity can increase (or decrease) dramatically at room temperature. The as-grown Ga2O3 nanowires have the properties of an n-type semiconductor.

  19. Fugacity of H2O from 0° to 350°C at the liquid-vapor equilibrium and at 1 atmosphere

    USGS Publications Warehouse

    Hass, John L.

    1970-01-01

    The fugacity and fugacity coefficient of H2O at the liquid-vapor equilibrium, the fugacity and the Gibbs free energy of formation of H2O at 1 atm (1.01325 bars) total pressure have been calculated from published data on the physical and thermodynamic properties of H2O and are presented at ten-degree intervals from 0° to 350°C.

  20. THERMODYNAMICS OF THE ACTINIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, Burris B.

    1962-04-01

    Recent work on the thermodynamic properties of the transplutonium elements is presented and discussed in relation to trends in thermodynamic properties of the actinide series. Accurate values are given for room temperature lattice parameters of two crystallographic forms, (facecentred cubic) fcc and dhcp (double-hexagonal closepacked), of americium metal and for the coefficients of thermal expansion between 157 and 878 deg K (dhcp) and 295 to 633 deg K (fcc). The meiting point of the metal, and its magnetic susceptibility between 77 and 823 deg K are reported and the latter compared with theoretical values for the tripositive ion calculated frommore » spectroscopic data. Similar data (crystallography, meiting point and magnetic susceptibility) are given for metallic curium. A value for the heat of formation of americium monoxide is reported in conjunction with crystallographic data on the monoxide and mononitride. A revision is made in the current value for the heat of formation of Am/O/sub 2/ and for the potential of the Am(III)-Am(IV) couple. The crystal structures and lattice parameters are reported for the trichloride, oxychloride and oxides of californium. (auth)« less

  1. Removal of cadmium(II) ions from aqueous solution using Ni (15 wt.%)-doped α-Fe2O3 nanocrystals: equilibrium, thermodynamic, and kinetic studies.

    PubMed

    OuldM'hamed, Mohamed; Khezami, L; Alshammari, Abdulrahman G; Ould-Mame, S M; Ghiloufi, I; Lemine, O M

    2015-01-01

    The present publication investigates the performance of nanocrystalline Ni (15 wt.%)-doped α-Fe2O3 as an effective nanomaterial for the removal of Cd(II) ions from aqueous solutions. The nanocrystalline Ni-doped α-Fe2O3 powders were prepared by mechanical alloying, and characterized by X-ray diffraction and a vibrating sample magnetometer. Batch-mode experiments were realized to determine the adsorption equilibrium, kinetics, and thermodynamic parameters of toxic heavy metal ions by Ni (15 wt.%)-doped α-Fe2O3. The adsorption isotherms data were found to be in good agreement with the Langmuir model. The adsorption capacity of Cd(II) ion reached a maximum value of about 90.91 mg g(-1) at 328 K and pH 7. The adsorption process kinetics was found to comply with pseudo-second-order rate law. Thermodynamic parameters related to the adsorption reaction, free energy change, enthalpy change and entropy change, were evaluated. The found values of free energy and enthalpy revealed a spontaneous endothermic adsorption-process. Moreover, the positive entropy suggests an increase of randomness during the process of heavy metal removal at the adsorbent-solution interface.

  2. Thermodynamics of an Attractive 2D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fenech, K.; Dyke, P.; Peppler, T.; Lingham, M. G.; Hoinka, S.; Hu, H.; Vale, C. J.

    2016-01-01

    Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior.

  3. First-principles study on the phase transitions, crystal stabilities and thermodynamic properties of TiN under high pressure

    NASA Astrophysics Data System (ADS)

    Sun, Xinjun; Liu, Changdong; Guo, Yongliang; Sun, Deyan; Ke, Xuezhi

    2018-03-01

    The structural and thermodynamic properties of titanium nitride (TiN) have been investigated by merging first-principles calculations and particle-swarm algorithm. The three phases are identified for TiN, including the B1, the P63 / mmc, and the B2 phases. A new phase of anti-TiP structure with the space group P63 / mmc has been predicted. The calculated phase transition from the B1 to the P63 / mmc occurs at 270 GPa. The vibrational, elastic, and thermodynamic properties for the three phases have been calculated and discussed.

  4. Landau-Ginzburg description of anomalous properties of novel room temperature multiferroics Pb(Fe{sub 1/2}Ta{sub 1/2}){sub x}(Zr{sub 0.53}Ti{sub 0.47}){sub 1-x}O{sub 3} and Pb(Fe{sub 1/2}Nb{sub 1/2}){sub x}(Zr{sub 0.53}Ti{sub 0.47}){sub 1−x}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glinchuk, Maya D.; Eliseev, Eugene A.; Morozovska, Anna N., E-mail: anna.n.morozovska@gmail.com

    2016-01-14

    Landau-Ginzburg thermodynamic formalism is used for the description of the anomalous ferroelectric, ferromagnetic, and magnetoelectric properties of Pb(Fe{sub 1/2}Ta{sub 1/2}){sub x}(Zr{sub 0.53}Ti{sub 0.47}){sub 1−x}O{sub 3} and Pb(Fe{sub 1/2}Nb{sub 1/2}){sub x}(Zr{sub 0.53}Ti{sub 0.47}){sub 1−x}O{sub 3} micro-ceramics. We calculated temperature, composition, and external field dependences of ferroelectric, ferromagnetic, and antiferromagnetic phases transition temperatures, remanent polarization, magnetization, hysteresis loops, dielectric permittivity, and magnetoelectric coupling. Special attention was paid to the comparison of developed theory with experiments. It appeared possible to describe adequately main experimental results including a reasonable agreement between the shape of calculated and measured hysteresis loops and remnant polarization. Since Landau-Ginzburgmore » thermodynamic formalism appertains to single domain properties of a ferroic, we did not aim to describe quantitatively the coercive field under the presence of realistic poly-domain switching. Information about linear and nonlinear magnetoelectric coupling coefficients was extracted from the experimental data. From the fitting of experimental data with theoretical formula, we obtained the composition dependence of Curie-Weiss constant that is known to be inversely proportional to harmonic (linear) dielectric stiffness, as well as the strong nonlinear dependence of anharmonic parameters in free energy. Keeping in mind the essential influence of these parameters on multiferroic properties, the obtained results open the way to govern practically all the material properties with the help of suitable composition choice. A forecast of the strong enough influence of antiferrodistortive order parameter on the transition temperatures and so on the phase diagrams and properties of multiferroics are made on the basis of the developed theory.« less

  5. Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxue; Murphy, Anthony B.; Li, Xingwen

    2017-03-01

    Helium thermal plasmas are in widespread use in arc welding and many other industrial applications. Simulation of these processes relies on accurate plasma property data, such as plasma composition, thermodynamic properties and transport coefficients. Departures from LTE (local thermodynamic equilibrium) generally occur in some regions of helium plasmas. In this paper, properties are calculated allowing for different values of the electron temperature, T e, and heavy-species temperature, T h, at atmospheric pressure from 300 K to 30 000 K. The plasma composition is first calculated using the mass action law, and the two-temperature thermodynamic properties are then derived. The viscosity, diffusion coefficients, electrical conductivity and thermal conductivity of the two-temperature helium thermal plasma are obtained using a recently-developed method that retains coupling between electrons and heavy species by including the electron-heavy-species collision term in the heavy-species Boltzmann equation. It is shown that the viscosity and the diffusion coefficients strongly depend on non-equilibrium ratio θ (θ ={{T}\\text{e}}/{{T}\\text{h}} ), through the plasma composition and the collision integrals. The electrical conductivity, which depends on the electron number density and ordinary diffusion coefficients, and the thermal conductivity have similar dependencies. The choice of definition of the Debye length is shown to affect the electrical conductivity significantly for θ  >  1. By comparing with literature data, it is shown that the coupling between electrons and heavy species has a significant influence on the electrical conductivity, but not on the viscosity. Plasma properties are tabulated in the supplementary data.

  6. Structural and thermodynamic consideration of metal oxide doped GeO{sub 2} for gate stack formation on germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Cimang, E-mail: cimang@adam.t.u-tokyo.ac.jp; Lee, Choong Hyun; Zhang, Wenfeng

    2014-11-07

    A systematic investigation was carried out on the material and electrical properties of metal oxide doped germanium dioxide (M-GeO{sub 2}) on Ge. We propose two criteria on the selection of desirable M-GeO{sub 2} for gate stack formation on Ge. First, metal oxides with larger cation radii show stronger ability in modifying GeO{sub 2} network, benefiting the thermal stability and water resistance in M-GeO{sub 2}/Ge stacks. Second, metal oxides with a positive Gibbs free energy for germanidation are required for good interface properties of M-GeO{sub 2}/Ge stacks in terms of preventing the Ge-M metallic bond formation. Aggressive equivalent oxide thickness scalingmore » to 0.5 nm is also demonstrated based on these understandings.« less

  7. Thermo-Optical Properties of Thin-Film TiO2–Al2O3 Bilayers Fabricated by Atomic Layer Deposition

    PubMed Central

    Ali, Rizwan; Saleem, Muhammad Rizwan; Pääkkönen, Pertti; Honkanen, Seppo

    2015-01-01

    We investigate the optical and thermo-optical properties of amorphous TiO2–Al2O3 thin-film bilayers fabricated by atomic layer deposition (ALD). Seven samples of TiO2–Al2O3 bilayers are fabricated by growing Al2O3 films of different thicknesses on the surface of TiO2 films of constant thickness (100 nm). Temperature-induced changes in the optical refractive indices of these thin-film bilayers are measured by a variable angle spectroscopic ellipsometer VASE®. The optical data and the thermo-optic coefficients of the films are retrieved and calculated by applying the Cauchy model and the linear fitting regression algorithm, in order to evaluate the surface porosity model of TiO2 films. The effects of TiO2 surface defects on the films’ thermo-optic properties are reduced and modified by depositing ultra-thin ALD-Al2O3 diffusion barrier layers. Increasing the ALD-Al2O3 thickness from 20 nm to 30 nm results in a sign change of the thermo-optic coefficient of the ALD-TiO2. The thermo-optic coefficients of the 100 nm-thick ALD-TiO2 film and 30 nm-thick ALD-Al2O3 film in a bilayer are (0.048 ± 0.134) × 10−4 °C−1 and (0.680 ± 0.313) × 10−4 °C−1, respectively, at a temperature T = 62 °C.

  8. Optical, electrochemical and hydrophilic properties of Y2O3 doped TiO2 nanocomposite films.

    PubMed

    Zhang, Xiangchao; Yang, Huaming; Tang, Aidong

    2008-12-25

    The 5% Y2O3 doped TiO2 nanocomposite film (YTF) deposited on ITO glass substrate has been synthesized by the sol-gel dip-coating method. The as-synthesized samples were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), voltage-current (V-I), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible (UV-vis) analysis technologies. The crystalline structure, surface morphology and surface chemical composition of YTF sample have been primarily investigated. The results demonstrate that YTF is anatase crystalline phase with thickness of 480 nm and consists of spherical shape particles with a grain size of about 15.8 nm. The binding energy appears as a chemical shift, and relatively more Y and Ti species are present on the surface, indicating that active surfaces of the nanocomposite film have been enhanced with more oxygen vacancies Vö due to doping Y2O3 to TiO2. The absorption edge of YTF has a red shift, and the optical properties of YTF in visible light region have been obviously improved. The water contact angle is about 8 degrees after daylight lamp irradiation 60 min. An equivalent circuit model provided a reliable description for the electrochemical systems. Based on the Mott-Schottky equation, the donor concentration (ND) for YTF is 1.05 x 10(20) cm(-3), which enhances 1 order of magnitude than that for pure TiO2 film (TF), the flat-band potential (V(fb)) and the space charge layer (d(sc)) obviously decreased. With the incorporation of Y2O3 into TiO2, the optical, electrochemical and photoinduced hydrophilic properties of YTF in visible light region have obviously improved, indicating that YTF shows promising applications in solar energy conversion, self-cleaning and other potential fields.

  9. Nanocrystalline CeO2-δ coated β-MnO2 nanorods with enhanced oxygen transfer property

    NASA Astrophysics Data System (ADS)

    Huang, Xiubing; Zhao, Guixia; Chang, Yueqi; Wang, Ge; Irvine, John T. S.

    2018-05-01

    In this research, β-MnO2 nanorods were synthesized by a hydrothermal method, followed by a facile precipitation method to obtain nanocrystalline CeO2-δ coated β-MnO2 nanorods. The as-prepared samples were characterized by XRD, HRTEM, FESEM, XPS and in-situ high-temperature XRD. The HRTEM results show that well dispersed CeO2-δ nanocrystals sized about 5 nm were coated on the surface of β-MnO2 nanorods. The oxygen storage and transfer property of as-synthesized materials were evaluated using TGA under various atmospheres (air, pure N2, and 5%H2/95%Ar). The TGA results indicate that CeO2-δ modification could favour the reduction of Mn4+ to Mn3+ and/or Mn2+ at lower temperature as compared with pure β-MnO2 nanorods and the physically mixed CeO2-δ-β-MnO2 under low oxygen partial pressure conditions (i.e., pure N2, 5%H2/95%Ar). Specifically, CeO2-δ@β-MnO2 sample can exhibit 7.5 wt% weight loss between 100 and 400 °C under flowing N2 and 11.4 wt% weight loss between 100 and 350 °C under flowing 5%H2/95%Ar. During the reduction process under pure N2 or 5%H2/95%Ar condition, the oxygen ions in β-MnO2 nanorods are expected to be released to the surroundings in the form of O2 or H2O with the coated CeO2-δ nanocrystals acting as mediator as inferred from the synergistic effect between the well-interacted CeO2-δ nanocrystals and β-MnO2 nanorods.

  10. Contribution to the thermodynamic description of the corium - The U-Zr-O system

    NASA Astrophysics Data System (ADS)

    Quaini, A.; Guéneau, C.; Gossé, S.; Dupin, N.; Sundman, B.; Brackx, E.; Domenger, R.; Kurata, M.; Hodaj, F.

    2018-04-01

    In order to understand the stratification process that may occur in the late phase of the fuel degradation during a severe accident in a PWR, the thermodynamic knowledge of the U-Zr-O system is crucial. The presence of a miscibility gap in the U-Zr-O liquid phase may lead to a stratified configuration, which will impact the accidental scenario management. The aim of this work was to obtain new experimental data in the U-Zr-O liquid miscibility gap. New tie-line data were provided at 2567 ± 25 K. The related thermodynamic models were reassessed using present data and literature values. The reassessed model will be implemented in the TAF-ID international database. The composition and density of phases potentially formed during stratification will be predicted by coupling current thermodynamic model with thermal-hydraulics codes.

  11. Synthesis and Absorption Properties of Hollow-spherical Dy2Cu2O5 via a Coordination Compound Method with [DyCu(3,4-pdc)2(OAc)(H2O)2]•10.5H2O Precursor.

    PubMed

    Liu, Xuanwen; You, Junhua; Wang, Renchao; Ni, Zhiyuan; Han, Fei; Jin, Lei; Ye, Zhiqi; Fang, Zhao; Guo, Rui

    2017-10-12

    Dy 2 Cu 2 O 5 nanoparticles with perovskite structures were synthesized via a simple solution method (SSM) and a coordination compound method (CCM) using [DyCu(3,4-pdc) 2 (OAc)(H 2 O) 2 ]•10.5H 2 O (pdc = 3,4-pyridinedicarboxylic acid) as precursor. The as-prepared samples were structurally characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), x-ray photoelectron spectroscopy (XPS) and standard Brunauer-Emmett-Teller (BET) methods. Compared to the aggregated hexahedral particles prepared by SSM, the Dy 2 Cu 2 O 5 of CCM showed hollow spherical morphology composed of nanoparticles with average diameters of 100-150 nm and a larger special surface area up to 36.5 m 2 /g. The maximum adsorption capacity (Q m ) of CCM for malachite green (MG) determined by the adsorption isotherms with different adsorbent dosages of 0.03-0.07 g, reached 5.54 g/g at room temperature. The thermodynamic parameters of adsorption process were estimated by the fittings of the isotherms at 298, 318, and 338 K, and the kinetic parameters were obtained from the time-dependent adsorption isotherms. The results revealed that the adsorption process followed a pseudo-second-order reaction. Finally, the adsorption mechanism was studied using a competitive ion (CI) experiments, and the highly efficient selective adsorption was achieved due to strong O-Cu and O-Dy coordination bonds between Dy 2 Cu 2 O 5 and MG.

  12. Understanding the Relationship Between Structure and Thermophysical Properties of CaO-SiO2-MgO-Al2O3 Molten Slags

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Wang, Hao; Zhang, Zuotai

    2018-04-01

    In the present work, the relationship between the microscopic structure and macroscopic thermophysical properties in a basic CaO-SiO2-MgO-Al2O3 quaternary system was identified using Fourier transformation infrared, Raman and 27Al magic angular spinning nuclear magnetic resonance (MAS-NMR) techniques. The Raman spectra quantitatively proved that with increasing Al2O3 content, the concentrations of the symmetric units of Q 0(Si) and Q 2(Si) decreased, while those of the asymmetric units of Q 1(Si) and Q 3(Si) increased; consequently, the degree of polymerization of the networks increased, which resulted in an increase in slag viscosity. The 27Al MAS-NMR spectra demonstrated that three structural units of Al atoms, namely, AlO4, AlO5, and AlO6, mainly existed in the networks. With increasing Al2O3 content, the concentration of AlO4 slightly decreased, while those of AlO5 and AlO6 increased; overall, Al2O3 acted as a network former in the present system. The increasing Al2O3 content led to additional AlO6 and Si-NBO-Ca-NBO-Al frameworks, which replaced Si-NBO-Ca-NBO-Si in the networks (NBO: non-bridging oxygen) and induced a change in the primarily precipitated crystalline phase from Ca2MgSi2O7 and Ca2Al2SiO7 to MgAlO4.

  13. Growth and luminescent properties of Lu2SiO5 and Lu2SiO5:Ce single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu; Nikl, M.; Gorbenko, V.; Mares, J. A.; Savchyn, V.; Voznyak, T.; Solsky, I.; Grynyov, B.; Sidletskiy, O.; Kurtsev, D.; Beitlerova, A.; Kucerkova, R.

    2010-11-01

    Single crystalline films (SCF) of Lu2SiO5 (LSO) and Lu2SiO5:Ce (LSO:Ce) silicates with thickness of 2.5-21 μm were crystallised by liquid phase epitaxy method onto undoped LSO substrates from melt-solution based on PbO-B2O3 flux. The luminescence and scintillation properties of LSO and LSO:Ce SCFs were compared with the properties of a reference LSO:Ce and LYSO:Ce crystals. The light yield (LY) of LSO and LSO:Ce SCF reaches up 30 % and 145 %, respectively, of that of a reference LSO:Ce crystal under excitation by α-particles of 241Am source (5.5 MeV). We found that the luminescence spectrum of LSO:Ce SCF is red-shifted with respect to the spectrum of a reference LSO:Ce crystal. Differences in luminescence properties of LSO:Ce SCF and single crystal are explained by the different distribution of Ce3+ over the Lu1 and Lu2 positions of LSO host and are also due to Pb2+ contamination in the former.

  14. Selective Divalent Cobalt Ions Detection Using Ag2O3-ZnO Nanocones by ICP-OES Method for Environmental Remediation

    PubMed Central

    Rahman, Mohammed M.; Khan, Sher Bahadar; Marwani, Hadi M.; Asiri, Abdullah M.

    2014-01-01

    Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg−1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results. PMID:25464507

  15. Mechanism and energetics of O and O{sub 2} adsorption on polar and non-polar ZnO surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Seebauer, Edmund G.; Ertekin, Elif, E-mail: ertekin@illinois.edu

    2016-05-14

    Polar surfaces of semiconducting metal oxides can exhibit structures and chemical reactivities that are distinct from their non-polar surfaces. Using first-principles calculations, we examine O adatom and O{sub 2} molecule adsorption on 8 different known ZnO reconstructions including Zn-terminated (Zn–ZnO) and O-terminated (O–ZnO) polar surfaces, and non-polar surfaces. We find that adsorption tendencies are largely governed by the thermodynamic environment, but exhibit variations due to the different surface chemistries of various reconstructions. The Zn–ZnO surface reconstructions which appear under O-rich and H-poor environments are found to be most amenable to O and O{sub 2} adsorption. We attribute this to themore » fact that on Zn–ZnO, the O-rich environments that promote O adsorption also simultaneously favor reconstructions that involve adsorbed O species. On these Zn–ZnO surfaces, O{sub 2} dissociatively adsorbs to form O adatoms. By contrast, on O–ZnO surfaces, the O-rich conditions required for O or O{sub 2} adsorption tend to promote reconstructions involving adsorbed H species, making further O species adsorption more difficult. These insights about O{sub 2} adsorption on ZnO surfaces suggest possible design rules to understand the adsorption properties of semiconductor polar surfaces.« less

  16. Effects of Fe2O3 on the properties of ceramics from steel slag

    NASA Astrophysics Data System (ADS)

    Li, Yu; Zhao, Li-hua; Wang, Ya-kun; Cang, Da-qiang

    2018-04-01

    Ferric oxide is one of the key factors affecting both the microstructure and the properties of CaO-MgO-SiO2-based ceramics. Research on this effect is significant in the utilization of iron-rich solid wastes in ceramics. Ceramic samples with various Fe2O3 contents (0wt%, 5wt%, and 10wt%) were prepared and the corresponding physical properties and microstructure were studied. The results indicated that Fe2O3 not only played a fluxing role, but also promoted the formation of crystals. Ceramics with 5wt% of Fe2O3 addition attained the best mechanical properties with a flexural strength of 132.9 MPa. Iron ions were dissolved into diopside, consequently causing phase transformation from diopside and protoenstatite to augite, thereby contributing to the enhancement of its properties. An excess amount of Fe2O3 addition (10wt% or more) resulted in deteriorated properties due to the generation of an excess volume of liquid and the formation of high-porosity structures within ceramics.

  17. Structure, spectra and thermal, mechanical, Faraday rotation properties of novel diamagnetic SeO2-PbO-Bi2O3-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Chen, Qiuling; Su, Kai; Li, Yantao; Zhao, Zhiwei

    2018-06-01

    Faraday rotation diamagnetic glass has attracted research attentions in photonics, sensing and magneto optical devices due to their high refractive index, wide transmittance in UV and Fourier transform infrared (FT-IR) range and temperature independent Faraday rotation. Selenite modified heavy metal oxides glasses with composition of xSeO2-(10-x) B2O3-45PbO-45Bi2O3 (x = 0, 1, 5 and 10mol%) and 15%SeO2-40%PbO-45%Bi2O3 have been fabricated by melt-quenching method in present study. The influence of SeO2 on glass forming ability, thermal, mechanical properties and Faraday rotation were evaluated through X-ray Diffraction (XRD), Fourier transforms infrared spectra (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), Vicker's hardness and Verdet constant measurements. XRD spectra reveal that the good vitrification was achieved for glass with SeO2 amounts ≤10% even without B2O3. FT-IR, Raman and XPS spectra ascertain the existence of characteristic vibration of SeO4, SeO3, PbO4, BiO3 and BO3 units. The incorporation of SeO2 increases the connectivity of glassy network by increasing the Tg, thermal stability and mechanical hardness. The small band gap, high polarizable Se4+ ions and isolated SeO3 units contribute to Faraday rotation improvement.

  18. Optoelectronic properties of novel amorphous CuAlO2/ZnO NWs based heterojunction

    NASA Astrophysics Data System (ADS)

    Bu, Ian Y. Y.

    2013-08-01

    Amorphous p-type CuAlO2 thin films were grown onto n-type crystalline ZnO NWs forming a heterojunction through the combination of sol-gel process and hydrothermal growth method. The effects of temperature on structure and optoelectronic properties of CuAlO2 thin films were investigated through various measurement techniques. It was found that the derived CuAlO2 is Al-rich with thin film. UV-Vis measurements showed that the deposited CuAlO2 films are semi-transparent with maximum transmittance ∼82% at 500 nm. Electrical characterization and integration into pn junction confirms that the amorphous CuAlO2 is p-type and exhibited photovoltaic behavior.

  19. Group additivity calculations of the thermodynamic properties of unfolded proteins in aqueous solution: a critical comparison of peptide-based and HKF models.

    PubMed

    Hakin, A W; Hedwig, G R

    2001-02-15

    A recent paper in this journal [Amend and Helgeson, Biophys. Chem. 84 (2000) 105] presented a new group additivity model to calculate various thermodynamic properties of unfolded proteins in aqueous solution. The parameters given for the revised Helgeson-Kirkham-Flowers (HKF) equations of state for all the constituent groups of unfolded proteins can be used, in principle, to calculate the partial molar heat capacity, C(o)p.2, and volume, V2(0), at infinite dilution of any polypeptide. Calculations of the values of C(o)p.2 and V2(0) for several polypeptides have been carried out to test the predictive utility of the HKF group additivity model. The results obtained are in very poor agreement with experimental data, and also with results calculated using a peptide-based group additivity model. A critical assessment of these two additivity models is presented.

  20. Fabrication and tritium release property of Li2TiO3-Li4SiO4 biphasic ceramics

    NASA Astrophysics Data System (ADS)

    Yang, Mao; Ran, Guangming; Wang, Hailiang; Dang, Chen; Huang, Zhangyi; Chen, Xiaojun; Lu, Tiecheng; Xiao, Chengjian

    2018-05-01

    Li2TiO3-Li4SiO4 biphasic ceramic pebbles have been developed as an advanced tritium breeder due to the potential to combine the advantages of both Li2TiO3 and Li4SiO4. Wet method was developed for the pebble fabrication and Li2TiO3-Li4SiO4 biphasic ceramic pebbles were successfully prepared by wet method using the powders synthesized by hydrothermal method. The tritium release properties of the Li2TiO3-Li4SiO4 biphasic ceramic pebbles were evaluated. The biphasic pebbles exhibited good tritium release property at low temperatures and the tritium release temperature was around 470 °C. Because of the isotope exchange reaction between H2 and tritium, the addition of 0.1%H2 to purge gas He could significantly enhance the tritium gas release and the fraction of molecular form of tritium increased from 28% to 55%. The results indicate that the Li2TiO3-Li4SiO4 biphasic ceramic pebbles fabricated by wet method exhibit good tritium release property and hold promising potential as advanced breeder pebbles.

  1. Electrical properties of TiO2 at different deposition frequencies and their application in ZnO/TiO2 based dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Saurdi, I.; Shafura, A. K.; Mamat, M. H.; Ishak, A.; Rusop, M.

    2018-05-01

    In this work, the titanium oxide (TiO2) films were deposited on glass substrate at different deposition frequencies (1, 2, 3 and 4 times) and therefore different of thicknesses been produced by using spin coating technique and their electrical and structural properties were investigated. The thicknesses of TiO2 films at different deposition frequencies (1, 2, 3 and 4 times) were 900μm, 1815μm, 2710μm and 3620μm respectively. Meanwhile, the resistivities of TiO2 films at different deposition frequencies (1, 2, 3 and 4 times) were 5.41 × 106Ωcm, 2.28 × 106Ωcm, 2.78 × 105Ωcm and 8.37 × 106Ωcm, respectively. The ZnO/TiO2 composite for ZnO nanorod and TiO2 been produced by deposited the TiO2 on top of ZnO nanorod at different deposition frequencies on ITO-coated glass substrate. The fabricated dye-sensitized solar cells of ZnO nanorod without TiO2, ZnO/TiO2 with a TiO2 thickness 900μm, ZnO/TiO2 with a TiO2 thickness 1815μm, ZnO/TiO2 with a TiO2 thickness 2710μm, ZnO/TiO2 with a TiO2 thickness 3620μm on top of ZnO nanorod were investigated. From the solar simulator measurement under AM 1.5 the solar energy conversion efficiency (η) of ZnO nanorod without TiO2, ZnO/TiO2- 900μm, ZnO/TiO2-1815μm, ZnO/TiO2-2710μm and ZnO/TiO2-3620μm were 0.99%, 1.87%, 2.11%, 2.54%, 2.27%, respectively. The DSSCs ZnO/TiO2 show better of efficiency as compared to ZnO nanorod without TiO2. Furthermore, the enhancement of ZnO/TiO2-2710μm DSSC also closely related with the improvement of electrical and structural properties of TiO2 at 3 deposition frequencies as compared with TiO2 at 1, 2 and 4 deposition frequencies.

  2. Mechanical Properties of Plasma-Sprayed ZrO2-8 wt% Y2O3 Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2004-01-01

    Mechanical behavior of free standing, plasma-sprayed ZrO2-8 wt% Y2O3 thermal barrier coatings, including strength, fracture toughness, fatigue, constitutive relation, elastic modulus, and directionality, has been determined under various loading-specimen configurations. This report presents and describes a summary of mechanical properties of the plasma-sprayed coating material to provide them as a design database.

  3. Thermodynamic properties and solidification kinetics of intermetallic Ni{sub 7}Zr{sub 2} alloy investigated by electrostatic levitation technique and theoretical calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L. H.; Hu, L.; Yang, S. J.

    2016-01-21

    The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni{sub 7}Zr{sub 2} alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni{sub 7}Zr{sub 2} has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni{sub 7}Zr{sub 2} alloy fitted by Vogel–Fulcher–Tammann law yields amore » fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni{sub 7}Zr{sub 2} compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s{sup −1} at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s{sup −1}.« less

  4. The effect of a Ta oxygen scavenger layer on HfO 2-based resistive switching behavior: Thermodynamic stability, electronic structure, and low-bias transport

    DOE PAGES

    Zhong, Xiaoliang; Rungger, Ivan; Zapol, Peter; ...

    2016-02-15

    Reversible resistive switching between high-resistance and low-resistance states in metal-oxide-metal heterostructures makes them very interesting for applications in random access memories. While recent experimental work has shown that inserting a metallic "oxygen scavenger layer'' between the positive electrode and oxide improves device performance, the fundamental understanding of how the scavenger layer modifies the heterostructure properties is lacking. We use density functional theory to calculate thermodynamic properties and conductance of TiN/HfO 2/TiN heterostructures with and without a Ta scavenger layer. First, we show that Ta insertion lowers the formation energy of low-resistance states. Second, while the Ta scavenger layer reduces themore » Schottky barrier height in the high-resistance state by modifying the interface charge at the oxide-electrode interface, the heterostructure maintains a high resistance ratio between high-and low-resistance states. Lastly, we show that the low-bias conductance of device on-states becomes much less sensitive to the spatial distribution of oxygen removed from the HfO 2 in the presence of the Ta layer. By providing a fundamental understanding of the observed improvements with scavenger layers, we open a path to engineer interfaces with oxygen scavenger layers to control and enhance device performance. In turn, this may enable the realization of a non-volatile low-power memory technology with concomitant reduction in energy consumption by consumer electronics and offering significant benefits to society.« less

  5. Surface and finite size effects impact on the phase diagrams, polar, and dielectric properties of (Sr,Bi)Ta{sub 2}O{sub 9} ferroelectric nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliseev, E. A.; Fomichov, Y. M.; Glinchuk, M. D.

    2016-05-28

    In the framework of the thermodynamic approach Landau-Ginzburg-Devonshire (LGD) combined with the equations of electrostatics, we investigated the effect of polarization surface screening on finite size effects of the phase diagrams, polar, and dielectric properties of ferroelectric nanoparticles of different shapes. We obtained and analyzed the analytical results for the dependences of the ferroelectric phase transition temperature, critical size, spontaneous polarization, and thermodynamic coercive field on the shape and size of the nanoparticles. The pronounced size effect of these characteristics on the scaling parameter, the ratio of the particle characteristic size to the length of the surface screening, was revealed.more » Also our modeling predicts a significant impact of the flexo-chemical effect (that is a joint action of flexoelectric effect and chemical pressure) on the temperature of phase transition, polar, and dielectric properties of nanoparticles when their chemical composition deviates from the stoichiometric one. We showed on the example of the stoichiometric nanosized SrBi{sub 2}Ta{sub 2}O{sub 9} particles that except the vicinity of the critical size, where the system splitting into domains has an important role, results of analytical calculation of the spontaneous polarization have a little difference from the numerical ones. We revealed a strong impact of the flexo-chemical effect on the phase transition temperature, polar, and dielectric properties of Sr{sub y}Bi{sub 2+x}Ta{sub 2}O{sub 9} nanoparticles when the ratio Sr/Bi deviates from the stoichiometric value of 0.5 within the range from 0.35 to 0.65. From the analysis of experimental data, we derived the parameters of the theory, namely, the coefficients of expansion of the LGD functional, the contribution of flexo-chemical effect, and the length of the surface screening.« less

  6. Electron holography on HfO2/HfO2-x bilayer structures with multilevel resistive switching properties

    NASA Astrophysics Data System (ADS)

    Niu, G.; Schubert, M. A.; Sharath, S. U.; Zaumseil, P.; Vogel, S.; Wenger, C.; Hildebrandt, E.; Bhupathi, S.; Perez, E.; Alff, L.; Lehmann, M.; Schroeder, T.; Niermann, T.

    2017-05-01

    Unveiling the physical nature of the oxygen-deficient conductive filaments (CFs) that are responsible for the resistive switching of the HfO2-based resistive random access memory (RRAM) devices represents a challenging task due to the oxygen vacancy related defect nature and nanometer size of the CFs. As a first important step to this goal, we demonstrate in this work direct visualization and a study of physico-chemical properties of oxygen-deficient amorphous HfO2-x by carrying out transmission electron microscopy electron holography as well as energy dispersive x-ray spectroscopy on HfO2/HfO2-x bilayer heterostructures, which are realized by reactive molecular beam epitaxy. Furthermore, compared to single layer devices, Pt/HfO2/HfO2-x /TiN bilayer devices show enhanced resistive switching characteristics with multilevel behavior, indicating their potential as electronic synapses in future neuromorphic computing applications.

  7. Electrochemical properties of thin films of V2O5 doped with TiO2

    NASA Astrophysics Data System (ADS)

    Moura, E. A.; Cholant, C. M.; Balboni, R. D. C.; Westphal, T. M.; Lemos, R. M. J.; Azevedo, C. F.; Gündel, A.; Flores, W. H.; Gomez, J. A.; Ely, F.; Pawlicka, A.; Avellaneda, C. O.

    2018-08-01

    The paper presents a systematic study of the electrochromic properties of thin films of V2O5:TiO2 for a possible utilization as counter-electrode in electrochromic devices. The V2O5:TiO2 thin films were prepared by the sol-gel process and deposited on a substrate of fluorine-tin oxide transparent electrode (FTO) using the dip coating technique and heat treatment at 350 °C for 30 min. The films were characterized by chronocoulometry, cyclic voltammetry (CV), UV-Vis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), profilometry, and X-ray diffraction (XRD). The best results were obtained for the film of V2O5 with 7.5 mol% of TiO2, which presented highest ion storage capacity of ∼106 mC cm-2 and redox reversibility of 1. The diffusion of the Li+ ions into the thin films was modeled by solving Fick equations with appropriate boundary conditions for a plane sheet geometry. Besides that, these films showed optical modulation of 35% at 633 nm after coloration and bleaching. The XRD patterns revealed that the films have an orthorhombic crystal structure; the AFM and the profilometry confirmed roughness and thickness of 16.76 and 617 nm, respectively.

  8. Synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures and their electrical and field-emission properties.

    PubMed

    Lin, Jing; Huang, Yang; Bando, Yoshio; Tang, Chengchun; Li, Chun; Golberg, Dmitri

    2010-04-27

    We report on the synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures via a simple catalyst-free method. A typical heterostructure, where an In2O3 nanowire forms a sort of a "dorsal fin" on the Ga2O3 nanobelt, exhibits the T-shaped cross-section. The structure, electrical porperties, and field-emission properties of this material are systematically investigated. The heterostructures possess a typical n-type semiconducting behavior with enhanced conductivity. Field-emission measurements show that they have a low turn-on field (approximately 1.31 V/microm) and a high field-enhancement factor (over 4000). The excellent field-emission characteristics are attributed to their special geometry and good electrical properties. The present In2O3-decorated Ga2O3 heterostructures are envisaged to be decent field-emitters useful in advanced electronic and optoelectronic nanodevices.

  9. Influence of Content of Al2O3 on Structure and Properties of Nanocomposite Nb-B-Al-O films

    NASA Astrophysics Data System (ADS)

    Liu, Na; Dong, Lei; Dong, Lei; Yu, Jiangang; Pan, Yupeng; Wan, Rongxin; Gu, Hanqing; Li, Dejun

    2015-11-01

    Nb-B-Al-O nanocomposite films with different power of Al2O3 were successfully deposited on the Si substrate via multi-target magnetron co-sputtering method. The influences of Al2O3's content on structure and properties of obtained nanocomposite films through controlling Al2O3's power were investigated. Increasing the power of Al2O3 can influence the bombarding energy and cause the momentum transfer of NbB2. This can lead to the decreasing content of Al2O3. Furthermore, the whole films showed monocrystalline NbB2's (100) phase, and Al2O3 shaded from amorphous to weak cubic-crystalline when decreasing content of Al2O3. This structure and content changes were proof by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). When NbB2 grains were far from each other in lower power of Al2O3, the whole films showed a typical nanocomposite microstructure with crystalline NbB2 grains embedded in a matrix of an amorphous Al2O3 phase. Continuing increasing the power of Al2O3, the less content of Al2O3 tended to cause crystalline of cubic-Al2O3 between the close distances of different crystalline NbB2 grains. The appearance of cubic-crystallization Al2O3 can help to raise the nanocomposite films' mechanical properties to some extent. The maximum hardness and elastic modulus were up to 21.60 and 332.78 GPa, which were higher than the NbB2 and amorphous Al2O3 monolithic films. Furthermore, this structure change made the chemistry bond of O atom change from the existence of O-Nb, O-B, and O-Al bonds to single O-Al bond and increased the specific value of Al and O. It also influenced the hardness in higher temperature, which made the hardness variation of different Al2O3 content reduced. These results revealed that it can enhance the films' oxidation resistance properties and keep the mechanical properties at high temperature. The study highlighted the importance of controlling the Al2O3's content to prepare

  10. Influence of B2O3 content on sintering behaviour and dielectric properties of La2O3-B2O3-CaO/Al2O3 glass-ceramic composites for LTCC applications

    NASA Astrophysics Data System (ADS)

    Wang, F. L.; Zhang, Y. W.; Chen, X. Y.; Mao, H. J.; Zhang, W. J.

    2018-01-01

    La2O3-B2O3-CaO glasses with different B2O3 content were synthesized by melting method to produce glass/ceramic composites in this work. XRD and DSC results revealed that the diminution of B2O3 content was beneficial to increase the crystallization tendency of glass and improve the quality of crystalline phase, while decreasing the effect of glass during sintering process as sintering aids. The choice of glass/ceramic mass ratio was also influenced by the B2O3 content of glass. Dense samples sintered at 875 ºC showed good dielectric properties which meet the requirement of LTCC applications: moderate dielectric constant (7.8-9.4) and low dielectric loss (2.0×10-3).

  11. Shifting in optoelectronic properties from pure K2O and Rb2O compounds to their V- and Cr-doped alloys

    NASA Astrophysics Data System (ADS)

    Monir, Mohammed El Amine; Ullah, Hayat; Baltach, Hadj; Mouchaal, Younes; Merabiha, Omar; Bahnes, Aicha; Rached, Djamel

    2018-04-01

    First principle calculations within the density functional theory (DFT) have been used in this approach to study the electronic and optical properties of vanadium (V) and chromium (Cr) doped K2O and Rb2O compounds. Based on the structure properties reported in our previous work, the study of electronic and optoelectronic properties of V- and Cr-doped K2O and Rb2O alloys have been vastly investigated. K2O and Rb2O are found to be semiconductors while their V- and Cr-alloys are metallic in nature. The optical functions like complex dielectric constant, complex index of refraction, absorption coefficient, and reflectivity of these alloys are computed and compared with those of pure K2O and Rb2O compounds. It has been shown that due to TM-doping (TM = V and Cr transition metals), many distinguished peaks appeared in the lower energy part (infrared) of the spectrum. The negative value of 𝜀1 (ω) in this energy range confirmed the metallic behavior of these alloys. Furthermore, the frequency-dependent optical conductivity is also predicted in the entire spectrum, where it increases with increasing photon energy for all the studied alloys. The significant results of α (ω) predict that all these compounds are useful in different optoelectronic applications in a wide part of the spectrum (between 13 eV and 27 eV).

  12. Thermodynamic and transport combustion properties of hydrocarbons with air. Part 1: Properties in SI units

    NASA Technical Reports Server (NTRS)

    Gordon, S.

    1982-01-01

    Thermodynamic and transport combustion properties were calculated for a wide range of conditions for the reaction of hydrocarbons with air. Three hydrogen-carbon atom ratios (H/C = 1.7, 2.0, 2.1) were selected to represent the range of aircraft fuels. For each of these H/C ratios, combustion properties were calculated for the following conditions: Equivalence ratio: 0, 0.25, 0.5, 0.75, 1.0, 1.25 Water - dry air mass ratio: 0, 0.03 Pressure, kPa: 1.01325, 10.1325, 101.325, 1013.25, 5066.25 (or in atm: 0.01, 0.1, 1, 10, 50) Temperature, K: every 10 degrees from 200 to 900 K; every 50 degrees from 900 to 3000 K Temperature, R: every 20 degrees from 360 to 1600 R; very 100 degrees from 1600 to 5400 R. The properties presented are composition, density, molecular weight, enthalphy, entropy, specific heat at constant pressure, volume derivatives, isentropic exponent, velocity of sound, viscosity, thermal conductivity, and Prandtl number. Property tables are based on composites that were calculated by assuming both: (1) chemical equilibrium (for both homogeneous and heterogeneous phases) and (2) constant compositions for all temperatures. Properties in SI units are presented in this report for the Kelvin temperature schedules.

  13. Ab Initio Study of the Electronic Structure, Elastic Properties, Magnetic Feature and Thermodynamic Properties of the Ba2NiMoO6 Material

    NASA Astrophysics Data System (ADS)

    Deluque Toro, C. E.; Mosquera Polo, A. S.; Gil Rebaza, A. V.; Landínez Téllez, D. A.; Roa-Rojas, J.

    2018-04-01

    We report first-principles calculations of the elastic properties, electronic structure and magnetic behavior performed over the Ba2NiMoO6 double perovskite. Calculations are carried out through the full-potential linear augmented plane-wave method within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient and Local Density Approximations, including spin polarization. The elastic properties calculated are bulk modulus (B), the elastic constants (C 11, C 12 and C 44), the Zener anisotropy factor (A), the isotropic shear modulus (G), the Young modulus (Y) and the Poisson ratio (υ). Structural parameters, total energies and cohesive properties of the perovskite are studied by means of minimization of internal parameters with the Murnaghan equation, where the structural parameters are in good agreement with experimental data. Furthermore, we have explored different antiferromagnetic configurations in order to describe the magnetic ground state of this compound. The pressure and temperature dependence of specific heat, thermal expansion coefficient, Debye temperature and Grüneisen parameter were calculated by DFT from the state equation using the quasi-harmonic model of Debye. A specific heat behavior C V ≈ C P was found at temperatures below T = 400 K, with Dulong-Petit limit values, which is higher than those, reported for simple perovskites.

  14. Microstructural, Optical and Dielectric Properties of Al-Incorporated SnO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Ateeq; Tripathi, P.; Naseem Siddique, M.; Ali, Tinku

    2017-08-01

    In this work, Pure SnO2 and Al doped SnO2 nanoparticles with the composition Sn1-xAlxO2 (x = 0, and 0.05) have been successfully prepared using sol-gel technique. The effect of Al dopant on microstructural, optical and dielectric properties has been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Ultraviolet (UV-Visible) absorption spectroscopy andImpedance spectroscopy (LCR meter)respectively. The XRD patterns indicated tetragonal rutile structure with single phase without any detectable impurity for all samples and incorporation of Al ions into the SnO2 lattice. Crystalline size decreased with aluminum content. The results of SEM confirm nanoparticles size decreases with Al dopant. UV-Visible results showed that optical band also decreases when Al is doped into pure SnO2 lattice. Frequency dependent dielectric properties of pure and doped SnO2 nanoparticles have been also studied.

  15. Modification of PdO/CeZrO2 doped with transition metals (Y and Fe) for reducibility properties

    NASA Astrophysics Data System (ADS)

    Shah, M. Nazri Abu; Jai, Junaidah; Faeqah, Nor; Ismail, Kamariah Noor; Hadi, Abdul

    2017-12-01

    This paper describes the synthesis of modified nanocatalysts of PdO/CeZrYO2(PdO/CZY), PdO/CeZrFeO2(PdO/CZF) and PdO/CeZrO2(PdO/CZ) via microemulsion followed by deposition - precipitation method. The structural, textural and redox properties of the synthesized nanocatalysts were investigated. The diffractogram of XRD showed that all the synthesized nanocatalysts indicate a symmetrical pattern of cubic phase crystallinity. The amount of PdO was detected using EDX analysis and PdO/CZF portrayed the highest Pd contents of about 4.63 %. Therefore it shows a good potential to have reducibility properties and can be manifested active at low temperature reduction.

  16. Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass.

    PubMed

    Yu, Shenglei; Yang, Zhongmin; Xu, Shanhui

    2010-05-01

    This paper reports on the spectroscopic properties and energy transfer analysis of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)-La(2)O(3) glasses with different Tm(2)O(3) doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm-2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm(3+), cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm(2)O(3) doping concentrations. The maximum fluorescence intensity at around 1.8 mum has been obtained in Tm(2)O(3)-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm(3+) in this sample is about 0.48 x 10(-20) cm(2) at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)- La(2)O(3) glass for 2.0-microm optical fiber laser.

  17. Computer program for calculating thermodynamic and transport properties of fluids

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braon, A. K.; Peller, I. C.

    1975-01-01

    Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.

  18. Thermodynamic properties of deep eutectic solvent and ionic liquid mixtures at temperatures from 293.15 K to 343.15 K

    NASA Astrophysics Data System (ADS)

    Achsah, R. S.; Shyam, S.; Mayuri, N.; Anantharaj, R.

    2018-04-01

    Deep eutectic solvents (DES) and ionic liquids (ILs) have their applications in various fields of research and in industries due to their attractive physiochemical properties. In this study, the combined thermodynamic properties of DES (choline chloride-glycerol) + IL1 (1-butyl-3-methylimiazolium acetate) and DES(choline chloride-glycerol) + IL2 (1-ethyl-3-methylimadzolium ethyl sulphate) have been studied. The thermodynamic properties such as excess molar volume, partial molar volume, excess partial molar volume and apparent molar volume were calculated for different mole fractions ranging from 0 to 1 and varying temperatures from 293.15 K to 343.15 K. In order to know the solvent properties of DESs and ILs mixtures at different temperatures and their molecular interactions to enhance the solvent performance and process efficiency at fixed composition and temperature the thermodynamic properties were analyzed.

  19. A thermodynamical model for the surface tension of silicate melts in contact with H2O gas

    USGS Publications Warehouse

    Colucci, Simone; Battaglia, Maurizio; Trigila, Raffaello

    2016-01-01

    Surface tension plays an important role in the nucleation of H2O gas bubbles in magmatic melts and in the time-dependent rheology of bubble-bearing magmas. Despite several experimental studies, a physics based model of the surface tension of magmatic melts in contact with H2O is lacking. This paper employs gradient theory to develop a thermodynamical model of equilibrium surface tension of silicate melts in contact with H2O gas at low to moderate pressures. In the last decades, this approach has been successfully applied in studies of industrial mixtures but never to magmatic systems. We calibrate and verify the model against literature experimental data, obtained by the pendant drop method, and by inverting bubble nucleation experiments using the Classical Nucleation Theory (CNT). Our model reproduces the systematic decrease in surface tension with increased H2O pressure observed in the experiments. On the other hand, the effect of temperature is confirmed by the experiments only at high pressure. At atmospheric pressure, the model shows a decrease of surface tension with temperature. This is in contrast with a number of experimental observations and could be related to microstructural effects that cannot be reproduced by our model. Finally, our analysis indicates that the surface tension measured inverting the CNT may be lower than the value measured by the pendant drop method, most likely because of changes in surface tension controlled by the supersaturation.

  20. Ab initio study on half-metallic, electronic and thermodynamic attributes of LaFeO3

    NASA Astrophysics Data System (ADS)

    Tariq, Saad; Saad, Saher; Jamil, M. Imran; Sohail Gilani, S. M.; Mahmood Ramay, Shahid; Mahmood, Asif

    2018-03-01

    By using the density functional theory (DFT) the systematic study of the structural, electronic and thermodynamic properties of lanthanum ferrite (LaFeO3) has been conducted. The elastic stability criterion and structural tolerance factor reveal that LaFeO3 exists in the cubic phase and is found to be stable under the ambient conditions. In electronic properties, the optical spectrum of the compound has been found to fall in the range of 488 to 688nm which has been calculated from the electronic band gap values by using the PBE-GGA and mBJ-GGA techniques. The light between 488 to 688nm would cause the valence electrons to jump in the conduction band showing the photoconductivity. The pronounced half-metallic character has been discussed by using the projected electronic density of states. The ferromagnetic response has been observed which may be attributed to the Fe-O bonding situation. The compound exhibits ductile, indirect band gap and half-metallic traits in the bulk phase. We expect the compound to be felicitous for the novel spintronic applications.

  1. Experimental constraints on melting temperatures in the MgO-SiO2 system at lower mantle pressures

    NASA Astrophysics Data System (ADS)

    Baron, Marzena A.; Lord, Oliver T.; Myhill, Robert; Thomson, Andrew R.; Wang, Weiwei; Trønnes, Reidar G.; Walter, Michael J.

    2017-08-01

    Eutectic melting curves in the system MgO-SiO2 have been experimentally determined at lower mantle pressures using laser-heated diamond anvil cell (LH-DAC) techniques. We investigated eutectic melting of bridgmanite plus periclase in the MgO-MgSiO3 binary, and melting of bridgmanite plus stishovite in the MgSiO3-SiO2 binary, as analogues for natural peridotite and basalt, respectively. The melting curve of model basalt occurs at lower temperatures, has a shallower dT / dP slope and slightly less curvature than the model peridotitic melting curve. Overall, melting temperatures detected in this study are in good agreement with previous experiments and ab initio simulations at ∼25 GPa (Liebske and Frost, 2012; de Koker et al., 2013). However, at higher pressures the measured eutectic melting curves are systematically lower in temperature than curves extrapolated on the basis of thermodynamic modelling of low-pressure experimental data, and those calculated from atomistic simulations. We find that our data are inconsistent with previously computed melting temperatures and melt thermodynamic properties of the SiO2 endmember, and indicate a maximum in short-range ordering in MgO-SiO2 melts close to Mg2SiO4 composition. The curvature of the model peridotite eutectic relative to an MgSiO3 melt adiabat indicates that crystallization in a global magma ocean would begin at ∼100 GPa rather than at the bottom of the mantle, allowing for an early basal melt layer. The model peridotite melting curve lies ∼ 500 K above the mantle geotherm at the core-mantle boundary, indicating that it will not be molten unless the addition of other components reduces the solidus sufficiently. The model basalt melting curve intersects the geotherm at the base of the mantle, and partial melting of subducted oceanic crust is expected.

  2. The influence of excess K2O on the electrical properties of (K,Na)1/2Bi1/2TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Linhao; Li, Ming; Sinclair, Derek C.

    2018-04-01

    The solid solution (KxNa0.50-x)Bi0.50TiO3 (KNBT) between Na1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 (KBT) has been extensively researched as a candidate lead-free piezoelectric material because of its relatively high Curie temperature and good piezoelectric properties, especially near the morphotropic phase boundary (MPB) at x ˜ 0.10 (20 mol. % KBT). Here, we show that low levels of excess K2O in the starting compositions, i.e., (Ky+0.03Na0.50-y)Bi0.50TiO3.015 (y-series), can significantly change the conduction mechanism and electrical properties compared to a nominally stoichiometric KNBT series (KxNa0.50-x)Bi0.50TiO3 (x-series). Impedance spectroscopy measurements reveal significantly higher bulk conductivity (σb) values for y ≥ 0.10 samples [activation energy (Ea) ≤ 0.95 eV] compared to the corresponding x-series samples which possess bandgap type electronic conduction (Ea ˜ 1.26-1.85 eV). The largest difference in electrical properties occurs close to the MPB composition (20 mol. % KBT) where y = 0.10 ceramics possess σb (at 300 °C) that is 4 orders of magnitude higher than that of x = 0.10 and the oxide-ion transport number in the former is ˜0.70-0.75 compared to <0.05 in the latter (between 600 and 800 °C). The effect of excess K2O can be rationalised on the basis of the (K + Na):Bi ratio in the starting composition prior to ceramic processing. This demonstrates the electrical properties of KNBT to be sensitive to low levels of A-site nonstoichiometry and indicates that excess K2O in KNBT starting compositions to compensate for volatilisation can lead to undesirable high dielectric loss and leakage currents at elevated temperatures.

  3. Thermodynamic properties for applications in chemical industry via classical force fields.

    PubMed

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2012-01-01

    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.

  4. Temperature-dependent local structural properties of redox Pt nanoparticles on TiO 2 and ZrO 2 supports

    DOE PAGES

    Jeong, Eun -Suk; Park, Chang -In; Jin, Zhenlan; ...

    2015-01-21

    This paper examined the local structural properties of Pt nanoparticles on SiO 2, TiO 2–SiO 2, and ZrO 2–SiO 2 supports to better understand the impact of oxide-support type on the performance of Pt-based catalysts. In situ X-ray absorption fine structure (XAFS) measurements were taken for the Pt L3-edge in a temperature range from 300 to 700 K in He, H 2, and O 2 gas environments. The XAFS measurements demonstrated that Pt atoms were highly dispersed on TiO 2–SiO 2 and ZrO 2–SiO 2 forming pancake-shaped nanoparticles, whereas Pt atoms formed larger particles of hemispherical shapes on SiO 2more » supports. Contrary to the SiO 2 case, the coordination numbers for Pt, Ti, and Zr around Pt atoms on the TiO 2–SiO 2 and ZrO 2–SiO 2 supports were nearly constant from 300 to 700 K under the different gas environments. These results are consistent with the improvements in thermal stability of Pt nanoparticles achieved by incorporating TiO 2 or ZrO 2 on the surface of SiO 2 supports. XAFS analysis further indicated that the enhanced dispersion and stability of Pt were a consequence of the strong metal support interaction via Pt–Ti and Pt–Zr bonds.« less

  5. Temperature-independent ferroelectric property and characterization of high-TC 0.2Bi(Mg1/2Ti1/2)O3-0.8PbTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Linxing; Chen, Jun; Zhao, Hanqing; Fan, Longlong; Rong, Yangchun; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-08-01

    Ferroelectric property stability against elevated temperature is significant for ferroelectric film applications, such as non-volatile ferroelectric random access memories. The high-TC 0.2Bi(Mg1/2Ti1/2)O3-0.8PbTiO3 thin films show the temperature-independent ferroelectric properties, which were fabricated on Pt(111)/Ti/SiO2/Si substrates via sol-gel method. The present thin films were well crystallized in a phase-pure perovskite structure with a high (100) orientation and uniform texture. A remanent polarization (2Pr) of 77 μC cm-2 and a local effective piezoelectric coefficient d33* of 60 pm/V were observed in the 0.2Bi(Mg1/2Ti1/2)O3-0.8PbTiO3 thin films. It is interesting to observe a behavior of temperature-independent ferroelectric property in the temperature range of room temperature to 125 °C. The remanent polarization, coercive field, and polarization at the maximum field are almost constant in the investigated temperature range. Furthermore, the dielectric loss and fatigue properties of 0.2Bi(Mg1/2Ti1/2)O3-0.8PbTiO3 thin films have been effectively improved by the Mn-doping.

  6. Vapor Pressures in the Al(I)+Al2O3(s) System: Reconsidering Al2O3(s) Condensation

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2005-01-01

    The vaporization behavior of the A1-O system has been studied on numerous occasions but significant uncertainties remain. The origin of this uncertainty must be understood before A1-O vaporization behavior can be accurately determined. The condensation of A12O3 and clogging of the effusion orifice is a difficult problem for the Knudsen effusion technique that influences the measured vaporization behavior but has only received limited attention. This study reconsiders this behavior in detail. A new theory for A12O3 condensation is proposed together with procedures that will improve the measured thermodynamic properties of A1-O vaporization.

  7. MnFe2O4-graphene oxide magnetic nanoparticles as a high-performance adsorbent for rare earth elements: Synthesis, isotherms, kinetics, thermodynamics and desorption.

    PubMed

    Ghobadi, Misagh; Gharabaghi, Mahdi; Abdollahi, Hadi; Boroumand, Zohreh; Moradian, Marzieh

    2018-06-05

    In recent decades, considerable amounts of rare earth elements have been used and then released into industrial wastewater, which caused serious environmental problems. In this work, in order to recycle rare earth cations (La 3+ and Ce 3+ ) from aqueous solutions, MnFe 2 O 4 -Graphene oxide magnetic nanoparticles were synthesized and after characterization studies, their adsorption isotherms, kinetics, thermodynamics and desorption were comprehensively investigated. Characterized was performed using XRD, FE-SEM, FT-IR, Raman spectroscopy, VSM, BET and DLS. REE adsorption on MnFe 2 O 4 -GO was studied for the first time in the present work and the maximum adsorption capacity at the optimum condition (room temperature and pH = 7) for La 3+ and Ce 3+ were 1001 and 982 mg/g respectively, and the reactions were completed within 20 min. In addition, the adsorption data were well matched with the Langmuir model and the adsorption kinetics were fitted with the pseudo-second order model. The thermodynamic parameters were calculated and the reactions were found to be endothermic and spontaneous. Moreover, the Dubinin-Radushkevich model predicted chemical ion-exchange adsorption. Desorption studies also demonstrated that MnFe 2 O 4 -GO can be regenerated for multiple reuses. Overall, high adsorption capacity, chemical stability, reusability, fast kinetics, easy magnetic separation, and simple synthesis method indicated that MnFe 2 O 4 -GO is a high-performance adsorbent for REE. Copyright © 2018. Published by Elsevier B.V.

  8. Novel elastic, lattice dynamics and thermodynamic properties of metallic single-layer transition metal phosphides: 2H-M 2P (Mo2P, W2P, Nb2P and Ta2P)

    NASA Astrophysics Data System (ADS)

    Yin, Jiuren; Wu, Bozhao; Wang, Yanggang; Li, Zhimi; Yao, Yuanpeng; Jiang, Yong; Ding, Yanhuai; Xu, Fu; Zhang, Ping

    2018-04-01

    Recently, there has been a surge of interest in the research of two-dimensional (2D) phosphides due to their unique physical properties and wide applications. Transition metal phosphides 2H-M 2Ps (Mo2P, W2P, Nb2P and Ta2P) show considerable catalytic activity and energy storage potential. However, the electronic structure and mechanical properties of 2D 2H-M 2Ps are still unrevealed. Here, first-principles calculations are employed to investigate the lattice dynamics, elasticity and thermodynamic properties of 2H-M 2Ps. Results show that M 2Ps with lower stiffness exhibit remarkable lateral deformation under unidirectional loads. Due to the largest average Grüneisen parameter, single-layer Nb2P has the strongest anharmonic vibrations, resulting in the highest thermal expansion coefficient. The lattice thermal conductivities of Ta2P, W2P and Nb2P contradict classical theory, which would predict a smaller thermal conductivity due to the much heavier atom mass. Moreover, the calculations also demonstrate that the thermal conductivity of Ta2P is the highest as well as the lowest thermal expansion, owing to its weak anharmonic phonon scattering and the lowest average Grüneisen parameter. The insight provided by this study may be useful for future experimental and theoretical studies concerning 2D transition metal phosphide materials.

  9. Microcomputer Calculation of Thermodynamic Properties from Molecular Parameters of Gases.

    ERIC Educational Resources Information Center

    Venugopalan, Mundiyath

    1990-01-01

    Described in this article is a problem-solving activity which integrates the application of microcomputers with the learning of physical chemistry. Students use the program with spectroscopic data to calculate the thermodynamic properties and compare them with the values from the thermochemical tables. (Author/KR)

  10. Iron(III) solubility and speciation in aqueous solutions. experimental study and modelling: part 1. hematite solubility from 60 to 300°C in NaOH-NaCl solutions and thermodynamic properties of Fe(OH) 4 -(aq)

    NASA Astrophysics Data System (ADS)

    Diakonov, Igor I.; Schott, Jacques; Martin, Francois; Harrichourry, Jean-Claude; Escalier, Jocelyne

    1999-08-01

    The solubility of natural and synthetic hematite (α-Fe 2O 3) was measured in NaOH-NaCl solutions (0.007 ≤ m(NaOH) ≤ 2.0) between 60 and 300°C at saturated water vapour pressure and under excess oxygen. Solubility constants determined in the present study and by Yishan et al. (1986) at 300°C were combined with the thermodynamic properties of hematite (Hemingway, 1990) and water (SUPCRT92, Johnson et al., 1992) to generate within the framework of the revised Helgeson-Kirkham-Flowers (HKF) model the standard partial molal thermodynamic properties at 25°C and 1 bar, and the revised HKF equations of state parameters of Fe(OH) 4 -. The extrapolated value for the Gibbs energy of formation for Fe(OH) 4 - at 25°C is -201.97 kcal/mol. Thermodynamic calculations show that Fe(OH) 4 - exhibits a chemical behaviour different from that of Ga(OH) 4 - and Al(OH) 4 -.

  11. Insight of DFT and ab initio atomistic thermodynamics on the surface stability and morphology of In2O3

    NASA Astrophysics Data System (ADS)

    Zhang, Minhua; Wang, Wenyi; Chen, Yifei

    2018-03-01

    In2O3 catalysts show remarkable activity and selectivity in methanol synthesis from CO2 hydrogenation. In order to get insight into the surface stability of this catalyst, density functional theory and ab initio atomistic thermodynamics method were used to investigate the surface free energies of various facets as a function of oxygen chemical potential, as well as the influences of temperature, pressure and gas compositions. The results show that the (111) facet presents lowest surface free energy under oxygen-rich condition, while the indium-terminated (100) facet is the most stable one under oxygen-lean condition. Moreover, we applied Wulff construction to determine the equilibrium shape of In2O3 with different oxygen chemical potentials. The equilibrium shape under oxygen-lean condition is cubic, which only expose (100) facet, while, the equilibrium shape under oxygen-rich condition is octahedron, which only expose (111) facet. Meanwhile, the results agree well with what is observed experimentally. It is further predicted that Wulff shape of In2O3 exists in a truncated octahedron morphology in which the (100) surface becomes predominant plane under CO2 hydrogenation reaction conditions.

  12. Electric Properties of Pb(Sb1/2Nb1/2)O3 PbTiO3 PbZrO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Kawamura, Yasushi; Ohuchi, Hiromu

    1994-09-01

    Solid-solution ceramics of ternary system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 were prepared by the solid-state reaction of powder materials. Ceramic, electric, dielectric and piezoelectric properties and crystal structures of the system were studied. Sintering of the system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 is much easier than that of each end composition, and well-sintered high-density ceramics were obtained for the compositions near the morphotropic transformation. Piezoelectric ceramics with high relative dielectric constants, high radial coupling coefficient and low resonant resistance were obtained for the composition near the morphotropic transformation. The composition Pb(Sb1/2Nb1/2)0.075Ti0.45Zr0.475O3 showed the highest dielectric constant (ɛr=1690), and the composition Pb(Sb1/2Nb1/2)0.05Ti0.45Zr0.5O3 showed the highest radial coupling coefficient (kp=64%).

  13. Effect of microstructure on the high temperature mechanical properties of (CeO{sub 2}){sub 0.8}(GdO{sub 1.5}){sub 0.2} electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sammes, N.M.; Zhang, Y.

    CeO{sub 2}-based oxides have recently been shown to have great potential as electrolytes in medium temperature solid oxide fuel cell applications, primarily due to their high ionic conductivity. Steele et al., for example, have examined a cell of the type: O{sub 2}, La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Co{sub 0.2}O{sub 3}{vert_bar}Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95}{vert_bar}Ni-ZrO{sub 2}, H{sub 2}/H{sub 2}O at 715{degrees}C. Gd{sub 2}O{sub 3} doped CeO{sub 2} has been reported as having one of the highest oxygen ion conductivities of the ceria-based materials. An ionic conductivity of 8.3 x 10{sup -2} s/cm has been reported for (CeO{sub 2}){sub 0.8}(GdO{sub 1.5}){sub 0.2} at 800{degrees}C, whichmore » is approximately four times that of Y{sub 2}O{sub 3}-doped ZrO{sub 2}, at the same temperature. Although the electrical properties of the material have been examined in detail, very little work has considered the microstructural/property relationships, particularly in relation to the mechanical properties. It is well know that CeO{sub 2}-based materials are difficult to density and attempts have been performed to examine this. Preliminary studies have also been undertaken to examine the effect of sintering on the mechanical properties of the material. In this paper we examine the effect of microstructure on the high temperature mechanical properties of (CeO{sub 2}){sub 0.8}(GdO{sub 1.5}){sub 0.2}.« less

  14. Thermodynamic properties of fullerite C70

    NASA Astrophysics Data System (ADS)

    Rekhviashvili, S. Sh.

    2017-08-01

    A new expression for the isochoric heat capacity and the equation of state of fullerite C70 are obtained in the framework of a quantum-statistical method. Analogs of the Debye law and Dulong-Petit law for this fullerite are formulated. Fullerene C70 molecules are modeled by isotropic quantum oscillators under the assumption that their nonsphericity weakly influences the thermodynamic properties of the condensed phase. The intramolecular oscillations of carbon atoms are described using the Debye theory and the cold contribution to the free energy of fullerite is calculated using the Lennard-Jones pair potential for fullerene molecules. A comparison of the proposed theory to experiment shows good agreement.

  15. Unification of the negative electrocaloric effect in Bi{sub 1/2}Na{sub 1/2}TiO{sub 3}-BaTiO{sub 3} solid solutions by Ba{sub 1/2}Sr{sub 1/2}TiO{sub 3} doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uddin, Sarir; Materials Research Laboratory, Institute of Physics and Electronics, University of Peshawar, Peshawar 25120; Zheng, Guang-Ping, E-mail: mmzheng@polyu.edu.hk

    2013-12-07

    The microscopic mechanisms of the negative electrocaloric effect (ECE) of the single-phase (1−x)(0.94Bi{sub 1/2}Na{sub 1/2}TiO{sub 3}-0.06BaTiO{sub 3})-xBa{sub 1/2}Sr{sub 1/2}TiO{sub 3} (BNT-BT-BST) perovskite solid solutions fabricated via the sol-gel technique are explored in this study. Dielectric and mechanical relaxation analyses are employed to investigate the ferroelectric and structural transitions of the samples. The electrocaloric properties of the samples were measured by thermodynamics Maxwell relations. The difference between the depolarization temperature (T{sub d}) and the maximum dielectric constant temperature (T{sub m}) was found to decrease with increasing BST content. Doping with BST stabilized the ferroelectric phase along with unifying the EC temperaturemore » changes (ΔT) to only negative values. The origin of the uniform negative ECE of BNT-BT-BST is discussed.« less

  16. Low-Cost and Facile Synthesis of the Vanadium Oxides V2O3, VO2, and V2O5 and Their Magnetic, Thermochromic and Electrochromic Properties.

    PubMed

    Mjejri, Issam; Rougier, Aline; Gaudon, Manuel

    2017-02-06

    In this study, vanadium sesquioxide (V 2 O 3 ), dioxide (VO 2 ), and pentoxide (V 2 O 5 ) were all synthesized from a single polyol route through the precipitation of an intermediate precursor: vanadium ethylene glycolate (VEG). Various annealing treatments of the VEG precursor, under controlled atmosphere and temperature, led to the successful synthesis of the three pure oxides, with sub-micrometer crystallite size. To the best of our knowledge, the synthesis of the three oxides V 2 O 5 , VO 2 , and V 2 O 3 from a single polyol batch has never been reported in the literature. In a second part of the study, the potentialities brought about by the successful preparation of sub-micrometer V 2 O 5 , VO 2 , and V 2 O 3 are illustrated by the characterization of the electrochromic properties of V 2 O 5 films, a discussion about the metal to insulator transition of VO 2 on the basis of in situ measurements versus temperature of its electrical and optical properties, and the characterization of the magnetic transition of V 2 O 3 powder from SQUID measurements. For the latter compound, the influence of the crystallite size on the magnetic properties is discussed.

  17. In2O3-ZnO heterostructure development in electrical and photoluminescence properties of In2O3 1-D nanostructures

    NASA Astrophysics Data System (ADS)

    Shariati, M.; Ghafouri, V.

    2014-05-01

    Indium Oxide quasi one-dimensional (1D) nanostructures known as nanowires and nanorods synthesis using the thermal evaporation method, has been articulated. To nucleate growth sites, substrate seeding promoted 1D nanostructures growth. The catalyst-mediated growth mechanism showed more favorable morphologies and physical properties in under vacuum conditions associated with bottom-up technique. Scanning electron microscopy (SEM) results showed that the Zn-doped 1D nanostructures had spherical caps. The X-ray diffraction (XRD) pattern and energy-dispersive X-ray (EDX) spectrum indicated that these caps intensively associated with ZnO. Therefore, it was reasonable that the vapor-liquid-solid mechanism (VLS) was responsible for the growth of the In2O3-ZnO heterostructure nanowires. This technique enhances optical and electrical properties in nanostructures. The photoluminescence (PL) analysis in Zn-doped In2O3 nanowires and nanorods shows that the intensity of the visible and UV-region emissions overwhelmingly increases and resistance measurement professes the improvement of linear conductance in VLS growth mechanism.

  18. The Vaporization of B2O3(l) to B2O3(g) and B2O2(g)

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers, Dwight L.

    2011-01-01

    The vaporization of B2O3 in a reducing environment leads to formation of both B2O3(g) and B2O2(g). While formation of B2O3(g) is well understood, many questions about the formation of B2O2(g) remain. Previous studies using B(s) + B2O3(l) have led to inconsistent thermodynamic data. In this study, it was found that after heating, B(s) and B2O3(l) appear to separate and variations in contact area likely led to the inconsistent vapor pressures of B2O2(g). To circumvent this problem, an activity of boron is fixed with a two-phase mixture of FeB and Fe2B. Both second and third law enthalpies of formation were measured for B2O2(g) and B2O3(g). From these the enthalpies of formation at 298.15 K are calculated to be -479.9 +/- 41.5 kJ/mol for B2O2(g) and -833.4 +/- 13.1 kJ/mol for B2O3(g). Ab initio calculations to determine the enthalpies of formation of B2O2(g) and B2O3(g) were conducted using the W1BD composite method and show good agreement with the experimental values.

  19. Tuning optical properties of magic number cluster (SiO2)4O2H4 by substitutional bonding with gold atoms.

    PubMed

    Cai, Xiulong; Zhang, Peng; Ma, Liuxue; Zhang, Wenxian; Ning, Xijing; Zhao, Li; Zhuang, Jun

    2009-04-30

    By bonding gold atoms to the magic number cluster (SiO(2))(4)O(2)H(4), two groups of Au-adsorbed shell-like clusters Au(n)(SiO(2))(4)O(2)H(4-n) (n = 1-4) and Au(n)(SiO(2))(4)O(2) (n = 5-8) were obtained, and their spectral properties were studied. The ground-state structures of these clusters were optimized by density functional theory, and the results show that in despite of the different numbers and types of the adsorbed Au atoms, the cluster core (SiO(2))(4)O(2) of T(d) point-group symmetry keeps almost unchanged. The absorption spectra were obtained by time-dependent density functional theory. From one group to the other, an extension of absorption wavelength from the UV-visible to the NIR region was observed, and in each group the absorption strengths vary linearly with the number of Au atoms. These features indicate their advantages for exploring novel materials with easily controlled tunable optical properties. Furthermore, due to the weak electronic charge transfer between the Au atoms, the clusters containing Au(2) dimers, especially Au(8)(SiO(2))(4)O(2), absorb strongly NIR light at 900 approximately 1200 nm. Such strong absorption suggests potential applications of these shell-like clusters in tumor cells thermal therapy, like the gold-coated silica nanoshells with larger sizes.

  20. Ab initio study of phonon dispersion and thermodynamic properties of pure and doped pyrites

    NASA Astrophysics Data System (ADS)

    Musari, Abolore A.; Joubert, Daniel P.; Olowofela, Joseph A.; Akinwale, Adio T.; Adebayo, Gboyega A.

    2017-12-01

    Pyrites (FeS2) are solid minerals that are found abundantly in Nigeria and are easy to prepare in laboratories. In this work, FeS2 is studied extensively in its pure state as well as when iron is substitutionally doped with zinc and calcium at concentrations of 0, 0.25, 0.5, 0.75 and 1. Using density functional theory, the eectronic, dynamic and thermodynamic properties were calculated. The results revealed that the lattice parameters and bulk modulus increases with increasing concentration and the obtained values are in agreement with available experimental and theoretical values. Though pyrite, when doped with zinc, obeys Vegard's law, doping with calcium revealed pronounced deviation from this law. The calculated band structures showed that FeS2 has an indirect band gap whose size decreases after introducing zinc while doping with calcium increases the band gap. The phonon dispersion of the end members FeS2 and ZnS2 indicate that the systems are dynamically stable while CaS2 is dynamically unstate. Also, the thermodynamic properties of the pure and doped pyrites were calculated and the ranges of temperature at which the lattice and electronic degrees of freedom contribute to the specific heat capacity are presented.

  1. Molecular Cobalt Catalysts for O 2 Reduction: Low-Overpotential Production of H 2 O 2 and Comparison with Iron-Based Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yu-Heng; Pegis, Michael L.; Mayer, James M.

    A series of mononuclear pseudo-macrocyclic cobalt complexes have been investigated as catalysts for O2 reduction. Each of these complexes, with CoIII/II reduction potentials that span nearly 400 mV, mediate highly selective two- electron reduction of O2 to H2O2 (93–99%) using decamethylferrocene (Fc*) as the reductant and acetic acid as the proton source. Kinetic studies reveal that the rate exhibits a first- order dependence on [Co] and [AcOH], but no dependence on [O2] or [Fc*]. A linear correlation is observed between log(TOF) vs. E1/2(CoIII/II) for the different cobalt complexes (TOF = turnover frequency). The thermodynamic potential for+ O2 reduction to H2O2more » was estimated by measuring the H /H2 open-circuit potential under the reaction conditions. This value provides the basis for direct assessment of the thermodynamic efficiency of the different catalysts and shows that H2O2 is formed with overpotentials as low as 90 mV. These results are compared with a recently reported series of Fe-porphyrin complexes, which catalyze four-electron reduction of O2 to H2O. The data show that the TOFs of the Co complexes exhibit a shallower dependence on E1/2(MIII/II) than the Fe complexes. This behavior, which underlies the low overpotential, is rationalized on the basis of the catalytic rate law.« less

  2. Optical Properties of TiO2-SiO2 Glass Over a Wide Spectral Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith,D.; Black, C.; Homes, C.

    Optical properties of vitreous SiO{sub 2} with 7.4 wt.% TiO{sub 2} are found by dispersion analysis of reflectivity measured in the infrared, visible, and ultraviolet augmented with literature values of vacuum-ultraviolet reflectivity and absorption. The principal infrared absorption associated with the titanium dopant occurs at 950 cm{sup -1} in a deep minimum of the host silica absorption. We attribute this to a perturbation of the silica's absorption at 1076 cm{sup -1} involving oxygen atoms bridging SiO{sub 4} and TiO{sub 4} tetrahedra. Strong ultraviolet absorptions of Ti{sup 4+} occur just below the silica exciton peak between 5.5 and 7.8 eV. Wemore » attribute these to charge-transfer transitions at TiO{sub 4} tetrahedra; i.e., bound excitons consisting of a Ti{sup 3+} ion and a hole shared by four oxygen neighbours.« less

  3. [Effect of K2O addition on the crystallization property of dental glass-ceramics].

    PubMed

    Liu, Xiao-Qiu; Song, Wen-Zhi; Sun, Hong-Chen; Yang, Hai-Bin; Zou, Guang-Tian; Wang, Jing-Yun; Ye, Chang-Li

    2006-10-01

    To evaluate the effect of K2O addition on the crystallization property of dental glass-ceramics in the Li2O-SiO2-Al2O3-P2O5-ZnO system. Different content of K2O was added into Li2O-SiO2-Al2O3-P2O5-ZnO glass system. The heat-treated system of the glass-ceramics was determined by differential thermal analyses (DTA), then the crystallization components and the microstmcture of the glass-ceramics with different content of K2O were investigated from X-ray diffraction (XRD) analyses and scanning electron microscopy (SEM). Addition of K2O helped to reduce the viscosity of the glass system and improved crystallization. More lithium disilicate crystals appeared after heated-treatment of the glass system which contained 5.3 wt% addition of K2O, and the homogeneously lath-shaped crystals were 4 gm in length. Certain content of K2O can improve the crystallization property of dental glass-ceramics in the Li2O-SiO2-Al2O3-P2O5-ZnO system.

  4. Field emission properties of SiO2-wrapped CNT field emitter.

    PubMed

    Lim, Yu Dian; Hu, Liangxing; Xia, Xin; Ali, Zishan; Wang, Shaomeng; Tay, Beng Kang; Aditya, Sheel; Miao, Jianmin

    2018-01-05

    Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO 2 -wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO 2 -wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO 2 -wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V μm -1 to achieve FE current density of 22 mA cm -2 ; whereas SiO 2 -wrapped field emitter requires 8.5 V μm -1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO 2 , as obtained from the electric field simulation. Nevertheless, SiO 2 -wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO 2 -wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO 2 -wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.

  5. Field emission properties of SiO2-wrapped CNT field emitter

    NASA Astrophysics Data System (ADS)

    Lim, Yu Dian; Hu, Liangxing; Xia, Xin; Ali, Zishan; Wang, Shaomeng; Tay, Beng Kang; Aditya, Sheel; Miao, Jianmin

    2018-01-01

    Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO2-wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO2-wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO2-wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V μm-1 to achieve FE current density of 22 mA cm-2 whereas SiO2-wrapped field emitter requires 8.5 V μm-1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO2, as obtained from the electric field simulation. Nevertheless, SiO2-wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO2-wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO2-wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.

  6. Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system

    NASA Astrophysics Data System (ADS)

    Hivrekar, Mahesh M.; Bhoyar, D. N.; Mande, V. K.; Dhole, V. V.; Solunke, M. B.; Jadhav, K. M.

    2018-05-01

    Zinc borate glass activated with rare earth oxide (Nd2O3, Sm2O3) of Na2O-Li2O-ZnO-B2O3 quaternary system has been prepared successfully by melt quenching method. The nucleation and growth of RE oxide were controlled temperature range 950-1000° C and rapid cooling at room temperature. The physical, structural and optical properties were characterized by using X-ray diffraction (XRD), SEM, Ultraviolet-visible spectroscopy (UV-Vis). XRD and SEM studies confirmed the amorphous nature, surface morphology of prepared zinc borate glass. The physical parameters like density, molar volume, molar mass of Nd3+, Sm3+ doped borate glass are summarized in the present article. The optical absorption spectra along with tauc's plot are presented. The optical energy band gap increases due to the addition of rare earth oxide confirming the role of network modifier.

  7. Influence of fluoride additions on biological and mechanical properties of Na2O-CaO-SiO2-P2O5 glass-ceramics.

    PubMed

    Li, H C; Wang, D G; Hu, J H; Chen, C Z

    2014-02-01

    Two series of Na2O-CaO-SiO2-P2O5 glass-ceramics doped with NH4HF2 (G-NH4HF2) or CaF2 (G-CaF2) have been prepared by sol-gel method. The glass-ceramic phase composition and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The mechanical properties and thermal expansion coefficient were measured by a microhardness tester, an electronic tensile machine and a thermal expansion coefficient tester. The structure difference between these two glass-ceramics was investigated by Fourier transform infrared spectroscopy (FTIR), and the in vitro bioactivity of the glass-ceramics was determined by in vitro simulated body fluid (SBF) immersion test. The hemolysis test, in vitro cytotoxicity test, systemic toxicity test and the implanted experiment in animals were used to evaluate the biocompatibility of the glass-ceramics. The mechanical properties of sample G-NH4HF2 are lower than that of sample G-CaF2, and the bioactivity of sample G-NH4HF2 is better than that of sample G-CaF2. The thermal expansion coefficients of these two glass-ceramics are all closer to that of Ti6Al4V. After 7 days of SBF immersion, apatites were induced on glass-ceramic surface, indicating that the glass-ceramics have bioactivity. The hemolysis test, in vitro cytotoxicity test and systemic toxicity test demonstrate that the glass-ceramics do not cause hemolysis reaction, and have no toxicity to cell and living animal. The implanted experiment in animals shows that bone tissue can form a good osseointegration with the implant after implantation for two months, indicating that the glass-ceramics are safe to serve as implants. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Polynomial approximations of thermodynamic properties of arbitrary gas mixtures over wide pressure and density ranges

    NASA Technical Reports Server (NTRS)

    Allison, D. O.

    1972-01-01

    Computer programs for flow fields around planetary entry vehicles require real-gas equilibrium thermodynamic properties in a simple form which can be evaluated quickly. To fill this need, polynomial approximations were found for thermodynamic properties of air and model planetary atmospheres. A coefficient-averaging technique was used for curve fitting in lieu of the usual least-squares method. The polynomials consist of terms up to the ninth degree in each of two variables (essentially pressure and density) including all cross terms. Four of these polynomials can be joined to cover, for example, a range of about 1000 to 11000 K and 0.00001 to 1 atmosphere (1 atm = 1.0133 x 100,000 N/m sq) for a given thermodynamic property. Relative errors of less than 1 percent are found over most of the applicable range.

  9. Wettability, structural and optical properties investigation of TiO{sub 2} nanotubular arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalnezhad, E., E-mail: erfan@hanyang.ac.kr; Maleki, E.; Banihashemian, S.M.

    2016-06-15

    Graphical abstract: FESEM images of the TiO 2 nanotube layers formed at 0.5 wt% NH4F/ glycerol. - Highlights: • Structural property investigation of TiO{sub 2} nanotube. • Evaluation of wettability of TiO{sub 2} nanotube. • Study on optical properties of TiO{sub 2} nanotube. • The effect of anatase phase on optical and wettability properties of TiO{sub 2.} - Abstract: In this study, the effect of microstructural evolution of TiO{sub 2} nanotubular arrays on wettability and optical properties was investigated. Pure titanium was deposited on silica glass by PVD magnetron sputtering technique. The Ti coated substrates were anodized in an electrolytemore » containing NH{sub 4}F/glycerol. The structures of the ordered anodic TiO{sub 2} nanotubes (ATNs) as long as 175 nm were studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The result shows a sharp peak in the optical absorbance spectra around the band gap energy, 3.49–3.42 eV for annealed and non-annealed respectively. The thermal process induced growth of the grain size, which influence on the density of particles and the index of refraction. Furthermore, the wettability tests' result displays that the contact angle of intact substrate (θ = 74.7°) was decreased to 31.4° and 17.4° after anodization for amorphous and heat treated (450 °C) ANTs coated substrate, respectively.« less

  10. Synthesis, structural, dielectric and magnetic properties of CuFe2O4/MnO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Ali, Kashif; Bahadur, Ali; Jabbar, Abdul; Iqbal, Shahid; Ahmad, Ijaz; Bashir, Muhammad Imran

    2017-07-01

    Novel nanocomposite of (1-x)CuFe2O4/xMnO2 [x=10% to 50 wt%] has been synthesized by two step wet chemical route without impurity. The x-ray diffraction analysis shows the formation of both phases with crystallite size 40-100 nm which is consist ant with estimated size of SEM.The FTIR spectra confirms the characteristics vibration of ferrites atoms at tetrahedral and octahedral sites along with Mn-O vibration mode, which also confirms the coexistence of both phases. The dielectric properties studied by LCR meter in frequency range of 1 K Hz to 2 MHz.The dielectric constant and tangent loss shows same dispersion of ferrites while a.c. conductivity decreases with increase in MnO2 contents. The real and imaginary part of impedance also calculated which shows decreasing trend at higher frequency. The magnetic characterization performed by vibrating sample magnetometer (VSM) at room temperature, which shows normal ferromagnetic behavior of ferrites but saturation magnetization and coercivity decreases with incorporation of MnO2 contents.

  11. Physical properties of ZrC/Al2O3 imbedded heat storage woven fabrics

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Song, M. K.; Seo, K. O.; Kim, H. A.

    2017-10-01

    This study investigated different physical properties of ZrC/Al2O3 imbedded heat storage woven fabrics. ZrC and Al2O3 imbedded heat storage PET filaments were spun on the pilot spinning equipment, respectively. Various physical properties of ceramic imbedded fabrics made of ZrC and Al2O3 imbedded filaments were measured and compared with those of the regular PET woven fabric. The surface temperatures of the ZrC and Al2O3 imbedded fabrics were higher than that of the regular fabric. Water absorption rate of ceramic imbedded fabrics was better than that of the regular fabric and drying property was inferior to that of regular fabric. Breathability by water vapour resistance(Ref) of ZrC imbedded fabric was superior to that of regular fabric. Heat keepability rates of the ceramic imbedded fabrics were higher than that of the regular fabrics, which revealed a good heat storage property of the ZrC/Al2O3 imbedded fabrics.

  12. Thermodynamic Studies on NdFeO 3(s)

    NASA Astrophysics Data System (ADS)

    Parida, S. C.; Dash, Smruti; Singh, Ziley; Prasad, R.; Jacob, K. T.; Venugopal, V.

    2002-02-01

    The enthalpy increments and the standard molar Gibbs energy of formation of NdFeO3(s) have been measured using a high-temperature Calvet microcalorimeter and a solid oxide galvanic cell, respectively. A λ-type transition, related to magnetic order-disorder transformation (antiferromagnetic to paramagnetic), is apparent from the heat capacity data at ∼687 K. Enthalpy increments, except in the vicinity of transition, can be represented by a polynomial expression: {H°m(T)-H°m(298.15 K)}/J·mol-1 (±0.7%)=-53625.6+146.0(T/K) +1.150×10-4(T/K)2 +3.007×106(T/K)-1; (298.15≤T/K ≤1000). The heat capacity, the first differential of {H°m(T)-H°m(298.15 K)} with respect to temperature, is given by Cop, m/J·K-1·mol-1=146.0+2.30×10-4(T/K)-3.007×106(T/K)-2. The reversible emf's of the cell, (-) Pt/{NdFeO3(s) +Nd2O3(s)+Fe(s)}//YDT/CSZ//{Fe(s)'FeO'(s)}/Pt(+), were measured in the temperature range from 1004 to 1208 K. It can be represented within experimental error by a linear equation: E/V:(0.1418±0.0003)-(3.890±0.023)×10-5(T/K). The Gibbs energy of formation of solid NdFeO3 calculated by the least-squares regression analysis of the data obtained in the present study, and data for Fe0.95O and Nd2O3 from the literature, is given by ΔfG°m(NdFeO3, s)/kJ·mol-1(±2.0)=-1345.9+0.2542(T/K); (1000≤T/K ≤1650). The error in ΔfG°m(NdFeO3, s, T) includes the standard deviation in emf and the uncertainty in the data taken from the literature. Values of ΔfH°m(NdFeO3, s, 298.15 K) and S°m(NdFeO3, s, 298.15 K) calculated by the second law method are -1362.5 (±6) kJ·mol-1 and 123.9 (±2.5) J·K-1·mol-1, respectively. Based on the thermodynamic information, an oxygen potential diagram for the system Nd-Fe-O was developed at 1350 K.

  13. Thermoelectric properties of rocksalt ZnO from first-principles calculations

    DOE PAGES

    Alvarado, Andrew; Attapattu, Jeevake; Zhang, Yi; ...

    2015-10-22

    Zinc oxide (ZnO) undergoes a pressure-induced structural transition from its normal ambient-pressure wurtzite (WZ) phase to a rocksalt (RS) phase around 10 GPa. A recent experiment shows that the high-pressure RS ZnO phase can be recovered and stabilized at ambient conditions, which raises exciting prospects of expanding the range of properties of ZnO. For a fundamental understanding of the RS ZnO phase, we have performed first-principles calculations to determine its electronic, phonon, and thermodynamic properties at high (20 GPa) and ambient (0 GPa) pressure. Furthermore, we have calculated its electrical and thermal transport properties, which allow an evaluation of itsmore » thermoelectric figure of merit ZT at different temperature and doping levels. Our calculations show that the ambient-pressure RS ZnO phase can reach ZT values of 0.25 to 0.3 under both n-type and p-type doping in a large temperature range of 400 K to 800 K, which is considerably lower than the temperature range of 1400 K to 1600 K where WZ ZnO reaches similar ZT values. Lastly, these results establish RS ZnO as a promising material for thermoelectric devices designed to operate at temperatures desirable for many heat recovery applications.« less

  14. Low-temperature molar heat capacities and entropies of MnO2 (pyrolusite), Mn3O4 (hausmanite), and Mn2O3 (bixbyite)

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.

    1985-01-01

    Pyrolusite (MnO2), hausmanite (Mn3O4), and bixbyite (Mn2O3), are important ore minerals of manganese and accurate values for their thermodynamic properties are desirable to understand better the {p(O2), T} conditions of their formation. To provide accurate values for the entropies of these important manganese minerals, we have measured their heat capacities between approximately 5 and 380 K using a fully automatic adiabatically-shielded calorimeter. All three minerals are paramagnetic above 100 K and become antiferromagnetic or ferrimagnetic at lower temperatures. This transition is expressed by a sharp ??-type anomaly in Cpmo for each compound with Ne??el temperatures TN of (92.2??0.2), (43.1??0.2), and (79.45??0.05) K for MnO2, Mn3O4, and Mn2O3, respectively. In addition, at T ??? 308 K, Mn2O3 undergoes a crystallographic transition, from orthorhombic (at low temperatures) to cubic. A significant thermal effect is associated with this change. Hausmanite is ferrimagnetic below TN and in addition to the normal ??-shape of the heat-capacity maxima in MnO2 and Mn2O3, it has a second rounded maximum at 40.5 K. The origin of this subsidiary bump in the heat capacity is unknown but may be related to a similar "anomalous bump" in the curve of magnetization against temperature at about 39 K observed by Dwight and Menyuk.(1) At 298.15 K the standard molar entropies of MnO2, Mn3O4, and Mn2O3, are (52.75??0.07), (164.1??0.2), and (113.7??0.2) J??K-1??mol-1, respectively. Our value for Mn3O4 is greater than that adopted in the National Bureau of Standards tables(2) by 14 per cent. ?? 1985.

  15. Ni doping effect on the electronic and sensing properties of 2D SnO2

    NASA Astrophysics Data System (ADS)

    Patel, Anjali; Roondhe, Basant; Jha, Prafulla K.

    2018-05-01

    In the present work using state of art first principles calculations under the frame work of density functional theory the effect of Nickel (Ni) doping on electronic as well as sensing properties of most stable two dimensional (2D) T-SnO2 phase towards ethanol (C2H5OH) has been observed. It has been found that Ni atom when dope on T-SnO2 causes prominent decrement in the band gap from 2.26 eV to 1.48 eV and improves the sensing phenomena of pristine T-SnO2 towards C2H5OH by increasing the binding energy from -0.18eV to -0.93eV. The comparative analysis of binding energy shows that Ni improves the binding of C2H5OH by 5.16 times the values for pristine T-SnO2. The doping of Ni into 2D T-SnO2 reduces the band gap through lowering of the conduction band minimum, thereby increasing the electron affinity which increases the sensing performance of T-SnO2. The variation in the electronic properties after and before the exposure of ethanol reinforced to use Ni:SnO2 nano structure for sensing applications. The results indicate that the Ni doped T-SnO2 can be utilized in improved optoelectronic as well as sensor devices in the future.

  16. Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass.

    PubMed

    Masai, Hirokazu; Tanimoto, Toshiro; Fujiwara, Takumi; Matsumoto, Syuji; Tokuda, Yomei; Yoko, Toshinobu

    2012-12-03

    The authors report on the correlation between the photoluminescence (PL) property and the SnO amount in SnO-ZnO-P2O5 (SZP) glass. In the PL excitation (PLE) spectra of the SZP glass containing Sn2+ emission center, two S1 states, one of which is strongly affected by SnO amount, are assumed to exist. The PLE band closely correlates with the optical band edge originating from Sn2+ species, and they both largely red-shifts with increasing amount of SnO. The emission decay time of the SZP glass decreased with increasing amount of SnO and the internal quantum efficiencies of the SZP glasses containing 1~5 mol% of SnO are comparable to that of MgWO4. It is expected that the composition-dependent S1 state (the lower energy excitation band) governs the quantum efficiency of the SZP glasses.

  17. Toxicity of CeO2 nanoparticles - the effect of nanoparticle properties.

    PubMed

    Leung, Yu Hang; Yung, Mana M N; Ng, Alan M C; Ma, Angel P Y; Wong, Stella W Y; Chan, Charis M N; Ng, Yip Hang; Djurišić, Aleksandra B; Guo, Muyao; Wong, Mabel Ting; Leung, Frederick C C; Chan, Wai Kin; Leung, Kenneth M Y; Lee, Hung Kay

    2015-04-01

    Conflicting reports on the toxicity of CeO2 nanomaterials have been published in recent years, with some studies finding CeO2 nanoparticles to be toxic, while others found it to have protective effects against oxidative stress. To investigate the possible reasons for this, we have performed a comprehensive study on the physical and chemical properties of nanosized CeO2 from three different suppliers as well as CeO2 synthesized by us, and tested their toxicity. For toxicity tests, we have studied the effects of CeO2 nanoparticles on a Gram-negative bacterium Escherichia coli in the dark, under ambient and UV illuminations. We have also performed toxicity tests on the marine diatom Skeletonema costatum under ambient and UV illuminations. We found that the CeO2 nanoparticle samples exhibited significantly different toxicity, which could likely be attributed to the differences in interactions with cells, and possibly to differences in nanoparticle compositions. Our results also suggest that toxicity tests on bacteria may not be suitable for predicting the ecotoxicity of nanomaterials. The relationship between the toxicity and physicochemical properties of the nanoparticles is explicitly discussed in the light of the current results. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Thermodynamic evidence of flexibility in H2O and CO2 absorption of transition metal ion exchanged zeolite LTA.

    PubMed

    Guo, Xin; Wu, Lili; Navrotsky, Alexandra

    2018-02-07

    Gas absorption calorimetry has been employed to probe the intercation of water and carbon dioxide with transition metal ion (TM = Mn 2+ , Fe 2+ , Co 2+ , Cu 2+ , and Zn 2+ ) exchanged zeolite A samples. There appears to be a two-phase region, indicative of a guest-induced flexibility transition, separating hydrated zeolite A and its dehydrated form, both of which have variable water content in the single phase region. The differential enthalpy of absorption as a function of water loading directly identifies different strengths of multiple interactions along with possible binding mechanisms of Zn-A and Mn-A exhibiting the highest water absorption with most exothermic initial enthalpies of -125.28 ± 4.82 and -115.30 ± 2.56 kJ mol -1 . Zn-A and Mn-A also show moderately good capture ability for CO 2 with zero-coverage negative enthalpies of -55.59 ± 2.48 and -44.07 ± 1.53 kJ mol -1 . The thermodynamic information derived from differential enthalpy, chemical potential and differential entropy elucidated the multistage interactive behavior of small guest molecules (H 2 O/CO 2 ) and ion-exchanged frameworks.

  19. Surface properties of SiO2 with and without H2O2 treatment as gate dielectrics for pentacene thin-film transistor applications

    NASA Astrophysics Data System (ADS)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    The effect of H2O2 treatment on the surface properties of SiO2 is studied. H2O2 treatment leads to the formation of Si(sbnd OH)x at the SiO2 surface that serves to reduce the number of trap states, inducing the shift of the Fermi level toward the conduction band minimum. H2O2 treatment also leads to a noticeable reduction in the value of the SiO2 capacitance per unit area. The effect of SiO2 layers with H2O2 treatment on the behavior of carrier transports for the pentacene/SiO2-based organic thin-film transistor (OTFT) is also studied. Experimental identification confirms that the shift of the threshold voltage towards negative gate-source voltages is due to the reduced number of trap states in SiO2 near the pentacene/SiO2 interface. The existence of a hydrogenated layer between pentacene and SiO2 leads to a change in the pentacene-SiO2 interaction, increasing the value of the carrier mobility.

  20. Synthesis and gas sensing properties of α-Fe(2)O(3)@ZnO core-shell nanospindles.

    PubMed

    Zhang, Jun; Liu, Xianghong; Wang, Liwei; Yang, Taili; Guo, Xianzhi; Wu, Shihua; Wang, Shurong; Zhang, Shoumin

    2011-05-06

    α-Fe(2)O(3)@ZnO core-shell nanospindles were synthesized via a two-step hydrothermal approach, and characterized by means of SEM/TEM/XRD/XPS. The ZnO shell coated on the nanospindles has a thickness of 10-15 nm. Considering that both α-Fe(2)O(3) and ZnO are good sensing materials, we have investigated the gas sensing performances of the core-shell nanocomposite using ethanol as the main probe gas. It is interesting to find that the gas sensor properties of the core-shell nanospindles are significantly enhanced compared with pristine α-Fe(2)O(3). The enhanced sensor properties are attributed to the unique core-shell nanostructure. The detailed sensing mechanism is discussed with respect to the energy band structure and the electron depletion theory. The core-shell nanostructure reported in this work provides a new path to fabricate highly sensitive materials for gas sensing applications.

  1. High temperature investigation of the solid/liquid transition in the PuO2-UO2-ZrO2 system

    NASA Astrophysics Data System (ADS)

    Quaini, A.; Guéneau, C.; Gossé, S.; Sundman, B.; Manara, D.; Smith, A. L.; Bottomley, D.; Lajarge, P.; Ernstberger, M.; Hodaj, F.

    2015-12-01

    The solid/liquid transitions in the quaternary U-Pu-Zr-O system are of great interest for the analysis of core meltdown accidents in Pressurised Water Reactors (PWR) fuelled with uranium-dioxide and MOX. During a severe accident the Zr-based cladding can become completely oxidised due to the interaction with the oxide fuel and the water coolant. In this framework, the present analysis is focused on the pseudo-ternary system UO2-PuO2-ZrO2. The melting/solidification behaviour of five pseudo-ternary and one pseudo-binary ((PuO2)0.50(ZrO2)0.50) compositions have been investigated experimentally by a laser heating method under pre-set atmospheres. The effects of an oxidising or reducing atmosphere on the observed melting/freezing temperatures, as well as the amount of UO2 in the sample, have been clearly identified for the different compositions. The oxygen-to-metal ratio is a key parameter affecting the melting/freezing temperature because of incongruent vaporisation effects. In parallel, a detailed thermodynamic model for the UO2-PuO2-ZrO2 system has been developed using the CALPHAD method, and thermodynamic calculations have been performed to interpret the present laser heating results, as well as the high temperature behaviour of the cubic (Pu,U,Zr)O2±x-c mixed oxide phase. A good agreement was obtained between the calculated and experimental data points. This work enables an improved understanding of the major factors relevant to severe accident in nuclear reactors.

  2. Dependence of catalytic properties of Al/Fe{sub 2}O{sub 3} thermites on morphology of Fe{sub 2}O{sub 3} particles in combustion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Ningning; He, Cuicui; Liu, Jianbing

    2014-11-15

    Three Fe{sub 2}O{sub 3} particle samples with the same crystal structure but different morphologies were prepared by the hydrothermal method and then combined with Al nanoparticles to produce Al/Fe{sub 2}O{sub 3} thermites using ultrasonic mixing. The properties of Fe{sub 2}O{sub 3} and Al/Fe{sub 2}O{sub 3} were studied using a combination of experimental techniques including scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The influences of the three Al/Fe{sub 2}O{sub 3} thermites on the combustion properties of the AP/HTPB (ammonium perchlorate/hydroxyl-terminated polybutadiene) composite propellant were investigated in comparisonmore » to those of Fe{sub 2}O{sub 3}. The results show that the Al/Fe{sub 2}O{sub 3} thermites are better than Fe{sub 2}O{sub 3} in enhancing the combustion performance of AP/HTPB. Furthermore, the surface area, which depends on size and mophology, of Fe{sub 2}O{sub 3} particles was found to play a vital role in improving the burning rate of the thermites-containing propellant formulation, with the smallest particles with the largest surface-to-volume (S/V) ratio performing the best. The enhanced catalytic property of the granular-shape Fe{sub 2}O{sub 3} and the corresponding thermite is attributed to the large specific surface area of Fe{sub 2}O{sub 3}. The different thermal behaviors of these three superthemites were supposed to be attributed to the surface site of Fe{sub 2}O{sub 3} particles. This work provides a better understanding on the catalytic properties of thermites that are important for combustion applications. - Graphical abstract: Effects of Fe{sub 2}O{sub 3} and Al/Fe{sub 2}O{sub 3} have been compared for the first time by analyzing combustion properties of formulations containing them, suggesting their potential application in AP/HTPB composite propellant systems. - Highlights

  3. Electric-field control of magnetic properties for α-Fe2O3/Al2O3 films

    NASA Astrophysics Data System (ADS)

    Cheng, Bin; Qin, Hongwei; Liu, Liang; Xie, Jihao; Zhou, Guangjun; Chen, Lubin; Hu, Jifan

    2018-06-01

    α-Fe2O3/Al2O3 films can exhibit weak ferromagnetism at room temperature. The saturation magnetization of the thinner film is larger than that of the thick one deposited at the same temperature of 500 °C, which implies that the weak ferromagnetism at room temperature comes not only from the intrinsic canted magnetic structure, but also from the effects of interface between α-Fe2O3/Al2O3, such as the effect of Al diffusion into α-Fe2O3 film. Perpendicular electric field upon α-Fe2O3/Al2O3 film at room temperature could adjust the magnetic properties (saturation magnetization, magnetic remanence, coercivity and saturation magnetizing field). The positive electric field can enhance the magnetism of α-Fe2O3/Al2O3 thin film, while negative electric field can reduce it. The change induced by electric field may be connected with the migration effects of Al3+ ions. The steps of curve for saturation magnetization versus the electric field may reflect these complicated processes. The magnetization of the film deposited at a higher temperature can be changed by electric field more easily. This study may inspire more in-depth research and lead to an alternative approach to future magneto-electronic devices.

  4. Experimental Determination of the Phase Diagram of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 System

    NASA Astrophysics Data System (ADS)

    Shi, Junjie; Sun, Lifeng; Zhang, Bo; Liu, Xuqiang; Qiu, Jiyu; Wang, Zhaoyun; Jiang, Maofa

    2016-02-01

    Ti-bearing CaO-SiO2-MgO-Al2O3-TiO2 slags are important for the smelting of vanadium-titanium bearing magnetite. In the current study, the pseudo-melting temperatures were determined by the single-hot thermocouple technique for the specified content of 5 to 25 pct TiO2 in the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 phase diagram system. The 1573 K to 1773 K (1300 °C to 1500 °C) liquidus lines were first calculated based on the pseudo-melting temperatures according to thermodynamic equations in the specific primary crystal field. The phase equilibria at 1573 K (1300 °C) were determined experimentally using the high-temperature equilibrium and quench method followed by X-ray fluorescence, X-ray diffraction, scanning electron microscope, and energy dispersive X-ray spectroscope analysis; the liquid phase, melilite solid solution phase (C2MS2,C2AS)ss, and perovskite phase of CaO·TiO2 were found. Therefore, the phase diagram was constructed for the specified region of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 system.

  5. Angle dependent antireflection property of TiO2 inspired by cicada wings

    NASA Astrophysics Data System (ADS)

    Zada, Imran; Zhang, Wang; Li, Yao; Sun, Peng; Cai, Nianjin; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Zhang, Di

    2016-10-01

    Inspired by cicada wings, biomorphic TiO2 with antireflective structures (ARSs) was precisely fabricated using a simple, inexpensive, and highly effective sol-gel process combined with subsequent calcination. It was confirmed that the fabricated biomorphic TiO2 not only effectively inherited the ARS but also exhibited high-performance angle dependent antireflective properties ranging from normal to 45°. Reflectance spectra demonstrated that the reflectivity of the biomorphic TiO2 with ARSs gradually changed from 1.4% to 7.8% with the increasing incidence angle over a large visible wavelength range. This angle dependent antireflective property is attributed to an optimized gradient refractive index between air and TiO2 via ARSs on the surface. Such surfaces with ARSs may have potential application in solar cells.

  6. THERMODYNAMIC PROPERTIES OF MC (M = V, Nb, Ta): FIRST-PRINCIPLES CALCULATIONS

    NASA Astrophysics Data System (ADS)

    Cao, Yong; Zhu, Jingchuan; Liu, Yong; Long, Zhishen

    2013-07-01

    Through the quasi-harmonic Debye model, the pressure and temperature dependences of linear expansion coefficient, bulk modulus, Debye temperature and heat capacity have been investigated. The calculated thermodynamic properties were compared with experimental data and satisfactory agreement is reached.

  7. Calorimetric Determination of Thermodynamic Stability of MAX and MXene Phases

    DOE PAGES

    Sharma, Geetu; Naguib, Michael; Feng, Dawei; ...

    2016-11-19

    MXenes are layered two dimensional materials with exciting properties useful to a wide range of energy applications. They are derived from ceramics (MAX phases) by leaching and their properties reflect their resulting complex compositions which include intercalating cations and anions and water. Their thermodynamic stability is likely linked to these functional groups but has not yet been addressed by quantitative experimental measurements. We report enthalpies of formation from the elements at 25 °C measured using high temperature oxide melt solution calorimetry for a layered Ti-Al-C MAX phase, and the corresponding Ti-C based MXene. The thermodynamic stability of the Ti 3Cmore » 2T x MXene (Tx stands for anionic surface moieties, and intercalated cations) was assessed by calculating the enthalpy of reaction of the MAX phase (ideal composition Ti 3AlC 2) to form MXene, The very exothermic enthalpy of reaction confirms the stability of MXene in an aqueous environment. The surface terminations (O, OH and F) and cations (Li) chemisorbed on the surface and intercalated in the interlayers play a major role in the thermodynamic stabilization of MXene. These findings help to understand and potentially improve properties and performance by characterizing the energetics of species binding to MXene surfaces during synthesis and in energy storage, water desalination and other applications.« less

  8. TiO2 effect on crystallization mechanism and physical properties of nano glass-ceramics of MgO-Al2O3-SiO2 glass system.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-05-01

    The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.

  9. Structural, electronic, magnetic and thermodynamic properties of Ni1-xTixO alloys an ab initio calculation and Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Klaa, K.; Labidi, S.; Masrour, R.; Jabar, A.; Labidi, M.; Amara, A.; Drici, A.; Hlil, E. K.; Ellouze, M.

    2018-06-01

    Structural, electronic, magnetic and thermodynamic main features for Ni1-xTixO ternary alloys in rock-salt structure with Ti content in the range ? were studied using the full potential Linearized augmented plane wave (FP-LAPW) method within density functional theory. The exchange-correlation potential was calculated by the generalized gradient approximation. The analysis of the electronic density of states curves allowed the computation of the magnetic moments which are considered to lie along (010) axes. The thermodynamic stability of this alloy was investigated by calculating the excess enthalpy of mixing ? as well as the phase diagram. In addition, the Monte Carlo simulations have been exploited to calculate the transition temperature and magnetic coercive field in the alloy.

  10. Effect of Er3+ concentration on the luminescence properties of Al2O3-ZrO2 powder

    NASA Astrophysics Data System (ADS)

    Clabel H., J. L.; Rivera, V. A. G.; Nogueira, I. C.; Leite, E. R.; Siu Li, M.; Marega, E.

    2016-12-01

    This manuscript reports on the effects of the luminescence properties of Er3+ on Al2O3-ZrO2 powder synthesized by the conventional solid-state method. The best conditions found for the calcinations were 1500 °C and 4 h. The structural dependence of the luminescence on Er3+:Al2O3-ZrO2 is associated with phase transformations of the Al2O3-ZrO2 host and presence of the OH group. Green and red emissions at room temperature from the 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 levels of Er3+ ions were observed under 482 nm pumping. The green-to-red emission intensity ratios and CIE chromaticity coordinates were determined from emission spectra for the evaluation of light emitted as a function of the Er3+ concentration. The Er3+ luminescence quenching due to group OH and variation in the Er3+ concentration plays an important role in the definition of the luminescent response.

  11. The VLab repository of thermodynamics and thermoelastic properties of minerals

    NASA Astrophysics Data System (ADS)

    Da Silveira, P. R.; Sarkar, K.; Wentzcovitch, R. M.; Shukla, G.; Lindemann, W.; Wu, Z.

    2015-12-01

    Thermodynamics and thermoelastic properties of minerals at planetary interior conditions are essential as input for geodynamics simulations and for interpretation of seismic tomography models. Precise experimental determination of these properties at such extreme conditions is very challenging. Therefore, ab initio calculations play an essential role in this context, but at the cost of great computational effort and memory use. Setting up a widely accessible and versatile mineral physics database can relax unnecessary repetition of such computationally intensive calculations. Access to such data facilitates transactional interaction across fields and can advance more quickly insights about deep Earth processes. Hosted by the Minnesota Supercomputing Institute, the Virtual Laboratory for Earth and Planetary Materials (VLab) was designed to develop and promote the theory of planetary materials using distributed, high-throughput quantum calculations. VLab hosts an interactive database of thermodynamics and thermoelastic properties or minerals computed by ab initio. Such properties can be obtained according to user's preference. The database is accompanied by interactive visualization tools, allowing users to repeat and build upon previously published results. Using VLab2015, we have evaluated thermoelastic properties, such as elastic coefficients (Cij), Voigt, Reuss, and Voigt-Reuss-Hill aggregate averages for bulk (K) and shear modulus (G), shear wave velocity (VS), longitudinal wave velocity (Vp), and bulk sound velocity (V0) for several important minerals. Developed web services are general and can be used for crystals of any symmetry. Results can be tabulated, plotted, or downloaded from the VLab website according to user's preference.

  12. Study of lattice strain and optical properties of nanocrystalline SnO2

    NASA Astrophysics Data System (ADS)

    Ahmad, Naseem; Khan, Shakeel; Bhargava, Richa; Ansari, Mohd Mohsin Nizam

    2018-05-01

    Nanocrystalline SnO2 has been synthesized by co-precipitation method by using two solvents (water and ethylene glycol). The structure and surface morphology were investigated using XRD and scanning electron microscope (SEM). The optical properties were studied using diffused reflectance spectroscopy (DRS). From the XRD analysis, the prepared materials are found to be pure crystalline with tetragonal rutile structure. The lattice strain and crystallite size, were calculated using Williamson-Hall method, are found to be 0.00413 & 16.3 nm in water assisted SnO2 and 0.00495 & 35.6 nm for EG assisted SnO2. Study of surface morphology of the samples was carried out using SEM. It has been seen that the solvents which are used in synthesis can also alter the optical properties of the materials. The optical band gap of the water based SnO2 and EG based SnO2 are found to be 3.92eV and 3.86eV respectively.

  13. δ-Doping of oxygen vacancies dictated by thermodynamics in epitaxial SrTiO 3 films

    DOE PAGES

    Li, Fengmiao; Yang, Fang; Liang, Yan; ...

    2017-06-01

    Homoepitaxial SrTiO 3(110) film is grown by molecular beam epitaxy in ultra-high vacuum with oxygen diffusing from substrate as the only oxidant. The resulted oxygen vacancies (V Os) are found to be spatially confined within few subsurface layers only, forming a quasi-two-dimensional doped region with a tunable high concentration. Such a δ-function distribution of V Os is essentially determined by the thermodynamics associated with the surface reconstruction, and facilitated by the relatively high growth temperature. Here, our results demonstrate that it is feasible to tune V Os distribution at the atomic scale by controlling the lattice structure of oxide surfaces.more » Transition metal oxide interfaces have exhibited a variety of novel phenomena, including the high-mobility two-dimensional electron gas, superconductivity and unusual magnetism. While these phenomena are inherently related to the artificially designed architecture, oxygen vacancies (V Os) are recognized to be particularly important in determining the exotic behaviors of the oxides systems. As electron donors in oxides, V Os were observed to be one of the major factors for the high carrier density at the LaAlO 3/SrTiO 3 interface. V Os induce ferromagnetism in the epitaxial LaCoO 3 films via the ordering of excess electrons in Co 3d orbit. It was also suggested that the existence of V Os plays an important role in the formation of undesirable insulating phase in ultrathin films of many metallic oxide materials, referred to as the “dead layer” behavior. How V Os are involved in such complex phenomena is still unclear. One essential issue toward the design of emergent properties of oxide films is how to characterize and control V Os at the atomic scale. Recently, quantitative measurements of V O concentration have been realized with high spatial resolution benefited by the development of the state-of-the-art aberration-corrected scanning transmission microscope (STEM) and related spectroscopy

  14. δ-Doping of oxygen vacancies dictated by thermodynamics in epitaxial SrTiO 3 films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fengmiao; Yang, Fang; Liang, Yan

    Homoepitaxial SrTiO 3(110) film is grown by molecular beam epitaxy in ultra-high vacuum with oxygen diffusing from substrate as the only oxidant. The resulted oxygen vacancies (V Os) are found to be spatially confined within few subsurface layers only, forming a quasi-two-dimensional doped region with a tunable high concentration. Such a δ-function distribution of V Os is essentially determined by the thermodynamics associated with the surface reconstruction, and facilitated by the relatively high growth temperature. Here, our results demonstrate that it is feasible to tune V Os distribution at the atomic scale by controlling the lattice structure of oxide surfaces.more » Transition metal oxide interfaces have exhibited a variety of novel phenomena, including the high-mobility two-dimensional electron gas, superconductivity and unusual magnetism. While these phenomena are inherently related to the artificially designed architecture, oxygen vacancies (V Os) are recognized to be particularly important in determining the exotic behaviors of the oxides systems. As electron donors in oxides, V Os were observed to be one of the major factors for the high carrier density at the LaAlO 3/SrTiO 3 interface. V Os induce ferromagnetism in the epitaxial LaCoO 3 films via the ordering of excess electrons in Co 3d orbit. It was also suggested that the existence of V Os plays an important role in the formation of undesirable insulating phase in ultrathin films of many metallic oxide materials, referred to as the “dead layer” behavior. How V Os are involved in such complex phenomena is still unclear. One essential issue toward the design of emergent properties of oxide films is how to characterize and control V Os at the atomic scale. Recently, quantitative measurements of V O concentration have been realized with high spatial resolution benefited by the development of the state-of-the-art aberration-corrected scanning transmission microscope (STEM) and related spectroscopy

  15. Scintillation and optical properties of TiO2-ZnO-Al2O3-B2O3 glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Usui, Yuki; Okada, Go; Kawaguchi, Noriaki; Masai, Hirokazu; Yanagida, Takayuki

    2018-04-01

    13TiO2-xZnO-17Al2O3-(70 - x)B2O3 (x = 17, 26, and 35) glasses were prepared by a melt-quenching method, and the obtained glass samples were heated at temperatures 30 °C above the glass transition temperature of corresponding glass in order to obtain glass-ceramics. The obtained glass-ceramic samples were confirmed to have anatase (x = 17) and rutile (x = 26 and 35) phases from X-ray diffraction analysis. Then, the scintillation and optical properties were evaluated and discussed the difference between the glass-ceramic and glass samples. In the scintillation spectra under X-ray irradiation, a broad emission peak was observed around 450 nm in all the samples, and the new peak around 500 nm appeared in the anatase-precipitated glass-ceramic. The intensities of the glass-ceramic samples were enhanced in comparison with the corresponding glasses because the glass-ceramics includes TiO2 crystallites with defect centers which act as effective emission centers. The scintillation decay curves of the glass and glass-ceramic samples were approximated by one and a sum of two exponential decay functions, respectively. The faster component of glass and glass-ceramic samples would be caused by the host emission, and the slower component of glass-ceramic sample would be ascribed to the emission of Ti3+.

  16. M3FT-15OR0202212: SUBMIT SUMMARY REPORT ON THERMODYNAMIC EXPERIMENT AND MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurray, Jake W.; Brese, Robert G.; Silva, Chinthaka M.

    2015-09-01

    Modeling the behavior of nuclear fuel with a physics-based approach uses thermodynamics for key inputs such as chemical potentials and thermal properties for phase transformation, microstructure evolution, and continuum transport simulations. Many of the lanthanide (Ln) elements and Y are high-yield fission products. The U-Y-O and U-Ln-O ternaries are therefore key subsystems of multi-component high-burnup fuel. These elements dissolve in the dominant urania fluorite phase affecting many of its properties. This work reports on an effort to assess the thermodynamics of the U-Pr-O and U-Y-O systems using the CALPHAD (CALculation of PHase Diagrams) method. The models developed within this frameworkmore » are capable of being combined and extended to include additional actinides and fission products allowing calculation of the phase equilibria, thermochemical and material properties of multicomponent fuel with burnup.« less

  17. Synthesis and characterization of physical properties of Gd2O2S:Pr3+ semi-nanoflower phosphor

    NASA Astrophysics Data System (ADS)

    Bagheri, A.; Rezaee Ebrahim Saraee, Kh.; Shakur, H. R.; Zamani Zeinali, H.

    2016-05-01

    Pure gadolinium oxysulfide phosphor (Gd2O2S) and trivalent praseodymium-doped gadolinium oxysulfide phosphor (Gd2O2S:Pr3+) scintillators with semi-nanoflower crystalline structures were successfully synthesized through a precipitation method and subsequent calcination treatment as a converter for X-ray imaging detectors. The characterization such as the crystal structures and nanostructure of Gd2O2S:Pr3+ scintillator measured by XRD and FeE-SEM experiment. The optical properties of Gd2O2S:Pr3+ scintillator were studied. Luminescence spectra of Gd2O2S:Pr3+ under 320 nm UV excitation show a green emission at near 511 nm corresponding to the 3P0-3H4 of Pr ions. After scintillation properties of synthesized Gd2O2S:Pr3+ scintillator investigated, Gd2O2S:Pr3+ scintillating film fabricated on a glass substrate by a sedimentation method. X-ray imaging of the fabricated scintillators confirmed that the Gd2O2S:Pr3+ scintillator could be used for radiography applications in which good spatial resolution is needed.

  18. Isentropic expansion and related thermodynamic properties of non-ionic amphiphile-water mixtures.

    PubMed

    Reis, João Carlos R; Douhéret, Gérard; Davis, Michael I; Fjellanger, Inger Johanne; Høiland, Harald

    2008-01-28

    A concise thermodynamic formalism is developed for the molar isentropic thermal expansion, ES,m = ( partial differential Vm/ partial differential T)(Sm,x), and the ideal and excess quantities for the molar, apparent molar and partial molar isentropic expansions of binary liquid mixtures. Ultrasound speeds were determined by means of the pulse-echo-overlap method in aqueous mixtures of 2-methylpropan-2-ol at 298.15 K over the entire composition range. These data complement selected extensive literature data on density, isobaric heat capacity and ultrasound speed for 9 amphiphile (methanol, ethanol, propan-1-ol, propan-2-ol, 2-methylpropan-2-ol, ethane-1,2-diol, 2-methoxyethanol, 2-ethoxyethanol or 2-butoxyethanol)-water binary systems, which form the basis of tables listing molar and excess molar isobaric expansions and heat capacities, and molar and excess molar isentropic compressions and expansions at 298.15 K and at 65 fixed mole fractions spanning the entire composition range and fine-grained in the water-rich region. The dependence on composition of these 9 systems is graphically depicted for the excess molar isobaric and isentropic expansions and for the excess partial molar isobaric and isentropic expansions of the amphiphile. The analysis shows that isentropic thermal expansion properties give a much stronger response to amphiphile-water molecular interactions than do their isobaric counterparts. Depending on the pair property-system, the maximum excess molar isentropic value is generally twenty- to a hundred-fold greater than the corresponding maximum isobaric value, and occurs at a lower mole fraction of the amphiphile. Values at infinite dilution of the 9 amphiphiles in water are given for the excess partial molar isobaric heat capacity, isentropic compression, isobaric expansion and isentropic expansion. These values are interpreted in terms of the changes occurring when amphiphile molecules cluster into an oligomeric form. Present results are discussed

  19. Thermodynamics properties of lanthanide series near melting point-A pseudopotential approach

    NASA Astrophysics Data System (ADS)

    Suthar, P. H.; Gajjar, P. N.

    2018-04-01

    The present paper deals with computational study of thermodynamics properties for fifteen elements of lanthanide series. The Helmholtz free energy (F), Internal energy (E) and Entropy (S)have been computed using variational method based on the Gibbs-Bogoliubov (GB) along with Percus-Yevick hard sphere reference system and Gajjar's model potential. The local field correction function proposed by Taylor is applied to introduce the exchange and correlation effects in the study of thermodynamics of these metals. The present results in comparison with available theoretical and experimental are found to be in good agreement and confirm the ability of the model potential.

  20. Rapid Computation of Thermodynamic Properties over Multidimensional Nonbonded Parameter Spaces Using Adaptive Multistate Reweighting.

    PubMed

    Naden, Levi N; Shirts, Michael R

    2016-04-12

    We show how thermodynamic properties of molecular models can be computed over a large, multidimensional parameter space by combining multistate reweighting analysis with a linear basis function approach. This approach reduces the computational cost to estimate thermodynamic properties from molecular simulations for over 130,000 tested parameter combinations from over 1000 CPU years to tens of CPU days. This speed increase is achieved primarily by computing the potential energy as a linear combination of basis functions, computed from either modified simulation code or as the difference of energy between two reference states, which can be done without any simulation code modification. The thermodynamic properties are then estimated with the Multistate Bennett Acceptance Ratio (MBAR) as a function of multiple model parameters without the need to define a priori how the states are connected by a pathway. Instead, we adaptively sample a set of points in parameter space to create mutual configuration space overlap. The existence of regions of poor configuration space overlap are detected by analyzing the eigenvalues of the sampled states' overlap matrix. The configuration space overlap to sampled states is monitored alongside the mean and maximum uncertainty to determine convergence, as neither the uncertainty or the configuration space overlap alone is a sufficient metric of convergence. This adaptive sampling scheme is demonstrated by estimating with high precision the solvation free energies of charged particles of Lennard-Jones plus Coulomb functional form with charges between -2 and +2 and generally physical values of σij and ϵij in TIP3P water. We also compute entropy, enthalpy, and radial distribution functions of arbitrary unsampled parameter combinations using only the data from these sampled states and use the estimates of free energies over the entire space to examine the deviation of atomistic simulations from the Born approximation to the solvation free

  1. Photocatalytic degradation properties of V-doped TiO2 to automobile exhaust.

    PubMed

    Wang, Tong; Shen, Dongya; Xu, Tao; Jiang, Ruiling

    2017-05-15

    To improve the photocatalytic degradation properties of titanium dioxide (TiO 2 ) used as raw materials for purifying automobile exhaust (AE), the vanadium (V)-doped TiO 2 samples were prepared. The photocatalytic degradation efficiencies of V-doped TiO 2 to each component in AE were evaluated under ultraviolet (UV) and visible light irradiation, respectively. Results indicated that the photocatalytic activity of V-doped TiO 2 to AE was higher than that of pure TiO 2 , and the optimal V dopant content of TiO 2 was 1.0% under UV light irradiation. The degradation efficiencies of V-doped TiO 2 to NOx and HC were higher than those to CO 2 and CO in AE because of the reversible reaction between CO 2 and CO. In addition, it was found that the photocatalytic degradation efficiencies of V-doped TiO 2 to each component in AE were also increased under visible light irradiation. The V-doped TiO 2 also showed higher degradation efficiencies to NOx and HC than those to CO 2 and CO under visible light irradiation. The V doped TiO 2 presented higher photocatalytic activity to CO 2 than that to CO, but the reversible reaction between CO and CO 2 was not found under visible light irradiation. The photocatalytic reactions of pure and V-doped TiO 2 samples to each component in AE followed the first order kinetic pathway under the two light irradiations. It is concluded that the V doping is a feasible method to improve the photocatalytic degradation properties of TiO 2 to AE for air purification, developing a sustainable environmental purification technology based on TiO 2 materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Calorimetric Study of Almandine: Are the Thermodynamic Properties of the End-Member Aluminosilicate Garnets Finally Known Quantitatively?

    NASA Astrophysics Data System (ADS)

    Dachs, E.; Geiger, C. A.; Benisek, A.

    2012-12-01

    The aluminosilicate garnets (E3Al2Si3O12 with E = Fe2+, Mn2+, Ca, Mg) form an important rock-forming mineral group. Much study has been directed toward determining their thermodynamic properties. The iron end-member almandine (Fe3Al2Si3O12) is a key phase in many petrologic investigations. As part of an ongoing calorimetric and thermodynamic study of the aluminosilicate garnets, the heat capacity of three synthetic well-characterized polycrystalline almandine garnets and one natural almandine-rich single crystal was measured. The various garnets were characterized by optical microscopy, electron-microprobe analysis, X-ray powder diffraction and 57Fe Mössbauer spectroscopy. Heat capacity measurements were performed in the temperature range 3 to 300 K using relaxation calorimetry and between 282 and 764 K using DSC methods. From the former, So values between 336.7 ± 0.8 and 337.8 ± 0.8 J/molK are calculated for the different samples. The smaller value is considered the best So for end-member stoichiometric almandine, because it derives from the "best" Fe3+-free synthetic sample. The Cp behavior for almandine at T > 298 K is given by the polynomial (in J/molK): Cp = 649.06(±4) - 3837.57(±122)T-0.5 - 1.44682(±0.06)107T-2 + 1.94834(±0.09)109T-3, which is calculated using DSC data together with one published heat-content datum determined by transposed-drop calorimetry along with a new determination that gives H1181K - H302K = 415.0 ± 3.2 kJ/mole. Almandine shows a λ-type heat-capacity anomaly at low temperatures resulting from a paramagnetic-antiferromagnetic phase transition at about 9 K. The lattice heat capacity was calculated using the single-parameter phonon dispersion model of Komada and Westrum (1997), which allows the non-lattice heat capacity (Cex) behavior to be modelled. An analysis shows the presence of an electronic heat-capacity contribution (Cel - Schottky anomaly) around 17 K that is superimposed on a larger magnetic heat-capacity effect (Cmag

  3. Viscosity of TiO2-FeO-Ti2O3-SiO2-MgO-CaO-Al2O3 for High-Titania Slag Smelting Process

    NASA Astrophysics Data System (ADS)

    Hu, Kai; Lv, Xuewei; Li, Shengping; Lv, Wei; Song, Bing; Han, Kexi

    2018-05-01

    The present study demonstrates the dependence of viscosity on chemical composition and temperature of high-titania slag, a very important raw material for producing titanium dioxide. The results indicated that completely molten high-titania slag exhibits a viscosity of less than 1 dPa s with negligible dependence on temperature. However, it increases dramatically with decreasing temperature slightly below the critical temperature, i.e., the solidus temperature of the slag. Above the critical temperature, the slag samples displayed the same order of viscosity at 0.6 dPa s, regardless of their compositional variation. However, the FeO, CaO, and MgO were confirmed to decrease viscosity, while SiO2 and Ti2O3 increase it. The apparent activation energy for viscosity-temperature relation and liquidus temperature based on experiments and thermodynamic calculations are also presented. Conclusively, the critical temperatures of the slags are on average 15 K below their corresponding calculated liquidus temperatures. The increase in FeO content was found to considerably lower the critical temperature, while the increase in both Ti2O3 and TiO2 contents increases it. The main phases of the slag in solid state, as indicated by X-ray diffraction, are (Fe, Mg) x Ti y O5 (x + y = 3, pseudobrookite) and rutile.

  4. Al{sub 2}TiO{sub 5}-Al{sub 2}O{sub 3}-TiO{sub 2} nanocomposite: Structure, mechanical property and bioactivity studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalita, Samar Jyoti, E-mail: Samar.Kalita@und.nodak.edu; Somani, Vikas

    2010-12-15

    Novel biomaterials are of prime importance in tissue engineering. Here, we developed novel nanostructured Al{sub 2}TiO{sub 5}-Al{sub 2}O{sub 3}-TiO{sub 2} composite as a biomaterial for bone repair. Initially, nanocrystalline Al{sub 2}O{sub 3}-TiO{sub 2} composite powder was synthesized by a sol-gel process. The powder was cold compacted and sintered at 1300-1500 {sup o}C to develop nanostructured Al{sub 2}TiO{sub 5}-Al{sub 2}O{sub 3}-TiO{sub 2} composite. Nano features were retained in the sintered structures while the grains showed irregular morphology. The grain-growth and microcracking were prominent at higher sintering temperatures. X-ray diffraction peak intensity of {beta}-Al{sub 2}TiO{sub 5} increased with increasing temperature. {beta}-Al{sub 2}TiO{submore » 5} content increased from 91.67% at 1300 {sup o}C to 98.83% at 1500 {sup o}C, according to Rietveld refinement. The density of {beta}-Al{sub 2}TiO{sub 5} sintered at 1300 {sup o}C, 1400 {sup o}C and 1500 {sup o}C were computed to be 3.668 g cm{sup -3}, 3.685 g cm{sup -3} and 3.664 g cm{sup -3}, respectively. Nanocrystalline grains enhanced the flexural strength. The highest flexural strength of 43.2 MPa was achieved. Bioactivity and biomechanical properties were assessed in simulated body fluid. Electron microscopy confirmed the formation of apatite crystals on the surface of the nanocomposite. Spectroscopic analysis established the presence of Ca and P ions in the crystals. Results throw light on biocompatibility and bioactivity of {beta}-Al{sub 2}TiO{sub 5} phase, which has not been reported previously.« less

  5. Chemical Stability and Biological Properties of Plasma-Sprayed CaO-SiO2-ZrO2 Coatings

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Xie, Youtao; Ji, Heng; Huang, Liping; Zheng, Xuebin

    2010-12-01

    In this work, calcia-stabilized zirconia powders were coated by silica derived from tetraethoxysilane (TEOS) hydrolysis. After calcining at 1400 °C, decalcification of calcia-stabilized zirconia by silica occurred and powders composed of Ca2SiO4, ZrO2, and CaZrO3 were prepared. We produced three kinds of powders with different Ca2SiO4 contents [20 wt.% (denoted as CZS2), 40 wt.% (denoted as CZS4), and 60 wt.% (denoted as CZS6)]. The obtained powders were sprayed onto Ti-6Al-4V substrates using atmospheric plasma spraying. The microstructure of the powders and coatings were analyzed. The dissolution rates of the coatings were assessed by monitoring the ions release and mass losses after immersion in Tris-HCl buffer solution. Results showed that the chemical stability of the coatings were significantly improved compared with pure calcium silicate coatings, and increased with the increase of Zr contents. The CZS4 coating showed not only good apatite-formation ability in simulated body fluid, but also well attachment and proliferation capability for the canine bone marrow stem cells. Results presented here indicate that plasma-sprayed CZS4 coating has medium dissolution rate and good biological properties, suggesting its potential use as bone implants.

  6. Thermodynamic properties of ternary oxides in the system Ba-Fe-O using solid-state electrochemical cells with oxide and fluoride ion conducting electrolytes

    NASA Astrophysics Data System (ADS)

    Rakshit, S. K.; Parida, S. C.; Singh, Ziley; Prasad, R.; Venugopal, V.

    2004-04-01

    The standard molar Gibbs energy of formations of BaFe 12O 19(s), BaFe 2O 4(s), Ba 2Fe 2O 5(s), Ba 3Fe 2O 6(s) and Ba 5Fe 2O 8(s) have been determined using solid-state electrochemical technique employing CaF 2(s) as an electrolyte. The reversible e.m.f. values have been measured in the temperature range from 970 to 1151 K. The oxygen chemical potential corresponding to three phase equilibria involving technologically important compound BaFe 12O 19(s) has been determined using solid-state electrochemical technique employing CSZ as an electrolyte from 1048 to 1221 K. The values of Δ fGm0( T) for the above ternary oxides are given by ΔfG m0( BaFe12O19, s)/ kJ mol -1(±0.6)=-5431.3+1.5317 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( BaFe2O4, s)/ kJ mol -1(±1.3)=-1461.4+0.3745 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( Ba2Fe2O5, s)/ kJ mol -1(±1.4)=-2038.3+0.4433 (T/ K) (970⩽T/ K⩽1149) ΔfG m0( Ba3Fe2O6, s)/ kJ mol -1(±1.5)=-2700.1+0.6090 (T/ K) (969⩽T/ K⩽1150) and ΔfG m0( Ba5Fe2O8, s)/ kJ mol -1(±1.6)=-3984.1+0.9300 (T/ K) (973⩽T/ K⩽1150) The uncertainty estimates for Δ fGm0 includes the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. An isothermal oxygen potential diagram for the system Ba-Fe-O was constructed at 1100 K based on the thermodynamic data obtained in this study.

  7. Ab initio electron correlated studies on the intracluster reaction of NO+ (H2O)(n) → H3O+ (H2O)(n-2) (HONO) (n = 4 and 5).

    PubMed

    Asada, Toshio; Nagaoka, Masataka; Koseki, Shiro

    2011-01-28

    Hydrated nitrosonium ion clusters NO(+)(H(2)O)(n) (n = 4 and 5) were investigated by using MP2/aug-cc-pVTZ level of theory to clarify isomeric reaction pathways for formation of HONO and fully hydrated hydride ions. We found some new isomers and transition state structures in each hydration number, whose lowest activation energies of the intracluster reactions were found to be 4.1 and 3.4 kcal mol(-1) for n = 4 and n = 5, respectively. These thermodynamic properties and full quantum mechanical molecular dynamics simulation suggest that product isomers with HONO and fully hydrated hydride ions can be obtained at n = 4 and n = 5 in terms of excess hydration binding energies which can overcome these activation barriers.

  8. New Equations for the Sublimation Pressure and Melting Pressure of H2O Ice Ih

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Riethmann, Thomas; Feistel, Rainer; Harvey, Allan H.

    2011-12-01

    New reference equations, adopted by the International Association for the Properties of Water and Steam (IAPWS), are presented for the sublimation pressure and melting pressure of ice Ih as a function of temperature. These equations are based on input values derived from the phase-equilibrium condition between the IAPWS-95 scientific standard for thermodynamic properties of fluid H2O and the equation of state of H2O ice Ih adopted by IAPWS in 2006, making them thermodynamically consistent with the bulk-phase properties. Compared to the previous IAPWS formulations, which were empirical fits to experimental data, the new equations have significantly less uncertainty. The sublimation-pressure equation covers the temperature range from 50 K to the vapor-liquid-solid triple point at 273.16 K. The ice Ih melting-pressure equation describes the entire melting curve from 273.16 K to the ice Ih-ice III-liquid triple point at 251.165 K. For completeness, we also give the IAPWS melting-pressure equation for ice III, which is slightly adjusted to agree with the ice Ih melting-pressure equation at the corresponding triple point, and the unchanged IAPWS melting-pressure equations for ice V, ice VI, and ice VII.

  9. Photocatalytic properties and selective antimicrobial activity of TiO2(Eu)/CuO nanocomposite

    NASA Astrophysics Data System (ADS)

    Michal, Robert; Dworniczek, Ewa; Caplovicova, Maria; Monfort, Olivier; Lianos, Panagiotis; Caplovic, Lubomir; Plesch, Gustav

    2016-05-01

    TiO2(Eu)/CuO nanocomposites were prepared by precipitation method. The anatase nanocrystallites with a size of 26 nm exhibited well crystallized and characteristical dipyramidal morphology and {1 0 1} and {0 0 1} faceting. Transmission electron microscopy photographs with atomic resolution showed that the Eu(III) dopants were bounded on surface of titania. In the composites, the CuO nanocrystals exhibiting a monoclinic tenorite structure with a size in the range from 2 to 5 nm were grafted to the surface of titania. The influence of copper(II) oxide led to distinct selectivity in the photocatalytic and antimicrobial properties of the investigated TiO2(Eu)/CuO nanocomposites. While the presence of CuO nanocrystals strongly increased the photocatalytic production of hydrogen by ethanol reforming, it decreased the activity in photoinduced total mineralization of phenol comparing with non-modified TiO2(Eu). In investigated TiO2(Eu)/CuO powders, the photoinduced antimicrobial activity against membranes of Enterococcus species was influenced by the selective binding of CuO to the surface of the microorganism leading to distinct selectivity in their action. The activity against Enterococcus faecalis was higher than against Enterococcus faecium.

  10. Thermal stability and dielectric properties of nano-SiO2-doped cellulose

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Tang, Chao; Hao, Jian; Wang, Xiaobo

    2017-07-01

    We report the thermal stability and dielectric properties of nano-SiO2-doped cellulose. Molecular dynamics simulations were performed using an undoped cellulose model (C0), a nano-SiO2-doped cellulose model with untreated surface unsaturated bonds (C1), and a nano-SiO2-doped cellulose model for which surface unsaturated O atoms were treated with -H and surface unsaturated Si atoms were treated with -OH (C2). The simulation results showed that the mechanical properties of C1 and C2 were better than those of C0 and were optimal when the content of nano-SiO2 was 5%. The simulation results for C2 were more accurate than those for the other models, and thus, C2 provides theoretical support for the construction of a reasonable model of nano-SiO2 and cellulose in the future. The temperature at which the free volume fraction of C2 jumps was 50 K higher than that for C0, and the thermal stability of C2 was better than that of C0. Experimental results showed that the maximum tensile strength of the insulation paper was obtained when the content of nano-SiO2 was 5%. Moreover, at this content of nano-SiO2, the dielectric constant was lowest and closest to that of transformer insulation oil, which will improve the distribution of the electric field and thus the overall breakdown performance of oil-paper insulation systems.

  11. Epitaxial growth and properties of YBa2Cu3O(x)-Pb(Zr(0.6)Ti(0.4))O3-YBa2Cu3O(x) trilayer structure by laser ablation

    NASA Astrophysics Data System (ADS)

    Boikov, Iu. A.; Esaian, S. K.; Ivanov, Z. G.; Brorsson, G.; Claeson, T.; Lee, J.; Safari, A.

    1992-08-01

    YBa2Cu3O(x)Pb(Zr(0.6)Ti(0.4))O3-YBa2Cu3O(x) multilayer structure has been grown on SrTiO3 and Al2O3 substrates using laser ablation. The deposition conditions for the growth of trilayers and their properties are studied in this investigation. Scanning electron microscope images and X-ray diffraction analyses indicate that all the constituent films in the trilayer grow epitaxially on SrTiO3 and were highly oriented on Al2O3. Transport measurements on these multilayers show that top YBa2Cu3O(x) films have good superconducting properties.

  12. One-pot synthesis and optical properties of Eu3+-doped nanocrystalline TiO2 and ZrO2

    NASA Astrophysics Data System (ADS)

    Julián, Beatriz; Corberán, Rosa; Cordoncillo, Eloisa; Escribano, Purificación; Viana, Bruno; Sanchez, Clément

    2005-11-01

    A simple and versatile one-pot sol-gel synthesis of Eu3+-doped nanocrystalline TiO2 and ZrO2 nanomaterials is reported in this paper. It consists of the controlled crystallization of Eu3+-doped TiO2 or ZrO2 nanoparticles from an initial solution containing the metal alkoxide, the lanthanide precursor, a complexing agent and a non-complexing acid. The main interest is that it could be extended to different lanthanide ions and inorganic metal oxides to prepare other multifunctional nanomaterials. The characterization by XRD, HRTEM and SAED techniques showed that the TiO2 and ZrO2 crystallization takes place at very low temperatures (60 °C) and that the crystallite size can be tailored by modifying the synthetic conditions. The optical properties of the resulting materials were studied by emission spectra and decay measurements. Both Eu3+:TiO2 and Eu3+:ZrO2 samples exhibited long lifetime values after removing organic components (τ = 0.7 and 1.3 ms, respectively), but the Eu3+:ZrO2 system is specially promising for photonic applications since its τ value is longer than some reported for other inorganic or hybrid matrices in which Eu3+ ions are complexed. This behaviour has been explained through an effective dispersion of the lanthanide ions within the ZrO2 nanocrystals.

  13. Cellulose Acetate/N-TiO2 Biocomposite Flexible Films with Enhanced Solar Photochromic Properties

    NASA Astrophysics Data System (ADS)

    Radhika, T.; Anju, K. R.; Silpa, M. S.; Ramalingam, R. Jothi; Al-Lohedan, Hamad A.

    2017-07-01

    Flexible cellulose acetate/N-TiO2 nanocomposite films containing various concentrations of nanosized N-TiO2 and an intelligent methylene blue ink have been prepared by solution casting. The hydrothermally prepared nitrogen-doped titania (N-TiO2) and the films were characterized in detail. The photochromic properties of the prepared films were investigated under ultraviolet (UV), visible light, and simulated solar irradiation by UV-Vis spectrophotometry. Upon irradiation, the films exhibited rapid photochromic response that was reversible at room temperature. Films with higher content of nano N-TiO2 showed enhanced decoloration/recoloration under all irradiation conditions, with fast decoloration/recoloration under simulated solar irradiation. These results suggest that the amount of nano N-TiO2 in the composite, the concentration of methylene blue, and the solvent greatly influence the photochromic properties of the films. Such flexible and transparent cellulose acetate/N-TiO2 films with enhanced decoloration/recoloration properties under solar irradiation are promising smart materials for use in photoreversible printed electronics applications.

  14. The effect of iron on montmorillonite stability. (I) Background and thermodynamic considerations

    NASA Astrophysics Data System (ADS)

    Wilson, James; Savage, David; Cuadros, Javier; Shibata, Masahiro; Ragnarsdottir, K. Vala

    2006-01-01

    It is envisaged that high-level nuclear waste (HLW) will be disposed of in underground repositories. Many proposed repository designs include steel waste canisters and bentonite backfill. Natural analogues and experimental data indicate that the montmorillonite component of the backfill could react with steel corrosion products to produce non-swelling Fe-rich phyllosilicates such as chamosite, berthierine, or Fe-rich smectite. In K-bearing systems, the alteration of montmorillonite to illite/glauconite could also be envisaged. If montmorillonite were altered to non-swelling minerals, the swelling capacity and self-healing properties of the bentonite backfill could be reduced, thereby diminishing backfill performance. The main aim of this paper was to investigate Fe-rich phyllosilicate mineral stability at the canister-backfill interface using thermodynamic modelling. Estimates of thermodynamic properties were made for Fe-rich clay minerals in order to construct approximate phase-relations for end-member/simplified mineral compositions in logarithmic activity space. Logarithmic activity diagrams (for the system Al 2O 3-FeO-Fe 2O 3-MgO-Na 2O-SiO 2-H 2O) suggest that if pore waters are supersaturated with respect to magnetite in HLW repositories, Fe(II)-rich saponite is the most likely montmorillonite alteration product (if f values are significantly lower than magnetite-hematite equilibrium). Therefore, the alteration of montmorillonite may not be detrimental to nuclear waste repositories that include Fe, as long as the swelling behaviour of the Fe-rich smectite produced is maintained. If f exceeds magnetite-hematite equilibrium, and solutions are saturated with respect to magnetite in HLW repositories, berthierine is likely to be more stable than smectite minerals. The alteration of montmorillonite to berthierine could be detrimental to the performance of HLW repositories.

  15. Carbon agent chemical vapor transport growth of Ga2O3 crystal

    NASA Astrophysics Data System (ADS)

    Jie, Su; Tong, Liu; Jingming, Liu; Jun, Yang; Guiying, Shen; Yongbiao, Bai; Zhiyuan, Dong; Youwen, Zhao

    2016-10-01

    Beta-type gallium oxide (β-Ga2O3) is a new attractive material for optoelectronic devices. Different methods had been tried to grow high quality β-Ga2O3 crystals. In this work, crystal growth of Ga2O3 has been carried out by chemical vapor transport (CVT) method in a closed quartz tube using C as transport agent and sapphire wafer as seed. The CVT mass flux has been analyzed by theoretical calculations based on equilibrium thermodynamics and 1D diffusional mass transport. The crystal growth experimental results are in agreement with the theoretical predictions. Influence factors of Ga2O3 crystal growth, such as temperature distribution, amount of C as transport agent used, have also been discussed. Structural (XRD) and optical (Raman spectroscopy, photoluminescence spectrum) properties of the CVT-Ga2O3 crystal are presented. Project supported by the National Natural Science Foundation of China (Nos. 61474104, 61504131).

  16. Enhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures

    PubMed Central

    Tharsika, T.; Haseeb, A. S. M. A.; Akbar, Sheikh A.; Sabri, Mohd Faizul Mohd; Hoong, Wong Yew

    2014-01-01

    An inexpensive single-step carbon-assisted thermal evaporation method for the growth of SnO2-core/ZnO-shell nanostructures is described, and the ethanol sensing properties are presented. The structure and phases of the grown nanostructures are investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. XRD analysis indicates that the core-shell nanostructures have good crystallinity. At a lower growth duration of 15 min, only SnO2 nanowires with a rectangular cross-section are observed, while the ZnO shell is observed when the growth time is increased to 30 min. Core-shell hierarchical nanostructures are present for a growth time exceeding 60 min. The growth mechanism for SnO2-core/ZnO-shell nanowires and hierarchical nanostructures are also discussed. The sensitivity of the synthesized SnO2-core/ZnO-shell nanostructures towards ethanol sensing is investigated. Results show that the SnO2-core/ZnO-shell nanostructures deposited at 90 min exhibit enhanced sensitivity to ethanol. The sensitivity of SnO2-core/ZnO-shell nanostructures towards 20 ppm ethanol gas at 400 °C is about ∼5-times that of SnO2 nanowires. This improvement in ethanol gas response is attributed to high active sensing sites and the synergistic effect of the encapsulation of SnO2 by ZnO nanostructures. PMID:25116903

  17. Optical and thermodynamic properties of MgO from radiative shock temperature and sound speed measurements on samples preheated to 2300 K

    NASA Astrophysics Data System (ADS)

    Fatýanov, O. V.; Asimow, P. D.

    2013-12-01

    Thermodynamic properties of MgO, one of the major end-members of deep planetary interiors, play a significant role in the processes inside the Earth's lower mantle. Of particular importance in geophysics and geochemistry is the MgO melting behavior at high pressure. Despite considerable theoretical and experimental efforts over decades, it remains essentially unknown. The melting temperature predictions for MgO at 135 GPa, the Earth's core-mantle boundary pressure, range from 5 to 9 kK. In a continuous effort to resolve this inconsistency and to probe the P-T region previously unexplored, we developed a technique for radiative shock temperature measurements in single-crystal MgO preheated to 2300 K. Large ventilated Mo capsules were employed to hold ~20 mm long MgO crystals with controlled longitudinal thermal gradients. These hot targets were impacted by 0.8 mm thick Ta flyers launched at 6.5 to 7.5 km/s on the Caltech two-stage light-gas gun. Six spectral radiance histories from MgO shock front were recorded in every shot with 3 ns time resolution over 440-750 nm or 500-830 nm spectral range. The majority of our experiments showed smooth pressure dependence of MgO shock temperature and sound speed consistent with the solid phase at 197-243 GPa. Although most observed temperatures are ~700 K lower and sound speeds ~1 km/s higher than the model predictions, the pressure slopes for both parameters are in close agreement with those calculated for the solid phase. Unconfirmed data from a single experiment at 239 GPa and 8.3 kK showed correlated temperature and sound speed anomalies (both values lower than expected) that may be explained by partial melting. Our past and recent data on shock-compressed preheated MgO suggest its melting curve above 200 GPa is higher than the extrapolation of the experiments of Zerr & Boehler or the theoretical calculation by Strachan et. al. These results, features of shock experiments with 2300 K pre-heat temperatures, data analysis

  18. Phonon and thermodynamical properties of CuSc: A DFT study

    NASA Astrophysics Data System (ADS)

    Jain, Ekta; Pagare, Gitanjali; Dubey, Shubha; Sanyal, S. P.

    2018-05-01

    A detailed systematic theoretical investigation of phonon and thermodynamical behavior of CuSc intermetallic compound has been carried out by uing first-principles density functional theory in B2-type (CsCl) crystal structure. Phonon dispersion curve and phonon density of states (PhDOS) are studied which confirm the stability of CuSc intermetallic compound in B2 phase. It is found that PhDOS at high frequencies mostly composed of Sc states. We have also presented some temperature dependent properties such as entropy, free energy, heat capacity, internal energy and thermal displacement, which are computed under PHONON code. The various features of these quantities are discussed in detail. From these results we demonstrate that the particular intermetallic have better ductility and larger thermal expansion.

  19. Mechanical Properties of Layered La2Zr2O7 Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Guo, Xingye; Li, Li; Park, Hyeon-Myeong; Knapp, James; Jung, Yeon-Gil; Zhang, Jing

    2018-04-01

    Lanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.

  20. Ab-initio study of thermodynamic properties of boron nanowire at atomic scale

    NASA Astrophysics Data System (ADS)

    Bhuyan, Prabal D.; Gupta, Sanjeev K.; Sonvane, Y.; Gajjar, P. N.

    2018-04-01

    In the present work, we have optimized ribbon like zigzag structure of boron (B) nanowire (NW) and investigated vibrational and thermodynamic properties using quasi-harmonic approximations (QHA). All positive phonon in the phonon dispersive curve have confirmed dynamical stability of ribbon B-NW. The thermodynamic properties, like Debye temperature, internal energy and specific heat, are calculated as a function of temperature. The variation of specific heat is proportional to T3 Debye law at lower temperature for B-NW, while it becomes constant above room temperature at 1200K; obeys Dulong-Petit's law. The high Debye temperature of 1120K is observed at ambient temperature, which can be attributed to high thermal conductivity. Our study shows that B-NW with high thermal conductivity could be the next generation electron connector for nanoscale electronic devices.

  1. Study on tribological and electrochemistry properties of metal materials in H2O2 solutions

    NASA Astrophysics Data System (ADS)

    Yuan, Chengqing; Yu, Li; Li, Jian; Yan, Xinping

    2012-03-01

    Hydrogen peroxide (H2O2) is a kind of ideal green propellant. It is crucial to study the wear behavior and failure modes of the metal materials under the strong oxidizing environment of H2O2. This study aims to investigate the wear of rubbing pairs of 2Cr13 stainless steel against 1045 metal in H2O2 solutions, which has a great effect on wear, the decomposition and damage mechanism of materials. The comparison analysis of the friction coefficients, wear mass loss, worn surface topographies and current densities was conducted under different concentrations of H2O2 solutions. There were significant differences in the tribological and electrochemistry properties of the rubbing pairs in different H2O2 solutions.

  2. Thermodynamic properties of water in confined environments: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Gladovic, Martin; Bren, Urban; Urbic, Tomaž

    2018-05-01

    Monte Carlo simulations of Mercedes-Benz water in a crowded environment were performed. The simulated systems are representative of both composite, porous or sintered materials and living cells with typical matrix packings. We studied the influence of overall temperature as well as the density and size of matrix particles on water density, particle distributions, hydrogen bond formation and thermodynamic quantities. Interestingly, temperature and space occupancy of matrix exhibit a similar effect on water properties following the competition between the kinetic and the potential energy of the system, whereby temperature increases the kinetic and matrix packing decreases the potential contribution. A novel thermodynamic decomposition approach was applied to gain insight into individual contributions of different types of inter-particle interactions. This decomposition proved to be useful and in good agreement with the total thermodynamic quantities especially at higher temperatures and matrix packings, where higher-order potential-energy mixing terms lose their importance.

  3. Gamma ray shielding and structural properties of PbO-P2O5-Na2WO4 glass system

    NASA Astrophysics Data System (ADS)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder; Anand, Vikas; Kaur, Parminder

    2017-05-01

    The present work has been undertaken to study the gamma ray shielding properties of PbO-P2O5-Na2WO4 glass system. The values of mass attenuation coefficient and half value layer parameter at photon energies 511, 662 and 1173 KeV have been determined using XCOM computer software developed by National Institute of Standards and Technology. The density, molar volume, XRD, UV-VIS and Raman studies have been performed to study the structural properties of the prepared glass system to check the possibility of the use of prepared samples as an alternate to conventional concrete for gamma ray shielding applications.

  4. Thermodynamic properties of liquid Au–Cu–Sn alloys determined from electromotive force measurements

    PubMed Central

    Guo, Zhongnan; Hindler, Michael; Yuan, Wenxia; Mikula, Adolf

    2011-01-01

    The thermodynamic properties of the ternary Au–Cu–Sn system were determined with the electromotive force (EMF) method using a liquid electrolyte. Three different cross-sections with constant Au:Cu ratios of 3:1, 1:1, and 1:3 were applied to measure the thermodynamic properties of the ternary system in the temperature range between the liquidus temperature of the alloys and 1023 K. The partial free energies of Sn in liquid Au–Cu–Sn alloys were obtained from EMF data. The integral Gibbs free energy and the integral enthalpy at 900 K were calculated by Gibbs–Duhem integration. The ternary interaction parameters were evaluated using the Redlich–Kister–Muggianu polynomial. PMID:22039311

  5. Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments

    NASA Astrophysics Data System (ADS)

    Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.

    2016-09-01

    We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.

  6. Structural stability, elastic and thermodynamic properties of Au-Cu alloys from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kong, Ge-Xing; Ma, Xiao-Juan; Liu, Qi-Jun; Li, Yong; Liu, Zheng-Tang

    2018-03-01

    Using first-principles calculations method based on density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) implementation of the generalized gradient approximation (GGA), we investigate the structural, elastic and thermodynamic properties of gold-copper intermetallic compounds (Au-Cu ICs). The calculated lattice parameters are in excellent agreement with experimental data. The elastic constants show that all the investigated Au-Cu alloys are mechanically stable. Elastic properties, including the shear modulus, Young's modulus, Poisson's ratio and Pugh's indicator, of the intermetallic compounds are evaluated and discussed, with special attention to the remarkable anisotropy displayed by Au-Cu ICs. Thermodynamic and transport properties including the Debye temperature, thermal conductivity and melting point are predicted from the averaged sound velocity and elastic moduli, using semi-empirical formulas.

  7. Superconductivity in semimetallic B i 3 O 2 S 3

    DOE PAGES

    Li, L.; Parker, D.; Babkevich, P.; ...

    2015-03-12

    We report in this paper a further investigation on the thermodynamic and transport properties, and an assessment of theoretical calculations, for the BiS 2-layered Bi 3O 2S 3 superconductor. The polycrystalline sample is synthesized with a superconducting transition temperature of T c onset=5.75K and T c zero=4.03K (≈Tc mag) that drops to 3.3 K by applying a hydrostatic pressure of 6 kbar. Density-of-states (DOS) calculations give substantial hybridization between Bi, O, and S, with Bi the largest component of DOS, which supports the idea that the BiS 2 layer is relevant for producing electron-phonon coupling. An analysis of previously publishedmore » specific heat data for Bi 3O 2S 3 is additionally suggestive of a strong electron-phonon interaction in the Bi-O-S system. The analysis of the Seebeck coefficient results strongly suggests that Bi 3O 2S 3 is a semimetal. In fact, we found the semimetallic or narrow band gap behavior may occur in certain other materials in the BiS 2-layered class of materials, such as Bi 4O 4S 3.« less

  8. ZnO/Er2O3 core-shell nanorod arrays: Synthesis, properties and growth mechanism

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Wang, Yongqian; Jiang, Tingting; Li, Yinchang; Yang, Xiande

    2015-01-01

    In this study, we demonstrated large-scale ZnO/Er2O3 core-shell nanorod arrays, which were successfully synthesized by a facile and simple electrodeposition method. The effect of varying the amount of Er2O3 in the range from 0.2 g to 1.0 g on morphology of ZnO nanorod arrays has been thoroughly investigated. The results indicate that the growth pattern of all the ZnO/Er2O3 shell-core nanorod arrays were along c-axis and perpendicular to the substrate as before, even more vertical. Photoluminescence measurement was carried out and the PL peaks at 382 nm, 438 nm and 462 nm were observed, which are considered to be due to free excitons and donor-bound excitons, respectively. The ZnO/Er2O3 core-shell nanorods exhibited improved optical property, which can be attributed to the enhanced donor density by the covered Er2O3. Finally, a possible growth mechanism of the ZnO nanostructures is discussed. The electrochemical deposition of ZnO/Er2O3 core-shell nanorod arrays including two stages, namely nucleation and growth process.

  9. Influence of Y2O3 Addition on Crystallization, Thermal, Mechanical, and Electrical Properties of BaO-Al2O3-B2O3-SiO2 Glass-Ceramic for Ceramic Ball Grid Array Package

    NASA Astrophysics Data System (ADS)

    Li, Bo; Li, Wei; Zheng, Jingguo

    2018-01-01

    Y2O3 addition has a significant influence on the crystallization, thermal, mechanical, and electrical properties of BaO -Al2O3 -B2O3 -SiO2 (BABS) glass-ceramics. Semi-quantitative calculation based on x-ray diffraction demonstrated that with increasing Y2O3 content, both the crystallinity and the phase content of cristobalite gradually decreased. It is effective for the additive Y2O3 to inhibit the formation of cristobalite phase with a large coefficient of thermal expansion value. The flexural strength and the Young's modulus, thus, are remarkably increased from 140 MPa to 200 MPa and 56.5 GPa to 63.7 GPa, respectively. Also, the sintering kinetics of BABS glass-ceramics with various Y2O3 were investigated using the isothermal sintering shrinkage curve at different sintering temperatures. The sintering activation energy Q sharply decreased from 99.8 kJ/mol to 81.5 kJ/mol when 0.2% Y2O3 was added, which indicated that a small amount of Y2O3 could effectively promote the sintering procedure of BABS glass-ceramics.

  10. Hydrothermal Synthesis and Electrochemical Properties of Spherical α-MnO2 for Supercapacitors.

    PubMed

    Chen, Ya; Qin, Wenqing; Fan, Ruijuan; Wang, Jiawei; Chen, Baizhen

    2015-12-01

    In the present work, spherical α-MnO2 with a high specific capacitance was synthesized by a two-step hydrothermal route. MnCO3 precursors were first prepared by a common hydrothermal method, and then converted to α-MnO2 via a hydrothermal reaction between the precursors and KMnO4 solutions. The effects of hydrothermal temperature on the morphology, crystal structure and specific area of the MnO2 were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET measurements. The electrochemical capacitive properties of the manganese dioxides with different morphologies and structures were evaluated by cyclic voltammetry and galvonostatic charge-discharge tests. The results showed that the temperature in the second hydrothermal step had prominent impact on the capacitive properties of a-MnO2. The MnO2 synthesized at 150 *C exhibited a highest specific capacitance of 328.4 Fx g(-1) at a charge-discharge current density of 100 mA x g(-1).

  11. Effects of frit addition on the surface morphology and structural properties of ZnO-Bi2O3-Mn2O3 discs

    NASA Astrophysics Data System (ADS)

    Shahardin, Ahmad Hajidi; Mahmud, Shahrom; Sendi, Rabab Khalid

    2015-04-01

    ZnO-Bi2O3-Mn2O3 discs were prepared using conventional ceramic processing method and sintered at 1000°C. The different percentages of frit on the ZnO-Bi2O3-Mn2O3 discs were 0.0%, 0.5%, 1.0% and 3.0%. From FESEM observation, the grain structure and grain growth were more uniformly constructed and well distributed. Frit addition was found to cause a big drop in the average grain size from 4.59 µm to 2.76 µm even with an addition of 0.5 mol%. The Si and Al content in the frit recipe might have played a role as inhibiting agents in grain growth during sintering. RAMAN intensity and phase shifting were not affected by frit addition except at 3 mol%. Frit addition did not affect the formation of secondary phases. Frit addition below 3 mol% in ZnO-Bi2O3-Mn2O3 varistor discs can be used as a method in controlling grain size without affecting other properties.

  12. Ground-state and Thermodynamic Properties of an S = 1 Kitaev Model

    NASA Astrophysics Data System (ADS)

    Koga, Akihisa; Tomishige, Hiroyuki; Nasu, Joji

    2018-06-01

    We study the ground-state and thermodynamic properties of an S = 1 Kitaev model. We first clarify the existence of global parity symmetry in addition to the local symmetry on each plaquette, which enables us to perform large-scale calculations on up to 24 sites. It is found that the ground state should be singlet, and its energy is estimated as E/N ˜ -0.65J, where J is the Kitaev exchange coupling. We find that the lowest excited state belongs to the same subspace as the ground state, and that the gap decreases monotonically with increasing system size, which suggests that the ground state of the S = 1 Kitaev model is gapless. Using the thermal pure quantum states, we clarify the finite temperature properties characteristic of the Kitaev models with S ≤ 2.

  13. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles.

    PubMed

    Oleyaei, Seyed Amir; Zahedi, Younes; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-08-01

    In this research, potato starch and TiO2 nanoparticles (0.5, 1 and 2wt%) films were developed. Influences of different concentrations of TiO2 on the functional properties of nanocomposite films (water-related properties, mechanical characteristics, and UV transmittance) were investigated. XRD, FTIR, and DSC analyses were used to characterize the morphology and thermal properties of the films. The results revealed that TiO2 nanoparticles dramatically decreased the values of water-related properties (water vapor permeability: 11-34%; water solubility: 1.88-9.26%; moisture uptake: 2.15-11.18%). Incorporation of TiO2 led to a slight increment of contact angle and tensile strength, and a decrease in elongation at break of the films. TiO2 successfully blocked more than 90% of UV light, while opacity and white index of the films were enhanced. Glass transition temperature and melting point of the films were positively affected by the addition of TiO2 nanoparticles. The result of XRD study exhibited that due to a limited agglomeration of TiO2 nanoparticles, the mean crystal size of TiO2 increased. Formation of new hydrogen bonds between the hydroxyl groups of starch and nanoparticles was confirmed by FTIR spectroscopy. In conclusion, TiO2 nanoparticles improved the functional properties of potato starch film and extended the potential for food packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Phase Equilibria in the System "FeO"-CaO-SiO2-Al2O3-MgO at Different CaO/SiO2 Ratios

    NASA Astrophysics Data System (ADS)

    Jang, Kyoung-oh; Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Zhao, Baojun

    2017-06-01

    The "FeO"-containing slags play an important role in the operation of an ironmaking blast furnace (BF), in particular the primary slags such as the system "FeO"-CaO-SiO2-Al2O3-2 mass pct MgO with CaO/SiO2 weight ratios of 1.3, 1.5, and 1.8 saturated with metallic iron. To investigate the characteristics of such a slag system and its behavior in BF, the phase equilibria and liquidus temperatures in the slag system have been experimentally determined using the high-temperature equilibration and quenching technique followed by an electron probe X-ray microanalysis (EPMA). Isotherms between 1553 K and 1603 K (1280 °C and 1330 °C) were determined in the primary phase fields of dicalcium silicate, melilite, spinel, and monoxide [(Mg,Fe2+)O]. Pseudo-ternary phase diagrams of (CaO + SiO2)-Al2O3-"FeO" with a fixed MgO concentration at 2 mass pct and at CaO/SiO2 ratios of 1.3, 1.5, and 1.8 have been discussed, respectively, simplifying the complexity of the slag system for easy understanding and applying in BF operation. It was found that the liquidus temperatures increase in melilite and spinel primary phase fields, but decrease in dicalcium silicate and monoxide primary phase fields with increasing Al2O3/(CaO + SiO2) ratio. In addition, the liquidus temperatures decrease with increasing "FeO" concentration in dicalcium silicate and melilite primary phase fields, while showing an increasing trend in the spinel and monoxide primary phase fields. The data resulted from this study can be used to improve and optimize currently available database of thermodynamic models used in FactSage.

  15. In-vitro study of copper doped SiO2-CaO-P2O5 system for bioactivity and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas; Kaur, Harpreet; Arora, Daljit Singh

    2015-08-01

    Samples of the xCuO-(45-x)CaO-10P2O5-45SiO2 system (x varies from 0 to 4 mole%) have been synthesized for application as biomaterials to slow or inhibit the growth of living organisms (fungi and other pathogenic microorganisms) by the combination of sol-gel and co-precipitation processes. Prepared samples have been characterized by X-Ray Diffraction, Fourier Transform Infra-Red and Field Emission Scanning Electron Microscopy techniques before and after immersion in simulated body fluid. Antimicrobial activity of samples has been investigated against Staphylococcus aureus. Releasing of Cu2+and other ions in the simulated body fluid has been determined by Atomic Absorption Spectroscopy to ensure the use of prepared material as biomaterial with good antibacterial properties.

  16. Environment-Modulated Crystallization of Cu2O and CuO Nanowires by Electrospinning and Their Charge Storage Properties.

    PubMed

    Harilal, Midhun; G Krishnan, Syam; Pal, Bhupender; Reddy, M Venkatashamy; Ab Rahim, Mohd Hasbi; Yusoff, Mashitah Mohd; Jose, Rajan

    2018-02-06

    This article reports the synthesis of cuprous oxide (Cu 2 O) and cupric oxide (CuO) nanowires by controlling the calcination environment of electrospun polymeric nanowires and their charge storage properties. The Cu 2 O nanowires showed higher surface area (86 m 2 g -1 ) and pore size than the CuO nanowires (36 m 2 g -1 ). Electrochemical analysis was carried out in 6 M KOH, and both the electrodes showed battery-type charge storage mechanism. The electrospun Cu 2 O electrodes delivered high discharge capacity (126 mA h g -1 ) than CuO (72 mA h g -1 ) at a current density of 2.4 mA cm -2 . Electrochemical impedance spectroscopy measurements show almost similar charge-transfer resistance in Cu 2 O (1.2 Ω) and CuO (1.6 Ω); however, Cu 2 O showed an order of magnitude higher ion diffusion. The difference in charge storage between these electrodes is attributed to the difference in surface properties and charge kinetics at the electrode. The electrode also shows superior cyclic stability (98%) and Coulombic efficiency (98%) after 5000 cycles. Therefore, these materials could be acceptable choices as a battery-type or pseudocapacitive electrode in asymmetric supercapacitors.

  17. Morphology-controlled synthesis of α-Fe 2O 3 nanostructures with magnetic property and excellent electrocatalytic activity for H 2O 2

    NASA Astrophysics Data System (ADS)

    Li, Xiyan; Lei, Yongqian; Li, Xiaona; Song, Shuyan; Wang, Cheng; Zhang, Hongjie

    2011-12-01

    α-Fe 2O 3 nanocrystals (NCs) with different morphologies are successfully synthesized via a facile template-free hydrothermal route. By simply changing the volume ratio of ethanol to water, we obtained three different α-Fe 2O 3 nanostructures of rhombohedra, truncated rhombohedra and hexagonal sheet. The morphologies and structures of the as-obtained products have been confirmed by varieties of characterizations such as X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The influences of the experimental conditions, such as the amount of NaOH and reaction temperature on the morphologies of the as-prepared α-Fe 2O 3 NCs, have been well investigated. Additionally, magnetic investigations show that the as-obtained α-Fe 2O 3 nanostructures show structure-dependent magnetic properties. Furthermore, the electrochemical experiments indicate that the as-prepared α-Fe 2O 3 hexagonal sheets exhibit strong electrocatalytic reduction activity for H 2O 2.

  18. Nonlinear dielectric properties and tunability of 0.9Pb(Mg1/3,Nb2/3)O3-0.1 PbTiO3 and Ba(Ti0.85,Sn0.15)O3 paraelectrics

    NASA Astrophysics Data System (ADS)

    Akdogan, E. K.; Hall, A.; Simon, W. K.; Safari, A.

    2007-01-01

    We investigate the nonlinear dielectric properties of 0.9Pb(Mg1/3,Nb2/3)O3•0.1PbTiO3 (PMN-PT) and Ba[Ti0.85,Sn0.15]O3 (BTS) paraelectrics experimentally and theoretically. We measure the nonlinear dielectric response in the parallel plate capacitor configuration, whereby we obtain the low frequency linear permittivity (ε33), and the higher order permittivities (ε3333,ε333333) at 298K as ε33PMN-PT=2.1×10-7 and ε33BTS=4.1×10-8F /m, ε3333PMN-PT=-4.9×10-20 and ε3333BTS=-7.3×10-21F3m /C2, and ε333333PMN-PT=7.6×10-33 and ε333333BTS=9.85×10-34F5m3/C4. By using a self-consistent thermodynamic theory in conjunction with the experimental data, we compute the E3 dependence of electrostatic free energy ΔG, the field-induced polarization P3, and the thermodynamic tunability ∂2P3/∂E32, and prove that electrostatic free energy has to be expanded at least up to the sixth order in the electric field to define the critical field ∣E3*∣ at which maximum tunability is attained. We also show that ∣E3*∣ is a function on ∣ε3333∣/ε333333 only. Consequently, we find ∣E3*∣PMN-PT=8.0×105V /m and ∣E3*∣BTS=8.6×105V/m. We compute the engineering tunabilities as ΓPMN-PT=65% and ΓBTS=55%, and then define a normalized tunability ξ to take into account the ∣E3*∣ parameter. Thereof, we determine ∣ξ ∣PMT-PT=8.1×10-5%/Vm-1 and ∣ξ∣BTS=6.4×10-5%/Vm-1. Our results reveal that ∣E3*∣BTS>∣E3*∣PMN-PT although ΓBTS<ΓPMN-PT, unequivocally showing the need for defining a critical field parameter in evaluating the nonlinear dielectric response and tunability, in particular, and in nonlinear dielectrics in general. The results also indicate that the nonlinear dielectric properties of PMN-PT are an order of magnitude higher than that of BTS, which we discuss in the context of structure-property relations of relaxors.

  19. Effects of La2O3-B2O3-ZnO additions on the low temperature sintering and microwave dielectric properties of (Ca0.61La0.26) TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Li, E. Z.; Niu, N.; Zou, M. Y.; Duan, S. X.; Zhang, S. R.

    2017-02-01

    The influence of La2O3-B2O3-ZnO (LBZ) additions on the sintering behavior, microstructure, phase composition, and the microwave dielectric properties of (Ca0.61La0.26) TiO3 (CLT) ceramics have been investigated. The results indicate that the LBZ additions could efficiently lower the sintering temperature of the CLT ceramics from 1400°C to 950°C, and excellent microwave properties remain. Small amount of LBZ glass promotes the densification of the CLT ceramics and enhances the microwave dielectric properties. However, excess amount of LBZ glass deteriorates the dielectric properties because of the increasing glass phase. The CLT ceramic with 3 wt. % LBZ additions, sintered at 950°C, exhibit excellent properties: εr= 103.12, Q× f = 8826 GHz(f=3.312 GHz) and τƒ=299.52 ppm/°C.

  20. Optical and Structural Properties of Zn2TiO4:Mn2+

    NASA Astrophysics Data System (ADS)

    Sosman, L. P.; López, A.; Camara, A. R.; Pedro, S. S.; Carvalho, I. C. S.; Cella, N.

    2017-12-01

    Polycrystalline Zn2TiO4 samples with Mn2+ doping level of 0%, 0.1%, 1.0%, and 5.0% have been produced by conventional solid-state method and their optical and structural properties investigated. Rietveld refinement of x-ray diffraction patterns revealed the formed phases and the crystallographic parameters. The chemical composition was obtained by x-ray fluorescence measurements. The optical properties were studied by photoluminescence, excitation, reflectance, and photoacoustic spectroscopy. All measurements were performed at room temperature. The photoluminescence spectrum of the pure sample (0% Mn2+) showed a band in the red region associated with Zn2TiO4, while the sample with 0.1% Mn2+ exhibited two bands, in the green and red spectral regions, assigned to Mn2+ ions at tetrahedral and octahedral sites. No emission was observed for the samples with 1.0% or 5.0% Mn2+. The excitation results for the sample with 0.1% Mn2+ ions showed characteristic peaks of Mn2+ transitions. Tanabe-Sugano theory was used to obtain the crystal field Dq, B, and C Racah parameters from the energy peak positions in the excitation spectrum of the sample with 0.1% Mn2+. Photoacoustic measurements revealed a broad band, characteristic of semiconductor materials, hiding the Mn2+ transitions.